
Chapter 8
Density-Based Anomaly Detection
in the Maritime Domain

Jeroen Janssens, Eric Postma, and Jaap van den Herik

8.1 Detecting Anomalous Events in the Maritime Domain

Human operators monitoring maritime safety and security typically watch a large
graphical display on which all vessel movements in the coastal region are plotted
(see Chap. 2). Any unexpected deviation from normality should be detected by the
operators. Such deviations from normality in the real world are generally referred
to as “anomalities”. Despite visual aids, anomalies may go unnoticed by human
operators due to two cognitive limitations. The first cognitive limitation is that
human observers are bad at maintaining vigilance for a sustained period of time [13].
The second cognitive limitation is that humans may be blind to visual changes due
to attentional limitations [9].

Computers do not suffer from these limitations. Maintaining vigilance and
monitoring large volumes of data are the hallmarks of computers. Of course, in
comparison with human operators, computers fall short in understanding the “gist”
of maritime situations. The situation awareness of maritime patterns by experienced
operators relies largely on knowledge and familiarity with vessels, sea lanes, rules
and regulations, the weather, and so forth. An important lesson from the early days
of artificial intelligence is that such common sense or expert knowledge is very
difficult to program into computers. Simply specifying all maritime knowledge in
terms of rules leads to a system that has difficulty dealing with the uncertainties of
the real world. These uncertainties arise, for instance, from incomplete or wrong
information, noisy sensor readings, or weather forecasts. Given these considera-
tions, the best way to proceed is to let the computer take over the tasks requiring
vigilance and cognitive processing power and to leave the interpretation of the
situation largely to the operator. The existence of uncertainties in the maritime
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domain dictates the use of probabilistic methods, which are now commonplace in
artificial intelligence [2]. We focus on a particular class of probabilistic methods for
anomaly detection, called the density-based methods [10].

The outline of the rest of this Chapter is as follows. Section 8.2 describes how
outlier-detection tasks are represented in density-based methods. Then, in Sect. 8.3
an overview is given of existing density-based outlier detection methods. Section 8.4
presents the SOS outlier-detection method. The outlier-detection performances
achieved by the SOS method are reported in Sect. 8.5. Finally, Sect. 8.6 concludes
with the statement that the SOS method provides an outlier-detection method that
can be successfully applied in a wide variety of domains.

8.2 Representation Space

In so-called density-based statistical methods, maritime objects (e.g., vessels) and
events (e.g., vessel turns) are generally represented as points in a (potentially
high-dimensional) representation space. The dissimilarity of objects or events is
represented by distance. Anomalies may manifest themselves as points that are
distant from all other points, so-called “outliers”. To sketch a more concrete picture
of statistical density-based methods, we consider, as an example, a straightforward
two-dimensional representation space were the axes, represent the features speed
over ground and rate of turn of vessels. Figure 8.1 shows such a representation
space.

Let us suppose that all but one vessels form a cluster. In other words: all but one
vessel have approximately the same speed over ground and rate of turn. The odd-
one-out vessel is separated from the cluster by a considerable distance, indicating
that the speed over ground and/or rate-of-turn of this vessel differs considerably
from that of the other vessels. Figure 8.1 displays such a situation. The clustered
points are the inliers (open circles). The outlier (asterisk) is separated from the
cluster. In this particular example, the vessel associated with the asterisk is an
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Fig. 8.1 Example
of a two-dimensional
representation space where
the points (open circles
and asterisk) represent
combinations of the speed
over ground (horizontal axis)
and rate-of-turn (vertical
axis) of vessels
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outlier because it has an exceptionally large speed over ground. Its rate of turn is
not anomalous, because many other vessels share approximately the same value on
this feature. In realistic cases, points are anomalous on more than one feature and
the detection of outliers requires taking into account multiple features, rather than
just one.

The automatic detection of the odd-one-out vessel typically relies on a measure
of distance, for the obvious reason that an outlier is by definition distant from
all other points. The large range of outlier detection methods differ in their
measurement and weighting of distance.

