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Synonyms

Network sampling; Nonlinearity; Phase transi-
tion; Social networks

Glossary

Social Actor An entity with the ability to create
or nullify social relations

Social Relation Anything that exists, occurs, or
flows between two social actors

Dyad A set of two social actors potentially or
actually connected by a social relation

Triad A set of three social actors all of whom
are potentially or actually connected to each
other by social relations

First Neighbors Social actors who directly con-
nect to each other via a social relation

Second Neighbors Social actors who do not
directly connect to each other via a social
relation but whom both directly connect to the
same intermediary

Mth Neighbor Social actors who connect to
each other via a path consisting of m (but no
fewer) social relations involving m�1 (but no
fewer) intermediaries

Clustering The finding, common to social
networks, that two social actors who share
a common first neighbor have a dispropor-
tionately great probability of also being first
neighbors of each other (also referred to as
transitivity)

Phase Transition A sharp combinatorial transi-
tion point such that only a relatively small
increase in network density (or some other
individual-level network characteristic) transi-
tions the network from the situation in which
virtually no network member connects via a
path to any other network member to the
situation in which most network members are
connected via a path to most other network
members (also referred to as a critical point or
double jump threshold)

Giant Component A single component that
connects the majority of network members

R. Alhajj, J. Rokne (eds.), Encyclopedia of Social Network Analysis and Mining,
DOI 10.1007/978-1-4614-6170-8,
© Springer ScienceCBusiness Media New York 2014

http://dx.doi.org/10.1007/978-1-4614-6170-8_210
http://dx.doi.org/10.1007/978-1-4614-6170-8_170
http://dx.doi.org/10.1007/978-1-4614-6170-8_100306
http://dx.doi.org/10.1007/978-1-4614-6170-8_100307
http://dx.doi.org/10.1007/978-1-4614-6170-8_100308
http://dx.doi.org/10.1007/978-1-4614-6170-8_100308
http://dx.doi.org/10.1007/978-1-4614-6170-8_110091


S 1608 Sampling Effects in Social Network Analysis

Chain-referral Sampling A sampling tech-
nique that involves selecting initial re-
spondents and then generating all future
respondents by following along the contact
network of those who have already sampled
(also referred to as snowball, link-tracing, or
random walk samples)

Definition

While a great many useful statistical models
and visualizations have been developed to ex-
plore large-scale complex networks, fewer have
attempted to relate these models to data generated
by samples. While, in many fields, complete
(or near-complete) data is widely available, and
while the Internet has made even more readily
available, complete data about large-scale com-
plex networks sufficient to answer many com-
pelling social science questions does not exist
and cannot be reasonably generated. In these
cases, sampling theory must be used to connect
data to models. This proves difficult for a variety
of reasons such as: data collection methodolo-
gies which, while attempting to overcome non-
response bias, deviate from standard sampling
practices; and, the non-independence of both first
neighbors and second neighbors. This entry re-
views some of the different ways which have
been created to faithfully translate data sampled
from large-scale complex networks into useful
statistics.

Introduction

One of the fundamental goals of social science
is to understand how the interactions of indi-
viduals translate into the characteristics of the
social systems they comprise (Schelling 1978).
Network models have a potentially powerful role
in this task.

To model the social world in network terms is
to focus on social entities and the social relations
among them, on the patterning of relations among
social actors rather than the correlation among
social actors’ attributes. Often these entities

forming the basis of social networks are indi-
vidual people, but they can also be households,
business firms, nations, or any social actor with
the ability to create or nullify social relations.
A social relation can mean anything that occurs
or flows between two social actors such as
information (advice, gossip, conversation, etc.),
tangible resources (being exchanged, stolen,
etc.), and emotional affect (Borgatti et al. 2009).
Social relations never involve only a single social
actor, and most, although not all, of them require
at least the implied consent of both parties to
exist. Social actors a and b determine the quality
and quantity of their interaction with each other,
including none at all, based not only on the
motivations to interact with each other but also
based on the social resources available to them
through their other relations. Social relations are
not independent.

Some research into large, complex networks
ignores this nonindependence characteristic of
social networks, and other research models
its effects only with first-order neighbors and
not second-order neighbors, threatening their
theoretical reliability. Methodologies have been
developed, however, to overcome these statistical
obstacles in some cases and to fruitfully exploit
them in others. This entry reviews these methods.

Key Points

Unlike many other types of network data, gath-
ered from large databases or the Internet, so-
cial network data typically derives from samples
and thus requires mathematical theory to reliably
translate these sample statistics into estimates of
population parameters.

When sampling from a social network, the
non-independence of the sampled individuals can
be both a resource to be exploited and an obstacle
to be overcome.

This entry reviews three distinct ways in which
social network researcher have dealt with nonin-
dependence:
1. Well-defined statistical models faithfully

deriving local-level network properties from
sample data
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2. Network sampling techniques which attempt
to exploit the social network structure to
yield more robust estimates of population
parameters

3. Statistical models translating local-level in-
formation derived from traditional samples
into reliable estimates of large-scale network
realities

Deriving Local-Level Network
Properties from Sample Data

Many useful sample estimators have been derived
for local-level network properties (Granovetter
1976). As an example, Frank (1978) showed that
a dyad count, C , a count of the number of distinct

types of the

�
n

2

�
possible dyads which can

be induced from the network, has an unbiased
estimator given by

OC D N .N � 1/ Z

n.n � 1/

where N is the total number of individuals in
the population, n is the number of individuals in
the sample, and Z is the dyad count within the
sample and n � 2. If N is large, n � 4, and
the sampling fraction n/N is a relatively small
nonzero number p, the variance

�2 � C

p2

has an unbiased estimator O�2:

O�2 �
PN

iD1 Z2
i �Z

p4

Frank (1978) further showed that a triad count
C , a count of the number of distinct types of the�

n

3

�
possible dyads which can be induced from

the network, has an unbiased estimator given by
OC D Z=p3, where Z is the triad count within the

sample, pr D n.r/=N .r/, and n � 3.

If the sampling fraction p is a small number
and N is large and n � 6, we have �2 � C=p3

and the variance has an unbiased estimator

O�2 � Z �PN
iD1

PN
jD1

Z2
ij:

2 C
PN

iD1
Z2

i::

4

p6

For decades, these types of statistics, among
others, have proved foundational to the devel-
opment of social network sampling theory. Oth-
er sample estimators have been derived which
can be used to connect data sampled from a
network to still other local-level network pa-
rameters (i.e., phenomena only depending on a
single node or their immediate contacts). Deriv-
ing sample estimators for global-level network
properties has proved more troublesome, how-
ever; the inherent non-independence of the sam-
pled individuals and the relations interconnecting
them inhibits analysis. Global-level properties,
such as centrality and network centralization, for
example, have proven to be highly sensitive to
microlevel changes (Butts 2006, 2009).

Using Network Samples to Effectively
Analyze Population Characteristics

While the nonindependence of sampled individ-
uals, inherent to social networks, can potentially
impede analysis when sampling from a network,
under some circumstances, this same lack of
independence can prove advantageous. One of
these key circumstances involves estimating the
characteristics of “hidden populations” such as
drug users, the homeless, or artists (Heckathorn
1997), as well as the enormous set of nonre-
sponders (both actual and potential) who would
choose to opt out if a survey was requested and
frustrate virtually all survey efforts (Grannis et al.
2011).

Standard sampling and estimation techniques,
which require the researcher to select sample
members with a known probability of selection,
necessitate that researchers have a sampling
frame listing all members in the population;
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however, for many populations of interest, such
a list does not exist. Chain-referral (also known
as snowball (Coleman 1958) or link-tracing)
samples, which select initial respondents but
then generate all future respondents by following
along the contact network of those who have
already been sampled, have been shown to be
effective at penetrating hidden populations even
without a sampling frame.

Such samples’ use has been limited, how-
ever, due to the difficulty of making statistical
inferences. Since members of the population to
be sampled do not have the same probability
of selection, those with many contacts are more
likely to be included in the sample than so-
cial isolates. Also, biases in those “seeding” the
sample, those first selected and from whom all
subsequent respondents were indirectly recruited,
may compound in unknown ways as the sampling
process continued.

Because of this, chain-referral samples have
often been considered to be nonprobability
or convenience samples “which can only be
assessed by subjective evaluation” (Kalton 1983)
and “conventional wisdom among sociologists,
public health researchers, and statisticians is that
chain-referral sampling holds great promise for
a number of problems, especially the study of
hidden populations, but that it is so hopelessly
biased that it cannot be used to make reliable
estimates” (Salganik and Heckathorn 2004,
p. 197).

Salganik and Heckathorn (2004), however,
showed that, for any reciprocal relation, we
can recover the proportion of any population
belonging to a group A, PPA, with knowledge
only of the network structure connecting the
population, the type of data which chain-referral
samples most reliably generate:

PPA D
bDB
1CB;A

bDA
1CA;B CbDB

1CB;A

wherebDA is the estimate of the average number
of relations an individual of type A is involved
with and bCAB is the proportion of relations

originating from an individual of type A which
connect with an individual of type B .

They showed that the numerator and denom-
inator of this statistic are both unbiased (Brew-
er and Hanif 1983) estimates of the population
parameters and that the ratio of these two unbi-
ased estimators is asymptotically unbiased with
bias on the order of n�1; where n is the sample
size (Cochran 1977).

The mean degree of a chain-referral sample
would be higher than the mean degree of the pop-
ulation since these methods overrepresent people
with high degree (Erickson 1979; Kalton and
Anderson 1986; Eland-Goosensen et al. 1997);
therefore Salganik and Heckathorn (2004) used
two distinct mathematical approaches to show
that, assuming only that nodes are drawn with
probability proportional to their degree, the mean
degree of the population can be estimated by

bDA D nAPnA

iD1
1

di

where nA is the number of individuals of type A

in the sample, and di indexes over the number of
individuals of type A in the sample.

Furthermore, Salganik and Heckathorn (2004)
showed that since recruitments originating from
a person of type A can be categorized into two
sets, those that connect with another person in
group A; rAA and those which connect with a
person in group B; rAB and since the observed
recruitments are a random sample from all edges,
an unbiased estimate for CA;B is given by

1CA;B D rAB

rAA C rAB

Thus, unlike a conventional probability sampling
design, one can use data generated from a
chain-referral sample not to directly estimate
population parameters but rather to analyze the
population specifically as a network. One uses
the sample to make estimates about the network
connecting the population and only then is this
information about the network used to derive
population proportions. By not attempting to
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estimate directly from the sample proportions
to population proportions, one avoids many of
the well-known problems with chain-referral
samples (Heckathorn 2002).

Modeling the Phase Transition from
Sample Data

Arguably, the most fundamental global-level
property of a large-scale, complex network
concerns whether it contains a giant component,
a single component that connects the majority of
network members. If it does not, if the network is
not connected, most other global network prop-
erties, like centralization, have little meaning.
Furthermore, the only assumption about the
structure of the network underlying chain-referral
estimation procedures such as respondent-driven
sampling is that the population basically consists
of one connected component and that there exists
a path between every person and every other
person (Salganik and Heckathorn 2004).

While they depend to some extent on a
network’s individual-level properties, giant
components, however, do not emerge as a
linear response to individual-level changes but
rather subtle changes in relations potentially
produce extraordinarily different macro-level
outcomes. As the average number of relations
among individuals increases, the size of the
components that they form does not grow
relatively smoothly from small to large. Instead,
in virtually all networks, a sharp threshold point
exists combinatorially such that only a relatively
small increase in the proportion of relations
transitions the network from the situation in
which virtually no network member is connected
via a path to any other network member to the
situation in which most network members are
connected via a path to most other network
members (Erdos and Rényi 1960; Janson et al.
2002). This has been referred to as the “critical
point” or “the double-jump threshold” (Molloy
and Reed 1995, 1998) or the “phase transition.”

In thermodynamics, where the concept of a
phase transition originated, it refers to an abrupt

change in physical properties resulting from a rel-
atively small change in temperature. Readers will
be familiar with the phase transition occurring
when water entirely transforms from a crystalline
solid (ice) to a liquid over a relatively small
temperature threshold. As temperature rises, wa-
ter molecules remain organized in a crystalline
structure until, during a very short interval of
degrees, they completely transform into a liquid
form. A relationship, similar to that between tem-
perature and molecular structure, exists between
relational density and social network structure. If
one imagines a sparse network with nodes exist-
ing only in small, disconnected components, as
the density of relations increases, there would be
no large-scale effects until a threshold point was
achieved, when the addition of a relatively few
relations transforms the population from many
small, disconnected, insular communities into a
network composed primarily of one dominan-
t, comprehensive community whose constituent
members are mutually reachable via paths.

Figure 1 illustrates this. It represents 10,000
randomly generated networks, each with 1,000
nodes and each with an average degree varying
between zero and six. It plots the proportion
of nodes in each network that is part of the
largest component as a function of the average
degree of the network. The three lines drawn
on the graph represent three distinct theoreti-
cal slopes clearly evidenced in this plot: before
the phase transition, during the phase transition,
and after the phase transition. Clearly, as the
average degree rises, so does the size of the
largest component in the network. While the
increase is rather gradual as the average degree
rises to one, the slope changes spectacularly,
increasing almost 20-fold, as the average degree
goes to two and then, just as dramatically, re-
turns to a slope similar to its previous one. The
size of the largest component, which is gradu-
ally increasing along most of the continuum of
increasing degree, suddenly “jumps” to a new
threshold, one that it would not have achieved
until the network was 20 times as dense as it
currently is, if the phase transition had not oc-
curred.
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Sampling Effects in Social Network Analysis, Fig. 1
The phase transition simulated by 10,000 randomly gen-
erated networks, each with 1,000 nodes. Lines represent
theoretical slopes: before, during, and after the phase
transition

Complications Unique to “Social”
Networks

As a result of the extreme sensitivity of the phase
transition, and other global network properties, to
relatively trivial changes in local-network prop-
erties, great care must be exercised when using
sample data to understand global-level network
properties since virtually all samples are taken
of local-network properties. For example, if we
wanted to estimate whether the phase transition
had occurred in a social network for which on-
ly sample data was available, there are known
local-level properties, unique to social networks,
which must be accounted for. Most important
among these is clustering (illustrated in Fig. 2).
In Fig. 2, node 1 connects to four others, and
each of these also connects to four others (assume
that the network continues on past the nodes
labeled 6 and higher but that those edges simply
are not illustrated here). While node 1 has four

1
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Sampling Effects in Social Network Analysis, Fig. 2
An illustration of clustering. Node 1 has four first neigh-
bors, labeled 2 to 5, and nine second neighbors, neighbors
of neighbors, labeled 6 to 14

first neighbors, if we assumed that the number
of second neighbors, neighbors of neighbors,
would simply be a function of the number of
first neighbors (i.e., that individuals only create
or dissolve network ties based on their immediate
interactions), we would expect node 1 to have
12 (4�3) second neighbors. We would expect
that each node connected to node 1 would have
the same average number of neighbors as node
1 (four) but one less due to the fact that each
has already spent one of their four relations con-
necting to node 1. Instead, node 1 has only nine
second neighbors. This occurs because nodes 2
and 3, both of which are first neighbors of node
1, each spend one of their relations connecting
to each other and because nodes 4 and 5, both
first neighbors of node 1, share a common second
neighbor in node 12.

To account for the importance of clustering
such as this on large-scale network properties,
Grannis (2010) distinguished the number of first
and second neighbors as two distinct variables,
identifying the mean number of neighbors of a
typical randomly chosen node as f1 while letting
f2 represent the mean number of distinct second
neighbors, regardless of how this number arises,
whether influenced by transitivity or clustering or
any other process that acts upon the distribution
of second neighbors. The variable f2 is measured
independently of f1. Because this variable, f2,
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ignores those edges that do not contribute to
unique second neighbors, it therefore explicitly
accounts for clustering (as well as the necessary
connection with the original node). Thus, the
ratio g = (f2=f1/ equals the proportional increase
in the number of new neighbors. Thus, in the
network illustrated in Fig. 2, f1 = 4, f2 = 9, and
g = 2.25.

Using this notation, we expect the average
node has f1 first neighbors, f2 D f1g1 sec-
ond neighbors, f3 D f1g2 third neighbors, and
fm = f1gm�1 mth neighbors. The total number
of neighbors reached in l (or fewer) steps is given
by the geometric series

lX
mD1

fm D
lX

mD1

f1gm�1 D f1
gl � 1

g � 1

The expected size of the connected component to
which a typical node belongs equals one (itself)
plus the number of neighbors it could reach after
an infinite number of steps. Substituting1 for l

into the formula above and adding one yields

f1
g1 � 1

g � 1
C 1

If g < 1, g1 asymptotically approaches zero and
the expression reduces to

1C f1

1 � g

If g > 1, the first term (and thus the entire
expression) approaches infinity; the average com-
ponent size is infinite (i.e., a giant component
has formed). If, however, g = 1, then the first
term becomes indeterminate, the phase transition
point. A giant component exists when g > 1 and
does not exist when g < 1.

Intuitively, one can understand this as follows.
Assume that Jacob connects to Sophia, Ben, and
Hannah. We can consider these individuals as
the starting points on branches originating from
Jacob. Regardless of Sophia’s, Ben’s, or Han-
nah’s initial degrees, they must use one tie con-
necting to Jacob (else they would not be Jacob’s
neighbor), and they may use some (perhaps none,

perhaps all) of their other ties (if any) connecting
to each other (i.e., clustering). Any remaining ties
will ramify out into new branches. Assume that,
after connecting to Jacob and perhaps to each
other, Sophia, Ben, and Hannah have zero, two,
and one remaining ties, respectively, available to
connect to new nodes. By connecting to Sophia,
the number of branches originating from Jacob
has decreased; by connecting to Ben, the number
of branches originating from Jacob has increased;
and, by connecting to Hannah, the number of
branches originating from Jacob has stayed the
same. In general, if the neighbors which any
typical node is likely to connect to will, after
accounting for ties spent in clustering and the
initial connection, on average yield more than
one new branch each, this process will expand
throughout the network and a giant component
can be expected to form.

Illustrative Example: Sampling Core
Discussion Networks from the
General Social Survey

To illustrate, consider the General Social Survey
(GSS) data on the confidants with whom Amer-
icans discuss important matters. Examination of
trends in GSS discussion networks (which were
collected in 1985, 1987, and 2004) at the individ-
ual level have reported important changes in the
last generation. For example, McPherson et al.
(2006, p. 353) noted that individual networks are
a third smaller in 2004 than in 1985 (about two
people instead of three) and that the number of
people saying there is no one with whom they
discuss important matters nearly tripled.

To estimate whether the phase transition has
occurred and a giant component exists, we need
to calculate the proportional increase in the num-
ber of new neighbors,

g D f2

f1
.f1 ¤ 0/

If g > 1, then the phase transition has occurred.
To perform this calculation, we need to know
the number of a node’s neighbors, f1, as well
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Sampling Effects in Social Network Analysis, Table 1 Values for individual-level predictors of the phase transition

1985 2004

Preferential
attachment

Random Preferential
attachment

Random

Proportional increase
in new neighbors (g)

No
clustering

2.975
(0.06935)

2.975
(0.05055)

2.565
(0.09166)

2.565
(0.09771)

Especially
close

1.815
(0.04975)

1.894
(0.03968)

1.505
(0.06020)

1.592
(0.06161)

Neither
especially
close nor
strangers

0.6858
(0.02996)

0.8277
(0.03326)

0.5046
(0.03302)

0.6818
(0.03902)

Number of respondents 1,525 1,466

Average number of first neighbors (f1/ 2.980 (0.4409) 1.987 (0.04409)

as the number of distinct second neighbors that
are not also first neighbors, f2. The GSS data
provides information on the first variable, f1,
the number of others each individual nominates
as someone with whom they discuss important
matters. Data concerning the second variable,
f2, however, is not readily apparent and requires
some calculation.

The simplest, although probably not the most
accurate, way to do this would be to assume
that one’s discussion partners do not discuss
important matters with each other (i.e., that there
is no clustering) but, rather, that they link to
others randomly with the only stipulation being
that each discussion partner has used one tie
connecting to the respondent; all other ties extend
outward. Table 1 displays results generated using
this model. It shows that the value of g to be
2.975 in 1985 and 2.565 in 2004.

Alternatively, one could theorize that some of
an individual’s discussion partners also discuss
important matters with each other. The GSS did
not ask respondents which of the people they
knew, whom they discussed important matters
with, also discussed important matters with each
other. The GIS did, however, ask respondents to
characterize the relationship between each pair of
the people they mentioned into three categories:
as “especially close, as close or closer” than their
relationship to the respondent; “total strangers”;
or somewhere in-between. Which, if any, of these
corresponds to discussing important matters is
unknown.

If we theorize that all pairs of individuals iden-
tified as “especially close” are, in fact, discussion
partners, then members of pairs so identified each
spend one of their ties connecting to the other.
Thus, fewer ties will extend outward to others.
Table 1 shows that, under this model, the value
of g is 1.894 in 1985 and 1.592 in 2004. For the
“no clustering” model as well as the model of
those who were “especially close” as discussion
partners, g > 1 indicates that a giant component
clearly unites most isolates.

Some might assume that only the more exclu-
sive “especially close” relation represents those
who would have in fact nominated each other
as someone they discuss important matters with
if the GSS had surveyed them. However, while
it seems reasonable to assume that not all pairs
of individuals whom respondents categorized as
neither “especially close” nor “total strangers”
would have nominated each other as someone
they discuss important matters with, it is certainly
arguable that some of them might have, given
that this intermediate category implicitly includ-
ed those “almost as close.” Thus, if we further
theorize that not only those who are “especially
close” but also those in the intermediate cate-
gory, neither “especially close” nor “strangers,”
are also discussion partners, then an even larger
number of pairs of those directly connected to
the respondent will spend ties connecting to each
other. Table 1 shows that, using this model, the
value of g is 0.8277 in 1985 and 0.6818 in 2004.
If this model is correct, g < 1 tells us that in
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neither year has the phase transition occurred and
all components are minuscule.

This definitional distinction has dramatic
effects when one considers the network model
it generates. The difference between these two
scenarios is not merely that one component is
somewhat larger, but rather it is a difference in
orders of magnitude. Theoretically, it signals the
difference between a society that is primarily
united into a single discussion network and a
society that has utterly disintegrated.

In the first case, it is possible that the typical
person is involved in an extended discussion
network (e.g., she discusses important matter-
s with someone who discusses important matters
with someone who discusses important matters
with someone, etc.) that ultimately includes
multiplied millions of people. While it is
unlikely that the specifics of one’s discussions
transmit over any distance, it is possible that
general norms or values could diffuse and
a general awareness, if not consensus, could
form.

The second case is quite distinct. To under-
stand just how tiny the nonphased components
are, we can use the formula derived above for
calculating average component size when g < 1:

1C f1

1 � g

We find that, in this case, the size of the average
discussion component is 18 in 1985 and 7 in
2004. Thus, in this case, most persons’ discussion
networks do not extend much beyond those they
have direct discussions with. Instead of soci-
ety consisting of an extended network diffusing
norms and values, it would have been pulverized
into tiny groups, perhaps no larger than a single
individual’s discussion network.

Summary

This entry has reviewed some of the many unique
issues which arise when one uses sample data
to model social networks. In some cases, such

as with chain-referral sampling, social network
conceptualizations may prove advantageous, as
statistical methods have been created which allow
researchers to translate otherwise questionable
data into robust estimates of population param-
eters. In contrast, other cases demonstrate that
when using conventional sample data to under-
stand network processes, great care must be taken
in how one theorizes, defines, and operationalizes
local-level processes. Social actors, unlike nonso-
cial network nodes, are aware of and respond
to the actions or inactions of both their first
neighbors and their second neighbors (Friedkin
1983). Relatively trivial variations in the social
responses by these individual actors may have
dramatic effects on the theoretical understanding
which results from analyzing the sampled da-
ta.

Cross-References

�Network Representations of Complex Data
�Probabilistic Analysis
�Probabilistic Graphical Models
�Research Designs for Social Network Analysis
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Synonyms

Complex networks; Network models; Scale-free
distributions; Universal scaling

Glossary

Degree The degree of a node in a network is the
number of edges or connections to that node

Node Degree Distribution The distribution func-
tion P.k/ that gives the probability that a node
selected at random has exactlyk edges

Power-Law Distribution Has a probability func-
tion of the form P.x/ � x�a

Fat-Tailed Distributions Have tails that decay
more slowly than exponentially. All power-
law distributions are fat tailed, but not all fat-
tailed distributions are power laws (e.g., the
log-normal distribution is fat tailed but is not a
power-law distribution)

SF Network The network with power-law distri-
bution of node degrees

ER Graph The network model in which edges
are set between nodes with equal probabilities

Scale-Freeness Feature of objects or laws that
does not change if length scale is multiplied
by a common factor, also known as scale
invariance
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Definition

The notion of scale-freeness and its prevalence in
both natural and artificial networks have recently
attracted much attention. In physics and mathe-
matics, scale-freeness (or more formally – scale
invariance) is a feature of objects or laws that
does not change if length scale is multiplied by a
common factor. The term gained large popularity
in 1999 when Barabasi and Albert used it as a
descriptor of networks in which node degrees
(vertex connectivity) follow a power-law distribu-
tion (Barabasi and Albert 1999). Since the most
large complex networks are characterized by the
distributions which at least partially are reminis-
cent of power functions, the term “scale-free,”
applied to networks, losts its formal meaning and
nowadays is widely used (albeit erroneously) to
describe the network with fat-tailed node degree
distribution.

The overwhelming number of studies
conducted in the last decade made it clear that
the scale-free network topology can have a strong
impact on the dynamical processes taking place
on these networks such as opinion formation
(Aleksiejuk 2002), diffusion of information
(Cohen et al. 2000), and epidemic spread-
ing (Pastor-Satorras and Vespignani 2001).
Nowadays, the recently acquired knowledge
about the network structure revolutionizes not
only many fields of science, like biology,
computer science, and economics, but also the
society and its perception of the ubiquitous
networks.

Introduction

Scale-freeness is the property which is fas-
cinating especially for physicists, since most
phenomena studied by physicists are not scale
invariant. Among seminal exceptions are phase
transitions in thermodynamic systems which
are associated with the emergence of power-
law distributions of certain quantities (Yeomans
2002). Similarly, the phenomenon known as self-
organized criticality (a property of dynamical
systems which have a critical point as an

attractor) displays the spatial and/or temporal
scale-free nature of the critical point of a phase
transition, but without the need to tune control
parameters to precise values (Bak 1996).

In mathematics, scale invariance is an exact
form of self-similarity where at any magnifica-
tion, there is a smaller piece of the object that is
similar to the whole. Self-similarity is a typical
property of fractals.

A common aspect of both phase transitions
and self-similar fractals is a universality, i.e., the
observation that there are properties for a large
class of different systems that are independent of
the dynamical details of the particular system.

These reasons (universality and criticality)
explain the excitement of scientists, when the
power-law character of node degree distribution
has been observed in drastically increasing
number of real networks. The promise of
the discovery of the universal character of
surrounding us social, technological, and natural
networks made the notion of scale-freeness
frequently misused. Nevertheless, it is a notion
that has clearly taken root with today’s society
effectively guiding the communicative patterns of
different scientific communities. In the following
paragraphs, we will use this notion in its less
formal meaning as a short cut of the networks
with fat-tailed (or almost power law) distribution
of node degrees.

Despite the pure mathematical differences, the
properties of idealized (scale-free) and realistic
(almost scale-free) networks have the same im-
plications for real-world applications.

Key Points

To understand the scale-free architecture of the
networks, it is useful to contrast it with the
other network model which dominated the net-
work research for decades, namely, the model
of network developed by Erdos and Renyi in
1959 (ER graph) (Erdos and Renyi 1960). The
importance of the ER graph for modelling real-
world networks is currently diminished; howev-
er, it is still fundamental model in the random
network theory. In the following, we will briefly
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introduce ER graphs and emphasize differences
between them and SF networks. We will present
the methods of detection of the scale-free char-
acter of the node degree distribution in networks.
We will discuss the most popular model in which
the growing network evolves into scale-free state.
Finally, we will discuss the vulnerability of SF
networks to epidemics and intentional attacks and
their extreme tolerance on random failures.

Historical Background

Power-law distributions in nature and society
were already known in the nineteenth century.
Italian economist, Vilfredo Pareto, in 1897, was
the first to discover that the distribution of income
in society follows the power law (Barabasi 2002).
In 1925, George Udny Yule proposed a stochastic
process (later called the Yule process, but is now
better known as preferential attachment – see the
next section) that leads to a distribution with a
power-law tail – in this case, the distribution of
species and genera (Yule 1925). In 1965, Derek
John de Solla Price demonstrated a power-law
distribution of links in a network of scientists
linked by citation de Solla Price (1965). Although
D. Price was a physicist, his discovery was to-
tally ignored in physical sciences. In physics,
the lattices and random networks like ER graph
were the main objects of study until the late
1990s, when Barabasi and others rediscovered
the importance of SF networks in technology,
nature, and society.

Properties of Scale-Free Networks

Two OpposingModels of Random
Networks
The definition of ER graph is simple: in a graph
with N nodes, each possible pair of distinct nodes
is connected with an edge with probability p. In
that model, the majority of nodes have a degree
that is close to the average degree of the whole
network, and this average has small variance (the
number of nodes with a given degree decays
exponentially fast away from the mean degree).

In Fig. 1a, we show a typical representative of
this model. As one can see, the sizes of all nodes
(which reflect node degrees) are similar. For large
N and infinitesimal p (i.e., for large and sparse
networks), the node degree distribution follows a
Poisson law

P.k/ D e�pN .pN /k

kŠ
;

where k is a node degree and the average n-
ode degree hki D pN (Newman et al. 2002).
The characteristic bell shape of P.k/ around the
average node degree is visible in Fig. 2a.

As we stated previously, recent studies show
that most large complex networks are character-
ized by a connectivity distribution different to a
Poisson distribution (among the exceptions are
train networks or electrical power grids). For ex-
ample, the World Wide Web, Internet, e-mail, and
collaboration networks have a degree distribution
that follows (at least in some range) a power-law
relationship defined by

P.k/ � k�� ;

where ”, called scale-free exponent, ranges
usually between 2 and 3 in real networks. Such
networks have a very uneven distribution of
connections. There are many nodes with only
a few links and a few nodes with a large number
of links. The difference between this type of
network and a Poisson-like one is clearly visible
in Fig. 1b, where some nodes act as “highly
connected hubs” while the most of them has only
one connection. The fat tail of this distribution,
shown in Fig. 2b, is an evidence of an extreme
heterogeneity of connections in the network.

Scale-Freeness of Networks with
Power Law Distribution of Node
Degrees

Why the networks with the power-law distri-
butions of node degrees are called scale-free?
It is because a power-law distribution is scale
invariant. If we rescale a measure of connectivity
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Scale-Free Nature of Social Networks, Fig. 1 Two realizations of an ER graph (a) and SF network (b) both with the
same number of nodes and edges. Size of the nodes is proportional to their degrees

Scale-Free Nature of Social Networks, Fig. 2 Node degree distributions of ER graph (left column) and SF network
(right column) in normal (top row) and double logarithmic (bottom row) scale

(e.g., counting how many tens of connections a
node has, instead of counting all its connections),
the connectivity distribution P.10k/ will
be still proportional to the original P.k/.

Mathematically, multiplying degree k by a
constant c, the distribution remains the same
and only scales the function P.ck/ D c� P.k/,
where P.k/ D ck�� . To show that power-law
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distribution is the only one, which fulfils this
condition, we take the logarithm of its both sides:

ln P.ck/ D �� ln c C ln P.k/:

Now, we introduce a new function R.k/ defined
as R(ln k/ D P.k/. This gives

ln R.ln ck/ D �� ln c C ln R.ln k/

and, after rearrangement,

ln R.ln c C ln k/ � ln R.ln k/

ln c
D ��:

In the limit ln c ! 0, the left side becomes a
derivative

d ln R.ln k/

d ln k
D ��:

Since the right side is constant, integrating the
equation gives

ln R.ln k/ D �� ln k C const

and finally

R.ln k/ D P.k/ D const � k�� :

An important difference between fat-tailed and
Poisson-like distributions is that moments of the
former (i.e., mean hki and variance ı2.k// poorly
characterize the distribution (in fact, they are un-
defined for certain power-law distributions). The
moments �m of order m are defined as follows:

�m D
Xkmax

kD0
kmP.k/:

From the definition, in infinite networks (i.e.,
when kmax ! 1/, all higher moments of order
m � � � 1 of the power-law distribution diverge.
Since a mean and a variance are the moments
of the first and the second order, respectively, a
variance is infinite for ” in the range of typical
real-world networks .2 � ” � 3/:

ı2 D �2 �
X1

kD0
k2k�� D 1; for ” � 3:

Although the real networks are finite, the vari-
ance can be still several orders larger than the
mean. Since a variance describes the error of
measured mean node degree, its enormously large
value questions the quality of the measurement
and assigning the scale (related to the mean
degree) to the network is a misuse.

Plotting Scale-Free Distributions

Since many fat-tailed distributions look similarly
as in Fig. 2b (e.g., log-normal or stretched expo-
nential distributions), to better expose the power-
law nature of the node degree distribution, one
usually plots the data on a double logarithmic
scale. In that case, the power law transforms into
a straight line with a slope of �” (see Fig. 2d
and compare it with Poisson distribution shown
in Fig. 2c), as follows:

P.k/ D a � k��

ln P.k/ D ln.a � k�� /

ln P.k/ D ln aC ln.k�� /

ln P.k/ D ln a � � ln k

Y D A � �X;

where X and Y are transformed variables and A
is a transformed constant.

In practice, measuring a slope directly from
Fig. 2d is usually very erroneous, due to the
poor statistics at the tail of the distribution. Direct
histograms are almost always noisy in this region.
The solution is to construct a histogram in which
the bin sizes increase exponentially with degree.
The number of samples in each bin is then divided
by the width of the bin to normalize the measure-
ment. Plotting histogram in a logarithmic degree
scale, one obtains the even widths of the bins.

An even more discriminating method to verify
potential power-law character of the node degree
distribution is to plot the complementary cumula-
tive distribution function

PC .k/ D
1Z

k

P.k/dk � k�.�C1/



Scale-Free Nature of Social Networks 1621 S

S

Scale-Free Nature of Social Networks, Fig. 3 Node degree distribution of SF network (a) and its cumulative
distribution (b)

which is the probability that the degree of a
randomly chosen node is greater than or equal
to k. Such a plot has the advantage that all the
original data are represented. When we make a
conventional histogram by binning, any differ-
ences between the values of data points that fall in
the same bin are lost. The cumulative distribution
function does not suffer from this problem. The
cumulative distribution also reduces the noise in
the tail, what is clearly illustrated in Fig. 3.

Seminal Model of Preferential
Attachment

Soon after the discovery of the scale-free struc-
ture of the World Wide Web, it has been realized
that many other real networks also show power-
law distribution of node degrees. This feature has
been observed in the Internet, communication,
and transportation networks (Albert et al. 1999;
Guimerà et al. 2005), as well as in many social
networks, such as networks of scientific citation-
s Redner (1998), e-mail networks (Ebel et al.
2002), or even sexual contact networks (Liljeros
et al. 2001). The initial surprise of omnipresence
of SF networks quickly turned into a question:
Why so many networks have the same scale-
free character of connections? When a feature
appears in many systems that do not have an
obvious connection to each other, you should
suspect that there is a common causal principle,

which can be described in the most general terms,
without reference to the details of this or any
other system. Is a scale invariance of complex
networks a result of some universal rules that
govern the dynamics of these systems?

Although there are many different process-
es which can give rise to the same power-law
structure of complex networks, the one deserves
particular attention at least for the two reasons.
Firstly, its universal character allows to adap-
t the process to many social but also techno-
logical and natural networks. Secondly, it has
been independently rediscovered several times
in different fields and ages. The process is cur-
rently known as Matthew effect, Yule process,
Dulbecco’s law, rich gets richer, or preferential
attachment (Barabasi and Albert 1999). Since it
is used so widely across domains, the claim about
its universality is reasonable.

The process, adopted to networks, compris-
es of two complementary mechanisms: network
growth and preferential rules of joining nodes.
Barabasi and Albert, who introduced the process
to the modern science of complex networks, stat-
ed that real networks are not formed as a result
of purely random process, in which a completely
randomly selected nodes are connected by the
edges. The most of the social and technological
networks grow and change over time – they e-
volve. In networks, the newly added nodes prefer
to create connections with such ones that already
have a lot of other connections. The mechanisms
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underlying this preference can be different. For
example, new actors are more likely to play
supporting roles in films with established stars,
than in those where there are only other unknown
actors. Thus, the more famous you are, the more
probably is that you will attract new connections.
The same principle seems to govern the struc-
ture of citation network. Preferential attachment
corresponds to the feature that a publication with
a large number of citations continues to be well
cited in the future merely by virtue of being well-
cited now. In the network of acquaintances, my
friends introduce me to their friends. The more
friends I have, the more recognized I am and
the more chances to meet new people I have. In
WWW, the more pages link to a web page, the
more Internet users visit that site and the greater
the likelihood that they will place a link to this
page on their own website.

The algorithm of the discussed process con-
sists of two steps:
1. Starting with a small number m0 of nodes, at

every time step, we add a new node with m �
m0 edges that link the new node to m different
nodes already present in the system.

2. When choosing the nodes to which the new
node connects, we assume that the probabilityQ

that a new node will be connected to node i

depends on the degree ki of node i , such that

Y
.ki / D kiP

j

kj

:

After t time steps, this algorithm results in a
network with N D t C m0 nodes and mt edges.
In Fig. 4, first steps of the network evolution have
been shown. Already after several steps, the hubs
in the network become clearly visible.

Mathematical derivations show that the node
degree distribution of the network evolves into
a scale-free one with the scale-free exponent
” D 3 independently of m, the only parameter in
the model.

One has to keep in mind that the presented
model does not share all properties observed in
the real-world networks, e.g., it is less clustered.
Soon, after this model was introduced, a large
number of similar models, all based on some type

of connecting preference, emerged, all leading
to a power-law distribution of node degrees but
also demonstrating a better agreement with real
networks with reference to other network metrics.

Preferential attachment is not the only possi-
ble explanation for the formation of scale-free
structure of connections in complex network-
s. Among others, there are rewiring processes
(Aiello et al. 2002), optimization-based models
(Valverde et al. 2002), and also static construc-
tions (Park and Newman 2004; Goh et al. 2001).

Resilience and Vulnerability of SF
Networks to Failures and Attacks

It has appeared recently that scale-free structure
of complex networks has an important influence
on their resilience to failures and attacks. In
particular, SF networks seem much more robust
than ER graphs in case of failures (modelled by a
random removal of nodes or links) (Cohen et al.
2000), while they are more sensitive to attacks
(modelled by the targeted removal of selected
nodes or links) (Cohen et al. 2001). By the
resilience, we understood that despite removed
nodes, the main part of the network (so-called
giant component) is still interconnected (i.e., any
two nodes in that part are connected to each
other by paths). If the node elimination proceeds,
then at some critical moment, the network breaks
apart into small disconnected parts. The moment
when this dramatic breakdown occurs strongly
depends on the network structure as well as on
the method of node’s elimination (random or
targeted). In the random removal case, the critical
moment of destruction occurs much earlier in ER
graphs, in opposite to SF networks (see Fig. 5).
It means that SF network is much more resilient
to accidental damages. However, in case of in-
tentional attack, when the nodes of the network
are removed in decreasing order of their degree,
SF network appears to be much more vulnerable
than ER graph (since the removal of the hubs
results in the largest possible damage, see Fig. 6).
This vulnerability of SF networks to intentional
attacks has been described as their Achilles’ heel.
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Scale-Free Nature of Social Networks, Fig. 4 Example of realization of two different growing networks in
preferential attachment model. The colors of the nodes represent their age
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Scale-Free Nature of Social Networks, Fig. 5 ER graphs break apart into small disconnected parts much faster that
SF networks if the nodes are removed accidentally

Scale-Free Nature of Social Networks, Fig. 6 Random and targeted elimination of nodes. Original SF network (a),
the network with randomly damaged nodes (b), and the network with the damaged hub

Epidemic Spreading in SF Networks

Scale-free nature of social networks has a great
implication for understanding the spread of
information, diseases, opinions, and innovations
in society. Standard epidemiological models
usually consider networks with the well-defined
average node degree, such as ER graphs.

In those networks, the models predict a critical
threshold for the propagation of a contagion
throughout a population. This epidemic threshold
is determined by the virulence of the infection.
In other words, if the spreading rate is larger than
the threshold, the infection spreads and becomes
persistent. Below the threshold, the infection
dies out.
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It turns out that in SF networks, the above
statement is no longer correct. In 2001, Pastor-
Satorras and Vespignani found that in that case,
the threshold is zero (Pastor-Satorras and Vespig-
nani 2001). It means, that all viruses, even those
that are weakly contagious, will spread and per-
sist in the system. The main reason is that the
presence of hub nodes can facilitate epidemic
spreading due to the large numbers of neigh-
bors. Infected hub passes the infection to nu-
merous other nodes, faster than the typical node
recovers.

Specifically, in SF network, the traditional
random immunization could easily fail because n-
early everyone would have to be treated to ensure
that the hubs were not missed. New immuniza-
tion strategies have to be developed to recover
the epidemic threshold. It turns out that one of
the most efficient approaches is to selectively
immunize hub nodes. Such a strategy is known
as targeted immunization (Pastor-Satorras and
Vespignani 2002).

Future Directions

The structure, topological properties, and appro-
priate measures were the main research topics
in complex networks domain in recent years.
Currently, dynamical processes taking place in
the networks are quite intensively studied. It is
believed that further understanding of dynam-
ics on complex networks is the general direc-
tion of the field. There is a continuous shift
from studies of networks in general and fea-
tures that are common to most of them to more
application-driven studies of increasingly narrow
classes of networks. After a decade of mostly
descriptive studies and just potential applications,
there is a final need to transfer an acquired knowl-
edge into concrete market applications. Com-
plex networks research society should provide the
manageable solutions to global challenges, like
vaccination campaigns against serious viruses,
risk reduction of financial crises, and prevent-
ing cascading bankruptcies among interlinked
economies.

Cross-References

�Exponential Random Graph Models
�Network Models
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Synonyms

Graph matching; Subgraph identification;
Subgraph isomorphic queries

Glossary

DOGMA Disk-Oriented Graph Matching
Algorithm

COSI Cloud-Oriented Subgraph Identification
RDF Resource Description Framework
SPARQL SPARQL Protocol and RDF Query

Language

Introduction

Both social network owners and social network
users are interested in a variety of queries that
involve subgraph matching. In addition, answer-
ing SPARQL queries in the Semantic Web’s RDF
framework largely involves subgraph matching.
For example, the GovTrack dataset (2013) tracks

events in the US Congress. In Fig. 1, we see
that Jeff Ryster sponsored Bill B0045 whose
subject is Health Care. A user who is using such
a database might wish to ask queries such as
that shown in Fig. 2. This query asks for all
amendments (‹v1) sponsored by Carla Bunes to
bill (‹v2) on the subject of health care that were
originally sponsored by a male person (‹v3). The
reader can readily see that when answering this
query, we want to find all matches for this query
graph in the original graph. The reader who tries
to answer this very simple query against this very
tiny graph will see that it takes time to do so, even
for a human being! In this entry, we show how to
answer complex subgraph matching queries over
huge graphs efficiently.

An important aspect of all past work is that
it has focused on working in memory. Though
memory prices are dropping while capacity is
increasing, the increase in capacity is not even
remotely large enough to store 1 % of Facebook
or Twitter. As a consequence, in order to effi-
ciently answer queries to social network graphs,
we are forced to store the data, as well as indexes
for the data, on disk. In section “The DOGMA
Index” we provide a description of the DOG-
MA (Disk-Oriented Graph Matching Algorithm)
index (Bröcheler et al. 2009) for building a disk-
based index for huge networks. DOGMA is based
on a simple observation: the size of any real-
world social network graph is likely to be orders
of magnitude larger than that of any subgraph
matching query graph a user is likely to ask. This
tells us that it should be possible to build an index
for efficiently executing such queries that ensures
that vertices in a social network graph that are
“near” each other be stored together on a disk
page.

Then, in section “Cloud-Oriented Subgraph
Matching”, we present the COSI (Cloud-
Oriented Subgraph Identification) system
(Bröcheler et al. 2010). COSI distributes a graph
across multiple compute machines and answers
subgraph matching queries in parallel using an
asynchronous query-answering algorithm that
does not rely on central orchestration. Thus,
computation is completely distributed and our

http://dx.doi.org/10.1007/978-1-4614-6170-8_100660
http://dx.doi.org/10.1007/978-1-4614-6170-8_100661
http://dx.doi.org/10.1007/978-1-4614-6170-8_3
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goal is to minimize communication between
compute machines so as to save time. Finally,
section “Experimental Results” shows some
experimental results assessing the performance
of DOGMA and COSI, and section “Related
Work and Conclusions” briefly discusses related
work and outlines conclusions.

Basic Notation

Throughout this entry, we assume the existence
of an arbitrary but fixed set V whose elements are
called vertices. For example, V might consist of
all strings that can form a valid user ID and/or the
set of all valid identifiers for comments in a social
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network like Facebook. We also assume the ex-
istence of a finite set P of predicate symbols.

We model a social network graph S as a triple
.V; E; �/ where V is the set of vertices, E 	 V �
V is a multiset of edges from vertices to vertices,
and � W E ! P assigns a predicate symbol to
each edge in E .

The out neighborhood of vertex v is the set
out.v/ D fu j .v; u/ 2 Eg; the in neighborhood
of node v is the set in.v/ D fu j .u; v/ 2 Eg.
The neighborhood of v is the set ngh.v/ D
out.v/ [ in.v/. Each of these neighborhoods can
be restricted to a particular predicate symbol p:
for example, outp.v/ D fu j .v; u/ 2 E ^
�.v; u/ D pg.

When formulating queries, we assume the
existence of a set VAR of variable symbols rang-
ing over V . Each variable symbol starts with a
‹. A query Q is a triple .VQ; EQ; �Q/ where
VQ 	 V [ VAR, EQ 	 VQ � VQ is a multiset
of edges, and �Q W EQ ! P . We use VARQ to
denote the set of variable vertices in query Q.

Suppose S is a social network graph and Q is
a query. A substitution for query Q is a mapping
VARQ ! V . If � is a substitution for query Q,
then Q� denotes the replacement of all variables
‹v in VQ by �.‹v/. Hence, the graph structure of
Q� is exactly like that of Q except that nodes
labeled with variables are replaced by vertices in
S. A substitution � is an answer for query Q

w.r.t. S iff Q� is a subgraph of S. The answer
set for query Q w.r.t. a S is the set f� jQ� is a
subgraph of Sg. For example, the substitution �

such that �.‹v1/ = Amendment A0056, �.‹v2/ =
Bill B1432, and �.‹v3/ = Pierce Dickes is the
only answer for the query in Fig. 2.

The DOGMA Index

In this section we define the DOGMA index and
describe an algorithm to take an existing social
network graph and create the DOGMA index
for it. Then, we describe algorithms to answer
subgraph matching queries.

Before we define the DOGMA index, we
first define what it means to merge two graphs.
Suppose G D .V; E; �/ is a graph, and

G1 D .V1; E1; �1/ and G2 D .V2; E2; �2/

are two graphs such that V1; V2 	 V and k

is an integer such that k � max.jV1j; jV2j/.
Graph Gm.Vm; Em; �m/ is said to be a k-merge
of graphs G1; G2 w.r.t. G iff: (i)jVmj D k;
(ii) there is a surjective (i.e., onto) mapping
� W V1 [ V2 ! Vm called the merge mapping
such that for all v 2 Vm, rep.v/ D fv0 2
V1[ V2 j�.v0/ D vg, and em D .v1; v2/ 2 Em iff
there exist v01 2 rep.v1/; v02 2 rep.v2/ such that
e D .v01; v02/ 2 E . The basic idea tying k-merges
to the DOGMA index is that we want DOGMA
to be a binary tree, each of whose nodes occupies
a disk page. Each node is labeled by a graph that
“captures” its two children in some way. As each
page has a fixed size, the number k limits the
size of the graph so that it fits on one page. The
idea is that if a node N has two children, N1 and
N2, then the graph labeling node N should be a
k-merge of the graphs labeling its children.

A DOGMA index for a social network graphS
is a generalization of the well-known binary tree
specialized to represent social network graphs in
the following manner.

Definition 1 A DOGMA index of order k

(k � 2) is a binary tree DS with the following
properties:
1. Each node in DS equals the size of a disk page

and is labeled by a graph.
2. DS is balanced.
3. The labels of the set of leaf nodes of DS

constitute a partition of S.
4. If node N is the parent of nodes N1; N2, then

the graph GN labeling node N is a k-merge of
the graphs GN1 ; GN2 labeling its children.

Note that a single social network database can
have many DOGMA indexes.

Example 2 Suppose k D 4. A DOGMA index
for the graph of Fig. 1 might split the graph
into the eight components indicated by dashed
lines in Fig. 1 that become the leaf nodes of the
index (Fig. 3). Consider the two leftmost leaf
nodes. They can be 4-merged together to form a
parent node. Other leaf nodes can also be merged
together (the results of k-merging are not shown
in the inner nodes).
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Building DOGMA Indexes
Even though many different DOGMA indexes
can be constructed for the same social network
graph, we want to find a DOGMA index with
as few “cross” edges between subgraphs stored
on different pages as possible. In other word-
s, if node N is the parent of nodes N1; N2,
then we would like relatively fewer edges in
S between some node in GN1 and some node
in GN2 . The smaller this number of edges, the
more “self-contained” nodes N1; N2 are and the
less likely that a query will require looking at
both nodes N1 and N2. DOGMA can employ
any external graph partitioning algorithm (many
of which have been proposed in the literature)
that, given a weighted graph, partitions its vertex
set in such a way that (i) the total weight of
all edges crossing the components is minimized
and (ii) the accumulated vertex weights are (ap-
proximately) equal for both components. In our
implementation, we employ the GGGP graph
partitioning algorithm proposed in Karypis and
Kumar (1999).

In order to generate a DOGMA index for a
social network S, we can intuitively proceed

through the two following phases (the fully
detailed version of the algorithm can be found
in Bröcheler et al. (2009)).
Iterative Coarsening. Iteratively “coarsen” S by
merging nodes in S. This generates a sequence
of social network graphs S D S0;S1; : : : ; Sk

where SiC1 is obtained by randomly merging
nodes (and corresponding edges) in Si till the
number of vertices in SiC1 is less than or equal
to half of those in Si . We stop when we reach
the smallest m such that the set Vm of vertices
associated with Sm is small enough to fit on a disk
page. Thus, m is proportional to O.log2.jV j//.
When constructing ViC1 (and the corresponding
EiC1) from Vi and Ei , respectively, we keep
track of which vertices (resp. edges) in Vi (re-
sp. Ei ) were merged into which vertices (resp.
edges) in ViC1 (resp. EiC1). The “root” of the
DOGMA index now corresponds to Sm which,
implicitly, represents the entire S.
Hierarchical Decomposition. We now decom-
pose Sm (the root) into two to get Sm’s two
children, using any standard graph partitioning
algorithm. Suppose this partitioning splits Sm

into S1
m and S2

m. We then go back and see which
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vertices in Sm�1 got merged into the vertices in
S1

m and replace the (merged vertices) in S1
m by the

two vertices from which the merged vertex got
created. We repeat this for S2

m. This now gives
us the two children of the root of the DOGMA
index for social network database S. This process
is applied iteratively till we reach the leaf level of
the DOGMA index (we will know when to stop
because the vertices in the index can no longer be
“unfolded”).

Processing Queries with DOGMA
The basic query answering for answering graph
matching queries using the DOGMA index,
called DOGMA_basic (Bröcheler et al. 2009), is
a recursive, depth-first algorithm which searches
the space of all substitutions for the answer set
to a given query Q w.r.t a graph S. For each
variable vertex v in Q, the algorithm maintains
a set of constant vertices Rv 	 VS (called result
candidates) to prune the search space; for each
answer substitution � for Q, we have �.v/ 2 Rv.
In other words, the result candidates must be a
superset of the set of all matches for v. Hence, we
can prune the search space by only considering
those substitutions � for which �.v/ 2 Rv

for all variable vertices v in Q. The algorithm
initializes the result candidates for all variable
vertices v in Q which are connected to a constant
vertex c in Q through an edge having the label
specified in Q. Here we employ the fact that any
answer substitution � must be such that �.v/ is a
neighbor of c, and thus, the set of all neighbors
of c in S reachable by an edge labeled l are result
candidates for v. We use the DOGMA index to
efficiently retrieve the neighborhood of c. If v is
connected to multiple constant vertices, we take
the intersection of the respective constraints on
the result candidates.

At each recursive invocation, the algorithm
extends the given substitution and narrows down
the result candidates for all remaining variable
vertices correspondingly. To extend the given
substitution � , we greedily choose the variable
vertex w with the smallest set of result candi-
dates. This yields a locally optimal branching fac-
tor of the search tree since it provides the smallest
number of extensions to the current substitution.
In fact, if the set of result candidates is empty,

then we know that � cannot be extended to an an-
swer substitution, and we thus directly prune the
search. Otherwise, we consider all the possible
result candidates m for w by deriving extended
substitutions � 0 from � which assign m to w and
then calling DOGMA_basic recursively on � 0.
By assigning the constant vertex m to w, we can
constrain the result candidates for all neighboring
variable vertices as discussed above.

This basic query-answering algorithm only
uses “short-range” dependencies, i.e., the im-
mediate vertex neighborhood of variable ver-
tices, to constrain their result candidates. While
this suffices for most simple queries, considering
“long-range” dependencies can yield additional
constraints on the result candidates and thus im-
prove query performance. For instance, the result
candidates for v1 in our example query not only
must be immediate neighbors of “Carla Bunes”:
in addition, they must be at most at a distance
of two from “Health Care”. More formally, let
dS.u; v/ denote the length of the shortest path
between two vertices u; v 2 VS in the undirect-
ed counterpart of a graph S, and let dQ.u; v/

denote the distance between two vertices in the
undirected counterpart of a query Q. A long-
range dependency on a variable vertex v 2 VQ

is introduced by any constant vertex c 2 VQ with
dQ.v; c/ > 1.

We can exploit long-range dependencies
to further constrain result candidates. Let v

be a variable vertex in Q and c a constant
vertex with a long range dependency on v.
Then any answer substitution � must satisfy
dQ.v; c/ � dS.�.v/; c/ which, in turn, means
that fm j dS.m; c/ � dQ.v; c/g are result
candidates for v. This is the core idea of
the DOGMA_adv algorithm (Bröcheler et al.
2009), which improves over and extends
DOGMA_basic. In addition to the result
candidates set Rv, the algorithm maintains sets
of distance constraints Cv on them. As long as a
result candidates set Rv remains uninitialized,
we collect all distance constraints that arise
from long-range dependencies on the variable
vertex v in the constraints set Cv. After the
result candidates are initialized, we ensure that all
elements in Rv satisfy the distance constraints in
Cv. Maintaining additional constraints therefore
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reduces the size of Rv and hence the number of
extensions to � we have to consider.

DOGMA_adv assumes the existence of a dis-
tance index to efficiently look up dS.u; v/ for any
pair of vertices u; v 2 VS , since computing graph
distances at query time is clearly inefficient. But
how can we build such an index? Computing all-
pairs shortest path has a worst-case time com-
plexity O.jVS j3/ and space complexity O.jVS j2/,
both of which are clearly infeasible for large
social network graphs. However, we do not need
to know the exact distance between two vertices
for DOGMA_adv to be correct. Since all the
distance constraints in DOGMA_adv are upper
bounds, all we need is to ensure that 8u; v 2 VS ,
the distance retrieved by the index is less than or
equal to dS.u; v/.

Thus, we can extend the DOGMA index
to include distance information and build two
“lower bound” distance indexes, DOGMA_ipd
and DOGMA_epd, that use approximation
techniques to achieve acceptable time and space
complexity. As seen before, the leaf nodes of
the DOGMA index DS are labeled by subgraphs
which constitute a partition of S. For any node
N 2 DS , let PN denote the union of the
graphs labeling all leaf nodes reachable from
N . Hence, PN is the union of all subgraphs
in S that were eventually merged into the
graph labeling N during index construction and
therefore corresponds to a larger subset of S.
For example, the dashed lines in Fig. 1 mark the
subgraphs PN for all index tree nodes N of the
DOGMA index shown in Fig. 3, whereas bolder
lines indicate boundaries corresponding to nodes
of lower depth in the tree.

The DOGMA internal partition distance
(DOGMA_ipd) index stores, for each index
node N and vertex v 2 PN , the distance to
the outside of the subgraph corresponding to PN .
We call this the internal partition distance of
v; N , denoted ipd.v; N /, which is thus defined as
ipd.v; N / D minu2VSnPN

dS.v; u/. We compute
these distances during index construction. At
query time, for any two vertices v; u 2 VS we
first use the DOGMA tree index to identify
those distinct nodes N ¤ M in DS such
that v 2 PN and u 2 PM , which are at the
same level of the tree and closest to the root.

If such nodes do not exist (because v; u are
associated with the same leaf node in DS),
then we set dipd.u; v/ D 0. Otherwise, we set
dipd.u; v/ D max.ipd.v; N /; ipd.u; M //. It is
easy to see that dipd is an admissible lower bound
distance, since PN \PM D ;. By choosing those
distinct nodes which are closest to the root, we
ensure that the considered subgraphs are as large
as possible, and hence, dipd.u; v/ is the closest
approximation to the actual distance.

Example 3 Consider the example of Figs. 1
and 2. Figure 4 shows the initial result candidates
for each of the variable vertices in boxes.
We can determine that there is a long-range
dependency between “Carla Bunes” and variable
vertex ‹v2 at distance 2. The boldest dashed
line in Fig. 1 marks the top-level partition and
separates the sets PN1 , PN2 , where N1; N2 are
the two nodes directly below the root in the
DOGMA index in Fig. 3. We can determine that
ipd.Carla Bunes; N2/ D 3, and since Bill B0045
and B0532 lie in the other subgraph, it follows
that dipd.Carla Bunes; B0045/B0532/ D 3, and
therefore, we can prune both result candidates.

The DOGMA external partition distance
(DOGMA_epd) index also uses the partitions in
the index tree to compute a lower bound distance.
However, it considers the distance to other
subgraphs rather than the distance within the
same one. For some fixed level L, let NL denote
the set of all nodes in DS at distance L from the
root. As discussed above, P D fPN gN2NL

is a
partition of S. The idea behind DOGMA_epd
is to assign a color from a fixed list of colors
C to each subgraph PN 2 P and to store,
for each vertex v 2 VS and color c 2 C , the
shortest distance from v to a subgraph colored by
c. We call this the external partition distance,
denoted epd.v; c/, which is thus defined as
epd.v; c/ D minu2PN ;�.PN /Dc dS.v; u/ where
� W P ! C is the color assignment function.
We store the color of PN with its index node N

so that for a given pair of vertices u; v we can
quickly retrieve the colors cu, cv of the subgraphs
to which u and v belong. We then compute
depd.v; u/ D max.epd.v; cu/; epd.u; cv//. It is
easy to see that depd is an admissible lower bound
distance.
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Cloud-Oriented SubgraphMatching

This section presents the COSI system
which distributes a social network graph
across multiple compute machines and an-
swers subgraph matching queries in parallel
using an asynchronous query-answering
algorithm that does not rely on central
orchestration.

Figure 5 shows a schematic view of the
architecture of COSI. We assume that a compute
cloud consists of k compute nodes and one
“client” node. Compute nodes communicate
directly without going through the client node,
thus preventing the client node from becoming
a communication bottleneck. The client node
takes a query and directs it or parts of it to
one or more compute nodes that complete the
computation of the answer. The complete answer
is then shipped to the client node. In Fig. 5,
k D 5 and the compute machines are shown
in the lower half of the figure. Each of those
machines stores a fragment of the graph in a local
graph database and responds to query requests
specifically addressed to it. The architecture and
system we present in this entry does not depend
on any particular local graph database.

Distributing a Social Network Graph
We now address the question: How do we
distribute a social network graph across a cloud
so that we can efficiently process subgraph
matching queries? In partitioning the social
network data, we follow two objectives: (i) all
k compute machines should store roughly the
same amount of data to balance the load across
machines, and (ii) the partition should minimize
the expected query execution time.

At a high level, we achieve these objectives as
follows. First, we transform the social network
graph S into a simple weighted graph WG.S/.
Intuitively, the weight of an edge e D .u; v/ in
WG.S/ refers to the sum of the probability that
v will be retrieved immediately after u and vice
versa when an arbitrary query is processed. If
this probability is (relatively) high, then the two
vertices should be stored on the same compute
node. Then, we use these to partition S across the
k compute machines so that expected commu-
nication costs are minimized. In the remainder,
we assume there is a probability distribution P

over the space of all queries. Intuitively, P.Q/

is the probability that a random subgraph match-
ing query posed to a social network is Q. For
any real-world online social network, P can be
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easily learned from frequency analysis of past
query logs.

We start by introducing our formalization
of query plans and query traces. A query plan
qp.Q/ for a query Q is a sequence of two
types of operations: the first type retrieves
the neighborhood of vertex v (from whichever
compute node it is on), and the second type
performs some computation (e.g., check a
selection condition or perform a join) on the
results of previous operations. This definition
is compatible with most existing definitions
of query plans in the database literature. Now
suppose x D qp.Q/ is a query plan for a query
Q on a social network graph S. The query trace
of executing x on S, denoted qt.x;S/, consists
of (i) all the vertices v in S whose neighborhood
is retrieved during execution of query plan x

on S and (ii) all pairs .u; v/ of vertices where
immediately after retrieving u’s neighborhood,
the query plan retrieves v’s neighborhood (in
the next operation of x). When processing a
query, we make the reasonable assumption that

index retrievals are cached so that repeated vertex
neighborhood retrievals are read from memory
and hence the query trace qt.x;S/ can be defined
as a set rather than as a multiset. Traces contain
consecutive retrievals of vertex neighborhoods –
this allows us to store neighborhoods of both
u and v on the same compute node, avoiding
unnecessary communication.

The probability distribution P on queries
can be used to infer a probability distribution
QP over the space of feasible query plans:
QP.x/ D P

Q2QWqp.Q/Dx P.Q/. This says that
the probability of a query plan is the sum of
the probabilities of all queries which use that
query plan. In the rest of the entry, we will abuse
notation and denote both PDFs by P. We can
now define the probabilities of retrieval and
co-retrieval. The probability, P.v/, of retrieving
v when executing a random query plan isP

x2qp.Q/Wv2qt.x;S/ P.x/. Thus, the probability
of retrieving v is the sum of the probabilities of
all query plans that retrieve v. The probability
P.v1; v2/ of retrieving v2 immediately after v1 is
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P
x2qp.Q/W.v1;v2/2qt.x;S/ P.x/. This says that the

probability of retrieving v2 immediately after v1

is the sum of the probabilities of all query plans
that retrieve v2 immediately after v1.

We can associate a weighted graph WG.S/

with the graph S D .V; E; �/. The weighted
graph is the complete graph .V; V � V; w/ where
w.v1; v2/ D P.v1; v2/CP.v2; v1/. An edge cut C

of a weighted graph is a partition of the vertices
into components. An edge .u; v/ in the graph
is said to cross the edge cut C if u is in one
component of the partition and v is in another.
The size of an edge cut is the sum of the weights
of the edges that cross the cut. C is said to
be a minimum cut iff there is no other cut C ’
such that the size of C ’ is less than the size of
C . The important theorem we gave in Bröcheler
et al. (2010) shows that the minimal edge cut of
WG.S/ corresponds to the partition of S across
k compute nodes that minimizes expected cost of
executing a query.

Since computing minimal edge cuts is a
well-known NP-hard problem, we develop
heuristic techniques to partition the graph that
allow us to obtain suboptimal partitions of
high quality, without incurring in the expensive
computational costs of obtaining the optimal
ones. We start by defining the concept of
vertex force vector. Let P D fP1; : : : ; Pkg be
a partition of S and consider any component
Pi . The vertex force vector, denoted

ˇ̌Evˇ̌, of
any vertex v 2 S is a k-dimensional vector

where jEvjŒi � D fP
�P

x2ngh.v/\Pi
w..v; x//

�
and fP W RC ! R is a function called the affinity
measure.

The vertex force vector intuitively specifies
the “affinity” between a vertex and each compo-
nent as measured by the affinity measure fP . An
affinity measure takes the connectedness between
a vertex v and the respective component as an
argument. The vertex force vector captures the
strength with which each component “pulls” on
the vertex and is used as the basis for a vertex
assignment decision: intuitively, if an inserted
edge introduces a new vertex v, we first compute
the vertex force vector

ˇ̌Evˇ̌ and then assign v to the
component Pj where j D argmax1�i�k

ˇ̌Evˇ̌ Œi �.

COSI uses an affinity measure that is a lin-
ear combination of three factors: connectedness,
imbalance, and size. Obviously, evaluating the
connectedness of a vertex v to a component Pi is
crucial for edge cut minimization – we measure
this as the number of edges that connect v to the
vertices in Pi . Moreover, balanced partitions lead
to even workload distribution, thus enhancing
parallelism. Let jPi jE D P

x2Pi
deg.x/ be the

number of edges in Pi and let T be an estimate
(even a bad one) of the total number of edges that
a given graph is expected to be. Then a reasonable
measure of imbalance is the standard deviation
of fjPi jE g1�i�k

T
. Finally, we regulate the size of

components by comparing the actual size of a
component to its expected one. If a component
grows beyond its expected size, we punish such
growth more aggressively than imbalance does
alone by reducing the affinity further according

to the metric min.� jPi jE�T
k

T
; 0/.

Consider now the case of a new set of edges to
be inserted into a social network graph, given that
a partition P D P1; : : : ; Pk of the graph already
exists (this can be used to create a partition for
the first time by assuming S D ;). A naive
GreedyInsert insertion algorithm would iterate
over all new vertices v: for each vertex v it would
compute the vertex force vector and assigns v to
the component Pi such that jvjŒi � is maximal –
fortunately we can do better.

Our COSI_Partition algorithm (Bröcheler
et al. 2010) leverages graph modularity (Blondel
et al. 2008) to identify a strongly connected
subgraph that is loosely connected to the
remaining graph. However, modularity cannot
be used blindly as our balance requirement must
also be met. The modularity of a partition P of
an undirected graph G D .V; E/ with weight
function w W E ! R is defined as

mod.P/ D
X
P2P

�
W.P; P /

2 jEj �
degW .P /2

.2 jEj/2

�

where degw.v/ D P
x2V w..v; x// is the

weighted degree of vertex v, W.X; Y / DP
x2X;y2Y w..x; y// is the sum of edge weights

connecting two sets of vertices X; Y 
 V , and
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degW .X/ D P
x2X degw.x/ is the weighted

degree of a set of vertices X 
 V . Intuitively,
components with high modularity are densely
connected subgraphs which are isolated from
the rest of the graph. Our algorithm iteratively
builds high modularity components and then
assigns all vertices in a component to one
compute node based on the vertex force vector.
Let B 
 V be a set of vertices. We generalize
the notion of a vertex force vector by definingˇ̌
ˇ EB
ˇ̌
ˇ Œi � D fP

�P
v2B

P
x2ngh.v/\Pi

w..v; x//
�

.

The intuition behind our partitioning algorithm
is that assigning vertices at the aggregate level
of isolated and densely connected components
yields good partitions because (i) we respect the
topology of the graph, (ii) most edges are within
components and therefore cannot be cut, and
(iii) force vectors of sets of vertices combine
the connectedness information of many vertices
leading to better assignment decisions.

Processing Queries with COSI
Our COSI_basic parallel query processing
algorithm (Bröcheler et al. 2010) operates
asynchronously and in parallel across all compute
nodes. A user issues query Q to the client
node which “prepares” the query. In particular,
it selects one constant vertex c from Q and
determines the compute node that hosts c – the
prepared query is then forwarded to this node.

The algorithm proceeds depth first, substitut-
ing vertices for variables in Q one at a time.
We maintain a set of result candidates for each
variable in Q. The algorithm assumes there is
an index retrieval function that retrieves nghl.v/

from the local index (which could be imple-
mented many ways – we used a DOGMA index
in the experiments) on the compute node. The
algorithm arbitrarily chooses the next vertex to
be substituted. Incoming queries come with a
selected variable to be instantiated with a vertex
ID. The algorithm updates the candidate result
sets by retrieving the neighborhood of the newly
substituted vertex from the index. It then checks
if any results have been found or whether the
current substitution cannot yield a valid result. If
neither condition holds, the algorithm selects the

next variable v0 to be substituted and forwards the
query to those compute nodes that host potential
substitution candidates for v0. All query results
are sent to the client which returns them to
the user.

