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       Abstract   Acute leukemia represents 31% of all cancers diagnosed in children and 
80% of it is of Lymphoblastic type. Multiple genetic lesions in the hematopoietic 
progenitor cells prior to or during differentiation to B and T cell lead to develop-
ment of leukemia. There are several subtypes of Acute Leukemia based on chromo-
some number changes, the presence of certain translocations and gene mutations, 
each of which has different clinical, biological and prognostic features. High 
throughput genomic technologies like array-based comparative genomic hybridiza-
tion (array-CGH) and single nucleotide polymorphism microarrays (SNP arrays), 
have given us insight through a very detailed look at the genetic changes of leuke-
mia, specifi cally, ALL. Here, we discuss various genetic mutations identifi ed in 
Acute Lymphoblastic Leukemia. We also explore various genetic targets and cur-
rently available as well as upcoming targeted therapies for ALL.  
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   Introduction    

 Acute leukemia is the most common malignancy of childhood. It represents 31% of 
all cancers diagnosed in children  [  1  ] . About 3,250 cases of acute leukemia are diag-
nosed per year in United States. Approximately 80% of the childhood acute leukemia 
is lymphoblastic. 80% of Lymphoblastic leukemia in children between ages 
2–10 years is of Pre B- cell immunophenotype and the rest are T cell lineage. 
Adolescents and young adults tend to have myeloid malignancies. There are several 
subtypes within these broad subgroups based on chromosome number changes, 
presence of certain translocations and gene mutations. Each of these subtypes have 
different clinical, biological and prognostic features.  

   Etiology and Pathogenesis 

 Exact etiology and pathogenesis of all types of childhood leukemia is still unknown. 
Only less than 5% cases are explained by inherited, predisposing genetic syndromes, 
such as Down’s syndrome, Neuro fi bromatosis, Fanconi anemia, Bloom’s syndrome, 
ataxia-telangiectasia, and Nijmegen breakage syndrome, or exposure to ionizing 
radiation or to speci fi c chemotherapeutic drugs. There is evidence suggesting a pre-
natal origin for some types of childhood leukemia  [  2,   3  ] . Multiple genetic lesions in 
the hematopoietic progenitor cells prior to or during differentiation to B and T cell 
lead to development of leukemia. These mutations affect their ability of unlimited 
self renewal which leads to arrest at that speci fi c developmental stage. Understanding 
the outcomes of frequently arising genetic lesions and their effects on cell survival, 
proliferation and differentiation will help researchers then to devise selectively tar-
geted treatments against the altered gene products to which the leukemic clones 
have become addicted.  

   Current Treatment and Need for Targeted Therapy 

 About 60 years back, acute leukemia was universally fatal. Thanks to multicenter, 
national and international clinical trials, collaborations and basic science research, 
tremendous progress has been made in this  fi eld which has made childhood leuke-
mia a success story of twentieth century. Cure rate for leukemia has increased from 
10% to nearly 85%  [  4  ] . 

 Current treatment of leukemia is based on intense multiagent chemotherapy and 
prophylaxis of central nervous system. Risk assessment and treatment allocation is 
made based on clinical features (age and white cell count at diagnosis), biological 
features (B or T cell immunophenotype) and response to initial treatment (morpho-
logical and minimal residual disease in bone marrow at the end of induction 
therapy)  [  5  ] . 
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 Despite high cure rate, nearly one quarter of children with leukemia of certain 
molecular subtypes, high risk clinical features and those who relapse, have poor 
outcome. Signi fi cant proportions of the children who fall into standard risk category 
(age 1–10 years and total white count at diagnosis <50,000 and Precursor B cell 
Immunophenotype) have treatment failure or relapse  [  6  ] . Outcome of these children 
is poor, despite intense chemotherapy and/or allogenic hematopoietic stem cell 
transplant. Relapsed ALL is a leading cause of cancer related death. There is little 
room for intensi fi cation of already intense chemotherapy due to dose limiting tox-
icities and related morbidity and mortality. There is need for development of new 
targeted therapies which can improve outcome in this group of patients and have 
less side effects  [  7  ] .  

