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    Abstract     Since the discovery of the G-protein coupled receptor 54 (kisspeptin 
receptor) and its ligand, kisspeptin, our understanding of the neurobiological mecha-
nisms that govern the pituitary-gonadal axis has evolved dramatically. In this chapter, 
we have reviewed progress regarding the relationship between kisspeptin and puberty, 
and have proposed a novel hypothesis for the role of kisspeptin signaling in the onset 
of this crucial developmental event. According to this hypothesis, although kiss-
peptin neurons in the arcuate nucleus (ARC) are critical for puberty, this is simply 
because these cells are an integral component of the hypothalamic GnRH pulse gen-
erating mechanism that drives intermittent release of the decapeptide, as an increase 
in GnRH is obligatory for the onset of puberty. In our model, ARC kisspeptin neurons 
play no “regulatory” role in controlling the timing of puberty. Rather, as a component 
of the neural network responsible for GnRH pulse generation, they subserve upstream 
regulatory mechanisms that are responsible for the timing of puberty.  

  Abbreviations 

   ARC    Arcuate nucleus   
  AVPV    Anteroventral periventricular nucleus   
  E 

2
     Estradiol   

  ERα    Estrogen receptor alpha   
  GABA    γ-Aminobutyric acid
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IPI Inter-pulse interval   
   KISS1     Kisspeptin gene (primates)   
   Kiss1     Kisspeptin gene (non-primates)   
  KISS1R    Kisspeptin-1 receptor (primates)   
  Kiss1r    Kisspeptin-1 receptor (non-primates)   
  KP    Kisspeptin   
  MBH    Medial basal hypothalamus   
  ME    Median eminence   
  S-ME    Stalk-median eminence   
  NPY    Neuropeptide Y   
  POA    Preoptic area   

          Introduction 

 The discovery, nearly a decade ago, that the G-protein coupled receptor, KISS1R 
(aka GPR54), and its ligand, kisspeptin, encoded by the genes  KISS1R  and  KISS1 , 
respectively, play a major role in regulating the hypothalamic-pituitary-gonadal axis 
has provided a new perspective on the mystery of puberty. As discussed in Chap.   9    , 
Seminara et al. [ 1 ] and de Roux et al. [ 2 ] fi rst described amino acid mutations of 
KISS1R in human patients with a delay in puberty onset or an abnormality in puber-
tal development. Subsequently, several reports also described mutations at different 
sites of the  KISS1R  gene in patients with either an absence of or a delay in puberty 
[ 3 – 7 ] or with precocious puberty [ 8 ]. Moreover, it has been reported that a geneti-
cally targeted deletion of either  Kiss1r  or  Kiss1  in mice results in hypogonadotropic 
hypogonadism, including delayed pubertal maturation [ 1 ,  9 – 11 ]. Most recently, 
impairment of pubertal progression in a human family with a mutation of  KISS1  
was described [ 12 ]. 

 Despite a plethora of reports on kisspeptin and its receptor in relation to puberty 
over the last 10 years, a critical evaluation of the role of kisspeptin signaling in the 
timing of puberty onset is missing. In this review, we will discuss (1) postnatal 
development of kisspeptin neurons and the kisspeptin receptor in relation to parallel 
changes in activity of the GnRH neuronal network, an increase in which is obliga-
tory for puberty onset, (2) recent fi ndings on development of kisspeptin signaling in 
the rhesus monkey, and (3) our conceptualization of the role played by kisspeptin 
signaling in the mechanism that controls the onset and progression of puberty.  

    Developmental Changes in GnRH Release 

 An increase in GnRH release from the hypothalamus triggers puberty. Pulsatile 
infusion of GnRH induces precocious puberty in sexually immature female and 
male monkeys and female guinea pigs [ 13 – 15 ] and increased pubertal release of 
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GnRH and/or gonadotropin has been described in many mammalian species, includ-
ing humans (see [ 16 – 20 ]). In males, an increase in pulsatile GnRH release at puberty 
activates tonic gonadotropin secretion that, in turn, results in the onset of elevated 
levels of testicular testosterone secretion, which in combination with FSH, initiates 
spermatogenesis. Tonic LH secretion is composed of intermittent secretory epi-
sodes of the hormone, which refl ect a corresponding pattern of pulsatile GnRH 
release by the hypothalamus [ 21 ]. In females, an increase in pulsatile GnRH release 
also drives tonic gonadotropin secretion, which is responsible for folliculogenesis 
and estradiol (E 

2
 ) secretion. Ovulation in most mammalian species, however, also 

requires development of the capacity to induce a large surge of GnRH in response 
to the positive feedback action of the rising circulating E 

2
  levels secreted by the 

follicle(s) destined to ovulate at mid cycle [ 22 ]. Currently, the mechanism for these 
two modes of GnRH release (pulsatile vs. surge) is unclear. 

 There are two basic developmental patterns of pulsatile GnRH release from 
birth until the onset of puberty. In highly evolved primates, such as man and 
macaques, GnRH pulsatility is robust during the infantile period after birth, but is 
subsequently dampened during juvenile development (and childhood in humans), 
resulting in a hypogonadotropic state and relative quiescence of the gonad [ 18 ,  20 ]. 
The hiatus in pulsatile GnRH release during the juvenile period may be viewed as 
a consequence of a neurobiological “brake” that holds GnRH release in check until 
the initiation of the onset of puberty [ 15 ]. It is important to note that this is a con-
ceptual brake and may be accounted for by either the imposition of an inhibitory 
input and/or the loss of a stimulatory input to GnRH neurons [ 18 ]. Our current 
viewpoint is that this conceptual brake is an inhibitory neurocircuit in the brain [ 17 ]. 
The juvenile phase of primate development is terminated by release from the 
brake, leading to a  reactivation  of robust GnRH pulsatility [ 15 ]. Because this 
juvenile restraint on pulsatile GnRH release is observed in neonatally castrated 
monkeys [ 23 ,  24 ] and in agonadal humans [ 25 ,  26 ], and because low levels of LH 
and GnRH release during the juvenile period in ovariectomized female monkeys 
are not further suppressed by ovarian steroids [ 27 ], the hiatus of pulsatile GnRH 
release during the juvenile period of primate development is independent of ovarian 
or testicular steroids. 