COSI_basic does not rely on central
orchestration – it uses depth-first search so
the branches of the search tree are traversed
in parallel while ensuring that no branch gets
explored multiple times. After forwarding the
prepared query to a compute node, the client
waits for incoming results of that query and
forwards those to the user. As we explore
branches in parallel, the client node cannot
be notified when the search for query results
has completed. Keeping track of the current
number of parallel executions for each query
would introduce significant synchronization cost.
Instead, the client node keeps track of the time
tlast at which the last result of a running query
has come in. If the difference between the current
time and tlast exceeds a threshold, the client node
asks all compute nodes for a list of query IDs
of all currently running queries. The client node
merges these lists and closes all queries whose
IDs are not contained. To avoid the case where
a query is being forwarded to another compute
node at the very moment that the client node asks
for all query IDs, each compute node keeps query
IDs in their local list up to a certain grace period.

The choice of the next variable to be instan-
tiated has profound implications on the running
time of COSI_basic, as some substitutions yield
larger branching factors in the search than oth-
ers. Our COSI_heur algorithm (Bröcheler et al.
2010) handles this by choosing the variable ver-
tex v0 which has the lowest cost according to a
function hopt. First, to reduce the branching fac-
tor, we could choose the variable vertex v0 with
the smallest number of result candidates. This
heuristic only considers the branching factor of
the immediate next iteration but is nevertheless an
important metric to consider in the cost heuristic.
Second, whenever we instantiate a vertex on a
remote component, we have to send a message
to the appropriate compute node which is ex-
pensive. Therefore, we consider the fraction of
result candidates which are not stored locally as
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a cost metric. When we have to send a query to
remote nodes for further processing, we would
like to distribute the workload evenly across all
nodes. Hence, we also analyze the distribution of
result candidates by node via the cost metric

ds.v/ D
vuut X

1�i�k

�
jRi

vj �
jRvj

k

�2

where Ri
v is the set of result candidates for vertex

v restricted to those which reside on compute
node i . Finally, we define

hopt.v/ D jRvj�.1� jRl
vj

˛ � jRvj/�.1Cˇ� ds.v/

jRvj /

where l is the ID of the local compute node and
˛ and ˇ are constants that determine how much
the model favors locality over parallelism.

Experimental Results

In this section we present the results of the
experimental assessment we performed of both
the DOGMA index and the COSI system.

DOGMA
We tested the DOGMA index on RDF data
and compared its performance with four RDF
database systems developed in the Semantic Web
community that are most widely used and have
demonstrated superior performance in previous
evaluations (Lee et al. 2008): Sesame2 (2013),
Jena2 (Wilkinson et al. 2003), JenaTDB (2013),
and the internal memory version of OWLIM
(Kiryakov et al. 2005). Moreover, we used three
different RDF datasets. GovTrack (GovTrack
dataset 2013) consists of more than 14.5 million
triples describing data about the US Congress.
The Lehigh University Benchmark (LUBM)
(2013) is frequently used within the Semantic
Web community as the basis for evaluation
of RDF and ontology storage systems – we
generated a dataset of more than 13.5 million
triples. Finally, we used a fragment of the Flickr
social network (2013) collected by researchers

of the MPI Saarbrücken to analyze online social
networks (Mislove et al. 2007). The fragment
was anonymized and contains approximately
16 million triples. The GovTrack and Flickr
datasets are well connected (with the latter being
denser than the former), whereas the dataset
generated by the LUBM benchmark is a sparse
and almost degenerate graph containing a set of
small and loosely connected subgraphs.

We designed a set of graph queries with
varying complexity, where constant vertices were
chosen randomly and queries with an empty
result set were filtered out. Queries were grouped
into classes based on the number of edges and
variable vertices. We repeated the query time
measurements multiple times for each query,
eliminated outliers, and averaged the results.
Finally, we averaged the query times of all
queries in each class. All experiments were
executed on a machine with a 2.4 GHz Intel
Core 2 processor and 3 GB of RAM.

In a first round of experiments, we designed
several relatively simple graph queries for each
dataset, containing no more than six edges, and
grouped them into eight classes. The results of
these experiments are shown in Fig. 6 which
reports the query times for each query class on
each of the three datasets. Missing values in the
figure indicate that the system did not terminate
on the query within a reasonable amount of time
(around 20 min). Note that the query times are
plotted in logarithmic scale to accommodate the
large discrepancies between systems. The result-
s show that OWLIM has low query times on
low-complexity queries across all datasets. This
result is not surprising, as OWLIM loads all
data into main memory prior to query execution.
The performance advantage of DOGMA_ipd and
DOGMA_epd over the other systems increases
with query complexity on the GovTrack and the
Flickr dataset, where our proposed techniques
are orders of magnitude faster on the most com-
plex queries. On the LUBM dataset, however,
Sesame2 performs almost equally for the more
complex queries. Finally, DOGMA_epd is s-
lightly faster on the LUBM and Flickr dataset,
whereas DOGMA_ipd has better performance on
the GovTrack dataset.
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Scaling Subgraph Matching Queries in Huge Networks, Fig. 6 Query times (ms) for graph queries of low
complexity

In a second round of experiments, we signif-
icantly increased the complexity of the queries,
which now contained up to 24 edges. Unfortu-
nately, the OWLIM, JenaTDB, and Jena2 systems
did not manage to complete the evaluation of
these queries in reasonable time, so we exclu-
sively compared with Sesame2. The results are
shown in Fig. 7. On the GovTrack and Flickr
dataset, DOGMA_ipd and DOGMA_epd con-
tinue to have a substantial performance advantage
over Sesame2 on all complex graph queries of
up to 40,000 %. For the LUBM benchmark, the
picture is less clear due to the particular structure
of the generated dataset explained before.

Finally, Fig. 8 compares the storage
requirements of the systems under comparison
for all three datasets. The results show that
DOGMA_ipd, DOGMA_epd and Sesame2 are
the most memory efficient.

In conclusion, we can observe that both DOG-
MA_ipd and DOGMA_epd are significantly
faster than all other RDF database systems under
comparison on complex graph queries over non-
degenerate graph datasets. Moreover, they can
efficiently answer complex queries on which
most of the other systems do not terminate or
take up to 400 times longer while maintaining a
satisfactory storage footprint. DOGMA_ipd and
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Scaling Subgraph Matching Queries in Huge Networks, Fig. 7 Query times (ms) for graph queries of high
complexity
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DOGMA_epd have similar performance, yet
differences exist which suggest that each index
has unique advantages for particular queries and
graph structures.

COSI
In the experiments with COSI we used the social
network graph studied in Mislove et al. (2007).
This graph contains 778M edges and describes
personal relationships and group membership-
s crawled from Facebook, Orkut, Flickr, and
LiveJournal. We fixed the coefficients for the
affinity measure by hand. Both, the imbalance
and excessive size metric, were given an equal
weight of one. The connectedness measure was
set relative to the number of edges we considered
per batch. We experimented with different batch
sizes and found best performance for half a mil-
lion edges.

We developed a communication infrastruc-
ture for the compute nodes based on the Java
NIO libraries which is used to send the graph
data during the loading and the queries during
the query-answering stages. The communication
infrastructure handles contention at individual
nodes and variations in network latency. It is
optimized to ensure that the client node’s requests

for outstanding queries are answered quickly. In
our experiments, we used a cluster of 16 compute
nodes, out of which one served as a client node
and the remaining 15 nodes served as compute
nodes. All compute nodes had an identical hard-
ware configuration with a 4-core 2.16 GHz Intel
CPU, 4 GB of RAM, and 80 GB IDE 7,200 rpm
hard drive. The client node’s hardware differed
slightly with an 8-core CPU and 8 GB of RAM.

Figure 9 compares COSI_Partition’s perfor-
mance with that of the GreedyInsert algorithm.
To validate our experiments, we used a random
partitioning scheme, which assigns vertices to
compute nodes uniformly at random, as the naive
baseline in our experiments and report all results
in comparison to this baseline. COSI_Partition
achieves a substantial 36 % improvement in edge
cut over the naive baseline at a total running
time of 10.5 h for all 778M edges. GreedyInsert
only achieves a marginal improvement in edge
cut. COSI_Partition significantly outperforms
greedy batch insertion by 33 % with only slightly
higher imbalance as measured in the standard
deviation in component size relative to average
size of a component.

Figure 10 compares COSI_basic against
COSI_heur for three different parameter settings
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of function hopt: .˛ D 1:2; ˇ D 0:1/ which
strongly favors locality over parallelism, .˛ D
8:0; ˇ D 5:0/ which strongly favors parallelism
over locality, and .˛ D 2:0; ˇ D 0:5/ which
balances locality and parallelism. The queries
have increasing complexity as measured by the
number of edges (E) and variables (V) in the
query graph. All query times were averaged
across six independent runs with complete
system restarts after each run to empty caches.
Note that the graph is plotted in logarithmic scale
to accommodate the huge differences in query
times.

COSI_heur drastically outperforms COSI_
basic by up to four orders of magnitude on
all but two queries, and the performance gap
seems to grow exponentially with the query
complexity. A close look at the difference in
performance between the variants of COSI_heur
reveals that the third configuration outperforms
the first one on nine queries, with a tie on the
remaining two, and outperforms the second
configuration on eight queries, being slower
only on three. These results suggest that a
balanced choice of parameters leads to a
better hopt.
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RelatedWork and Conclusions

The problem of efficiently evaluating subgraph
matching queries over huge graphs/networks has
been recently addressed in different scenarios,
among which social network analysis and RD-
F database management play an important role
(Martín and Gutierrez 2009). A wide variety of
methods for social network analysis have been
proposed (Borgatti et al. 2002; Nooy et al. 2005;
Huisman and Duijn 2005). However, most algo-
rithms operate solely in memory, loading the en-
tire graph from disk and then executing the analy-
sis. For social networks of the size of Facebook,
Flickr, or Orkut, such an approach becomes in-
feasible. To handle social networks of such mag-
nitude, one needs to store and query network data
efficiently on disk. More importantly, complex
queries involving even a few joins can quick-
ly cause such approaches to run into trouble.
Ronen and Shmueli (2009) introduce a social
network-specific query language and show how
such queries can be answered on moderately
sized datasets. However, their query language
is geared toward users of a social network in
helping them communicate with friends.

Graph-structured RDF data has been studied
in the Semantic Web community (Mahmoudi-
Nasab and Sakr 2010). Initial approaches to RDF
storage (Broekstra et al. 2003; Sintek and Kiesel
2006; Wilkinson et al. 2003) stored the graph
in relational tables and then used a relational
query engine to answer queries. Abadi et al.
(2007) showed that storing RDF in a vertical
database leads to significant query time improve-
ments. Stocker et al. (2008) uses triple selectiv-
ity estimation techniques similar to those used
in relational database systems. Pugliese et al.
(2008) and Udrea et al. (2007) are the first to
propose specific tree-structured indexes for RDF.
All these approaches work on single machines.
In response to the increasing need of scalability
when facing extremely large RDF datasets, two
approaches have essentially been proposed so far:
scale up and scale out. In scaling up, existing
RDF databases, such as RDF-3X (Neumann and
Weikum 2008), Sesame (Broekstra et al. 2003),

or YARS (Harth and Decker 2005), are sim-
ply run on more powerful machines. As such
it requires no technological innovation but is
very costly and limited by current hardware. In
scaling out, multiple machines are utilized to
store the data but all operations on the data are
centrally executed. Parallel storage regimes, such
as YARS2 (Harth et al. 2007), are cheaper but
still limited in their scalability due to central
execution. Our COSI system demonstrated effi-
cient query answering across multiple machines
without central orchestration.

Earlier work on database technologies for
general graph data such as Lore (Goldman et al.
1999) considered much smaller graphs than the
social networks we study here. More recent work
(e.g., Cheng et al. 2009; Giugno and Shasha
2002; Ke et al. 2010; Sakr 2009; Zhang et al.
2010; Zhu et al. 2010) focuses on heuristics to
predict the cost of answering strategies based on
statistics about the dataset and the current state
of query processing and then choose a strategy
to minimize cost. However, due to the highly
heterogeneous nature of network data (Newman
2003), such predictions can become inaccurate.
Zou et al. (2009) proposes to transform vertices
into points in a vector space, thus converting
queries into distance-based multi-way joins over
the vector space. In Cheng et al. (2008) the
authors propose a two-step join optimization
algorithm based on a cluster-based join index.
GADDI is proposed in Zhang et al. (2009) that
employs a structural distance-based approach
and a dynamic matching scheme to minimize
redundant calculations. GADDI can handle
graphs with thousands of vertices, which are
common in many biological applications. In
Zhang et al. (2010) the authors propose SUMMA,
which improves over GADDI and employs more
advanced indices, becoming capable to handle
graphs with up to tens of millions of vertices.
The algorithm in Zhu et al. (2010) employs
an aggressive pruning strategy based on an
index storing label distributions. In Natale et al.
(2010), the authors argue that existing indices
over sets of data graphs do not support efficient
pruning when they face graphs with tens of
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thousands of vertices. They propose an index
that is specifically targeted at this scenario.

In this entry we have described a disk-oriented
index and a graph partitioning technique that
make the processing of complex subgraph match-
ing queries on very large graph data feasible.
The DOGMA index is based on the simple ob-
servation that the size of any real-world social
network graph is likely to be orders of magnitude
larger than that of any subgraph matching query
graph a user is likely to ask. Thus, it is possible
to build an index for efficiently executing such
queries that ensures that vertices in a social net-
work graph that are “near” each other be stored
together on a disk page. On the other hand, the
COSI system is able to effectively distribute a
social network graph across multiple compute
machines and answer subgraph matching queries
asynchronously in parallel. The experimental re-
sults confirm the feasibility of both approaches.

Cross-References

�Extracting and Inferring Communities via Link
Analysis
�Graph Matching
�RDF
� SPARQL
� Subgraph Extraction for Trust Inference in So-
cial Networks
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Synonyms

Disciplinary; Knowledge flow; Scholarly com-
munication; Scholarly networks; Science map-
s; Scientific collaboration; Scientific evaluation;
Topic identification

Glossary

Node (in Scholarly Networks) Entities such as
words, papers, patent, authors, journals, insti-
tutions, fields, or country
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Edge (in Scholarly Networks) Citation, co-
citation, co-word, coauthor, bibliographic
coupling, or hybrid relations

Scholarly Network The combination of edge
properties and node properties defines a
scholarly network

Macro-level Approach Statistics that are used
to identify the global structural features of
the networks, including component, bicompo-
nent, shortest distance, clustering coefficient,
degree distribution, and error and attack toler-
ance

Meso-level Approach Approaches that focus on
the behavior of a group of actors, including
topic identification and community detection

Microlevel Approach Indicators that are use-
ful to understand individual node’s power,
stratification, ranking, and inequality in social
structures, including centrality measures and
PageRank and its variants

Introduction

In recent years, we have witnessed a growing
trend of studying various types of networks, such
as social networks, information networks, techni-
cal networks, and biological networks (Newman
2003). These studies were informed by the social
studies of human interactions, were accelerated
by the discovery of small-world and scale-free
properties, and were also enriched by various
macro-level statistics, meso-level clustering tech-
niques, and microlevel indicators.

Studying characteristics of scholarly com-
munication is crucial for understanding and
exploration of reasons for better scientific
innovation, scientific collaboration, and scientific
activities in general. Scholars have used
different types of networks to answer a wide
spectrum of questions related to research
interaction, scholarly communication, and
science policy making; these efforts have greatly
advanced the scholarship of scientometrics and
informetrics. The earliest well-defined network in
scholarly communication is probably the paper
bibliographic coupling network, proposed by
Kessler in the 1960s (Kessler 1963). Since then,

various types of networks have been proposed
and examined, for instance, co-citation networks,
citation networks, coauthorship networks, co-
word networks, and hybrid networks. For these
networks, the paper is usually the basic research
unit and can be aggregated into several higher
levels, such as the author, journal, institution,
and field level. Network types define edge
properties and aggregation levels define node
properties. The combination of edge properties
(i.e., citation, co-citation, co-word, coauthor,
bibliographic coupling, or hybrid) and node
properties (i.e., words, papers, patents, authors,
journals, institutions, fields, or country) precisely
defines a network. Such networks are referred to
as scholarly networks in this entry.

Various types of scholarly networks provide
an ideal research instrument to quantitatively
study scholarly communication. In particular,
scholarly networks have been employed to
study several essential aspects of scholarly
communication: conducting scientific impact
evaluation (primarily through citation networks),
studying scientific collaboration (primarily
through collaboration networks), identifying
research specialties and topics (primarily
through co-occurrence networks), and studying
knowledge flow patterns (primarily through
citation networks).

Scholarly Networks as a Type of
Networks

In an important review article on complex
networks, Newman (2003) distinguished four
kinds of real-world networks: social networks
(e.g., collaboration networks), information
networks (e.g., citation networks), technical
networks (e.g., Internet router networks), and
biological networks (e.g., protein networks).
Based on such division, two types of scholarly
networks can be distinguished: social networks
vs. information networks. In social networks such
as coauthorship networks, a node is a social actor
(i.e., an author); in information networks, a node
is usually an artifact, such as a paper, a journal,
or an institution.
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In addition to “social networks vs. information
networks,” another distinction can be made,
which is “real connection-based networks
vs. similarity-based networks.” Coauthorship
networks and citation networks are constructed
based on real connections, whereas co-
citation, bibliographic coupling, topical, and
co-word networks are constructed based on
similarity connections. These scholarly networks
can also be viewed from their edge types:
collaboration-based, citation-based, or word-
based. Citation-based scholarly networks include
citation networks, co-citation networks, and
bibliographic coupling networks; word-based
scholarly networks include topical networks
and co-word networks; collaboration-based
networks include coauthorship networks. Those
distinctions (social networks vs. information
networks, real connection-based networks vs.
similarity connection-based networks, citation-
based networks vs. non-citation-based networks)
are helpful to understand how different types of
scholarly networks relate to each other.

Yan and Ding (2012) constructed six types
of scholarly networks aggregated at the insti-
tution level and found that topic networks and
coauthorship networks have the lowest similarity
and these two types of networks set two bound-
aries (social and cognitive) for all six types; co-
citation networks and citation networks have high
similarity; bibliographic coupling networks and
co-citation networks have high similarity; co-
word networks and topical networks have high
similarity.

The Use of Scholarly Networks

Before network theories were introduced to
scientometrics, accumulative citation counting
was widely used in the area of scientific
evaluation. In the same vein of research, several
citation-based indicators were proposed, such as
Journal Impact Factor and h-index (Hirsch 2005).
The accumulative citation counting and citation-
based indicators equated all citations to have
the same weight, without consideration of the
citing papers, citing authors, or citing journals.

This equal counting mechanism has been ques-
tioned, as scholars (e.g., Pinski and Narin 1976;
Bollen et al. 2006; Yan et al. 2011) argued that it
is more reasonable to differentiate the weight of
citations based on the source of endorsement.
This tension has largely been alleviated by
the construction of different types of scholarly
networks and the invention of various network-
based bibliometric indicators. Comparing to
traditional citation counting, scholarly networks
have the advantage to consider the source of
the citation endorsement. In this way, scholarly
networks can capture the complex research
communication and interaction more precisely.

In addition to scientific evaluation, scholarly
networks also contribute to other realms of schol-
arly communication and science policy making.
For instance, coauthorship networks have been
used to detect research communities and identify
collaboration patterns (e.g., Newman and Gir-
van 2004); co-citation networks, bibliographic
coupling networks, and co-word networks have
been used to identify research specialties, exam-
ine interdisciplinarities, and map the backbone of
science; and citation networks have been used to
study knowledge flows and knowledge transfer in
science and technology (e.g., Jaffe et al. 1993;
Yan et al. 2013).

The Framework of Studying Scholarly
Networks

Through scholarly network analysis, scientists
and policy makers have gained unprecedented
insights into the interaction of various research
aggregates. The study of scholarly networks in
general can be presented in a framework (Fig. 1),
including approaches, network-network types,
network-aggregation levels, and applications.

Approaches
Given that we have established a scholarly
network, we can describe its properties on
three levels, by macro-level metrics (global
graph statistics), meso-level techniques (com-
munity characteristics), and microlevel metrics
(individual actor properties). Macro-level metrics
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Scholarly Networks Analysis, Fig. 1 A framework of scholarly network studies

seek to describe the global characteristic of
a scholarly network as a whole with the aim
to capture the generic structural features of
a network. Commonly used measures include
diameter, mean distance, components, and degree
distribution. Meso-level techniques focus on
identifying research communities and studying

how communities interact with each other.
Microlevel metrics relate to the analysis of
the individual properties of network actors,
for example, actor position, actor status, and
distance to others, which informs us about
“the differential constraints and opportunities
facing individual actors which shape their social
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behavior” (Yin et al. 2006, p. 1600). It zooms
in to capture the features of the individual
nodes/actors in a network with consideration
of the topology of the network. Microlevel metric
usually refers to centrality, which indicates how
central the actor is to the network. Central actors
are well connected to other actors, and metrics
of centrality will measure an actor’s degree
(degree centrality), average distance (closeness
centrality), or the degree to which geodesic paths
between any pair of actors passes through the
actor (betweenness centrality).
Macro-level Macro-level metrics are useful to
identify the global structural features of the net-
work. There are many ways of characterizing the
structure of a network, such as component, bi-
component, k-core, mean distance, clustering co-
efficient, degree distribution, and error and attack
tolerance of the network. In network analysis,
connected graphs are called components.
• Component analysis can be used to learn

about the macro-level structure of a network.
• In a bicomponent, no node can control the

information flow between two other nodes
completely because there is always an alterna-
tive path that information may follow (Nooy
et al. 2005).

• The k-core of a network is a substructure in
which each node has ties to at least k other
nodes (Seidman 1983).

• A geodesic is the shortest path between two
nodes.

• The degree of a node is the number of other
nodes connected with it. Degree distribution
measures the character of a network: a few
nodes have many links and majority have
smaller numbers of links.

Meso-level Meso-level scholarly network
analyses focus on clustering various scholarly
objects in the same groups based on certain
clustering or modeling techniques. The clustering
of papers, authors, institutions, journals, and
subject categories is usually referred to as
community detection; and the clustering of
words and research topics is usually referred
to as topic identification. Broadly perceived,
clustering techniques fall into two branches:
one yields discrete results where a node in a

scholarly network is grouped into one or a
couple of clusters; and the other branch yields
fractional results where a node is grouped into
clusters with certain probabilities. “Discrete”
clustering techniques are traditional methods that
include graph partitioning (e.g., Kernighan-Lin
algorithm), hierarchical clustering, partitional
clustering (e.g., k-means), and spectral clustering
(e.g., algorithms utilizing Laplacian matrices).
In this decade, more and more clustering
tasks have used modularity-based methods
that use modules to measure the strength of
communities. “Fractional” clustering techniques
use probabilistic models to assign papers,
journals, or authors to clusters. The outcomes
of topic models are probability distributions of
words, papers, journals, or authors for each topic
(e.g., Blei et al. 2003).
Micro-level Freeman (1979) elaborated four con-
cepts of centrality in a social network, which
have since been further developed into degree
centrality, closeness centrality, betweenness cen-
trality, and eigenvector centrality. Eigenvector is
based on the principle that the importance of a
node depends on the importance of its neighbors.
PageRank, on the other hand, is derived from
the influence weights proposed by Pinski and
Narin (1976); it is formally formulated by Brin
and Page (1998), who developed a method for
assigning a universal rank to Web pages based on
a weight-propagation algorithm called PageRank.
A page has high rank if the sum of the ranks of its
backlinks is high. Actors in the PageRank of We-
b information retrieval systems are Web pages,
and actors in the PageRank of coauthorship net-
works are authors. The underlying idea is that a
citation from an influential publication, a pres-
tigious journal, or a renowned author should be
regarded as more valuable than a citation from an
insignificant publication, an obscure journal, or
an unknown author. It is sometimes argued that
non-recursive indicators measure popularity and
recursive indicators measure prestige.

Network Types
In addition to the different approaches, the
interaction of research aggregates can be
explored from different types of scholarly
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networks. Each type of scholarly networks has its
own use and can bring different perspectives
to study research interaction and scholarly
communication. For example, social networks
such as coauthorship networks focus on finding
collaboration patterns of contacts or interactions
between social actors. Similarity-based networks
such as co-citation networks, bibliographic
coupling networks, and co-word networks focus
on identifying research topics or schools of
thoughts. In citation networks, each node is
a piece of knowledge and a link denotes the
knowledge flow.

Aggregation Levels
In these network types mentioned above, an arti-
cle usually is a single research unit and can be
aggregated into several higher levels. Figure 2
shows the different aggregation levels discussed
in scholarly network studies.

The right side of the cascade is connected
through “journal-ship” affiliation: a paper is pub-
lished in a journal, a journal is classified into
a subject category, and a subject category is
further classified into a class. The left side of the
cascade is connected through authorship affilia-
tion: a paper is written by authors, an author is
affiliated to an institution, and an institution is
located in a country. Through studies of different
research aggregates, we are provided with mul-
tiple focus lenses that allow us to zoom in and
gain a concrete, detailed perspective on research
interaction, while zooming out allows us to obtain
a holistic and integrated view of the interacting
institutions and disciplines.

Key Applications

Scholarly networks have rich applications in the
studies of scholarly communication and research
interactions. Broadly perceived, six applications
are apparent to us. In this section, brief introduc-
tions are given for each application.

Evaluating Research Impact
Impact evaluation has become an important is-
sue in the science community. Scientists as well

as policy makers now have a keen interest in
evaluating scientific output. For scientists, eval-
uations of research impact help them find po-
tential collaboration, discover new research top-
ics, and locate appropriate venues to publish
their work. For science policy makers, evalua-
tions of research impact help inform them how
to allocate research funds, promote emerging
research fields, and monitor discipline develop-
ments. The traditional citation-based bibliomet-
ric indicators do not consider the source of the
citation endorsement. However, in reality, be-
ing cited by a renowned author, a prestigious
journal, and/or a highly influential paper differs
from being cited by a remote author, a periph-
eral journal, and/or an obscure paper. Network-
based bibliometric indicators are capable of con-
sidering the provenance of citation endorsemen-
t; specifically, PageRank and its variants have
gained popularity in evaluating research impact.
PageRank-like indicators denote a collection of
algorithms based on Google’s PageRank, such as
Y-factor (Bollen et al. 2006), CiteRank (Walker
et al. 2007), Eigenfactor (Bergstrom and West
2008), and SCImago Journal Rank (SCImago
2007). Among these network-based bibliomet-
ric indicators, citations are weighed differently
depending on the status of the citing publica-
tion (e.g., Walker et al. 2007), the citing journal
(e.g., Bollen et al. 2006; Pinski and Narin 1976),
or the citing author (e.g., Radicchi et al. 2009).

Studying Scientific Collaboration
Scientific collaboration, as a large-scale real-
world social phenomenon, has a particular charm
to scientists and social scholars. Coauthorship
networks provide an accurate and expedite
medium, allowing scientists and scholars to
explore various intriguing questions pertinent
to this social phenomenon. Physicists and
mathematicians have discovered the small-world
and scale-free properties from coauthorship
networks, for the first time providing a systematic
inquiry into humans’ social relationships. Later
on, coauthorship networks have been used as
a testing field for various modern clustering
techniques (e.g., Newman and Girvan 2004).
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Scholarly Networks
Analysis, Fig. 2
Aggregation levels of
scholarly networks

Such techniques are useful to examine scientific
collaboration at a more granular level, providing
insights to study the science of team science.

Studying Disciplinarity and
Interdisciplinarity
The topic of interdisciplinarity has long been a
research focus for social scientists. The quanti-
tative study of interdisciplinarity has been en-
hanced by studying citation networks aggregated
at the field level. Scholars usually chose some
representative journals, or all journals from a field
based on the ISI’s classification of journals, and
then measure the extent to which the publications
of the chosen field cited the publications of oth-
er subject categories. Network-based indicators
have also been proposed to measure how inter-
disciplinary disciplines are, using measures such
as entropy (Zhang et al. 2010), integration and
specialization (Porter et al. 2006), diversity and
coherence (Rafols and Meyer 2010), and relative
openness (Rinia et al. 2002).

Identifying Research Expertise and
Research Topics
Human knowledge, in the form of scholarly
publications, increases at a fast pace. How to
effectively organize the expanding knowledge
has become an important issue. Under such
motivation, scholars have proposed various

clustering techniques to group papers, authors,
journals, institutions, and fields, with the aim
to identify and organize research specialty in
an effective way. For similarity-based scholarly
networks such as co-citation networks and
bibliographic coupling networks, the assumption
is that if two research entities co-occurred
frequently, then they are more likely to have
similar characteristics. Therefore, co-occurrence
networks can successfully achieve the goal of
identifying and organizing scientific knowledge
(e.g., White and McCain 1998; Boyack et al.
2005; Waltman et al. 2010).

Producing Science Maps
Clustering results can also be presented in science
maps, and these maps are able to deliver richer
and more informative messages to a broader au-
dience body. Science maps on author and journal
interactions are usually used to identify research
topics (e.g., Boyack et al. 2005). As institutions
are associated with geographical locations,
science maps at the institution level are useful
to illustrate the geographical distribution of
scientific productivity (e.g., Leydesdorff and
Persson 2010). Science maps at the field level
provide a unique view on the backbone of science
(e.g., Boyack et al. 2005) or on the knowledge
flow in scientific disciplines (e.g., Rosvall and
Bergstrom 2008).
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Finding Knowledge Paths
The production and creation of knowledge is not
dependent on a single isolated entity; instead,
knowledge is diffused, exchanged, and circulated
among various entities. Knowledge flow, in the
past 20 years, is becoming more inter-sectoral,
more interorganizational, more interdisciplinary,
and more international. The issues of how do
scientific and technological knowledge, innova-
tive ideas, management skills, or certain influ-
ences transfer within different sectors, between
different organizations, and between different sci-
entific disciplines are pertinent to understanding
patterns of knowledge transfer and dissemina-
tion. Citation networks serve as an ideal research
instrument to uncover such patterns. In citation
networks, a node is a research aggregate, and a
link denotes a citation from the citing research
aggregate to the cited research aggregate.

Future Directions

Studies on scholarly networks usually chose one
type of network at one aggregation level. The
choice of a type of network can be inconsistent or
even arbitrary, and the findings have been discrete
and cannot be generalized to address a wider
spectrum of research questions. We recommend
that, in order to capture varied aspects of research
interactions, different types of networks need to
be combined and thus form a hybrid network.
Beyond hybrid approaches, scholars have pro-
posed heterogeneous scholarly networks to in-
corporate different academic entities while keep-
ing edge semantics. Study of the heterogeneous
networks has evolved from bi-typed networks to
star-typed heterogeneous networks. By adding
more academic entities (e.g., authors, journal-
s, articles, words), heterogeneous networks can
better simulate the mutual engagement of vari-
ous academic entities in the complex academic
environment.

Therefore, future research on this topic would
benefit from (1) constructing hybrid and het-
erogeneous scholarly networks and (2) evaluat-
ing different approaches on hybrid networks or

heterogeneous scholarly networks through pos-
sible “golden standards” (such as award lists or
expert judgments) in order to determine which
approach can yield more precise clustering re-
sults and more useful information for scientific
evaluations.
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Synonyms

Self-confidence; Self-perception

Glossary

Self-efficacy An individual’s confidence about
his or her skills

Expertise Knowledge and actual skills

Definition

Self-efficacy (Bandura 1977a,b) is an individ-
ual’s self-perception of his or her ability. By
placing importance on the individual’s perception

as opposed to the individual’s actual skill, this
construct can explain why people have different
behaviors even if they have a similar skill set.
In much of social-psychological research, self-
efficacy serves as a good proxy of predicting
people’s behaviors because it looks not only at
perceived expertise (knowledge and actual skill-
s) about a certain behavior but also perceived
confidence. However, in the context of behaviors
required to ensure privacy and security in an
online environment, confidence in one’s abili-
ty may not necessarily be the best factor that
explains behavior. Because privacy behaviors,
such as changing privacy settings and employing
preventive security measures, require a certain
degree of technical expertise, perceived expertise
and perceived confidence can be false indicators.
For example, one may have extremely strong
confidence in one’s ability but could very well
be overestimating that ability. In the context of
Internet privacy, this differentiation is important
as privacy protection requires certain technical
skills.

Efficacy beliefs are the product of a complex
process of self-persuasion that rely on cogni-
tive processing of diverse sources of informa-
tion. Research has found that self-efficacy is an
important construct that explains an individual’s
attitude about privacy, which ultimately affects
their behavior (Rifon et al. 2005). A limitation
for studies that examine self-efficacy, however,
is that there was little consideration for actual
expertise.

In semi-structured in-depth interviews with y-
oung adults aged 20–30, we found that the reality
of how users process information and behave in
relation to privacy and security issues online was
sometimes inconsistent with their self-efficacy,
especially among those with low levels of exper-
tise. Expertise was determined by an individu-
al’s actual understanding of the technical aspects
of privacy issues through a set of questions to
participants answered explaining constructs such
as phishing, Trojans, cookies, and browser pri-
vacy settings. Self-efficacy was measured asking
participants if they consider themselves knowl-
edgeable about the security risks and threats to
privacy that exist online. We found that the reality
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of how users process information and behave in
relation to privacy and security issues online was
sometimes inconsistent with their self-efficacy,
especially among those with low levels of ex-
pertise. In many cases, there was a difference
between an individual’s self-efficacy and exper-
tise; novices were more likely to overestimate
their self-efficacy while experts were more likely
to underestimate it. It was expertise, not self-
efficacy, that was a stronger predictor of their
attitude and behavior. For example, participants
with high self-efficacy but low expertise showed
extreme caution and concern regarding the impli-
cation of privacy policies and were more upset
about behavioral targeting than those with high
knowledge, whereas participants with higher self-
efficacy and high expertise showed accepting
behavior towards behavioral targeting.

Individuals’ abilities to change privacy set-
tings, set up firewalls, and use security software
among others were key indicators to how they
perceived privacy issues and how they acted to
deal with those issues. Novices were fearful of
privacy and security threats and relied more on
peripheral cues such as privacy seals and brand
names to make their judgment. Experts were
less concerned about such threats and interpreted
peripheral cues differently from novices. Across
different topics, we consistently saw differences
between those who had expertise and those who
did not.

Although this seems to challenge studies that
show self-efficacy as a strong predictor of be-
havior, it may be that there are different dimen-
sions of self-efficacy. For example, self-efficacy
of behavior (how to run antivirus software) may
be high, but self-efficacy of underlying concepts
or mechanisms (how the software works) may
be low. Thus, from a theoretical perspective, we
suggest that in the context of privacy studies,
researchers measure individuals’ actual expertise
in addition to self-efficacy, as expertise may play
a moderating role in predicting behavior. From
a practical perspective, the distinction between
self-efficacy and expertise can inform how and
what we should teach people about privacy and
security issues. People using social networks face
many challenges in terms of privacy and security

threats. There are no regulations in terms of legal
enforcement to what extent personal information
can be gathered and used by the social network
providers for purposes such as behavioral tar-
geting. The average user has uncertainty about
what kind of personal data is collected and for
what purpose, let alone where that information is
being sold or how they should protect themselves.
Furthermore, most social network services col-
lect network data, in which case information that
a user reveals to another thinking it is private
could still end up being collected and sold to third
parties. Differentiating the true expertise from the
self-perception of self-efficacy may enable us to
identify individuals who are at high risk – those
who think they know much but actually don’t.
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Synonyms

Context networks; Ontologies; Taxonomies; Text
networks; Topic networks

Glossary

Semantic Network Structured representations
of knowledge that are used for reasoning and
inference

RDF Resource Description Framework
FOAF friend of a friend
NLP Natural Language Processing

Introduction

Semantic networks represent the relationships
between pieces of knowledge or information.
They were originally designed to be used for
performing inference and reasoning on the mean-
ing of these data (Sowa 1992; Woods 1975).

Social networks represent the interactions be-
tween social agents, typically people and organi-
zations (Freeman 2004). The analysis of semantic
networks and social networks are both active
areas of research and innovation, while work at
their intersection is less prevalent. However, it has
been long recognized that combining both types
of network data enables researchers and practi-
tioners alike to ask more advanced yet highly
relevant questions such as:
• Who is talking to whom (social network)

about what (semantic network) (Danowski
1993; McCallum et al. 2007)?

• Does shared knowledge or interest in sim-
ilar topics (semantic network) increase the
likelihood of becoming acquaintances (social
networks), or vice versa (Crandall et al. 2008;
Wenger 1999)?

• How do information, opinions, and rumors
(semantic network) emerge, spread, and
vanish in society and on social networking
sites (social network) (Adar and Adamic
2005; Leskovec et al. 2009)?

• Can social network data be made more accu-
rate, complete, and useful by exploiting back-
ground information on social agents (Berners-
Lee et al. 2001; Van Atteveldt 2008)?

The last one of these questions originates from
a more specific use of the concept of “semantic
social networks”: in addition to referring to the
combination of semantic and social networks,
this term also describes the enhancement of rela-
tional data with background information on any
type of node or entity. Again, these enhanced
graphs can then be used for conducting infer-
ence and reasoning over the data. One prominent
example for this approach is the semantic web
(Berners-Lee et al. 2001). The key idea with the
semantic web is to mark up data objects on the
Web, such as words and relations, as they occur
on webpages, by using a standardized annotation
language (Resource Description Framework, or
RDF). These enhanced data structures are then
used to generate machine-readable definitions of
data that can be interpreted by computers. An
example for a stream of work that originates
from the Semantic Web philosophy is the “friend
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of a friend” (FOAF) framework. FOAF combines
social network data with semantic network data,
where both types of data structures are denot-
ed according to a predefined, machine-readable
description language, allowing for automated in-
ference on the data. On a general level, such data
can be used to recommend social ties between
people who share some interests or are involved
in the same events or to recommend activities and
pieces of information that are new to a person
whose friends have endorsed these things.

Historical Background on Semantic Social
Networks
Efforts in combining social and semantic
networks trace back their roots well before the
advent of the computer and the Internet. Vannevar
Bush (1945), advisor to US president Roosevelt
during the Second World War, envisioned
Memex, a device for organizing all knowledge of
mankind in a structured way. In the 1960s, Ted
Nelson coined the term “hypertext.” In the 1970s
and 1980s, a vibrant field around the concept
of hypertext emerged in disciplines such as
Artificial Intelligence and computer science. In
the 1980s and 1990s, the ACM annual hypertext
conference regularly drew between 500 and 1,000
researchers. Early on these researchers started
combining hypertext with semantic networks
(Brachman 1979). In 1991 Tim Berners-Lee,
together with Robert Cailliau, presented the
Web at the ACM hypertext conference in San
Antonio, and just a few years later he broadened
his concept to the Semantic Web (Berners-Lee
et al. 2001). Shortly after, Hermann Maurer and
his colleagues envisioned a hypermedia system
called Hyper-G, which combines semantics and
social networking (Andrews et al. 1995).

Combining Social and Semantic Networks
Combining social networks and semantic net-
works opens up novel ways for extracting mean-
ing from social interaction. One strategy for com-
bining social networks with semantics about the
network data is to enhance a given social net-

work with additional information about agents
and their connections. This can be done by ex-
ploiting external data sources such as the We-
b, news archives, and domain-specific databases
(Van Atteveldt 2008). For example, for the indi-
viduals being co-mentioned in a news article, one
could search knowledge bases such as Wikipedia
or the Web for further information on those peo-
ple’s roles and locations. Adding this information
to the social network contextualizes the data,
which allows for a richer and more fine-grained
indexing and retrieval. This approach basically
adds semantics to a social network. It can also
help to disambiguate social agents, e.g., people
who have the same name, but differ in their job,
location, or date of birth as indicated on knowl-
edge bases such as Wikipedia, and to specify
the types of relationships between agents. The
inverse of this principle, i.e., utilizing, searching,
or suggesting connections between people who
share some knowledge, interests, or likings, is
also an active area of research and development.
Examples for this approach include recommender
systems, dating services, and social networking
platforms.

Another common strategy for bringing to-
gether social networks with semantic informa-
tion is to enhance a social network with the
information produced, processed, or shared by
members from within or outside the network
(Diesner and Carley 2011). This information typ-
ically represents salient information from natural
language text data, such as people’s interest-
s as indicated on their social networking pro-
file or key terms and themes that are explicitly
or implicitly contained in documents that peo-
ple authored. For communication data, for in-
stance, a social network can be built from the ex-
plicit information about communication partners
(who talks to whom). Then, agents can be linked
to nodes representing words and short phrases
that occur with a high (weighted) frequency in
the underlying text data. Suitable data sources
used for this procedure include transcripts of
conversations and meetings and online discussion
forums. An early example for a tool that jointly
analyzed the social network of e-mail senders
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and receivers and the content of e-mail bodies
is TeCFlow, now called Condor (Gloor and Zhao
2004). Today, a variety of methods and tools has
been developed that support the joint collection,
visualization, and analysis of relational social
and semantic information from communication
archives. Remaining challenges in this domain
include the partitioning of people into meaningful
groups prior to associating social clusters with
content and selecting pieces of information to
link to agents in a scalable yet non-arbitrary
fashion (Diesner 2013).

Sometimes, the information about social net-
works is encoded in sources that are typically
used for conducting semantic analysis, name-
ly, unstructured, natural language text data. In
these cases, social network data can be extracted
from the text data (Diesner and Carley 2011;
Roth and Yih 2002). Typical data sources include
news wire data, interviews, communication data,
and social media data, such as microblogging
services and social networking sites. The main
steps involved in this task are the identification
of entities, i.e., nodes, and the relations between
them. These entities are sometimes further cat-
egorized into different classes, such as people,
organizations, and locations, and can entail one-
word units as well as multi-word units (Diesner
and Carley 2008). The types of relations can
be defined over entity types, such as social net-
works between people or a membership network
between people and organizations. Alternative-
ly, applicable types of relations can be speci-
fied in an ontology or a taxonomy, which can
be predefined or extracted from the data (Brin
1999; Roth and Yih 2002). An example would
be to classify social network ties as represent-
ing friendship or antagonism. Highly accurate,
automated, and scalable methods for relation ex-
traction typically exploit a combination of lexical
(words and their structure), semantic (meaning
of words), syntactic (relationships between words
and grammar), and statistical information from
text data (Diesner and Carley 2008; Mihalcea
and Radev 2011). These methods, which have
been developed in the fields of Natural Lan-
guage Processing and Computational Linguistics,

typically combine routines from statistics and
machine learning and sometimes also consider
models and methods from socio-linguistics and
sociology (Corman et al. 2002; Diesner and Car-
ley 2008). Once such network data have been
extracted from a text corpus, they can serve as
input to regular network analysis (Carley et al.
2007; Corman et al. 2002). Used this way, re-
lation extraction can serve as a complementary
or alternative method for collecting data about
social networks. These social networks can be
combined with semantic networks that are also
extracted from the text data. In fact, some models
and methods consider “knowledge” or “informa-
tion” as a node classes for relation extraction
(Diesner and Carley 2008). Combining social
networks and semantic networks extracted from
text data or built from other sources can be useful
for addressing the following types of questions
(Barthelemy et al. 2005; Carley et al. 2007; Gloor
et al. 2009):
– Which social agents are associated with what

ideas, beliefs, or pieces of knowledge?
– Which agents are prominent with respect to

their association with information? These
people might function as information brokers
or gatekeepers if they have a high betweenness
centrality or be somewhere between well
informed and overloaded with information
if they feature a high degree centrality (for
details on these metrics, see the section on
centrality measures).

– Which agents are linked to too many knowl-
edge items and thus might suffer from task
overload?

– Which agents have exclusive access to some
information? In an organizational context,
such people might represent a vulnerability,
which can be mitigated by converting tacit
knowledge residing in people to information
being documented in written form.

One caveat with distilling the network data from
text data itself is that research on resembling
ground truth data for social networks by exploit-
ing the substance of text data has shown that the
overlap between text-based social networks, e.g.,
those extracted from e-mail bodies, and social
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networks constructed from associated metadata,
e.g., e-mail headers, shows only minimal overlap-
s (Diesner 2013).

Key Applications

One prominent example for employing semantic
social networks in practice is expert finder sys-
tems (Dooley et al. 2002). A specific instance
is SmallBlue, a tool developed and deployed at
IBM (Ehrlich et al. 2007). This system augments
social network data with information on who
knows what, allowing people to search for the
shortest social path to knowledge through their
wider and potentially remote network of cowork-
ers. In such systems, the information on peo-
ple’s expertise can be pulled from internal data
sources, such as organizational databases, and
from public sources, such as blog posts and tags.
Ehrlich et al. evaluated the SmallBlue system to
be particularly useful for locating experts on very
particular pieces of knowledge, which comple-
ments the general understanding about broadly
regarded experts on certain topics. Generalizing
from this idea, professional social network sites
such as LinkedIn are based on the same premise:
they allow people to search for experts on certain
topics within the professional network of their
immediate acquaintances. If a match has been
found but the identified individual is not a contact
of the person executing the search, one could
mobilize their social capital to be introduced via
the shortest social path of mutual acquaintances.

Another real-world example for semantic
social networks is Wikipedia (Brandes et al.
2009; Crandall et al. 2008). This knowledge
base not only provides a vast amount of socially
vetted information but also entails metadata
about the authors and detailed information
about every single contribution. The metadata
surrounding the content pages entail information
about the what – the edits of pages, when –
edits over time, who – which authors edited the
pages, and how – which links to other pages
inside and outside of Wikipedia. These types
of data can be fused into dynamic, multimodal

network data. Moreover, taken together, these
data open new opportunities for investigating
the processes that lie behind the life cycle
of the creation of content and contributing
knowledge to the public domain. Visualizations
built on this information can provide maps of
concepts, knowledge, and trends, which can
be displayed by content domain, geophysical
region, cultural background, etc. Analyzing and
comparing these maps and semantic networks
across time, space, and languages can contribute
towards a better understanding of societies and
cultures. In addition, constructing coauthorship
networks where links between Wikipedia articles
are drawn based on the same person editing
different articles enables the identification of
domain experts as well as trusted arbitrators.
Furthermore, Wikipedia has an implicit social
organization of its own, composed of networks
of contributors. Analyzing this social network
can help to understand if active Wikipedians
operate under an implicit set of rules that has
evolved within the Wikipedia community and
might generalize to other open source production
systems or to traditional organizations. Studying
collaboration among Wikipedians also gives
indications of the role of social capital for
teams in organizations where members are
collaborating virtually without much face-to-face
contact. In the same way that social network
surveys made visible the importance of the
informal organization within large corporations,
the analysis of Wikipedia editor networks enables
the measuring of the role of social capital in
voluntary online collaboration: social capital
indeed seems to increase efficiency in this
emerging organizational setting as well (Nemoto
et al. 2011).

Future Directions

An example for ongoing research on semantic
social networks is the measurement of team per-
formance over time. In this work the performance
and creativity of organizations are analyzed by
correlating social network data, content-based
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semantic analyses, and creative performance of
work teams (Grippa et al. 2012). This approach
is a first step towards articulating a systematic
theory of social networks coming from the dy-
namic and causal dimensions of relationships.
This work represents the general idea behind
semantic social networks, namely, enabling the
investigation of ties among community members
not only under the quantitative aspect related
to SNA metrics but also under the qualitative
aspect related to the content of the ties. Such an
emergent theory will give new meaning to the
“relational” and “cognitive” dimensions of social
capital (Stinchcombe 1990).
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Synonyms

Detection of communities; Graph mining;
Knowledge engineering; Networks dynamics
analysis; Semantic networks; Social trends
discovery; Text mining

Glossary

SNA Social network analysis (see Definition
section)

SW Semantic Web (see Historical background
section)

Knowledge Engineering Discipline studying,
extracting, and managing knowledge implicit-
ly defined within digital data structures

Graph Mining Extracting implicit information
and knowledge from graphs

Data Mining Extracting implicit information
and knowledge from numeric data

Text Mining Extracting implicit information
and knowledge from text corpora

Social Capital Knowledge and skills owned by
employees (human capital) when shared in a
collaborative context and defining a network
of professional interactions

Definition

Social networks analysis (SNA) enables to figure
out the position of people and communities with-
in social networks, represented as social graphs.
It defines a set of methods and measures, such
as graph clustering for community detection or
closeness centrality and betweenness centrality,
which identify and rank members or communities
based on the statistical analysis of the connection-
s found in these social graphs. When these kinds
of methods and measures also take into account
the semantics of the digital content shared within
social networks or semantic information about
people, SNA turns into semantic social network-
s analysis (SSNA).

Introduction

Standard SNA measures mostly consider ties
and relationships within social networks and thus
remain blind to the semantics of the digital con-
tent shared by their members and/or implicitly
expressed by their profiles. Therefore, search-
ing opinion leaders within a planetary network
such as Facebook or MSN using SNA measures
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generally returns the most mediatized people,
whether they are journalists, politicians, or inter-
national artists.

Indeed, most SNA methods and measures are
based on the statistical analysis of social graphs
topology (Freeman et al. 1989). A graph G(V; E)
is a set of vertices and a set of edges. Each
element of G(V; E) is possibly weighted and/or
labeled with one or more values. As a result, we
find structure-based measures, such as the stress
centrality defined in Shimbel (1953), and flow-
based measures (Newman 2005) for undirected or
directed graphs, integrating various metrics such
as information flows or virality (Brandes and
Fleischer 2005; Miramontes and Luque 2002).

Semantic SNA is mostly based on interdis-
ciplinary models merging SNA and knowledge
engineering (KE). On the one hand, it refines
SNA measures and metrics in order to enhance
the processing of data, text, and knowledge tied
to the members of social networks. On the other
hand, it refines KE principles, techniques, and
methods such as linguistic statistics and ontolo-
gies, so as to provide KE capabilities adaptable
to SNA models. Semantic SNA measures thus
make it possible to retrieve opinion leaders within
a large network, for specific topics or keywords.
For instance, the semantic betweenness centrality
defined in Thovex and Trichet (2012) enables to
retrieve polyvalent experts in specific domains
of professional activity defined by seized key-
words, such as “database administration and web-
site management,” even if managers are much
more connected and relay more communications
than technical experts within the enterprise social
network.

Key Points

This essay proposes an insight of theoretical
aspects of semantic social networks analysis, of
its epistemic extents, and of the applications it
enables to develop. Based on the state of the art in
the domain, we study the theoretical foundations
of SSNA from their graphic aspects such as topol-
ogy and flows, or static and dynamic behavior
within social networks, to their KE aspects such

as data mining, text mining, graph mining, or
ontologies and the semantic Web. The main theo-
retical aspects are illustrated with an application
of SSNA for enterprises and with examples of
applications impacting our social life, economic
life, professional life, and private life. Lastly, the
future and theoretical directions of SSNA are
presented under the epistemic aspects of the way
paved by SSNA foundations, and future applica-
tive directions are explored in terms of social,
economic, and strategic outcomes.

Historical Background

Some premises of SNA have appeared in Moreno
(1934) with the notions of sociogram and so-
ciometry, then in Freeman et al. (1960), concern-
ing the study of social relationships and leader-
ship in communities. Introduced as a sociolog-
ical discipline, SNA started to have recourse to
mathematics and statistics to develop new mea-
sures adapted to large-scale analysis, mostly cen-
trality and modularity measures (Shimbel 1953;
Freeman 1977). These measures and metrics are
now considered as standard in SNA, and while
sociologists carry on studying socialization and
group behaviors (Tajfel et al. 1971), the the-
oretical foundations of standard measures con-
tinually inspire new refinements (Brandes 2001;
Miramontes and Luque 2002; Pearson and West
2003), so as to face the new challenges raised by
the planetary networks of the social Web – e.g.,
Twitter, Facebook, MSN, and Orkut. As the Web
started to be semantic before being social, seman-
tic SNA is currently becoming a mainstream in
SNA (Erétéo 2011; Thovex and Trichet 2012).

Increasing interest in Web information
retrieval led to the semantic Web initiative
(Berners-Lee et al. 2001) from the World Wide
Web Consortium in 2001. Semantic standards
have been widely used since then, even outside
the scope of the Web. However, the main limit in
the use of such techniques is the need for explicit
semantics from users as fully automatic semantic
annotation is not possible. The semantic Web is
well fitted to merge with the social Web as both
content and actors are generally strongly tied,
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through semantics-to-content relationships and
members-to-members relationships (e.g., finding
appropriate files/endpoints within peer-to-peer
networks). Defining enhanced capabilities for
SNA and taking advantage of the semantic Web,
semantic social network analysis now tends to
provide decisional models for the semantic and
social Web.

Semantic SNA Is Interdisciplinary

Sociology, mathematics, knowledge engineering,
these three disciplines summarize the interdisci-
plinary aspect of semantic social networks anal-
ysis. In this section, we present SSNA from
the standpoint of computer sciences, focusing on
the theoretical aspects of standard SNA mod-
els then on knowledge engineering techniques,
before summing up with an epistemic overview
of the main conceptual bridges discovered in the
presented domain.

Theoretical Aspects in SNA
Standard SNA models are mainly based on the
study of topology and flows within social graph-
s. We differentiate static models and dynamic
models.

Topology and Flows
A graph is identified by its vertices and its edges
(connections in the case of social networks).
When connections are distributed depending on
a Gaussian law, the graph structure is named
random graph (Erdos and Rényi 1959), and when
they depend on a power law (i.e., the proba-
bility for a given node to be connected to k
other nodes is proportional to k�� , where ”

is a parameter generally comprised between 2
and 3), the structure is called scale-free network
(Barabasi and Albert 1999); scale-free networks
contain many nodes with a very low number
of connections, and a few “hubs” connected to
many other nodes. The Web and social networks
are identified as scale-free networks depending
on preferential attachments (Barabasi and Albert
1999). Standard SNA measures are sensitive to
topology because they generally follow geodesic

paths – i.e., shortest paths connecting pairs of
nodes .i; j / within a graph – so as to proceed
to pairwise comparisons of nodes such as in
the betweenness centrality defined in Freeman
(1977) as follows:

CB.Pk/ D
Xn

i>j

Xb

ij.Pk/

The definition above adds bij.Pk/ D 1 to the
betweenness centrality of a point Pk for each
geodesic path between the pair of nodes .i; j /

comprising Pk , and so on for each pair .i; j /

of a social graph. It has been successfully im-
plemented and experimented in Erétéo (2011), in
the context of a project deploying semantic Web
languages and tools (i.e., RDF, SPARQL) on a
professional dataset based on semantic annota-
tions and collaborative documents sharing – cf.
Ontologies and the Semantic Web section.

Integrating flows values enhances the
results of SNA models, because it fosters
the discrimination of representative positions
such as leaders or eccentric influencers within
social networks. It enables to differentiate
hubs regarding the information they share and
to take into account various flows metrics
such as read/written textual content, social
media viewing/listening, shared knowledge,
positive/negative opinions, or friendliness (Chen
and Qi 2011; Zhuhadar et al. 2011).

In order to produce relevant flows values,
knowledge engineering techniques enable to de-
fine semantic flows metrics based on the content
shared within social networks. For instance, the
study of professional skills and activities in en-
terprises and/or institutions social networks intro-
duces metrics of semantic intensity .SemI/ and
semantic resistance .SemR/ based on linguistic
analysis techniques (Thovex and Trichet 2012),
such as in the following definitions:

SemIU;T;D D TF.T; D/I SemRU;T;C

D IDF.T; C /

In these definitions, U; T; D; C represent
respectively a node, a term, a document, and
the corpus of text documents tied to the studied
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social networks. TF and IDF are well-known
measures in the domain of linguistic statistics,
which are trivially defined as follows:

Term Frequency.term/ D jterm occurencesj =
jterms 2 documentj

Inverse Document Frequency.term/

D jdocuments 2 corpusj = jjdocument 3 termjj

They are introduced in SSNA by Robertson and
Sparck Jones (1976), where they are coupled with
semantic indexation and research services so as to
produce semantic metrics which enable to value
the ties between people and terms within a social
graph, depending on the endogenous content –
i.e., the content generated and shared within the
studied social network. With such a graph, when i

represents an individual and j represents content,
bij.Pk/ D 1 is easily weighted using the semantic
edge metrics SemI and/or SemR as factors,
in order to define a new semantic betweenness
centrality and new semantic centralities based on
standard SNA measures and path walks (Newman
2005). As SemI and/or SemR are not calculated
for all the edges, we have defined a dynamic
model propagating the metrics in a coherent way
within the whole graph.

Static Models and Dynamic Models
It seems essential to differentiate static SNA
models, in which the values found within social
graphs are not temporally dependent on each oth-
er (i.e., static values), from dynamic SNA models
in which the values are temporally dependent
on each other, like in electric circuits where the
current of a part depends on the other parts. This
metaphor is significant, regarding the main con-
tributions to dynamic SNA based on the analogy
between information and electronic flows (New-
man 2005; Brandes and Fleischer 2005). It is also
developed in physics, introducing SNA measures
so as to prevent failures in electric power grids
(Wang et al. 2010).

Static models are powerful when social graphs
under study are fully weighted before being

analyzed. For instance, applying the metrics
SemI and SemR to a network representing
the relationships between the members of an
enterprise and the terms found in the mails they
exchange, it is possible to define a social graph in
which all edges are weighted by semantic values
(Newman 2005). In such a context, a semantic
referential such as an ontology representing the
terms found in the network should increase the
weighting relevance of each term, using semantic
metrics such as defined in Aimé et al. (2010).
Merging semantic networks and social networks
fosters the development of relevant SSNA
models. This example of social and semantic
architecture is a case in point.

Figure 1 represents a multilayered view of
semantic network and social network merged in
a single structure. At the bottom of the picture,
the dotted lines represent collaborative social
relationships, and the full lines represent organi-
zational relationships, within an enterprise social
network. The individual u shares the content
of an email comprising the expression “training
activity.” Through the term “training,” represent-
ed in these mantic layer at the center of the
picture, and thanks to the ontological relation-
ships about this term, the email associated to
the individual u is associated to the documentary
resources comprising terms or annotations simi-
lar or close to “training” – e.g., “tutor.” Individ-
uals associated to these documentary resources
are then more tightly associated to u, thanks
to shared knowledge. So, the three individual-
s pointed by the individual/content association-
s become prominent nodes of a same seman-
tic and social subgraph related to training and
tutoring.

Moreover, the other expressions indexing
the documentary resources of the socio-
semantic subgraph detected (i.e., “homologated
certificate,” “quality control”) can help in the
automatic classification of endogenous resources,
having recourse to semantic indexing and natural
language processing techniques.

Dynamic SNA models enable to introduce
heuristics based on natural behaviors, such as
encountered in physics or biology (Galam 2008;
Giugliano 2009). For instance, with the enterprise
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Semantic Social Networks Analysis, Fig. 1 Semantic network and social network merged in a single structure

social graph that we previously took as an exam-
ple, applying SemI and SemR only produces
weighs on the edges, not on the nodes repre-
senting people or terms. Furthermore, the metrics
are not always coherent within the whole graph
and could transgress simple rules such as “for
each node, the sum of incoming flows equals the
sum of outgoing flows.” The issue is solved by a
dynamic SSNA model implementing Kirchoff’s
and Ohm’s laws (Thovex and Trichet 2012). This
model enables to weigh the whole graph by
ensuring the coherence of all weighs, according
to the natural balance of electronic flows in solid
state circuits. This naturally coherent heuristic
still does not take electromagnetic losses and
interactions into account but improves previous
epistemic approaches (Newman 2005; Brandes

and Fleischer 2005), which introduce Kirchhoff’s
point law in dynamic SNA without integrating
the Ohm’s law, although it is a prerequisite in
physics. The dynamic method of flow propaga-
tion defined in Thovex and Trichet (2012) owns
two temporal aspects. On the one hand, it pro-
duces a coherent distribution through the whole
graph, of the semantic values coming out from
SemI and SemR on the edges connecting peo-
ple to content. This phase enables to weight nodes
and people-to-people and/or content-to-content
edges, in a coherent way. On the other hand, tem-
poral changes occurring within the input dataset
might be processed, so as to compare the states
of studied socio-semantic networks together and
to produce temporal analysis of socio-semantic
networks following a timeline.
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Theoretical Aspects in Knowledge
Engineering
Knowledge engineering aims at integrating
knowledge in computer systems in order to lower
the need for human intervention. Two main issues
need to be addressed: knowledge discovery (i.e.,
mining techniques such as linguistic statistics)
and knowledge representation and exchange
– i.e., semantic formalisms. These issues are
developed in the following sections.

Data Mining, Text Mining, and Graph Mining
Data mining aims at automatically finding pat-
terns (such as rules or outliers) in large datasets.

The underlying motivation comes from the
data explosion which has been taking place since
several decades. Daily data generated by social
networks contribute to the Big Data phenomenon.
Moreover, a significant part of these data needs
to be processed in real time, which represents
an additional challenge to the one related to
scalability.

Many scientific areas contribute to data min-
ing techniques, e.g., statistics, artificial intelli-
gence, machine learning, and optimization. Data
mining solutions include data classification or
clustering, association rules generation, and out-
lier detection.

Data mining is applied to many sectors,
among which text analysis, Web mining,
marketing, financial or biological data analysis,
or fraud detection. Moreover, the development
of networked data such as computer, biological,
or social networks has created new challenges
for data mining and graph mining in particular.
Indeed, these – often large and heterogeneous
– real networks also called complex networks
may be represented as graphs. Complex
networks analysis has raised interest in the
scientific community, and various graph mining
techniques have therefore been developed in
order to describe these real graphs and design
models to generate realistic networks. Another
trend in graph mining consists in identifying
clusters of strongly connected nodes in the
network, called communities (Fortunato 2010).
Finally, very little is known about complex

networks dynamics, and much remains to be
done – e.g., study of communities evolution
over time, ties, and interactions between data
types.

Ontologies and the Semantic Web
Various formalisms exist within the semantic We-
b framework, with different levels of complex-
ity and expressiveness, from simple annotation
syntaxes to sophisticated reasoning capabilities.
The eXtensible Markup Language (XML), the
Resource Description Framework (RDF) (Lassi-
la and Swick 1998), ontologies (Gruber 1993),
rules, and logic all belong to the semantic Web
picture. Many definitions of ontologies may be
found in the literature; among them, Tom Gru-
ber’s (1993) is frequently referred to: “An ontolo-
gy is a formal specification of a shared conceptu-
alization.” An ontology basically describes con-
cepts and the relationships among these concepts.
A thesaurus may be seen as a light ontology as
it also describes concepts, but the relationships
among them are not specified as formally as in
ontologies.

Conceptual graphs (Sowa 1976) constitute
a way to represent and organize knowledge.
Such graphs may be built from structured or
unstructured data, for example, through the
computation of Galois lattice based on formal
concept analysis (Ganter and Wille 1998). From
a set of elements (called objects in the FCA
terminology) described by their properties (called
attributes), a Galois lattice builds a partially
ordered set of concepts, consisting each in objects
sharing common attributes. Based on semantic
attributes and relationships, it defines semantic
networks and clusters which can be compared to
the notion of community encountered in SNA.
Semantic networks such as Galois lattices and
ontologies represent the topology of semantic
relationships between concepts enriched with
various qualitative information. Hence, intrinsic
features of members of a social network such
as age, education, address, or hobbies (i.e.,
profiles) may be used for the identification of
communities or for the recommendation of new
contacts.
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Semantic Social Networks Analysis, Fig. 2 Three-tier architecture: data, conceptual, and semantic layers

Conceptual graphs, ontologies, and the-
sauri are excellent candidates to support the
convergence of semantic analysis and social
network analysis, since both disciplines are
based on graphic representations and heuristics.
Conceptual graphs and semantic networks
provide an intermediate layer between analyzed
data and semantics, as shown on Fig. 2. Indeed,
they have been successfully used for the analysis
of social networks extracted from Myspace,
Flickr, Dailymotion (Riadh 2009), and Twitter
(Melo et al. 2012). A node of the conceptual
layer may be linked to several nodes of the
semantic layer, creating a bridge among various
ontologies. New similarity metrics for ontology
matching may also be derived from graph-
based metrics. Conversely, a semantic node
may be related to distinct concepts, allowing the

navigation from a conceptual graph to another via
the semantic layer.

Figure 2 illustrates how, in KE, a semantic
network maps onto data. It represents the concep-
tual bases illustrated in Fig. 1 – which shows an
ontology snippet mapped onto a social network
via the content shared by its members. Similar-
ity between both figures reveals how semantic
networks are propitious to define SSNA models,
but not only. The conceptual bridge it entails
can be crossed from KE to SNA/SSNA, but also
from SNA/SSNA to KE, in order to research
new methods to build and/or populate semantic
networks using SNA/SSNA models. In such a
context, the possibility of discovering virtuous
and self-learning models seems to be latent.

As explained earlier, the interest of se-
mantics in social network analysis has been
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acknowledged; conversely, SNA results may help
maintain and enrich ontologies. For instance,
communities identified through topological links
within a social network may correspond to
emerging concepts to be added in ontologies.
Intra/inter-communitarian ties between members
may help with ontology building in the
interdisciplinary context of semantic and social
networks analysis. This raises challenging
research questions in order (1) to identify,
within social networks and social content, useful
and relevant ties for ontology building and/or
matching and (2) to define bi-disciplinary self-
learning processes in SSNA.

Semantic SNA: An Interdisciplinary
Approach
In the first part of the current section, we have
explored the bases of social networks analysis
and shown how semantic SNA enhances stan-
dard SNA – integrating semantics related to en-
dogenous content into SNA measures – thanks
to knowledge engineering methods such as lin-
guistic statistics. In the second part, we have
discovered a singular analogy between social
networks and semantic networks, through a p-
resentation of conceptual graphs, Galois lattices,
ontologies, and thesauri – i.e., semantic represen-
tations based on graphs. We state that it opens
an epistemic track paving the way for future and
interdisciplinary SSNA models. We define SSNA
as an interdisciplinary approach based on SNA
and KE. SSNA introduces a generation of models
which adapt the results of standard measures and
metrics depending on the semantics found in the
content shared within social networks. Curren-
t experimentations show a significant improve-
ment of SNA results, thanks to SSNA models.
We can imagine future extensions like merging
opinion analysis into SSNA.

Unfortunately, current SSNA models are
mostly dependent on the existence of text within
the endogenous content, while social networks
include more and more pictures, audio and/or
video streams, bookmarks, or geographical
locations. Before providing semantic data, the
social Web requires a lot of various techniques for
processing signal in visual and/or audio streams

and for knowledge extraction in bookmarks and
locations – e.g., face recognition, multilingual
speech to text, musical pattern recognition,
Web crawling, linguistic analysis, association
rules, and fuzzy logic. Hence, without heavy
preprocessing frameworks extracting textual
representations and semantics from social media,
SSNA omits a large part of the social content
it is supposed to process. Though the explicit
relationships within social networks and social
media provide a turnaround, this seems to be
one of the biggest obstacles to the deployment
of SSNA in the socio-semantic Web, with
more general problems such as processing very
large datasets, mining the hidden/deep Web, or
subtle psychosocial knowledge regarding human
behaviors, hidden intentions, and subconscious
opinions.

Key Applications

As social networks touch our social life, private
life, economic life, and professional life, the ap-
plication domain of SSNA is potentially vast and
linked to SNA applications. One of the first major
trends we have seen developed is criminal net-
works analysis for counterterrorism. Obviously,
SNA/SSNA is an important decisional leverage
for marketing agencies and strategies. In 2008,
two founders of Facebook declared having to
leave the enterprise to conceive a new kind of
products that “will become to your work life
what Facebook.com is to your social life” – cf.
ASANA and http:/en.wikipedia.org/wiki/Dustin_
Moskovitz. In the same time, enterprise social
networks became as usual as mail exchanges
in certain professional branches, and when they
are consensually accepted, they are considered
as tools fostering collaboration and productivity.
They are also precious for human resources man-
agement and social capital management.

Experimenting the semantic metrics and mea-
sures defined in Thovex and Trichet (2012) on
collaborative enterprise dataset, we have iden-
tified and ranked significant terms and teams
within skills networks – i.e., socio-semantic net-
works representing professional collaborations.

http:/en.wikipedia.org/wiki/Dustin_Moskovitz
http:/en.wikipedia.org/wiki/Dustin_Moskovitz
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Semantic Social Networks Analysis, Fig. 3 Visualization of SSNA results – samples

As a result, SSNA of skills networks provided
a set of relevant indications helping in (1) self-
managed collaboration and teams organization;
(2) detection of critical topics, in terms of stress at
work; and (3) redeployment of human resources,
according to dynamic requirements in terms of
competencies and workload. Evaluating our pre-
dictive and epistemic model with the experts
involved in experimental phase, the produced rec-
ommendation enabled to retrieve a group of users
sharing an anonymous account, though there was
no explicit data allowing to identify these users in
the studied dataset.

Future Directions

Semantic SNA: An InterdisciplinaryWay
to Be Paved
We have presented earlier the interdisciplinary
dimension of SSNA. According to our knowl-
edge of the domain, this dimension raises an
unsuspected set of epistemic issues far beyond
the analogy between electric current flows and
information flows in social networks developed in
Newman (2005), Brandes and Fleischer (2005),
and Thovex and Trichet (2012). The interdisci-
plinary dimension of SSNA can be explored in
depth as well as transversally.

Pursuing the in-depth exploration of epistemic
equivalences between electrophysics and SSNA,

we could intend to merge electromagnetic and
thermodynamic principles into our current model
(e.g., Maxwell’s equations, Joule effect), so as
to detect invisible information flows and seman-
tic ties or risks of psychological burnout with-
in social networks. Following its logical way,
this in-depth epistemic immersion could lead to
Schrödinger’s and/or Dirac’s equations – i.e., to
relativist quantum electrodynamics.