It is important to note that the definition of the features is crucial to the success
of statistical outlier detection methods. Domain experts should be involved in
the choice of the features that define the representation space. The features can
be elementary, such as, the speed over ground and the rate of turn, or they can be
abstractions that are known to be relevant for outlier detection, e.g., the degree
to which a vessel is on a collision course with another vessel. Generally, domain
experts have a good intuition about the types of information relevant to the task
at hand. This intuition guides the choice of features. A useful representation for
outlier detection in the maritime domain is described in Chap. 7. The number of
features determines the dimensionality of the representation space and should be
large enough to include the relevant information, but not too large because this
hampers the ability to learn from the data [2].

8.3 Density-Based Outlier Detection Methods

This section reviews existing outlier detection methods that operate on points in
representation spaces.

8.3.1 Traditional Statistical Outlier Detection

Traditional statistical outlier detection methods assume that points are normally
distributed (i.e., the density of data points has a bell shape) and compute the
average (center of the bell, μ) and standard deviation (half-width of the bell, σ ) [1].
Figure 8.2 shows an example of normally distributed points on a line (i.e., a one-
dimensional representation space). The bell-shaped curve represents the density of
points at each position. The height of the curve is proportional to the number of
points with that value of x, i.e., the feature of interest, e.g., the speed of a vessel.
(x has average value μ and standard deviation σ .) The inset of Fig. 8.2 shows an
enlarged view of the tail of the curve where at x = 3σ inliers (open circles) are
separated from outliers (asterisks). Statistical text books often define a point as
an outlier when its distance to the average μ is more than m standard deviations.
Figure 8.2 illustrates an example in which all points within a distance of 3 standard
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Fig. 8.2 Illustration of normally distributed points on a line. The bell-shaped curve represents the
density of points at each position. The height of the curve is proportional to the number of points
with that value of x, i.e., the feature of interest, e.g., the speed of a vessel. (x has average value
μ and standard deviation σ .) The inset shows an enlarged view of the tail of the curve where at
x = 3σ inliers (open circles) are separated from outliers (asterisks)

deviations of the mean (μ±3σ ) are considered to be inliers (represented by the open
circles), those at larger distances are identified as outliers (represented by asterisks).
This traditional outlier detection method is at the core of a large variety of statistical
outlier detection methods. In application domains where the normality assumption
holds, it offers an effective means to detect anomalies.

The main limitation of the traditional outlier detection methods is the assumption
of normality, i.e., they assume that the distribution of points has a bell shape.
In the maritime and many other real-world domains, data points are rarely normally
distributed. Often, data points are distributed heterogeneously over space. For a
single feature, the density of points does not form a single bell shape, but either
multiple separated bell shapes, or totally different shapes. In two- (and higher)
dimensional representation spaces, heterogeneous distributions are characterized by
regions with many points (dense regions) that are interspersed with regions with few
or no points (sparse regions). In terms of our example, dense regions correspond to
vessels with frequently occurring speed over ground - rate of turn combinations and
sparse regions correspond to the rare or no occurrence of vessels with associated
speed over ground - rate of turn combinations.

8.3.2 Modern Statistical Outlier Detection: The LOF Method

Modern statistical outlier detection methods do not impose normality and deal
with density variations by taking the local density into account. The most promi-
nent density-based outlier detection method is the Local Outlier Factor (LOF)
method [3], which originates from the domain of Knowledge Discovery and Data
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Fig. 8.3 Illustrations of two clusters of points, one with a high density (lower left corner) and one
with a low density (upper right corner). Both clusters have a single outlier, but their distances from
the clusters differ. LOF is capable of identifying both outliers

Mining [4]. The essence of the LOF method is that it compares the local densities of
neighboring points. The local density of a point is a measure of the number of nearby
points, i.e., the number of points in a predefined fixed-size spatial neighborhood.
In a two-dimensional representation space, the neighborhood of a point is typically
defined as a circular region around the point. A point located within a sparse region
has a small local density, whereas a point located in a dense region has a high
local density. The LOF method computes for each point p, an outlier value, called
the Local Outlier Factor. This outlier value is obtained by dividing the averaged
local densities of the points in the neighborhood (spatial vicinity) of point p by the
local density of point p itself. If LOF has a value smaller or (approximately) equal
to 1, the local density of point p is larger or (approximately) equal to the averaged
local densities of the points in its neighborhood and the point is considered to be
an inlier. Alternatively, if LOF has a value that is (much) larger than 1, the density
in the neighborhood of point p is much higher than the density of the point itself,
indicating that point p is an outlier.

