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    2.1   Introduction 

 The immune system has evolved as protection 
against a wide range of infectious agents ranging 
from simple pathogens such as viruses, bacteria, 
and fungi to multicellular parasites such as helm-
inths. In vertebrates, the immune system can be 
broadly divided into two interdependent effector 
arms, the adaptive and innate immune responses. 
In the adaptive immune response, lymphocytes 
are activated to generate potent pathogen-speci fi c 
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  Abstract 

 The family of innate lymphoid cells (ILCs) comprises of natural killer 
(NK) cells, Ror g t-dependent ILCs (lymphoid tissue inducer (LTi) cells, 
ILC22, and ILC17), and type 2 ILCs. Apart from a common requirement 
for inhibitor of DNA binding 2 (Id2) expression and common  g -chain ( g  

c 
) 

signaling, the differentiation of ILC populations is regulated by distinct 
transcription factors. ILCs play fundamental roles in processes such as 
cytotoxicity, lymphoid organogenesis, intestinal homeostasis, immunity 
against infections, and wound healing. However, the dysregulation of 
ILCs has been implicated in autoimmune and in fl ammatory diseases. 
Here, we will review the recent advances in ILC development and their 
roles in immunity and disease, with a primary focus on type 2 ILCs.  
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responses (e.g., antibodies and cytotoxic T cells) 
via VDJ recombination and generation of mem-
ory T and B cells. The innate immune response is 
evolutionarily older, and pathogen recognition 
does not adapt to the infection. The innate immune 
system serves as the “ fi rst line of defense” in 
organisms by providing an immediate protective 
response against infection and helping to initiate 
the adaptive immune response. 

 The innate immune system comprises of leuko-
cytes such as mast cells, eosinophils, basophils, 
macrophages, neutrophils, dendritic cells (DCs), 
and natural killer cells (NK cells). These leuko-
cytes act together to combat infectious agents by 
secreting cytokines, chemokines, and antimicrobi-
als. This leads to in fl ammation, phagocytosis of 
microorganisms and infected cells, antigen pro-
cessing and presentation, and activation of the 
adaptive immune response. Up until the last 
decade, NK cells were unique in being the only 
identi fi ed innate cell derived from a lymphoid pro-
genitor. Recent developments have now classi fi ed 
NK cells as the earliest identi fi ed member of a 
family of hematopoietic effector cells termed 
innate lymphoid cells (ILCs) that are dependent on 
the transcription factor Id2. Currently, ILCs can be 
broadly classi fi ed into three groups: (a) NK cells, 
(b) the retinoic acid receptor-related orphan recep-
tor  g  t (Ror g t)-dependent ILCs (lymphoid tissue 
inducer (LTi) cells, ILC17, ILC22), and (c) type 2 
ILCs. These groups have recently been named 
ILC1, ILC3 and ILC2 respectively. These various 
ILCs have now been implicated in protection 
against infectious organisms, organogenesis of 
lymphoid tissue, tissue remodeling during wound 
healing and homeostasis in tissue stromal cells. 

 Because the key cytokines secreted by some 
ILCs mirror those of various T helper cell 

 populations, it has been proposed that ILCs 
may  represent the innate counterparts of T 
helper lymphocytes, at least in terms of cytokine 
production  [  1,   2  ]  (Table  2.1 ). In this review we 
will provide a general overview of the ILC 
family, focusing on the recent advances with 
regard to type 2 ILCs in immunity.   

    2.2   Phenotype of ILCs 

    2.2.1   NK Cell Phenotype 

 NK cells were  fi rst described in 1975 and later 
de fi ned as an innate effector lymphocyte  [  15  ] . 
They are mostly differentiated in the bone mar-
row and are widely distributed in many tissues 
such as the lungs, liver, spleen, and lymph nodes 
 [  16,   17  ] . In humans, a majority of NK cells 
(approximately 90%) are CD56 dim  and CD16 hi  
and the minority (10%) are CD56 hi  and CD16 dim/−  
 [  18  ] . A population of thymic derived NK cells 
has been described in mice that may be similar to 
human CD56 hi CD16 dim/−  NK cells. These thymic 
NK cells express CD127, high levels of Gata-3 
and are Notch independent  [  3  ] .  

    2.2.2   Ror  g   t-Dependent ILC Phenotype 

 In mice, LTi cells are characterized by a lack of T, 
B, and myeloid cell markers, but express integrin 
 a 4 b 7, CD45, CD4, lymphotoxin- a  (LT- a ), and 
LT- b , as well as multiple chemokine and cytokine 
receptors (CD127, CD117, c-Kit) [  19  ] . Adult LTi 
cells differ from their fetal counterpart due to 
expression of the T cell costimulatory molecule 
ligand (OX40-L) and CD30L  [  20  ] . Human LTi 

   Table 2.1    Common cytokines produced by innate and adaptive lymphoid cells   

 Innate lymphoid cell  Adaptive T helper cell  Common cytokine produced  References 

 NK cells  Th1  Interferon-gamma (IFN- g )   [  3–  5  ]  

 LTi  Th17/Th22  Interleukin-17 (IL-17), IL-22   [  6–  8  ]  
 ILC22  Th22  IL-22   [  8–  10  ]  
 ILC17  Th17  IL-17   [  11  ]  
 Type 2 ILC  Th2  IL-5, IL-13   [  12–  14  ]  
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cells have been described in fetal mesentery and 
adult lymph node, spleen, gut, and tonsils  [  21  ] . 
They are similar to mouse LTi cells except that 
human LTi cells are all CD4 -  while a proportion 
of mouse LTi cells are CD4 +   [  22  ] . 