   Molecular Genetics of Acute Lymphoblastic Leukemia (ALL) 

 It is very important to indentify genetic and epigenetic abrasions of prognostic 
importance in order to assign the patients to modern classi fi cation protocol and offer 
treatment  [  8,   9  ] . About 25% of the primary genetic lesions in ALL cannot be detected 
by standard genetic analysis. Currently, high throughput genomic technologies like 
array-based comparative genomic hybridization (array-CGH) and single nucleotide 
polymorphism microarrays (SNP arrays), have given us insight into very detailed 
look at the genetic changes of leukemia, speci fi cally, ALL. Multiple novel submi-
croscopic genetic alterations in ALL samples which are not detectable by cytoge-
netic analysis have been identi fi ed  [  10  ] . Highly informative array-CGH using 
bacterial arti fi cial chromosomes (BACs) typically use probes derived from large (up 
to 200 kb) fragments of human DNA cloned into BAC vectors  [  11  ] . Oligo nucle-
otide arrays use smaller probes (20–100 bp) for more detailed look at the genomic 
regions. Oligo CGH array is used for detection of copy number abnormality (CNA) 
and Single nucleotide polymorphism (SNP) array is used to detect both CNA and 
copy neutral Loss of Heterozygosity (LOH). 

 Table  1  shows important genetic alterations seen in B-cell and Table  2  shows 
important genetic alterations indenti fi ed in T cell ALL. Figure  1  shows important 
intracellular pathways, targets and corresponding therapeutic agents that are under 
investigation. We will discuss below in detail about some of the most important 
genetic alterations.     

   ETV6-RUNX1 

 ETV6-RUNX1 formerly known as TEL-AML1, is translocation (12; 21) resulting 
in fusion of the  ETV6  gene from chromosome band 12p13 to the  RUNX1  gene from 
chromosome band 21q21. It is associated with recruitment of complexes containing 
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   Table 2    Important genetic alterations identi fi ed in T cell ALL   

 Genetic sub type  Clinical relevance 

 TAL1/SCL t(1;14)  ~30% of ALL; Good prognosis 
 HOX11L2 (5q35)(TLX3)  Poor prognosis in some studies 
 HOX11(10q24)  Favorable prognosis 
 NOTCH/FBXW7  Intrageneic gain of function mutation in ~55%; potentially 

responsive to NOTCH inhibitor 
 PTEN-P13K-AKT  Resistance to Gamma secretase inhibitor 
 CDKN2A/2B  ?response to DNA methylation inhibitors 
 LMO1 & LMO2  Good prognosis in some studies, response to HDAC inhibitors 
 IKAROS  Mutation/deletion in 5–10% T cell ALL 

histone deacetylases to AML1 target genes, causing aberrant transcriptional 
repression  [  11–  15  ] . It is the most common chromosomal translocation seen in chil-
dren with ‘Common Precursor B cell ALL’ (25%) but rarely observed in T cell ALL 
 [  12  ] . It is cryptic by conventional karyotyping but detected by FISH or molecular 
analysis. Translocation (12;21)  [  12,   16  ]  was noted in a large number of archived 
neonatal blood samples suggesting prenatal origin but, only 1% actually developed 
T cell leukemia indicating that additional mutations later in life are necessary for 
leukemogenesis  [  2,    3  ] . ETV6 -RUNX1 is known to be associated with favorable 
outcome  [  12  ] .  

   Table 1    Genetic abnormalities identi fi ed in B cell ALL   

 Genetic sub type  Clinical relevance 

 Hyperdiploidy (>50 chromosomes)  Good prognosis with therapy 
 ETV6-RUNX1 t(12;21)  Prenatal translocation, good prognosis with 

chemotherapy 
 MLL rearrangement  Eighty percent infant leukemia, poor prognosis, 

over expression of FLT3  t(4,11)(q23;p13); t(11:19); t(9:11) 
 BCR-ABL t(9:22)  Poor prognosis; associated  IKZF1  or  CDKN2A  

 deletions 
 IKZF1 deletion/mutation  25 to 30% of B cell ALL and 80% of BCR-

ABL + ALL; increased risk of relapse 
 JAK mutations  Predominantly in High risk leukemia; potential 

response to JAK 2 inhibitors 
 CRLF2 overexpression  Poor prognosis; 55% of Down syndrome ALL 
 PAX 5  Mutations found in 31% of pediatric ALL (43) 
 E2A-PBX1 t(1:19)  Associated with poor prognosis 
 MYC t(8,14);t(2,8);t(8,22)  Favorable prognosis 
 Internal ampli fi cation of Chromosome 21  Common in older children, poor outcome 
 E2A-HLF  Adolescent presentation, hypercalcemia, and 

disseminated intravascular coagulation 
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   BCR-ABL 

