
297A.S. Kauffman and J.T. Smith (eds.), Kisspeptin Signaling in Reproductive Biology, 
Advances in Experimental Medicine and Biology 784, DOI 10.1007/978-1-4614-6199-9_14, 
© Springer Science+Business Media, LLC 2013

    Abstract     The reproductive neuropeptide gonadotropin-releasing hormone (GnRH) 
has two modes of secretion. Besides the surge mode, which induces ovulation in 
females, the pulse mode of GnRH release is essential to cause various reproductive 
events in both sexes, such as spermatogenesis, follicular development, and sex ste-
roid synthesis. Some environmental cues control gonadal activities through modu-
lating GnRH pulse frequency. Researchers have looked for the anatomical location 
of the mechanism generating GnRH pulses, the GnRH pulse generator, in the brain, 
because an artifi cial manipulation of GnRH pulse frequency is of therapeutic impor-
tance to stimulate or suppress gonadal activity. Discoveries of kisspeptin and, con-
sequently, KNDy (kisspeptin/neurokinin B/dynorphin) neurons in the hypothalamus 
have provided a clue to the possible location of the GnRH pulse generator. Our 
analyses of hypothalamic multiple-unit activity revealed that KNDy neurons located 
in the hypothalamic arcuate nucleus might play a central role in the generation of 
GnRH pulses in goats, and perhaps other mammalian species. This chapter further 
discusses the possible mechanisms for GnRH pulse generation.  
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        Introduction 

 There are two modes of gonadotropin-releasing hormone (GnRH) and luteinizing 
hormone (LH) secretion: one mode is the surge, necessary for ovulation in females, 
and the other is the pulse, required for the tonic support of reproductive function in 
both sexes. For example, GnRH pulses are needed to initiate the process of repro-
ductive cycles, such as estrous cycles, in females. Follicular development is stimu-
lated by the increase in frequency of GnRH/LH pulses, resulting in a surge-like 
secretion of estrogen from the mature follicles. The increased estrogen acts in the 
brain to cause the GnRH surge to induce ovulation in females. In contrast, males do 
not generate GnRH surges, and therefore only have the pulse mode of GnRH secre-
tion, to maintain testicular activities such as spermatogenesis and steroidogenesis. 
Therefore, manipulation of the activity of the GnRH pulse generator is of therapeu-
tic potential in both sexes, and the GnRH pulse generator is a good target for the 
development of drugs that might control fertility. This chapter focuses on the 
involvement of kisspeptin, and other related peptides, in the generation of GnRH 
pulses in mammals.  

    Discovery of Pulsatile LH Secretion 

 Pulsatile secretion of LH was fi rst described, in monkeys, in 1970 by Knobil [ 1 ]. 
This was only a few years after the establishment of a radioimmunoassay for LH in 
the blood [ 2 ]. Knobil had noticed that the concentration of LH in the blood fl uctu-
ated signifi cantly from assay to assay, or from time to time, in monkeys. He then 
utilized frequent blood collections in monkeys to determine the cause of these fl uc-
tuations. The resultant data exposed a beautiful series of plasma LH concentrations 
displaying repetitive abrupt increases in LH followed by an exponential decrease, 
the distinguishing feature of pulses [ 1 ]. 

 The discovery of LH pulses changed the concept of hormone actions, because 
gonadal activity was subsequently shown in rhesus macaques to be controlled by 
the “frequency” of LH pulses [ 3 – 5 ]. The greater the LH pulse frequency, the greater 
the resultant gonadal activity. Knobil’s experiments elegantly proved that gonadal 
activity is completely dependent on the pulse frequency of LH release. After the 
discovery of pulsatile LH secretion in monkeys, reproductive endocrinologists 
began to reveal the pulsatile nature of LH secretion in various other mammalian 
species, including rats [ 6 ], sheep [ 7 ], cows [ 8 ], pigs [ 9 ], and horses [ 10 ], although 
frequent blood sampling was sometimes diffi cult in some species under no anesthesia 
and freely moving conditions. These data reiterated the importance of LH pulse 
frequency for the regulation of gonadal activities. Consistent across species, more 
frequent LH pulses are found during the follicular phase, whereas the pulse frequency 
is lower during luteal phase [ 8 ,  11 ,  12 ]. In seasonal animals, such as sheep, LH 
pulses are more frequent during the breeding season and less frequent in the nonbreeding 
season [ 13 ]. Interestingly, the frequency of the pulse is negatively correlated with 
the size of the body [ 14 ].  
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    Discovery of Gonadotropin-Releasing Hormone 
Pulses and Surges 

 There is little doubt that the pulsatile nature of pituitary LH secretion is caused by 
the pulsatile release of GnRH from nerve terminals located in the median eminence, 
because GnRH is considered to be the single hypothalamic releasing factor stimu-
lating pituitary LH secretion. Initially, however, this was only a belief and not based 
on solid evidence. The pulsatile nature of GnRH secretion was fi rst seen in 1982 in 
a landmark study by Clarke and Cummins [ 15 ] and later examined in greater detail 
by Moenter et al. in the early 1990s. Both groups used a skillful technique of portal 
cannulation in sheep and very frequent portal blood collections (e.g., 30-s inter-
vals!) to demonstrate beautiful GnRH pulses, each of which corresponded to simul-
taneous LH pulses [ 16 ]. The width of GnRH pulses was found to be narrower than 
LH pulses, suggesting that the half-life of GnRH in the portal blood is much shorter 
than the half-life of LH in the peripheral circulation [ 16 ]. This pioneering work 
demonstrated the clear relationship between GnRH and LH secretion, and sup-
ported the earlier studies by Knobil’s group demonstrating that when pulses of 
GnRH were infused to monkeys bearing hypothalamic lesions and abolished pulsa-
tile LH secretion, LH secretion was restored in a pulsatile fashion, with each LH 
pulse corresponding beautifully to each experimental GnRH pulse [ 17 ]. Additionally, 
artifi cial pulsatile infusion of GnRH, with 1-h intervals, stimulated the ovary to 
produce complete menstrual cycles [ 3 ], whereas monkeys exposed to less frequent 
GnRH pulses showed no sign of ovarian activity [ 18 ]. 