 ILC22 were  fi rst identi fi ed as an IL-22 pro-
ducing NK cell subset  [  9,   10,   23,   24  ] . The reason 
for this classi fi cation was due to surface expres-
sion of NK cell markers such as CD56, NKp44 
and low NKp46 expression (in humans), and 
NKp46 and some low NK1.1 expression (in 
mice). However, ILC22 differ from conventional 
NK cells because they lack cytolytic properties, 
lack killer inhibitory receptors (in humans), lack 
Ly49 (in mice) and do not produce IFN- g . They 
also share similarities with LTi cells by express-
ing Ror g t and IL-22. In both human and mice, 
ILC22 are found mainly in the small intestine, 
colon, mesenteric lymph nodes and liver  [  9  ] . 
ILC22 (ILC3) have been termed NK22, NCR22, 
NKR + LTi, LTi-like NK cells and NKp46 + Ror g t +  
ILCs. We have adopted the nomenclature pro-
posed by Spits and Di Santo and use ILC22 to 
describe this Ror g t + IL-22 + NK receptor +  LTi-like 
ILC population  [  1  ] . 

 IL-1 b  and IL-23 upregulate the production of 
IL-22 from ILC22 in both mice and humans  [  10  ] , 
while IL-12 and IL-18 induce IL-22 production 
from mouse ILC22  [  25  ] . It has also been shown 
that IL-25 produced by intestinal epithelial cells 
negatively regulates IL-22 production by Ror g t +  
ILCs  [  26  ] . The common  g -chain ( g  

c
 ) cytokines 

(for example, IL-2, IL-7, and IL-15) can also 
activate proliferation and cytokine production of 
human ILC22  [  27  ] . Depending on culture condi-
tions, human ILC22 can be induced to secrete a 
spectrum of cytokines, including IL-2, IL-5, IL-8, 
IL-13, IL-17, TNF, IFN- g , and B cell activation 
factor  [  27,   28  ] . Whether this is because human 
ILC22 possess cytokine plasticity, or because it is 
a heterogeneous population of cells, has yet to be 
determined. 

 Another mouse non-LTi population has been 
described, which is specialized to produce IL-17. 
These cells, termed ILC17, are Ror g t dependent 
and are CD4 - CD117 - NKp46 - , which separates 
them from both LTi and ILC22  [  29  ] . In humans, 

an IL-17-producing ILC population has been 
described; however its expression of cell surface 
markers is different from mouse ILC17  [  7  ] . 
Analysis of lineage − CD127 + CD117 +  adult tonsil 
cells identi fi ed that a proportion of them produce 
IL-17, but not IL-22  [  7,   30  ] . However, these 
lineage − CD127 + CD117 +  cells appear to be het-
erogeneous because an IL-17 + IL-22 +  subpopula-
tion was also identi fi ed  [  30  ] .  

    2.2.3   Type 2 ILC Phenotype 

 The type 2 ILCs were independently discovered 
in 2010 by three separate groups, and were called 
nuocytes, natural helper cells (NHCs), and innate 
type 2 helper (Ih2) cells  [  13,   14,   31  ] . Using a 
combination of  fl ow cytometry and microarray 
analyses, type 2 ILCs were shown to lack the 
expression of lineage de fi ning surface markers 
for T cells, B cells, NKT cells, DCs, macrophages, 
neutrophils, eosinophils, mast cells, basophils, 
and LTi cells. Type 2 ILCs share a number of sur-
face and functional similarities  [  32  ]  (Table  2.2 ). 
Variability of surface expression markers may be 
attributed to the different tissues these type 2 
ILCs were taken from, indicate a different activa-
tion state of the cell, or identify different type 2 
ILC subsets. Certainly, activated nuocytes iso-
lated from lung tissue showed a lower expression 
of Sca-1 and CCR9 compared to those isolated 
from the MLN  [  33  ] . Multiple other groups have 
since described type 2 ILC-like populations in 
the liver, bone marrow, lungs, and intestine  [  34–
  44  ] . All identi fi ed type 2 ILCs are lineage nega-
tive, respond to treatment with either IL-25 and/
or IL-33, and can produce type 2 cytokines (IL-5 
and/or IL-13). A report of particular interest by 
Mjösberg et al. characterized a possible human 
equivalent of mouse type 2 ILCs  [  36  ] . These 
human type 2 ILC cells share a similar phenotype 
and function with mouse type 2 ILCs and are 
found in the fetal and adult lung and gut tissues 
(Table  2.2 ). They also found these cells in the 
peripheral blood, but these cells express the 
chemokine receptor CCR6 and did not produce 
type 2 cytokines. This suggests that human type 2 
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   Table 2.2    Phenotypic comparison of the type 2 ILCs   

 Nuocytes  Natural helper cells  Ih2 cells  Human type2 ILCs 

 Lineage a   − b   −  −  − 

 IL-7R a   + b   +  Not reported  + 

 IL-17BR (IL-25R)  +  +  +  + 
 ST2 (IL-33R)  +  +  +  + 
 c-Kit  + (variable)  +  Low  + 
 Sca-1  +  +  −  Not reported 
 CD25  +  +  Not reported  + 
 Thy1  +  +  +  Not reported 
 CD44  +  +  +  Not reported 
 CD45  +  +  +  + 
 ICOS (CD278)  +  Not reported  +  Not reported 

  g c dependent  Yes  Yes  Yes  Responsive to IL-2 

 Other markers  CD43, MHC Class 
II, CCR9, ICAM-1, 
CD49d, Itgb7 

 CD27, CD38, 
GITR, CD69 

 CD122  CRTH2, CD161, AhR, 
CCR4, CCR6, CD7 

 Type 2 cytokines  IL-5, IL-6, IL-13 
protein, IL-4 
mRNA 

 IL-5, IL-6, IL-13 
protein 

 IL-5, IL-13 protein, 
IL-4 mRNA 

 IL-13 protein, IL-5 
mRNA (in cultured 
lines) 

 Maf  +  +  Not reported  Not reported 
 Gata-3  +  +  +  Not reported 
 Junb  +  +  Not reported  Not reported 
 Stat6  +  +  +  Not reported 
 Id2  +  +  +  Not reported 