 The Philadelphia chromosome is characterized by the abnormal transposition of 
the q34 portion of chromosome 9 and the q11 portion of chromosome 22. A recip-
rocal translocation causes a head to-tail fusion of the breakpoint cluster region 
( BCR ) gene on chromosome 22 with the cellular homolog of the Abelson ( c-ABL ) 
viral oncogene on chromosome 9, thereby placing the  BCR-ABL  oncogene under 
the control of the ubiquitously expressed  BCR  promoter.  BCR-ABL  encodes two 
main BCR-ABL fusion oncoproteins of distinct molecular weights, p190 and p210, 
that arise from different translocation breakpoints in the  BCR  gene. The p210 iso-
form is expressed in nearly one third of adult Ph+ B-ALL, with the other 2/3rd of 
adult Ph+ B-ALL expressing the p190 isoform. Approximately 90% of childhood 
Ph+ B-ALL cases express p190  [  17  ] . BCR-ABL1 positive ALL is highly aggres-
sive and has a poor prognosis  [  18,   19  ] . BCR-ABL is seen in 25–40% of adult CML 
and 3–5% of pediatric B cell -ALL.CML typically responds well to kinase inhibi-
tors. BCR-ABL is a deregulated, constitutively active non receptor tyrosine kinase, 
and this kinase activity is required for cell transformation. BCR-ABL promotes 
leukemia mainly through two signal transduction pathways (RAS-MAPK and 

  Fig. 1    Cellular pathways and genetic targets with corresponding inhibitors under investigation for 
targeted therapy of leukemia       
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PI3K-AKT) that control cell proliferation, size, survival, and activation  [  20  ] . The 
constitutively active BCR-ABL1 cell impedes programmed cell death by keeping 
pro apoptotic protein in phosphorylated state and impeding it from localizing to 
mitochondria  [  21  ] .  

   Targeted Therapy for BCR-ABL 

 Prior to use of tyrosine kinase inhibitors, BCR-ABL positive ALL was one of the 
worst prognostic groups in pediatric ALL  [  16  ] . Imatinib Mesylate is a small orally 
available molecule which acts by binding to the ATP binding site of tyrosine kinase 
and stabilizing the inactive conformation. Imatinib showed remarkable a result in 
adults with CML. It is the best available  fi rst line therapy for CML in chronic phase 
 [  22  ] . Combination of Imatinib with chemotherapy in adults with Ph+ ALL showed 
encouraging results but the results were short lived when used as single agent. 
Children’s oncology group (COG) clinical trial COGALL0031 conducted between 
2002 and 2006 used Imatinib in children with Ph+ ALL starting after induction 
chemotherapy. It showed 3 years EFS of 80% which is more than double the EFS of 
historic control group treated without tyrosine kinase inhibitor (TKI) in the past 
 [  23  ] . The outcome has remained stable in this patient cohort . 

 Dasatinib is a second generation TKI with potent BCR-ABL kinase inhibitor 
activity and active against most Imatinib resistant BCR-ABL-mutants (except T3135). 
Dasatinib also inhibits SRC kinase and is an attractive therapy in Ph+ ALL . Unlike 
CML, signaling through Src family kinases is required for development of leuke-
mia. COG study AALL0622 is now testing addition of Dasatinib to same intense 
chemotherapy regimen.  

   MLL Rearrangement 

 The  mixed lineage leukemia  ( MLL ) gene encodes a large complex oncoprotein that 
regulates transcription.MLL methylates histone H3 lysine 4 (H3K4) and regulates 
gene expression (especially  HOX  family gene expression) to control early 
hematopoietic progenitor cell development. MLL gene rearrangements are seen in 
over 80% of Infant leukemia and 10% of childhood ALL cases  [  24,   25  ] . More than 
40 different balanced chromosomal translocations have been identi fi ed as partners 
for  MLL  in ALL. The  fi ve most common  MLL  rearrangements, seen in  MLL -
translocated leukemia are,

   t (4; 11)(q21;q23)-encoding MLL-AF4 (seen in 70% cases)  
  t (11; 19) (q23;p13.3)-encoding MLL-ENL (seen in 13% cases),  
  t (9; 11)(p22;q23)-encoding MLL-AF9,  
  t (10; 11) (p12;q23)-encoding MLL-AF10,  
  t (6;11)(q27;q23)-encoding MLL-AF6.     
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   FLT3 