The main advantage of the LOF method is that it can detect outliers in heteroge-
neous distributions of points. Returning to our two-dimensional maritime example,
we consider the case of two spatially separated clusters of points representing two
types of vessels, type A and type B, shown in Fig. 8.3. The speed over ground and
rate of turn values of type A vessels have a small variation, whereas the speed
over ground and rate of turn values of type B vessels have a large variation. As a
result, the type A and B vessels give rise to clusters with high and low densities,
respectively. For a type A vessel to be considered an outlier it has to be separated a
certain minimal distance dA from the type A cluster. Similarly, for a type B vessel
to be considered an outlier it has to be located a certain minimal distance dB from
the type B cluster. The value of dA is smaller than the value of dB, because type A
vessels have smaller variations in their rate of turn and speed over ground values
than type B vessels. Where a purely distance-based outlier detection method would
fail to take such density variations into account, the LOF method is able to identify
outliers of both types.
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Despite its widespread use, the LOF method suffers from two related drawbacks.
The first drawback is that the LOF value is difficult to interpret. In order for a
point to be an outlier, the LOF value should be much larger than 1, but how
much larger depends on the problem at hand. Complex real-world domains, such
as the maritime domain, are characterized by heterogeneous point distributions with
unknown densities, and therefore pose a problem for the interpretation of the output
of the LOF method. The second drawback is that the LOF method has no clear
probabilistic foundation. As a result, LOF values cannot be interpreted in terms of
probabilities. Operators assessing anomalies in maritime safety and security, would
be much helped if they could assess the probability of a point being an outlier.
For instance, when confronted with multiple outliers, probabilities allow them to
weigh the costs of action (e.g., intercepting a vessel) against the costs of a false
detection.

In recent years, a large number of density-based variants of the LOF method have
been proposed. We mention three examples: the Nearest Neighbor Data Description
(NNDD) method [12], the Local Correlation Integral (LOCI) method [8], and Least-
Squares Outlier Detection (LSOD) method [6]. These three methods attempt to
improve upon LOF in several respects, but they all suffer from the aforementioned
two limitations. In the following section, we present our Stochastic Outlier Selection
method, a density-based outlier detection method that does not suffer from these two
limitations and we evaluate its performance by comparing it to the performances of
LOF, NNDD, LOCI, and LSOD.

8.4 The Stochastic Outlier Selection Method

The Stochastic Outlier Selection (SOS) method [5] relies on three principles:
(1) dissimilarity representation, (2) soft neighborhoods, and (3) outlier probabilities.
The following three subsections describe these principles in detail.

8.4.1 Dissimilarity Representation

The SOS method relies on dissimilarities between points. Dissimilarities are
proportional to the distances between pairs of points. The representation space is
sometimes called a similarity space, because two vessels with similar speed over
ground and rate of turn values are represented by nearby points, and two vessels
with dissimilar values are represented by distant points. In representation space,
vicinity translates into similarity, and distance into dissimilarity.
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Fig. 8.4 Illustration of the
bell shaped functions (soft
neighborhoods) associated
with three points, the circles
labeled xa, xb, and xc. The
widths of the neighborhoods
are determined by the local
density, i.e., the number of
neighboring points. The solid
circles represent other points
for which the soft
neighborhoods are not drawn

8.4.2 Soft Neighborhoods

The SOS method does not treat all similarities equally. Inspired by insights
from cognitive psychology [11], the similarity between two points separated by
a distance d is given by a bell-shaped function centered at d = 0. In the domain
of cognitive psychology, these points may represent, for instance, faces and the
similarity space may be defined by two or more facial features (e.g., length of
nose, size of mouth). The maximum similarity (top of the bell-shaped function)
is obtained when two points are the same (d = 0, i.e., same lengths of nose and sizes
of mouth). With growing distance between both points (d > 0, different lengths of
nose and sizes of mouth), the similarity falls off towards zero (tail of the bell-shaped
function). According to Shepard, the bell-shaped function is a universal law that
relates distance to similarity [11]. In the cognitive psychology domain, the function
returns the probability that two points (faces) fall in a region of representation space
that are treated equally in terms of similarity judgment (“same face”, “different
face”). Shepard’s similarity function is not restricted to faces, it applies to a wide
variety of mental representation [11].

