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  Abstract   Prostate Cancer (PCa) genetic risk has recently been de fi ned in numerous 
genome-wide association studies (GWAS), which revealed more than 50 disease-
associated single nucleotide polymorphisms (SNPs), known as tagSNPs, each at a 
different locus. More than 80% of these tagSNPs are located in noncoding regions of 
the genome for which functionality remains unknown. We and others hypothesize 
that at least some of these SNPs affect noncoding genomic regulatory signatures such 
as enhancers. Many research laboratories including ours have pro fi led the genomic 
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distribution of androgen receptor (AR) and the dynamic state of the PCa genome for 
active chromatin regions (H3K9,14ac), open chromatin regions (DNaseI), enhancers 
(H3K4me1/2), and active/engaged enhancers (H3K27ac). In order to identify candi-
date functional SNPs, which may confer risk associated with PCa, we recently devel-
oped an open-source (R/Bioconductor) package, called FunciSNP (Functional 
Integration of SNPs), which systematically integrates SNPs from the 1000 genomes 
project with these biologically active chromatin features. Here we report several 
potential AR enhancers, de fi ned by genome-wide data and from chromatin biofea-
tures, which may be functionally involved in PCa risk.  

  Keywords   Enhancer  •  Androgen Receptor Occupied Regions (ARORs)  
•  Chromatin  •  Genome  •  Single Nucleotide Polymorphism  •  Post-GWAS function  

  Abbreviations  
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  SNP    Single nucleotide polymorphisms   
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    5.1   Introduction 

 Within the past 5 years, prostate cancer (PCa) genome-wide association studies 
(GWAS) have identi fi ed more than 50 risk loci, with more than 80% found in non-
coding genomic regions (Fig.  5.1 )  [  1–  4  ] . Integrating data associated with genomic 
pro fi les of androgen receptor (AR) occupancy and other enhancers to these known 
risk regions will inevitably provide an informative genomic landscape that may yield 
insight and understanding into the etiology and ultimately treatment of PCa. 
Characterizing and understanding the role of the AR in prostate cancer and the 
dynamic interactions between AR and nucleosomes is an important area of PCa research 
 [  5,   6  ]  and consequently is hypothesized to play “driver” roles at GWAS risk loci. 
The aim of this chapter is to describe recent research in pro fi ling the AR interactions 
with genomic features. In addition, we will present and describe the use of a novel 
bioinformatic tool (developed by our group), which integrates several large-scale 
data types to identify well-demarcated new genomic risk regions at known risk loci 
that may have important implications for PCa genetic predisposition.  

    5.1.1   Normal Function of AR in Prostate 

 Understanding the role of AR in PCa and the regulation of AR activity remains an 
intense and important area of research. In normal prostate development and mainte-
nance, AR drives differentiation and regulates the expression of select genes for the 
production of proteins that mainly function in seminal  fl uid development, similar to 
the role estrogen receptor provides in the regulation and production of milk in the 
breast  [  7  ] . Therefore, AR is not normally classi fi ed as an oncogene during prostate 
development and maintenance, whereas its role in prostate tumorigenesis is indis-
putably as a driver and as such may be viewed as an oncogene during the progres-
sion of the disease.  

    5.1.2   AR Signi fi cance in PCa 

 As early as the 1940s, Dr. Charles B. Huggins (a Nobel laureate) discovered that 
steroid hormones such as androgen could be used to control the spread of prostate 
and breast cancer. Orchiectomy, the removal of the male testes, was found to be an 
effective surgical procedure for the treatment of advanced PCa, later replaced with 
GnRH agonist  [  8,   9  ] . In the 1950s, it was found that patients who relapse after 
orchiectomy respond better to andrenalectomy, which indicates that the tumors may 
be stimulated by residual androgens from adrenal glands  [  8,   9  ] . From the mid-
1990s, multiple two-arm trials looked at the effects of castration versus castra-
tion + AR antagonist (such as  fl utamide, milutamide, cyproterone acetate, and 
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  Fig. 5.1    Summary of all known GWAS SNPs across a number of different cancer types. GWAS 
SNPs were annotated using known genomic features supplied by HOMER (version 3.9)  [  43  ] , 
using build hg19 as reference. GWAS SNPs were extracted from the UCSC Genome table browser, 
track name “gwasCatalog” with a  P -value cut-off of 9e−06  [  2  ] . Figure and legend reproduced from 
Coetzee SG. et al. 2012  [  3  ]  with permission from Oxford University Press       

bicalutamide) to block effects of residual androgen expression  [  8,   9  ] . The hypothesis 
at the time was to further block AR, which would provide an alternative to castra-
tion procedures. After hundreds of millions of dollars invested into researching the 
effect of these antagonists, it was found that there was minimal improvement, with 
modest responses to AR antagonists given at relapse after castration, with a general 
conclusion that more complete AR blockade was no more effective then castration 
alone  [  9  ] . 