  FLT3  in-frame deletions and internal tandem duplications (ITDs) in the juxtamem-
brane region and point mutations in the activation loop of the kinase domain results 
in FLT3 protein over expression and constitutive activation of FLT3 signaling path-
ways through STAT5, MAP kinase, and AKT. FLT3-ITD mutations are found in 
approximately 2% of childhood ALL and are associated with poor prognosis. 
Lestaurtanib is a selective FLT3 inhibitor which has shown promising results in 
primary infant leukemia and ALL cells with high expression of constitutively 
activated FLT3. In COG phase three study AALL0631, Lestaurtanib followed by 
chemotherapy is being tested in infants with MLL rearranged leukemia.  

   IKZF1 

 Ikaros encodes a tumor suppressor zinc  fi nger protein that is involved in heritable 
gene silencing. In hematopoietic cells, Ikaros localizes to pericentromeric hetero-
chromatin (PC-HC) where it recruits its target genes, resulting in their activation or 
repression via chromatin remodeling  [  26–  28  ] . The function of Ikaros is controlled 
by posttranslational modi fi cations. Ikaros is shown to be phosphorylated by CK2 
kinase at its C terminus, affecting cell cycle progression  [  29–  31  ] . Reversible phos-
phorylation of Ikaros at speci fi c amino acids controls its sub cellular localization 
as well as its ability to regulate TdT expression during thymocyte differentiation. 
PP1 regulates thymocyte differentiation by controlling Ikaros’ association with 
chromatin remodeling complexes and its ability to repress the transcription of devel-
opmentally regulated genes  [  32,   33  ] . 

 Deletion or sequence mutation of the IKZF1 gene, is a hallmark of HR childhood 
ALL  [  34,   35  ] . Deletion of IKZF1 is present in over 80% of cases of BCR-ABL+ 
lymphoid leukemia, either de novo Ph+ ALL or chronic myeloid leukemia (CML) 
at progression to lymphoid blast crisis. The deletions either involve entire IKZF1 
locus, resulting in loss of function, or delete an internal subset of IKZF1 exons, 
resulting in the expression of dominant negative IKZF1 alleles. Expression of such 
dominant negative IKZF1 alleles in hematopoietic progenitors impairs lymphoid 
development, and loss of IKZF1 accelerates the onset of Ph+ ALL in a retroviral 
BM transplant and transgenic models of this disease  [  36  ] . BCR-ABL negative ALL 
cases with deletion or sequential mutation of IKZF1 have are shown to have higher 
chance of treatment failure  [  37,   38  ] .  

   JAK Mutations 

 The Janus kinase (JAK) family of tyrosine kinases is activated by cytokine binding to 
a Type I cytokine receptor. Activation of JAK leads to phosphorylation of STAT, and 
subsequent activation of both the RAS/RAF and PI3K/AKT pathways, ultimately 
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leading to cell proliferation. In ALL cell lines, members of this JAK family are abun-
dantly expressed. JAK2 has been noted to be expressed more frequently than JAK1 or 
JAK  [  39,   40  ] . Constitutively active JAK/STAT results in uncontrolled proliferation of 
leukemia cells and has been associated with poor prognosis  [  41  ] . Activating mutations 
of JAK also correlate with other gene abnormalities, IKZF1 deletion or mutation and 
genomic rearrangement involving the Cytokine receptor-like factor 2 gene (CRLF2) 
which results in its over expression, both of which confer poor prognosis. JAK family 
of kinases, are mutated in Down syndrome-ALL and High risk non-DS ALL. Inhibitors 
targeting JAK pathways are currently being tested in clinical trials for adults. 
INCB018424 is a competitive ATP inhibitor that binds to the catalytic domain of 
JAK1/2. This agent is known to inhibit both wild-type and mutated JAK proteins. 
COG trial ADVL1011 is a single-agent phase I trial for children with relapsed/
refractory solid tumors, leukemias, and myeloproliferative neoplasms. 