 This control system may be contrasted to that in non-primate species, in which 
LH release (and presumably GnRH release) immediately after birth is minimal but 
increases before the onset of puberty, with the prepubertal gonad playing a critical 
role in restraining GnRH release prior to puberty. For example, in sheep and rodents, 
gonadotropin secretion (and presumably GnRH release) is suppressed by small 
amounts of gonadal steroid after birth through the juvenile period, but at a time prior 
to puberty, low levels of steroids are no longer inhibitory [ 19 ,  28 ]. Moreover, neo-
natal gonadectomy in sheep, rats, and guinea pigs increases LH levels, and in sheep 
and rats, administration of gonadal steroids suppresses LH levels [ 29 ,  30 ]. Therefore, 
the control system governing reactivation of GnRH release at puberty in primates is 
different from that regulating the postnatal development of pulsatile GnRH release 
in non-primates.  
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    Developmental Changes in the Kisspeptin Neuronal System 

 Kisspeptin neurons in the adult hypothalamus are typically found in both the medial 
basal hypothalamus (MBH) and the preoptic area (POA) (see Chap.   3    ). In the MBH, 
kisspeptin neurons are localized in the arcuate nucleus (ARC, synonymous with 
infundibular nucleus in humans), and in the POA, these cells are found in the antero-
ventral periventricular nucleus (AVPV) in rodents and in similar areas in other spe-
cies. Kisspeptin neurons in the ARC are considered to be an important component 
of the hypothalamic control of tonic gonadotropin secretion in all species, while 
kisspeptin neurons in the AVPV of rodents are critical for surge secretion of GnRH 
and LH, and therefore for ovulation [ 31 ]. 

 Overall expression of  Kiss1  mRNA in the hypothalamus (AVPV and ARC 
combined) is signifi cantly elevated around the time of puberty in both male and 
female rats [ 32 ]. In the ARC,  Kiss1  mRNA levels in female rats at postnatal day 
26 (P26), i.e., 3–4 days before vaginal opening, are over fourfold higher than 
those at P21 [ 33 ], although changes in the number of  Kiss1 -expressing neurons 
from P3 to adulthood are unremarkable [ 34 ]. In male rats,  Kiss1  mRNA levels in 
the ARC at P45 are signifi cantly higher than those at P15 [ 35 ], and the number of 
 Kiss1  neurons increases progressively throughout postnatal development [ 34 ]. In 
male mice, however, a developmental increase in  Kiss1  mRNA levels in the ARC 
has not been observed [ 36 – 38 ]. Moreover, whereas ovariectomy in female mice 
at P14 dramatically increases expression of ARC  Kiss1  mRNA by P16-P18, i.e., 
well before puberty onset, castration at P14 in male mice does not result in 
increased ARC  Kiss1  mRNA or LH release at P18 [ 39 ]. However, expression of 
both the ARC  Kiss1  mRNA and secretion of the gonadotropin were elevated at 
P45 in male mice castrated at P14 [ 39 ]. Interestingly, in both male and female 
mice,  Kiss1  expression is detected in the ARC on P1, and at least in females, kiss-
peptin receptor signaling appears to be driving gonadotropin release at this early 
stage of development [ 40 ]. The absence of a post-castration LH response in pre-
pubertal male mice has been previously reported [ 41 ], and differs from the situa-
tion in rats and guinea pigs where prepubertal orchidectomy elicits a robust 
increase in LH secretion [ 29 ,  30 ,  42 ]. In an alternative paradigm to eliminate the 
confounding effect of testicular steroid feedback on the development of  Kiss1  
expression in mice, Gill et al. [ 38 ] studied the  hpg  mouse, a GnRH defi cient 
hypogonadal animal, and found that ARC  Kiss1  expression increases dramati-
cally between P10 and P30 (as it also did in the  hpg  female). Clearly, the devel-
opmental pattern in  Kiss1  expression in the ARC of the male mouse requires 
further study. 

 In the rhesus monkey, pubertal increases in  KISS1  mRNA in the MBH (presum-
ably in the ARC) in ovarian intact female and agonadal male monkeys have been 
observed [ 43 ]. Although a gonadal steroid-independent pubertal increase in  KISS1  
mRNA expression in female monkeys has not been examined, an ovarian steroid- 
independent increase in kisspeptin release in the region of the ARC-median emi-
nence (ARC-ME) has been observed (see next section). 