 In addition to identifying GnRH pulses in their sheep portal samples, Moenter 
et al. also observed robust periodic GnRH surges [ 19 ]. The discovery of GnRH 
surges leads to a dramatic turnaround in the theory of the LH surge formation, 
because researchers had previously believed that a high frequency of LH pulses 
during the preovulatory period caused a surge. This model held that when the 
frequency of LH pulses was too high to be effectively cleared from the circulation, 
the blood LH concentration would not decline and would keep increasing (i.e., a 
surge) until pulse frequency eventually drops. However, this idea was rejected after 
the discovery that a huge amount of GnRH is released just prior to LH surges, and 
the GnRH surge release continues even after the end of LH surges [ 19 ]. Currently, 
researchers believe that the GnRH and LH surges are generated by a mechanism 
different from that generating GnRH/LH pulses.  

    Anatomical Location of the GnRH Pulse Generator 

 The anatomical location of the GnRH pulse-generating mechanism has always been 
a big puzzle for reproductive endocrinologists. The fi rst work describing the possi-
ble location of the center for pulsatile GnRH secretion was conducted by Halasz and 
Pupp [ 20 ], who utilized a micro “Halasz” knife in rats to isolate specifi c brain 
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regions from the rest of the brain. They found that isolating the mediobasal hypo-
thalamus (MBH), including the pituitary, abolishes ovulation but not follicular 
development [ 20 ]. This was confi rmed later by Blake and Sawyer [ 21 ], who demon-
strated that complete hypothalamic deafferentation spares LH pulses in ovariecto-
mized (OVX) rats. These experiments clearly showed that the brain center generating 
GnRH/LH pulses was located within the hypothalamic area isolated by the Halasz’s 
knife, namely, the MBH. According to this data, the GnRH pulse generator may not 
involve GnRH neurons themselves, because very few GnRH cell bodies are located 
in the MBH of most animal species (with the exception of primates, in which most 
of GnRH neurons are located in the area [ 22 ]). The MBH location of the GnRH 
pulse generator was also confi rmed by fetal MBH transplantation in rats that had 
brain lesions which abolished GnRH pulses [ 23 ]. A type of deafferentation called 
   posterior-anterior deafferentation (PAD), which cuts the anterior part of the arcuate 
nucleus (ARC) off, abolished pulsatile LH secretion in rats, but the pulse was 
restored with transplantation of fetal MBH tissues (but not fetal cortical tissues). 
These fi ndings indicate the presence of a GnRH pulse-generating mechanism in the 
MBH region. 

 On the other hand, evidence also suggests that GnRH neurons themselves are 
equipped with an intrinsic GnRH pulse-generating mechanism. This was fi rst dem-
onstrated in GT-1 cells, which are immortalized by introducing T antigen to the 
mouse genome to induce GnRH-producing tumor cells. GT-1 cells show periodic 
excitation, resulting in pulsatile GnRH release into the culture medium [ 24 ]. 
Further evidence came from primary cultures of rhesus monkey GnRH neurons 
taken from the fetal olfactory placode, the anatomical region where GnRH neurons 
originate and migrate from to the hypothalamus during development. The idea to 
obtain a pure population of GnRH neurons from the monkey fetus came from the 
laboratory of Terasawa and enabled the demonstration of pulsatile activation of 
GnRH neurons in vitro. These primary GnRH neurons displayed periodic increases 
in intracellular calcium concentrations [ 25 ]. Terasawa’s group also found that the 
periodic increases in intracellular calcium levels in cultured GnRH neurons are 
synchronized with each other [ 26 ]. The authors considered that these calcium 
increases cause GnRH pulses. 

 It is evident that GnRH is released in fi xed intervals from GnRH neuronal termi-
nals. The synchronized release of GnRH from each nerve terminal appears to require 
coordinated activation of GnRH neurons from neuronal afferents. There are three 
mechanistic possibilities for synchronizing GnRH neuronal output. First, GnRH cell 
bodies make contacts with each other, as evidenced by reports of morphological 
contacts between GnRH neuronal processes [ 27 ]. However,  somatosomatic or den-
drodendritic contacts between GnRH neurons are quite rare in the POA of rats [ 27 ]. 
Second, the synchronization of GnRH releases from each nerve terminal might be 
achieved by contact between multiple GnRH terminals in the median eminence, 
because the median eminence is one of the sites where there is a convergence of 
various bioactive substances acting to regulate the release GnRH [ 28 ]. There might 
be the third possibility that GnRH cells may all be synchronized by an upstream 
“clock” that affects all GnRH cells at the same time, resulting in simultaneous 
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GnRH output from the various GnRH cells. However, there is no experimental 
evidence yet to support the last possibility. 

 The discovery of kisspeptin might help to settle the controversy over the loca-
tion of the GnRH pulse generator and synchronization of GnRH release. However, 
there are still diffi culties we must overcome in order to unravel the mechanism of 
GnRH pulse generation. In the rest of this chapter, we will discuss the possibility 
that kisspeptin neurons play a major role in generating GnRH pulses in multiple 
mammalian species.  

    MUA Recording of the GnRH Pulse Generator Activity 
at Close Vicinity of Kisspeptin Neurons in the Arcuate Nucleus 

 The Knobil laboratory was the fi rst to identify changes in the multiple-unit activity 
(MUA) corresponding to changes in LH pulses [ 29 ]. By recording electrical activity 
in the MBH, the neural activity of the putative GnRH pulse generator was success-
fully represented as periodic bursts of MUA (termed MUA volleys) in monkeys 
[ 29 – 35 ], rats [ 36 – 40 ], and goats [ 41 – 46 ]. Those studies unambiguously demon-
strated that the pulsatile discharge of GnRH into the portal vessels is governed by 
neural substrates in the MBH that fi re a high-frequency volley of action potentials. 
However, none of the aforementioned studies successfully identifi ed a specifi c neu-
ronal population within the MBH that was responsible for the generation of the 
MUA volley. 