 Ror g   −  −  Not reported  Low (in gut) 
 - (in polyps) 

 Ror a   +  +  Not reported  Not reported 

 Location  BM, lung, gut, 
MLN, spleen, blood 
(after induction) 

 FALC and lung  Systemic, especially 
in the MLN, spleen, 
and liver 

 Lung, intestines, and 
nasal polyps. Also blood 
(inactive) 

 Conditions 
for cytokine 
production 

 IL-7 + IL-33 or 
IL-2 + IL-7 + IL-25 

 IL-33 or 
IL-2 + IL-25 

 In vitro data not 
reported 

 IL-2 + IL25 or IL-33 

 Differentiation 
potential 

 No differentiation 
to T cells or 
myeloid cells 

 No T cell 
differentiation 

 Not reported  No NK cell, T cell, 
or myeloid cell 
differentiation 

 Method of 
induction/
expansion 

 IL-25, IL-33 
treatment or 
helminth infection 
or OVA treatment 

 IL-25, IL-33 
treatment or 
helminth infection 
or papain treatment 

 IL-25 or IL-33 
treatment or 
helminth infection 

 Chronic rhinosinusitis 

 Anti-helminth 
properties 

 Yes  Yes  Yes  Not reported but found 
in the gut tissue 

 Airway allergy 
association 

 Yes  Yes  Not reported  Yes 

 References   [  13  ]    [  14  ]    [  31  ]    [  36  ]  

    a  Cell surface markers for at least T cells and B cells 
  b −, Absence of expression or production; +, identi fi ed expression or production  
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ILCs may initially be released into the blood-
stream in an inactivate form after which they 
home into the lung and gut tissue. There, they 
may mature, becoming activated in situ to start 
producing type 2 cytokines. Further research is 
required to determine if the cells identi fi ed by 
Mjösberg et al. are truly the human equivalent of 
type 2 ILCs.  

 Although multipotent progenitor type 2 
(MPP type2 ) cells also respond to IL-25 treatment, 
they can differentiate into myeloid cells following 
treatment with SCF and IL-3  [  45  ] . This suggests 
that MPP type2  cells may represent a heterogeneous 
population which includes precursor cells which 
are not terminally differentiated. This differs from 
the other members of the type 2 ILC family and 
they are not included herein.   

    2.3   Development of ILCs 

    2.3.1   Inhibitor of DNA Binding 2 
(Id2): An Early Common “Switch” 
for ILCs 

 The development of T cells, B cells, and DCs 
from progenitor cells is dependent on a group of 
basic helix-turn-helix (bHLH) proteins termed E 
proteins, which include the E2a isotypes (E12 
and E47), E2-2, and human bHLH factor (HEB) 
 [  46  ] . Conversely, the E proteins inhibit the devel-
opment of several ILC populations  [  47  ] . The 
transcription factor function of E proteins is neu-
tralized by Id (inhibitor of DNA binding) pro-
teins, by forming a heterodimer with each other 
 [  48  ] . Of the 4 Id protein members, Id2 has been 
shown to be important for the development of 
NK cells and LTi cells by blocking the transcrip-
tional activity of E47  [  47  ] . Id2 also promotes 
development of ILC22 and type 2 ILCs  [  14,   49  ] . 
It has been demonstrated in Ror g t +  ILCs that Id2 
is upregulated prior to Ror g t expression  [  50  ] . 
Taken together, the evidence suggests that the 
progenitors of different ILC populations share an 
early expression of Id2 protein, which acts as a 
developmental block against differentiation down 
the T cell and B cell pathway (Fig.  2.1 ).   

    2.3.2   NK Cells Development 

 NK cell development in the bone marrow is 
dependent on early IL-15 and Flt3 ligand signal-
ing  [  51,   52  ] . Other transcription factors affect-
ing NK cell differentiation and maturation 
include transcription factors such as Ets-1, Id2, 
Ikaros, PU.1, T-bet, Gata-3, NFIL3 (E4BP4), 
and Eomesodermin, as well as the Tox nuclear 
factor  [  51,   53  ] . The development of mouse thy-
mic NK cells is dependent on IL-15, IL-7, and 
Gata-3  [  4  ]  (Fig.  2.1 ).  

    2.3.3   Ror  g  t-Dependent ILCs 
Development 

 As their name suggests, Ror g t-dependent ILCs 
express Ror g t, which is important for their devel-
opment and function  [  2  ] . The retinoic acid recep-
tor-related orphan receptors (Ror a , Ror b , and 
Ror g ) are a family of DNA-binding transcription 
factors which are nuclear receptors. Cholesterol 
and its derivatives have been identi fi ed as natural 
ligands for Ror a  while hydroxycholesterols have 
been proposed as a natural ligand for Ror g   [  54,   55  ] . 
Ror g t is a short Ror g  isoform that is speci fi cally 
expressed in cells of the immune system, and 
Ror g t-de fi cient mice lack lymph nodes and 
Peyer’s patches  [  56  ] . All the Ror g t-dependent 
ILCs express the IL-7 receptor CD127, and IL-7 
has been shown to be important for homeostasis 
of these ILCs  [  57,   58  ]  (Fig.  2.1 ). 

 Fetal LTi cells differentiate from fetal liver 
CLPs by  fi rst upregulating Id2 which results in 
upregulation of  a 4 b 7, with the loss of B cell 
potential. This is followed by upregulation of 
the chemokine marker CXCR6, extinguishing 
their T cell potential, before  fi nal expression of 
Ror g t. An early pulse of Notch signaling has 
been reported to maximize the ef fi ciency of LTi 
cell differentiation  [  50  ] . However the necessity 
of Notch signaling is still contentious as results 
show fetal liver CLPs can still generate LTi cells 
in the absence of Notch  [  59  ] . Postnatal LTi cells 
are derived from bone marrow CLPs, which 
enter the periphery as  a 4 b 7 +  cells to colonize 
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the spleen and lamina propria before completing 
differentiation in situ into Ror g t +  cells via a 
Notch-dependent pathway  [  59  ] . Additionally, 
LTi cell differentiation has also been shown to 
depend on the transcriptions factors Runx1 and 
Tox  [  60,   61  ] . 