E. Terasawa et al.

http://dx.doi.org/10.1007/978-1-4614-6199-9_3


257

 The developmental pattern of ARC kisspeptin expression as assessed by 
 immunohistochemistry is less clear. Studies in mice describe an increase in inten-
sity of kisspeptin fi bers in the ARC during postnatal development in both males and 
females, but developmental changes in kisspeptin cell number have not been 
reported [ 38 ,  44 ,  45 ]. It is possible that the pubertal increase in kisspeptin fi bers in 
the ARC may refl ect an increased kisspeptin output from kisspeptin cell bodies in 
the AVPV (see below), as direct innervation of the ARC by AVPV kisspeptin neu-
rons has been reported [ 46 ]. In the ewe, the number of kisspeptin neurons in the 
ARC is signifi cantly greater in postpubertal animals compared to prepubertal lambs 
[ 47 ]. In the agonadal male monkey, developmental changes in the number of immu-
nopositive kisspeptin neurons in the ARC parallel changes in pulsatile GnRH 
release, with both infant and pubertal animals exhibiting numerous and intensely 
stained ARC perikarya [ 48 ]. The importance of ARC kisspeptin neuronal network 
for generating pulsatile GnRH release in the infant monkey is consistent with the 
observation that circulating gonadotropin levels were undetectable in a 2-month old 
infantile boy bearing a loss-of-function mutation of  KISS1R  [ 3 ]. 

 In the case of AVPV kisspeptin neurons, it has been clearly shown that the cell 
number in female mice progressively increases until the age of puberty [ 38 ,  39 ,  44 , 
 49 ]. Moreover, the developmental increase in the number of kisspeptin neurons in 
the AVPV in females is dependent on the presence of circulating E 

2
 , as ovariectomy 

of prepubertal mice reduces and/or masks this developmental change [ 49 ]. Similarly, 
in the  hpg  mouse, the prepubertal increase in expression of both kisspeptin and 
 Kiss1  is blunted [ 38 ], and in aromatase knockout mice there is virtually no kiss-
peptin expression [ 49 ]. This action of E 

2
  appears to be exerted directly on the AVPV 

kisspeptin neurons, as conditional knockout of estrogen receptor alpha (ERα) 
resulted in a marked decrease in the number of kisspeptin immunopositive neurons 
in this nucleus [ 50 ]. Kisspeptin- or  KISS1 -expressing neurons have also been 
described in the POA of women and female monkeys [ 51 – 53 ], but developmental 
changes in this particular population of neurons have not been studied in primates. 

 Hypothalamic (POA and ARC combined) levels of  Kiss1r  mRNA increase at the 
age of puberty in both male and female rats [ 32 ]. Specifi cally, in the female,  Kiss1r  
expression in the AVPV increased at the age of puberty [ 33 ]. However, neither the 
neuronal phenotype in the POA/AVPV exhibiting this pubertal increase in  Kiss1r  
expression, nor the gonadal steroid dependency of this phenomenon in rodents, has 
been studied. In ovarian intact female rhesus monkeys,  KISS1R  mRNA in the MBH 
also increases across puberty onset [ 43 ], and functionally, developmental changes 
in GnRH response to KP-10 depend on the pubertal increase in E 

2
  (see next section). 

Thus, it is possible that the pubertal increase in  Kiss1r / KISS1R  mRNA in females is 
due to the increase in estrogens at this stage of development. However, this view 
needs further examination, as  KISS1R  mRNA expression does not change across 
puberty in agonadal male monkeys [ 43 ]. 

 Kiss1r is expressed in approximately 80% of GnRH neurons in cichlid fi sh, and 
in adult mice and rats [ 54 – 56 ]. During the fi rst few days of postnatal life in mice, 
only ~40% of GnRH neurons express  Kiss1r  but this increases to adult levels by P20 
[ 57 ]. Although expression of  KISS1R  in primate GnRH neurons has not been 
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reported, GnRH neurons in both male and female prepubertal monkeys respond to 
exogenous kisspeptin [ 43 ,  58 ,  59 ]. Kiss1r may also be present in embryonic mouse 
GnRH neurons, as they respond to exogenous kisspeptin in vitro [ 60 ]. Embryonic 
primate GnRH neurons, however, do not respond to kisspeptin (Keen and Terasawa, 
unpublished observation), suggesting that GnRH neurons in rhesus monkeys may 
not acquire KISS1R until later in gestation. 

 Taking the foregoing considerations together, it seems reasonable to propose that 
an increase in expression of both kisspeptin mRNA and peptide in the ARC occurs 
in association with the onset of puberty in both sexes of most mammalian species, 
and this is likely correlated with an increase in kisspeptin release in the ARC-ME 
region, as demonstrated for the monkey (see next section). In primates, the postnatal 
pattern in ARC kisspeptin expression is fundamentally dictated by a central inhibi-
tion that is independent of gonadal steroids, rather than by ovarian and testicular 
feedback, as is the case in rats [ 19 ,  42 ]. Additionally, it appears that in female 
rodents an estrogen-dependent developmental increase in kisspeptin peptide and 
mRNA in the AVPV occurs, leading presumably to an increase in the secretory 
activity of this rostral population of kisspeptin neurons.  

    Changes in Kisspeptin Release and KISS1R Responsiveness 
to Kisspeptin During the Pubertal Process 

 As discussed in Chap.   2    , human preprokisspeptin is cleaved to form kisspeptin-54 
and further cleaved to kisspeptin-14, -13, or -10, which are all biologically active 
[ 61 ,  62 ]. To determine the role kisspeptin plays in the pubertal increase in GnRH 
release, it is important to understand (1) the developmental pattern of kisspeptin-54 
release and (2) developmental changes in the function of KISS1R expressed by 
GnRH neurons and/or afferent neurons to the GnRH network. The maturational 
changes in the responsiveness of the GnRH neurosecretory system can be tested by 
the kisspeptin agonist, human kisspeptin-10 (hKP-10), and the synthetic kisspeptin 
antagonist, peptide 234, as described by Roseweir et al. [ 63 ]. Accordingly, 
Terasawa and colleagues conducted a series of studies using a microdialysis 
method, which allows for (1) in vivo measurements of kisspeptin-54 and GnRH 
release in serially collected dialysate samples from the stalk-median eminence 
(S-ME) of monkeys, and (2) for infusion of hKP-10 and peptide 234 through the 
microdialysis probe [ 64 ]. 

