Hereditary Hemorrhagic Telangiectasia: Dermatological Features

34

Liam Zakko, Justin Finch, Marti J. Rothe, and Jane M. Grant-Kels

Clinical signs and features include:

- · Also known as Osler-Weber-Rendu disease
- Eighty percent present as spontaneous epistaxis [1]
- Arteriovenous malformations (AVMs) occur throughout the body including the gastrointestinal (GI) tract, lungs, liver, brain/spinal cord
- Cutaneous lesions start to appear in adulthood and increase with age [1]
- Lesions appear as small macular telangiectasia that are
 1–2 mm in diameter and blanch [1]
- Telangiectasia commonly occur on lips, tongue, palate, face (sun-exposed areas), nares, ears, conjunctiva, chest, hands, and feet (see Fig. 34.1) [1]
- Fingertips can develop painful ulcers from the telangiectasia

Pathogenesis of this disease involves:

Autosomal dominant mutations: hereditary hemorrhagic telangiectasia (HHT)1, mutation in *ENG* on chromosome 9; HHT2, mutation in *ACRVL1/ALK1* on chromosome 12; HHT3, mutation on chromosome 5q;

HHT4, mutation on chromosome 7p; HHT with juvenile polyposis, mutation of *SMAD4*; HHT2 with primary pulmonary hypertension, mutation of *BMPRII* on chromosome 2 [2, 3]

- Mutations lead to aberrant response to transforming growth factor beta (TGF-β) family signals for angiogenesis
- Ultimately signal errors cause blood vessels to mature inappropriately

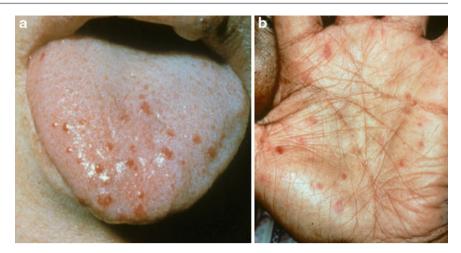
Histopathological features include:

- Initially see dilatation post-capillary venules
- Ultimately dilated post-capillary venules enlarge and connect with arterioles eliminating capillary bed
- Vessels are often thin walled and surrounded by fibrosis
- A perivascular lymphocytic infiltrate may also be noted around involved vessels

The diagnosis is made using a combination of:

- Curaçao criteria: (1) epistaxis; (2) telangiectasias at characteristic sites; (3) visceral AVMs in GI tract/liver/ lungs/brain/spinal cord; (4) family history: de novo mutation is rare and the disease has a nearly 100% penetrance by age 40 [4]
- If ≤3 of above, HHT can be diagnosed; if ≤2, HHT is suspected; if only 1, HHT is unlikely
- In children with a parent who has HHT, cannot rule out HHT until genetic tests confirm no mutation [2]
- Genetic testing reveals mutation in 80–90% of cases The differential diagnosis should include:
- · Von Willebrand disease

Treatment options include [4]:


- Mostly cosmetic for cutaneous lesions
- Long-pulsed Nd: YAG (neodymium-doped yttrium aluminum garnet) laser is effective
- Skin grafts effective for painful ulcerations on fingertips

Yale Department of Internal Medicine, Yale New Haven Hospital, New Haven, CT 06510, USA e-mail: liam.zakko@yale.edu

J. Finch • M.J. Rothe • J.M. Grant-Kels
Department of Dermatology,
University of Connecticut Health Center,
21 South Road, Farmington, CT 06030, USA
e-mail: finch@uchc.edu; rothe@uchc.edu; grant@uchc.edu

L. Zakko(⊠)

Fig. 34.1 Hereditary hemorrhagic telangiectasia. (a) Telangiectasia of the oral mucosa. (Image courtesy of Jeff Shornick, MD.) (b) Telangiectasia of the palms (Image courtesy of the New York University Image Collection)

References

 Ward SK, Roenigk HH, Gordon KB. Dermatological manifestations of gastroenterological disorders. Gastroenterol Clin N Am. 1998;27:615–36.

- Sharathkumar AA, Shapiro A. Hereditary haemorrhagic telangiectasia. Haemophilia. 2008;14:1269–80.
- Shlovin CL. Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis, and treatment. Blood Rev. 2010;24:203–19.
- Dupis-Girod S, Bailly S, Plauchu H. Hereditary hemorrhagic telangiectasia: from molecular biology to patient care. J Thromb Haemost. 2010;8:1447–56.