 During the same time, basic research labs found that AR and AR regulated genes 
were highly expressed in castration recurrent/resistant prostate cancer (CRPC). The 
AR gene was found to be ampli fi ed in ~30% of CRPC and AR antagonists selected 
for AR mutations  [  7,   10  ] . By 2000, work by several research groups found that high 
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intra-tumoral androgen levels in CRPC were synthesized from weak adrenal 
 androgens, and this led to the hypothesis that androgens were being developed in a 
de novo fashion from cholesterol products  [  9,   11,   12  ] . These observations provided 
important clinical application, and as recent as 2011, survival advantage from post- 
and pre-chemotheraphy for Abiraterone (CYP17A1 inhibitor, an enzyme for andro-
gen synthesis) in CRPC was found to decrease serum testosterone from ~20–50 ng/dl 
to <1 ng/dl  [  11,   12  ] . These clinical studies provided evidence that AR to some 
degree is driving PCa progression  [  11,   12  ] . In 2012, survival advantage for a novel 
AR antagonist, MDV3100, was found to be highly selective  [  13–  15  ] . Despite pro-
gressive AR decreasing during tumor progression, tumors have found many genetic 
means of maintaining AR mediated signaling. We know that most tumors that have 
become castration resistant remain dependent on AR mediated activity, which has 
been shown with the advancement of drugs such as MDV3100, which continue to 
target AR pathway axis  [  10,   15  ] . Even more recently, exome sequencing of 50 
CRPCs revealed many somatic mutations in the androgen-signaling pathway, DNA 
repair, and histone/chromatin modi fi er genes  [  16  ] . These and other important 
 fi ndings shed both clinical and biological importance in determining the mecha-
nisms mediating intrinsic and acquired resistance to androgen and AR mediated 
pathways.  

    5.1.3   Advancement in Sequencing Technology Allows 
for Comprehensive Pro fi ling of Speci fi c Genomic 
and Epigenomic Marks 

 The last 15 years of biomedical research has been fueled in part by development of 
new technologies, techniques, and protocols. The recent advent of next-generation 
sequencing has not only spawned many new exciting applications and opportunities 
but also challenges for cancer researchers. ChIP-seq is a technique to systematically 
detect genome-wide protein:DNA interactions and histone modi fi cations. In a given 
landscape of the genome, there are a variety of diverse proteins that interact with our 
genome in a sequence and tissue-speci fi c manner. During a typical ChIP-seq experi-
ment, the cells are treated with formaldehyde to stably cross-link all protein:DNA 
complexes. The chromatin is then sheared and fragmented to approximately 200–
1,000 bp by sonication. Generally, such an experiment is done with about 2 million 
cells to enrich the amount of protein:DNA complex using a speci fi c antibody target-
ing a protein of interest. Once the puri fi ed and enriched DNA fragments are obtained, 
high-throughput sequencing is performed and fragments of 50–100mers are mapped 
back to the reference genome. Currently, deep sequencing technology can sequence 
up to 100 million reads for a given experiment, and this number is very likely to 
increase exponentially while the overall cost of sequencing will drop over the next 
5–10 years  [  17,   18  ] . Analyzing deep sequencing data for a particular ChIP experi-
ment requires several important steps, which include initial quality control, peak 
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 calling, peak quality assessment, motif analysis, and large prediction and annotations 
of the data  [  17  ] . There are many different peak calling algorithms available, includ-
ing MACS2 and FindPeaks  [  17  ] . 

 In Sect.  5.2 , we will describe the current understanding of AR occupancy regions 
(ARORs) in prostate cancer cell lines and associated enhancer elements in promot-
ers and non-promoters of genes pro fi led using deep sequencing technologies. 
Section  5.3  will introduce the current state of GWAS in PCa and the idea of a novel 
bioinformatic tool we developed to integrate data pro fi led from deep sequencing, 
GWAS, and the 1000 genomes project to identify candidate regulatory elements 
involved in PCa progression and/or risk.   

