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Foreword

Nothing less than a disruption in thinking about naval systems was taking place
at Thales when we, together with ESI, conceived the POSEIDON project. Thales
has a long track record in defense systems – using many proprietary solutions
designed to perform reliably under extreme operational conditions of armed conflict
anywhere in the world. For the future, we wanted to enter the market of maritime
safety and security (MSS). Systems supporting MSS missions impose very different
requirements and in fact open up the possibility to utilize open source and state-of-
the-art technologies from the civil domain.

Thales had a challenge in using commercial off-the-shelf technologies as they
were traditionally not qualified to meet the demanding requirements of our core
business of building highly reliable defense systems: How to conceive and develop
a different type of system targeted at a new market opportunity? This had to be
achieved with our existing pool of highly talented technical professionals with
mission critical defense systems in their blood.

As with all high-tech organizations, it all begins with a handful of key people
with a vision who are capable of convincing decision makers to allocate budgets
to new projects that will result in attractive and smart solutions. This was all set in
place with a number of projects running to achieve our MSS ambition. Expectations,
however, were very high in the sense that it was assumed that we could reach the
level of deliverable products very quickly; after all it was “R&D business as usual.”
In our pragmatism, we missed the point somewhere in this palette of projects.

We were in need of a more out-of-the-box thinking that would come up with
new concepts to pull the population at Thales across the line. This was where
ESI, together with its partners, came in and POSEIDON was born. The Industry-
as-Laboratory approach used by ESI was key in our decision to proceed. It matched
our belief that product goals and research goals can go hand in hand. Given the
right environment of quality staff, who understand, respect, and support each other’s
goals and are backed up by facilities and processes, they catalyze each other and can
achieve great results. This is exactly why POSEIDON has been so successful. It gave
birth to numerous product concepts that found their way into our naval systems
portfolio and also resulted in many publications and dissertations.
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vi Foreword

Now after 5 years, you will find everything you may want to know about the
results of POSEIDON in this book. I would like to add, with reference to a famous
Gestalt law, known from psychology, that “the whole is more than the sum of its
parts.” Above all, POSEIDON has been a highly inspiring journey that substantially
contributed to the mindset change now helping Thales to develop advanced naval
systems for the future.

Delft, September 2012 Jimmy Troost
Director TRT-Delft
Thales Netherlands



Preface

It is with great pleasure that I welcome you to the final book on the Embedded
Systems Institute project POSEIDON. The project was funded under the Dutch
BSIK program “Embedded Systems.” The project partners were the Embedded
Systems Institute (ESI), Thales Netherlands, Noldus Information Technology, Delft
University of Technology, Eindhoven University of Technology, University of
Amsterdam, Tilburg University, and VU University Amsterdam. The project started
in June 2007, ended in May 2012, and encompassed an overall volume of 84 fte.

As for all of ESI’s large projects, POSEIDON has followed the by now well-
known Industry-as-Laboratory paradigm, in which scientific research is performed
in the context of an industrial case. For POSEIDON, the case was defined in the
context of the new emerging market of support systems for maritime safety and
security. The POSEIDON partners addressed a variety of research topics ranging
from integration and testing to systems-of-systems, from visualization to security,
from vessel trajectory segmentation to adapter generation, and from situation
awareness to trustworthy information interoperability.

The POSEIDON project has been highly successful. Among the results we count
the following highlights:

• An architectural framework for information-centric systems of systems and an
integrated demonstrator, showing how the combination of many new technolo-
gies can be applied to offer improved system support to coast guard operators for
a higher level of situation awareness.

• An extendable method to analyze and visualize the kinematic behavior of moving
objects. This method offers powerful solutions for the construction of user-
defined operational pictures in next-generation maritime systems.

• A highly efficient data reduction method resulting in vessel trajectories using
only 2 % of the original amount of data.

• A formal definition of a semantic concept hierarchy of maritime information,
enabling automatic reasoning on semantic level with maritime concepts, imple-
mented in a knowledge base.

vii
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• A new method for trust management and distributed access control for use in a
systems-of-systems environment in the absence of a central security authority.

• Concepts and techniques for systems integration and acceptance at runtime:
systems join-and-leave, runtime acceptance testing, and system health diagnosis.

• Adaptor generation techniques for the quick realization of reliable connections
between systems.

• A method for runtime anomaly detection by mining of semantic information
about ship movements.

• Strong cooperation between universities resulting in a number of shared publica-
tions.

• Over 100 scientific and professional publications and PhD. and MSc. theses.

All partners in the project are satisfied with the results achieved in the POSEIDON

project. Some of the results and insights obtained in POSEIDON will find their
way in the Thales Netherlands product portfolio. Other achievements have found
their way to the portfolio of projects that ESI is executing together with industrial
and academic partners, including the successor project METIS, where new research
topics are tackled that were instigated by POSEIDON.

I would like to thank all project participants for their commitment and con-
tributions: as a team they have turned POSEIDON into a success! The support
of Thales Netherlands and the Dutch Ministry of Economic Affairs (now EL&I)
through AgentschapNL is gratefully acknowledged. We also thank Springer for their
willingness to publish this book. With this book, we expect to share the important
results achieved with a larger, worldwide audience, both in industry and academia.

Eindhoven, September 2012 Prof. dr. ir. Boudewijn Haverkort
Scientific Director and Chair
Embedded Systems Institute
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Piërre van de Laar

Part II Situation Awareness

5 Visualization of Vessel Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Niels Willems, Roeland Scheepens, Huub van de Wetering,
and Jarke J. van Wijk

6 Extending Track Analysis from Animals in the Lab
to Moving Objects Anywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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Chapter 1
Introduction: Situation Awareness, Systems
of Systems, and Maritime Safety and Security

Jan Tretmans and Piërre van de Laar

1.1 Introduction

Situation awareness, i.e., being aware of the environmental situation by collecting
and interpreting information, is a prerequisite for many organizations to make
informed decisions and take appropriate actions. In many domains, such as air
traffic control, chemical plant surveillance, combating emergency situations, and
controlling maritime safety and security, computer-based support is thereby indis-
pensable for gathering and processing all the relevant data. Such a computer system
for supporting situation awareness is often implemented as a system-of-systems, i.e.,
as an evolving collection of distributed, heterogeneous, autonomous, cooperating
systems, without a clearly identifiable centralized control.

This book presents and discusses various aspects, challenges, and solutions
for developing systems-of-systems for situation awareness, with applications in
the domain of maritime safety and security. This chapter introduces the book,
provides an overview of the chapters it contains in Sect. 1.6, and introduces the core
topics. First, the concept of situation awareness is elaborated in Sect. 1.2, which is
followed by a discussion on computer support for situation awareness in Sect. 1.3.
Section 1.4 discusses the characteristics of systems-of-systems. Situation awareness
in the domain of maritime safety and security is further investigated in Sect. 1.5.
Since the results presented in this book were obtained in the Dutch research project
POSEIDON, Sect. 1.7 concludes this introductory chapter by putting the results in
the context of this project.

Since the area of situation awareness with systems-of-systems is dynamic, lively,
and broad, it is impossible to be complete and cover all relevant topics in full
detail. This book is also not a blueprint for building systems-of-systems for situation

J. Tretmans (�) • P. van de Laar
Embedded Systems Institute, Eindhoven, The Netherlands
e-mail: jan.tretmans@esi.nl; pierre.van.de.laar@esi.nl

P. van de Laar et al. (eds.), Situation Awareness with Systems of Systems,
DOI 10.1007/978-1-4614-6230-9 1, © Springer Science+Business Media New York 2013
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4 J. Tretmans and P. van de Laar

awareness. Yet, the book does discuss many challenges when building such systems
and proposes solutions in many areas, including the construction of a demonstrator
in Chap. 4. The maritime domain, more specifically maintaining safety and security
in the Dutch part of the North Sea, is chosen as the primary application area, but
many, if not all of the issues discussed in this book are easily transferable to other
domains of situation awareness and to other kinds of systems-of-systems.

This book intends to give an accessible overview of the results of the POSEIDON

project for anybody interested, for academics as well as for technical professionals
working in the area of situation awareness and/or systems-of-systems. It is not the
intention to give a full scientific treatment of the topics covered; where necessary
references to other publications, such as journal and conference papers, are made.
A list of all POSEIDON publications is contained in Appendix B. The different
chapters are independent, so that sequential reading is not necessary.

1.2 Situation Awareness

Collecting, aggregating, and interpreting information in order to know what is
happening in the environment and to be aware of the situation in the surroundings,
i.e., situation awareness, is a prerequisite for many animals, humans, and organiza-
tions to make informed decisions and take appropriate actions. A rabbit observes its
environment, it looks around, listens, and smells to identify a potentially dangerous
situation, such as a fox approaching, to be able to react in time.

A car driver observes, interprets, and tries to predict the behavior of other cars in
the vicinity. He, or she, adapts his own behavior, and combines his observations
with previous experience and knowledge about cars in similar situations, while
incorporating additional information from traffic signs, traffic information on the
radio, and instructions from his navigation device, in order to prevent accidents,
avoid traffic jams, and safely reach his destination.

An organization such as a traffic control center must be constantly aware of the
situation on the roads in its designated area, in order to optimize traffic throughput,
minimize congestion, maintain safety, enforce traffic rules, respond to emergency
situations and accidents, deal with road blocks and reconstruction works, and
minimize environmental pollution. The traffic center observes and monitors the
traffic using different sources of information, e.g., cameras, detection loops, visual
observation, intelligent road sensors, information obtained from satellites, and, if
possible, messages sent from cars themselves. In addition, external information
sources that are only indirectly linked to the current traffic are important for ap-
propriate traffic control, such as current and predicted weather conditions, historical
information about traffic streams and rush hour patterns, holiday periods, planned
reconstruction work, special or voluminous transports, events that attract a lot of
people and cars such as a football match and a rock concert, and information from
neighboring traffic control areas.
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There are many organizations for which knowledge about what is happening in
the environment is of prime importance as a starting point for making decisions and
taking actions. Examples are air traffic control, chemical plant surveillance, moni-
toring large and complex machines, responding to emergency situations and natural
disasters, monitoring and controlling safety and security at sea including tsunami
warnings, knowing positions, movements, and threats in military operations, and
crowd surveillance such as knowing how people move during a soccer match, a
demonstration, or a concert.

Situation awareness involves acquiring information about the environment, about
who is doing what and where, and then interpreting this information for a particular
goal [1]. Apart from directly observing the environment, additional, indirect sources
of information can be used to help with the interpretation and understanding of
the environment, e.g., historical information, extra information about actors in the
environment, or public information in the news or available on the web.

Vast amounts of information can be produced by different sources. Often these
sources will agree, but sometimes they may provide inconsistent or contradicting
information. Selecting, aggregating, filtering, combining, and interpreting informa-
tion, reasoning about the acquired information, searching for correlations, assessing
the trust and reliability of information, and trying to predict how the environment
will evolve, are all part of creating situation awareness.

In many domains a main goal of situation awareness is to detect abnormal or
unusual events that can lead to dangerous, threatening, or undesired situations,
e.g., a traffic jam, a tsunami threat, a potentially explosive situation in a chemical
plant, a hostile missile approaching with high speed, or squashed people in a
crowd. Perceiving and alerting to such anomalous situations in the vast amounts
of information is then important, while filtering out normal situations as much
as possible.

1.3 Systems Supporting Situation Awareness

In most domains, computer-based support is indispensable for attaining good
situation awareness. A support system for situation awareness helps with gathering,
processing, and interpreting the vast amounts of relevant data. Typically, such a
system presents its output to a human operator, e.g., to an operator surveilling traffic
in a traffic control center. With the help of such a system the operator will get a
better overview of what is happening, and, consequently, can make better decisions
and take more effective actions.

Some situation awareness systems are able to perform actions autonomously.
Most of such systems are either simple so that appropriate actions are
straightforward, or time-critical so that human intervention would cost too much
time. Our focus, however, is on systems that only support decision making by
presenting a view of the current situation. Taking appropriate actions is then left to
the human surveillance operator.
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Support systems for situation awareness face several challenges. Whereas at first
sight such systems look like straightforward information processing systems, i.e.,
gathering input data, processing these data, and presenting the information to the
(human) user, a more precise analysis shows that there is more involved. We mention
a couple of challenges.

First, the data sources provide data in large quantities. This means that filtering,
focusing, compression, and selection of relevant data are needed in such a way that
no important information is lost. Reduction of data quantity is necessary to make
incoming data more easily processable, to make it presentable to a human user, and
to enable storage of data to gradually build a set of historical data.

Availability of historical data allows to recognize patterns, to compare current
data with what happened in the past, and to use data as training set for learning
purposes. But it adds a second challenge of managing these historical data:
keeping the amounts of data under control, recognizing and removing obsolete data,
alignment of historical data with changing situations, and keeping the integrity and
consistency of historical data.

A third challenge concerns the heterogeneity and independence of data sources,
ranging from (intelligent) sensors, radar, and satellite links, to databases and the
(semantic) web. This implies that there are differences in format, syntax, semantics,
and protocols, which must be aligned. Format and syntax transformations must deal
with syntactic interoperability, and protocol converters and adapters are needed to
bridge the gaps between various protocols. Semantic differences, such as using
the same term for different concepts (consider all the different meanings of the
sentence “The girl saw the man with the glasses.”), or using different terms for
the same concept (such as the use of ‘car’, ‘vehicle’, ‘voiture’, or ‘auto’ to denote
the same concept) require semantic and ontology alignment. Information fusion is
needed to make it possible to combine different pieces of aligned information into
larger chunks. Semantic reasoning shall be applied to add knowledge and under-
standing: aggregating the pieces of information into meaningful new information
and deducing higher level knowledge, such as patterns, clusters, and classifications
of situations.

An additional challenge in this reasoning is that trust, reliability, and also
privacy and confidentiality of information have to be taken into account. Since the
information comes from different sources, which are probably not equally reliable,
they may provide mutually inconsistent or contradicting information. This leads to
notions of trust and uncertainty in information that a system for situation awareness
must deal with. Moreover, due to different privacy and confidentiality rules, it can
be that not everybody has access to the same information.

Finally, all information and deduced knowledge must be presented to the human
operator in such a way that it is easily accessible, manageable, and tractable.
Sophisticated visualization techniques are necessary to present the information, both
as an overview picture of the environmental situation, and in detail, e.g., to indicate
anomalies and explain why a situation is considered abnormal.
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1.4 Systems of Systems

A computer system for supporting situation awareness in complex domains is not a
monolithic, coherent system. Such a system needs to perform many tasks, it gathers
information from different sources at distinct locations, and it interacts with various
stakeholders and other systems. Many of the components that perform these tasks or
that serve as sources are actually complex, independent systems themselves, which
are not under the full control of the situation awareness system. Such a system in
which the constituent components are autonomous, complex systems themselves, is
called a system-of-systems.

A system-of-systems (SoS; sometimes called collaborative system, or federation
of systems) is a large-scale, non-monolithic, distributed, heterogeneous, com-
plex system, built from multiple interacting sub-systems, which are complex,
autonomous, independently operating systems themselves. There is no central
control, and there is no single owner or responsible for the entire system-of-systems.
Yet, by collaborating in a system-of-systems, functionalities can be provided that its
constituent systems alone would never be able to provide [9].

Research and development in the area of systems-of-systems started in the
late 1990s. It was triggered by the growing connectivity between systems and
the recognition that connections and collaborations between systems would enable
many new applications and opportunities, but that they would also generate many
new challenges that surpass the feasibility of traditional system engineering.
These challenges have various dimensions involving technological, political, and
organizational aspects. Different institutions, universities, government agencies, as
well as commercial companies work on them, and also within the European Union
research programmes they form a key area [2].

Examples of systems-of-systems are found in traffic management where various
systems, including in-car devices, collaborate to optimize traffic flow in urban
areas; smart cities where systems for traffic management, public transportation,
energy management, etc. work together to optimize sustainability; smart buildings,
where surveillance, access control, fire emergency, heating, climate control, and
lighting interact; cross-company integrated business process management; and
many systems in the domain of situation awareness.

The main characteristic of a system-of-systems, as opposed to a classical system
consisting of components, is the autonomy and operational independence of the
constituent systems, and thus the lack of central control. This has a couple of impor-
tant consequences which challenge the design, validation, testing, deployment, and
maintenance of systems-of-systems.

A first consequence is the evolving nature of systems-of-systems and the
necessity to perform activities like testing, acceptance, and reconfiguration at
runtime, i.e., online. Since each constituent system runs independently from the
others, it can autonomously be started, stopped, removed, replaced, updated, or
degraded. This means that the configuration of the system-of-systems changes
and evolves dynamically without central control. Other systems and the entire
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system-of-systems must be able to cope with such reconfigurations and must adapt
to them, e.g., searching for a substitute system that delivers a service that can replace
the service of a leaving system. But also the other way around, the system-of-
systems must adapt itself and can remove or disconnect an individual system, e.g.,
if the quality of its service degrades too much. The necessity to perform dynamic,
runtime reconfigurations is strengthened by the requirement of typical application
areas of systems-of-systems, e.g., systems for situation awareness, that the systems
are always up and running.

A derived consequence is that in systems-of-systems that perform runtime
reconfigurations, several validation and quality checks must also be performed
dynamically. Examples are runtime monitoring of systems and their quality of
service, runtime testing to decide whether a new system can join the system-of-
systems, and runtime fault diagnosis to pinpoint the malfunctioning system in case
a failure occurs. Runtime testing, however, may lead to additional complexity by
causing side-effects through undesired interactions between the operational system-
of-systems and the tested system, e.g., during a test of the fire alarm system it is
not always desirable that also the entire automatic sprinkler system is activated.
Runtime verification and validation activities must continuously check and maintain
the quality and reliability of the entire system-of-systems, in particular also during
the reconfigurations.

A second consequence of autonomy is that the constituent systems in a system-
of-systems were designed independently, i.e., they were not specifically designed
to work together. Consequently, their combined behavior may lead to emergent
behavior, i.e., behavior that is not fully predictable from knowing the behaviors of
the constituent systems, thus leading to uncertainty about the overall behavior.

In addition, if systems have to interact with other systems that are not known in
advance, interfaces must be flexible enough to adapt to such interactions, or special
connectors or adapters have to be made that can bridge both the syntax and semantic
differences. It is a challenge to design systems that are flexible enough to operate,
adapt, and connect to other systems in the dynamic, evolving context of systems-of-
systems.

A third point that follows from the lack of central control together with dynamic
reconfigurations and tests, is the difficulty to precisely know the global state of
the entire system-of-systems. This involves the configuration, i.e., knowing which
constituent systems are available at a given moment, the quality of the constituent
systems, i.e., knowing which systems are healthy and operating correctly, as well
as the quality, reliability, and validity of the information being processed by the
constituent systems: an unhealthy system may produce unreliable information.

The entire system-of-systems, as well as the constituent systems, must be able to
cope with the uncertainty caused by the lack of knowledge about the global state.
The consequence is that a system-of-systems, in addition to dealing with its primary
information, must also communicate and reason with meta-information about its
own configuration, its own health and the health of its constituent systems, and
the quality and reliability of the primary information. This means that a system-
of-systems must reflect on its own operation. One might say that this constitutes a
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‘meta-situation awareness system’ for system awareness: like a situation awareness
system for road traffic monitors and controls traffic streams and warns for anomalies
on the roads, the meta-situation awareness system monitors and controls information
streams and anomalies in the system-of-systems.

A final issue in systems-of-systems concerns security, privacy, and confiden-
tiality. The autonomy of the constituent systems implies that they will all have
their own policies with respect to sharing and protecting sensitive information.
There is no central authority arranging all security issues. This requires special
policies and methods to communicate allowances to specify who is allowed to have
which information at what occasions. Special care must be taken that also during
reconfigurations and runtime testing no confidential information leaks away.

Compared with traditional systems and system development, systems-of-systems
have to deal with blurring boundaries, both in space and in time. In space, a
starting point for traditional system engineering is the distinction between a system
and its environment. The above discussion shows that for a system-of-systems
the boundary between what belongs to the system-of-systems and what belongs
to its environment, is not sharp. In time, the boundaries between the traditional
development phases, such as design, building, validation, testing, deployment, oper-
ation, maintenance, and decommissioning, diminish. After some time of continuous
operation, while systems are leaving and joining, a completely new system-of-
systems may have emerged, consisting of completely new constituent systems, but
still performing the same tasks.

1.5 Situation Awareness for Maritime Safety and Security

Our seas have many functions and are used in many ways, for several purposes,
and involving various stakeholders. A challenging and important application area
for situation awareness is Maritime Safety and Security (MSS). In maritime safety
and security, the goal is to keep the seas safe and secure, in particular, the coastal
regions that are under control and responsibility of a specific country (Fig. 1.1).

Keeping the seas safe and secure involves many aspects. First of all, the seas serve
as one of the most important transportation infrastructures. Many ships use the seas
and they shall adhere to sea-traffic rules that must be monitored. Shipping lanes must
be marked and maintained, traffic in and out of harbors must be controlled, collisions
shall be avoided, and in case of emergency assistance shall be provided. Second, the
seas are important for food production. Fishing must be monitored, illegal fishing
must be prevented and detected, and fish farms shall be regulated and guarded.
Third, the seas often constitute the border between countries, implying that border
control, customs, smuggling, illegal immigration, and general defense are issues at
sea. The coastal area being a part of the country implies that law enforcement is
a fourth issue. This includes, for example, combating piracy, terrorism, and drug
trafficking, and protection of assets such as pipelines, historical ship wrecks, and
war graves. Fifth, the seas constitute an important ecological system, susceptible
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Fig. 1.1 Examples of maritime safety and security ( c©Thales Nederland B.V.)

to contamination, so pollution monitoring, prevention, and control are important
tasks at sea. A sixth aspect of the usage of the seas is the provision of energy
through off-shore oil and gas platforms, wind parks, pipelines, and, perhaps in
the near future, algae farms. Also these shall be regulated, protected, monitored,
and accidents inhibited. A final aspect are safety threats through sea mines, ship
wrecks, and lost cargo, and emergency situations ranging from search and rescue to
neutralization of oil spills that must be dealt with.

The various activities taking place at sea entail risks, threats, and potential
dangers that may jeopardize safety and security. Maintaining maritime safety and
security is typically a task that is coordinated by the coast guard, working together
with harbor authorities, (water) police, customs, navy, rescue-teams, etc. The first
step is attaining situation awareness, i.e., knowing what is happening at sea. Consid-
ering the large numbers of ships, the many activities at sea, and the large areas that
have to be covered, computer-based support herewith is indispensable. A system for
maritime situation awareness will support and guide the surveillance officers and
operators in a coast guard control center with monitoring and controlling what is
happening at sea, so that better decisions can be made and appropriate actions can
be taken.

An important task for maritime safety and security is anomaly detection.
A situation awareness system must support the surveillance operators in identifying
and focusing on suspicious or abnormal situations, while filtering out normal
situations as much as possible. Abnormal situations may indicate undesired or
unlawful activities, risks, or threats. Examples include ships violating traffic rules
or sailing outside shipping lanes, ships being too close to oil platforms, wind parks,
or the coast, and ships being (too) close to each other. The latter may indicate a
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near-collision, it may point to handing-over of illegal goods at sea such as drugs,
but if one of the vessels is a tugboat or a pilot boat then it probably is completely
normal behavior. In general, any vessel that is somewhere where it does not belong,
or that makes strange maneuvers, is an anomaly. Of course, this depends on the
type of ship, e.g., a fishing ship sailing on fishing grounds is not abnormal, but a
passenger ship is. Other examples of abnormal behavior are a ship that drifts too
much or seems to be out of control; a vessel providing inconsistent information
such as claiming to be an oil tanker while making a 180◦-turn within a minute;
a small ship approaching the coast with high speed somewhere where there is no
harbor which might be an indication that smuggled goods are dropped on the shore;
and two ships decreasing speed at the same place outside of traffic lanes just a short
period after each other, which might indicate that one ship dropped a packet that is
picked up by the second.

Challenges for anomaly detection in the maritime domain are long time frames
and external influences. For some abnormal behaviors observations must cover a
long time frame, e.g., a potential collision or strange behavior of an oil tanker
stretches over several hours, and also the “drop a packet–pick a packet” scenario
described above may require observations over several hours before it is clear that an
anomaly occurred. External influences, like weather conditions, play an important
role when determining whether some situation is abnormal or not, e.g., strange
maneuvers of a ship outside the shipping lane may be completely normal during
stormy weather conditions.

1.5.1 Vessel Tracking

A core functionality for anomaly detection in the maritime domain is the monitoring
and tracking of vessels: where are vessels and what are they doing. Nowadays a
main source of information for vessel tracking is AIS – the Automatic Identification
System. All vessels, except the smallest ones, are required to be equipped with
an AIS transceiver, which broadcasts messages with status data about the vessel
and its movements according to a protocol standardized by the International
Telecommunications Union (ITU) [13]. Depending on what the ship is doing, it
sends AIS messages every 2–10 seconds when underway, and every 3 minutes when
at anchor.

There are different kinds of AIS messages. One type contains kinematic
information about the ship such as its current position, speed, heading, turn rate, and
navigational status (‘under way using engine’, ‘at anchor’, ‘moored’, etc.). Another
type of message contains information about the ship itself and its journey such as
its name, internationally recognized identifiers (MMSI number – Maritime Mobile
Service Identity number1 and IMO number – International Maritime Organization

1The MMSI numbers used in the examples in this book are fictitious and do not relate to existing
ships.
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number), call sign, dimensions, draught, the type of ship (oil tanker, passenger
ship, cargo, fishing, dredger, pilot boat, etc.), cargo, destination, and expected time
of arrival.

AIS messages can be received by neighboring vessels to prevent collisions, and
by coast guards and similar organizations for vessel tracking and monitoring. AIS
is the main source of information for a maritime situation awareness system. Many
web sites provide AIS information.2

Other sources of information in the maritime domain are radar, satellite, and
visual observations, data from harbors and customs, and the web where many web
sites, both paid and free, are found that provide useful information for the maritime
domain. Examples are weather and news sites, geographic information,3 Lloyds,4

and The Paris Memorandum of Understanding on Port State Control (Paris MOU5),
which contains a lot of information about ships.

1.6 Overview of the Chapters

Many of the challenges described in the previous sections present themselves
in maritime situation awareness systems. This book, in its subsequent chapters,
elaborates these challenges and discusses solutions. This section introduces these
chapters. Although examples in the chapters are taken from the maritime domain,
most of the presented topics are more widely applicable to any system-of-systems
or domain of situation awareness.

The chapters are divided into three parts: the chapters in Part II discuss situation
awareness, whereas Part III focuses on the systems-of-systems aspects. Before
starting with these two parts, Part I investigates some general topics. Chapter 2:
Improving Situation Awareness in the Maritime Domain, further investigates the
application domain of maritime situation awareness systems. The role and activities
of an organization for maritime safety and security, the kind of support, alerts, and
visualizations that may help the operators, the complexity of their decisions, and the
various stakeholders with their conflicting interests are all discussed.

Building a system to support attaining situation awareness, whether in the
maritime domain or elsewhere, requires the consideration of various, partly con-
flicting, functional and non-functional concerns. Chapter 3: On the Architecture
of Systems for Situation Awareness, discusses such issues by reflecting on the
architecture of systems-of-systems for situation awareness. The chapter discusses

2Examples of web sites providing AIS information, are www.vesseltracker.com, www.shipais.com,
www.vesselfinder.com, www.marinetraffic.com, www.aishub.net, and www.shipspotting.com.
3www.geonames.org
4www.lloydslistintelligence.com
5www.parismou.org

www.vesseltracker.com
www.shipais.com
www.vesselfinder.com
www.marinetraffic.com
www.aishub.net
www.shipspotting.com
www.geonames.org
www.lloydslistintelligence.com
www.parismou.org
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the architecture starting from general principles, considering both a functional view
on the information processing that results from domain analysis, and a system
architect’s view on properties required to deliver that functionality.

Many of the ideas presented in this book have been implemented, and these
implementations have been integrated into a demonstrator that presents an elaborate
scenario in the maritime safety and security domain. Chapter 4: The POSEIDON

Demonstrator, describes the demonstrator, including screen shots of its operation,
reflections on the building process, and the value of such a prototype for stakeholder
communication and validation of the research.

1.6.1 Overview of Part II: Situation Awareness

A system supporting situation awareness must present its output in a useful and
manageable way to a human user. Using textual output is not an option given the
large amounts of vessel information. Powerful visualization techniques are neces-
sary to enable the operator to quickly understand and interpret the current situation.
Chapter 5: Visualization of Vessel Traffic, presents advanced visualization methods
based on density maps. They enable the operator to attain an overview of movement
patterns over a period of time, as well as to zoom in on particular situations. Current
behavior of vessels can be visually combined with historical vessel movements,
presented in a density map, to detect abnormal behavior, i.e., outliers. Filtering
on vessel attributes allows to focus on particular ships or situations, e.g., on all
passenger ships sailing on some place where there are normally (in the historical
data) no passenger ships.

As discussed in Sect. 1.5.1, an important function in situation awareness in the
maritime domain is the tracking of vessels and the analysis of their movements.
There are many other domains where tracking of objects and the analysis of behavior
are important tasks, e.g., traffic monitoring and control, transportation of system
parts in a warehouse, crowd monitoring for public safety and security, migrating
animals such as whales, reindeer, and birds, and animals moving in a confined area
such as a cage or aquarium. Chapter 6: Extending Track Analysis from Animals in the
Lab to Moving Objects Anywhere, compares vessel tracking with animal tracking.
A specialized tool for video tracking of animal behavior in a cage in a laboratory
setting is analyzed and adapted for use in the maritime situation awareness domain.
The goal of Chap. 6 is to increase insight in the specificities of both domains of
object tracking, and to gather requirements for a universal tracking tool which is
applicable to multiple domains.

The main source of data for a maritime safety and security system is AIS data
(Automatic Identification System); see Sect. 1.5.1. There are many ships, each of
them sending AIS messages every few seconds, even if the ship follows a straight,
predictable course. Chapter 7: Recognizing Vessel Movements from Historical Data,
presents in three steps how AIS data is prepared and used for the recognition of
vessel movements and behavior analysis. First, AIS data is compressed into track
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segments using a technique called piecewise linear segmentation. This enables
higher level reasoning about ship trajectories, and reduces the quantity of AIS
data with more than 95 % without sacrificing the quality of subsequent behavioral
analyses. Second, the level of similarity between different trajectories is quantified
using a distance function. Knowing which trajectories are similar to each other
enables clustering of similar trajectories and the recognition of movement patterns.
Third, the movement patterns are combined with other knowledge about ships and
their context, such as the ship type or the geographical location of its position,
because such knowledge may influence what is normal: a movement pattern that
is normal for a ship of type ‘fishing boat’ may be abnormal for an oil tanker, and a
speed which is normal for open waters can be too fast when we know that the ship’s
position corresponds to the entrance of a harbor.

The idea of detecting abnormal vessel behavior by calculating similarities
and differences between behaviors using distance functions is further elaborated
in Chap. 8: Density-Based Anomaly Detection in the Maritime Domain. Vessel
behavior is then classified as an outlier if it has a large distance to other behaviors.
Chapter 8 introduces a method coined Stochastic Outlier Selection, that automati-
cally identifies outliers.

Chapters 7 and 8 use statistical comparison of current behavior with historical
behaviors using distance functions to define what normal behavior is. This leads to
an implicit (and circular) definition: normal is that what everyone does. An alterna-
tive approach is to explicitly define normal behavior via a set of rules. A violation
of the rules is then an anomaly. A typical example is fixing a set of traffic rules that
all ships, or cars, must satisfy.

Chapter 9: Analyzing Vessel Behavior using Process Mining, uses rule-based
anomaly detection. A graph-based language is introduced, founded on linear
temporal logic, in which rules specifying ship behavior can be expressed, for
example “whenever a ship is moored, then eventually in the future it will be under
way using engine”. Satisfaction of such rules is checked at runtime. Behavior rules
can be explicitly expressed, but they can also be learned from historical data,
thus providing a combination of rule-based and history-based anomaly detection.
Chapter 9 also presents a template-based method for learning behavior rules.

Situation awareness involves knowing about the events happening in the
environment. Consequently, the concept of an ‘event’ is important, and a system
supporting situation awareness must be able to handle events. Events are observed,
modeled, and defined, they must be stored, manipulated, and related to each other,
and they must allow various kinds of (formal) reasoning. Therefore, Chap. 10
The Simple Event Model, introduces an ontology-based event model, that is used to
model all kinds of events and their related concepts like actors, places, times, and
their types. Events can be modeled at various levels of abstraction: a ship moving at
a particular place and time, corresponding to one AIS message, is an event, but also
a ship trajectory, the hijacking of a tanker in the Strait of Malacca, and an armada
sailing from Wellington to Amsterdam can be modeled as an event. In the context
of situation awareness, where information comes from different sources, events
must be flexible, they must deal with partial, duplicate, contradicting, or uncertain
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information, and they must enable enrichment with new information and additional
aspects, that are obtained via observations, from the web, or through semantic
reasoning.

1.6.2 Overview of Part III: Systems-of-Systems

One of the challenges in the development of systems-of-systems is the fast, runtime
integration of autonomous components or systems, which were originally not
designed to interact with each other. In such cases a dedicated adapter may be
developed that bridges the differences and incompatibilities between the systems.
Chapter 11: Specification and Generation of Adapters for System Integration,
discusses two methods to generate such an adapter semi-automatically from a
model of the interface behavior of the systems. The first method uses techniques
from controller synthesis; the second one builds on incremental view maintenance
in databases. The methods provide a generic and systematic approach for the
construction of adapters. This is illustrated with an example in the maritime domain:
the connection of a system providing AIS messages to Google Earth, in order to
display these messages.

Chapter 12: The POLIPO Security Framework, discusses security issues in
systems-of-systems. Since systems-of-systems are dynamic coalitions of autono-
mous systems, a central security policy cannot be implemented. Each of the
constituent systems will have its own policy. To cope with this situation, Chap. 12
introduces the POLIPO security framework that protects the information exchanged
among the systems in a system-of-systems, while preserving autonomy and interop-
erability of the systems. It uses context-aware access control and trust management
to protect information from unauthorized access, while ontology-based services
maintain autonomy and interoperability.

Apart from security, i.e., the question who is allowed to know what, the
distributed, autonomous, and heterogeneous nature of systems-of-systems also
raises the question of trust, i.e., which information can be counted on. In particular,
if different sources of information provide inconsistent or contradicting opinions
about the same ship or about the same event, it is important to know which
information can be trusted. Chapter 13: Assessing Trust for Determining the
Reliability of Information, discusses how trust can be assessed and quantified, and
how combinations of different opinions increase the level of trust if they agree, and
decrease it if they contradict each other.

Systems-of-systems change and evolve dynamically in ways not designed and
anticipated in advance. Consequently, during and after each change the quality
of the newly integrated system has to be checked again without disturbing or
interfering too much with the normal operations of the system-of-systems. This
requires runtime monitoring and testing techniques. Moreover, if a failure occurs,
runtime diagnosis techniques must be able to localize and isolate the faulty system.
Chapter 14: Online Fault Localization and Health Monitoring for Software Systems,
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discusses the detection of failures and the localization of the faults that led to
the failures by adapting existing design-time techniques to the dynamic context.
In particular, the technique of spectrum-based fault localization is combined with
health monitoring and extended to runtime fault localization.

Since runtime fault localization shall as little as possible disturb the normal
operations of the system-of-systems, it shall be effective and fast. Chapter 15:
Prioritizing Tests for Fault Localization, shows that current test selection and
prioritization techniques mainly optimize the fast detection of failures, but not
their fast localization. Therefore, Chap. 15 presents techniques for selecting and
prioritizing test cases such that fault localization is optimized, i.e., the time to
localize the fault is minimized.

1.7 POSEIDON

POSEIDON6 was a collaborative, industrial-academic Dutch research project,
managed by the Embedded Systems Institute (ESI). The goal of the project was to
develop new concepts, methodologies, and prototype components for situation
awareness systems-of-systems, and to apply them in the domain of maritime
safety and security. In POSEIDON, researchers and engineers from the companies
Thales Netherlands and Noldus Information Technology, and from ESI, worked
closely together with researchers from five universities: Eindhoven University of
Technology, Delft University of Technology, VU University Amsterdam, University
of Amsterdam, and Tilburg University (Figs. 1.2 and 1.3).

Fig. 1.2 The POSEIDON team at the final POSEIDON symposium

6www.esi.nl/poseidon

www.esi.nl/poseidon
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Fig. 1.3 Partners in POSEIDON

The academic partners contributed their state-of-the-art knowledge and
expertise in their specialized research areas. ESI, in addition to project management,
contributed its expertise in multi-disciplinary model-based systems architecting and
engineering. The main industrial partner Thales Netherlands, also referred to as the
‘carrying industrial partner’ in project terminology, provided the application domain
of maritime safety and security, and contributed its knowledge about the maritime
domain and about maritime and naval systems. Noldus Information Technology
provided its expertise and experience in tooling for track analysis.

The academic-industrial cooperation in POSEIDON took place in a setting
referred to as Industry-as-Laboratory [4, 10, 12, 17]. This means that the actual
industrial setting is used as a laboratory, akin to a physical or chemical laboratory,
where new theories, ideas, and hypotheses, mostly coming from the academic
partners in the project, are tested, evaluated, and further developed. This setting
facilitates the transfer of knowledge from academia to industry, and it provides
direct feedback about the applicability and usefulness of newly developed academic
theories, which may again lead to new academic research questions. For POSEIDON,
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the laboratory was provided by Thales Netherlands,7 which is the Dutch branch
of the international Thales Group. Thales Netherlands specializes in designing and
producing professional electronics for defense and security applications, such as
radar and communication systems, with emphasis on the maritime domain. Thus,
the Industry-as-Laboratory setting enabled the project to employ the latest industrial
insights in the maritime domain.

POSEIDON has achieved various results, both academic and industrial. A large
number of scientific publications appeared in journals and in proceedings of
conferences and workshops, several PhD. theses were defended, articles were
published in popular magazines and professional journals [5,7,8,11,14–16,18,21],
a spin-off company, NexusZ.com, was founded, and a couple of (international)
workshops were organized [3, 6, 19, 20]; see Appendix B for a complete list of
publications.

The scientific and technical innovative results include the following:

• Multi-objective visualization and methods for the construction of user-defined
operational pictures of kinematic behavior of moving objects (Chap. 5);

• Compression of behavioral data through segmentation enabling efficient
similarity calculation, comparison, and clustering of ship trajectories, used
as the basis for anomaly detection (Chap. 7);

• Stochastic outlier selection as a method for the detection of outliers that
outperforms existing methods on reference data sets (Chap. 8);

• The use of process mining techniques for rule-based, runtime anomaly detection
(Chap. 9);

• The ontology-based, flexible Simple Event Model enabling manipulation,
semantic reasoning, storage in a knowledge base, and connection to foreign
ontologies of all kinds of events, at different levels of abstraction, and with
potentially partial, inconsistent, duplicate, or uncertain information (Chap. 10);

• Two complementary methods for semi-automatic generation of adapters that
can bridge the communication differences between heterogeneous systems
(Chap. 11);

• A method for security management and distributed access control for use in
systems-of-systems without central security authority (Chap. 12);

• The application of trust calculations to ship data in case of different opinions
about ships (Chap. 13);

• Runtime monitoring and diagnosis techniques, which enable the detection and
localization of faults in an operational system, and which prioritize additional
tests with respect to diagnostic effort (Chaps. 14 and 15).

In addition, the architectural challenges and principles for designing information-
centric systems-of-systems, such as situation awareness systems, were investigated
(Chap. 3).

7www.thalesgroup.com/nlhome

www.thalesgroup.com/nlhome
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A demonstrator, an integrated concept validation platform with many of the
investigated aspects implemented, was built (Chap. 4).The demonstrator, showing
several scenarios in maritime safety and security, is a basis for further experimental
research, and has been shown to various stakeholders in Thales Netherlands, as well
as to other interested parties. It serves both dissemination of results and triggering
of reflection and feedback.

A comparison of different kinds of object tracking tools, in particular for animals
and vessels, led to important requirements for tracking tools in general (Chap. 6).
These requirements are, in turn, input for the European research project Pronto,8

where one of the goals is to build one tool for tracking objects in different domains.
Several of the techniques developed in POSEIDON are now considered by Thales

Netherlands for future, intelligent, maritime situation awareness systems. In general,
POSEIDON gave lots of inspiration to Thales Netherlands to extend its competences,
and to the academic and research partners to direct their research.

Despite POSEIDON being successful, a lot of interesting challenges remain.
The successor project METIS,9 again with Thales Netherlands as ‘carrying industrial
partner’ and led by ESI, continues the research on systems-of-systems for situation
awareness in the maritime domain. METIS focuses on techniques for semantic align-
ment of heterogeneous information sources, analysis of the quality of information
and reasoning with uncertainty, and visualization of large amounts of complex and
uncertain information, while building on the successes of POSEIDON.
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Chapter 2
Improving Situation Awareness
in the Maritime Domain

Maurice Glandrup

2.1 Introduction

Organizations in the maritime safety and security domain have to cope with complex
situations at sea, harbors, and rivers to maintain acceptable levels for safety and
security. For safety, traffic rules apply at sea. Yet in areas with heavy traffic, it
is difficult to tell which vessels adhere to traffic rules and which ones do not.
For security, suspicious activities such as drugs smuggling need to be detected.
In the past years it has become clear that there now are more means to detect
vessels, because more vessels have equipment to broadcast their current position or
are detected by sensor systems that are placed along the coast. At the same time, the
rising problem is that it has become difficult to handle complex situations because
of the amount of vessel movements in an area. In addition to the more complex view
on vessel movement, more information on vessels is available in databases and on
the Internet. To identify a vessel as suspect, information about the crew, cargo and
owner can be used as a discriminator. Today’s maritime safety and security systems
do not provide the mechanisms to handle the amount and diversity of information
that is available. It is the task of operators to combine all information and elicit
suspicious vessels. The risk is that operators have an information overload which
causes them to miss important and relevant events, or to notice them too late. In this
chapter we discuss several scenarios that indicate difficulties that maritime safety
and security organizations face while building situation awareness.
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2.1.1 Situation Awareness

Maritime safety and security organizations build situation awareness of the area
they control and monitor. Situation awareness, see also Chap. 1, Sect. 1.2, is defined
in [4] as:

The perception of environmental elements with respect to time and/or space, the compre-
hension of their meaning, and the projection of their status after some variable has changed,
such as time.

In this definition examples of environmental elements in the maritime domain
are vessels and oil-rigs. Also, areas with stormy whether or with an oil spill are
environmental elements.

Situation awareness involves building the awareness in an area and associating
information with objects in that area. If an incident happens, all information is
available and decisions can be taken to cope with it. Situation awareness applies
to several domains, see Sect. 1.2, and the characteristics that these domains have in
common are:

• The high diversity of information,
• The large amount of information, and
• Real-time streaming (high flow rate) of information.

The complexity of the information stream is further increased since there
are usually more information sources to be considered. There is also criticality
associated to the domain. A poor decision because of bad situation awareness may
result in a catastrophic impact.

Building and having up-to-date situation awareness where there is a complex
information stream is almost impossible to do for decision makers without the help
of a system. The purpose of such systems is foremost to structure the information
such that operators do not suffer from an information overload.

2.1.2 State-of-the-Art in Maritime Safety and Security
Systems for Situation Awareness

Maritime safety and security organizations become increasingly aware of the
heaviness of the traffic in an area. In this book, the traffic along the Dutch coast
is used as an example case. The North Sea is one of the areas with the heaviest
traffic in the world. This increases the complexity of information streams to handle.
The complexity in handling traffic is further increased by the following:

• Smaller vessels have to report their position nowadays which results in an
increase in the amount of vessels and in information on the position of these
vessels;

• More accurate information on the type of vessel and its cargo is available;
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• A trend that can be observed in the past years is that vessels become larger, which
implies that if such a large vessel is involved in an incident, the (catastrophic)
impact will also be larger.

The monitor and control systems that these organizations currently use cannot
cope with the amount of information that is available. At this moment, the majority
of information sources must be interpreted by operators, or is simply ignored.

2.1.3 Challenges in the Maritime Safety and Security Domain

Maritime safety and security organizations face at least the following two challenges
in building situation awareness.

• The first challenge is gathering information on vessels in general, and more
specifically on vessels that act strange, or can potentially harm others because
of course and speed. Sensor data must be combined with information from
closed or public information sources to elicit suspicious vessels. The amount of
extra information from these sources can easily result in an overload. It is often
quite cumbersome to relate information from information sources with sensor
data. Today’s maritime safety and security systems do not provide sophisticated
interaction mechanisms to deal with the diversity of information. Here, examples
of closed information are cargo manifests and the organization’s own information
of a vessel. Public information sources include web pages on the owner of a
vessel and social pages of crews.

• The second challenge is identifying critical situations. It is not trivial to see what
is critical in the normal. The increased complexity by the number of moving
objects and the amount of information that can be associated with an object,
makes it difficult to notice and act on incidents. It also makes it more difficult
to keep performing routine work while incidents happen. There exists a huge
variety in how incidents happen. Incidents can be unintended or intended,1 may
involve various (types of) vessels, can happen in any weather condition, etc.
The maritime safety and security systems that are available at this moment are
quite limited in alerting operators on critical situations.

Building accurate situation awareness is becoming more and more the result
of multiple organizations that work together. There is collaboration with affiliated
organizations (national and international) to trace vessels that are potentially
dangerous. This also puts additional requirements on information exchange between
organizations. Not all information can be shared because of confidentiality con-
straints. It may even be that information is not shared unless there is an incident
where it is essential to have additional information because of increased risks.

1Unintended incidents are safety incidents. Examples of intended incidents are smuggling and
terrorist acts.
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These challenges and the limited capabilities of maritime safety and security
systems give maritime safety and security organizations that work on building
situation awareness a difficult task. It forces them to intensively study information
they receive and watch vessel movements. This results in strain and possible
fatigueness. The resulting loss of attention may lead to missing of events. These
challenges were discussed with experts in the field, and they are further refined
throughout the chapters of this book.

Maritime safety and security organizations are often government organizations
that have to deal with equal or shrinking budgets while their tasks become more
complicated. To cope with this, organizations need to streamline their activities
and become more efficient. The goal of this chapter is to point out what type
of characteristics a maritime safety and security system should have to help
streamlining activities and make operators more efficient.

In the next section we explain the difficulties that organizations face to build
situation awareness. In Sect. 2.3 we make a case that it is essential to cross-link
information from several information sources to build good situation awareness.
Section 2.4 discusses several scenarios that can be seen as illustrative for the type of
problems organizations face. Section 2.5 discusses how maritime safety and security
organizations’ tasks can be alleviated and where a system can be of assistance.

2.2 Building Situation Awareness

Maritime Safety and Security (MSS) organizations have to make a considerable
effort to build situation awareness of an area by using the current generation of
monitoring and control systems. Building situation awareness of the Rotterdam area,
let alone the Dutch coast is quite complex. In 2007 on a daily basis there were
about 1,500 vessels that transmit their position by using the Automatic Identification
System (AIS; see Sect. 1.5.1). AIS transmits a number of times per minute data of
a vessel that contains the position of the vessel, its destination, etc. Of these vessels
the majority crosses or is in the neighborhood of the Rotterdam area. On a yearly
basis there are more than 500,000 vessel movements that are reported by AIS. Larger
vessels are obliged to transmit their position by using AIS transponders. However,
small vessels at sea often do not carry AIS transponders, so the amount of traffic is
in reality larger. From the budget that is assigned to the Dutch coast guard and from
experts we know that the number of vessel movements is relatively stable, and that
the vessels themselves get larger. The number of vessels that report their position by
using the AIS is also growing. By law, in coming years smaller vessels also have to
carry AIS transponders.

Besides moving objects, there are also a number of static objects in the North
sea. There are over 300 oil and gas platforms, and a dozen windmill parks.
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Fig. 2.1 Sea lanes in front of
the Dutch coast, shown as a
layer in Google Earth
( c©2011 Google)

2.2.1 Traffic Separation Scheme Along the Dutch Coast

To control the traffic along the coast, a number of laws are applicable. The goal
of these laws is to keep the amount of incidents and their impact as low as
possible. For example, traffic with dangerous cargo, such as chemicals and oil,
must stay clear from nature preservation areas such as the Waddenzee. The Dutch
government organization Rijkswaterstaat2 defined a so-called Traffic Separation
Scheme. The Traffic Separation Scheme aims at regulating the traffic at sea in so-
called sea lanes. Figure 2.1 shows the Traffic Separation Scheme before the Dutch
coast.

In Fig. 2.1, the Dutch coast is clearly recognizable. The colored areas in the figure
visualize the Traffic Separation Scheme. The red areas denote anchor areas. These
are used by vessels to hold a position before they can go to the harbor to release their
cargo. The yellow areas mark restricted areas. Large cargo ships, tankers, etc. are
not supposed to be in these areas. The other, mostly blue shaded, areas represent
clear ways and sea lanes that vessels use. In the remainder of this section the term
sea lane is used. Note that the colors of the areas and sea lanes are only used to
differentiate the different areas and sea lanes.

Sailing between the lanes is not prohibited, but may result in dangerous situa-
tions. Needless to say that the amount of vessel movement and the sailing between

2http://www.rijkswaterstaat.nl/

http://www.rijkswaterstaat.nl/
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the lanes is not beneficial for building good situation awareness. Larger vessels
that follow the sea lanes often follow a plan and their movement can be predicted.
Smaller vessels usually just go from A to B which can be confusing for operators.

2.2.2 Necessity of Building Situation Awareness

One year of AIS data before the Dutch coast was analyzed by POSEIDON. In this
data set, several examples where found where vessels:

• Cross or closely pass wind-mill parks or oil-rigs that are present in the North-sea,
• Start to drift,3

• Suddenly deviate from their course so collisions with another object (vessel or
oil-rig) may occur, or may not occur in case of evasive maneuverings,

• Sail against the traffic,
• Pass restricted areas (such as nature preservation areas) at too close distance

while carrying dangerous cargo.

These are all examples that show that a close monitoring and control of traffic at
sea is essential. To do this, situation awareness must be built.

Situation awareness that MSS organizations currently build is shown in Fig. 2.2.
This figure shows the vessel movements in the North-sea around the Waddenzee
area [3]. The purple lines and areas mark the waterway system that exists in the
Dutch waters. The arrows in the map indicate the sailing direction of vessels.
The labeled boat-shaped figures mark vessels, the labels of these figure are vessel
names, and the squares mark the oil-rigs in the area.

It takes some experience to know the vessel movement in an area. If vessel
movement is captured at all, it is at this moment not used by MSS organizations for
play-back purposes to learn from historical vessel movement. MSS organizations
need to learn patterns in vessel movement, behavior that can be associated to types
of vessels, etc. Being knowledgeable on patterns of vessels and behavior that can
be associated to types of vessels helps in identifying and preventing incidents.
Organizations also need to be knowledgeable on differences in behavior of vessels
that are caused by the environment, for example:

• Behavior of maintenance boats in wind parks,
• Coast guard ships leaving ports when heavy weather is expected,
• Seasonal fishing patterns,
• Reaction of commercial shipping to heavy weather,
• Pilot boats delivering a pilot to an incoming ship.

3Drifting is when a vessel does not have engine power, cannot be steered and is going with the
waves and wind
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Fig. 2.2 Screen shot of the Netherlands Coastguard system in the Operations Centre in Den
Helder [3]

The difficulties operators of these organizations face is that beside interpreting
the geo-spatial information of vessel movement, they nowadays also have to
combine this information with information about the owner, flag, and even news
items in which a vessel is mentioned. Using only geo-spatial information usually
does not reveal vessels that have a higher risk profile or that are involved in illegal
activities such as smuggling, environment pollution, piracy. With the availability of
AIS, improved in-house information systems and the Internet more information on
vessels is available to determine the risk profile of a vessel. However, combining
different information sources is a time consuming task and can result in an
information overload. Another approach can be to simply visit every vessel at sea
and investigate it. This is a very time consuming approach. On average, a vessel
visit with investigation takes a few hours. Since not all vessels can be visited at sea,
it comes to the experience of individual operators to find suspect vessels.

2.2.3 Dealing with a Reduced Sensor Network
to Build Situation Awareness

To monitor large areas such as the Dutch coast, a relatively large number of sensors
is needed. Along the Dutch coast there are several radar stations and AIS base
stations that detect and pick up data from vessels. This data is combined and
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transmitted to the center of an MSS organization. Since the number of sensors
is relatively large, it is possible that one or more sensors produce data with less
quality than normal. The result of data quality loss is usually that an area cannot be
monitored or can be monitored less well. A reduction in the quality can imply that a
sensor is not functioning, or that the weather conditions in the area prohibit a good
transmission of signals. To increase the quality, a measure can be to sent out a ship
or an airplane for investigation, or to deploy a mobile station. Here, mobile means
that base stations are situated on coast guard vessels, or airplanes. In other words,
the network of AIS and radar stations is extensible and reconfigurable.