Transversally exploring the interdisciplinary
dimension of SSNA, we might discover epistemic
connections between biological similarities and
socio-semantic networks formulations, between
knowledge networks and neuronal networks
and/or brain dynamics, or between geography
of social networks and knowledge networks, as
an example. Figure 3 represents a sample of
our experimental results, studying collaboration
relationships within an enterprise. At the left on
the picture, weighted degree centrality (i.e., the
sum of all weights from edges connected to a
node) based on SemI *SemR(named semantic
tension) defines the size and color of nodes and
the color of edges, from light blue for weak
values to red for high values. It enables to identify
the most important collaborators (largest hubs
at the left) in terms of skills and knowledge
(small nodes/terms around the hubs). The same
dataset is represented at the right on the picture,
based on semantic closeness centrality values
such as defined in Thovex and Trichet (2012).
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Orange color shows how semantic closeness is
concentrated on average values, in this case.
The most common terms are tied with most of
the collaborators, represented as the core of the
network. At the periphery, we find eccentric
collaborators working on rare terms, sometimes
with high semantic tension (red edges) which
represent rare but important knowledge/skills
within the enterprise.

From Social Outcomes to Strategic
Outcomes
While social networks thoroughly describe our
social, private, economic, and professional lives,
SSNA outcomes are gradually turning into
strategic outcomes. The sum of indications and
recommendations they provide quickly becomes
strategic for economy, politics, education, and
information sharing all around the world. It
also concerns our social, private, economic,
and professional lives, through current and
future SSNA applications for contextual social
networks, cyber and/or cultural anthropology or
geography, evolutions of social organizations,
participative democracy, privacy, security and
liberty, product purchase, empowering social
ties within society, or participative and digital
newspapers. Based on current facts and trends,
we can reasonably hope that the benefits of SSNA
will be larger than its possible perverse effects.
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Glossary

Clustering An unsupervised data mining tech-
nique that places the data objects into different
groups (clusters) such that the objects in a
cluster are more similar to each other and
dissimilar to objects in other clusters

Data Matrix A rectangular array with m rows
and n columns, the rows representing different
observations or individuals or objects and the
columns representing different attributes or
variables or items

Data Mining Nontrivial extraction of previous-
ly unknown, potentially useful, and reliable
patterns from a set of data

Dimensionality Reduction The process of
embedding a set of n points in a
d -dimensional space into a k-dimensional
space, where d is sufficiently large and k is
much smaller than d

High-Dimensional Data Data in which the
objects are described by a large number
of features, where each feature factor
corresponds to a dimension. While analyzing
a data matrix of size m by n, we refer the
matrix as n-dimensional since we consider the
view of m points in an n-dimensional space

Matrix Decomposition Transformation of orig-
inal data matrix into a given canonical form,
as a product of new matrices. This transforma-
tion is aimed at revealing the latent structures
or relations in the original data matrix. This
transformation is also known as matrix factor-
ization

Matrix Rank Reduction Given a data matrix A
having rank r , the process of finding a matrix
OA having rank k where k < r and minimizes
jjA� OAjj

Definition

Semi-discrete decomposition (SDD) is a matrix
decomposition technique that produces low-rank
approximation of original matrix as a weighted
sum of outer products. With its approximation,
SDD defines new axes that capture the variance
in the data. Though this approximation is similar

to that of singular value decomposition (SVD),
the axes of the SDD transformed space are not
orthonormal, and coordinates of the points in
the transformed space are restricted to the set of
values {�1,0,1}. With such a restriction, SDD
achieves the storage economization than other
decomposition techniques like SVD. Hence, the
higher-rank approximations can be stored for
smaller amount of storage. With an iterative pro-
cedure, SDD aims to find and extract the loca-
tions in the given dataset having extremely large
magnitude values which are both positive and
negative. SDD represents the data matrix as the
sum of bumps and arrange the bumps such that
the most significant bump appears first. Hence,
SDD is generally treated as a bump hunting
technique and proved to be effective in finding the
outlier clusters in the data. Also SDD produces
an unsupervised, hierarchical, and ternary clas-
sification by partitioning the data items having
similar attribute values. Hence, SDD is applied
in classification and clustering problems. SDD
has a unique property of discovering more latent
factors than the available features in the dataset.
In addition to its primary motivation in digital
image processing, SDD has successful applica-
tions in finding outliers in the data, semantic
indexing, etc.

Introduction

Most of the engineering, scientific, and computer
applications result in high-dimensional dataset-
s containing large number of variables associ-
ated with each observation. Also such data is
often a combination of several underlying pro-
cesses coupled with noise. The dimension of a
dataset is defined by the number of variables
that are measured on each observation. How-
ever, all these variables are not necessary to
understand the latent structure of the data. Such
high-dimensional data coupled with noise pos-
es several computational challenges. In addition
to the complexity prevailing in analyzing the
high-dimensional datasets, the similarities be-
tween the objects in the high-dimensional space
diminish with regard to the Euclidean distance.
This would negatively influence the accuracy
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of the analysis. This problem is referred to as
curse of dimensionality (Cunningham 2007). The
solution to this curse is to apply dimensionali-
ty reduction techniques as a preprocessing step.
This process requires identification of a suit-
able low-dimensional representation of original
high-dimensional data. Also this preprocessing
step improves the accuracy of the data analysis
(Dobsa et al. 2012). Several dimension reduc-
tion techniques are available in the literature.
Interested readers can refer to few authoritative
references (Aswani Kumar 2009; Cunningham
2007; Fodor 2002). An optimal technique can
efficiently map the original data to suitable lower
dimension while preserving the properties of o-
riginal data. By representing the data in the form
of a matrix, we get a convenient way to store and
analyze data. If a data matrix A of size m � n,
containing m objects and n attributes, each object
can be considered as a point in the n-dimensional
space spanned by the attributes.

Matrix rank reduction techniques from linear
algebra are popular in data analysis and mining
problems for finding low-dimensional represen-
tation of data (Elden 2006). Rank of the matrix
is defined as the number of linearly independent
rows or columns of the matrix and helps to
measure the contents of the matrix. Redundancy
in the matrix arises due to the dependent row
or column vectors. This redundancy can be re-
moved by mapping or replacing the dependent
vectors with linear combination of other linearly
independent vectors.

Generally decomposition of the matrix refers
to the decomposition to some approximation.
Decomposition of a matrix produces two or
more factor matrices. The original matrix
can be represented as a product of these
factor matrices. The main motivation behind
the matrix decomposition lies in the fact
that the inner dimension value of k is much
smaller than the original dimensions (m; n)
of the data matrix. The matrix decomposition
techniques are mainly intended to segregate
the different processes that are captured by the
dataset and to cluster the similar objects of the
dataset in some standard understandable way.
These techniques can be applied as a stand
alone or in combination of other techniques.

The notions like dimensionality reduction, matrix
rank reduction, matrix factorization, and data
compression are closely related and are based
on Wedderburn rank reduction theorem
(Miettinen 2009; Park and Elden 2003; Elden
2007; Skillicorn 2007).

Several matrix rank reduction techniques are
available that include singular value decompo-
sition (SVD), semi-discrete decomposition (SD-
D), and nonnegative matrix factorization (NMF)
(Miettinen 2009). Each of these techniques d-
iffers in the way they decompose the matrix,
constraints that they impose on the elements,
relationship among the rows and columns, etc.
Recently heuristic techniques like clustering and
random projections are also used in the literature
for matrix rank reduction (Aswani Kumar and
Srinivas 2010; Aswani Kumar 2011).

Key Points

Semi-discrete decomposition (SDD) was origi-
nally introduced by O’Leary and Peleg (1983)
for the purpose of digital image compression.
Later it is extended as a storage efficient variant
of SVD in latent semantic indexing (LSI)-based
IR application. Based on vector space representa-
tion, LSI finds low-rank approximation of term-
document collection using SVD (Aswani Kumar
and Srinivas 2006; Berry et al. 1999; Deerwester
et al. 1990). However, if the original matrix
is sparse, the low-rank approximation achieved
through SVD requires more storage than the
original matrix. To overcome this difficulty Kolda
and O’Leary (1998) have proposed to use SDD
for LSI. An analogy can be brought between SDD
and SVD, Boolean matrix decompositions. Both
the factor matrices and the matrix multiplication
in Boolean decompositions are binary (Mietti-
nen 2009). Similar to SVD, SDD obtains three
matrices, but elements of outer product vectors
are restricted to �1, 0, and 1.

Given a data matrix A of size .m; n/, with m

objects and n attributes, SDD finds the approxi-
mation of A to a lower dimension k as follows:

Ak D XkDkYT
k
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where the matrix Xk is of size m � k; Dk is
a diagonal matrix of size k � k, and YT

k is a
matrix of size k�n. The entries of Dk matrix are
nonnegative real numbers. Each Di value (1 �
i � k) indicates significance of the i th factor.
The rows of the matrix Xk are considered as the
coordinates of an object in the space defined by
the new axes that are described by the rows of YT

k .
The variation in original data is captured and is
concentrated along the earlier axes defined by YT

k .
The lower axes in which the lesser variance in the
data is concentrated can be removed to achieve
the approximation. The axes of the transformed
space are not orthonormal. The coordinates can
have different interpretations depending on the
application.

The elements of the matrices Xk; YT
k are from

the set {�1,0,1}. This transformation of original
n-dimensional space into new k-dimensional s-
pace results in dimensionality reduction of orig-
inal matrix. Generally in SVD applications the
value of k will be chosen as m � k � n. However
in SDD, the value of k can even be higher than n.
Hence, SDD can identify the more latent factors
than the existing features in the dataset. SDD tries
to define new axis that captures larger variation
in the original data. The algorithm starts by iden-
tifying the values of first column of the matrix
Xk , the first axis vector of YT

k and multiplier in
Dk that gives the least amount of error between
the approximation matrix, Ak and the original
data matrix A. The iterative process continues
by selecting successive fields of these matrices
in such a manner that reduces the error in the
approximation.

The SDD decomposition can have three types
of interpretations, namely, factor interpretation,
geometric interpretation and component interpre-
tation, (Skillicorn 2007). By considering the rows
of the matrix YT

k as factors that are mixed by
the rows of Xk and diagonal entries of D, we
can obtain the factor interpretation. This repre-
sentation is useful in image processing. In geo-
metric interpretation, the rows of the matrix YT

k

define the generalized quadrants, and the values
of the matrix Xk can then identify whether a
given object is placed in the given quadrant or
not. Component interpretation can be obtained by

expressing the original matrix A as sum of the
outer product matrices, i.e., the i th column of
matrix X, the i th entry on the diagonal of the
matrix D, and the i th row of the matrix YT.
Though graph interpretation for SDD can be
obtained, it provides no new insights about the
data.

The approximation of a matrix using SDD is
achieved through an iterative and greedy algo-
rithm, which computes a new column, a diagonal
element, and a row in each step. Let A be the
data matrix of size m � n. Choose a value k that
represents the maximum number of terms in the
approximation. Let A0 be the zero matrix of size
m � n, xi be the i th column of the matrix Xk ,
di be the diagonal element of the matrix Dk , and
yi be the i th row of YT

k . Let Ri be the residual
matrix obtained at i th step, i.e., Ri D A � Ai�1.
Consider R1 D A. In the following we present the
algorithm:
1. Outer iteration, for each step of i D 1 to k.
2. Choose an initial y vector such that Riy ¤ 0.
3. Inner iteration:

i. Fix y and let x solve max
x2Im

.xT Riy/2

kxk22
.

ii. Fix x and let y solve max
y2In

.yT Rix/2

kyk2
2

.

iii. Repeat the inner iteration until some
heuristic convergence criterion is satisfied.

4. Let xi D x, yi D y, di D xT
i

Riyi

kxik2
2kyik2

2
.

5. Calculate the i th term approximation Ai D
Ai�1 C di xi y

T
i .

6. Calculate the residual matrix, RiC1 D Ri �
dixi y

T
i .

7. Repeat the outer iteration until i D k.
The convergence criterion for stopping the

inner loop is to verify whether the residual
improvement is further possible. O’Leary and
Peleg (1983) have proposed a method to
determine the condition for stopping the inner
iterations. Computing SDD on the data matrix
of size (m; n) to approximate it to a rank k,
under the assumption of fixed number of inner
iterations, the above heuristic algorithm has a
complexity of O.k2.mC n/CmlogmC nlogn/.
Generally it is observed that the number of
inner iterations required is averaged near 10.
Kolda and O’Leary (2000) have shown that the
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SDD algorithm converges linearly to the original
matrix. Also they have discussed strategies that
can be used to initialize the y vector in outer
iteration shown in step 2. Since the algorithm is
a heuristic variant, the parameters need changes
depending on the dataset. Implementation of this
algorithm in MATLAB and C is available from
http://www.cs.umd.edu/~oleary/SDDPACK.

In the SDD basic setting, the heuristic compo-
nent is the selection of initial yi . This selection
does not always identify and remove the largest
possible bump from the data matrix. Hence,
a rearrangement of these bumps is required
(Skillicorn 2007). Once the Xk , YT

k , and Dk

matrices are computed, the product of ds
i with

corresponding nonzero column entries of YT
k is

formed. The columns of Xk , elements of Dk ,
and rows of YT

k are sorted into decreasing order
of the products of ds

i with YT
k . This reordering

ensures that the axes with largest weight or the
axes that capture large variation appear first in
the ordering, and hence the strongest outlier will
be placed closest to the top of the decision tree
(Knight and Carosielli 2003).

Since elements of the outer product matrices
Xk and YT

k obtained from SDD contain the values
{�1, 0, 1}, higher-rank approximations can be
stored at less amount of space. For rank k approx-
imation of matrix of size (m; n), SDD requires
the storage of k.m C n/ values from the set
{�1; 0; 1} for the matrices Xk , YT

k and k scalar
values for the matrix Dk . To store the values from
the set {�1; 0; 1} requires log23 bits. The scalar
values for the matrix Dk need to be only single
precision values. However, the SVD is computed
with double precision values and hence requires
nearly 32 times more space than SDD (Kolda and
O’Leary 1998).

Unlike SVD, even for value k D n, the SDD
does not produce the approximation matrix that
is equal to the original matrix, i.e., Ak ¤ A for
k D n (Snasel et al. 2008). When the data
is organized naturally in many small and well-
separated clusters, SDD and SVD tend to agree
and hence produce similar results. This is the
main reason for usage of SDD as a replacement of
SVD in LSI, since term-document matrices usu-
ally contain several natural small clusters (Kol-

da and O’Leary 1998, 2000). However, SVD
and SDD do not produce similar results on the
datasets that are organized in the form of large
clusters. The basic problem with SDD is that
the approximation takes five times more time
than computing SVD. However, SDD updating
is much easier than the SVD updating (Kolda
and O’Leary 2000). SDD can be extended as
weighted SDD and tensor SDD. These extensions
along with their convergence issues are discussed
in Kolda and O’Leary (2000).

Objects of the data matrix A can be hierarchi-
cally classified using the columns of the matrix
Xk . The analysis start, with the first column of
the matrix Xk . Objects (i.e., rows) of the matrix
A are divided into three classes according to the
value {�1; 0; 1} that appears in the first column
of the matrix Xk . The objects whose value is C1
in the first column of Xk are in one class, the
objects whose value is �1 are in one class and
the objects whose value is 0 are in the third class
so that the classification forms a ternary decision
tree structure.

From each class, the objects are further
divided into three subclasses depending on the
value {�1; 0; 1}, corresponding to each object of
matrix A, in the second column of the matrix
Xk and so on. The process can be stopped
when a set of objects cannot be separated by
the next levels or when each object is alone
at a particular level. The analysis generates a
ternary, hierarchical decision tree structure of
depth k. In contrast to the conventional decision
trees, the decision tree induced by the SDD is
an unsupervised structure. By following the
same procedure on the Y T

k
matrix, we can

obtain the hierarchical classification structure
of attributes. The general notion is that the
classes �1 and 1 represent the data objects
that have attributes significantly different from
the normal data objects represented by the
class 0.

In another perspective, by treating each class
as a partition, we can consider that SDD per-
forms partitional clustering. The division of data
objects into three groups using the first column of
matrix Xk and further subdivision of each group
based on the subsequent columns of Xk results

http://www.cs.umd.edu/~oleary/SDDPACK
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in a hierarchical clustering of the objects of A.
The clustering contains k levels. The partitions
at each level are independent. Unlike standard hi-
erarchical clustering, the result of SDD-based hi-
erarchical clustering is a ternary tree. The branch-
es with the groups �1 and C1 are equal and
opposite, but not different. Similarity among the
objects or attributes can be computed using a
distance measurement metric in the ternary rep-
resentation structure.

Another important perspective of SDD is
as a bump hunting technique (McConnell and
Skillicorn 2002). Let us consider the original
data matrix A as a grid of entries. Each positive
entry of A is considered as a bump/tower at that
position in the grid, with a height proportional to
the values of the entry. Similarly each negative
entry of A is treated as negative bump/hole with
the depth proportional to the value of the entry.
SDD searches for the regions of similar height
and depth. One particular component of the
decomposition is identified, once such a region is
found. The average height or depth of the region
is computed and subtracted from all the bumps
and holes involved. Then the process continues
for searching such similar regions and identifying
the components of the decomposition. At each
iteration, the position of the region is identified
using the product of xi and yT

i , and the height
of the bump is identified using di . If the original
matrix A is represented as sum of a set of As

i ,
then each Ai represents a bump. The bumps
are discovered based on their volume. Since
the SDD selects the bump/hole based on the
height and region, it is not scale independent.
However, SVD is a scale-independent technique
since the scaling process does not change the
decomposition result. Scaling the magnitudes
by squaring, SDD first selects the smaller
regions of large magnitudes. Similarly if the
magnitudes are replaced by their signed square
roots, then SDD first selects the larger regions
of smaller magnitude. There are other bump
hunting techniques like PRIM and rule-based
techniques. Methods based on SVD are available
that result in decision tree classification like
Principle Direction Division Partitioning (PDDP)
(Skillicorn 2007).

Key Applications

SDD has found several applications in the
literature. SDD for outlier detection was used
by McConnell and Skillicorn (2002). Based on
this application, SDD is further used for counter
terrorism, social network analysis, detecting
deceptive communications in the e-mails, etc.
(Divya et al. 2011; Keila and Skillicorn 2005;
Knight and Carosielli 2003; Skillicorn 2004;
Snasel et al. 2010).

In collaborative filtering applications and rec-
ommender systems, SDD can be applied to i-
dentify the groups of objects that are rated high-
ly by the individuals (Skillicorn 2007). SDD is
successfully applied for image and video com-
pression. Pattern matches and motion vectors
in video coding can be computed using SDD
(Zyto et al. 2002). For compressing the large
images, truncated SDD of the image matrix can
be considered as approximation to the original
image.

With its features, SDD is well suited for
hierarchical clustering and decision tree
classification problems (Skillicorn 2007).
For information retrieval and text mining
applications, SDD is used as an alternate
method for SVD (Kolda and O’Leary 1998).
In addition to the IR applications, LSI technique
can be augmented with SDD in automated text
categorization application (Pilato et al. 2005).
SDD can also be applied for obtaining the sub-
symbolic representation of words (Qiang et al.
2004), topic identification (Snasel et al. 2008).
In social network and link analysis, the matrix
decompositions can be useful to derive the
higher-order information about the relationships
among the individuals in the network. Based on
the relationship, the members in the network can
be ranked (Skillicorn 2007).

Based on the application, SDD can be directly
applied on the data matrix or on the correlation
matrix of the original data matrix, or on the
approximated correlation matrix. SVD and SD-
D can be combined so as to complement each
strength. On a dataset by applying SVD, we can
visualize latent clusters within the data. But SVD
cannot provide a way to label these clusters.
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On the other hand, SDD provides the clusters
within the data and label them. However, SDD
cannot produce the visualization of these clusters.
While performing this combination, first SVD
can be computed on the data matrix A and decom-
pose it to an appropriate rank k matrix Ak matrix
using SDD. The advantage of this computation
is that the SVD performs denoising of the data,
and SDD identifies and labels the clusters within
the data (Aswani Kumar and Palanisamy 2010).
Also this computation can effectively be applied
for classification of protein sequences and ex-
ploration of minerals, galaxies, etc. (Skillicorn
2007). Also SDD can be applied on the correla-
tion matrix obtained from truncated SVD matrix
Ak . In this case, the SDD is used to find the
correlation structure within the denoised data.

Illustrative Examples

From the above discussion, we can understand
that the SDD can be used for bump selection,
hierarchical clustering, LSI-based information
retrieval, etc. In the following we see some of
the examples illustrating these applications. To
better understand SDD as a bump hunting, let us
consider the following matrix:

A D

2
66664

1 1 5 5 5
1 9 9 1 1
1 9 9 1 1
1 9 9 1 1
1 1 5 5 5

3
77775

The SDD on this data matrix produces the follow-
ing factorization matrices:

Xk D

2
66664

0 1 0 1
1 0 1 0
1 0 1 0
1 0 1 0
0 1 0 1

3
77775 ; Dk D

2
664

9 0 0 0
0 5 0 0
0 0 1 0
0 0 0 1

3
775

and YT
k D

2
664

0 1 1 0 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 0

3
775

Now consider the first outer product i D 1, then
X�i YT

i is

2
66664

0
1
1
1
0

3
77775 �

�
0 1 1 0 0

� D

2
66664

0 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 0 0

3
77775

We can understand that the resultant matrix is a
stencil, representing the region of the array ele-
ments having the value 9 (which is the value d1).
Similarly for i D 2, the second outer product
produces Xi�YT

i as

2
66664

1
0
0
0
1

3
77775 �

�
0 0 1 1 1

� D

2
66664

0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 1 1

3
77775

It is clear that the second outer product result
is a stencil representing the region of the array
elements having the value 5 (which is the value
d2/. Similarly we can obtain the other stencil
regions for the values of d using corresponding
outer products.

SDD derives a hierarchical clustering of the
objects producing ternary tree structure. To illus-
trate this process, let us consider a well-explained
example from Skillicorn et al. (2003). The
following is the data matrix of size 9 � 8.

2
6666666666664

1 2 3 4 5 6 7 8
3 4 4 5 5 6 7 9
1 8 2 7 3 6 4 5
9 8 7 6 5 4 3 2
9 4 8 3 7 2 6 1
2 3 2 4 2 5 2 6
3 4 3 4 4 3 4 3
3 2 4 3 2 4 3 2
5 5 4 4 6 6 2 2

3
7777777777775

We apply SDD on this data matrix for rank k D 8.
After rearrangement of the bumps as discussed in
the above section, the following are the Xk , YT

k

and Dk matrices of sizes 9 � 8; 8 � 8 and 8 � 8,
respectively.
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Xk D

2
6666666666664

�1 �1 1 �1 0 1 0 1
�1 0 1 �1 0 1 1 1
�1 1 0 1 0 �1 0 0

1 1 �1 1 1 1 0 1
1 0 1 �1 0 1 1 �1
�1 �1 �1 �1 0 1 �1 �1

0 0 0 �1 0 �1 0 �1
0 �1 �1 �1 0 0 �1 �1
0 0 0 1 �1 1 �1 �1

3
7777777777775

and YT
k D

2
66666666664

1 1 0 �1 0 1 �1 0
0 1 0 1 0 0 0 0
1 0 0 0 0 1 1 0
�1 1 0 1 1 0 0 0

1 0 1 1 0 1 0 0
�1 0 0 1 �1 0 �1 1

0 0 1 �1 1 0 0 1
�1 0 0 0 0 0 1 1

3
77777777775

Dk D

2
66666666664

4:6134 0 0 0 0 0 0 0
0 2:685 0 0 0 0 0 0
0 0 1:905 0 0 0 0 0
0 0 0 1:834 0 0 0 0
0 0 0 0 1:5527 0 0 0
0 0 0 0 0 1:271 0 0
0 0 0 0 0 0 1:1556 0
0 0 0 0 0 0 0 1:1239

3
77777777775

The hierarchical clustering structure can be
obtained from the data objects present in the
matrix Xk as shown in Fig. 1.

Starting from the first column, the objects are
grouped or clustered based on their entries �1,
0, and 1. Members of each group are further
divided into subgroups based on their entries in
subsequent columns. For example, in the tree
structure shown in Fig. 1, we can understand that
based on the entries from the first column, the
objects {1; 2; 3; 6} are grouped under label �1;
the objects {7; 8; 9} are grouped under the label
0, and the objects {4; 5} are grouped under the
labelC1. In the next level, each of these groups is
subdivided into three groups based on the entries
in their second column. Similarly we can obtain
hierarchical clustering on the attributes of the
data represented in the matrix YT

k , by following
the procedure illustrated above.

In information retrieval applications, SDD
can be used by augmenting with LSI model
(Kolda and O’Leary 1998). Let us consider A is
a term-document matrix of size m � n, having
m terms and n documents with rank r . Let q be
the query vector of length m used to probe on the
document collection. Column normalization will
be performed on the term-document matrix. After

applying SDD on the data matrix A, we obtain
the factor matrices Xk , Dk , and YT

k having the
sizes m�k; k�k, and k�n, respectively, as dis-
cussed above. We apply the query on this reduced
dimensional space to compute the similarity of
the documents. However before processing, the
query vector should be projected onto the lower-
dimensional space obtained by SDD as:

qk D qXkDk

Now the similarity between the document and
query vectors in the reduced dimensional space is
calculated as

sim D qkYT
k

Based on the similarity documents can be
ranked and returned to the user. Consider a
term-document matrix of size 9 � 7 having 9
index terms (T) and 7 documents (D) (Berry
et al. 1999). The following are the terms and
documents:

T1: Bab(y,ies,’s), T2: Child(ren’s), T3: Guide,
T4: Health, T5: Home, T6: Infant, T7: Proofing,
T8: Safety, and T9: Toddler

D1: Infant & Toddler First Aid, D2: Babies
& Children’s Room, D3: Child Safety at Home,



Semi-discrete Decomposition 1677 S

S

0

7 9

−1 +1

7, 96 1

−1 −1 +1+1 00

41,6 2 3 8 7, 9 5

−1 0 +1 −1 −1 +10 0+1

1,2,3,6 7, 8, 9 4, 5

1−9

−1 +10

Semi-discrete Decomposition, Fig. 1 Hierarchical clustering structure obtained from data objects

D4: Your Baby’s Health & Safety: From Infant
to Toddler, D5: Baby Proofing Basics, D6: Your
Guide to Easy Rust Proofing, and D7: Beanie

Babies Collector’s Guide. Now the term-
document for this collection is

A D

2
6666666666664

0 1 0 1 1 0 1
0 1 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 1 0 0 0
0 1 1 0 0 0 0
1 0 0 1 0 0 0
0 0 0 0 1 1 0
0 0 1 1 0 0 0
1 0 0 1 0 0 0

3
7777777777775

Now by making the unit columns, the normalized
term-document matrix is

————————————————-

A D

2
6666666666664

0 0:5774 0 0:4472 0:7071 0 0:7071
0 0:5774 0:5774 0 0 0 0
0 0 0 0 0 0:7071 0:7071
0 0 0 0:4472 0 0 0
0 0:5774 0:5774 0 0 0 0

0:7071 0 0 0:4472 0 0 0
0 0 0 0 0:7071 0:7071 0
0 0 0:5774 0:4472 0 0 0

0:7071 0 0 0:4472 0 0 0

3
7777777777775
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By applying SDD on the term-document ma-
trix to approximate to rank k D 4, we obtain the
following X4, YT

4 , and D4 matrices:

X4 D

2
6666666666664

1 1 1 �1
1 0 �1 0
1 �1 1 1
0 1 0 �1
1 0 �1 0
0 1 0 1
1 �1 1 1
1 1 �1 �1
0 1 0 1

3
7777777777775

YT
4 D

2
666666664

0 1 0 1
1 0 0 0
1 0 �1 0
1 1 0 0
1 0 1 0
1 �1 1 0
1 0 1 0

3
777777775

D4 D

2
664

0:2389 0 0 0
0 0:2412 0 0
0 0 0:2289 0
0 0 0 0:3054

3
775

The following is the rank k (k=4) approxima-
tion matrix of A obtained using SDD:

A4 D

2
6666666666664

�0:0642 0:2389 0:0101 0:4801 0:4678 0:2266 0:4678
0 0:2389 0:4678 0:2389 0:0101 0:0101 0:0101

0:0642 0:2389 0:0101 �0:0022 0:4678 0:7089 0:4678
�0:0642 0 0 0:2412 0 �0:2412 0

0 0:2389 0:4678 0:2389 0:0101 0:0101 0:0101
0:5465 0 0 0:2412 0 �0:2412 0
0:0642 0:2389 0:0101 �0:0022 0:4678 0:7089 0:4678
�0:0642 0:2389 0:4678 0:4801 0:0101 �0:2311 0:0101

0:5465 0 0 0:2412 0 �0:2412 0

3
7777777777775

We note from this approximated term-
document matrix that the elements have negative
values. These values represent the linear
combination of elements of original term-
document matrix (Berry and Browne 2005).
However, the individual term component of
document vectors does not define the semantic
content. The approximation automatically
provides an association with relevant terms in
each document. For example, along with the
original terms T6 and T9 in the approximation
space, the document D1 is associated with T3 and
T7 also. Consider that the user wants to find the

books on Child Home Safety from the document
collection listed above. The corresponding query
vector constituted from these terms is

q D Œ0 1 0 0 1 0 0 1 0�

Now before we process the query, we project it
on the reduced dimensional space and obtain the
following representation:

q4 D Œ0:7168 0:2412 � 0:6866 � 0:3054�
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Now we process the reduced dimensional query
in the approximated space and obtain the similar-
ity as

sim D Œ�0:0642 0:7168 1:4033 0:9579 0:0302

�0:2109 0:0302�

Generally the documents whose similarity values
higher than some threshold value are considered
as relevant to the given query. Considering a
threshold limit of 0.5, we understand from the
document similarity vector that the documents
D2, D3, and D4 are relevant to the query and
hence returned to the user.

In order to better understand the relation
between SDD and SVD, discussed above, we
verify this retrieval process using SVD. The
SVD on the data matrix A produces rank k

approximation as shown below:

Ak D UkSkVT
k

where the unitary projection matrices Uk and VT
k

represent truncated left and right singular vectors
of the original matrix, respectively. The matrix
Sk holds the first k number of singular values
of the original matrix. SVD provides the best
approximation of the original matrix with regard
to Frobenius norm. Generally SVD is regarded
as one of the powerful decomposition technique
since it provides all the fundamental spaces of the
original matrix A, i.e., the orthogonal basis for
Range space and Null space of the matrices A and
AT (Park and Elden 2003).

By applying SVD, we obtain rank 4 approxi-
mation of the column normalized term-document
matrix. After processing the query in the reduced
dimensional space, we obtain the document sim-
ilarity vector as shown below:

sim D Œ0:0705 1:2360 1:6855 0:3747

�0:0117 0:0128 � 0:0117�

From this vector documents D2 and D3 are rele-
vant to the query, and hence they will be returned

to the user. From this result we can understand
that the SDD and SVD have commonly identified
the documents D2 and D3. Now let us consid-
er another query aimed at retrieving the docu-
ments on Child Proofing from this collection. The
corresponding query vector would be

q D Œ0 1 0 0 0 0 1 0 0�

After projecting the query in the reduced di-
mensional space obtained using SDD, we com-
pute the similarity of the document vectors. The
following is the similarity vector of all the docu-
ments for the given query:

sim D Œ0:0642 0:4779 0:4779 0:2367 0:4779

0:7190 0:4779�

With the chosen threshold limit of 0.5, we under-
stand that the document D6 is the only relevant
document for this query. However, let us consider
posing this query in the reduced dimensional
space obtained using SVD. After processing, we
get the following similarity:

sim D Œ�0:0721 0:4872 0:6307 0:0730

0:3690 0:6903 0:3690�

With the threshold value of 0.5, we get the docu-
ments D3 and D6 as relevant to the given query.
In this case, the SDD and SVD have commonality
in D6. For equal rank values of approximation,
SDD requires significantly less number of float-
ing point operations than SVD to process the
query. On standard document collections, it is
proved that SDD-based LSI retrieves documents
similar to SVD-based LSI with a lesser time to
process the query and lesser storage. These illus-
trative examples provide an understanding about
the usage of SDD in some of the applications.
Interested readers can explore the literature cited
in section “Key Applications” for more details on
the applications of SDD.
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Synonyms

Algebraic path problem; Matrix; Multiplication
of vector and matrix; Network; Network multi-
plication; Semiring; Simple walk; Value matrix;
Walk

Glossary

Algebraic Structure A set with one or more
operations defined on it

Network Analysis A study of networks as
representations of relations between discrete
objects

Sparse Matrix A matrix with most of entries
equal to zero

Large Network A network with several thou-
sands or millions of nodes

Complete Graph Kn A network in which every
pair of nodes is linked

Introduction

Semirings are an algebraic structure with two
operations that provide the basic conditions for
studying matrix addition and multiplication and
path problems in networks. Several results and al-
gorithms from different fields of application turn
out to be just special cases over the corresponding
semirings.

Semirings

Let K be a set and a; b; c elements from K.
A semiring (Abdali and Saunders 1985; Baras
and Theodorakopoulos 2010; Batagelj 1994) is
an algebraic structure .K;˚;ˇ; 0; 1/ with two
binary operations addition ˚ and multiplication
ˇ where:
• .K;˚/ is an abelian monoid with neutral

element 0 (zero):

a˚ b D b ˚ a commutativity
.a˚ b/˚ c D a˚ .b ˚ c/ associativity
a˚ 0 D a existence of zero

• .K;ˇ/ is a monoid with neutral element 1
(unit):

.aˇ b/ˇ c D aˇ .b ˇ c/ associativity
aˇ 1 D 1ˇ a D a existence of unit

• Multiplicationˇ distributes over addition˚:

aˇ .b ˚ c/ D aˇ b ˚ aˇ c

.b ˚ c/ˇ a D b ˇ a˚ c ˇ a

In the expressions we assume precedence of mul-
tiplication over addition.

A semiring .K;˚;ˇ; 0; 1/ is complete iff the
addition is well defined for countable sets of
elements and the commutativity, associativity,
and distributivity hold in the case of countable
sets. These properties are generalized in this case;
for example, the distributivity takes form

.˚i ai /ˇ
�˚j bj

	 D ˚i

�˚j .ai ˇ bj /
	

D ˚i;j .ai ˇ bj /:
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The addition is idempotent iff a ˚ a D a for
all a 2 K: In this case the semiring over a finite
set K is complete.

A semiring .K;˚;ˇ; 0; 1/ is closed iff for the
additional (unary) closure operation � it holds for
all a 2 K:

a� D 1˚ aˇ a� D 1˚ a� ˇ a:

Different closures over the same semiring can
exist. A complete semiring is always closed for
the closure

a� D ˚k2Nak:

In a closed semiring we can also define a strict
closure a by

a D aˇ a�:

In a semiring .K;˚;ˇ; 0; 1/ the absorption
law holds iff for all a; b; c 2 K:

aˇ b ˚ aˇ c ˇ b D aˇ b:

Because of distributivity it is sufficient to check
the property 1˚ c D 1 for all c 2 K.

Combinatorial Semiring .N; C; �; 0; 1/

This is the most commonly used semiring. Also
some other sets are used: R;RC0 ;Q. For N D N[
f1g, the semiring is closed for a� D P

k2N ak

because it is a complete semiring. Another possi-
ble closure for R D R [ f1g is a� D 1=.1 �
a/ for a ¤ 1;1 and 0� D 1; 1� D 1,
and 1� D 1. This semiring is commutative
because it holds a ˇ b D b ˇ a for all a and
b in the set. Combinatorial semiring is not an
idempotent semiring.

Reachability Semiring .f0; 1g; _; ^; 0; 1/

The logical (Boolean) semiring is useful for solv-
ing the connectivity questions in networks. The
multiplication is commutative and the absorption
law holds. The reachability semiring is closed for
a� D 1 _ a ^ a� D 1.

Shortest Paths Semiring .R
C
0 ;min;C;1;0/

The commutativity of multiplication holds
in this semiring. The semiring is closed for
a� D min.0; a C a�/ D 0 (0 is the smallest

element in the set RC0 ). Since min.0; a/ D 0, the
absorption law also holds. For the set N [ f1g,
the semiring is called tropical semiring. Another
set is R [ f1g and in this case the semiring
is isomorphic (x 7! �x) to max-plus semiring
.R [ f�1g; max;C;�1; 0/.

Pathfinder Semiring .R
C
0 ; min; r ; 1; 0/

The Pathfinder semiring (Schvaneveldt et al.
1988) is a special case from the family of the
semirings obtained as follows. Let B 	 R be
such that .B;C; �; 0; 1/ or .B; min;C; U; 0/ is a
semiring (U D max.B/). Therefore 0 2 B and
1 2 B . Let A 	 R be such that g W A ! B is
a bijection. Let us define operations ˚; O;ˇ so
that g is a homomorphism:

g.a˚ b/ D g.a/C g.b/;

g.aOb/ D min.g.a/; g.b//;

g.aˇ b/ D g.a/ � g.b/:

This is equivalent to

a˚ b D g�1.g.a/C g.b//;

aOb D g�1.min.g.a/; g.b///;

aˇ b D g�1.g.a/ � g.b//:

The function g�1 is also a homomorphism. If
g is strictly increasing function, then aOb D
g�1.min.g.a/; g.b/// D min.a; b/: Since
the homomorphisms preserve the algebraic
properties, also the structure .A;˚;ˇ; g�1.0/;

g�1.1//; A 	 R, is a semiring.
For g.x/ D xr ; g�1.y/ D r

p
y, we get

the Pathfinder semiring .R
C
0 ; min; r ;1; 0/. The

multiplicative operation is the Minkowski opera-
tion a r b D r

p
ar C br . This semiring is closed

for a� D 0 and the absorption law holds in it.
In Pathfinder algorithm the value r for the

Minkowski operation is selected according to
dissimilarity measure. For a value r D 1, the
semiring is the shortest path semiring, and for a
value r D 1, the semiring is min–max semiring.

Several other examples of semirings can be
found in Carré (1979), Burkard et al. (1984),
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Gondran and Minoux (2008), Baras and
Theodorakopoulos (2010), and Kepner and
Gilbert (2011).

Matrices

A m � n matrix A over a set K is a rectangular
array of elements from the set K that consists
of m rows and n columns. The entry in i th row
and j th column is denoted by aij . If m D n the
matrix A is called a square matrix. The matrix
with all entry values equal to 0 is called the zero
matrix and is denoted by Omn.

The transpose of matrix A is a matrix AT in
which the rows of A are written as the columns of
AT : aT

ij D aj i . A square matrix A is symmetric

if A D AT .
A diagonal matrix is a square matrix A such

that only diagonal elements are nonzero: aij D 0;

i ¤ j . If ai i D 1; i D 1; : : : ; n, this matrix
is called the identity matrix In of order n. The
matrix A is upper triangular if aij D 0; i > j ,
and its transpose is the lower triangular matrix.

Let Mmn.K/ be a set of matrices of order
m � n over the semiring .K;˚;ˇ; 0; 1/ in which
we additionally require

8s 2 K W s ˇ 0 D 0ˇ s D 0

and let M.K/ be a set of all matrices over the K.
The operations ˚ and ˇ can be extended to the
M.K/:

A; B 2Mmn.K/ W A˚ B D Œauv ˚ buv � 2Mmn.K/

A 2Mmk.K/, B 2Mkn.K/ W
Aˇ B D Œ˚k

tD1aut ˇ btv� 2Mmn.K/:Then:
• .Mmn.K/;˚; Omn/ is an abelian monoid.
• .Mn2.K/;ˇ; In/ is a monoid.
• .Mn2.K/;˚;ˇ; On; In/ is a semiring.
For matrices A and B, it holds

.Aˇ B/T D BT ˇ AT :

NetworkMultiplication

A (simple directed) network N is an ordered pair
of sets .V ;A/ where V is the set of nodes and
A 	 V � V is the set of arcs. We assume that
the set of nodes is finite V D fv1; v2; : : : ; vng.
Let N D ..I;J /;A; w/ be a simple two-mode
network, where I and J are disjoint (sub)sets of
nodes (V D I[J ; I\J D ;), A is a set of arcs
linking I and J , and the mapping w W A ! K

is the arcs value function called also a weight.
We can assign to the network its value matrix
W D Œwi;j � with elements

wij D



w..i; j // .i; j / 2 A
0 otherwise:

The problem with value matrices in computer
applications is their size. The value matrices of
large networks are sparse. There is no need to
store the zero values in a matrix, and different da-
ta structures can be used for saving and working
with value matrices: special dictionaries and lists.

Let NA D ..I;K/;AA; wA/ and NB D
..K;J /;AB; wB/ be a pair of networks with
corresponding matrices AI�K and BK�J ,
respectively. Assume also that wA W AA ! K,
wB W AB ! K and .K;˚;ˇ; 0; 1/ is a
semiring. We say that such networks/matrices are
compatible. The product NA ? NB of networks
NA and NB is a network NC D ..I;J /;AC; wC/

for AC D f.i; j /I i 2 I; j 2 J ; cij ¤ 0g
and wC.i; j / D cij for .i; j / 2 AC, where
C D Œcij �I�J D AˇB. If all three sets of nodes
are the same (I D K D J ), we are dealing
with ordinary one-mode networks with square
matrices.

When do we get an arc in the product network?
Let’s look at the definition of the matrix product

cij D ˚k2Kaik ˇ bkj :

There is an arc .i; j / 2 AC if cij is nonzero.
Therefore at least one term aik � bkj is nonzero,
but this means that both aik and bkj should be
nonzero, and thus .i; k/ 2 AA and .k; j / 2 AB

(see Fig. 1):
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Semirings and Matrix Analysis of Networks, Fig. 1
Multiplication of networks

cij D ˚k2NA.i/\N �
B .j /aik ˇ bkj ;

where NA.i/ are the successors of node i in
network NA and N�B .j / are the predecessors of
node j in network NB. The value of the entry
ci;j equals to the value of all paths (of length 2)
from i 2 I to j 2 J passing through some node
k 2 K.

The standard procedure to compute the prod-
uct of matrices AI�K and BK�J has the com-
plexity O.jIj � jKj � jJ j/ and is therefore too
slow to be used for large networks. Since the
matrices of large networks are usually sparse, we
can compute the product of two networks much
faster considering only nonzero entries (Batagelj
and Mrvar 2008; Batagelj and Cerinšek 2013):

for k in K do
for i 2 N�A .k/ do

for j 2 NB.k/ do
if 9cij t h e n cij WD cij ˚ aik

ˇ bkj

else cij WD aik ˇ bkj .

In general the multiplication of large sparse
network is “dangerous” operation since the result
can “explode” – it is not sparse.

From the network multiplication algorithm,
we see that each intermediate node k 2 K
adds to a product network a complete two-mode
subnetwork KN �

A .k/;NB.k/ (or, in the case A D B,
a complete subnetwork KN.k/). If both degrees
degA.k/ D jN�A .k/j and degB.k/ D jNB.k/j

are large, then already the computation of this
complete subnetwork has a quadratic (time and
space) complexity – the result “explodes.”

If for the sparse networks NA and NB, there
are in K only few nodes with large degree and
no one among them with large degree in both
networks, then also the resulting product network
NC is sparse.

The Algebraic Path Problem
The use of special semiring and a multiplica-
tion of network can lead us to the essence of
the shortest path problem (Baras and Theodor-
akopoulos 2010). Many other network problems
can be solved by replacing the usual addition and
multiplication with the corresponding operations
from an appropriate semiring.

Let N D .V ;A; w/ be a network where w W
A ! K is the value (weight) of arcs such that
.K;˚;ˇ; 0; 1/ is a semiring. We will denote the
number of nodes as n D jV j and the number of
arcs as m D jAj.

A finite sequence of nodes � D .u0; u1;

u2; : : : ; up�1; up/ is a walk of length p on N
iff every pair of neighboring nodes is linked:
.ui�1; ui / 2 A; i D 1; : : : ; p. A finite sequence
� is a semiwalk or chain on N iff every pair
of neighboring nodes is linked neglecting the
direction of an arc .ui�1; ui / 2 A _ .ui ; ui�1/ 2
A; i D 1; : : : ; p. The (semi)walk is closed iff its
end nodes coincide: u0 D up . A walk is simple
or a path iff no node repeats in it. If the ends of a
simple walk coincide, it is called a cycle.

We can extend the value function w to walks
and sets of walks on N by the following rules
(see Fig. 2):
• Let �v D .v/ be a null walk in the node v 2 V ;

then w.�v/ D 1.
• Let � D .u0; u1; u2; : : : ; up�1; up/ be a walk

of length p � 1 on N ; then

w.�/ D ˇk
iD1w.ui�1; ui /:

• For empty set of walks ;, it holds w.;/ D 0.
• Let S D f�1; �2; : : :g be a set of walks in N ;

then
w.S/ D ˚�2Sw.�/:
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u v u v

u v u vt

w(s1)     w(s2)

w(s1)     w(s2)w(s1) w(s2)

w(s2)

w(s1)Semirings andMatrix
Analysis of Networks,
Fig. 2 Semiring
operations and values of
walks

Let �1 and �2 be compatible walks on N – the
end node of the walk �1 is equal to the start node
of the walk �2. Such walks can be concatenated
in a new walk �1 ı �2 for which holds

w.�1 ı �2/ D
8<
:

w.�1/ˇw.�2/ �1 and �2 are
compatible

0 otherwise:

Let S1 and S2 be finite sets of walks; then

w.S1 [ S2/˚w.S1 \ S2/ D w.S1/˚ w.S2/:

In the special case when S1 \ S2 D ;, it
holds w.S1 [ S2/ D w.S1/ ˚ w.S2/: Also the
concatenation of walks can be generalized to sets
of walks:

S1 ı S2 D f�1 ı �2 W �1 2 S1; �2 2 S2; �1

and �2 are compatibleg:

It also holds S ı ; D ; ı S D ;.
We denote by:

• Sk
uv the set of all walks of length k from node

u to node v

• S.k/
uv the set of all walks of length at most k

from node u to node v

• S�uv the set of all walks from node u to node v

• Suv the set of all nontrivial walks from node
u to node v

• Euv the set of all simple walks (paths) from
node u to node v

The following relations hold among these sets:

Sk
uv 	 S.k/

uv 	 S�uv

k ¤ l , Sk
uv \ Sl

uv D ;

S.k/
uv D

k[
iD0

Si
uv , S�uv D

1[
kD0

Sk
uv

k � jV j � 1 W Euv 	 S.k/
uv

w.S.k/
uv / D

kX
iD0

w.Si
uv/:

A set of walks S is uniquely factorizable to
sets of walks S1 and S2 if S D S1 ıS2, and for all
walks �1; � 01 2 S1, �2; � 02 2 S2, �1 ¤ � 01, �2 ¤ � 02,
it holds �1 ı �2 ¤ � 01 ı � 02.

For example, for s; 0 < s < k, the nonempty
set Sk

uv is uniquely factorizable to sets Ss
u� and

Sk�s�v , where Ss
u� D

S
t2V Ss

ut , etc.

Theorem 1 Let the finite set S be uniquely fac-
torizable forS1 andS2 or a semiring be complete.
Then it holds

w.S1 ı S2/ D w.S1/ˇ w.S2/:

The kth power Wk of any square matrix W
over K is unique because of associativity.

Theorem 2 The entry wk
uv of kth power Wk of

value matrix W is equal to the value of all walks
of length k from node u to node v:

w.Sk
uv/ DWkŒu; v� D wk

uv:

Therefore if a network N is acyclic, then it holds
for a value matrix W:

9k0 < n W 8k > k0 WWk D 0;
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k0 is the length of the longest walk in the network.
If W is the network adjacency matrix over

the combinatorial semiring, the entry wk
uv counts

the number of different walks of length k from
u to v.

Let us denote

W.k/ D
kX

iD0

Wi :

In an idempotent semiring, it holds W.k/

D .1CW/k .

Theorem 3

w.S .k/
uv / DW.k/Œu; v� D w.k/

uv :

For the combinatorial semiring and W is the
network adjacency matrix, the entry w

.k/
uv counts

the number of different walks of length at most k

from u to v.
The matrix semiring over a complete semiring

is also complete and therefore closed for W� D
˚1

kD0Wk:

Theorem 4 For a value matrix W over a com-
plete semiring with closure W� and strict closure
W hold:

w.S�uv/ DW�Œu; v� D w�uv and

w.Suv/ DWŒu; v� D wuv:

For the reachability semiring and W is the
network adjacency matrix, the matrix W is its
transitive closure.

For the shortest paths semiring and W is the
network value matrix, the entry w�uv is the value
of the shortest path from u to v.

The paper Quirin et al. (2008) could be essen-
tially reduced to the observation that the structure

.R
C
0 ; min; r ;1; 0/ is a (Pathfinder) complete

semiring.
Let .K;˚;ˇ; 0; 1/ be an absorptive semiring

and � be a nonsimple walk from a set S.k/
uv .

Therefore at least one node vj appears more than
once in � . The part of a walk between its first and

Vn

V1

Vj

P

Q

C

Semirings and Matrix Analysis of Networks, Fig. 3
Example of a walk that is not a path

last appearance is a closed walk C (see Fig. 3).
The whole walk can be written as � D P ıC ıQ

where P is the initial segment of � from u to
the first appearance of vj , and Q is the terminal
segment of � from the last appearance of vj to v.
Note that P ıQ is also a walk. The value of both
walks together is

w.fP ıQ; P ı C ıQg/ D w.P ıQ/:

We see that the walks that are not paths do not
contribute to the value of walks. Therefore

w.S�uv/ D w.Euv/:

Equality holds also for S�uv D ;.
Since the node set V is finite, also the set Euv

is finite which allows us to compute the value
w.S�uv/. We already know that W� D W.k/ D
.1CW/k for k large enough.

To compute the closure matrix W� of a given
matrix over a complete semiring .K;˚;ˇ; 0; 1/,
we can use the Fletcher’s algorithm (Fletcher
1980):

C0 DW
for k WD 1; : : : n do

for i WD 1; : : : n do
for j WD 1; : : : n do

ckŒi; j � WD ck�1Œi; j �˚ ck�1Œi; k�

ˇ.ck�1Œk; k�/� ˇ ck�1Œk; j �

ck Œk; k� WD 1˚ ckŒk; k�

W� WDWn .
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If we delete the statement ckŒk; k� WD 1 ˚
ck Œk; k�, we obtain the algorithm for computing
the strict closure W. If the addition˚ is idempo-
tent, we can compute the closure matrix in place
– we omit the subscripts in matrices Ck .

The Fletcher’s algorithm is a generalization
of a sequence of algorithms (Kleene, Warshall,
Floyd, Roy) for computing closures on specific
semirings.

Multiplication of Matrix and Vector

Let ei be a unit vector of length n – the only
nonzero element is at the i th position and it is
equal to 1. It is essentially a 1 � n matrix. The
product of a unit vector and a value matrix of
a network can be used to calculate the value of
walks from a node i to all the other nodes.

Let us denote

qT
1 D eT

i ˇW:

The values of elements of the vector q1 are equal
to the values of walks of the length 1 from a node
i to all other nodes: q1Œj � D w.S1

ij /. We can
calculate iteratively the values of all walks of the
length s, s D 2; 3; : : : k that start in the node i :

qT
s D qT

s�1 ˇW

or qT
s D eT

i ˇWs and qs Œj � D w.Ss
ij /. Similarly

we get q.k/T D eT
i ˇW.k/; q.k/Œj � D w.S.k/

ij /

and q�T D eT
i ˇW�; q�Œj � D w.S�ij /:

This can be generalized as follows. Let I 	 V
and eI is the characteristic vector of the set I – it
has value 1 for elements of I and is 0 elsewhere.
Then, for example, for qT

k
D eT

I ˇWk , it holds
qk Œj � D w.

S
i2I Sk

ij /.
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Definition

Sentiment analysis aims to understand subjective
information such as opinions, attitudes, and feel-
ings expressed in text. Sentiment analysis tasks
include, but not limited to the following:
• Sentiment classification which classifies a

given piece of text as positive, negative, or
neutral.

• Opinion retrieval which retrieves opinions in
relevance to a specific topic or query.

• Opinion summarization which summarizes
opinions over multiple text sources towards a
certain topic.

• Opinion holder identification which identi-
fies who express a specific opinion.

• Topic/sentiment dynamics tracking which
aims to track sentiment and topic changes over
time.

• Opinion spam detection which identifies
fake/untruthful opinions.

• Prediction which predicts people’s behaviors,
market trends, political election outcomes,
etc., based on opinions or sentiments
expressed in online contents.

Introduction

With the explosion of people’s attitudes and
opinions expressed in social media such as blogs,
discussion forums, and tweets, detecting senti-
ment or opinion from the Web is becoming an
increasingly popular way of interpreting
data. Sentiment analysis in social media
allows business organizations to monitor
their reputations, find public opinions about
their products or services and those of their
competitors, and provide them with insight into
emerging trends and potential changes in market
opinion, etc.

Customers also rely on online reviews to make
more informed purchase decisions. Taking the
Amazon Kindle cover reviews shown in Fig. 1
as an example, this Kindle cover receives a
very high average rating of 4.5 stars from a
total number of 855 reviews. Nevertheless, some
reviews with high star ratings might still contain
negative comments. Two example 4-star reviews
shown in Fig. 1 reveal that although people think
the design and quality of the cover are very
good, it is overpriced. With such information,
the cover would still be a good buy for price-
insensitive customers. However, other customers
may choose a less expensive alternative. With
the sheer volume of social media data published
every day on the Web and driven by the demand
of gleaning insights into such great amounts
user-generated data, there have been a large

http://dx.doi.org/10.1007/978-1-4614-6170-8_351
http://dx.doi.org/10.1007/978-1-4614-6170-8_351
http://dx.doi.org/10.1007/978-1-4614-6170-8_192
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http://dx.doi.org/10.1007/978-1-4614-6170-8_100881
http://dx.doi.org/10.1007/978-1-4614-6170-8_100881
http://dx.doi.org/10.1007/978-1-4614-6170-8_100882
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Sentiment Analysis in Social Media, Fig. 1 Amazon Kindle cover reviews. Texts highlighted in green and red
indicate the pros and cons of the product respectively

number of sentiment analysis software tools
developed for alleviating users’ information
seeking burden.

Bazaarvoice’s ratings and review platform
(http://www.bazaarvoice.co.uk/) enables brands
to capture customer’s opinions about their
services and products. Lightweight tools, such as
Tweetfeel (http://www.tweetfeel.com), Twendz
(http://twitter.com/Twendz), and Twitrratr (http://
twitrratr.com/), scours Twitter for tweets and
show how positively or negatively Twitter users
feel about a particular topic. The Financial Times
also introduced Newssift (http://www.newssift.
com), a search tool that matches business topics
to users’ queries, sorts articles into positive and
negative sentiment, and identifies the people,
companies, places, and connections across all
stories allowing for further refined search.

This article primarily focuses on sentiment
classification from social media data. It describes
some of the prominent approaches to sentiment

classification including corpus-based approaches,
lexicon-based approaches, and the incorporation
of social networks into sentiment classification.

Historical Background

In the past, the majority of work in text
information processing focused on mining and
retrieving factual information, such as classifying
documents according to their subject matter (e.g.,
politics vs. religion and sports vs. arts). In recent
years, there has been a rapid growth of research
interests in natural language processing that
seeks to better understand sentiment or opinion
expressed in text. One reason is that with the rise
of various types of social media, communicating
on the Web has become increasingly popular,
where millions of people broadcast their thoughts
and opinions on a great variety of topics, such as
feedbacks on products and services, opinions on

http://www.bazaarvoice.co.uk/
http://www.tweetfeel.com
http://twitter.com/Twendz
http://twitrratr.com/
http://twitrratr.com/
http://www.newssift.com
http://www.newssift.com
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political development and events, and informa-
tion sharing on global disasters. Therefore, new
computational tools are needed to help organize,
summarize and understand this vast amount of
information. Additionally, the discovery of opin-
ions reflecting people’s attitudes towards various
topics enables many useful applications, which is
another motivation of sentiment analysis.

Sentiment analysis can be considered as com-
putational treatments of subjective information
such as opinions and emotions expressed in text.
In the simplest setting, sentiment analysis aims
to automatically identify whether a given piece
of text expresses positive or negative opinion.
Early approaches (Pang et al. 2002; Matsumoto
et al. 2005) view sentiment classification as a
text classification problem where a corpus with
sentiment orientation annotated is required for
classifiers training. Supervised sentiment classi-
fication approaches usually perform well when
the training set is large enough, where the state-
of-the-art approach (Matsumoto et al. 2005) can
achieve more than 90 % accuracy on the movie
review data. However, there are some noticeable
issues. One is that supervised classifier trained
on one domain often fails to produce satisfactory
performance when tested on other domains, and
secondly, online content varies widely in domains
and evolves rapidly over time, making corpora
annotation for each domain unrealistic.

In response to the domain transfer and labeling
cost problems faced by supervised approaches,
there has been rising interest in exploring semi-
supervised methods leveraging a large amount
of unlabeled data and a small amount of labeled
data for classifier training (Aue and Gamon 2005;
Blitzer et al. 2007). Some representative works in
this line are that of Aue and Gamon (2005) which
explored various strategies for training SVM
classifiers for the target domain lacking sufficient
labeled data and that of Blitzer et al. (2007),
which addressed the domain transfer problem
with structural correspondence learning (SCL).

Unsupervised or weakly supervised approach-
es are mostly lexicon based which do not require
labeled document for training. Instead, they as-
sume that the sentiment orientation of a docu-
ment is an averaged sum of the sentiment orien-

tations of its words and phrases. Given the diffi-
culties of supervised and semi-supervised senti-
ment analysis, it is conceivable that unsupervised
or weakly supervised approaches to sentiment
classification are even more challenging. Nev-
ertheless, solutions to unsupervised or weakly
supervised sentiment classification are of practi-
cal significance owing to its domain-independent
nature.

The pioneer work is the point-wise mutual
information (PMI) approach proposed in (Turney
2002), who calculated the sentiment orientations
of phrases in documents as its PMI with a positive
prototype “excellent” minus the PMI with a neg-
ative prototype “poor.” The proposed approach
achieved an accuracy of 84 % for automobile
reviews and 66 % for movie reviews. Also work
such as Read and Carroll (2009) are good exam-
ples of lexical-based approach.

Weakly supervised sentiment classification
approaches are similar to unsupervised ap-
proaches in that they do not require labeled
documents for training. Instead, they typically
incorporate supervision information either from
sentiment lexicons containing a list of words
marked as positive or negative (usually much
larger in size than the sentiment seed words
used in unsupervised approaches) or from user
feedbacks. Lin and He (2009) proposed a joint
sentiment–topic (JST) model to detect document-
level sentiment and extract sentiment bearing
topics simultaneously from text. By incorporating
a small set of domain-independent sentiment
words as prior knowledge for model learning, the
weakly supervised JST model is able to achieve
comparable performance to semi-supervised
approaches with 40 % labeled data.

Compared to the vast majority of work
in sentiment analysis mainly focusing on the
domains of product reviews and blogs, Twitter
sentiment analysis is considered as a much harder
problem than sentiment analysis on conventional
text. This is mainly due to a few factors
including the short length of tweet messages,
the frequent use of informal and irregular words,
and the rapid evolution of language in Twitter.
Annotated tweets data are impractical to obtain.
Previous work on twitter sentiment analysis
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(Go et al. 2009; Pak and Paroubek 2010; Barbosa
and Feng 2010) relies on noisy labels or distant
supervision, for example, by taking emoticons
as the indication of tweet sentiment to train
supervised classifiers. Other work explore feature
engineering in combination of machine learning
methods to improve sentiment classification
accuracy on tweets (Agarwal et al. 2011;
Kouloumpis et al. 2011).

Prominent Methodologies

Research on sentiment classification has attracted
a great deal of attention, where different classifi-
cation tasks focus on various levels of granularity,
e.g., from the document level (Pang et al. 2002)
to the finer-grained sentence and word/phrase
level (Turney and Littman 2002). In this section,
we investigate the work which deals with com-
putational treatments of sentiment using corpus-
based and lexicon-based approaches, with a focus
on document-level sentiment classification.

Corpus-Based Approaches
Corpus-based approaches (Pang et al. 2002; Pang
and Lee 2004; Boiy et al. 2007) rely on anno-
tated corpora where each document is annotated
with a polarity label such as positive, negative,
and neutral. Standard classifiers such as Naïve
Bayes (NB), Maximum Entropy (MaxEnt), and
Support Vector Machines (SVMs) can then be
trained from such annotated corpora to detect the
sentiment of text. In Twitter sentiment analysis
where annotated data are impractical to obtain,
noisy labels such as emoticons (“:-),” “:D,”
“:(,” etc.) appeared in tweets are used to label
tweets as positive or negative (Go et al. 2009).

Pioneering work on document-level sentiment
classification is by Pang et al. (2002), who
employed machine-learning techniques including
SVMs, NB, and MaxEnt to determine whether
the sentiment expressed in a movie review was
thumbs up or thumbs down. They achieved the
best classification accuracy with SVMs using
binary features coding whether a unigram was
present or not. In subsequent work, Pang and Lee
(2004) further improved sentiment classification

accuracy on the movie review dataset using a
cascaded approach. Instead of training a classifier
on the original feature space, they first filtered
out the objective sentences from the dataset
using a global min-cut inference algorithm and
then used the remaining subjective sentences
as input for sentiment classifier training. The
classification improvement achieved by the
cascaded approach suggests that the subjective
sentences contain features which are more
discriminative and informative than the full
dataset for sentiment classification. The movie
review dataset (also known as the polarity dataset,
http://www.cs.cornell.edu/people/pabo/movie-rev
iew-data/) used in Pang et al. (2002) and
Pang and Lee (2004) has later on become a
benchmark for many sentiment classification
studies (Whitelaw et al. 2005; Matsumoto et al.
2005). Whitelaw et al. (2005) used fine-grained
semantic distinctions in features for sentiment
classification, namely, the appraisal groups.
Specifically, an appraisal group is defined as
coherent groups of words that express together a
particular attitude, such as extremely boring and
not terribly funny. By training a SVM classifier
on the combination of different types of appraisal
group features and bag-of-word features, they
achieved the best accuracy of 90.2 % on the
movie review dataset. Matsumoto et al. (2005)
proposed a method using the extracted word
subsequences and dependency sub-trees as
features for SVMs training and attained the
state-of-the-art accuracy of 93.7 %.

A common assumption made by the afore-
mentioned line of work (Pang et al. 2002; Pang
and Lee 2004; Whitelaw et al. 2005) is that the
entire document is represented as a flat feature
vector (i.e., a bag-of-words format), which limits
their ability to exploit sentiment or subjectivity
information at a finer-grained level. In this regard,
there has been work on incorporating sentence
or sub-sentence level sentiment label informa-
tion for document-level sentiment classification
(McDonald et al. 2007; Zaidan et al. 2007).

McDonald et al. (2007) proposed a fully
supervised structured model for joint sentence-
and document-level sentiment classification
based on sequence classification techniques using

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
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constrained Viterbi inference. The joint model
leverages both document-level and sentence-
level label information and allows classification
decisions from one level (e.g., the document
level) to influence decisions at another level
(e.g., the sentence level). It was reported that
the joint model significantly outperformed both
the document and sentence classifier that predict
a single-level label only. Zaidan et al. (2007) used
human annotators to mark the sub-sentence level
text spans known as annotator rationales, which
support the document’s sentiment label. These
annotator rationales were used as additional
constraints for SVMs training, which ensure
that the resulting classifier will be less confident
in classifying the documents that do not contain
the rationales. By exploiting the rationales during
the classifier training, the proposed approach
achieved 92.2 % accuracy on the movie review
dataset and significantly outperformed the
baseline SVM which only used the full text of
the original documents for training.

Apart from exploiting structured information
for sentiment classification, there are also works
on exploring various features such as unigrams,
bigrams, and part of speech (POS) tags for build-
ing sentiment classifiers. Agarwal et al. (2011) s-
tudied using the feature-based model and the tree
kernel-based model for sentiment classification.
They explored a total of 50 different feature types
and showed that both the feature-based and tree
kernel-based models perform similarly and they
outperform the unigram baseline. Kouloumpis
et al. (2011) compared various features including
n-gram features, lexicon features based on the
existence of polarity words from the MPQA sub-
jectivity lexicon (http://www.cs.pitt.edu/mpqa/),
POS features, and microblogging features captur-
ing the presence of emoticons, abbreviations, and
intensifiers. They found that microblogging fea-
tures are most useful in sentiment classification.

Example: Sentiment Classification Based on
Supervised Learning
In this section, we illustrate an example of how
to train a multi-variate Bernoulli naive Bayes
classifier for document-level sentiment classifica-

tion, i.e., to determine the sentiment orientation
of a document as positive or negative. The proce-
dures of classifier training involve three steps as
depicted in Fig. 2.

Step 1 Prepare a training set: Given a set of
opinionated documentsD D fd1; d2; : : : ; dDg,
each document d 2 D needs to be
annotated with a sentiment label c 2 C
as positive or negative prior to classifier
training. Thus, training examples can be
represented as pairs of documents and the
corresponding sentiment labels as fD; Cg D
f.d1; c1/; : : : ; .dD ; cD/g. Also, using V to
denote the number of distinct terms in the
training set, each document can then be
represented as a V -dimensional binary vector
with each dimension t corresponding to
term wt . By employing the multi-variate
Bernoulli naive Bayes model which only
encodes the presence of words, the feature
presence indicator �i t (i.e., the t th dimension
of document di ) can only take two possible
values, i.e., 0 indicating wt does not appear
in di or 1 indicating wt has occurred in di at
least once.

Step 2 Train a sentiment model: Given a
training set fD; Cg, the goal of model training
is to calculate the optimal parameter estimates
of a naive Bayes model M. Specifically, for
each term wt in the vocabulary and each
class label cj , we need to calculate P.wt jcj /,
i.e., the probability of generating wt given
class label cj . Using the independence
assumptions of NB that all attributes of data
examples are independent of each other given
a class label (Lewis 1998), P.wt jcj / can be
approximated from training data as

P.wt jcj /

D #documents with label cj that contain wt

#documents with label cj
:

(1)

We also need to compute the sentiment class
probability, P.cj /, which can be estimated as

http://www.cs.pitt.edu/mpqa/
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Sentiment Analysis in Social Media, Fig. 2 Illustration of corpus-based approaches

the proportion of documents labeled as class
cj in the training data:

P.wt jcj / D #documents with label cj

#documents in the training data
:

(2)

Step 3 Predict sentiment label for unseen doc-
uments: Given a set of unseen documents
Du, the final step is to predict the most
probable sentiment class label Qc for each
unseen document du 2 Du. By applying
the previously trained model M, the posterior
p.cj jdu/, i.e., the probability that unseen
document du belongs to class cj , can be
calculated as

P.cj jdu/ D P.cj /P.dujcj /

P.du/

D P.cj /
QV

tD1 P.wt jcj /

P.du/
; (3)

where P.du/ is a normalization constant
which plays no role in classification, P.cj /

and P.wt jcj / are the probabilities estimated
from training data in Step 2. Finally, the
class label of du is determined as Ocj D
argmaxcj

P.cj jdu/.

Lexicon-Based Approaches
Lexicon-based approaches for sentiment
classification are mostly unsupervised or weakly
supervised. As unsupervised classifiers are
usually not able to identify which features
are relevant to polarity classification in the
absence of annotated data, they normally resort
to sentiment seed words or lexicons as a form of
prior polarity knowledge for model learning as
illustrated in Fig. 3. Such domain-independent
sentiment lexicons can be acquired automatically
or semiautomatically with much less effort
compared to labeling a large training dataset.

The pioneering work in this line is that of
Turney and Littman (2002), which classified
a document as positive or negative by the
average sentiment orientation of the phrases
containing adjectives or adverbs in the document.
The sentiment orientation of a phrase is
calculated as the pointwise mutual information
(PMI) with a positive word excellent minus
the PMI with a negative word poor. The
proposed approach achieved an accuracy
of 84 % for automobile reviews and 66 %
for movie reviews. In the same vein, Read
and Carroll (2009) measured the similarity
between words and polarity prototypes such as
excellent and good with three different methods,
namely, lexical association (using PMI),



S 1694 Sentiment Analysis in Social Media

Sentiment Analysis in Social Media, Fig. 3 Illustration of lexicon-based approaches

semantic spaces, and distributional similarity.
While Turney and Littman (2002) only used one
polarity prototype for each sentiment class, Read
and Carroll experimented with seven polarity
prototypes obtained from Roget’s Thesaurus and
WordNet (http://wordnet.princeton.edu/) through
a selection process based on their frequency in the
Gigaword corpus. The best result was achieved
using PMI with 69.1 % accuracy obtained on the
movie review data.