 In an initial series of studies, the developmental pattern of kisspeptin-54 release 
was examined in both intact and ovariectomized monkeys. Kissspeptin-54 release 
is pulsatile, and mean kisspeptin-54 release increases along with the pubertal 
increase in mean GnRH release [ 65 ]. Moreover, kisspeptin-54 pulses during the 
prepubertal period are of low amplitude with a long inter-pulse interval (IPI), 
whereas kisspeptin- 54 pulses during the pubertal period have a higher amplitude 
with a shorter IPI [ 66 ]. This pubertal modulation of pulsatile kisspeptin-54 release 

E. Terasawa et al.

http://dx.doi.org/10.1007/978-1-4614-6199-9_2


259

leads to higher mean levels of the peptide in the S-ME of pubertal animals, which 
is parallel to those seen in GnRH release during the course of puberty in female 
monkeys [ 67 ,  68 ]. 

 As discussed in the previous section, developmental changes in GnRH release in 
the rhesus monkey are independent of circulating gonadal steroids. Similar to ovar-
ian intact females [ 67 ], developmental increases in the pulse frequency and pulse 
amplitude of GnRH release do not occur until the age of puberty in ovariectomized 
monkeys [ 68 ]. Likewise, the pulse frequency and pulse amplitude of kisspeptin-54 
release in ovariectomized monkeys do not increase until the age that puberty would 
have been anticipated had the animals remained intact (Fig.  12.1 ) [ 66 ]. Importantly, 
the IPI of kisspeptin-54 release in ovarian intact and ovariectomized females at the 
prepubertal stage is ~80 min, which is very similar to that of GnRH release [ 67 ,  68 ], 
whereas the IPI of kisspeptin-54 release at the pubertal stage is ~50 min, regardless 
of the presence or absence of the ovary, which is, again, similar to the IPI of GnRH 
release in animals at the same developmental stage (Fig.  12.1 ) [ 67 ,  68 ]. (The role of 
kisspeptin in GnRH pulse generation will be further discussed in a later section.)

   An impact of the ovary on kisspeptin-54 release is only observed in the pubertal 
monkey, where both the pulse amplitude and mean release of kisspeptin-54 is mark-
edly increased by ovariectomy, presumably due to loss of negative feedback from 
the ovarian steroid E 

2
  (Fig.  12.1 ). In fact, administration of E 

2
  can suppress kiss-

peptin- 54 release in pubertal monkeys, whereas kisspeptin-54 release in prepubertal 
monkeys is insensitive to E 

2
  [ 66 ]. This developmental change in ovarian steroid 

regulation of kisspeptin-54 release is similar to that seen with GnRH release [ 27 ]. 
Collectively, these observations indicate that the pubertal increase in kisspeptin-54 
release occurs independently from an ovarian steroid hormone feedback mecha-
nism. Rather, the pubertal increase in pulsatile release of kisspeptin-54 in female 
rhesus monkeys (and presumably male primates) requires a developmental change 
in an upstream neuronal signal to the kisspeptin neuronal network. 

 Because developmental changes in KISS1R may also contribute to the pubertal 
increase in GnRH release, in a second series of studies, Terasawa and colleagues 
examined the developmental changes in GnRH release in response to the kisspeptin 
agonist, hKP-10, and antagonist, peptide 234, administered directly into the S-ME. 
While the GnRH response to hKP-10 is dose dependent in both ovarian intact pre-
pubertal and pubertal monkeys, a smaller response to a 10 nM dose of hKP-10 is 
consistently observed in prepubertal monkeys as compared to pubertal monkeys 
[ 58 ]. Release of GnRH in both prepubertal and pubertal monkeys is also suppressed 
by peptide 234. These results suggest that the pubertal increase in pulsatile GnRH 
release is, in part, due to an increased responsiveness of KISS1R in GnRH neurons 
during the progression of puberty. This view is consistent with studies in transgenic 
mice expressing GFP in GnRH neurons, in which electrical fi ring activity of GnRH 
neurons stimulated by KP-10 increases across male puberty [ 37 ]. 

 To further determine whether the enhanced responses of GnRH neurons to hKP- 
10 in pubertal monkeys are due to higher levels of circulating E 

2 
  at puberty, a similar 

experiment examining the GnRH responsiveness to hKP-10 in ovariectomized 
monkeys was conducted. While ovariectomy in prepubertal monkeys did not 

12 Kisspeptin and Puberty in Mammals



260

  F
ig

. 1
2.

1  
  D

ev
el

op
m

en
ta

l i
nc

re
as

es
 in

 k
is

sp
ep

tin
-5

4 
(K

P-
54

) r
el

ea
se

 a
re

 in
de

pe
nd

en
t o

f t
he

 p
re

se
nc

e 
or

 a
bs

en
ce

 o
f t

he
 o

va
ry

 in
 fe

m
al

e 
m

on
ke

ys
. I

n 
vi

vo
 K

P-
54

 
re

le
as

e 
fr

om
 th

e 
S-

M
E

 o
f 

ov
ar

ia
n 

in
ta

ct
 p

re
pu

be
rt

al
 (

 a ,
  b

 ) 
an

d 
pu

be
rt

al
 (

 e ,
  f )