    5.2   AROR Identi fi cation and Genome-wide Distribution 
of Enhancer Elements 

 Myles Brown and his research group was among the  fi rst to systematically identify 
thousands of AR binding sites in PCa cells after DHT treatment by AR chromatin 
immunopreciptation (ChIP) followed chip hybridization (initially) or by deep 
sequencing (more recently) (ChIP-seq; described in detail in Sect.  5.1.3 )  [  19  ] . In 
addition, we and others pro fi led AROR in DHT-treated LNCaP cells. We reported 
that about 20% of histone H3 acetylated at Lys-9 and Lys-14 (H3K9,14ac) enrich-
ment surrounds ARORs  [  20  ] . We also observed a high number of AROR peaks dis-
tributed in noncoding regions, while a signi fi cant enrichment of ARORs was found 
in promoters of known genes only with overlapping H3K9,14ac (Fig.  5.2a, b ). If 
ARORs overlapping and not overlapping known H3K9,14ac peaks are separated, we 
observe that the genomic distribution to all known transcription start sites are 
signi fi cantly depleted at promoters for AROR peaks not overlapping H3K9,14ac 
(Fig.  5.2c, d ). Interestingly, AROR peaks overlapping H3K9,14ac are enriched at 
promoters (Fig.  5.2e ). This genomic pro fi le of AROR has given researchers an 
unprecedented view of the wide distribution of AR binding to the human genome in 
PCa after DHT stimulation. It has been determined that AR binding sites have AR 
element (ARE) motif and are generally associated with a consensus motif for FOXA1 
 [  19,   21  ] . In our own study, we performed de novo motif analysis on our identi fi ed 
AROR peaks. Signi fi cantly identi fi ed AROR peaks are highly enriched for the known 
ARE motif, while ARORs located in distant or non-promoters were also enriched for 
the FOXA1 motif (Fig.  5.3 ). It has been shown that FOXA1 binds with AR and other 
steroid receptors in a diverse set of tissues  [  19  ] . Among other factors, FOXA1 has 
been shown to function as a pioneer factor to open the locus prior to AR binding  [  22  ] . 
Further work by the Brown lab and others have found that sites occupied by FOXA1 
(and the recruitment of FOXA1) are highly associated with enhancers, since these 
regions usually have nucleosomes with enhancer histone marks such as H3K4me1 
and H3K4me2  [  19,   20,   23  ]  (Table  5.1 ). Prior to androgen stimulation and AR bind-
ing, ARE is covered with loosely associated nucleosome that contains a variant of 
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H2A.Z which is displaced by AR  [  24  ] . At the chromatin level, AR was found enriched 
at ARE sites associated with H3K4me1 and H3K4me2. These distinct epigenetic 
marks are highly associated with FOXA1, which provides recruitment in CRPC  [  25  ] . 
This process is reversed by LSD1 (lysine-speci fi c demethylase 1), which mediates 
demethylation of H3K4me1 and H3K4me2  [  25  ] .    Thus it appears the sequence of 
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  Fig. 5.2    Complete genomic distribution of AROR and H3K9,14ac. ( a – b ) raw counts and log2 
ratio (peaks versus background) for H3K9,14ac (AcH) and AR distribution across known genomic 
regions, 3 ¢ UTR, 5 ¢ UTR, exon, intergenic, intron, promoter-TSS (promoter transcription start site), 
TTS (transcription termination site). Each column of plots indicates differing sets of peaks, All—
total peaks per type (AcH or AR), No overlap (distinct peak  fi les), overlap (peak  fi les in common 
between AcH and AR).  Black  color indicates observed peaks, while  gray  colors indicate back-
ground as computed 1,000 times (randomly generated regions selected genome wide). ( c – e ) 
Genomic pro fi le of AROR as a function of distance to the nearest canonical gene’s TSS. ARORs 
were divided into ( c ) total, ( d ) AROR not overlapping AcH, ( e ) AROR overlapping AcH.  Red  
color indicates observed peaks; while  gray  colors indicate background as computed 1,000 times 
(randomly generated regions selected genome wide)       
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  Fig. 5.3    De novo motif analysis results of ARORs in promoters (<1 kbp from TSS) and non-
promoters (>1 kbp from TSS). ( a – b ) Genomic pro fi les are generated using ARORs centered on top 
two de novo motifs as identi fi ed by the ARORs in non-promoters. ( c ) Enrichment table and motif 
sequence are described         
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   Table 5.1    Diverse biological features compiled from several different sources. All biofeatures 
were pro fi led in LNCaP cells treated with DHT   