While a fixed number of sentiment seed
words have been used in the aforementioned
work (Turney and Littman 2002; Read and
Carroll 2009), there have been attempts to
incrementally enlarge the unlabeled examples
with self-training based on the original seed
word input (Zagibalov and Carroll 2008a, b).
Starting with a single Chinese sentiment seed
word meaning good, Zagibalov and Carroll
(2008b) used iterative retraining to gradually
enlarge the seed vocabulary. Those enlarged
sentiment-bearing words are selected based on
their relative frequency in both the positive
and negative parts of the current training data.
The sentiment orientation of a document is then
determined by the sum of the sentiment scores
of all the sentiment-bearing lexical items found
in the document. Problems with this approach
are that there is no principled mechanism for
determining the optimal iteration number for
training as well as for selecting the initial seed
word, where inappropriate seed word selection
may result in very poor accuracy. As such, in
subsequent work, Zagibalov and Carroll (2008a)
introduced a way for automatic seed word

selection based on some heuristic knowledge,
and an iteration control method was proposed
so that iterative training stops when there is no
change to the classification of any document over
the previous two iterations.

Weakly supervised sentiment classification
approaches are mostly lexicon based, some of
which integrate with corpus-based methods as
a hybrid model (Qiu et al. 2009). Compared to
the seed words used in unsupervised methods,
the sentiment lexicon, consisting of a list of
positive and negative sentiment bearing words,
is usually much larger in size and is used as
reference features for sentiment classification.
Analogous to the unsupervised approach that
uses iterative retraining (Zagibalov and Carroll
2008b), Qiu et al. (2009) also used a lexicon-
based iterative process to iteratively enlarge
an initial sentiment dictionary from the first
phrase. But instead of using a single seed
word as Zagibalov and Carroll (2008b), they
started with a much larger Chinese sentiment
dictionary HowNet (http://www.keenage.com/
download/sentiment.rar) as the initial lexicon.
Documents classified from the first phase
were taken as a training set to train SVMs,
which were subsequently used to revise the
results produced from the first phase. This self-
supervised approach was tested on reviews from
ten different domains and outperformed the best
results of the approach by Zagibalov and Carroll
(2008a) on the same data over 6 % in F-measure.
In the weakly supervised joint sentiment – topic
(JST) model (Lin and He 2009) can detect
sentiment and topic simultaneously from text by

http://wordnet.princeton.edu/
http://www.keenage.com/download/sentiment.rar
http://www.keenage.com/download/sentiment.rar
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incorporating a small set of domain-independent
sentiment lexicon (http://www.cs.pitt.edu/mpqa/
databaserelease/). Unlike supervised approaches
to sentiment classification which often fail to
produce satisfactory performance when applied
to other domains, the weakly supervised nature
of JST makes it highly portable to other domains,
and it is able to achieve comparable performance
to the semi-supervised approaches using 40 %
labeled data for training.

Example: Sentiment Classification Based on
Unsupervised Learning
In this section, we show how to perform senti-
ment classification using pointwise mutual infor-
mation (PMI) (Turney and Littman 2002) as this
is one of the pioneering work of lexicon-based
approach for sentiment classification. The PMI
algorithm can be boiled down into three steps.

Step 1 Extract phrases containing adjectives
or adverbs: The first step of the PMI
algorithm is to extract two-word phrases from
the document where one member of the phrase
is an adjective or an adverb and the second
provides context. The rationale behind is that
although adjectives are generally considered
good indicators for subjectivity detection
from text, using an isolated adjective alone
may be insufficient to determine sentiment
orientation as sentiment is context dependent.
For instance, the adjective “complicated”
may have negative sentiment orientation
as “complicated setting” in an electronic
product review and conveys positive sentiment
as “complicated plot” in a movie review.
This phrase extraction process consists of
two steps by firstly applying POS tagger to
documents and then discarding the phrases
with POS tags that do not conform to some
predefined syntactic patterns. Readers may

refer to the original paper (Turney and Littman
2002) for a full list of POS tag patterns.

Step 2 Estimate phrase sentiment orientation:
In order to calculate the sentiment orientation
(SO) of each extracted phrases, two sentiment
polarity reference words are used, with word
“excellent” indicating positive sentiment and
“poor” indicating negative sentiment. So the
SO of a phrase is measured by the difference
of its PMI with positive word “excellent” and
negative word “poor” as follows:

SO.phrase/ D PMI.phrase; “excellent”/

� PMI.phrase; “poor”/: (4)

Formally, the PMI of words w1 and w2 is
given by

PMI.w1; w2/ D log2

�
p.w1 ^w2/

p.w1/p.w2/

�
; (5)

where p.w1 ^ w2/ is the joint probability of
how likely that word w1 and w2 co-occur. If
w1 and w2 are statistically independent, this
joint probability is equivalent to p.w1/p.w2/.
Thus, the ratio between p.w1 ^ w2/ and
p.w1/p.w2/ essentially measures the degree
of statistical dependence between the words.
In practice, the probabilities required for
calculating PMI can be acquired by issuing
quires to a public search engine (http://
www.altavista.com/sites/search/adv), and
then based on the results returned, we can
approximate p.w1/ with the number of hits
that documents contain w1 and approximate
p.w1 ^ w2/ with the number of hits that
documents contain both w1 and w2 within
a range of ten words. Thus, (4) can be
rewritten as

SO.phrase/ D log2

�
hits.phrase NEAR “excellent”/ hits.“poor”/

hits.phrase NEAR “poor”/ hits.“excellent”/

�
: (6)

Step 3 Calculate document sentiment: The
final step is to calculate the average SO of
all extracted phrases in the document and

then classify the document as positive if
the average SO is positive and as negative
otherwise.

http://www.cs.pitt.edu/mpqa/databaserelease/
http://www.cs.pitt.edu/mpqa/databaserelease/
http://www.altavista.com/sites/search/adv
http://www.altavista.com/sites/search/adv
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Explore Social Networks for Sentiment
Analysis
Recently, there have been increasing interests in
employing social relations for both document-
level and user-level sentiment analysis. It is based
on a hypothesis that users connected with each
other are likely to express similar opinions. In
Twitter, social relations can be established by
the following links, through retweeting using
RT username or via username, or by refer-
ring to other users in one’s messages using “@”
mentions.

Speriosu et al. (2011) argued that using noisy
sentiment labels may hinder the performance of
sentiment classifiers. They proposed exploiting
the Twitter follower graph to improve sentiment
classification and constructed a graph that has
users, tweets, word unigrams, word bigrams,
hashtags, and emoticons as its nodes which
are connected based on the link existence
among them (e.g., users are connected to
tweets they created; tweets are connected to
word unigrams that they contain). They then
applied a label propagation method where
sentiment labels were propagated from a
small set of nodes seeded with some initial
label information throughout the graph. They
claimed that their label propagation method
outperforms MaxEnt trained from noisy labels
and obtained an accuracy of 84.7 % on the subset
of the Twitter sentiment test set from Go et al.
(2009).

Tan et al. (2011) incorporated both textual
and social relations revealed by the following
links and “@” mentions in a single heteroge-
neous graph on a certain topic such as “Oba-
ma,” where nodes correspond to either users or
tweets. Starting from some seed-user nodes la-
belled as positive or negative, they proposed a
transductive learning method to propagate sen-
timent label to all the users in the graph. In a
similar vein, Calais Guerra et al. (2011) also
proposed modeling the user opinion prediction
problem as a relational learning problem over
a network of users connected by endorsement
(e.g., retweets in Twitter) where the goal is to
classify the nodes of a partially labelled net-
work.

Key Applications

Social media such as Twitter and Facebook has
become an increasingly popular communication
channel, which have enabled many useful appli-
cations by discovering opinions reflecting peo-
ple’s attitudes towards various topics or events
from the massive user-generated data. These so-
cial media centric applications are particularly
proliferous in the domains of financial marketing,
brand and consumer perception, as well as anti-
terrorism and violence detection.

Financial Marketing
Sentiment analysis has shown great impact on
finical markets, where financial organizations
are embracing new tools and techniques to
help make sense of the massive amounts of
unstructured data available on social media
for making more informed decisions and
maximizing the performance of their trading
strategies. For instance, Thomson Reuters
(http://thomsonreuters.com/) recently launched a
sentiment analytics service for Internet news and
social media, which is capable to mine expansive
wealth of social media and blog content to
deliver digestible analytics for algorithmic
trading systems as well as risk management and
human decision support processes. Social Market
Analytics (SMA) (http://socialmarketanalytics.
com/) tracks live stock market sentiment and
offers to detect abnormal positive or negative
changes in investor sentiment as it is expressed
in real-time social media activity. HedgeChatter
(http://www.hedgechatter.com/) also uses social
media sentiment for stock market analysis, with a
focus of identifying the most influential users in
social media based upon their overall volume of
postings, followers they have, and how accurately
they predict stock price.

Brand and Consumer Perception
Engaging with consumers and gaining percep-
tions of brands is another active domain of ap-
plying social media analytics, where commercial
products preserve similar visions such as to sup-
port brands to better understand costumer seg-
ments, what consumers value about the brands,

http://thomsonreuters.com/
http://socialmarketanalytics.com/
http://socialmarketanalytics.com/
http://www.hedgechatter.com/
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and how consumers perceive their products and
services and those of their competitors.

IBM has developed an internally used system
called Banter (http://www.research.ibm.com/
social/) for monitoring and analyzing the contents
of blogs and social network conversation. It
answers key questions for marketers such as
How do I identify relevant blogs? Who are
the key influencers? and What is the sentiment
about these relevant topics?. In terms of
commercial products, one leading company
is Bazaarvoice (http://www.bazaarvoice.co.
uk/) which provides a comprehensive social
media analytics platform covering a range of
services, such as gathering consumer generated
opinions from customer conversations on social
networks as well as capturing and responding
to consumer questions about products and
services. Another major player in this market
is PowerReviews (http://www.powerreviews.
com/). In contrast to Bazaarvoice which targets
big enterprises PowerReviews is more focused
on small- and medium-sized business (SMB)
solutions.

While the aforementioned products provide
services for across industrial clients, some com-
panies optimize their products for a dedicated
domain. For instance, Musicmetric (http://www.
musicmetric.com/) collects and analyzes online
data globally to understand activity around artists
for the entertainment industry. In addition to
activity data from social media sites and peer-
to-peer file sharing, they also analyze reviews
to determine which artists, songs, and album-
s are being reviewed in an article, as well as
the overall associated sentiment. Using this data,
Musicmetric is able to provide aggregate senti-
ment statistics for an artist, song, or album over
all reviews analyzed online.

Anti-terrorism and Violence Detection
Another important emerging area for sentiment
analysis leveraging data from social media is
violence detection and anti-terrorism. Existing
work on terrorism detection from online content
has been largely focusing on the study of
terrorists, hate groups, and other extremists
through primary sources such as terrorists’ own

websites, videos, chat sites, and Internet forums.
For example, the University of Arizona’s Dark
Web Terrorism Research Programme (http://ai.
arizona.edu/research/terror/) employed various
data mining techniques to conduct content
analysis and social network analysis of online
jihadist content. A Dark Web Forum Portal
(DWFP) has been developed to provide Web-
enabled access to 29 important jihadist and
other extremist Web forums and currently
archives approximately 15 million messages.
Recently, DARPA unveiled the Social Media
in Strategic Communication (SMISC) (http://
www.darpa.mil/) program with the goal to detect
and conduct propaganda campaigns on social
media. In order to help defense department
to gain deep understanding of social media
dynamics, particularly in the areas where the
troops are deployed, SMICS can perform real-
time discovering and tracking of the development
and spread of ideas and concepts on social media,
as well as to quickly flag rumors and emerging
themes that might be considered risky.

Future Directions

This chapter gave an introduction to sentimen-
t analysis in social media. Despite the recent
successes, the field of sentiment analysis is still
relatively new and many challenges remained to
be tackled:
1. Topic-dependent sentiment analysis. Senti-

ment is domain dependent, where sentiment
expressions in different domains can be quite
different. Besides, even for data from the same
domain, sentiment distributions may vary over
time, especially for collections that span years
or decades and the fast-evolving social media
data such as Twitter data. Therefore, topic-
sensitive sentiment analysis and detecting
and tracking the dynamics in both topic and
sentiment over time in time-variant datasets
are promising areas for research.

2. Multilingual sentiment analysis. Most of the
sentiment analysis systems are monolingual
which typically process English only. How-
ever, a sentiment system with multilingual

http://www.research.ibm.com/social/
http://www.research.ibm.com/social/
http://www.bazaarvoice.co.uk/
http://www.bazaarvoice.co.uk/
http://www.powerreviews.com/
http://www.powerreviews.com/
http://www.musicmetric.com/
http://www.musicmetric.com/
http://ai.arizona.edu/research/terror/
http://ai.arizona.edu/research/terror/
http://www.darpa.mil/
http://www.darpa.mil/
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capability is important as users such as inter-
national companies often need to gain insights
into markets for more than one country, e.g.,
USA and China.

3. In Twitter and other social media sites such
as Facebook and YouTube, short, ungram-
matical utterances are commonplace. Finding
an effective way of correcting these spelling
mistakes is important for improving sentiment
analysis system performance.

4. Sarcasm and slang. Sentiment is often
embodied in subtle linguistic mechanisms
such as the use of sarcasm and slang,
which poses great challenges for automated
sentiment analysis. For instance, without
taking context into account, sarcasms
expressing negative sentiment could be
wrongly interpreted as extremely positive
sentiment. On the other hand, understanding
slang is also very difficult as it changes by
geographical location. Therefore, address-
ing this challenge would require deeper
linguistic understanding and incorporating
richer background knowledge for model
learning.

Cross-References

�Data Mining
�Multi-Classifier System for Sentiment Analysis
and Opinion Mining
�Twitter Microblog Sentiment Analysis
�User Sentiment and Opinion Analysis
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Synonyms

ASP; ASP.NET; CGI; JSF; JSP; Perl; PHP; Ruby
on Rails

Glossary

AJAX Asynchronous JavaScript and XML
CGI Common Gateway Interface
HTML Hypertext Markup Language
JSF Java Server Faces
JSON Java Script Object Notation
JSP Java Server Pages

Definition

Server-side scripting languages are programming
languages developed especially for creating
HTML pages (or Web pages) on the server side.
These languages usually provide special libraries
that facilitate creating HTML pages. In times of
Web 2.0 and AJAX, these scripting languages can
also serve as data sources (services) for AJAX.

There are two different types of scripting
languages. The first variant can be embedded
in HTML. The language can be embedded, for
example, in places where a particular function-
ality is needed. The second variant is languages
which can be used to create HTML tags. They
provide an interface for creating HTML tags.
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On the server side, a special interpreter is
necessary for each scripting language. This in-
terpreter is introduced to the Web server so that
the server will be able to use it for the script
execution, when required.

Introduction

There is a large number of server-side scripting
languages. It is their task to dynamically build
HTML pages (Web pages) on the server side. To
achieve this, a Web server that is to distribute
the HTML pages must be told where to find
an interpreter for a particular script. Most of
the server side scripts are interpreted. A small
number can also be compiled.

Without server-side scripting languages, you
can only create static Web pages. Then it is not
possible to customize anything for single users.
A customization can be something as simple as
the display of search results. Because of these
languages, HTML pages can be created dynam-
ically, i.e., on request.

If we look at today’s Web sites, we will find
that most of them were created using servers-
side scripting languages, among them Web sites
which are run by a content management system.
The content management system itself has been
developed using a server side scripting language.
There will be very few exceptions which do not
use such a language.

Web 2.0 pages that use JavaScript for control-
ling their content also need a server side scripting
language, e.g., AJAX was used to send requests
for database access to a server. This can only be
done using a server side scripting language.

Historical Background

It is hard to say which server side scripting
language was first. It is a fact though that Perl was
one of the first languages. The first version of Perl
as a universal scripting language was presented in
1987 by Larry Wall. Only later, in the 1990s, did
it become useful for Web pages because CGI was
introduced.

In 1995, Rasmus Lerdorf developed PHP. At
the beginning, PHP was based on Perl. In 1997,
with version 2, the first parser for PHP was
delivered. From then on PHP has been particu-
larly suited for Web pages. PHP is a scripting
language embedded in HTML. From the very
start the evaluation of form variables has been
important. By now, PHP has become one of the
most widely used scripting languages for Web
pages. But PHP has also become a universal
scripting language which can be used anywhere.

Pyton is another universal scripting language,
which was developed by Guido van Rossum in
1991. Today it is also commonly used for Web
applications.

At the end of the 1990s, Sun Microsystems
presented the language JavaServer Pages (JSP).
JSP is based on the language Java, but it is
embedded in HTML. Just as with Java, the JSP
pages must be compiled before the byte code
that was created can be executed in a virtual
machine. Nowadays, JSP is considered outdated.
It was superseded by JavaServer Faces (JSF) in
2004. Particularly for Web pages, JSF, as opposed
to JSP, is component oriented. JSF consequently
focuses on the model–view–controller pattern.

Microsoft developed the Active Server Pages
(ASP) particularly for the Internet Information
Service (IIS). The technology, which was
presented in 1998, can be programmed among
others with VBScript or JScript. The relevant
programming language is also embedded in
HTML. In 2002 it was superseded by ASP.NET.
That is the Web-based technology which is
embedded in the .NET framework. Programming
languages for ASP.NET are VBScript and C#.

Another popular language for Web pages is
Ruby on Rails. The programming language Ruby
was presented by Yukihiro Matsumoto in 1995.
At the beginning it was only known in Japan.
Ruby on Rails, which was developed in 2005, is
a specific library for Web applications.

Server-Side Scripting Languages

In the following, a sample server side scripting
language will be described. We chose PHP be-
cause it is one of the most widely used languages.
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After that, we will take a glance at Perl, which is
unlike PHP a language that is not embedded in
HTML.

PHP
From version 2 on, PHP has been developed
for the dynamic creation and evaluation of Web
pages. At first it was a procedural programming
language. Version 4.0 (2000) introduced objects,
which were revised in version 5.0 (2004). PHP
provides a comprehensive procedural and object-
oriented library.

PHP (Lerdorf et al. 2006) is a programming
language that is embedded in HTML (Kessin
2011). It is always interpreted on the server. Out-
put of a PHP script is usually an HTML page. But
it is also possible to create different text formats
and binary formats such as JSON, PDF, or PNG.
Because the scripts are executed on the server, the
user cannot see the source code. Users only get
to see the output. This way, stealing the source
code is not possible. If a Web server is very busy,
the PHP scripts can be compiled beforehand and
then only the byte-code can be executed. Without
parsing and compiling, execution performance is
strongly improved.

Figure 1 shows a very small PHP-file whose
browser output is hello world. It shows clearly
that the file begins with HTML source code.
PHP is embedded in HTML; the actual PHP
part starts only in line 8. This is marked by
the string <?php. The command echo makes
the browser display <p>Hello world!</p>.
HTML tags can also be output using echo. The
PHP part ends in line 10 with the string ?>. You
can include PHP parts anywhere and any number
of times. It is not necessary to include HTML
source code in a PHP-file, which is often the case
with classes. In this scenario, the PHP-file starts
directly with <?php. If the file ends with a PHP
source text, you can leave out the closing ?>.
Formerly, <? and ?> were used, but they had
caused problems with XHTML. A PHP-filename
must always finish with .php for the Web server
to know that it is a PHP-file.

You can also include comments in the PHP
sections. Introduce single-line comments using
// or #. Multiline comments should be enclosed
in /* and */.

1 <DOCTYPE html >

2 <html >

3 <head >

4 <title >Hello World </title >

5 <meta charset="UTF-8"/>

6 <head >

7 <body >

8 <?php

9 echo "<p>Hello world!</p>";

10 ?>

11 </body >

12 </html >

Server-Side Scripting Languages, Fig. 1 Hello World
PHP page

Variables and Operators
Variables are a central feature in a programming
language. PHP is an untyped programming lan-
guage. This means that usually you do not need
to specify types. There are two exceptions, which
will be explained later. As a result, you do not
need to define variables, you can simply use
them.

Variables always begin with $. Then, an
arbitrary sequence of characters and numbers
may follow; the first character after $ must be a
letter. PHP distinguishes between capital letters
and small letters. As it is not necessary to define
the variables, there is a certain danger. If you
access an undefined variable, in the best case you
will receive a warning. In the worst case you will
only notice that the program does not work as
expected.

You can assign a type to a variable by
giving it a value. Figure 2 shows several
examples of this. In lines 1–4, numbers are
assigned. The lines 5 and 6 treat booleans, where
TRUE is the same as 1 and FALSE equals an
empty string. Lines 7 and 8 demonstrate how
character strings are assigned. It is important
to realize that there is a great difference
between the opening and closing " and ’.
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1 $$x = 42;

2 $x = 0xFF;

3 $x = 4.2;

4 $x = 4.2e6;

5 $x = TRUE; // or 1

6 $x = FALSE; // or ’’

7 $x = "abc";

8 $x = ’abc’;

9 $x = 8;

10 $y = "it’s $x o’clock"; // value: it’s 8 o’clock

11 $a = array(’one’, ’two’, ’three’);

12 $a = array(1 => ’one’, 2 => ’two’, 3 => ’three’);

Server-Side Scripting
Languages, Fig. 2
Variables

1 int isset (mixed var);

2 int unset (mixed var);

3 $$var = NULL;

4 string gettype (mixed var);

Server-Side Scripting Languages, Fig. 3 Checking of
variables

Only if " is specified, variables and escape
sequences (e.g., \t for tabulator) in character
strings are resolved. That means that as the lines
9 and 10 show $x is replaced by the numeric
value 17. If ’ is used, $x will remain a character
string.

You can also create arrays. Line 11 shows
an array with three elements. Line 12, however,
shows an associative array. Using => you can
separate the keys from the values. Because PHP
is an untyped language, the values and the keys
of the types may vary within an array.

PHP changes the variable type according to
the situation, if necessary. If, for example, two
variables are added as numbers and one of them
is a character string, then this string will auto-
matically be changed to a number. Sometimes,
not often, an explicit type conversion may be
necessary. This can be done placing the required

type in round brackets in front of the variable:
(int)$x.

You can check variables using the functions in
Fig. 3. In the following, functions and methods
will always be specified including the expected
and returned types. Because PHP is an untyped
language, the types will only be checked at run-
time and only afterwards an error message will be
displayed if the types do not match. Specification
of mixed means that different types may be
used. isset() checks if a variable has been
specified. With lines 2 and 3 you can specify a
variable as undefined. gettype() determines
the current type of a variable value. This value
may change during the execution of a program.
The type itself will be returned as a string.

There are very few specifics for operators.
As we have already seen, = is an assignment.
+, -, *, /, and % are mathematical operators,
whereby division and multiplication come before
addition and subtraction. To concatenate charac-
ter strings, use .. For comparisons, ==, !=, <>,
<, >, <=, and >= are available. Variable types can
be compared using === und !==. For grouping
operators you can use round brackets. You can
use AND, &&, OR, ||, XOR and ! as logical
operators, e.g. for conditions. AND and && are
equivalent and so are OR and ||.
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1 if ($$i > 0) {

2 echo ’$i is grater than 0’;

3 } elseif ($i = 0) {

4 echo ’$i is equal to 0’;

5 } else {

6 echo ’$i is less than 0’;

7 }

Server-Side Scripting Languages, Fig. 4 if condition

Program Control
PHP offers the usual options for program con-
trol. Figure 4 shows an if condition. After the
keyword if, you must specify a condition in
round brackets. Unlike in other languages, in
addition to the else branch, there are one or
more alternative conditionselseif. Besides the
if condition there is additionally a switch
statement.

Loops are also an option. A do { ... }
while (...)–loop checks the condition after
every loop run and the while (...){...}–
loop checks the condition prior to every loop run.

The for loop corresponds to the C syntax
in that you can specify separately first an ini-
tialization statement, followed by a condition
and then an incrementation using ;. Addition-
ally, there is a foreach loop which has been
developed specially for arrays. This loop executes
the following statements once for each value in
the array. Figure 5 gives an example. Inside the
brackets the array is specified first, then follows
the keyword as. After that, one or two variables
are specified, which will be used to store the value
and, optionally, the key of the array. The variable
for the key and the characters => can be left out
if only the values are of interest.

Classes, Objects, Error Handling
PHP too allows you to define custom functions
and objects. With version 5, object–orientation
has been thoroughly revised.

Using the keyword class you can define
classes. Classes’ attributes and methods can be

defined as public, protected, and private to en-
sure access protection. PHP supports only single
class inheritance, which can be specified using
the keyword extends. Alternatively, there are
interfaces, which a new class can implement.
Classes can also be abstract. This is the case
as soon as at least one method of a class has
been marked as abstract. These methods are not
yet implemented. The class which inherits must,
similar to the interfaces, implement the abstract
methods.

Constructors must be named __construct.
For downward compatibility with PHP 4, the
constructor may have the same name as the class.
A destructor must be named __destruct.

As Fig. 6 shows, you can create instances
of classes using the keyword new. An object
of the class DateTime is instantiated. You can
access the methods or attributes of objects using
the -> operator, as demonstrated by the method
format().

PHP also allows creating static attributes and
methods. Polymorphic methods are not support-
ed, as PHP is an untyped language. It is only
possible to specify default values for single pa-
rameters, so that the values can be omitted.

Error handling is also possible. Figure 7 shows
how a try ... catch ... block is speci-
fied. After try you specify all the statements
which might cause errors. One or more catch
statements control the error handling. Only in the
catch statement, it is necessary to specify a
type within the brackets. This type determines the
class of the exception that is to be treated. This
enables you to react appropriately to different
exceptions. Using the keyword throw, you can
throw a new exception.

Interaction with HTML Forms
The interaction with HTML forms is a central
point with server-side scripting languages. Here,
you need to be particularly careful because these
places are popular goals for attacks on a Web
page or an application. For this very reason, PHP
as well has undergone a variety of improvements
in the course of time.

In Fig. 8 you can see a small HTML form
which consists of two input fields for the user
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1 $$a = array (1 => ’one’, 2 => ’two’, 3 => ’three’);

2 foreach ($a as $key => $value) {

3 echo "$value has key $key";

4 }

Server-Side Scripting
Languages, Fig. 5
foreach loop

1 $$aDateTime = new DateTime ();

2 echo $aDateTime ->format(’Y-m-d H:i:s’);

Server-Side Scripting Languages, Fig. 6 Instantiate a
class

name and the password and a send button. In
the form, the send method post has been spec-
ified. You have two options. get is the simplest
method. Here, data is coded and committed with
the URL. An advantage is that the data is visible
in the URL. The disadvantages are that the URL
and with it the data amount is limited in size
and anyone can see and modify the committed
data. Especially for passwords this method is not
recommended. Here, the post method can help.
Data is sent to the URL separately and there is
no limit in the amount of data. If you want to
transfer entire files with a form, the method post
is obligatory. It is more difficult to modify this
data, but not impossible.

As destination for the form, the PHP–file
form.php is specified. The <input> tags
each have an attribute name, which determines
the name of the variable as it shall be available
in the destination script. In the past, these names
could be used in PHP directly. Today, for security
reasons they are stored in the two arrays $_GET
and $_POST. The name of each <input> tag
is its array index. Line 1 in Fig. 9 shows how to
check whether the button submit was pressed.
Because the method post was used, in the
array $_POST the index ’submit’ will be
searched for and a check will be done to see if
the array contains the value submit. If so, a
similar procedure can check the user name and
password.

You can use cookies if a Web application is to
store data on a client (or browser) permanently.

1 try {

2 $$date = new DateTime(’2012 -08 -01’);

3 } catch (Exception $e) {

4 echo $e ->getMessage ();

5 }

Server-Side Scripting Languages, Fig. 7 Error
handling

Cookies may contain any data, but they have a
maximum length of 4 KB. But a Web applica-
tion can send up to 20 cookies to the browser.
If you want to define how long data shall be
kept, you can specify an individual expiry date
for a cookie. Cookies can only be placed in a
Web page’s header. This is possible only if no
character of the actual Web page has been output.
It is recommended to specify a cookie for a script
as early as possible. As soon as a cookie was
set, the browser will send it automatically to the
server with every query. In PHP cookies can be
read using the array $_COOKIE. The problem
with cookies is that users can decide whether or
not their browser shall accept cookies. A Web
application can only find out about this decision
if it checks whether cookies are transferred back.

Web pages are generally independent of a con-
text. When developing Web applications, this can
be annoying. You can solve this problem by using
sessions. Sessions provide a separate storage area
on the server for each user. A session is assigned
to a user through a unique identifier. This ID
must always be transferred between the browser
and the server. To achieve this, three variants are
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1 <form action="form.php" method="post">

2 < p >

3 username <input type="text" name="username"/><br/>

4 password <input type="password" name="password"/><br/>

5 <input type="submit" name="submit" value="submit"/>

6 </p>

7 </form>

Server-Side Scripting
Languages, Fig. 8 Small
HTML-form

1 if ($$_POST[’submit’] == ’submit’) {

2 if (($_POST[’username’] == ...)&&

3 ($_POST[’password’] == ...)) {

4 // secure action

5 }

6 }

Server-Side Scripting Languages, Fig. 9 Evaluate for-
m

available, which have been presented earlier: get,
post, cookie. Cookie is the most popular variant
because it causes the least work. It is, however,
the most problematic as the developer does not
know whether the browser accepts cookies. If
cookies are used, again the cookie must be trans-
ferred in the header.

To use a session in PHP, each file which
uses the session must call the command
session_start() (see Fig. 10). This
command checks the session ID if one was
transferred. If the ID is correct, an existing
session will continue to be used. If it is not correct
or not available, a new session will be created.
The array $_SESSION is available for storing
data (s. lines 2 and 3). The data remains stored
on the server for some time and the various PHP
scripts can access it. This time limit is important
because sometimes it may not be clear whether

1 session_start(void);

2 $$_SESSION[’text’] = ’Hello world!’;

3 echo $_SESSION[’text’];

Server-Side Scripting Languages, Fig. 10 Session

a user is still active. If a user is inactive over a
longer period of time, the session will be deleted.
Sessions can also be deleted by PHP.

Any kind of data can be stored in a session.
You can also store objects. But there is one con-
dition: The object’s class must be known in each
PHP file before the session can be started. With
respect to security (Hope and Walther 2008),
sessions must be particularly protected. The usual
attacks are session hijacking and session riding.

Other Data Formats
Besides HTML, PHP (Loudon 2010) allows you
to create any other data format. These formats
could be, for example, XML, JSON, or images.
JSON, for example, is often used if it is a Web
2.0 application and you want to send back queries
to a server using AJAX. For the browser to be
able to recognize what kind of data it is, the
HTTP-header that specifies the data format must
be modified. Figure 11 shows how to set the type
for JSON-data. For the function header(), it is
important that in the body no data has yet been
sent. It is the same as for cookies.

JSON is a frequently used data format. There-
fore, special functions are available for creat-
ing JSON automatically from PHP-objects. In
line 2 a sample object is instantiated. Using the
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1 header (’Content-type: application/json’);

2 $$object = new ...;

3 $json = json_encode($object );

4 echo $json;

Server-Side Scripting Languages, Fig. 11 Modify
header

function json_decode(), it can be changed
to a JSON character string, which can then be
output with echo. Analogously, the function
json_decode() can change a JSON character
string into a PHP-object.

Embedded Files and Debugging
If you develop classes, usually each class is
stored in a separate file. Then it is also necessary
that these files can be embedded in PHP scripts.
To do so, in PHP two functions are available.
require() embeds the specified file and dis-
plays an error message if this was not successful.
Processing is stopped. include(), however,
will only output a warning and continue the
script. For each one there is an alternative method
require_once() and include_once().
These functions ensure that a script will be em-
bedded only once, even if it was specified more
often. This is particularly useful for, e.g., classes.

Troubleshooting is also very important for
server side applications. To enable debugging of
an application, there are currently two modules
for the Web server Apache, Xdebug, and Zend
Debugger, which allow remote debugging. Us-
ing these modules in a compatible development
environment, you can execute the PHP source
code step by step and examine the variables as
well.

Perl
Perl (Guelich et al. 1999; Wall et al. 2000) is
a universal programming language that can be
used for developing server side applications, too.
The module CGI provides an interface that can
be used to create HTML elements very easily.
Figure 12 shows an example of the hello world
program in Perl.

1 #!/usr/local/bin/perl -w

2 use CGI;

3 $$q = CGI ->new;

4 print $q->header ,

5 $q->start_html(’hello world’),

6 $q->p(’hello world’),

7 $q->end_html;

Server-Side Scripting Languages, Fig. 12 Hello
World Perl page

Line 2 provides the CGI module. Then, an
object whose class is CGI is instantiated. Then
some methods are used to create the individual
HTML elements. The methods header and
start_html create the entire header. For
each HTML element in the body, there is one
method for creating that particular element. You
can see this in line 6 for the <p>–tag. Each
method returns a string, which is output using
print.

Future Directions

Despite the development of Web 2.0 and the
relocation of functionality to the client side, i.e.,
the browser, server-side scripting languages will
still remain beneficial. Using AJAX, for example,
a data source must be provided on the server side.
Concerning the various libraries, a trend can be
seen that the server-side scripting languages are
more and more used for the automatic creation of
JavaScript source code. So it will remain exciting
to watch how the fast-moving world of the Web
will develop.
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Definition

Service discovery is the process of locating
existing services that are relevant for a
given request based on the description of
their functional and non-functional semantics.
Approaches to service discovery differ in their
support of service description language(s), the
organization of the search, and the utilized means
of service selection.

Introduction

The continuous proliferation of web services
which encapsulate business software and
hardware assets, e-business, or social software
applications in the web 2.0 holds promise to
further revolutionize the way of interaction
within today’s society and economy. A service
can be defined as a kind of action, performance,
or promise that is exchanged for value between
provider and client. In other words, it is a
provider-client interaction that creates and
captures value for all parties involved. At present,
there are tens of thousands of web services
for a huge variety of applications and in
many heterogeneous formats available for
the common user of the web. One main
challenge of web service technology is to
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provide scalable and effective means for an
automated discovery of relevant services with
minimal human intervention in any user and
application context. This paper provides an
overview of service discovery in a nutshell. For
a more comprehensive survey on the subject,
the interested reader is referred to, for example,
Crasso et al. (2011) and Klusch (2008b, 2012).

Preliminaries

Service discovery can be performed in differen-
t ways depending on how the services of the
considered search space are described, how the
search process is organized, and which means of
service selection are used for the search.

Service Description In general, a web service
can be described in terms of what it does and
how it actually works. These aspects of its func-
tional semantics (aka capability) are described in
a service profile and a service process model,
respectively.

A service profile describes the signature
of a service in terms of its input and output
(I/O) parameters and the service specification,
i.e., the preconditions and effects (P/E) of the
service execution. The profile also describes non-
functional service semantics such as information
about its provenance, name, business category,
pricing, delivery constraints, and quality.
Prominent approaches to represent such profiles
are the XML-based web service description
languages WSDL (Chinnici et al. 2007), SML
(Pandit et al. 2009), USDL (Oberle et al. 2013),
and WADL (Hadley 2009) and the HTML micro-
format hREST (Kopecky et al. 2008). Other
examples are the textual documentations of
RESTful services (Fielding and Taylor 2002) and
the ontology-based service description languages
OWL-S (Martin et al. 2004), WSML (De Bruijn
and Lausen 2005), SAWSDL (Farrell and Lausen
2007), SA-REST (Gomadam et al. 2010), and
Linked USDL (Pedrinaci and Leidig 2011).

A service process model describes the op-
erational behavior of a service in terms of its
internal control and data flow. Such models are

described, for example, in OWL-S, WSML, and
USDL by use of standard workflow operators
like sequence, split+join, and choice, while other
representation approaches are adopting process
algebraic languages like the pi-calculus and Petri
nets for this purpose.

Discovery Architectures Approaches to orga-
nize the service search can be classified as either
directory-based (aka structured) or directory-less
(aka unstructured), or hybrid peer-to-peer (P2P).
In the scenario of a directory-based search, ser-
vice providers register their services with either
one central and possibly replicated directory or
multiple distributed (federated) service directo-
ries at distinguished nodes of the underlying
network. Service consumers are informed about
available services in the network only through
these directory nodes.

Centralized directory-based service discovery
can be performed by using either a contemporary
web search engine or a specialized web service
search engine or a dedicated and authoritative
web service directory with query interface. In any
case, the W3C web service interaction lifecycle
for service-oriented architectures (SOA) expects
a central service directory to act as an intermedi-
ary between provider and consumer (cf. Fig. 1),
though it represents a potential single point of
failure and performance bottleneck for dependant
applications.

Decentralized directory-based service discov-
ery relies on a structured P2P network overlay
and a respective query routing protocol. In this
case, services are placed and discovered by all
peer nodes according to the global distribution or
replication scheme and the location mechanism
of the network. Classic examples of structured
P2P overlays are the DHT-based Chord ring,
Pastry, Tapestry, CAN, P-Grid, or a compound
routing index, and a hierarchically structured fed-
eration of service directories with super-peers. In
general, this type of service discovery provides a
search guarantee in the sense of total recall and
logarithmic complexity in the size of the network
for finding popular, i.e., highly replicated, as well
as rare services. On the other hand, it comes
at the cost of high communication overhead for
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Service Discovery, Fig. 1 W3C web service interaction life cycle

publishing and maintaining the structured overlay
when peers are joining or leaving the network or
the set of services which they provide changes.

Directory-less service discovery is performed
in an unstructured P2P network without any given
overlay structure. Each peer initially knows only
about services provided by its own or its direct
neighbor peers. Prominent examples of service
location or query routing schemes in such net-
works are query flooding and k-random walks
with replication and caching strategies, as well as
informed probabilistic adaptive search. This type
of service discovery is effective for finding popu-
lar but not rare services and provides only proba-
bilistic search guarantees, i.e., incomplete recall.

Hybrid P2P service discovery is performed in
networks with structured and unstructured over-
lay parts. For example, service requests can be
routed to super-peers in the structured overlay
part in order to find relevant rare services or pro-
cessed with restricted flooding or broadcasting
to peers of the unstructured network part to find
relevant popular services.

Service Selection The performance of service
discovery depends, in particular, on the used
service selection method. The process of service
selection (aka service matchmaking) encompass-

es (a) the pairwise semantic matching of a given
service request with each service that is regis-
tered with the matchmaker and (b) the semantic
relevance ranking of these services. In contrast to
service brokers, a matchmaker only returns a rank
list of relevant services and related provenance
information to its human user or application but
does not handle the interaction with selected ser-
vices. In principle, a matchmaker can be used for
any organizational approach to service discovery.
For example, matchmakers can be part of either
the query interface of one central directory or
federated directories or local directories owned
by peers in an unstructured P2P network (Klusch
and Sycara 2001).

Types of Service Selection Current approaches
to the semantic matching of web services can be
classified as non logic-based, logic-based, or hy-
brid, depending on the nature of reasoning means
used for this purpose. Non logic-based semantic
matching exploits, for example, means of graph
matching, schema matching, data mining, and
text similarity measurement, while logic-based
semantic matching performs logical reasoning on
service descriptions. Hybrid semantic matching
is a combination of both types of matching,
while adaptive selection means learn how to best
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aggregate different matching filters off or on
line. In any case, it is commonly assumed that
service requests and offers are given in the same
format or are appropriately transformed by the
considered service matchmaker.

Benchmarking Systems and tools for service
discovery, in particular service matchmakers, can
be evaluated according to the following five cri-
teria: (1) the support of different service descrip-
tion formats and languages; (2) the usability of
the tool and required amount of effort for its
configuration; (3) the support of service com-
position planning through, for example, context-
aware pruning of the search space or interac-
tive recommendations for a step-wise forward
or backward chaining of services by the user;
(4) the policy to preserve user data privacy; and
(5) the service retrieval performance in terms
of correctness and average query response time
over given service test collections. Correctness is
commonly evaluated with classical information
retrieval measures such as average precision and
macro-averaged precision at standard recall level-
s for binary relevance, as well as the normalized
discounted cumulative gain or Q measure for
graded relevance. Current evaluation initiatives
include the WS Challenge and the SWS Chal-
lenge for (semantic) web service composition and
the S3 Contest for semantic web service selection
(Klusch 2012; Küster et al. 2009).

Web Service Discovery

Most web services are described in the standard
WSDL, USDL, or according to the REST
paradigm of the web. Some service providers
also publish the functional description of their
services in multiple formats and languages. The
number and variety of web services which are
available in the public web appears tremendously
high, though there are still no common and
comprehensive statistics on the subject available.
However, the portal seekda.com reported about
30k web services in November 2011, and the
public directory programmableweb.com alone
already offered about 16k single or composite

RESTful web services in March 2013. In this
section, we focus on the discovery of WSDL and
RESTful services.

WSDL Services The W3C web services frame-
work offers a set of technical specifications in-
cluding WSDL and SOAP SOAP 2007 that cod-
ify mechanisms for XML-based interoperability
between business services that are accessible in
the web over stateless HTTP. A web service
which profile is described in WSDL (in short WS-
DL service) exposes one or multiple operations
which consume inputs and produce outputs both
encoded in XML. Applications or other services
can interact with these operations by means of
XML-SOAP messaging.

Description The XML-based W3C standard lan-
guage WSDL describes the functionality of a
service by the set of signatures of its service
operations and the set of network endpoints or
ports (URIs) at which these operations can be
invoked and how this can be achieved (Fig. 2).
In particular, each port is associated with a re-
spective interface which binds the operation to a
given protocol for transport and messaging. The
definitions of the I/O messages of each service
operation include references to their data types
which are defined in common XMLS names-
paces. Several non functional service parameters
can be added to such a WSDL service profile
on demand. The description of service profiles in
WSDL remains stateless, since the specification
of service preconditions and effects is not part of
the standard. Besides, a WSDL service descrip-
tion does not include any process model. In this
respect, WSDL is commonly considered as weak
in describing what the service actually does.

Discovery and Selection Most approaches to
directory-based or directory-less discovery of
WSDL services utilize means of non logic-based
semantic selection, in particular, structural XML
and text similarity-based matching.

Central directory-based discovery of WSDL
services is the most popular. One classic example
is the instantiation of the W3C service interaction
lifecycle (cf. Fig. 1) with some UDDI-compliant

seekda.com
programmableweb.com
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Data Types

Messages

Interface

Interaction

Binding

Service: port
(endpoint)

Operation:

portType,
name,
I/O messages

<description xmlns=“http://www.w3.org/ns/wsdl”> 
<types> <xs:schema … xmlns:pdc=“http://www.parts-

depot.com/schemas/pdc“ … >
<xs:element name = “cid" type = "xs:string"/>…</types>

<interface name = “PartsListInterface">
<operation name = “GetPartsList"

pattern = “http://www.w3.org/ns/wsdl/in-out”…>
<input messageLabel = "In" element = “xs:cid" /> 
<output messageLabel="Out” element = “pdc:parts_list“/>

</operation> </interface>
<binding name = “PListHTTPBinding”

type = “http://www.w3.org/ns/wsdl/http”   
interface = "tns:PartsListInterface“ 
<operation ref = "tns:GetPartsList" whttp:method="GET”/>

</binding>
<service name = “PartsDepot“

interface = "tns:PartsListInterface">
<endpoint name =“PListHTTPEndpoint 

binding = "tns:PListHTTPBinding"
address = “http://www.parts-depot.com/parts/”> 

</endpoint> </description> 

Service Discovery, Fig. 2 Example of web service description in WSDL

(Bellwood et al. 2004) registry of WSDL ser-
vices and using SOAP (Mitra and Lafon 2007)
for service interaction. In such an XML-based
UDDI business registry (UBR), the services and
their providers are categorized with standard tax-
onomies such as NAICS, SIC, and UNSPSC.
Registration of WSDL services and their retrieval
from a UBR is through its APIs PublishSOAP
and InquireSOAP. In general, a UBR may provide
information on the business entities of services
(aka white pages), service categories (aka yel-
low pages), and the technical model (tModel)
of services (aka green pages). Search queries to
a UBR are regular expressions with identifiers
and keywords for service tModels, names, and
categories. Accordingly, service selection by a
UBR is, in principle, based on string matching
without any logical reasoning on service rela-
tionships or non functional service parameters.
Thus, it requires a rather cumbersome browsing
of the registry by the user to find relevant ser-
vices. Since 2005, UDDI is not supported by its
originally main supporters IBM and Microsoft.

Examples of non-UDDI compliant WSDL
service directories are RemoteMethods.com,
Xmethods.net, WebserviceX.net, webservicelist.

com, service-repository.com, and wsindex.org.
Most of them rely on keyword search, and service
category or simple list browsing. An example
of a specialized web service search engine is
Woogle (Dong et al. 2004) which retrieves
and indexes WSDL services from a given set
of UBRs. The WSDL service selection tool
WSDLAnalyzer (Zinnikus et al. 2006) returns
a rank list of similar WSDL services for a
given WSDL service and produces a mapping
between their I/O messages. In particular, it
recursively computes the XML-tree similarity
of a given pair of WSDL files with integrated text
matching of tree node names, using WordNet-
distance and string matching, and a binary
compatibility check of XMLS data types. Other
approaches to WSDL service selection exploit
techniques for matching software components,
graphs, or schemas (Stroulia and Wang 2005),
or perform a full-text matching of service names
or the content of WSDL files as a whole. In
addition, there are approaches to preference-,
trust- or reputation-based matching of non
functional parameters including quality of
service, pricing, and service policies (Crasso
et al. 2011; Garofalakis et al. 2006).

RemoteMethods.com
Xmethods.net
WebserviceX.net
webservicelist.com
webservicelist.com
service-repository.com
wsindex.org
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Decentralized directory-based discovery of
WSDL services in structured P2P networks still
appears in its infancies. One example is the
PWSD system (Li et al. 2004) in which WSDL
files and requests are distributed and located
in a Chord ring of service peers. The DUDE
system (Banerjee et al. 2005) enables WSDL
service discovery in a hierarchical DHT-based
overlay for multiple local UDDI registries. There
is no approach to directory-less discovery of
WSDL services in unstructured P2P networks
available yet.

REST Services Web service interaction is not
restricted to XML-SOAP messaging. A RESTful
web service (in short REST service) represents
resources which states shall be accessed only
over the stateless HTTP according to the REST
paradigm of the web Fielding and Taylor
2002. The call of a REST service with given
input values may return output values in XML
or in the text-based JSON or RSS formats.
For example, the call of some REST service
“books” hosted at a portal www.bookstore.
com with input parameter “subject” for books
on the topic Eclipse is of the form http://
www.bookstore.com/books/?subject=computers/
eclipse and may return book list entries like
<booklist:book url = http://www.bookstore.com/
books/0321288157 title=“Eclipse Distilled”/>
in XML.

Description At present, there is no standard for
describing the functionality of REST services.
Most REST service APIs are documented by their
developers on dedicated, public HTML pages in
more or less plain text and tables; some APIs
are described in XML-based WADL files or the
HTML micro-format hRESTS. This heterogene-
ity is a major barrier for the automated discovery
of REST service APIs in the web to date.

Discovery and Selection Centralized directory-
based discovery of REST services can be
performed with the prominent directory
programmableweb.com. It offers about 9k REST
service APIs and 7k REST service mash-ups (as
of April 2013). Another open source REST API

directory in the web is APIS.io. The selection
of relevant REST services through their query
interfaces is done by keyword search which relies
on the textual description of the registered service
APIs or other meta-information provided by their
developers. The web services search engine
seekda! identifies relevant REST service APIs
based on adaptive text classification and feature
extraction. An approach to automated extraction
of information from REST service APIs like
service operation name, description, and URI is
proposed in Ly et al. (2012). It integrates means
of DOM processing, information extraction, and
natural language processing. An approach to
structural and textual matching of REST services
is proposed in Khorasgani et al. (2011). In this
case, a given pair of REST service APIs is
first semi automatically converted into WADL
descriptions. The REST service matching score
is then computed as the maximum flow in the
graph of WADL service description elements.

Approaches to directory-less discovery of
REST services in mobile ad hoc networks mostly
rely on simple lookup methods based on the
matching of service classes, UUID, or service
attribute names (Schiele et al. 2004).

Semantic Web Service Discovery

One major challenge of automated service dis-
covery is to make service-based applications or
intelligent software agents actually “understand”
the semantics of service requests and offers. From
the perspective of strong AI, this requires some
well-founded logic specification of service pro-
file and process model. However, contemporary
web service descriptions are lacking such formal
semantics. It is well known that this problem
can be addressed by exploiting semantic web
technologies (Hitzler et al. 2011).

Description The key idea of encoding web ser-
vice semantics not only in a machine-readable
but machine-understandable way is as follows:
The semantics of web service interface elements
are described by references to appropriate con-
cepts and rules which are formally defined in a

www.bookstore.com
www.bookstore.com
http://www.bookstore.com/books/?subject=computers/eclipse
http://www.bookstore.com/books/?subject=computers/eclipse
http://www.bookstore.com/books/?subject=computers/eclipse
programmableweb.com
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Part of formal ontology O1 in logic OWL-DL:
Customer     (and Person (≥1 hasValid.CreditCard) …),

BookFlight.wsdl
InputMessages:
CustID: integer

FN: string 

BookFlightProfile.owls

OutputMessages:
   FT: string 

Precondition: isProvided(?Flight)

Input:  O1:Customer, O1:Flight

Effect: isBookedFor(?Flight, ?Customer)

Output:   O1:FlightTicket

Service Discovery, Fig. 3 Example of semantic service profile in OWL-S

shared ontology in some W3C standard ontology
language like RDFS or OWL2. Such semanti-
cally annotated web services are called semantic
web services (in short semantic services). Cur-
rent frameworks for semantic service description
include OWL-S (Martin et al. 2004), WSML
(De Bruijn and Lausen 2005), the W3C standard
SAWSDL (Farrell and Lausen 2007), and Linked
USDL (Pedrinaci and Leidig 2011) which is
USDL modeled in RDFS. These ontology-based
semantic service description languages mainly
differ in their formal logic-based foundation and
the possible extent of annotating services.

OWL-S In OWL-S the service I/O parameters
are annotated with concepts which are exclu-
sively defined in the formal logic-based W3C
standard ontology language OWL2 (cf. Fig. 3).
Service preconditions and effects may be spec-
ified in the formal semantic web rule language
SWRL.

WSML The description of service profile
semantics in one of five variants of WSML
is formally grounded in the respective variant
of the logic programming language F-Logic
(Fensel et al. 2010). Both, WSML and
OWL-S, are also providing the developer with
a set of workflow operators like sequence,
iterate, choice, and split+join for specifying the
operational semantics of a single or composite
service in its process model. The process model

can be mapped to service orchestrations in BPEL
as the semantic service can be grounded with a
WSDL service.

SAWSDL and SA-REST The W3C standard
SAWSDL allows the annotation of WSDL service
elements with references to web resources of any
media type such as plain text, video, picture,
audio podcast, and concepts in a formal ontology.
The same approach is taken in the SA-REST
framework for semantically annotating REST
service APIs (Gomadam et al. 2010). Both
SAWSDL and SA-REST do not allow the
specification of preconditions and effects, and the
handling of semantic annotations is completely
outside these frameworks. In this sense, unlike
OWL-S and WSML, neither of both has unique
formal semantics. For more details on semantic
service description, the reader is referred to, for
example, Klusch (2008a) and the above cited
relevant technical specifications.

At present, there are no public statistics about
semantic web services available. A survey con-
ducted with the semantic service search engine
Sousuo (Klusch and Xing 2008) in April 2013 re-
ported about 3,500 semantic services in OWL-S,
WSML, WSDL-S, and SAWSDL in the public
web, though most of them are available only in
distinguished test collections.

Discovery and Selection In the past decade, the
semantic web research community has developed
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Logical Signature Plug-In Match of S with Q:

InS: C

PreS

OutS:  D

EffS

Service Offer S

InQ: B

PreQ

OutQ:  A

EffQ

Service Request Q

(∀C ∈InS   ∃ B ∈InQ:       B     C  ) Λ
(∀A ∈OutQ  ∃ D∈OutS:   D     A  )  

Logical Specification Plug-In Match of S with Q:

KB   (PreQ ⇒ PreS) Λ (EffS ⇒ EffQ) 

Service Discovery, Fig. 4
Logic-based semantic
service plugin matching

a wide range of solutions for the automated dis-
covery and selection of semantic services. The
degree of semantic correspondence between a
pair of semantic web services particularly relies
on the matching of the semantic annotations of
their service profile and/or process model.

Types of Selection The types of semantic service
selection are logic-based, non logic-based, and
hybrid semantic. Classical examples of logic-
based semantic matching filters are the logical
I/O concept subsumption-based plugin match of
service signatures and the logical specification
plugin match of preconditions and effects
(cf. Fig. 4). Logical and full functional (IOPE)
profile matching combines the scores of logical
signature (IO) and specification (PE) matching.
Non logic-based semantic matching of annotated
service signatures is mostly based on the textual
similarity of the concept names or the text of their
logical unfolding in the referenced ontology.
Additional examples include the structural
similarity-based matching of I/O concepts in
terms of the shortest path or upward co-topic
distances between them in the shared ontology.

Currently, most approaches to semantic
service selection are hybrid, i.e., they combine
non logic-based with logic-based semantic
service matching. Besides, the majority of
them support either OWL-S or SAWSDL, but
only a few are devoted to WSML, or other
description formats, and hardly any matchmaker
is even language-agnostic (Klusch 2012).
In the following, we focus on approaches to the

discovery and selection of services in OWL-S
and SAWSDL. More information on the subject
is provided, for example, in Klusch (2008b,
2012).

Centralized Discovery and Selection There
are quite a few tools and systems for central
directory-based discovery of semantic services
available.
Matchmakers. For example, the matchmaker
iSeM (Klusch and Kapahnke 2012) performs an
adaptive and hybrid semantic selection of OWL-S
services. Its logic-based semantic matching of
services relies on the computation of strict and
approximated logical I/O concept subsumption
relations and the logical specification plugin
relation. Like its predecessor OWLS-MX2
(Klusch et al. 2009), it also performs non
logic-based semantic matching with different
classical token-based text similarity measures,
as well as ontology-based structural matching of
signature annotation concepts. Finally, it learns
how to best aggregate the results of its matching
filters by use of a binary SVM relevance classifier
with an evidential coherence-based weighting
scheme.

An example of a hybrid semantic and adaptive
matchmaker for SAWSDL services is LOG4SWS
(Schulte et al. 2010). Like iSeM it perform-
s a logical service signature matching which
is complemented with ontology-based structural
matching based on the shortest path lengths be-
tween concepts. In case there are no semantic
annotations of WSDL service signature elements,
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it exploits the WordNet distance between the
element names. LOG4SWS does not consider
service preconditions and effects, but learns off
line how to best aggregate the matching results by
use of an ordinary least square-based classifier.

The logic-based semantic service matchmaker
SPARQLent (Sbodio et al. 2010) considers the
full functional profile of OWL-S services. It per-
forms an RDF entailment rule-based matching
of I/O concepts, preconditions, and effects de-
scribed in SPARQL.

According to the results of the international
S3 contest (Klusch 2012), iSeM and LOG4SWS
are currently the best performing matchmakers
for OWL-S and SAWSDL services, respectively.
In fact, they provide the best trade-off between
average precision and response time.

An example of a hybrid semantic matchmaker
for WSML services is WSMO-MX (Klusch and
Kaufer 2009): It recursively determines service
matching degrees based on ontology-based signa-
ture parameter type matching, logical constraint
(PE) matching, and syntactic matching with text
similarity measurements.
Specialized search engines. Examples of search
engines for semantic services are S3E (Giantsiou
et al. 2009) and Sousuo (Klusch and Xing 2008).
The latter performs a meta-search through the
public web search engines Google and A9 and
complements it by crawling the web with its own
focused topic crawler. It also utilizes the seman-
tic web search engine Swoogle for an inverse
ontology-based search and performs a full-text
search of the public scientific archive citeseer
in the web. Service selection through Sousuo’s
query interface relies on full-text or keyword
search in its XML-encoded service index.

Alternatively, the S3E engine is encoding the
profiles of crawled semantic services in RDF.
The selection of services from an internal RD-
F store with SPARQL relies, in particular, on
textual matching of profile parameters. Another
search engine which is restricted to a QoS-based
discovery of semantic services is presented in Vu
et al. (2006).
Registries. At present, there are no central and
authoritative registries of semantic services avail-
able in the public web. Public collections of

semantic services are, for example, the prominent
OWLS-TC for OWL-S services, the SAWSDL-
TC for SAWSDL services, and hREST-TC for
annotated REST services; each of these collec-
tions is available at the portal semwebcentral.
org. iServe (Pedrinaci et al. 2010) is a software
platform that can be used to build and main-
tain a registry of semantic services described in
SAWSDL, OWL-S, MicroWSMO, and WSMO-
Lite. The services are internally represented in
iServe according to a minimal service model
and then exposed in HTML and RDF as linked
services with a unique and resolvable HTTP URI.
Any iServe registry can be queried through an
SPARQL endpoint. For service selection, iServe
provides means of keyword search, functional
classification, and service I/O parameter match-
ing based on RDFS reasoning.
Centralized P2P search. An example for the
discovery of WSDL-S (a predecessor of SAWS-
DL) services in a structured P2P system is the
METEOR-S system (Verma et al. 2005). It con-
sists of a set of service-providing and service-
consuming peers which may form groups on giv-
en domains or topics and one central super-peer
which serves as a central service matchmaker
for all peers. For this purpose, the super-peer
maintains and utilizes a global registry ontology
which covers the concept taxonomies of all local
service registries of peers in the network. The
super-peer also provides the peers with mappings
between the message types and signature anno-
tation concepts of registered services. The non
logic-based semantic selection of services by the
super-peer relies on structural XMLS matching
and the computation of NGram-based text simi-
larities and taxonomic relations. The super-peer
can be replicated for reasons of scalability.

Decentralized Discovery and Selection A
directory-based discovery of OWL-S services
in structured P2P systems can be performed, for
example, with the AGORA-P2P system (Küngas
and Matskin 2006). It relies on a Chord ring for
distributed storage and location of services. In
particular, the service signature concept labels
are hashed as literals to unique integer keys such

semwebcentral.org
semwebcentral.org
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that peers holding the same key are offering
services with equal literals in the circular key
space. Service selection for multi-key queries
relies on exact key matching.

Directory-less discovery of semantic services
can be performed with, for example, the RS2D
system (Basters and Klusch 2006). It is a solution
for informed and adaptive probabilistic service
search in unstructured P2P networks. In particu-
lar, each peer dynamically builds and maintains
its local view of the semantic overlay of the
network and uses the OWLS-MX matchmaker
for hybrid semantic service selection. A peer
also learns the average query-answering behav-
ior of its direct neighbors in the network. The
peer’s decision to whom to forward a semantic
service request is then driven by its estimated
probabilistic risk of routing failure in terms of
semantic loss and communication costs. Oth-
er examples are discussed, for example, in K-
lusch (2008b) and Staab and Stuckenschmidt
(2006).

Future Directions

Despite the progress made in the field in the
past decade, a major open problem is the scal-
able and dynamic interleaving of discovery of
services with their composition, negotiation, and
execution in the converging Internet of Things
and Internet of Services. Examples of potential
applications of solutions are intelligent condition
monitoring based on large-scale, wireless, and
semantic sensor service networks; the intelligent
collaborative design of products in shared 3D
spaces; and mobile ad hoc and context-aware
business travel planning or product recommenda-
tion services.

Cross-References

�RDF
�Web Ontology Language (OWL)
�Web Service Composition
�WSDL
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Synonyms

Coevolution of networks and behavior; Network
dynamics; Network panel data; Peer influence;
Statistical modeling

Glossary

Network Panel Data Longitudinal data consist-
ing of two or more repeated observations of a
network on a given set of nodes

Panel Wave The data observed for one given
observation moment in a panel study

Social Actors Individuals, companies, etc.,
represented by the nodes in the network

Stochastic Actor-Oriented Model A probabili-
ty model for network dynamics where changes
may take place at arbitrary moments in con-
tinuous time and where these changes are
regarded as consequences of choices made by
the actors

RSiena R package implementing statistical
inference according to a stochastic actor-
oriented model given network panel data

Effects Model components defining the proba-
bilities of tie changes in the stochastic actor-
oriented model

Method of Moments One of the traditional
methods in statistics for parameter estimation

Dependent Variable The variable defining the
outcome space in a statistical model

Definition

The name “Siena” stands for Simulation Inves-
tigation for Empirical Network Analysis. It is a
method for the statistical analysis of longitudinal
network data, observed in two or more panel
waves. This method was implemented in the
stand-alone program Siena, first released in 1997,
going through many versions, and superseded
by the R package RSiena in 2009. Siena was
programmed by Tom Snijders in Delphi, with
contributions by Christian Steglich, Mark Huis-
man, and Michael Schweinberger. RSiena was
originally programmed by Ruth Ripley and Krists
Boitmanis, under the direction of Tom Snijders.
Since 2012 it is maintained by Tom Snijders, in
collaboration with Christian Steglich and Johan
Koskinen; other contributors are Josh Lospinoso,
Charlotte Greenan, and Paulina Preciado.

RSiena is a contributed package of the
statistical software system R and as such is
free, distributed under the GNU General Public
License, running under Unix-like, Windows, and
Mac families of operating systems. The methods
used are based on Monte Carlo simulation and
therefore can be time-consuming for larger
data sets. The package is programmed in a
combination of R and C++, the latter for the
computationally intensive parts.

The orientation of the Siena method is primar-
ily to the social sciences, but this of course is not
exclusive.

Introduction

Statistical modeling is based on model assump-
tions, mostly assumptions about independence or
conditional independence, but one of the main
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characteristics of networks is the strong and com-
plex dependence between network ties. If the
assumptions in statistical modeling are not good
representations of the data structures or the mech-
anisms that may have led to the observed data,
then results of statistical inference can be grossly
misleading. This leads to difficulties in proposing
plausible statistical models for network data.

Modeling longitudinal network data can be
simpler than modeling single observations of
networks, because the time structure poses a
constraint on the dependence structure: the
present depends on the past, not on the future.
The Siena method is based on a probability
model that represents network dynamics as a
Markov chain running in continuous time, called
the stochastic actor-oriented model. The basic
state space is the set of all digraphs on a given
node set. The model has been expanded to allow
multiple (i.e., multivariate) digraphs and also
actor-based variables as components of the state
space. The actor-based variables are usually
referred to as “behavior,” thus allowing the
modeling of the coevolution, or interdependent
dynamics, of networks and behavior. Thus, in
the basic type of stochastic actor-oriented model,
there is one dependent variable, viz., a directed
network; in the extended models, there can be
several dependent networks and also one or more
dependent actor-based variables. Two-mode
networks can also be included as dependent
networks.

Key Points

The Siena method is defined in the usual
paradigm of statistical modeling. It presupposes
the availability to the user of network panel
data or network and behavior panel data. This
means that for a given node set, at a finite
number (two or more) of observation points
(also called panel waves), a network on this
node set was observed, possibly complemented
with a behavioral variable. In the ideal case the
node set is constant and the data are complete;
some changes in the node set (nodes entering or
exiting) and some fraction of data being missing

are allowed. Up to 10 % of missing tie variables
are in practice not a problem; more than 20 % are
not advisable.

The nodes are supposed to represent social
actors, and the model is said to be actor-oriented,
meaning that tie changes are regarded as the
consequence of choices made by the sender-
s of the ties. The user specifies a model by
defining a set of effects (see below), which are
model components defining the probabilities of
tie changes. Given the model specification, the
RSiena package can estimate parameters (which
are coefficients indicating the strength of the
effects) and test hypotheses about the parameters.
With a given specification and given parameters,
RSiena can also be used to simulate the dynamics
of a network.

Historical Background

A historical overview of early work on
probability models for network dynamics is
given in Snijders (1995), which also was the first
paper about stochastic actor-oriented models.
Some important papers that are part of the
general background preceding the work on this
methodology are Holland and Leinhardt (1977),
Wasserman (1979, 1980), Zeggelink (1994), and
Leenders (1995).

The development of the stochastic actor-
oriented model for digraphs was stimulated by
the empirical work in van de Bunt (1999). After
two precursor papers (Snijders 1996; Snijders and
van Duijn 1997), the main presentation of this
model was given in Snijders (2001). Methods
for the coevolution of networks and behavior
were developed in Snijders et al. (2007) and
elaborated in Steglich et al. (2010). All these
papers use the Method of Moments (one could
also say the method of estimating equations) to
estimate the parameters. This is the main method
implemented in RSiena. In addition, Bayesian
methods (Koskinen and Snijders 2007) and an
algorithm for Maximum Likelihood estimation
(Snijders et al. 2010a) were developed and
implemented, but these are much more time-
consuming and therefore are less used.
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Statistical Model

This section outlines the basic probability model
implemented in RSiena, for the basic case of
one dependent variable, assuming this is a one-
mode network. Further elaboration and details
can be found in the publications mentioned above
and in Snijders (2009), on which much of the
explanation below is based.

The network is represented by the node set
f1; : : : ; ng with tie variables xij , where xij D
1 or 0 indicates whether the tie i ! j is
present or absent. The tie variables are collected
in the n � n adjacency matrix x D �

xij

	
. Self-

ties are excluded, so that xi i D 0 for all i .
The concepts of network (directed graph) and
matrix (its adjacency matrix) will be used inter-
changeably. Random variables will be indicated
by capitals and observations, or other nonrandom
variables, by lowercase. The ties are assumed
to be outcomes of time-dependent random vari-
ables, denoted by Xij .t/ and collected in the
time-dependent random matrix X.t/.

In addition to the network X.t/, which can be
regarded as the dependent variable of the model,
there can be other variables, so-called covariates,
regarded as independent or explanatory variables
in the sense that their values are not modeled
but accepted as given, and which may influence
the network. Examples are the gender of actors
(actor variable) and their spatial proximity
(dyadic variable). For conciseness, these are
disregarded in this brief overview; in practice,
they are included in most data sets and of great
practical importance.

Basic Model Definition
The following basic assumptions are made:
1. Time, denoted by t , is a continuous variable.

This assumption separates time as observed
(two or more moments of observation) from
time that determines network dynamics (con-
tinuous).

2. X.t/ is a Markov process.
This means that the conditional distribution
of future states depends on the past only as
a function of the present. This assumption

corresponds to the network ties being regarded
as states rather than events.

3. At any given moment t , no more than one tie
variable Xij .t/ can change.

This set of assumptions was first proposed by
Holland and Leinhardt (1977) and is very helpful
because it allows representing network dynamics
as a feedback process, where the actors create the
network as the endogenously changing environ-
ment for themselves and each other (Zeggelink
1994) while requiring only to specify the proba-
bilities of changes of single tie variables.

In the further model elaboration, two aspects
are distinguished: the change opportunity process
and the change determination model.

Opportunity for change. For each actor i , op-
portunities to establish one new outgoing tie
i ! j , or dissolve one existing tie i ! j ,
occur according to a Poisson process with rate
�i . This means that the probability that an
opportunity for change occurs for actor i in
the time interval from t to t C 	, where 	 is
a small positive number, is approximated (in
the limit for 	 tending to 0) by �i	.

Determination of change. When actor i has
an opportunity for change, she/he is permitted
to choose one of the outgoing tie variables
Xij and change this into its opposite value,
changing 0 to 1 (creating a new tie) or chang-
ing 1 to 0 (terminating an existing tie). The
probabilities depend on the so-called objective
function fi .x0; x/, indicating how “attractive”
it is to go to state x given the current state
x0. The set of potential new network states,
denoted by C.x0/, is the set composed of x0

itself together with the n � 1 matrices which
are equal to x0 except for exactly one non-
diagonal element in line i which is replaced
by its opposite, xij D 1� x0

ij . The probability
that the new state is x is given by

PfX.t/ changes to x j i has a change

opportunity at time t; X.t/ D x0g

D pi .x0; x/ D exp
�
fi .x0; x/

	
P

x02C.x0/ exp
�
fi .x0; x0/

	 :

(1)
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The two model components can be put
together by giving the transition rate matrix,
also called Q-matrix, of which the non-diagonal
elements are defined by

qx0;x D lim
dt # 0

P
˚
X.t C dt/ D x j X.t/ D x0

�
dt

.x ¤ x0/

(see textbooks on continuous-time Markov chain-
s, such as Norris 1997). Note that the assumptions
imply that

qx0;x D 0 whenever xij ¤ x0
ij for more than one

element .i; j /:

For digraphs x and x0 which differ from each
other only in one element in row i , the transition
rate is

qx0;x D �i .x0/ pi .x0; x/ : (2)

Model Specification
The model specification consists of defining the
network X (and other dependent variables, if
any; see Steglich et al. 2010, and Snijders et al.
2013), covariates, the rate function �i , and the
objective function fi . If there are more than one
dependent variable, each has its own rate function
and objective function. The rate function may be
constant between waves or depend on actor-based
variables through an exponential link function.
The focus of model specification is on the objec-
tive function, specified as a linear combination

fi .x0; x/ D
X

k

ˇk ski .x
0; x/ (3)

where the functions ski are so-called effects driv-
ing the network dynamics, while the weights ˇk

are parameters indicating the strength of these
effects and which can be estimated from the
data. The effects represent internal network de-
pendencies as well as dependence on covariates
and are discussed in the mentioned literature.
The manual Ripley et al. (2013) contains the
long list of implemented effects, and this list

is frequently added to because of requests from
applied researchers.