 The MUA volley was observed in the MBH in all animals, regardless of the differ-
ence in the distribution of GnRH neurons between species; GnRH cells are relatively 
abundant in the MBH of monkeys [ 47 ,  48 ], moderately so in goats [ 49 ], and few, if 
any, in rats [ 50 ,  51 ]. Moreover, during the LH surge, when the activity of GnRH neu-
rons was extremely enhanced, the basal MUA activity did not change and the MUA 
volley frequency decreased rather than increased [ 30 ,  31 ,  42 ,  44 ]. These fi ndings 
strongly suggest that the MUA volley originates outside of the GnRH neuronal net-
work. It was proposed that the observed bursts of MUA in the MBH might refl ect the 
pulsatile activation of GnRH fi bers as they traverse en passant to the ME; in this case, 
the GnRH pulse would be triggered by another unidentifi ed group of oscillators. 
Thus, the neural substrate of the GnRH pulse generator was still to be determined. 

 When MUA is measured in goats through an electrode targeted to the posterior 
ARC (which is part of the MBH), in which a number of kisspeptin neurons are con-
centrated (Fig.  14.1a ), rhythmic MUA volleys are found at regular intervals and are 
temporally associated with LH pulses (Fig.  14.1b ) in both gonadectomized males [ 52 ] 
and females [ 53 ]. Furthermore, treatment of OVX goats with estradiol (E2) increases 
the intervolley interval (i.e., decreases the MUA frequency), while the duration of 
the volley is decreased (Fig.  14.2a–c ). The frequency of the MUA volley in goats is 
also profoundly decreased by progesterone (P) (Fig.  14.2d ) [ 53 ]. These results are 
likely to refl ect the negative feedback actions of gonadal sex steroids. Because these 
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results are consistent with those previously demonstrated [ 30 ,  35 ,  42 ], it is reason-
able to conclude that the MUA volley observed at close vicinity of ARC kisspeptin 
neurons represents the GnRH pulse generator activity. These results lead us to pro-
pose a compelling idea that the population of ARC kisspeptin neurons is the intrin-
sic source of the GnRH pulse generator [ 53 – 55 ]. However, the argument remains 
circumstantial at this moment. Because the MUA is the summation of the electrical 
activity of multiple neurons around the electrode, it is still possible that the MUA 
volley originates from a population of anonymous non-kisspeptin neurons residing 
in the same vicinity as kisspeptin neurons.

        Anatomical Aspects of ARC Kisspeptin Neurons in Relation 
to the GnRH Pulse Generator 

 In theory, the GnRH pulse generator should possess several neural characteristics to 
perform its tasks, including the generation of rhythmic oscillations, electrophysio-
logical synchronization, transmission of the signal of rhythmic oscillation to GnRH 
neurons, elicitation of a pulsatile GnRH discharge, and processing of the negative 
feedback action of gonadal steroids. It appears that the functional and anatomical 
characteristics of ARC kisspeptin neurons meet these requirements. 

  Fig. 14.1    MUA recording at close vicinity of kisspeptin neurons in the ARC. ( a ) A photomicro-
graph showing the placement of MUA recording electrode in a section immunostained for kiss-
peptin.  Arrowheads  indicate the area where a trace of a bundle of electrodes is observed.  ARC  
arcuate nucleus;  3V  third ventricle. Scale bar: 1 mm. ( b ) Representative profi les of the MUA and 
plasma LH concentrations in an OVX goat. Panel ( b ) was modifi ed from Wakabayashi Y, et al. 
Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in genera-
tion of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone 
secretion in the goat. J Neurosci. 2010 Feb 24;30(8):3124–32. With permission from  Journal of 
Neuroscience        
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 Using the ovine model, Goodman et al. [ 56 ] were the fi rst to document that 
 kisspeptin neurons in the ARC co-express neurokinin B (NKB) and dynorphin 
A (Dyn). Since then, the colocalization of kisspeptin with either NKB or Dyn—or 
both—in ARC neurons was identifi ed in a variety of mammals, including mice 
[ 57 ,  58 ], rats [ 59 ], goats [ 53 ], monkeys [ 60 ], and humans [ 61 ]. Therefore, concomitant 
expression of these three peptides in single ARC neurons appears to be a common 
feature across mammalian species. Those neurons, therefore, have been referred to 
as KNDy (   kisspeptin/ N KB/ Dy n) neurons [ 62 ]. 