2.3 Combining Information

Operators need to interpret and reason on a lot of information to make the correct
decision. The military domain already recognized this problem and defined a
process to cope with it. This process is coined the OODA loop: Observe, Orient,
Decide and Act [2].

2.3.1 Observe, Orient, Decide and Act

Organizations that provide monitoring and control services often adopted the OODA
loop. The OODA loop guides operators on the decision making process, and on
using available information. The OODA loop has its origin in military command
and control systems, but was also adapted for civil systems. Figure 2.3 shows the
process.

The process has the following steps:

• Observe: know what is happening.
• Orient: understand the meaning of what was observed.
• Decide: weighing the options available and picking one.
• Act: carrying out the decision.

Fig. 2.3 The OODA loop
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Following the OODA loop in itself is not possible if information is not combined.
Combining information from multiple sources implies that operators need to
interpret and reason upon the information.

2.3.2 Interpreting and Reasoning on a Situation

What operators do, and what the OODA loop describes is that operators use data
from sensors and domain knowledge to interpret and reason on a situation. This
happens at the beginning of the loop, and starts again after a decision has been
made and an action has been taken. Figure 2.4 illustrates this.

In Fig. 2.4, the triangles represent (on a high level) the knowledge and
information sources where operators have access to, and his abilities. The arrows
indicate how the sources are used by operators. The blue triangle represents domain
knowledge. Here, domain knowledge can be the experience of operators, or the
information that an operator retrieves from the organization’s MSS systems.
Operators need to be creative to apply the domain knowledge to a situation. The red
triangle represents the reasoning ability of an operator to make this mapping.
The green triangle represents the data of a situation that is picked up by sensors and
that must be interpreted by operators, or that operators retrieve from the Internet or
other sources. The green triangle also represents the result of the interpretation, as
is explained below.

When an operator starts interpreting or reasoning on a situation, sensor data is
likely to be the most informative input. After having added more domain knowledge
and having reasoned on the situation, the sensor data becomes less important, and
the domain knowledge and reasoning ability of operators more important. Figure 2.5
illustrates this reasoning, combining and abstracting of information.

In Fig. 2.5, in the background the three above mentioned triangles can be
recognized. The arrows indicate the flow in which operators reason and combine.
The arrows form a spiral that goes from bottom to top. The spiral crosses several
levels of reasoning and combining. These levels are separated by horizontal lines.

Fig. 2.4 Combining raw data, knowledge and reasoning ability
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Fig. 2.5 Abstractions in reasoning

To solve a question three levels of reasoning and combining were needed. Other
questions may take fewer or more reasoning levels. The question that is solved in
the figure is: “is the position and movement, and timing of a vessel according to
a scheme”. Here, scheme means that the vessel is using the sea lanes that it is
supposed to use, and that it is moving at an expected moment of the day. At the
lowest level, operators interpret the AIS data that is received by sensors and that is
visualized by the MSS system of the coast guard. The operator searches for behavior
in the movement of objects that cannot be understood without further investigation.
To make the object movement better interpretable, the image is enriched with
map data of different forms. This map data can include data about sea lanes, ship
wreckages, weather information, seasonal effects on fishing behavior, etc. By doing
so, it becomes easier for operators to associate the position of objects in an area.
Through the association, a meaning can be linked to the position. For example, the
operator knows the vessel is in an anchor area. The object movement can be further
explained by arrival and departure data from harbors, time tables of daily trips,
maintenance schedules of oil-rigs, meteo data, the cargo of a vessel or by radioing
the vessel. By using this information the operator can deduce that the vessel needs to
take another, less economic route to its destination because of its dangerous cargo,
or that a vessel follows a time-table.

Figure 2.5 also shows that the type of information that an operator has to
handle has large diversity and can vary per scenario. To illustrate the reasoning and
combining of information together with the OODA loop, the following example
is used:

Observe: Operators are observing the traffic before the Dutch coast. This is done
by watching visualizations of AIS messages on screen, and listening to radio traffic
and reading Internet sites with blog data of the area.

Orient: A vessel that is sailing in a sea lane suddenly deviates from the lane.
This in itself is not abnormal behavior. However, it is now headed for an oil-rig.
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According to the AIS messages that are sent by the vessel, it is a so-called Special
craft. Special crafts are a rather broad class of maritime investigation vessels or
maintenance vessels. In this case, it can mean that the vessel is a maintenance
vessel that is going to do repair activities, or that is delivering goods to the oil-
rig. If the vessel is not doing maintenance activities, then it should not be in the
neighborhood of the oil-rig. The vessel movement is projected on a map of the
area. Vessels that deviate from a sea lane can be found more easily this way. Also,
vessels heading for static objects such as oil-rigs can be identified more easily.
The additional information in the AIS messages of the vessel gives the operator
additional information to reason on and to further enrich the data. In this particular
case, the operator starts to search if the vessel is a maintenance vessel of some sort.

Decide: In general, vessels must keep a distance of about half a nautical mile
from static objects or other vessels. This is to prevent incidents. For example, if the
vessel becomes “not under command” for some reason or suddenly deviates from
its course, it may hit an oil-rig and cause an environmental disaster. If the vessel is
a maintenance vessel, it should be mentioned on a short list. The operator decides
to check if this is the case. By using time-table type-of data in combination with
information on maintenance vessels in the area, information is cross-linked and the
operator can determine whether the vessel is a maintenance vessel. Since the vessel
is not in the list of vessels that is the result of the cross-link, more information is
needed. There are multiple ways of getting this information.

Act: The suspicious vessel is not listed as a maintenance vessel and the operator
decides to radio the vessel to ask its intentions and to find more information on the
vessel. The operator asks the vessel and enriches the result of the conversation with
the available information.

Observe: The result of the radio call is that the vessel reports they are hired by the
owner of the oil-rig to do under water maintenance. So the operator starts to gather
additional information on the vessel itself.

Orient: A quick search in the coast guard’s MSS system learns that the vessel
is a special craft that is equipped with under water repair equipment for oil-rigs.
The found characteristics of the vessel is combined with the available information.

Decide: The operator is satisfied and decides that further checking is not needed.

2.4 Typical Scenarios

MSS organizations have their specific tasks. The type of incidents that are watched
for differ per organization. In this section we discuss typical incidents such as
detecting traffic rule violations, performing search and rescue actions, and finding
vessels that act suspiciously. Where applicable, in the scenarios we point out the
crucial/vital information that leads to a decision.
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2.4.1 Strange Behavior

Strange behavior is mostly related to kinematic data (course, speed, position) of
vessels. The movement data is picked up by sensors. Operators are looking for
unwanted, suspicious, or illegal movements of vessels and interactions between
vessels. Characteristics to identify incidents are:

• Speed of movement:

– Absolute speed is larger than 25 knots in open sea
– Loitering or hovering in an area
– Sudden increase or decrease of the speed
– Type of vessel in relation to its speed

• Direction of movement:

– Making 180◦ or 360◦ turns
– Sailing against traffic
– Sailing through anchor areas
– Unusually large number of course changes

• Vessels outside the historic behavior
• Unknown origin and/or destination of vessels
• Vessels that are drifting:

Vessels at drift are vessels that are not under control. This may occur because
the engine breaks down or the bridge is not under command. Drifting vessels
may cause a lot of problems if they collide with other vessels or obstacles at sea
such as oil-rigs.

Watching for the above type of behavior is a way for operators to focus on vessels
that are more likely to be involved in incidents.

2.4.2 Search and Rescue Operations

Another type of activities in which operators have to assist are search and rescue
actions. To aid rescuers, operators search for background information on vessels
that are involved in the incident. We illustrate this type of action by using a scenario
in which a vessel is involved in a clandestine operation and gets into trouble in front
of the Dutch coast. Note that the scenario itself is fiction, but consists of elements
that have happened in practice.

An Italian navy vessel is patrolling in the Somalia area. The vessel is patrolling
in the area as part of the NATO operation Atalanta. The vessel observes through
its sensors that two vessels have an interaction. The Italian navy vessel requests
information from other vessels in the operation Atalanta if more is known about the
vessel and if an interception is needed.
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The request is handled by a vessel of the Danish navy and it passes general
information about the questioned vessel to the Italian vessel. Details about the cargo
are not shared. Additionally, the Danish vessel announces that the vessel is not to be
intercepted. Although not shared, this is because the Danish navy and the Danish
police are involved in a joint operation where they are monitoring clandestine
operations. The Danish police has infiltrated and wants to see the course in which
the clandestine operation evolves. The vessel that is involved in the clandestine
operation is headed for the Danish capital Copenhagen. The vessel has to pass the
Dutch coast.

Before the Dutch coast the vessel that is involved in the clandestine operation
gets into trouble. It has had a collision with another vessel in stormy weather.
The incident happens in a sea lane. Both vessels are in need and send a distress
signal. Operators of the Dutch coast guard are monitoring the sea. They receive
the distress signal and try to establish communication with the vessels to get more
details on the situation on board. The AIS data that is picked up by the Dutch
coast guard contains the identity of the vessels. Other information that is transmitted
through AIS and that is relevant in this case is the type of vessel, whether the cargo
is dangerous or not, the size of the vessel, and its destination. The coast guard asks
vessels in the neighborhood to be aware of the incident and that it may result in
dangerous situations. Since the vessels are powerless, they start to drift. The coast
guard sends out a helicopter to get more information on the incident. The result of
these actions is that a search and rescue operation must be set up.4

Since the coast guard wants to have as much information as possible to better
structure the search and rescue, it asks affiliated organizations if they have more
information on the vessel that is important for a search and rescue activity.
The Dutch coast guard passes a request to Northwood in the UK from which the
operation Atalanta is controlled and monitored to learn if more is known about the
vessel. Northwood passes all information it has on the vessel that is involved in
the clandestine operation. Through this information the Dutch coast guard finds out
that the cargo contains Anthrax, which was meant to be distributed to terrorist cells
in Europe via Denmark. The rescuers must use protective clothes and other vessels
must keep a safe distance of at least 1,000 m. Vessels that are within the 1,000 m
or are on a projected course in which they cross the Search and Rescue area must
be notified to not enter the area or to leave the area. The coast guard approaches all
relevant vessels individually to take the necessary actions.

2.4.3 Drug Trafficking

Drugs trafficking in general is difficult to detect. Vessels involved in such activities
try to behave as normal as possible to avoid drawing attention. Also in Dutch waters,

4Note that the OODA loop is used here.
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drug trafficking takes place. Getting the drugs into the country can happen in several
ways. The vessel with the drugs can just sail into the harbor and release its cargo.
Harbor authorities should be aware of this type of incident and act on it. Operators
of the coast guard can be supported by finding background data of the vessel and
determine the chances of it being involved in illegal activities. Other ways are to
have rendezvous at open sea, package droppings (a vessel drops a package in sea
that is picked up by another vessel), or very quickly go to shore, drop a package and
get out again before authorities can respond.

The following scenario illustrates a rendezvous of vessels. Note that the scenario
itself is fictional, but consists of elements that have happened in practice.

It is commonly know that fishing trailers are at sea for larger periods of time, and
go to distant seas to catch fish. In this case a relatively small fishing trailer heads to
the horn of Africa to pick up a drugs transport and bring it to Europe.

The vessel approaches the Dutch coast from the south. North-west of Texel,
5 miles out of the coast, the trailer deviates from the regular sea lane and decreases
its speed to come to a full stop. At that time several vessels rendezvous with the
trailer to transfer the drugs. After some time they depart again. The trailer carries on
and the sailing vessels head back to the harbor to bring in the drugs.

Is is difficult to detect rendezvous at open sea. There are a number of reasons:
the incident happens in a relatively short time frame, vessels do stop at sea, the
incident may happen just out of reach of vessels that can respond. Catching the
drugs traffickers on shore is usually difficult since it is mostly done at night, and
the dunes offer sufficient protection.

2.4.4 Smuggling of Weapon Technology

Finding out whether a vessel is suspicious or not is not trivial. Of course, if the
behavior of the vessel is strange, then operators may notice this by just monitoring
an area of the sea. It is also relatively easy to identify vessels whose AIS information
is not correct, such as the destination of a vessel. This is not sufficient if a vessel
behaves normally.

That a vessel can be suspicious while its behavior and information on crew, cargo,
and owner are fine can be best illustrated by a news article that was published in
June 2010 in the New York Times [1]. In this article it is illustrated how countries
such as Iran are establishing a network of vessel owner companies that maintain
a continuously changing fleet of vessels. In every transition of owner, the vessels
change their identification. This means that not only the name of the vessel changes,
but also unique identifiers that are passed in AIS messages such as the MMSI
and IMO number (cf. Sect. 1.5.1). By doing this, vessels can be used to transport
sensitive cargo such as nuclear weapons and products for countries that are not
supposed to have access to them.
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To illustrate the above case of finding background information, we use the
example of the Indian vessel company WMA. Note that this scenario itself is
fictional, but consists of elements that have happened in practice.

WMA is a medium sized company that has several tankers, container and cargo
ships in its fleet. A vessel of WMA is appearing before the coast of Rotterdam.
There are no issues with the approach the vessel takes to go the harbor, or with its
AIS information. Also, the flag of the vessel company (India) does not raise alarm
bells. The vessel enters the harbor, releases its goods, takes on new good and leaves
for a next destination.

A few months after this event, Iran is involved in an attack in which a fast
attack patrol craft was used. The type of craft can carry torpedoes and is therefore
forbidden technology for Iran to possess. Iran was able to obtain this type of fast
attack patrol craft through vessels of WMA. A vessel of WMA loaded this type
of patrol craft a few months ago in the harbor of Rotterdam. WMA is affiliated to
an Iran vessel company. WMA is smuggling for Iran, since also the identity of the
vessel that was used in the smuggling is relatively new and can be traced to other
companies.

2.4.5 Terrorist Actions

The context of the following scenario is a hypothetical situation in which the
Dutch coast is confronted with “Non-Cooperative Maritime Actors”, i.e. terrorists.
Operators in the coast guard center notice that a part of the Dutch coast has
less sensor coverage than normal. In this area AIS information is less reliable.
An investigation is started to determine if the behavior is explainable through natural
causes, such as bad weather areas.

To cope with the reduced sensor coverage an airplane is sent to investigate the
situation at sea. Also, a coast guard vessel that carries its own AIS base station is
sent out. The vessel relays the received AIS data to the coast guard center.

The reduced sensor coverage takes longer than expected. Therefore, a
maintenance engineer is sent to the AIS base station that produces less reliable
results. Upon arrival at the base station, the engineer notices that someone tampered
with the station.

The tampering of the base station makes this incident a terrorist action. Although
the coast guard responded adequately in coping with the reduction in sensor
coverage, the area was unobserved for some time. Deploying the vessel and airplane
simply takes time.
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2.5 Challenges for System Support

Finding incidents in large areas is not a trivial task. Smugglers, drugs traffickers,
and terrorists are aware of what organizations can and cannot find, and are creative
in hiding themselves. MSS organizations, therefore, have to look for details in
the movement of vessels and other information that can be associated to vessels.
This usually means combining several information sources, and reasoning on the
information to reach a decision.

It is clear that if MSS organizations are adequately supported by systems that
provide the right information at the right time, they are able to find more incidents
and work more efficiently. The challenges of such a system can be summarized as
follows:

• Alert operators when needed –
It is commonly known that observing a situation for some time is a tedious task
and that it may be difficult for operators to keep full attention. Consequently,
an effect is that operators may not continuously monitor a situation. This may
result in a late response to, or even completely missing of an event. Because of
this, operators need a system that operates in the background and that alerts them
when needed. In the meantime the system is responsive so operators can use it to
investigate vessels and find their background data.

In Sect. 2.4.1 we discussed a number of violations to traffic rules. These
violations can be categorized as geo-spatial violations and information violations.
Geo-spatial violations concern speeding and sailing against the traffic. Informa-
tion violations concern wrong specification of cargo, or a wrong destination. In
case of geo-spatial violations, operators would be helped with an alert when a
vessel is sailing against the traffic.

• Provide a historic overview on vessel movement to operators –
One of the largest problems for operators is to have a clear view of how vessels
move over time. This movement may change over time. For example, in case
of bad weather, vessels may be forced to go for anchor at unexpected places,
or may deviate from their course. Also, the season may have effect on traffic.
Fishing, for example, is not allowed during the whole year. It may also be
that temporary situations have impact on traffic. For example a construction
site at sea results in a change in the movement pattern in that area. Having an
overview of vessel movement in the past in combination with the knowledge that
construction activities are deployed in an area, allows operators to compare and
decide whether actions are needed.

Operators have special attention for areas where vessels cross each other. The
reason for this is that these areas are more likely to have incidents because there
is more activity in that area. Typically, these are the areas where sea lanes join or
cross each other. When observing vessel movements in an area, however, there
appear to be more areas than the most obvious ones. Knowing the areas that,
from a historical perspective, have vessel crossings, improves the understanding
of a situation.
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• Provide interaction to the system, so operators can loop back over time to check
vessels –
For operators it is difficult to notice whether vessels have some kind of
interaction. A number of interaction patterns can be identified, for example:

– Follow pattern: Vessels follow each other at close distance;
– Rendezvous pattern: Vessels meet each other at open sea;
– Package dropping pattern: Vessels that stop or slow down, speed up again, in

combination with vessels that do the same, where the stop or slow down is in
the same area.

These patterns are typical for smuggling. They are also difficult to detect since the
event evolves over some time and the moment of transfer may be short. In fact,
it may be difficult to detect this type of behavior at the moment of occurrence.
It would therefore help operators if they can loop back in time and replay the
movement of vessels to analyze the behavior they show.

• Support the operator in up-keeping the quality of data when a sensor or other
system part fails –

We discussed the combination of information by operators. The information
itself is coming from several sources. The sources can be sensor systems,
information systems, or information services. Most often these sources come
from different vendors or rely on infrastructures that are not controlled by the
organizations that use them. The latter applies to most web-based services. The
availability of information sources is not guaranteed. This means that the system
as well as the operator himself must be aware that a source may not be available.
A system should therefore be able to handle unavailability of information sources
and integrate an information source when it is added to the system or when it
comes online.

This chapter introduced various challenges for improving situation awareness in
the domain of maritime safety and security. The next chapters of this book will
elaborate these challenges and work on solutions.

Acknowledgements This research has been carried out as a part of the POSEIDON project at
Thales under the responsibilities of the Embedded Systems Institute (ESI). This project is partially
supported by the Dutch Ministry of Economic Affairs under the BSIK program.
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Chapter 3
On the Architecture of Systems for Situation
Awareness

Michael Borth

3.1 Introduction

The core of systems for maritime safety and security centers on one task: generate
situation awareness from various sources of information and observations provided
by many systems that are open to cooperation, but operationally independent.
At first glance, this task may be seen as a tree-like structure of information process-
ing steps that starts with many providers of data or information (the roots), provides
information processing that aggregates, interprets, and turns many individual items
into understanding, thus generating the sought after situation awareness picture (the
stem), which allows to reach various application goals (the leaves together with the
fruit). The realization of such a system is a challenge, but – again, at first glance –
only in regard to individual data processing steps. The system’s architecture seems
straightforward.

However, the real-world challenges and constraints that such systems face are
far from simple: Timing in complex real-time interactions with feedback circles and
humans in the loop, uncertainty of observations, and the flexible nature of a system-
of-systems configuration do require elaborate architectural concepts. This chapter
introduces these concepts and the architectural reasoning behind them.

3.2 The Domain Experts’ View on Information Processing

We start our investigation of the architecture with a domain experts’ view on
the information processing necessary for application goals in maritime safety and
security. In this domain, which is introduced in more detail in Chap. 2, operators
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Fig. 3.1 Information processing for maritime situation awareness (Overview)

use many available information sources: AIS messages of vessels, online databases
of port authorities, Lloyds [5, 6], Paris MoU [13], or others, information services,
e.g., for maps or weather data, intelligence provided by third parties, plus the
open Internet including the semantic web. Any subsequent step stems from such
information sources, as Fig. 3.1 on information processing activities shows.

The real-time online activities of track and vessel assessment are at the heart of
the operation; they produce assessments used to judge vessels and their behavior,
trigger alerts or notifications. These assessments are based on the analysis of
observations, including comparisons with expectations and models of behavior
generated via qualitative analyses of past actions. Many of these comparisons
depend on content and context, e.g., one might compare a track to behavior
models of different ship types given weather conditions and local circumstances.
Such and similar considerations span processing steps and data of different time-
scales, introduce human operators in the system, leading to interactivity and loops,
and altogether result in the complex information flows that challenge the system’s
architect.

3.3 The Architect’s View on Information Processing

The understanding of the domain experts’ view on the information processing
translates into a high-level view on functionality that the system needs to per-
form for its operators on the given tasks. A system architect’s view on the
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information processing, however, factors in many additional aspects, e.g., perfor-
mance requirements, available resources, goals regarding other systems and long
time-spans, like re-usability and evolvability. Especially, the system-of-systems
(SoS) gestalt that our system takes impacts many of these aspects [7]. Here, we
focus on those SoS aspects and their effects which turn the information processing
into a challenge that requires an architecture beyond the tree-like structure assumed
at first glance: origin and provenance of data, information channels, the timing of
information flows, interaction between SoS components and humans-in-the-loop,
the handling of uncertainty, the health of the SoS, and the flexibility of the SoS
configuration. These interrelated challenges can be summarized as follows.

Many systems of the distributed SoS provide information, but there is no single
entity that has the task, capacity, or right to access all data. Therefore, information
available at one part of the system may not be available to another part. Even if data
is passed on, it might come in with a delay, or be incomplete due to channel effects.
This hinders recognition of coincidence and causality during information fusion,
changing results and affecting subsequent actions of operators or subsystems, as
many tasks and processing steps are sensitive to context or content.

All observations that feed the system and many of its processing steps are
inherently uncertain: Sensors have technical limitations; environmental effects like
weather may impact accuracy and range; information sources may omit to pass
on sensible data or even falsify their transmissions to achieve their own agendas.
Furthermore, situation awareness systems use algorithms to give meaning to data
that measure similarities between observations or models, thus introducing soft
assessments into the information processing. The effects of uncertainty in data are
similar to those described above as it also impacts results and subsequent steps.

The information processing of situation awareness systems depends on the per-
formance and reliability of many contributing parts, in short the health of the SoS
and its information. As the notion of performance and quality-of-service depends
on a given task, such health considerations are application dependent and dynamic.
In turn, they impact the information processing, e.g., if data is known to be
unreliable or individual tasks find their prerequisites not given.

As the systems in an SoS are operationally independent (see Chap. 1), they may
join and leave the SoS, thus changing the configuration. Equally, parts of the SoS
may change the configuration they use as basis for their own operations, e.g., by
switching from one input to another to improve performance. Consequently, no part
of the SoS may rely on a specific SoS configuration. Instead, all operations must
become independent of these details. Meanwhile, locally available data about the
configuration and its abilities is beneficial to many tasks and should be used.

Altogether, these challenges make it necessary to adapt and add to the idea of
a tree-like information architecture: As missing, un-timely, uncertain, or false data
together with context-sensitivity disturb the straightforward generation of the situa-
tion awareness picture, mechanisms set to rectify this require structures that provide
feedback or context. As recognition and analysis steps impact subsequent steps, but
interact in different and changing time-frames and on different abstraction-levels,
a flexible decoupling must allow for that, requiring time-wise adaptive information
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processing and memory structures. As the SoS configuration is dynamic and impacts
performance and available functionality, insights on those aspects become beneficial
to many information processing steps, requiring system-level functionality with
additional information flows. We introduce the architectural concepts that we chose
to fulfill these requirements in the remainder of this section.

3.3.1 Information Flows

To address many of the challenges described above, i.e., handling of uncertainty,
effects of origin, provenance and channels of information, health of the SoS,
and flexibility of the SoS configuration, we set up the concept of information
flows as the building units of our architecture. Such flows express the notion that
information is moved and processed within the system, and that the ways in which
this happens is what requires the architect’s attention (as opposed to content of
data or functions computed with the data alone). The term’s association regarding
moving liquids is intentional: There are sources of information which equal wells,
end-uses that are like sinks, channels that transport as pipes do (effects of capacity
and potential loss of content included), fusion steps that might generate stronger
streams, but also might find that the contents involved do not mix, and processing
that changes content and form according to their objectives using available inputs.

Structure-wise, such information flows are compositional. Complex flows are
built from simpler flows with the fundamental forms of source, channel, and pro-
cessing step as basic units. These fundamental flow units are directional steps that
transport information towards an output. The outcome, i.e., the content of the output,
depends on the specifics and the type of the information flow: The outcome of a
source is the data generated here with a possible impact of intentional tampering
or non-intentional interference. The former may be seen as a function given the
data’s content; its implication can be modeled as trust in the source. The latter
is a matter of quality-of-service that may be seen as a probabilistic function that
changes the outcome randomly. The outcome of a channel is solely dependent on
its single input and its quality-of-service that may again be seen as a probabilistic
function. The outcome of a processing step is defined by the functional processing
of the input(s), e.g., a filter, a merge operation, or the computation of new attributes.
The processing may depend on parameters, to be set internally or dependent on
(further) input. Additionally, quality-of-service affects the outcome as well, similar
to the explanations above.

Certain properties and aspects are shared by all flow units and must be retained
during composition. Foremost, we warrant a principle of locality for all flow
operations such that they are only subject to inputs and parameters directly linked to
them. Equally important is a combined handling of the information that is inside the
flow and meta-information about the flow, e.g., quality insights and provenance data.
Meta-level information is applicable as input and output: Parts of the system might
use the meta-information to adapt their own processing steps, e.g., by addressing
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quality issues or disregarding anything from a specific source, but also compute
new data for the meta-level from their own insights or operations. In this parallel
handling of insights about the data flow itself, we realize a secondary information
flow that complements the one the core functionalities of the system work upon.
To stay in the allegory of liquids, we regard the pipes as principal parts of the
system that inform us about origin, quality, composition, temperature, pressure, etc.
of the liquid.

The understanding of an information-centric system-of-systems as a composition
of flows that adheres to the described principles and realizes a joint handling of all
types of information in a way that they may impact each other has an important
consequence: The system-of-systems’ gestalt matters, not only in the realization,
where it is cause for effects, but also during architecting and runtime. During
runtime, it enables mechanisms and processing steps that address the concerns listed
above. This is described in more detail in Sect. 3.4. During architecting, however,
it enables the explicit investigation of such effects in alternate system-of-systems
configurations, especially with model-based design techniques. The combination
of both of these aspects in one consistent approach is where we see the biggest
advantage, surpassing alternate solutions that exist for individual tasks, as, e.g.,
type-enhanced data flows in web services or data exchange models that also inform
about metadata, but help little with our other tasks.

3.3.2 Transport Mechanisms, Time-Aspects, and Memory

The information flow principle and its analogy of transporting liquids through pipes
partly explains the movement of information through the system. Especially in the
‘the root section’ of our system, where sensors provide input that is fused directly,
we see how such transportation mechanisms work: Many sensors, e.g., AIS receiver
stations, collect and provide input, AIS messages in this example. They push their
output – the input into the system – forward, just like a well would do as long its
pressure is sufficient to move the liquids along. Such a push mechanism is easy to
implement in information systems, e.g., by a time-triggered heartbeat that ‘pumps’
whatever is there at specified intervals, or by a queue mechanism that triggers the
transportation of content the moment a certain threshold is reached. In our work, we
are bound to existing data distribution services (DDS) for this purpose.

Investigations, identification of relevant observations, cross-referencing, and
interactions with operators to provide for their needs are too interactive and too
dependent on situations to be realized per push mechanisms. In essence, we need
the option to integrate local loops of queries and answers that achieve two goals:
First, they must enable the dynamic ad-hoc investigations that operators require
outside the scope of foreseen (and thus possibly pre-computed) tasks. Second, all
information processing and its outcome must be enabled to impact other tasks and
insights the system provides, as situation awareness often requires the interweaving
of all relevant pieces of information. Furthermore, many of the more cognitive
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Fig. 3.2 Multi-stage information architecture

steps within the generation of situation awareness, e.g., recognition of maneuvers or
assessments via qualitative analysis (see Fig. 3.1), need a history of data in order
to learn from it the models on which they operate. This, too, cannot be realized
by the simple push principle. Instead, we use a multi-stage architecture that adds
a short-term and a long-term memory, which are set to couple higher order
information processing with views on longer time-frames and dynamic behavior.
This architecture is sketched in Fig. 3.2.

3.4 Architectural Reasoning

Within the architect’s view on information processing, we listed various
non-functional concerns that challenge systems-of-systems for situation awareness.
The architectural concepts on information flows, transport mechanisms, time and
memory aspects introduced above are set to address these challenges. The five parts
of this section detail the architectural reasoning behind this contemplation.

3.4.1 System-of-Systems Aspects

If we evaluate systems-of-systems from the point of view of those responsible for
the engineering of the overarching system, we realize that clear advantages exist,
but they come at a high cost: The independencies between stakeholders and their
systems lead to spread efforts and responsibilities, but lead to a lack of overview
and direction as well, as neither operation nor development is centrally controlled.

As a major consequence, we require architectures and mechanisms that enable
collaboration across boundaries of systems that were not designed in concert. This
includes an inherent resilience against ill-effects of configuration changes, means
for the runtime integration, test, and acceptance of systems that may remain a
‘black box’, and adaptations to different communication and interaction protocols.
Our approaches to the latter items that are concerned with the SoS formation and
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interoperability are detailed in Chaps. 14, 15, and 11. The need for an inherent
resilience against ill-effects of configuration changes, however, is an architectural
item that is addressed using the information flow principle.

First and foremost, the flows carry the meta-information that identifies the
provenance of data streaming through the system as well as the channels it took.
This is crucial for the interpretation of incoming information (see Chap. 13), its
protection (see below), but also for aspects that relate directly to the dynamics
in a SoS’ configuration: Configuration change may alter the observable theater
or the type of observations, and impact the quality of data, the processes, and
protocols. Consequently, one might need to re-test or even adapt parts of the
system. Given flows that contain the metadata detailing the cause of such effects,
any system component is enabled to react accordingly, e.g., by reinstating runtime
integration procedures. Information processing, especially with regard to the data
quality, often benefits from such meta-information, too. One might disregard
configuration insights on higher abstraction levels, but that is a choice of the
respective stakeholders, not one to be taken for them. Consequently, we do not use
any mechanism that fully hides changes to the underlying configuration from system
components, e.g., structural design patterns like Bridge [2]. Instead, we de-couple
system parts as far as necessary via computations on the short-term memory that
abstract away from binding details with full knowledge of relevant SoS aspects.

3.4.2 Handling Uncertainty

As we laid out at the beginning of Sect. 3.3, observations that feed the system
and many of its processing steps are limited in regard to their trustworthiness,
accuracy, unambiguous interpretation, or other factors that introduce uncertainty.
Furthermore, any situation awareness system that evaluates or predicts actions in an
operational theater must by its very nature consider different possible behaviors of
the involved actors, since it is uncertain about the truth.

The handling of the thus evoked uncertainty benefits from a consistent and
coherent method and mathematical calculus, as this allows the re-use of cor-
responding components or implementations, furthers common and thus shared
interpretations, and avoids transformations, which are computationally expensive
and may introduce imprecision themselves. The system-of-systems gestalt of
situation awareness systems, however, denies the assumption of such an integrated
implementation. Instead, the architecture must provide the means for local investi-
gations of the effects of uncertainty within any system component that is concerned
with it. This translates to the requirement that any such component learns about
the uncertainties that accompany its inputs and that it is enabled to provide similar
information about its own output. The architectural concept of information flows
ensures this with the provision of metadata transport.
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The content of that metadata may take many forms. In our work, we found
that we could express any notion of uncertainty and its origins via conditional
probabilities. These may stem from expert assessments, measurements (e.g., of
mean-time between failures or accuracy), or calculations, as, e.g., Pearl describes
in the first chapters of [9]. We regard conditional probabilities as the most simple
form of metadata that fits our requirements, thus providing the common ground
that unifies the necessary interpretations of uncertainty. Furthermore, they are the
foundation for the use of Bayesian networks [8], a methodology of choice for
real-time reasoning on uncertain information [3]. With Bayesian networks, one
can undertake local uncertainty computations within components efficiently – thus
offering a suitable approach for any system within the system-of-systems – but
ultimately, the individual systems’ stakeholders remain free in their decision how
to handle uncertainty within their scope of responsibility.

From the system-of-systems’ point of view, there is a strong advantage if at
least key functions are all implemented with Bayesian networks to compute the
uncertainties involved: Using object-oriented networks [4] with causal modeling
techniques [10] at the interfaces between system parts allows to establish a more
global reasoning about the uncertainties within the information, but also about the
content of the situation awareness itself. Such a global reasoning can be realized
either in a distributed fashion, if all information processing units contribute and
the information flows between them is bi-directional, or by a separate system that
processes the information provided by the other parts on-demand. Altogether, we
find that the information flow concept is well suited to enable the handling of
uncertainty in systems-of-systems for awareness tasks.

3.4.3 System Health

Any complex system is prone to faults, defects, or unintended behavior. In a
system-of-systems setting, undesired emergent behavior and ill-effects of failures
become even more likely, as they cannot be countered in development given the
lack of control over the implementation of the individual systems. Consequently, we
require runtime diagnosis and other mechanisms to ensure the health of the overall
system, especially as malfunctioning or serious performance issues will often have
entangled effects, which are difficult to handle.

Individual systems that contribute to the SoS might have self-diagnosis
capabilities. If so, we benefit from mechanisms that transport any produced data
on system health to other system parts without relying on a centralized health
system (which might still exist on behalf of the SoS builder). The information
flow mechanics offer this, transporting health related metadata to any interested
party. On the SoS-level, however, health considerations cannot rely solely on health
data from individual systems, as such functionality will often be absent and, even
if present, will likely fail to account for system interoperability and overarching
effects. Given the SoS configuration dynamics due to the operational independence
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of contributing systems and the ‘black box’ nature any individual system might
have towards the SoS, it becomes in fact necessary to compute system-level health
solely from observations that can be made about systems and their performance.

We use such an observation-based approach combined with spectrum-based
runtime diagnosis (Chap. 14). The use of metadata, especially the trace of a data
stream, i.e., the list of all contributing system parts, is mandatory to enable this.
We can ensure the availability of such metadata via the information flows together
with a short-term memory that stores it for later use. Alternatively, a system-level
health component might also act upon centralized data, provided that the SoS tracks
its configuration accordingly.

Interestingly, there is strong discrepancy in architectural means and goals
between the health investigations and the situation awareness tasks, which both
require the short-term memory to fulfill their data needs: The former must access
configuration data here, whereas the latter will often use this level to abstract
away from such consideration to become (more) independent of the SoS’ layout
and may actually benefit from ‘getting rid of such clutter’ for lean computations.
Our architecture compromises here, as necessary metadata stays with the flow but
not with individual data items.

Another item of interest in system health considerations is the value that most
kinds of feedbacks offer: Individual systems will benefit from notifications that
their performance is low or that their output is doubtful, as such information
might trigger or direct diagnostic efforts. Such feedback might happen between
system parts directly connected via the information flows, indicating again an
advantage of bi-directional flows of metadata. It could be more far reaching as well.
We investigate this further in the next section.

3.4.4 Information Health

The technical health of a system often influences its performance and thus also
its contribution to the information-centric operations of a system-of-systems that
determine its services and their application. However, systems close to breakdown
might still offer the one required functionality and a fully working system might
still fail in its application context, especially due to environment effects, e.g.,
as heavy weather disturbs many sensors in the maritime domain. An SoS-level
health consideration on either any individual system or the SoS in total is thus not
defined by the absence of faults and breakdowns, but the level of contribution to
the overall SoS performance in regard to the application goals. Such a notion of
health, however, might depend on the current use of the SoS, the situation, and
the environment. Moreover, contribution to the global SoS application goals is often
hard to determine, as user satisfaction, a dominant factor here, is difficult to measure.
In contrast, automated investigations of an SoS’ health require a notion of health that
may be computed as locally and as objectively as possible.
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The first requirement, locality, combines practical issues, i.e., the need to
compute health statements in dynamic and even partly unknown configurations.
With locality interpreted as an area of sufficient mutual effects between a system
and other systems, i.e., the set of systems whose outputs depend strongly on
the input from the investigated system – and thus its health – we see that such
computations may transcend the direct neighborhood of any system. They will,
however, be limited to a set of inter-reliant systems that can be identified, e.g., via
a sensitivity analysis. The second requirement, objectivity, requests an option to
compare, communicate, and use health information in a standard fashion without a
dependency on subjective user input, which will often be missing anyhow.

In our work, which was only investigative on this item, we opted to combine
the needed handling of uncertainty with the objectives here. By understanding the
SoS as a set of information-centric operations that transform data or information
into data or information of higher quality (and thus more useful to the SoS goals),
we arrive at the notion of information health. Such health can be understood as the
absence of doubt with regard to interpretations of observations, data, or situations.
Doubt is expressed in the amount of uncertainty associated with such information.
We quantify it with entropy measures (as introduced in [12]) that also allow to
compute information gain during individual processing steps. A healthy system is
thus one that transforms the state of not knowing (maximum entropy) to one of
situation awareness, i.e., the absence of doubt and uncertainty on the situation.

The computation of information health requires both the memory structures
and the communicative means that our architecture offers, but nothing more:
The availability of history enables the measurement of in- or decrease of information
health and bi-directional information flows transport the necessary metadata. Such
health investigations provide insights into the inner workings of awareness systems,
which can direct optimizations to where they have the most impact.

3.4.5 Information Protection and Access Control

An important part of information-centric awareness systems for security or safety
applications is the protection of sensitive or private information. Both acceptance
of such systems and cooperation within them relies on this cross-cutting aspect.
Information protection is, however, quite orthogonal in aims and means to the rest
of the system, as it is not about sharing and fusing information, but on separation
and access control that works within the limitations of a need-to-know.

In monolithic systems, as well as in distributed systems under a common
operational control and responsibility, there is a central authority able to enforce
mechanisms to protect sensitive information. In cooperative systems-of-systems as
the one we consider, such an authority is lacking – but the coalition that works
together on the application goals must still have the means to enact protocols set to
protect information while sharing it. How this comes to pass is detailed in Chap. 12,
but the importance of this topic warrants a closer look at the integration of the
needed mechanisms with the architecture.
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Providing sensitive information to another party requires trust that this party will
act according to the needs and wishes of the provider, that is to say according to its
policies. Given the dynamic configurations of SoS, this results in the architectural
problem that every party must know the policies to observe without the existence
of a central authority. The technique labeled sticky policies [14], where policies
are attached to items they are concerned with, can ensure that. Our architectural
concept of information flows provides the necessary mechanism to transport the
needed meta-information, i.e., policies and provenance, efficiently.

This approach works well for any direct use of the information provided, even
if a flow was not preconceived, as a policy might detail possible uses as well as
protective measures, e.g., the initiation of trust negotiations. Restrictions to pass on
data to parties that lack certain credentials or are not expected to conform to the
allowed usage of information might also be forwarded.

Secondary use of information, i.e., use of information that was computed from
sensitive information, is more complex. We encounter such information especially
in processing steps that act on a short-term memory to fuse information or to raise
the level of abstraction or understanding. The party executing such a processing step
needs to provide a new policy to the SoS, which shall take the policies into account
that were provided with the information in use. This is challenging in regard to the
business logic, but not for the architectural means. Still, we have to acknowledge
that this task and the required level of trust supersedes common practice in many
application domains. Consequently, parties within a coalition that forms an SoS
might be unwilling to permit secondary uses of any information they provide due to
their lack of understanding and control, thus breaking the concept of cooperation.
Luckily, the maritime application scenarios we investigated were seldom of such a
sensitive nature.

3.5 Mapping of Core Functionalities Towards System Parts

A major task for system architects is to bring together two different notions: the
functional view of the system that is often generated in a top-down fashion from
the user’s requirements, and realization views describing components, etc. that is
understood to stem from a bottom-up approach. These notions meet in the middle,
typically realized in a mapping of functionality to components. For the purpose of
this chapter, a component view detailing the realization of our system – which is for
demonstration purposes only, anyhow – is out of scope. Still, the relations of core
functionalities and key architectural concepts merit discussion.

Based upon the domain experts’ view on information processing depicted in
Fig. 3.1, we distinguish the following services and functionalities.

First, information and data sources: The reception of AIS messages by system
components and the various online databases plus the mechanisms used to access
them are mostly defined by the state of affairs. As laid out in Sect. 3.3, we use push
mechanisms for any incoming data that is not subject to queries or reasoning.
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Fig. 3.3 Conceptual architecture of POSEIDON
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Second, services that provide information which enriches available data or puts
it in context: All specific information queries, including weather data and map
services, plus online computations and assessments are within the scope of system
parts able to fuse data both across the boundaries of a single information source and
a single moment in time. Such parts of the system basically always function upon a
short-term memory. This allows the computation of higher representations, turning
raw data into interpretations, i.e., in our application, track building and assessment
(track and vessel, plus the background of the operational picture).

Third, services which compute, store, and provide high-level concepts and
domain knowledge: Analyses that form interpretable models on situations, actors,
their actions and behaviors may be done offline, fully outside the operational SoS.
They will often use data collected from the SoS, e.g., to learn such knowledge
models from observations collected over a longer period of time. Given a closed
loop between short-term and long-term aspects of the system, one may integrate
adaptive mechanisms in these services and computations, so that the knowledge is
constantly updated to new insights.

Fourth, interactivity: The means that allow to query the system according to user
interests are best realized on the information in short-term memory, as actuality and
interpretation of joined information flows are available here.

Altogether, this forms a conceptional view of the architecture in regard to the
core functionality as shown in Fig. 3.3. A specific realization might consolidate an
arbitrary number of features, combine or separate any number of functional units
on or between individual components given the system’s configuration and the
preferences of its stakeholders, and add means and mechanisms that are required
to ensure reliability, due process, or other relevant concerns. Our own efforts on this
are summarized in Chap. 4.

3.6 Open to Consideration

In this chapter, we introduced our information-centric architecture for maritime
situation awareness system-of-systems. We envisioned a realistic approach that
integrates many techniques to address the challenges of the application domain
and the needed realization. This approach led to the realization of the demonstrator
system that we describe in Chap. 4, thus validating many of the decisions we took.
There are, however, many choices and alternatives open to consideration – and thus
worth mentioning here at the end of this chapter.

Part of the realism of our approach is that the system is not set to understand
everything which happens in its area of operation. Instead, it aims to recognize
vessels, events, and behaviors that are well within the scope of what operators
consider to be normal – and thus not worthy of their attention and investigation – or
abnormal, in which case alerts, notifications, and elaborations focus the operator’s
attention on more unusual and possibly dangerous situations. This is a difficult task,
but it can be achieved. As our experiments on maritime data indicate, the diversity of
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situations that need to be handled this way is within the scope of the used techniques
and the integration of domain expertise and domain models generated from data by
machine learning allows to detect such events and to report on them.

Nonetheless, our approach draws many of its strengths from the human operators
it supports. By accepting the limits of computer-based recognition and reasoning,
it focuses on the tasks where it performs well, but relies on available expertise
and manpower otherwise. Other system architects may find this to be an invalid
prerequisite and require a very high automation, omitting interactivity for strong
reasoning capabilities to be provided by advanced AI techniques.

Another item is that our approach shields the operator from many of the system-
of-systems dynamics that may greatly influence the situation picture it provides.
This keeps SoS operations and safety and security applications well separated.
While this provides focus, it also denies the option of active re-configuration to
achieve application goals by operational means. Furthermore, it limits the operator’s
understanding of the sources and reliability of information that is presented to him
or her. On both accounts, an alternate approach might be more sensible, provided it
does not become a burden due to the added complexity. One related and fundamental
choice that should be considered regarding the system-of-systems dynamics is the
level of automation of re-configurations. Looking at the different, but in some aspect
comparable domain of the Internet, we see that reachability among autonomous
systems in computer networks is achieved without human involvement. Here, the
Border Gateway Protocol for routing decisions directs data flows with a very high
robustness, even though many obstacles similar to those we address exist, e.g., the
uncertain availability of nodes in the network that mirrors the join-and-leave of
systems in a system-of-systems [11]. Such a strong automation might be possible
in our domain, too, even though the tasks in our domain are much more diverse,
resulting in more complex dynamics as well.

Furthermore, one might consider the level of adaptivity of the system’s parts that
are based on learning, modeled knowledge, and reasoning. These techniques may
be used in variants that use constant feedback to improve their performance by fine-
tuning their findings. This requires the resources to provide such feedback as well as
trust into a system that is constantly changing and thus prone to content drift, barely
allowing for verification and certification.

As such rather fundamental choices have a strong impact on the architecture
of a system, it is safe to say that there is no single architecture that fits all
tasks. The Embedded Systems Institute and its partners will address some of these
considerations in future work, e.g., [1], and we hope that many more will join us in
their investigation.
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Chapter 4
The POSEIDON Demonstrator

Piërre van de Laar

4.1 Introduction

The POSEIDON project was carried out using the Industry-as-Laboratory paradigm
under the responsibilities of the Embedded Systems Institute (ESI). The Embedded
Systems Institute has ample experience with the Industry-as-Laboratory paradigm,
as exemplified by the Boderc [4], Tangram [8], Ideals [9], Trader [7], Darwin [6],
Falcon [3] and Condor [1] projects. Yet, in one aspect POSEIDON differed from all
previous projects. Whereas, in the past all carrying industrial partners were active in
the project’s application domain, Thales Netherlands, the carrying industrial partner
of the POSEIDON project, was not. Thales Netherlands wanted to become active
in the new, emerging application domain of support systems for maritime safety
and security. POSEIDON brought together a broad range of advanced scientific
disciplines with the vision and expertise in naval systems from Thales Netherlands.
POSEIDON had a technology-push character. It had to demonstrate the possibilities
for an integrated architecture serving maritime safety and security. In this chapter,
we describe the experience with realizing and using the POSEIDON demonstrator.
Note that the demonstrator included many but not all POSEIDON results. For exam-
ple, Linked Open Piracy [2], a data set containing all piracy attack reports issued
on the web by the International Chamber of Commerces International Maritime
Bureau, was not integrated since world-wide piracy was not considered relevant for
operators at the North Sea.

In the next Sect. 4.2, we describe how we built and deployed the demonstrator.
We describe how we constructed a coherent set of inputs to operate the demonstrator
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in Sect. 4.3. In Sect. 4.4 screen shots show the demonstrator in action and the
results we obtained. Our lessons learned are presented in Sect. 4.5. We end with
the conclusion in Sect. 4.6.

4.2 Building the POSEIDON Demonstrator

The demonstrator was targeted to implement the architecture as described in
Chap. 3. An architectural view on the flow of information, as depicted in Fig. 4.1,
highlights a few architectural constraints and decisions relevant for this chapter.
First, data is both pushed and pulled into the system. In particular, the sensors and
operators push data into the system, while both the information available on the
Internet and results of analysis are pulled into the system. Note that the data can
be pulled both periodically, e.g., for incrementally updating the situational picture,
and aperiodically, e.g., resulting from a specific query by the operator. Second, the
access of stored data is protected by means of access control. Finally, all results of
analysis are stored. Hence, all analysis results are available to everyone, with the
appropriate access rights, enabling not only visualization but also further analysis.

4.2.1 Component View

The demonstrator contains a wide variety of components as depicted in Fig. 4.2.
We will now briefly describe these components.

• AIS replayer: A simulator to drive an AIS receiver.
• AIS receiver: Sensor that receives AIS messages broadcast by ships and pushes

these messages into the system.
• OpenSplice DDS1: A Data Distribution Service for real-time systems.

data storage

Internet

pull

visualize

analyze

sensors push

pullaccess
control

pull

pull
pull

operators
push

Fig. 4.1 Architectural view on the flow of information

1http://www.prismtech.com/opensplice

http://www.prismtech.com/opensplice
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Fig. 4.2 Components in the demonstrator. The same color patterns are used as in Fig. 4.1 to reflect
the position of each component in the architecture

• Sensor to system tracks: Analyzer that combines the data of all sensors into a
consistent view on the objects in the environment of the system.

• Segmenter: Analyzer that compresses the system tracks into segments; see
Chap. 7 for details.

• Declare miner: Analyzer that monitors and compares the current behavior of
ships with their desired behavior; see Chap. 9 for details.

• MySQL: Data storage designed for relational data. The data storage can be
queried using the Structured Query Language.

• Similarity: Analyzer that computes the similarity matrix between different ship
tracks; see Chap. 7 for details.

• Clustering: Analyzer that clusters ships based on the similarity of their tracks.
• Outlier detection: Analyzer that detects ships of which the tracks are unlike any

other; see Chap. 8 for details.
• Spatiotemporal indexing: Analyzer that inserts the segments in the knowledge

base to enable reasoning over them.
• Knowledge base: Data storage designed for knowledge management. The data

storage stores RDF triples and can be queried using Prolog.
• Operators: Persons working with the system can push intelligence and pieces of

their domain knowledge into the knowledge base.
• Internet: Knowledge from external sources connected to the Internet can be

pulled into the knowledge base, either directly or after processing.
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• Natural language processing: Analyzer that transforms human readable text
into knowledge in a machine readable structure.

• Reasoning: Engine that constructs new knowledge using reasoning on the
available knowledge; see Chap. 10 for some examples.

• Access control: Access point that ensures that the data is only made available to
the appropriate services and persons given the current situation; see Chap. 12 for
details.

• Visual analysis: Analyzer that visualizes the behavior of ships; see Chap. 5 for
details and examples.

• KML Server: Server of a situational picture: a geographic information layer that
shows a particular view on the current situation based on the information in the
system.

• Google Earth2: A virtual globe, map and geographical information program.

When comparing the components in the demonstrator, i.e., Fig. 4.2, with the
architectural view on the flow of information, i.e., Fig. 4.1, you might notice that we
have deviated from the envisioned architecture. We deviated from the architectural
decision that data is always protected by access control for two reasons. First, the
number of persons with access control knowledge was limited in the project and
they had to perform their own research as well. Second, the performance penalty of
access control was considerable. Although the performance could be improved, it
was not considered as research topic in the POSEIDON project.

We also deviated from the architectural decision that all data is made available to
everyone for pragmatic reasons. In particular, data that was not (envisioned to be)
used by others was not stored. For example, the similarity matrix was directly passed
on in Matlab to the only two interested components, and performance benefited from
the elimination of database accesses to write and read the matrix.

4.2.2 Development and Deployment

Many components of the demonstrator were developed during the POSEIDON

project. A few of these components were developed in cooperation, but most
were developed by a single partner. Many components were manually developed
using a variety of programming languages, like Java, Prolog, and Matlab, yet
some components3 were generated as described in Chap. 11. The source code of

2http://earth.google.com
3In fact, not only some components but also the communication with the database of some
components, i.e., some of the arrows in Fig. 4.2, were generated.

http://earth.google.com


4 The POSEIDON Demonstrator 59

all components was centrally archived using Subversion.4 Furthermore, all binary
dependencies were handled using Maven5 and Nexus.6

The hardware configurations for the demonstrator were not the same at Thales
Netherlands, the Embedded Systems Institute, and the universities. For example,
at Thales the hardware configuration consisted of a mid-range server and two
laptops, whereas at the Embedded Systems Institute the hardware configuration
consisted of one high-end server and a single laptop. Consequently, the components
had to be deployed on different hardware configurations. The components thus had
to have configuration parameters. The values of these configuration parameters
were determined by the particular hardware configuration, and influenced both the
compilation and the runtime communication.

4.3 Inputs for the POSEIDON Demonstrator

To be able to operate the POSEIDON demonstrator we needed a coherent set of
inputs. In this section we describe how we constructed these inputs.

A support system for maritime safety and security not only gets streaming data
from sensors, such as radar and AIS receivers, but can also request data from
databases and websites, such as ParisMoU7 and GeoNames.8 Both kinds of data are
time-dependent: sensors measure the evolving world and the content of databases
and websites are regularly updated. For reproducibility of the demonstration and
the scientific experiments, we decided to access, process, and store the relevant
content of databases and websites once, and use the stored information during all
demonstrations and scientific experiments. Furthermore, we decided to use a large,
fixed data set of sensory data: All AIS messages received during 2007 along the
Dutch coast. This real-world data set was made available by MARIN.9 This data
set is not publicly available, but similar data sets can be created by storing the
streaming data from one or more AIS receivers or from websites such as AIS Hub,10

MarineTraffic.com,11 and vesseltracker.com.12 Based on this data set the researchers
could investigate the behaviors of ships. Figure 5.5 shows for example the behavior
during storm and normal weather conditions.