 m
on

ke
ys

 a
s 

w
el

l a
s 

ov
ar

ie
ct

om
iz

ed
 p

re
pu

be
rt

al
 (

 c ,
  d

 ) 
an

d 
pu

be
rt

al
 (

 g ,
  h

 ) 
m

on
ke

ys
 

ar
e 

sh
ow

n.
 S

am
pl

es
 w

er
e 

ob
ta

in
ed

 d
ur

in
g 

th
e 

m
or

ni
ng

 p
er

io
d 

( a
 ,  c

 ,  e
 ,  g

 ) 
an

d 
du

ri
ng

 th
e 

ev
en

in
g 

pe
ri

od
 (

 b ,
  d

 ,  f
 ,  h

 ) 
as

 in
di

ca
te

d 
by

 th
e 

 op
en

  a
nd

  c
lo

se
d 

ba
rs

 , 
re

sp
ec

tiv
el

y,
 a

t t
he

  to
p  

of
 e

ac
h 

gr
ap

h.
 B

ot
h 

pu
ls

e 
fr

eq
ue

nc
y 

an
d 

am
pl

itu
de

 o
f 

K
P-

54
 r

el
ea

se
 in

 o
va

ri
an

 in
ta

ct
 p

ub
er

ta
l m

on
ke

ys
 (

 e ,
  f

 ) 
ar

e 
hi

gh
er

 th
an

 th
os

e 
in

 
ov

ar
ia

n 
in

ta
ct

 p
re

pu
be

rt
al

 m
on

ke
ys

 ( a
 ,  b

 ).
 S

im
ila

rl
y,

 p
ul

se
 fr

eq
ue

nc
y 

an
d 

am
pl

itu
de

 o
f K

P-
54

 re
le

as
e 

in
 o

va
ri

ec
to

m
iz

ed
 p

ub
er

ta
l m

on
ke

ys
 ( g

 ,  h
 ) a

re
 h

ig
he

r t
ha

n 
th

os
e 

in
 o

va
ri

ec
to

m
iz

ed
 p

re
pu

be
rt

al
 m

on
ke

ys
 (

 a ,
  b

 ).
 I

m
po

rt
an

tly
, o

va
ri

ec
to

m
y 

do
es

 n
ot

 c
au

se
 a

ny
 c

ha
ng

e 
in

 K
P-

54
 r

el
ea

se
 (

( a
 ,  b

 ) 
vs

. (
 c ,

  d
 ))

 i
n 

pr
ep

ub
er

ta
l 

m
on

ke
ys

, w
he

re
as

 o
va

ri
ec

to
m

y 
in

cr
ea

se
s 

th
e 

pu
ls

e 
am

pl
itu

de
 o

f 
K

P-
54

 r
el

ea
se

 in
 p

ub
er

ta
l m

on
ke

ys
 (

( e
 ,  f

 ) 
vs

. (
 g ,

  h
 ))

.  A
st

er
is

ks
  in

di
ca

te
 p

ea
ks

 a
s 

de
te

rm
in

ed
 

by
 P

U
L

SA
R

. N
ot

e 
th

at
 th

e 
sc

al
e 

of
 th

e 
 y -

ax
is

 in
 ( e

 – h
 ) (

pu
be

rt
al

 m
on

ke
ys

) i
s 

te
nf

ol
d 

hi
gh

er
 th

an
 th

at
 in

 ( a
 – d

 ) (
pr

ep
ub

er
ta

l m
on

ke
ys

).
 F

ro
m

 G
ue

rr
ie

ro
 K

A
, K

ee
n 

K
L

, 
Te

ra
sa

w
a 

E
. 

D
ev

el
op

m
en

ta
l 

in
cr

ea
se

 i
n 

ki
ss

pe
pt

in
-5

4 
in

 v
iv

o 
is

 i
nd

ep
en

de
nt

 o
f 

th
e 

pu
be

rt
al

 i
nc

re
as

e 
in

 e
st

ra
di

ol
 i

n 
fe

m
al

e 
rh

es
us

 m
on

ke
ys

 (
 M

ac
ac

a 
m

ul
at

ta
 ).

 E
nd

oc
ri

no
lo

gy
. 2

01
2 

15
3:

18
87

–9
7.

 M
od

ifi 
ed

 w
ith

 p
er

m
is

si
on

 f
ro

m
 T

he
 E

nd
oc

ri
ne

 S
oc

ie
ty

       

 

E. Terasawa et al.



261

modify the GnRH response to hKP-10 nor peptide 234, it completely eliminated 
both the hKP-10-induced stimulation and peptide 234-induced GnRH suppression 
of GnRH release in pubertal monkeys ([ 58 ], also Guerriero and Terasawa, unpub-
lished observation). Moreover, replacement of E 

2
  in OVX pubertal monkeys only 

partially restored the hKP-10-induced GnRH release that was absent in OVX puber-
tal monkeys [ 58 ]. These observations suggest that while, in prepubertal monkeys, 
the response of KISS1R on GnRH neurons is independent of E 

2
 , in pubertal mon-

keys, functional changes in KISS1R occur as a consequence of the exposure to 
increased circulating E 

2
  after puberty onset, such that KISS1R responsiveness is 

enhanced by E 
2
 . Collectively, once the pubertal increase in E 

2
  occurs in the female 

monkey, as a consequence of pubertal activation of the GnRH pulse generating 
mechanism, the presence of E 

2
  appears to enhance the response of GnRH neurons 

to kisspeptin [ 58 ]. Although to date, developmental changes in  KISS1R  mRNA in 
ovariectomized monkeys have not been examined, it will be important to address 
this issue further.  