  Fig. 14.2    Effects of ovarian steroids on the MUA and LH secretion. ( a ) Representative profi les of 
the MUA and plasma LH concentrations in an OVX goat. ( b ) Representative profi les of the MUA 
and plasma LH concentrations in an E2-treated OVX goat. ( c ) Changes in the intervolley interval 
( blank circle ) and volley duration ( solid square ) of the MUA volley after the E2 treatment. Data 
were collected for 6 h (12:00–18:00) in each day, and values are expressed as mean ± SEM in three 
goats. ** p  < 0.01 compared with those on Day 0. ( d ) Representative profi les of the MUA and 
plasma LH concentrations in an E2 plus P-treated OVX goat. Note that the MUA volley is invari-
ably accompanied by an LH pulse, regardless of the steroidal milieu. Panel ( d ) was reproduced 
from Wakabayashi Y, et al. Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate 
nucleus participate in generation of periodic oscillation of neural activity driving pulsatile 
gonadotropin- releasing hormone secretion in the goat. J Neurosci. 2010 Feb 24;30(8):3124–32. 
With permission from  Journal of Neuroscience        
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 Anatomical evidence indicates that KNDy neurons comprise a neuronal network 
interconnected by axon (and/or dendritic) collaterals. For example, in the rodent [ 63 ] 
and ovine [ 63 ] ARC, NKB/Dyn neurons receive close appositions from fi bers contain-
ing NKB/Dyn. Dyn neurons in the ARC form synaptic contacts with Dyn fi bers [ 64 ]. 
It is therefore not surprising that kisspeptin/NKB and kisspeptin/Dyn neurons are sur-
rounded by their own dense network of fi bers [ 53 ]. Moreover, an anterograde tracer 
study in rats revealed that NKB neurons in the ARC are bilaterally interconnected by 
NKB axons [ 65 ]. Importantly, NKB neurons in the ARC contain NKB receptors 
(NK3R) [ 63 ,  66 ] and ARC  Kiss1  neurons express both NK3R and KOR [ 57 ]. These 
reports suggest that NKB/NK3R and Dyn/KOR signaling pathways might play a role 
in an auto-feedback loop (or paracrine feedback loop) of KNDy neurons [ 55 ,  57 ,  62 , 
 67 ,  68 ]. However, it should be noted that one study recently reported that KNDy neu-
rons in the male mouse do not to express KOR [ 58 ], which is inconsistent with this 
group’s earlier report. Other KOR- expressing interneurons mediating Dyn’s action 
might be involved in the auto- feedback loop of KNDy neurons in the ARC. 

 NKB/NK3R signaling is thought to play a role in stimulating neuronal activity 
[ 69 ], whereas Dyn/KOR (Dyn receptor) signaling is considered to participate in 
suppressing neuronal activity [ 70 ,  71 ]. By possessing these two opposing signaling 
mechanisms and forming an anatomical network structure, the population of ARC 
KNDy neurons seems to possess the required framework for a role as a GnRH pulse 
generator. For example, reciprocal interactions between NKB/NK3R and Dyn/KOR 
(or other inhibitory signaling mediating the Dyn action) signaling would make it 
possible to generate pseudo-pacemaking activities, providing the oscillatory drive 
of the GnRH pulse generator. The neural network would be suitable for electro-
physiological synchronization of individual neurons. 

 Kisspeptin fi bers make extensive associations with GnRH axons in the ME [ 72 –
 75 ], and kisspeptin could therefore act as the output of the pulse generator to infl u-
ence GnRH neurons. Electron microscopy has revealed that kisspeptin axon 
terminals are in fact in close apposition to GnRH axon terminals [ 73 ,  74 ]. 
Considering the fact that NKB is contained in KNDy neurons, but not in POA 
kisspeptin neurons (Fig.  14.3a–c ), and that a majority of those kisspeptin fi bers in 
the ME also contain NKB (Fig.  14.3d–f ) [ 73 ,  75 ,  76 ], it is likely that KNDy neurons 
send, although not exclusively, dense projections to the ME [ 62 ,  68 ] and interact 
with Kiss1r on GnRH axon terminals. However, the presence of Kiss1r protein on 
GnRH axon fi bers has yet to be demonstrated since there is currently not a good 
Kiss1r antibody.

   It is thought that the GnRH pulse generator is responsive to the negative  feedback 
actions of gonadal steroids [ 77 ]. Although there are several populations of neurons 
that contain sex steroid receptors in the hypothalamus, such as GABA [ 78 ], neuro-
peptide Y [ 79 ], substance P [ 80 ], somatostatin [ 81 ], beta-endorphin [ 82 ], or dopa-
mine [ 82 ] neurons, KNDy neurons are conspicuous in that virtually all of them 
express both estrogen receptor alpha [ 63 ,  83 – 86 ] and progesterone receptor [ 64 ,  87 ] 
in the female or androgen receptors in the male [ 88 ]. This anatomical property fur-
ther supports the possibility that the KNDy neurons may comprise for the GnRH 
pulse generator.  
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    Roles of NKB/NK3R, Dyn/KOR, and Kisspeptin/Kiss1r 
Signaling Pathways in the GnRH Pulse Generation 

    NKB/NK3R Signaling 

 The involvement of NKB in the control of GnRH/LH secretion was initially 
proposed based on morphological changes in NKB neurons in the ARC (the 
infundibular nucleus in primates) of postmenopausal women and experimental 
animals [ 67 ,  83 ]. The proposition is strongly supported by the fi nding that muta-
tions in either Tac3 or Tacr3 (which encode NKB and NK3R, respectively) cause 
severe gonadotropin defi ciency in humans [ 89 ,  90 ] and that Tacr3 null mice 
show reduced gonadal activities, although they are not completely infertile [ 91 ]. 
Those studies predicted the stimulatory action of NKB on GnRH/LH secretion, 
but initial reports provided a controversial view indicating that senktide (a selec-
tive NK3R agonist) decreased LH secretion in rats [ 92 ] and mice [ 57 ]. 

  Fig. 14.3    Dual labeling of kisspeptin and NKB in the E2-treated OVX goat. Photomicrographs of 
sections of the POA ( a – c ) or ME ( d – f ) immunostained for kisspeptin ( a  and  d ) and NKB ( b  and  e ). 
( c ,  f ) are computer-aided merged images of ( a ) and ( b ), or ( d ) and ( e ), respectively. The  arrows  in 
( a ) and ( c ) indicate cell bodies containing exclusively kisspeptin immunoreactivity. The  green ,  red , 
and  yellow arrowheads  show kisspeptin, NKB, and kisspeptin/NKB positive fi bers. Note that a 
majority of kisspeptin positive fi bers contain NKB immunoreactivity ( f ) at the ME.  MEe  the external 
layer of the ME;  pt  pars tuberalis. Scale bar: 50 µm       
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 Our electrophysiological studies clarifi ed the physiological role of NKB by 
examining effects of activation or blockade of the NKB/NK3R signaling pathway 
on the GnRH pulse generator activity in goats, using MUA recordings aimed at 
KNDy neurons. A bolus intracerebroventricular (icv) administration of NKB 
immediately induces multiple MUA volleys in the area where KNDy neurons 
reside, followed by a slight quiescent period before the resumption of spontane-
ous MUA volleys (Fig.  14.4a ) [ 53 ]. When senktide was peripherally infused, the 
intervolley interval of the MUA volley was decreased and was maintained at a 
relatively constant level throughout the infusion period (Fig.  14.4b ) [ 93 ]. On the 
other hand, the blockade of NKB/NK3R signaling by peripheral administration of 
an NK3R antagonist signifi cantly decreased the occurrence of MUA volleys 
(Wakabayashi et al., unpublished data). These results suggest that the role of 
NKB/NK3R signaling is to stimulate the pulse generator activity in the ARC 
region, which may in fact be the GnRH pulse generator. Because KNDy neurons 
contain NKB receptors [ 57 ,  58 ,  63 ,  66 ], and icv administration of senktide 