 Fate-mapping experiments and genome-wide 
microarray pro fi ling have demonstrated that 
mouse ILC22 derive from Ror g t +  precursors that 
are  a 4 b 7 -   [  62,   63  ] . Although ILC22 development 
does not require the expression of  a 4 b 7, Id2-
de fi cient mice do not possess ILC22  [  49  ] , sug-
gesting that another function of Id2, apart from 
inducing  a 4 b 7 expression, is required for the dif-
ferentiation of ILC22  [  50  ] . ILC22 can develop 

from a CXCR6 +  CLP population in adult lamina 
propria but not in spleen, showing a compart-
mental speci fi city for the chemokine receptor 
 [  59  ] . These Ror g t +  precursors in the small intes-
tine, colon, and secondary lymphoid organs 
require Notch signaling to stably upregulate NK 
receptors in vivo and will express IL-22 as they 
mature into ILC22  [  59  ] . ILC22 retain some 
degree of plasticity, for example, ILC22 in 
the small intestine remain Ror g t + , while those 
in the colon and secondary lymphoid organs 
become ROR g t - IL-22 -  IFN- g  +  cells, gaining NK 
cell markers but lacking cytolytic ability, thus 
differentiating them from true NK cells  [  63,   64  ] . 
In vitro, IL-7 has been implicated in maintaining 

  Fig. 2.1    An overview of known ILC developmental 
requirements. All ILC members are thought to derive 
from an Id2 expressing progenitor. Differentiation into 
NK cells, type 2 ILCs, or Ror g t-dependent ILCs is dictated 

by various cytokines, signals ( above arrow ), and tran-
scription factors ( below arrow ). A brief summary of where 
these subsets are thought to differentiate as well as func-
tions is included       
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Ror g t expression and IL-22 production, while 
IL-2 and IL-15 promote the loss of Ror g t and the 
gain of IFN- g  expression  [  64  ] . Vornarboug et al. 
showed that the presence of commensal 
micro fl ora also plays a role in maintaining Ror g t 
expression and subsequent induction of IL-22. 
However, the micro fl ora is not essential for 
ILC22 development since they continue to 
develop in the small intestine of germfree mice 
 [  23,   24,   26,   62,   64  ] . 

 Another factor implicated in Ror g t-dependent 
ILC development and function is the ligand-
dependent transcription factor aryl hydrocarbon 
receptor (AhR) (Fig.  2.1 )  [  65–  67  ] . AhR is 
expressed by ILC22 in both mice and humans, and 
AhR-de fi cient mice have fewer ILC22 that have 
impaired IL-22 production  [  67,   68  ] . These mice 
also show defects in cryptopatch clusters and iso-
lated lymphoid follicles (ILFs), suggesting that 
AhR is also important for postnatal LTi function 
 [  66  ] . The natural ligands for AhR are  fl avanoids 
and glucosinolates, which are dietary compounds 
commonly found in vegetables such as of the fam-
ily  Brassicaceae   [  66  ] . This suggests that balanced 
nutrition plays a part in priming the innate immune 
system in the gut, and maybe mother was right to 
make you eat your greens  [  65  ] . 

 Some key questions about the Ror g t-dependent 
ILCs (LTi, ILC22, and ILC17) still remain to be 
answered. These include the developmental rela-
tionships between these subsets; should they be 
classi fi ed as distinct subsets or differently acti-
vated cells, and do they possess a degree of plas-
ticity to change from one subset to another? 
Previous attempts to differentiate fetal mouse LTi 
cells into ILC22 have been unsuccessful, but 
human LTi cells from fetal lymph nodes and adult 
tonsils can become ILC22, suggesting that some 
degree of trans-differentiation is possible  [  62  ] . 
Future research will hopefully better de fi ne the 
development and function of the Ror g t-dependent 
ILCs in both humans and mice.  

    2.3.4   Type 2 ILCs Development 

 Type 2 ILCs are derived from the lymphoid 
 lineage  [  69  ] . Collectively, they express a combi-

nation of hematopoietic markers such as CD45, 
c-Kit, and Sca-1, as well as lymphoid markers 
such as IL-7R a , ICOS, Thy1.2, and CD44  [  13, 
  14,   31,   36  ] . The development of NHCs and Ih2 
cells is dependent on expression of the  g c surface 
receptor, suggesting the developmental impor-
tance of  g c-dependent cytokines (IL-2, IL-4, IL-7, 
IL-9, IL-15, or IL-21), some of which are central 
regulators of lymphocyte homeostasis  [  14,   31,   58  ] . 
Type 2 ILCs do not differentiate into other lineage 
cell types in a cytokine cocktail with SCF and 
IL-3, suggesting that they are terminally differenti-
ated  [  13  ] . However, it is currently unknown if they 
can trans-differentiate under speci fi c stimulus. 

 Yang et al. proposed that NHCs are derived 
from bone marrow lymphoid progenitor cells. 
They found that most NHCs expressed Rag1 at 
some point in their development and they differ-
entiate in vivo from lymphoid progenitor cells 
 [  69  ] . Their  fi ndings were corroborated by Wong 
et al., wherein they showed that functional nuo-
cytes differentiated from bone marrow CLP in 
both in vivo and in vitro models when treated 
with IL-7 and IL-33  [  34  ] . Both studies agreed 
that NHCs and nuocytes required IL-7 receptor 
for in vivo development. In addition, Wong et al. 
demonstrated the requirement for Notch signal-
ing for in vitro differentiation of nuocytes. Notch 
signaling is important for hematopoiesis, espe-
cially for T cell commitment of progenitor cells 
and T cell maturation in the thymus  [  70  ] . T cell 
precursors in the double negative stage 1 and 
stage 2 thymocytes also retain nuocyte differen-
tiation potential when treated with IL-7 and IL-33 
 [  34  ] . However, further differentiation down the T 
cell pathway has to be inhibited. The absence of 
NHCs in Id2-de fi cient mice suggests that Id2 is 
important for type 2 ILCs development, and 
could be responsible for the inhibition of T cell 
differentiation  [  14  ] .