 Biofeatures  Biological features  Num peaks 

 AR  [  20  ]   AROR  3,100 
 AR  [  26  ]   AROR  6,214 
 AR  [  22  ]   AROR  205 
 AR + DNaseI  AROR + Open chromatin  1,055 
 AR + H3K9,14ac  [  20  ]   AROR + Active/engaged 

enhancers 
 580 

 AR + HK4me1  AROR + Enhancers  456 
 DNAseI + H3K4me1 + H3K27ac  Open + Active/Enhancers  5,174 
 H3K27ac  [  22  ]   Active/engaged  12,578 
 H3K4me1  [  22  ]   Enhancers  19,149 
 H3K9/14ac  [  20  ]   Open chromatin  956 

 Genomic features (hg19 human build) 
 Exons  698,453 
 CTCF Only  [  30  ]   9,916 
 DNAseI Only  [  30  ]   175,507 
 DNAseI + CTCF  [  30  ]   4,977 
 Known promoters (−1000 to +100)  39,700 

c

FOXA1

ARE

ARE

ARE

Fig. 5.3 (continued)
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events start with the epigenetic alterations of histones, speci fi cally methylation of K4 
on the H3 complex, and recruitment of FOXA1, thereby allowing for an open con-
formational change of the nucleosome, thereby allowing for poised interactions for 
AR stimulated by DHT to incorporate with ARE, and thereby activate targeted genes 
responsible for progression and differentiation of the prostate.    

 Further subsequent  fi ndings in advanced castration resistant PCa using LNCaP-
abl cells have shown that AR regulates the expression of speci fi c G2/M genes 
(CDK1, UBE2C, others) in advanced castration resistant but not in androgen sensi-
tive LNCaP cells  [  23  ] . In summary, the spectrum of AR regulated genes may change 
during tumor development and progression. 

 Recently, it was discovered that FOXA1 suppressive sites are enriched for insu-
lator protein binding sites, which are sites of compact chromatin (CTCF-FOXA1-
Groucho family complexes)  [  26,   27  ] . They observed, by knocking down FOXA1 
followed by ChIPseq of AR binding sites, hundreds of AREs are dependent of 
FOXA1 while if FOXA1 is deleted, 3,500 AR binding sites are revealed and are 
independent of FOXA1. These sites are enriched for insulator protein binding sites, 
CTCF–FOXA1, and set of corepressive elements  [  26,   27  ] . The overall physiologi-
cal importance is unclear, but these studies illustrate that the dynamic integrity of 
AR binding to the DNA is quite  fl exible and provides a complex environment with 
a multitude of diverse functions yet to be fully characterized. 

 DNaseI hypersensitivity (HS) is a method to assay chromatin accessibility  [  28  ] . 
It allows for a comprehensive pro fi le of distinct genomic regions, which are prefer-
entially unbound by nucleosomes and thus are characterized as open chromatin 
region. DNaseI sequencing results are aligned to the human genome reference, 
compared to a background control experiment and peaks are called as described in 
Sect.  5.1.3 , to identify candidate open chromatin regions in LNCaP cells. Most 
studies have shown that DNaseI hypersensitive sites correlate very well with regula-
tory elements and enhancer activity in a variety of tissues and cell types  [  22,   29  ] . We 
put together a table, which summarizes the total number of AR and available 
enhancer peaks across a number of different studies, as well as the overlap with data 
downloaded from the ENCODE project  [  30  ]  (Table  5.1 ).  

    5.3   Identi fi cation of Signi fi cant Risk Variants Associated 
with PCa 

    5.3.1   Statistical Analysis and Bioinformatics Tool to Identify 
Candidate Functional Enhancer Elements 

 GWAS have yielded numerous single nucleotide polymorphisms (SNPs) associated 
with many phenotypes. The main goals for genetic risk factor identi fi cation have 
been to allow clinicians and epidemiologist a factor to predict risk for a disease or 
treatment such as chemotherapy or surgical prevention. It has also been important to 
allow researchers an opportunity to understand the biology of cancer by identifying 
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genes or loci involved in the development of the cancer and  fi nally to identify novel 
genetic regions or loci for drug targeting and treatment. 