  Fig. 14.4    Effects of NK3R agonists on the MUA and LH secretion. ( a ) Representative profi les of 
the MUA and plasma LH concentrations in an OVX goat that received a bolus icv injection of 
NKB at an indicated time point. ( b ) Representative profi les of the MUA and plasma LH concentra-
tions in an E2-teated OVX goat received iv infusion of saline ( upper ) or senktide ( lower ) for 4 h. 
Note that the change in LH concentrations during the senktide infusion is an enhanced pulse fre-
quency (although some pulses are ambiguous) but not increase or decrease in overall concentra-
tions. Panel ( a ) was modifi ed from Wakabayashi Y, et al. Neurokinin B and dynorphin A in 
kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural 
activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J Neurosci. 2010 
Feb 24;30(8):3124–32. With permission from  Journal of Neuroscience        
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induces cFos in KNDy neurons [ 59 ,  94 ], it is likely that a population of KNDy 
neurons in the ARC is at least one of the sites of NKB’s stimulatory action. 
Indeed, recent electrophysiological studies using  Kiss1 - CreGFP  transgenic mice 
demonstrated that NKB elicits trains of action potentials in  Kiss1  neurons in the 
ARC via NK3R [ 58 ].

   MUA studies in goats also uncovered an important aspect in the pulse-generating 
mechanism. Since the activation of NK3R by either a bolus administration of NKB 
or continuous infusion of senktide resulted in intermittent MUA volleys, rather than 
a single sustained rise in the MUA, it is hypothesized that the stimulatory action of 
NKB/NK3R signaling on MUA fi ring is counteracted by some endogenous inhibi-
tory drive, which operates immediately after the induction of the MUA volley and 
gradually reduces its inhibitory tone thereafter.  

    Dyn/KOR Signaling 

 It has been shown that administration of naloxone, a nonselective opioid receptor 
antagonist, increases the frequency of LH pulses [ 94 ] and bursts of the GnRH pulse 
generator [ 34 ,  43 ]. Moreover, a series of elegant studies in sheep indicated that the 
inhibitory effect of P on pulsatile GnRH/LH secretion is mediated by endogenous 
opioid peptides, namely, Dyn [ 95 – 97 ]. In support of this, icv administration of Dyn 
in goats suppresses the occurrence of the MUA volleys in the ARC region, resulting 
in a marked increase in the intervolley interval after the treatment (Fig.  14.5a ). On 
the other hand, the blockade of Dyn/KOR signaling by icv administration of nor- 
binaltorphimine (nor-BNI, a selective KOR antagonist) reduced the intervolley 
interval and increased the volley duration (Fig.  14.5b, c ) [ 53 ], indicating that the 
GnRH pulse generator activity is under a tonic suppression by endogenous Dyn. 
In vasopressin neurons of the supraoptic nucleus, Dyn/KOR signaling has been 
suggested to participate in termination of the phasic fi ring and the release of vaso-
pressin by an autosynaptic loop [ 98 ,  99 ]. With an analogy to vasopressin neurons, it 
is proposed that Dyn/KOR signaling plays a role in extinguishing the bursts of 
KNDy neurons in the ARC and regulating the duration of nadir between each bout 
of bursts.

       Kisspeptin/Kiss1r Signaling 

 Peripheral injection of kisspeptin-10 [ 39 ,  54 ], or central administration of the full- 
length kisspeptin (Wakabayashi et al., unpublished data), which elicits a robust 
release of LH, has no effect on either amplitude or frequency of the MUA volley. In 
a preliminary experiment, we observed in goats that the blockade of kisspeptin/
Kiss1r signaling by a continuous activation of Kiss1r resulted in a complete sup-
pression of LH secretion and no detectable LH pulses in plasma, as demonstrated in 
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other species [ 100 – 102 ], whereas the occurrence of MUA volleys was unchanged 
[ 103 ]. Furthermore, the expression of Kiss1r was not detected in KNDy neurons 
[ 75 ,  104 ]. These results suggest that kisspeptin/Kiss1r signaling is not involved in 
the GnRH pulse-generating mechanism per se. However, fi bers surrounding KNDy 
neurons contain not only NKB and Dyn [ 53 ,  62 ,  63 ,  105 ] but also kisspeptin [ 54 ,  86 , 
 106 ]. Moreover, treatment with a kisspeptin antagonist into the ARC suppresses 
pulsatile LH secretion [ 107 ]. Therefore, the possibility that kisspeptin may have 
some functions in the control of GnRH/LH secretion by acting on other cells than 
KNDy neurons still cannot be ruled out. However, it is also likely that the kisspeptin 
antagonist treatment did not affect the GnRH pulse generator, but rather diffused to 
the median eminence where it was able to block kisspeptin stimulation of GnRH 
fi bers, resulting in suppressed LH secretion. 