      Signi fi cantly, Wong et al. also reported the 
requirement for Ror a  for nuocyte differentiation 
 [  34  ] . Ror a  is expressed in a wide variety of tis-
sues, but is especially important for neuronal 
development  [  71,   72  ] . Mice de fi cient for Ror a  
exhibit ataxia, cerebellar atrophy, and a 
signi fi cantly diminished life span  [  73,   74  ] . Ror a  
had also been loosely linked to immunity because 
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Ror a -de fi cient mice were reported to have 
reduced T cell/B cell numbers in the spleen and 
thymus, as well as reduced OVA-induced airway 
hyperreactivity  [  71,   75  ] . Ror a  has also been 
implicated in Th17 differentiation  [  76  ] . 
Microarray data for both nuocytes and NHCs 
show that they express Ror a  mRNA and not 
Ror g t mRNA, further differentiating them from 
the Ror g t-dependent ILCs  [  13,   14  ] . A natural 
knockout of Ror a  occurs in staggerer ( Rora   sg / sg  ) 
mice  [  73  ] . Reconstituting lethally irradiated mice 
with staggerer mouse bone marrow followed by 
infection with Nippostrongylus brasiliensis 
showed that the nuocyte population did not 
expand in the reconstituted mice and these ani-
mals displayed impaired worm expulsion. The 
adaptive immune response remained normal 
based on normal T cell development and num-
bers  [  34  ] . An OVA-induced asthma model using 
staggerer mice demonstrated that these mice 
developed less airway in fl ammation, goblet cell 
hyperplasia, eosinophilia, and production of type 
2 cytokines  [  75  ] . These results, together with 
those from a study by Halim et al.  [  160  ] , support 
a model for Ror a  as an important transcription 
factor for type 2 ILC development in the bone 
marrow. Interestingly, human type 2 ILCs express 
Ror g t, albeit at lower levels than the Ror g t-
dependent ILCs  [  36  ] . It remains to be proved if 
Ror a  is also important for the development of 
human type 2 ILCs.     

 Thus, type 2 ILCs differentiate from CLPs, 
and this is dependent on Notch and  g c-dependent 
cytokine (IL-7) signaling  [  77  ] . A possible source 
of Notch ligands and IL-7 is the stromal cells in 
the bone marrow  [  78,   79  ] , although this requires 
further investigation. Notch signaling encourages 
CLPs towards a T cell fate  [  70  ] , but it appears 
that the expression of Id2 (by signals as yet 
unknown) inhibits the T cell commitment of these 
progenitor cells  [  2,   14  ] . Expression of Ror a  cor-
relates with the further differentiation of mouse 
type 2 ILCs  [  34  ]  (Fig.  2.1 ), but the factors that 
regulate Ror a  expression remain to be identi fi ed. 
Recently, Gata-3 expression has been demon-
strated to license type 2 ILCs for IL-13 expres-
sion, and that Gata-3 and STAT6 both contribute 
to type 2 ILC development [ 80 ,  161 ].   

    2.4   ILC Roles in the Host Organism 

    2.4.1   NK Cells: Cytolytic Activity 
and Cytokine Production 

 The CD56 dim  NK cell population is biased towards 
rapidly initiating a cytolytic response against 
virus-infected host organism cells or tumor cells 
without the need for pre-sensitization or activa-
tion via the major histocompatibility (MHC) mol-
ecules  [  81  ] . There are two mechanisms for this 
cytolytic activity. The  fi rst is granule-dependent 
cytotoxicity, where NK cells are activated to 
release perforin and granzymes in proximity to an 
infected cell to kill it. The other triggers the apop-
tosis pathway in target cells via NK cell-secreted 
tumor necrosis factor- a  (TNF- a ) that binds to the 
target cell, or via direct cell contact with NK cells 
leading to signaling through TNF-related apopto-
sis-inducing ligand (TRAIL) and/or Fas ligand 
(FasL)  [  16,   82  ] . 

 CD56 hi  NK cells and mouse thymic NK cells 
lack cytolytic activity and are primed towards 
producing cytokines such as IFN- g , TNF- a , IL-10, 
and other growth factors  [  3,   81  ]  (Fig.  2.1 ). 

 Apart from being effector cells, NK cells have 
a regulatory role during an immune response by 
affecting DCs, macrophages, and mast cells  [  83  ] . 
Recently, the notion that NK cells are truly innate 
cells has been called into question because 
speci fi c subsets of mouse liver NK cells have 
been described to have the adaptive immunity 
property of lasting memory against speci fi c viral 
antigens  [  84,   85  ] .  

    2.4.2   LTi Cells and Organogenesis 
of Lymphoid Structures 

 LTi cells induce the formation of lymph tissues 
such as lymph nodes and Peyer’s patches during 
embryogenesis in both humans and mice  [  86–  88  ] . 
During mouse embryogenesis, fetal liver-derived 
LT- a  

1
 LT- b  

2
  + LTi cells colonize developing lymph 

tissues and interact with mesenchymal-derived 
stromal organizer cells called lymphoid tissue 
organizer (LTo), which express vascular cell 
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adhesion molecule (VCAM-1) and LT- b  receptor. 
Signaling through the LT- b  receptor induces the 
upregulation of various cell adhesion molecules, 
production of IL-7 and TNF-related activation-
induced cytokine (TRANCE), and secretion of 
lymphoid chemokines such as CXCL13, CCL19, 
and CCL21. These factors recruit additional LTi 
precursors as well as other hematopoietic cells, 
including B and T cells, and DCs, to the develop-
ing lymph node  [  89,   90  ] . 