4http://subversion.tigris.org
5http://maven.apache.org
6http://nexus.sonatype.org
7http://www.parismou.org
8http://www.geonames.org
9http://www.marin.nl
10http://www.aishub.net/
11http://www.marinetraffic.com
12http://www.vesseltracker.com

http://subversion.tigris.org
http://maven.apache.org
http://nexus.sonatype.org
http://www.parismou.org
http://www.geonames.org
http://www.marin.nl
http://www.aishub.net/
http://www.marinetraffic.com
http://www.vesseltracker.com
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Fig. 4.3 The offline process to create sensory data for each AIS receiver

Although multiple AIS receivers were involved in the data collection process, the
provided data set is agnostic to the existence of AIS receivers. In particular,
the provided data set contains no information about the AIS receivers that received
a particular AIS message. Furthermore, each AIS message occurs only once inde-
pendent of the number of AIS receivers that received it. For test and demonstration
purposes, we regularly needed streaming data from multiple AIS receivers. Since the
data set did not contain information about the AIS receivers, we artificially created
AIS receiver data by filtering AIS messages based on the distance between the AIS
receiver and the ship and the atmospheric conditions. Furthermore, we also needed
instances of undesired, suspicious, and illegal behavior. Yet, the data set contained
only a limited set of these instances, since fortunately no pirate activities and only
a limited number of collisions happened in the North Sea in 2007. Consequently,
we had to artificially add behavior to test and demonstrate our algorithms. For this
purpose we used Presto [5]. Figure 4.3 summarizes the offline process that we
applied to create the sensory data of each AIS receiver for the demonstrator.

4.4 Integrated Results

In this section we present a number of screen shots showing the results of the
POSEIDON project, in general, and the POSEIDON demonstrator, in particular.
These screen shots illustrate that the results of the POSEIDON project are not only
compatible with each other but also reinforce one another in the maritime safety
and security domain. Note that all ship names and MMSI & IMO numbers either
are fictive or have been removed to protect the privacy of the ships involved.

The right side of Fig. 4.4 highlights the exchange of credentials necessary for
access control as described in Chap. 12. The left side of Fig. 4.4 shows ship tracks
of about 1 h on the North Sea. The ship tracks are based on segments, see Chap. 7,
colored based on the AIS receiver that actually received the AIS messages, and
displayed using the adapter techniques described in Chap. 11. In Fig. 4.4, it is clearly
visible that AIS messages of ships are received by multiple receivers, both in parallel
and sequential, resulting in ship tracks that change color.
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Fig. 4.4 Screen shot of the demonstrator showing the exchange of credentials next to ship tracks
received by multiple AIS receivers as a layer in Google Earth ( c©2011 Google)

Figure 4.5 illustrates a warning for a ship with reduced health. The lower part
shows the process mining techniques as described in Chap. 9 that generated the
warning. The upper part of Fig. 4.5 shows a view on the current maritime situation:
the segments of the ships over a density map. How the density maps and segments
are obtained is described in Chaps. 5 and 7, respectively.

Figure 4.6 shows the multiple geographic information layers available in the
demonstrator. Many of these layers are developed using the adapter techniques as
described in Chap. 11. The layers differ among others in how vessels are grouped, as
one can see on the right. Vessels can for example be grouped based on their behavior,
i.e., “not under command”, “under way sailing”, . . ., “under way using engine”,
and on their type, i.e., “tanker”, “cargo”, . . ., “tug”. Currently only two layers are
visible: “Segments Ship Health” and “Harbors”. The former shows the segments,
see Chap. 7, colored based on the ship health, as measured by the techniques
described in Chap. 9. The latter shows the different harbors in the Rotterdam area.
The harbors are colored based on their kind, such as liquid bulk, dry bulk, general
cargo, food, and passenger terminals. This information is obtained from the Port of
Rotterdam Authority13 and stored in the knowledge base. Figure 4.6 also shows in

13http://www.portofrotterdam.com/en/Port/port-maps/Pages/branches.aspx

http://www.portofrotterdam.com/en/Port/port-maps/Pages/branches.aspx
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Fig. 4.5 Screen shot showing a warning for a ship with reduced health

Fig. 4.6 Screen shot showing multiple layers and information obtained from the knowledge base
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Fig. 4.7 Screen shot showing the demonstrator in action, using multiple layers in Google Earth
( c©2011 Google), behind a graph showing the health of the demonstrator’s constituent components

the upper left corner the amount of information of a particular vessel available in
the knowledge base. This information is stored using the Simple Event Model as
described in Chap. 10.

Figure 4.7 highlights the health monitoring and runtime fault localization capa-
bilities of the system, as described in Chaps. 14 and 15. The screen shot was made
after two artificial errors were subsequently and temporarily injected. Furthermore,
test selection was activated to improve the error-localization a few minutes after
injecting the second error. The health figure in the lower right corner clearly reflects
that two errors were temporarily injected at different locations after one another.
Additionally, the impact of test selection on error-localization is clearly visible since
only after activation two different locations become separated. Figure 4.7 also shows
the density plots, as described in Chap. 5 of heavy special cargo vessels and heavy
tankers in green and red, respectively, on top of the different kind of areas as spec-
ified by Rijkswaterstaat. Many vessels travel along the blue shipping lanes, but also
more than a few violate the traffic rules and sail outside the assigned shipping lanes.

Figure 4.8 shows the analysis of the historic behavior of a ship. The screen
shot shows ship tracks where the current location of each ship is indicated by its
MMSI number and an icon reflecting its kind. Furthermore, it shows the different
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Fig. 4.8 Screen shot showing the analysis of a ship’s historic behavior

kind of areas as specified by Rijkswaterstaat. Figure 4.8 clearly shows that many
ships travel along the blue shipping lanes, and even more ships lay still in the red
anchorage areas. The attention of the operator was drawn to a particular ship by
coloring its icon red. Chapters 8 and 9 describe examples of anomaly detection
algorithms that can be applied to color the icons. Since the anomalous ship, with
MMSI 754780522, is at the intersection of two shipping lanes (in the upper middle
part of the screen shot), the operator decided to investigate further. In particular,
the operator investigated the historic behavior of this ship by playing back its
movements. The screen shot shows that the window of animation of the ship’s
behavior is between 3:00 a.m. and 3:29 a.m. Currently, we see a thick white segment
as part of the ship track that reflects the position of the ship at 3:03:19 a.m.

4.5 Lessons Learned

In this section, we reflect on the process to create the POSEIDON demonstrator and
on the demonstrations for the various stakeholders. In each subsection, we present
a specific lesson-learned while creating and using the POSEIDON demonstrator.
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4.5.1 Applying Best Practices for Integration

The emphasis in the POSEIDON project was on the development of new information
processing methods, not on technology and process choices for project realization
and demonstration. In the later stages of the project this has caused quite a few
well-known integration problems [8]. A more unified choice for implementation
technologies for the demonstrator and applying best practices from system and
software engineering could have saved much integration efforts. We are aware that
in particular cases too rigidly applying rules and guidelines can hamper research,
but typically research is also supported by such rules and guidelines. Based on our
POSEIDON experience, we recommend that at least:

1. All components have test-suites since component errors not only complicate
integration but also threaten the validity of the research results.

2. The dependencies of components are explicitly managed since these dependen-
cies are needed in every context to compile and execute the components.

3. All components have an installation procedure since installation typically
happens once and knowledge about installation details is often lost and forgotten.

4.5.2 Reproducibility and Relevance

The quality of research results is largely determined by their reproducibility. When
the results cannot be reproduced, as was for example the case with cold fusion,14

the results are rejected by the scientific community. The relevance of research results
is among others determined by the compatibility with other related results and the
applicability within relevant application domains. For example, it is well-known
that CPU intensive results cannot be applied in the embedded systems domain.
The Industry-as-Laboratory paradigm in general and the demonstrator in particular
require that the research results obtained in an academic context are reproduced,
validated, integrated, and applied in an industrial context. In the POSEIDON project
most research results obtained by the academic partners were reproduced at Thales
Netherlands and the Embedded Systems Institute. Although all academic partners
were aware from the beginning of the project that their results had to be reproduced
and they were guided by the architecture as described in Chap. 3, almost all
academic partners still largely underestimated the effort needed to reproduce their
results in another context. The effort spent to reproduce results of the POSEIDON

project mostly targeted non-fundamental, implementation-related problems that
could have been prevented as was already discussed in Sect. 4.5.1. Only minor effort
was needed to deal with interface problems related to the interaction between the

14See for example http://en.wikipedia.org/wiki/Cold fusion for more information on cold fusion
and its rejection by the scientific community.

http://en.wikipedia.org/wiki/Cold_fusion


66 P. van de Laar

results. Although a demonstrator does not come for free, it has significant academic
and industrial value. A demonstrator proves that the results are compatible with each
other and applicable in a particular application domain. Furthermore, it ensures the
scientific quality of the results since they are reproduced in another context.

4.5.3 Scenarios and Data Sets

All researchers needed scenarios that highlighted the added value of their algorithms
and results. Finding relevant scenarios in the domain that highlight specific algo-
rithms is far from trivial. And even scenarios are not enough to be able to calibrate,
test, and demonstrate the algorithms. All researchers also needed appropriate data
sets with a large number of sensor data samples and sufficient density of examples
relevant for their scenario. We learned that real-world data sets can initially be too
complex for researchers to calibrate and test their algorithms. The effort and time
needed to clean and simplify real-world data sets can be considerable. Furthermore,
we learned that it can take an extensive period before a large data set is acquired.
Even worse, coherent data sets of different sensors and sources, such as AIS, radar,
unmanned aerial vehicles, and Internet, are needed for information fusion, yet they
are typically not available. And since the collection of such coherent data sets is
expensive, researchers often have to prove the added value of the combination of
sensors and sources by combining incoherent data sets, i.e., data sets that are not
captured simultaneously in the same area, to justify the collection of coherent data
sets. Finally, often a data set contains too few examples relevant for a scenario, since
for example captains of ships do not wish to collide. In that case the data set has to
be extended either with examples from other data sets, e.g., by adding collisions of
vessels in Singapore to the Rotterdam data set, or with artificial examples, e.g. made
by Presto [5].

4.5.4 Simulation Environment

While using the demonstrator, we noticed two limitations of our simulation
environment. One, we did not have full control over the synchronization between
the replayers. Two, we did not have a central clock. Consequently, repeatability
of simulation runs was not perfect and running the simulation faster than real-
time resulted in violations of speed rules and confused many anomaly detection
algorithms.

Conceptually, the observed limitations can easily be solved. Instead of simulating
the AIS receivers independently, they must be simulated dependently. This can be
realized by executing the process to create sensory data as depicted in Fig. 4.3 not
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offline but online. In other words, the simulation should start at the independent
sources of the AIS messages, i.e., the vessels, instead of the dependent AIS
receivers.

4.5.5 Dependencies

The POSEIDON project has created a coherent chain of methods for information
processing that are mutually interdependent. Some of these methods use known,
proven technologies, but most methods are innovative and advance the state of art.
Since the results of innovation are not guaranteed, the POSEIDON project was at risk:
One failing or non-performing method could break the complete chain. We learned
to minimize dependencies, limit innovation in methods where many others depend
on, such as infrastructural methods, and to pay sufficient attention to the creation of
fallback solutions for each method.

4.5.6 Using Adapters

During test and integration we visualized the output of each processing step using
adapters, as described in Chap. 11. Whereas the investment effort was minimal
since the adapters were largely generated, the benefits were huge. These adapters
enabled us to visually inspect the output of each processing step and thus to quickly
pinpoint failing components. The integrators all agree that the adapters reduced
the integration time and increased the quality of the POSEIDON demonstrator.
We consider visualizing the output of each processing step using adapters a best
practice.

4.5.7 Feedback

The demonstrator of the POSEIDON project was a convenient instrument to present
many project results. The demonstrator could be used for both technical and non-
technical stakeholders. Seeing algorithms working together and augmenting each
other in relevant scenarios removes all doubts about compatibility and applicability
in the application domain. Furthermore, since the results of the POSEIDON project
were clearly positioned and highlighted using demonstrable scenarios in the domain
of maritime safety and security, all stakeholders were able to provide valuable feed-
back directly linked to these scenarios, their domain knowledge, their experience,
and their current way of working.



68 P. van de Laar

4.6 Conclusion

The POSEIDON project was a prominent example of an Industry-as-Laboratory
project, applied to early technology research up to proof-of-concept with further
industrial innovation potential. A broad range of advanced scientific disciplines was
brought together in close cooperation with each other and with Thales Netherlands
as carrying industrial partner. An important result of the POSEIDON project was
a demonstrator of the possibilities for an integrated architecture serving maritime
safety and security.

In this chapter we discussed the POSEIDON demonstrator. We described how
we built, deployed, and operated the demonstrator. In addition, we showed screen
shots of the demonstrator that highlighted the results that we obtained. Furthermore,
we presented our lessons-learned during the creation and usage of the POSEIDON

demonstrator. An important advantage of a demonstrator is that it proves that all
results are compatible with each other and are applicable in the application domain.
In addition, since the results of individual researchers are reproduced in another
context, the results achieved a stronger scientific foundation than regular academic
results. Finally, many results of the POSEIDON project could be easily presented to
both technical and non-technical stakeholders by the demonstrator. Since the results
and the relations between them were clearly highlighted in relevant scenarios for the
application domain, all stakeholders were able to provide valuable feedback directly
linked to these scenarios, their experience, and their current way-of-working.
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Chapter 5
Visualization of Vessel Traffic

Niels Willems, Roeland Scheepens, Huub van de Wetering,
and Jarke J. van Wijk

5.1 Introduction

When something is moving, people would like to know why; they want to be
aware of what is happening in the situation around them: situation awareness. This
principle of situation awareness also applies to vessel traffic, since there are several
reasons why certain vessel movements take place. Operators and analysts know, for
instance, that a ferry always sails between two harbors. What if at some moment in
time it does not? Then a possible threat, called an anomaly, occurs, since the ferry
may be hijacked. A surveillance operator should be triggered to investigate this ferry
in more detail to find out why the movement changed. One way we take to come to
such conclusions about anomalies is that an operator needs to know about normal
behavior. In our approach we focus on showing distributions of movements, which
serves as a tool to describe and capture normal behavior.

Object movements can be easily tracked with sensors and stored as data files.
Each object is tracked with one or more sensors, resulting in a sequence of
timestamped records with measurement values for each of the sensors: a trajectory.
A trajectory requires the records to contain at least the following attributes: a
timestamp, a position, and an identification. For given movement data a user would
like to find reasons for certain movements in the trajectories. Often it is difficult to
formally define what movement patterns a user is looking for, because they are often
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complex. Therefore, we propose to use visualizations, so that we can use the human
visual system, which is capable to identify inexact patterns.

In our visualization research we are driven by two factors, which are typical
movement data in general and specific for vessel traffic data. The first factor is that
users need to be able to interactively analyze large amounts of trajectories. Over
the last couple of years, the tendency is that movement data are steadily increasing
in size. This is due to the availability of cheap location trackers, such as Global
Positioning System (GPS) devices, which makes it easy to track movements for
many objects. The challenge of these large data sets is that we should visualize
them fast, for interactive usage, and choose a suitable presentation, since the number
of records is comparable or larger than the amount of pixels of a monitor. For the
presentation we have chosen to use density, which shows a distribution by summing
up a characteristic of trajectories in the neighborhood of some point at the screen.
Each and every trajectory contributes to the distribution, therefore density is robust
to large data sizes. Density computations are rather expensive, but by using modern
graphics hardware we are able to execute these computations in real-time.

The second factor in our research concerns the fact that vessel traffic movements
are captured with different sensors and as a result, a user knows many attributes in
a trajectory at any moment in time, such as time, position, identification, draught,
destination and so forth: a multivariate trajectory. For object tracking we expect
this trend to proceed, since for many types of objects we could add more sensors or
join additional information from other data sources [10] to be used in the analysis.
The multivariate aspect is interesting, since often similar behavior is captured with
similar attribute values, however it is not known what the best way is to show
these patterns in the data. To cope with this the user may be supported by using
a rapid prototyping environment. The above two factors are not specific for vessel
traffic, but apply for many other kind of objects that move around, for instance,
cars, airplanes, animals, and people in a secured area, such as an airport. Current
technology, both academic and industrial, is still in its pioneering phase when it
comes to the analysis of data with these two characteristics.

We present in this chapter a showcase of some highlights of our research [8],
which is conducted in a prototype driven approach: a concept is developed based
on user requirements, implemented in a software prototype, and evaluated with
users [11]. This chapter is structured as follows: In Sect. 5.2 we describe our density
approaches. We describe a number of practical use cases in Sect. 5.3 and we end this
chapter with conclusions and suggestions for future work.

5.2 Density Approaches

We present a number of density visualizations to display large amounts of multi-
variate trajectories. We distinguish between a density field, which is a distribution
represented with a grid with values, and density maps, which are the pictures of
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Fig. 5.1 Kernel density estimation for a set of points shown as solid points. From left to right the
bandwidth is increased (0.05, 0.15, 0.25, 0.75) which results in a transition from details for a small
bandwidth to an overview for a large bandwidth

density fields, for instance the values of a density field shown with a color map.
A value at some point of a density field shows the summed up contributions of a set
of trajectories in the neighborhood of that point. This procedure is called smoothing
and shows a distribution of the trajectories as we describe in Sect. 5.2.1 in more
detail. The difference between the density visualization approaches is the usage of
these density fields allowing to show different classes of movements. The user can
manipulate a density field or compute a number of density fields and combine them
in a single image, a density map. In Sect. 5.2.2 we discuss the different visualization
approaches.

5.2.1 Density Fields for Trajectories

A density field shows a distribution of smoothed trajectories, which aims at showing
normal behavior to an operator. Smoothing is a well-known technique for points,
called kernel density estimation [7], where data points are smoothed to see spatial
trends by means of their distribution as shown in Fig. 5.1. This process is also known
as convolution in image analysis and signal processing. Kernel density estimation
averages a value at a point weighted with its neighborhood using a so called
kernel, which is a function that gives these weights in the neighborhood. Often the
weights are chosen in such a way that points that are further away contribute less.
The kernel has a bandwidth parameter, which is related to the kernel size; the larger
the kernel the smoother the data. All averaged values are summed up in a density
field. This method excels to represent many points, since it preserves the number of
occurrences of points at a certain location. Density solves a problem that is called
overdrawing, which would happen if these points would have been drawn with a
simple black dot. For a large number of points we would end up with a black area,
even if the distribution of points is not uniform.

Trajectories are lists of records of which the positions can be connected, since
the movement is continuous over time. Therefore, we should smooth line segments
instead of points to smooth the movement that is not captured in the data. There are
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Fig. 5.2 Convolution of a trajectory with a slow starting point and a fast ending point. (a) Point
convolution. Line convolution at (b) constant speed with the average velocity give in the end points
and (c) accelerated by interpolating using the velocities given in the end points

several approaches to do this as shown in Fig. 5.2. We can treat the end points of the
line segment as points and smooth them (Fig. 5.2a), however undesirable holes will
occur in the smoothing of long line segments. Hurter et al. [1] used this approach to
analyze air traffic. In the second approach, we may know the speed of the object in
the end points of the trajectory segment. We can move a kernel along a line segment
with the average speed given in the end points to obtain a distribution without holes
(Fig. 5.2b). Lampe et al. [3] used a similar approach. In the third approach, we
propose to use the speed in both end points to show speed variations by moving
the kernel with the speed according to the speed of the object (Fig. 5.2c), resulting
in a time-weighted density. The physical analog of this process occurs when you
draw lines with a fat pen that continuously releases ink. In places where the pen
moves fast there is little ink and in slow places the ink accumulates. The ink level
is in our case represented with density values and the pen tip is the kernel, which
has non-uniform weights, typically in a Gaussian shape. This type of density has
as advantage that we can accurately represent the acceleration of an object with
only two points, while in the second approach (Fig. 5.2b) we need to put many
intermediate points, and even then there is no smooth transition between two line
segments.

Often trajectory data consist of many records, and hence many line segments.
Each line segment contributes to the density with an area relative to the length
of the segment and the kernel size, which makes it expensive to compute these
contributions. Due to the independence of the computation between various line
segments, it is possible to use parallelism in the implementation. In graphics
we often use graphics cards or a Graphics Processing Unit (GPU), which are
available for a standard personal computer and can compute programs in parallel
due to massive parallelism (>100 cores). We have implemented this approach on
graphics hardware as well. By including velocity, the quality of our density is higher
compared to competitors, such as Hurter et al. [1] and Lampe et al. [3], but to do
so we have slightly sacrificed the performance. We use our approach to generate
density fields for trajectories, which in turn are used in a number of different ways
as described in the next section.
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5.2.2 Density Visualizations

For trajectories we introduce three different usages of the density fields, as proposed
in the previous section. The approaches are called vessel density, density maps,
and composite density maps. Their architectures are shown in Fig. 5.3. Note that
at a meta level, three parts called “Data”, “Density model”, and “Visualization” are
reoccurring in each architecture. These parts are in essence the same. In the data
part the trajectory data are organized, in the density model part the density fields are
computed, and in the visualization part the density fields are displayed as an image
in a density map.

The first approach is called vessel density [9], which shows two important
features for vessel traffic: anchor zones (stopping areas) and sea lanes (common
routes). These features popup in a density field, however they appear for different
kernel sizes. Figure 5.1 illustrates this principle: for different kernel sizes different
features are revealed; a small kernel shows details, while a large kernel shows an
overview of the locations with many points in the neighborhood. The stopping areas
are visible for a small kernel size and the routes are visible for a large kernel size.
This inspired us to show two density fields with all trajectories simultaneously
to see both features together. After computing the two density fields as shown in
Fig. 5.3a, we use two different visual cues, namely color and gray values, that can
be composed in a single image and are still easy to distinguish. The color is used to
show the large kernel density field using a color map, for instance a yellow-to-red
color map with yellow for low density values and red for high density values. The
gray values are used for showing the sum of both density fields as a 3D terrain map,
which is illuminated with a light source. The reflected light intensity corresponds
with the gray values. As a result we see global structures of trajectories in the
colors, such as sea lanes, and details in the gray values, such as anchor zones. We
demonstrate this approach with real data in the use case in Sect. 5.3.1.

The second approach is a generalization of vessel density, called density map
[5,6] as shown in Fig. 5.3b. Common attribute values in the trajectories may indicate
similar behavior, which helps to give reasons why certain movements have occurred.
For instance, for ship types we can see that passenger ships take different routes
than cargo ships, since dangerous cargo ships must keep distance from the coast. To
find common attribute values, filtering on the attributes of the data is used to create
subsets of trajectories. This results in multiple density fields that are combined in
a single image. Per density field the kernel size (amount of smoothing) and kernel
weight (a scale factor for the density) can be adjusted. The operator can choose
to combine the values of the density fields with density aggregation and make
a density map from this single density field (solid lines in Fig. 5.3b). The other
route the operator can choose is to create images from the individual density fields
and combine the colors of these images together in a single density map (image
composition) (solid and dashed lines in Fig. 5.3b). For both density aggregation and
image composition a number of variations are shown in Fig. 5.3b. This approach is
demonstrated with real-world data in the use cases in Sects. 5.3.2 and 5.3.3.
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Fig. 5.3 Architectures of (a) vessel density, (b) density maps, and (c) composite density maps

The third and last approach allows the user to define the way how density fields
are computed with a number of predefined blocks: composite density maps [4]
as displayed in Fig. 5.3c. Composite density maps are a generalization of density
maps, since often filtering is not sufficient to express specific movement features
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based on experience and domain knowledge. There are six types of blocks for
creating, composing, and enhancing density fields and trajectories: Convolution,
Composition, Counter, Enhancement, Enrichment, and Iteration. These blocks can
be connected in any way the user wants, as long as the input and output types
(e.g., density fields or trajectories) between the connections are the same. The blocks
are configurable with expressions that depend on the attributes in the data. The den-
sity fields resulting from the blocks can be connected to the visual cues of color and
gray values. Examples of composite density maps with real-world data are shown
in Sects. 5.3.4 and 5.3.5.

5.3 Examples Using Density Approaches

In Sect. 5.2 we have given a brief overview of the different approaches we propose
to get insights in trajectory data. This section shows the viability of the different
solutions using maritime use cases with real-world vessel traffic data obtained from
the Automatic Identification System (AIS) [2].

5.3.1 Vessel Density: Weather Conditions

The base case is an investigation of shipping movement during calm weather
as shown in Fig. 5.4 on a country-size scale, with all shipping movements in
front of the Dutch coast. We see that three North-South sea lanes appear in the
orange colored regions. Anchor zones pop up as highlighted dots in the individual
trajectories as shown in the insets. These dots appear as a result of the density field
computation; since the kernel is moved slowly in these areas, the density values
become high. Furthermore, some maintenance vessels move slowly in a small area,
typically around an oil platform or a wind mill park, which can be observed by
intense individual trajectories. Lastly, in the South the ferry between Vlissingen and
Breskens yields for regular traffic which can be observed by intense dots just before
the sea lane.

In Fig. 5.5a we show a close up of the entrance of Rotterdam harbor during good
weather, where the two anchor zones catch the eye. Shipping movements differ
during a gale. In Fig. 5.5b, a North-West gale of force 8 on the scale of Beaufort
appears during the day. In general, there are fewer movements and sea lanes are
less used compared to Fig. 5.5a. Captains try to keep course, but from the twisty
individual trajectories we see that they drift slightly. Furthermore, anchor zones are
less often used, and vessels slowly sail along the wind towards the anchor zones to
avoid rolling, as can be observed by intense left-top to right-bottom trajectories.
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Fig. 5.4 Vessel density of the first week of June 2007 of vessel traffic in front of the Dutch coast.
This map represents 3.5 GB of sensor data consisting of approximately 1,500 vessels

5.3.2 Density Map: Temporal Aggregation

In vessel density, the order in which movements take place is lost, since all
trajectories are convolved with the same smoothing kernel. By using the time as
an attribute the user can distinguish between various moments over time. With
the density maps, the user can vary the kernel radius and kernel weight (a scalar
multiplied with density value) for each density field. Figure 5.6a shows a single day
of vessel traffic in front of Rotterdam harbor with four subsets of 6 h, resulting in
four density fields. During the day, the kernel radius is decreasing, while the weights
are increasing, and by using the Addition as density aggregation variant (see density
aggregation variants in Fig. 5.3b) the various moments in time are distinguishable.
The resulting density map consists of a rendering in both color and gray values of
a single aggregated density field using the Multi variant for image composition (see
image composition variants in Fig. 5.3b).
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Fig. 5.5 Vessel density of 1 day of vessel traffic at the entrance of Rotterdam: (a) a day in June
2007 with smooth weather, (b) a day in November 2007 with stormy weather

In Fig. 5.6a we see that the subset in the evening, shown with small and dark
trajectories are highlighted, while the others serve as a context. We can also show
variations over time using the Max variant for image composition as displayed in
Fig. 5.6b. This has as an advantage that the operator can choose intuitive colors, like
the chosen daylight colors, which makes it more easy to interpret the picture. For
instance, in the encircled area it is instantly clear in the yellow-blue version that a
ship went to this location during the night hours and stayed there during the day.
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Fig. 5.6 An aggregation of four density maps each covering 6 h of a day starting at midnight, using
(a) the Addition variant for density aggregation and (b) the Max variant for image composition.
In both pictures the kernel radius and kernel weight is adjusted for each density field as shown in
the bar charts

5.3.3 Density Map: Anomaly Detection

Density maps can be used to show anomalously behaving vessels. A density field of
a large amount of vessels can represent the nautical history in an area, indicating,
for instance, which movements are usual. By comparing other trajectories with this
density field, the user can determine abnormal behavior in areas where the density
field values are low. Figure 5.7 shows the result of the Anomaly variant for density
aggregation of two density fields: one with 6 days of data between Amsterdam and
Scheveningen indicating normal movements and one with the traffic of the last 2 h.
For the latter one, the kernel radius is decreasing backwards in time, i.e., the head
is the most current position. The resulting density field is shown with the Single
variant for image composition and displays potential anomalies in color from white
(none) and green (low) to red (high) in the context of both the live and historical data
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Fig. 5.7 Anomaly detection
using a density map with one
density field containing
6 days of vessel traffic
representing normal
movements and one density
field containing live traffic
with a trail of 2 h. Using the
anomaly variant for density
aggregation live anomalous
ships are highlight in areas
where normally no vessel
occurs. A vessel sailing
between Amsterdam and
Scheveningen is marked as
anomalous, since normally no
single vessel sails in this area

shown in the shading. This example shows how density-based anomaly detection
can be used in a real-time system.

5.3.4 Composite Density Map: Drifters

A dangerous situation may arise when a vessel has an engine failure, becomes
uncontrollable, and starts drifting. With composite density maps we can visualize
potential drifters. A vessel is said to be drifting when it is moving slowly (i.e., for
velocity v(t) between 3 and 5 knot) and its course c(t) and actual orientation h(t)
have a significant difference (i.e., more than 30◦) as depicted in Fig. 5.8a. These
specific values may be tuned by operators using user interface components.

To visualize potential drifters, the user can create a block diagram as shown
in Fig. 5.8b. We use one convolution block to compute the drifters. The input of
this block is filtered with a filter expression Fα ≡ 3 ≤ v(t) ≤ 5 to select only
slow movers (see convolution block in Fig. 5.3c). The density values ρ are scaled
with the difference between the course c(t) and actual orientation h(t) at some
moment in time t. This can be captured in the following smoothing expression
Sα(ρ , t) = ρ |c(t)− h(t)| for the kernel weight to configure the convolution block.
The resulting density field is connected to the color. For contextual information, we
also create a density field for the entire set of trajectories and connect it to the visual
cue with gray values. This reveals a number of potentially dangerous situations. In
Fig. 5.8c, we show an overview of the drifters we find with this block diagram and
zoom in on several particular cases in Fig. 5.8d–g.

In Fig. 5.8d we can see a vessel with drifting patterns around its turns. Closer
investigation, by selecting the specific vessel with the mouse, shows that this
is a research vessel which is expected to make sharp turns, causing a ship to
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Fig. 5.8 (a) The course c(t) and actual orientation h(t) of a vessel. (b) The block diagram for
drifters. (c) An overview of all drifter movements shown in color with all data shown in the
illuminated height field. In (d) to (g) several close ups of unusual drifter patterns are shown
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drift, since ships do not have enough resistance in the water. In Fig. 5.8e, we
see potential drifters in the areas shown in red. By selecting the ships, we notice
that these trajectories are caused by a single cargo vessel that originated from the
North, loitered in the area for approximately 2 days and then proceeded into the
harbor of Antwerp. It is possible that the vessel was too early and had to wait
2 days before it could head to its destination harbor. This vessel has most likely
been drifting on several occasions while it was waiting. The vessel appears to
alternate between drifting in a South-West direction and actively moving in a North-
East direction. In Fig. 5.8f cargo vessels move between ocean platforms, which
are visualized as black squares. These vessels are most likely resupplying ocean
platforms and making short stops and sharp turns. In Fig. 5.8g we see two parallel
drifter trajectories. Since these trajectories occur within a busy area, this may be a
dangerous situation. Closer investigation, by selecting the vessel, reveals that these
drifter patterns are caused by a research vessel.

5.3.5 Composite Density Map: Sea Lanes

We separate the sea lanes and other frequently used routes from other movements
to get an overview of normal shipping traffic (see Fig. 5.9). Sea lanes are defined by
maritime authorities in busy areas to guide large vessels. In the North Sea, several
sea lanes are in effect, but they are not mandatory for all vessels. For extracting
the sea lanes from the data, we partition the data into eight subsets, sectors η , each
representing a course range. These sectors are needed to capture crossing traffic. For
each sector, we compute a density field and sum the resulting fields into the final
field shown in Fig. 5.9b. The partial lanes are masked with a thresholded smoothed
count field to obtain only busy lanes. We filter out all movements with a course that
differs from the average course by at least some constant using an average course
field. The ‘Average course’ field is computed using the cell-wise division of two
density fields: a density field ‘Convolved course’ using the smoothing expression
Sα(ρ , t) = ρc(t) and a density field called ‘Convolved duration’ with Sα(ρ , t) =
max(ρ ,ε), for a small ε > 0 to avoid divisions by zero. The sea lanes appear to
disintegrate in the marked areas in Fig. 5.9b. This happens where vessel directions
start diverging or where there are simply not enough trajectories to extract a reliable
route as shown in the encircled area for a little used sea lane. This example shows
that we can compute complex features in a structured way, without any need for
further programming, allowing for the required rapid prototyping.

5.4 Conclusion and Future Work

We have shown three different approaches to visualize multivariate trajectories with
density. These approaches help us to understand why movements have occurred.
The vessel density approach shows basic maritime features, while density maps
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Fig. 5.9 A density map (a) containing all movements, (b) containing only movements over sea
lanes. (c) The block diagram for extracting shipping lanes

can incorporate more attributes, to show trajectories with common attribute values.
Finally, with composite density maps operators are able to define their own density
computation with a block diagram using their domain knowledge.

Generally, in the visual analysis of moving objects there is still an open problem
to be solved. There is still no simple drawing technique to show the dynamics
of movements to explain how objects have moved, both individual and multiple
objects. The next step in our work is to show uncertainty in the acquisition of the
trajectories, since the data is often obtained from sources that are not fully reliable:
the transmission can be poor due to weather conditions, some sources are always
slightly unreliable, like some web sources about ships, or the objects simply turn off
their AIS signal to hide themselves and get the possibility to make illegal moves.
Users need to be informed about the uncertainty in the data to come to well-founded
decisions based on the visualized situation.
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Chapter 6
Extending Track Analysis from Animals
in the Lab to Moving Objects Anywhere

Wil van Dommelen, Piërre van de Laar, and Lucas P.J.J. Noldus

6.1 Introduction

Tracking and analysis of vessel movements are important tasks in the domain of
maritime safety and security. Tracking answers the question which vessel is where
and when, and track analysis may answer the question why. Also in many other
domains tracking and analysis of object movements is a core activity. Examples
include car traffic management and congestion control, air traffic management,
products and parts being transported in a warehouse and in an assembly plant,
people in a supermarket and retirement home, crowd monitoring for public safety
and security in restricted areas such as airports and soccer stadiums, animals
seasonally moving around the globe, such as whales, reindeer, and migrating birds,
and animals moving in a confined area such as a cage and an aquarium.

Noldus Information Technology with headquarters in Wageningen, the Nether-
lands is a medium sized private company that develops and sells tooling for human
and animal behavioral researchers. One of the products is EthoVision XT,1 a tool
that automatically records and analyzes tracks of animals in an enclosure, such as a
cage, petri dish or aquarium, when observed using top-view video. Because tracking
with a single video camera is limited to small-scale indoor applications, Noldus

1www.noldus.com/ethovision
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wishes to extend its portfolio. In particular, Noldus wishes to track and analyze
objects anywhere, both indoor and outdoor.

In this chapter we describe a case study in which two different tracking
domains, viz. animal tracking and vessel tracking, were compared to learn the
diversity in tracking and analysis requirements. The case study investigated whether
EthoVision XT, a tool for video tracking and analysis of animals in a laboratory
setting, can be adapted and applied to the tracking and analysis of vessels at sea.
More specifically, the case study used EthoVision XT to detect vessels speeding in
zones reserved for anchored vessels where speeding is not allowed.

This chapter is structured as follows: In Sect. 6.2 we describe track analysis
in general and EthoVision XT in particular. Our case study that finds speeders in
anchoring zones is described in Sect. 6.3. Section 6.4 describes the differences that
we observed between tracking animals in the laboratory and vessels at sea. We end
this chapter with a summary and future work in Sect. 6.5.

6.2 Track Analysis

In this section we start with describing track analysis in general. Next, we focus on
EthoVision XT, a Noldus product for video-based track analysis. We end with the
similarities between animal and vessel tracking that justify the investigation whether
EthoVision XT could be extended and applied beyond the laboratory.

6.2.1 Track Analysis in Any Domain

Track analysis is used in many different domains. In the domain of animal tracking
in the laboratory, the tracks of one or more animals in a confined area, such as a cage,
are analyzed. The animals are continuously tracked, for instance by a video camera,
for a period of a few minutes up to several days. Typical animals are rodents (rats,
mice), but fish, farm animals, and insects are no exception. The animals are tracked
as part of scientific experiments in which hypotheses are tested. A hypothesis
usually compares the behavior of a study group to a control group. The behavior
of the animals is derived from the quantified spatio-temporal information obtained
from the track analysis, such as distances, speeds, path shapes, and frequencies of
zone transitions. An experiment can, for example, investigate whether a particular
genetic modification or treatment with a particular drug results in enhanced memory
as demonstrated by the ability of the animal to find a hidden platform in a swim tank.

In the domain of vessel tracking at sea, the tracks of all vessels in view are
analyzed to increase the safety and security at sea. The vessels are tracked 24 h
a day, 7 days a week, and 365 days a year, for instance by radar and using the
Automatic Identification System (AIS). Vessels that expose undesired or atypical
behavior are contacted via radio or even physically visited to understand their
intent and, if necessary, correct their behavior. The behavior of vessels is derived
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from the quantified spatio-temporal information obtained from the track analysis.
For example, a vessel sailing against traffic in a sea lane is recognized based
on its deviating course, and smuggling vessels may be recognized based on their
simultaneous stop at the same spot in the middle of the sea.

In the domain of animal or people tracking on the globe, the tracks of one or
more subjects freely traveling the world are analyzed. Animals can be continuously
tracked, for instance using GPS, for a period of up to a few years. Such animals
are typically tracked to increase the understanding of their habitat use, dispersal,
or migration behavior. For example, animal tracking can show a change in their
migration behavior due to the growth of a harbor. Farmers can find changes in the
cow behavior in the herd, helping early detection of diseased animals.

In shops and public places such as stations and libraries, the tracks that people
make as observed by (security) cameras quantify the efficiency of the building’s
usage and reveal opportunities to improve for instance throughput or sales. Tracking
public transport vehicles in a city reveals planning inefficiencies. Coaches use the
tracks that athletes make to improve their performance.

Summarizing, track analysis enables behavioral researchers to quantify and
understand behavior and changes therein by relating quantified spatio-temporal
information to behavior. Behavioral researchers are interested in the implications
of this behavior, e.g., the drug reduces epileptic seizures or a vessel is smuggling,
and typically not in the activities needed to obtain these implications, such as data
acquisition, programming, and quantification.

6.2.2 EthoVision XT

EthoVision XT is an automated PC-based video tracking and motion analysis
system. Figure 6.1 shows EthoVision XT in action. It has been under development
since the nineties and is highly attuned to the domain of animal tracking in the
laboratory. EthoVision XT handles most of the data acquisition, programming, and
quantification needed for this domain. The user of EthoVision XT only has to point
a fixed camera to a confined area, such as a cage, and let one or more animals move
about in it. Furthermore, EthoVision XT supports proved methods and standardized
tests, as used in e.g., neuroscience, biology, and toxicology, to ensure the validity
of the experimental setup, the reproducibility of results, and the accuracy of the
statistics. For example, up to 16 confined areas containing multiple animals can
be tracked simultaneously and independently. The system has become an industry
standard, in use at approximately 1,950 laboratories around the world.

During data acquisition, EthoVision XT samples a video stream at a fixed rate of,
e.g., 25 frames per second, extracts the center of gravity from the detected object,
and writes that to a track file. The maximum area under observation is constrained
by the size of the object: with a standard video resolution the area cannot be larger
than 200 times the size of the object.
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Fig. 6.1 Screen shot of EthoVision XT as used in a neuroscience experiment

Fig. 6.2 Screen shot of data filtering using the graphical block editor

Researchers can use the visual editors of EthoVision XT to specify the area
definition, trial control, data acquisition, selection, and processing steps, see Fig. 6.2.
For example, tracks can be smoothed in several ways to remove body wobble, noise
and outliers, and data can be filtered based on dependent variables (such as ‘in zone’)
and independent variables (such as ‘gender’ or ‘treatment’).

EthoVision XT translates live motion into quantified spatio-temporal
information, such as:
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• Distance moved by each animal;
• Latency time between action and response;
• Current, minimal, and maximal velocity of each animal;
• Duration of the time spent by each animal in a particular zone;
• Relative speed between animals (moving to/from); and
• Frequency and other statistics of behaviors such as rearing, grooming, sniffing,

eating, and drinking.

Finally, EthoVision XT can visualize the recorded tracks. Besides visualizing the
actual positions of animals, also the recent history can be shown. In this case, all
animals get a ‘tail’ showing their recent activities. See Fig. 6.5 for such an example.
Note that playback of recorded track data can be up to 20 times faster than real time.

6.2.3 Similarities Between Animal Tracking
and Vessel Tracking

In principle there is no difference between tracks made by ships and tracks made
by animals: speeds, locations, turn angles, etc. are all treated with the same
mathematical formulas resulting in the same statistical variables. From a practical
point of view there are differences, but they can be resolved (as is described in
Sect. 6.4).

For most researchers that use EthoVision XT, behavior is a means to an end,
i.e. behavior is a read-out of the underlying process that is the subject of study.
Most researchers take a sufficiently large number of tracks and draw inferences
from that. EthoVision XT will then deliver a quantitative assessment of behavior,
e.g. to demonstrate significant statistical differences between groups of animals,
in order to determine the effect of a changed variable, given that all other
environment influencing variables are kept constant. In short, the researcher controls
the environment to test a hypothesis.

It is easy to imagine EthoVision XT to be used by, for instance, coast guard
personnel to track and analyze vessels but this was never the target audience.
EthoVision XT was designed for observation and analysis but not for control. Coast
guard personnel would want to focus on individual ships and their specific detailed
behavior in order to effect control. There are other commercial tools better suited
to this task. In EthoVision XT, specific situations of interest can be viewed but the
detection mechanism for these situations is suboptimal. For instance: false coloring
can be used to highlight situations but detailed information of a particular track
will have to be looked up manually on other screens. The coast guard user would
probably be better served with being presented only the situation of interest, keeping
all other data hidden.

In the case of Maritime Safety and Security the researcher is certainly not
in charge of the situation but he can control the environment to some extent if
the situation takes sufficient time. As said before, EthoVision XT is aimed at
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experimental research and testing of scientific hypotheses. Such hypotheses can be
used to quantify normal behavior, thus allowing the creation of algorithms to detect
abnormalities. Examples of this could be to quantify the influence of weather on ship
behavior, circadian, seasonal or yearly trends, quantify similarities and differences
in different ports, properties of zones or ships (nationality, destinations, cargo vessel,
ferries) or specific intentional behavior (‘ships with destination X will sail only in
that direction’, or ‘traveling ships will move slowly in anchoring zones’).

6.3 Case Study: Speeders in Anchoring Zones

The purpose of EthoVision XT is to describe a behavioral process or to test a
research hypothesis. To determine whether EthoVision XT could be adapted and
applied to the tracking and analysis of vessels in the maritime domain the following
hypothesis was defined: ‘If ships cross anchoring zones, they have a reduced speed
and stay well clear of other, anchored ships’. The case study is designed to show
how a prototyped EthoVision XT can be used to find quantitative support for the
level of truth in such a hypothesis. This case study only demonstrates a tiny amount
of the functionality in EthoVision XT and therefore functions as no more than a
proof-of-concept.

In the rest of this chapter, we will discuss the preparation and analysis of the
case study. The preparation consists of two steps: the construction of the data set
and the calibration of the real life domain (coordinates on a nautical map) to the
EthoVision XT domain (coordinate system of a video image). The analysis consists
of three steps: the recognition of anchoring zones, the detection of offending ships
which move through the anchoring zones, and the investigation of their speed and
the minimum distance they keep from other ships while in the anchoring zone.

6.3.1 The IJmuiden Data Set

For the case study the area just outside IJmuiden in the Netherlands was chosen.
Ships wait in an anchoring zone within this area to enter the canal to Amsterdam.
The size of the area was chosen such that EthoVision XT could nicely play back
the recorded tracks. Considering that a fast moving commercial ship moves at
around 17 knots, i.e., 31.5 km/h, the sampling frequency of the data is once per 30s,
EthoVision XT plays back at a rate of 25 samples per second, and we want ships
to take 15 s of play back time to move along the area’s diagonal, then the diagonal
should be approximately 31.5km/h× 1/3,600h/s× 30s/sample× 25sample/s×
15s = 98.4km. See Fig. 6.3 for the exact details of this area. For the case study, the
ship tracks in this area during a period of 7 days were collected using AIS. During
this period 1,052 different ships were observed in this area. Since EthoVision XT
expects time-equidistant and synchronized data samples, every 30s the position
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Fig. 6.3 Nautical map containing the anchoring area near IJmuiden together with its coordinates
(longitude – latitude), actual distance (in kilometers) and distance in EthoVision XT (in pixels)

of each ship was determined using (linear) interpolation of the AIS ship tracks.
The value of 30 s was chosen as compromise between time resolution and mass-
storage requirements. Next, the recorded positions were ordered on a per ship basis,
resulting in track files that consist of data arranged in four columns: one column for
the time stamp, two columns for the position in longitude and latitude, and a column
for the ‘Destination’ as reported by the ship via AIS.

6.3.2 Calibration

The provided background map has a resolution of 1,656 by 1,109 pixels. To be
simply able to draw the ship tracks over the background map, this resolution
was also chosen to represent the ship tracks. The horizontal distance calibration
is thus 76 km/1,656 pixels = 45.9 m/pixel and the vertical distance calibration
is 52 km/1,109 pixels = 46.9 m/pixel: an aspect ratio of 1.02. This non-linearity
introduces an error of maximally 2%, which is acceptable in this case study. On
average one pixel in the background map represents approximately 46.4 m in reality.
Note that the aforementioned fast moving commercial ship that moves at around
17 knots, i.e., 8.7 m/s, thus moves 141 pixel/s on the screen: a smooth and clearly
visible motion.
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Fig. 6.4 Query to visualize stationary ships at sea to obtain the anchoring zones

6.3.3 Finding Anchoring Zones

To find the relevant anchoring zones, a query was made using the graphical editor.
Between the ‘Start’ block, containing all 1,052 ship tracks, and the ‘Result’ block,
visualizing these tracks, two data reduction blocks were inserted; see also Fig. 6.4.
The first reduction block detects movement, i.e., speed above 500 m/h, and causes a
difference in the visualization of the ships depending on the presence of movement:
Non-moving, stationary ships appear in red, while moving ships appear in black.
The second reduction block separates ships based on their location, i.e., presence
in a zone. This separation was needed to distinguish stationary ships in anchoring
zones from those in ports. Therefore a border, some 500 m at sea and parallel to the
coast, was graphically drawn to create two zones: ‘At sea’ and ‘Coastal zone’.

Using this query, the anchoring zones were visually detected by drawing zones
around the stationary, red ships at sea. In this case study only a single zone was
discovered, as is visualized in Fig. 6.5. Neither the case study nor EthoVision XT
require a single zone. In fact, when multiple anchoring zones would have been
present, we would have drawn multiple disparate zones, and introduced a cumulative
zone that refers to all these disparate zones. This cumulative zone, instead of the
single zone, would have appeared in all queries defined later on in the case study.

6.3.4 Detecting Crossing Ships

To detect ships that cross the anchoring zone, another query was made using the
graphical editor in EthoVision XT. Between the ‘Start’ block, containing all 1,052
ship tracks, and the ‘Result’ block, visualizing these tracks, one reduction block was
inserted; see also Fig. 6.6. The reduction block separates ships based on their (tem-
porary) presence in the anchoring zone. From the 1,052 ships, 58 ships actually cross
the anchoring zone in the investigated, 7 days period. EthoVision XT can give statis-
tics for these 58 ships about the duration of the crossing and for the minimum and
maximum velocity in the anchoring zone. For example, Fig. 6.7 shows the ships that
cross the anchoring zone, sorted on their minimum velocity in the anchoring zone.
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Fig. 6.5 Visualization of vessels in an area containing a (gray) anchor zone. Anchored and sailing
vessels are indicated by red blocks and black blocks with lines, respectively

Fig. 6.6 Query to detect ships that cross the anchoring zone

6.3.5 Do Crossing Ships Keep Distance?

The 58 ships that cross the anchoring zone are further analyzed. This new analysis
takes all pairs of these 58 ships to focus on the ‘distance between objects’ within the
anchoring zone. We used the same block as before for data selection and selected
two variables: ‘Distance between objects’ with statistics ‘Minimum’ and ‘Velocity’
with statistic ‘Minimum’. Of the 58 ships, it turns out that 5 ships came closer to
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Fig. 6.7 Destination and velocity of ships that cross the anchoring zone. The ships are sorted on
their minimum velocity in that zone (from high to low), where 1 mm/s corresponds to 0.12 knots

another ship than 500 m with a velocity in excess of 8.5 km/h. If so desired, these
5 ships can be examined in minute detail; see also Fig. 6.8. Furthermore, the tracks
of these 5 ships can be given another color, to set them out against all other ships.
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Fig. 6.8 Ship (in red) that crosses the anchoring zone at a too high speed and too close to other,
anchored ships (in yellow)

6.4 Observed Differences Between Animal
and Vessel Tracking

The case study showed a few important differences between animal tracking in
a laboratory and vessel tracking at sea. The maritime domain, as opposed to the
laboratory, requires taking into account (1) the curvature of the earth, (2) objects
that temporarily disappear from view, (3) a volatile and dynamic set of objects, (4)
changing roles of vessels at sea, and (5) irregularly arriving, non-time-equidistant
data samples. The following sections describe these topics in detail.

6.4.1 Curved Area

The areas involved in tracking animals in a laboratory rarely exceed a few square
meters. Including the earth’s curvature for these small areas would only complicate
the track analysis. Consequently, EthoVision XT assumes a linear relation between
the number of pixels and the distance they represent. Yet, the earth’s curvature
can often not be ignored when tracking vessels at sea. Fortunately, the curved
area can be projected onto a square using map projections2 such as equal-area,

2See http://en.wikipedia.org/wiki/Map projection for more information on map projections.

http://en.wikipedia.org/wiki/Map_projection
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conformal, or equidistant projections. In fact, when the projection is consistently
used, i.e., for tracks and background maps, visualization is independent of this pro-
jection and thus of the curvature of the area of interest. However, any analysis must
include the actual projection, since the calculation of distances and angles needs
to include the appropriate formulas for this projection. Because EthoVision XT
could not easily be changed to include these appropriate formulas, the case study
was limited to a relatively small area. Due to this limitation, the systematic error
introduced by the earth’s curvature is small in comparison to the other errors in the
case study, such as, for instance, the GPS inaccuracy.

6.4.2 Known Location

A fact of animal tracking in a laboratory is that the location of the animals is always
known. The animals are restricted to a confined area that is completely covered by
the (video) tracking system. Of course, the confined area might contain so-called
hidden zones, typically representing shelters. These hidden zones are intentionally
added and their sizes and positions are known and constant. When animals are
within a hidden zone, their location is known and the associated accuracy depends
on the size of that hidden zone. The analysis of EthoVision XT knows the concept
of hidden zones, even with multiple exits, to ensure correct variable calculation. For
example, an animal which enters a hidden zone at location (x1,y1) at time t1 and
leaves at location (x2,y2) at time t2 will get a correct velocity calculation at t2.

The IJmuiden data set contained many instances of ships temporarily leaving
from view at an arbitrary location only to return to view after an arbitrary time
period at another arbitrary point. This temporarily leaving from view happened
so often that it must be considered normal, not exceptional. Hence in the domain
of maritime safety and security, the locations of tracked objects are not always
known. Implementing this adaptation has consequences for the functionality of
EthoVision XT: Missing samples for instance can no longer to be treated as a
measure for track quality.

6.4.3 Fixed Number of Objects

A fact of animal tracking in a laboratory is that the animals are restricted to a
confined area. Since animals cannot leave or enter this area, the number of objects
tracked by the (video) tracking system is fixed. On the contrary, in the domain of
maritime safety and security, the ships are not restricted to the area of interest.
For example, the Dutch coast guard is interested in the North Sea, but ships are
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free to leave this area and many regularly do so. To support the maritime domain,
EthoVision XT has to drop the constraint of tracking a fixed number of objects.
Yet, it would require a rewrite of EthoVision XT.

6.4.4 Fixed Roles

EthoVision XT is optimized for proved methods and standardized tests in the
domain of animal tracking in a laboratory. This means that no variation is allowed
in the roles that are assigned to the tracked animals. A ‘treated’ or ‘female’ animal
retains this role throughout the experiment. In the IJmuiden data set, we observed
that ships regularly change their attributes such as ‘destination’ and ‘cargo’ over
time, and even while at sea. The only way to currently allow ship tracking in
EthoVision XT would be to consider a changed attribute as being a change in object.
The effect would be that ships appear and disappear. This concept may work well
enough but it seems contrived and artificial.