  Fig. 14.5    Effects of KOR agonist or antagonist on the MUA and LH secretion in an OVX goat. 
( a ) Representative profi les of the MUA and plasma LH concentrations in an OVX goat that received 
a bolus icv injection of Dyn at the indicated time point. ( b ) Representative profi les of the MUA and 
plasma LH concentrations in the goat that received icv infusion of KOR antagonist (nor- BNI) for 
2 h. ( c ) Changes in the intervolley interval and volley duration before (Pre,  blank bar ) and during 
( solid bar ) the nor-BNI infusion periods. Values are expressed as mean ± SEM in four goats. 
** p  < 0.01, * p  < 0.05 compared with respective Pre values. Reproduced from Wakabayashi Y, et al. 
Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation 
of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion 
in the goat. J Neurosci. 2010 Feb 24;30(8):3124–32. With permission from  Journal of Neuroscience        
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 It is very likely that the primary role of kisspeptin/Kiss1r signaling in the GnRH 
pulse generation mechanism is to transmit volleys of action potentials from the 
pulse generator to GnRH neurons and regulate pulsatile GnRH secretion at the level 
of the ME. Several lines of evidence support this notion. First, in monkeys, kiss-
peptin is secreted into the ME episodically and is temporally associated with pulsa-
tile GnRH secretion [ 108 ]. Second, kisspeptin stimulates GnRH release from the 
ME in vivo [ 108 ] and in vitro [ 74 ,  75 ,  109 ], potentially acting via Kiss1r [ 109 ]. 
Third, administration of a kisspeptin antagonist directly into the ME suppresses 
pulsatile GnRH release [ 110 ].  

    Interaction of NKB and Kisspeptin Signaling 

 Human genetic studies [ 89 ,  90 ,  111 ,  112 ] indicate that kisspeptin and NKB signaling 
play pivotal roles in the control of reproduction by facilitating GnRH secretion. 
In concert, it has been demonstrated in a variety of species that activation of Kiss1r 
[ 113 ] or NK3R [ 58 – 60 ,  114 – 117 ] increases LH secretion. Moreover, it has been 
shown that administration of antagonists for either Kiss1r [ 75 ,  110 ] or NKB recep-
tor [ 60 ,  118 ] suppresses LH secretion. Their similar physiological characteristics 
and concomitant existence in KNDy neurons suggest an intimate association 
between kisspeptin and NKB signaling. 

 Recently it has been demonstrated that the blockade of kisspeptin/Kiss1r signaling 
by Kiss1r desensitization [ 115 ] or in Kiss1r KO mice [ 116 ] abrogates the stimulatory 
action of senktide on LH secretion, whereas the block of NKB/NK3R signaling 
by NK3R desensitization does not affect the ability of kisspeptin to stimulate LH 
secretion [ 115 ]. We have observed in goats that the blockade of kisspeptin/Kiss1r 
signaling completely eliminates LH pulses without affecting the MUA volley [ 103 ], 
whereas the occurrences of the MUA volley and LH pulses are concomitantly post-
poned after the injection of NK3R antagonist (Wakabayashi et al., unpublished data). 
Furthermore, GnRH neurons possess Kiss1r [ 75 ,  104 ,  119 ] but not NK3R [ 58 ,  66 ], 
but see Krajewski et al. [ 120 ], and NK3R agonists have no effect on electrophysio-
logical activities of GnRH neurons in vitro [ 58 ]. Thus, it is plausible to conclude that 
NKB/NK3R signaling is upstream from kisspeptin/Kiss1r signaling, and that the 
activation of NK3R stimulates, via kisspeptin/Kiss1r signaling, a discharge of GnRH, 
and thus LH [ 59 ,  115 – 117 ]. 

 We reported that icv administration of NKB induced a distinct MUA volley, with 
an accompanying LH pulse, in P-treated OVX goats, whereas the association of the 
MUA volley and LH pulse was ambiguous in some instances in OVX and E2-treated 
OVX goats, and overall LH secretion was reduced by a high dose (but not a low 
dose) of NKB [ 52 ]. However, with the latter, the initial event after NKB treatment 
was a discharge of LH, which was followed by a gradual decline of basal LH levels 
(Fig.  14.4a ). In those animals with reduced LH secretion, several MUA volleys that 
had an extraordinarily shorter intervolley interval were induced, and there was a 
slight pause before the normal spontaneous MUA volley were reestablished. 
We assume that this pause resulted in an extended decline of basal LH levels, leading 
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to an apparent reduction in LH secretion. Excessive activation of NK3R might there-
fore cause dysfunction among the NKB/Dyn-kisspeptin-GnRH-LH cascade, such as 
a hyperenhancement of the Dyn/KOR signaling tone, before the resumption of nor-
mal bursting activities of KNDy neurons. This may, at least in part, be responsible 
for the inconsistent results of LH responses to pharmacological NK3R agonist treat-
ments [ 40 ,  53 ,  57 ,  92 ].   

    Electrophysiological Properties of the GnRH Pulse Generator 

 Knobil and colleagues uncovered the single unit components of the MUA underly-
ing the operation of the GnRH pulse generator by cluster analysis in monkeys [ 33 ]. 
The results indicated that the MUA volley is the consequence of coincidental 
increases in the fi ring rate of individual cells that are active even during the intervals 
between volleys, rather than the activation of previously silent cells. Thus, neurons 
consisting of the GnRH pulse generator appear to have electrophysiological proper-
ties for both spontaneous and burst activities. In this context, it is of great interest 
that recent fi ndings in Kiss1-CreGFP mice [ 121 ] and genetically intact guinea pigs 
[ 122 ] show that ARC kisspeptin neurons do possess such electrophysiological prop-
erties. Levine [ 123 ,  124 ] has proposed in his model of the GnRH pulse-generating 
mechanism that the random activity of any neurons within an interconnected net-
work would initiate the process of the pulse-generating activity. It is conceivable 
that spontaneous activity in ARC kisspeptin neurons plays a role to generate such 
random activity, though this requires further investigation.  