 Postnatal LTi cells have further developmental 
roles in secondary lymphoid tissues  [  7  ] . They are 
important for the formation of ILFs in the gut 
after recognition of pathogen-associated patterns 
(PAMPs) on commensal bacteria in order to main-
tain intestinal homeostasis  [  91,   92  ] . Additionally, 
it has been reported that postnatal LTi cells are 
involved in the repair of damaged lymph nodes 
after acute viral infections that destroy the T cell 
zone stromal cells  [  93  ] . They have also been 
shown to be involved in the segregation of B and 
T cell zones in spleen architecture, as well as in 
memory CD4 T cell generation  [  94,   95  ] .  

    2.4.3   Ror  g   t-Dependent ILCs: IL-17 
and IL-22 Producers for 
Intestinal Homeostasis 

 IL-17 is a pro-in fl ammatory cytokine that recruits 
neutrophils and promotes cytokine and antimi-
crobial peptide production from a variety of cells 
such as bronchial epithelial cells  [  96  ] . IL-17 has 
also been shown to have a role in the formation of 
germinal centers and neutrophilia in allergic 
asthma  [  97,   98  ] . IL-22 is a member of the IL-10 
family and binds to its receptor, which is found 
exclusively on epithelial cells to induce the pro-
duction of cytokines, microbial peptides, and 
mucins  [  99  ] . It can act as either a pro-in fl ammatory 
or an anti-in fl ammatory cytokine depending on 
the cellular and cytokine environment. It acts as a 
pro-in fl ammatory cytokine in diseases such as 
psoriasis and multiple sclerosis  [  100  ] , but limits 
damage caused by the immune system in hepati-
tis and helps maintain mucosal immunity and 
integrity in eosinophilic airway in fl ammation and 
in fl ammatory bowel disease  [  101  ] . 

 LTi cells are producers of the cytokines IL-17 
and/or IL-22 after stimulation with IL-23  [  21, 
  102  ] . Therefore, LTi cells may be involved with 
the early protection against microbial infections 
and maintaining the mucosal barrier in the host 
organism. ILC22 and ILC17 act as specialized 
producers of IL-17 and IL22, to support the pro-
tective responses in the gut during microbial 
infections. 

 Both ILC22 and ILC17 are recruited to the 
intestine under in fl ammatory conditions, and are 
involved in a protective role during intestinal 
infection and in fl ammation. IL-23 induces ILC22 
and ILC17 to produce their respective cytokine 
 [  99  ] . ILC22 serve as a critical early source of 
IL-22 to protect against colitis-inducing 
 Citrobacter rodentium  infections  [  103  ] , as well 
as other colitis models such as in fl ammatory 
bowel disease (IBD) and dextran sulfate sodium 
(DSS)-induced colitis  [  104  ] . Although ILC22 are 
not required to control a  Listeria monocytogenes  
infection, the oral introduction of the pathogen 
still enhances IL-22 production from ILC22  [  63  ] . 
It is unknown if these human-specialized IL-17 
producers are present in the intestine during an 
infection. The different effector functions of 
ILC17 and ILC22 might explain the presence of 
specialized subsets of IL-22- and IL-17-producing 
ILCs, which would tailor the innate immune 
response to infections and maintain intestinal 
homeostasis.  

    2.4.4   Type 2 ILCs: Protective Response 
Against Helminths 

 Type 2 ILCs were initially described as important 
innate cells responsible for anti-helminth protec-
tion  [  105  ] . IL-25 and IL-33 have been shown to 
be important to activate type 2 ILCs to produce 
effector cytokines. 

 IL-25 (IL-17E) is a member of the IL-17 fam-
ily that is associated with Th2-like in fl ammation 
and disease  [  106–  108  ] . IL-25 mRNA transcripts 
are produced in Th2 cells and lung epithelial cells 
while the protein has been reported to be pro-
duced by alveolar macrophages, mast cells, 
eosinophils, and basophils  [  109–  111  ] . IL-25 
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upregulates the production of type 2 cytokines by 
eosinophils, mast cells, type 2 ILCs, and Th2 
cells  [  33,   112  ] . IL-25 signaling acts via the sig-
naling molecule Act1 to increase expression of 
Gata-3 and subsequent production of type 2 
cytokines  [  109,   113,   114  ] . 

 IL-33 (IL-1F11) is a member of the IL-1 fam-
ily that binds to the ST2 receptor (Il1lr1) in com-
plex with IL1RAP  [  115  ] . ST2 is primarily 
expressed on mast cells, Th2 cells, and type 2 
ILCs  [  33,   116,   117  ] . IL-33 mRNA is expressed in 
epithelial cells, endothelial cells, lung  fi broblasts, 
DCs, and alveolar macrophages  [  118  ] , and plays 
roles in disease symptoms such as  fi brosis and air-
way hyperreactivity, as well as in autoimmune 
diseases such as arthritis  [  119–  122  ] . The mecha-
nism by which IL-33 is released by cells is unclear; 
it is thought that IL-33 acts as an “alarmin” during 
necrosis and initiates in fl ammatory signaling 
 [  123  ] . By contrast, if the cell undergoes pro-
grammed cell death, i.e., apoptosis, then caspase-1 
cleaves the cytokine domain of IL-33 into a non-
functional form that fails to initiate the 
in fl ammatory response  [  124  ] . 

 Infection with helminths, such as  N .  brasilien-
sis , breaches and irritates the epithelial barrier of 
the lung and gut. TFF2 signaling and other 
unknown signals induce the production and 
release of IL-25 and IL-33 from epithelial cells 
and other cells such as alveolar macrophages 
 [  125  ] . Since IL-25-responsive epithelial cells are 
important for downstream IL-5 and IL-13 pro-
duction in the lung, this suggests that epithelial 
cells could self-upregulate factors in a positive 
feedback loop that ampli fi es the downstream type 
2 response  [  113,   114  ] .