    Kisspeptin Signaling and GnRH Pulse Generation 

 The hypothesis that kisspeptin neurons are a part of the neurocircuitry underlying 
the GnRH pulse generating mechanism has been proposed by Goodman and col-
leagues, Maeda and colleagues, and Steiner and colleagues [ 69 ,  70 ] (see also Chap. 
  14    ). It is posited that pulsatility originates in ARC kisspeptin neurons containing 
neurokinin B and dynorphin (called KNDy neurons) by reciprocal interactions of 
neurokinin B (stimulatory) and dynorphin (inhibitory), and that an intermittent 
output to the GnRH neuronal network is mediated by kisspeptin. This hypothesis 
is based on several observations. First, periodic increases in multiunit activity 
obtained from electrodes in the MBH are associated with LH pulses in several spe-
cies [ 71 ,  72 ], and specifi cally in the ARC, as shown in the goat [ 73 ]. Second, the 
neurokinin B receptor agonist, senktide, is a potent stimulator of ARC kisspeptin 
neurons (presumably KNDy neurons) in the mouse [ 74 ], and the site of the stimu-
latory action of neurokinin B on GnRH-dependent LH release in the monkey 
appears to be upstream of kisspeptin [ 75 ]. Third, in pubertal monkeys, pulses of 
kisspeptin-54 released in the ARC-ME correlate to GnRH pulses 75% of the time 
[ 65 ]. Fourth, repetitive iv injections of hKP-10 induce trains of GnRH-dependent 
LH pulses in juvenile male monkeys, in which endogenous GnRH pulsatility is 
minimal [ 59 ], presumably by activating KISS1R on GnRH terminals in the ME, as 
kisspeptin and GnRH fi bers are found in extensive and intimate association in the 
ME (Fig.  12.2 ) [ 76 ]. Fifth, intra-ARC, not intra-POA, administration of the kiss-
peptin antagonist, peptide 234, profoundly suppressed LH pulse frequency [ 77 ], 
although again the site of action of the antagonist is likely to be at the ME, as 
recent electrophysiological studies by Alreja and Steiner indicate that kisspeptin is 
unable to stimulate KNDy neurons in the mouse (see Chap.   16    ). The contemporary 
notion regarding the integral role played by KNDy neurons in GnRH pulse generation 
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is consistent with the classical fi ndings that complete surgical deafferentation of 
the rat and monkey MBH does not eliminate pulsatile LH release [ 78 ,  79 ], and 
that selective lesions of the ARC in female monkeys abolishes pulsatile LH 
release [ 80 ]. It is also consistent with the recent fi nding that selective ablation of 
KNDy neurons in the rat dramatically truncates the ovariectomy-induced increase 
in LH release [ 81 ].

       A Novel View on the Role of Kisspeptin in Puberty Onset 

 As discussed above, the genetic evidence for the view that kisspeptin neurons are 
critical for the onset of puberty is overwhelming. Together with results from com-
pelling physiological and pharmacological studies indicating that kisspeptin is 
the most potent GnRH secretagogue [ 82 ], a dogma has emerged that the genes 
encoding kisspeptin and its receptor regulate puberty, which in turn has led to the 
perception that kisspeptin signaling represents the key neural substrate that controls 
the timing of the onset of puberty. Here, we offer an alternative possibility. Namely, 
while kisspeptin-expressing neurons in ARC are critical for puberty, this is simply 
because these cells comprise an integral component of the hypothalamic GnRH 
pulse generating mechanism that generates intermittent release of the decapeptide, 

  Fig. 12.2    A confocal projection illustrating the relationship between kisspeptin neurons ( green ) 
in the arcuate nucleus (ARC) and GnRH cell bodies and projections ( red ) to the median eminence 
in a coronal section of the mediobasal hypothalamus of a castrated adult male rhesus monkey.  VHT  
ventral hypothalamic tract;  3V  third ventricle;  ME  median eminence. Scale bar, 100 μm. From 
Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM. Structural interactions between kisspeptin 
and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey ( Macaca mulatta ) 
as revealed by double immunofl uorescence and confocal microscopy. Endocrinology. 2008 
149:4387–95. Reprinted with permission from The Endocrine Society       
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an increase of which is obligatory for the onset of puberty. According to this model, 
kisspeptin neurons in the ARC play no regulatory role in controlling the timing of 
puberty. Rather, as a component of hypothalamic GnRH pulse generation, they 
subserve upstream regulatory mechanisms determining the timing of puberty onset. 
In the case of primates, the upstream control system(s), which is independent of 
gonadal steroids, fi rst suppress pulsatile GnRH release in infancy and, subsequently, 
a reduction in this suppression reactivates pulsatility of GnRH release at the end of 
juvenile development (Fig.  12.3 ). In rodents, the early postnatal ontogeny of pulsa-
tile GnRH release is less clear, but later in prepubertal development,  steroid- dependent 