    The  fi rst GWAS study published in 2005 identi fi ed a risk region for age-related 
macular degeneration disease  [  31  ] , and GWAS have been constantly evolving and 
expanding their reach in large part due to the advancement of genotyping technol-
ogy. During the last 6 years, it is apparent that GWAS efforts fostered by these 
advancements have made signi fi cant discoveries, for example, more than 1,449 
tagSNPs have been published for association with well over 200 different dis-
eases or traits at a  p -value of 5 × 10 −8   [  2,   3  ] . It is also apparent that as new methods 
and strati fi cations by populations emerge, these studies could yield even higher 
numbers of variations associated to a particular disease or trait. Interestingly, 
approximately 200 genomic variants have been reported for more than 20 differ-
ent cancer types, and it is expected that this number of associated risk loci will 
likely exceed 300 by the end of this year  [  32  ] . Remarkably, we and others have 
noted that the vast majority of these variants associated with cancer, in particular 
with prostate and breast, are enriched in noncoding regions (Table  5.2 , Fig.  5.1 ) 
 [  3  ] . Despite the many novel and insightful biological discoveries GWAS have 
provided to the scienti fi c community, we have a long way to go before we can 
fully understand genetic heritability and risk. In the case of breast cancer, there 
are very rare allele frequencies in a given population with very high effect size, 
many identi fi ed through family-based studies, candidate gene re-sequencing, and 
regions with candidate risk association. The rare variance contributes on total, 
over 25% to understanding the familial risk of most cancer whereas only 10–15% 
contributes to common risk with low to modest effect size  [  33  ] . However, the 
 fi eld is currently looking to see if the risk variant for low-to-common allele fre-
quency can be identi fi ed with intermediate to large effect size, which is believed 
to be largely due to genetic factors. Currently, with the advancement in sequenc-
ing technology and methodology, we are at the forefront of making discoveries of 
these low to common variants with measurable effect size with  suitable power. 
And as the advancement of sequencing technology increases and the cost to per-
form such high-throughput deep sequencing reaches a critical cost–bene fi t level, 
the major bottleneck will be computational methods and tools needed in order to 
tease out the genetic variants and risk associated with many of these critically 
debilitating human diseases.  

 At the core of all association studies dominated during the past 6–7 years is the 
idea of linkage disequilibrium (LD). LD is the observation that two or more alleles 
in a population segregating together more often than one would expect by chance 
 [  3,   34  ] . What this de fi nition means to researchers interested in identifying genetic 
basis or identify candidate functional variants in a particular disease is that the iden-
tity of the functional variant is not required. As an example, a causal or putative 
functional variant is located on the ancestral allele, and this variant will segregate 
successfully through the population over time. If we are able to visualize this  variant, 
then we can measure LD and therefore indirectly identify the variant using markers 
or tags surrounding the causal or putative functional variant  [  35,   36  ] . 

 SNPs are the most common form of variation we have measured in the human 
population, and therefore SNP markers provide the best opportunity to identify the 
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ancestral causing or functional allele in a given population exhibiting a shared or 
common disease or trait. However, as the ancestral causing allele passes through 
time in a population (over numerous generations), the LD breaks down signi fi cantly. 
This breakdown in LD structure then makes identi fi cation of variant causing allele 
more dif fi cult. Therefore, a systematic identi fi cation of all known SNPs or variants 
is required and to this end, the HapMap project evolved. The HapMap project aim 
was to identify SNPs using four different human populations to put together a phased 
haplotype block map and identi fi able LD blocks of the entire human genome  [  37  ] . 
This project was successful at the time, identifying 4–5 million SNPs in the pro fi led 
population. Although these blocks identi fi ed regions of interest, it did not success-
fully identify the candidate or functional variant  [  38  ] . Therefore, the 1000 genomes 
project (1000 gp) emerged to tackle the issue by harnessing the obvious observation 
that the world’s population is quite diverse than the original four populations pro fi led 
from the HapMap project  [  39  ] . The 1000 gp set out to sequence more than 1,000 
individuals across a larger number of different populations. Currently, the 1000 gp 
have identi fi ed more than 60 million SNPs, indels, somatic mutations, and other 
genomic variants across the population  [  39  ] . This has now allowed us to identify a 
larger number of variants among a given haploblock containing the identi fi ed risk 
allele. Some have argued this increase in variants coupled with unidenti fi ed func-
tional variant provides an even bigger challenge in identifying the causal or func-
tional variant. However, we and others have noted that this increase in number of 
identi fi ed variants provides a deeper resolution of the heritability and thus allows us 
to harness more informative variants than previously identi fi ed  [  3,   40  ] . We devel-
oped a bioinformatic tool called FunciSNP (Functional Identi fi cation of SNP), 
which allows us to harness the information provided by the 1000 gp, the location of 
the previously reported risk allele (tagSNP), and the chromatin features to identify 
the causal and functional regions associated with PCa  [  3  ]  (Fig.  5.4b ) (for results, see 
Sect.  5.3.3 – 5.3.4 ).   