Parameter Estimation
The main estimation method implemented in R-
Siena is an application of the Method of Moments
(or estimating equations). It makes good use of
the Markov property by conditioning on the pre-
ceding observation. This enables computer sim-
ulation of the process in a straightforward way
and does away with the need for an assumption
of stationary marginal distributions. The moment
equations, or estimating equations, define the
parameter estimate � as a function of the data
x D x.t1/; : : : ; x.tM / (assuming there are M

waves) and are given by

M�1X
mD1

E�

˚
U
�
X.tm/; X.tmC1/

	 j X.tm/ D x.tm/
�

D
M�1X
mD1

U
�
x.tm/; x.tmC1/

	
(4)

for suitable functions U
�
x.tm/; x.tmC1/

	
chosen

in correspondence with the estimated parameter
� . The choice of the statistics U is discussed in
Snijders (2001) and Snijders et al. (2007). The
latter publication also specifies the estimating
equations for the case of more than one indepen-
dent variable, which are slightly more involved.

To solve the estimating equation (4), in
the absence of ways to calculate analytically
the expected values, stochastic approximation
methods are used. Variants of the Robbins-
Monro (1951) algorithm (see, e.g., Chen 2002,
for a more up-to-date treatment) have been
used with good success. This is a stochastic
iteration method which produces a sequence of
estimates � .N / which is intended to converge
to the solution of (4) and which works here
as follows. For a given provisional estimate
� .N /, the model is simulated so that for each
m D 1; : : : ; M � 1, a random draw is obtained
from the conditional distribution of X.tmC1/

given that X.tm/ D x.tm/. This simulated
network is denoted X.N /.tmC1/. Denote U .N / DPM�1

mD1 U
�
x.tm/; X.N /.tmC1/

	
, and let uobs be the
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right-hand side of (4). Then the iteration step in
the Robbins-Monro algorithm for obtaining the
Method of Moments estimate is given by

� .NC1/ D � .N / � aN D�1
�
U .N / � uobs

�
;

(5)

where D is a suitable matrix and aN a sequence
of positive constants tending to 0. This equation
is reminiscent of the iteration step in the Newton-
Raphson algorithm, but in this case the func-
tion for which the root is sought is not directly
computable, and instead we simulate random
variables having this function as their expected
value. Tuning details of the algorithm, including
the choices of D and aN , are given in Snijders
(2001). The Bayesian estimators for these models
presented in Koskinen and Snijders (2007) and
the Maximum Likelihood estimators of Snijders
et al. (2010a) are also implemented in RSiena.
Since Maximum Likelihood estimates can also be
defined by an equation of type (4), where now U

is the score function (and therefore also depends
on the parameter �), also for this purpose the
Robbins-Monro algorithm is used.

A general issue for Monte Carlo-based
estimation is to assess the convergence of a
given run of the estimation algorithm. The output
resulting from the Method of Moments as well
as Maximum Likelihood estimation algorithms
contains simple indications for convergence, the
so-called t-ratios for convergence, which indicate
the extent to which the estimates found indeed
satisfy approximately the equation (4), based
on independent simulations with the value of
� resulting from the estimation algorithm. For
relatively simple models, it is quite usual that
the first run of the algorithm produces good
estimates. For more complex models or data sets,
it may be necessary to iterate the algorithm, using
the estimates obtained as starting values for the
next run of the algorithm.

Elements of the Package

The RSiena package operates as all R packages
by a collection of functions, and the user can mix
the use of RSiena with using all other functions
in R and its contributed packages. Also in line

with the R environment, the package is totally
object-oriented: data sets, model specifications,
estimation results, etc.; all are defined as objects
on which the user can operate and about which
information can be requested.

Without going into the specifics of the model,
it nevertheless may be helpful to indicate briefly
the main types of functions that are available:
1. Functions to specify data objects for a specific

use (as covariates, dependent variables, etc.) in
the model.

2. Functions to specify the model. These create
the “sienaEffects” objects containing the
model specification and further modify such
objects.

3. Functions for estimating parameters. The
main workhorse here is called siena07 –
the name was given for historical reasons,
because in the original Siena version 1
suite, this was meant to be the seventh
in a sequence of executable programs.
Functionsiena07 can be used for estimation
according to the Method of Moments as
well as Maximum Likelihood estimation. It
can also be used for simulating the model
without parameter estimation. In combination
with the estimation, it is also possible to
test a hypothesized value for some of the
parameters without estimating them by
so-called score-type tests (Schweinberger
2012) for the Method of Moments or by
regular score tests for Maximum Likelihood
estimation.

Further there are a function sienaBayes
for Bayesian estimation, and a function
siena08 for the meta-analytic combination
of the evidence produced by estimating the
same model for a number of independent data
sets (Snijders and Baerveldt 2003).

4. Functions for assessing the fit of the mod-
el. The main functions of this kind currently
are sienaTimeTest for testing time ho-
mogeneity across multiple waves (Lospinoso
et al. 2011) and sienaGOF (“goodness of
fit”) for assessing the adequacy of the model
in reproducing a number of features of the data
(Lospinoso 2012).

5. A variety of functions for summarizing results
obtained.
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Key Applications

The Siena method as implemented in the RSiena
package has been applied in a variety of stud-
ies in sociology, psychology, political science,
and other disciplines. Two special issues of the
journal Social Networks on network dynamics,
published in January 2010 and July 2012, contain
a couple of examples. Many applications are
listed at the Siena website, http://www.stats.ox.
ac.uk/siena/. The following is a very small and
somewhat arbitrary selection.

Applications to dynamics of one social net-
work (i.e., without the inclusion of dependen-
t behavior variables) started with van de Bunt
et al. (1999), a study of friendship in a group
of freshman students. This was the first publi-
cation on network dynamics that found statisti-
cal evidence for transitivity and for homophily
(on gender, age, and smoking behavior) using
a method that allows each tested effect to be
controlled for all other effects – this being a basic
purpose of the Siena method. Another example
study on friendship development is Selfhout-Van
Zalk et al. (2010), concentrating on the effects
of personality characteristics (the “Big Five”);
finding evidence for homophily with respect to
agreeableness, extraversion, and openness to ex-
perience; and further concluding (less surpris-
ing) that individuals high on extraversion tend-
ed to select more friends and individuals high
on agreeableness tended to be selected more as
friends.

A large group of applications is about peer
effects or social influence, i.e., the question
whether individuals are being influenced in their
behavior, performance, or attitudes by those
to whom they have network ties. It has long
been debated whether the similarity between
friends with respect to smoking behavior is
a consequence of homophilous selection of
friends or of social influence. Mercken et al.
(2009) applied Siena to a data set of 7,704
adolescents (aged 12–15 years) in 70 schools
from 6 European countries (Denmark, Finland,
the Netherlands, Portugal, the UK, and Spain).
They found evidence for homophilous selection
in all countries and for peer influence with respect
to smoking only in Finland and the Netherlands.

Obesity is another health-related variable for
which the question of peer influence, and how
to assess it, has recently received attention in
scholarly journals. De la Haye et al. (2011)
found, in a data set of two cohorts in the initial
2 years in high school, that similarities between
friends with respect to their body mass index
(BMI) were due mainly to processes of friend
selection, and not to peer influence. Since the
extent of peer influence may well depend on
age, family background, cultural and contextual
aspects, etc., it is quite plausible that peer
influence may differ between countries and
social settings. One study can therefore not
give a definitive answer about questions of
peer selection with respect to variables such
as smoking or obesity, and further research is
necessary and ongoing.

An example application in political science is
Berardo and Scholz (2010), studying governance
processes between organizations in 10 US estu-
aries and how partner selection for collaboration
depended on general trust in the institutional
environment as expressed by representants of the
organizations. They found that partner selection
is not directly dependent on trust, but trust is
influenced by the trust expressed by collaboration
partners.

The Siena method has also been applied to
network data collected by other methods than
self-report surveys. An example is Lewis et al.
(2012), a study of Facebook friendships and cul-
tural tastes which concluded that friendship for-
mation is influenced by similarity in taste for
music and movies, but not for books, and that
there is little influence for diffusion of tastes
through Facebook ties, with the exception of a
taste for classical/jazz music.

Future Directions

The stochastic actor-oriented methodology and
the RSiena package are areas of active ongo-
ing research and development. New possibilities
are the analysis of multiple dependent network-
s and behavioral variables, including two-mode

http://www.stats.ox.ac.uk/siena/
http://www.stats.ox.ac.uk/siena/
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networks and networks with a small number of
ordered values and the assessment of goodness
of fit. These options have been implemented
since 2011 but still require further methodolog-
ical exploration and practical experience. Current
work includes the development of models for
the diffusion of innovations in a changing net-
work (Greenan); models with errors in obser-
vations (Lospinoso); models for network events
associated to an unobserved changing network
(Lospinoso); models for continuous dependent
behavior variables (Niezink); models with unob-
served heterogeneity between actors (Koskinen);
and random effect models for multiple groups
(Koskinen and Snijders). An expected develop-
ment is the so-called settings model (Preciado)
which is meant to make the actor-oriented ap-
proach applicable also to larger networks (with a
few hundred to a few thousand nodes); such data
sets are not well suited for the current software
because the basic model (like other models for
network dynamics) makes assumptions of homo-
geneity and of accessibility of actors to each other
that are less plausible for such large networks
and because the time taken by the computer
simulations becomes prohibitive.
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Recommended Reading

In addition to the help pages that are available as
for all R packages, there is an extensive manual
(Ripley et al. 2013) and a tutorial paper (Snij-
ders et al. 2010b). A textbook about the Siena
method and an edited volume with example ap-
plications are in preparation. The website http://
www.stats.ox.ac.uk/siena/ is actively maintained
and contains references to the basic methodol-
ogy, references to applications, R scripts, ex-
ample data sets, workshop announcements, and
more.

For those who wish to read more about the
mathematical and methodological background,
a recommended sequence of readings could be
Snijders (1996) as an introduction to the idea of
stochastic actor-oriented models, Snijders (2001)
or Snijders (2005) for the basic definition of the
model for one dependent network defined as a
changing digraph, and Steglich et al. (2010) for
models for the dynamics of networks and behav-
ior, which might be followed by Snijders et al.
(2010a) for Maximum Likelihood estimation or
Snijders et al. (2013) for models with multiple
dependent networks.
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Synonyms

Biased graph; Gain graph; Signed network

Glossary

Arc An ordered pair of nodes adjacent in the
graph

Cycle A loop of at least three nodes in which the
first and the last nodes are the same

Digraph A graph in which all relations are direct-
ed

Dyad A pair of nodes and the incidence relation
between them

Edge A pair of nodes adjacent in the graph
Graph A data structure consisting of a set of

entities called nodes and a set of pairs of
nodes, called edges or arcs

Loop A walk in the graph in which all edges are
distinct

Path A walk in the graph in which all edges and
nodes are distinct

Sociomatrix Representation of the incidence re-
lation as a two-dimensional matrix in which
rows and columns represent nodes and cells
represent relation values

Triad A triple of nodes and all incidence relations
between them

Valence Semantic orientation of an edge in a
signed graph

Definition

Given a set of nodes N D fn1; : : : ; nmg and
a set of edges E D fe1; : : : ; eng, where each
edge is a set of nodes, ek D fni ; nj g. A signed
graph is a triple G˙ D hN; E; Si consisting
of a set of nodes N , a set of edges E , and
a mapping S which is a function S W E !
fC;�g, i.e., the mapping S associates with every
edge ek 2 E either a positive valence, typically
denoted by .C/, or a negative valence, denot-
ed by .�/. Positive valence of an edge usually
denotes the fact that the relationship modeled
by the edge (the type of association between
nodes) has some positive quality, such as kind-
ness, friendship, or trust. Likewise, the negative
valence represents antagonizing feelings between
nodes, such as enmity, dislike, or distrust. Edges
can be lacking directional information, in such
case the relationship is considered symmetrical.
If edges are directional, such a graph is called
a signed digraph. Some formulations also allow
for the existence of multiedges as well as half-
edges (which are edges with only one endpoint)
and loose edges (which are edges without any
endpoints), but half-edges and loose edges are
not signed. A complete signed graph is a signed
graph in which each unordered pair of nodes
belongs to the set of edges.

Introduction

Signed graphs have been used for a long time in
social network analysis to simultaneously model
opposite relationships. In a signed graph, each
edge is assigned either a positive or negative
sign, referred to as valence. For instance, in a so-
cial network representing acquaintance between
people, positive edges can represent friendship,
while negative edges can represent animosity. If
the signed graph is modeling diplomatic relations
between countries, a positive edge can represent
cooperation and a negative edge can represent
some kind of political tension.

In general, edges can be attributed with more
values, leading to the so-called valued graphs.

http://dx.doi.org/10.1007/978-1-4614-6170-8_280
http://dx.doi.org/10.1007/978-1-4614-6170-8_280
http://dx.doi.org/10.1007/978-1-4614-6170-8_100584
http://dx.doi.org/10.1007/978-1-4614-6170-8_100585
http://dx.doi.org/10.1007/978-1-4614-6170-8_100586
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Signed graphs are a special case of valued graphs
in which edges are allowed only two opposing
values, and the aggregation of values along loops
is performed by multiplication rather than by
addition. It should be stressed that a negative edge
between nodes is different from the lack of an
edge between nodes. While the lack of an edge
suggests the lack of interaction between nodes,
a negative edge is a clear mark of an inimical
relationship. Another frequent misunderstanding
is that signed graphs are simply graphs with edges
weighted by either C1 or �1 numerical values.
Such a graph would be a regular graph with a
constraint imposed on the set of possible values
for edges. It would be very different from a signed
graph because in regular valued graphs edge
values are added and not multiplied. Another
example where similar graphs are being used is
the knot theory, where color is used to mark
edges. Again, the methods and algorithms are
very different because the color of an edge does
not convey the intrinsic opposition of positive and
negative valence.

At the core of a signed graph lies a signed
relation. It is the relation that can easily convey
both positive and negative sentiments. Examples
of signed relations include esteem/disesteem,
like/dislike, praise/blame, and influence/negative
influence, as presented by Sampson (1968). It
is possible to treat these opposing sentiments
as two independent relations, but in reality
the two sentiments are clearly associated as
one sentiment is usually an antonym of the
other. Some graph theorists also require that the
relation in question should satisfy the principle
of antithetical duality, which is to say that the
dual (the antonym) of a signed graph simply
changes the signs of the loops. Computing
the dual of the changed graph brings back the
original graph. Without this property a graph
cannot be used in the light of signed graph theory
and balance theory. Therefore, traditional social
networks, where relations usually represent some
kind of social interaction, e.g., communication
or interaction, cannot be modeled as signed
graphs and cannot be studied using the balance
theory.

Key Points

Signed graphs have several features that make
them a useful tool for sociological and psycho-
logical research, but signed graphs can be also
used outside of social sciences, e.g., in the field
of physics or chemistry. To understand the ben-
efit and utility of the signed graph model, we
must first observe the key points that differentiate
signed graphs from more general valued graphs.
One of the most important methods of network
analysis developed within the domain of signed
graphs is the triad analysis that aims at capturing
the dynamics of relations between very small
groups of nodes. Triad analysis is described in
detail in section “Triad Analysis.” Triad analysis
has been refined and extended in the field of
social psychology under the moniker of P-O-X
triples analysis, which we scrutinize in section
“P-O-X Triples.” Probably, the most famous con-
cept originating from the signed graph theory is
the idea of structural balance. In section “Struc-
tural Balance” we define the notion of struc-
tural balance and we introduce the fundamental
Harary’s theorem, along with its proof. We dis-
cuss the implications of a signed graph being
balanced and we show a simple method for test-
ing whether a graph is balanced. We also present
several measures for the amount of imbalance.
The last concept pertaining to signed graphs is the
notion of frustration, discussed in section “Frus-
tration.”

Historical Background

Signed graphs have been studied since 1950s.
They were first introduced by Cartwright and
Harary (1956) and Harary (1953) in a structural
balance theory – graph generalization of Heider’s
theory (1946) from sociology. Heider’s theory
of social balance can be described as a balance
of sentiments between people, i.e., in subgroups
of people certain relationships tend to be more
socially plausible. For example, in group of two
individuals (a dyad), there is only one relation-
ship, positive or negative, but when we look at
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a complete graph of relationships between three
people (a triad), we can distinguish four different
principles: “a friend of my friend is my friend,”
“an enemy of my enemy is my friend,” “a friend
of my friend is my enemy,” and “an enemy of
my enemy is my enemy,” with the two latter
ones clearly causing cognitive dissonance and
thus making the whole graph unbalanced.

There is a tendency to avoid unbalanced struc-
tures and increase balance of the graph even
if it makes sign shifts necessary. Sign changes
include enemies becoming friends (positive edge)
or friends becoming enemies (negative edge).
According to these changes, Davis questioned the
significance of the last principle (Davis 1967)
arguing that it is rather difficult to make any
of three mutual enemies friendly towards each
other; thereupon, he proposed weakly balanced
graphs, which rule out only the structure with one
negative edge reflecting the principle “a friend
of my friend is my enemy.” In consonance with
the original structural balance theory, balanced
graph can be divided into two groups (bipartite
graph) (Harary 1953), but in case of weakly
balanced graphs, it is possible to have multiple
clusters with positive edges inside the group and
negative edges between the subgroups.

Signed Graphs

Triad Analysis
Most of the analysis of signed graphs is con-
cerned with the analysis of dyads and triad-
s. Each dyad can be in one of three states: a
positive relationship, a negative relationship, and
no relationship between the nodes in the dyad.
For complete signed graphs each dyad is either

positive or negative. For triads (for the sake of
brevity, we are considering only complete triads)
each triad can be in one of four states depending
on the number of negative relationships between
the nodes in the triad (zero, one, two, or three).

Consider possible triad configurations shown
in Fig. 1. The configuration Fig. 1a is the simplest
and most obvious, all actors have positive feel-
ings about all other actors in the triad, so there is
no room for a conflict. Similarly, the configura-
tion Fig. 1b is stable, since actors a and b like
each other and share the same negative feeling
towards actor c. This configuration is stable in the
sense that it is coherent and no actor has to choose
between any other actor. Now compare previous
configurations with the configuration presented
in Fig. 1c. This configuration is unstable, because
actor b is torn in his allegiance to actors a and
c, who dislike each other. In order to maintain
social ties, the actor b has to choose one of his
friends, and the remaining relationship will prob-
ably become broken. Finally, the configuration
presented in Fig. 1d is also considered unstable.
What is characteristic about this configuration is
that the “enemy of my enemy is my friend” rule
of thumb does not apply here. This fundamental
difference in triad configurations can be very
easily expressed by the number of negative signs
along the loop. Triads with an even number of
negative edges tend to be stable, whereas triads
with an odd number of negative edges tend to
be unstable and eventually break down. This
observation can be extended to loops of the length
greater than 3, as depicted in Fig. 2. Experimental
research suggests that this type of stability is
quite often encountered in real networks because
unstable configurations appear far less often in
real networks than stable configurations.
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P-O-X Triples
Another usage for signed graphs comes from the
field of social psychology, where signed graphs
were used to model the cognition of social rela-
tionships. A well-known example of this line of
research was the analysis of the so-called P-O-X
triples. According to this model, P denotes a
person, O denotes another individual (the other),
and X denotes an entity or object. The task is
to find how the positive or negative attitude of
the primary person P towards the object X is
consistent with the attitude of the other O . This
analysis is fairly similar to the discussion of the
basic triple model presented above but with some
slight differences that we will underline next.

To make our discussion as general as possible,
we will assume that the relationships depicted in
Fig. 3 represent the attitudes of liking (positive
valence denoted with the .C/ sign) and disliking
(negative valence denoted with the .�/ sign).
Both P and O are allowed to express their at-
titudes towards object X ; furthermore, they can
express their sentiment towards each other. All
relationships under discussion are assumed to be
symmetrical. Scenarios Fig. 3a through Fig. 3d
presented in the upper row depict balanced situ-
ations, where either both actors like each other
and agree in their assessment of the object X

(scenarios Fig. 3a, b), or both actors disagree in
their assessment of the object X , but this differ-
ence in opinions can be explained by their mutual
dislike (scenarios Fig. 3c, d). Now compare these
to scenarios depicted in the lower row of the
Fig. 3. Scenarios Fig. 3e, f represent the situation
where the actors agree in their sentiment towards
the object X despite having negative feelings
about each other. Even more awkward situation is

depicted in scenarios Fig. 3g, h, where actors P

and O apparently like each other but cannot reach
a consensus about the attitudes towards object
X . Such disagreements, as shown by sociologi-
cal research, can quickly undermine the general
positive relationship between the actors.

Structural Balance
Most of the analysis of signed graphs depends
on the notion of loops. In particular, one is often
interested in the sign of particular loops in the
signed graph. We will use the term loop to de-
scribe any closed walk in the graph in which all n-
odes (except the first and the last) are distinct. The
sign of a loop is the product of all edges contained
in the loop. Since only negative edges change the
sign of a loop and two negative edges cancel each
out, an even number of negative edges on the loop
will produce a positive loop, and an odd number
of negative edges will produce a negative loop.
The idea of a signed loop can be further extended
to semicycles. A semicycle is a closed sequence
of nodes in which every pair of consecutive nodes
forming a semicycle is adjacent (in other words,
a semicycle is a cycle in which arcs can point in
any direction). The sign of a semicycle is defined
also as a product of signs of arcs.

A signed loop is called stable if it contains an
even number of edges. A graph is called stable,
or, in other words, is said to show structural bal-
ance, if all loops in the graph are stable. Harary
(1953) presents an important finding pertaining to
signed graphs:

Harary’s Theorem A balanced graph can be di-
vided into connected groups of nodes such that
all connections between members of the same
group are positive and all connections between
members of different groups are negative.

According to Harary, each group can contain
an arbitrary number of nodes and there can be
many groups of nodes. A graph is clusterable if
its nodes can be divided into separate groups such
that all positive relationships are happening only
within the group and all relationships between
groups are only negative. Harary’s theorem states
that all balanced graphs are indeed clusterable.
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The opposite does not work, i.e., not all clus-
terable graphs are balanced. The term structural
balance is used by sociologists and psychologists
to refer to groups that are coherent and lack inner
tensions between members.

Since structural balance is the key concept in
many applications of the signed graph theory,
we will provide a simple constructive proof of
Harary’s theorem. For the sake of simplicity, we
will consider a graph with a single-connected
component.
Proof We select a random node in the graph and
we color this node with white color. Then, we
iterate over all remaining uncolored nodes in the
graph and we color them in according to two
simple rules:
1. A node n connected by a positive edge to a

node m that has already been colored receives
the same color as m.

2. A node n connected by a negative edge to a
node m that has already been colored receives
the opposite color to m.

If, at any moment, we arrive at a node n that has
already been colored, but according to the above
rules it should be colored with an opposite color
(i.e., a conflict arises), then the entire graph is
not balanced. The reasoning behind this simple
procedure is the following. While iterating over
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Signed Graphs, Fig. 4 Clustering of a balanced graph

the nodes in the graph if we stumble upon a
node n that has already been colored, this means
that there must be an alternative path leading to
the node n from the starting point. According to
Harary’s theorem, for the graph to be balanced,
each loop in the graph has to have an even number
of negative edges. Let us examine in detail the
situation in which a conflict in coloring arises
(see Fig. 4). There are only two such situations:
Fig. 4a either we want to assign the node n the
same color as the node m to which n is connected
(i.e., the edge between m and n is positive) but
n is already colored with an opposite color or
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Fig. 4b we want to assign the node n the opposite
color as the node m to which n is connected
(i.e., the edge between m and n is negative) but
n is already colored with the same color as m.
In the first situation the fact that n is colored
differently from m means that there is a loop
between m and n with an odd number of negative
edges (because the color changes between m and
n an odd number of times) and thus m and n

should be placed in opposite groups. However,
the existence of a direct positive edge between
m and n contradicts this, thus, the graph is not
balanced. A similar reasoning applies to the sec-
ond situation. If n has the same color as m, then
there is a loop in the network between m and n

with an even number of negative edges (this is
why color alternates an even number of times on
the loop). But m and n cannot be placed in the
same group because of the direct negative edge
between them. Again, a contradiction proves that
the graph cannot be balanced. The generalization
of this proof to the graph consisting of several
connected components is trivial since it requires
simply to repeat the above procedure to all com-
ponents sequentially. �

An interesting question arises of how to check
efficiently if a given graph is balanced. Since
a single loop with a negative sign makes the
entire graph unbalanced, one needs to consider
loops of length l D 2; : : : ; n � 1 sequentially
looking for a loop with a negative sign. In order
to find the sign of a loop of a given length l , it
is sufficient to check the main diagonal of the
graph’s sociomatrix raised to the power of l . If
M is the sociomatrix of the signed graph G˙,
then the main diagonal of M l represents all loops
of length l starting and ending at a given node.
Consider a simple signed graph G˙ depicted
in Fig. 5.

The sociomatrix M for the graph G˙ is giv-
en as:

M

A B C D E

A 0 �1 1 0 0
B �1 0 1 1 �1
C 1 1 0 0 1
D 0 1 0 0 0
E 0 �1 1 0 0

Below we show the powers of the sociomatrix
M . Please observe the values on the main diago-
nal of the matrix as they contain the signs of all
loops of the length l D 2; 3; 4 starting and ending
in respective nodes.

As we can see, the main diagonal of each
power of the sociomatrix M is nonnegative, thus
we may conclude that the graph G˙ is bal-
anced. The method presented here applies on-
ly to undirected signed graphs. The extension
of the method to signed digraphs is not triv-
ial. The interested reader will find the detailed
description of the method in Harary et al. (1965,
pp. 352–355).

One may ask if it is possible to somehow
quantify the amount of imbalance in the graph. In
other words, one may wonder how many changes
would have to occur in order to make the graph
balanced. Several indexes have been proposed
that aim at measuring the degree of imbalance.
A cycle index for balance has been used to col-
lectively refer to such indexes. The general idea
is to find the number of cycles in the graph that
have a negative sign (i.e., the number of cycles
that violate the balance condition) and to compare
this number to the total number of cycles present
in the graph. The simplest index (Cartwright and
Gleason 1966) simply divides the number of

M2 M3 M4

A B C D E A B C D E A B C D E
A 2 �1 1 �1 2 A 2 �6 5 �1 2 A 11 �10 10 �6 11
B �1 4 �2 0 �1 B �6 4 �6 4 �6 B �10 22 �16 4 �10
C 1 �2 3 �1 1 C 5 �6 4 �2 5 C 10 �16 16 �6 10
D �1 0 �1 1 �1 D �1 4 �2 0 �1 D �6 4 �6 4 �6
E 2 �1 1 �1 2 E 2 �6 5 �1 2 E 11 �10 10 �6 11
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positive cycles by the total number of cycles in
the graph. More elaborate indexing schemes pro-
pose to weight each cycle (positive or negative)
by the length of the cycle (Harary 1959; Norman
and Roberts 1972). Several other measures of
structural balance are discussed in Taylor (1970).

Frustration
Signed graphs can be extended by adding posi-
tive and negative values to nodes (in addition to
edges). Let each node n has a state S.n/, where
the state of a node can be either positive .C1/ or
negative .�1/. An edge e is said to be satisfied if
and only if:
• Edge e is positive and both its endpoints are in

the same state.
• Edge e is negative and both its endpoints are

in opposite states.
If an edge is not satisfied, it is called frustrat-

ed. The minimum number of frustrated edges in
any state of the graph is called the line index for
balance (Harary 1960) or a frustration index.

The concept of frustration and frustration
index is used in physics, in particular when
modeling the ferromagnetism of spin glasses
using Ising models (Barahona 1982). In a
two-dimensional Ising model, a square lattice
graph is used in the study of minimum energy
configurations called ground states. In this graph
each vertex, representing a molecule, can have a
spin-up .C1/ or a spin-down .�1/ orientation.
Positive and negative edges correspond to
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Signed Graphs, Fig. 6 Examples of (a) unfrustrated and
(b) frustrated plaquettes

ferromagnetic and antiferromagnetic bonds
between molecules, respectively. Elementary
square segments of such lattice are called
plaquettes; two examples are presented in Fig. 6.

If the number of negative bonds in a plaquette
is even (Fig. 6a), then the perfect spin config-
uration that satisfies all the edges exists, and,
therefore, there is no frustration in the plaquette.
In other words, it is possible to set spins in
such a configuration that the ground state has
a minimum energy. On the other hand, an odd
number of negative bonds (Fig. 6b) always causes
a conflict, because to satisfy one bond, one has to
break another bond instead, leaving at least one
frustrated edge in the graph.

If an edge is frustrated, its molecules are
unable to minimize their energy; thus, the whole
graph gains an extra ground state degeneracy.
For each configuration of molecule spins, there
is a particular number of frustrated edges unable
to minimize the energy. The total energy of the
entire graph is proportional to the number of
frustrated edges, and the preferred ground state of
the minimum energy is the state with the lowest
frustration index.

Unfortunately, finding the frustration index is
computationally hard. Consider a signed graph
G˙ consisting of only negative edges. Computing
the frustration index of G˙ can be reduced to
the maximum cut problem of a graph, which is
known to be NP-hard.

Key Applications

The structural balance theory and signed graphs
were initially invented to solve the subgrouping
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problem in social psychology, but they found
applications in other areas as well. Signed graph-
s are adequate to model opposite relations be-
tween objects. The first feasible entities are ob-
viously humans with our complex psychologi-
cal, social, and anthropological relations. Beyond
that, it is possible to model natural phenomena
as signed graphs too. Most notable adaptations
can be found in chemistry (Trinajstic 1983) and
physics (Mezard et al. 1987). Frustration index
presented in section “Frustration” is the most
significant adaptation of signed graphs in physics.

Nevertheless, social sciences are the major
application areas for signed graphs. First of all
they are used to describe dynamics of human
sentiments. In addition to simply predicting and
explaining friendship and animosity changes in
groups of people (Antal et al. 2006), signed
graphs proved to be helpful in anthropology and
politics, i.e., structural balance was used in anal-
ysis of enmity in tribal wars, political conflict-
s (Hage and Harary 1983), or international rela-
tions (Harary 1961; Moore 1979).

On the other hand, current development of
web-based social networks revealed new pos-
sibilities for signed graphs in social network
analysis. Thanks to the global networks, social
scientists have gained access to massive datasets.
Recent research in this area include modeling
trust and distrust (Guha et al. 2004), finding
friends and foes (Brzozowski et al. 2008), com-
munity structure mining (Yang et al. 2007), or
link prediction (Kunegis et al. 2009; Leskovec
et al. 2010) in large signed networks. The last
application is particularly interesting, since it
makes recommendations of new acquaintances
possible.

Cross-References

� Social Networks and Politics
� Structural Holes
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Recommended Reading

Signed graphs are covered thoroughly in the lit-
erature, both from the theoretic and application
angles. A good starting point is a general book
on graph theory, such as excellent text by Harary
(1969) or Bondy and Murty (2002). An approach
focusing more on the social aspects of networks
is presented by famous textbooks by Wasserman
and Faust (1994) and Newman (2010).

A very detailed summary of social balance
research covering over 200 different papers is
presented by Taylor (1970). Readers interested in
a more anthropological approach to the study of
social structure and balance should consult (Hage
and Harary 1983). Our discussion on balance in
social structures can be further extended to the
notion of clusterability. Concepts of clusterabil-
ity, ranked clusterability, and transitive tourna-
ments are discussed at length by Holland and
Leinhardt (1971).

If readers desire to investigate mathematical
properties of signed graphs, they are advised to
follow the work of Zaslavsky (1981). For the
most comprehensive analysis of signed graphs
literature, the reader is encouraged to study the
bibliography compiled by Zaslavsky (1998).

Signed Network

�Signed Graphs

SimilarityMetrics on Social
Networks

Cuneyt Gurcan Akcora and Elena Ferrari
DISTA, Università degli Studi dell’Insubria,
Varese, Italy

Synonyms

Categorical data similarity; Network similarity;
Profile similarity

Glossary

Homophily Tendency to create friendships with
similar people

Undirected Network Network where relation-
ships are created by mutual consent of the two
involved users

Profile Data User-uploaded text-based personal
information on social networks

Definition

In the last decade, online social networks have
gained millions of users who are daily creating
terabytes of personal data (Ellison et al. 2007).
With this big amount of data, it quickly becomes
impractical to analyze all of the network for
solving user-specific problems, such as finding
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communities of users or classifying them
according to a specific criteria. At the basis of
most of these computations, there is the need
of computing similarity between social network
users. In this entry, we show how similarity com-
putation can be done by using a family of metrics
which provide fast, local, and efficient solutions
to the question of computing user similarity
on social networks. We classify user-generated
social network data into network and profile data
and discuss metrics for each type. We give par-
ticular importance to define what are the benefits
and shortcomings of the considered metrics and
how they are used in current research work.

Introduction

In the literature, the term similarity has been used
in different meanings (e.g., the short distance
between two users, shared features, or shared
actions) to quantize similarity for different
application fields. Some works have attempted
to define similarity rigorously (Richter 2007;
Ha and Haddawy 2003; Lin 1998). Among these,
the four principles by Lin (1998) are widely used
to implement similarity metrics on social net-
works. We will explain these four principles with
commonality, differences, maximum similarity,
and minimum similarity. In commonality, shared
commonalities (e.g., race, gender, sex of users)
increase the similarity of two users. On the other
hand, more differences lead to smaller similarity.
Regardless of the number of features, two users
are said to have the maximum similarity when
they are identical in every feature. Similarly,
regardless of the number of features, two users
are the least similar when they are different in
every feature. In current studies, the maximum
and minimum similarity values are given as 1 and
0, respectively.

A more rigorous set of properties for similarity
metrics can be adopted from distance metric-
s by considering similarity D 1 � distance.
These properties are (1) symmetry, (2) identi-
ty, (3) non-negativity, and (4) triangle equality.
In the identity property, distance.a; b/ D 0,
when a D b. On social networks, this property

can have different explanations; on the graph
structure, distance.a; b/ D 0 is assumed to
be true when the two nodes have the same set
of friends, whereas if profile information are
considered, two users must have the same val-
ues for every profile item. In setting a low-
er bound for distance, the non-negativity prop-
erty defines distance.x; y/ � 0 for any us-
er pair. The symmetry condition assures that
distance.a; b/ D distance.b; a/, while in the tri-
angle equality distance.a; c/ � distance.a; b/C
distance.b; c/.

The absence of some of these properties can
be used to classify different formulas. For ex-
ample, quasi-metrics do not provide the symme-
try property, whereas semi-metrics do not have
the triangle property. Traditionally, the symmetry
property is not applicable in directed networks,
because directions of edges can lead to different
similarity values for a pair of users. In this case,
two different values are computed; sim.a; b/ de-
notes the similarity value according to a user a,
and sim.b; a/ denotes a potentially different value
from the perspective of user b.

Similarly, the triangle equality is difficult to
achieve for similarity of user profiles because
profiles can consist of more than one dimension
(i.e., profile item). As a result, although the trian-
gle property holds for one dimension, similarities
for three user profiles with multiple dimensions
might not adhere to the triangle property. Ide-
ally, any formula that does not carry all these
four properties should be called a measure, but
researchers still prefer to use the word metric
interchangeably with the term measure.

Founded upon these theoretical definitions,
similarity metrics that have been proved efficient
and practical on social networks are those that
exploit a locality principle in similarity compu-
tations. The basic idea underlying such metrics
is that, given two social network users, their
similarity is computed by observing only a sub-
set of vertices (e.g., friends of the two users)
in the social network. This approach restricts
required information about the social network
to a minimum and reduces the required time of
calculations. Even though global measures (e.g.,
the shortest path between users or the commu-
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nity membership of users) can be used in the
same context, they are more costly in time and
computational power because they require too
much information about the social network. For
example, shortest path calculation might require
observing friendship links of many users. More-
over, even though the costs can be undertaken,
researchers and companies cannot have access to
the whole social network data because of privacy
issues. Only owners of social networking services
can have the complete data that is required to
compute global similarity measures. Therefore,
local similarity metrics, which are the focus of
this entry, provide a simple alternative in the face
of these costly issues.

Historical Background

In the 1970s, early attempts at defining
similarity metrics involved finding similarities
among text-based documents (McGill 1979)
that were modeled as a collection of words.
Similarity metrics were used to discover relations
between documents or rank the documents
according to their similarity to a given query.
These efforts have resulted in several well-
known metrics, such as the cosine and Jaccard
similarities (Han et al. 2006). With the advent of
the Internet, researchers have applied document-
based similarity metrics to user-generated web
items, such as friendships and status posts,
to discover relationships between web users.
Specifically, similarity research on user-
generated data has focused on predicting links
(relationships) among users and mining past user
behavior to predict future actions.

In the link prediction problem (Liben-Nowell
and Kleinberg 2007), similarity of social network
users has been exploited to predict new friend-
ships. In this context, high similarity between
two social network users is assumed to increase
the probability of them creating a new friend-
ship (Spertus et al. 2005). With generalization,
this idea has been explored in the homophily
theory which states that people tend to be friends
with other people who are similar to them along
personal attributes, such as gender, race, and
religion (McPherson et al. 2001).

In addition to user characteristics, actions of
a user are exploited to predict actions of similar
users. This idea has been studied in recommender
systems to observe existing item ratings (for
movies, books, songs, etc.) of users and predict
ratings of unseen items (Melville and Sindhwani
2010). Similar users are assumed to give similar
ratings to similar items. From this assumption,
similarity of ratings are predicted by finding ei-
ther similar users (i.e., user based) or similar
items (i.e., item based).

Methods

On social networks, user-generated data are clas-
sified into two types: profile data, which refers to
user entered textual information, such as personal
information, and network data that is information
on created relationships, such as friendships with
other users on the social network. Depending on
the type of user data, similarity metrics differ in
how they model a social network user. Further-
more, some similarity metrics can be used only
on one type of user-generated data. By taking this
into account, we will first explain how similarity
metrics work on network data and then continue
to explain metrics for profile data.

Network Similarity
In network similarity metrics, existing user rela-
tionships are exploited to find similarity. For ex-
ample, a big number of shared friends between
two users can be assumed to imply their high sim-
ilarity. Network data that represent relationships
can be modeled as a graph G D .V; E/, where
each user a in the network is considered a vertex
va 2 V , and a relationship between users a and b

is an edge eab 2 E on the graphG. If relationships
are established by mutual consent of two users, an
edge between them is said to be undirected (the
edge has no start and end points), and it can be
called a friendship. Friendship relations on social
networks, such as Facebook, Orkut, and LinkedIn,
are modeled with undirected graphs. On an undi-
rected graph, first-level neighbors of a vertex va

are a set of vertices 
 .va/ who share an edge
with va (e.g., friends of a). Similarly, second-level
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neighbors 
 .
 .va// (e.g., friends of friends of
a) share an edge with first-level neighbors of a.
If relationships can be created without mutual
consent, an edge is said to be directed; it starts
from the user who initiated the relationship (i.e.,
source vertex) and ends at the user with whom the
relationship was established (i.e., target vertex).
For example, the popular social networks Twitter
and Google+ are directed social networks; when
user a starts following user b, an edge is created,
starting from vertex va and ending at vertex vb .
On directed graphs, the friendship term from
undirected graphs is replaced with in-neighbors
and out-neighbors. In-neighbors 
 �.va/ and out-
neighbors 
 C.va/ of a vertex va are defined
as target and source vertices of all edges that
have vertex va as their source and target vertex,
respectively.

Although the similarity metrics that we will
discuss are designed to work with the neighbor-
hood notion of undirected graphs, they can be
applied to directed networks by small modifi-
cations. For example, direction of edges can be
removed to make the graph undirected. Another
approach is to consider only one type of edges
(out-neighbors or in-neighbors) as neighbors
while using the metrics. As these modifications
can be used to define neighbors of a user on
directed graphs, we will give metric definitions
in terms of user neighbors. Assume that a
similarity function sim.va; vb/ computes the
similarity of users va and vb by considering their
neighbors 
 .va/ and 
 .vb/, respectively. We
will denote one of their common neighbors with
vc , i.e., vc 2 .
 .va/ \ 
 .vb//. High similarity
between two users who do not have a relationship
will be assumed to increase the probability of
them creating a relationship edge. With these
definitions, metric formulas that we will explain
are given in Table 1. Next we will discuss these
network similarity metrics in more details.

Overlap: The overlap measure (Tan et al. 2006)
counts the number of common neighbors of va

and vb to compute similarity.
Preferential attachment: For relationship cre-

ation on social networks, the preferential at-
tachment metric reflects the “rich gets richer”

notion from sociology (Barabási and Albert
1999). The metric assumes that highly con-
nected vertices (i.e., users who have many
neighbors) are more likely to create relation-
ships with each other.

Jaccard (L1 norm): The Jaccard metric (Tan
et al. 2006) counts the number of common
neighbors as in the overlap metric, but it nor-
malizes this value by using the total number of
neighbors of users va and vb .

Cosine (L2 norm): Cosine similarity was origi-
nally devised to find the similarity of two doc-
uments by computing the cosine of the angle
between their feature vectors (Tan et al. 2006).
When the angle between the two vectors is 0,
they are considered identical, and the cosine
of the angle equals the maximum similarity
value 1.

Adamic and Adar: Like the overlap metric,
Adamic and Adar considers common neigh-
bors, but each neighbor’s impact on the sim-
ilarity value depends on the number of its
neighbors (Adamic and Adar 2003). If a com-
mon neighbor has few neighbors, its impact
on the similarity is assumed to be higher. For
example, if users va and vb are the only neigh-
bors of vc , 1=log.2/ is added to the overall
similarity. The similarity is computed by sum-
ming values from all common neighbors.

Point-wise mutual information (positive
correlations): Point-wise mutual information
(Bouma 2009) is computed in probabilistic
terms where joint probability distribution
function P.
 .va/; 
 .vb// computes the
probability of a graph vertex vx 2 V jx ¤ a ¤
b sharing edges with both va and vb , whereas
marginal probability distribution functions
P.
 .va// and P.
 .vb// are probabilities of
a graph vertex sharing an edge with va and vb ,
respectively. If edges are assumed to represent
friendships, P.
 .va/; 
 .vb// is equal to

#mutual friends
#users in the social network . Similarly, P.
 .va//

is equal to #friends of va

#users in the social network . In other
words, point-wise mutual information shows
whether two users share mutual friends due to
randomness. Note that due to computing prob-
ability with the total number of users in the
social network, point-wise mutual information



S 1738 Similarity Metrics on Social Networks

Similarity Metrics on Social Networks, Table 1 Network similarity metrics

Measure Formula Description

Overlap j� .va/\� .vb/j The number of common neighbors

Preferential
attachment

j� .va/j � j� .vb/j Multiplied neighbor counts of both users

Jaccard .j� .va/\� .vb/j/=.j� .va/[� .vb/j/ The percentage of shared neighbors over
all neighbors

Cosine .j� .va/\� .vb/j/=.
p

.j� .va/j � j� .vb/j// The number of common neighbors nor-
malized by multiplied neighbor counts

Adamic and
Adar

P
vc2f�.va/\�.vb/g

1
Log.j�.vc/j/

Common neighbors who have very few
neighbors are given more importance

Point-wise
mutual
information

P.� .va/; � .vb// � log
�

P.�.va/;�.vb//

P.�.va//�P.�.vb//

�
How much the probability of having the
current set of common neighbors differs
from the case where neighbors would be
added by users on the graph randomly

Katz’s measure
C1P
pD1

ˇp �NumOfP ath.va ; vb; p/
Similarity is implied by the number and
length of paths that connect two users on
the graph. Each path 0 < p <C1,
whereas 0 < ˇ < 1

produces very low average similarity values,
because #users in the social network can be in
millions.

Katz’s measure: Katz’s measure (1953) was de-
signed in the 1950s to find the status of a
vertex on a graph. The vertex which had the
biggest number of shortest paths to the other
vertices was considered a central vertex with
high status. To compute sim.va; vb/, Katz’s
measure finds the number of paths that con-
nect va and vb for path length p, 1 < p <

C1. The number of paths (i.e., the value of
NumOfPath.va; vb; p/) is dampened by a ˇp

value, where 0 < ˇ < 1. In practice, the
ˇ value is chosen as small as 0.005 (Liben-
Nowell and Kleinberg 2007). Although p val-
ues can be increased to cover a big portion
of the graph, usually p D 2 or p D 3
values are chosen to find similarity, because
computations for p > 3 contribute very less to
the overall value. Note that although the Katz’s
measure can be used as a global measure with
big p values, small p values (e.g., 2 or 3) make
it a practical measure for fast, local similarity
computations.

In research work, performance of similarity
metrics has been compared by making predic-
tions based on similarity values and validating

the results (Liben-Nowell and Kleinberg 2007;
Spertus et al. 2005). Typically, metrics are used to
predict top-k relationships (e.g., k most probable
future friendships that will be created between
users) on graphs at a time t1, and these predictions
are validated at a time t2 > t1. The performance
of a metric can be computed by counting the
number of correct predictions.

In Liben-Nowell and Kleinberg (2007),
Adamic and Adar has been shown to perform
better than preferential attachment, Jaccard,
overlap, and Katz’s measure on a scientific
coauthorship network. On another social
network, Orkut.com, Spertus et al. (2005) have
found that cosine similarity performed better
than Jaccard and point-wise mutual information
metrics.

Despite these comparisons, it is important to
understand that each metric has its weaknesses
in different application fields. Preferential attach-
ment is widely used in social networks to predict
friendships, but unlike Jaccard or cosine simi-
larity, its computed value does not reside within
[0,1]. In fact, its max value is only bounded by
the total number of users in a social network,
because there are no theoretical limits to prevent a
user from having every other social network user
as a neighbor. However, some social networks
may choose to limit the number of neighbors;
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for example, an undirected network, Facebook,
allows up to 5,000 neighbors, whereas a directed
network, Twitter, does not have such a limit.
Because of this, preferential attachment cannot be
used to quantify how much percent two users are
similar. When the graph has many vertices (i.e.,
the probability of an edge between two users are
very small), computed value of point-wise mutual
information can be very small, and it cannot be
used to define how much percent two users are
similar. Point-wise mutual information and pref-
erential attachment can be best used in ranking
a set of users according to their similarity to a
specific user. There are some limitations in using
Katz’s measure too. In popular social networks,
discovering edge counts for paths of length 2 or
more can be restricted because social networking
services do not allow access to social network
data. Furthermore, Katz’s measure can be costly
to compute when the social network is large.
Considering these limitations, research work (Jin
et al. 2011; Zheleva et al. 2010) have mostly used
Jaccard, cosine, or Adamic and Adar in their user
similarity computations, because these measures
are fast and easier to interpret.

Profile Similarity
Along with network data, profile data consti-
tute the second type of user-generated data on
social networks. We will call similarity metrics
which work with profile data as profile similarity
metrics. On social networks, we will consider
profile information as a set of unique items (e.g.,
hometown, location, education of a user), which
can have one or multiple subfields for each value.
Figure 1 shows an example of user profile with
two education values, where an education value
can have more than one subfields (i.e., school and
degree). The figure also shows some items which
can have only one value, such as gender:male.

After modeling profile data with a set of items,
similarity between two users is computed by first
finding the similarity of individual item values
on the two profiles. For example, similarity of
two users according to the gender item compares
gender values on the two profiles. If the consid-
ered item has many values, or each value has
multiple subfields (e.g., the education item on

Fig. 1), an aggregation function is required to find
item similarity. An overall profile similarity value
is determined by aggregating (e.g., by weight
averaging) all item similarity values. However in
practice, most of the research work on profile
similarity consider a user profile to be a set of
unstructured keywords. For example, in Bhat-
tacharyya et al. (2010), Facebook user profiles
only consist of user values from the “hobbies”
item. With this simplification, profile similarity of
two users is found by computing item similarity
of hobbies on two profiles.

In a more detailed study, similarity of items
which have multiple values or subfields has been
weight averaged to model the importance of sim-
ilarity for some items or subfields (Akcora et al.
2011). For example, when user profiles consist of
hometown and hobbies fields, hometown similar-
ity can be weighted with a bigger coefficient to
show that hometown similarity is more important
than hobbies similarity.

When similarity computations are reduced to
finding item similarities, the type of item val-
ues determines the way similarity is computed.
Although some items have numerical values (e.g.,
age, zip code), most of the item values on social
networks are text-based categorical data which
cannot be ordered on an axis to find similar-
ity/distance of two data points. Using simple
approaches, such as string matching, is not ef-
ficient because the text represents an identity
(e.g., hometown:Barcelona) and partial (n-gram)
similarities (e.g., bARcelona:pARis) are trivial.

Two main approaches are used to find
similarity of item values: ontology based (Jung
and Euzenat 2007; Mika 2005) and social graph
based (Akcora et al. 2011). In ontology-based
approaches, a graph of entities is created to
define their relationships or distance (Cristani and
Cuel 2005). For example, considering hometown
similarity of three social network users with
values Barcelona, Madrid, and New York, an
ontology can classify Barcelona and Madrid as
Spanish cities, whereas New York is classified
as an American city, and compute a higher
similarity for users from Barcelona and Madrid.
The main disadvantage of this approach is that it
requires a reliable ontology which can be difficult
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HometownGender

Male Milano

1

2

1

2

School Upenn

Degree Master's

Employer Xentra

Position Senior Eng.

School Umass

Degree B.S.

Employer Asana

Position Web Developer

Education

Work

3

Employer Asana

Position Web Developer

1

2

RPG

Jogging

Rock Climbing

Hobbies

Vinyls

Petals

Billiards

3

4

5

6

Similarity Metrics on Social Networks, Fig. 1 An exemplary profile for a social network user. The profile consists
of single-valued gender and hometown items, as well as multiple-valued education and work items

to create. Furthermore, as social networks are
dynamic, new item values are added in time and
the ontology must be updated frequently.

The social graph-based approach assumes that
neighbors (e.g., friends/coauthors) of a user va

are similar to va along profile attributes. For
example, if hometown of va is Barcelona, we
can expect many of its neighbors to be from
Barcelona and other Spanish cities. When home-
town values of neighbors are observed, anoth-
er city (e.g., Madrid) can be found similar to
Barcelona without explicitly creating an ontolo-
gy. With this intuition, a user vb is said to be
similar to va if vb’s hometown is similar to the
hometown values of va’s neighbors. Furthermore,
even when va has a blank profile, using its neigh-
bors in such a way allows one to compute its
similarity with other social network users. The
social graph approach has also been found ef-
fective for network similarity metrics (Cukierski
et al. 2011). The disadvantage of this approach
is that neighbors are assumed to be similar to
users. This assumption is more applicable in
undirected social networks where mutual consent
is required to create a relationship edge. However,
if the network is undirected, neighbors can have

very different characteristics from users, and per-
formance of social graph-based approaches can
deteriorate.

As ontology-based approaches have been ex-
tensively studied in semantic web communities
(Cristani and Cuel 2005), in the rest of this
section, we will detail social graph-based ap-
proaches. To this end, we will discuss relevant
categorical data similarity measures (Boriah et al.
2008) which can be used with the assumptions
of social graph-based approaches. Before doing
that, we need to introduce some notations and
definitions.

Assume that for an item i , we are given a pair
of item values ia and ib from profiles of va and
vb , respectively.

From the set of va’s neighbors, we create
a collection of values values.i/ D f8icjvc 2

 .va/g. We will define three functions over
values.i/. Function distinct.i/ finds the number
of distinct values in values.i/, and sup.ix/ finds
the count of value ix in values.i/, whereas
freq.ix/ D sup.ix/= j
 .va/j. With these func-
tions, we will explain the categorical similarity
functions reported in Table 2. Variations of Lin
and Eskin measures are excluded for brevity.
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Similarity Metrics on Social Networks, Table 2 Item
similarity measures with their formulas. The two items are
identical when ia D ib . Each measure uses a different
formula for identical and nonidentical values pairs

Measure Formula

Eskin
1, if ia D ib

distinct.i/2

.2Cdistinct.i/2/
, if ia ¤ ib

Occurrence
frequency

1, if ia D ib
1

1C.log. j�.va/j
sup.ia/

/�log. j�.va/j
sup.ib/

//
, if ia ¤ ib

Lin
2�log.freq.ia//

log.freq.ia//Clog.freq.ib//
, if ia D ib

2�log.freq.ia/Cfreq.ib//
log.freq.ia//Clog.freq.ib//

, if ia ¤ ib

Eskin: Eskin’s measure (Boriah et al. 2008) as-
signs 1 in identical cases (ia D ib), and it
penalizes users when their values do not match
while there are very few distinct values in
values.i/. For example, it punishes users more
for mismatches in the gender item (2 values
with male and female) than it does in the
hometown item because hometown can have
many more values.

Occurrence frequency: The occurrence
frequency measure assigns 1 to identical value
pairs, and it favors mismatches with highly
frequent values. If values.i/ has two distinct
values ix and iy , with ix D ia and iy D ib,
sim.ia; ib/ reaches its maximum value.

Lin: Unlike others, Lin’s measure (1998) does
not assign 1 to two identical item values.
Instead, it assigns high similarity when the
two values are highly frequent in values.i/.
In other words, if item value of vb is
very frequent among friends of va, vb is
considered very similar to va. For mismatches
(i.e., ia ¤ ib), the measure gives less
importance to infrequent values.

A comparative evaluation of these measures
have been carried out in Akcora et al. (2011),
where the occurrence frequency has been found
superior in performance. Overall, choosing so-
cial graph-based approaches over ontology-based
approaches improves profile similarity results be-
cause social graph-based approaches can use pro-
files of neighbors to infer blank profile items of
a user. By doing so, scarcity of data on user
profiles can be compensated, and similarity can

be computed for more social network users. This
gives an edge to social graph-based approaches,
because analysis of real-life social networks indi-
cates that a big portion of user profiles (up to 60 %
for a popular network, Facebook.com (Akcora
et al. 2011)) are indeed missing.

Comparing Network and Profile Data
for Similarity Purposes

A comparison between metrics for profile and
network data can be done according to two di-
mensions: interpretation and availability. In in-
terpreting results, profile data is richer than the
network data because it covers more relations
between users, and similarity values can be in-
terpreted in terms of items. For example, high
similarity between two users can be pointed to
their common hometown, education, or religion
values. On the other hand, network similarity
offers only graph edges as its data, and network
similarity results can only be interpreted in terms
of being connected on a graph. For example,
in Jaccard similarity, two users’ similarity can
be due to many shared friends, but the metric
cannot explain why they share these friends at
the first place. In such a case, profile similarity
could point out that common friends are due to
the shared hometown values.

In availability, network similarity is easier to
use because network edges are structured and
easier to discover. In comparison, profile data
is more scarce and polluted; users might not
enter any profile data, or any data they enter
might be unstructured. Profile data is also more
difficult to find in research data sets because of
privacy issues.

Future Research

So far, usage of similarity metrics has been con-
fined to well-studied problems such as link pre-
diction and malicious clone detection on social
networks. Recently, some work have used sim-
ilarity metrics as an auxiliary method in link

Facebook.com
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prediction where users have not yet generated any
actions on social networks (i.e., in the face of cold
start) (Leroy et al. 2010) or to predict the risk of
interacting with a user in terms of disclosure of
personal information (Akcora et al. 2012).

Despite these work, similarity metrics are still
used as black box models without considering
their descriptive powers. If this aspect is dully
considered, similarity metrics can be used to
explain why users are similar and what types
of users interact with each other. In this vein,
we expect similarity metrics to be used in un-
derstanding phenomena such as homophily (M-
cPherson et al. 2001) on a global scale. With this
approach, the problem of predicting a link among
users can be broaden to the issue of predicting
links among general types of users, and user
interactions models can be found by aggregating
similarity among users.

Cross-References
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Synonyms

Gibbs sampler; Markov chain Monte carlo
algorithms; Metropolis Hastings; Monte Carlo
methods; Statistical simulation

Glossary

MC Monte Carlo
MCM Monte Carlo methods
MCS Monte Carlo simulation
MCMC Markov chain monte carlo
IID Independent identically distributed
MHA Metropolis-hastings algorithm
GS Gibbs sampler

Introduction

Simulation is the imitation of the operation
of a real-world process or system over time.
Simulation has appeared at the very early stages
of the development of statistics as a field. Francis
Galton invented mechanical devices in 1873 to
compute estimators and distributions by means
of simulation. His well-known quincunx (Stigler
1986) is a derivation of the Central Limit
Theorem for Bernoulli experiments. The
randomized experiments of Ronald Fisher
(1935) and the bootstrap revolution started
by Brad Efron (Efron and Tibshirani 1993)
are intrinsically connected with calculator and
computer simulations, respectively.

Simulations were used to test a previously
understood deterministic problem that has no
random variables and no degree of randomness.
Statistical sampling was used to estimate
uncertainties in the simulations. Monte Carlo
simulation (MCS) inverts this approach, solving
deterministic problems using a probabilistic ana-
log. An early variant of the Monte Carlo Methods
(MCM) can be seen in Buffon’s needle experi-
ment, in which � can be estimated by dropping
needles on a floor made of parallel strips of wood.

In the 1930s, Enrico Fermi first experimented
the MC methods while studying neutron diffu-
sion. In the early 1940s, it was applied in research
into nuclear fission. The scientists working on
the Manhattan project, making the atomic bomb,
had intractably difficult equations to solve in
order to calculate the probability with which a
neutron from one fissioning uranium atom would
cause another to fission. The equations were
complicated because they had to mirror the com-
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plicated geometry of the actual atomic bomb. The
answer had to be right because, if the first test
failed, it would be months before there was e-
nough uranium for another attempt. Despite hav-
ing most of the necessary data, researchers were
unable to solve the uncertainty problems using
conventional, deterministic methods.

Stanislaw Ulam suggested MCM for evaluat-
ing complicated mathematical integrals that arise
in the theory of nuclear chain reactions. Von
Neumann carried this suggestion to the more sys-
tematic development of MC. with the primitive
facilities available at the time, Ulam and von
Neumann did carry out numerical computations
that led to a satisfactory design.

In the 1950s MCM were used at Los Alamos
for early work relating to the development of
the hydrogen bomb and became popularized in
the fields of physics, physical chemistry, and
operations research. The RAND Corporation and
the US Air Force were two of the major organiza-
tions responsible for funding and disseminating
information on MCM during this time, and it
began to find large applications in many different
fields.

Widespread Applications of
Simulation

MCM are especially useful for simulating phe-
nomena with significant uncertainty in inputs and
systems with a large number of coupled degrees
of freedom. Areas of application include:
• Statistics: MCM are generally used for com-

paring competing statistics for small samples
under realistic data conditions and are also
used to provide implementations in various
fields such as image analysis, signal process-
ing, point processes, econometrics, and sur-
veys.

• Mathematics: To evaluate multidimensional
definite integrals with complicated boundary
conditions, it is an alternative for the determin-
istic numerical integration algorithms.

• Physical sciences: MCM are used in
computational physics, physical chemistry,
quantum systems, and related applied fields.

MC molecular modeling is an alternative to
computational molecular dynamics.

• Astrophysics: MCM are used in the ensemble
models that form the basis of modern weather
forecasting. They are also used to model both
the evolution of galaxies and the transmission
of microwave radiation through a rough plan-
etary surface.

• Engineering: MCM are used for sensitivity
analysis and quantitative probabilistic analysis
in process design. For example, MCM are
applied to analyze correlated and uncorrelat-
ed variations in analog and digital integrated
circuits in microelectronics engineering.

• Geostatistics: MCM underpin the design of
mineral processing flow sheets and contribute
to quantitative risk analysis.

• Computational biology: MCM are used in
Bayesian inference in phylogeny.

• Finance: To calculate the value of companies
and to evaluate investments in projects at a
business unit or corporate level, they are al-
so used to calculate the risk and to evalu-
ate financial derivatives and to model project
schedules.

Simulation Techniques

Let X D .X1; : : : ; Xn/ be IID random variable
defined on a suitable sample space E, and as-
sume that each Xi has a known density function
�Xi

.xi / defined on E. In many problems, X is
high dimensional and evaluation of a function
g.X/ using �X is a challenging problem. The
function under interest will be given by

E�X
.g.x// D

Z
x2E

g.x/�xdx:

Analytical calculation of the above integral is
not possible because of the complexity of the
distribution function �Xi

. Simulation inference
can be used instead. Suppose, for example,
that we have a way to obtain independent
samples x.1/; x.2/; : : : from �X , we could then
approximate the expectation of g.X/ by the
empirical estimate
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gn D
1

n

nX
iD1

g.x.i//; :

By the strong law of large numbers as n!1;

gn

a:s:�! E�X
.g/:

So, if we were able to find an explicit, easily
codable function h.U1; U2; � � �/ of uniform .0I 1/

variates with values in E and probability distribu-
tion the same as �X , then we would evaluate the
desired integral as

Pn
jD1 g.h.Uj 1; Uj 2//

n
;

where Ujk is a double indexed array of IID
uniform variables. It is allowed for h to depend
on unboundedly many U variables, as long as the
number of such variables required is a random
variable with finite expectation. For example, in a
one-dimensional integral, we would use random
numbers to select points fxi ; i D 1; � � �; ng in
the interval a � x � b and then use the
approximation

Z b

a

�.x/dx � .b � a/
Pn

iD1 �.xi /

n
:

MCM all follow a similar pattern:
1. Define some domain of inputs E. This just

means we have some set of variables in the
model and we want to know the range of the
values they can take on.

2. Generate inputs randomly, governed by some
probability distribution � .

3. Perform some computation on these inputs.
4. Repeat 2 and 3 over and over a very large

number of times.
5. Aggregate the results from the previous step

into some final computation.
The result is an approximation to some true but
unknown quantity.

Examples

Here are some simple examples on MCS.

Example 1 A simple MCS to approximate the
value of � could involve randomly selecting
points .xi ; yi /; i D 1; � � �; n in the unit square and
determining the ratio � D m

n
, where m is number

of points that satisfy x2
i C y2

i � 1. Consider a
circle inscribed in a unit square. Given that the
circle and the square have a ratio of areas that is
�
4 , the value of � can be approximated using an
MCM as follows:
1. Draw a square, then inscribe a circle within it.
2. Uniformly scatter some objects of uniform

size, over the square.
3. Count the number of objects inside the circle

and the total number of objects.
4. The ratio of the 2 counts is an estimate of the

ratio of the 2 areas, which is �
4 . Multiply the

result by 4 to estimate � .
In a typical simulation of n D 1;000 sample

size there were 787 points satisfying. Using this
data, we obtain � D 787

1;000 D 0:787 and

� � � � 4 D 0:0787 � 4 D 3:418:

If points are purposefully dropped into only
the center of the circle, they are not uniformly
distributed, so our approximation is poor. The ap-
proximation is generally poor if only a few points
are randomly dropped into the whole square.
The approximation improves as more points are
dropped.

Example 2 Suppose we want to find out the
probability that, out of a group of 50 people,
2 people or more people share birthdays. The
probability of having at least 2 people in the
group having the same birthday is equal to
1� 365Š

36550.365�50/Š
D 0:970, where Š is the factorial

operator. Using the MC approach:
1. Pick 50 random numbers in the range Œ1;365�.

Each number represents 1 day of the year.
2. Check to see if any of the 50 are equal.
3. Go back to step 1 and repeat 1,000 times.
4. Report the fraction of trials that have matching

birthdays.
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Using 1,000 iterations, the probability is ap-
proximately 0:864. Obviously, the more times we
repeat the experiment, the more precise our result
would be. Better than repeating the experiment
a 1,000 times, we can easily use a computer to
simulate the experiment 10,000 times (or more).
Using 100,000 iterations, the simulated result was
0.969.

Example 3 Consider calculating the probability
of a particular sum of the throw of two dice.
There are 36 combinations of dice rolls. We can
manually compute the probability of a particular
outcome. For example, there are six different
ways that the dice could sum to seven. Hence, the
probability of rolling 7 is equal to 6 divided by
36 D 0:167. Using MC approximation:
1. Throw the two dice and record the sum of the

output.
2. Go back to step 1 and repeat 10,000 times.
3. Report the fraction of trials for each of the 11

different sum.
If the dice totaled 1,813 times out of 10,000 rolls,
we would conclude that the probability of rolling
7 is approximately 0:1813.

The accuracy of an MCS is a function of the
number of realizations. That is, the confidence
bounds on the results can be readily computed
based on the number of realizations. Every time
a Monte Carlo simulation is made using the same
sample size, it will come up with a slightly differ-
ent value. The values converge very slowly of the
order O.n� 1

2 /. This property is a consequence of
the law of large numbers.

Markov ChainMonte CarloMethods

Typically, the distribution �X is too complex
for direct simulations. Thereupon, the indirect
approach of MCMC must be applied. This ap-
proach will simulate correlated samples fx.i/g
from �X . As the iterations depart more from
independence, the number of iterations required
for a given degree of accuracy increases. Other
algorithms for constructing such transition kernel
have been proposed such as importance sampling
which involves sampling the points randomly,

but more frequently where the integrand is large.
One can approximate the integral by an integral
of a similar function or use adaptive routines
such as stratified sampling, or adaptive umbrella
sampling, or the quasi-MCM which uses low-
discrepancy sequences.

MCMC methods are widely advocated in a
variety of situations where the complexity of
the distribution of interest is an issue. In these
situations usually the direct sampling from such
complicated models is not possible. The key
idea of the MCMC methods is to generate an
iterative sequence of samples in such a way that
it converges in distribution to the model of in-
terest. To implement this strategy, many attempts
were made to define algorithms for constructing
chains with specified equilibrium distributions.
The most common, well-known algorithms for
constructing chains with specified equilibrium
distributions were defined by Metropolis et al.
(1953) and Hastings (1970). A wide range of
discussion papers on MCMC theory and applica-
tion can be referred to, for example, Smith and
Roberts (1993), Gilks et al. (1996), Robert and
Casella (2004) and Suess and Trumbo (2010).
In this section, we shall briefly discuss in an
appropriate framework the theory of the MCMC
technique.

To sample from a specified distribution � on
E, we construct an MC transition kernel P.x; A/.
Let X1; X2; � � �; Xn be random variables. We say
that X satisfies a Markov condition if

P.XnC1 D xjX1 D x1; X2 D x2; � � �; Xn D xn/

D P.XnC1 D xjXn D xn/:

The transition kernel P is a map, P W E �
E ! Œ0; 1�, that implies the target distribution
� is a stationary distribution of the chain. The
distribution of X .tC1/ given X .t/ satisfies

P.X .tC1/ 2 AjX .0/ D x.0/; : : : ; X .t�1/ D x.t�1/;

X .t/ D x/ D P.x; A/:

We say that � is the invariant measure (hence
equilibrium) of the MC if it satisfies the general
balance equation
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Z
x2E

�.dx/P.x; A/ D �.A/;

for all measurable sets A 
 E:

General balance, �P D � , is also referred to as
the global balance.

The conditional distribution of X .t/ given
X .0/ D x.0/ is

P.X .t/ 2 AjX .0/ D x.0// D P
t .x.0/; A/;

where P
t denotes the kernel P after iterating

it t times. P should � irreducible, aperiodic,
positive recurrent and �P D � (Nummelin
1984). A chain is � irreducible if starting at any
initial state x 2 E, then for all measurable sets A

 E with �.A/ > 0 there exists t > 0 such that
P.X .t/ 2 Ajx0 D x/ > 0. The chain is aperiodic
if the chain does not oscillate between different
sets of spaces in a regular periodic movement.
The term positive recurrent is defined as follows:
let A be the first return time to state A 
 E

where �.A/ > 0, then we say the � irreducible
chain X .t/ is recurrent if P.A < 1/ D 1 and
is positive recurrent if E.A/ < 1. If the chain
is �� irreducible, aperiodic, positive recurrent
and if the initial value of X .0/ is sampled from
� , then all subsequent iterations using MCMC
will also be distributed according to � . For
example, drawing a number from f1; 2; 3g with
replacement where Xt is last number seen at time
t is an MC, but if we draw a number without
replacement, then it is not MC. If the initial value
of X .0/ is sampled from � , then all subsequent
iterations using MCMC will also be distributed
according to � .

Such methods include the MHA, GS, and the
Wang and Landau algorithm. We recall now the
most commonly used.

TheMetropolis-Hastings Algorithm
This algorithm was first proposed by Metropolis
et al. (1953) and extended by Hastings (1970).
The algorithm is designed to give samples from a
distribution � . It defines a proposal kernel q.x; �/
to produce a potential new state x0 2 E. The pro-

posed candidate x0 is accepted with probability ˛

where

˛.x; x0/ D min



1;

�.x0/q.x0; x/

�.x/q.x; x0/

�
:

If we are currently at time t and x0 is accepted,
then X .t/ D x0 otherwise the chain does not
move, i.e., X .t/ D x.t�1/.

Formally, the target distribution � is defined
with respect to a ��finite measure. The proposal
density q could be defined with respect to a
different ��finite measure from that for � . The
transition kernel P.x; x0/ using the MHA can be
written as

q.x; x0/˛.x; x0/ if x0 ¤ x:

The choice of the distribution q.�; �/ is arbi-
trary provided that q.x; x0/ > 0 if and only if
q.x0; x/ > 0. It is convenient to choose a q that
is simple and fast to sample from and for which
it is easy to evaluate the acceptance probability.
However, the relation between q and �.�/ will
affect the rate of convergence.