6.4.5 Arrival Time of Samples

The biggest engineering problem encountered was the irregularly arriving
(maritime) track samples. EthoVision XT is above all a video tracking system.
In a video stream, there is the assurance that samples arrive an exact amount of time
after each other (e.g. 40 ms). Better still, if multiple separate objects are detected
in the video image they will likely have a different location but they all have
the same point in time. So the distance between two moving objects requires no
interpolation over time. EthoVision XT takes this alignment of time points and their
time-equidistance as basis for its calculations: it is a valid assumption for a video
analysis system and it greatly simplifies the calculations, resulting in a significant
performance gain. In the IJmuiden data set, this assurance is not guaranteed. In
fact, the AIS standard [1] explicitly states that the reporting interval varies with
navigational status (i.e., anchored, moored, or under way), speed, and changing
of course. In the case study, interpolation was used to guarantee time-equidistant
samples. This was tried using pre-processing, thus offering a steady stream of
time-equidistant geographic track samples. In making the pre-processor, we found
two main errors that demonstrate that this workaround is undesired. First, the
interpolated data arrives too late for any kind of real-time tracking. Second, the
interpolation introduces rounding errors in time-related variables such as velocity.
These rounding errors might negatively influence analysis. See for example Fig. 6.9
that shows the impact of interpolation on velocity.
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Fig. 6.9 Calculated velocity ratio between two real-world samples, using interpolated time-
equidistant (artificial) samples positions. Instead of a constant speed, and thus a ratio of 1, a
fluctuating speed with a maximal relative error of approximately 1% is observed between the two
real-world samples due to rounding errors

6.5 Summary and Future Work

The portfolio of Noldus includes EthoVision XT, which is the most widely applied
video tracking software that tracks and analyzes the behavior, movement, and
activity of any animal in a laboratory setting. Noldus wishes to extend its portfolio.
Among others, Noldus wishes to track and analyze objects anywhere, both indoor
and outdoor. Therefore, we performed a case study to investigate the differences
in track analysis of animals in the laboratory and objects moving around the
globe. In particular, we investigated whether EthoVision XT could be extended to
analyze tracks in the maritime domain to find vessels speeding in zones reserved
for anchored vessels. EthoVision XT was successfully extended in this case study.
In particular, a number of speeders in an anchoring zone were detected. During the
case study, we discovered that EthoVision XT was not the perfect starting point to
make a tool for tracking objects anywhere. The following fundamental differences,
which would be costly to change, were discovered:

• Due to the earth’s curvature, larger areas on the globe are obviously not flat.
• Outside the laboratory, tracked objects often disappear from view.
• Outside the laboratory, the number of objects to be tracked simultaneously

typically varies over time.
• In the maritime domain, the attributes of tracked objects change, e.g., the

destination of a ship can change from ‘Rotterdam’ to ‘Singapore’.
• Whereas video tracking ensures periodic and synchronized detection of multiple

objects, in the maritime domain track samples typically arrive irregularly and
asynchronously.
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Instead of extending the existing software, Noldus decided to architect a new
prototype tool from scratch. This tool is under development within the scope of
the European FP7 projects PRONTO and E-TRACK. Significant advances were
made by exploiting the lessons learned from the case study. This new tool will
also benefit from Noldus’ extensive knowledge about tracking and analyzing of
animals at laboratory scale that could be transferred to the domain of tracking and
analyzing objects anywhere. Several innovations are being implemented: support
for GPS coordinate streams, default implicit calibration, use of digital maps (e.g. a
city street plan) with interactive zoom and pan capability, greater independence from
the number of objects to track, and graphical annotation of maps to create regions
of interest for spatial event detection. Most importantly, the basic algorithms for all
distance calculations are based on a curved area and use an efficient implementation
of the haversine formula instead of being based on a flat surface. The tool was
further extended to cope with large numbers of moving objects, including ships,
fire engines, buses, and people. Latest developments include functions that compute
movement characteristics, e.g., velocity, periods of movement, distances, and path
shape such as ‘sharp corners’ and abrupt stops. All this will result in a new Noldus
product prototype, referred to as ‘AnyTrack’.

While developing the new tool for tracking and analyzing objects anywhere,
many lessons were learned. We mention two lessons learned that are also relevant
for the domain of maritime safety and security. First, we experienced scalability
issues in the popular and commonly available geographical libraries and tools.
We observed a lack of performance in Google Maps and OpenLayers when large
numbers of tracked objects or sample points were present. Compression as described
in Chap. 7 is at most a partial solution since it only reduces the number of sample
points. Second, any tool for tracking and analyzing objects anywhere must support
a large variety of different kinds of background maps. Background maps vary from
a building floor plan for indoor position data, to OpenStreetMap or Google Maps
for outdoor position data, and from harbor plans to nautical charts for the maritime
domain.
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Chapter 7
Recognizing Vessel Movements from Historical
Data

Gerben de Vries and Maarten van Someren

7.1 Introduction

An important task of a Maritime Safety and Security (MSS) system is to acquire,
store and analyze data and information from various sources and enable users to
analyze and operate on this information. Our main sources of data are the Automatic
Identification System (AIS) and the Internet. AIS data consists of transponders
on vessels that transmit information about the vessel. This information is publicly
available and is received by stations on land. The AIS data include an identification
number, position, direction and speed, and it may include other information such
as type of the vessel, country of registration and cargo type. The AIS data can
be viewed online at several web sites. The main other source of information is
the Internet, which includes historical information about vessels and geographical
information. A realistic maritime safety and security system will also include
radar, image and video data. The solutions that we developed for AIS data can be
adapted to this setting. The output of a maritime safety and security system includes
visualizations of vessel movements, which is addressed in Chap. 5, and recognizing
events, objects and anomalies, which are addressed in Chaps. 8 and 9.

In a maritime safety and security system there are a number of steps between
the AIS data that is transmitted by a vessel and the visualization and recognition
of anomalies. Apart from relatively simple data transmission, the AIS data must
be integrated (because data are received asynchronously by multiple stations) and
aggregated to a higher level of abstraction than streams of AIS data. This is useful
because some interesting events are not instantaneous but take place over a longer
time and larger space. Examples of events are “leaving harbor” and “anchoring”.
To describe such events additional high level concepts are needed, for example about
geographical locations (“anchoring area”, “deep water lane”) or types of vessels
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(“passenger vessel”, “fishing boat”, “tanker”). Recognizing abstract events is useful
for visualization and for detecting anomalies, such as illegal or dangerous events or
anomalous objects that have an unusual combination of properties and behavior.

In more technical terms, the problem becomes to recognize abstract patterns or
“concepts” in streams of AIS data. The approach that we take to finding abstract
descriptions of objects is to learn from historical data. The main alternative approach
is manual modelling, in which human expertise is used to construct classifiers
manually. We preferred the approach based on historical data for practical reasons,
because no abstract concepts and not many human experts were available, but there
was a large set of logged AIS data. An additional argument is that anomalies
are inherently irregular and therefore it is not easy to anticipate which concepts are
useful for recognizing them. At the same time, the size of the volume of historical
AIS data and the rate at which they are sensed in the online setting make abstraction
essential. In the context of a complete maritime safety and security system, several
additional issues should be taken into account. Before entering into our analysis,
the signal passes through a number of components. Errors are introduced by
transmission by an AIS transponder, atmospheric conditions, reception at the land
stations, data integration, processes in systems that add data at a later stage or that
impose security protocols, etc. The consequence of this is that certain data do not
correspond to vessel movements but are generated by the system that processes the
raw signals. This is also true for some anomalies and visualizations.

Besides the basic movement data (location and direction), additional information
can be obtained from other sources such as online databases and other resources
on the Internet. In fact, the AIS data provided by a vessel include additional
information. It can be useful to be able to predict such additional information from
data because the additional information provided by a vessel or database may be
incomplete or incorrect. For example, the destination that was found on the web
page of the owner may be different from its predicted destination based on historical
data, which may be useful to know for the users of the maritime safety and security
system.

In this chapter we focus on three specific technical problems that need to be
solved in a maritime safety and security system. One is data compression. The AIS
data that is generated by vessels is very intensive. Data become available with a high
frequency from many vessels. This results in a large volume of historical data which
makes it practically difficult to use these data. The solution is presented in Sect. 7.2.
Section 7.3 addresses the second problem: to find a measure of similarity between
movements that can be used to find clusters of similar movements, movements that
are very different from all other movements or movements that are associated with
a property of a vessel. Such a measure is the basis of methods for prediction of
movements of vessels and of properties of vessels or of movements. The third
problem is how to combine movement analysis from AIS data with other, mostly
symbolic, information that is obtained from the Internet or from human experts.
This is the topic of Sect. 7.4.
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7.2 Compression of Movement Data

The AIS data that are sent out by a vessel make up a series of 〈Time,Latitude,
Longitude〉 tuples. Latitude and Longitude denote the position of the vessel and
Time the time at which the message was sent. A trajectory consists of a sequence
of such tuples. Data are sent by different vessels at different rates. The AIS
data include additional information about the vessel. Not all vessels send out all
information. There is a substantial amount of noise in the data, due to errors in
the transponder, the transmission and fusion of the data and to incorrect vessel
information. The amount of AIS data is large because of the high rate at which AIS
data are collected. For example 1 week monitoring of vessels before the Dutch west
coast results in approximately 4 GB of data. It is therefore necessary, not so much
for online incoming data but for historical data, to compress the large volume to a
much smaller volume without losing important information. Compression exploits
the fact that vessels usually move in a rather regular way and either move for
quite some time or stop. The compressed trajectories can be used for visualization,
clustering, classification of vessels, and predictions. In fact, the ultimate criterion
for the quality of compression is in the extent to which the data can be compressed
without damaging the use of the trajectory data for further processing.

The method that we use for compression is a version of Piecewise Linear
Segmentation (PLS). The basic algorithm was invented several times in different
disciplines, see [4, 5]. Beginning at the starting point of a trajectory, PLS draws a
line between the starting point and the last point, the candidate end point. It checks
if the distance between the trajectory and the line is below the threshold. If this
is true, PLS is done and the line is kept as the approximation. If the threshold
is exceeded then start and candidate end become the preliminary start and end of
a partial linear approximation. The same procedure is then applied recursively to
each candidate segment. This is illustrated in Fig. 7.1. The dotted line shows the
trajectory of the vessel. The horizontal line connects the two points p1 and p6 on the
trajectory. It is a candidate linear approximation of the actual trajectory p1, . . ., p6,
but it turns out that the distance between the point p4 and the linear approximation
(E) is larger than the threshold (ε). Therefore the approximation by a single line is
replaced by two lines and the point p4, which has the maximal distance, is included
in the approximation. As a result, the trajectory p1, p4, p6 replaces the line and

E 
E  

E  
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Fig. 7.1 Illustration of piecewise linear segmentation
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becomes the new approximation. The procedure is now applied recursively to the
two parts of the new approximation. The largest distances between the resulting
approximation and the actual trajectory is below the threshold and therefore the two
line approximation is kept. The points p2,p3 and p5 are removed, which leads to a
50% data reduction. Correction for the curvature of the earth is applied to make the
distance measure independent of the location.

The basic PLS method is extended in two ways: time is added as a dimension
and stops are retained. The original PLS method only considers the information on
locations (Latitude and Longitude) and not the speed at which they are traversed.
The PLS method for trajectories can be used with different distance functions.
The basic case simply uses Euclidean distance. Time can be added into the distance
function to create distances between vessels that move at different speeds or at
irregular speed, using 3-dimensional Euclidean distance. This needs a weight for
the time dimension that reflects how important time is in the distance relative to
location.

In the case of vessel movements, it is important to retain stops as points in the
piecewise linear segmentation, even if a vessel stops and then later continues in
exactly the same direction, or if it moves slowly, for example when anchored. This is
achieved by first applying PLS to speed only and only after that with the combined
distance measure. The purpose of the first step is to find the stops, as the points
where the speed differs most from other speeds. These points are then retained
in the approximation of the trajectory. The resulting algorithm we call Two-Stage
Piecewise Linear Segmentation (TwoStage-PLS) [9].

Experiments on AIS data show good results for TwoStage-PLS. For example,
using separate thresholds of 2.5 knots for speed and 50 m for displacement gives a
compression to 2% of the original amount of data while 97% of the actual stops
are retained. Because of the large volume of data this actually enables the use
of historical data at a scale that would otherwise have been impossible. Because
large volumes of data are needed to obtain reliable predictions and interpretations,
this compression technology is of key importance. We also created a variant of
the algorithm that compresses AIS data from new incoming vessels “online” to
make predictions about these partial trajectories faster and better comparable to
historical data.

7.3 Measuring Similarity Between Movements

There are several possible approaches to the tasks of recognizing properties and
movements of vessels and recognizing unusual trajectories. The approach that we
take is based on similarity between vessels and vessel movements, in particular
using historical information of vessels and vessel movement data. Predictions of
properties are based on similarities between new and old trajectories and vessels.
This relies on the use of one or more measures of similarity, in our case between
movements of vessels. These measures should be able to take into account the
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location, direction, speed, time but also other information, like the type of vessel
(cargo, tanker, passenger carrier, fishing vessel) or other properties (size, origin).
This flexibility is useful if a user is interested in different views of the data. A user
may only be interested in (similarities regarding) the locations and not the time,
or only the time, or the type of vessel and the locations, etc. The main alternative
approaches are a probabilistic (Bayesian) approach that also uses historical data and
a manual modelling approach. We decided to use the similarity–based approach for
the following reasons:

• Representation of trajectories of moving objects as variables is a non-trivial
problem because of the dynamics in time and location. (We do not have a fixed
set of times or locations.) This complicates the use of the Bayesian approach. Our
approach needs only similarity data and therefore does not require a data model
based on vectors.

• The similarity–based approach is likely to be more efficient than the probability–
based approach, at least at learning time and probably at recognition time,
especially because of the large number of dimensions. The probability–based
approach requires fitting distributions on all variables.

• The similarity–based approach makes it relatively easy to incorporate prior
knowledge from ontologies such as labeled regions and properties of locations
or properties of vessels.

• Especially detecting unusual events or objects is probably difficult for the manual
modelling approach. There are not many experts and there is a very wide variety
of unusual events that occur very rarely.

As can be seen in Sect. 7.3.1, the results confirm that our choice was a good one but
experiments with other approaches are needed to support claims about what is the
best approach.

The data for which we define our similarity measure consist of compressed
“piecewise linear” trajectories of vessels and additional information about the vessel
obtained from AIS data. In this section we consider only the trajectory data con-
sisting of location and time. Section 7.4 extends this with additional geographical
information. The similarity measure should meet several requirements:

• It should produce intuitive results when used for discovering patterns, in our case
clusters,

• It should be effective in predicting properties of vessels,
• It should be able to handle trajectories of different lengths,
• It should be flexible enough to include different views of the data (in the sense of

different subsets of properties or locations).

Our solution consists of a measure that is based on finding the optimal alignment
of trajectories, using a distance function between (aligned) points as the basis for
measuring the distance. This is a kind of string edit distance, similar to [1]. An edit
distance alignment between two sequences builds pairs of matching points in the
sequences. Figure 7.2 illustrates an edit distance alignment. Note that not all points
are paired. The edit distance is calculated as a function of the distances between
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Fig. 7.2 Illustration of edit distance alignment

matched pairs of points, “substitutions”, and “gaps”, points that have no match in the
other trajectory. The alignment is constructed so that the edit distance is minimized.
To calculate the edit–distance the distances between matching points are summed
and a penalty is added for each gap. The size of this penalty is a parameter of the
algorithm. This distance can be converted to a similarity by taking the inverse.

7.3.1 Results

We evaluated the similarity measure in a clustering task and in a prediction task.
For the clustering task we manually grouped 714 trajectories into 8 clusters. We then
used the similarity measure in a standard clustering algorithm: kernel k-means [7].
We evaluated the method by matching the resulting clusters with the handmade
clusters and we found that 85% of the trajectories are assigned to the same cluster
in both cases. For details of this experiment see [3].

Figure 7.3a visualizes the eight manually labeled clusters representing different
classes of trajectories. For example, cluster 1 contains vessels that pass the harbor
area, cluster 3 contains vessels that leave the harbor and go north or west. Clusters
7 and 8 contain the trajectories of a ferry that moves back and forth. The clusters
of trajectories can be given verbal descriptions, can be introduced as new domain
knowledge and new vessel movements can be classified as belonging to one of these
movement patterns.

Figure 7.3b shows a clustering results using the above similarity measure and
clustering algorithm. Since kernel k-means starts with random initializations, differ-
ent outcomes are possible, the shown clustering is one possible result. The biggest
differences with the gold standard are that cluster 1 is separated into two clusters,
and clusters 7 and 8 are combined into one cluster.

For the prediction task trajectory data was used to predict the vessel type as
given by the AIS data. Using data from 1,900 trajectories it was possible to predict
the vessel type with 72% accuracy on this dataset using the kernel–based support
vector machine classification algorithm [6]. We found that some types were difficult
to separate, in particular tankers from cargo vessels and pilot vessels from tugs.
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Fig. 7.3 The gold standard
clusters are shown in (a).
A generated clustering is
shown in (b)

If we disregard these distinctions then 95% separation was achieved. Predicting the
type of a vessel is in itself not a very useful task but the results of such predictions
can be compared with the information provided by a vessel and then used to detect
inconsistencies. This can then be used in trust analysis, as described in Chap. 13.

The previous experiments used AIS data of trajectories collected at parts of
the Dutch North Sea coastal area. Although this enables complex analyses, the
information that is lost by compression can affect the results of using the data.
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To evaluate if this is the case, we repeated the experiments from this section
with an uncompressed version of the data. There was no negative effect of PLS
compression on the results of clustering or prediction and in some cases there even
was a small positive effect in terms of clustering reproduction and classification
accuracy. The computation time was reduced by a factor of 100, enabling clustering
of 1,000 trajectories in minutes instead of hours. More details of this experiment
can be found in [3]. To evaluate our solution relative to other algorithms we made a
comparison with several alternative algorithms, in particular dynamic time warping
and various algorithms from computational geometry. Results (more details are in
[3]) show that the other algorithms were significantly slower and/or the results on
the clustering and prediction tasks were worse or the same as for our method.

7.3.2 Discussion

The experiments show that the approach that we took, consisting of Piecewise
Linear Segmentation with “stop retention”, similarity measures based on edit–
distance and using these in clustering and similarity–based prediction works well
for clustering vessel trajectories and predicting vessel types. Most likely this works
well because vessel trajectories naturally have a piecewise linear shape. Vessels tend
to travel in an approximately straight line between obstacles. At the obstacle they
change course to the next point. Their speed is more or less constant except when
entering or leaving the harbor. Exceptions are vessels like law enforcement vessels,
pilots, tugs, and fishing boats, that have rather irregular behavior. In our data there
were hardly any fishing vessels. If sufficient fishing vessels are in the data and they
show similar behavior then clusters of these vessels will be constructed. Our choice
for a similarity–based approach and for kernel–based algorithms seems to be at least
a good one.

7.4 Knowledge-Based Similarity

An attractive possibility in the area of maritime safety and security and in many
other areas is to use explicit knowledge in combination with a large volume of
data collected from sensors to improve similarity measures, and thereby clustering
and prediction task performance. The similarity between vessel movements often
depends on domain knowledge. For example, two movements at different locations,
with different direction and different trajectories may be very similar if it is known
that both are mooring at a passenger terminal, anchoring in an anchoring area or
approaching the same harbor via different sea lanes. Two similar trajectories may be
considered more different if we know that one is fishing and another is just passing
through.
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Therefore it is useful to be able to incorporate knowledge about the domain in
the similarity measure. Our approach is to use the same method as before, based
on edit distance. In the raw similarity for trajectories the distances between points
and the penalties are calculated from the (Euclidean) distance between locations
and between times. We incorporate information about vessels and locations into the
distance function by defining a distance function that also includes the “semantic
distance”. For example, two trajectories that end at two different anchoring areas
may now have a small distance because the type of location is now the same.

Clearly, which information is included in the distance function depends on the
purpose of its application. In particular it depends on what are considered relevant
dimensions of the distance. In a maritime safety and security system it must be
possible to configure the distance function interactively depending on the task.
This requires understanding the data, the task and the system. For example, whether
details of the trajectories or the exact mooring are relevant for predicting vessel
movements, properties of vessels or for recognizing anomalies will depend on the
task. The user should therefore be able to control this. We evaluate our solution
by comparing clusters and predictions that were constructed with and without
geographical information to see if using the geographical information can actually
improve the similarity and thereby the clusters and predictions.

Our approach is to use definitions of concepts from an ontology or knowledge
base to calculate “semantic distance” and add this to the “raw” trajectory distance
in the similarity function. This allows more information to be used in similarity and
then for prediction, clustering and anomaly detection, resulting in better predictions
and more informative clusters. The clusters themselves can be given a label and then
they can be added to the ontology.

7.4.1 Geographical Domain Knowledge

Our geographical domain knowledge comes in the form of two simple ontologies.
One ontology contains the definition of anchorages, clearways and other areas at
sea. This was obtained from hydrographic maps from Rijkswaterstaat (a Dutch
governmental organization). The other ontology has definitions for different types
of harbors, such as liquid bulk and general cargo (containers). This was constructed
manually from the harbor branches map of the Port of Rotterdam Authority; see
also Fig. 4.6 in Chap. 4. A location is associated with a type and a geographical
region which is represented as a polygon. The types of locations follow the
Geonames1 ontology and extend it where necessary. We added more specific
types to the Geonames types, for example subtypes of harbor, e.g. dry bulk harbor
were added. This gives additional properties of locations that we call geolabels.
These properties are part of the Simple Event Model that is described in Chap. 10.

1http://www.geonames.org

http://www.geonames.org
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A more detailed description of this domain knowledge can be found in [8]. Here
we show how information about types of regions can be used to construct richer
similarity measures and we investigate if these produce better clusters or predictions.

7.4.2 Trajectory Similarity

To use geographical domain knowledge we adapt the similarity measure to incor-
porate geographical information. In this case each point in a trajectory is associated
with one or more geographical labels. The similarity between sequences of sets of
geolabels is defined using additional “semantic” measures for the distance between
(matching) points in the compressed trajectory. The semantic distance measure that
we use is based on the number of properties that two locations have in common.
This is normalized by dividing it by the maximal number of properties that could be
shared by the locations. The properties are derived from the ontology. The properties
of events correspond to those that are presented in Chap. 10. This makes it possible
to include predicted properties in the ontology. The points where a vessel stops
and starts are aligned separately and the distance between these points becomes a
separate component in the distance. The results are combined in a weighted sum.
The weights are determined by hand.

7.4.3 Evaluation

We compare the quality of the predictions of vessel type of three versions: one that
uses only “raw” trajectories, see Sect. 7.3, one that uses only the manually defined
domain knowledge about locations and not “raw” information and one that uses
both. We found that the method that combines both gives a 75% percent accuracy.
This is a 9% improvement over a solution that uses only the domain knowledge in
the distance measure and a 3% improvement over a solution that uses only the raw
trajectories.

Although the quality of clusters is more difficult to evaluate, we ran a parallel
experiment with the three similarity measures used in a clustering algorithm (kernel
k-means). Inspection of the resulting clusters shows that the combined distance
measure on average produces clusters that are intuitively better than the versions
that use either raw trajectories or knowledge-based distance. An illustration of a
discovered cluster is given in Fig. 7.4. The behavior discovered in A and B is that
of small cargo vessels that directly traverse the harbor of Rotterdam sailing straight
to the main land behind. Because the vessels are small they do not need to take the
deep water lane and are allowed to directly enter Rotterdam, without a pilot or tug.
For cluster C only raw trajectory information is used. In this cluster some vessels
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Fig. 7.4 Illustration of clustering using domain knowledge. A and B show a cluster discovered in
the combined setting, where B zooms in on a part of A. Cluster C is the most comparable cluster
discovered using only the raw trajectories and D is obtained using only domain knowledge

travel through the deep water lane and some do not, and some vessels come from
anchorages and some do not. These behaviors are difficult to keep apart without
domain knowledge, since the trajectory shapes are actually very similar. Cluster D
is based on using only domain knowledge. In this case it is more difficult to keep
trajectories with different directions apart, resulting in a very “messy” cluster. These
three clusters illustrate the effect of including domain knowledge in similarity.

In the port area trajectories are restricted by physical obstacles and traffic rules.
This means that trajectories will on average be more similar than at the open sea.
The average similarity of clusters will then be larger (and the average “distance”
smaller). Possibly even better results can be obtained by imposing a cut at the
entrance of the port area to separate movements at sea from those in port. This
is an example of how results can be improved by focusing the geographical context
or other information that is included in the similarity.

The knowledge-based similarity measure consists of an edit distance alignment
for trajectories and one for sequences of sets of geolabels, combined with infor-
mation about the start and end of a trajectory. The results show that edit distance
combined with gegraphical knowledge from an ontology gives better clusters of
trajectories and prediction of vessel type. In both cases the results were better than
without geographical knowledge, for details see [8].
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7.5 Conclusion and Discussion

We discussed solutions to three related subproblems for the design and construction
of a maritime safety and security system: the use of piecewise linear segmentation
for the large amount of data, the use of edit distance as the basis of a similarity
measure for vessel movements and the use of geographical and semantic distance in
the similarity measure to obtain “knowledge intensive” similarity. These similarities
are then used for prediction of properties of vessels and clustering. We evaluated the
resulting methods on a collection of AIS data and found that these solutions are
effective and efficient.

The solutions that we proposed were evaluated by “in vitro” experiments.
We expect that some issues need to be addressed before the methods can be put
to work in practice. We review some of these issues. One important question
is which, and how much, data are needed for reliable predictions (and clusters).
One issue is the amount of data. In general more data will produce better clusters and
better predictions. However, the data that are used must be relevant. For example,
the conditions change. New constructions are built at sea, new types of vessels
appear and others disappear, traffic rules are changed and that makes old data less
relevant. In general adding more properties of vessels, more areas from which data
are collected increases the dimensionality of the problem. This means that more
data is needed for reliable results. It can thus be effective to remove properties.
For example, a trajectory can be unusual if we look only at the vessel type
“passenger vessel”. If all types of vessels are included then it may not be unusual.
In the same way, a cluster of trajectories may be found if we only look at passenger
vessels, but it may not be found if all vessels are considered. At the same time,
a minimal number of data is needed to find clusters or unusual trajectories. It is
therefore necessary to optimize the amount of relevant data. This makes it necessary
to focus on subspaces that are defined by subsets of locations or properties. Focusing
on such subspaces should be supported by visualization and anomaly detection as
described in Chaps. 5 and 8. An interesting open research question is if a method
can be given that guides or automates the selection of the best “view”. This requires
a combination of expert knowledge about which data are relevant and understanding
of statistical principles to optimally benefit from the data and avoid spurious results.

The approach and methods that we used are specific versions of data mining
methods [7] designed for trajectory data. If other type of information is available
about events, locations or objects involved in the events then more standard data
mining methods can be used and integrated to obtain better predictions or better
clusters. Such data can be obtained from the Internet, by extracting information
from text messages, or from structured databases. For these tasks standard methods
are applicable but especially using geographical information and time information
are still open issues.

The solutions use historical data that consist of AIS data, but other data can be
added. For example additional properties of vessels and locations can directly be
added in the similarity and used with the existing methods and implementation.
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Our solution is evaluated on trajectory data obtained via AIS but similar data
can also be obtained by analysis of radar data or other devices that produce
trajectory data.

Application of our approach in a practical setting requires organization of the
data acquisition and analysis process. The main issues are the volume of data that
becomes available even if only AIS data is used as a source, the data mining
and domain expertise that is needed to configure distance functions and interpret
the results. We would not be surprised if in the future data mining and statistical
expertise, and high-performance computing will become standard at maritime
facilities but at the moment a better scenario seems to have experts do data analysis
offline. We do not think that it is useful to aim at online updating of the models
that are built from historical data. This process is not yet well-enough understood to
allow automation or to perform this task without expertise.

We also experimented with recognizing unusual “outlier” trajectories as
discussed in Chap. 8. Unlike the statistical approach in Chap. 8 we used the
similarity measures to directly find trajectories that have a large distance to all
clusters. These experiments also gave good results which are published in [2].
Beside the optimization of the “view”, interesting topics for further work are
improvement of the online recognition and anomaly detection. Another interesting
extension is to apply the same approach to similarities between pairs of vessels
that are close together. This would enable clustering joint movements, making
predictions about this and recognizing unusual joint movements.

The methods for trajectory compression, the similarity measures for trajectories
and the use of knowledge from an ontology are likely to be key ingredients for
a maritime safety and security system. The same methods are more generally
applicable to other types of moving objects such as airplanes, land vehicles and
persons. Whether they are equally effective in other applications is a subject of
further work.

Acknowledgements This research has been carried out as a part of the POSEIDON project at
Thales under the responsibilities of the Embedded Systems Institute (ESI). This project is partially
supported by the Dutch Ministry of Economic Affairs under the BSIK program.

The authors wish to thank Willem van Hage and Véronique Malaisé for providing the
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Chapter 8
Density-Based Anomaly Detection
in the Maritime Domain

Jeroen Janssens, Eric Postma, and Jaap van den Herik

8.1 Detecting Anomalous Events in the Maritime Domain

Human operators monitoring maritime safety and security typically watch a large
graphical display on which all vessel movements in the coastal region are plotted
(see Chap. 2). Any unexpected deviation from normality should be detected by the
operators. Such deviations from normality in the real world are generally referred
to as “anomalities”. Despite visual aids, anomalies may go unnoticed by human
operators due to two cognitive limitations. The first cognitive limitation is that
human observers are bad at maintaining vigilance for a sustained period of time [13].
The second cognitive limitation is that humans may be blind to visual changes due
to attentional limitations [9].

Computers do not suffer from these limitations. Maintaining vigilance and
monitoring large volumes of data are the hallmarks of computers. Of course, in
comparison with human operators, computers fall short in understanding the “gist”
of maritime situations. The situation awareness of maritime patterns by experienced
operators relies largely on knowledge and familiarity with vessels, sea lanes, rules
and regulations, the weather, and so forth. An important lesson from the early days
of artificial intelligence is that such common sense or expert knowledge is very
difficult to program into computers. Simply specifying all maritime knowledge in
terms of rules leads to a system that has difficulty dealing with the uncertainties of
the real world. These uncertainties arise, for instance, from incomplete or wrong
information, noisy sensor readings, or weather forecasts. Given these considera-
tions, the best way to proceed is to let the computer take over the tasks requiring
vigilance and cognitive processing power and to leave the interpretation of the
situation largely to the operator. The existence of uncertainties in the maritime
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domain dictates the use of probabilistic methods, which are now commonplace in
artificial intelligence [2]. We focus on a particular class of probabilistic methods for
anomaly detection, called the density-based methods [10].

The outline of the rest of this Chapter is as follows. Section 8.2 describes how
outlier-detection tasks are represented in density-based methods. Then, in Sect. 8.3
an overview is given of existing density-based outlier detection methods. Section 8.4
presents the SOS outlier-detection method. The outlier-detection performances
achieved by the SOS method are reported in Sect. 8.5. Finally, Sect. 8.6 concludes
with the statement that the SOS method provides an outlier-detection method that
can be successfully applied in a wide variety of domains.

8.2 Representation Space

In so-called density-based statistical methods, maritime objects (e.g., vessels) and
events (e.g., vessel turns) are generally represented as points in a (potentially
high-dimensional) representation space. The dissimilarity of objects or events is
represented by distance. Anomalies may manifest themselves as points that are
distant from all other points, so-called “outliers”. To sketch a more concrete picture
of statistical density-based methods, we consider, as an example, a straightforward
two-dimensional representation space were the axes, represent the features speed
over ground and rate of turn of vessels. Figure 8.1 shows such a representation
space.

Let us suppose that all but one vessels form a cluster. In other words: all but one
vessel have approximately the same speed over ground and rate of turn. The odd-
one-out vessel is separated from the cluster by a considerable distance, indicating
that the speed over ground and/or rate-of-turn of this vessel differs considerably
from that of the other vessels. Figure 8.1 displays such a situation. The clustered
points are the inliers (open circles). The outlier (asterisk) is separated from the
cluster. In this particular example, the vessel associated with the asterisk is an
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Fig. 8.1 Example
of a two-dimensional
representation space where
the points (open circles
and asterisk) represent
combinations of the speed
over ground (horizontal axis)
and rate-of-turn (vertical
axis) of vessels
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outlier because it has an exceptionally large speed over ground. Its rate of turn is
not anomalous, because many other vessels share approximately the same value on
this feature. In realistic cases, points are anomalous on more than one feature and
the detection of outliers requires taking into account multiple features, rather than
just one.

The automatic detection of the odd-one-out vessel typically relies on a measure
of distance, for the obvious reason that an outlier is by definition distant from
all other points. The large range of outlier detection methods differ in their
measurement and weighting of distance.

It is important to note that the definition of the features is crucial to the success
of statistical outlier detection methods. Domain experts should be involved in
the choice of the features that define the representation space. The features can
be elementary, such as, the speed over ground and the rate of turn, or they can be
abstractions that are known to be relevant for outlier detection, e.g., the degree
to which a vessel is on a collision course with another vessel. Generally, domain
experts have a good intuition about the types of information relevant to the task
at hand. This intuition guides the choice of features. A useful representation for
outlier detection in the maritime domain is described in Chap. 7. The number of
features determines the dimensionality of the representation space and should be
large enough to include the relevant information, but not too large because this
hampers the ability to learn from the data [2].

8.3 Density-Based Outlier Detection Methods

This section reviews existing outlier detection methods that operate on points in
representation spaces.

8.3.1 Traditional Statistical Outlier Detection

Traditional statistical outlier detection methods assume that points are normally
distributed (i.e., the density of data points has a bell shape) and compute the
average (center of the bell, μ) and standard deviation (half-width of the bell, σ ) [1].
Figure 8.2 shows an example of normally distributed points on a line (i.e., a one-
dimensional representation space). The bell-shaped curve represents the density of
points at each position. The height of the curve is proportional to the number of
points with that value of x, i.e., the feature of interest, e.g., the speed of a vessel.
(x has average value μ and standard deviation σ .) The inset of Fig. 8.2 shows an
enlarged view of the tail of the curve where at x = 3σ inliers (open circles) are
separated from outliers (asterisks). Statistical text books often define a point as
an outlier when its distance to the average μ is more than m standard deviations.
Figure 8.2 illustrates an example in which all points within a distance of 3 standard
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Fig. 8.2 Illustration of normally distributed points on a line. The bell-shaped curve represents the
density of points at each position. The height of the curve is proportional to the number of points
with that value of x, i.e., the feature of interest, e.g., the speed of a vessel. (x has average value
μ and standard deviation σ .) The inset shows an enlarged view of the tail of the curve where at
x = 3σ inliers (open circles) are separated from outliers (asterisks)

deviations of the mean (μ±3σ ) are considered to be inliers (represented by the open
circles), those at larger distances are identified as outliers (represented by asterisks).
This traditional outlier detection method is at the core of a large variety of statistical
outlier detection methods. In application domains where the normality assumption
holds, it offers an effective means to detect anomalies.

The main limitation of the traditional outlier detection methods is the assumption
of normality, i.e., they assume that the distribution of points has a bell shape.
In the maritime and many other real-world domains, data points are rarely normally
distributed. Often, data points are distributed heterogeneously over space. For a
single feature, the density of points does not form a single bell shape, but either
multiple separated bell shapes, or totally different shapes. In two- (and higher)
dimensional representation spaces, heterogeneous distributions are characterized by
regions with many points (dense regions) that are interspersed with regions with few
or no points (sparse regions). In terms of our example, dense regions correspond to
vessels with frequently occurring speed over ground - rate of turn combinations and
sparse regions correspond to the rare or no occurrence of vessels with associated
speed over ground - rate of turn combinations.

8.3.2 Modern Statistical Outlier Detection: The LOF Method

Modern statistical outlier detection methods do not impose normality and deal
with density variations by taking the local density into account. The most promi-
nent density-based outlier detection method is the Local Outlier Factor (LOF)
method [3], which originates from the domain of Knowledge Discovery and Data
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Fig. 8.3 Illustrations of two clusters of points, one with a high density (lower left corner) and one
with a low density (upper right corner). Both clusters have a single outlier, but their distances from
the clusters differ. LOF is capable of identifying both outliers

Mining [4]. The essence of the LOF method is that it compares the local densities of
neighboring points. The local density of a point is a measure of the number of nearby
points, i.e., the number of points in a predefined fixed-size spatial neighborhood.
In a two-dimensional representation space, the neighborhood of a point is typically
defined as a circular region around the point. A point located within a sparse region
has a small local density, whereas a point located in a dense region has a high
local density. The LOF method computes for each point p, an outlier value, called
the Local Outlier Factor. This outlier value is obtained by dividing the averaged
local densities of the points in the neighborhood (spatial vicinity) of point p by the
local density of point p itself. If LOF has a value smaller or (approximately) equal
to 1, the local density of point p is larger or (approximately) equal to the averaged
local densities of the points in its neighborhood and the point is considered to be
an inlier. Alternatively, if LOF has a value that is (much) larger than 1, the density
in the neighborhood of point p is much higher than the density of the point itself,
indicating that point p is an outlier.

The main advantage of the LOF method is that it can detect outliers in heteroge-
neous distributions of points. Returning to our two-dimensional maritime example,
we consider the case of two spatially separated clusters of points representing two
types of vessels, type A and type B, shown in Fig. 8.3. The speed over ground and
rate of turn values of type A vessels have a small variation, whereas the speed
over ground and rate of turn values of type B vessels have a large variation. As a
result, the type A and B vessels give rise to clusters with high and low densities,
respectively. For a type A vessel to be considered an outlier it has to be separated a
certain minimal distance dA from the type A cluster. Similarly, for a type B vessel
to be considered an outlier it has to be located a certain minimal distance dB from
the type B cluster. The value of dA is smaller than the value of dB, because type A
vessels have smaller variations in their rate of turn and speed over ground values
than type B vessels. Where a purely distance-based outlier detection method would
fail to take such density variations into account, the LOF method is able to identify
outliers of both types.
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Despite its widespread use, the LOF method suffers from two related drawbacks.
The first drawback is that the LOF value is difficult to interpret. In order for a
point to be an outlier, the LOF value should be much larger than 1, but how
much larger depends on the problem at hand. Complex real-world domains, such
as the maritime domain, are characterized by heterogeneous point distributions with
unknown densities, and therefore pose a problem for the interpretation of the output
of the LOF method. The second drawback is that the LOF method has no clear
probabilistic foundation. As a result, LOF values cannot be interpreted in terms of
probabilities. Operators assessing anomalies in maritime safety and security, would
be much helped if they could assess the probability of a point being an outlier.
For instance, when confronted with multiple outliers, probabilities allow them to
weigh the costs of action (e.g., intercepting a vessel) against the costs of a false
detection.

In recent years, a large number of density-based variants of the LOF method have
been proposed. We mention three examples: the Nearest Neighbor Data Description
(NNDD) method [12], the Local Correlation Integral (LOCI) method [8], and Least-
Squares Outlier Detection (LSOD) method [6]. These three methods attempt to
improve upon LOF in several respects, but they all suffer from the aforementioned
two limitations. In the following section, we present our Stochastic Outlier Selection
method, a density-based outlier detection method that does not suffer from these two
limitations and we evaluate its performance by comparing it to the performances of
LOF, NNDD, LOCI, and LSOD.

8.4 The Stochastic Outlier Selection Method

The Stochastic Outlier Selection (SOS) method [5] relies on three principles:
(1) dissimilarity representation, (2) soft neighborhoods, and (3) outlier probabilities.
The following three subsections describe these principles in detail.

8.4.1 Dissimilarity Representation

The SOS method relies on dissimilarities between points. Dissimilarities are
proportional to the distances between pairs of points. The representation space is
sometimes called a similarity space, because two vessels with similar speed over
ground and rate of turn values are represented by nearby points, and two vessels
with dissimilar values are represented by distant points. In representation space,
vicinity translates into similarity, and distance into dissimilarity.
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Fig. 8.4 Illustration of the
bell shaped functions (soft
neighborhoods) associated
with three points, the circles
labeled xa, xb, and xc. The
widths of the neighborhoods
are determined by the local
density, i.e., the number of
neighboring points. The solid
circles represent other points
for which the soft
neighborhoods are not drawn

8.4.2 Soft Neighborhoods

The SOS method does not treat all similarities equally. Inspired by insights
from cognitive psychology [11], the similarity between two points separated by
a distance d is given by a bell-shaped function centered at d = 0. In the domain
of cognitive psychology, these points may represent, for instance, faces and the
similarity space may be defined by two or more facial features (e.g., length of
nose, size of mouth). The maximum similarity (top of the bell-shaped function)
is obtained when two points are the same (d = 0, i.e., same lengths of nose and sizes
of mouth). With growing distance between both points (d > 0, different lengths of
nose and sizes of mouth), the similarity falls off towards zero (tail of the bell-shaped
function). According to Shepard, the bell-shaped function is a universal law that
relates distance to similarity [11]. In the cognitive psychology domain, the function
returns the probability that two points (faces) fall in a region of representation space
that are treated equally in terms of similarity judgment (“same face”, “different
face”). Shepard’s similarity function is not restricted to faces, it applies to a wide
variety of mental representation [11].

The bell-shaped function used in the SOS method can be interpreted as a soft
version of the “hard” neighborhood used in the LOF and related methods. In a
hard neighborhood, neighbor-ship changes at the circular neighborhood boundary
from “neighbor” to “no neighbor”. In the soft neighborhood of the SOS method,
neighboring points have a neighbor-ship value Nval that varies from a maximum
value for d = 0 (NSOS = 1, top of the bell-shaped function) towards zero values of
neighbor-ship for very large values of d (NSOS → 0, tail of the function). In the
SOS method, the widths of the soft neighborhoods centered at each point are
automatically set to values to ensure that all points have the same number of
neighboring points. Figure 8.4 illustrates this for a one-dimensional representation
space, i.e., a line. For three points, xa, xb, and xc, the associated bell-shaped soft
neighborhoods are drawn. The widths of the neighborhoods depend on the local
density of points. If the local density is large, the neighborhood is small, whereas if
the local density is small the neighborhood is large. Through the automatic scaling
of the neighborhood, the SOS method deals effectively with density variations in
the data. Hence, it can deal with heterogeneous densities.
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8.4.3 Outlier Probabilities

To determine the probability of a point being an outlier, the SOS method examines
for each point to what extent it is part of the soft neighborhood of all other points.
If a point is highly dissimilar from all other points, it is located in the tails of
all the associated soft neighborhoods. Being located in a tail implies a very low
neighborhood-ship value, NSOS, that is near to zero. In the formal definition of the
SOS method, the neighborhood-ship values are expressed by the term (1−NSOS),
where being located in a tail translates to a value that is near to one. The outlier
probability of the i-th point indexed, Poutlier(i) is proportional to the product of all
these neighborhood-ship terms and is formally defined as:

Poutlier(i) =
K

∏
j=1, j 	=i

(1−NSOS( j)), (8.1)

where K is the total number of points and NSOS( j) is the neighbor-ship value of the
j-th point.

8.5 Performance of the SOS Method

We evaluated the performance of the SOS method by comparing it to the per-
formance of state-of-the-art outlier detection methods. Two such comparative
evaluations were performed: one qualitative evaluation on artificial datasets and one
quantitative evaluation on realistic datasets. In all evaluations, the parameters of
the outlier detection methods were optimized to yield the best performance.

8.5.1 Evaluation on Three Artificial Datasets

To get some insights into the performances of the SOS method in comparison to
the other outlier-detection methods LOF, NNOD, LOCI, and LSOD, we defined
three different artificial two-dimensional datasets: Banana, Densities, and Ring.
The Banana dataset consists of a banana-shaped cluster of points. The Densities
dataset consists of two separated circular clusters of points with different densities,
and the Ring dataset contains points arranged in a ring-shaped form. Applying an
outlier-detection method to the Banana dataset tests if distance from a cluster of
points affects the outlier value appropriately. Applying it to the Densities dataset
tests if the method takes the different densities into account. Finally, applying the
method to the Ring dataset tests if points inside and outside the ring are evaluated
similarly. For the Banana dataset, the outlier values assigned to points should vary
with distance from the shape of the banana and become gradually larger with
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increasing distance from the points. For the Densities dataset, the rate of change
from blue to red should be slower for the low-density cluster than for the high-
density cluster. Finally, for the Ring dataset, outliers within the ring should be
treated similarly to outliers outside the ring.

Figure 8.5 displays the representation spaces of the three datasets (the three
columns) with the color-coded outlier values superimposed. The white dots are
the points forming the datasets. The top row shows for SOS the outlier values
(probabilities) assigned to each representation-space location. The colors range from
dark blue (inliers; smallest outlier value or probability Poutlier = 0) to dark red/brown
(outliers; largest outlier value or probability Poutlier = 1). On the Banana dataset,
the SOS method assigns outlier values that vary smoothly with the shape of the
banana and become gradually larger with increasing distance from the points. For
the Densities dataset, the rate of change from blue to red is appropriately slower
for the lower left cluster (which has a low density) than for the upper right cluster
(which has a high density). For the Ring dataset, outliers within the ring are treated
similarly to outliers outside the ring.

The bottom four rows of the figure illustrate how other state-of-the-art methods
assign outlier values to locations in similarity space. For the Banana dataset, the
outlier values generated by LOCI and LSOD fail to follow the banana shape of the
points. For the Densities dataset, the other methods yield quite different outlier-value
assignments. Finally, for the Ring dataset, all other outlier detection methods fail to
treat interior and exterior ring locations equally in terms of outlier value assignment.

These qualitative evaluations show that the different methods behave differently
on different data distributions. We now turn to a quantitative assessment of their
performances on realistic datasets.

8.5.2 Performance Evaluation on Realistic Datasets

Our quantitative evaluation aims to assess the outlier detection performance of
the SOS method in comparison with its main alternatives. In practical outlier-
detection tasks, a wide variety of heterogeneous point distributions may arise. To
ensure generality of our comparative evaluation, we decided to select 18 datasets,
each from a completely different realistic application domain. We evaluated the
outlier-detection performance in terms of what we call the “weighted AUC”, a
performance measure that takes into account the detection rate and the false positive
rate and expresses the outlier-detection performance on a scale ranging from 0
(worst performance) to 1 (best performance). Figure 8.6 displays a plot of the
results of the comparative evaluation. For each outlier-detection method, it shows
the weighted AUC (vertical axis) achieved on each dataset (horizontal axis). The
curves connect the performances of a single method. The SOS method achieves the
best performance overall, because the curve associated with the SOS method (purple
curve with diamond markers) is almost always on top.
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NNDD (k =10)

LOF (k =10)
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SOS (h =10)
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Fig. 8.5 Qualitative (visual) evaluation of outlier scores assigned to three datasets (columns) by
the SOS method (top row) and four other state-of-the-art outlier detection methods (bottom four
rows). Each square shows a two-dimensional representation space containing points (white dots).
All other locations are colored according to the outlier value generated for that location. Outlier
values are color-coded and range from dark blue (inliers) to dark red/brown (outliers)
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Fig. 8.6 Comparative evaluation of the SOS method and four competitive methods (NNDD, LOF,
LOCI, and LSOD) on 18 realistic datasets. The outlier-detection performance is expressed in terms
of the weighted AUC which ranges from 0 (worst performance) to 1 (best performance)

Outlier-selection algorithm

SOS NNDD LOF LOCI LSOD

Average AUC 0.811 0.748 0.763 0.716 0.742

Average rank 1.250 3.444 2.833 4.639 2.833

Fig. 8.7 Numerical summary of the comparative evaluation of the SOS method and four compet-
itive methods. The average AUC is the weighted AUC averaged over all 18 datasets. The average
rank is obtained using a statistical method that determines the ranking of the methods on the basis
of their performances. Smaller ranks correspond to better performing methods

A numerical summary of the results is presented in Fig. 8.7. The row labeled
“Average AUC” lists the weighted AUC averaged over all 18 datasets. The row
labeled “Average rank” specifies the ranks of the methods as obtained from a
statistical method [7] that determines the ranking of the methods on the basis
of their performances. The statistical method is necessary because we compare
average performances of outlier-detection methods and we would like to assess
the probability that differences in performance are due to chance. Smaller ranks
correspond to better performing methods. The SOS method outperforms all other
methods in terms of average AUC and achieves the highest rank.
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8.6 Discussion and Conclusion

The SOS method has been shown to provide the best overall performance on our
selection of 18 realistic datasets, as compared to state-of-the-art outlier detection
methods. In addition to this result, the SOS method has an important advantage
over existing density-based methods. It provides easily interpretable outlier values
that correspond to probabilities. When confronted with many (potential) outliers,
operators working in the maritime domain (or any other realistic domain) may
prioritize the outliers using their associated probabilities, by dealing with the most
probable outlier first.

It is a well-known fact in machine learning that there is no single best method
for a given dataset or application domain. Similarly, we do not claim that the SOS
method is the best method of choice for all domains. We have observed that the SOS
method often, but not always, outperforms competitive methods.

Although we have succeeded in developing a density-based outlier-detection
algorithm that performs well in comparison to state-of-the-art algorithms, a more
extensive evaluation in the maritime domain has still to be performed. Provided that
the maritime representation space is defined in cooperation with domain experts,
we are confident that the SOS method will be successful in detecting outliers.
We conclude that the SOS method provides an outlier-detection method that can
be successfully applied in a wide variety of domains.
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Chapter 9
Analyzing Vessel Behavior Using Process Mining

Fabrizio M. Maggi, Arjan J. Mooij, and Wil M.P. van der Aalst

9.1 Introduction

Maritime safety and security aims at preventing accidents and activities such
as illegal immigration, terrorist attacks, smuggling, piracy, and illegal pollution.
Electronic sensors such as radars and AIS (Automatic Identification System, [5])
receivers are used for collecting data about the vessels in a certain geographical area.
When using AIS receivers, every vessel periodically broadcasts messages that report
information such as vessel identifier, vessel type (e.g., passenger ship, cargo ship
and military vessel), position, speed, destination, ship dimensions, and navigational
state (e.g., moored, under way using engine and not under command). To detect
suspicious vessel behavior, innovative methodologies are needed to analyze these
large amounts of data.

In this chapter, we investigate the use of process mining [16] for analyzing the
behavior of vessels, and in particular for detecting anomalies, i.e., deviations from
the normal behavior. Process mining is usually applied in the context of business
process management to analyze business processes based on event logs. An event
log (see the example in Fig. 9.1) is a list of events, and each event refers to a process
instance identifier (in Fig. 9.1, a process instance corresponds to a specific vessel
identifier) and to an activity. The process instances are considered to be independent,
and all events belonging to the same process instance are ordered. An event log can
also contain a timestamp specifying when an event has occurred.
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Vessel identifier Timestamp Activity

35654423 30-12-2010, 11:02 at anchor
35654423 31-12-2010, 10:06 under way using engine
35654423 01-01-2011, 15:12 moored
35654423 06-01-2011, 11:18 under way using engine
35654423 07-01-2011, 14:24 restricted manoeuvrability

35654485 30-12-2010, 11:32 moored
35654485 30-12-2010, 12:12 under way using engine
35654485 30-12-2010, 14:16 restricted manoeuvrability
35654485 05-01-2011, 11:22 moored
35654485 08-01-2011, 12:05 under way using engine

35654521 30-12-2010, 14:32 moored
35654521 30-12-2010, 15:06 under way using engine
35654521 30-12-2010, 16:34 at anchor
35654521 06-01-2011, 09:18 under way sailing
35654521 06-01-2011, 12:18 constrained by her draught
35654521 06-01-2011, 13:06 under way using engine
35654521 08-01-2011, 11:43 under way sailing
35654521 09-01-2011, 09:55 moored
35654521 15-01-2011, 10:45 under way sailing

Fig. 9.1 Fragments of AIS event logs for three vessels based on changes in navigational state

In the context of process mining, the number of activities is generally assumed
to be limited. Hence, in contrast to the techniques for anomaly detection described
in Chap. 8, it is not natural to apply process mining by using as activities the exact
geographical positions of vessels. A possibility would be to translate the positions
into a number of areas. However, as a running example we focus on the navigational
state of the vessels instead, resulting in event logs like the one shown in Fig. 9.1. The
navigational state does not change frequently, and hence we only consider for each
vessel the changes in the navigational state; i.e., the event under way using engine
marks the moment that a vessel changes its navigational state to under way using
engine.

To analyze the vessel behavior, we apply the two-phase approach from Fig. 9.2.
In the first phase, Discovery, we use historical AIS data to extract a reference
model of the normal behavior of vessels. To avoid being too specific (making a
reference model per individual vessel), or being too general (making one reference
model for all vessels), we aim for one reference model per vessel type (that can
be derived from AIS messages). The discovery techniques from this chapter can do
this automatically. The discovered models can be validated and adapted by domain
experts to completely fit their needs.

In the second phase, Monitoring, we use monitoring techniques to compare the
reference model with current data. The purpose is to assess whether the current data
complies with the reference model and to provide diagnostics about any anomalies.
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Fig. 9.2 Phased approach for analyzing vessel behavior

Traditional process mining techniques, especially those for discovery, use proce-
dural models, which explicitly show all behaviors. For unstructured processes, this
often leads to large and complex models [4, 6]. As an alternative, in this chapter we
focus on constraint-based models, which describe the behavior using a (compact)
set of constraints. An example of a single constraint is “whenever event moored
occurs, eventually event under way using engine occurs”.

Overview Section 9.2 introduces basic process mining concepts and terminology.
Section 9.3 continues by introducing the Declare language to describe constraint-
based process models. Such constraint-based models are used in Sect. 9.4 for offline
discovery and in Sect. 9.5 for online monitoring. Finally, Sect. 9.6 concludes the
chapter.