The bell-shaped function used in the SOS method can be interpreted as a soft
version of the “hard” neighborhood used in the LOF and related methods. In a
hard neighborhood, neighbor-ship changes at the circular neighborhood boundary
from “neighbor” to “no neighbor”. In the soft neighborhood of the SOS method,
neighboring points have a neighbor-ship value Nval that varies from a maximum
value for d = 0 (NSOS = 1, top of the bell-shaped function) towards zero values of
neighbor-ship for very large values of d (NSOS → 0, tail of the function). In the
SOS method, the widths of the soft neighborhoods centered at each point are
automatically set to values to ensure that all points have the same number of
neighboring points. Figure 8.4 illustrates this for a one-dimensional representation
space, i.e., a line. For three points, xa, xb, and xc, the associated bell-shaped soft
neighborhoods are drawn. The widths of the neighborhoods depend on the local
density of points. If the local density is large, the neighborhood is small, whereas if
the local density is small the neighborhood is large. Through the automatic scaling
of the neighborhood, the SOS method deals effectively with density variations in
the data. Hence, it can deal with heterogeneous densities.
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8.4.3 Outlier Probabilities

To determine the probability of a point being an outlier, the SOS method examines
for each point to what extent it is part of the soft neighborhood of all other points.
If a point is highly dissimilar from all other points, it is located in the tails of
all the associated soft neighborhoods. Being located in a tail implies a very low
neighborhood-ship value, NSOS, that is near to zero. In the formal definition of the
SOS method, the neighborhood-ship values are expressed by the term (1−NSOS),
where being located in a tail translates to a value that is near to one. The outlier
probability of the i-th point indexed, Poutlier(i) is proportional to the product of all
these neighborhood-ship terms and is formally defined as:

Poutlier(i) =
K

∏
j=1, j �=i

(1−NSOS( j)), (8.1)

where K is the total number of points and NSOS( j) is the neighbor-ship value of the
j-th point.

8.5 Performance of the SOS Method

We evaluated the performance of the SOS method by comparing it to the per-
formance of state-of-the-art outlier detection methods. Two such comparative
evaluations were performed: one qualitative evaluation on artificial datasets and one
quantitative evaluation on realistic datasets. In all evaluations, the parameters of
the outlier detection methods were optimized to yield the best performance.

8.5.1 Evaluation on Three Artificial Datasets

To get some insights into the performances of the SOS method in comparison to
the other outlier-detection methods LOF, NNOD, LOCI, and LSOD, we defined
three different artificial two-dimensional datasets: Banana, Densities, and Ring.
The Banana dataset consists of a banana-shaped cluster of points. The Densities
dataset consists of two separated circular clusters of points with different densities,
and the Ring dataset contains points arranged in a ring-shaped form. Applying an
outlier-detection method to the Banana dataset tests if distance from a cluster of
points affects the outlier value appropriately. Applying it to the Densities dataset
tests if the method takes the different densities into account. Finally, applying the
method to the Ring dataset tests if points inside and outside the ring are evaluated
similarly. For the Banana dataset, the outlier values assigned to points should vary
with distance from the shape of the banana and become gradually larger with
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increasing distance from the points. For the Densities dataset, the rate of change
from blue to red should be slower for the low-density cluster than for the high-
density cluster. Finally, for the Ring dataset, outliers within the ring should be
treated similarly to outliers outside the ring.

Figure 8.5 displays the representation spaces of the three datasets (the three
columns) with the color-coded outlier values superimposed. The white dots are
the points forming the datasets. The top row shows for SOS the outlier values
(probabilities) assigned to each representation-space location. The colors range from
dark blue (inliers; smallest outlier value or probability Poutlier = 0) to dark red/brown
(outliers; largest outlier value or probability Poutlier = 1). On the Banana dataset,
the SOS method assigns outlier values that vary smoothly with the shape of the
banana and become gradually larger with increasing distance from the points. For
the Densities dataset, the rate of change from blue to red is appropriately slower
for the lower left cluster (which has a low density) than for the upper right cluster
(which has a high density). For the Ring dataset, outliers within the ring are treated
similarly to outliers outside the ring.