  Fig. 12.3    A model for the control of the timing of puberty in primates, in which the role of kiss-
peptin (KP,  green ) signaling is posited to be a critical component of the neural machinery essential 
for generation of pulsatile GnRH ( red ) release in the hypothalamus. In this model, the GnRH pulse 
generating mechanism resides in the arcuate nucleus (ARC) and the output of this signaling is 
relayed to GnRH terminals in the median eminence (ME) by KP projections arising from perikarya 
in the ARC. During infancy ( left panel ), ARC GnRH pulse generating activity is robust leading to 
intermittent release of KP in the ME, resulting in a corresponding pattern of GnRH release into the 
portal circulation. This, in turn, drives pulsatile gonadotropin (LH and FSH) secretion. In the tran-
sition from infancy to the juvenile phase of development ( middle panel ), a neurobiological brake 
(central inhibition) holds the ARC GnRH pulse generating mechanism in check and pulsatile 
release of KP in the ME is markedly suppressed. This leads to reduced GnRH release and to a 
hypogonadotropic state in the juvenile period. Puberty is triggered when the brake is removed and 
GnRH pulse generation with robust intermittent release of KP in the ME is reactivated ( right 
panel ). According to this model, the mystery of primate puberty lies in the nature of the neurobio-
logical brake, i.e., the mechanism that times its application during infancy and its release at the 
end of the juvenile phase of development. The thickness of the  blue  (T, testosterone) and  gold  
(E, estradiol)  arrows  indicating negative feedback by the testis and ovary, respectively, refl ect the 
degree of gonadal steroid inhibition exerted on LH secretion at these three stages of primate devel-
opment.  AC  anterior commissure;  AP  anterior pituitary gland;  ARC  arcuate nucleus;  OC  optic 
chiasm;  ME  median eminence;  MMB  mammillary body          
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mechanisms dictate the timing of puberty by suppressing GnRH pulse generation. 
This being the case, loss-of-function mutations in  KISS1 / Kiss1  or  KISS1R / Kiss1r , 
or ablation of neurons expressing either kisspeptin or its receptor, would likely lead 
to a loss or impairment in GnRH pulsatility that secondarily results in delayed or 
absent puberty and infertility, regardless of species. While this is indeed the case in 
situations where the genes have been manipulated either  spontaneously or experi-
mentally [ 1 ,  9 – 11 ,  50 ,  83 ], interestingly, embryonic ablation of kisspeptin cells in 
mice did not dramatically infl uence the timing of puberty or prevent fertility [ 45 ]. It 
should be noted that failure to change the timing of puberty in this study may be due 
to the 5% of kisspeptin neurons in the AVPV that escaped ablation [ 45 ]. In the con-
text of the results of the study employing kisspeptin neuron ablation,  Kiss1  or  Kiss1r  
null mice exhibit some degree of GnRH release as they age [ 83 ]. Therefore, the 
difference in the phenotypes between these two models may be quantitative, and 
perhaps explained by differences in the extent to which the GnRH neuronal network 
is intrinsically able to generate intermittent GnRH release following a genetic or 
ablative insult to the GnRH pulse generating mechanism that normally drives 
gonadotropin secretion in the adult.

   The notion that kisspeptin signaling is necessary for the onset of puberty only 
because of its critical role in GnRH pulse generation may be most readily appreciated 
when the concept is applied to puberty in the male, where initiation of this develop-
mental event requires only robust pulsatile GnRH release to drive tonic LH and FSH 
secretion. In the case of puberty onset in the human female, the validity of the idea that 
 KISS1  may simply be regarded as a “pulse generating” gene is tenable, because the 
preovulatory LH surge is triggered by E 

2
  positive feedback action within the MBH-

pituitary unit to amplify pulsatile GnRH release and/or the response of the pituitary 
gonadotrophs to pulsatile GnRH stimulation [ 22 ]. The situation in the female rodent 
is more complex because the positive feedback action of E 

2
  is exerted, at least in part, 

on kisspeptin neurons in the AVPV [ 31 ]. Nevertheless, as discussed above, the devel-
opment of kisspeptin neurons in the AVPV in female mice is dependent on ovarian E 

2
  

secretion, which, in turn, is dependent on tonic gonadotropin secretion that is driven 
by pulsatile GnRH release. Thus, it seems reasonable to propose that (1) the primary 
role of kisspeptin signaling in the control of puberty across species may be restricted 
to its crucial role in GnRH pulse generation, (2) the time of puberty onset is dictated 
by kisspeptin-independent mechanisms that control the ontogeny of GnRH pulse gen-
eration, and (3)  Kiss1  in the rodent may be viewed as a “surge generating gene,” as 
well as a pulse generating gene (see below for further discussion).  

    Neuronal Substrates of Central Inhibition on GnRH 
in Juvenile Primates 

 According to the model proposed above, the key to the mystery of puberty in pri-
mates is to understand (1) the neural substrate that underlies the gonadal steroid- 
independent reduction in GnRH pulse generation from infancy to puberty, and (2) 
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the signals responsible for timing the application and removal of this central neuro-
biological brake. In this section, we discuss possible neuronal substrates responsible 
for “central inhibition.” 

 Two laboratories have each proposed a different neuronal subtype. First, 
Terasawa and her colleagues have proposed the hypothesis that tonic inhibition by 
γ-amino butyric acid (GABA) neurotransmission is responsible for this central 
inhibition in female rhesus monkeys [ 17 ]. This hypothesis is based on the obser-
vations that (1) GABA levels are higher when GnRH release is low in prepubertal 
monkeys, whereas GABA levels are lower after the onset of puberty when GnRH 
release is elevated [ 84 ], (2) infusion of the GABA 

A
  receptor antagonist, bicucul-

line, into the S-ME stimulates GnRH release to a much greater extent in prepu-
bertal, than in pubertal, monkeys, whereas infusion of GABA is effective in 
suppressing GnRH release in pubertal, but not prepubertal, monkeys, presumably 
because of the reduction in tonic GABA inhibition at the onset of puberty [ 84 ], 
and (3) a long-term infusion of bicuculline into the S-ME of juvenile female pri-
mates results in precocious puberty and fi rst ovulation [ 85 ]. Second, Plant and his 
colleagues have proposed the hypothesis that neuropeptide Y (NPY) neurons are 
responsible for the central inhibition of pulsatile GnRH release during juvenile 
development in male monkeys. This hypothesis is based on the fi nding that mRNA 
and peptide levels of NPY in the MBH are signifi cantly lower during the neonatal 
period compared to those during the juvenile period, whereas mRNA and peptide 
levels of NPY in the MBH decrease, while GnRH mRNA levels increase, across 
puberty in male monkeys [ 86 ]. Presently, whether the sex-differences noted in the 
“juvenile hiatus” in gonadotropin secretion are attributable to central inhibition 
mediated by GABA neurons in females vs. NPY neurons in males is unclear. 
Nonetheless, it is possible that the same population of neurons in the MBH is 
responsible for gonadal steroid-independent central inhibition, as a large number 
of GABA neurons in the rat ARC express NPY [ 87 ,  88 ]. 

