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Chapter 17
Problem-Posing/Problem-Solving Dynamics 
in the Context of a Teaching-Research 
and Discovery Method

Vrunda Prabhu and Bronislaw Czarnocha

Abstract Problem posing is practiced in the context of an integrated teaching/
research methodology which has become known as TR/NYCity methodology 
(Teaching-Research/New York City methodology) (Dydaktyka Matematyki, 2006, 
29: 251–272). This approach has been utilized in mathematics classrooms in the 
New York area for a decade. Problem solving turned out to be an essential teaching 
strategy for developmental mathematics classrooms of Arithmetic and Algebra, 
where motivation in learning, interest in mathematics, and the relevance of the sub-
ject is unclear to adult learners. Problem posing and problem solving are brought 
into play together so that moments of understanding occur, and a pattern of these 
moments of understanding can lead to self-directed discovery, becoming the natural 
mode of learning. Facilitation of student moments of understanding as manifesta-
tions of their creative capacity emerges from classroom teaching-research practice 
and its relationship with the theory of the act of creation (The Act of Creation. 1964. 
Macmillan) as the integrative element leading to discovery. Discovery returns to the 
remedial mathematics classroom, jumpstarting reform. This teaching-research 
report is based on the collaborative teaching experiment (C3IRG 7 Problem Solving 
in Remedial Arithmetic: Jumpstart to Reform. 2010. City University of New York) 
supported by C3IRG grant of CUNY.
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Introduction: Posing the General Problem

Enquiry is the path to discovery along which the central problem decomposes 
into a series of posed questions (see Figure 17.1).

Problem-posing decomposition is the essential link for reaching discovery; its 
absence derails success by denying access to that discovery. Transformation of the 
process of enquiry into a series of smaller posed problems generated by the partici-
pants allows every student to reach, and to discover, a sought-after solution. Duncker 
(1945) thought deeply about the psychological processes involved in problem solv-
ing, and Silver, Mamona-Downs, Leung, and Kenney (1996) asserted that “problem 
solving consists of successive reformulations of an initial problem” (p. 294). This 
view became increasingly common among researchers studying problem solving. 
Moreover, Brown and Walter (1983), in The Art of Problem Posing, posed and 
answered the question:

Why, however, would anyone be interested in problem posing in the first place? A partial 
answer is that problem posing can help students to see a standard topic in a sharper light and 
enable them to acquire a deeper understanding of it as well. It can also encourage the cre-
ation of new ideas derived from any given topic—whether a part of the standard curriculum 
or otherwise (p.169).

The central problem faced by mathematics teachers teaching within an urban 
community has dimensions that are of both global and local scales. Both ends of the 
scale can generate the solution of the problem if appropriate questions are posed to 
reformulate it to the needed precision for the scale at hand. Such a problem is the 
Achievement Gap. Thus, the central problem addressed in this chapter is how to 

Figure 17.1. Enquiry method of teaching and the decomposition into posed questions/problems.
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bridge the Achievement Gap and the role of problem-posing/problem-solving 
dynamics in this process. Its two scales are, on the one hand, that which drives 
political machinery: funding initiatives at the National Science Foundation, 
Department of Education, and other funding agencies, and on the other hand, the 
situation in a community college mathematics classroom—talent, capacity for deep 
thinking, yet its clarity disturbed, so grades awarded are not high. The gap for both 
scales is just a gap; so that the solution to the common posed problem at one end of 
the scale, of how to fill/bridge/eliminate the gap, can lead to a flow between the local 
and the national problem, in that the solution at the local scale informs the problem 
posed at the global national scale. The posed problem has multiple dimensions 
including:

 1. Student voices with the actual classroom difficulties, such as: “what is −3 + 5, 
why is it not −2,” or “why must I take a long answer test, when the final exam 
is multiple choice,” or “why don’t you teach, you just make us solve 
problems”;