The bottom four rows of the figure illustrate how other state-of-the-art methods
assign outlier values to locations in similarity space. For the Banana dataset, the
outlier values generated by LOCI and LSOD fail to follow the banana shape of the
points. For the Densities dataset, the other methods yield quite different outlier-value
assignments. Finally, for the Ring dataset, all other outlier detection methods fail to
treat interior and exterior ring locations equally in terms of outlier value assignment.

These qualitative evaluations show that the different methods behave differently
on different data distributions. We now turn to a quantitative assessment of their
performances on realistic datasets.

8.5.2 Performance Evaluation on Realistic Datasets

Our quantitative evaluation aims to assess the outlier detection performance of
the SOS method in comparison with its main alternatives. In practical outlier-
detection tasks, a wide variety of heterogeneous point distributions may arise. To
ensure generality of our comparative evaluation, we decided to select 18 datasets,
each from a completely different realistic application domain. We evaluated the
outlier-detection performance in terms of what we call the “weighted AUC”, a
performance measure that takes into account the detection rate and the false positive
rate and expresses the outlier-detection performance on a scale ranging from 0
(worst performance) to 1 (best performance). Figure 8.6 displays a plot of the
results of the comparative evaluation. For each outlier-detection method, it shows
the weighted AUC (vertical axis) achieved on each dataset (horizontal axis). The
curves connect the performances of a single method. The SOS method achieves the
best performance overall, because the curve associated with the SOS method (purple
curve with diamond markers) is almost always on top.
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Fig. 8.5 Qualitative (visual) evaluation of outlier scores assigned to three datasets (columns) by
the SOS method (top row) and four other state-of-the-art outlier detection methods (bottom four
rows). Each square shows a two-dimensional representation space containing points (white dots).
All other locations are colored according to the outlier value generated for that location. Outlier
values are color-coded and range from dark blue (inliers) to dark red/brown (outliers)
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Fig. 8.6 Comparative evaluation of the SOS method and four competitive methods (NNDD, LOF,
LOCI, and LSOD) on 18 realistic datasets. The outlier-detection performance is expressed in terms
of the weighted AUC which ranges from 0 (worst performance) to 1 (best performance)

Outlier-selection algorithm

SOS NNDD LOF LOCI LSOD

Average AUC 0.811 0.748 0.763 0.716 0.742

Average rank 1.250 3.444 2.833 4.639 2.833

Fig. 8.7 Numerical summary of the comparative evaluation of the SOS method and four compet-
itive methods. The average AUC is the weighted AUC averaged over all 18 datasets. The average
rank is obtained using a statistical method that determines the ranking of the methods on the basis
of their performances. Smaller ranks correspond to better performing methods

A numerical summary of the results is presented in Fig. 8.7. The row labeled
“Average AUC” lists the weighted AUC averaged over all 18 datasets. The row
labeled “Average rank” specifies the ranks of the methods as obtained from a
statistical method [7] that determines the ranking of the methods on the basis
of their performances. The statistical method is necessary because we compare
average performances of outlier-detection methods and we would like to assess
the probability that differences in performance are due to chance. Smaller ranks
correspond to better performing methods. The SOS method outperforms all other
methods in terms of average AUC and achieves the highest rank.
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8.6 Discussion and Conclusion

The SOS method has been shown to provide the best overall performance on our
selection of 18 realistic datasets, as compared to state-of-the-art outlier detection
methods. In addition to this result, the SOS method has an important advantage
over existing density-based methods. It provides easily interpretable outlier values
that correspond to probabilities. When confronted with many (potential) outliers,
operators working in the maritime domain (or any other realistic domain) may
prioritize the outliers using their associated probabilities, by dealing with the most
probable outlier first.

It is a well-known fact in machine learning that there is no single best method
for a given dataset or application domain. Similarly, we do not claim that the SOS
method is the best method of choice for all domains. We have observed that the SOS
method often, but not always, outperforms competitive methods.

Although we have succeeded in developing a density-based outlier-detection
algorithm that performs well in comparison to state-of-the-art algorithms, a more
extensive evaluation in the maritime domain has still to be performed. Provided that
the maritime representation space is defined in cooperation with domain experts,
we are confident that the SOS method will be successful in detecting outliers.
We conclude that the SOS method provides an outlier-detection method that can
be successfully applied in a wide variety of domains.
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