9.2 Process Mining

In this section, we introduce the field of process mining. Process mining [16]
is a relatively young discipline developed in the context of business process
management. It sits between computational intelligence and data mining on the one
hand, and process modeling and analysis on the other hand. The idea of process
mining is to discover, monitor and improve processes by extracting knowledge from
data readily available in today’s systems.

A process is a set of activities that are performed in coordination in an
organizational and technical environment and jointly orchestrated to realize a
goal [18]. Examples of processes include: invoice processing, insurance claim
handling, online purchasing of flight tickets, mortgage application processing.
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Fig. 9.3 Overview of the process mining spectrum for maritime safety and security systems

Broadly defined, processes can range from relatively simple activities such as
publishing and maintaining information on a public web site to more sophisticated
processes such as handling transactions in a large bank.

The starting point for process mining is an event log. All techniques for process
mining assume that it is possible to sequentially record events. Each event refers
to a process instance (i.e., a single execution of the process) and an activity (i.e.,
a well-defined step in the process). Event logs may store additional information
about events, such as the timestamp of the event, the resource (i.e., person or device)
executing or initiating the activity, or any other data elements recorded with the
event (e.g., the size of an order).

Figure 9.3 (based on the reference framework from [16]) gives an overview of the
process mining spectrum in a maritime context. The event logs are partitioned into
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two kinds: pre mortem and post mortem. Pre mortem logs refer to current process
instances that are ongoing; post mortem logs refer to historical process instances
that have completed.

The framework also distinguishes two types of models: de jure and de facto.
A de jure model is normative, i.e., it specifies how things should be done or handled.
A de facto model is descriptive and its goal is not to steer or control reality; instead,
de facto models aim at capturing reality.

The two large arrows in Fig. 9.3 illustrate that de facto models are derived
from reality (right downward arrow) and that de jure models aim at influencing
reality (left upward arrow). The framework identifies ten process mining related
activities, which can be grouped into three categories: cartography, auditing, and
navigation:

1. Discover. This activity is concerned with the extraction of (process) models
from event logs.

2. Enhance. When existing process models (either discovered or hand-made)
can be connected to events logs, it is possible to enhance these models. This
connection can be used to repair models or to extend them.

3. Diagnose. This activity does not directly use event logs and focuses on classical
model-based process analysis, e.g., process models can be checked for the
absence of deadlocks, or process models can be simulated to estimate the effect
of various redesigns on average cycle times.

4. Detect. This activity compares de jure models with current pre mortem data
with the goal to detect deviations at runtime.

5. Check. Post mortem data can be cross-checked with de jure models. The goal
of this activity is to pinpoint deviations and quantify the level of compliance.

6. Compare. De facto models can be compared with de jure models to see in what
way reality deviates from what was planned or expected. No event log is used
directly, but the de facto model may have been discovered using historical data.

7. Promote. Based on an analysis of the differences between a de facto model and
a de jure model, it is possible to promote parts of the de facto model to a new de
jure model. By promoting proven “best practices” to the de jure model, existing
processes can be improved.

8. Explore. The combination of event data and models can be used to explore
business processes at runtime. Ongoing process instances can be visualized and
compared with similar process instances that were handled earlier.

9. Predict. By combining information about running process instances with
models (discovered or hand-made), it is possible to make predictions about the
future, e.g., the remaining execution time.

10. Recommend. The information used for predicting the future can also be used to
recommend suitable actions (e.g., to minimize costs or time).

The Discovery phase in Fig. 9.2 corresponds to the discover activity in Fig. 9.3.
The discovered models are de facto models as they aim at capturing what is really
happening in the post mortem logs. After analysis by domain experts, these de facto
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models become de jure models, i.e., models describing the acceptable behavior. The
Monitoring phase in Fig. 9.2 corresponds to the detect activity in Fig. 9.3. The de
jure models are used to analyze the pre mortem logs.

9.3 Constraint-Based Process Models

In this section, we introduce constraint-based process models, and compare them
to procedural models. We also introduce the Declare language that we use in this
chapter for describing constraint-based models.

9.3.1 Motivation

Processes can be described using two different types of models: procedural
models and constraint-based models. A procedural model explicitly describes all
the acceptable sequences of activities in a process. In contrast, a constraint-based
model consists of a list of restrictions to be satisfied by the process.

Procedural models are more supportive for guiding a process during execution.
Referring to the process spectrum in Fig. 9.4, procedural languages are more suitable
to represent structured processes. In contrast, procedural models become large
and complex [4, 6] when used to represent unstructured processes, e.g., when
decisions are not made centrally. Constraint-based models can remain compact for
unstructured processes with a low degree of predictability.

Fig. 9.4 Process spectrum: two procedural models discovered using process mining
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Fig. 9.5 Example Declare reference model for vessel type dredger

Table 9.1 Summary of basic
temporal LTL operators and
their semantics

Operator Semantics

©ϕ Formula ϕ is satisfied in the next state
�ϕ Formula ϕ is always satisfied in the future
♦ϕ Formula ϕ is eventually satisfied in the future
ϕ �ψ Formula ϕ is satisfied until formula ψ is satisfied,

and formula ψ is eventually satisfied in the future

9.3.2 Declare Language

The Declare language is a constraint-based language that combines a formal
semantics for analysis purposes with a graphical representation for users. Figure 9.5
shows an example of a Declare model in the context of maritime safety and security.
We use this example to explain the main concepts and refer the reader to [12,13,17]
for more information about the Declare language.

The model involves four activities (depicted as rectangles, e.g., under way
using engine) and three constraints (depicted as connections between activities).
In this case, each activity relates to a change in the navigational state of a vessel.
Each constraint is based on a template (e.g., not co-existence) that determines the
graphical appearance and the semantics.

Constraints highlight mandatory and forbidden behaviors. The not co-existence
constraint indicates that a vessel can, during its lifetime, perform events under way
using engine or events under way sailing but not a combination. The response
constraint indicates that, after any event moored, each vessel must eventually
perform an event under way using engine. Finally, the alternate response constraint
indicates that, whenever a vessel performs any event restricted manoeuvrability, it
must eventually perform an event under way using engine without other occurrences
of event restricted manoeuvrability in between.

The Declare language also has a formal semantics that enables verification and
automated reasoning. The semantics of each individual constraint can be formalized
as an LTL (Linear Temporal Logic) [14] formula using the temporal operators from
Table 9.1 and some basic logical operators (“not” ¬, “and” ∧, “or” ∨, “implies” ⇒).
The three constraints in Fig. 9.5 can be formalized as follows:

• Not co-existence constraint: ¬(♦E ∧ ♦S)
• Response constraint: �(M ⇒ ♦E)
• Alternate response constraint: �(R ⇒ © (¬R � E))
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where M, S, E and R respectively denote moored, under way sailing, under way
using engine and restricted manoeuvrability.

9.4 Discovering Declare Models

We have developed an approach [10] to support the automated discovery of Declare
models; see the Discovery phase in Fig. 9.2, and the discover activity in Fig. 9.3.
It has been implemented as the Declare Miner1 plug-in for the process mining tool
ProM.2 In Sect. 9.4.1 we introduce the Declare Miner, and in Sect. 9.4.2 and in
Sect. 9.4.3 we illustrate its use on AIS data.

9.4.1 Declare Miner

The Declare Miner automatically discovers a Declare model of a process based
on an event log. To guide the Declare Miner to any particular kind of properties,
an additional input is a set of Declare templates. The basic Declare Miner then
produces all constraints based on these templates that are satisfied on the event log.

By applying the Declare Miner to the AIS case study, we have identified three
issues: (a) historical logs may be truncated, (b) some constraints may be satisfied,
but trivially, (c) historical logs may contain noise. To be useful in practice, we
have solved these issues in the Declare Miner as summarized in Table 9.2. In what
follows, we briefly introduce the identified issues and their solutions.

9.4.1.1 Historical Logs May Be Truncated

Traditional business processes typically have a clearly defined begin and end
point. In contrast, in the context of AIS, the processes are non-terminating, and
hence the logs only contain fragments of process executions. This characteristic

Table 9.2 Advanced features of the Declare Miner

Synopsis Declare Miner parameter

Historical logs may be truncated Weak LTL semantics
Some constraints may be satisfied, but trivially Percentage of interesting witnesses (PoIW)
Historical logs may contain noise Percentage of instances (PoI)

1http://www.win.tue.nl/declare/declare-miner/
2http://www.processmining.org/

http://www.win.tue.nl/declare/declare-miner/
http://www.processmining.org/
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Event log: [M E M E ... M E M E M]

response(M, E) : is not satisfied with neutral LTL semantics
response(M, E) : is satisfied with weak LTL semantics
response(S, R) : is trivially satisfied

Fig. 9.6 Example log of a
single passenger ship

affects the discovered Declare models because some constraints can be temporarily
violated on the available part of a process instance, but satisfied on its continuation.

For instance, consider the event log in Fig. 9.6, where M and E denote events
moored and under way using engine respectively. The response constraint “when-
ever event moored occurs, eventually event under way using engine occurs” would
not be discovered using the basic Declare Miner. The reason is that event moored is
the last event, and hence this constraint is not satisfied with the normal (neutral) LTL
semantics. However, this constraint could be satisfied in a continuation of this log.

To address this issue, we apply the truncated semantics from [3]. At the end of
each (prefix of an) event log, four evaluations of a constraint are possible:

• Satisfied: it is currently satisfied and cannot become violated in the future;
• Possibly satisfied: it is currently satisfied, but can become violated in the future;
• Possibly violated: it is currently violated, but can become satisfied in the future;
• Violated: it is currently violated and cannot become satisfied in the future.

In Fig. 9.6, the response constraint explained before is possibly violated at the end
of the log.

Based on these four evaluations, several LTL semantics [3] have been proposed.
Using the neutral semantics, a constraint is discovered if it is satisfied or possibly
satisfied at the end of the event log. Using the weak semantics, a constraint is
discovered if the evaluation at the end of the log is different from violated. Hence,
the discussed response constraint in Fig. 9.6 would be discovered using the weak
semantics. The Declare Miner offers the option to choose the LTL semantics
(neutral or weak). For truncated logs, the weak semantics is recommended.

9.4.1.2 Some Constraints May Be Satisfied, But Trivially

Some constraints are satisfied on the log, but still do not seem to capture the behavior
in the log. For instance, consider again the event log in Fig. 9.6, where S and R
denote events under way sailing and restricted manoeuvrability respectively. The
response constraint “whenever event under way sailing occurs, eventually event
restricted manoeuvrability occurs” is satisfied. This constraint is even trivially (or
vacuously [2,7,15]) satisfied, as these two activities do not occur in the log. As such
it does not capture the behavior in this event log, and hence the user might not be
interested in it.

To address this issue, the Declare Miner offers the option to set the parameter
Percentage of Interesting Witnesses (PoIW) that specifies that a Declare constraint
can be discovered only if there is a certain percentage of process instances in the log
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Table 9.3 Experimental settings for passenger ships

Experiment Template Semantics PoIW (%) PoI (%)

1 Chain response Neutral 0 100
2 Chain response Weak 0 100
3 Chain response Weak 5 100

where the constraint is non-trivially satisfied (these instances are called in literature
“interesting witnesses” [2, 7, 15]). For example, if PoIW = 20%, a constraint will be
discovered only if it is non-trivial in at least 20% of the process instances in the log.

9.4.1.3 Historical Logs May Contain Noise

The historical logs may contain some noise or even some anomalies. “Noise” is a
general, technical term that, in the context of maritime safety and security, can be
related to AIS messages that may be lost or corrupted during transmission, e.g., due
to weather conditions or bad reception. In this case, there may be constraints that
are satisfied in most process instances, but that are violated in only a few instances
(due to the presence of noise), and hence they are not discovered.

To address this issue, the Declare Miner offers the option to set the parameter
Percentage of Instances (PoI) that specifies that a Declare constraint can be
discovered even if it is not satisfied for all process instances in the log. For instance,
if PoI = 80%, a constraint will be discovered if at least 80% of the process instances
satisfy the constraint.

9.4.2 Case Study: Passenger Ships

To illustrate the discovery of Declare models, in this section we aim at discovering
the normal behavior of 60 vessels of type passenger ship.3 Most of the process
instances look like a regular alternation of events under way using engine and
moored; see for example Fig. 9.6. In particular, we want to identify events that
always appear next to each other, and focus on chain response constraints. An
example of chain response constraint is “whenever event under way using engine
occurs, event moored occurs next”. Table 9.3 shows the settings of the Declare
Miner for the three experiments that we discuss next.

In the first experiment, we use the basic Declare Miner without the advanced
features from Table 9.2. That is, we use neutral semantics, we do not require any
interesting witnesses, and we require that constraints are satisfied in all process

3All the experiments illustrated in this chapter use AIS data registered along the Dutch coast in the
first week of June 2007
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Fig. 9.7 Discovered Declare model for passenger ships in ProM (experiment 2 in Table 9.3)

Fig. 9.8 Discovered Declare model for passenger ships (experiment 3 in Table 9.3)

instances. As a result, the Declare Miner generates an empty model: it is not
possible to discover any chain response constraint using these settings.

In the second experiment, we take into account that the log contains truncated
process instances, and hence use the weak semantics. As a result, the Declare Miner
generates the Declare model shown in Fig. 9.7. This model contains five chain
response constraints. The chain response constraint between events under way using
engine and moored reflects the characteristic alternation of events under way using
engine and moored for this vessel type. However, the discovered model contains
several extra constraints (note that one of the possible values for an event according
to the AIS standard is not defined).

In the third experiment, we require that the discovered constraints are non-
trivially satisfied in at least 5% of the process instances, by setting the percentage
of interesting witnesses to 5%. As a result, the Declare Miner generates the Declare
model shown in Fig. 9.8. Comparing this one with Fig. 9.7, it is clear that most of
the constraints from Fig. 9.7 are trivially satisfied in most of the process instances.
The single constraint in Fig. 9.8 is the only one that is non-trivial in (at least) 5% of
the process instances.



144 F.M. Maggi et al.

Table 9.4 Experimental settings for dredgers

Experiment Template Semantics PoIW (%) PoI (%)

1 Alternate response Weak 5 100
2 Alternate response Weak 10 100
3 Alternate response Weak 20 90

Fig. 9.9 Discovered Declare model for dredgers (experiment 1 in Table 9.4)

Fig. 9.10 Discovered Declare model for dredgers (experiment 3 in Table 9.4)

9.4.3 Case Study: Dredger

In this section, we continue by discovering the normal behavior of 56 vessels of
type dredger. In particular, we focus on alternate response constraints. An example
of an alternate response constraint is “whenever event at anchor occurs, eventually
event under way using engine occurs without repetitions of at anchor in between”.
Table 9.4 shows the settings of the Declare Miner for the three experiments that we
discuss next.

In the first experiment, we continue with the settings of the last experiment from
Sect. 9.4.2. As a result, the Declare Miner generates the Declare model shown in
Fig. 9.9, containing one alternate response constraint.

In the second experiment, we try to further increase the required number of
interesting witnesses to 10% of the process instances. As a result, the Declare Miner
generates an empty model. For the constraint discovered in the first experiment, this
means that it was trivially satisfied in many process instances.

In the third experiment, we take into account that there may be some noise or
anomalies in the log, and decrease the required number of instances to 90%. At
the same time, we increase the required number of interesting witnesses even more.
As a result, the Declare Miner generates the Declare model shown in Fig. 9.10.
This single constraint is not satisfied in all process instances, but it is non-trivially
satisfied in many process instances. Note that this constraint is part of the reference
model in Fig. 9.5.
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9.5 Monitoring Declare Models

We have developed an approach [9, 11] to support monitoring based on Declare
models; see the Monitoring phase in Fig. 9.2, and the detect activity in Fig. 9.3. It has
been implemented as the Mobucon4 (Monitoring business constraints) framework
that has been implemented using the process mining tool ProM. In Sect. 9.5.1 we
introduce the Mobucon framework, and in Sect. 9.5.2 we illustrate its use on AIS
data.

9.5.1 Mobucon

The Mobucon framework monitors current event logs based on a reference model
expressed in Declare. After every received event, the Mobucon framework reports
the evaluation of all constraints. The four possible evaluations are the ones described
in Sect. 9.4.1: satisfied, possibly satisfied, possibly violated and violated.

Fine-grained diagnostics are provided to the end users about the evaluation of
each constraint, and in case of a violation also the reason of the violation. Apart
from a single constraint becoming violated, it is also possible that two (or more)
constraints become conflicting. A conflict indicates that there is no possible future
continuation such that all the constraints become satisfied.

Also a health notion is computed for each process instance that indicates the
degree of compliance to the constraints. It can be computed using different metrics,
which can consider the current evaluations of the constraints as well as any weight
that can be assigned to each individual constraint. For example, the health at some
time t can be computed through the formula

health(t) = 1− ∑i #violationsi(t) ·weighti
∑i #events(t) ·weighti

where i ranges over the constraints. For each constraint i, weighti denotes the
assigned weight, and #violationsi(t) denotes the number of violations until time t;
#events(t) denotes the total number of events until time t.

In the maritime safety and security domain, it is crucial to continue monitoring
after any violation. To provide such continuous monitoring capabilities, Mobucon
has several recovery mechanisms that allow a violated constraint to become non-
violated again. For instance, after a violation it is possible to move the constraint to
the state before the violation or to reset the constraint to the initial state.

Other monitoring techniques such as [1, 8] typically limit themselves to produce
as output only a truth value representing whether the current data comply with
the monitored constraints. Furthermore, monitoring usually halts as soon as a
(permanent) violation is encountered.

4http://www.win.tue.nl/declare/mobucon/

http://www.win.tue.nl/declare/mobucon/
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Meaning of the colors:

blue: satisfied;
green: possibly satisfied;
yellow: possibly violated;
red: violated;
orange: conflict.
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Fig. 9.11 Monitoring a single vessel of type dredger in Mobucon

9.5.2 Case Study: Dredger

To illustrate the monitoring of Declare models, in this section we aim at monitoring
the vessels of type dredger with respect to a reference model describing the normal
behavior. As a reference model we use the Declare model from Fig. 9.5, which
contains the three constraints that were explained in Sect. 9.3.2. In particular,
the alternate response constraint was discovered in Fig. 9.10 based on the third
experiment in Sect. 9.4.3.

Figure 9.11 shows a screenshot of the main window of Mobucon for a specific
vessel. The events are displayed on the horizontal axis, whereas the constraints from
the reference model are displayed on the vertical axis; for the sake of readability, all
activity names have been abbreviated. On top, the health metric is displayed.

The first event (mentioned at the bottom after start) is moored, and when it
occurs, the response constraint becomes possibly violated; in the future it requires
an event under way using engine to become satisfied again. The second event is
under way sailing, which leads to a conflict between the not co-existence and the
response constraints. The not co-existence constraint forbids a future event under
way using engine, whereas the response constraint requires such an event. As a
recovery mechanism, the conflicting constraints are afterwards moved to the state
before the violation.

The third event is under way using engine. The response constraint was expecting
this one, and now becomes possibly satisfied. The fourth event is under way sailing.
This event makes the not co-existence constraint violated, because both under way
using engine and under way sailing have occurred. Also in this case the violated
constraint is afterwards moved to the state before the violation. The fifth event is
moored, which makes the response constraint possibly violated. Note that, when
the process instance completes, the possibly violated constraints (in this case the
response constraint) become violated because it is not possible to satisfy them
anymore.
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The displayed health trend is based on the metric from Sect. 9.5.1. The health
decreases in correspondence with each violation, but conflicts do not affect the
system health. In this example, violations of the response constraint influence
the health more than violations of the not co-existence constraint, because of the
assigned weights.

9.6 Conclusions

In the context of maritime safety and security, electronic sensors such as radar and
AIS receivers provide large amounts of data that can be used to analyze the behavior
of vessels. In order to work in an effective and efficient manner, operators need to
extract a complete but understandable “picture” of the vessels’ behaviors.

We have demonstrated how process mining techniques can contribute to this. In
particular, process discovery enables users to automatically extract reference models
that describe the normal behavior of vessels based on large amounts of (historical)
data. Moreover, process mining can also be applied on running cases for online
monitoring of data streams.

To model the behavior of vessels, we have used the Declare language. Declare is
a constraint-based language that can specify complex behavior in terms of a couple
of restrictions. Declare combines a formal semantics for analysis purposes with a
graphical representation for users.

We have developed an offline discovery technique to automatically extract
constraint-based reference models from logs. It allows users to guide the discovery
to the specific constraint templates they are interested in. Based on experiments with
AIS data, several advanced features have been implemented to improve the practical
usability. Moreover, in our experiments, we have analyzed in a few seconds data sets
containing up to 900 vessels and 250,000 events. This demonstrates the scalability
of our approach.

We have also developed an online monitoring technique to support anomaly
detection based on constraint-based reference models. In addition to providing diag-
nostics about any constraint violations, the framework offers various possibilities to
continue monitoring after a violation has occurred, which is crucial for applications
in maritime safety and security.
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Chapter 10
The Simple Event Model

Willem Robert van Hage and Davide Ceolin

10.1 Introduction

In this chapter we will give a gentle introduction to event modeling using the Simple
Event Model (SEM) [5], a graph model for events and related concepts, like involved
actors, places, and time. We will take the perspective of setting up a simple
quantitative experiment to show how the Simple Event Model can be applied to the
analysis of maritime event data. This allows us to give a structured presentation of
event modeling, semantic web languages like the Resource Description Framework
(RDF)1 RDF Vocabulary Description Language (also known as RDF Schema
language, or RDFS),2 the Simple Event Model, and how to use the query language
SPARQL3 to take selections from complex event models.

We focus on a specific type of task in the field of maritime situation awareness,
the analysis of past events. This is also called historical analysis, where historical
means before the current moment, but not necessarily ages ago. Historical event
analysis can be used to answer questions like:

Which type of ships most often violate traffic rules?
Is there a correlation between the type of piracy activity and the place in the world?
How many oil tankers have been hijacked in the past year?

1RDF, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
2RDFS, http://www.w3.org/TR/rdf-schema/
3SPARQL, http://www.w3.org/TR/rdf-sparql-query/
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These questions can be answered using simple statistics on counts of records of
observed events. The hard part is to specify exactly which events to count and
which to disregard. The specification of this selection can be seen as the core of
the experimental set-up.

What this specification looks like depends on the structure of the event records.
In simple cases it suffices to use a simple table format to represent events.
For instance, if one takes the last question, which is the number of hijacked
oil tankers in the past year, it would suffice to simply collect a table (e.g. in
a spreadsheet or database) where each row stands for a piracy event instance.
In this table the first column could hold the type of pirate activity (e.g. hijacking
or robbery), the second column could hold the type of the victimized ship (e.g.
oil tanker or cruise ship), the third column could hold the date of the event.
Given this representation, the specification of the question is a selection of rows
where the value in the first column equals “hijacking”, the second column equals
“oil tanker”, and the third column holds a value between the current date and 1 year
before. Answering the question entails counting the number of selected rows. If the
table is stored in a relational database in a table called “event” with columns named
(“event type”, “ship type”, and “timestamp”) this question can be formalized in the
SQL query language as:

SELECT COUNT(*)
FROM event
WHERE event_type = "hijacking"

and ship_type = "oil tanker"
and timestamp >= DATE_SUB(CURDATE(),

INTERVAL 1 YEAR)

In real life events are often hard to fit into such a simple and clear table format.
Most of the hard decisions already have to happen to make event data into the table.
For example, there can be multiple ships involved in a single event; the date can
be unknown; it can be known that the ship is some kind of tanker, but whether it
is an oil tanker is not specified; or it can be the case that the events are specified at
different levels of abstraction, such as a single observation of a ship’s position (e.g.
by radar or AIS message4) or a cross-ocean journey. One solution is to improve
the data collection process, but when the data were collected by a third party that
can not be influenced – a very common situation when using data from the Web or
Semantic Web – this is impossible. The most difficult issue occurs when one wants
to reuse event records that were collected for the purpose of answering one question
to answer a related but different question which requires additional information,
like which company owns the ship, which multinational owns that company, where
is this company based, etc. This can require a drastic redesign of the existing table
structure.

The Simple Event Model (SEM) was designed to tackle these issues of missing
and extraneous bits of information and of differing levels of abstraction. The crucial

4AIS, http://nl.wikipedia.org/wiki/Automatic Identification System

http://nl.wikipedia.org/wiki/Automatic_Identification_System
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property of SEM that solves all of the issues mentioned above is that it uses a
graph representation of events as opposed to a table representation. This makes it
possible to duplicate any property (e.g. to have more than one actor or event type),
to omit any property, to interlink any part of the event with external information
(e.g. to link ships with their owners that exist in some external model, or to use
place descriptions from some existing geographical ontology, i.e., a description of
a geographical conceptualization), and to use subclass hierarchies wherever needed
(e.g. to specify that all oil tankers are tankers and all tankers are merchant vessels).
This flexibility gives the developer the opportunity to postpone many experimental
design decisions from the moment of data acquisition to the moment at which the
question has to be turned into a formal query.

There are many event models. Some, like CIDOC-CRM by Doerr et al. [2],
are large (about 140 classes, i.e., concepts), others, like the “Event Ontology” by
Raimond and Abdallah [3], are small (4 classes).5 The Simple Event Model is
a relatively small model with 16 classes in total of which 4 are by far the most
important ones, sem:Event, sem:Actor, sem:Place, and sem:Time. These four core
classes outline the basic idea underlying SEM, the motto “Who did what where and
when?” (“Why” and “How” are omitted, because the answers to these questions
are usually complex stories by themselves that require their own representation
languages). The other classes are used to further specify events and their context in
various ways. SEM is defined using the Resource Description Framework Schema
language (RDFS) and a few bits of Web Ontology Language (OWL).

The kind of cases where SEM is the most useful are those where the level of
abstraction is high (e.g. ships entering a harbor, not sensor readings) and the set
of event types, actor types or place types changes often, and where information
sources are being used that are not under the user’s control (e.g. crowd sourced
observation with an open vocabulary of types). The interpretation of ship behavior
by combining ship tracks with external sources, like harbor logs, GeoNames,6 and
extra ship information from Web sites, as done in the Maritime Safety and Security,
is a good example of such a case.

In Sect. 10.4 we will walk through all the constructs of SEM step by step, from
the basic notion of event along actors, places, time, and types to the complex notions
of temporary and subjective validity of properties. All constructs will be illustrated
with examples taken from two running example event models: a real example from
the domain of international maritime piracy monitoring, a palm oil tanker being
hijacked in Indonesia, and a fictional example from the domain of harbor situation
awareness, a tug towing an oil tanker into a harbor. These are described in their
entirety, but without attention to the details in Sects 10.2 and 10.3. The details will
be explained in Sect. 10.4 when the meaning of the SEM constructs is discussed.
We choose to use two examples for multiple reasons. We want at least one example
that is based on open data so that the reader can look up and try out the examples in

5For more information about these and related ontologies see the extensive discussion in [5].
6GeoNames, http://www.geonames.org/

http://www.geonames.org/
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this chapter (how this can be done in practice will be shown in Sect. 10.5). However,
the dataset that is most suitable for this purpose, the Linked Open Piracy data set,7

does not use all SEM constructs, so we use the second fictional example of the
tugged oil tanker to cover the rest of the SEM model.

10.2 Example 1: The Hijacking of a Palm Oil Tanker
in Indonesia

The first example we use to illustrate the SEM constructs is an example from the
Linked Open Piracy8 data set (LOP) containing piracy reports from the International
Chamber of Commerce. The event we focus on is the hijacking of an anonymous
(anonymized) palm oil tanker (classified as “product tanker” by the ICC) while
underway from Sulawesi to Surabaya in the Indonesian Exclusive Economic Zone
(EEZ). The complete RDF graph representing this event in SEM is shown in
Fig. 10.1. We do not expect the reader to understand this graph at this moment.
Parts of the graph will be discussed one by one in Sect. 10.4. For more information
about the origin, representation, and use of the data set from which this example
was drawn, see [4].

A legend of the visual elements used in all the diagrams in this chapter is shown
in Fig. 10.2. The colored ellipses stand for classes, that is, sets of things. The colors
themselves are only for visual distinction of the various parts of the Simple Event
Model. The core classes are green, the types, that represent sets of instances, are
blue, and the constraints orange. White ellipses or circles stand for instances of
the classes, boxes for (concrete) data values. Regular arrows stand for various

skos:
close Match

poseidon:event
_2008_109

sem:hasActor

sem:hasPlace

poseidon:etype
_hijacked

sem:eventType

poseidon:atype_
product_tanker

sem:actorType

sem:Event sem:Actor sem:Place

poseidon:ship
_victim_event
_2008_109

sem:EventType sem:ActorType

2008-05-21

sem:hasTimeStamp
-7.6674414

wgs84:lat

122.453613
wgs84:long

between Sulawesi to 
Surabaya

rdfs:label

About ten pirates armed with 

guns and knives boarded and 

hijacked a product tanker laden 

with crude palm oil. Pirates took 

14 crewmembers as hostage and

sailed the vessel to unknown 

location. ...

rdfs:comment

eez:Indonesia

eez:inEEZ

geonames:
1643084

geonames:inCountry
poseidon:etype

_piracy
wn30:synset-

hijacking-
noun-1

rdf:type rdf:type

rdf:type rdf:type

sem:subTypeOf

Fig. 10.1 An example event description of a palm oil tanker hijacking in Indonesia

7Linked Open Piracy: http://semanticweb.cs.vu.nl/lop
8Linked Open Piracy: http://semanticweb.cs.vu.nl/lop

http://semanticweb.cs.vu.nl/lop
http://semanticweb.cs.vu.nl/lop
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properties between the instances or classes. Dashed arrows, like in UML,9 stand
for instantiation relations, i.e. is-a relations. Open-ended arrows stand for subclass
relations.

10.3 Example 2: A Crude Oil Tanker Tugged into a Harbor

The second example we use to illustrate the SEM constructs is a fictional example of
a crude oil tanker, the “sts W. Alton Jones (2nd)” coming into a harbor while being
tugged by the tug boat “Aäron”. The distinctive features of this event description are
the following:

• It contains a subevent hierarchy containing an AIS observation of the ship by
an AIS station, the arrival of the ship and the entire trip from Egypt to the
Netherlands.

• There are two ships involved in a single event, both of which have a distinct role
in the event (the tugger and the tow).

• It has a time description using sem:hasTime as opposed to sem:hasTimeStamp
(see Sect. 10.4.4 for details about these two kinds of descriptions).

• The ais:flagLabel of the ship has a time constrained validity.

We will not go into what these features mean exactly here in this section. This
will be made clear in Sect. 10.4 as we go through all the constructs step by step.
The complete RDF graph describing this event is shown in Fig. 10.3. For more
examples of similar event descriptions from the maritime domain, see [6].

10.4 SEM Constructs

The first thing to note about the Simple Event Model is that it consists of three parts:
the core, types, and property constraints. The core classes deal with events and their
basic properties and constituents (actors, places and times). The types can be used
to categorize events and their constituents into classes. The property constraints can
be used to qualify event properties in some way. An overview of the classes of
the Simple Event Model and how they relate to each other is shown in Fig. 10.4.
An overview of all the properties of the Simple Event Model is shown in Fig. 10.5.
A detailed description of the design decisions and motivations underlying SEM can
be found in [5]. In the following sections we will discuss each of the elements
depicted in these figures one by one. We will start with events, then the other core
classes and then work our way down the model to the types and constraints.

9UML: http://en.wikipedia.org/wikiUnified Modeling Language

http://en.wikipedia.org/wikiUnified_Modeling_Language
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Fig. 10.3 An example event description of a crude oil tanker being tugged into a harbor
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In explaining the representation of SEM models in RDF it is impossible to refrain
from using the appropriate technical terms. Below is a short list of terms that we
will use along with a concise description. For more information about these or other
technical RDF terms please consult the RDF Primer10 and Specification11 or refer
to the book by Allemang and Hendler [1].

URI: Uniform Resource Identifier, a string of characters used to identify
anything we can talk about. These can be tangible or intangible things, sets of
things, or properties of things, anything denotable. The URI is a global identifier
of the thing it denotes. It is good practice that the dereferencing (i.e. looking up
using HTTP) of a URI returns a description in RDF of the thing it stands for.
Namespace: An XML namespace, or a URI prefix that is often used to group
and shorten URIs from a common authority.

10RDF Primer: http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
11RDF Spec: http://www.w3.org/TR/rdf-syntax-grammar/

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/rdf-syntax-grammar/
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QName: A shortened notation of a URI that consists of a colon-separated pair of
a short name indicating a namespace and a name. When the prefix and the name
are concatenated they form the entire URI of the denoted thing. For example,
if the short name “ex” stands for the namespace “http://example.org/” then
“ex:one” stands for the URI “http://example.org/one”. The short name of the
namespace can be chosen freely and has no meaning. It merely exists to shorten
the URI.
Triple: The atomic building block of RDF graphs, three identifiers or two
identifiers and a data value. A triple stands for an edge in an RDF graph. The first
place of the triple is the identifier of the source node of the edge, the second place
is the identifier that indicates the type of the edge, and the third place is either
the identifier of the target node of the edge or a data value. The identifiers can be
either global identifiers in the form of a URI, or local identifiers of nodes that can
not be referenced to from other RDF graphs. These nodes are also called “blank
nodes”.
Property: An edge in the RDF graph. A triple can be seen as a relation between
the source and target URI. In this sense, the triple also states that the source has
a certain property, the type of which is denoted by the second place of the triple.
This is why we call edges in the RDF graph properties.
Class: A set of RDF nodes. RDF nodes can be assigned to a class by asserting
a triple from that node to the URI of the class with the predefined RDF property
“rdf:type”. For example, if we state the triple “ex:apple rdf:type ex:fruit” this
makes “ex:apple” a member of “ex:fruit”.
Individual/instance: Members of a class are also called individuals or instances.
RDF: The language we use to describe graphs.
RDFS: The language we use to talk about classes, individuals, properties,
subclasses, and subproperties. All RDFS statements can be written down in RDF.
OWL: The language we use to talk about more complex properties of individu-
als, classes and properties then can be expressed with RDFS. For example, OWL
contains a property to state that one property is the inverse of another property.
We will only use a few OWL constructs in this chapter: owl:ObjectProperty
(properties pointing to a graph node), owl:DatatypeProperty (properties pointing
to a data value), and owl:inverseOf (specifies that two properties are the inverse
of each other, like sem:subEventOf and sem:hasSubEvent).

10.4.1 Events

The sem:Event class represents the class of all event instances. These can be events
of any kind, from an earthquake to the taking of a photograph, or the transmission
and reception of an AIS message. Events generally have actors, a place, and a
time. Two examples of events are shown in Fig. 10.6. These figures are snippets
from two larger event descriptions shown in Figs. 10.1 and 10.3. The irrelevant

http://example.org/
http://example.org/one
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Fig. 10.6 Example events and their types showing the use of sem:subEventOf and sem:
subTypeOf, taken from the examples outlined in Figs. 10.1 and 10.3

parts are omitted for the sake of legibility. The upper example shows the event
instance poseidon:event 2008 109.12 The dashed arrow labeled rdf:type denotes the
triple 〈poseidon:event 2008 109, rdf:type, sem:Event〉 that states it is a member
of the class of all sem:Events. The other dashed arrow labeled sem:eventType
denotes that this event is a hijacking by assigning a sem:EventType instance to
the event, in this case poseidon:etype hijacked. The sem:eventType property is a
subproperty of rdf:type that should only be used to assign types to events (not for
categorization of any other kind). This means that hereby we define that the
event poseidon:event 2008 109 is a member of the class poseidon:etype hijacked
that also contains all other described hijackings. We can also see in Fig. 10.6 that
there is a sem:subTypeOf property between poseidon:etype hijacked and posei-
don:etype piracy. This means that all the hijacking events are also piracy events
and that possibly there are other events that are piracy events, but not hijackings
(e.g. high sea robberies). sem:subTypeOf is a subproperty of rdfs:subClassOf. This
means sem:subTypeOf defines a subclass hierarchy of event types.

12The entire URI of this instance is http://semanticweb.cs.vu.nl/poseidon/ns/instances/event 2008
109, which is shortened to the QName poseidon:event 2008 109. Resolving the entire URI in a
browser will return more information about this resource. An RDF crawler or a triple store loading
over HTTP will get descriptive RDF about this URI instead.

http://semanticweb.cs.vu.nl/poseidon/ns/instances/event_2008_109
http://semanticweb.cs.vu.nl/poseidon/ns/instances/event_2008_109
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Fig. 10.7 Example event with actor and its actortype

In the lower example two event instances are shown with two different event
types. In this case there is also a sem:subEventOf property between the two events.
This defines that the “arrival of the sts W. Alton Jones (2nd)” event is a part of the
“trip from Port Said to Rotterdam” event. sem:subEventOf is an aggregation relation
(in the same sense as in UML) that builds a part-whole hierarchy (as opposed to
sem:subTypeOf, which builds a subclass hierarchy) and hence is not a subprop-
erty of rdfs:subClassOf. The sem:subEventOf and sem:subTypeOf properties have
inverse properties, respectively sem:hasSubEvent and sem:hasSubType, so that it is
possible to define the hierarchies top-down or bottom-up and end up with the same
semantics.

10.4.2 Actors

When it is necessary to state more than just “what happened”, like “who”
or “where” or “when”, just Events and EventTypes are not enough. The most
commonly represented part of events is actors. Actors can be anything, from a
star in a movie to the person or the camera taking a photograph to machinery
used in an experiment. They are represented as instances of the sem:Actor class.
The involvement of an actor in an event is represented with the sem:hasActor
property. For example, as shown in Fig. 10.7, where the ship that is hijacked,
poseidon:ship victim ship event 2008 109 is connected to the hijacking event posei-
don:event 2008 109. Actors can also have types, modeled analogously to the way
event types are modeled. In this case, the victim ship is a poseidon:atype product
tanker, which is defined using the sem:actorType property. It is quite possible that

an event has many actors and that one actor is involved in many events. It is also
possible that an event has no actors or that an actor is defined without any association
with an event. (There are event languages where events are modeled as predicates
and all knowledge about actors is contained inside the event predicate. In these
languages it is not possible to define properties of actors without defining at least
one event in which the actor participates.) All SEM properties (see Fig. 10.5) can
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Fig. 10.8 Example event with place showing the omission of a type and the use of a blank node
to specify an anonymous place somewhere in the exclusive economic zone of Indonesia

be omitted or duplicated as needed. That is, they are all optional, and it is also
possible to have more than one if necessary. Optionality is a useful feature when
there is incomplete knowledge. For example, it can be the case that the type is not
known, because it was not provided by the source of the information. An example
of this is shown in Fig. 10.8, where the sem:Place instance has no sem:PlaceType.
Duplicability can be useful when more than one instantiation of a property is valid.
For example, there can be more than one actor associated with an event and this can
be denoted by stating multiple sem:hasActor properties about the same event.

10.4.3 Places

In SEM the description of Places works exactly the same as the description of
Actors. They can be typed with the sem:placeType property and associated to an
event with the sem:hasPlace property. SEM itself does not provide any means
to define the geometry of a place or to put a Place in some kind of geograph-
ical categorization. These need to be borrowed from other ontologies, like the
W3C Basic Geo (WGS84) vocabulary,13 GeoRSS,14 or Geonames.15 Figure 10.8
shows an example that demonstrates both of these features (sem:placeType and
sem:hasPlace). The wgs84:lat and wgs84:long properties from the Basic Geo
vocabulary are used to assign coordinates to a place and the geonames:inCountry
property (in combination with the domain specific eez:inEEZ property) is used to
put the place in the Geonames place hierarchy under Indonesia.

13Basic Geo: http://www.w3.org/2003/01/geo/
14GeoRSS: http://www.georss.org/rdf rss1
15Geonames Ontology: http://www.geonames.org/ontology/

http://www.w3.org/2003/01/geo/
http://www.georss.org/rdf_rss1
http://www.geonames.org/ontology/
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On the Semantic Web, anybody can say anything about anything. Authorities
owning the domain name of a URI can state triples about this URI, but others can
also state things about this URI. It is quite possible to state triples that contradict
other triples. Therefore it is important to keep track of the origin of triples. Most
RDF systems record this origin in the fourth position of a triple.

It is possible to leave out parts of the description of SEM individuals. This
is particularly useful when describing places. One can distinguish two kinds of
underspecification with places: Places with no “name”, i.e. no global identifier in
the form of a URI, and places with no geometrical denotation. An example of the
latter is the place of your car keys. They must be somewhere, but the exact location
can be unknown. This can be represented by leaving out the geometry predicates of
the place denoting the location of the keys. An example of the former is the place of
a ship somewhere in the middle of the sea. Such a place may or may not be specified
by coordinates, but as opposed to the entire sea it does not have a name of its own,
and as opposed to the location of your car keys, it may not be an important subject of
discussion. We call both such places anonymous places and they can be represented
by blank nodes as shown in Fig. 10.8. Blank nodes are local identifiers of a node.
That means if someone else wants to refer to it from some other piece of RDF that
is impossible. The advantage is that it is not necessary to think up (e.g. generate) a
URI for a nameless place. If it is relevant to relate the anonymous place of the ship
to the place of the sea one can make use of geographical part-whole relations from
external ontologies, for example, geonames:parentFeature or geonames:inCountry.

10.4.4 Time

Time has a unique place in SEM. Whereas places are only used to localize events,
time can be associated to any SEM class instance. For example, actors can be
assigned a time. This can be used to denote the “life span” of an entity. Time
descriptions can refer to instants, intervals, or they can be symbols that abstractly
denote some time (e.g. “ex:t1”).

There are two ways to specify time in SEM. One works exactly analogous to
places, using the sem:hasTime property, sem:Time class and sem:TimeType class.
The other uses the subproperties of the sem:hasTimeStamp datatype property. These
two alternatives are shown in Fig. 10.9. The timestamp notation exists to reduce the
representational complexity of assigning time to everything. Timestamps directly
refer to a literal denoting the time, for example, a string in XML Schema ISO 8601
format. This means the time as such does not have a node in the RDF graph that
can be linked to, neither a blank node nor a URI. Therefore, nothing more can be
said about that time instance. If something has to be said about a time instance, for
example, how it was acquired, whether it was before or after some other time (which
can be the only thing known about a moment, like some unknown time of death in
a detective novel), then timestamps do not suffice and sem:hasTime will need to
be used.
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Fig. 10.9 Example event with time indications showing the two alternative ways to indicate time
and the use of two-value timestamps

In some cases it can be necessary to state more about a time than just a
single timestamp. Apart from single timestamps, denoted by sem:hasTimeStamp,
SEM has two additional levels of timestamps: two-value time for denoting
intervals, and four-value time for denoting intervals with an uncertain beginning
and/or end. An example of two-value time is a tea break with a start time,
denoted with sem:hasBeginTimeStamp and a time at which it ends, denoted
with sem:hasEndTimeStamp. Things that start and do not end or have no
known end point can be denoted by omitting the sem:hasEndTimeStamp
property. To say that the end of the tea break happens sometime between four
and five, there is the four-value time properties sem:hasEarliestEndTimeStamp
and sem:hasLatestEndTimeStamp. An uncertain beginning works analogously.
Figure 10.9 shows an example of one-value time and two-value time without
uncertainty. Another option is to use the OWL Time ontology to describe a
sem:Time instance denoting the time instance. OWL Time has a large array of
classes and properties to describe time.
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10.4.5 Role

Constraints are the most complicated tool in the SEM toolbox. They are meant
to say things about the properties between SEM instances (e.g. sem:hasActor or
sem:placeType), for example, to qualify the way in which an actor is involved
in an event by constraining the sem:hasActor property. SEM has three ways to
constrain the meaning of one of its core event properties: Roles, Temporaries
(see Sect. 10.4.7), and Views (see Sect. 10.4.6). The first of the sem:Constraints we
will discuss is the role.

As opposed to Types, which are used to assign permanently valid categories
to entities, Roles can be used to denote that in the context of a specific event
the individual referred to belongs in a certain category, i.e. plays a specific role.
For example, the actor of the “mail sending” event referred to by the constrained
sem:hasActor property is the receiver of the mail, not the sender. One can argue
that a simpler way to represent this role is to make a subproperty has Receiver
of the sem:hasActor property. This is indeed good practice. The advantage of
treating the role as an object with properties as opposed to a property is that one
can reuse terms that are not properties from external vocabularies to denote the role.
For example, “receiver” might exist in WordNet, but as an object, not as a property.
Since it is an object we can not reuse it by making it a subproperty of sem:hasActor.
Saying the actor is of sem:actorType receiver would mean he is the receiver in every
event. That is probably not what we want to say. We only want to say he is the
receiver in this single event. This is when it becomes useful to make a role with
the WordNet URI for receiver as sem:roleType. In Fig. 10.10 we show an example
of a role constraining the sem:hasActor property to the role of wordnet:tow-noun-1
(i.e. being tugged). The rdf:value property connects the blank node representing the
constrained property to the (original) value of that property, in this case the ship that
is being towed. In some other event this ship might not be towed, but sailing on its
own accord, while the sem:ActorType assigned to the ship is valid in all events.

10.4.6 View

Views can be used to denote which source claims that a certain property holds. This
can be useful when different, possibly conflicting values need to be stored at the
same time. The source stating a property is called an Authority. This can refer to
any source of facts, such as a person, a file, or a sensor. A set of SEM statements
should be seen as a truthful representation of some possibly incorrect description
of an event. The actual real-world truth is irrelevant to SEM models. They exist
solely to convey a description of an event from one party to another. Figure 10.11
shows a View constraint applied to the sem:hasPlace property to denote that the
AIS station poseidon:ais 1 was the source of the anonymous place with the attached
coordinates. There could be other AIS stations that passed through this message.
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Fig. 10.10 Example event and an actor with a specific role. In this case the crude oil tanker is
the tow, not the tug. This role is local to this event. In another event it might be the one doing the
tugging

sem:Event

4.34621

wgs84:lat
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sem:hasPlace rdf:value
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rdf:type
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Fig. 10.11 Example of a View denoting the source of the place of an event. In this case, the place
was acquired from an AIS station

These sources could be modeled with additional sem:accordingTo properties on
the blank node or with additional separate sem:Views. Views can be applied to all
subproperties of sem:eventProperty and sem:type.
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Jones (2nd)

sem:Temporary rdf:type 1965sem:hasBeginTimeStamp

LBRrdf:value

rdf:type

ais:flagLabel

1959sem:hasBeginTimeStamp

Fig. 10.12 Example of a Temporary constraint applied to a property of an actor. This example
shows that the actor predates one of its properties. 6 years after the ship was built it changed
ownership which caused a change of flag

10.4.7 Temporary

Temporaries can be used to denote that a property holds during a certain time.
In the description of Time we have already seen that any instance of a SEM class
can be timestamped. Temporaries can be used to accomplish the same thing for
SEM properties. Stating that the place “Den Haag” has a certain begin and end
timestamp is the same as to state that the place exists between these points in time.
Saying that the type of the place is “seat of government” between two points can
be done by applying a sem:Temporary constraint to the sem:actorType property
pointing at “seat of government”. Figure 10.12 shows how to constrain the validity
of the ais:flagLabel property of the actor to the period starting at 1965. This can
be any date, in this case it is 6 years later than the begin date of the actor itself,
which can be interpreted as the build date of the ship. SEM does not put any
limitations on which values that can be assigned to temporaries. They are allowed
to be inconsistent. For example, the flag could be valid from before the build date
of the ship, even though this is impossible according to international regulations.
From the perspective of SEM this is perfectly fine. Solving such inconsistencies is
up to the user of the models and can be done by retrieving the conflicting values and
resolving them in some way, be it manually or automatically.

10.5 Consumption

The previous sections showed how to represent different kinds of events by means
of the Simple Event Model. The information about such events is encoded by
means of RDF triples and then stored in triple stores that, from the point of
view of data storage and management, perform the same function as traditional
relational database management systems (RDBMS). However, since RDF data is
represented by means of graphs, RDF repositories extend the potential offered
by these data storages by increasing their flexibility and the number of possible
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applicable operations. The increase in flexibility is primarily due to the fact that
tables, the basic data representation model in RDBMS, are much more static and
rigid than graphs. Each record in a database has to be representable by means of
a table row with given constraints and, although also with graph representation
it is possible to apply constraints to the data, this latter paradigm is less rigid.
Adding new relations and columns to a database is quite hard in practice, while
in the graph paradigm this corresponds to adding new triples while all existing
triples can be left untouched. The graph paradigm allows also to easily make use
of functions that are more complicated to implement in traditional RDBMS like, for
instance, inheritance and subsumption reasoning (e.g. concluding that type a is a
subclass of type b by chaining sem:subTypeOf properties between them and that a’s
individuals therefore also individuals of b). In principle, the same expressivity that
an RDF-based repository exposes is reachable also by traditional RDBMS (indeed,
many triple stores are implemented on top of relational databases), especially when
all constraints are known a priori. The latter is not always the case. Sometimes
constraints become known after the schema has been declared.

In this section we will see how it is possible to “consume” data previously stored
in RDF storages, that is, how to retrieve them. The retrieval process is enforced
through a query, expressed in a language, SPARQL16 that allows to model queries
for RDF storages exactly as SQL allows to retrieve information from databases.
Piracy attacks that have been previously described are stored in a server and are
retrievable from the Linked Open Piracy17 (LOP) repository, that exposes the RDF
transposition of all the reports exposed by the International Chamber of Commerce
(ICC-CCS), see [4]. The LOP website exposes a SPARQL endpoint that allows to
query the repository. We will see now how to use SPARQL to make use of this
flexibility to retrieve data from the repository.

Suppose that we want to retrieve all hijacking events involving merchant vessels.
We could think to look for all events having an actor of type merchant vessel as
follows:

SELECT DISTINCT *
WHERE {

?actor sem:actorType poseidon:atype_merchant_vessel.
?event sem:hasActor ?actor .
?event sem:eventType poseidon:etype_hijacked .

}

Listing 101 SPARQL query retrieving all hijacking events that involve an actor of the type
merchant vessel

In the following screenshot of the result list as displayed by the ClioPatria18 triple
store we can see that this matches 133 event-actor pairs (Fig. 10.13) .

16SPARQL: http://www.w3.org/TR/rdf-sparql-query/
17Linked Open Piracy: http://semanticweb.cs.vu.nl/lop/
18ClioPatria triple store: http://cliopatria.swi-prolog.org/

http://www.w3.org/TR/rdf-sparql-query/
http://semanticweb.cs.vu.nl/lop/
http://cliopatria.swi-prolog.org/
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Fig. 10.13 Output of the SPARQL query of Listing 10.1 posed at http://semanticweb.cs.vu.nl/lop/
user/query

Fig. 10.14 Output of the SPARQL query of Listing 10.2 posed at http://semanticweb.cs.vu.nl/lop/
user/query

So, does that mean that there are 133 actors that have been assigned the sem:actor
Type poseidon:atype merchant vessel? No. Actually, there are no direct references
to this type. All of the ships that matched have some other type assigned to them, for
example poseidon:atype lpg tanker or poseidon:atype general cargo as shown in
Fig. 10.14, but these have been defined to be subtypes of poseidon:atype merchant
vessel using sem:subTypeOf. The following query displays the same 133 matching
events, but also displays the actual types of the ships, making use of the fact that
sem:subTypeOf is a subproperty of rdfs:subClassOf.

http://semanticweb.cs.vu.nl/lop/user/query
http://semanticweb.cs.vu.nl/lop/user/query
http://semanticweb.cs.vu.nl/lop/user/query
http://semanticweb.cs.vu.nl/lop/user/query
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SELECT DISTINCT *
WHERE {

?actor sem:actorType ?actor_type .
?actor_type rdfs:subClassOf poseidon:atype_merchant_vessel .
?event sem:hasActor ?actor .
?event sem:eventType poseidon:etype_hijacked .

}

Listing 102 SPARQL query retrieving hijacked merchant vessels and all their types

The results of this query are shown in Fig. 10.14.
There are more than 133 rows in this result table, 317 to be exact. This is due

to the fact that if there is more than one sem:ActorType in the type hierarchy that is
a rdfs:subClassOf poseidon:atype merchant vessel then we will get more than one
row for that event. The first four rows of the result table in Fig. 10.14 all pertain
to the same event and same actor. In this case the actor is an LNG tanker, so this
single event will match the query for merchant vessels for four reasons: It is an event
involving (1) an LNG tanker, (2) an LPG tanker, (3) a tanker, and (4) a merchant
vessel, all of which are subclasses of poseidon:atype merchant vessel (in the fourth
case this is because every class is a subclass of itself). The only way in which there is
exactly one row in the results list per event is when that event has exactly one
sem:Actor and that actor has exactly one sem:actorType and that type is exactly
the type requested in the query. None of these conditions have to be the case. We
have just shown that even though an actor has a single type then this type can still
match one of its supertypes. If an actor actually has multiple assigned types there
will be some results with the same event and actor, and if there are multiple actors
per event there will be results with the same event but with different actors and
perhaps different actor types.

This section described a sample of the potential that RDF and SPARQL offer.
SPARQL is syntactically not very different from SQL, but it permits to exploit all
the functionalities allowed by RDF including, for instance, subsumption reasoning
like in the example introduced. Type reasoning can be implemented in an RDBMS
with a type hierarchy table, but to make use of this table the queries will have to
be altered. In an RDFS/OWL triple store with SPARQL the queries can remain the
same, even when the type hierarchy is changed. The proper new results will simply
be returned as soon as new knowledge is put in the triple store.