  CRLF2  is a subunit of the type I cytokine receptor, which forms a heterodimer 
with interleukin seven receptor (IL7R). Cytokine binds to the receptor and stimu-
lates B-cell proliferation. Rearrangements involving CRLF2 have causes constitu-
tive dimerization with IL7R, resulting in cytokine-independent activation of JAK2 
and STAT5. This leads to subsequent B-cell proliferation, and possibly cell transfor-
mation, especially in the presence of a constitutively activated JAK mutation  [  41  ] . 
Targeting cells with activated JAK mutations may help to improve prognosis for 
patients with IKAROS mutations and CRLF-2 over expression because of the 
known high-frequency association of these abnormalities. 30% of childhood ‘BCR-
ABL1-like’ ALL cases harbor rearrangements of the lymphoid cytokine receptor 
gene CRLF2, either alone or with concomitant mutation of the Janus kinase genes 
JAK1 and JAK2  [  40–  42  ] .  

   PAX 5 Mutations 

 PAX5 encodes a gene required for B lymphoid lineage maturation. Recent SNP array 
and genomic DNA sequencing on B cell ALL samples have shown deletion and point 
mutation in 32% of cases  [  43  ] . Altered PAX5 may cause differentiation blockade in 
B cell development by targeting transcription factor genes known to be involved in 
B and T cell differentiation (IKAROS -IKZF1, and AIOLOS -IKZF3)  [  44–  46  ] .  

   E2A-PBX1 

 Translocation (1;19) is found in 3–5% of B-ALL cases . E2A  encodes class I b Helix-
loop -Helix (HLH) E47 and E12 E-box transcription factors that regulate the com-
mon lymphoid progenitor (CLP) to pre-pro-B cell transition in early B cell 
development. At (1; 19) (q23; p13) fuses the  PBX1  class II divergent  HOX  gene to 
 E2A  which encodes a chimeric transcription factor that binds and sequesters normal 
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PBX partners leading to repression of E2A target genes. This leads to uncontrolled 
cell-cycle progression  [  47  ] . This translocation is mostly seen in cytoplasmic 
Immunoglobulin positive (cIg+) Pre B ALL rather than cIg negative B -ALL and is 
associated with poor prognosis in those cases.  

   E2A-HLF 

 Translocation (17; 19)  E2A  variant translocation occurs in 1% of cases of childhood 
B-cell precursor ALL, which creates an  E2A-HLF  (hepatic leukemia factor)  fusion gene. 
The novel chimeric transcription factor E2A-HLF promotes aggressive, treatment-resis-
tant pro–B cell stage ALL that shows unique clinical associations including adolescent 
presentation, hypercalcemia, and disseminated intravascular coagulation  [  48  ] .  

   TAL1/SCL 

 TAL1 (SCL) gene at Chromosome band 1p34 encodes a class II basic Helix loop helix 
(bHLH) transcription factor that is a master regulator of hematopoietic lineage com-
mitment.  SCL  is a target for translocation or mutation in nearly 25–30% of childhood 
T-ALL cases. Translocation t(1;14)(p34;q11), and deletions aberrantly activating 
 SCL  during thymocyte maturation causes leukemia by promoting transformation.  

   Homeobox (HOX) Genes 

 Homeobox genes regulate axial patterning and cellular differentiation during 
e mbryonic development. HOX A cluster which belongs to Class I HOX is impli-
cated in T cell leukemia. 

  HOX11  (also known as  T cell leukemia ,  homeobox 1  and  TLX1 ) is a class II orphan 
 HOX  gene that is normally required for survival of splenic precursors during organo-
genesis. Translocation t(10;14)(q24;q11) or t(7;10)(q34;q24), causes juxtaposition of 
HOX11 to  TCR  a / d  - or  TCR  b  -loci regulatory elements leading to increased 
expression of HOX11. Over expression of HOX11 is found in about 5% of pediatric T cell-
ALL. Loss of negative regulatory elements with cytogenetic rearrangements or by 
loss of silencing DNA methylation also causes aberrant HOX expression. HOX11-
containing T-ALL has a better prognosis than other T-ALL subtypes  [  17,   49–  51  ] . 