      Type 2 ILCs activated by IL-25 or IL-33 are 
important for  N .  brasiliensis  expulsion. Neill 
et al. demonstrated that mice lacking either one 
or both cytokine receptors have very few nuo-
cytes and are unable to effectively clear helminth 
infections. However, the adoptive transfer of acti-
vated type 2 ILCs was able to rescue this defect. 
Furthermore, worm expulsion was dependent on 
IL-13 since transferring IL-13-de fi cient nuocytes 
into IL-13-de fi cient mice failed to mediate worm 
expulsion  [  13  ] . IL-13 is indispensible for the 

ef fi cient expulsion of  N .  brasiliensis   [  126  ]  
because it induces a range of type 2 immune 
physiological responses such as smooth muscle 
contraction, goblet cell hyperplasia, and mucus 
hypersecretion, thus activating a “weep and 
sweep” mechanism which traps and expels the 
worms  [  127  ]  (Fig.  2.2 ). IL-13 is partially involved 
during the infection with other parasite species 
such as Trichuris muris  [  128  ] . Therefore, type 2 
ILCs are the early trigger of type 2 protective 
responses. An increased number of circulating 
Ih2 cells in the blood after IL-25 treatment sug-
gests that additional type 2 ILCs could be 
recruited from the blood to enhance a local type 2 
response and also suggests that a localized infec-
tion could initiate a systemic type 2 response via 
these circulating type 2 ILCs  [  31  ] .      

 Apart from the innate immune system, the 
adaptive immune system is also activated follow-
ing infection. Alarmins released by damaged epi-
thelial cells, and parasite-derived antigens, 
promote Th2 cell differentiation via professional 
antigen-presenting cells  [  129  ] . This secondary 
wave of type 2 cytokines ampli fi es the effects of 
type 2 ILCs as well as initiating other physiologi-
cal responses such as promoting Th2 cell differ-
entiation, activating B cells to produce antibodies, 
inducing IgE class switching and upregulating 
mast cells  [  130–  132  ] . 

 Even though type 2 ILC-derived cytokines are 
suf fi cient to resolve a helminth infection, the 
presence of Th2 cells (even if IL-4 and IL13 
de fi cient) is still essential for effective helminth 
expulsion  [  133  ] . This could be explained by the 
observation that Th2 cells are required to main-
tain type 2 ILCs numbers during an infection 
 [  13  ] . Nuocytes are present in Rag2 knockout 
mice (which lack B cells and T cells) and are 
responsive to IL-25 and IL-33, but their popula-
tion numbers decrease soon after induction, and 
these mice are unable to expel the worm burden 
effectively  [  13  ] . This suggests that T cells play a 
role in nuocyte maintenance, and in addition, 
boost the type 2 immune response by producing 
more type 2 cytokines. An area for further inves-
tigation is the interrelationship of innate type 2 
ILCs and adaptive Th2 cells.  
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    2.4.5   Wound Healing 

 Evidence suggests that type 2 ILCs are involved 
in wound healing and  fi brotic processes. Type 2 
ILCs directly produce amphiregulin, which pro-
motes the proliferation of epithelial cells  [  38, 
  134  ] . Type 2 ILCs can also indirectly promote 
tissue remodeling via IL-13 and IL-5. In vitro 
studies show that IL-13 can directly induce the 

proliferation of myo fi broblasts and collagen pro-
duction from  fi broblasts  [  135,   136  ] . IL-13 indi-
rectly promotes  fi brosis via the induction of 
 fi brotic factors such as arginase, TFG- b , and 
 fi bronectin from  fi broblasts and alternatively 
activated macrophages  [  137–  140  ] . In vivo, IL-13 
has been shown to mediate  Schistosoma man-
soni -induced liver  fi brosis in a TGF- b -
independent pathway  [  141–  143  ] . IL-5 promotes 

  Fig. 2.2    Schematic of type 2 ILC function. Allergens, 
chemicals, irritants, or parasites induce lung or intestinal 
epithelial cells to release the type 2 ILC-activating cytok-
ines, IL-25, and IL-33. IL-25 may act in a positive feed-
back loop on epithelial cells to amplify the activation of 
type 2 ILCs. Activated type 2 ILCs rapidly produce 
amphiregulin, IL-5, and IL-13. Amphiregulin promotes 
epithelial cell proliferation, while IL-5 promotes eosino-
philia into the lung or gut tissues. IL-13 promotes smooth 
muscle contraction, goblet cell hyperplasia, and mucus 

hypersecretion. It also encourages deposition of extracel-
lular matrix (ECM) by directly inducing collagen produc-
tion from  fi broblasts, and indirectly by inducing  fi brotic 
factor production from alternatively activated mac-
rophages ( dashed arrow ). Professional antigen-presenting 
cells (APC) activate adaptive Th2 cells in order to support 
the proliferation and function of type 2 ILCs. Th2 cells 
produce IL-5, IL-13, IL-9 (not shown), and IL-4, which 
perform functions speci fi c to Th2 cells such as IL-4-driven 
class switching and antibody production       
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eosinophil recruitment and activation, which is 
thought to play a role in airway remodeling in 
chronic airway diseases  [  144  ] . 

 Therefore, activation of type 2 ILCs may con-
tribute to tissue repair following infection and 
injury to minimize the disease pathology 
(Fig.  2.2 )  [  145  ] . 

 Other ILC populations may also be involved 
in healing injuries sustained during infection. As 
mentioned previously, LTi cells can restore dam-
aged lymph nodes after particularly severe viral 
infections. Other Ror g t-dependent ILCs may also 
promote healing via production of IL-22, which 
has been implicated in tissue repair after injury or 
alcohol-induced damage  [  146  ] .  