10.6 Conclusion

In this chapter we introduced the Simple Event Model and gave a step by step
description of how to use all of its components. We illustrated this introduction
with two examples from the maritime domain. Finally, we showed how SEM event
models can be queried using the SPARQL query language and how RDF(S) type
hierarchy reasoning is used behind the scenes of the triple store.
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We have shown that SEM provides a model for representing events at very
different levels of abstraction, from single sensor readings to long lasting events
such as journeys of a ship. When performing queries on datasets with event
descriptions at varying levels of abstraction, it is important to be able to return events
that have been described at a different level of abstraction than the query. SEM and
RDFS provide us with the tools needed to accomplish this. Each part of the event
description, the event itself, the place, the time, and the actor, can have a separate
type that can be part of a type hierarchy. These hierarchies can come from existing
ontologies or can be added as needed. RDFS reasoning underneath SPARQL queries
on SEM event models can provide type tolerant retrieval of events.

An important part of RDF, and thus also of SEM, is that it does not constrain
what kind of statements can be added to the RDF store. Whereas database schemas
prescribe what kind of columns may exist in a database, an RDF store can always
be extended with new properties, even about old instances. This means apart from
being tolerant to types, SEM models are also tolerant to future extensions. When
new information becomes available, for example, the organization of which actors
are part, this information can be added to the RDF store later without changing the
existing RDF. This will immediately enable the answering of richer queries about
the context of events.
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Chapter 11
Specification and Generation of Adapters
for System Integration

Arjan J. Mooij and Marc Voorhoeve†

11.1 Introduction

Large systems-of-systems are developed by integrating several smaller systems
that have been developed independently. In this context, the integration needs
to be achieved without modifying these independent systems, even though their
development may not have considered this particular integration. So the systems
can only interact with each other through their existing external interfaces.

Even if the systems to be integrated fit conceptually, the external interfaces may
not fit technically. Examples of technical incompatibilities include the encoding of
the data that is communicated, and the communication protocols that are used to
communicate the data. An approach to resolve such incompatibilities is to develop
a custom adapter, which is sometimes called mediator or glue logic. An adapter is a
(small) additional system that is compatible with each of the original systems.

System integration and adapter development are known to be time-consuming
activities. There is a range of possible causes, including the limited knowledge about
the systems to be integrated, the large number of interface technologies involved, the
high degrees of parallelism, and the usual efforts of developing a new system. The
present chapter explores techniques for developing complex adapters in a faster way,
in particular by generating (parts of) them.

Approach We consider two aspects of systems: the communication behavior
and the communicated data. The communication behavior of a system describes
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the orders in which the system can send and receive messages over its external
interfaces. The communicated data describes the contents of the messages.

Discussions on adapter generation often emphasize the potential output, viz.,
an automatically generated adapter. However, it is unreasonable to expect that an
adapter can be generated without any description of the application domain or the
systems to be integrated. Hence studies on adapter generation should also consider
adapter specification. On the one hand, the specification style should be convenient
for modeling the integration problem; on the other hand, the specification style
should provide enough detail for generating an acceptable, executable adapter.

To this end, we have studied several example adapters. For each example we
have investigated how we would like to specify the adapter, and we have investigated
which existing techniques could be used for generating the adapter. This has resulted
in two kinds of adapter specifications with two techniques for adapter generation.

The first approach focuses on incompatibilities in the communication behavior,
and it is based on techniques for (supervisory) controller synthesis [15, 16] from
the field of control theory. The second approach focuses on incompatibilities in the
communicated data, and it is based on techniques for incremental view maintenance
[4, 9] from the field of database theory.

Regarding adapter generation, our emphasis is on generating the behavior of
adapters, but the data aspect is not ignored. We illustrate and evaluate the techniques
using an example from the domain of maritime safety and security.

Overview In Sect. 11.2 we first introduce the running example. We continue in
Sect. 11.3 with a discussion on sources of incompatibilities. In Sects. 11.4 and
11.5, we discuss the two techniques for resolving such incompatibilities. Finally,
in Sect. 11.6, we draw some conclusions and sketch further work.

11.2 Running Example of System Integration

To illustrate and evaluate the techniques for developing adapters, we use a (small)
running example from the domain of maritime safety and security. This example
considers the integration of two industrial systems, viz., a sensor and a display, that
were developed independently of each other. The integration goal is to show the
most recent vessel information from the sensor on the display; see Fig. 11.1. For
any discussions on visualization techniques we refer to Chap. 5.

11.2.1 Sensor: AIS Receiver

The sensor that we consider is a maritime AIS receiver (Automatic Identification
System, [5]). Every vessel has an on-board AIS transponder that broadcasts some
information about the vessel using several message types and reporting frequencies.
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Fig. 11.1 Integration of AIS receiver and Google Earth (displayed: Zeebrugge area) (Note: for
privacy reasons, the MMSI’s, names and call signs have been anonymized)

The AIS receiver that we consider (locally) collects these broadcast AIS messages,
and produces a single TCP/IP stream of messages that are encoded using a standard
from the NMEA (National Marine Electronic Association).

We focus on the two main types of messages with the following attributes:

• point message: MMSI, longitude, latitude, heading, speed, . . . ;
• info message: MMSI, name, call sign, destination, . . . .

Each message type contains an MMSI number that uniquely identifies the reporting
vessel, and provides the most recent information about the vessel. Message type
point corresponds to AIS message types 1 and 3, and represents dynamic data such
as position (longitude and latitude), compass heading, and speed. Message type info
corresponds to AIS message type 5, and represents relatively static data such as
name, call sign, and destination.

11.2.2 Display: Google Earth

The display that we consider is Google Earth,1 which shows a 3D representation of
the globe together with some overlays. We intend to create an overlay that displays

1http://earth.google.com/

http://earth.google.com/
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for each vessel an icon, such that the position and rotation of the icon correspond to
the vessel, and such that the size of the icon relates to the speed of the vessel.

Each overlay is described using KML (Keyhole Markup Language), and contains
a set of placemarks that correspond to geographic positions, polygons or paths.
In order to dynamically update an overlay, Google Earth provides network links
that periodically reload a (possibly updated) KML file using an HTTP connection.

We consider placemarks with the following attributes:

• KML placemark: id, name, longitude, latitude, heading, scale, description, . . . .

Each placemark has a position (longitude and latitude) and a name that is displayed
near the placemark. The heading and scale affect the rotation and size of the icon.
In addition, each placemark has a description with additional information, and, for
technical purposes, a unique id (which is not visible in Google Earth).

11.3 Interface Incompatibilities

The integration goal is to display in Google Earth per vessel the most recent
information from the AIS receiver. These two systems fit conceptually as the AIS
receiver provides (data related to) geographic positions of vessels, and Google Earth
can display (data related to) geographic positions of placemarks. However, as these
systems were not designed to be used together, their technical interfaces do not fit.

It turns out that there are a lot of incompatibilities; see Table 11.1. To start with,
they use different interface technologies: the TCP/IP protocol (server side) versus
the HTTP Get protocol (client side). These protocols do not fit technically, but
also the underlying interface behavior is incompatible: a pushing behavior versus
a request/reply behavior. When looking at the transmitted data, it is immediately
clear that they use different representations: the NMEA encoding and the KML
encoding. This difference also affects the semantic entities that are used: an AIS
message of a single vessel versus an overview picture of all vessels in an area.

In turn, the four incompatibilities from Table 11.1 can be classified using two
dimensions; see Table 11.2. The one dimension distinguishes incompatibilities
related to behavior from those related to data. The other dimension distinguishes
abstract designs from concrete implementations.

Table 11.1 Overview of interface incompatibilities

AIS receiver Google Earth

Interface technology TCP/IP (server side) HTTP Get (client side)
Interface behavior Pushing Request/reply
Semantic entities AIS message of a vessel Overview picture of an area
Data representation NMEA KML
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Table 11.2 Classification of interface incompatibilities from Table 11.1

Behavior Data

Abstract design Interface behavior Semantic entities
Concrete implementation Interface technology Data representation

We focus on the two incompatibilities related to abstract design as these affect
the core behavior of the adapter. In Sect. 11.4 we describe adapter techniques for
interface behavior, and in Sect. 11.5 for semantic entities.

11.4 Adapters Based on Controller Synthesis

In this section we focus on incompatibilities with respect to interface behavior. We
present an adapter specification, from which an adapter can be generated using
algorithms for controller synthesis [15, 16] from the field of control theory. We first
describe the chain from specification via generation to implementation, and then
briefly evaluate it.

11.4.1 Specification

To address interface behavior, the starting points are the behavioral interface models
of the systems to be integrated. Such models describe the orders in which messages
can be sent and received by the systems. Interface behavior is typically modeled in
terms of formalisms such as state transition systems, process algebra, or (open) Petri
nets [6, 7].

For our running example, some models are shown in Fig. 11.2a and Fig. 11.2c;
the model in Fig. 11.2b will be discussed in Sect. 11.4.2. These models are open
Petri nets, but they can be interpreted as state transition systems as follows. The
external interface is depicted as a dashed border; for each type of message there
is a circle on the border. Each circle that is not on a border can be interpreted as
a state; the initial state is marked with a black dot. Each square can be interpreted
as a transition which has one input state (incoming arrow from a state) and one
output state (outgoing arrow to a state), and possibly sends (outgoing arrow to an
interface) and receives (incoming arrow from an interface) several messages. The
communication channels are not guaranteed to preserve the message order.

The AIS receiver (see Fig. 11.2a) can send a message AisPoint (AIS point
message) or a message AisInfo (AIS info message), and afterwards it waits to
receive a message AisAck (acknowledgment message). Similarly, Google Earth (see
Fig. 11.2c) can send a message KmlReq (request for KML data), and afterwards
it waits to receive a message KmlResp (response with the requested KML data).
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Fig. 11.2 Controller-based adapters: behavioral models of the systems. (a) AIS receiver.
(b) Generated adapter. (c) Google Earth

After any number of iterations of this behavior, each of these two systems can
(independently) decide to stop and reach its final state.

Message AisAck is introduced because the AIS receiver provides an ordered
stream of messages, whereas the open Petri net formalism considers communication
channels that are not guaranteed to preserve the message order. The messages
AisPoint, AisInfo and KmlResp contain data, whereas messages AisAck and
KmlReq are empty signal messages.

Mismatches in the interface behavior result in the violation of a desired behav-
ioral property, like absence of deadlocks (in every non-final state). In our running
example, this can happen when messages AisPoint (or AisInfo) and KmlReq have
been sent, and the systems are waiting for AisAck and KmlResp respectively.
To resolve such a deadlock, an adapter should provide (at least) one of the messages
that the systems are waiting for.

However, absence of deadlocks is not enough as a specification. For example, we
do not want an adapter that can simply destroy messages with important data, such
as AisPoint and AisInfo. So, although we focus on generating the behavior of the
adapter, apparently the semantics of the data has an impact on possible behavior.
To model these domain-specific data dependencies we extend the specification with
transformation rules that indicate what data can be created, deleted, converted, etc.

For our running example, an example set of transformation rules can be found
in Fig. 11.3. Each transformation rule consists of the messages that are consumed,
followed by a �→ sign, and the messages that are produced.

This specification uses an auxiliary message called Store, that represents an inter-
nal copy of the most recent information about each vessel; initially there is a default
(empty) Store, and a Store still exists in the final state. The first transformation
rule specifies that the Store can be updated using an AisPoint message, thereby
generating an AisAck message; similarly in the second transformation rule for an
AisInfo message. By only generating an AisAck message as part of these rules,
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Initially: Store
Finally: Store
AisPoint, Store �→ Store, AisAck
AisInfo, Store �→ Store, AisAck
Store �→ Store, KmlResp
KmlReq

Fig. 11.3 Controller-based adapters: domain-specific transformation rules

it is guaranteed that the AIS messages update the Store in the right order. The
third transformation rule specifies that a KmlResp message can be created based
on the Store; the fourth transformation rule specifies that a KmlReq message can be
deleted.

The last two transformation rules could be combined, but this is not necessary in
the specification as KmlReq is just a signal message. In Sect. 11.4.2 we will see that
these two rules are automatically combined in the generated adapter.

The set of transformation rules indicates the elementary operations that the
adapter can perform, but it does not indicate whether or when the adapter should
apply them. The transformation rules from Fig. 11.3 also do not explain how the
Store is updated, or how to derive a KmlResp from the Store; it is not even visible
which rules change the Store. To obtain an executable adapter, we need to associate
to each rule a detailed data conversion, but these have been omitted in Fig. 11.3.

Consequently the adapter specification [3] consist of three parts:

• Behavioral interface models: models that describe the interface behavior of the
systems to be integrated;

• Transformation rules: domain-specific rules that describe the elementary opera-
tions that adapters can perform;

• Behavioral property: property (like absence of deadlocks) that is required in the
integrated system.

In case no behavioral interface models are available for the systems to be
integrated, there may still be execution logs with typical interface behavior. Such
logs may be usable to discover behavioral interface models using process mining
techniques; see also Chap. 9.

In some cases an adapter needs to be developed such that one system can be
replaced by another system together with the adapter. Thus not all systems to be
integrated are known. The hardest possible environment of the system can be used
as an approximation, and it can be computed as the maximal controller [11, 12]
(sometimes called canonical test) of the original system.

11.4.2 Generation

Given a behavioral model of a system and a behavioral property, a controller (if one
exists) is a system such that the composition of the original system and the controller
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satisfies the behavioral property. In the absence of transformation rules, adapter
generation would be equivalent to applying controller synthesis to the composition
of all systems to be integrated.

However, the transformation rules add some restrictions to adapter generation.
These can be addressed by generating an adapter that consists of two parts [3] (see
also the core adapter in Fig. 11.4a):

• Engine: The engine guarantees that the final adapter can only apply the provided
data transformations; it is connected to the systems to be integrated and to the
controller. The engine is generated directly from the transformation rules.

• Controller: The controller guarantees that the required behavioral property holds
in the integrated system; it is only connected to the engine. The controller is
generated by applying controller synthesis [15, 16] for the required behavioral
property to the composition of the engine and the systems to be integrated.

Thus this approach applies a strict separation between data and behavior.
In general, the adapter specification admits several, non-equivalent adapters to
be generated. For example, controller synthesis algorithms can produce several
controllers, which all produce an adapter that satisfies the adapter specification.
In [3] we also show two ways to model an engine, but these result in equivalent
adapters.

For our running example, a behavioral model of a generated adapter can be
found in Fig. 11.2b; in this model it is not possible to distinguish the engine and
the controller any more. Once an AisPoint message is received, the Store is updated
and an AisAck message is generated; similarly for an AisInfo message. Once a
KmlReq message is received, the data from the Store is copied and converted into a
KmlResp message. In this adapter the Store separates the interactions with the AIS
receiver and the interactions with Google Earth.

Note that the generated adapter combines the last two transformation rules from
Fig. 11.3: it only creates a next KmlResp message after receiving a next KmlReq
message. The generated controller combines them to establish absence of deadlocks,
as in the final state, there should not be any messages left in the channels. By
receiving a next KmlReq message, it is guaranteed that Google Earth has not yet
stopped, and hence can consume a next KmlResp message.

11.4.3 Implementation

This adapter generation approach is implemented in the tool Marlene.2 It is based
on open Petri net models, and abstracts from the details of the data conversions.

Within the POSEIDON project we have used Marlene as the basis of a prototype
that produces executable adapters, and hence addresses all incompatibilities. For
the data-related incompatibilities, we have attached manually-specified data conver-
sions to the transformation rules (and to the engine). For the interface technology,

2http://www.service-technology.org/tools/marlene/

http://www.service-technology.org/tools/marlene/
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Fig. 11.4 Adapter architectures used in Sects. 11.4 and 11.5. (a) Controller-based adapter.
(b) View-based adapter

we have introduced front-ends that convert all external interface technologies to
send or receive operations on message channels. The architecture of such an adapter
is depicted in Fig. 11.4a.

11.4.4 Evaluation

Recent research on adapter generation has led to several approaches [1, 2, 8] that
are related to controller synthesis. Typically a custom language is introduced for
specifying a class of data transformations, and then an adapter generation algorithm
is proposed that is somehow related to controller synthesis. By translating the data
transformations into an engine, we have shown in [3] that adapters can be generated
using any existing controller synthesis algorithm without modification.

Controller synthesis is very powerful, and it can automatically resolve very subtle
behavioral mismatches; see the examples in [3, 14]. The resulting adapters allow
highly-concurrent interactions without deadlocks. Algorithms for controller synthe-
sis are usually based on state-space exploration. The time needed for generating
an adapter varies from specification to specification; in the examples from [3] the
adapter is generated within a second.

Our running example has been selected for being understandable and for being
usable to illustrate the two approaches to adapter generation. In this example the
behavioral models are quite simple, and the transformation rules are already very
close to the model of the generated adapter. This kind of examples has motivated
our search for other adapter generation techniques, as described in Sect. 11.5. In
particular we aim to specify such an adapter in a more convenient way.
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11.5 Adapters Based on Incremental View Maintenance

In this section we focus on incompatibilities with respect to semantic entities. We
present an adapter specification, from which an adapter can be generated using
algorithms for incremental maintenance of materialized views [4, 9] from the field
of database theory. We first describe the chain from specification via generation to
implementation, and then briefly evaluate it.

11.5.1 Specification

To address semantic entities, the starting point is the communicated data. In our
running example, the AIS receiver provides two types of AIS messages with partial
updates of a single vessel, whereas Google Earth requests a single overview picture
of all vessels in an area. Ignoring the data representations, these communications
can nicely be modeled in terms of three (relational) database tables:

• Source table point: most recent position message per vessel;
• Source table info: most recent info message per vessel;
• Target table KML: most recent placemark data per vessel.

The attributes of these three tables correspond to the data attributes mentioned in
Sect. 11.2; the primary keys are the attributes MMSI, MMSI, and id, respectively.
Then the two systems to be integrated can be modeled as follows:

• AIS receiver: regularly perform an incremental update of tables point and info;
• Google Earth: periodically query table KML.

The AIS receiver performs updates on the two source tables in the order in which it
receives the AIS messages.

What remains to be specified is a relation between the target table and the source
tables. In the context of databases, this means that we need to specify the target table
as a view on the source tables. Although the source tables change continuously,
we specify the view statically. For the adapter this means that whenever the source
tables do not change for a sufficiently long period of time, then, after a while, the
target table should have the specified contents.

For our running example, we specify the target table KML as a view on the source
tables point and info; see Fig. 11.5. The join operator ��MMSI indicates that we first
combine rows from the tables point and info with the same MMSI value. Afterwards,
we compute for each combined row the attribute values of the corresponding row in
the KML table. For example, as AIS provides longitude and latitude in 10−4 minutes,
the longitude and latitude from table point need to be divided by 60 ∗ 104 before
being stored in table KML.

In database theory, many types of joins have been defined. The type of join can be
used to indicate when an MMSI value should appear in table KML, as summarized in
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KML: point  MMSI info
id MMSI
name MMSI
longitude point.longitude=(60∗104)
latitude point.latitude=(60∗104)
heading point.heading
scale 0:5+log(point.speed+1)=5
description info.name + “ (” +info.callsign + “) for ” + info.destination
. . . . . .

Fig. 11.5 View-based adapters: view specification

Table 11.3 Interpretation of join types for Fig. 11.5

Table point Table info

Inner join Mandatory row Mandatory row
Left-outer join Mandatory row Optional row
Right-outer join Optional row Mandatory row
Outer join Optional row Optional row

Table 11.3. The first choice for our running example would be the inner join, which
adds a vessel to table KML once both types of AIS messages have been received
from the vessel. However, as the info messages are broadcast infrequently, it may
be more useful to choose the left-outer join, which adds a vessel to table KML once
its position (from a point message) is known. Additional information from an info
message is added when available, and default values are used otherwise.

Consequently the adapter specification [10] consist of two parts:

• Database interface models: database schemes that describe the interfaces of the
systems to be integrated;

• Database view relations: database queries that specify the semantic relation
between source tables and target tables.

11.5.2 Generation

In database management systems (DBMS), there are two ways to deal with views:

• Query abbreviation: views are seen as an abbreviation of a query on the source
tables. This gives no overhead when updating the source tables, but every query
on the view needs to be evaluated in terms of the underlying source tables.

• Materialized query: views are seen as a materialized query that is stored as a
table. This means that queries on the view can efficiently be evaluated in terms
of the stored table, but every incremental update in the source tables needs to be
propagated to the stored table for the view. This updating is called incremental
maintenance of materialized views [4, 9].
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Fig. 11.6 Java code fragment: generic left-outer join responding to an update in the left source

Similarly, the adapter specification leaves some degrees of freedom for the
adapter generation, e.g., whether to compute the KML data on request from
the source tables, or to continuously update an internal buffer with KML data. In the
latter case, we can use solutions for incremental view maintenance; these are often
described in terms of relational algebra expressions, from which the behavior of an
adapter can be extracted as described in [10]. For example, once an entry in source
table point is updated, the adapter should query source table info for a corresponding
row, then perform the specified data conversion, and finally update target table
KML. In some cases, the query on the source table can also be replaced by a
query on the target table, thus avoiding the need to store some of the sources. This
leads to a classical performance trade-off between computation time and storage
requirements, which should be resolved based on the expected usage characteristics.

11.5.3 Implementation

Within the POSEIDON project, we have developed a Java framework with classes
for the various kinds of tables (materialized and non-materialized) and relational
operators (like various kinds of joins). Each class has associated methods for
establishing the view relations, including code for incremental view maintenance;
see for example Fig. 11.6. To generate an adapter, the specification is copied in
terms of these classes, in particular by instantiating the data conversions; see for
example Fig. 11.7. As the implementation code is already associated to the classes,
the generation of the adapter costs no time, but there are parameters to tune the
implementation.

For the behavior-related and data representation incompatibilities, we have
introduced front-ends that convert all external interface technologies to database
operations (such as publish/subscribe and query) on relational database tables. Thus
the systems to be integrated can (indirectly) query tables, publish changes in them,
and subscribe on them. The architecture of such an adapter is depicted in Fig. 11.4b.
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Fig. 11.7 Java code fragment: specific data conversion from Fig. 11.5

11.5.4 Evaluation

Our study of incremental view maintenance was triggered by several example
adapters from the domain of maritime safety and security; see [10]. Incremental
view maintenance has been studied extensively in the context of database man-
agement systems (DBMS), viz., for efficiently updating materialized views in a
transaction that changes the source tables. However, in the adapter context there
is typically no database management system. In [10] we have shown that it is still
beneficial to consider a lot of interface technologies as database operations, and then
apply techniques from the field of databases.

In our prototype implementation, the incremental view maintenance code is
attached to the relational operators from the specification; so, the adapter generation
itself costs no time. Moreover, the behavior of the generated adapter is intuitively
quite predictable, in particular in comparison to the controller synthesis approach.
We have informally compared some of the generated adapters with manually-
developed adapters, and noticed that their runtime behavior is very similar. Although
when running the generated adapters there is a little overhead caused by additional
method invocations and generic code, this has never been any problem in the context
of the POSEIDON demonstrator as described in Chap. 4.

The POSEIDON demonstrator contains many generated adapters for various
interface technologies, such as TCP/IP, HTTP, RMI, DDS [13], Fractal3/Atlas4 (see
also Chap. 14), JDBC, etc. There are several adapters that are part of the normal
data flow through the system, including some with multiple inputs and multiple
outputs. In addition, there are a lot of “probe” adapters that visualize the data in the
various processing stages, using Google Earth and process mining tool ProM.5 Our
running example is a probe that visualizes raw sensor data using Google Earth as in

3http://fractal.ow2.org/
4http://swerl.tudelft.nl/bin/view/Main/Atlas
5http://www.processmining.org/prom/

http://fractal.ow2.org/
http://swerl.tudelft.nl/bin/view/Main/Atlas
http://www.processmining.org/prom/
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Fig. 11.1. Such probe adapters proved to be pivotal in analyzing the functioning of
the POSEIDON demonstrator, especially during integration; see Chap. 4.

Static specifications in terms of data are generally considered to be simpler to
make and maintain than dynamic specifications in terms of behavior. In particular,
small changes in the type of join can have a large impact on the behavior of the
adapter. Even without applying adapter generation, we expect that applying such an
adapter specification is already beneficial for developing this kind of adapters.

11.6 Conclusions and Further Work

Adapters are used for bridging interface incompatibilities during system integration.
The reported work was driven by a search for convenient ways to specify adapters
such that afterwards an adapter can be generated. We use model-based specifications
that describe the systems to be integrated, and the requirements that need to be
established by the adapter.

The goal of adapter generation is to translate such a specification model of what
is required into an adapter model of how it can be implemented. The main results
are two techniques for adapter generation, depending on the primary incompatibility
that needs to be resolved. In particular, we have shown how to use several techniques
from other fields for generating adapters, viz., (supervisory) controller synthesis
from the field of control theory and incremental view maintenance from the field of
database theory.

Within the POSEIDON project we have demonstrated these two techniques using
prototype implementations that produce executable adapters. These prototypes
use architectures with reusable front-ends for the specific details of the interface
technologies. Such adapter architectures separate the core functionality from any
specific code for the interface technologies.

It is further work to investigate whether it is useful to integrate these two adapter
generation approaches into one integration framework. So far we have not seen a
good example where this would be really beneficial. A possible way to integrate
them is to first use a view-based approach to create a more sophisticated engine,
and then use this engine as part of the controller-based approach.
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Chapter 12
The POLIPO Security Framework

Daniel Trivellato, Sandro Etalle, Erik Luit, and Nicola Zannone

12.1 Introduction

Systems of systems are coalitions of autonomous systems that collaborate to
achieve a common goal. The systems in a system of systems often belong to
different security domains, which are governed by different authorities employing
heterogeneous protocols, vocabularies, data models and organizational structures.
Furthermore, systems of systems are often dynamic, with systems joining and
leaving the coalition at runtime. An example of system of systems is a fleet of ships
from different NATO countries collaborating in a patrolling mission.

Despite offering a high degree of operational flexibility, the systems of systems
paradigm has a strong impact on systems interoperability and on the security
requirements of the coalition members (hereafter called parties). In fact, during the
operation of a system of systems parties are required to exchange information (e.g.,
their current location) with the other members of the coalition. This information,
however, might be sensitive and should be accessed exclusively by authorized
parties, which may vary depending on the context (e.g., the location of the requester,
the criticality of a situation) and the content of the information. Therefore, along
with the development of systems of systems comes the demand for a flexible
security framework that faces the related security challenges.

D. Trivellato (�) • E. Luit • N. Zannone
Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands
e-mail: d.trivellato@tue.nl; e.luit@tue.nl; n.zannone@tue.nl

S. Etalle
Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, Enschede, The Netherlands
e-mail: s.etalle@tue.nl; sandro.etalle@utwente.nl

P. van de Laar et al. (eds.), Situation Awareness with Systems of Systems,
DOI 10.1007/978-1-4614-6230-9 12, © Springer Science+Business Media New York 2013

189



190 D. Trivellato et al.

In particular, to deal with the dynamic nature of systems of systems, a security
framework should incorporate security-relevant contextual information into access
control decisions [2]. Contextual information may consist of “basic” environmental
conditions (e.g., the location of the requester, the time of access), or more complex
conditions derived from the basic ones (e.g., an emergency situation due to the
collision between two vessels). Context-aware access control models [2, 6] can be
employed to serve this purpose.

In addition, contrarily to centralized systems where users and resources belong
to a single, trusted domain, in a system of systems parties often do not know each
other beforehand. It is therefore not possible to rely on identity-based approaches
to regulate the access to local resources. Trust management [3] has been proposed
as a solution to this problem. Trust management is an approach to access control in
distributed systems where access decisions are based on the attributes of a requester,
which are certified by means of digital credentials. Credentials are certificates issued
by a party attesting that a subject has a certain attribute, and they are digitally signed
to ensure their authenticity and integrity.

The problem of most of the existing trust management frameworks (e.g., [1, 12,
14]) is that they assume a complete agreement among the parties in a system of
systems on the vocabulary used to denote subjects’ attributes and to describe the
concepts and relationships that characterize a given domain. In dynamic coalitions
of heterogeneous systems, however, parties will more likely “speak” different
languages and employ different organizational models; nevertheless, they must
be able to collaborate to achieve the coalition’s goal. As a first step towards
enabling mutual understanding and thus interoperability among parties in a system
of systems, semantic approaches have been adopted for policy specification [11,26].
In particular, ontologies have been used to assign a precise structure and semantics
to information, and to define domain knowledge. Accordingly, parties can refer to
ontologies to provide semantics to the terms used to specify their policies and to
denote the concepts in the application domain.

The use of ontologies alone, however, is not enough to achieve interoperability.
In fact, parties might refer to different ontologies to denote the same (or similar)
concepts in the domain. For instance, each NATO country may use different
terms (and a different hierarchy) to denote the ranks of the officers on its ships.
Semantic alignment techniques [7, 9] need thus to be employed to map concepts
from different ontologies, i.e., to align vocabularies and organizational models.
A major drawback of the existing semantic alignment techniques is that they
require complete knowledge of the ontologies to be aligned. In many systems of
systems, however, this requirement is not admissible since parties do not know each
other beforehand or might want to keep part of their knowledge base confidential.
Therefore, a solution that is effective also when working with partial knowledge
needs to be devised.

In this chapter we present POLIPO, a security framework that protects
the confidentiality and integrity of information while enabling autonomy and
interoperability among the parties in a system of systems. POLIPO combines
context-aware access control with trust management to protect information
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from unauthorized access (confidentiality) and improper modification (integrity).
Autonomy and interoperability are enabled by the use of ontology-based services.
More precisely, parties may refer to different ontologies in the specification of
their policies and to describe domain knowledge and context information. This
allows each party to employ the organizational model and terminology that they
consider most appropriate within their system. The semantic alignment technique
presented in [22] is then employed to align their vocabularies, allowing for mutual
understanding.

We present an application of POLIPO to a scenario in the maritime safety
and security domain, where a prototype implementation of the framework is
employed by the parties in the system of systems to protect the local resources.
The framework’s architecture, inspired by XACML [17], consists of a set of core
security components (e.g., the access control and trust management components)
complemented with the ontology-based services. All components and services have
been implemented following the service oriented architecture paradigm [18] to
facilitate their integration and deployment into existing systems of systems. The
modularity of the framework allows for the integration of additional services to
support the evaluation of policies and provide additional functionalities, such as
a reputation system for the identification of trustworthy information sources (see
Chap. 13).

The remainder of this chapter is organized as follows. Section 12.2 presents
a use case scenario for a system of systems in the maritime safety and security
domain, and elicits a set of basic requirements that a security framework for systems
of systems should satisfy. Section 12.3 introduces the ingredients of the POLIPO
framework and presents the framework’s architecture. A prototype implementation
of the framework is then presented in Sect. 12.4. Finally, Sect. 12.5 concludes the
chapter.

12.2 Requirements Elicitation

In this section we first introduce a scenario for systems of systems in the maritime
safety and security domain. Then, we identify the main requirements that a security
framework for systems of systems should satisfy.

12.2.1 Case Study: Maritime Surveillance

We present a scenario which focuses on the dynamic evolution of systems of
systems in response to emergency situations. In particular, we consider a system
of systems headed by the European Union (EU) which has the goal of detecting
and preventing terrorist attacks against European harbors. The system of systems
consists of vessels of the EU Naval Force (EU NAVFOR) which patrol the coast of
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Somalia, gathering and exchanging information about the vessels transiting in that
area. This information is collected, processed and analyzed by an operation control
center in Northwood, UK, which coordinates the activities of the EU NAVFOR
vessels. In addition to the EU NAVFOR vessels, search and rescue vessels of EU
countries may temporarily join the coalition and get access to the information
collected by the EU NAVFOR in case of emergency (e.g., to give assistance to
vessels getting into troubles). We point out that all the names and events introduced
in this scenario are purely fictitious.

The scenario consists of the following steps:

1. A cargo ship called Blue Star is transiting through the Gulf of Aden towards
its final destination, Copenhagen. Blue Star is under investigation by the Danish
navy because it is suspected of being involved in terrorist activities. The Danish
navy has infiltrated agents who are investigating the evolution of these activities.

2. In the proximity of the Dutch coast the cargo ship Blue Star gets into trouble
due to a storm and starts drifting. A vessel of the Dutch coastguard (NL-
Lifeboat) is nearby and prepares to intervene to give assistance to Blue Star’s
crew. In order to prepare the intervention, NL-Lifeboat needs information about
the cargo transported by Blue Star. By checking the port from which Blue Star
departed, NL-Lifeboat infers that the cargo ship has transited off the Somali
coast. Therefore, NL-Lifeboat sends a request for additional information about
Blue Star also to the EU NAVFOR operation control center in Northwood.

3. Currently, the situation of Blue Star is not considered by the operation control
center critical enough to disclose to NL-Lifeboat the intelligence collected by
the Danish navy. Therefore, the operation control center does not provide details
about the cargo transported by Blue Star to NL-Lifeboat. Furthermore, NL-
Lifeboat is requested not to intervene.

4. After a while, however, the situation becomes more critical and the operation
control center loses connection with Blue Star. Consequently, the request for
intervention from NL-Lifeboat is accepted: NL-Lifeboat is temporarily allowed
by the operation control center to access the details about Blue Star’s cargo.
Through this information NL-Lifeboat’s operators find out that Blue Star’s cargo
contains Anthrax that was possibly meant to be distributed to terrorist cells in
Europe. The rescuers must use protective clothes and other ships must be kept at
a safe distance of at least 500 m.

Table 12.1 presents the security policies governing the scenario, i.e., the rules
defining the authorized accesses to the information controlled by each party in the
system of systems. To each policy rule we assign a unique identifier (column Policy
ID) that we use to refer to the rule in the rest of the paper. Note that the vocabulary
used to specify policy rules by the different parties is not always consistent. For
example, policy rule NL1 states the Dutch navy certifies all the “search and rescue
vessels” of the Dutch coastguard; NL-Lifeboat, however, is certified as a “search and
rescue lifeboat” by the Dutch coastguard (policy CG1). In this case, an alignment of
the vocabularies of the Dutch navy and coastguard is required in order to allow for
a certification of NL-Lifeboat by the Dutch navy.
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Table 12.1 Security policies of the parties in the scenario

Party Policy ID Policy rule

Operation control
center

OCC1 Operators on vessels of the EU NAVFOR may access all
the available information about the ships transiting in
the operation area

OCC2 Operators on search and rescue vessels certified by the
navy of an EU country may access all the available
information about a ship in case that the ship needs
assistance

Dutch navy NL1 All search and rescue vessels certified by the Dutch
coastguard are certified as search and rescue vessels by
the Dutch navy

Dutch coastguard CG1 NL-Lifeboat is a search and rescue lifeboat of the Dutch
coastguard

The interactions between the actors in the scenario are shown in Fig. 12.1. Each
interaction is labeled with the step of the scenario in which it is described. In case
that a step involves multiple interactions, we order them by adding a letter to the
label. Since security policies are often deemed to be confidential (see Sect. 12.2.2
for a more comprehensive discussion), in our scenario we assume that no party has
access to the security policies of the other parties. Therefore, each time a party
requires a certificate issued by another party, an explicit request needs to be made.

Every time a party receives a request, it evaluates the request against its security
policy and returns a response accordingly. Notice, for instance, that the same request
for details about Blue Star’s cargo sent by NL-Lifeboat to the operation control
center in Northwood at two different moments in time (messages 2 and 4a in
Fig. 12.1) leads to two different responses (messages 3 and 4f respectively). In fact,
since in step 3 of the scenario the operation control center does not consider Blue
Star to be needing assistance, policy OCC2 cannot be applied. On the contrary, in
step 4 the situation of Blue Star is considered critical and the details about its cargo
are provided to NL-Lifeboat, upon verifying that NL-Lifeboat is a search and rescue
vessel certified by the Dutch navy.

12.2.2 Security Requirements

As a first step towards the elicitation of our security objectives, we derive the
characteristics of systems of systems which are relevant for the design of a security
framework. The distinguishing features of systems of systems are as follows:

• Dynamicity: systems of systems are constantly evolving. Systems may leave
a system of systems at any time while new systems may join the coalition,
depending on the context or the progress towards the goal. In the scenario
introduced in the previous section, for example, NL-Lifeboat joins the EU
NAVFOR system of systems during the emergency of the cargo ship Blue Star,
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Fig. 12.1 Interactions among the parties in the scenario

and leaves the coalition when the emergency is over. Similarly, the information
that systems need to exchange may be context-dependent. For instance, in case
of emergency parties may be authorized to access sensitive information that they
would normally not be allowed to access, such as NL-Lifeboat in our scenario.

• Distribution: contrarily to centralized systems where users and resources belong
to a single, trusted domain, systems of systems are characterized by the absence
of a central point of control. Each system in a system of systems is an
independent, complex system which belongs to a (possibly) different security
domain and is governed by a different authority (e.g., the operation control center
and the Dutch coastguard). Furthermore, systems of systems are open systems in
which parties may not know each other before joining the coalition. For example,
the operation control center does not know whether NL-Lifeboat is actually a
search and rescue vessel of an EU country, and therefore requests its certification
from a trusted party, i.e., the Dutch navy.

• Heterogeneity: as a consequence of the autonomy of the systems in a system of
systems, each system may adopt different data and organizational structures, and
a different vocabulary to define the concepts and relationships in an application
domain. In policy CG1 (Table 12.1), for instance, the Dutch coastguard refers to
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NL-Lifeboat as a “search and rescue lifeboat”, whereas the Dutch navy issues
only certificates with attribute “search and rescue vessel” (policy NL1).

These features impose serious challenges on the design of a security framework.
We identify the following set of core security requirements that a security frame-
work for systems of systems should satisfy:

1. Protection of information confidentiality and integrity: sensitive data exchanged
among the parties in the system of systems must be protected from unauthorized
access and improper modification. For example, if terrorists would be able to
access the information gathered by the EU NAVFOR, they would know that
the Danish navy is investigating the activities of the cargo ship Blue Star.
Security policies, however, may also contain sensitive information which needs
to be protected. In particular, the disclosure of a security policy may reveal the
relationship among some parties in a domain, such as business relationships
or alliances, whose disclosure could be exploited by adversary parties, e.g.,
terrorists [19]. In addition, the disclosure of a policy may leak information that
can be used to exploit vulnerable points of a system [20]: by knowing the security
policies protecting the intelligence gathered by the EU NAVFOR, for instance,
terrorists would know who are the parties that might be aware of their activities,
and under which circumstances. Furthermore, by accessing a policy an adversary
would know what credentials he needs to forge to illegitimately gain access
to a resource [8]. Therefore, the disclosure of both data and policies shall be
protected.

The distributed and dynamic nature of systems of systems introduces two
additional challenges to the confidentiality and integrity requirements. More
precisely, policies that regulate the access to information need to:

• Take into account that parties may not know each other beforehand. Therefore,
authorizations cannot (always) be defined based on the identity of the
requester. Rather, they should be based on his attributes (e.g., nationality,
rank).

• Be flexible and adaptable to different circumstances. In this respect, the eval-
uation of access requests should take the current context into consideration
(e.g., the criticality of a situation).

2. Autonomy of the parties involved: the dynamicity of systems of systems implies
that collaborations are often short-lived and the systems involved may change
over time. In addition, the parties in a system of systems are independent
systems that have individual objectives next to the ones of the coalition, and
may be involved in more than one system of systems at a time. In this setting,
we cannot expect the parties in a system of systems to employ common data
models, organizational structures, and vocabularies for the specification of their
security policies. Rather, parties should be able to employ different models and
vocabularies.

3. Interoperability among parties: despite the heterogeneity in their organizational
structures and vocabularies, parties must be able to understand each other for
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the success of the coalition. In our scenario, for example, it is evident that NL-
Lifeboat should be interpreted by the Dutch navy as a “search and rescue vessel”,
even though it is defined as “search and rescue lifeboat” by the Dutch coastguard.

4. Ease of integration into existing systems: the services and functionalities offered
by the systems in a system of systems have strong implications on the design
of the security components. On the one hand, the functional components of a
system should be designed and implemented as independently as possible from
its security components. On the other hand, a security framework for systems
of systems should be easy to integrate into existing systems and should easily
interface with the system’s functionalities to protect the system’s confidential
information. In addition, the framework should be flexible and allow for an
easy integration of additional security components that may become relevant
during the lifetime of a system of systems (e.g., a reputation system for service
selection).

Clearly, these requirements do not cover all the security aspects that are relevant
for systems of systems. For instance, we omit the requirements for the protection of
the systems and services in a system of systems from network attacks such as denial
of service, eavesdropping, identity spoofing, etc. In the context of the POSEIDON

project, however, our focus is mainly on the design of a solution that satisfies
the requirements that are characteristic for systems of systems. The combination
of our security framework with existing techniques that address other security
requirements is out of the scope of this chapter.

12.3 The POLIPO Framework

In this section we present the POLIPO security framework. The contribution of
POLIPO lies both in its ingredients, which implement new models and techniques
especially designed to meet the security requirements of systems of systems, and
in the way in which these ingredients have been combined into a unified frame-
work. In the next two subsections we briefly introduce the framework ingredients
(Sect. 12.3.1) and show how they have been integrated in the POLIPO architecture
(Sect. 12.3.2).

12.3.1 Framework Ingredients

In order to satisfy the requirements introduced in Sect. 12.2.2, POLIPO combines
models and techniques from the fields of computer security, knowledge representa-
tion, and software engineering. In particular, it relies on:

1. Context-aware access control models and trust management to protect the
confidentiality and integrity of information;



12 The POLIPO Security Framework 197

2. Ontology-based services to enable autonomy and interoperability among the
parties in a system of systems;

3. A service oriented architecture to allow for an easy integration and deployment
of the framework into existing systems.

In the next paragraphs we will provide more details about each of these techniques.

12.3.1.1 Context-Aware Access Control and Trust Management

Context-aware access control is used to tackle the dynamicity of systems of
systems: by incorporating context information (e.g., the location of the requester, the
criticality of the situation) in access decisions, parties can specify flexible policies
which adapt to different situations. Trust management, on the other hand, deals with
the distributed nature of systems of systems. In trust management, access decisions
are based on the attributes of a requester (e.g., vessels of the EU NAVFOR), which
are certified by means of digital credentials issued by an authority, i.e., any party in
the system of systems. The contribution of this approach is twofold: (a) contrarily to
identity-based approaches, grounding an access decision on the certified attributes
of a requester allows parties to exchange information with (previously) unknown
entities; (b) each party can choose which authority to trust for certifying which
attributes, and accept only credentials issued by that authority. For example, the
operation control center trusts only the navies of EU countries for certifying search
and rescue vessels.

To combine context-aware access control with trust management we have defined
an ontology-based policy specification language [21]. The language allows for
the specification of rules to constrain the access to the local resources of a party
(called authorization rules) and to define the conditions under which a credential
is released (credential rules). Context information and domain knowledge (e.g., the
type of a ship) are incorporated into authorization and credential rules by referring
to a knowledge base, which is represented by a set of ontologies. Examples of
authorization rules are rules OCC1 and OCC2 in Table 12.1. In rule OCC2, the need
for assistance of a ship is determined by the operation control center by analyzing
context information (e.g., whether the ship is drifting) available in the knowledge
base. Policy rules NL1 and CG1 in Table 12.1 are examples of credential rules. More
precisely, in rule NL1 the Dutch navy states that it is willing to release a “search and
rescue vessel” credential only to the vessels in possess of an equivalent credential
issued by the Dutch coastguard. In rule CG1, the Dutch coastguard certifies that
vessel NL-Lifeboat is a “search and rescue lifeboat”.

Other existing work [11, 26] proposes the use of ontologies for the specification
of security policies. The expressive power of these languages, however, is limited
and does not allow for the specification of several types of security constraints,
as for instance separation of duty. Since such constraints are common to many
application domains for systems of systems (e.g., maritime safety and security,
business-to-business), these languages do not provide a valid solution. To overcome
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this limitation, ontology languages have been extended with rules which enable the
specification of more complex constraints [10]. In this respect, our contribution lies
in the way in which our rules interface with ontologies: rather than allowing for a
free interaction between them, which may lead to the introduction of inconsistencies
or cause the ontology reasoning to become undecidable (as in [10]), we only allow
information to flow from ontologies to policy rules. In other words, information
from the knowledge base can be used to make informed access or credential release
decisions, but policy rules cannot be used to derive new knowledge to be integrated
into the knowledge base, as this may make the knowledge base inconsistent due to
the introduction of contradicting information.

Furthermore, another contribution is represented by the design and development
of a novel algorithm for credential retrieval, called GEM [23]. Contrarily to many
of the existing algorithms (e.g., [5, 13]), GEM evaluates requests for credentials
in a completely distributed way without disclosing the credential rules of parties,
thereby preserving their confidentiality. For example, in the scenario in Sect. 12.2.1,
when requesting the certificate of “search and rescue vessel” for NL-Lifeboat
to the Dutch navy, the operation control center cannot infer anything about the
certification procedure (i.e., the policy) of the Dutch navy. Similarly, the Dutch
navy and the Dutch coastguard are not able to learn each other’s policies. As
discussed in Sect. 12.2.2, protecting the confidentiality of security policies is very
important, since their disclosure may leak valuable information [8, 19, 20]. Finally,
another advantage of GEM is its ability to identify mutually dependent policy rules,
preventing loops in the credential retrieval process.

12.3.1.2 Ontology-Based Services

Parties in a system of systems refer to ontologies to assign semantics to the terms
used in their policies. More precisely, ontology concepts (or instances) are used
to denote the attributes certified by a party’s credentials (e.g., “search and rescue
vessel”). In addition, ontologies are used to define the data and organizational
structures of each party. This, combined with the use of the completely automated
semantic alignment technique in [22], which is based on the notion of similarity
between ontology concepts, allows parties to use the vocabulary and structures
they consider most appropriate within their system (thus accommodating parties’
heterogeneity), while preserving mutual understanding with the rest of the coalition.

A major disadvantage of the existing semantic alignment techniques (e.g., [7,9])
is that they require complete knowledge of the ontologies to be aligned in order to
effectively map concepts from different ontologies. When collaborations involve
parties that do not know each other beforehand or want to keep part of their
knowledge base confidential, however, this condition cannot be guaranteed. To over-
come this problem, we adopt the alignment technique introduced in [22] that maps
concepts from different ontologies by considering concepts’ similarity “estimates”
(since they are computed based on partial knowledge) issued by different parties in
the system of systems. These estimates are then combined into a single similarity
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value by weighing them based on the “reliability” of their issuer. In this way, parties
can enable interoperability with parties using different vocabularies and increase
the flexibility of their policies by accepting credentials about possibly unknown
attributes, provided that they are similar to a known attribute for at least a certain
degree. For example, in the scenario in Sect. 12.2.1, the Dutch navy can use the
estimates computed by the EU, the operation control center, the Dutch coastguard
and itself to assess the similarity between the concepts “search and rescue vessel”
and “search and rescue lifeboat”. According to the resulting combined similarity
estimate, the Dutch navy can then decide whether the two terms are similar enough
to certify NL-Lifeboat as a “search and rescue vessel” (policy NL1 in Table 12.1).
The technique in [22] abstracts from the way in which similarity estimates are
computed. Several existing algorithms (e.g., [15, 16]) can be employed for this
purpose, and each party in the system of systems can adopt a different algorithm
without affecting its interoperability with the other parties.

12.3.1.3 Service Oriented Architecture

Service oriented architecture is a paradigm for organizing and utilizing software
solutions that promotes reuse and interoperability [18]. A system based on service
oriented architecture implements functionality as a suite of interoperable services
that can be used within multiple systems from different domains. The characteristic
features of service oriented architecture are:

• Service reusability: the logic and functionality of a system is divided into services
with the intention of promoting reuse.

• Service autonomy: each service is independent and maintains control over the
logic it encapsulates.

• Service loose coupling: the relationship and dependencies among services are
minimized.

• Service composability: services can be easily combined and integrated into a
larger, complex system.

Service oriented architecture is commonly implemented using web services.
Accordingly, our security framework is implemented as a web service which can
be easily plugged into existing systems and acts as a proxy server intercepting all
the outgoing and incoming messages of a system. Furthermore, each component
of the security framework introduced in the next subsection is implemented as a
service that interfaces with the functional components and the data stored within a
system. This modular approach also facilitates the extension of the framework with
additional security services that may become relevant during the lifetime of a system
of systems (e.g., a reputation system for service selection or a key performance
indicator service) [4].
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Fig. 12.2 POLIPO framework architecture

12.3.2 Framework Architecture

Each party in a system of systems can employ an instance of the POLIPO framework
to protect the local resources. The POLIPO framework intercepts every access
request to a local resource and evaluates it against the local security policy. If
the request is authorized by the policy, the resource is returned to the requester;
otherwise, the access is denied.

An overview of the framework’s architecture is shown in Fig. 12.2, where the
dashed line separates the local components from the external ones. POLIPO consists
of a set of core components (i.e., policy enforcement point, access control and trust
management policy decision point), inspired by the XACML architecture [17], and
a number of complementary specialized services used to assist the policy evaluation
process (i.e., knowledge base and semantic alignment evaluator). The combination
of the core components with the specialized services ensures confidentiality and
integrity of information, while preserving autonomy and interoperability among
the parties in a system of systems. In the next paragraphs we discuss these five
components and services in detail.

Policy Enforcement Point. The policy enforcement point is the interface of a
party with the external world, and has three main tasks: (1) intercepting incoming
requests for local resources, (2) contacting the appropriate policy decision point
to evaluate those requests, and (3) enforcing the decision of the policy decision
point. We consider two types of requests: access requests and credential requests.
Access requests are requests for data controlled by the local party (e.g., message 2 in
Fig. 12.1), while credential requests are requests for credentials issued by the local
party (e.g., message 4b in Fig. 12.1).
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Upon receiving a request, the policy enforcement point forwards it to the
appropriate policy decision point. In particular, access requests are processed by
the access control policy decision point, while credential requests by the trust
management policy decision point. Finally, the policy enforcement point enforces
the decision of the policy decision point. If the decision is positive, i.e., if
access to the requested data is authorized (in case of an access request) or the
requested credential is locally available (in case of a credential request), the policy
enforcement point returns the requested resource; otherwise, a “deny” response is
sent to the requester.

Access Control Policy Decision Point. The access control policy decision point
is responsible for the evaluation of access requests. When it receives an access
request, the access control policy decision point checks whether the applicable
authorization rules depend on some credentials: if this is the case, they are requested
to the trust management policy decision point, which takes over the responsibility
of retrieving them. Then, depending on whether all the necessary credentials have
been successfully retrieved and the other conditions in the authorization rules (e.g.,
context conditions) are satisfied, the access control policy decision point determines
whether the access request should be authorized or denied. Context information
and domain knowledge are retrieved by invoking the knowledge base service, while
the alignment between ontology concepts is performed by the semantic alignment
evaluator.

Trust Management Policy Decision Point. The trust management policy decision
point is responsible for the evaluation of credential requests. The credential retrieval
algorithm within the trust management policy decision point defines the procedure
to compute the answers to a credential request; in our framework we employ
GEM [23] as credential retrieval algorithm. The evaluation of a credential request
may depend on credentials which are not locally available and, consequently, need to
be retrieved from some other party (e.g., a credential issued by the Dutch coastguard
in policy NL1 in Table 12.1). In this case, the trust management policy decision
point sends the request for the missing credential to the policy enforcement point,
which forwards it to the appropriate party, and feeds the response back to the trust
management policy decision point. As for the access control policy decision point,
ontology queries in credential rules are resolved by the knowledge base service,
while ontology mappings are requested to the semantic alignment evaluator.

Knowledge Base. The knowledge base service is used by a party to retrieve the
context and domain information that is relevant for an access or credential release
decision. For example, in rule OCC2, the need for assistance of a ship is determined
by the operation control center based on an “outlier factor” (see Chap. 8) associated
to the ship, which is available in the knowledge base. The knowledge base consists
of a set of local ontologies that define the concepts and relationship employed in the
party’s policy, the structure of the information it controls (i.e., metadata annotating
the local resources), and all the domain and context information (e.g., the current
location of a vessel) collected and derived within the system. A party can enlarge
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its knowledge base by importing external ontologies defined and published by other
parties or institutions. Within the POSEIDON project, POLIPO relies mainly on the
simple event model ontology (Chap. 10).

Semantic Alignment Evaluator. This service computes the similarity between
ontology concepts, relationships, and instances. The result of the computation is
a similarity value which can be used in a constraint in authorization and credential
rules. In the evaluation of rule NL1 in Table 12.1, for instance, the similarity value
between “search and rescue vessel” and “search and rescue lifeboat” is used by the
Dutch navy to determine whether vessel NL-Lifeboat should be certified as “search
and rescue vessel”. In Fig. 12.2, the semantic alignment evaluator is depicted as a
service directly controlled by the local party; however, parties in a coalition may
rely on (possibly shared) external semantic alignment services.