 2. Teachers’ voices with the curricular fixes that they think will/has definitely 
 eliminated the gap in their own classroom, of say fractions; and who through 
that discovery/solved problem, wish to let the secret be available to all stu-
dents to fix the fraction gap on a broader scale; and

 3. Administration obsessed with standardized exams measuring student skills 
development but not their understanding.

The problems posed by the different constituents are sub-probes to the challenge of 
closing the Achievement Gap and each of these sub-problems fall into mutually 
affecting strands. In the classroom, these fall under the categories discussed by 
Barbatis, Prabhu, and Watson (2012): (a) Cognition; (b) Affect; and (c) Self- 
Regulated Learning Practices.

In this chapter, we will illustrate our classrooms’ problem-posing possibilities. 
Mathematics is thinking technology through which posing problems, attempting to 
solve them, and solving them to the extent possible with the available thinking strat-
egies represent the foundational core of the discipline. By repeatedly posing ques-
tions to solve the problem in its broad scope, we have discovered that creativity, and 
in particular, mathematical creativity, can jumpstart remedial reform, thus confirm-
ing the assertions of Silver et al. (1996), and Singer, Pelcher, and Voica (2011). 
Mathematics answers questions—“why?” and “how?” as it uses minimal building 
blocks on which its edifice is constructed. Thus at any level of the study of mathe-
matics, problem posing and problem solving are inextricable pieces of the endeavor.

TR/NYCity Model is the classroom investigation of students learning conducted 
simultaneously with teaching by the classroom teacher, whose aim is the improve-
ment of learning in their classroom, and beyond (Czarnocha & Prabhu, 2006). The 
Teaching-Research, NYCity (TR/NYCity) Model has been used effectively in 
mathematics classrooms of Bronx Community College and Hostos Community 
College, the Bronx community colleges of the City University of New York, for 
more than a decade. The investigation of student learning, as well as related math-
ematical thinking, necessitates the design of questions and tasks that reveal its 
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nature to the classroom teacher–researcher. That is the original source of problem 
posing to facilitate student thinking employed by TR/NYCity. This method of 
teaching naturally connects with the discovery method proposed originally by 
Dewey and Moore. Utilization of TR/NYCity in conjunction with the discovery 
method let us, as teacher–researchers, to discover that repeatedly posing questions 
to students facilitates student creativity, and as such it can jumpstart remedial reform 
in our classrooms (Czarnocha, Prabhu, Baker, & Dias, 2010). That realization is 
consistent with the work of Silver et al. (1996), Singer et al. (2011) and others in the 
field who assert that problem posing is directly related to the facilitation of student 
creativity.

The Act of Creation by Koestler (1964) allows us to extend our understanding of 
classroom creativity to the methodology of TR/NYCity itself. The Act of Creation 
asserts that bisociation—the moment of creative understanding—is facilitated and 
can take place only when two or more different frames of discourse or action are 
present in the activity. Since teaching-research is the integration of two significantly 
different professional activities, teaching and research, TR/NYCity with its constant 
probing questions to reveal student thinking presents itself as the natural facilitator 
of teacher’s creativity as well. The TR cycle shown in Figure 17.2 shows the theo-
retical framework within which problem-posing/problem-solving dynamics as the 
terrain of student and teacher classroom creativity is being iterated through con-
secutive semesters. The process of iteration produces new knowledge about learn-
ing and problem-posing/problem-solving instructional materials.

Figure 17.2. Teaching-research cycle with two iterations.
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TR cycle iteration is the consecutive run of the investigation or intervention 
through several subsequent cycles of days, semesters or years. During each 
semester, student difficulties are cycled over at least twice so that the diagnosed 
difficulty can be addressed and its success assessed in agreement with the prin-
ciples of adaptive instruction (Daro, Mosher, & Corcoran, 2011). Over the span 
of several semesters, the methodology creates an increasing set of materials 
which are refined over succeeding cycles and acquire characteristics of use to all 
students studying the mathematical topics under consideration. The learning 
environment itself develops into a translatable syllabus for the course from sev-
eral perspectives. Learning environments developed in (TR/NYC) classrooms 
can be replicated for other instructors facing similar difficulties related to the 
Achievement Gap in their own classrooms, and for instructors who are interested 
in becoming teacher–researchers looking for solutions to larger problems in their 
classrooms.