    2.4.6   Dysregulation of ILCs: 
Autoimmunity, Allergy, 
and Fibrosis 

 The dysregulation of either IL-17 or IL-22 has 
been linked to autoimmune diseases such as pso-
riasis, rheumatoid arthritis, and IBD  [  147  ] . 
Therefore, if the activation of Ror g t-dependent 
ILCs (and production of IL-17 and IL-22) is not 
tightly regulated, they may contribute to these 
diseases. For example, Buonocore et al. have 
demonstrated that a Ror g t + ILC population is 
stimulated by IL-23 in the colon to produce IL-17 
and induces intestinal colitis  [  29  ] . 

 Chronic activation of the type 2 response 
can cause allergic airway diseases (such as 
asthma), in fl ammatory gut diseases, as well as 
excessive  fi brosis and tissue remodeling  [  148–
  150  ] . As potent type 2 cytokine producers, type 
2 ILCs would be expected to play a part in 
these diseases. Research has shown that the 
activator (IL-25, IL-33) and effector (IL-5, 
IL-13) cytokines of type 2 ILCs are involved in 
allergic diseases. 

 IL-25 and IL-33 expression correlates with 
allergic airway diseases  [  118,   151  ] , and IL-33 
has been identi fi ed as an asthma-related gene 
based on a genome-wide study  [  152  ] . In asth-
matic lung tissue, increased production of IL-25 
and IL-33 bring about the same physiological 
changes in the lungs as during a helminth infec-

tion, such as a rapid type 2 response, increased 
production of IL-5 and IL-13,    and increased 
mucus production, eosinophilia, and airway 
hyperreactivity  [  118,   151  ] . Blocking either IL-25 
or IL-33 signaling in the airways can reduce 
eosinophilia and in fl ammation in an ovalbumin 
(OVA)-driven model of allergic airway disease 
 [  43,   151  ] . Overexpression or ablation of IL-13 
within the lungs has underlined its role in induc-
ing asthma-like phenotypes, such as nonspeci fi c 
airway hyperreactivity and mucus hyperproduc-
tion  [  153,   154  ] . As mentioned above, IL-13 also 
contributes to tissue remodeling and  fi brosis, 
and thus may contribute to  fi brosis in diseases 
dominated by a type 2 immune response  [  155  ] . 
IL-5 promotes eosinophil in fi ltration into the 
lungs  [  156,   157  ] . 

 Recently, multiple teams have identi fi ed type 
2 ILCs in the lungs and their role in airway allergy 
has been investigated  [  37–  44,   137  ] . They have 
shown that when challenged with IL-25, IL-33, 
papain, allergens ( Alternaria alternata , OVA, 
house dust mite, glycolipid antigen), parasites, or 
viruses, type 2 ILCs proliferated and were acti-
vated to produce a rapid type 2 response charac-
terized by increased production of IL-5 and 
IL-13, increased mucus production, eosinophilia, 
and airway hyperreactivity, reminiscent of the 
response during an allergic asthma. 

 When mice were treated with OVA (as per an 
OVA-induced asthma model), IL-25, or IL-33, 
nuocytes were induced in the lung tissue and 
bronchoalveolar lavage (BAL). These nuocytes 
represent a major source of IL-13 in the lung, 
explaining why IL-13 from T cells is partially 
dispensable for the allergic in fl ammation dur-
ing an airway hyperreactivity response. 
Adoptive transfer of nuocytes into IL-13-
de fi cient mice (which do not respond to IL-25 
treatment) restores both AHR and eosinophilia, 
indicating that nuocytes have the capacity to 
upregulate asthma even in the absence of T cell-
derived IL-13. However, in fi ltration of neutro-
phils into the lung during challenge with IL-25 
was not restored, indicating that other cells and 
cytokines are responsible for other aspects of 
the allergic response  [  41  ] . Kim et al. also 
showed the importance of type 2 ILCs in 
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response to glycolipid antigens  [  40  ] . Halim 
et al. corroborated these earlier studies using 
the adoptive transfer of type 2 ILCs into Rag2 
and  g c double knockout mice, which restored 
the allergic phenotype  [  44  ] . Respiratory infec-
tions with rhinovirus or respiratory syncytial 
virus are known to promote type 2 responses, 
and exacerbate allergic asthma. Chang et al. 
demonstrated that in fl uenza virus-induced 
asthma is not mediated by adaptive immunity, 
but by IL-33-dependent type 2 ILCs  [  39  ] . 

 Signi fi cantly, Mjösberg et al. demonstrated 
that human type 2 ILCs are enriched in chroni-
cally in fl amed airway tissues, such as the nasal 
polyps of patients suffering from chronic rhinosi-
nusitis. These patients exhibited higher levels of 
IL-5 and IL-13 transcripts within the polyp tis-
sue, which in turn contributes to eosinophil 
enrichment within the nasal polyps  [  36  ] . This 
may be attributable to the increased human type 2 
ILC population. 

 The allergic response is not limited to only 
the lungs. As Camelo et al. demonstrate, activa-
tion of type 2 ILC leads to an overexpression of 
IL-13 in the gut, which then leads to chronic 
in fl ammation and ulcerative colitis  [  158  ] . It is 
also possible that type 2 ILCs represent a potent 
source of IL-13 in patients suffering from chronic 
asthma, which may contribute to the remodeling 
of lung tissue and lung  fi brosis  [  159  ] .   

    2.5   Conclusion 

 As we begin to understand the complexities of 
these newly identi fi ed ILC populations, it is 
apparent that the innate lymphoid cell com-
partment plays an important role for the host. 
It drives lymphoid tissue development, main-
tains tissue and barrier homeostasis, provides a 
rapid protective response against infectious 
agents, and promotes wound healing. In this 
way, they precede and also support the adap-
tive immune response. 

 Dysregulation of ILCs is also associated with 
disease. Ror g t-dependent cells are involved with 
colitis and IBD, while type 2 ILCs are associated 
with allergy in the gut and lungs. As we learn 

more about the innate lymphoid cells, they may 
come to represent viable therapeutic targets to 
combat such diseases.      
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