    5.3.2   GWAS PCa 

 PCa genetic risk has recently been de fi ned in a number of GWAS, which have 
revealed 51 disease-associated SNPs, known as tagSNPs, each at a different locus 
(Table  5.2 , Figs.  5.1  and  5.4a ). More than 80% of these tagSNPs are in intergenic or 
intron regions of the genome for which functionality remains unknown. Interestingly, 
the tagSNPs are distributed among many chromosomes (Fig.  5.4a ) with the excep-
tion being that chromosomes 1, 14, 15, 16, 18, 20, and 21 do not contain any tag-
SNPs. They occur at relatively gene rich areas (inner circle of Fig.  5.4a ), with the 
notable exceptions of the tagSNPs at chromosome 3 (middle SNP), 8q, and the 
distal SNP at 12q. Many tagSNPs track closely with chromatin biofeatures (outer 
four circles of Fig.  5.4a , and see below). 

 Taking the 1000 genomes data into consideration, more than 10,000 correlated 
SNPs are revealed, which each de fi ne risk due to linkage disequilibrium (correlated 
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a

  Fig. 5.4    GWAS integration with biological features. ( a ) Circos plot illustrating genomic distribu-
tion of the 51 known GWAS tagSNPs as of June 2012 ( red lines  indicate the position of the tag-
SNPs with the length re fl ecting the number of independent tagSNPs within a 10 MB window. The 
 white concentric circles  are markers for 1, 2, and 3 SNPs; outside to inside). From outermost to 
innermost, the colored bands describe the concentration ( red, yellow, green, blue ; high to low) 
DNase1 sensitivity, H3K27ac, H3K4m31, AROR, and genes, respectively. The chromatin marks 
were obtained from LNCaP cells. On the ideograms the locations of the centromeres are depicted 
in  green  and tagSNPs in  red . ( b ) Schematic  fl owchart to describe FunciSNP.  Purple boxes  repre-
sent process before integration with biofeature.  Red boxes  represent information after integration 
with biofeature (Figure and legend reproduced from Coetzee SG. et al. 2012  [  3  ]  with permission 
from Oxford University Press.). ( c ) Schematic diagram indicating total number of candidate SNPs 
pooled from the 1000 gp that overlap one or more biological genomic features and which are in 
linkage disequilibrium to the original GWAS SNP. Total number of SNPs in each section is 
identi fi ed by a  blue box . ( d ) Overall distribution of  R  2  values for all identi fi ed 1000 gp SNPs over-
lapping at least one biological feature. Each identi fi ed bin reports total number of candidate 
1000 gp SNPs         
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b

c

d

Fig. 5.4 (continued)

to the tagSNP with an  R  2 >0.8, Fig.  5.4c ). The above therefore makes the identi fi cation 
of functional and/or causal SNPs not a trivial task. Therefore, we hypothesize that 
at least some of these SNPs affect noncoding genomic regulatory signatures, such 
as enhancers or insulators. As we described in Sect.  6.2 , there are distinct regions in 
the genome pro fi led in PCa cells, which we and others have identi fi ed and have 
signi fi cant biological relevance in PCa.  