In classes of Remedial Mathematics (i.e., classes of Arithmetic and Elementary 
Algebra) at the community college, Teaching-Research Experiments have been car-
ried out since 2006. In the period from 2006 to 2012, success began to be evidenced 
in 2010 following a broader teaching-research team approach described later in this 
section.

The initiative in Remedial Mathematics followed the successful use of the meth-
odology in calculus classes under the NSF-ROLE#0126141 award, entitled, 
Introducing Indivisibles in Calculus Instruction. In the calculus classes (NSF- 
ROLE#0126141), when the appropriate scaffolding dynamic had been embedded in 
the Learning Environment, students who were underprepared in, to name the main 
difficulties, fractions on the line, logic of if-then, algebra of functions and limit 
(essential for definite integral conception as the limit of the sequence of partial 
Riemann sums), were nonetheless able to perform at an introductory analysis level 
(as distinct from the level of standard calculus course). Discovery was the “natural” 
means of exploration in calculus classes and enquiry leading to discovery through 
problem-posing/problem-solving dynamics was able to take place without student 
resistance.

In classes of Remedial Mathematics, however, the situation is markedly differ-
ent. Student resistance to learning is prompted by years of not succeeding in the 
subject, and the general attitude is of “just tell me how to do it.” Discovery and 
enquiry are not welcome means. In the period 2006–2010, development of the 
mathematical materials was continued, and the learning trajectory for fractions 
described later in this chapter was also investigated. However, the success was not 
in student learning. In 2007–2008, as part of a CUNY-funded teaching experiment, 
Investigating Effectiveness of Fraction Grid, Fraction Domino in mathematics 
classrooms of community colleges of the Bronx, it was found that a satisfactory 
student partnership in learning, a didactic contract (Brousseau & Balacheff, 1997) 
or in classroom language, a mutual “handshake” confirming the commitment to 
student learning, was essential in confirming the role of problem posing on the 
affect and self-regulatory learning (Akay & Boz, 2010). In 2010, following a Bronx 
Community College consultancy to Further Education and Training colleges in 
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South Africa, a new direction to address the problem was established. The situation 
in classrooms, whether in South Africa or in the Bronx, needed simultaneous atten-
tion to student affect as well as to student learning.

Development of Learning Environments

The relationship between cognitive and affective components of learning has 
recently received increased attention (see, for example, Araujo et al., 2003; Gomez- 
Chacon, 2000). According to Goldin (2002) “When individuals are doing mathe-
matics, the affective system is not merely auxiliary to cognition—it is central” 
(p. 60). Furinghetti and Morselli (2004), in the context of the discussion of mathe-
matical proof, asserted that “the cognitive pathway toward the final proof presents 
stops, dead ends, impasses, steps forward. The causes of these diversions reside 
only partially in the domain of cognition; they are also in the domain of the affect” 
(p. 217). There is a need, in addition to attention being paid to possible cognitive 
pathways, to consider—and find the impact of—affective pathways. DeBellis and 
Goldin (1997) described affective pathways as “the sequence of (local) states and 
feelings, possibly quite complex, that interact with cognitive representation” 
(p. 211).

A learning environment began to develop under iterative loops of the TR cycle, 
and the components of this learning environment are captured in the concept 
map below. At that time, the teaching-research team constituted a counselor (also 
the Vice President for Student Development), a librarian, and the mathematics 
instructor.

A brief explanation on how to read the concept map shown in Figure 17.3, with 
its emphasis on the improvement of classroom performance as a function of motiva-
tion, self-regulated learning, and cognitive development, is given in Appendix 2.