The Gibbs Sampler
The GS was given its name by Geman and Geman
(1984) who used it for analyzing Gibbs distri-
butions on a lattice. The algorithm constructs
the transition kernel P using the full conditional
densities of each component Xi ; i D 1; : : : ; n;

given the values of the other components X�i D
fXj I j ¤ i; j D 1; : : : ng. We denote this density
by �Xi jX�i

.xi jx�i /. Suppose we are at time t

and want to update the chain, then (as it is with
the MHA) we use either a random sampler or
a systematic scan sampler. At each iteration, the
random sampler picks a random component say,
Xi ; i 2 f1 : : : ng to update, then the conditional
density for X

.t/
i becomes �Xi jX�i

.xi jX�i D
x

.t�1/
�i /. In the systematic scan, we update all the

components in turn during one iteration using the
marginal conditional densities of the components.
In progressing from X .t�1/ to X .t/, the value of
Xi is obtained by sampling from
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�Xi jX�i
.xi jx.t/

1 ; : : : ; x
.t/
i�1; x

.t�1/
iC1 ; : : : ; x.t�1/

n /:

Hence, to update X we make random draw from
these full conditional densities for each of its
components. The iteration is completed when all
the components are updated. Hence, the transi-
tion probability from x.t�1/ to x.t/ is given by

P.x.t�1/; x.t// D
nY

lD1

�Xl jX�l
.x

.t/

l
jx.t/

1 ; x
.t/
2 ; : : : ;

x
.t/

l�1; x
.t�1/

lC1 ; : : : ; x.t�1/
n /:

The GS can be regarded as a special case of
MHA in which the acceptance rate ˛ is one,
meaning that the candidate x0 is always accepted.

The Knapsack Example
Given a set of items, each with a weight and
a value, determine the number of each item to
include in a collection so that the total weight
is less than or equal to a given limit and the
total value is as large as possible. It derives its
name from the problem faced by someone who
is constrained by a fixed-size knapsack and must
fill it with the most valuable items. To find the
most valuable subset of n items that will fit into
the knapsack given their weight wi and value vi ,
and subject to knapsack weight limit b.

´ D .´1; � � �; ´n/ 2 f0; 1gn; ´i means whether
we take item i feasible solutions E D f´ 2
f0; 1gnIPi wi´i � bg. We want to maximizeP

i vi ´i subject to ´ 2 E:

1. Let the current state be Xt D .´1; � � �; ´n/; we
choose j 2 f1; : : : ; ng uniformly at random.

2. Flip ´j so Y D .´1; ��; 1� ´j ; ��; ´n/.
3. If Y is feasible; that is, the acceptance prob-

ability ˛ is high, then set XtC1 D Y , else
XtC1 D Xt .
Given a state space E and a target distribution

� D C�1
b

exp.b
P

i vi´i /, where Cb is constan-
t. We apply Metropolis algorithm and choose
Y 2 E randomly using the proposal distribution
Q D P ŒY D j jXt D i � D qij . If Y is feasible,
it will be accepted with acceptance probability
˛ D minf1; exp.b

P
i vi .yi � ´i //g .

Notice again that this process is an MC be-
cause the state we visit next depends only on the
state we are currently at and no other state. The
n objects ´ are candidates for inclusion into our
random sample. But we must select the members
of this set according to some probability Q.

Conclusion

MCS is a very useful mathematical technique
for analyzing uncertain scenarios and providing
probabilistic analysis of different situations. The
basic principle for applying MC analysis is sim-
ple and easy to grasp. Various softwares have
accelerated the adoption of MCS in differen-
t domains including mathematics, engineering,
and finance. Various options are available to use
MCS in computers. One can use any high-level
programming language like C, C++, and Java.
R and WinBUGS are free statistical softwares
that implement MCMC methods.
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Synonyms

Annotations; Social tags

Glossary

Tag A descriptive keyword entered by a human
individual with the objective to describe a
resource (e.g., a photo, a web page). It is also
called an annotation or user-generated content

Resource In the context of this work, a multi-
media content (e.g., text file, photos, videos,
web page) available on the Internet. A re-
source is generally identified by an URI (U-
nique Resource Identifier) which enables its
access using the REST protocol

Social Bookmarking System Web-based sys-
tems allowing users to describe resources with
tags

Social Bookmark Tag in the form of a link to a
resource (e.g., web page) that is intentionally
stored, and possibly shared, by an identified
individual on a social bookmarking system, on
which individuals can attach tags

Folksonomy Whole set of tags that constitutes
an unstructured collaborative knowledge clas-
sification scheme in a social tagging system

Definition

Social Bookmarking Systems (SBS). Web-based
systems allowing users to describe resources with

annotations, also called tags. The fundamental u-
nit of information in a social bookmarking system
consists of three elements in a triplet, represented
as (user, resource, and tag) (Cattuto et al. 2006).
This triplet is also called a tag application (in-
stance of a user applying a tag to a resource;
this is also referred to as a tag post) (Sen et al.
2006). The combination of elements in a tag
application is unique. For example, if a user
(also known as tagger) tags a paper twice with
the same tag, it would only count as one tag
application. Resources can mean different things
for different social bookmarking systems. In the
case of del.icio.us, a resource is a web site, and in
the case of CiteULike, it is an academic paper.

Overview

Social Bookmarking: AMeans for
Describing Resources
Social bookmarks are tags attached to a resource,
with the main objective to describe said resource.
They describe the context or the meaning of such
artifacts. Social bookmarks can be of multiple
forms, depending on the semantic structure they
rely on.

The manipulation of web resources involves
tasks such as description, retrieval, reuse, presen-
tation, and search. All these tasks need a layer
of prior knowledge, which is represented by the
social bookmarks, which can be composed of
different types of annotations.

Such annotations may be either structured,
semi-structured, or unstructured:
1. Structured Annotations. In this case, the terms

employed in the annotation are regulated by
a common domain vocabulary that must be
used by the members of the system. These
types of annotations are currently not used
in the majority of social platforms because a
domain vocabulary containing the necessary
terms for the annotations is needed. Although
such an approach has many advantages (e.g.,
absence of synonyms, absence of differences
in pronunciation), this is not the natural way to
describe resources in Web 2.0 platforms, as the
domain is not well-defined and, therefore, it is
very difficult to build such vocabularies and to

http://dx.doi.org/10.1007/978-1-4614-6170-8_403
http://dx.doi.org/10.1007/978-1-4614-6170-8_100210
http://dx.doi.org/10.1007/978-1-4614-6170-8_100211
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establish a consensus for each term used. At
the same time, the use of semantic annotations
would be cumbersome for people, as it is time-
consuming and requires additional cognitive
effort to select concepts from existing domain
ontologies. In addition, semantic annotations
work well in systems where the domain is
well-defined (e.g., a system for sharing knowl-
edge about human genes Yeh et al. 2003), but
in social bookmarking systems, this is not the
case, as the shared content is generally very
heterogeneous, as people can discuss without
limits (i.e., covers multiple domains with no
regularities and relations).

2. Semi-Structured Annotations. In contrast,
semi-structured annotations, such as social
tags, are widely used or photo tagging and
bookmarking (e.g., the annotation of a web
page). These annotations are generally freely
selected keywords without a vocabulary in
the background. However, we consider them
to be semi-structured, as they represent an
intermediate approach between semantic
annotations (i.e., annotations that are based on
concepts from domain ontologies) and free-
text annotations. Besides, such collections
of tags converge to a structured data
organization, called a folksonomy (Gruber
2007). This consists of a set of users, a set
of free-form keywords (called tags), a set of
resources, and connections between them.
As folksonomies are large-scale bodies of
lightweight annotations provided by humans,
they are becoming more and more interesting
for research communities which focus on
extracting machine-processable semantic
structures from them. These underlying
data clouds of collaborative tagging systems
enable Internet users to annotate or search
for resources using custom labels instead of
being restricted by predefined navigational or
conceptual hierarchies (e.g., ontologies).

3. Unstructured Annotations. Finally, a more
recent form of annotations is represented
by free-text annotations, also called social
awareness streams, composed of status
updates or microposts (Naaman et al. 2010).
This can be found in the majority of social
networks and microblogging systems and

primarily consists of free texts in the form
of short messages describing a resource,
a finding, an impression, a feeling, a
recent activity, mood, or future plan. The
limitations of this practice from the viewpoint
of information retrieval and knowledge
management are similar to that of social
tagging, as users have complete freedom
in the formulation of these messages. It is
important to mention that in social awareness
streams, the produced content often contains
the described resource itself, in the form of an
integrated hyperlink. A common practice is
either to express an opinion about the resource
(e.g., web page) or to provide its short
summary for the community. Since Internet
took over Usenet as the main computer-
based means of communication, it has gone
through several stages: read-only web, with
large pieces of information close to magazine
article size; read-write Web, or web 2.0,
with forums mimicking Usenet, exchanging
pieces of information up to half a page in
size; blogging, close to the web page model
but with a shift in authorship towards the
general public; and microblogging, based
on very short messages (e.g., 140 characters
on Twitter) (Fig. 1). This shift from large,
authoritative information to very short and
amateur information is contemporary with
the mobility evolution, with the more user-
friendly web-enabled devices (e.g., the
iPhone) emphasizing a particular factor:
the context in which information is written.
This has blurred the distinction between
information and messaging, as all information
on Twitter is in fact a message to followers,
and all messages may be shared, thus creating
information. Events and documentation on
the contrary are becoming more distinct: in
the traditional newspaper information model,
documentation is delivered with events in a
single article; in the Twitter-driven model,
events are tweets, and the user is meant to
seek information in more reliable and static
sources, such as Wikipedia. An example of
such as shift is the growing use of Twitter in
the scientific community, contrasting strongly
with the process of peer-reviewed publication.
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Social Bookmarking, Fig. 1 Evolution of content production on the Internet: from structured documents to microposts

An interesting issue about free-form
posts in social platforms is their short size,
which emerged as a simple, convenient way
to communicate about activities or share
findings. The size limitation of such posts,
defined by the majority of such platforms,
is mostly due to the fact that users can in
this way follow hundreds of friends in real
time, without an important time investment.
Also, this lightweight form of communication
enables users to easily broadcast opinions,
activities, and status (Java et al. 2007; Naaman
et al. 2010).

Common practices emerged to reduce the
length of messages and to help users to rapidly
identify the messages relevant for them. Thus,
hashtags are used to identify posts relevant
to a specific event or a specific topic. Also,
common ways are used to synthesize informa-
tion: include the source web page or reduce the
amount of stop words in order to gain place for
the informative terms (keywords and named
entities). These practices largely depend also
on the targeted user community, which can
vary from a small family to the world at large.

The same applies to the composition of
such posts, where common practices emerged
as new means to better identify posts relevant
to a specific event, also called “hashtags,” or
common ways to synthesize an information,
such as including the source web page or
reducing the amount of stop words in order to
gain place for the informative terms (keywords
and named entities). These practices largely
depend also on the targeted user community,
which can vary from a small family to the
world at large. Microposts are often called

“social signals” (Mendes et al. 2010), and
users of such systems “social sensors” (Sakaki
et al. 2010), as they can be useful to detect
important events in a given location, such as
an earthquake.

AnOverviewofWeb Repositories of
User-GeneratedContent
Launched in 2001, Wikipedia (2001) was one
of the first public crowd-sourced web site. This
free encyclopedia has been allowing anyone to
edit the content of any article. Whereas this
openness has implied many disputes on pages
related to controversial subjects (e.g., facts about
presidential candidates just before election, about
historical events, companies), it has grown to
become a major and useful reference, cover-
ing many languages. This encyclopedia has been
translated to a semantic database called DBpedia
(Bizer et al. 2009) since 2007, enabling its user-
generated content to be machine-readable, so that
computer programs (and mashups) can leverage
knowledge facts by formulating precise queries.

Even though Wikipedia has been opened to
any voluntary contributions, contributors are still
few, compared to the number of readers. Partic-
ipating in social bookmarking sites, like Deli-
cious (2003), has become more popular, as the
contribution process was quicker, simpler, and
more personal. After creating a (free) account on
the site, users can immediately bookmark web
pages that they want to keep, because they enjoy
them, they want to be able to easily find them
later, and they (often) want to share them with
other people. In order to make bookmarked web
pages more easy to find later, users are invited to
annotate them with “tags,” unconstrained words



Social Bookmarking 1753 S

S

(in any language, without even spell-checking)
that subjectively reflect the apparent nature, func-
tion, category, and context of those web pages
(Golder and Huberman 2006). Web pages book-
marked (and tagged) by several people are thus
described by a “tag cloud,” a displayed set of tags.
The size of a tag depends on the number of people
who used this tag to describe this page.

As any URL-located resource can be
bookmarked on social bookmarking sites, these
descriptions can apply on various types of entities
represented by those resources. For example,
tags given to a page that presents a car are
most probably associated to the car, than to
the page/site itself. Now that web pages exist
for almost anything on earth (e.g., people,
objects, places, events), social bookmarking is a
promising paradigm for gathering crowd-sourced
descriptions and classifications of virtual and
real entities. More specific repositories also
exist to represent and describe real-world entities
and discover their involvement with people’s
activities. Concerning music, Musicbrainz (2001)
can identify the name and interpreter of a song
from a sampled audio (e.g., recorded with a
microphone), and tags given by people to songs
and artists are gathered on web sites like Last.fm
(2002), which also maintains a history of the
last songs that users listened to. Image-sharing
web sites like Flickr (2004) can be considered as
social bookmarking applied to photographs, as it
is possible to tag one’s own and other people’s
photographs, including the time and geographical
location where the picture was taken.

Additionally, real-world places are described,
reviewed by people, and geographically located
on various web sites (and their mobile applica-
tions) such as Yelp (2004) and Qype (2006).

Rattenbury et al. (2007) have proven that
names of places and events can also emerge
by analyzing the frequency and temporal
distribution of tags associated to geolocated
pictures. Most web sites cited above expose
public feeds that one can subscribe for being
aware of last updates and/or APIs that allow
computer programs to query information, given
specific criteria (e.g., information about a place,
a topic, at a given time range).

Thousands of other APIs are referenced on
sites like ProgrammableWeb. Also note that tags
are not directly available on all the web sites
cited above, but keywords can be identified from
the user-generated content they feature. It is also
possible that pages from those sites are tagged on
Delicious.

KnowledgeManagement in Social
Bookmarking Systems

A category of annotations in Social Platforms
are semi-structured, also called social tags. Social
bookmarking systems have become extremely
popular in recent years. Their underlying da-
ta structures, known as folksonomies (Mathes
2004), consists of user-tag-resource triples.

Folksonomies contain peoples’ structural
knowledge about documents. A person’s
structural knowledge has been defined as the
knowledge of how concepts in a domain are
interrelated from the individual’s point of view.
According to (Mathes 2004), an important aspect
of a folksonomy is that it is comprised of
terms in a flat namespace: that is, there is no
hierarchy and no directly specified parent-child
or sibling relationships between these terms.
There are, however, automatically generated
“related” tags, which cluster tags based on
common URLs. This is unlike formal taxonomies
and classification schemes where there are
multiple kinds of explicit relationships between
terms. These relationships include functions like
broader, narrower, as well as related terms. These
folksonomies are simply the set of terms that
a group of users tagged content with; they are
not a predetermined set of classification terms or
labels.

Folksonomies claim to have many advan-
tages over controlled vocabularies or formal
taxonomies. Tagging has lower costs because
there is no complicated, hierarchically organized
vocabulary to learn and adapt to its own one.
Users simply create and apply tags. According
to Wu et al. “Folksonomies are inherently
open-ended and therefore respond quickly to
changes and innovations in the way users
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categorize content” (2006). Collaborative tagging
is regarded as democratic metadata generation
where metadata is generated by both the creators
and consumers of the content. Folksonomies can
be divided into broad folksonomies, which allow
different users to assign the same tag to the same
resource, and narrow folksonomies, in which the
same tag can be assigned to a resource only once.

The question of why folksonomies are suc-
cessful has been the subject of several studies in
the literature. An important argument for this is
the fact that the feedback loop is tight (Mathes
2004) i.e., once the user assigns a tag to an item,
the cluster of items with identical or similar tags
can be immediately retrieved. This can help the
user decide whether to keep the tag or change it
to a similar or different one. The scope of such
a cluster can be expanded by showing all items
from all users in the system which are tagged
with the same tag. By viewing the result set,
the user can decide how to better adapt the tag
to the group norm or to have better visibility
in the community for the tagged resource. The
issue of how to influence the group norm was
also studied by Udell. This tight feedback loop
leads to a form of asymmetrical communication
between users through metadata. The users of
a system are negotiating the meaning of the
terms in the folksonomy, whether purposefully
or not, through their individual choices of tags to
describe documents for themselves.

A folksonomy eases collaboration. Groups of
users do not have to agree on a hierarchy of tags
or detailed taxonomy; they only need to agree, in
a general sense, on the “meaning” of a tag enough
to label similar material with terms for there to be
cooperation and shared value. Although this may
require a change in vocabulary for some users,
it is never forced, and as Udell discussed, the
tight feedback loop provides incentives for this
cooperation.

The main problems of social tagging sys-
tems include ambiguity, lack of synonyms, and
discrepancies in granularity (Golder and Huber-
man 2006). An ambiguous word, e.g., apple,
may refer to the fruit or the computer company,
and this in practice can make the user retrieve
undesired results for a given query. Synonyms

like lorry and truck or the lack of consistency
among users in choosing tags for similar re-
sources, e.g., nyc and new york city, makes it
impossible for the user to retrieve all the desired
resources unless he/she knows all the possible
variants of the tags that may have been used.
Different levels of granularity in the tags may also
be a problem: documents tagged “java” may be
too specific for some users, but documents tagged
“programming” may be too general for others.

Several attempts have been made to uncover
the structure of this kind of data organization.
Basic formal models of folksonomies include
that of Mika (2007) and Hotho et al. (2006).
Mika proposes a model based on tripartite
hypergraphs, while Hotho et al. on triadic
context (term used in formal concept analysis).
We present in the following the formal model
of Mika, one of the most cited models in
the literature for the representation of these
structures.

As said before, a folksonomy is an associ-
ation of users, annotations, and resources. The
corresponding three disjoint set of vertices are
considered by Mika in the formal model: the set
of actors (users) -A-, the set of concepts (tags)
-C -, and the set of resources -O- (e.g., photos,
videos, or web resources, like bookmarks, web
sites). Since in a social tagging system, users
tag objects with concepts, ternary relations are
created between the user, the concept, and the
object.

This resulting tripartite hypergraph can be
transformed into several bipartite graphs, each
having a very specific meaning, like AC , the
graph that associates actors and concepts; CO ,
the graph that associates concepts and objects;
and AO , the graph that associates actors and
resources.

Abel (2008) investigates the benefits of
additional semantics in folksonomy systems.
Additional context can be provided to the tagging
activity with an extension of the tripartite model,
i.e., an association of the user, the tag, and the
tagged resource, that describes more precisely
the particular tagging activity. For example, time
stamp helps to categorize tags in a temporal
manner; the mood the user had when tagging
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the resource would allow to qualify opinions
expressed in a tag. Other information, like
background knowledge about the user, would
allow to have information about the reliability of
the tagger. The GroupMe! folksonomy system
is proposed, which is a new kind of resource
sharing system for multimedia web resources.
A first extension of previous models is the
introduction of the term group, which is a
finite set of related resources. The folksonomy
model in GroupMe! can be thus formalized
in the following manner (we note with F the
folksonomy model): F D .U; T; IR; G; Y /,
where U; T; R; G are finite sets that contain
instances of users, tags, resources, and groups.
IR D R [ G is the union set of resources and
the set of groups.

Wu et al. (2006) identify the key challenges
in collaborative tagging systems. The three
identified challenges are the following: (i) the
identification of communities (i.e., groups of
users with similar interests), (ii) preventing
information overload by filtering out high-quality
documents and users (e.g., experts in a domain),
and (iii) how to create scalable, navigable
structures from folksonomies. Folksonomies are
criticized to have flaws that formal classification
systems are designed to eliminate, including
polysemy, words having multiple related
meanings, and synonymy, multiple words having
the same or similar meanings.

Information Retrieval from
Folksonomies: Social Information
Retrieval
In the previous section, we have seen the general
definition and structure of folksonomies, the data
organization in social tagging systems. In this
section, we go further and review existing tech-
niques of information retrieval in folksonomies.

The biggest challenge in folksonomies is
information retrieval, i.e., the question of how
to efficiently rank items (e.g., tags, resources,
users) for a given user query. In traditional
Internet applications, the search and navigation
process serves two vital functions: retrieval and
discovery. Retrieval incorporates the notion
of navigating to a particular resource or a

resource containing particular content. Discovery
incorporates the notion of finding resources or
content interesting but therefore unknown to
the user. The success of collaborative tagging
is due in part to its ability to facilitate both
these functions within a single user-centric
environment. Reclaiming previously annotated
resources is both simple and intuitive, as most
collaborative tagging applications often present
the user’s tag in the interface. Selecting a tag
displays all resources annotated by the user with
that tag. Users searching for particular resources
they have yet to annotate may select a relevant
tag and browse resources annotated by other
users. However, the discovery process can be
much more complex. A user may browse the
folksonomy, navigating through tags, resources,
or even other users. Furthermore, the user may
select one of the results of a query (i.e., tag,
resource, or user) as the next query itself. This
ability to navigate through the folksonomy is one
reason for the popularity of collaborative tagging.

In order to provide efficient retrieval
mechanisms, a formal model of folksonomies
is required. There are several models in the
literature, e.g., that of Mika (2007) and Hotho
et al. (2006). Mika proposes a model based on
tripartite hypergraphs, while Hotho et al. on
triadic context (term used in formal concept
analysis).

Hotho et al. adapt the well-known PageRank
algorithm in order to apply it on folksonomies,
called FolkRank. The impossibility of applying
PageRank has its origins in the fact that a folkson-
omy is different from the web graph (undirect-
ed triadic hyperedges instead of directed binary
edges). By modifying the weights for a given tag,
FolkRank can compute a ranked list of relevant
tags.

The original formulation of PageRank (Brin
and Page 1998) reflects the idea that a page is
important if there are many pages linking to
it and if those pages are important themselves
(recursive aspect of importance). The distribution
of weights can thus be described as the
fixed point of a weight passing scheme on
the web graph. This idea was extended in
a similar fashion to bipartite subgraphs of
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the web in HITS (Kleinberg 1999) and to
n-ary directed graphs (Xi et al. 2004). The
same underlying principle is employed for the
ranking scheme in folksonomies. The basic
notion is that a resource which is tagged with
important tags by important users becomes
important itself. The same holds, symmetrically,
for tags and users. Such a ranking schema can
help the emergence of a common vocabulary in
collaborative tagging systems, by recommending
to the user tags that have a bigger visibility in the
community and that is also semantically close to
the user-defined tag.

Abel et al. (2008) perform an in-depth analy-
sis of ranking algorithms specially designed for
folksonomies – FolkRank, SocialSimRank (Bao
et al. 2007), and SocialPageRank – and adapt
them to the GroupMe! social bookmarking sys-
tem, where an additional dimension is added to
folksonomies, i.e., groups of resources.

Gemmell et al. (2008) propose a method
to personalize a user’s experience within a
folksonomy using unsupervised clustering of
social tags as intermediaries between a query and
a set of items. Terms in the query are weighted
based upon their affinities to particular clusters to
help disambiguate queries.

Bao et al. (2007) propose different algorithms,
such as SocialSimRank and SocialPageRank to
optimize web search using social annotation-
s. The underlying hypotheses of the proposed
algorithms are the following: (i) social annota-
tions about web pages are good summarizations
of the given web page and can be used for effi-
cient computation of similarity between a search
query and a web page, and (ii) the amount of
annotations assigned to a web page is a good
indication of its popularity.

Vocabulary Construction and Emergence
of Semantics
In this section, we present different approach-
es for extracting and constructing a hierarchical
structure of tags in collaborative tagging systems.
Recently, several papers proposed different ap-
proaches to construct conceptual hierarchies from
tags collected from social web sites. Mika (2007)
uses a graph-based approach to construct a net-

work of related tags, projected from either a user-
tag or object-tag association graphs. Although
there is no evaluation of the induced broader/-
narrower relations, the work provides a good
suggestion to infer them by using betweenness
centrality and set theory. Other works apply clus-
tering techniques to keywords expressed in tags
and use their co-occurrence statistics to produce
conceptual hierarchies (Brooks and Montanez
2006; Zhou et al. 2007).

Brooks and Montanez (2006) argue that
hierarchical structures which seem to match that
created by humans can in fact be inferred from
existing tags and articles in collaborative tagging
systems. This may imply that folksonomies and
traditional structured representations are not so
opposed after all, rather, tags are a first step
in helping an author or reader to annotate her
information. Automated techniques can then be
applied to better categorize specific articles and
relate them more effectively to other articles.
The method used is agglomerative clustering and
consists of the following steps: the comparison of
each tag cluster to every other tag cluster, using
the pairwise cosine similarity metric. Each article
in cluster one is compared to each article in
cluster two, and the average of all measurements
is computed. The two closest-similarity clusters
from the list of tag clusters are removed and
replaced with a new abstract tag cluster, which
contains all of the articles in each original cluster.
This cluster is annotated with an abstract tag,
which is the conjunction of the tags for each
cluster.

This procedure is followed until there is a
single global cluster that contains all of the
articles. By recording the order in which clusters
are grouped into progressively more abstract
clusters, a tree that shows the similarity of
tags can be constructed. Plangprasopchok and
Lerman (2009) propose a different approach for
constructing folksonomies from user-specified
relations on Flickr by statistically aggregating
tags from different collections. This approach
uses the shallow hierarchies created through the
collection-set relations on Flickr. Authors argue
that partial hierarchies are a good source informa-
tion for generating folksonomies and propose a
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simple statistical approach to resolve hierarchical
relation conflicts in the aggregation process.

Another approach for the extraction of
hierarchical semantics from social annotations
is proposed by Zhou et al. (2007). A probabilistic
unsupervised method is proposed, called
Deterministic Annealing. This method performs
a top-down approach on the flat tag space,
beginning with the root node containing all
annotations and splitting it to obtain clusters
with narrower semantics.

Cattuto et al. (2008) perform an analysis
on a large-scale snapshot of the popular social
bookmarking system Delicious. To provide a
semantic grounding of the folksonomy-based
measures, tags of Delicious are mapped to synsets
of WordNet (Markines et al. 2009) and use the
semantic relations of WordNet to infer corre-
sponding semantic relations in the folksonomy.
In WordNet, the similarity is measured by using
both the taxonomic path length and a similarity
measure by Jiang and Conrath (1997) that
has been validated through user studies and
applications (Budanitsky and Hirst 2006). The
use of taxonomic path lengths, in particular,
allows to inspect the edge composition of paths
leading from one tag to the corresponding related
tags, and such a characterization proves to be
especially insightful. Co-occurrence is a measure
that extracts from the folksonomy a graph for
tags, where edges are weighted with the number
of times they co-occur (i.e., tags on the same
resource).

The results can be taken as indicators that
the choice of an appropriate relatedness mea-
sure is able to yield valuable input for learning
semantic term relationships from folksonomies,
i.e., (i) synonym discovery, (ii) concept hierar-
chy extraction, and (iii) the discovery of multi-
word lexemes. The cosine similarity is clearly
the measure to choose when one would like to
discover synonyms. Cosine similarity delivers not
only spelling variants but also terms that belong
to the same WordNet synset. Both FolkRank
and co-occurrence relatedness yield more general
tags. This could be a proof that these measures
provide valuable input for algorithms to extract
taxonomic relationships between tags.

Conclusion

The objective of this entry was to present the
main constituents of social bookmarking, a
very popular activity on the web nowadays.
We depicted the main pillars of such systems
and highlighted reference scientific work
related to the manipulation of the knowledge
in such systems for information retrieval and
classification.
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Social Capital

Roger Leenders
Tilburg School of Social and Behavioral
Science, Department of Organization Studies,
Tilburg University, Tilburg, The Netherlands

Synonyms

Capital; Goodwill; Human capital; Social net-
works; Trust

Glossary

Social Capital Productive resources residing
in and resulting from social networks

Social Liability Obstructive resources resid-
ing in and resulting from social networks

Human Capital One’s stock of competencies,
knowledge, skill, education

Political Economics The study of the relation-
ship between politics and economics in society

Definition

By analogy with notions of physical capital and
human capital, “social capital” refers to the
features of social organization that facilitate

coordination and cooperation for mutual or
individual benefit. According to sociologist
James Coleman (1990), “Like other forms of
capital, social capital is productive, making
possible the achievement of certain ends that
would not be attainable in its absence. : : : In a
farming community : : : where one farmer got his
hay baled by another and where farm tools are
extensively borrowed and lent, the social capital
allows each farmer to get his work done with
less physical capital in the form of tools and
equipment.”

Social capital has been referred to as “the
glue that holds society together” and is centrally
concerned with the value and implications of
relationships as a resource for social action. It is
often considered to be the contextual complement
to human capital. Social capital theory contends
that returns to intelligence, education, and senior-
ity depend considerably on a person’s location
in the social structure of a market or hierarchy.
While human capital refers to individual ability,
social capital refers to opportunity (Burt 1997).

During recent years, the concept of social cap-
ital has become one of the most popular exports
from sociological theory into everyday language
(Portes 1998). As a term, “social capital” has
become one of sociology’s trendiest terms, both
in academic literature and popular publications.
There seems to be a contagious quality to the
concept’s predominant focus on positive aspects
of human interrelationships. In addition, the con-
cept is attractive to many by providing a broad
framework that focuses on non-monetary capital
as a source of influence and prosperity.

Historical Background

Although the active use of the concept dates
back to the nineteenth century, the social capital
concept only became popular in the 1980s and
this popularity accelerated in a major way in the
1990s. Figure 1 shows the number of academic
articles abstracted in Scopus (1980–2011) with
“social capital” in the title or in the abstract,
both displaying exponential growth. When book-
s, book chapters, reviews, conference papers,

http://doi.acm.org/10.1145/988672.988715
http://doi.acm.org/10.1145/988672.988715
http://yelp.com
http://dx.doi.org/10.1007/978-1-4614-6170-8_100143
http://dx.doi.org/10.1007/978-1-4614-6170-8_100144
http://dx.doi.org/10.1007/978-1-4614-6170-8_100145
http://dx.doi.org/10.1007/978-1-4614-6170-8_110091
http://dx.doi.org/10.1007/978-1-4614-6170-8_110091
http://dx.doi.org/10.1007/978-1-4614-6170-8_100147


S 1760 Social Capital

Social Capital, Fig. 1 The social capital concept in the academic literature

editorials, and popular press are included, the
numbers go up further still. Until around 1980
there were virtually no papers that featured social
capital. In the late 1990s the World Bank started a
Social Capital Initiative, a program with the aim
of defining, monitoring, and measuring social
capital (Grootaert and Van Bastelaer 2001). The
initiative is ongoing and active today (http://go.
worldbank.org/VEN7OUW280).

Apart from economics and sociology, the con-
cept’s original habitats, “social capital” has been
adopted by a very wide range of disciplines.
Figure 2 gives an overview of the fields (as cat-
egorized by Scopus) that published papers with
“social capital” in their abstract. The figure shows
that an astounding variety of academic disci-
plines publish papers that employ the concept,
including the disciplines “biochemistry,” “earth
and planetary science,” “agricultural science,”
“computer science,” and “medicine”–not exact-
ly social sciences. Notwithstanding this variety

in fields, virtually all of these papers consid-
er social capital in terms of the ability of ac-
tors to secure benefits by virtue of member-
ship in social networks or other social structures.
Obviously, the concept has caught on.

The Evolution of the Concept

In a way, there seem to be two largely separate
histories of the “social capital” concept. The first
starts in the late nineteenth century and runs into
the beginning of the twentieth. The second starts
around 1980 and is ongoing. Although today’s
use of the social capital concept differs from the
way it was originally developed over a century
ago, it is instructive to describe at least a little bit
of the concept’s original heritage.

It appears that political economists were
the first to use “social capital” in their
writings. Alfred Marshall used the term in 1890

http://go.worldbank.org/VEN7OUW280
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Social Capital, Fig. 2 The scientific fields that study social capital

(Marshall 1890). Before that, so had John Bates
Clark (1885), Henry Sidgwick (1883), and Karl
Marx (1867). In their work, they were opposing
what they regarded as the unsocial point of view
of classical political economy. Contrasting with
the “individual” point of view of capitalists,
social capital was “capital from the social point
of view.” Social capital was an aggregate of
tools, inventions, improvements in land, roads,
bridges, the organization of the State, and the
skill and ability of humans. Also, immaterial
elements were added to the concept, such as
“goodwill” (Farr 2004, p. 22). As I will show
later in this article, goodwill is still at the core of
contemporary views of social capital.

The way in which the political economists of
the nineteenth century thought about social capi-
tal painted a lively picture of corporations, trade
unions, friendly societies, brotherhoods, guilds,
communes, and cooperatives of endless variation.

Through their joint ties, these cooperatives at-
tempted to increase wages, share wealth, and
render mutual aid (Farr 2004). Perhaps surpris-
ingly, this picture is in many ways quite close
to the social networks approach to social capital
that has become the concept’s dominant focus in
contemporary research.

Farr (2004, p. 25) eloquently describes how
the political economists’ approach to social capi-
tal relates to its contemporary treatment:

The political economists of the nineteenth
century. . . took capital from the social point of
view. Today’s social capitalists, apparently, take
“the social” from capital’s point of view. The one
reflected an age coming to terms with capital, the
other an age coming to capital for its terms. Then,
“social capital” expressed an explicit antithesis
to an unsocial perspective upon capital, now, an
implicit antithesis to a noncapitalist perspective on
society. “Social capital” was once a category of
political economy in a period of its transformation,
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now one of economized politics, expressing the
general dominance of economic modes of analysis
in society and social science. But, in the long view,
these perspectives may not be logical antinomies so
much as two sides of the same coin. Both, surely,
sought or seek to comprehend the social relations
constitutive of modern capitalist societies, and to
position capital as their governing asset. And both,
significantly, did so in the very terminology of
“social capital.”

The contemporary strain of social capital s-
tudies flows primarily from the works of Pierre
Bourdieu, James Coleman, and Robert Putnam.
In The Forms of Capital, Bourdieu (1986) distin-
guishes between three forms of capital: economic
capital, cultural capital, and social capital. For
him, social capital is made up of social obliga-
tions and connections. It is “the aggregate of the
actual or potential resources linked to possession
of a durable network of more or less institution-
alized relationships of mutual acquaintance and
recognition—or in other words, to membership
in a group.” To Bourdieu, social capital can be
broken into two elements: the size of one’s con-
nections and the volume of capital (economic,
cultural, or symbolic) in these connections’ pos-
session. To Bourdieu social capital refers to a
sphere of “mutual acquaintance and recognition”
(Bourdieu and Wacquant 1992). In his view, so-
cial capital cannot be reduced to economic or
cultural capital, nor is it independent of them: it
acts as a multiplier for the two other forms.

For Coleman, social capital consists of “a
variety of different entities with two elements
in common: they all consist of some aspect
of social structure, and they facilitate certain
actions of actors—whether personal or corporate
actors—within the structure” (Coleman 1990).
One of Coleman’s well-known examples is that
of the Jewish diamond traders of New York.
The merchants were able to have their diamonds
appraised through their local networks without
the need to resort to costly legal contracts to
safeguard against being cheated, because of the
strength of the ties between their community
members and the ready threat of exclusion if trust
was violated. As a result, the traders were able
to increase their economic advantage because of
their social networks (Coleman 1988).

Coleman’s approach derives from his inter-
est in drawing together the insights from two
disciplines: economics and sociology. Where in
Bourdieu’s work social capital serves to multi-
ply economic and cultural capital, in Coleman’s
work an important function of social capital is
in the multiplication of human capital. His main
argument was that social capital had a profoundly
beneficial effect on the acquisition of educational
credentials (Schuller et al. 2001).

The fundamental difference between the Bour-
dieu and Coleman definitions lies in how and
why the social processes develop. For Bourdieu,
social processes are constrained by underlying
economic organization; in his view the potential
of profit is the very reason for the solidarity that
makes group existence possible. In fact, Bourdieu
argues that these processes may become habitu-
alized and become reinforced by “habitus.” For
Coleman, on the other hand, they are created by
the free will of individuals. In his approach, social
capital is created by rational, purposeful individ-
uals who build social capital. As they attempt to
maximize their individual opportunities, individ-
uals freely choose to build networks to further
their self-interest. Coleman views social capital
as a form of contract: individuals must have trust
that others will reciprocate their actions and will
feel some social obligation to do so.

The disparity in the definition of social cap-
ital between Coleman and Bourdieu has conse-
quences in the way social capital needs to be
measured. An analysis based on Bourdieu’s def-
inition would need to include an understanding
of the material conditions driving the formation
of social processes. A Coleman-esque analysis
needs only to consider motivation at the individ-
ual (or aggregated individual) level.

One of Coleman’s chief contributions to the
social capital literature may be in his relative-
ly straightforward sketch of the concept, which
attracted widespread attention among social re-
searchers. Bourdieu’s work became popular only
after it had been translated from French to En-
glish. Coleman’s work has probably shaped the
contemporary debate more than that of any other
author. Since it has been so prominent, it has also
been widely criticized. Important criticism comes
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from Portes (1998) who charged Coleman with
using a “rather vague definition” that “opened the
way for re-labelling a number of different and
even contradictory processes as social capital”
(Portes 1998, p. 5). In particular, Portes argued
for the need to draw a clear line between mem-
bership of social structures on the one hand and
the resources acquired through such membership
on the other.

Despite the reservations that have been voiced
regarding his work, Coleman’s contributions have
been both influential and significant. Although
now overshadowed by Putnam in the wider public
policy debate, Coleman has arguably had much
greater influence over scholarship in the debate so
far (Schuller et al. 2001, p. 8) and justifiably so.

Probably the currently most well-known au-
thor on social capital is Robert Putnam, who has
appeared in televised talk shows, was invited to
Camp David, and was even featured in People
magazine. Social capital is now deployed in a
great many fields and Robert Putnam undoubt-
edly is the author whose work is cited across
a wider range than any other (Schuller et al.
2001). Much of his work’s popularity is due to
the use of a clever and compelling metaphor,
“Bowling Alone,” characterizing the transforma-
tion of American social and political life during
the postwar era (Putnam 1995, 2000). His work
deployed the example of bowling as an activity
which used to be highly associational, not only a
source of recreational pleasure but also of social
interaction, a key component of social capital.

In this work, Putnam argued that a decline in
civic culture was occurring in the United States
since the 1960s, an idea that resonated with many
of his readers. Controlling for political ideolo-
gy, tax revenues, and several other conditions,
Putnam concluded that the best predictor of gov-
ernmental performance was a strong local tra-
dition of civic engagement, measured by social
capital variables such as membership in voluntary
organizations and voter participation in elections.
Putnam was certainly not the first to call attention
to the disintegration of American civic culture,
but his work is clearly distinct from earlier au-
thors through its specific focus on the eroding
of social capital. According to Putnam, social

capital “refers to the collective value of all ‘social
networks’ and the inclinations that arise from
these networks to do things for each other.” In
other words, it refers to features of social orga-
nization, such as trust, norms, and reciprocity,
that can improve the efficiency of society by fa-
cilitating participants to act together more effec-
tively to pursue shared objectives. Like Coleman,
Putnam’s definition strongly relies on networks
and social linkages but Putnam aggregates the
social capital of individuals to a “collective social
capital” of a population, state, or community.
Putnam’s main argument is that social capital
is a key component to building and maintaining
democracy and notices its decline by, among
other things, lower levels of trust in government
and lower levels of civic participation. He makes
the claim that television (“the only leisure activity
where doing more of it is associated with lower
social capital”) and urban sprawl (“every ten
minutes of commuting reduces all forms of social
capital by 10 %”) have had a significant role in
making the USA far less “connected.” In his
analysis, Putnam focuses on the creation of civic
norms, which lead to socioeconomic order; this is
basically the reverse of Bourdieu’s description of
the relationship.

Notwithstanding the “celebrity status” his
work gained him, Putnam’s work has also been
extensively criticized. Putnam’s arguments have
been criticized as being circular and tautological:
“social capital is simultaneously a cause and
an outcome. It leads to positive outcomes,
such as economic development and less crime,
and its existence is inferred from the same
outcomes” (Portes 1998). Other criticism (e.g.,
McLean et al. 2002) relates to his lack of sound
empirical measures (of both social capital and
his dependent variables), inconsistent and in-
complete derivation of his causal statements, the
presence of implicit ideological underpinnings,
and historical inaccuracy. In a 1998 special issue
of the American Behavioral Scientist, several of
his key results were reexamined, many of which
found no or only limited support.

Perhaps the strongest points of criticism has
been raised by Boggs (2001), who writes that “the
author’s iconic status does not prevent his book
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from being so conceptually flawed and historical-
ly misleading that it would seem to require yet
another large tome just to give adequate space
to the needed systemic critique.” Boggs makes
some compelling arguments that social capital is
not on the decline at all, for example, because
“Putnam fails to consider the spread of newer,
in many ways more interesting, civic phenomena
over exactly that same time span—not only social
movements but thousands of self-help and new-
age groups, religious movements, and communi-
ty organizations (resource centers, clinics, book-
stores, periodicals, public interest groups, tenants
associations, and so forth) often spawned by the
larger movements” (Boggs 2001, p. 286). Boggs
argues that social capital in fact has resurfaced,
but in new (often apolitical) forms. He even takes
issue with Putnam’s Bowling Alone metaphor,
which Putnam derived from the observation that
participation in bowling leagues had declined by
about 40 %, a sign to Putnam that social networks
were eroding. Not only can bowling activity have
been rechanneled to even more socially interac-
tive sports like golf or soccer (Lemann 1996), but
Boggs argues that people simply switched from
bowling in leagues to bowling in more informal
groups of friends and relatives: it would be quite
rare for people to actually bowl alone. . .

Basically, every aspect of Putnam’s work has
been criticized, sometimes dogmatically so and
overly harsh. Indeed, Putnam’s measures and
concept of social capital are relatively weak and
lack definition and consistency. Putnam’s work
popularized “social capital” quickly and across
a great many disciplines. It was inevitable that
many authors blindly copied Putnam’s less-
than-fully sound approach, yielding a surge
of social capital-based papers that lack rigor
and consistency. However, it is hardly fair to
blame Putnam for this. Rather, he deserves
some praise for bringing an academic concept
to the political agenda and the general public
in a easily understandable way. It is now up
to the (scientific) community to develop sound
definitions, measures, and causal models that
bring the concept further.

AModel of Social Capital
The explosion of social capital research is hav-
ing a predictable consequence: the term is pro-
liferating meanings. It has been applied in so
many different contexts that it has lost any dis-
tinct meaning. Many social science researchers
and policy makers may have embraced the term
because it provides a hardnosed economic feel
while restating the importance of the “social”
(Halpern 2005). The concept has therefore been
characterized as a “wonderfully elastic term” and
a “notion that means many things to many peo-
ple” and that has taken on “a circus tent quality”
(Adler and Kwon 2002, p. 18). As a consequence,
social capital may be at a risk of being used as a
metaphor only.

The commonalities of most definitions of
social capital are that they focus on social
relations that have productive benefits. In
the remainder of this article, I will adopt a
definition and a conceptual broad model of
social capital that includes both social capital
sources and outcomes, multiple levels of
aggregation, allows room for multidimensionality
and multidisciplinarity, and can be extended to
incorporate “time” as a variable in the social
capital process. Of course, as with any definition,
its leniency and agility is in how it is interpreted
and applied, so I dare make no claim that this
definition fits with every research project in any
discipline. In fact, it is unlikely that a definition
of social capital can be made that fits that bill and
would still be useful. My definition is:

Social capital refers to the social resources that
accrue to an actor (or a set of actors). Its source
lies in the structure and content of the actor’s
social relations. These social resources facilitate
the attainment of goals of the actor (or set of
actors).

This definition is largely based on the defini-
tions provided by Gabbay and Leenders (1999)
and Adler and Kwon (2002). The term “social
resources” refers to goodwill, norms, sympathy,
trust, forgiveness, and shared beliefs that make
alters willing or more likely to share resources



Social Capital 1765 S

S

structure and
content of 
social relations

• shared beliefs
• goodwill
• trust
• sympathy
• forgiveness
• …

• information
• influence
• solidarity
• norms
• social support
• … 

beneficial
outcome

SOCIAL
NETWORK

SOCIAL
CAPITAL

OUTPUT
RESOURCES

VALUE

Social Capital, Fig. 3 A conceptual model of social capital

that facilitate the attainment of some goal. As
Adler and Kwon (2002) put it: “if goodwill is
the substance of social capital, its effects flow
from the information, influence, and solidarity
such goodwill makes available.” In the current
definition, the information and influence (or other
resources made available through the goodwill
within an actor’s social ties) needs to support the
attainment of some goal for it to constitute to
social capital. The reason for this is that one can
easily argue that available information that one
may not need or understand cannot fruitfully be
considered capital. Social capital requires the use
or mobilization of the actor’s social resources in
purposive actions (Lin 2001).

This view on social capital is depicted in
Fig. 3. While it is consistent with a large propor-
tion of the social literature, authors vary in their
implementation of it. For example, the model
categorizes “norms” as flowing from the goodwill
that is inherent in the social network. However,
there are also authors who view norms as inherent
in social networks themselves – the presence of
certain norms in a network can even be a reason
for an actor to join the network – and these norms
then make people likely to share knowledge with
their alters; this would put norms in the social
capital box. For this article it is not necessary
to have a full-blown categorization that fits with
the entire literature (which would be impossible,
anyway) or with which all researchers would
agree (which is equally outside the realm of
possibility). What is important is that it fits with
most of the literature and addresses the basic
process that underlies social capital production
and effects.

AMultilevel Concept
Much debate in the social capital literature
deals with whether social capital resides at the
individual level of aggregation or whether it
is a group-level phenomenon. James Coleman
focused mainly, though not exclusively, on the
individual: a person’s set of social ties provides
that person with benefits. Robert Putnam, on the
other hand, mainly focuses on the distribution of
social ties within societies and studies how this
high-level social structure produces outcomes at
the level of the community.

The level-of-analysis discussion relates to two
separate questions: what is the level of analysis
at which the social ties reside and is their out-
come accrued to the group or to the individual?
A third, related, question addresses whether the
social capital process is driven by individual goal
seeking behavior or whether it is driven by com-
munities/collectives that have preferred outcomes
they seek to fulfill.

When studying the collective social capital
literature one can only conclude that questions
regarding the level at which the relevant social
ties or their outcomes reside are unnecessarily
restrictive and ignorant of empirical reality. Just
as an individual can mobilize his personal con-
tacts’ resources for purposive action, so can a
formal organization activate various resource net-
works to achieve its goals (Knoke 1999). There
is ample evidence that individuals benefit from
their own individual-level social networks as well
as from the ties maintained by collectives they
are part of. Similarly, collectives such as orga-
nizational groups draw the fruits from both their
own connectivity with other collectives and the
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ties maintained by (some of) their individual
members. In fact, fine-grained analyses indicate
that more levels than just two are often relevant.
Figure 4 shows the multilevel nature of social
capital, with only two levels for simplicity. It
is based on Gabbay and Leenders (2001), who
classify the multilevel character of the literature
into four main categories.

Type A refers to the lion’s share of social capi-
tal research performed in organizational settings.
Social structure and outcomes are both consid-
ered at the level of the individual. A typical ex-
ample is Burt (1992), showing that managers with
disconnected networks achieve faster promotions
to managerial positions. Other typical examples
include studies on how people mobilize their
array of direct and indirect relationships to ac-
complish personal goals such as finding jobs and
achieving upward mobility (Granovetter 1973).
Although he doesn’t use the term social capital
explicitly, Granovetter’s (1973) argument is en-
tirely about social capital; the mechanism Gra-
novetter discusses is as follows. The friendship
ties people maintain provide them with alters
who have the goodwill (and good will) to pro-
vide them with valuable information, for exam-
ple, about possible interesting job opportunities.
Friendship ties tend to vary in strength; ego may
have drinks with some friends every night of the
week, whereas ego interacts with other friends
only once or twice a year. The former set of
friends (who have strong ties with ego) is likely
to all have the same friends as ego, whereas the
latter set of friends (who are connected to ego

by weak ties) will likely socialize with many
others than ego does. The larger the set of weak
friendship ties an individual has, the more varied
the information that will reach ego. Granovetter’s
work showed that individuals with many weak
ties are more likely to find a suitable job or be
upwardly mobile. Thus, the social network of
individuals provides them with the social cap-
ital that makes available output resources (in
this case, information) that bestows them with
the value of increased opportunities on the job
market.

Social capital research of Type B refers to the
benefits a collective (e.g., a company) draws from
networks of individuals. For example, trustwor-
thy relationships between employees of a firm
and the employees of a bank may make it easier
for that firm to secure a loan from that bank. Law
firms, accounting firms, and consulting agencies
considerably draw upon the networks senior con-
sultants have with their clients to bring business
to the firm. In firms, successful innovation often
requires the firm to bring information about the
market into the firm as well as new technol-
ogy and other resources (such as financial re-
sources). In many firms, much of this is achieved
through ties that individual employees maintain
with actors outside the firm; they then distribute
these resources to the places in the firm that might
need them. The effectiveness of this process for
the firm highly relies on the number and quality
of the ties that these employees maintain and the
goodwill and knowledgeability of their network
partners.

Type C research refers to situations where
networks of corporations or other groups confer
advantages to individuals. Examples include joint
research and development projects between two
firms that create new job opportunities for the
individuals working in these positions or that
produce the knowledge necessary to do one’s
job better and become eligible for a bonus or
promotion. The networks of consulting firms can
assist (junior) consultants in bringing in new
projects, and the ties maintained by an academic
department can be of great use to a junior aca-
demic in need of specialized expertise or research
funding.
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Finally, in Type D, organizations draw
advantages from their own interorganizational
networks. Joint venture relationships or joint
marketing efforts, allowing for economies of
scale or increased expertise, are examples of this
type. Through interfirm relations, firm can gain
timely and affordable access to new technology.
For example, high prestige semiconductor firms
tend to establish license alliances in which they
gain the rights to produce and sell the proprietary
technologies of competing organizations. It is
because of their ability to certify the initiatives
of other organizations (startups, in particular)
that high prestige firms will gain access to
the endeavors of others. The correspondence
between prestige and access implies that
prestigious firms enjoy a powerful positional
advantage.

Whether social capital is seen from the group-
level or the individual level, Lin (2001) contends
that all scholars remain committed to the view
that, at the heart of things, it is the interacting
members who make the maintenance and repro-
duction of social capital possible.

The Dark Side
Even though the predominant sentiment is that
social networks are beneficial to individuals and
groups, there is an increasing realization that
there are profound negative sides to them as
well. This is often referred to as “negative social
capital,” “the dark side of social capital,” or, more
in keeping with the “capital” part of the concept’s
name, “social liability” (Gabbay and Leenders
2001; Leenders and Gabbay 1999).

An example is violent or criminal gang ac-
tivity that is encouraged through the strength-
ening of intragroup relations: this brings social
liability to society. Alternatively, membership in
certain groups may require individuals to sub-
mit to group norms and obligations that reduce
individual autonomy (Portes 1998). Social capital
in tight-knit communities may create free-riding
problems and hinder entrepreneurship. Strong
solidarity with ingroup members may overembed
the actor in the relationship, which reduces the
flow of new ideas into the group, resulting in

parochialism and inertia (Adler and Kwon 2002;
Gargiulo and Benassi 1999).

Social liability shows why it pays off to
explicitly relate social capital to goals or other
outcomes: the same mechanism can provide
outcomes that are productive for one goal but
harmful for the achievement of another. For
example, dense ties in a network of an R&D team
provide the team members with quick access to
knowledge, assisting the team in being efficient
(social capital). However, research also shows
that this comes at the expense of reduced levels
of team creative performance, hampering the
R&D team’s equally important goal of being
truly innovative (social liability).

Similarly, social structures can be beneficial
to the fulfillment of a particular outcome at
one point in time but become a liability later.
An example of Type A research, Gargiulo and
Benassi (1999) showed that relational structures
that were helpful to managers in the past, later
increased the number of coordination failures for
which they were responsible. The network had
become a constraint, impeding their performance.
In his study on network marketing, Gabbay
(1997) found that, for some entrepreneurs,
strong ties combined with structural holes were
beneficial at the initial stages of their business
but were harmful for future expansion.

Grapevines – informal, person-to-person com-
munications network of employees which are
not officially sanctioned by the organization –
are sources of rumors and gossip that spread
quickly throughout an organization. Management
decisions may travel through grapevines days a-
head of their official announcement. Because they
feel threatened by it, managers often try to sup-
press the grapevine but find themselves confront-
ed by a nearly impossible exercise. Grapevines
and gossip networks, examples of individual-
level social structure, can have detrimental effects
on organization-level well-being and productivity
(Type B).

Another source of potential organizational so-
cial liability is related to the resilience of personal
networks. Managers in charge of (re)designing
business processes often experience difficulties in
breaking through the power structures that exist
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among the firm’s employees. As a result, many
attempts to redesign organizational processes
fail or can only be implemented after long and
painful struggles between higher management
and employees (Type C).

At the fully organizational level (Type D
in Fig. 4), long-standing relationships with
customers may stifle the firm by monopolizing a
disproportionate share of its resources, inhibiting
the firm from forming relationships with
alternative customers. Similarly, dense long-
lived ties with other firms often effectively create
blinders, reducing the firm’s ability to see new
(technological) developments that occur outside
the firm’s constrained field of vision.

Is It Capital?
By now, it will be clear to the reader why “so-
cial” is part of the term “social capital.” An
article that addresses the history and roots of the
social capital concept, starting from its use in
nineteenth-century political economics, also has
to spend at least a few lines on the question
whether social capital is “capital,” a question that
increasingly appears in academic social capital
articles. It seems to me that there are two valid
answers to this question, the second perhaps
being the most to the point (except, perhaps, to
economists).

The first answer addresses the nature of cap-
ital itself. Social capital does exhibit a number
of characteristics that distinguish it from other
forms of capital. Unlike physical capital, social
capital can accumulate as a result of its use.
Moreover, unlike financial capital, social capital
erodes when it is not used. On the other hand,
similar to other forms of capital, social capital is
not costless to produce, requiring an investment
that can be significant (Adler and Kwon 2002;
Knoke 1999). The trusting relationships among
the members of a sports club or professional
organization can require years of meeting and
interacting to develop (Grootaert and Van Baste-
laer 2001). In addition, like all other forms of
capital, social capital is a long-lived asset into
which other resources can be invested, with the
expectation of future benefits. It is also both ap-
propriable and convertible and can be a substitute

for or complement other resources. Based on
these arguments, Adler and Kwon (2002) con-
clude that social capital “falls squarely within
the broad and heterogeneous family of resources
commonly called capital.”

The second potential answer to the question is:
“who cares”? The key attribute of capital is that it
is an accumulated stock from which a stream of
benefits flows. The view that social capital is an
asset – that is, that it represents genuine capital –
means that it is more than just a set of social
organizations or social values. On the output side,
it shows how things are getting done in society.
On the input side, it shows that it requires a
genuine investment to make society prosper. This
is important, both from a conceptual and societal
point of view. Aside from the intellectual joy the
“is it capital” debate can undoubtedly provide to
academists at cocktail parties, the social capital
literature is probably best served by spending our
efforts on developing better ways to measuring
social capital and on improving the empirical
and analytical rigor in social capital papers than
by a debate about the semantic accuracy of the
concept’s name.

Future Directions: Challenges

Although it was first used in the nineteenth cen-
tury, social capital is still relatively immature as
a concept, especially in its contemporary use.
Its rapid proliferation has allowed a diversity of
approach, definition, measurement, and causal
logic (Schuller et al. 2001). Social capital is
used in an extraordinarily wide range of dis-
ciplines. One consequence of this is that it is
still largely unclear how social capital should
be measured. Where such a diversity of defi-
nition exists, it is inevitable that an equivalent
heterogeneity of measure is used (Schuller et al.
2001). A main challenge for the concept is for
its users to develop useful and analytically sound
measures of social capital (and of the other part-
s of the social capital model). It is unlikely
that any time soon a measure of social capital
will (or can) be developed that is acceptable
or useful to the wide range of contemporary
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social capital analysts, but one would hope that at
least the empirical and statistical rigor of social
capital research would be improved in the near
future.

A second challenge, one that likely makes the
former challenge an even harder one, relates to
the changing nature of social relations in mod-
ern life. The works of Bourdieu, Coleman, and
much of Putnam’s work addressed social relation-
s in a “bricks-and-mortar” world, in which social
relations were largely created and maintained in
a face-to-face manner. Especially over the last
decade, social relations increasingly reside in
cyberspace as well, and our social environment
is transformed into a “clicks-and-mortar” world.
Increasingly, social ties are built or maintained on
Facebook, LinkedIn, Twitter, and other electronic
platforms that are now frequently referred to
as “social networks.” One can easily see that
the claim that social capital is declining can be
refuted if one goes beyond the traditional inter-
personal offline networks and includes network
ties that live in cyberspace. However, can cyber
ties be seen as equal to physical ties? At the
very least, the answer to this question will be
different for different goals. We may have to
reconsider findings from earlier research. For
example, weak ties may no longer provide such
a strong informational advantage when most job
openings can easily be found by a single click
of the mouse. It is conceivable that investment
in online social capital is lower than the in-
vestment needed to build offline social capital;
at the same time, the social capital (or social
liability) that one draws from online ties may
also differ from those drawn from offline rela-
tionships. At any rate, social capital researchers
cannot deny the increasing and pervading im-
portance of cyberrelations if they are to study
social capital in today’s society and will need
to rethink their causal models and social capital
measures.

Finally, an important challenge for the social
capital literature is how to deal with temporal
issues. Social networks are dynamic, those
residing in cyberspace perhaps even more
so. With social relations being dynamic, it is
inevitable that social capital and its outcomes will

experience dynamics as well. In general, there is
a dearth of time-based theories in the social
sciences. Statistical models for network dynamics
are now publicly available. However, appropriate
theories of network dynamics are still lacking.
For the rest of the social capital framework of
Fig. 3, both theory and statistical models are
missing almost entirely.

Conclusion

One of the key merits of social capital is that
it shifts the focus of analysis from behavior by
individual agents to the pattern of relations be-
tween agents (and their environment). Closely
linked to this is that the social capital concept
links micro-, meso-, and macrolevels of analysis
(Coleman 1990; Schuller et al. 2001).

In addition, social capital research addresses
issues that are important to everyone, everyday. It
addresses questions related to interpersonal trust,
quality of relationships in different contexts, and
about equality and inequality in society. Even
in academic fields like sociology or economics,
there are only few topics that so consistently
address issues that are of direct importance to
every human being.

A successful future for the social capital liter-
ature requires an interdisciplinary approach that
bridges some of the current different disciplinary
perspectives. Political scientists, sociologists, and
anthropologists tend to approach the concept of
social capital through analysis of norms, net-
works, and organizations. Economists, on the
other hand, tend to approach the concept through
the analysis of contracts and institutions and their
impacts on the incentives for rational actors to
engage in investments and transactions. Each
of these views has merits and the overarching
challenge is to take advantage of the complemen-
tarities of the different approaches (Grootaert and
Van Bastelaer 2001, p. 8). In this manner, we can
turn the current proliferation of approaches, often
seen as a weakness of the concept and threat to
its viability, into a strength, providing the social
capital literature with a bright and productive
future.
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Glossary

SNA Social network analysis
SP Shortest path
DC Degree centrality
BC Betweenness centrality
CC Closeness centrality
IM Instant messaging

Definition

Social network is formally defined as a set
of social actors that are connected by one or
more types of relations (Wasserman and Faust
1994). Social actors can be individuals, groups,
organizations and even any units that can be
connected to other units such as web pages,
blogs, emails, instant messages, families, journal
articles, neighborhoods, classes, sectors within
organizations, positions, or nations (Furht 2010).

Social communication network is one of
the most important social networks. In a social
communication network, social actors are mostly
persons, and the relationship between them is
established for the purpose of communication.
In a social communication network, social actors
use communication tools such as mobile phones,
instant messenger softwares (MSN messenger,
Google Talk, etc.), and so on to communicate
with each other. Social communication networks

can be classified into different categories in
terms of the client communication tools and the
network infrastructure. Typically, those running
on telecom network with mobile phone as clients
include mobile call network and short message
network. Those running on Internet with PC or
smart phone as clients include instant messaging
network such as MSN, QQ, and Skype. Another
typical communication network on the Internet is
email network.

Introduction

Social network analysis (SNA) is one of signif-
icant steps towards understanding the behavior
of actors in the network. The first step of SNA
is characterizing the structural properties of the
networks. In general, different structural proper-
ties imply different principles of users’ behaviors.
Understanding user behavior is critical for the
success of applications built upon these network-
s. Social communication networks underlie our
daily life. All of us are living in social com-
munication networks. Thus, our communication
behavior pattern is certainly embedded in these
social communication networks. Hence, SNA on
social communication networks is of special im-
portance for user behavior understanding. After
understanding the network properties of these
networks, the next key step is leveraging these
properties for a successful application.

The purpose of this article is twofold. First,
we showcase the common structural properties
of social communication networks. Second, we
showcase the applications on these networks.

Key Points

The structural properties of social communication
networks in general can be explored from the
following aspects: (1) social ties, (2) node
strengths, (3) shortest paths and diameter, (4)
centrality,and(5)assortativity.Weshowthatsocial
communication networks exhibit similar proper-
ties to a general social network but with some
exceptions. For example, the degree of a typical
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social network follows power-law distribution.
But in social communication network, the degree
distribution follows Double Pareto-Lognormal
(DPLN) distribution.

We have witnessed many successful applica-
tions on social communication networks includ-
ing (1) economic development evaluation, (2)
spammer detection, and (3) email worms defense.
The diversity of social ties in social communica-
tion networks is positively correlated to economic
development (Eagle et al. 2010) which allows us
to evaluate the regional economical development
by the social tie diversity of inhabitants in the
region. In general, social communication network
reflects people’s interaction in social lives, but it
may also include some spammers who generate
garbage information. When an email user clicks
a worm program in the attachments of a worm
email, the worm program will find all the email
addresses stored on this computer and send its
email address to other users. The worm program
is called “email worms.” By identifying the struc-
ture of the network, the state-of-the-art system
can successfully resist against the email worms.

Historical Background

Social communication network analysis has been
studied for a long time. It dates back to the
experiment that was made by social psychologist
Stanley Milgram in 1967. He selected two target
persons and found some volunteers to let them
send the letter from one target person to another
by using their own social relationships. Some
letters were successfully delivered from one tar-
get person to another target person. He found
that the average distance of the success delivery
is 6, implying that any two persons are linked
to each other on average via a chain with “six-
degrees-of-separation.” However, the experiment
data is very small; the number of successful
experiments is only 300. Hence, the reliability of
the experimental result is an issue, which can be
solved by statistical analysis on large-scale social
communication network available nowadays.

Structural Measures on Social
Communication Networks
In this part, we will review some important
aspects to characterize social communication
networks, including tie strength, node strength,
shortest paths, centrality, and assortativity.

Tie Strength
Edges in a social communication network rep-
resent the social ties between two social actors.
Typical social ties in social communication net-
works include sending messages, calling, and
sending email.

The strength or weight of a tie between per-
son i and person j , denoted by tie(i, j), can
be quantified by the aggregate time that i and
j spent on the communication with each other
or by the total number of communication times
between them. These weights are denoted by wD

ij

(total duration of communication) and wN
ij (total

number of communication times), respectively.

Node Strengths
Based on tie strengths, node strengths can be
defined as sN

i D P
j2N.vi / wN

ij or sD
i DP

j2N.vi / wD
ij , where N.vi / is the neighbors

of i . sN
i represents the aggregate number

of communication times. sD
i represents the

aggregate communication duration.

Shortest Paths
The shortest path between two nodes is one of
simple paths with minimal length between them.
The diameter of a network is the longest short-
est path length over all node pairs. In general,
it is hard to calculate the exact diameter on a
large network due to its quadratic computational
complexity. Diameter can be approximated with
affordable cost (Magnien et al. 2009). It was
found that the average shortest path on mobile
social network of a city in China is 5.75 (Dong
et al. 2009), which confirms the “six-degrees-of-
separation” theory.

Centrality
Centrality measures the importance of users in
social communication networks. There are three
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typical centrality measures: degree centrality, be-
tweenness centrality, and closeness centrality.
1. Degree Centrality

Degree of a node is the number of its con-
nections. In social communication networks, it
represents the number of contacts the user has.
Hence, degree is a natural choice to measure
the importance or the activity of the user.

2. Betweenness Centrality
The betweenness of a vertex i is defined as the
fraction of shortest paths that pass through i .
More specifically, it is defined as

bi D
X

s¤i¤t

�st .i/

�st

where �st is the total number of shortest paths
from node s to node t and �st .i/ is the number
of those paths that pass through i .

3. Closeness Centrality
The closeness of a node is the inverse of the
average distance in the network from the node
to all other nodes. Closeness reveals how long
it takes for information to spread from one in-
dividual to others in the network. High-scoring
node tends to have shorter shortest paths to
other nodes in the network.

Assortativity
A network is assortatively mixing if the nodes
in the network that have many connections
tend to be connected to other nodes with many
connections (Newman 2002). That is, people
with many friends are connected to others
who also have many friends. This gives rise
to degree-degree correlations in the network,
implying that the degrees of two adjacent
nodes are not independent (Onnela et al. 2007).
The average nearest neighbors degree of a node
vi is knn;i D 1

ki

P
j2N.vi / kj , where kj is

the degree of vj . By averaging this over all
nodes in the network of a given degree k, one
can calculate the average degree of the nearest
neighbors for degree k, denoted by < knnjk >

(Pastor-Satorras et al. 2001). The network is
assortatively mixing if < knnjk > increases with
k and disassortatively mixing if it decreases as

a function of k. On edge-weighted networks,
weighted average nearest neighbor degrees
are also used to characterize strength-strength
correlations. There are two typical weighted
versions: kN

nn;i D 1
sN
i

P
j2N.vi / wN

ij kj and

kD
nn;i D 1

sN
i

P
j2N.vi / wD

ij kj . It was found

that in a typical social communication network,
the degrees of two adjacent nodes are strongly
correlated, while the strengths of two adjacent
nodes in most cases are not (Onnela et al. 2007).

Mobile Call Network
Mobile phones are widely used in our daily lives.
According to the International Telecommunica-
tion Union, at the end of 2011, there were 6 bil-
lion mobile subscriptions, which accounts for
about 87 % of the world population. In a mobile
call network, each node is a mobile phone user,
and each edge between two users means that they
have at least one mobile call. There are several
interesting structural properties and application in
mobile call network.

Distribution
Power-law distribution is frequently observed in
the real world. For example, a common property
of many large real networks is their power-law
degree distribution. This feature was found to
be a consequence of two generic mechanisms:
(1) the network grows continuously by the addi-
tion of new vertices and (2) new vertices attach
preferentially to well-connected vertices. Several
recent works (Saramaki and pekka Onnela 2007;
Nanavati et al. 2006) studied typical mobile call
networks and found that their distributions with
respect to degree and many other measures also
follow the power-law distribution. However, the
study on a larger mobile call network which
consists of a million users and a hundred million
calls shows that most distributions of this network
significantly deviate from power-law and lognor-
mal distribution but fit better- to a less-known
distribution: Double Pareto-Lognormal (DPLN)
distribution (Seshadri et al. 2008). The distri-
butions following DPLN include the number of
phone calls per customer, the total talk time
per customer, and the distinct number of calling
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partners per customer. Their study further reveals
that the DPLN distributions can be consistently
observed for networks in different snapshots.

Social Tie Diversity
Social networks form the backbone of social
and economic life. Theoretical work suggests
that the structure of social relations between
individuals may affect personal life or economic
development. For example, it was found that
weak acquaintance relationships rather than
close friendships are more helpful to find a job
(Granovetter 1973, 1983). This is well known as
weak tie theory. Eagle et al. (2010) found that the
economical development is positively correlated
to the diversity of social ties in a mobile call
network. They use the following steps to study
this relationship between network structure and
economic development.

Step 1. Mobile network construction. They col-
lected the national mobile call logs on August
in 2005 in the UK. The data contains more
than 90 % of all mobile phones, which cover
more than 99 % of the populations and busi-
ness landlines in the country. The constructed
network consists of 65 million nodes and 368
million edges.

Step 2. Measuring diversity of social ties. They
use Shannon entropy (Shannon 2001) to
quantify diversity. They propose two diversity
metrics: social diversity and spatial diversity.
Social diversity of person i is defined as

Dsocial.i/ D
�Pk

jD1 pij log.pij /

log.k/

where k is the number of i ’s contacts and pij

is the proportion of i ’s total call volume that
involves j . Spatial diversity of person i can be
similarly defined as

Dspatial .i/ D �
PA

aD1 pia log.pia/

log.k/

where A is the total number of telephone
exchange areas and pia is the proportion of

time i spends communicating with a-th of
exchange area.

Step 3. Analysis. In this step, they compare the
social tie diversity to economic development
measured by IMD (Index of Multiple Depri-
vation) of UK in 2004 UK. IMD is a com-
posite measure of relative prosperity of 32,482
communities encompassing the entire coun-
try, based on income, employment, education,
health, crime, housing, and the environmental
quality of each region. They found that the
ranks of both social and spatial network di-
versity scores are positively correlated to IMD
rank. For example, in Stoke-on-Trent, one of
the least prosperous regions in the UK has one
of the lowest diversity scores in the country.