12.4 Prototype Implementation

We have deployed a prototype implementation of POLIPO [24,25] into a system of
systems developed within the POSEIDON project. The system of systems consists
of five parties: the operation control center, the Danish navy, the Dutch navy, the
Dutch coastguard, and the Dutch coastguard’s lifeboat NL-Lifeboat. Parties in the
system of systems use Google Earth to visualize and analyze the maritime traffic
in their operational area. Communication among parties (i.e., access and credential
requests) is via HTTP. In this setting, the policy enforcement point acts as a web
proxy that intercepts all the incoming HTTP requests, loads the requested data, and
returns an HTTP response based on the policy of the party controlling the data.

In the prototype, the policy enforcement point has been divided into two modules:
an interface module and a services module that consists of a set of responders,
one for each service offered by the local party. The interface module waits for
incoming requests and passes them to the appropriate responder which takes care
of processing the request and generating a response. The policy enforcement point
of each system in the POSEIDON system of systems has two responders: one to
process access requests from the visualization service (Google Earth), and one
to process credential requests. The division of the policy enforcement point into
two modules enhances the flexibility of the POLIPO framework, as it allows new
services offered within the system of systems to be secured by simply adding the
relative responders to the policy enforcement point component.

We now show an application of POLIPO to the scenario introduced in
Sect. 12.2.1. Figures 12.3 and 12.4 show the output of the visualization service
and the details about Blue Star’s cargo returned to the operator of NL-Lifeboat
respectively before and during the emergency situation declared by the operation
control center, based on the policies in Table 12.1. As mentioned in Sect. 12.2.1, all
the names and details about ships introduced in this chapter are purely fictitious.
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Fig. 12.3 Data view and extra information displayed to the operator of NL-Lifeboat before the
emergency. (a) Data view for the operator of NL-Lifeboat. (b) Information about Blue Star’s cargo
displayed to the operator of NL-Lifeboat

In the visualization, the color of a segment reflects the outlier factor computed for
that segment (see Chap. 8). The color scale goes from blue to red as the outlier factor
increases. The current position of each ship is represented by an icon, whose type
corresponds to the type of the vessel it represents: more precisely, icons depicting an
arrow pointing downwards represent vessels which are (or become) part of the EU
NAVFOR; all the other vessel types are represented by an icon depicting a white
boat. By clicking on an icon or a segment the operator can see the name, maritime
mobile service identity (MMSI), and type of a ship, as well as the event type (e.g.,
the ship is slowing down, has stopped, etc.) and the outlier factor associated to the
event. For instance, in Figs. 12.3a and 12.4a, information about the ship Blue Star
is displayed. The information box shows that Blue Star is a cargo ship which is
currently drifting, and the outlier factor is approximately 0.67 and 0.84 respectively.

When the operator of NL-Lifeboat requests details about Blue Star’s cargo
to the operation control center, the security framework of the operation control
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Fig. 12.4 Data view and extra information displayed to the operator of NL-Lifeboat during the
emergency. (a) Data view for the operator of NL-Lifeboat. (b) Information about Blue Star’s cargo
displayed to the operator of NL-Lifeboat

center verifies whether there are rules in the local policy which might grant access
to the requested information, and if so, it attempts to collect the credentials of
NL-Lifeboat required to authorize the access. For example, the first time that NL-
Lifeboat requests the cargo information, the operation control center does not return
any details because the situation of Blue Star is not considered critical (Fig. 12.3b,
corresponding to message 3 in Fig. 12.1), and therefore rule OCC2 in Table 12.1
cannot be applied. On the contrary, when the conditions become more critical (as
can be evinced by the high outlier factor associated to Blue Star and the event type
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– drifting – in Fig. 12.4a), the intelligence gathered by the EU NAVFOR about Blue
Star’s cargo is provided to the operator of NL-Lifeboat (message 4f in Fig. 12.1). In
this case, since the cargo contains Anthrax, the information returned to NL-Lifeboat
includes details about the Anthrax toxin and measures to prevent the infection
(Fig. 12.4b). The authorization of NL-Lifeboat to access the intelligence collected
by the EU NAVFOR follows from the verification that NL-Lifeboat is a “search and
rescue vessel” certified by the Dutch navy. In turn, the certification of NL-Lifeboat
as a “search and rescue vessel” from the Dutch navy results from the alignment of
the vocabularies of the Dutch navy and the Dutch coastguard (see Table 12.1 for the
vocabulary employed in the two parties’ policies).

12.5 Discussion and Conclusion

The security challenges in systems of systems are different from those affect-
ing centralized systems. In a dynamic, inter-organizational coalition of systems,
parties might not know each other beforehand, might employ different data and
organizational models and “speak” different languages; nevertheless, they must
be able to collaborate for the success of the coalition. We have identified four
main requirements that a security framework for systems of systems must satisfy:
(1) protection of the confidentiality and integrity of data and security policies; (2)
autonomy of parties in the choice of data and organizational model and vocabulary
used to specify policies and describe the local resources; and (3) interoperability
among parties. In addition, (4) the security framework must be easy to integrate
into existing systems.

Several security frameworks for systems of systems have been proposed in the
literature. These frameworks can be divided into two categories: semantic frame-
works [11, 26] and trust management frameworks [5, 12, 14]. Semantic frameworks
rely on ontologies for the specification of security policies and the definition of
domain knowledge and context information. This enables interoperability among
parties at the cost of limiting the expressive power of the policy language,
which does not allow the specification of several types of security constraints
(e.g., mutually exclusive roles). On the other hand, trust management frameworks
rely on an attribute-based approach to access control where access decisions are
based on digital certificates, called credentials. Trust management frameworks
employ expressive policy specification languages to ensure data confidentiality and
integrity; however, they either assume all parties in a system of systems to use
the same vocabulary [12, 14], or do not provide a mechanism to align different
vocabularies [5]. Thus, none of the existing frameworks satisfies all the security
requirements of systems of systems.

In this chapter we have introduced POLIPO, a security framework for systems
of systems satisfying all the aforementioned requirements. Confidentiality and
integrity of information are protected by complementing context-aware access
control with trust management; a distributed policy evaluation algorithm guarantees
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that policies’ confidentiality is not violated when a credential request is evaluated.
Security policies are specified by means of an ontology-based specification lan-
guage [21]. The use of ontologies allows parties to provide semantics to the terms
employed in their policies and to describe domain and context information. This,
combined with a semantic alignment technique [22], gives parties the autonomy to
employ different organizational models and vocabularies while preserving interop-
erability among the parties in the system of systems.

The applicability of POLIPO has been demonstrated by a prototype imple-
mentation for a scenario in the maritime safety and security domain, where
communication among the parties in the system of systems is via HTTP. In this
setting, POLIPO acts as a web proxy which intercepts all the incoming access and
credential requests directed to a party, and returns a response based on the security
policy of the party. This facilitates the deployment of the framework into existing
systems. In addition, all the framework components have been implemented follow-
ing the service oriented architecture paradigm to allow for an easy integration of
additional components to support the evaluation of policies and provide additional
functionalities.

Even though POLIPO has been mainly tested in systems of systems in the
maritime safety and security domain, its characteristics make it suitable for many
other domains. For example, we have deployed POLIPO also in systems of systems
in the e-health and the employability domain [4]. Furthermore, its integration with
ontology-based services allows for an easy deployment of POLIPO into systems of
systems on the semantic web. More generally, POLIPO represents a valid security
solution for all the domains characterized by the need for collaborations among
parties from different security domains, who possibly do not know each other
beforehand and employ different vocabularies and different data and organizational
structures.
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Chapter 13
Assessing Trust for Determining the Reliability
of Information

Davide Ceolin, Willem Robert van Hage, Guus Schreiber,
and Wan Fokkink

13.1 Introduction

In the naval domain, particular messages, called “Automated Identification System”
(AIS) messages are periodically exchanged between ships and captured by partic-
ular receivers that allow ship and land based naval authorities to avoid collisions,
to locate and to identify ships. These messages contain important information,
about the identity of the ship (identification code, name, flag, ship dimension, etc.),
about its location (latitude, longitude, timestamp of the message, that is, temporal
identification of the moment when the message is sent) and about kinematic data
(for instance, speed and heading).

The importance of these messages is therefore evident from the fact that they
allow to keep track of the position of the ships, together with their identity. However,
these messages can, in principle, be intentionally or unintentionally manipulated by
the senders. For instance, there exist episodes of ships willing to impersonate the
identity of others to evade controls.1

Trust plays a crucial role when dealing with these messages, because the
information that they provide is not always certain, but a naval operator that reads
them, would like to know whether he can trust them. We will see in this chapter
how to calculate a trust level for messages that are received, and how to live with

1For instance, in 2010 the fleet of an Iranian company tried to disguise its identity. See: http://
www.nytimes.com/2010/06/08/world/middleeast/08sanctions.html?pagewanted=all
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the fact that trust can only be estimated, i.e., it cannot be computed precisely or with
absolute certainty. Trust is a strategy chosen to deal with this lack of information.
If we would have known for sure that a message is correct, we would have simply
used it, without the need to estimate its trust level.

The concept of trust in computer and information science directly reflects the idea
of reliance on third parties typical of the view of trust in sociology or psychology [1].
Chapter 12 describes techniques that agents (ships or fleets) can use to trust each
other in order to safely exchange sensitive information. Instead, we are interested
in trusting messages that these ships send, i.e. in determining the reliability of the
information that they contain. We will assess the level of trust in these messages by
means of decomposition: messages are composed of different information about the
ship. By assessing the trust level of these pieces of information and then aggregating
all the assessments related to a given message, we are able to provide an assessment
about the whole message. Clearly, the different parts composing the messages are
not always independent of each other. This problem will be addressed in Sect. 13.5.
Because of the tight relation between messages and sender (the message is sent
by the ship that it refers to and it is used to identify it), trusting or distrusting the
message can be considered equivalent to trusting the so-called agent, that is, the ship.

This chapter will describe how it is possible to estimate appropriate trust in the
information that the message exposes. We will base our evaluations on two factors:
the reputation of the sender (and, more generally, the “provenance” of the message,
that is, who produced it and how), and the co-occurrence of multiple observations
supporting or contrasting the information provided by the message itself. Roughly
speaking, this means that we will trust messages when they are sent by well reputed
agents and we will trust information that is confirmed by many agents.

In the following sections we will show how to deal with all the information
contained in the messages, reason about it and take the decision to trust it, with
the goal to reduce the probability to take a wrong decision. In Sect. 13.2 we
introduce evidential reasoning, and in Sect. 13.3, we describe first and second order
probabilities. Evidential reasoning and first and second order probabilities are the
statistical foundations of our approach. In Sects. 13.4 and 13.5 it is explained how
provenance information (that is, information about how a given piece of information
has been produced) plays a key role in trust assessments. Some results and
achievements are discussed in Sect. 13.6. Finally, Sect. 13.7 describes future work.

13.2 Evidential Reasoning

Often, we are not able to directly determine whether a message is correct by simply
reading it. Suppose, for instance, that we receive a message from Ship123 stating that
the name of the ship is “Beauty”. Shall we trust it? It may be lying or not, and we do
not know it yet. What we can do in this situation is to look for other messages sent by
Ship123 in order to see whether it coherently says that its name is “Beauty” and look
for other sources (e.g., official registries) confirming or disagreeing with this fact.
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Of course, a trust assessment based only on evidence coming from one single source
of information (the ship itself) is possibly biased and partial. Moreover, in case
the ship wants to hide its real identity, it is likely to send consistently messages
containing wrong information, and any trust level based only on them will be
misleading. However, this is only a starting point of our reasoning. We will shortly
see how to “weigh” these evaluations taking into account the reliability of the source
that produces them and how to incorporate information coming from other sources
than the ship itself.

We can refer to the evidence provided by the messages as “direct” evidence,
because it consists of observations that directly focus on our subject of interest,
that is, the name of the ship. On the other hand, if, for instance, we know that
the reputation of the ship is positive, that is, we know that Ship123 has always
been reliable in the past, then, although this does not say anything directly about
the correctness of its name, still will make us incline to believe in what the ship
says. Therefore, this kind of evidence can be regarded as “indirect”, since it helps
us taking a decision although it is not directly related to what we are evaluating.
Indirect evidence includes the reputation of the ship but, for instance, might also
include evidence about the possible theft of the ship identity. Clearly, this latter
event would change our opinion about the information provided by the ship.

Evidential reasoning allows to deal with these two kinds of evidence. We will
see how a probabilistic logic can allow to represent the previously introduced facts
(Ship123 is named “Beauty”) as logical statements and how to deal with the evidence
that permits to determine whether these statements are true or false. In this particular
case, we are not interested in determining the name of Ship123, but we are assessing
the trust level for “Beauty” being it. Therefore, instead of having a possibly infinite
range of values, our range is composed of only two values, true and false, which are
the truth values that the assertion we are assessing can assume.

13.2.1 Subjective Logic

Subjective Logic [8] is a kind of probabilistic logic, that is, a formalism that
combines the traditional logic with probability theory to express uncertainty about
the truth level of statements. The “Subjective” name is due to the fact that the
assertions treated by this logic are evaluated subjectively, according to the evidence
that one can gather on a statement. For instance, if we have at our disposal
100 messages sent by Ship123 stating that its name is “Beauty”, this will give
us a subjective opinion different from that of another person relying on only 10
messages. We have a limited view on the world and we base our judgements on all
the evidence that we have been able to gather until a given moment.

Opinions are the basic element of Subjective Logic, because they are the means
to link logical statements to probabilities and to contextualize them. For instance, if
our source (or “subject”) is message1 and we are determining whether the name of
the ship is “Beauty” (this statement constitutes our “object”), then we can represent
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it as an opinion (represented by the symbol ωsubject
object ) in one of these two equivalent

means:

ωmessage1
the name o f Ship123 is “Beauty”

(
1
3
,0,

2
3

)
= ωmessage1

the name o f Ship123 is “Beauty”

(
1
3
,0,

2
3
,

1
2

)

Any valid opinion has four components ranging between zero and one (belief,
disbelief, uncertainty and a priori). If the a priori value is omitted, it is implied
that it assumes a default value. In this case, as we will see later in detail, the default
value is 1

2 . The sum of the first three components has to be equal to one. These
components implicitly represent probabilities:

Belief: the value that represents how much we believe that this statement can be
true. It is computed as follows:

bmessage1
the name o f Ship123 is “Beauty” =

#positive evidence
#total evidence+ #range values

=
1
3
= 0.333

In this case, we have only one evidence because we are considering only one
message, therefore #positive evidence = #total evidence = 1. Note also that
#range values is the number of values that the statement can assume. In this
case #range values = 2, since the statement can be either true or false.

Disbelief: the value that summarizes all the observations that falsify the state-
ment. It is computed as follows:

dmessage1
the name o f Ship123 is “Beauty” =

#negative evidence
#total evidence+ #range values

=
0
3
= 0

Since the opinion is based on the only message that we are considering at the
moment, there is no observation contrasting with what the message reports.

Uncertainty: the quantification of the uncertainty about the correctness
(or truthfulness) of a given statement.

umessage1
the name o f Ship123 is “Beauty” =

#range values
#total evidence+ #range values

=
2
3
= 0.667

A priori: it represents the prior bias that “subject” has against one of the
possible outcomes before collecting any observation. The range of this value is
[0..1]. An a priori value equal to zero or one means higher bias towards disbelief
and belief, respectively. A priori value equal to 0.5 means no bias: in this case,
for convention the value can be omitted from the opinion representation. Vice-
versa, an opinion not reporting that value, implicitly indicates that its value is

1
#range values so, in this case, 0.5.

amessage1
the name o f Ship123 is “Beauty” =

1
#range values

=
1
2
= 0.5
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These formulas are useful in the maritime domain, where different “subjects”
may have different points of view with regard to the same fact. By “subjects”, in
this domain, we may mean, for instance, a message from a ship or from a radar
station. Different levels of granularity are allowed. These formulas allow to correctly
represent a particular point of view and the operators that we shall introduce later in
this section, allow to “merge” and “weigh” opinions, providing opinions at different
levels of granularity, based on actual observations.

It is important to note how the uncertainty value is both inversely correlated to the
amount of evidence (the more evidence we have, the less uncertain our evaluation
will be) and correlated to the number of possible different values (the bigger the
number of possible values that our object of interest can have, the more uncertain
our evaluation will be).

Of course, it could also be that if a certain ship is willing to make us believe
that its name is “Beauty” (although this is not true), it will probably consistently
send messages reporting that name. That is why we group our evidence in opinions,
which record also the source of the evidence, and then combine these with the
reputations of the sources. In other words, these opinions are weighted according
to the opinion that we own about the source itself. We will see later in this section
how this weighting is possible. Note also that the opinion representation focuses
on a particular “object” (the name of Ship123 is “Beauty”) and that it resembles
the point of view (based on the observations currently at disposal) that a certain
“subject” (message1) has.

13.2.2 Subjective Logic Operators for Combining Opinions

The opinions represent facts, both with respect to the point of view that they
incorporate (they are based on the evidence observed by the “subject” of the
opinion) and to their focus, since they represent belief, disbelief, uncertainty and
a priori value about a specific “object”, that is a specific fact. In several situations,
like in the maritime domain, single opinions are not enough to answer questions that
involve many atomic facts related to each other in disparate manners. The solution
to this issue is to combine the opinions about these atomic facts by means of specific
operators. The results of these operations will be “complex” opinions that reflect the
relations incurring between the facts.

Suppose that many subjects expose their (possibly disagreeing) opinions about
the same object. In order to be able to take a decision about the truth value of
the common object of these opinions, we could merge all these opinions into
one, unique opinion that summarizes them all. The subject of this final opinion is
represented as a concatenation of the original subjects and the evidence on which
the opinions are based are merged. This way, we mediate possible disagreement
between the input opinions, and, at the same time, we incorporate all the contribu-
tions. This merge is done by means of a so-called “fusion operator” (represented
by the symbol ⊕). The resulting opinion is equivalent to an opinion based on the
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Fig. 13.1 Small network of
opinions

(possibly weighted) sum of all the evidence on which the opinions are based. The
fusion operator works as follows:

ωmessage1
x ⊕ωmessage2

x =

ωmessage1�message2
x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bmessage1�message2
x = u

message2
x ×b

message1
x +b

message2
x ×u

message1
x

u
message1
x +u

message2
x −u

message1
x ×u

message2
x

dmessage1�message2
x = u

message2
x ×d

message1
x +d

message2
x ×u

message1
x

u
message1
x +u

message2
x −u

message1
x ×u

message2
x

umessage1�message2
x = u

message2
x ×u

message1
x

u
message1
x +u

message2
x −u

message1
x ×u

message2
x

amessage1�message2
x = 2×a

message1
x ×a

message2
x

a
message1
x +a

message2
x

In this formula, the superscript names indicate the sources considered when
building the opinion. The subscript x is a generic statement (like “Ship123 is
named Beauty”) and b,d, u and a are respectively the belief, disbelief, uncertainty
and a priori value described before. Basically, what this operator allows to do is
to combine opinions about the same object, but coming from different sources
and based on possibly different amount of evidence. The resulting opinion will
have decreased uncertainty (because it will incorporate evidence coming from
both inputs) and increased belief and/or disbelief, for the same reason. Belief
and disbelief of the resulting opinion are computed by determining the average
of the input belief and disbelief, weighted on the inverse of the uncertainty, that
is, implicitly weighted on the evidence supporting them, since the uncertainty
is inversely proportional to the amount of evidence considered. Two opinions
combined into an output opinion can be seen as a simple, almost trivial, network
and represent the first attempt to organize the information that we have at disposal,
as can be seen from Fig. 13.1.

Note that the merged opinion is exactly equivalent to an opinion based on the
amount of evidence used to build the input opinions. This fact allows to compute
opinions in an incremental and possibly distributed way. If we get opinions from
different sources, we do not need to look for the original evidence that led to
these opinions in order to obtain a global opinion that takes all this evidence into
consideration. It is possible to simply combine the opinions that we see and the
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resulting combined opinion will be equivalent to an opinion actually based on that
evidence. The same holds in case evidence is not all available at the same time,
but rather, is collected progressively. More information about these operators is
available in [8].

Suppose, further, that one of the messages is retrieved through a receiver that we
know is not always reliable. This means that at least the uncertainty of the opinion
computed on the basis of such a message should be increased (because we do not
know if the receiver was working properly or not, when it recorded the message).
This is obtained by another operator, called “discount” operator (represented by the
symbol ⊗) that weighs the opinion on the message itself according to the opinion on
the receiver, that is, on the reputation of the receiver. This will allow us to “smooth”
strong opinions coming from subjects (that is, sources) of which the reputation is
not surely positive, while allowing us to incorporate opinions about facts of which
we do not have direct observations, but that are “told us” by third parties (in this
case, the receiver). Here is an example. If our opinion about message1 was

ωwe
message1

(0.4,0.4,0.2)

and the opinion given by message1 is the one we have seen before,

ωmessage1
the name o f Ship123 is “Beauty”(0.333,0,0.667)

we can weigh this opinion on the basis of message1’s reputation by applying the
discount operator:

ωwe
message1

⊗ωmessage1
the name o f Ship123 is “Beauty” = ωwe:message1

the name o f Ship123 is “Beauty” =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bwe:message1
the name o f Ship123 is “Beauty′′ = bwe

message1
bmessage1

the name o f Ship123 is “Beauty”

dwe:message1
the name o f Ship123 is “Beauty′′ = bwe

message1
dmessage1

the name o f Ship123 is “Beauty”

uwe:message1
the name o f Ship123 is “Beauty′′ = dwe

message1
+ uwe

message1
+ bwe

message1
u∗

awe:message1
the name o f Ship123 is “Beauty′′ = amessage1

the name o f Ship123 is “Beauty”

where u∗= umessage1
the name o f Ship123 is “Beauty”, and the result will be:

ωwe
message1

(0.4,0.4,0.2)⊗ωmessage1
the name o f Ship123 is “Beauty”(0.333,0,0.667) =

ωwe:message1
the name o f Ship 123 is “Beauty”(0.133,0,0.867)

In case the source (which, in this case, is the message), is known to be potentially
malicious, then we can use another type of discount operator that, instead of rising
the uncertainty, rises the disbelief. Other operators are available, in order to allow
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different logical operations to be applied to the statements of our interest and
to have the corresponding beliefs, disbeliefs and uncertainties properly updated.
The choice of the correct operator to be applied on the opinions at our disposal
depends on the relations among objects and subjects and is usually related to domain
knowledge. For instance, a given object1, in order to be true may need two other
objects, namely object2 and object3, to be true. If we own an opinion about object2
and one about object3, we can use the AND operator to infer an opinion about
ob ject1. The Subjective Logic version of it (represented by the symbol ·) works
as follows:

ωsub ject
x ·ωsub ject

y = ωsub ject
x∧y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bsubject
x∧y = bxby +

(1−ax)aybxuy+ax(1−ay)uxby
1−axay

dsubject
x∧y = dx + dy − dxdy

usubject
x∧y = uxuy +

(1−ay)bxuy+(1−ax)uxby
1−axay

asubject
x∧y = axay

where x and y are two different statements and x∧y is the opinion that “subject” has
about both x and y being true. These “subjective” versions of the boolean operators
allow to logically combine all the statements at our disposal according to our needs.
Opinions having belief or disbelief equal to one are equivalent to the boolean values
of true and false. In boolean logic, the truth value of statements combined by these
operators is determined by truth tables that is, tables that determine the results (true
or false) for all possible combinations of inputs (true or false). The corresponding
Subjective Logic version produces the same output as the truth tables do, when
applied to opinions having belief or disbelief equal to one. In addition, it allows
to compute the conjunction of opinions neither true nor false (having belief and
disbelief less than one).

The wide range of operators available (including subjective versions of the
boolean operators, together with the fusion and discounting operators), makes this
logic particularly expressive, since it allows to capture many different existing
relations between the statements. For an extensive example of application of the
logic, see [3]; for more details about the logic, its foundations and its operators, see
[5, 8, 9, 13].

13.3 First and Second Order Probabilities

We saw how an opinion represents the evidence that a certain subject has up to a
certain moment by means of four values. Evidence might be partial or misleading
but since it is the only “view” we have on the world, one should grasp all the
information that it exposes without fully relying on it. This is the reason why
uncertainty is quantified and why uncertainty is inversely related to the total amount
of evidence, because we assume that an opinion is less uncertain if it is supported by
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Fig. 13.2 ω is an opinion based on four positive and one negative evidence. Figure (a) represents
ω in the triangular space. Figure (b) represents the corresponding Beta distribution (Beta(4+1,
1+ 1) = Beta(5,2)). The parameters of the Beta are equal to the amount of positive and negative
evidence respectively, increased by one

more evidence. However, even in case a lot of observations support a given opinion,
the opinion could be wrong, so then the opinion will always have an uncertainty
component higher than zero.

An opinion can be graphically represented as in Fig. 13.2. The triangular
representation is the simplest and most direct graphical representation of opinions.
Therefore, although they are equivalent, it is often preferred to the Beta distribution
representation shown in Fig. 13.2b. First, we will explain the triangular represen-
tation. Later in this section we will explain the Beta distribution representation
of opinions, together with a clarification about the statistical implications of this
probabilistic representation. The triangle depicted in Fig. 13.2 is not a triangle in
a cartesian space, rather it represents the space of all the possible opinions where
each of the sides is a “dimension” of such a space. Each side is an axis of this
particular type of plain. Each side represents the space of all the opinions having
a dimension equal to zero. For instance, the side that links the belief and disbelief
vertices represents the set of all opinions having uncertainty zero, and the same
holds for other sides. On the other hand, each vertex represents the opinion having
only one dimension equal to one, that is the component that names the vertex. If
we connect each vertex with the median of the opposite side, we discover three
orthogonal axes, represented by dashed lines in Fig. 13.2, that range between zero
(the median point of the side) and one, the vertex. Each component of the opinion
determines the position with regards to each of these sides. So, for instance, if we
take opinion ω(0.4,0.1,0.5), this opinion will be situated at distance 0.4 from the
side disbelief-uncertainty, since its belief value is 0.4. The intersection of all these
three distances determines the position of the opinion.
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Opinion Beta distribution
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Fig. 13.3 ω1 is an opinion based on four positive and one negative evidence, while ω2 is based
on 400 positive and 100 negative evidence. The left picture locates the opinions in the triangular
space. The right picture shows the shape of the two distributions describing the opinions. Clearly
opinion ω2 has less variance than opinion ω1, since it is based on more evidence

The opinion determines the correct point of the lower side of the triangle that
represents the right proportion of the population, because the lower side is the
set of all “certain” opinions. If we know everything about the whole population,
there is no uncertainty in the ratio that we know. The lower side of the triangle
ranges between zero (disbelief) and one (belief). What it represents is the proportion
between sources of information that agree with the name of Ship123 being “Beauty”
and sources of information disagreeing with that. This proportion can be interpreted
as the probability to observe a source of information agreeing with the statement
the name of Ship123 is “Beauty”. So, in turn, this probability is an estimate of the
probability of the statement being true. However, having an opinion with uncertainty
higher than zero, what is the population proportion that this opinion implies? That
is, onto which point of the belief-disbelief side should we “project” our opinion?

The higher the point, the higher the uncertainty, because the height represents
the uncertainty. Once the opinion is represented in the triangular space, it is
possible to “project” it into the lower side in order to see the estimated proportion.
The projection is a way to derive information about the population given the
current available opinion. The slope of the projection is determined by the a
priori component. If a = 0.5, then there is no bias, and the projection is therefore
orthogonal with respect to the lower side. Otherwise, the projection will “penalize”
(in case a < 0.5 the projection will be closer to the disbelief vertex of the triangle)
or “reward” (a > 0.5) the opinion. Figures 13.3 and 13.4 show how two opinions
based on observations with the same ratio (4:1) but with two different observation
set sizes (500 vs. 5) are affected by 50 new observations, still keeping the same ratio.
Of course, the opinion based on the smaller set of data is the most susceptible, since
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Fig. 13.4 ω1 and ω2 after update. Now ω1 is based on 44 positive and 11 negative evidence. ω2
is based now on 440 positive and 110 negative evidence. The shape of opinion ω1 is much more
affected by this change than the shape of opinion ω2

it was more uncertain. This explains also why opinions based on less observations
are more susceptible to the influence of a biased prior: if we base our opinion only
on few observations, then it is natural to rely more on our prior knowledge.

The evidence that we observe is representable by a Binomial distribution, that
is a discrete probability distribution describing two mutually exclusive outcomes,
one that can happen with probability p and one with probability 1− p. Indeed, we
want to determine whether the name of the Ship123 is really “Beauty”: the possible
outcomes are two, true or false, and if the true value has p probability to appear,
the false value will appear with probability 1− p. The observations that we own are
observations about this fact being true or false.

The fact that we observed for instance two messages confirming that the name
of Ship123 is “Beauty” and one that disagrees, should not imply that we have 1/3
of probability that the ship is not named “Beauty”: there is uncertainty about the p
parameter of the Binomial distribution. We should define a probability distribution
describing the possible values for p on the basis of the current observations.

The probability distribution that meets our requirements is the Beta distribution.
The shape of this distribution is determined by two parameters, a “rewarding”
and a “penalizing” one (α and β ) equal to the number of positive and negative
observations plus one, respectively, because Beta(1,1) is by definition the Beta
without any evidence. This distribution is used to describe the possible values that
the parameter of the Binomial can assume. This relation is named “conjugacy” and
the mathematical proof of this relation is available in [7, 12]. Roughly speaking,
the Beta distribution works the same way as the opinions do: the ratio between
rewarding and penalizing parameter (determined by positive and negative evidence)
determines the position of the “peak” of the distribution (same value as the expected
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value of the opinion). The Beta distribution behaves exactly as Subjective Logic’s
opinions do. The two parameters of the Beta can be expressed in the belief, disbelief,
uncertainty and a priori value of the opinions:

α =
2 ∗ b

u
+ 2 ∗ a β =

2 ∗ d
u

+ 2 ∗ (1− a)

Finally, the expected value of the Beta distribution can be computed as E = b+a∗u
and this value is exactly the value that we obtain by “projecting” the opinion onto
the lower side of the triangular representation of the opinions, that connects belief
and disbelief.

We have described our situation as a stratification of probability layers. The lower
layer, the “first order probability”, is represented by the Binomial distribution. This
is the probability distribution that describes the probability to observe correct (true)
information. The Beta distribution, that is, the “second order probability”, situates
on top of this layer. The Beta determines the choice of the model for the first order
probability, because the Beta describes the possible values for the parameter of the
Binomial and the parameter chosen for the Binomial determines its shape.

13.4 The Open Provenance Model

Provenance represents another important component of our trust evaluations. It is
a complementary component with respect to the probabilistic and logic part, since
it focuses on representing “where the data we are dealing with come from” and
here, by “come from” we mean who produced them and how. Therefore, whereas
the probabilistic logic described before gives us an important tool to consistently
deal with the observations that we face, even when they are available in a small
amount or when they disagree with each other, the provenance model allows us to
capture information about the origin of the data that we are evaluating. Although
this information does not provide direct evidence about the content reliability and
correctness, it can be helpful in giving implicit evidence about that. For instance, if
we know that certain information is provided by a certain “agent” and such an agent
is known to have a bad reputation, we will probably distrust that data, in case we
do not have any other information. In Sect. 13.2.2 we saw how to deal with sources’
reputations by means of the discount operator⊗, and here we will see how to capture
a range of other information useful for our assessments. It is possible to represent
this information logically by means of the components previously introduced. The
next Sect. 13.5 will explain how this has been implemented in the maritime domain.

To represent this additional information, we use the Open Provenance Model
[10], which is an open source model developed for representing and recording
information about the provenance of artifacts, that is, who produced them and how.
Its components are:
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MMSI

IMO

Opm:used

Opm:used

Opm:used

Legend

Artifact

Process

Opm:wasGeneratedBy
Concatenation AIS message

Fig. 13.5 Example of an Open Provenance Model graph. An AIS message is an artifact generated
by a concatenation process. This process uses the values of the IMO, MMSI and other fields
as input

Artifact Immutable piece of state, which may have a physical embodiment in an
physical object, or a digital representation in a computer system.

Process Action or series of actions performed on or caused by artifacts, and
resulting in new artifacts.

Agent Contextual entity acting as a catalyst of a process, enabling, facilitating,
controlling, and affecting its execution.

Since the model aims at describing all the information about how the artifact
of our interest was produced, the Open Provenance Model focuses on capturing
the causal relations between agents, processes and other artifacts within such a
production phase. These relations are defined as follows:

• Process used Artifact
• Artifact wasGeneratedBy Process
• Agent wasControlledBy Process
• Process1 wasTriggeredBy Process2
• Artifact1 wasDerivedFrom Artifact2

So, the model allows to represent formally all the information that we have
about the provenance of the “objects” of our opinions, which can be considered
as artifacts: all the processes and artifacts that were used (input and intermediate
data), together with the agents that controlled them. The model also allows to infer
new relations. For instance, if Artifact1 wasDerivedFrom Artifact2, then implicitly,
there is a set of processes in between the two artifacts, that used Artifact2 as input
in order to obtain Artifact1. For our purposes, the most important thing is that the
model allows to represent the network of dependencies and relations that influences
the reliability level of the data that we are analyzing. Figure 13.5 shows an example
of an Open Provenance Model instance. We will see in the following section how to
build such a network and how to apply probabilistic logic reasoning on top of it.

The Open Provenance Model might be considered as overlapping with the
Simple Event Model described in Chap. 10. However, the two differ in their focal
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point: whereas the Simple Event Model focuses on the description of events (what
happened, when, where, who was involved, etc.), the Open Provenance Model
focuses on the causal relations among events, in order to describe the chain of events
that led to a given artifact. A mapping between these models is provided in [2].

13.5 Using Provenance for Improving Trust Assessments
of AIS Messages

This section will describe how to compute trust levels for the AIS messages
by combining Subjective Logic with provenance information. An AIS message
contains, amongst others, the following fields:

• IMO: unique identification code from the International Maritime Organization;
• MMSI: the Maritime Mobile Service Identity code is a nine digits code used for

communication purposes. Its first three digits are determined on national basis;
• CallSign: four or five digits communication code. Its first two digits are deter-

mined on the basis of the nation of the ship;
• Name of the ship;
• Flag of the ship.

We applied Subjective Logic reasoning on the fields reporting static information
about the ship (like IMO, MMSI and CallSign), and not on the fields reporting
kinematic information (like speed or heading). For each field we computed an
opinion based on all the available evidence, that is, AIS messages and information
crawled from the Web.2 Then, we merged all the opinions taking into account
provenance information, that is, how information contained in the fields is produced.
Since there exists also a dependency relation between certain fields, provenance
allows to encode dependencies between them, as we will see later. The trust level of
the whole static part of a message is determined by combining the trust level
computed for each field apart. These pieces of information are combined by the
“AND” operator. The reason why we use this operator, is that, in order to be
considered “trustworthy”, a message should carry only correct (or “trustworthy”)
information. If one or more pieces of information are not, then the whole rating
should be affected by this.

There are two categories of fields: independent and dependent (or partially
dependent) fields. Fields like, for instance, the width or the name of the ship, are
not bound to any other information within the message itself. So, to compute the
trust value for these fields, we gathered all the evidence available and properly count
them to build an opinion.

Other fields, like the MMSI code and the CallSign are dependent on the flag field,
which represents the nationality of the ship. The Open Provenance Model can help

2In particular, we crawled www.vesseltracker.com and www.shipais.com websites

www.vesseltracker.com
www.shipais.com
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Fig. 13.6 Graph representing the provenance of the MMSI field of an AIS message. The code
depends on the Flag field for the national code part and for the IMO code for the ship part

us in recording this information. Assuming that the IMO is a code able to uniquely
identify the ship, we can record the following relations:

MMSI national code wasDerivedFrom Flag
MMSI ship code wasDerivedFrom IMO
MMSI wasDerivedFrom MMSI national code
MMSI wasDerivedFrom MMSI ship code

The CallSign field is defined exactly in the same way. For each field we have a
small graph (for instance, see Fig. 13.6) with the field itself being dependent on
two components. We know from the domain that the process that produced the
codes is the concatenation process. From trust perspective, it means that the two
input elements do not influence each other, because they determine the value of
the two elements that, once concatenated lead to the overall code. Therefore, these
two elements need to be both true so that the whole message can be true (“AND”
operation). So, we computed the opinion for the second part of the MMSI, of
the CallSign and of the flag, based on the available evidence. Fig. 13.7 shows the
network of information that we have just described.

We did not have the possibility to determine the MMSI local part given the IMO
code from a reliable service, but by employing Subjective Logic and exploiting
provenance information we could obtain reliable estimates for this 6-digit code (that
is, the ship code of the MMSI). With regards to the national part, instead, we have
the possibility to map it into the nation that it represents. Therefore, we can merge
all the evidence we have about the flag, the MMSI national part and the CallSign
national part into a single opinion about the nationality of the ship. The national
part of the MMSI code is a 3-digit code. Before doing this, we need to have a map
that collects all the national codes for MMSI and CallSign. We retrieved these maps
from a Web repository of places-related information and of communication codes3

(see Fig. 13.8a).

3In particular we crawled the International Telecomunication Union website (http://www.itu.int/
online/mms/glad/cga mids.sh?lng=E) and from Citymap HQ website (http://www.citymaphq.com/
codes/itu.html)

http://www.itu.int/online/mms/glad/cga_mids.sh?lng=E
http://www.itu.int/online/mms/glad/cga_mids.sh?lng=E
http://www.citymaphq.com/codes/itu.html
http://www.citymaphq.com/codes/itu.html
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Fig. 13.7 The computation of an opinion regarding the communication code of Ship123 is made by
merging opinions on the national and ship components of the code. The national part is evaluated
by considering the nationality of the ship

Finally, in order to determine the trust values from the AIS messages, we
computed:

• The trust values for all the “independent” fields (e.g. the flag). Note that, the AIS
messages also report a timestamp, that is, a field indicating the moment when
they are sent. When computing the trust value for these elements, we consider all
the evidence available up to that point: messages arrived before the one that we
are analyzing, and all the Web data considered (websites providing AIS-related
information).

• The trust values for all the “dependent” components, like the CallSign and the
MMSI code. The trust value of these elements is computed by applying the
“AND” operation over the input elements (national and local codes).

• The trust value of the entire message, by computing the AND operation of all
components.

We computed the trust values for all the messages in our dataset, that covers
1 week period. In addition to these data, we consulted a few Web sources4 to
increase the amount of data at our disposal. An example of the visualization
of the results of these calculations is available in Fig. 13.8b. Table 13.1 reports
some summarizing statistics about the trust levels computed. We did not have
any information about the reputation of the sources at our disposal, so the belief
average concentrates around the middle of the range because of an initial situation
of high uncertainty. Moreover, when different disagreeing values were proposed by
different sources for a given field, we computed the trust values for all of them.

4www.shipsais.com and www.vesseltracker.com

www.shipsais.com
www.vesseltracker.com
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Fig. 13.8 Screenshot of International Telecommunication Union and Citymap HQ websites
(a) and trust value visualization (b). The ship is localized thanks to AIS data
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Table 13.1 Statistics about
the belief and uncertainty
of the trust level computed

Min value Max value Average Median

Belief 0.0005 0.9985 0.5834 0.5
Uncertainty 0.0015 0.5 0.2578 0.1667

This explains why the range of the beliefs is so wide: correct values were very
popular and so had a high trust value, and consequently, wrong or non-comforming
values (like messages reporting MMSI code value “0”) got a lower trust value. The
maximum value for uncertainty is 0.5 because it corresponds to the uncertainty of
an opinion based on one observation, that is, on the first message (see Sect. 13.2.2
for additional details about how uncertainty is computed). Opinions are computed
incrementally, so we computed an opinion for each message, considering all the
messages observed up to that moment. This means that consecutive opinions will
manifest decreasing uncertainty and the belief in rare values will decrease, while the
belief in common values will increase. For instance, a belief of 0.0005 corresponds
to 1 positive evidence over 1998 total evidence ( 1

(1998+2) = 0.0005; 2 is the range
of possible evidence (true, false)). Vice-versa, a belief of 0.9985 corresponds to
1997 positive evidence over 1998 total observations ( 1997

(1998+2) = 0.9985). For further
details see [2].

13.6 Discussion

This chapter describes current research. As we have seen in Sect. 13.5, some
experiments have already been executed and some results are already available.
Based on these experiments and results, we can derive some interesting conclusions
and learn about interesting facts.

The choice of the model was driven by the clear requirements that the problem
had. One important requirement is the impossibility to assume that the evidence
at our disposal is the result of a random sampling process. This is due to the
fact that the evidence considered by us is not the result of a controlled drawing
process. Rather, we used all the observations at our disposal without any information
about their reliability or representativity. This is an important consideration and
motivates why, for instance, we did not take a “classical bayesian” approach, and,
more precisely, why we did not assume that our data were normally distributed: if
there was biased manipulation in the messages, their distribution could have taken
any shape. This fact led us to the following differences with regards to a “classical
bayesian” approach:

• We could not assume that our observations were “identically independently
distributed”, for the reasons that we have just explained, so we could not make
use of estimators based on normality assumptions;

• Sources’ reputations had to be explicitly recorded and incorporated in our
evaluations. Initially, for instance, in case we had no prior information, the
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reputation was neutral (neither positive nor negative), but the data provided by
that source were considered as particularly uncertain;

• We did not know what the representativity of the model was that we inferred
from the observation, hence we estimated the likelihood of the various possible
models, instead of directly estimating the most likely values. We inferred two
orders of probability: one about the possible models and one about the outcomes,
given the most likely model.

• Finally, the uncertainty component of opinions as such is a typical characteristic
of Subjective Logic that concisely quantifies the lack of information. There is no
parameter in bayesian models directly corresponding to it.

The use of first and second order probabilities is useful when dealing with
multiple levels of uncertainty (uncertainty about the outcomes and uncertainty
about the model representing the data), because it prudently computes a probability
distribution based on the actual observations. This probability distribution can be
used, for instance, by a decision strategy with the aim of deciding whether a message
is trustworthy or not. The prudence of the model is due to the limiting assumptions
on which it is based (for instance, it does not assume that the observations are
randomly obtained).

As we previously stated, this is ongoing work. The results obtained are useful,
since they allow to highlight messages containing untrustworthy information.
However, by gathering further information, we might improve the reliability of our
evaluations and increase the speed of convergence of beliefs and disbeliefs. First,
we have to take into account that, given that we did not have prior knowledge about
any ship, evaluations started with an initial period of high uncertainty for almost
any ship, and this explains why average uncertainty is quite high, and average belief
is not really high. Moreover, having at our disposal more domain knowledge and
information, would have helped in better understanding the results and motivating
them. For instance, suppose that a sequence of messages confirms that the name
of Ship123 is really “Beauty” and that, after that sequence of messages, we receive
a disagreeing message. A database of ownership of ships, could have allowed to
show that the change of the value of the owner field (or the name of the ship) is not
due to an error, but correctly reflects the change of ownership. The incorporation
of provenance information in our model is a solution that goes in this direction.
Furthermore, if we would have had at our disposal more domain data like, for
instance, the reputation of the sources, we would have reduced the initial situation
of high uncertainty, avoiding the evaluation of messages only on frequency basis.

13.7 Future Work

A combination of provenance and probabilistic logic is apparently a promising
direction with regards to trust assessments. So far we focused on the representativity
of the ratio between agreeing and disagreeing observations, as an indicator of the
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trustworthiness of observed values. A straightforward extension of this approach
would be computing the representativity of each observed value (taking into account
that our observations could not have covered the entire range of possible values).
Preliminary work in this direction has already been published [4]. This preliminary
work is based on extensions of the probability distributions described in this chapter
(for additional information about these extensions see the work of Ferguson and
Pitman [6, 11]). A possible development of this work will link these extended
probabilistic models with provenance information, similarly to what has been
described in this chapter.
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Chapter 14
Online Fault Localization and Health
Monitoring for Software Systems

Éric Piel, Alberto Gonzalez-Sanchez, Hans-Gerhard Gross,
and Arjan J.C. van Gemund

14.1 Introduction

It is generally accepted that all but the most trivial software systems will inevitably
contain residual defects. Large and complex software systems, such as systems
of systems, will face these problems. Nowadays, the high reliability, availability,
and flexibility imposed on many systems require support for online reconfiguration
and join/leave of external components (a coupled and cohesive part of a system).
This further increases the chances of unexpected behavior during execution, as they
are hard to take into account in the validation phase. As such problems cannot
be avoided, the system should be prepared to handle them as quickly as possible.
Typically, after a failure (a deviation from the expected behavior) has been detected
the following steps are taken: diagnosis, bug fix design, re-validation, and update.
To reduce the time of this process, we focus here on automating the diagnosis step,
which very few previous works have tried to automate. This step focuses on finding
the location of the fault, i.e., the cause of one or more failures in the system.

So far automated diagnosis techniques, also called fault localization, have been
applied solely offline, during the testing phase. In this chapter, we detail approaches
to apply fault localization in an online context, i.e., when the system is in operation.
One of the obstacles is that typical active testing used offline cannot be applied
online, because of interference with the normal operations. So continuous validation
must come from observations provided by monitors, also referred to as passive
testing. While there exist other approaches to fault localization [3, 9, 10], SFL is
one of the most light-weight fault localization techniques available to be used for
the provision of health information and for identifying problematic components in
software systems. This technique is described in Sect. 14.2. Section 14.3 presents
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the modeling of the problem. Our proposal of online fault localization is presented
in Sect. 14.4. Section 14.5 summarizes the main approaches we have used to
implement fault localization on actual software systems. Section 14.6 evaluates the
technique on a case study. Finally, Sect. 14.7 summarizes and concludes the chapter.

Let us note that we will discuss fault localization further in Chap. 15. We will
then examine how SFL can be shortened during the testing phase by picking the
most relevant test cases.

14.2 Spectrum-Based Fault Localization

The objective of fault localization is to pinpoint the precise locations of faults
in a system. Before delving into the usage of the SFL approach for online fault
localization, and the provision of health information, let us introduce SFL in its
offline version.

The following data are usually used as inputs in SFL approaches:

• A finite set C = {c1,c2, . . . ,c j, . . . ,cM} of M components (e.g., source code
statements, functions, classes) which are potentially faulty. We will denote the
number of faulty components in the system as Mf .

• A finite set T = {t1, t2, . . . , ti, . . . , tN} of N given tests with binary outcomes
O = (o1,o2, . . . ,oi, . . . ,oN), where oi = 1 if test ti failed, and oi = 0 otherwise.

• An N ×M coverage matrix, A = [ai j], where ai j = 1 if test ti when executed
involves (covers) component c j, and 0 otherwise. Each row ai of the matrix is
called a spectrum.

Table 14.1 shows an example of SFL applied on a small program with a com-
ponent granularity at the statement level. This program aims at counting different
types of characters. The component c3 contains a fault, mishandling uppercase

Table 14.1 Example program, spectrum, and output in fault localization

C Program: character counter t1 t2 t3 t4 t5 t6 t7 t8 SC

function count(char *s) {
int let, dig, other, i; 0 0 0 0 0 0 0 0 0

c0 let = dig = other = i = 0; 1 1 1 1 1 1 1 1 0.87
c1 while (c = s[i++]) { 1 1 1 1 1 1 1 1 0.87
c2 if (’A’<=c && ’Z’>=c) 1 1 1 1 1 1 0 1 0.93
c3 let += 2; 1 1 1 1 1 1 0 0 1.0
c4 else if (’a’<=c && ’z’>=c) 1 1 1 1 1 0 0 1 0.83
c5 let += 1; 1 1 0 0 1 0 0 0 0.71
c6 else if (’0’<=c && ’9’>=c) 1 1 1 1 0 0 0 1 0.73
c7 dig += 1; 0 1 0 1 0 0 0 0 0.71
c8 else if (isprint(c)) 1 0 1 0 0 0 0 1 0.47
c9 other += 1;} 1 0 1 0 0 0 0 1 0.47
c10 printf("%d %d %d\n", 1 1 1 1 1 1 1 1 0.87

let, dig, other);}
Test case outcomes 1 1 1 1 1 1 0 0
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characters. Eight tests are executed against this implementation. The columns t1
to t8 present the coverage spectrum and the test outcomes when executing each of
the tests. The last column shows the similarity coefficients, a value computed by the
SFL, which we will describe later.

The output of fault localization is a diagnosis, which is a ranking of the
components ordered according to their assumed likelihood to contain a fault.

In program debugging, the granularity of a component is often very small,
typically at the statement level, since SFL benefits from variations in program
control flow (i.e., different branches of a if are taken). However, in an online
context, a larger grain size for components is more appropriate. This still permits
to monitor a system and to take the appropriate actions in case of degradation, while
it reduces the performance overhead, and represents a more realistic component
granularity for large systems. In the later study, we selected a granularity at the level
of the source code functions.

14.2.1 Statistical Spectrum-Based Fault Localization

Statistical SFL is a well-known approach originating in software engineering [1, 5,
11]. Fault likelihood l j (and thus assumed health) is quantified in terms of similarity
coefficients. Intuitively, the goal is to identify the component whose line of test
coverage is most similar to the test outcomes. Similarity coefficients measure the
statistical similarity between component c j’s test coverage (a1 j, . . . ,aN j) and the
observed test outcomes, (o1, . . . ,oN). It is computed by four values npq( j) counting
the number of times ai j and oi form the combinations (0,0),(0,1),(1,0),(1,1),
respectively, i.e.,

npq( j) = |{i : ai j = p∧oi = q}| p,q ∈ {0,1} (14.1)

For instance, n10( j) and n11( j) are the number of tests in which component
c j is executed, and which passed or failed, respectively. For each component, the
four counters sum up to the number of tests N. There are several different known
similarity coefficients which are efficient. For example, Tarantula [5], and Ochiai [1]
are both very common similarity coefficients. We use the latter one, given by

Ochiai: SC = n11( j)√
(n11( j)+n01( j))·(n11( j)+n10( j))

(14.2)

Ordering the components by their similarity coefficients results in the ranking of the
diagnosis algorithm.
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In Table 14.1, the similarity coefficient for each component is indicated. As c3

was the part most used when a test failed and less used when a test passed, its
similarity coefficient is the highest. The SFL will therefore rank c3 as the most
likely location of the fault, which is correct.

A by-product of statistical SFL is the component health. The health of a given
component can be simply approximated by h = 1− SC, where SC is the similarity
coefficient. This permits the system, or system of systems, to also be self-adapting
to the failures. Components which have access to redundant information can adapt
the weight of each input depending on the health of the components that provide
it. For example, in the maritime safety and security context, when a radar starts
behaving incorrectly, the situation awareness component can reduce automatically
the importance of the data from this radar in its computations.

Despite their lower diagnostic accuracy [2], similarity coefficients have a ultra-
low computational complexity (compared with probabilistic diagnosis approaches,
such as Bayesian reasoning [5]), which is ideal for online diagnosis. Another
advantage is the fact that statistical SFL is incremental. Only the counters npq must
be kept per component, so there is no need to compile a (possibly huge) test coverage
matrix. Finally, unlike other approaches, statistical SFL is robust with respect to
uncertainties in the test outcomes. While all techniques tolerate false negatives
(i.e., a test involving a faulty component and not returning a failure), statistical
approaches are more robust with respect to false positives (i.e., a test reports a
failure although the system actually behaved correctly), which is essential in online
monitoring as the oracles are often less sophisticated than in offline testing.

14.2.2 Diagnosis Effort

In order to compare different diagnosis approaches, there is a need to measure
how well a diagnosis performed. This measure, the diagnostic performance, should
represent how well the diagnosis algorithm can pinpoint the true root cause of an
observed problem. In software fault localization, this performance is often expressed
in terms of a metric Cd that measures the theoretical effort still needed for a
diagnostician to find all faulty components after reading the generated diagnosis [2].
Cd is expressed as the position of the last faulty component in the ranking given
by the fault localization. Cd measures wasted effort, independent of the number
of faulty components Mf in the system, to enable an unbiased evaluation of the
effect of Mf on Cd . Thus, regardless of Mf , Cd = 0 represents an ideal diagnosis
technique (all Mf faulty components are ranked at the top, and no effort is wasted
for a human to check healthy components), while Cd = M − Mf represents the
worst diagnosis technique (checking all M − Mf healthy components before the
Mf faulty ones), with M the total number of components. For example, consider
a diagnosis algorithm that returned the ranking 〈c12,c5,c6, . . .〉, while c6 contains
the actual fault. This diagnosis leads the developer to inspecting c12 and c5 first.
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As both components are healthy, Cd is increased by 2, and the next component
to be inspected is c6. As it is faulty, no more effort is wasted and Cd = 2. To ease
comparison between systems, a relative wasted effort is often used: Cd

M−Mf
. A perfect

diagnosis gives therefore a relative effort of 0, while the worse possible one gives
an effort of 1, and an algorithm picking randomly a component gives on average a
relative effort of 0.5.