    A Putative Mechanism of the GnRH Pulse Generation 

 Taken all together, we propose, although highly speculative, the following working 
hypothesis for the mechanism of GnRH pulse generation [ 55 ]:

    1.    KNDy neurons in the ARC send projections to GnRH terminals in the ME, while 
their collaterals and/or dendrites form a bilateral neural network connecting each 
other (Fig.  14.6a ).

Fig. 14.6 (continued) inhibits the bursting activities. Progesterone enhances the inhibitory tone of 
Dyn/KOR signaling, which acts to reduce the frequency of the periodic burst. Estrogen attenuates 
the stimulatory tone of NKB/N3R signaling and the excitability of KNDy neurons, which act to 
shorten the duration of each burst and to reduce the frequency of the periodic burst, respectively. 
( c ) A sustained activation of KNDy neurons by continuous administration of NK3R agonist results 
in an apparent rise in the random activity, leading to an increase in the frequency of the burst. ( d ) 
A sustained attenuation of KOR signaling by continuous administration of KOR antagonist also 
produces an increase in the frequency of the burst. See text for details       
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  Fig. 14.6    A speculative hypothesis for the role of KNDy neurons in the generation of pulsatile 
GnRH release. ( a ) A population of KNDy neurons forms a neural network connected by their axon 
collaterals (and/or dendrites). Through the reciprocal actions of NKB/NK3R and Dyn/KOR sig-
naling in the KNDy neuron network, episodic bursts are periodically generated, each of which, in 
turn, induces pulsatile discharge of kisspeptin at the ME and hence, pulsatile GnRH release into 
the portal circulation. ( b ) It is assumed that three components are involved in the generation of the 
burst: the random activity of any neuron within the network that initiates the burst, NKB/NK3r 
signaling that evokes synchronized bursting activities in the network, and Dyn/KOR signaling that 
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       2.    The random activity of any neuron within the KNDy neuron network would 
propagate among other neurons in the network through NKB/NK3 signaling to 
evoke synchronized bursting activities (volleys of action potentials) among 
KNDy neurons, which may function as a kind of positive feedback mechanism.   

   3.    At the same time, Dyn would also be released by bursting activities in KNDy 
neurons, and Dyn/KOR signaling is considered to act, with a slight time lag 
(perhaps caused by differences of secretory mechanism or cellular signal trans-
duction processes between NKB/NK3R and Dyn/KOR signaling), to extinguish 
these bursts, resulting in the net activity of the KNDy neuronal network to be an 
episodic oscillation (Fig.  14.6b ).   

   4.    It is suggested that Dyn/KOR signaling then imposes a prolonged quiescence, or 
a refractory period, which lasts until the drive of Dyn/KOR signaling diminishes 
enough to allow the propagation of random activities again.   

   5.    The reciprocal interaction between the stimulatory tone of NKB/NK3R signal-
ing and the inhibitory tone of Dyn/KOR signaling would generate intermittent 
oscillations, providing a pseudo-pacemaking activity in the KNDy neuron net-
work (Fig.  14.6b ).   

   6.    Each oscillation would induce a pulse of kisspeptin release at the ME, which in 
turn would trigger a discharge of GnRH through kisspeptin/Kiss1r signaling, 
producing a pulsatile mode of GnRH secretion into the portal circulation 
(Fig.  14.6a ).    

  This hypothesis is in accord with that of other research laboratories who have 
established the KNDy cell model [ 57 ,  62 ,  68 ] as well as the model proposed by 
Levine [ 123 ,  124 ] before the discovery of kisspeptin.  

    Implications Based on the Hypothesis 

    The Source of the MUA Volley (GnRH Pulse Generator Activity) 

 The MUA volleys, which represent electrophysiological manifestations of the 
GnRH pulse generator, can be monitored at the posterior ARC (Fig.  14.1 ). Although 
there are several neuronal populations, such as NPY [ 46 ], dopamine [ 82 ], substance 
P [ 80 ], as well as other yet to be determined neurons in the ARC, the population of 
KNDy neurons might be the only one that is fully equipped with the prerequisite 
neural mechanisms to act as the GnRH pulse generator, i.e., generating rhythmic 
oscillation, synchronizing activities within the population, and transmitting the 
rhythmic activity to GnRH neurons. Moreover, the negative feedback action of E2 
on LH secretion, which is mediated by the GnRH pulse generator [ 77 ], is com-
pletely diminished by a pharmacological ablation of KNDy neurons [ 125 ]. Thus, it 
is plausible that the population of KNDy neurons is the intrinsic source of the MUA 
volley observed at the posterior ARC in goats [ 53 ,  54 ] as well as in the MBH of 
monkeys [ 29 – 35 ], rats [ 36 – 40 ], and goats [ 41 – 46 ].  

H. Okamura et al.



313

    Putative Mechanisms Underlying the Negative Feedback Actions 
of Steroid Hormones 

 Mechanisms of the negative feedback action of gonadal steroids can be, at least in 
part, explained by the schema shown in Fig.  14.6b . Progesterone is a potent inhibi-
tor of pulsatile GnRH secretion in many species. KNDy neurons contain Dyn and 
receptors for P [ 64 ,  87 ], and P increases the expression of Dyn [ 97 ]. Therefore, it is 
suggested that P enhances the inhibitory drive of Dyn/KOR signaling, leading to a 
reduction in the frequency of burst activities in KNDy neurons (Fig.  14.6b ). This 
speculation is in concert with the previous fi nding that blockade of Dyn/KOR sig-
naling reverses the inhibitory effect of P on pulsatile LH secretion in rats [ 126 ] and 
sheep [ 127 ]. It appears that Dyn/KOR signaling may play a critical role in determin-
ing the length of the refractory period after the burst in KNDy neurons. 