ShortMessage Network
Short messages are sent from one mobile phone
to another. This inherently is a network with
users as vertices and edges as message-sending
relationships. Short message has been one of
the fastest-growing telecom value-added services
worldwide. Due to its own characteristics, there
are some special applications on it. In this section,
we will showcase an SMS anti-spam system on
this network.

As we know, short message service has greatly
changed our lives. On some occasions, we prefer
to short message rather than phone call to com-
municate with others. However, an accompany-
ing problem is that message spam has also grown
fast. Unsolicited and unwanted commercial ad-
vertisements may be sent as messages to mobile
phone users. In some cases, fraud messages and
rumor messages may be sent over the network.

Many solutions have been proposed to over-
come this problem. Wang et al. (2010) uses spam-
mers’ behavior features and temporal features to
detect spammers.

To distinguish legitimate users from spam-
mers, they summarize many behavior patterns of
spammers and normal users. In general, spam-
mers tend to send a large number of messages to
legitimate users. The legitimate users in general
will not reply to an unknown phone number.
Legitimate user’s messaging targets are proba-
bly their friends, while spammer’s messaging
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targets are mostly strangers. Furthermore, in a
given period, a spammer usually sends only one
message to one recipient. These social features
can be quantified by out degree, mean weight on
out edges, variance of weight on out edges, one
weight ratio, reply ratio, partner ratio, and edge
ratio (Wang et al. 2010).

Spammers can be divided into fraudulent
senders and unauthorized advertisement agen-
cies. They use temporal patterns to distinguish
fraudulent senders from advertisement agencies.
Fraudulent senders always submit a large number
of messages in a short time period. Unauthorized
advertisement agencies submit messages at a low
frequency; and legitimate users submit messages
at a medium frequency.

InstantMessaging Network
Instant messaging programs, such as Microsoft
MSN, ICQ, Yahoo Messenger, Tencent QQ,
Skype, are very widely used in personal and
business communications. A recent report
(Leskovec and Horvitz 2008) estimated that
approximately 12 billion instant messages are
sent each day. These instant messaging tools
imply instant messaging networks, where each
vertex is a user, and each edge represents
the contact relationship between users. Unlike
other social communication networks, people
tend to use informal language, loose grammar,
abbreviations, and minimal punctuation in instant
messages.

As a typical instant messaging network, M-
SN network was investigated in Leskovec and
Horvitz (2008). They use anonymized data cap-
turing a month of high-level communication ac-
tivities in MSN system. They have found the
following interesting facts.

First, they found that birds of the same feather
flock together. People with similar properties tend
to communicate with each other. For example,
people with similar ages, the same languages, and
geographically close locations tend to communi-
cate with each other more frequently and longer.
One of exceptions is gender. People tend to con-
verse more frequently and with longer durations
with those with opposite gender.

Second, they found that the instant messag-
ing network is well connected and well clus-
tered with 99.9 % of the users belonging to the
largest connected component, and the average
clustering coefficient is 0.137. The average short-
est path length among Messenger users is 6.6,
which is half a link more than “6-degrees-of-
separation.”

Third, they found that instant messaging net-
work is very robust against intentional attack.
They used different attack measures, such as
average number of sent messages per user’s con-
versation, average duration of user’s conversation
and so on, and simulate the intentional attach on
the network.

Email Network
Email is a highly effective communication
tool. It is inexpensive and only requires
Internet connection. Hence, email network is
one of most important social communication
networks. However, email network is prone to
some security issues.

“Email worms” (Zou et al. 2004) are one of
the major Internet security threats for our society.
There are many different types of worms (Weaver
et al. 2003). One typical email worm works as fol-
lows: When an email user clicks a worm program
in the attachments of a worm email, the worm
program will find all the email address stored
on this computer and sends the copies of itself
to other users. Email worms spread on the email
network, which is one of great security challenge
to manage email networks.

Newman et al. (2002) found that there is little
that computer system administrators can do to
control the spread of a virus in the world at
large through the study on the email network
reconstructed from emails in a university. There
are two main methods to defend against the
“email worms”: random vaccination and target-
ed vaccination. According to Newman’s result-
s, random vaccination has little effect on virus
spread, while targeted vaccination seems pretty
good. The effectiveness of vaccination strategy
obviously depends on the network structure. Zou
et al. (2004) investigates the influence of three
topologies: power law, small world and random
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graph. They found that on power-law topology,
email worms spread more quickly, and targeted
vaccination is more effective.

Key Applications

In general, analysis on social communication
networks allows us to understand users’ com-
munication behavior. Specifically, these networks
are helpful in the following applications. First,
they can be used for the evaluation of regional e-
conomical development. The positive correlation
between economical development and diversity
of social ties in mobile call networks can be used
for this application. Second, they can be used for
spammer detection. Spammers have different fea-
tures in the short message network, which allows
us to detect spammers. Third, they can be used
for friend recommendation. In instant messaging
networks, users with similar properties tend to
communicate with each, which can be used for
friend recommendation. Finally, they can be used
for resisting email worm attacks.

Future Directions

These social communication networks allow us to
understand human behavior better. However, pre-
vious research on social communication network
can be extended in many directions. First, social
communication networks are inherently evolving.
Investigation on the evolution pattern is more
important in many real applications. Second, so-
cial communication networks contain abundant
heterogeneous information. For example, users
in instant messaging networks have much profile
information. How to employ the heterogeneous
information for the analysis of these networks is
one of promising direction.
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Synonyms

E-mail; Fraud; Information; Internet; Social net-
work; Suspicious

Glossary

E-mail Spam Unsolicited e-mails for the pur-
pose of advertisement or committing fraud

Phishing Electronic fraud based on social engi-
neering

Phisher Fraudsters who commit phishing crimes
Phishing Site Websites created by phishers to

steal sensitive information from users
Anti-phishing Efforts taken from multiple per-

spectives to combat phishing crimes
Machine Learning The design and devel-

opment of algorithms that takes as input
empirical data and outputs patterns and
predictions for future data

Definition

Nowadays, phishing has gradually become
a popular type of electronic fraud that makes use
of social engineering to steal sensitive informa-
tion from users such as user name, password,
bank account number, and credit card details
(http://www.indiana.edu/~phishing/?about; http:
//en.wikipedia.org/wiki/Phishing#Early_phishing
_on_AOL). Phishing can be carried out
via e-mails, instant messages, phone calls,
text messages, etc. (http://www.indiana.edu/~
phishing/?about; http://en.wikipedia.org/wiki/
Phishing#Early_phishing_on_AOL), where
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phishers pretend to be a trustworthy party
in an attempt to lead the users to disclose
the above sensitive information. Based on the
collected information, the phishers can withdraw
money from the accounts, causing significant
financial loss.

To combat phishing crimes, people are making
efforts from various aspects. For example, there
have been constant efforts towards raising pub-
lic awareness of this rapidly proliferating cyber
crime, so that users are not easily spoofed into
giving up sensitive information; researchers from
academia and industry have been tracking the
recent developments of phishing techniques with
the hope of catching them in time; there has also
been efforts from the government by filing law
suits against phishers and proposing laws to fight
this crime.

The purpose of this article is twofold. The
first is to introduce the evolution process of
the phishing techniques, with an emphasis on
its current status, and the second is to look
into the techniques for anti-phishing, which
shed lights on the future generation of phishing
methods.

Introduction

According to http://en.wikipedia.org/wiki/
Phishing#Early_phishing_on_AOL, the word
“phishing” came into use as a variant of “fishing”
in mid-1990s, which is connected to “baits”
used therein to induce the users into disclosing
sensitive information. Also, the “ph” spelling
was used to link phishing scams with some
underlying communities, such as the hackers
known as “phreaks” (http://www.phishing.org).
A typical example of phishing is a fake e-mail
masqueraded to come from a bank, which asks
the user to follow an embedded link to a phishing
site (which often highly mimics the authentic
website) and give up his/her bank account
information. Another example of phishing takes
place in an online chat session, where the
phisher pretends to be an agent from the online
vendor and requires the sensitive information

from the user. In both cases, the baits are the
masqueraded identity of the e-mail sender, the
embedded link, and the online agent. If the user
is tricked into believing this identity and reveals
his/her account information, he/she will suffer
significant financial loss.

Due to the severe challenge posed by phishing,
recent years have seen rapidly growing efforts
in anti-phishing. To be specific, in academic,
many universities have set up groups devoted to
anti-Phishing research, such as the Anti-Fishing
Group at Indiana University (http://www.indiana.
edu/~phishing/), the Institute for Security
Technology Studies at Dartmouth College (http://
ists.dartmouth.edu/), the Center for Education
and Research in Information Assurance and
Security at Purdue University (http://www.cerias.
purdue.edu), the Stanford Security Laboratory
(http://theory.stanford.edu/seclab/), and the
Cylab Usable Privacy and Security Laboratory
(http://cups.cs.cmu.edu), to name a few. In
industry, a variety of anti-phishing solutions have
been proposed, such as the suite of solutions
provided by the Anti-Phishing Working Group,
the phishing protection services from Dell
SecureWorks and RSA, anti-phishing toolbars
from eBay, Netcraft, and EarthLink, as well
as the anti-phishing filters in Firefox, Internet
Explorer, Google Chrome, etc.

Key Points

In the rest of this chapter, we first review the his-
tory and the current status of phishing, followed
by a discussion of anti-phishing techniques.

Historical Background

According to http://www.phishing.org, the very
first phishing attacks happened on American On-
line (AOL) on January 2, 1996. At that time,
phishers sent messages to users through AOL in-
stant messengers and e-mail systems, requesting
the users to verify their accounts or to confirm
their billing information. Many users gave up
the account information upon such requests and

http://en.wikipedia.org/wiki/Phishing#Early_phishing_on_AOL
http://en.wikipedia.org/wiki/Phishing#Early_phishing_on_AOL
http://www.phishing.org
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http://cups.cs.cmu.edu
http://www.phishing.org
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later experienced financial loss. In response to
such phishing crimes, AOL and later many banks
and online payment systems include warnings in
their e-mails and instant messenger chat windows
preventing the users to disclose the sensitive in-
formation in such scenarios.

The phishing crimes quickly ramped up since
late 2003, with the registration of domains sug-
gesting legitimate sites such as eBay and PayPal,
which were used as phishing sites. Phishers then
sent out e-mails to the users, leading them to
these phishing sites and asking them to update
their credit card information. Later the phishing
techniques evolved into using pop-up windows of
online banks to gather account information from
the users, which was proven to be very effective
in 2004.

According to the surveys by Gartner between
2005 and 2007, there was continuous increase
in the percentage of phished web users in the
USA (Herley and Florêncio 2008): 0.5 % in 2005,
1.05 % in 2006, and 2.18 % in 2007, resulting in
huge financial loss of these victims. Similar as in
the USA, the losses in the UK from web banking
fraud, most of which are phishing fraud, almost
doubled from 2004 to 2005 http://en.wikipedia.
org/wiki/Phishing#Early_phishing_on_AOL.

The most up-to-date phishing techniques
have been summarized in a variety of web-
sites, such as http://en.wikipedia.org/wiki/Phis
hing#Early_phishing_on_AOL; http://www.
phishing.org, and http://ists.dartmouth.edu/.
These include e-mail spamming, web-based
delivery (aka man-in-the-middle), instant
messaging, Trojan hosts, link manipulation,
key loggers, session hacking, system recon-
figuration, content injection, phishing through
search engines, phone phishing, and malware
phishing (http://www.phishing.org). In addition,
according to http://en.wikipedia.org/wiki/Phis
hing#Early_phishing_on_AOL and http://
www.csionsite.com/2012/phishing/, phishing
with specific targets are sometimes referred
to as spear phishing and whaling. Further-
more, some smart phishers make use of
advanced techniques to get around anti-phishing
software (e.g., by making use of images
instead of text http://en.wikipedia.org/wiki/Phis

hing#Early_phishing_on_AOL)or to gain trust of
the potential victims (e.g., by including personal
information obtained from social networks
(Jagatic et al. 2007)). All the above evidence
highlights the urgency of effective anti-phishing
techniques.

Key Techniques

There are several different ways to combat phish-
ing, including end-user education, legislation,
and technology developed specially to fight
against phishing. This section discusses the use
of technology to protect against phishing website
and e-mail.

Many technical solutions have been used to
identify a web page as a phishing site, including
blacklists (fraudulent sites), heuristics, page anal-
ysis, ratings, and their combinations. Blacklisting
is a widely used approach in phishing detection
mechanisms which maintains a list of known
phishing websites and check websites against
the list. This method has been implemented in
numerous browser-integrated anti-phishing tool-
s, such as Internet Explorer (IE), Google Safe
Browsing (Schneider et al. 2007), NetCraft tool-
bar (NetCraft 2007), Firefox, and eBay toolbar
(eBay 2013). The IE browser queries lists of
blacklisted and white-listed domains from Mi-
crosoft servers and makes sure that the user is
not accessing any phishing sites. The Google
Safe Browsing uses blacklists of phishing URLs
to identify phishing sites. The users are warned
before they attempt to navigate to a known phish-
ing site. Blacklists can be created using a set of
classification rules based on previous phishing
patterns, manually classified by the user or crowd
sourced by users of a given service (Wilson and
Argles 2011).

The effectiveness of a blacklist is determined
by the coverage and quality of the list and the
time it takes to include a phishing site. The
quality shows the number of safe sites is falsely
included into the list. Study shows that the
URLs that have been verified by users tend to
be classified with lower false-positive rate (Sun
et al. 2010). Timeliness may be a challenge for

http://en.wikipedia.org/wiki/Phishing#Early_phishing_on_AOL
http://en.wikipedia.org/wiki/Phishing#Early_phishing_on_AOL
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blacklisting because the average lifetime of
phishing sites is only a few days or maybe a
few hours for the low cost of creating a phishing
site. Ludl et al. use 10,000 phishing URLs to test
the effectiveness of the blacklists maintained by
Google and Microsoft (Ludl et al. 2007). They
demonstrate that blacklists provided by Google
can recognize almost 90 % of live phishing sites,
while IE contained only 67 % of them. They
also find that on average it takes Microsoft 6.4 h
to add an initially not blacklisted entry with
a standard deviation of 6.2 h. For Google, it
takes somewhat longer, 9.3 h on average with a
standard deviation of 7.2 h. Sheng et al. (2009)
use 191 fresh phish that are less than 30 min
old to conduct two tests on eight blacklist-
based anti-phishing toolbars. By hour 2, 63 % of
phishing campaigns in their dataset are finished,
but only 7.9 % of those phish are taken down.
On average, 33 % of the websites are taken
down within 12 h, around half are taken down
after 24 h, and 27.7 % are still alive after 48 h.
They conclude that blacklists are not effective
when protecting users initially, as most of the
tools catch less than 20 % of phish at hour 0. In
addition, they show that blacklists are updated
at different speeds and vary in coverage, as
47–83 % of phish appear on blacklists 12 h from
the initial test. They also demonstrate that two
tools use heuristics to complement their blacklists
trigger catch significantly more phish initially
than those using only blacklists. However, it
takes a long time for phish detected by heuristics
to appear on blacklists. Ramachandran et al.
measure the effectiveness of 8 spam blacklists
in real time by analyzing a 17-month trace of
over 10 million spam messages collected at an
Internet “spam sinkhole” and by correlating this
data with the results of IP-based blacklist lookups
(Ramachandran and Feamste 2006). In their
study, whenever a host spammed their domain,
they examine whether that host IP is listed in a set
of Domain Name Service-based Blackhole Lists
(DNSBLs) in real time. Their study indicates that
about 80 % of the received spams are listed in at
least one of eight blacklists, but even the most
comprehensive blacklist has a false-negative rate
of about 50 %.

Heuristic techniques analyze whether a page
possesses suspicious behavior, e.g., examining
the characters of the URLs and site’s hostname.
Since a phishing site is usually a mimicry of
a legitimate site, page analysis or content-based
method detects phishing by examining their sim-
ilarity in terms of page properties, such as the
number of password fields, the number of links,
or the organization’s logo. Using a search with
the extracted keywords, it retrieves candidates
for the legitimate site. If the page on the us-
er’s browser and the one of the candidate sites
have the same domain name, the target site is
judged legitimate, otherwise, a phishing site. Rat-
ing methods determine phish sites based on user
ratings. Each site’s rating is computed by ag-
gregating all rates given for that site, with each
user’s rating of a site weighted according to that
user’s record of correctly identifying phishing
sites. Heuristic, content analysis and rating are
employed by numerous anti-phishing products,
for example, Spoof Guard is based on heuris-
tic and ratings; Calling ID toolbar is based on
heuristic; Cloudmark Anti-Fraud toolbar is based
on ratings; and EarthLink toolbar is based on the
combination of heuristic and user rating.

Heuristics can detect attacks as soon as
they are launched, without the need to wait for
blacklists to be updated. However, attackers can
design their attacks to avoid heuristic detection.
In addition, heuristic approach may produce false
positives, incorrectly labeling a legitimate site
as phishing. On the other hand, page analysis
techniques also have high false-positive rates due
to the similarity between the phishing pages
and the legitimate ones (Wilson and Argles
2011). User ratings might become meaningless
if URLs of legitimate sites are too complex to
be known or recognized by users. In response to
this challenge, (Ludl et al. 2007) analyze a large
number of phishing pages and explore the page
properties that can be used to identify phishing
pages. These features from the HTML source of a
page include the following: the number of forms,
input fields (e.g., the number of input fields, text
fields, password fields, and hidden fields), links
(e.g., the number of internals links to internal
links to resources located in the page’s domain
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as well as external links to resources stored on
other sites), white-listed references, and script
tags. Zhang et al. (2011) introduce a content
analysis-based large-scale anti-phishing gateway.
When the http(s) traffic is intercepted by the
gateway, the system fetches and filters the target
URL. If the URL is not prefiltered by the black
and white hash repository, the system fetches
the web page content and extracts features.
They build a phishing page template database
as a repository. After feature extraction, the
system calculates the similarity scores between
the evaluated web page and each template in
the database. They evaluate the performance
of the detection system based on 118,165
positive URLs and 92,970 negative URLs. The
maximum false-positive rate is below 0.1 %,
and the average false-positive rate and false-
negative rate are 0.05 and 1.78 %, respectively.
The system demonstrates better performance
than several other approaches. Whittaker et al.
(2010) present a logistic regression classifier
based on features that describe the composition
of the web page’s URL, the hosting of the page,
and the page’s HMTL content as collected by
a crawler. The evaluation of the classifier is
based on two datasets. The first one contains
446,152,060 URLs and the second contains
74,816,740 URLs. The phishing pages make
up 1.1 % of each dataset. The study shows that
the classifier can maintain a false-positive rate
well below 0.1 %.

Due to inevitable false positives, directly
blocking users’ connections to suspected
phishing sites is unacceptable. Therefore,
phishing site warning mechanisms become
mandatory in popular browsers including Firefox
and IE. If a web page is correctly identified as a
phishing site, a user is directed to a warning page
and not allowed to proceed without interacting
with the warning page. If the user chooses to
ignore the link, the warning page disappears
and the user is exposed to the risk of phishing.
Otherwise, the user is directed to a default
page. A hybrid solution, AntiPhish (Kirda and
Kruegel 2005), integrates phishing warning
and page analysis for phishing identification.
It keeps track of where sensitive information is

being submitted. If it detects that confidential
information such as a password is being entered
into a form on a suspicious website, a warning
is generated and the pending operation is
cancelled.

However, users tend to ignore the warnings or
have learned to bypass the warnings. Wu et al.
(2006) conduct a study of three simulation anti-
phishing toolbars to determine how effective they
are at preventing users from visiting websites that
the tools have determined to be fraudulent. They
find that many participants do not notice warning
signals or assume the warnings are invalid. In
a follow-up study the authors test anti-phishing
toolbars that produce pop-up warnings and block
access to fraudulent websites until overridden
by the user. These pop-up warnings reduce the
rate at which users fall for fraudulent sites, but
do not completely prevent all users from failing
for these sites. Egelman et al. (2008) compare
the effectiveness of active and passive phishing
warning. They designed two phishing websites
to mimic the login pages of Amazon and eBay,
the most commonly phished nonbank websites.
They divide the 60 participants into four groups:
Firefox warning, active IE warning, passive IE
warning, and no warning at all. The results show
that over 45 and 90 % of participants ignore the
strong warning or the passive warning, respec-
tively. Similarly, Schneider et al. (2007) demon-
strate that over 50 % participants of a warning
usability test ignore the warning and enter their
credentials, despite the strong wording of the
warning page.

Traditional phishing begin with e-mail spam.
SMTP (Simple Mail Transfer Protocol) (Jonathan
1982) is the protocol to deliver e-mails in the
Internet. It is a simple protocol which lacks nec-
essary authentication mechanisms. Information
related to sender, such as the name and e-mail
address of the sender, can be counterfeited in
SMTP. Therefore, attackers can send out spoofed
e-mails that are seems from a friend, relative, or
a reputable business where victims might have
an account. A number of solutions have been
proposed to solve the anti-phishing problem at
the e-mail level. Since the phishing e-mail usu-
ally contains some socially engineered message
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asking users to submit information or to visit the
phishing website, filters and content analysis are
used to prevent phishing e-mails from reaching
their addresses’ inbox. For example, MailScanner
(Julian Field 2007) is an anti-spam package for
e-mail gateway systems in attempts to combat
e-mail fraud by examining e-mail contents. Cla-
mAV (2012) is another toolkit for e-mail scan-
ning making use of blacklisting and phishing
signature, such as the use of a specific phrase or
looking for the PayPal (https://www.paypal.com/
home) logo that many phishing e-mails contain.

The effectiveness of such techniques relies
on critical factors, such as natural language pro-
cessing, filter training using machine learning
approaches, and the availability of anti-phishing
tools in the e-mail system. Chandrasekaran et al.
(2006) use the distinct structural features present
in e-mail to classify phishing e-mails. A total
of 25 features consisting of a mixture of style
marker (e.g., account, risk, bank, risk, and vo-
cabulary richness) and structural attributes (e.g.,
the structure of the greeting in the body and
the structure of the subject line of the e-mail)
are considered. Features are ranked based on
their relevance to e-mail classification. A total
of 400 e-mails, out of which 200 are phishing
e-mails, are used in training and evaluating the
model. The results demonstrated a detection rate
of 95 %. Similarly, based on structural features
of the phishing e-mails, Abu-nimeh et al. (2008)
investigate phishing detection in a mobile en-
vironment utilizing modified Bayesian Additive
Regression Trees (BART). The algorithm modi-
fication intends to reduce the computation time
and memory overhead of MCMC simulations.
6,561 raw e-mails are used in building the dataset,
from which 1,409 e-mails are phishing. The le-
gitimate e-mails are collected from financial in-
stitutions such as Bank of America, eBay, and
Chase and regular communication e-mails. The
dataset constitutes of 60 style marker features
and 10 structural attribute features, respectively.
The results show a detection rate of 97 % and
a false-positive rate of 3 %. However, no matter
how effective, some phishing e-mails can still
successfully get through the filters and reach
potential victims.

Future Directions

The battle between phishing and anti-phishing
is far from over. With the advancement of anti-
phishing techniques, phishers constantly come up
with new ways of stealing sensitive information
from users, by pretending to come from their
close friends, by including fake US Airways
itineraries, by quietly changing the content in one
of the browser tabs, etc. Therefore, it is necessary
to raise the awareness of phishing crimes among
the general public, to keep the anti-phishing tools
up-to-date regarding the newly developed crime
patterns, and to even predict the emergence of
novel phishing patterns.

Conclusion

In this chapter, we focus on social phishing,
which is a common social engineering technique
for conducting fraud. Ever since its first appear-
ance in the mid-1990s, it has evolved into a
variety of sophisticated forms. In the future, to
effectively combat phishing, coordinated efforts
have to be made from multiple aspects, e.g., e-
ducation, legislation, and improved anti-phishing
techniques.
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Jarosław Wąs1 and Krzysztof Kułakowski2
1Faculty of Electrical Engineering, Automatics,
Computer Science and Biomedical Engineering,
Department of Applied Computer Science, AGH
University of Science and Technology, Krakow,
Poland
2Faculty of Physics and Applied Computer
Science, Department of Applied Informatics and
Computational Physics, AGH University of
Science and Technology, Krakow, Poland

Synonyms

Familiar groups in crowd; Mesoscale structures
in crowd

Glossary

Crowd A temporary gathering of persons
Dyad A group consisting of two persons
Triad A group consisting of three persons
Small Group A group enough for all members

to interact simultaneously. It is possible for
all members to communicate or be acquainted
with each other

Definition

According to different authors, a social group is
a set of people with a common fate, with a direct
interaction between them, with a social relation-
ship between them, or who consider themselves
as members of the same social category.

A crowd is a large group of people, gathered at
one time and place, connected by a common aim.

A social group in crowd is defined as two
or more human beings, who are allocated in the
crowd and who are connected by and within
social relationships.

Most frequently crowd consists of a set of
social groups like couples, groups of friends, or
families.

Introduction

The occurrence of social groups in human crowds
is a very common phenomenon. It is estimated
that, depending on the situation, about 50–75 %
of people walk in groups and hold together in a
crowd (Aveni 1977; Moussaïd et al. 2010).

A group in crowd is interpreted as two or more
persons who are connected by interpersonal rela-
tionships. We can distinguish several methods of
analyzing crowd dynamics and crowd behavior:
from the macroscopic level when the crowd is
treated as a whole, through the microscopic level
when we consider the behavior and dynamics
of individuals, and finally the analysis of the
behaviors of particular groups of people in the
crowd - the mesolevel.

It seems that the mesolevel analysis of crowd
is crucial in terms of crowd behavior seen as a
whole Moussaïd et al. (2010).

Crowd Classification

Social groups are part of vast majority of crowds.
What is a crowd? Forsyth (2005) defines crowd as
“a temporary gathering of individuals, who share
a common focus on interest.” The occurrence and
character of these groups depends on the type
of crowd. According to Forsyth (2005) one can
distinguish two different types of crowd: gath-
erings and mobs. Both of these types of crowds
are different from the perspective of a situational
context: gatherings mean more ordered aggrega-
tion of persons like audiences, queues, or street
crowds, while a mob is described as an acting,
disordered crowd, often aggressive in character. In
some cases, in a social group or crowd, the deindi-
viduation phenomenon may occur, as described by

http://dx.doi.org/10.1007/978-1-4614-6170-8_223
http://dx.doi.org/10.1007/978-1-4614-6170-8_100612
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Social Groups in Crowd, Fig. 1 Crowd classification according to Forsyth (2005)

Zimbardo (1969). In this situation one can observe
loss of self-awareness, and reduced responsibility,
loss of self-regulation, emotional and impulsive
behavior of individuals (Fig. 1).

Modeling and Simulation of Crowd
Dynamics

Models of crowd dynamics and crowd behavior
are used for simulations of evacuation, simula-
tions of mass events, design of pedestrian traffic
in public utility facilities, and, finally, in the
entertainment industry (in the creation of movies,
games, and special effects).

One can distinguish two main kinds of
crowd dynamics models: macroscopic, where
pedestrians are considered as fluid particles in
hydrodynamics equations (Henderson 1974), and
microscopic approach, where pedestrians are
considered as individuals or groups (Köster et al.
2011). Actually, most of the crowd dynamics
models are based on the microscopic approach,
as it entails the mapping of behavior of particular
individuals or groups.

The most common method of microscopic
modeling of crowd dynamics is Social Force
Model (Helbing and Molnar 1995). In this model,
time and space are continuous. The model is
based on differential equations equivalent to the
Newton’s second law of dynamics. There, each
pedestrian i with mass of mi moves according to
the following equation:

mi

dvi

dt
D Fa

where

vi – actual velocity of pedestrian i

mi – mass of pedestrian i

Fa – the vector of forces, which takes into
account personal desire force and interaction
forces

The method has a lot of variants and exten-
sions. The most important fact is that using some
variants of the method, we can take into account
group attraction forces and we can map group
dynamics and group behavior (Moussaïd et al.
2010).

Another popular method of crowd dynamics
modeling is Cellular Automaton (CA). It is a
rule-based dynamical model, where time and s-
pace are discrete. Majority of implementations
of CA models are interpreted as agent-based
models (Burstedde et al. 2001; Wa̧s et al. 2012).
Pedestrians represented as autonomous agents are
allocated in a lattice. Agents move on the lattice
according to a transition rule f that modifies the
configuration Ct of the agents allocated in the
lattice (their environment) at certain interval �t :

CtC1 D f .Ct /

The transition function f can be implemented
using floor field (FF), which is defined on a
supplementary lattice. Floor field is a set of rules
assigned to the lattice, which take into account
different parameters, determinating a type of the
floor field: distance from a pedestrian to an aim
(static floor field) (Burstedde et al. 2001), follow-
ing predecessors of a pedestrian (dynamic floor
field) (Burstedde et al. 2001), omitting obstacles
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Social Groups in Crowd, Fig. 2 Exemplary patterns of walking small, social groups for low, moderate, and high
density of flow. Members of walking social group are marked in black

(Georgoudas et al. 2010), or anticipating potential
collisions (anticipation floor field) (Suma et al.
2012).

Most of the models based on cellular automata
assume that the crowd is made up of individuals
(Burstedde et al. 2001). It was demonstrated
recently that it is possible to define rules of
behavior for groups as well (Köster et al. 2011;
Bandini et al. 2011).

Social Groups Behavior

In a crowd we can often observe a situation, when
a group of people intentionally walk together (for
instance, family members, couples, or friends).
It is in opposition to a different situation, when
several proximate pedestrians fortuitously walk
close to each other (Moussaïd et al. 2010). How
to recognize these cases?

Social groups in crowd behave differently de-
pending on crowd density, size, and purposes of
the particular group or type of crowd.

At low densities of crowd, group members
usually tend to walk side by side creating a line
perpendicular to the walking direction (Fig. 2a).
When the density increases, the linear walking
formation is bent forward, turning it into a V-like
pattern (Fig. 2b). These spatial patterns can be

well described by a model based on social com-
munication among group members (Moussaïd
et al. 2010). In very high densities, V-like patterns
are transformed into a lane aimed towards the
direction of motion (Fig. 2c).

The speed of the group is related to the density
of the crowd and the size of the group. Speed
of movement in high densities can be estimated
based on the fundamental diagram (the relation
between density and flow) (Seyfried et al. 2005;
Chattaraj et al. 2009). It should be stressed that
in smaller densities, there is a rule that the larger
the group, the smaller the velocity of motion, and
this relationship between size of the group and its
velocity is linear (Klüpfel 2007; Moussaïd et al.
2010).

If we consider crowd as a social network
with individuals represented as nodes of a graph
(Fig. 2), then the social groups are interpreted as
subgraphs, namely, network motifs (Milo et al.
2002; Juszczyszyn et al. 2009). Network motifs
in this case may include two nodes (a dyad), three
nodes (a triads), or up to a dozen nodes.

Sociological Aspects

Specific properties and identity of a group as
opposed to an individual has always been a matter
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of interest. Senatores boni viri, senatus autem
bestia (Senators are good men, but the Senate is
an evil beast) was a common opinion in ancient
Rome; this sentence indicates a contemporary
knowledge belief held at the time that the Roman
senate was different (worse) than a set of its
members. Ability to control crowds is a necessary
skill for politicians, artists, military, and reli-
gious leaders. Besides their personal charisma,
their methods include rhetorics and dedicated
institutions, like army, church, and theatre. In
more modern times, this role is played also by
media. In recent 10 years, interpersonal commu-
nication became possible by means of Internet
and smartphones. The latter technology allows
members of a large crowd interact in real time;
this kind of communication transforms a crowd
to an autonomous system. Its power has been
demonstrated during a series of events known as
the Arab Spring.

The idea of collective thinking has been of
interest for centuries. The very concept of democ-
racy relies on the belief that decisions taken by
many people can be ahead of those by a single
ruler. It makes sense to ask what is the quality
of decisions made by a crowd? According to a
traditional notion derived from Gustave Le Bon,
crowd is irrational. Being part of the crowd, an
individual gains feeling of power and loses re-
sponsibility. On the contrary, individualistic theo-
ries deny the existence of anything like collective
thinking. Often, a famous statement by Floyd H.
Allport is quoted: “The individual in the crowd
behaves just as he would behave alone only more
so.” Today, both these positions are rejected as
unsupported by experience.

If crowd is different from a sum of indi-
viduals, interaction between them is an issue
of primary importance. During this interaction,
some individuals appear to be more influential
than others. Once such a leader is able to create
an impression of unanimity within some group,
the group accepts his leadership. Simultaneous-
ly, the group itself is established, with identity
defined by the content of accepted messages.
It is clear that this acceptance depends, among
others, on relations between personal features
of individuals and leaders. During the process

of group formation, the group identity contin-
ues to evolve. According to John C. Turner, the
direction of this evolution is such as to mini-
mize intragroup differences with respect to in-
tergroup differences. Also, group decisions are
more extreme and more risky than initial atti-
tudes of group members; the effect is known as
group polarization (Turner 1975; Cooper et al.
2001).

In a longer time scale, the very existence of
groups has far-reaching consequences. However,
immediate group formation in crowd can also
be observed in situations of emergency, when
communication is limited to a given area, as
within the hearing range. According to the emer-
gent norm theory by Ralph Turner and Lewis
Killian, group members perceive their group as
unanimous (Turner and Killian 1987). As they
follow the group action, the illusion of unanimity
can become a self-fulfilling prophecy. If this is the
case, we expect homogeneity of group behavior.
On the contrary, differences between groups tend
to grow and can lead to an intergroup hostility,
even if the group formation is a purely random
process.

Social Groups and Evacuation

Individual persons, as well as social groups,
are the constitutive units of emergency
evacuations.

When considered from the perspective of an
evacuation study, a social group is characterized
by several types of characteristics (Santos and
Aguirre 2005):
- Operational context of a group (characteristic

of their environment)
- Individual characteristics of members (age,

sex, physical fitness, health, competences,
etc.)

- Density understood as a function of physical
space occupied by the group and the size of
the group

- Relationships among the members including
leadership, communication channels, cohe-
siveness, etc.
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When a social group is faced with an emer-
gency that makes it necessary to evacuate, the
key parameter is the decision making (Aveni
1977). One of the most important determinants
of evacuation timing is the size of a group. The
larger the group, the more difficult it is to take
the decision to begin evacuation as a response
to the emergency. It should be stressed that “in
the large group there will be more variation and
differences of opinion and relevant experiences
about what to do that must be reconciled be-
fore the emergent norm is created” (Santos and
Aguirre 2005). Response time for an emergency
is significant component of evacuation time, and
it is determined by occurrence and characteristics
of social groups.

Social groups also strongly influence the evac-
uation effectiveness during movement phase of
evacuation, because members of the groups often
create blocks (cluster patterns). In practice, single
individuals (not members of the group) who want
to overtake the group have great difficulties to do
this especially in constrained spaces like narrow
corridors and stairways. because they are exposed
to “the set of norms and new statuses guiding the
behavior of these collectivities which they cannot
evade” (Santos and Aguirre 2005).

In extreme cases (caused by real or imagined
reasons) evacuation situation may cause sudden,
overpowering terror called panic, when an indi-
vidual or the whole group is affected at once.
In this case, relationships within the specified
group have a large impact on behavior. During
panic it is often possible to observe anti-social
behaviors, but strong relationship within a group
often leads to altruism and strong cooperation
in the group according to the sentence “families
survive together or die together” cited by Köster
et al. (2011).

Group Structure of Crowd

Usually a mere observation of a crowd does not
allow inferring about existence and content of
groups there, and dedicated tools are necessary.
More than often, these tools are borrowed from
statistical mechanics. In particular, the concept

of modularity was proposed by Mark Newman.
This quantity allows to evaluate if a given group
structure is statistically meaningful.

Suppose we have a weighted network. Its
nodes are pedestrians, and the links describe the
similarities between the nodes. In particular, we
can measure the trajectories of pedestrians; the
value w.l; j / assigned to the link between nodes
l; j is an absolute value of the Pearson’s cor-
relation coefficient between pedestrians l and j

(Rodgers and Nicewander 1988). The correlation
can be calculated for positions or velocities or
both. Suppose that we have a proposition of the
network structure. This means that all nodes are
divided into groups. The modularity Q is defined
(Blondel et al. 2008) as

Q D 1

m

X
lj



w.l; j / � k.l/k.j /

m

�
ı.l; j /

where
k.j / D P

l

w.l; j /; m D P
lj

w.l; j / and

ı.l; j / is equal to one if nodes l; j belong to the
same group according to the proposed division;
otherwise it is zero.

The challenge is to find the proposed division
which gives the maximal value of Q. For large
networks this task is NP-complete, then it cannot
be treated with exhaustive methods. Instead, ap-
proximate algorithms have been proposed. One
of them – the so-called agglomerative method –
is to connect two nodes which give the largest
Q; subsequent nodes are added according to the
same rule. Starting from N separated nodes, we
end up with a single connected cluster. Some-
where at this path, Q has a maximum; this is
the approximated partition. This, however, does
not prove that it is statistically meaningful. If the
maximal value of Q is at least 0.3, our confidence
increases. We recommend (Fortunato 2010) for a
review.

The method of detecting correlations of tra-
jectories and velocities can be used to moni-
tor crowd dynamics in real time (Helbing and
Mukerji 2012).
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Key Applications

Real-time monitoring of large gatherings
supported by a software able to identify collective
motion and interpersonal correlations should
be helpful for predictions and prevention of
stampede disasters, like the one in Duisburg,
Germany, in 2010 (Helbing and Mukerji
2012).

Future Directions

An interdisciplinary research conducted by
sociologists, psychologists, physicists, com-
puter scientists, and fire and transportation
engineers can advance our understanding
of mutual influence of majority and mi-
nority in crowd. In particular, the social
mechanisms which rule this influence are
not known yet (Brown 2000). Analysis of
data on crowd dynamics collected during
large gatherings is an example of a re-
search strategy which can build bridges
between social theory, field experiments, and
applications.
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Synonyms

Crime in online communities; Ethics; Privacy;
Social media; Social networks

Glossary

OSNs Online social networks (OSNs) are
social networks with underlining electronic

communication infrastructure links enabling
the connection of the interdependencies be-
tween the network nodes

mOSNs Mobile OSNs (mOSNs) are newer OS-
Ns that can be accessed via mobile devices and
can deal with the new mobile context

IMN Instant Messaging Network (IMN) sup-
ports real-time communication between two
or more individuals

SNS Social networking services (SNS)

Definition

It is almost unimaginable that a modern person
can live a meaningful life today without a mobile
device as a conduit to an online social mesh of
friends. These online social “gatherings” have
slowly replaced the traditional face-to-face social
gatherings that make us humans. While these
online ecosystems are now packed with all sorts
of interesting items that keep members coming
back and new ones enrolling, the basic element of
“presence” which transforms into “telepresence”
in the virtual gatherings of any social gathering
remains the same. The history of this amazing
transformation of social gatherings mimics the
history of social computing, the focus of this
entry. The development of the different media
of social gatherings and communication is linked
with computer technology developed. In fact the
nature of these social media developed in line
with the computing technology. The history of so-
cial computing cannot be discussed comprehen-
sively without talking about these online media.
And these online social media cannot be justi-
fiably discussed without investigating individual
rights and how these media affect participants’
individual attributes. Therefore, ethical, privacy,
and security issues in these ecosystems are all
involved in protecting personal privacy. On the
central point of ethical implications of life in
the social network, unlike in the traditional net-
work, governance is not centralized, but com-
munity based with equally shared authority and
responsibility by all users. But the mechanisms
are not yet defined, and where they are being
defined, it is still too early to say whether they are
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effective. The complexity, unpredictability, and
lack of central authority are further enhanced
by a virtual personality, anonymity, and multi-
ple personality. These three characteristics are at
the core of the social and ethical problems in
online social networks in particular cyberspace
in general; the larger and more numerous these
communities become, the more urgent the ethical
concerns become.

Introduction

Social networks are at the core of social com-
puting! In this discussion, therefore, the history
of social computing is going to be discussed
through the prism of social networks and their
evolution into online social ecosystems, as we
have them today. So a social network is a theo-
retical network where each node is an individual,
a group, or an organization that independently
generates, captures, and disseminates informa-
tion and also serves as a relay for other members
of the network. This means that individual nodes
must collaborate to propagate the information in
the network. The links between nodes represen-
t relationships and social interactions between
individuals, groups, organizations, or even entire
society.

The concept of social networking is not new.
Sociologists and psychologists have been dealing
with and analyzing social networks for genera-
tions. In fact social networks have been in exis-
tence since the beginning of human. Prehistoric
man formed social networks for different reasons
including security, access to food, and the social
well-being.

As Joseph Kizza (2013) observes, social net-
works begin with an individual reaching out to
another individual or group for a social relation-
ship of sorts, and it snowballs into a mesh of
social relationships connecting many individuals
and/or groups. In general, social networks come
in all sizes and are self-organizing, complex, and
agile depending on the nature of relationships in
its links. As they grow in size, social networks
tend to acquire specific elements and traits that
make them different. These traits become more

apparent as the network size increases. The type
of social interactions, beliefs, and other traits
usually limit the size of the social network. It
is important to note that as the social network
grows big, it tends to lose the nuances of a local
system; hence if certain qualities of the network
properties are needed, it is better to keep the size
under control.

Online Social Networks (OSNs)

As computing technology developed, social
networks started evolving into online social
networks. Online social networks (OSNs) are
social networks with underlining electronic
communication infrastructure links enabling the
connection of the interdependencies between the
network nodes. The discussion in this entry will
focus on these OSNs. In particular we will focus
on two types of online social networks (Kizza
2013):
• The traditional OSNs such as Facebook and

Myspace. Many of these can be accessed via
mobile devices without the capability of deal-
ing with mobile content.

• The mobile OSNs (mOSNs) which are newer
OSNs that can be accessed via mobile devices
and can deal with the new mobile context.

The interdependency between nodes in the OSNs
supports social network services among people
as nodes. These interdependencies as relations a-
mong people participating in the network services
define the type of OSNs.

Types of Online Social Networks
The growth of the OSNs over the years since
the beginning of digital communication saw them
evolving through several types. Let us look at the
most popular types using a historical chronolo-
gy (Kizza 2013):

Chat Network The chat network was born out
of the digital chatting anchored on a chat room.
The chat room was and still is a virtual room
online where people “gather” just to chat. Most
chat rooms have open access policies meaning
that anyone interested in chatting or just reading
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others’ chats may enter the chat room. People
can “enter” and “exit” any time during the chats.
At any one time, several threads of the public
chats may be going on. Each individual in the
chat room is given a small window on his or
her communication device to enter a few lines of
chat contributing to one or more of the discussion
threads. This communication occurs in real time
and whatever one submits to the chat room can be
seen by anyone in the chat room. Chat rooms also
have a feature where a participating individual
can invite another individual currently in the
public chat room into a private chat room where
the two can continue with limited “privacy.” To
be a member of the chat room, you must create
a user name and members of the chat room
will know you by that. Frequent chatters will
normally become acquaintances based on user
names. Some chat room software allows users to
create and upload their profiles so that users can
know you more via your profile.

Although chat rooms by their own nature are
public and free for all, some are monitored for
specific compliance based usually on attributes
like topics under discussion.

With the coming of more graphical-based on-
line services, the use of chat room is becoming
less popular especially to youth.

Blog Network Another online social network
is the bloggers network. “Blogs” are nothing
more than people’s online journals. Avid bloggers
keep diaries of daily activities. These diaries
sometimes are specific on one thread of interest
to the blogger or a series of random logs of
events during a specific activity. Some blogs are
comment on specific topics. Some bloggers have
a devoted following depending on the issues.

Instant Messaging Network (IMN) The IMN
supports real-time communication between two
or more individuals. Like chat rooms, each par-
ticipant in the IMN must have a user name. To
IM an individual, one must know that individual’s
user name or screen name. The initiator of the
IM is provided with a small window to type
the message, and the recipient is also provided
with a similar window to reply to the message.

The transcript of the interchange is kept scrolling
up both users’ screens. Unlike the chat room
however, these exchanges of short messages are
private. Like in chat networks, some IMN allows
users to keep profiles of themselves.

Online Social Networks (OSNs) These are a
combination of all the network types we have dis-
cussed above and other highly advanced online
features with advanced graphics. There are sever-
al of these social networks including Facebook,
Twitter, Myspace, Friendster, YouTube, Flickr,
and LinkedIn. Since these networks grew out of
those we have seen before, many of the features
of these networks are those we have discussed
in the above networks. For example, users in
these networks can create profiles that include
their graphics and other enclosures and upload
them to their network accounts. They must have a
user name or screen name. Also communication,
if desired, can occur in real time as if one is
using chat or IM capabilities. In additional to
real time, these networks also give the user the
delayed and archiving features so that the users
can store and search for information. Because of
these additional archival and search capabilities,
network administrators have fought with the is-
sues of privacy and security of users as we will
see later in this entry. As a way to keep users’
data safe, profiles can be set to a private setting,
thus limiting access to private information by
authorized users.

Online Social Networking Services
An online social networking service is an online
service accessible via any internet-enabled device
with the goal of facilitating computer-mediated
interaction among people who share interests,
activities, backgrounds, or real-life connection-
s. Social networking services (SNS) offer users
functionalities for identity management (i.e., the
representation of the owner, e.g., in form of a
profile) and enable furthermore to keep in touch
with other users (and thus the administration of
own contacts) (Koch et al. 2007).

Most online social network services con-
sist of:
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• User profile management: People construct
user profile in social networks for a particular
group of audience or a particular task. The
profile is used and managed as a social identity
that they used to present to each other and
analyze each other.

• Social or business links of interests: Users of
social networks can search experts or peers
based on different criteria such as interest,
company, or name. They can also proactively
receive recommendations for contacts of inter-
ests from social networks.

• Context awareness: This helps to identify
common backgrounds of users in social
networks. For example, users could have
common contacts, common interests, the
same university, or the same company.
Context awareness helps to build trust among
users, which are essential for a successfully
collaboration (Kramer 1999).

• Contact management: This combines all func-
tionalities that manage and maintain users’
personal network. Examples include tagging
people and access restrictions to profile in
social networks.

• Network awareness: This includes any change
or update of users in one’s personal network.
This includes awareness of indirect communi-
cation, News Feeds, and user notification.

• Exchange: This enables information sharing
directly (e.g., messages) or indirectly (e.g.,
photos or messages via bulletin boards). Ex-
amples of exchange in social networks include
messages and photo albums.

Currently, the most popular online social net-
work services fall in categories that range from
friends based, music and movie, religion, busi-
ness, and many other interests. In each of these
categories, let us give a sample of the current
services:
• General and friends-based social networks

– Facebook
– Myspace
– Hi4

• Movie and music social networks
– Last.fm
– Flixster
– iLike

• Mobile social networks
– Dodgeball
– Loopt
– Mozes

• Hobby and special interest social networks
– ActionProfiles
– FanIQ

• Business social networks
– LinkedIn
– XING
– Konnects

• Reading and books social networks
– Goodreads
– Shelfari
– LibraryThing

The Growth of Online Social Networks
OSNs have blossomed as the Internet explod-
ed. The history and the growth of OSNs have
mirrored and kept in tandem with the growth
of the Internet. At the infant age of the Inter-
net, computer-mediated communication services
like Usenet, ARPANET, LISTSERV, and bulletin
board services (BBS) helped to start the growth
of the current OSNs as we know them today. Let
us now see how these contributed to the growth
of OSNs.

BITNET was an early world leader in network
communications for the research and education
communities and helped lay the groundwork for
the subsequent introduction of the Internet, es-
pecially outside the US (Fox 2000). Both BIT-
NET and Usenet, which were invented around
the same time in 1981 by Ira Fuchs and Grey-
don Freeman at the City University of New Y-
ork (CUNY), were both “store-and-forward” net-
works. BITNET was originally named for the
phrase “Because It’s There Net,” later updated
to “Because It’s Time Net” (Fox 2000). It was
originally based on IBM’s VNET e-mail system
on the IBM Virtual Machine (VM) mainframe
operating system. But it was later emulated on
other popular operating systems like DEC, VMS,
and Unix. What made BITNET so popular was
its support of a variety of mailing lists supported
by the LISTSERV software (ICANN 2005).
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BITNET was updated in 1987 to BITNET II
to provide a higher bandwidth network similar to
the NSFNET. However, by 1996, it was clear that
the Internet was providing a range of communi-
cation capabilities that fulfilled BITNET’s roles,
so CREN ended their support and the network
slowly faded away (ICANN 2005).

Bulletin Board System (BBS) A Bulletin Board
System (BBS) is software running on a computer
allowing users on computer terminals far away to
login and access the system services like upload-
ing and downloading files and reading news and
contribution of other members through emails
or public bulletin boards. In “Electronic Bulletin
Boards, A Case Study: The Columbia University
Center for Computing Activities,” Janet F. Aster-
off (Evolving the High Performance Computing
and Communications Initiative to Support the
Nation’s Information Infrastructure—Executive
Summary 2013) reports that the components of
computer conferencing that include private con-
ferencing facilities, electronic mail, and electron-
ic bulletin boards started earlier than the elec-
tronic bulletin board (BBS). Asteroff writes that
the concept of an electronic bulletin board began
from 1976 through ARPANET at schools such as
the University of California at Berkeley, Carnegie
Mellon, and Stanford University. These electron-
ic bulletin boards were first used in the same
manner as physical bulletin boards, i.e., help
wanted, items for sale, public announcements,
and more. But electronic bulletin boards soon
became, because of the ability of the computer to
store and disseminate information to many people
in text form, a forum for user to debate on many
subjects. In its early years, BBS connections were
via telephone lines and modems. The cost of
using them was high; hence, they tended to be
local. As the earlier form of the World Wide Web,
BBS use receded as the World Wide Web grows.

LISTSERV It started in 1986 as automatic
mailing list server software which broadcast
emails directed to it to all on the list. The
first LISTSERV was conceived of by Ira Fuchs
from BITNET and Dan Oberst from EDUCOM
(later EDUCAUSE) and implemented by Ricky

Hernandez also of EDUCOM, in order to support
research mailing lists on the BITNET academic
research network (Kizza 1999).

By the year 2000, LISTSERV ran on comput-
ers around the world managing more than 50,000
lists, with more than 30 million subscribers, de-
livering more than 20 million messages a day
over the Internet (Kizza 1999).

Other Online Services As time went on and
technology improved, other online services come
along to supplement and always improve on the
services of whatever was in use. Most of the new
services were commercially driven. Most of them
were moving toward and are currently on the web.
These services including news, shopping, travel
reservations, and others were the beginning of
the web-based services we are enjoying today.
Since they were commercially driven, they were
mostly offered by ISPs such as AOL, Netscape,
Microsoft, and the like. As the Internet grew
millions of people flocked onto it and the web
and services started moving away from ISP to
fully fledged online social network companies
like Facebook, Flicker, Napster, LinkedIn, Twit-
ter, and others.

Gaining Knowledge from Social Networks
When more and more people are making their
opinions available in social networks, it is pos-
sible to find out about the opinions and expe-
riences of those in the vast pool of people that
are neither our personal acquaintances nor well-
known professional critics. Figuring out “What
other people think” has always been an impor-
tant piece of information for most of us during
the decision-making process. Organizations are
attempting to extract insights from opinions of
their consumers for revenue increase and com-
petitiveness improvement. The Twitter as an ex-
ample of a social network consists of 40 million
Twitter users, including billions of tweets, more
than 1 billion relationships between users, and
millions of posts, hashtags, URLs, and emoticon-
s. Through analyzing and exploiting the Twitter
data, it is possible to formulate and answer a
variety of interesting problems/questions, such
as the trending topics, brands, and pop culture,
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to assess the sentiment or popularity around any
area of interest, followers count, tweet counts by
catalog, and more. For instance, the problems or
questions related to Twitter may be “What’s the
twitter traffic distribution by hours, days, weeks,
months, and years?” “Sort all the URLs twitted in
descend order” “What background color Twitter
users like most?” “Who is the person who twitted
the most in the three year period?” “Who is the
Twitter user who has the most followers by month
and year?” “Which geographic location has the
most Twitter users?” and so forth.

Ethical and Privacy Issues in Online
Social Networks

Privacy is a human value consisting of a set of
rights including solitude, the right to be alone
without disturbances; anonymity, the right to
have no public personal identity; intimacy, the
right not to be monitored; and reserve, the right
to control one’s personal information, including
the dissemination methods of that information.
As humans, we assign a lot of value to these
four rights. In fact, these rights are part of our
moral and ethical systems. With the advent
of the Internet, privacy has gained even more
value as information has gained value. The value
of privacy comes from its guardianship of the
individual’s personal identity and autonomy.

Autonomy is important because humans need
to feel that they are in control of their destiny. The
less personal information people have about an
individual, the more autonomous that individual
can be, especially in decision making. Howev-
er, other people will challenge one’s autonomy
depending on the quantity, quality, and value
of information they have about that individual.
People usually tend to establish relationships and
associations with individuals and groups that will
respect their personal autonomy, especially in
decision making.

As information becomes more imperative
and precious, it becomes more important for
individuals to guard their personal identity. Per-
sonal identity is a valuable source of information.
Unfortunately, with rapid advances in technology,

especially computer and telecommunication
technologies, it has become increasingly difficult
to protect personal identity.

Privacy Issues in OSNs
Privacy can be violated, anywhere including
online social network communities, through
intrusion, misuse of information, interception
of information, and information matching (Web
Surpasses One Billion Documents 2000). In
online communities, intrusion, as an invasion
of privacy, is a wrongful entry, a seizing, or
acquiring of information or data belonging to
other members of the online social network
community. Misuse of information is all too
easy. While online, we inevitably give off our
information to whoever asks for it in order to get
services. There is nothing wrong with collecting
personal information when it is authorized and
is going to be used for a legitimate reason.
Routinely information collected from online
community members, however, is not always
used as intended. It is quite often used for
unauthorized purposes, hence an invasion of
privacy. As commercial activities increase online,
there is likely to be stiff competition for personal
information collected online for commercial
purposes. Companies offering services on the
Internet may seek new customers by either
legally buying customer information or illegally
obtaining it through eavesdropping, intrusion,
and surveillance. To counter this, companies
running these online communities must find ways
to enhance the security of personal data online.

As the number and membership in online
social networks skyrocketed, the issues of privacy
and security of users while online and the security
of users’ data while off-line have taken center
stage. The problems of online social networking
have been exhibited by the already high and still
growing numbers especially of young people who
pay little to no attention to privacy issues for
themselves or others. Every passing day, there is
news about and growing concerns over breaches
in privacy caused by social networking services.
Many users are now worry that their personal data
is being misused by the online service providers.
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As the growth in online social networks con-
tinues unabated, the coming in the mix of the
smart mobile devices is making the already exist-
ing problems more complex. These new devices
are increasing the number of accesses to OSNs
and increasing the complexity of the privacy
issues, including (Wresch 1996):
• The presence of a user. Unlike in the most

traditional OSNs where users were not au-
tomatically made aware of the presence of
their friends, most mobile OSNs (mOSNs)
now allow users to indicate their presence
via a “check-in” mechanism, where a user
establishes their location at a particular time.
According to Wresch (1996), the indication of
presence allows their friends to expect quick
response, and this may lead to meeting new
people who are members of the same mOSN.
Although the feature of automatic locate by
oneself is becoming popular, it allows leak-
age of personal private information along two
tracks: the personal information that may be
sent and the destination to which it could be
sent.

• Location-based tracking system (LTS) that are
part of our mobile devices. This is a feature
that is widespread in the mobile environment.
However, users may not be aware that their
location can be made known to friends, and
friends of friends who are currently online on
this mOSN, their friends in other mOSNs, and
others who may lead to leakage of personal
information to third-parties.

• Interaction potential between mOSNs and tra-
ditional OSNs. According to Wresch (1996),
such connections are useful to users who,
while interacting with a mOSN, can expect
some of their actions to show up on traditional
OSNs and be visible to their friends there.
However, a lot of their personal information
can leak to unintended users of both the tradi-
tional OSNs and the mOSNs.

In addition to almost free access to a turn of
personal data on OSNs, there is also a growing
threat to personal data ownership. For example,
who owns the data that was altered or removed
by the user which may in fact be retained and/or
passed to third parties? Fortunately users are

beginning to fight for their privacy to prevent their
personal details from being circulated further
than they intended it to be. For example, Face-
book’s 2006 News Feed and Mini Feed features
are designed to change what Founder and CEO
Mark Zuckerberg called Facebook’s old “En-
cyclopedic interface,” where pages mostly just
list off information about people, to the current
stream of fresh news and attention content about
not only the user but also the user’s friends and
their activities (Walsh 2013). The first, News
Feed, brought to the user’s home page all new
activities on all friends and associate links includ-
ing new photos posted by friends, relationship
status changes, people joining groups, and many
others, thus enabling the user to get an abundance
of information from every friend’s site every day.
Although these features adhered to Facebook’s
privacy settings, meaning that only people a user
allowed to view the data were able to see it,
it still generated a firestone from users across
the world. Over 700,000 users signed an online
petition demanding the company to discontinue
the feature, stating that this compromised their
privacy (Walsh 2013). Much of The criticism of
The News Feed was that it gave out too much
individual information.

Since online social networks are bringing peo-
ple together with no physical presence to engage
in all human acts that traditionally have taken
place in a physical environment. As these cyber-
communities are brought and bound together by
a sense of belonging, worthiness, and the feeling
that they are valued by members of the network,
they create a mental family based on trust, the
kind of trust you would find in a loving family.
However, because these networks are borderless,
international in nature, they are forming not along
well-known and traditional identifiers such as na-
tionalities, beliefs, authority, and the like, but by
common purpose and need with no legal jurisdic-
tion and no central power to enforce community
standards and norms.

Strengthening Privacy in OSNs
As more and more people join OSNs and now the
rapidly growing mOSNs, there is a growing need
for more protection to users. Chew et al. suggest
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the following steps needed to be taken (Chew
et al. 2013):
• Both OSN and mOSN applications should be

explicit about which user activities automati-
cally generate events for their activity streams.

• Users should have control over which events
make it into their activity streams and be able
to remove events from the streams after they
have been added by an application.

• Users should know who the audience of their
activity streams is and should also have con-
trol over selecting the audience of their activi-
ty streams.

• Both OSN and mOSN application should cre-
ate activity stream events which are in sync
with user expectation.

Other suggestions that may help in this effort are:
• Use secure passwords.
• User awareness of the privacy policies and

terms of use for their OSNs and mOSNs.
• Both OSNs and mOSNs providers should de-

vise policies and enforce existing laws to al-
low some privacy protection for users while
on their networks.

Ethical Issues in Online Social
Communities
Online social communities including online so-
cial network are far from the traditional physical
social communities with an epicenter of authority
with every member paying allegiance to the
center with a shared sense of responsibility. This
type of community governance with no central
command, but an equally shared authority and
responsibility, is new, and a mechanism needs
to be in place and must be followed to safe-
guard every member of the community. But these
mechanisms are not yet defined, and where they
are being defined, it is still too early to say
whether they are effective. The complexity, un-
predictability, and lack of central authority are
further enhanced by Kizza (2013):
• Virtual personality: You know their names,

their likes, and dislikes. You know them so
well that you can even bet on what they are
thinking, yet you do not know them at all.
You cannot meet them and recognize them in
a crowd.

• Anonymity: You work with them almost every
day. They are even your friends; you are on
a first-name basis, yet you will never know
them. They will forever remain anonymous to
you and you to them.

• Multiple personality: You think you know
them, but you do not because they are capable
of changing and mutating into other personal-
ities. They can change into as many personal-
ities as there are issues being discussed. You
will never know which personality you are
going to deal with next.

These three characteristics are at the core of
the social and ethical problems in online social
networks in particular and cyberspace in general;
the larger and more numerous these communities
become, the more urgent the ethical concerns
become. With all these happening in online social
networks, the crucial utilitarian question to ask
is what is best way and how we can balance
the potential harms and benefits that can befall
members of these online social networks and
how if possible to balance these possibilities. Of
late, the news media has been awash with many
of these online ills and abuses, and the list is
growing including potential for misuse, cyberbul-
lying, cyber-stalking and cyber-harassment, risk
for child safety, psychological effects of online
social networking, and free speech.

Security and Crimes in Online Social
Communities

Online crimes, in tandem with the growth of
computing and telecommunication technologies,
are one of the fastest growing types of crimes,
and they pose the greatest danger to online com-
munities, e-commerce, and the general public in
general. An online crime is a crime like any other
crime, except that in this case, the illegal act must
involve either an Internet-enabled electronic de-
vice or computing system either as an object of a
crime, an instrument used to commit a crime, or a
repository of evidence related to a crime. Also on-
line crimes are acts of unauthorized intervention
into the working of the telecommunication net-
works and/or the sanctioning of authorized access
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to the resources of the computing elements in
a network that lead to a threat to the system’s
infrastructure or cause a significant property loss.
The International Convention of Cyber Crimes
and the European Convention on Cyber Crimes
both list the following crimes as online crime (K-
izza 2005):
• Unlawful access to information
• Illegal interception of information
• Unlawful use of telecommunication equip-

ment
• Forgery with use of computer measures
• Intrusions of the Public Switched and Packet

Network
• Network integrity violations
• Privacy violations
• Industrial espionage
• Pirated computer software
• Fraud using a computing system
• Internet/e-mail abuse
• Using computers or computer technology to

commit murder, terrorism, pornography, and
hacking

As we discussed before, the online contents
are accessible from different locations without
noticeable delay. Because of the decentralized
architecture of the Internet, personal publication
through the web becomes more feasible and
affordable, while still maintaining a high
exposure to the target audience. At the same
time, the lack of regulations makes the online
social community a pretty free realm where
the geographical border dims in the online
communities. Information can be spread
anonymously with little interference from
governments via the online community. Costs
of the community are relatively low compared
with other media. Various communities benefit
from the online features of the community. We
will analyze a dark web as a case study here to
illustrate how terrorist/extremist organizations
and their sympathizers exchange ideology,
spread propaganda, recruit members, and plan
attacks. The terrorists, extremists, and their
sympathizers can benefit from web techniques
and online communities. They exchange
ideology, spread propaganda, recruit members,
and even plan attacks through the online

community. Especially, because of the ubiquity
of the online community, the previously isolated
terrorists/extremist cells are able to collaborate
more efficient than any time before and to form
a more compact community virtually. Dark webs
contain rich information about the dark groups,
such as ideologies, recent topics, and news.

Several research works have been conducted
to analyze web of terrorist cells or criminal activ-
ities. M. Sparrow (1991) applied social network
analysis to criminal activities and observed three
problems associated with criminal network anal-
ysis. They are incompleteness of analyzing data
as a result of missing nodes and links that the
investigators will not uncover, fuzzy boundaries
resulting from the difficulty in deciding who to
include and who not to include, and the dynam-
ic property of analyzed networks. V. E. Krebs
(2001) uses public information reported in major
newspapers such as the NewYork Times and
the Wall Street Journal to map networks of ter-
rorist cells. Their research unrevealed a picture
of a covert network after the tragic events of
September 11, 2001. P. Klerks (2001) describes
the development of criminal network analysis.
The approaches start from manual analysis. An
analyst constructs an association matrix by i-
dentifying criminal associations from raw data.
Then a graphic-based approach is proposed to
automatically generate graphical representation
of criminal networks. Recently social network
analysis has been used to provide more advanced
analytical functionality to assist crime investiga-
tion. J. Xu and H. Chen (2005) and Koch et al.
(2007) use data mining techniques to reveal vari-
ous structures and interactions within a network.
Discovering topics from dark websites helps in
developing effective combating strategies against
terrorism or extremists. The latent or topics are
buried in large-scale web pages and hosted by
dark websites. This work employs information
retrieval (IR) techniques to discover hidden topics
in a known dark web, such that the discov-
ered latent topics can provide insights into social
communities.

Modeling text corpora extracted from
websites help find short description of a topic
such that essential statistical relationships are
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preserved from for the basic tasks such as
classification, summarization, and similarity
judgment (Sparrow 1991). In the field of
information retrieval, a basic vocabulary of
words or terms is chosen, and each document
in the corpus is reduced to a vector of real
numbers, each entry representing ratios of word
counts. In the popular tf-idf scheme (Kerbs
2001), term frequency (tf) count is compared
to an inverse document frequency (idf) count,
which measures the number of occurrences
of a word in the entire dataset. The tf-idf
scheme generates a term-by-document matrix
X whose columns contain the tf-idf values
for each of the documents in the corpus.
Latent semantic indexing (LSI) (Deerwester
et al. 1990) is proposed to further reduce
description length and reveal more inter- or
intra document statistical structure. LSI uses a
singular value decomposition of the X matrix to
identify a linear subspace in the space of tf-idf
features that capture most of the variance in the
collection.

Hofmann (1999) presented probabilistic LSI
(pLSI) model to model each word in a docu-
ment as a sample from a mixture model, where
the mixture components are multinomial random
variables that can be viewed as representations of
topics. Thus, each word is generated from a single
topic, and different words in a document may
be generated from different topics. While Hof-
mann’s word is a useful step toward probabilistic
modeling of text, it provides no probabilistic
model at the level of documents. Yang et al.
(2009) discovered latent topics from the dark
web by Latent Dirichlet Allocation (LDA) (Blei
and Jordan 2003) which improves upon pLSI by
placing a Dirichlet Prior on topic distribution to
reduce overfitting and bias the topic weights from
each document toward skewed distributions with
few dominant topics.

Conclusion

The growth of online social communities, em-
anating from the old social gatherings of days
before computing, has given us all a bonanza

to and means to access information in amazing
ways. Online communities have created oppor-
tunities for us unprecedented in the history of
human where one individual can reach millions
of others anywhere on the globe in seconds.
The history and development of computing has
made all this possible. However, with the easi-
ness and abundance of resources at our dispos-
al availed to us by online communities, there
has also been evils that have been enabled by
these large ecosystems. To be able to safeguard
personal privacy, security, and dignity, we must
pay special attention and develop protocols and
best practices that must make everyone in these
communities safely enjoy the experiences pre-
sented in these ecosystems. The battle is not yet
worn and the way forward is not clear yet just
because the next move in new technologies is not
predictable.
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Confounding Variables Unknown variables
exist (e.g., common location, gender, school,
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another

Correlation Factor Correlation between vari-
ables is a measure of how well the variables
are related. The most common measure of cor-
relation in statistics is the Pearson correlation

Edge-Reversal Test Reserves the direction of all
edges. Social influence spreads in the direction
specified by the edges of the graph, and hence
reversing the edges should intuitively change
the estimate of the correlation

Homophily A user in the social network tends to
be similar to his/her connected neighbors

Induction An action of a user is triggered by an
action of another user

Selection People tend to create relationships with
other people who are already similar to them

Shuffle Test Shuffles the activation time of users.
It is based on the idea that influence does not
play a role, and then the timing of activation
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should be independent of the timing of activa-
tion of others

The Influence Maximization Problem Aims to
identify an initial set of users in a social
network that could maximize the spread of
influence such that other users will adopt the
new product in the shortest time

Definition

Social influence refers to change of a person’s
behavior after an interaction with other people,
organizations, and in general society. It consists
of the process by which the individual opinions
can be changed by the influence of other individ-
ual(s) (Friedkin 1998). It is characterized by three
main features:
– Conformity, that occurs when an individu-

al expresses a particular opinion in order to
meet the expectations of a given other, though
he/she does not necessarily hold that belief
that the opinion is appropriate

– Power, that is the ability to force someone
to behave in a particular way by controlling
his/her outcomes

– Authority, that is the power that is believed to
be legitimated by those who are subjected to it

Webster’s dictionary defines influence as “the
power or capacity of a person or things in causing
an effect in indirect or intangible ways.” It could
be defined as the combination of all things that
may change or have some effects on a person’s
behavior, thoughts, actions, or feelings. It can be
represented by peer pressure, persuasion, market-
ing, sales, and conformity.

This phenomenon in social networks refers to
the behavioral change of individuals affected by
others in a network. Social influence analysis in
online social networks, studies people’s influence
by analyzing the social interactions between its
members.

Introduction

Three broad categories of social influence were
identified by Kelman (1958): (i) compliance,

when people appear to agree with others while
keeping their dissenting opinions private; (ii)
identification, when people are influenced by
someone who is liked and respected, such as a
famous celebrity; and (iii) internalization, when
people accept a belief or behavior and agree both
publicly and privately.

The social environment and personal interac-
tions have powerful effects on human behavior
that in fact is always influenced by each oth-
er.

In literature three types of reference group
influences are identified: informational influence,
utilitarian influence, and value-expressive influ-
ence (Park and Lessig 1977; Bearden and Etzel
1982):
– The informational influence acts when indi-

vidual would like to improve its knowledge
and have best and useful information in order
to optimize its choices (Kelman 1961).

– The utilitarian influence is based on the
compliance process and acts when individual
would like to satisfy a group’s expectation in
order to achieve a favorable reaction from it
(Kelman 1961).

– The value-expressive influence is based on the
identification process and acts when individu-
al would like to be similar to the group in order
to belong to it (Kelman 1961).