  HOX11L2  ( TLX3 ) is another well-studied class II orphan  HOX  gene that under-
goes a t(5;14)(q35;q32), bringing it under the in fl uence of  TCR a  - / d  -regulatory 
elements downstream of  BCL11B  (a gene expressed throughout T cell development) 
in ~20% of children with T-ALL and these cases have less favorable prognosis 
compared to HOX11 positive T cell ALL  [  16–  52  ] .  
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   NOTCH1 

 NOTCH is a transmembrane heterodimeric receptor. Sequentially cleavage of 
NOTCH by an ADAM metalloproteinase and then c-secretase, releases the intracel-
lular domain Notch1 (ICN1). There it forms a transcription complex which functions 
as a transcription activator that regulates T-cell development in normal cells, and has 
been shown to activate transcription of genes such as MYC and NFKB1. Translocation 
t (7; 9) (q34; q34.3), fuses  TCRB  to the gene encoding the NOTCH1 and is extremely 
uncommon. It is found in less than 1% of T cell ALL. Gain-of-function intrageneic 
mutation in NOTCH1 were recently discovered in ~55% of translocation negative 
T-ALL cases, which results in ligand-independent cleavage of Notch1  [  53,   54  ] . This 
process still needs gamma secretase proteolysis to release active ICN1 which makes 
Gamma secretase Inhibitors (GSI) attractive therapy for NOTCH1 altered T cell 
ALL. GSIs are under development, and being tested in phase I trials  [  55–  57  ] .  

   PTEN 

 PTEN is a tumor suppressor with lipid and protein phosphatase activity that opposes the 
receptor tyrosine kinase–PI3K-induced activation of AKT.  PTEN  is mutated and is the 
most consistently down regulated gene in GSI-resistant T-ALL cell lines. Gain-of-function 
 NOTCH1  mutations and mutational loss of  PTEN  are associated with resistance to GSIs in 
T-ALL. This is because the malignant clone transfers its oncogene addiction from constitu-
tive NOTCH1 signaling to constitutive PI3K-AKT signaling.  

   FBXW7 

 FBW7 (F-box- and WD repeat domain–containing 7) is a protein substrate recognition 
subunit of the SCF-type E3 ubiquitin ligases. It is mutated in a wide range of human 
cancers, where it functions as a tumor suppressor. FBW7 mutation block FBW7- 
mediated ICN1 and possibly MYC degradation, leading to excessive NOTCH pathway 
signaling  [  58,   59  ] . FBW7 mutations make T-ALL cell lines and relapsed T-ALL insen-
sitive to GSIs. Mechanism for drug resistance that is potentially related to stabilization 
of MYC expression. FBW7 mutations may also coexist with NOTCH1 heterodimeriza-
tion–domain mutations to further augment NOTCH pathway signaling  [  59  ] .  

   LYL1 

  LYL1  encodes another class II basic helix loop helix transcription factor that forms 
heterodimers with class I bHLH proteins, such as E2A (E47 and E12) and HEB. 
 LYL1  was identi fi ed from a t(7;19)(q35;p13) in a T cell leukemia line and is 
aberrantly expressed in only a few T-ALL cases  [  17,   59,   60  ] . LYL1 has an unknown 
cellular function, but it has an overlapping expression pattern with TAL1.  
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   MYB 

  MYB  is the cellular homolog of the  v-Myb  oncogene which is essential for T cell 
development in mouse. Translocation and duplication involving MYB is detected in 
8–15% of T cell ALL cases leading to  MYB  over expression and a blockade in T cell 
differentiation. Translocation t(6; 7)(q23;q34), juxtaposes the  C-MYB  gene at chromo-
some band 6q23 with the  TCRB  locus. Interestingly, translocation t(6; 7) is noted in 
younger children with T cell ALL. These cases also contain NOTCH1 mutations and 
CDNK2A p16 ARF deletions. This translocation is readily detectable by FISH but not 
by conventional karyotyping due to subtelomeric location of C-MYB and TCRB.  

   LMO1 and LMO2 

 LMO1 and LMO2 are oncogenic transcription factors, when fused to different TCR 
loci lead to unscheduled expression of the respective transcription protein.  LMO1  
(e.g.,  RBTN1, TTG1 ) and  LMO2  (e.g.,  RBTN2, TTG2 ) genes encode cysteine-rich 
tandem LIM–only domain-containing proteins that interact with a variety of nuclear 
factors, including TAL1 in erythroid cells. LMO 2 translocations occur in 10–20% 
T cell ALL cases.  

   Conclusion 

 Detailed information about genetic alterations in Leukemia is being generated as a 
result of high throughput genomic analysis tools and many potential targets for 
therapy have been identi fi ed. Ideal ‘target’ is a protein or pathway which is speci fi c 
to the tumor cell, not shared by normal cells, essential for tumor cell maintenance 
and/or proliferation and is easily accessible by therapeutic agent. Understanding 
these targets will help us identify and develop best targeted therapies for childhood 
leukemia.      
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