 A recent study from Terasawa’s group indicates that bicuculline infusion into 
the S-ME of prepubertal female monkeys stimulates kisspeptin-54 release 
(Fig.  12.4a ) [ 89 ], similar to the bicuculline-induced stimulation of GnRH release 
observed in prepubertal monkeys [ 84 ]. Moreover, the bicuculline-induced GnRH 
release was blocked by simultaneous infusion of the kisspeptin antagonist, pep-
tide 234 (Fig.  12.4b ) [ 89 ]. These latter results are consistent with the view that 
inhibitory GABA neurotransmission is an important component in the upstream 
suppression of the GnRH pulse generating mechanism during juvenile develop-
ment in primates. It is, however, unclear what reduces GABA inhibition prior to 
puberty and whether additional (or alternative) neuronal substrates and somatic 
cues [ 90 – 93 ] are involved in the upstream control of GnRH pulse generation. 
Thus, the most important question of exactly what triggers the onset of puberty 
in primates remains a mystery.
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       Neural Substrate for Steroid Inhibition of GnRH Release 
in Juvenile Rodents 

 As discussed above, in contrast to primates, the prepubertal restraint on the GnRH 
pulse generating mechanism in rodents is gonadal steroid dependent. In this regard, 
studies in sheep and mice indicate that the majority of kisspeptin neurons express 
ERα [ 94 – 96 ], and it is well established in the adult rodent that ovariectomy 
increases, and E 

2
  replacement decreases,  Kiss1  expression in ARC kisspeptin neu-

rons [ 31 ]. As might be expected, therefore, transgenic mice with a conditional 

  Fig. 12.4    ( a ) GABA 
A
  antagonist bicuculline (BM) stimulates KP-54 release in prepubertal female 

monkeys (but not pubertal monkeys, data not shown). An example showing that bicuculline infu-
sion the S-ME ( dark shaded bar ) for 10 min induces an increase KP-54 release, whereas vehicle 
( light shaded bar ) infusion does not. ( b ) Blockade of the bicuculline-induced GnRH release by the 
kisspeptin receptor antagonist, peptide 234 (P234), in a prepubertal monkey. The stimulated GnRH 
release by bicuculline infusion in the S-ME ( dark shaded bars ) is not seen in the presence of P234 
( light shaded bar ). From Kurian JR, Keen KL, Guerriero KA, Terasawa E. Tonic control of kiss-
peptin release in prepubertal monkeys: Implications to the mechanism of puberty onset. 
Endocrinology. 2012 153:3331–6. Modifi ed with permission from The Endocrine Society       
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knockout of  ERα  in kisspeptin neurons exhibit elevated  Kiss1  mRNA levels in ARC 
at a prepubertal age, and this is associated with high circulating concentrations of 
LH (and presumably E 

2
 ) and a dramatic advancement of the age of vaginal opening 

[ 50 ]. Interestingly, in contrast to the mRNA data, kisspeptin immunoreactivity in 
the ARC was greatly reduced in the conditional knockout, suggesting perhaps 
enhanced release of kisspeptin. Thus, in the case of the female mouse, it seems 
reasonable to conclude that the site of the prepubertal ovarian steroid suppression 
on pulsatile GnRH release is on the GnRH pulse generating mechanism itself, and 
specifi cally on kisspeptin (KNDy) neurons in the ARC. This view is consistent with 
the long-standing “differential sensitivity to E 

2
 ” theory, which has been proposed in 

female rats and sheep [ 97 – 100 ]. During the postnatal period through the juvenile 
period, the hypothalamus (presumably the GnRH neurosecretory system) is inhib-
ited by E 

2
 , and, sometime prior to puberty, the GnRH pulse generating mechanism 

in the ARC escapes from suppression by E 
2
 . It has been proposed that this escape is 

the result of an E 
2
 -induced increase in activity of kisspeptin neurons in the AVPV, 

which in turn amplifi es GnRH neuronal activity, leading to puberty onset [ 36 ,  49 , 
 50 ]. The precise mechanism by which the initial prepubertal elevation of E 

2
  is trig-

gered in non-primate species, however, is unknown. (Note that, in women and 
female rhesus monkeys, a similar escape of E 

2
 -dependent inhibition of GnRH 

release occurs well after the initiation of puberty onset, between menarche and fi rst 
ovulation [ 101 – 103 ]).  

    Summary 

 In this chapter, we have reviewed progress regarding the relationship between kiss-
peptin and puberty onset, and have proposed a novel hypothesis for the role of kis-
speptin signaling in controlling the timing of this major event in postnatal 
development. We posit that the profound impact of loss-of-function mutations in the 
genes encoding either kisspeptin or its receptor on the onset and progression of 
puberty in all species can be attributed primarily to the critical role of ARC kiss-
peptin neurons in the generation of pulsatile GnRH release, which is obligatory for 
pubertal activation of the pituitary-gonadal axis. According to this hypothesis, kiss-
peptin neurons do not determine the timing of puberty (see Fig.  12.3 ). Rather, this 
important developmental event is achieved by upstream neuronal mechanisms that 
govern the timing of the pubertal activation (rodents) or reactivation (primates) of 
robust pulsatile GnRH release at the end of the juvenile phase of development. 
Validation of this hypothesis requires future studies.      
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