    5.3.3   FunciSNP Integrates AROR, Enhancer, GWAS 
and 1000gp to Identify Candidate Functional Elements 

 In order to reduce the number of candidate functional SNPs pro fi led in the 
1000gp linked to the associated tagSNP in PCa, we developed an open-source 
(R/Bioconductor) package, called FunciSNP, which systematically integrates the 
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1000gp SNP data with chromatin features of interest  [  3  ] . To de fi ne functionality 
in noncoding DNA associated with PCa risk, we extracted open chromatin and 
enhancer features generated by next-generation sequencing technologies. The 
open chromatin state (DnaseI, H3K9,14ac), enhancers (H3K4me1), and active/
engaged enhancers (H3K27ac) were generated either by our lab  [  20  ] , or har-
vested from the ENCODE project  [  41  ] , or retrieved from recent publications 
 [  22,   26  ]  (Table  5.1  and visualized in Fig.  5.4a ). All chromatin features were 
identi fi ed in the same PCa cell line (LNCaP). We identi fi ed 113 PCa risk cor-
related SNPs at androgen receptor occupied regions (ARORs), 1,545 at DNase1 
sensitivity sites, and 403 at histone modi fi ed regions [H3K4me1 (160 SNPs), 
H3K9,14 ac (121 SNPs), H3K27ac (122 SNPs)]; all features excluded transcrip-
tion start sites of known annotated genes (Figs.  5.4d ,  5.5 ,  5.6a ). ARORs coin-
ciding with DNase1 sites revealed four novel SNPs correlated with four GWAS 
tagSNPs. Of the four novel surrogate SNPs, two are located 4 kb upstream from 
KLK3, one is located within the 3’UTR of NKX3.1, and one is located within 
an intron of RUVBL1 (Fig.  5.6a ;   http://goo.gl/cYCl7    ). DNase1 sites coinciding 
with any histone modi fi cation provided 12 novel risk regions correlated with 10 
GWAS tagSNPs (Tables  5.3  and  5.4 ). Four are located in 8q24 genomic region 
and each is more than 100 kb away from a known annotated gene.      

    5.3.4   Enhancer Validation in Two PCa Cell Lines 
and in Primary Prostate Epithelial Cells 

 To measure potential enhancer activities in the eight chosen potential enhancer 
regions, we employed a  fi re fl y luciferase reporter (driven by a basal tk-promoter) 
into which ~1.2 kb potential enhancers coinciding with PCa risk correlated SNPs 
were cloned. These vectors, along with renilla luciferase controls, were transfected 
into two PCa cell lines: LNCaP cells, PC3 cells along with an AR expression vector, 
and normal primary prostate epithelial cells (PREC) along with an AR expression 
vector and stimulated with DHT. Enhancer activities were measured as previously 
described  [  42  ]  and compared with two negative controls (regions with no enhancer 
histone marks) and a positive control (PSA enhancer). DHT-stimulated enhancer 
activity for seven of the eight potential enhancers was evident in at least one cell 
type (the exception is F26), indicating that the identi fi cation of enhancers using our 
protocol is both high and speci fi c (Fig.  5.6b ). Further analyses are required to deter-
mine the role(s) of these enhancers in PCa risk.   

    5.4   Future Perspective/Discussion 

 During the past decade three major  fi ndings in human genetics/genomics have 
caused a dramatic change in our appreciation of our genome and how it functions. 
First, the human genome project revealed that humans have only some 22,000 genes 

http://goo.gl/cYCl7
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  Fig. 5.5    FunciSNP heatmap of the number of 1000 gp between tagSNP and biofeature for PCa. 
Total number of candidate SNP is listed by color within each quadrant to represent the number of 
potential candidate functional SNPs overlapping a biofeature ( y -axis), which are in linkage dis-
equilibrium to the original GWAS risk SNP ( x -axis)       

within the 3 billion-nucleotide genome. Second, many transcription factors (such as 
the AR discussed above) do not preferentially occupy gene promoters preferentially 
but are rather scattered among the many noncoding stretches of DNA in introns and 
intergenic regions. Third, as pointed out above, GWAS signals for complex diseases 
are preferentially found in introns and intergenic regions. These three novel insights 
have pointed to the importance of so-called noncoding DNA (previously even 
referred to as junk DNA). Transcription factor occupancy, histone modi fi cation 
marks, and nucleosome-depleted regions in chromatin are presently used to anno-
tate functionality within most of our genome. Ultimately this will yield important 
insight to understand gene expression, genetic risk of complex diseases, and genetic 
associations with most human phenotypes.      
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a

  Fig. 5.6    Genomic plots with FunciSNP results and independent validation on eight enhancer 
 elements harboring a candidate functional SNP, performed in three different cell types. ( a ) UCSC 
genome browser tracks are ordered in the following manner: dbSNP135, FunciSNP result, biofea-
tures, refseq genes, and known lincRNA. TagSNP is highlighted in the FunciSNP result track, and 
each candidate SNP is color coded to re fl ect the number of biofeatures which it overlaps. The color 
ranges from  blue  (low number of biofeature overlap) to  red  (high number of overlap). Each candi-
date function SNP is identi fi ed by its known rsID and the calculated  R  2  value to the known GWAS 
tagSNP. The results are saved in a UCSC genome session:   http://goo.gl/cYCl7    . ( b ) Enhancer activ-
ities were evaluated using a dual luciferase reporter assay by cloning eight candidate enhancer 
regions harboring a candidate functional SNP in three different prostate cell types [LNCaP, PC3 
(+AR), and PREC (normal primary prostate epithelial cells) (+AR)]. In order to stimulate AR, 
prostate cells were treated with 10 nM DHT.  Orange–pink  color represents cells treated with DHT 
and  green–blue  represents cells treated without DHT. Enhancer activities of positive control region 
(PSA enhancer) ( n  = 1) and negative control regions ( n  = 2) are presented to the  left .  Dashed hori-
zontal line  indicates the average enhancer activities of the two negative controls.  Error bar  indi-
cates the standard deviation from the mean of luciferase activity values from four independent 
experimental replicates         
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   Table 5.3    Distribution of total number of 1000 gp overlapping at least one biological features as 
de fi ned in Table  5.1    