In the period 2010–2012, during the process of developing the conducive learn-
ing environment, three factors emerged as anchoring the learning environment 
(Barbatis, Prabhu & Watson, 2012). These authors advocated simultaneous atten-
tion to:

 1. Cognition (materials and classroom discourse well scaffolded, paying atten-
tion to the development of the zone of proximal development via meaningful 
questioning in the classroom and via instructional materials designed in 
accordance with Bruner’s (1978) theoretical position on concept development 
with concrete, iconic, and symbolic stages).

 2. Affect (classroom discourse and independent learning guided by the 
 development of positive attitudes toward mathematics through instances and 
moments of understanding of enjoyment of problems at hand, extended by 
self-directed means of keeping up with students’ changing attitudes toward 
mathematics and its learning).
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 3. Self-Regulated Learning Practices (learning how to learn, usefulness of care-
ful note-taking, daily attention to homework, asking questions, paying atten-
tion to metacognition and independent work).

Figure 17.3. The components of a learning environment centered on creative problem solving.

Two simultaneous developments took place during the construction of the learning 
environment anchored in these three aspects. The craft knowledge of the teaching- 
research team had a common focus of employment—the development and viewing 
of the mathematical material on several planes of reference (Koestler, 1964). For 
example, with a problem such as ½ + 1/3, the counselor of the mathematician–coun-
selor pair would keep the mathematical focus constant while alternating between 
concrete examples of cookies, pizzas, etc. an approach which exposed students to 
the process of generalization. This was then extended by the mathematics instructor 
in removing the monotony of “not remembering” the rules for operations on frac-
tions by using the rules for operations on fractions in more complex problems such 
as those involving rules of exponents. It was found that the novelty and intrigue of 
decoding problems that involved exponents made the rules for fractions “easier” to 
remember or look up. Creativity had emerged as an organic development from the 
craft knowledge of the instructor. However, it was the support of Arthur Koestler’s 
(1964) The Act of Creation that provided a theoretical base in which to anchor 
thinking and the development of creativity.
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Theory of the Act of Creation

Koestler (1964) sketched the theory of the act of creation, or the creative act and 
coined the term bisociation to indicate the creative act. Bisociation refers to the 
“flash of insight” resulting from “perceiving reality on several planes at once” and 
hence, not just associating two familiar frames, but seeing a new one through them, 
which had not been possible before. This moment of understanding or bisociation is 
facilitated in the teaching-research classroom through problem posing which can 
lead to a pattern that changes habit to originality. Mathematics is no longer the “old 
and boring stuff that needs to be done,” but is a source of enjoyment, so that even 
when the class period ends, students are still interested in continuing to puzzle over 
problems. Then, when enjoyment translates into performance, the Achievement 
Gap begins to close, one student at a time.

Koestler’s (1964) theory of creativity was based on making connections of the 
concept in question across three domains or shades of creativity: humor, discovery, 
and art. Note that our Creative Learning Environment was anchored in Cognition, 
Affect, and Self-Regulated Learning Practices and assumes overlapping and mutu-
ally conducive roles. Humor addresses affect, discovery addresses cognition and 
learning how to learn when refined so that it is natural, the learner can transform his 
or her discoveries to deeper levels, or art. A quick glimpse of Koestler’s theory is 
encapsulated in the concept maps shown in Figures 17.4 and 17.5. The habit and 
originality concept map provides the workings of the transformation involved in the 
creative process. The Habit + Matrix = Discovery concept map probes more deeply 
into this transformative process, showing the important role of affect/humor in the 
creative process. Both become directly usable in the development of the Creative 
Learning Environment in the classroom.

Mathematics Teaching-Research though the TR cycle clearly lends itself to cre-
ating a problem-posing/problem-solving dynamics. How does it do so? In the next 
section, we provide several classroom instances where problem posing has helped 
to bring discovery and enquiry “back on track.” The concept map shown in 
Figure 17.5 links creativity with the problem-posing/problem-solving dynamics.