14.3 Simulation of a Faulty System

For initial illustration and evaluation of online SFL we use synthetic system
simulations next to an actual case study. The main advantage of the simulations is
that they can be executed quickly (e.g., for our case study system we can simulate 1 h
of operation in just a few seconds). They also avoid implementation details which
could cause noise in the observations (e.g., test outcomes with false positives), and
they allow to vary many properties of a base system, in order to generalize the
findings according to many different (synthetic) system configurations.

14.3.1 System Model

The simulations use system models with different topologies all based on the
surveillance system used as case study, which is presented in Sect. 14.6. The sim-
ulation of a system generates outputs similar to the ones given by the actual SFL
algorithm, i.e., a ranking of the components according to their assumed health over
the whole period of execution of the simulation. The simulator and example models
are available for download.1

Figure 14.1 shows an example of a system model, with seven functional
components and three monitors (A, B, and C). As we will see in Sect. 14.4, monitors
are placed in order to replace test cases in an online context. Component 2 is set to
be faulty, with a fault happening 60 % of the time it is used. The model represents
a typical data-flow system where component 1 receives the inputs and passes them
on to the other components. More information about the simulation setup and a
description of the type of model that is used in the simulator can be found in [8].

Fig. 14.1 Example
topological layer with seven
functional components and
three monitors

1http://swerl.tudelft.nl/bin/view/Main/SOFL

http://swerl.tudelft.nl/bin/view/Main/SOFL
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14.3.2 Simulated System Generation

One of the most difficult parts of simulation is to obtain models of systems which are
representative of the reality. If a model is generated fully randomly with respect to
every possible parameter, there is little chance that it corresponds to a potential real
system. That is because only some topologies, order of execution, etc. are reasonable
for the software of a system-of-systems. Therefore, as basis for creating many
simulations, we used the topology of a known surveillance system. It comprises
63 components for the functionality. For each component, a configuration was
generated with that component being the faulty one. For each fault location, 10
different system configurations were generated by randomly placing 15 monitors,
and producing a set of 20 execution paths (with random frequencies between 0.2 and
50 Hz). Therefore, each technique can be evaluated on 630 system configurations.
Results are presented in the next section.

14.4 Online Fault Localization

Applying SFL online brings up three issues: (1) test cases would disrupt the normal
operation of the system (to be discussed in Sect. 14.4.1, (2) the range of a coverage
spectrum (to be discussed in Sect. 14.4.2), (3) the adequacy of the diagnosis with
the current system behavior (to be discussed in Sect. 14.4.3). In an offline context,
tests are run separately, so the start and end of a test and the coverage spectrum are
clear, as well as associated inputs and outputs. However, in the case of continuous
diagnosis these boundaries disappear, or, at least, become blurred. In this section,
we present solutions for adapting SFL to an online context.

14.4.1 Obtaining Test Outcomes Online

In order to bring fault localization online, the usage of test cases must be reevaluated.
Test cases are active, as they provides their own inputs to the system. If done during
operation, such input can interfere with the usual behavior of the system, and can
cause a large performance overhead. Therefore, in the online context, monitoring
is more fitting. Monitoring is well understood, easy to apply, and event-based, due
to its passive nature, e.g., triggered by the arrival of new data, or a timer interrupt.
A monitor is a specific component in the system that observes and assesses the
correctness of the functionality without interfering through test inputs.

A monitor observes data or behavior at specific locations and decides based
on built-in oracle logic whether an observation is expected (pass) or unexpected
(fail), for example through checking the range of a variable, consistency between
different data, or through comparison with a state model. The monitor outcomes
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replace the test outcome. Because SFL requires to know when the system is deemed
behaving both correctly and incorrectly, it is of prime importance when writing a
monitor that whenever a fail could be sent, it sends a pass if no failure is detected.

14.4.2 Spectrum Sampling

In many cases, interactions in a live system are not clearly separable by time or
space boundaries (such as a complete test transaction in testing). Input stimuli are
continuously arriving and the system responds accordingly changing its internal
state and/or producing some output. For example, in our case study (cf. Sect. 14.6),
input messages arrive at any time, and sometimes simultaneously in separate
threads. Previous inputs influence the behavior of a component either explicitly
such as in a database, or implicitly by affecting its internal state. When applying
SFL offline, the coverage spectrum is recorded since the system was started for
a test case. In an online context, after a short period of operation, the coverage
matrix will contain only 1’s: “everything covered”. Although this approach would
guarantee a theoretical strong causal relationship between fault execution and
failure observation (i.e., if a failure is observed, the spectrum will contain the fault
information), a solid 1’s spectrum does not provide any diagnostic information for
the SFL, because it infers the diagnosis from differences of the various spectra in
the coverage matrix A and the outcome O. The curve named time inf of Fig. 14.2
shows the result of never resetting the spectrum. The average diagnostic cost is
approximately 0.5 all the time. Guessing the fault locations randomly would yield a
similar performance.

The coverage of components represented as binary values in the spectrum must
be reset regularly, in order to provide a meaningful diagnosis. We propose two
different solutions, which are adapted to different development contexts, that is,
a transactional approach, and a time frame approach.

14.4.2.1 Transactional

A monitor validates the correctness of a specific component transaction in the
system, corresponding to particular interactive functionality. The provision of an
outcome through the monitor correlates to the end of this transaction. The transac-
tional policy assigns a separate spectrum to every monitor. Every monitor is also
associated to a scope, which represents which components might be involved in the
monitored interaction.2 Each time a component is involved, the current spectrum of
every monitor whose scope contains that component is updated. When a monitor
generates an outcome, its associated spectrum is used as a row for the matrix A and
is then completely reset to zero.

2Each execution of the interaction can be considered a transaction, hence the name of the policy
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Fig. 14.2 Average diagnostic cost along the time of observation for various observation policies,
with simulated systems having one fault

The list of the components in the scope associated to each monitor is provided
before the start of the system (and is updated after each modification). It is either
manually created by the user (the developer of the monitor, most likely), or it could
be determined by code or configuration analysis. Figure 14.2 shows with the curve
transaction that this solution is the most effective one, with a low average diagnostic
cost throughout the execution of the systems. The curve tends towards an asymptote
close from 0.2. This asymptote corresponds to the average diagnostic cost that can
be achieved by the SFL algorithm with all possible spectra for the specific set of
systems in the simulation.

However, if a fault modifies how components interact (i.e., the control flow is
modified), the difference between the expected behavior and the implementation
could lead to an inaccurate scope. In such a case, this policy would cause a faulty
component to be omitted from every spectrum associated with a fail outcome.
The quality of the diagnosis would be adversely affected. In addition, pre-analysis
of the system for every monitor can be time consuming, and needs to be done every
time the system is modified. It might be difficult to perform if external components
(from different companies) are used. In order to avoid this analysis we investigate a
technique requiring less information about the system, i.e., the time frame technique.
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14.4.2.2 Time Frame

The time frame policy uses expiration of time as transaction boundary to establish
causality between components covered and monitor outcome. Over a given time
period, the component activity is recorded into a global “current spectrum”. When
the time expires, the bits of the involved components are reset and the recording
of a new current spectrum is started. Every monitor outcome during this period, is
associated with the current spectrum.

Time frame-based sampling avoids spectra with too many 1’s if the time window
is properly adjusted to the working speed of the system. To avoid using a period
which could hide a specific fault our approach uses a random frame length. After
expiration of a time frame, the length of the next frame is determined randomly
within reasonable bounds. An exponential distribution is used, in order to have
a broad set of period sizes. An average period must be selected according to the
system under observation, but it can be relatively roughly estimated to the average
processing time of a typical transaction. In Fig. 14.2 it can be seen how a fixed
time period leads a limited accuracy of the fault localization, with the curve time
10 s. The curves time rnd 1 s and time rnd 100 s, corresponding respectively to a
randomized time frame with an average of 1 s and 100 s, both provide on average a
low diagnostic cost.

We recommend that the observation policy should be selected according to the
system context: if it is possible to gather precise information on which interaction
is observed by a monitor, then the transactional policy should be applied. Otherwise
the randomized time frame policy should be implemented, with just enough
validation to ensure the average period is adapted to the system.

14.4.3 Spectrum Matrix Size

When using SFL offline, the size of the spectrum matrix and the test outcome
vector are finite and, in practice, relatively small, which is not the case online.
For example, in our case study, approximately 100,000 monitor outcomes are
generated for a single hour of observation. This could eventually lead to excessive
storage requirements and processing overheads. This potential size problem is
addressed through application of statistical SFL, on which our approach relies. It is
incremental, so that accumulating counters can be used.

However, another issue is the timeliness of a spectrum, for example “is a
week-old observation relevant for the current state of the system?” A fault may
appear long time after the system was started (e.g., memory leakage, unexpected
combination of inputs that affect the internal state of the system, an unnoticed
third-party component update). Old spectra might mislead the fault localization.
The detection of a new failure should always lead to the same diagnosis, independent
of how long the system has been running.
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Note however that the problem is not symmetric, when conversely, a fault is fixed,
or the failures are not observed anymore. If the fault is fixed, it is easy to reset the
matrix at the same time to avoid this “aging effect”. If the failures stop appearing
without the fault having been fixed, it is better to still report the component as faulty
for some sufficiently long time to acknowledge the problem and deal with it.

Figure 14.3 shows the health estimated by the SFL algorithm for a faulty
component yielding a failure at different times, when all spectra are kept. The later
the failure surfaces, the slower is the convergence of health. From the point of view
of the system maintainer, when a given failure happens, the algorithm output should
be identical independently from the time system has been running previously.

To overcome this problem, we defined the sliding window policy. Spectra that
are older than a given age are discarded. In practice, as the SFL counters are
accumulated, we approximate the window by decomposing it into a fixed number of
small periods. An array of counters allows to keep track of the SFL counters for each
period. When the current period is over, the oldest set of counters is discarded and
replaced by a new set for the next coming period. The global counters are replaced
by an addition of the counters for each available period. In our implementation we
used 32 sub-periods, which appeared to be of sufficient precision.

The ideal window size (leading to stable health values) depends on the frequency
of the monitors generating observations and the frequency of failures being detected.
In our experiments, we observed that short sliding windows yield a relatively high
diagnostic cost and unstable output over time, because they are too small to contain
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Fig. 14.4 Average diagnostic cost on simulated systems with a sliding window policy of length of
4 s (component fails in the period 128–356 s, dotted lines)

enough test outcomes for adequate diagnosis. When the size of the window is
extended, it reaches a point where the diagnostic performance does not improve
anymore. Increasing further the length solely leads to a bigger latency to react to the
failure disappearance. The size of the window after which the diagnosis presents no
more noise depends on the frequency at which the failures are detected. We observed
that the minimum efficient window size depends on the amount of fail outcomes
that are captured. The amount of pass outcomes is usually far superior, so it is
not a bottleneck. We observed that if a window is long enough to contain at least
approximately 10 fail outcomes, it is sufficient to keep a good quality diagnosis.

Therefore, we recommend selecting a size of the window which is sufficiently
long to receive many monitor outcomes. The main restriction on the maximum
length is to ensure a fairly fast reaction in terms of health. The window size can
be set as the minimum duration for which a single failure occurrence should be seen
when looking at the diagnosis.

In order to observe the effect of applying the sliding window policy, we
simulate a system where a new failure is seen, lasts for 228 s, and disappears.
Figure 14.4 shows the average diagnostic cost when a window size of 4 s is applied.
Approximately 4 s after the first failure appears the diagnostic cost reaches its
minimum. Similarly, the diagnostic reacts within seconds to the disappearance of
the failures. As the failure frequency is high enough that a window contains several
fail observation outcomes, the diagnostic variance is relatively low. Increasing
the window size would stabilize even further the diagnostic over the period that
the failure happens.
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14.5 Implementation of Online Fault Localization

There are many ways to implement the proposed techniques. We outline here two
different implementation approaches that we have carried out successfully. The first
approach is centralized, while the second one is metadata-based.

14.5.1 Centralized Approach

A first implementation approach, which we have used in our Atlas framework,3

relies on a centralized spectrum recording. Its architecture can be broken down into
four parts. An example system using such an approach is displayed in Fig. 14.5.
For each architectural part, we will refer to this example. The coverage manager
component takes care of keeping the coverage spectrum of the system. In the
example, this component is represented by the box of the same name. The spectrum
is reset periodically according to the randomized time frame policy as described
previously. By request from the coverage instrumentation part (discussed later), it
sets a position in the spectrum to indicate a specific component has been covered.
When a monitor sends a new observation, the coverage manager receives this
observation, attaches the current spectrum, and forwards it to the SFL component.

The SFL component (which is represented by the SFL box in the example)
receives every monitor observation and adds it to the matrix according to the sliding
window policy. In practice, a whole matrix is not needed, only a set of accumulators,
which permits a fast processing. Running at a slower frequency, the ranking of
the faulty components is computed. This might require a noticeable amount of
processing power, but it can be done independently from the rest of the system,
even offloaded to separate hardware.

AS1

Filter Merger PlotterAS2 AlSin

Coverage
Manager

SFL Viz.

AlSin
MergerRCv

ClientRcv 

AS3

Fig. 14.5 Architecture of the case study system, which is based on the centralized approach

3http://swerl.tudelft.nl/bin/view/Main/Atlas

http://swerl.tudelft.nl/bin/view/Main/Atlas
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Every functional component of the system is instrumented to report whenever
one of its methods is called. In the example, every component part of the core
functionality is instrumented. We use Aspect Orientation [6] and Java self-reflection
to apply the same code to all the components. This allows to dynamically instrument
any component, even when provided by a third party or added a posteriori. However
it brings a high overhead to each method call. A static approach, such as found in
many code profilers, would likely be more efficient.

Finally, the behavior of the system is validated by a set of monitors, positioned at
various places between or around the normal components. Monitors are represented
as dash boxes in the example. Every monitor observation, both fails and passes,
is transmitted to the coverage manager. A monitor can be replacing what would
traditionally be a warning or error check, or can be more complex piece of code
which validates the outputs of a component compared to the previously received
input (based for instance on a state machine). Watchdogs, which detect the loss of
service provided by a component can also be implemented as monitors but care
should be taken to report in case of failure not the actual spectrum, but the spectrum
that would be expected (so that SFL can point towards the non-responding part of
the system).

14.5.2 Metadata-Based Approach

The centralized approach is easy to implement and efficient on systems where
all components can access the coverage manager with a low latency and where
communications have a low overhead. In systems where components are running
on physically separate nodes such as systems of systems, or systems which are
message-based, it might be more efficient to use a different approach, based on
metadata. All data transmitted between components is associated to metadata that
contains a coverage spectrum indicating all the components used to generate this
data. Every time an output is generated, its metadata must be set, based on the
metadata of the inputs. Note that computing the spectrum might be difficult in
some cases where many inputs are used. There is still a central component for
the coverage, but it is only accessed to request a position in the spectrum when
a component initializes. Monitors work similarly to the previous implementation
approach except that the spectrum associated to an observation comes from the
metadata of the output which is validated. This observation can then be sent directly
to the SFL component.

To handle dynamic system architectures, where components can be added and
removed online, the coverage spectrum needs to have positions updated when there
is a change. We treat this requirement by having the coverage manager assign
positions to new components. When a component is removed the positions which
were assigned to it can be reused, once a certain delay corresponding to the time
window length has passed.
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14.6 Case Study

All techniques for realizing online fault localization with SFL have been introduced.
Synthetic system simulations were used to compare different techniques to each
other on a large set of systems. In the following, we evaluate our contributions on
a real system. The main goal is to validate the techniques on practical ground, and
verify that the simulated systems behave similarly to the actual ones.

The surveillance system that we use as case receives information broadcasts from
ships, called AIS messages [4] (cf. Chap. 1), and it processes them in order to form
a situational picture of a maritime area. The system is made of Atlas components in
Java. In total it is comprised of 63 methods (the granularity of the SFL) for the core
functionality with an average of 10 lines of Java code each.

The monitoring infrastructure comprises four monitors, each of them guarding
different functional and non-functional aspects of the system. Coverage of compo-
nents is recorded through an ad-hoc Java aspect, as described in Sect. 14.5.

14.6.1 Injected Faults

We simulate two types of faults, loss of data between components (for example due
to reset of the component, or unstable connection), and software faults caused by the
functionality. Data loss faults are simulated through intermittent connection drops
between two components. Software faults are introduced through mutations in the
original code (a set of 100 mutants which was created with μJava [7] and manually
verified to affect the behavior of the system). For each of the mutation faults, the
system was executed for 1 h with the recorded input, producing approximately
100,000 monitor outcomes in total. A posteriori, it is then possible to determine
the diagnostic cost at each moment in time. Twelve mutations lead to early system
crash (within a minute) and are sorted out (in practice, such a bug would be directly
noticed and investigated offline). Fifty five mutations have faults not detected by the
monitors, leaving 33 configurations with detectable faults.

14.6.2 Results

The average Cd for transactional and randomized time frame observation strategies
is presented in Fig. 14.6. The # systems indicate the number of systems still running
at a given time. It decreases whenever a system crashes or stop responding. The SFL
algorithm uses a sliding window of 5 min, in order to ensure a good quality of the
diagnosis while keeping a relatively fast reaction to any fault correction.

The diagnostic cost Cd , which starts at 0.5, decreases until it reaches some
relatively constant value after around a minute. This is similar to the results seen
in the simulations (Fig. 14.2). After 5 min of execution (i.e., the length of the sliding
window), all Cd graphs increase. This is because some faults lead to failures only at
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Fig. 14.6 Average diagnostic cost (33 configurations) over the time for three different observation
policies

initialization, i.e., they are located in components only used at that time. When these
first spectra are removed from the matrix (through the sliding window) the SFL loses
information about their location, and assumes a better health, leading typically to a
Cd = 0.5. Hence, the average Cd increases.

As in the simulation, the transactional observation performs best, with an
average Cd = 0.14. The time frame observation yields its best results with 1 ms
(Cd = 0.16). A shorter or longer period impairs the results, leading to Cd around 0.3
(not shown in the figure to improve readability). This suggests that observation pe-
riods of 1 ms are optimal for this system. The randomized time frame observation
performed equally well as the best fixed time period, for all periods tried between
0.1 and 100 ms.

In our case, transactional observation provides the best results. Nevertheless, this
requires that for each monitor the information about which components are observed
is known and correct. Otherwise, a randomized time frame allows diagnosis with
comparable quality, with only a rough estimation of the processing time needed.

This case study demonstrates the feasibility of online fault localization using
the SFL technique in a system inspired by industry. With a diagnostic cost ranging
on average below 0.2 just after a minute, it also shows that fault localization is
able to point into the right direction for identifying problematic components in
software systems. Of course, this works only if residual defects can be detected
by the monitors. The fact that the results are relatively similar to the results obtained
by simulation suggests that the model employed for the simulation is representative
of this real case.
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14.7 Conclusions

In complex, large, and evolving systems, such as systems of systems, bugs are
unavoidable. Whenever problems appear while a system is in operation, they should
be handled and taken care of as quickly as possible. One way to reduce this time
is to help the maintainer to locate the error. In this chapter, we have presented
an approach for realizing online spectrum-based fault localization to be used in
software systems. Techniques have been introduced to obtain a significant spectrum
for the SFL algorithm in order to yield good diagnoses. Furthermore, the diagnostic
outcome is ensured to be always relevant to the current state of the system by using
a time window on the spectrum matrix.

Our work has been validated first by simulation of a large set of randomly
generated systems, and through a case study with a system inspired by industry.
The diagnostic results on a set of mutated systems corroborate the results of the
simulation and confirm that, with our techniques, SFL and monitoring can be
applied successfully to online fault localization.

When implementing fault localization for online usage in a system, a lot of care
should be taken to keep the performance overhead of the coverage instrumentation
as low as possible. Otherwise, this method could slow down considerably the
system’s execution. Moreover, one should be aware that the quality of the diagnosis
is highly dependent on the monitors in the system. Without good detection of the
failures, it is impossible to locate the fault. In general, many simple monitors are
better than few complex ones. It should also be ensured that the monitors are placed
relatively uniformly all over the system’s architecture.
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Chapter 15
Prioritizing Tests for Fault Localization

Alberto Gonzalez-Sanchez, Éric Piel, Rui Abreu, Hans-Gerhard Gross,
and Arjan J.C. van Gemund

15.1 Introduction

Devising appropriate quality assurance strategies are amongst the most obvious
challenges in building and evolving large-scale Maritime Safety and Security
Systems of Systems (MSS SoS), given the large number of different systems
contributing to them. Systems of systems evolve dynamically at runtime. Systems
can join or leave the system of systems, meaning that offered services may vary
in terms of functionality, as well as quality. When a system joins or leaves the
system of systems, the other systems may have to be reconfigured to take advantage
of new services and improved quality of service, or they may have to be notified
that services are degraded. This process should be mostly seamless for the system
operators and should be executed within a short time, without any major disruption
of the rest of the system of systems.

By their very nature, systems of systems are large-scale systems, formed by a
large number of systems and sub-systems. After each runtime evolution, the quality
assurance of the integrated system of systems has to be verified again. It is therefore
necessary to devise an appropriate verification strategy that not only achieves this
goal, but also minimizes the cost of checking after each modification. Re-verification
must be as little disruptive as possible for the running configuration and the latency
between the moment a reconfiguration is requested and the moment it is accepted
and deployed must be minimal.

A. Gonzalez-Sanchez (�) • É. Piel • H.-G. Gross • A.J.C. van Gemund
Department of Software Technology, Delft University of Technology, Delft, The Netherlands
e-mail: a.gonzalezsanchez@tudelft.nl; e.a.b.piel@tudelft.nl; h.g.gross@tudelft.nl;
a.j.c.vangemund@tudelft.nl

R. Abreu
Department of Informatics Engineering, University of Porto, Porto, Portugal
e-mail: rui@computer.org

P. van de Laar et al. (eds.), Situation Awareness with Systems of Systems,
DOI 10.1007/978-1-4614-6230-9 15, © Springer Science+Business Media New York 2013

247



248 A. Gonzalez-Sanchez et al.

In the context of MSS, the system of systems will be formed by software
systems whose quality assurance will be performed by means of runtime testing
and fault localization. Software testing and fault localization (debugging) is a time-
consuming but rather important task for improving software reliability. Hence,
testing and debugging are an integral part of the quality assurance process of these
systems.

In reliability terminology, a fault is a defect in the system, for example a
programming error, or a contract violation in composing software systems. A fault
will produce errors when the system containing the fault is used. Errors are
inconsistent internal program states (variable values). An error may stay unnoticed
for very long, if it is never observed as an output by the users of the system. When
an error affects the system in a way that the output (data or behavior) deviates from
what the users expect, this event is called a failure.

The ultimate goal of testing is to prove the absence of faults for all possible
inputs. Since exhaustive testing is hardly ever possible, testing typically aims
at detecting the presence of faults, by trying to produce a failure (the external
manifestation of a fault). The longer the system does not produce any failures, the
more certain testers are that the system contains a low number of faults with no or
limited impact. To optimize the cost of detecting faults, a reasonable option is to
execute only the tests that have a high potential of failure first, followed by tests
with lower failure potential, etc. This technique is known as test prioritization.

Once failures have been produced, the faults that produced them have to be
localized. Optimizing the cost of fault localization is a whole research area on
its own, which has recently attracted great interest. The goal of (automated) fault
localization is to reduce the effort that the software developers have to invest in
manually localizing the fault. Automated fault localization employs algorithms that
produce a list of likely fault candidates by using information from the system
execution (either test cases or normal system execution) and a model of the system.

Unfortunately, it has recently been shown that tests that aim for very good fault
detection can have a negative impact on automated fault localization techniques
canceling the savings in fault detection cost by an increase in fault localization
cost [4, 6]. In this chapter we explore the causes for this cost increase, and propose
a shift in the goal of testing, focusing on techniques that achieve much better fault
localization performance, while maintaining a good fault detection performance.

15.2 Software Fault Localization

The objective of fault localization is to pinpoint the precise location of a number
of faults in a program (bugs) by observing the program’s behavior given a number of
tests. Although there is a large number of different fault localization techniques, our
work is based on spectrum-based fault localization (SFL).
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Table 15.1 Example program and inputs for test prioritization and fault localization

Tests
Program: character counter t1 t2 t3 t4 t5 t6 t7 t8
function count(char * s) {
int let, dig, other, i; A

c1 while(c = s[i++]) { 1 1 1 1 1 1 1 1
c2 if (’A’<=c && ’Z’>=c) 1 1 1 1 1 1 0 1
c3 let += 2; // FAULT 1 1 1 1 1 1 0 0
c4 elsif (’a’<=c && ’z’>=c) 1 1 1 1 1 0 0 1
c5 let += 1; 1 1 0 0 1 0 0 0
c6 elsif (’0’<=c && ’9’>=c) 1 1 1 1 0 0 0 1
c7 dig += 1; 0 1 0 1 0 0 0 0
c8 elsif (isprint(c)) 1 0 1 0 0 0 0 1
c9 other += 1; 1 0 1 0 0 0 0 1
c10 printf("%d %d %d\n", 1 1 1 1 1 1 1 1

let, dig, other);}
Test case outcomes F F F F F F P P

Let us consider the faulty program in Table 15.1. We provide a test suite with
eight tests that provide full statement coverage. The inputs that SFL algorithms
require are represented in the figure. These are:

• A vector of test outcomes, where the value of each outcome corresponds to ‘F’
(fail) if the test failed, and ‘P’ (pass) otherwise.

• A coverage matrix, A, with as many rows as fault sources (e.g., components,
interfaces, methods, statements), and as many columns as tests in our test pool.
If test ti involves component c j, then the corresponding element ai j = 1 in A.

Each column in A is called “spectrum”, hence the name spectrum-based fault
localization for this family of techniques. SFL techniques can be divided into two
main groups: similarity coefficients, and Bayesian reasoning.

Similarity coefficients measure the likelihood that a component is at fault in
terms of the statistical similarity between a statement’s test coverage and the
observed test outcomes, a technique inspired by clustering and machine learning
techniques. A great advantage of similarity coefficients is their ultra-low compu-
tational complexity compared to Bayesian or model-based diagnosis. Despite their
lower diagnostic accuracy [1] similarity coefficients have, therefore, gained much
interest.

Bayesian diagnosis uses a very high level model of the system in logic first
principles. This model is first solved to obtain a set of explanation candidates. These
candidates are then sorted according to a probabilistic approach that uses Bayes
rule to update the fault probability of each statement. An advantage of Bayesian
diangosis with respect to similarity coefficients is that Bayesian diagnosis has much
better accuracy when there are multiple faults in the system.
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Both Bayesian diagnosis and similarity coefficients take the same kind of inputs
and produce the same kind of output, therefore they are interchangeable depending
on the current needs (e.g., speed vs. accuracy).

15.3 Problem Statement

In the previous section, two processes have been identified that are critical to
the quality assurance of systems of systems: (1) fault detection, and (2) fault
localization. These two processes are represented in Fig. 15.1. Each of these
processes has costs attached to it:

1. Fault detection costs: these are the costs related directly to detecting the
presence of faults. Since in the context of our project we detect faults by testing,
testing cost (i.e., the execution time of each test) is the main cost source.

2. Fault localization costs: these are the costs associated with the localization
of faults in the system. First, testing cost associated to the additional tests that
may be executed to gather more information about the error state of the system.
Second, the inspection cost (manual effort) incurred when developers have to
inspect each of the suspect components until the faults are found.

The overall cost of the system’s quality assurance has to be minimized, while
maximizing the confidence in the integrated system. A low fault detection cost and
a low fault localization cost are antagonistic goals. Good fault detection will cause
poor fault localization [4], since both goals depend on test cost but the kind of test
that is good for detection is not so good for localization. This is represented in
Fig. 15.1 by a snake line between the two.

15.3.1 Why Is Lowering Fault Detection Cost a Bad Idea?

Test prioritization techniques that lower detection cost, are founded on the reasoning
that the sooner failures are found, the sooner fault localization (e.g., debugging) can
commence. Test prioritization techniques try to execute first those tests with a higher
probability of producing a failure, according to an heuristic. The most commonly
used heuristics are based on test coverage. The more parts of the system are used in
a test, the higher the probability that the test will fail. This idea is implemented in
the “additional statement coverage” (ADD-ST) and the “additional fault exposure
potential” (ADD-FEP) heuristics [10].

Fault Detection

Testing Cost

Fault Localization

Testing & Inspection Costs
Fig. 15.1 Goals and
associated costs
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Coverage maximization heuristics are a perfectly valid reasoning when our
goal is exclusively reducing fault detection cost. However, the kind of test that is
required for a good fault localization is different than the one required for good fault
detection. SFL algorithms depend on having good variability in the observations
(i.e., in the spectra). Heuristics such as ADD-ST or ADD-FEP tend to select test
cases with very low variability, thus the fault localization information that each
executed test provides is very low.

Figure 15.2 illustrates the situation, showing the trade off between fault detection
cost and fault localization cost, in two possible scenarios. Scenario (a) represents a
situation in which a prioritization heuristic for fault detection such as ADD-ST or
ADD-FEP is used during testing. If after detecting the fault, we continue using a
fault detection test prioritization, refining the diagnosis will require a large number
of tests. Scenario (b), on the other hand, represents the improvement when using
the RAPTOR diagnostic test prioritization technique, which will be described in
Sect. 15.4. In this case, the refinement of the diagnosis happens much faster.

15.4 Fault Localization Prioritization

In this section we will present fault localization prioritization, a test prioritization
approach that takes into account the reduction of fault localization cost to determine
the next test case to be executed. Our work is inspired by research in sequential
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diagnosis of hardware systems, where algorithms exist to diagnose systems with
permanent [11] and intermittent [9] failures.

In fault localization prioritization, the best tests are those that, at each step,
maximize the improvement of the fault localization quality, i.e., the location of the
actual fault within the rank of suspects. Since we do not know the faulty component,
an approximate indicator, different from localization quality (i.e., an heuristic), has
to be used. In general, good diagnoses are those in which one of the candidates has
a much larger probability than the rest, i.e, it stands out over all other candidates.
Figure 15.3 illustrates what we want to achieve. The horizontal axis represents each
of the diagnostic explanations (dk), and the vertical axis the calculated probability
of the explanation being right (Pr(dk)). The plot on the left shows a poor diagnosis
where no clear candidate exists. Our objective is to produce a diagnosis like the one
on the right hand side plot.

15.4.1 Solution 1: Information Gain Heuristic

The key for an effective fault localization cost reduction during testing is fault
localization information gain (IG). The improvement of the quality of the diagnosis
can be seen as a reduction of the size entropy of the set of fault candidates [7].
Applying this reasoning, at each test choice in the test sequence, the test yielding the
highest average information gain is chosen. Since the outcome of a test is uncertain,
either pass or fail, the heuristic must consider the two possible scenarios. Therefore,
an important parameter of the IG heuristic is the fault detection capability of tests,
i.e., the probability of a test passing or failing.

The information gain heuristic, IG, is defined as

IG(D, ti) = H(D)− (Pr(P) ·H(DP)+Pr(F) ·H(DF)) (15.1)
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where H(D) is a measure of the quality of the current diagnosis, usually Shannon’s
information entropy [7]. The test can fail with probability Pr(F), and will update the
diagnosis to DF. In the case it does not fail, it will update the diagnosis to DP.

Unfortunately, computing information gain is exponentially complex in the
number of components of the system when multiple faults can be present. We
propose a number of heuristic approximations that reduce the information gain
estimation while maintaining good accuracy. We integrate these approximations
in a prioritization algorithm called Sequoia (SEQUencing fOr dIAgnosis) that
employs information gain as heuristic. Detailed information about Information Gain
prioritization for systems with only one fault can be obtained in [4]. The Sequoia
algorithm for systems where more than one fault may be present simultaneously is
described in [3].

15.4.2 Solution 2: Ambiguity Reduction Heuristic

The above information gain heuristic depends heavily on the knowledge of the user
about the fault detection ability of tests, which has to be estimated beforehand.
Our experiments have shown that the accuracy of IG can be severely affected by
errors in the estimation of the fault detection ability. For this reason, we study a
low-complexity test prioritization heuristic which does not require any additional
input parameters. We integrate this heuristic in a second test prioritization algorithm,
dubbed Raptor (gReedy diAgnostic Prioritization by ambiguiTy grOup Reduction)

Since the basic working principle of SFL algorithms is analyzing the differences
and similarities between the coverage of each of the statements of the system under
test (each of the rows in the test coverage matrix described in Sect. 15.2) and the
test outcomes, we can use the maximization of these differences to devise a new,
simpler fault localization test prioritization heuristic.

Any individual statement belonging to a group of statements with identical
rows (signatures) cannot be uniquely identified as faulty. Such a group is termed
ambiguity group [12]. When no test has been executed, all statements belong to the
same ambiguity group. Each test that is executed (i.e., added to the coverage matrix)
breaks each ambiguity group into two smaller ambiguity groups, one corresponding
to the statements in the ambiguity group that are covered by the test, and one
corresponding to the statements that are not covered. Once all the tests are executed,
the example system in Table 15.1 has two ambiguity groups: {1,10} and {8,9}.

The ambiguity reduction heuristic is defined as the difference in the average size
of each group caused by appending one more test to the test matrix, according to

AR(A, ti) = G(AG(A))−G(AG(A||ti)) (15.2)

where G represents the ambiguity of metric, the function AG returns the set of
ambiguity groups of a test matrix, and the || operator adds test ti to the coverage
matrix A. Using this heuristic has the advantage that it does not require knowing the
test outcomes, and does not require estimation of failure probabilities.



254 A. Gonzalez-Sanchez et al.

15.5 Empirical Evaluation

We compared the performance of Sequoia and Raptor to already existing test
prioritization techniques such as ADD-ST and ADD-FEP. We also compared with
randomly chosen tests. More information on these methods can be found in [4].

We performed our experiments using the well-known Siemens benchmark set [5],
as well as the flex, grep, gzip, sed, and space programs (obtained from
SIR [2]). The Siemens suite is composed of seven programs. Every program has
a correct version, and a set of test inputs is also provided, which were created
with the intention of providing full statement and branch test coverage. Table 15.2
provides more information about the programs used in the experiments, where LOC
corresponds to the number of lines of code, and N is the number of tests available.

We compare fault localization prioritization effectiveness in terms of fault
localization effectiveness [4]. Our experiments showed that Sequoia’s effectiveness
when combined with similarity coefficients appears to be extremely poor, in contrast
with its very good performance when using Bayesian fault localization. This is
caused by the fact that similarity coefficients do not exploit all the information
available. Table 15.3 contains the results for Bayesian fault localization.

Our results also show how Raptor and Sequoia consistently provide an improve-
ment in the efficiency for all programs with only one fault, and is the best in all
cases but one (tcas). The results also highlight the fact that the IG heuristic used
in Sequoia is largely affected by errors in the input parameter estimations, whereas
Raptor is not.

On average, both techniques provide 54% reduction of fault localization cost with
respect to randomly selected tests in the single-fault case, and 45% in the multiple-
fault case. When compared to the next best technique, they provides 38% reduction
in the single fault case on average, and 15% reduction in the multiple fault case.
In the best case, cost reductions of up to 80% can be obtained (schedule2 and
gzip). Additional analyses and detailed result tables with statistical tests can be
found in [3].

Table 15.2 Programs used for evaluation

Program name LOC N Program type
pt print tokens 539 4,130 Lexical analyzer
p2 print tokens2 489 4,115 Lexical analyzer
re replace 507 5,542 Pattern recognition
sc schedule 397 2,650 Priority scheduler
s2 schedule2 299 2,710 Priority scheduler
tc tcas 174 1,608 Altitude separation
ti tot info 398 1,052 Information measure
sp space 9,126 500 ADL parser
gz gzip 6,708 211 Compressor
se sed 9,014 184 Stream editor
gr grep 13,287 809 String matching
fl flex 14,194 107 Lexer generator
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Table 15.3 Effectiveness in terms of Bayesian diagnosis

Bayesian diagnosis, 1–3 faults

RND ART ADDST FEP RAPTOR SEQUOIA

pt 5.71 6.37 11% 25.69 350% 27.38 379% 3.31 −42% 5.49 −4%
p2 8.56 6.51 −24% 21.09 146% 27.77 224% 3.81 −55% 5.74 −33%
re 10.95 8.84 −19% 10.36 −5% 11.79 8% 5.08 −54% 5.12 −53%
sc 13.07 9.25 −29% 9.72 −26% 21.83 67% 4.95 −62% 5.81 −56%
s2 11.78 9.07 −23% 9.79 −17% 19.81 68% 3.06 −74% 2.70 −77%
tc 4.44 3.94 −11% 13.16 196% 14.88 235% 7.66 72% 12.53 182%
ti 3.00 2.20 −27% 3.65 22% 10.06 235% 1.31 −56% 4.43 48%
sp 12.48 10.04 −20% 7.48 −40% 6.64 −47% 7.03 −44% 8.33 −33%
gz 14.07 7.14 −49% 2.03 −86% 1.95 −86% 2.64 −81% 3.69 −74%
se 10.88 6.49 −40% 3.40 −69% 4.62 −58% 3.39 −69% 3.82 −65%
gr 10.78 8.22 −24% 3.68 −66% 3.77 −65% 4.87 −55% 6.52 −40%
fl 9.90 5.04 −49% 3.63 −63% 4.09 −59% 3.41 −66% 3.26 −67%

15.6 Lessons Learned and Practical Application

Many factors influence the decision of what test prioritization technique to use in
a practical setting, to test for failures or faults from the first test, and to use either
Raptor, Sequoia, or an alternative.

Wait for the first failure? The fault detection cost, i.e., the test effort it takes
to detect the first failure, can be slightly increased when using fault localization
test prioritization. The first question is whether to perform fault localization test
prioritization from the first test, or only after the first failing test, since Raptor and
Sequoia have a moderately decreased fault detection capability. The most conser-
vative solution, especially if the introduction of a fault is unlikely, is to initially
use ADD-ST or ADD-FEP, and switch to fault localization test prioritization if a
failure occurs. However, if the probability of a fault is high (some projects can have
up to 70% probability [8]), it is better to start directly with fault localization test
prioritization since the tests executed until the first failure is produced provide also
the most valuable fault localization information. The increased test cost (the first
failure occurs slightly later) is greatly outweighed by the much more substantial
gains in terms of fault localization cost reduction. Therefore, even if it takes slightly
longer to detect a fault, the reduction in the cost required to precisely locate the fault
greatly compensates for this.

Raptor or Sequoia? If using low-cost similarity coefficients, Raptor is the clear
choice. However, since Sequoia can potentially provide better results than Raptor
combined with Bayesian fault localization, it is necessary to consider the advantages
and disadvantages of each technique.
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1. Computational cost: Even though Raptor and Sequoia have a similar order of
complexity, Raptor is based on fast bit-wise operators, whereas Sequoia is based
on expensive floating point operations, and requires expensive prior parameter
determination. Furthermore, it must be taken into account that Sequoia must
perform online prioritization, as the tests are executed, potentially introducing
a significant overhead.

2. Parameter estimation quality: the heuristic used in Sequoia can be severely
affected by poor input parameter estimations. If the estimations are not reliable,
e.g., they have a large variance, one should not consider Sequoia.

3. Ambiguity and non-uniformity: a test matrix with very few and very large
ambiguity groups, or a system with extremely biased fault distribution can cause
problems to a static algorithm like Raptor. If the input parameter estimation
quality is good enough, one could opt for Sequoia. Otherwise, the best would
be to opt for a random approach.

15.7 Conclusion

Runtime testing and fault localization are a developer’s main means of performing
the quality assurance process of dynamically evolving and high-availability systems,
such as Systems of Systems or Service Oriented Architectures.

At the core of this chapter, we have investigated the relationship and trade-off
between fault detection and fault localization. Our approach is a departure from
the commonplace fault detection-centric paradigm towards a fault localization-
centric one, where during testing test cases are not selected by their fault detection
potential, but for their potential to improve the current diagnosis. In particular, we
have investigated a test selection method based on the information gain heuristic.
Although this method provides theoretically the most optimal solution, we showed
that in practice the method’s performance is not always good due to estimation errors
in the input parameters. Motivated by this fact, we investigated a simpler, offline
test selection heuristic that achieves comparable performance and does not suffer
from these problems. Besides its comparable performance, the offline algorithm
does not incur in additional overhead during testing. Furthermore, its computational
complexity is much lower than the online algorithm.
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32. A. González-Sánchez, E. Piel, H.-G. Gross, and A. J. C. van Gemund. A Diagnostic Point
of View for the Optimization of Preparation Costs in Runtime Testing. In 1st Workshop on
Testing & Debugging (TeBug’11), pages 654–660. IEEE Computer Society, 2011.
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36. W. R. van Hage, V. Malaisé, and M. van Erp. Linked Open Piracy. In M. van Erp,
W. R. van Hage, L. Hollink, A. Jameson, and R. Troncy, editors, Int. Workshop on Detection,
Representation, and Exploitation of Events in the Semantic Web (DeRiVE 2011), pages 88–97,
2011. http://ceur-ws.org/Vol-779.
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Approach for Visual Analysis of a Multisource Moving Objects Knowledge Base. Int. Journal
of Geographical Information Science, 24(10):1543–1558, 2010.

108. N. Willems, H. van de Wetering, and J. J. Wijk. Evaluation of the Visibility of Vessel
Movement Features in Trajectory Visualizations. Computer Graphics Forum, 30(3):801–810,
2011. Proceedings of EuroVis 2011.

http://web.tue.nl/cursor/internet/jaargang52/_pdf/cursor32.pdf
http://web.tue.nl/cursor/internet/jaargang52/_pdf/cursor32.pdf
http://eprints.eemcs.utwente.nl/13354/
http://eprints.eemcs.utwente.nl/13354/
http://benelearn09.uvt.nl/Proceedings_Benelearn_09.pdf
http://mad.uvt.nl/mad/mad2011-proceedings.pdf
http://www.liacs.nl/~putten/benelearn2011/Benelearn2011_Proceedings.pdf
http://dare.uva.nl/document/357350
http://www.geo-info.nl/download/?id=17685718
http://www.geo-info.nl/download/?id=17685718
http://alexandria.tue.nl/extra2/719764.pdf
http://www.few.vu.nl/~wrvhage/papers/geoVAt10.pdf
http://www.few.vu.nl/~wrvhage/papers/geoVAt10.pdf


268 POSEIDON Publications

109. N. Willems, H. van de Wetering, and J. J. van Wijk. Interactive Poster: Visualization of Vessel
Trajectories for Maritime Safety and Security Systems. In IEEE Information Visualization
Conference (InfoVis 2008), 2008.

110. N. Willems, H. van de Wetering, and J. J. van Wijk. Visualization of Vessel Trajectories
for Maritime Safety and Security Systems. In SIREN 2008, 2008. Poster; http://www.
ictonderzoek.net/3/assets/File/posters/2008 70/2008 70.pdf.

111. N. Willems, H. van de Wetering, and J. J. van Wijk. Visualization of Vessel Movements.
Computer Graphics Forum, 28(3):959–966, 2009. Proceedings of EuroVis 2009.

http://www.ictonderzoek.net/3/assets/File/posters/2008_70/2008_70.pdf
http://www.ictonderzoek.net/3/assets/File/posters/2008_70/2008_70.pdf


Index

A
Access control, 7, 48–49, 56, 58, 60, 190, 191,

200, 201, 205
Adapter, 15, 60, 61, 173, 174, 177–186

adapter generation, 174, 180, 181, 184–186
AIS. See Automatic Identification System

(AIS)
AIS receiver, 43, 56, 59–61, 67, 133, 147,

174–178, 182
Alignment

ontology alignment, 6
semantic alignment, 190, 191, 198,

200–202, 206
Anomaly detection, 10, 11, 14, 18, 63, 66,

82–83, 113, 116, 117, 120, 134
density-based anomaly detection, 14, 83,

119–130
rule-based anomaly detection, 14, 18
runtime anomaly detection, 18

Architecture, 12, 13, 39–52, 55–58, 65, 68,
77, 78, 181, 184, 186, 191, 196, 197,
199–202, 206, 240, 241, 244, 256

architectural reasoning, 39, 44–49
Automatic Identification System (AIS), 11–15,

24, 26–28, 30, 31, 33–35, 40, 43, 49, 56,
59, 60, 66, 67, 79, 86, 90, 94, 95, 101,
105–111, 116, 117, 133, 134, 140, 142,
143, 145, 147, 150, 154, 157, 163, 164,
174–177, 179, 182, 183, 209, 221–226,
242

B
Behavior

behavior analysis, 13
behavior recognition, 13
behavior rule, 14

emergent behavior, 46
historical behavior, 14
interface behavior, 15, 176–179

Beta probability distribution, 219, 220

C
Carrying Industrial Partner (CIP), 17, 19, 55,

68
Clustering, 14, 18, 57, 107, 110–117, 249
Coast guard, 10, 12, 24, 26, 28, 30, 31, 33–35,

93, 100
Collaborative system, 7
Confidentiality, 6, 23, 190, 191, 195, 196, 198,

200, 205, 206
Connector, 8
Context-aware access control, 15, 190,

196–198
Controller, 178–181, 186

controller synthesis, 15, 174, 177–181, 185,
186

D
Database, 6, 15, 21, 40, 49, 58, 59, 106, 116,

150, 165, 166, 169, 174, 182–186, 227,
235

Data Distribution Service (DDS), 43, 56
Data source, 6, 49, 74
Declare miner, 57, 140–144
Demonstrator, 4, 13, 19, 50, 55–68, 185,

186
Density, 62, 66, 74–86, 120–125, 127,

130
density map, 13, 61, 74, 75, 77–86

P. van de Laar et al. (eds.), Situation Awareness with Systems of Systems,
DOI 10.1007/978-1-4614-6230-9, © Springer Science+Business Media New York 2013

269



270 Index

Diagnosis, 8, 18, 229, 231–237, 239, 242–244,
249–253, 255, 256

self-diagnosis,
runtime diagnosis, 15, 46, 47

Distance function, 14, 108, 109, 113, 117
Distributed access control, 18

E
EthoVision XT, 89–96, 99–102
Event, 4, 21, 50, 103, 105, 119, 133, 149, 192,

211, 234, 248
Evolving system, 244

F
Fault localization

runtime fault localization, 16, 62
Spectrum-based Fault Localization (SFL),

16, 230–233, 244, 248
Federation of systems, 7
Functional, 12, 42, 50, 196, 199, 233, 241, 242

G
Geographic information layer, 58, 61
Glue logic, 173
Google Earth, 15, 25, 58, 61, 64, 175–178,

180, 182, 185, 202

H
Health

information health, 42, 47–48
system health, 46–47, 147

Human operator, 5, 40, 52, 119

I
IMO. See International Maritime Organization

(IMO)
Incident, 22, 23, 25, 26, 31–36
Incremental view maintenance, 15, 174,

182–186
Industry-as-laboratory, 17, 18, 55, 65, 68
Information

information aggregation, 4–6
information complexity, 22
information flow, 40–50
information fusion, 6, 41, 66
information overload, 21, 22, 27
information visualization, 6, 19

Integration
runtime integration, 44
system integration, 15, 173–186

Integrity, 6, 190, 191, 195, 196, 200, 205
Interface, 66, 83, 173, 176–177, 179–181,

183–186, 196, 198, 200, 202
International Maritime Organization (IMO),

11, 34, 60, 221–223
International Telecommunications Union

(ITU), 11, 225
Interoperability

semantic interoperability, 6, 190, 205
syntactic interoperability, 6

Interpolation, 95, 101

K
Kernel density estimation, 75
Knowledge

domain knowledge, 29, 50, 57, 67, 79,
86, 112–115, 190, 191, 197, 201, 205,
227

knowledge base, 18, 57, 61–63, 112–117,
190, 197, 198, 200–202

knowledge representation, 196

L
Linear temporal logic, 139
Linked data, 152

M
Machine learning, 52, 130, 249
Maritime Mobile Service Identity (MMSI), 11,

34, 60, 62, 63, 175, 182, 203, 221–224,
226

Maritime Safety and Security (MSS), 3–19,
21–24, 26, 28, 29, 31, 36, 37, 39, 55,
59, 67, 89, 93, 100, 103, 105, 106, 112,
113, 116, 117, 119, 124, 133, 136, 139,
142, 145, 147, 151, 174, 185, 191, 197,
206, 232, 247, 248

Mediator, 173
Meta-information, 8, 42, 45, 49
Metis, 19
MMSI. See Maritime Mobile Service Identity

(MMSI)
Model, 14, 15, 77, 109, 134, 137–140,

143–147, 149, 151, 154, 166, 169,
177–181, 186, 191, 205, 220, 221, 226,
227, 233–234, 243, 248, 249

Monitoring, 134
health monitoring, 15, 16, 62, 229
runtime monitoring, 8, 15, 18

MSS. See Maritime safety and security
(MSS)



Index 271

N
Non-functional, 12, 44, 242
North Sea, 4, 22, 26, 55, 60, 85, 100,

111

O
Online. See Runtime
Ontology, 14, 15, 18, 113–115, 117, 151, 160,

162, 191, 197–199, 201, 202, 206
OODA loop, 28–30, 33
Open provenance model, 220–222
Operational picture, 18, 50
Opinion, 211–220, 222–224, 226
Outlier, 13, 14, 18, 92, 117, 120–124, 126–130,

201, 203, 204
outlier detection, 57, 120–124, 126–130

P
Petri net, 177, 178, 180
Piecewise linear segmentation, 14, 107, 108,

116
POLIPO, 190, 191, 196–202, 205, 206
POSEIDON, 3, 4, 13, 16–19, 26, 51, 55–68,

158, 159, 163, 166–168, 180, 184–186,
196, 202

Prioritization
diagnostic prioritization, 253
test prioritization, 248–251, 253, 255

Privacy, 6, 9, 60, 175
Probe, 185, 186
Process discovery, 147
Process mining, 14, 18, 61, 133–147, 179, 185
Protocol, 6, 11, 44, 45, 48, 52, 106, 173, 176,

189
Provenance, 41, 42, 45, 49, 210, 220–228

R
RDF. See Resource Description Framework

(RDF)
RDFS. See Resource Description Framework

Schema language (RDFS)
Reasoning, 5, 6, 14, 19, 29–31, 36, 46, 49,

52, 57, 58, 139, 166, 168, 169, 198,
210–216, 221, 222, 232, 249–252

semantic reasoning, 6, 18

Recognition, 7, 13, 14, 41, 44, 52, 94, 105,
109, 117, 254

Reconfiguration, 7–9, 229, 247
runtime reconfiguration, 8

Reproducibility, 59, 65–66, 91
Resource Description Framework (RDF), 57,

149, 152, 154, 156–158, 161, 165, 166,
168, 169

Resource Description Framework Schema
language (RDFS), 149, 151, 157, 168,
169

Runtime, 7, 14, 43, 59, 137, 185, 189, 247

S
Sea lane, 25, 26, 30, 31, 33, 34, 36, 77, 79, 85,

86, 91, 112, 119
Security

ontology-based security policy, 15
POLIPO security framework, 15, 189–206
security framework, 189–191, 195, 196,

199, 203, 205
Segmentation, 18
Segmenter, 57
SEM. See Simple Event Model (SEM)
Semantic web, 6, 40, 149, 150, 161, 206
Sensor network, 27–28
Similarity

similarity calculation, 18
Simple Event Model (SEM), 14, 18, 62, 113,

149–169, 202, 221, 222
Simulation environment, 66–67
SPARQL, 149, 166–169
Spatiotemporal indexing, 57
Specification, 15, 36, 150, 156, 173–186, 190,

191, 195, 197, 198, 205, 206
Stochastic outlier selection, 14, 18, 124–126
Subjective logic, 211–216, 220, 222, 223,

227

T
Testing, 7, 9, 15, 94, 190, 229, 230, 232, 235,

248, 250–252, 256
runtime testing, 8, 9, 248, 256

Track
sensor track, 57
system track, 57



272 Index

Tracking
animal tracking, 13, 90, 91, 93–94, 99–102
object tracking, 13, 19, 74
vessel tracking, 11–13, 90, 93–94, 99–102

Traffic separation scheme, 25–26
Training set, 6
Trajectory

trajectory alignment, 109, 115
trajectory classification, 107
trajectory clustering, 14, 18, 107, 110,

112
trajectory compression, 117

Transition system, 177
Transport mechanism, 43–44
Trust

trust calculation, 18
trust management, 15, 190, 191, 196–198,

201, 205

U
Uncertainty, 6, 8, 19, 39, 41, 42, 45–46, 48, 86,

162, 211–220, 224, 226, 227
Usability, 147, 199

V
Verification, 52, 139, 205, 247

runtime verification, 8
View

database view, 183
functional view, 13, 49
system architect’s view, 40

Visual analysis, 58, 86
Visualization, 6, 12, 13, 19, 30, 56, 73–87, 96,

97, 100, 105–107, 116, 174, 202, 203,
224, 225

multi-objective visualization, 18


	Situation Awareness with Systems of Systems
	Foreword
	Preface
	Acknowledgements
	Contents
	Part I General
	Part II Situation Awareness
	Part III Systems of Systems
	AppendixA Poseidon Project Partners
	AppendixB Poseidon Publications
	Index