 Total SNPs 
tested 

 Total number of SNPs 
coincide with biofeatures 
(R.squared>0) 

 Total number of correlated 
SNPs coincide with biofeatures 
(R.squared>0.5) 

 Number of 1000 
genome SNPs 

 53453  20885  431 

 Percent (%)  100  39  0.8 

b

Fig. 5.6 (continued)

   Table 5.4    Number of correlated SNPs coincides with biofeatures distributed by each GWAS 
SNPs for PCa   

 Column1 
 1 or more 
biofeatures 

 2 or more 
biofeatures 

 3 or more 
biofeatures 

 4 or more 
biofeatures 

 5 or more 
biofeatures 

 6 or more 
biofeatures 

 rs10086908  32  18  4  0  0  0 
 rs10090154  18  9  6  1  0  0 
 rs1016343  7  1  0  0  0  0 
 rs10187424  18  5  0  0  0  0 
 rs10486567  4  0  0  0  0  0 
 rs10875943  3  1  1  1  0  0 
 rs10896449  3  0  0  0  0  0 
 rs10896469  1  0  0  0  0  0 
 rs10934853  2  0  0  0  0  0 
 rs10936632  3  0  0  0  0  0 

(continued)
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 Column1 
 1 or more 
biofeatures 

 2 or more 
biofeatures 

 3 or more 
biofeatures 

 4 or more 
biofeatures 

 5 or more 
biofeatures 

 6 or more 
biofeatures 

 rs10993994  19  6  2  1  1  0 
 rs11649743  2  1  0  0  0  0 
 rs12155172  1  0  0  0  0  0 
 rs12418451  7  2  0  0  0  0 
 rs12500426  12  7  0  0  0  0 
 rs12621278  5  0  0  0  0  0 
 rs13252298  17  0  0  0  0  0 
 rs13254738  1  0  0  0  0  0 
 rs1327301  4  0  0  0  0  0 
 rs13385191  2  0  0  0  0  0 
 rs1447295  18  9  6  1  0  0 
 rs1456315  1  1  1  1  0  0 
 rs1465618  1  0  0  0  0  0 
 rs1512268  6  3  1  0  0  0 
 rs1571801  1  0  0  0  0  0 
 rs16901966  27  6  0  0  0  0 
 rs16901979  27  6  0  0  0  0 
 rs16902094  8  1  1  1  0  0 
 rs17021918  5  0  0  0  0  0 
 rs1859962  9  1  0  0  0  0 
 rs1983891  2  2  1  0  0  0 
 rs2292884  37  6  1  0  0  0 
 rs2660753  4  0  0  0  0  0 
 rs2928679  4  1  0  0  0  0 
 rs3123078  24  8  4  2  1  0 
 rs339331  24  0  0  0  0  0 
 rs37181  3  1  0  0  0  0 
 rs3760511  1  0  0  0  0  0 
 rs4242382  18  9  6  1  0  0 
 rs4242384  17  9  6  1  0  0 
 rs4430796  3  0  0  0  0  0 
 rs445114  4  1  1  1  1  0 
 rs4962416  2  0  0  0  0  0 
 rs5919432  9  3  1  0  0  0 
 rs5945572  7  0  0  0  0  0 
 rs5945619  7  0  0  0  0  0 
 rs620861  5  1  1  1  1  0 
 rs6465657  9  1  0  0  0  0 
 rs6470494  1  0  0  0  0  0 
 rs6501455  17  2  0  0  0  0 
 rs6545977  1  1  1  0  0  0 
 rs6763931  9  4  1  0  0  0 
 rs6983267  8  4  0  0  0  0 
 rs6983561  27  6  0  0  0  0 

Table 5.4 (continued)

(continued)
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