Figure 17.4. The role of the bisociative act in transforming the habit into originality.
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Problem-Posing/Problem-Solving Dynamics

 Problem-Posing Illustration 1

This particular example is from an Elementary Algebra class. The time was just 
after the first exam, about a month into the semester. Students had had shorter quiz-
zes before. On the day from which this example is taken, almost the entire class 
staged a rebellion. They stated that the instructor did not teach, that they solved 
problems, and that since the class is remedial, that means the instructor has to teach. 
A couple of the students explained what they meant by “teach.” One student stated 
that her previous instructor did a problem on the board and then students did several 
like it. Another student adamantly declared that she needed “rules” for how to do 

Figure 17.5. The role of mathematical creativity for the improvement of learning.
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every problem. After the uproar subsided, the instructor guided them through the test, 
assuring them that the student in question is doing the problem—thinking aloud and 
continually pointing out the rules or the significant places to which to pay attention.

 

Each problem was solved/thought out aloud by the student selected by the 
instructor, and she/he read the problem, and when a symbol was stated, such as 
parenthesis, the student was asked for the meaning of the symbol (posing a prob-
lem). Once the whole problem was read aloud with meaning, the student had to 
determine the order in which to proceed and why (solving a problem), and then the 
student actually did the computation in question. It is important to recognize, here, 
that whether or not a question is a posed problem depends on the state of knowledge 
of the student. For a student who does not know the meaning of a symbol, the act of 
asking the question “what does this symbol mean?” is posing a relevant problem. 
For a student who understands the role of that symbol but has difficulty interpreting 
this particular case, the question about the symbol is directed toward clarifying that 
understanding, and hence would not be a posed problem.

At the end of the class, attention was brought back to the work done, how it con-
stituted reading comprehension, paying attention to the structure of the problem and 
then paying attention to the meaning of individual symbols and thinking of structure 
and meaning together. There was clarity, satisfaction, and a turnaround in problem 
solving after this session.

What did this session do in the classroom? First, it debunked the myth that one 
has to memorize something in order to solve every problem. Second, it took away 
the authority of the teacher as the knowledgeable one (which the class was reluctant 
to give up), and finally when each person carefully read and translated/made sense 
of the problem in terms of symbols and structure, students saw the process of posing 
and solving working in unison with one of their own classmates carrying out all of 
the thinking. Hence, for example, when the student who was doing the problem, 
read “parenthesis,” she was questioned about the meaning of “parenthesis,” and 
what role it had to play in the problem (posing problems). The mathematical 
 language with its various hidden symbols, many symbols with one meaning, or one 
symbol with many meanings are all sources of confusion for students. Situations 
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such as the one narrated here provide for self-reflection, and clarification of the 
language and of the meaning of the language of mathematics. This approach 
required many posed questions along the way for clarification. Note, how affect, 
cognition, and metacognition—all three—enter the dialogic thinking that instructor 
and students went through together.

 Problem-Posing Illustration 2

In this example, the class was Elementary Algebra. Students had trouble deter-
mining which rule of exponents was to be applied to the given problem. There was 
a tendency to use anything arbitrarily without justification. The class problems were 
followed by a quiz, in which students had much difficulty in determining which rule 
was applicable for the problem under consideration. Again, it was a matter of not 
being able to slow down the thinking sufficiently to observe the structure of the 
problem and the similarity of the structure with one or more rules. Students were 
asked to work on the following assignment:

Rules of Exponents

 1. a a an m n m´ = +

 2. 
a

a
a

n

m
n m= -

 3. (an)m = anm

 4. a0 = 1

 5. a−n = 1/an

Make up your own problems using combinations below of the rules of 
exponents:

• Rules 1 and 2

• Rules 1 and 3

• Rules 1, 2, and 3

• Rules 1 and 4

• Rules 2 and 4

• Rules 1, 2, and 5

• Rules 1 and 5

• Rules 1, 2, 3, 4, and 5

Solve each of the problems you created.
In the work that students submitted, they created problems that had only one 

term that required the use of say Rule 1 (e.g., x7y8) and another term that required 

the use of Rule 2 (e.g., 
y

y

5

3
) but there were no problems that had one term requiring 

the use of both rules (e.g., 
y y

y

5 7

10

´
). This gave the instructor in question a point 
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from which to develop problem solving through deeper problem posing, i.e., through 
dialogic think-aloud face-to-face sessions, students were asked to observe the struc-
ture of the given problem and state the similarity to all rules, where similarity was 
observed (this led to examples of posed questions which, in turn, led the teacher–
researcher to make more complex exercises). This increased students’ repertoires in 
problem solving as evidenced in the quiz and test, described in Problem-Posing 
Illustration 3.

 Problem-Posing Illustration 3

In this illustration, we provide the triptych used in Statistics classes (also used in 
Arithmetic and Algebra, but not included here), developed through Koestler’s work 
on the development of creativity. A triptych in Koestler’s usage is a collection of 
rows as shown in Figure 17.6, where the columns indicate humor, discovery, and 
art. In order to get to the discovery of the central concept, the learner can work their 
way into probing the concept through some word that is known and even funny. 
Students are provided with the triptych shown in Figure 17.6, with two rows com-
pleted. These completed rows were discussed in class as to whether they make 
sense. Students clarified their understandings in the discussion. It was then expected 
that students would complete all rows of the triptych and then write a couple of 
sentences of explanation of the connections between the three words. When all 
students had submitted their triptychs, the class triptychs were placed on an elec-
tronic platform, Blackboard, and students viewed and reflected on each other’s 
work. Students then created a new triptych for the end of the semester and included 
a few sentences explaining the connections of the concept and its illustration across 
the row of the triptych.

These classes needed greater scaffolding with the triptych and here the elements 
of the triptych were introduced “Just-in-Time” as the topic under consideration was 
being covered in the class. Hence, for example, the triptych Powers ← → decimal 
representation ← → polynomial was discussed during the session on polynomials. 
Figure 17.7 shows the general strategy that was used to facilitate discovery and 
understanding from the teacher–researcher’s perspective:

Trailblazer Outlier Original/ity
Sampling
Probability
Confidence interval
Law of large numbers

Lurking variable Correlation Causation

Figure 17.6. The statistics triptych.
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Problem posing was a constant in the discovery-oriented enquiry-based learning 
environment. Operations on integers and in particular, adding and subtracting with 
visualizing of the number line, formed the basis for ongoing questioning and posing 
of problems between students and teacher–researcher.

Algebra as the field of making sense of structure simultaneously with making 
sense of number provides opportunities for problem posing along the Particularity 
← → Abstraction ← → Generality of the Arithmetic–Algebra spectrum. In Algebra 
classes, it was harder to introduce scaffolding, and problem posing occurred solely 
on the side of the teaching-research team as they explored ways to include triptychs 
in the Learning Environment mix. In the process, the triptych rows evolved into 
“simpler” usable forms.

Figure 17.7. Algebra triptychs.
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Results and Discussion

The results discussed in this section were obtained after three teaching-research 
cycles. Consistent with this model for teaching, the results will be incorporated into 
the next TR cycle based on the described ideas and practice. We have discussed how 
our cyclical involvement in TR/NYC Model of teaching-research aims to solve the 
problem of our classrooms—students’ understanding and mastery of mathematics 
led us to pose to ourselves a general question: What are the necessary components 
of student success in mathematics? Our answer to this problem was investigated in 
the teaching experiment Jumpstart to Reform which directed our attention to student 
creativity as the motivating factor for their advancement in learning. Quantitative 
analysis of the data is provided in Appendix 1. In turn, our facilitation of student 
creativity was scaffolded by a series of posed problems/questions designed either by 
the teacher or students of the classroom. (Doyle et al., in press) described the quan-
titative results of the teaching experiment Problem Solving in Remedial 
Mathematics—Jumpstarting the Reform supported by C3IRG 7 awarded to the team 
in 2010. These results confirmed the impact of the approach for the improvement of 
student problem-solving capacity. These authors pointed out that the art of posing 
series of problems scaffolding student understanding depends strongly on the teach-
er’s judgment concerning the appropriate amount of cognitive challenge.