 One aspect of E2 negative feedback is a decrease in the amplitude (amount) of 
LH secretion. The expression of not only NKB [ 57 ,  128 ,  129 ] but also NK3R [ 57 ], 
in the ARC, is decreased by E2, suggesting that E2 acts to attenuate the stimulatory 
drive of NKB/NK3 signaling. Figure  14.6b  indicates that such E2 action would lead 
to “thinning” of the burst of KNDy neurons, which might be refl ected as a marked 
decrease in the duration of the MUA volley after E2 treatment (Fig.  14.2c ). Given 
that the release of kisspeptin to GnRH neuronal projections in the ME is mainly 
under the control of the burst activity of KNDy neurons (Fig.  14.6a ), the shortening 
of the burst of KNDy neurons by E2 would result in a decline in the amount of 
GnRH released during each pulse. This may represent one aspect of the negative 
feedback action of E2. Moreover, it has been indicated in many species that E2 also 
reduces the expression of kisspeptin in the ARC [ 85 ,  87 ,  106 ,  130 ], which may also 
contribute to the decreased amount of GnRH released per pulse. 

 The other aspect of the E2 action is its negative effect on the frequency of GnRH/
LH pulses. It has been shown that E2 also reduces the frequency of the MUA volley 
and LH pulses in several species, including rats [ 38 ], monkeys [ 30 ], and goats 
(Fig.  14.2  [ 42 ,  44 ,  53 ]), although this action of E2 seems less conspicuous in sheep 
[ 131 ,  132 ]. Because the inhibitory effect of E2 is much smaller than P (Fig.  14.2 ), it 
seems unlikely that Dyn/KOR signaling mediates the E2 action. Instead, other 
mechanisms may also be involved in the negative feedback action of E2. One 
 possible mechanism is the alteration of neuronal excitability. It is possible that E2 
reduces the excitability of KNDy neurons through modifying electrophysiological 
properties of the cell membrane, as shown in mouse GnRH neurons [ 133 ], leading 
to the attenuation of spontaneous activity of individual neurons. This would 
decrease, in a stochastic manner, the occurrence of the random activity that initiates 
the bursting process in the KNDy neuron. Although highly speculative, it is sug-
gested that neuronal mechanisms involving E2 actions in KNDy neurons, such as 
the excitability for example, are associated with the pathway of the control of GnRH 
secretion by nutrition, because the inhibitory infl uence of several nutritional stress-
ors on the GnRH pulse generator is more conspicuous in the presence of E2 than its 
absence [ 32 ,  46 ,  134 ,  135 ].  
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    Putative Mechanism for the Action of Pheromones 
on the GnRH Pulse Generator 

 In goats and sheep, exposure of seasonally anestrous females to the male phero-
mone results in an out-of-seasonal ovulation [ 136 ,  137 ]. Because the initial endo-
crine event following the reception of the pheromone is the stimulation of pulsatile 
GnRH/LH secretion, it is suggested that the central target of the pheromone signal 
is the GnRH pulse generator [ 45 ]. We examined whether the KNDy neuronal net-
work was involved in the pheromone action in OVX goats using MUA recording 
with the electrode aimed at KNDy neurons. Exposure to the male pheromone, 
between two successive MUA volleys, immediately induced an MUA volley and an 
accompanying LH pulse [ 138 ]. This pheromone effect on the MUA volley and LH 
secretion was abrogated by the treatment with an NK3R antagonist (Sakamoto 
et al., unpublished data). Further, the pheromone evoked the MUA volley but not 
LH pulses when kisspeptin/KOR signaling was blocked (Sakamoto et al., unpub-
lished data). Therefore, it seems conceivable that the action of the male pheromone 
is indeed mediated by the KNDy neuronal network [ 139 ]. Interestingly, the effect 
of the pheromone was time dependent, i.e., the pheromone was not able to induce 
the MUA volley immediately after the preceding MUA volley, and the ability of 
the pheromone in inducing the MUA volley increased towards the occurrence of the 
next MUA volley [ 138 ]. This suggests that pheromone action may be counteracted 
by the inhibitory tone of Dyn/KOR signaling, which we propose would gradually 
decrease from the maximum to the basal level during the refractory period 
(Fig.  14.6b ). These pheromone studies also reveal a note of caution that should be 
taken into account when observing the GnRH/LH response to an experimental 
stimulation of KNDy neurons. If a stimulus acts at the level of Kiss1r (e.g., kiss-
peptin), one would be able to expect a consistent result. However, if the stimulus 
acts at the levels of NK3R (e.g., senktide), it is possible that the GnRH/LH response 
to the treatment is variable depending on the timing of the treatment between two 
spontaneously occurring bursts of KNDy neurons.   

    Perspective on the Application 

 GnRH neurons are charged with the role of maintaining the ever-present basal levels 
of circulating gonadotropins for the normal functioning of the gonads. Because con-
tinuous exposure of the gonadotrophs to GnRH results in the abolishment of gonad-
otropin secretion, a pulsatile mode of GnRH discharge is obligatory to produce 
sustained gonadotropin secretion [ 3 ]. In this context, it is of interest that continuous 
infusion of NKB (Fig.  14.4b ) or nor-BNI (Fig.  14.5b ) induced frequent MUA vol-
leys rather than a sustained raise in the MUA. Our hypothesis envisages that the 
frequency of periodic bursts in KNDy neurons can be increased by continuously 
raising the stimulatory tone of NKB/NK3R signaling by NK3R agonists (Fig.  14.6c ) 
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or reducing the inhibitory tone of Dyn/KOR signaling by KOR antagonists 
(Fig.  14.6d ). The preliminary result detailed in this chapter (Fig.  14.2b ) partially 
supports this proposition. There are several occasions in which insuffi cient LH 
pulse frequency causes reproductive disorders, such as women with anorexia ner-
vosa [ 138 ], exercise amenorrhea [ 140 ], or hyperprolactinemia [ 141 ]. Our proposed 
model implies that NKB agonists and KOR antagonists may hold promise as novel 
therapeutic drugs to accelerate or improve gonadal activities via their ability to 
enhance the GnRH pulse generator activity.      
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