Solving these problems in practice leads again to the posing of a general question, 
which, in agreement with the principles of TR/NYCity leads beyond the confines of 
our classroom: What is a learning trajectory (LT) of, for example, fractions in my 
classes? We illustrate a learning trajectory for fractions that developed over the period 
2006–2012, with some movement at times, none at others, and a lot more when stu-
dents are active learners. Problem posing has been an active element in that process 
within the student–teacher mutual understanding. A four-step approach was taken: 
(a) The meaning of fractions was established and revisited; (b) How should fractions 
be visualized? A fractions grid was developed as a visual tool (Czarnocha, 2008); (c) 
Proportional reasoning: Picture in various versions—seeing the interconnectedness 
of fractions in different representations: decimal, percent, pie chart; and (d) The 
meaning of fractions was revisited. Over time, the learning trajectory shown in 
Figure 17.8 was developed and can be summarized through the following six points:

 1. Equivalent fractions visualized—operation: scaling—visualize with FG and 
then scaling

 2. Increasing, decreasing order arrangement—prime factorization—common 
denominator—fraction grid and then reasoning; common denominators are 
meaningful before any other standard operations

 3. Addition and subtraction

 4. Multiplication

 5. Division

 6. Transition to language—what is half of 16?…

This learning trajectory will be refined through subsequent cycles of the course. 
Developing the LT for fractions is an illustration of how problem-posing works in 
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the context of a satisfactory handshake on the part of learners. Problems utilizing 
exponents is an example of active problem posing leading to its successful integra-
tion by learners. The mastery of the language of mathematics through self-directed 
attention to reading comprehension is an example of how the repertoire needed for 
problem posing and solving needs to be consistently built up.

The development of several learning trajectories one of which is shown here 
demonstrate the usability of the methodology and developed materials for a much 
larger audience of students who fall in the category of self-proclaimed “no good at 
math,” “don’t like math,” etc. The process of the development of learning trajecto-
ries proceeds through the elimination of learning difficulties in the collaborating 
classrooms.

Repeated problem-posing/problem-solving dynamics increases learners’ reper-
toires for recognizing their own moments of understanding and the emerging pat-
terns of understanding. Writing as the medium utilized for learning to write and 
writing to learn makes the understanding lasting, concrete, and reusable by learners 
(Luria & Yudovich, 1968).

The overarching result was that a discovery-based approach to the learning of 
basic mathematics, coupled with due attention to the cultivation of positive affect, 
was found to sustain development of learning “how to learn.” The learning environ-
ment so created was thus a creative learning environment in that it was capable of 
stimulating creative moments of understanding and extending these to patterns of 
understanding that could transform learners’ habits of doing/learning mathematics 
to an enquiry-oriented approach that fostered enjoyment and consequently boosted 
performance. Students’ didactic contract/handshake toward their own learning 
markedly improved once they found mathematics to be enjoyable; their success in 
tests boosted their confidence; and their desire to achieve. Any fears which students 
had when the class started, and the accompanying resistance to learning, became 
nonexistent for the majority of the students. Two students who continued to hold 
some resistance were in a minority and slowly began to take greater interest. The 
emphasis on classroom creativity adopted in the teaching experiment outlined a 
possible pathway across the Achievement Gap.

Figure 17.8, Learning trajectory for fractions.

17 Problem-Posing/Problem-Solving Dynamics



370

Conclusion

Mathematics as the creative expression of the human mind is intrinsically ques-
tioning/wondering why and how, and through reflection/contemplation, gaining 
insight through careful justification of the answers to the questions posed. Problem 
posing and problem solving are thus the core elements of “doing mathematics.” 
In contemporary contexts of teaching and learning of mathematics, this core of 
mathematics is hidden from sight, and a syllabus, learning objectives, learning out-
comes, etc. are more prominent, making mathematics seem like a set of objectives 
and sometimes even called skills to be mastered by the student who is then consid-
ered proficient or competent in those skills. The high failure rate in mathematics 
starting as early as third grade (funded by MSP-Promyse, 2007), a dislike of math-
ematics reflected not just among students, but societally, and the low number of 
students seeking advanced degrees in mathematics are reflective of mathematics not 
being appreciated for what it is—the quest of the human mind toward knowing, and 
wanting to know why and how.

In the particular context of community colleges of the Bronx of the City 
University of New York, and analogously the large percentage of high school stu-
dents who need remedial/developmental mathematics courses in college, problem 
posing has to be directly connected and on a regular basis with the classroom cur-
riculum. The objective is urgent: closing the Achievement Gap. The problem as it 
exists is that an absence of proficiency in mathematics (i.e., scores on placement 
tests) could well prevent students from college education. The question is how to 
change this trend?

Knott (2010), in her paper Problem posing from the foundations of mathematics, 
stated:

Recent developments in mathematics education research have shown that creating active 
classrooms, posing and solving cognitively challenging problems, promoting reflection, 
metacognition and facilitating broad ranging discussions, enhances students’ understanding 
of mathematics at all levels. The associated discourse is enabled not only by the teacher’s 
expertise in the content area, but also by what the teacher says, what kind of questions the 
teacher asks, and what kind of responses and participation the teacher expects and negoti-
ates with the students. Teacher expectations are reflected in the social and socio-mathemat-
ical norms established in the classroom (p. 413).

Thus, for classroom environments to be effective, careful integration of simultane-
ous attention to cognition, affect and self-regulatory learning practices is needed 
(see also Barbatis et al., 2012). Vygotsky (1978) described the zone of proximal 
development (ZPD) as “the distance between the actual development level as deter-
mined by independent problem solving and the level of potential development as 
determined through problem solving under adult guidance or collaboration of more 
capable peers” (p. 86). The ZPD has to be “characterized from both cognitive and 
affective perspectives. From the cognitive perspective we say that material should 
not be too difficult or easy. From the affective perspective we say that the learner 
should avoid the extremes of being bored and being confused and frustrated” 
(Murray & Arroyo, 2002, p. 370).
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Teaching and learning in a teaching-research environment is necessarily collab-
orative, as our work has demonstrated. This environment has to take account of the 
numerous difficulties faced in the classroom. The collaboration creates an open 
community environment in the classroom, which is beneficial to the problem-pos-
ing requirement. Mathematics as enquiry, as enjoyment, and as development of a 
thinking technology does not remain a collection of terms or unfamiliar notions to 
learners. In the span of one semester, college readiness has to be achieved so that the 
regular credit-bearing mathematics courses can be completed satisfactorily. Enquiry 
facilitating discovery becomes the modus operandi, possible now because of the 
creative learning environment. It is this environment that can provide learners with 
the keys to success in the learning and understanding of mathematics.

A problem-posing style of education in general whether it follows Freire’s (2000) 
style of “reading the world,” or in the style of Montessori (Montessori & Costelloe, 
1972), in the design of the learning environment, all find use and applicability in 
Remedial Mathematics classrooms. Further, the discovery method, or Moore 
method (Mahavier, 1999) was applied successfully in calculus classes, and now 
finds a route into stimulating learners to enjoy and perform well in mathematics in 
remedial classes, thus paving the way toward closing the Achievement Gap and 
creating readiness for higher level mathematics classes.
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