The exponential growth of online social networks
such as Facebook, Twitter, MySpace, Flickr, and
Pinterest, Instagram is playing an important role
in shaping the users’ behavior on the Web. Fowler
and Christakis (2008) introduced the theory of
three degrees of influence to explain the great
influence that social networks have on people’
behavior. According to them, people have an
influence on friends which in their turn influence
their friends, meaning that actions can influence
people they have never met. They claim that
“everything we do or say tends to ripple through
our network, having an impact on our friends (one
degree), our friends’ friends (two degrees), and
even our friends’ friends’ friends (three degrees).
Our influence gradually dissipates and ceases
to have a noticeable effect on people beyond
the social frontier that lies at three degrees of
separation.”
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The probability to be influenced by an influ-
encer depends on four factors:
– Relevance (the right information): the user’s

information needs have to coincide with the
influencer’s expertise.

– Timing (the right time): information has to be
delivered when the user needed it.

– Alignment (the right place): few channel
of overlap between the user and the
influencer there must be.

– Confidence (the right person): users have to
trust the influencer with respect to his/her
information needs.

Historical Background

Social relationships are key components of
human life, and they have been historically
connected to time and space limitations; these
restrictions have been partially removed with the
Internet diffusion. In particular, the emergence of
social networks has created a new social dimen-
sion where individuals can increase their social
awareness interacting with old and new friends;
share information about data, products, and
services; and be more informed about different
aspects of everyday lives anywhere and anytime.
The interest in social network studies has been
growing massively in recent years. Psychologists,
anthropologists, sociologists, economists, and
statisticians have given important contributions,
making it actually an interdisciplinary research
area. In the last years several methods to collect
and visualize network data have been developed
in order to analyze relationships between people,
groups, and organizations.

In a social network, members (nodes
associated with others nodes) are influenced by
others for various reasons. Social influence is a
directional effect from node A to node B. Some
nodes can have intrinsically higher influence than
others due to network structure. Social Network
Analysis is the study of social relations among a
set of actors (nodes). The nodes in the network
are the people and groups, while the links
show relationships or flows between the nodes.
The analysis allows “to determine if a Virtual

Social Network is tightly bounded diversified or
constricted, to find its density and clustering, and
to study how the behaviour of network members
is affected by their positions and connections”
(Scott 2000). The importance of a node in the
network is measured by its centrality. The three
most important individual centrality measures are
(http://www.orgnet.com/sna.html):
• The degree centrality refers to the number of

direct connections a node has.
• The betweenness centrality quantifies the

number of times a node acts as a bridge along
the shortest path between two other nodes.

• The closeness centrality that is the inverse of
farness, which in turn is the sum of distances
to all other nodes.

A node with high centrality is usually more
highly influential than other nodes. According
Katona et al. (2011), demographics and user’s
position can predict their influential power
on their neighbors. Social Network Analysis
analyzes which members are individuals or
peripheral in a network; it identifies bonding and
bridging and who has influence in the network.
Many mathematical techniques are available to
measure networks (Wasserman and Faust 1994).
Hoppe and Reinelt (2010) demonstrate how to
use these metrics to understand and evaluate
specific leadership networks.

Farrow and Yuan (2011) explored the strength
of network ties to show how Facebook influences
the attitudes of the alumni to volunteer for and
make charitable gifts to their alma mater fortify-
ing consistency between attitude and behavior.

Social influence analysis aims at qualitatively
and quantitatively measuring the influence of one
person on others. There are different methods and
algorithms for measuring social influence, and
they will be analyzed in the following sections.

Qualitative Measures for Analyzing
Social Influence

According to Anagnostopoulos et al. (2008),
influence of a person on another can act for three
reasons: (i) induction, (ii) homophily, and (iii)
confounding variables (factors). They applied

http://www.orgnet.com/sna.html
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statistical analysis on data from a large social
system in order to identify social influence as
a source of correlation between the actions of
individuals with social ties. They proposed two
tests, the Shuffle test and the Edge-Reversal test,
to identify induction as cause of social correlation
when the time series of user actions is available.
This approach is based on the assumption that
timing of actions should matter if induction is a
likely cause of correlation.

Goyal et al. (2010) followed a similar
approach, proposing to establish relationship
between users by scanning log of user action.
According to them the influence probability
between two users is determined by common
actions and time issues. The approach based
on homophily was followed by Crandall et al.
(2008) that used cosine similarity to compute the
similarity between two people. They proposed
a probabilistic model which samples activities
of people based on their history and those of
their neighbors and a background distribution.
This concept was stressed also by Matsuo and
Yamamoto (2009). They studied user’s behavior
on an e-commerce site and found that users
generally trust other users who have similar
behavior with them. Other studies analyzed
the correlation between social similarity and
influence. Singla and Richardson (2008) studied
the probability of relationships between two users
by measuring their similarity. According to them
users with common features (age, gender, zip
code, word, and queries issued) chat more likely
to each other; then influence probabilities could
be estimated by user’s similarity.

These studies used different approaches to
analyze influence probabilities, but they did not
address the issue of identifying influential users
of the network. This issue will be analyzed in
the next section introducing studies that used
quantitative measures.

Quantitative Measures for Analyzing
Social Influence

The problem to quantify the strength of social in-
fluences and differentiate social influences from

different angles (topics) was addressed by Tang
(2009). They studied the topic-based social influ-
ence analysis on large networks. The goal was
to simultaneously analyze nodes’ topic distribu-
tions (or user interests), similarity between nodes
(users), and network structure. They proposed a
Topical Factor Graph (TFG) model to incorporate
all information into a unified probabilistic model
and present Topical Affinity Propagation (TAP)
for model learning.

Most studies about social influence analysis
considered positive interactions (agreement,
trust) between individuals; Li et al. (2011)
also considered negative relationships (distrust,
disagreement) between individuals and confor-
mity of people (the inclination of a person to
be influenced). They proposed an algorithm
called CASINO (Conformity-Aware Social
INfluence cOmputation) which quantifies the
influence and conformity of each individual in
a network by utilizing the positive or negative
relationships between individuals. This algorithm
consists of three phases. In the first phase, a
set of topic-based subgraphs that represent the
social interactions associated with a specific
topic are extracted from a social network. In
the second phase, the edges (relationships)
between individuals are labeled with positive
or negative signs. Finally, in the third phase,
the influence and conformity indices of each
individual in each signed topic-based subgraph
are computed.

The problem of dynamic social influence anal-
ysis was addressed by Wang et al. (2011). They
proposed a pairwise factor graph (PFG) model
to quantify the influence between two users in
a large social network. Different types of fac-
tor functions capture information such as users’
attribute information, social similarities/weights,
and network structures, which form the basic
components of the factor graph model. An al-
gorithm was designed to learn the model and
make inference to obtain all the marginal prob-
abilities. They further proposed a dynamic fac-
tor graph (DFG) model to incorporate the time
information.

Domingos and Richardson (2001) first studied
the problem of which individuals is necessary to
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target to have a large cascade of further adoption-
s. The problem was considered in a probabilistic
model of interaction; heuristics were given for
choosing customers with a large overall effect on
the network. Kempe et al. (2003) faced the same
issue of choosing influential sets of individuals
by formulating it as a discrete optimization prob-
lem and proposing an approximation algorithm
that was applicable to general cases. This op-
timization problem has a complexity NP and
“the greedy algorithm can guarantee the influence
spread within (1-1/e) of the optimal influence
spread.”

Kimura and Saito (2006) propose shortest-
path-based influence cascade models and provide
efficient algorithms to compute influence spread.
However, these algorithms are not scalable for
large graphs; to solve the problem Chen et al.
(2009, 2010) designed a new heuristic algorithm.
This algorithm, scalable to millions of nodes and
edges, allows controlling the balance between
the running time and the influence spread of the
algorithm. With respect to the work of Kimura
that used simple shortest paths on the graph,
which are not related to propagation probabilities,
Chen used maximum influence paths and local
structures such as arborescences.

Key Applications

In social networks very important is the effect of
“word of mouth,” since idea, opinions, and rec-
ommendations propagate very quickly and with
an exponential grow. This concept is very fre-
quently applied in different fields like market-
ing, recommendations, healthcare, and politic-
s.

Many companies have recently started to
capture data on the social interaction between
consumers in social networks, with the objective
of understanding and leveraging how this
interaction can generate social influence.
Consumers can really modify their opinions
about products and/or services according to
the social influence process; this process also
impacts on knowledge diffusion about products

and services. Social network emerges as one of
the most authoritative and influential sources
of knowledge about products and services
related to the area of interest of a community.
They have the aptitude to generate knowledge
sharing among consumers and facilitate the
collaboration and exchange of ideas among
consumers. In this context, viral marketing
involves customers in commercial strategies
for recommending commercial products to their
friends through the customer social networks.
According to De Bruyn and Gary (2004),
viral marketing is a “consumer-to-consumer
(or peer-to-peer) communication, as opposed
to company-to-consumer communications, to
disseminate information about a product or a
service, hence leading to its rapid and cost-
effective market adoption.” In this context the
problem of the influence maximization that
aims to identify individuals to target to have
a large cascade of further adoptions assumes
a great relevance. Several studies introduced
in the previous section (such as Domingos and
Richardson 2001; Kempe et al. 2003; Kimura and
Saito 2006; Chen et al. 2009, 2010) addressed
this issue.

The emergence of e-commerce has led to
the development of recommender system, a
personalized information filtering technology
used to identify a set of items that will be of
interest to a certain user. Mao et al. (2012) ex-
plored social influence for item recommendation.
Previous approaches mostly incorporated
social friendship into recommender systems
by heuristics. They captured quantitatively social
influence and proposed a probabilistic generative
model, called social influenced selection (SIS),
extracting social influence and preferences
through statistical inference. Moreover, they
developed a new parameter learning algorithm
based on expectation maximization (EM) to face
the problem of multiple layers of hidden factors
in SIS.

Social networks are rapidly transforming also
the healthcare field. People are more and more
connected to the Web in order to search, share,
and exchange information and find support from
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other people. According to a 2008 survey carried
out by Icrossing, the Internet has been the most
used source to find information about health and
wellness in the previous 12 months. Patients,
thanks to the Web, can share the same illness
with people all over the world and feel themselves
less alone. In addition according to Edelman’s
study (2008), people have more trust in a per-
son with which they can identify themselves
than business, government, and media subjects.
Which is the impact of these activities on heath
conditions? A study of Christakis and Fowler
found that health status can be influenced by
the health status of the neighbors. How do you
manage the inaccurate information disseminating
on health social networks? Some studies were
carried out to identify influential users in or-
der to optimize the spread of health informa-
tion (Krulwich and Burkey 1995; Zhang et al.
2007).

Another emerging key application of social
influence on social networks is the political
field.

A strength of the first Obama election
campaign was his strategic use of social media.
Analysts are now studying the impact of tools
such as Facebook, Twitter, and YouTube had
on election results. A recent Pew Research
study (Rainie and Smith 2012) analyzed
politics on social networks and found that
users after discussing a political issue or
reading posts about it on these sites change
their points of view and political involvement.
Bond et al. (2012) hypothesized that voting
behavior is significantly influenced by messages
on Facebook. They found that political self-
expression, information seeking, and real-world
voting behavior of millions of users were directly
influenced by messages. This had an indirect
effect through social contagion also in the
users’ friends and friends of friends. Close
friends had four times more influence than
the message itself. Furthermore, they stated
that “online mobilization works because it
primarily spreads through strong-tie networks
that probably exist offline but have an online
representation.”

Fowler (2005) based on observational data
found that behavior of each act of voting spreads
through the network generating on average an
additional three votes.

Future Directions

Social influence analysis studies are in its
beginnings, and so in the future more methods
and techniques will be developed. A challenge
for future works will be to develop efficient,
effective, and quantifiable methods for analyzing
the persuasion and influence phenomenon within
social networks. Until now, studies have mainly
focused on conceptual models and small-scale
simulations. In the future as online social
networks enable for the first time to measure
social influence over a large population, they
should include more large-scale data mining
algorithms to analyze social network data. It will
allow having more realistic results for large-scale
applications in different fields and in different
social and informational settings.
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Synonyms

BPEL4People; Collaboration analysis;
Collaboration metrics; Collaboration platforms;
Crowdsourcing; Human-Based services (HBS);
Interaction patterns; Process mining; Rewarding;
Social trust; Task assignment; Team collabora-
tion; Team formation

Glossary

Actor Entity (human or computer) possessing
a capability to act intelligently and process
specific assignments (activities/tasks)

Task Piece of work to be solved, typically com-
plex enough to require knowledge or process-
ing power of a large number of individual
actors

Atomic Task Task that can be handled by an
individual actor

Composite Task Task that must be handled by
multiple actors due to size or complexity. A
composite task can be broken down into atom-
ic tasks

Collaborative Process (Collaboration) Joint ef-
fort of a (limited) number of actors with
the goal of performing a task. A collabo-
rative process has a limited duration and
requires coordination among actors (due to
task dependencies)

Team Set of actors taking part in a collaborative
process. Team lifetime is considered equal to
the lifetime of the collaborative process

Task Assignment The art to divide a (compos-
ite) task into (sub) tasks and assign them to
appropriate actors

Team Formation Process consisting of identi-
fying appropriate actors for performing all
atomic tasks and establishing of internal co-
ordination and functioning rules in the team

Metric Precisely defined, context-specific mea-
sure of some properties

Collaboration System (Platform) Information
system supporting execution of collaborative
processes

Definition

With the advent of Web 2.0 and social networks,
millions of users around the world were given
the opportunity to collaborate, share ideas, and
coordinate their efforts easier than ever before.
These developments lead to an increased interest
to exploit these opportunities, both in the research
community and in the industry. Such collabora-
tive efforts are supported by different types of
collaboration systems, providing automated or
semiautomated actor management (e.g., model-
ing, reputation, and rewarding), task management
(e.g., modeling, creation, division, scheduling,
aggregation, and monitoring), and process execu-
tion environment (e.g., actor communication and
coordination).
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Social Interaction Analysis for Team Collaboration, Fig. 1 Elements of a collaboration system

In order to better understand how these sys-
tems work, in this entry we look into different
types of collaboration systems. We describe team
structures and discuss different forms of collab-
orations they support. In particular, we focus
on interaction processes that are supported by
the system and discuss different metrics used
to describe and analyze such systems. Figure 1
depicts the fundamental elements of a collabora-
tion system that we discuss in this entry.

Introduction

The idea of combining research on how humans
work, communicate, and cooperate and the
research on how computer systems can efficiently
support such collaborations led to the creation
of an interdisciplinary research area known as
computer-supported cooperative work (CSCW)
in the 1980s (Grudin 1994). Initially, the research
was focused on small-scale collaborations,
e.g., within companies or interest groups. With
the wide adoption of Internet technologies,
service-oriented architectures (SOA), mobile and
cloud computing, and especially social networks,
nowadays it is possible to carry out large-scale

collaborations, possibly involving thousands
of collaborators across boundaries of multiple
organizations and countries. Some examples
of today’s well-established types of computer-
supported human collaboration systems include:
• Human Computation Systems – Systems in

which human actors perform assigned tasks in
a precisely defined sequence (e.g., by follow-
ing an algorithm). The execution is explicitly
controlled and coordinated by the system and
expected to yield precise results (Law 2011).

• Workflow Management Systems – Systems
that allow modeling of tasks and their
execution scenarios. Notable representatives
of such systems are the various business
process management (BPM) systems.
Although tasks can be performed by human
actors, the traditional understanding of the
notion of a workflow system does not
include an integrated management of human-
performed tasks.

• Mixed Systems – Systems where both human
and computer actors process the tasks. Hu-
mans are deeply integrated into the system,
making both types of actors first-class citi-
zens of it. The decision on who processes a
particular task can be made by the system.
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While computer-performed tasks are accurate,
employing humans for certain tasks requires
dealing with uncertainties both in terms of
human behavior and the quality of results.

• Crowdsourcing Systems – Systems in which
the task is offered, rather than assigned explic-
itly, to an unknown and usually large group of
people who can freely accept and perform the
tasks (also see the � Social Network Analysis
of Crowdsourcing chapter).
These types of systems clearly enable differ-

ent collaboration types. Depending on the type of
system and type of problem to be solved, differ-
ent team structures are possible. The team struc-
ture guides the interactions and collaboration
among team members and consequently plays an
important role in a team’s performance. There-
fore, this entry explores team formation processes
and team collaboration types. We discuss three
main team collaboration types: static, ad hoc, and
open collaboration. We then focus on interaction
analysis and discuss appropriate interaction met-
rics.

Team Collaboration Analysis

Team Properties
We consider three important team properties: (a)
actors making up the team, with their different
skills, qualities, and personalities; (b) structure,
which represents a set of interaction paths among
the actors; and (c) different forms of collabora-
tion among the actors.

Actors and Team Structure
Actor teams are usually modeled as undirected or
directed graphs with nodes representing people
or teams of people and edges representing social
relationships between them (Newman 2010). Of-
ten, the edge is associated with a weight describ-
ing the amount of interaction between the two
nodes it connects and annotated with a context,
representing the type of the relationship (e.g.,
friendship, prior professional collaboration, and
trust). Therefore, a team network can be mod-
eled as a graph consisting of nodes represent-
ing actors, sets of skills forming their profiles,

edges representing relationships, and associated
contexts of relationships (Caverlee et al. 2008).

Forms of Computer-Supported Team
Collaboration

Static Collaboration
Static collaboration is characterized by well-
defined, long-lasting/repetitive processes (tasks),
executed by human actors with specific assigned
roles. Such kind of collaborations is usually
found in companies that encode and execute their
daily business use cases as business processes by
using workflow technologies. This collaboration
type makes no use of the underlying social
networks connecting the actors to alter or
enhance the collaboration in any way. As such,
this approach works well only in cases where the
predictability of the process execution is high and
where no adaptability is required.

Ad Hoc Collaboration
Unlike static collaboration, the ad hoc collabora-
tion is suitable when performing highly dynamic
tasks that change in time or complex tasks that
occur only once and are not repeated. In this type
of collaboration, tasks are initially defined, but
the actors performing them are provisioned only
at runtime. Ad hoc collaborations often cross
organizational boundaries and are distributed
in nature, in terms of software services used
and actors executing the tasks as well as in
terms of control. Actor provisioning can be
fully automated or partially performed by
the actors themselves, often relying on social
and other underlying networks connecting the
actors.

Ad hoc collaborations are primarily supported
by SOA-based collaboration systems. One ap-
proach to abstract human actors as services in
mixed systems is through Human-Based Services
(HBS). However, HBS are still not considered as
a mature technology. Another approach to build-
ing ad hoc collaborations is to build upon existing
crowdsourcing platforms and extend them with
necessary features.

http://dx.doi.org/10.1007/978-1-4614-6170-8_259
http://dx.doi.org/10.1007/978-1-4614-6170-8_259
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Open Collaboration
In open collaborations a task can be actively
shaped by the actors. The actors (often belonging
to a professional community or an interest-based
community) contribute freely to the task resolu-
tion during runtime. A task is not strictly assigned
to a particular actor, but instead it is editable by
(m)any community members upon their wish. In
this case the coordination between the actors can
affect the quality of the task (Kittur and Kraut
2008). Data quality is controlled by the system
itself and/or by a designated entity, but the qual-
ity is mainly evaluated by feedback information
from actors. Open collaboration is particularly
suitable for longer running, best-effort tasks, with
no strict quality and time constraints, but requir-
ing distributed know-how.

Open-source development, Wikipedia, and
community-based Q&A Web sites are among the
best examples of open collaboration. Examples
of open collaboration enabling technologies and
platforms include cloud services (e.g., Amazon
EC2), sharing and collaboration platforms (e.g.,
DropBox, Google Docs, and Mendeley) and
open-source repositories (e.g., GitHub and
SourceForge).

Task Properties

Task Description
Considering the general nature of the tasks that
can be handled by a team composed of hu-
man actors, describing tasks precisely and un-
ambiguously is extremely difficult. The difficulty
lies in expressing the information that needs to
be interpreted by each actor in the same way.
At the same time, the effort required to interpret
a task’s objectives must be considerably smaller
compared to the effort required to perform the
task itself.

Two different approaches for task description
are informal and formal:
• Informally describing tasks means expressing

the required outcomes in natural language,
accompanied with simple examples. This ap-
proach is usually taken by today’s crowd-
sourcing platforms that handle simple tasks.
Also, informal description may be preferred in

cases where tasks require aesthetic judgment
or when the required outcome of the task is too
vague to be expressed more precisely (e.g., on
Web sites running creativity contests).

• Formally describing tasks means employing
a specific notation that precisely defines how
the task should be processed and what should
the outcome be. Formal task description is
usually used in specific environments, most
notably in business process modeling (BPM).
Initial versions of the most prominent business
control-flow languages, such as BPEL, did not
support specification and invocation of human
interactions. An extension to BPEL, known
as BPEL4People (Kloppmann et al. 2005),
was proposed in 2005 to allow modeling of
human interactions within business processes
by introducing the concept of people activi-
ties. A people activity can be described ac-
cording to the WS-HumanTask (Amend et al.
2007) specification. In this way, humans can
be internally represented as Web Services and
integrated into the system.

Task Structure and Complexity
Task structure directly influences the team struc-
ture. Different task structures and complexities
demand specific types of collaboration in terms
of communication form, coordination protocols,
adaptation schemes, and outcome type.

Subtask interdependencies are one of the fun-
damental factors determining the task structure
and task complexity. Tasks can be parallel and
sequential. Parallel tasks contain subtasks that
can be executed independently in parallel, while
a sequential task is composed of subtasks whose
execution must follow a strict order. A subtype of
sequential tasks is iterative tasks, where the out-
put of one actor is given as input to another actor
for subsequent task execution. An experiment and
analysis of parallel and iterative approaches in
open systems can be found in Little et al. (2010).

Apart from subtask interdependencies, other,
nonstructural factors can influence a task’s com-
plexity, such as (a) number of atomic tasks; (b)
growth (Dustdar and Bhattacharya 2011) – the
number of atomic tasks can grow in runtime,
necessitating team-size adaptability; and (c) task
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cardinality – tasks can be designed to be executed
by one or many actors in one-to-one, many-
to-one, many-to-many, and few-to-one fashion.
See Quinn and Bederson (2011) for details and
examples.

Interaction Processes

Team Formation
The problem of team formation consists of select-
ing suitable actors to perform a given task (out
of a larger group of available actors) and orga-
nizing them in a collaborative structure. The first
problem with identifying “suitable” actors is that
suitability is highly contextdependent and diffi-
cult to define precisely. Furthermore, suitability
can have many different aspects. For example,
the minimal suitability requirement for an actor
is to possess the skills to perform the task. But, at
the same time, for a successful teamwork, factors
like trust, motivation, experience, and personal
relations with other team members can be equally
important.

Initially, the research focused on locating indi-
vidual best-matching actors for a required set of
skills and other individual properties. However,
a group of top individuals does not guarantee
the quality of their collaboration. Subsequent
research efforts began taking into account the
underlying social relations among the actors
(e.g., friendships, managerial relations, previous
business interactions, interests, connectedness,
and social trust). After selecting suitable actors,
the next step in ensuring a successful collabora-
tion is setting up a collaborative organization and
environment. Although collaboration patterns in
a team often resemble those in the underlying
social networks, other factors like coordination
cost, userpreferences, and context are also
important.

Whichever the properties considered, they are
always measurable and quantifiable, meaning that
the problem of team formation can be ultimately
expressed as an optimization problem where we
want to optimize certain performance aspects of
the team as a whole (speed, quality, cost, and
response time). In general, team formation can be
as follows:

• Self-organizing – The actors themselves lead
the team formation in a collective-intelligence
fashion and set up the collaboration environ-
ment.

• Centralized – Team formation and setting up
of collaborative environment is managed by
the system.
Wikipedia and open-source community are

striking examples of how self-organizing teams
can perform well. The assumption is that the
actors taking part in collaboration will perform
best if they are given the possibility to modify
and adapt the collaborative environment. This
includes also the initial team formation. For ex-
ample, in Gaston and DesJardins (2005), the
authors investigate a system that enables actors
to locally modify their collaborative environmen-
t according to their social network preferences
(i.e., to rewire the local network topology) with
the goal of achieving globallynoticeable, collec-
tive performance improvement.

The most problematic aspect of self-
organizing teams is the discrepancy between
local and global effects. Although we rely on the
collective intelligence of the actors, in practice,
actors may not know how or when to modify the
local network to achieve global improvements,
since their actions are based upon their partial
views only.

Centralized team formation is entirely handled
by the system. Internally, the system can employ
an algorithm or human actors to assemble the
team:
• Human-managed team formation relies on

human actors offering their referrals and
recommendations via Web Services, thus
leveraging crowdsourcing techniques to
identify the best candidates from their social
networks. An example of such a system is
PeopleCloud (Lopez et al. 2010).

• Algorithmic team formation relies on an al-
gorithm to select actors and assemble the
team. A lot of research efforts have been
directed in this sense, producing a number
of different algorithms. In Schall and Dustdar
(2010), the authors modify the well-known
page ranking algorithms PageRank and HITS
to identify the best team members, based on
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their previous interactions. In Lappas et al.
(2009) and Anagnostopoulos et al. (2012), the
goal is to minimize the total coordination cost
of the newly established team, while in Dorn
and Dustdar (2010), the optimal team is cho-
sen as a tradeoff between skill coverage and
actor connectivity. In Caverlee et al. (2010),
the social trust between the team members is
regarded as the most important factor in form-
ing efficient collaborations.

Task Assignment and Delegation

Routing and Delegations
Task delegation mechanisms are being explored
as forms of coordination and load balancing in
human computation. The concept of social rout-
ing is introduced in Dustdar and Gaedke (2011)
as a form of delegation of tasks by task owners
to actors from their social, professional, other
context-based community networks or the crowd.
The so-called social routine can be a software
service that actually does the task forwarding
across different types of networks depending on
the requirement of the actor wishing to delegate
the task.

Historical data on delegations (e.g., the exe-
cuted/delegated tasks ratio) can serve as a good
indicator of actor’s role and performance quali-
ties. For example, a high number of task dele-
gations testify of a coordinating/managing role.
On the other hand, if an actor has a very large
number of delegated tasks but a low number of
executed tasks, it can be inferred that the actor is
lazy. Thus, delegation data can be used as metrics
in actor selection and team formation algorithms.
Moreover, delegation measures can be used in
trust inference mechanisms. If the receivers of
delegated tasks are considered trustworthy, new
trust-based links will be created between the
delegator and the delegates (Skopik et al. 2010).

Delegation Patterns in Business Process
Activities
The four main delegation patterns, detailed in
Kloppmann et al. (2005), are as follows:
• Nomination pattern allows predefined actor(s)

to decide to whom to assign a task.

• Escalation pattern allows transfer of respon-
sibility for task execution to other human
actors when the originally assigned actor can-
not meet task’s time constraints.

• Chained execution pattern forces the actors to
perform a specific sequence of actions, where
the concrete actions may be determined only
in runtime.

• Four-eye Principle pattern allows two actors
to take a public or a private decision on
the same issue independently (separation of
duties).

Algorithmic Task Life-Cycle Management
In cases when subtasks are clearly delimited
and subtask dependencies are static and do not
change in time, parallelizing a task execution
is fairly easy. Some application domains, such
as crowdsourcing systems, are characterized by
exactly such properties. This has led researchers
to dedicate a lot of effort to automate task life-
cycle management transparently for the program-
mer, by developing a number of programming
language extensions/libraries that work on top
of existing commercial crowdsourcing systems,
such as Amazon Mechanical Turk. The exten-
sions are typically able to automatically split a
task; to assign/offer the subtasks to the actors
in the crowd respecting the dependency, cost,
and time constraints; and to merge the processed
subtasks into the final resulting task. Additional-
ly, automated quality control processes may be
also offered. Most commonly, these are based on
peer reviews or on a combination of redundant
processing and majority rule. For example, an
image that needs to be tagged may be submitted
to multiple actors, but the aggregated result will
contain only tags suggested by multiple indepen-
dent actors. The data quality requirements can
have a direct influence on task assignment, as
they may introduce assignments not explicitly
required by the user, but performed transparently
by the system. In fact, the main purpose of algo-
rithmic handling of task assignment is exactly to
move the burden of task life-cycle management
from the user to the system.

Collaboration systems can manage task as-
signments automatically throughout the entire
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execution time, repeating them when needed. For
example, Little et al. (2009) shows a system offer-
ing the possibility of iterative task execution, by
reassigning previously processed tasks a number
of times in order to improve the final quality of
work by incrementally building upon previous
work. In Marcus et al. (2011) a system can
autonomously decide when to assign pleasing
tasks to specific actors in order to motivate/re-
ward them.

Another major advantage of algorithmic task
assignment is the cost optimization. For large-
scale collaborations, the system is able to assign
the tasks in such a way to reduce the coordina-
tion costs better than human managers could do.
For example, the task can be assigned to actors
possessing similar professional skills and back-
grounds, or the system can adjust task prices and
time allotments based on the feedback obtained
from monitoring data (Barowy and Berger 2012).

CollaborationMonitoring and Analysis
Monitoring and analyzing collaborative process-
es is necessary to gather important metrics re-
garding the performance of teams and actors and
the quality of processed tasks. Such metrics are
then used to detect bottlenecks, improve perfor-
mance, and decide on appropriate compensation
of the actors. As these metrics play a fundamental
role in determining overall collaboration efficien-
cy and costs, every collaboration system must
support some kind of monitoring and analysis
functionalities.

Monitoring can be performed during the
runtime of a collaborative process (active
monitoring) or it can be performed post-runtime,
e.g., by log mining. Log mining is usually
considered a part of more complex analysis
processes, known as workflow/process mining
(van der Aalst 2011; Zhang and Serban 2007).

Active monitoring is suitable for detecting
anomalies that require quick responsive actions
and team adaptations. An example of monitoring
and analyzing SOA-based collaborative process-
es can be found in Truong and Dustdar (2009).

Log mining, on the other hand, is used to
gather less obvious information about the internal
functioning of the team, since it considers the

backlog of all recorded actions performed during
previous collaborations. This allows discovery
and prediction of critical execution paths, expect-
ed workload distribution, actor performance, and
identification of previously unknown collabora-
tive social networks, e.g., the network of most
trusted colleagues or the groups of workers that
together collaborate most efficiently as a team.

CollaborationMetrics and Patterns
Metrics characterizing collaborations can be di-
vided into three major categories (see Table 1):
• Structural metrics – Defining the mathemati-

cal properties of the social/collaborative net-
work connecting the actors

• Interaction metrics – Defining various prop-
erties of individual actors or actor groups,
emerging as the result of past interactions

• Quality metrics – Defining quality criteria for
actor performance and for task outcome data

Structural Metrics and Network Patterns
Structural metrics and network patterns are based
on mathematical properties of the social graph
connecting the actors in a collaboration team.
They provide useful insights into the functioning
and self-organization of actors in a team. Struc-
tural metrics are well researched. Here is a brief
overview of some of the main structural metrics:
• Centrality measures – They include various

metrics that identify the importance of an actor
within a network in different contexts of im-
portance. Some of the most important centrali-
ty metrics are degree centrality, closeness cen-
trality, betweenness centrality, and eigenvec-
tor centrality. See also Chaps. Centrality Mea-
sures of Social Networks and � Similarity
Metrics on Social Networks.

• Structural groups – They refer to various
group patterns that can be identified within
networks, such as core (denoting a subset of
actors within a network where each actor is
connected to at least k other actors within
the same subset), k-component (denoting a
subset of actors in which each two actors are
connected by at least k independent paths),

http://dx.doi.org/10.1007/978-1-4614-6170-8_257
http://dx.doi.org/10.1007/978-1-4614-6170-8_257
http://dx.doi.org/10.1007/978-1-4614-6170-8_252
http://dx.doi.org/10.1007/978-1-4614-6170-8_252
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Social InteractionAnalysis for TeamCollaboration, Table 1 Overview of metrics and patterns used in collaboration
systems

Structural metrics Centrality measures
(degree, closeness, betweenness, eigenvector, etc.)

Structural groups
(cores, components, cliques)

Transitivity, reciprocity

Similarity, equivalence

Interaction metrics Actor level Trust, reputation
Functional/skill coverage

Task familiarity, team familiarity

Group level Structural groups

Team size

Link quality, interaction intensity

Collaboration patterns
(delegations, escalations, redundant processing,
iterative processing, etc.)

Quality metrics Quality-of-Data (QoD) Uncertainty,
Completeness, accuracy, freshness, relevancy etc.

Performance Availability, response time, success rate, etc.

Rewarding & incentives Effort, productivity, quality of work

and clique (denoting a subset of actors all
directly connected to each other).

• Transitivity and reciprocity – Transitivity re-
flects the “friend-of-a-friend” concept, i.e., if
an actor a is connected by an edge to another
actor b, and b is connected to c, then a is also
connected to c. Reciprocity, on the other hand,
denotes the probability that actor b points to
actor a if actor a points to b.

• Similarity – It is defined by structural equiv-
alence and regular equivalence metrics. See
Newman (2010).

Details about all these and other metrics, as well
as about ranking algorithms, can be found in
Newman (2010).

Interaction Metrics
Interaction metrics can be defined at two levels:
individual level (targeting individual actors) and
group level (targeting multiple actors or the entire
team). Individual interaction metrics describe a
property of an individual actor that is shaped by
the interaction in which the actor has participated.
Group interaction metrics describe properties of

particular interactions between actors, possibly
including the collaboration as a whole.

Certainly, the most important actor-level met-
rics are skill coverage and trust. Skill cover-
age represents a degree to which an actor or
a team possess necessary skills to perform a
task. This metric is important because it de-
scribes how much a team’s set of skills devi-
ates from the optimal one for a given task. The
problem of matching skills is equivalent to the
problem of functional matching in Web Service
compositions.

Trust, as a computational concept, was for-
malized in Marsh (1994), and since then it has
been seen as a metric of great importance for
selection of appropriate actors during the team
formation phase. Trust is defined as an indicator
of an actor’s expectation about another actor’s fu-
ture behavior based on knowledge from previous
interactions, which inherently involves a degree
of uncertainty about this behavior and its out-
comes. Trust is highly context dependent and one
actor may have information about several scope-
specific trust values for another actor. A scope
can be the membership in a professional network,
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social network, or a collaboration team. For more
information, see entry. �Computational Trust
Models.

Inferring trust is important in several cases:
• For actor discovery and team formation algo-

rithms, when determining actor suitability for
specific tasks

• For team optimization, adaptation, and risk
management purposes

• For delegation mechanisms, e.g., when select-
ing a collaborator that may be a part of the
extended team structure for the purpose of
load balancing in cases of unexpected load
We can distinguish three types of trust based

on the type of actors and interactions that are
taken into account for its inference:
• Local trust or direct trust (sometimes also

called private reputation) – First-hand trust,
inferred from the outcome of an actor’s pre-
vious interactions with the trustee

• Recommendations – Second-hand trust
inferred from the outcome of past interactions
between a well-trusted entity and the trustee

• Global trust or reputation – Aggregated com-
munity trust, inferred from outcomes of past
interactions between third-party actors and the
trustor (Skopik et al. 2009)
Other actor-level metrics include task famil-

iarity and team familiarity (Espinosa et al. 2007).
These are especially important for open collab-
oration where the system cannot assign a task
to appropriate and trusted actors. If some of the
actors within an open collaboration are already
familiar with other actors, the coordination will
be positively affected.

Team familiarity is important in large teams
where effective team coordination is more diffi-
cult. Team familiarity is a function of multiple
other metrics such as quality of prior interactions
with a coworker previously not belonging to the
same team or prior experience with the same team
structure and organization. Hence, this measure is
closely related to trust.

Task familiarity is best explained with an
example of open-source software development
team. The bigger the number of interdependent
modules, the more complex is the task. This

increases the amount of information to be pro-
cessed by human actors, thus it is important that
actors have a reasonable amount of task familiar-
ity. Details of a model for performance analysis
of teams based on task familiarity and team
familiarity can be found in Espinosa et al. (2007).

Group-level metrics describe performance
properties of a collaboration. One of the
fundamental metrics describing collaborations
is the team size. The bigger the number of
collaborating actors, the more communication
and coordination among them is needed. For
example, in Kittur and Kraut (2008) the authors
use Wikipedia to analyze how the number of
editors and the coordination methods affect the
article quality in terms of accuracy, completeness,
and clarity.

A metric indicating interaction intensity
between an actor and other important actors is
measured in specific interaction contexts. It is
used in the aforementioned DSARank ranking
algorithm (Schall and Dustdar 2010).

The relevance of the connections to important
actors is the most important factor in determin-
ing the reputation of an actor. The reliability of
the feedback information in reputation systems
depends on the reputation of actors providing
the feedback. Reputation information is valuable
when an actor lacks information based on direct
experiences with another actor. However, when
this information is available and appropriate, the
private or direct trust weights more than trust
values based on reputation data. In this case the
weight of data from direct interactions should be
determined by calculating the minimum number
of direct/local trust or rating values that should be
maintained by an actor for the actor providing the
service/executing a task (Noorian et al. 2012).

Collaboration cost is an important metric be-
cause of its direct business influence. This metric
takes into account not only the price of task
processing paid to the actors, but rather the total
costs, including the communication and coordi-
nation costs. It is used as the basis for the cost
optimization algorithms, as shown in the afore-
mentioned systems – Quirk (Marcus et al. 2011)
and AUTOMAN (Barowy and Berger 2012).

http://dx.doi.org/10.1007/978-1-4614-6170-8_228
http://dx.doi.org/10.1007/978-1-4614-6170-8_228
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Automatically discovering collaboration
patterns naturally occurring among actors
opens up a possibility to identify particularly
(un)successful collaboration groups or execution
sequences. This information can in turn be used
to optimize collaborative process. Identifying
collaboration patters is one of the central topics
of process mining.

Quality Metrics
Quality-of-Data (QoD) Metrics. As collabora-
tion systems deal with various human-performed
tasks, and the data quality primarily depends on
the type of tasks, trying to develop a general
set of quality metrics makes little sense. For
example, metrics listed in Table 1, such as data
completeness, freshness, and accuracy, are well-
known metrics but their definition is highly de-
pendent on the goal of their use. Instead, different
metrics are developed for particular application
domains. However, it is exactly the fact that
humans participate in the collaborative processes
that introduces a concept common to all the appli-
cation areas – that of uncertainty or inaccuracy
(Parameswaran and Polyzotis 2011). The main
sources of uncertainty are caused by the dynamic
and unexpected behavior of humans: humans
make mistakes, are subjective, and can employ
malicious behavior. Thus, approaches for dealing
with uncertainty should be included in supporting
systems.

Different research communities deal with un-
certainty differently. However, all approaches re-
ly on some probability metrics that quantify our
belief that a single task is performed correctly.
In principle, all approaches can be divided into
two categories:
• Optimistic approaches – Processed tasks are

returned along with a confidence (accuracy)
estimate. The data user accepts the results, but
must be aware that a certain percentage of the
results will be wrong.

• Pessimistic approaches – The system applies
various mechanisms for error detection and
correction and usually resubmits the task to
multiple actors until the merged result satisfies
the required quality threshold.

Actor performance quality metrics are similar
to the “traditional” Web Service metrics, like
average execution time, number of invocations,
and availability. On the group and collaboration
level, these metrics measure and predict the ex-
istence of various invocation patterns, i.e., the
probabilities that certain services will be called in
a particular order with respect to other services.
A detailed discussion on interaction metrics can
be found in Truong and Dustdar (2009).

Incentives and rewarding are important and
effective mechanisms for indirectly influencing
quality and motivation of human actors in collab-
orations. The principal metrics in use in today’s
computer-supported collaboration systems are:
• Effort – It measures an actor’s determination

to perform a task. The main purpose of this
metric is to provide a way to compare the
performance of both experienced and inexpe-
rienced actors. For example, an inexperienced
actor may put in a lot of his time and resources
only to perform a task worse or slower than an
experienced actor. However, for the purpose
of incentivizing, a higher effort level should
be compensated with a higher reward, because
it will ultimately lead to better experienced
actors.

• Productivity – It expresses the number of units
processed in a time period. This metric is
suitable for piecework and easily quantifiable
tasks (e.g., bug reporting, image tagging, text
translation).

• Quality of work – This metrics expresses the
quality of the working process of an actor. It
should not be confused with the Quality-of-
Data (QoD) of processed tasks. This metric
is used to assess actors when the task’s QoD
cannot be easily determined or when it cannot
say much about the actor. For example, actors
that help other actors, waste less resources,
provide creative ideas, or take responsibility
should be also rewarded. In such cases, the
subjective opinions of other relevant actors
(i.e., peers) can be used to quantify these
elusive actor qualities.
In order to acquire the rewarding metrics, col-

laborative systems use different evaluation meth-
ods, relying both on human and machine actors:
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• Individual evaluation methods
– Quantitative methods – They represent a

quantitative measurement of an individ-
ual actor’s contribution as measured by
the system itself. Such metrics can repre-
sent the number of processed tasks, aver-
age speed, responsiveness, acceptance rate,
etc. These methods are considered fair and
cheap to implement, but unfortunately they
are applicable only in cases where actors
work on easily quantifiable tasks.

– Subjective methods – In cases where the
quality of work is a property understand-
able to humans only, a quantitatively
expressed subjective assessment by a
human actor replaces a quantitative metric
measured by the system itself. This is the
case with artistic or designer tasks. The
advantages are the simplicity and cost, but
a serious drawback is the inevitable lack of
objectivity.

• Group Evaluation Methods
– Peer evaluation methods – They are used

to express an aggregated opinion of an
interest group. The members of evaluation
group usually express their votes by scor-
ing tasks or actors on a fixed scale or by
investing amounts of virtual credits
expressing their confidence (placing bets).
The quality and effectiveness of these
methods are influenced by the size of the
composition of the evaluation group.

– Indirect evaluation methods – In certain
situations human actors can be evaluated
by comparing the status of the artifacts
they previously produced with the status
of the artifacts produced by other members
of the same community. The artifacts can
be Web pages, projects, articles, photo-
s, and programming code. These compar-
isons are usually performed with the help
of sophisticated algorithms. Examples are
the Google’s PageRank algorithm, impact
factor for scientific publications, or Klout’s
algorithm for measuring social network in-
fluence. Advantages and disadvantages of
these methods are dependent on the prop-
erties of the algorithm.

Future Directions

Although a considerable amount of work is
done in the area of interaction analysis in social
networks, there is much less work conducted
on team-based metrics and analysis. Many open
questions still remain to be tackled. Some of
them are (i) understanding the interdependencies
between metrics for better analysis of different
collaboration systems, testing and evaluating
these team-based metrics, and (ii) utilizing these
metrics in the most appropriate way for task
adaptation. Another future research direction in
team collaboration in mixed systems is to develop
metrics that can be used to compare human-and
software-based actors.
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Synonyms

Impacts of policy; Legal issues; Risks; Social
media; Training

Glossary

Governance The act of governing and relates
to decisions that define expectations or verify
performance

Bureaucratic Having the characteristics of a
bureaucracy or a bureaucrat.

CRM Customer relationship management
Awareness Knowledge or perception of a situa-

tion or fact
Policy There are two main types of policies –

public policies and private policies. In this pa-
per, the research focuses on the private policies
or organizational policies which are limited in
available resources as well as legal coercion

Longitudinal Research A research study that
involves repeated observations/interviews
over a period of time

Definition

Organizational policy and social media are two of
the most highly discussed topics within organiza-
tions today, especially within governments. Poli-
cy is typically described as a principle or process
to guide decisions in order to achieve rational
outcomes or to address evident problems (von
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Solms and von Solms 2004). The difference be-
tween a policy and a procedure is that a policy
will contain the “what” and “why,” while a pro-
cedure contains the “what,” “how,” “where,” and
“when” (Colebatch 2006, pp. 313; 317). Policies
are generally adopted by a board or senior man-
agement body within an organization (Wergin
1976). They guide senior management in making
both subjective-based decisions (on the relative
merits of factors which are difficult to objectively
test, such as work-life balance) and objective-
based decisions (operational in nature and eas-
ier to objectively test, such as security policy)
(Wergin 1976).

Social media are web-based applications that
have emerged from outside the organization.
They provide an interactive and open approach to
collaboration, communication mainly through
the use of Web 2.0. Mergel and Schweik
(2012) highlight that Web 2.0 derives its power
from users for all activities, and this indirectly
differentiates Web 2.0 from other standard
technologies implemented within organizations,
such as CRM or any other management
systems. This poses several problems, including
the following: (1) Controlling the level of
openness that is needed within government
organizations. This is due to the lack of an
effective regulatory framework or policy within
organizations associated with social media.
(2) The existence of information leakage as
employees might accidentally share confidential
information about their work through social
media. This information could either damage
or threaten the reputation of the department.
(3) Lengthy bureaucratic approval processes,
especially when it comes to allowing employees
to either access new information or when
providing information to other users, such as
citizens and nongovernmental organizations.
While this process provides a security barrier
for the organization, it also deters the interaction
among employees who are interested in the
new information or providing information and
feedback to other users. Placing too many
restrictions contradicts the rationale for using
social media.

There have been some developments in
lowering risks of employing social media tools
within organizations. Husin and Hanisch (2011a)
propose a policy development framework,
highlighting the important components within
an effective social media policy. Osimo (2008)
presents lessons learned, such as enabling
authentication policies and partnering with
certain Web 2.0 applications instead of centrally
implementing all applications; and Tapscott
et al. (2007, p. 18) developed steps to
manage change for new governance designs that
lead to innovative and agile processes within
governments through social media.

While the available research provides good
arguments in terms of the importance of planning
implementation for social media as well as the
development of an effective social media policy,
the relationship between users’ awareness of a
social media policy and the adoption rates of
social media remains largely unexplored. So the
research question that has been developed for this
paper is: “How does the awareness of a social
media policy influence the use of social media
among users in an organization?”

This entry considers why user adoption is im-
portant and why a policy is essential for organiza-
tions to maintain control over a new technology.
The overview of steps that were undertaken for
the research is provided, leading to the result-
s of the longitudinal research. The conclusion
includes a summary of the research outcomes
and the relevance of the research to an orga-
nization which intends to develop an effective
policy.

Introduction

The successes of a technology implementation
within organization are dependent on the user-
s. Rogers (2003, pp. 171, 177) highlights that
users could either adopt or reject a technolo-
gy and these decisions are based on either a
need or an awareness of a technology. Adoption
rates are expected to be lower within a work-
ing environment where key decisions are made
through different parties within a department (Ba-
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jwa et al. 2005; Onyechi and Abeysinghe 2009).
The complexity of the decision is related to d-
ifferent processes and policies depending up-
on the organization (Shumarova and Swatman
2008).

There are also a number of reasons why adop-
tion among users could be affected such as low
trust levels (Johnston 2007), corporate culture,
and the requirement of more training for new
technology which is something that users would
mainly try to avoid (Husin and Swatman 2010).
So in order to limit the barriers to adoption, an
effective policy is crucial.

When an organization implements a new tech-
nology, the need for an effective organizational
policy is essential in order to provide a sense of
security for the organization (Husin and Hanisch
2011a). But more often than not, such policies
tend to be looked over by users (Althaus et al.
2008). This may be attributed to the generally ex-
tensive comprehensiveness of policies (especially
in the public sector) and the associated perception
of lack of relevance for the user (Althaus et al.
2008). So an appropriate policy development pro-
cess is essential in ensuring that users have an
understanding of the organization’s rules and in
ensuring that the policy contains important com-
ponents (Hrdinova et al. 2010; Husin and Hanisch
2011b; Woodford 2005). This also allows the
policy to be developed more effectively, while
maintaining relevance to the users from the per-
spective of their work.

For an authoritative-based organization such
as in public sector, policies are usually viewed in
three ways (Althaus et al. 2008, p. 6):
(1) As an authoritative choice

Clearly viewed as the method for govern-
ment to exercise their power and guarantee
results through a series of hierarchical deci-
sions.

(2) As a hypothesis
All policies go through an iterative pro-

cess or “error making” which enhances and
changes the policy to be more effective.

(3) As an objective of government action
Policies act as a guide for a department

to achieve the intended results (Moule et al.
1995).

So, it is natural for employees within the
public sector to view the authoritative choice as
essential while using a social media tool, but this
should not be the case as mentioned by Husin
and Hanisch (2011a) and Hrdinova et al. (2010)
due to the flexibility and openness that the tool
promotes for an organization.

This research considers the social media pol-
icy from an organizational perspective (refer to
Glossary) and aims to identify the influences that
a user’s awareness of the policy has on their social
media usage.

How the StudyWas Conducted

Due to the nature of ethical requirements, the
government agency that participated in the re-
search remains anonymous. For the purpose of
this paper, it will be referred to as Agency A. A-
gency A was in the early stages of implementing a
standardized social media platform which would
be accessible to all their employees for their daily
activities. The researcher conducted semiformal
interviews as well as quick questionnaires during
the platform training session for employees.

As the research was a longitudinal approach
over the period of 2010 and 2011, the interview
sessions were conducted with ten users from
within Agency A with two interviewees contin-
ually participating due to their role with the im-
plementation process for the social media platfor-
m. The interview included questions concerning
their opinions about social media, examples of
usage of social media, and their awareness of
the social media policy. It should be noted that
Agency A consists of a number of internal de-
partments with many of the interviewees spread
across different locations.

During the initial implementation process, A-
gency A conducted training for their employ-
ees, involving an hour and a half of “hands-
on” time with the social media platform. The
participation from the employees was encourag-
ing enough for the training sessions to be held
every month since October 2010. The quick ques-
tionnaires were circulated at the end of 5 ran-
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domly selected training sessions which brought
the total of 81 respondents. The questionnaires
asked participants about their level of social me-
dia usage within their own departments, tools
which they deem useful for the respondents, and
their expectations from using social media in
their work.

Results of the Research

The results are based on the analysis conduct-
ed through the interviews as well as the quick
questionnaires. The levels of awareness for the
existence of a social media policy among the
respondents from the training sessions are high
as evident from Table 1.

Table 1 shows the overall level of awareness
among the questionnaire respondents at 39.51 %,
with female respondents at 33.33 % and the male
respondents at 6.17 %. A main reason for the
stark contrast of gender number is due to a high
number of female employees (62 % out of the
total employees) within Agency A. Nevertheless,
the results still indicate that there is awareness for
the social media policy among employees along
with a number of employees unaware of the pol-
icy (28.39 %). The results from the respondents
about their positions and whether they found the
social media platform useful in their work are
shown in Table 2.

The majority of the respondents were on
the employees level (60.49 %), the middle
management (23.45 %), and senior management
(7.41 %), while the remainder was reluctant
to disclose their position. This shows that the
interests in using the social media platform in
daily work activities are still evident (39.51 %)
even with the existence of the social media
policy. This is a good sign as it shows that higher
management supports the use of the social media
platform. As some of the feedback from the
interview sessions states,

More higher management should use the platform
so it gives a sense to employees, that yes, the
platform is an official tool for them to use. –
Interviewees 6 and 7

As Agency A consisted of different depart-
ments, the level of social media usage is quite
varied. The research found that most of the
departments that are using social media are aware
of the social media policy. Table 3 shows the
different levels of usage and awareness.

The department which was “going ahead”
with utilizing social media in their daily
activities had a higher awareness of the policy
(13.58 %) which is followed by the department
which is “trying out” the tools (12.35 %). But
coincidentally, the latter department also had
the highest level of unawareness for the social
media policy (8.64 %). The interesting result was
that departments who were “fully using” had the
lowest number of social media policy awareness
(1.23 %) compared to the other levels of usage.

In the interview sessions, majority of the par-
ticipants were aware of the social media poli-
cy and have either read or had a quick review
of the policy. More than 70 % of the partici-
pants were still using the social media platform
frequently without any indifference to the pol-
icy. The participants were using the platform
to communicate ideas, comment on non-work-
related information, and even share common in-
terests with their colleagues.

An example of the social media usage was by
Interviewee 6 where an employee was looking
for an available meeting room through the social
media platform. As Agency A is spread across
different locations with different meeting room
sizes; traditionally, the employee would need to
either email or contact via telephone the appro-
priate parties to find an available meeting room.
But instead, the employee accessed the social
media platform and sent a mass broadcast for
assistance via the available micro blogging tool.
Within 30 min, the employee had a reply from
another employee located in a different location
who had booked a meeting room for the initial
employee.

Even with the clear benefits of the social
media platform in Agency A, there are a few
employees who are using the platform mainly
because the tool’s usage is mandatory by their
department. Even though the employees were
quite happy with using the social media platform
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Social Media Policy in theWorkplace: User Awareness, Table 1 Level of awareness for social media policy

Awareness of social media policy

N/A No Yes Total Percentage

Gender F 22 10 27 59 72.84

M 4 13 5 22 27.16

Total 26 23 32 81 100

Social Media Policy in theWorkplace: User Awareness, Table 2 Position vs. social media usefulness

Awareness of social media policy

N/A No Yes Total Total percentage

Position of user Employee 12 18 19 49 60.49

Middle M 7 14 8 19 23.45

N/A 4 1 0 5 6.18

Other 0 0 2 2 2.47

Senior M 3 0 3 6 7.41

Total 26 23 32 81 100

Social Media Policy in theWorkplace: User Awareness, Table 3 Level of usage within departments vs. awareness

Awareness of social media policy

N/A No Yes Total Total percentage

Level of social media usage Fully using 8 2 1 11 13:58

Going ahead 3 3 11 17 20:99

I am not sure 4 6 7 17 20:99

N/A 1 3 0 4 4:94

Planning 1 1 3 6 7:4

Trying out 9 7 10 26 32:1

Total 26 23 32 81 100

for any work-related activity, there is not much
interest among the employees in any social ac-
tivity that comes with the social media platform
within working hours. From an analysis of the
interviews, some participants recalled that

They were paid to work and not to socialize during
working hours. (Interviewees 9 and 10).
It doesn’t matter to me if someone wants to share
their interest but I don’t see the point of doing so in
working hours. (Interviewee 9)

The interesting point is that the participants
who mentioned the quotes above are highly in-
terested in the social media policy available in
Agency A. In a way, they view the policy as a
useful guide for how they should interact on the
social media platform.

Conclusions

The results show that balance is needed in order
to cater for different users of the social media
platform. On one side, there is the socially-
based user (highly interactive and willing to
share information), while the other is the work
restrictive-based user (critical only on work-
related issues, with no interest in the social side).
Both user categories have awareness of the policy
but vary in their usage of social media.

The results indicate that influencing factors on
the uptake of social media include the level of
training, the ability to use social media for work-
related activities, and the level of use by senior
management, as an example and reassurance to
all employees.
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Awareness of policies appears varied across
the departments in Agency A which is predicted
to occur in a large organization. But the
variedness of awareness, especially in the
departments which were designated as “fully
using,” was quite surprising as it was expected
that awareness would generally be high. Hence,
the departments which have made the decision
to “go ahead” with social media have employees
with higher awareness of the policy than those
departments which are “fully using” social
media. This is where the effectiveness of the
organizational social media policy is needed
as well as the dissemination of the policy and
its repercussions in practice. As Bridgman and
Davis (2003) suggest, there needs to be a bridge
between technical expertise and policy domain.
Organizational policy, which focuses on social
media, needs to be developed with due diligence
as employees are dependent on the policy to
guide them.
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Social Media, Definition and History

Andreas M. Kaplan
Department of Marketing, ESCP Europe, Paris,
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Glossary

Ambient Awareness Awareness created
through regular and constant reception and/or
exchange of information fragments through
social media

MMORPG Massively Multiplayer Online
Role-Playing Game

Mobile Social Media Group of mobile mar-
keting applications that allow the creation and
exchange of user-generated content

UCG User-generated content

Definition

Social media are defined as “a group of Internet-
based applications that build on the ideologi-
cal and technological foundations of Web 2.0,
and that allow the creation and exchange of
user-generated content” (Kaplan and Haenlein
2010, p. 61). Without any doubt, social media
and UCG have become a reality for millions of
individuals and corporations. If it were a coun-
try, the social networking site Facebook would
be the third most populated one in the world,
with its over 900 million users. The collaborative
project Wikipedia with an impressive 22 million
articles has over 370 million readers worldwide
and is undeniable a key information provider in
the online space. YouTube, probably the most
known content community, is the second biggest
search engine after the industry giant Google.
The microblogging service Twitter (Kaplan and
Haenlein 2011) with its half-a-billion active users
generates 340 million tweets per day. Finally
also virtual game and social worlds (Kaplan and
Haenlein 2009) belong to the group of social
media (cf. Fig. 1).

Many would probably identify the advent of
Facebook, Twitter, and YouTube as the beginning

of social media. But, contrary to this belief, the
creation and exchange of user-generated content
existed long before. The aim of this short essay is
to provide a brief sketch of the key developments
in social media history, its roots, and its future
evolutions.

First Era – 1980s: Arrival of Social Media
The arrival of social media applications coincides
with the Internet’s first use by private individuals.
In fact, a big part of the Internet started as
nothing more than so-called newsgroups where
individuals could view, discuss, and post bul-
letin board-like messages to numerous categories.
Often these newsgroups were focused on tech-
nical issues but they also covered cultural top-
ics such as science fiction or similar. Usenet,
established in 1980 by Tom Truscott and Jim
Ellis from Duke University, was the most pop-
ular discussion system at that time and can be
seen as the direct forerunner of the category
“Internet forum” which is similar to collaborative
projects. These bulletin board systems quickly
developed into real discussion groups by allowing
individuals to create and exchange user-generated
content with each other. Also the first virtual
game worlds came up during this era of social
media: in 1980, Multi-User Dungeon, the first so-
called massively multiplayer online role-playing
game (MMORPG) and precursor of virtual game
worlds such as the World of Warcraft, was intro-
duced by Roy Trubshaw and Richard Bartle from
Essex University.

Second Era – 1990s: Fading of Social
Media
During the second era of social media, user-
generated content heavily lost in importance due
to the fact that more and more companies started
to make use of the Internet for their purposes.
With industry giants such as Amazon or eBay ar-
riving in 1995 and conquering the web with their
corporate websites, the social media applications
from the first era seemingly faded away. Despite
the fact that social media went by unnoticed by
the general public, more and more people started
to have their own blogs during the second era and
used them to publicly account of their personal
lives. While the term “weblog” was introduced
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Blogs and 
Microblogs

(e.g., Twitter)

Social networking 
sites 

(e.g. Facebook)

Virtual 
social worlds  

(e.g. Second Life)

Collaborative 
projects 

(e.g. Wikipedia)

Content 
communities 

(e.g. YouTube)

Virtual game worlds
(e.g. World of 

Warcraft)

Social Media, Definition and History, Fig. 1 Classification of social media (for more details, see Kaplan and
Haenlein 2010, p. 62)

by Jorn Barger not before the end of 1997, blogs
existed already in the beginning of the 1990s.
Its short form “blog,” by the way, was coined
by Peter Merholz, who jokingly broke the word
weblog into the phrase we blog on his own blog
in 1999.

Third Era – 2000s: Rising of Social Media
With the dot-com bubble bursting in 2001, social
media came back into the game and started to
recapture the virtual sphere. Wikipedia started
on January 15, 2001, with the simple sentence:
“Hello world. Humor me. Go there and add a
little article. It will take all of five or 10 minutes.”
On February 4, 2004, Marc Zuckerberg launched
Facebook, originally located at thefacebook.com,
changing it to the current web address not before
2005. Founded on February 14, 2005, YouTube’s
first video entitled “Me at the zoo” showed co-
founder Jawed Karim at the San Diego Zoo and
was uploaded on April 23 of the same year. And
Twitter, launched on July 15, 2006, started out
with its first tweet 4 months earlier on March
21 sent by cofounder Jack Dorsey typing “Just
setting up my Twtr.” All of these four social
media applications lived an enormous success
story and today belong to the top 10 websites
worldwide.

Fourth Era – 2010s: Mobilizing of Social
Media
The fourth era of social media is characterized
by the arrival of so-called mobile social media
(Kaplan2012)suchasFoursquare,i.e.,socialmedia
accessed via a mobile device. These new mobile
forms turn computer-based social media, despite
theiryoungage,alreadyintotraditionalsocialmedia.
Geolocalization and increased time sensitivity are
two of the features offered by mobile devices.
Bothprovidemobilesocialmediaapplicationswith
increased opportunities compared to computer-
based ones. For example, with mobile social media
oneisawarenotonlyofone’sfriends’plansbutalso
of their current location and might just go and see
them. Ambient awareness, defined as “awareness
created through regular and constant reception,
and/or exchange of information fragments through
social media” (Kaplan 2012, p. 132), is an equally
important concept within the area of mobile social
media. Since this era just started, it is difficult
to say more about its potential evolution for
the moment. However, some futuristic, but not
impossible, scenarios already arise on the horizon,
e.g., facial recognition could make it feasible to
take somebody’s picture with a cell phone and
compare it to social networking sites. A match
could give the name and other details about this
individual.
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This brief sketch of the key developments in
social media history showed that these applica-
tions started earlier than one would have thought,
i.e., in the 1980s. Applications such as Facebook
or YouTube can actually be seen as the Internet
going “back to the roots” when the power was
with the individual users instead of with big com-
panies. Social media retransformed the Internet
to what it was initially intended for – a platform
to create and exchange user-generated content.

Cross-References

� Facebook’s Challenge to the Collection Limi-
tation Principle
� Flickr and Twitter Data Analysis
�Gaming and Virtual Worlds
�Location-Based Social Networks
�Virtual Goods in Social Media
�Wikipedia Collaborative Networks
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Synonyms

Corporate linguistic image; Corporate linguistic
personae; Lattices and ties; Social grids

Glossary

Corporate Linguistic Identity A corporate iden-
tity created by means of linguistic tools and
visible mainly in the selection of linguistic
repertoire

Definition

The term company identity is used to encompass
the areas covered by such concepts as corporate

http://dx.doi.org/10.1007/978-1-4614-6170-8_198
http://dx.doi.org/10.1007/978-1-4614-6170-8_198
http://dx.doi.org/10.1007/978-1-4614-6170-8_234
http://dx.doi.org/10.1007/978-1-4614-6170-8_65
http://dx.doi.org/10.1007/978-1-4614-6170-8_319
http://dx.doi.org/10.1007/978-1-4614-6170-8_361
http://dx.doi.org/10.1007/978-1-4614-6170-8_103
http://dx.doi.org/10.1007/978-1-4614-6170-8_261
http://dx.doi.org/10.1007/978-1-4614-6170-8_235
http://dx.doi.org/10.1007/978-1-4614-6170-8_308
http://dx.doi.org/10.1007/978-1-4614-6170-8_308
http://dx.doi.org/10.1007/978-1-4614-6170-8_290
http://dx.doi.org/10.1007/978-1-4614-6170-8_97
http://dx.doi.org/10.1007/978-1-4614-6170-8_359
http://dx.doi.org/10.1007/978-1-4614-6170-8_359
http://dx.doi.org/10.1007/978-1-4614-6170-8_300
http://dx.doi.org/10.1007/978-1-4614-6170-8_305
http://dx.doi.org/10.1007/978-1-4614-6170-8_310
http://dx.doi.org/10.1007/978-1-4614-6170-8_189
http://dx.doi.org/10.1007/978-1-4614-6170-8_386
http://dx.doi.org/10.1007/978-1-4614-6170-8_191
http://dx.doi.org/10.1007/978-1-4614-6170-8_316
http://dx.doi.org/10.1007/978-1-4614-6170-8_100459
http://dx.doi.org/10.1007/978-1-4614-6170-8_100460
http://dx.doi.org/10.1007/978-1-4614-6170-8_100460
http://dx.doi.org/10.1007/978-1-4614-6170-8_100461
http://dx.doi.org/10.1007/978-1-4614-6170-8_100462


S 1828 Social Network Analysis and Company Linguistic Identity

identity and organizational identity. Analyzing
target audience, corporate identity is connected
with the way stakeholders perceive the company,
whereas organizational identity encompasses em-
ployees’ opinions about their place of work (Cor-
nelissen 2008). Taking the process of identity
creation into account, corporate identity mirrors
the managerial contribution to effective commu-
nication, whereas organizational identity takes
place during informal encounters between work-
ers (Rughase 2006). Thus, company linguistic i-
dentity encompasses various linguistic tools used
by managers, employees, and stakeholders, in
both formal and informal settings. It covers the
linguistic representation of corporate activities,
visible in written and spoken forms, at both inter-
nal and external levels. Taking into account the
importance of corporate networking in modern
organizations, company linguistic identity can be
presented through the prism of social networks,
thus it is understood as the linguistic entity being
formed by social networks, responding to social
networks in the environment and forming so-
cial networks. These social networks are viewed
through the linguistic and communicative func-
tions they serve as well as by taking into account
the linguistic tools they are created by.

Introduction

There are different reasons determining the
application of SNA theories into the study
on identities. One of them is related to the
postmodern approach stressing changeability,
interconnectedness, and relations. Thus, SNA
focuses on such processual issues as knowledge
flows, communication, and innovation. The other
factor is the role of technology that stimulates the
performance of social networks (Travica 1999).
Technology becomes not only an important part
of one’s environment but also forms networks
within the individual. It can be understood
both in the direct sense, taking into account
some technological devices inserted within a
human body (e.g., artificial body parts) and,
in a more general or even metaphorical way,
by examining how technology shapes various

networks within an individual (e.g., the networks
related to one’s biological functions, emotions,
feelings, and social performance) (Michael and
Michael 2008). Technology also creates and
maintains linguistic networks at the personal and
group level, determining communication styles,
available communication channels and devices,
as well as the selection of linguistic repertoire by
individuals.

Key Points

The SNA approach can be used to study corpo-
rate linguistic identity from individual and social
perspectives, examining the networks shaping
the linguistic performance of a person and the
language representation of an organization as
such. Thus, this approach makes it possible to
observe different levels of linguistic networks
within an entity. At the individual level, lin-
guistic networks can be viewed, e.g., through
the prism of ethnic, national, and professional
identities shaping the linguistic performance of
a person. Examining the organizational domain,
corporate linguistic identity can be studied by
observing micro-(worker), meso-(company), and
macro-(country/Europe) linguistic levels. More-
over, the mentioned domains can be researched
individually, by studying the networks creating
them as well as the network relation and dy-
namics among the constituting entities and areas
(Bielenia-Grajewska 2010).

Historical Background

The first traces of research on social networks
and social collectives go back to the nineteenth
century, to the works of Auguste Comte, Ferdi-
nand Tönnies, Norbert Elias, Emile Durkheim,
and Gustave Le Bon. The role of networks in
the life of individuals is also discussed in the
works of George Simmel. In the 1990s, there
was an expansion of interest in social network
analysis, with the extensive publication of edited
volumes, handbooks, and software packages and
the active performance of network professional
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associations (Gamper and Reschke 2010). It was
also the time of linguistic turn in social network
analysis, taking into account networks, discourse,
and identity (Mische 2011). The interest in the
discursive approach to organizations is visible
in, e.g., the works of postmodernists who stress
the role of changeability and fluidity in organi-
zational communication, also from the linguistic
perspective.

Proposed Solution andMethodology

Measuring corporate linguistic identity through
the prism of social networks entails taking
into account different notions, such as the
characteristics of ties as well as the duration
and frequency of contacts (Ferligoj and Hlebec
1999). Thus, such issues as the type of corporate
relations (including vertical and horizontal
contacts), the length of communicative acts, as
well as their frequency determine the creation
of organizational linguistic performance. For
example, corporate relations and their impact
on company linguistic identity can be studied
by taking into account the tie approach that
enhances the study on strong and weak ties
shaping corporate communication and flows of
information exchange among workers. The other
view is connected with taking the boundary issue
into account. One of the ways to study corporate
frontiers is to apply the realist standpoint to
show how actors view themselves. Another
method is to rely on some formal divisions
within the organizational setting to select and
divide people into networks according to their
professions or their positions in a company
(Fombrun 1982). The methodology selected for
analyzing corporate linguistic identity depends
on the taken perspective. For example, individual
linguistic identity can be examined by looking at
both individual and societal factors. Attitude to
the organizational culture, work-related factors,
and language-related benefits belong to the
personal dimension. Thus, the worker engages
in a linguistic network if his or her participation
is beneficial to him or her. Taking the social
sphere into account, such issues as corporate

language policy, corporate communication and
corporate hierarchy determine network formation
and network selection. The other network
perspective that can be applied in the discussion
on company online identity is the observation of
how a company and its corporate lingo create
individual performance and, simultaneously,
how an individual worker and his or her way
of communicating shape the organizational
discourse. This study can be enriched by taking
the environment into account, and consequently,
studying micro-(individual), meso-(company),
and macro-(environment) linguistic network
levels separately as well as the interrelations
among them (Bielenia-Grajewska 2010, 2013).
The next possibility is to view corporate online
identity through the prism of homogeneous and
heterogeneous networks. Homogeneous linguis-
tic networks mirror the relationships between
people having similar language background,
using similar professional genres or opting for
common linguistic expressions that are gender,
generation, or profession specific. Individuals
decide to take part in these networks owing to
relatively few problems with understanding the
interlocutor. On the other hand, heterogeneous
networks comprise individuals of diversified
linguistic background and communicative meth-
ods (Bielenia-Grajewska 2012). Analyzing the
methodology of social network analysis and sam-
pling, various chain methods can be applied. For
example, snowball sampling can be used since
it relies on individuals eliciting themselves and
other linguistic network members. This method
turns out to be useful in the study on external
organizational relations, to show how language
determines contacts among various stakeholders.

Key Applications

The social network method can be used to
study corporate relations from the linguistic
perspective, by examining diversified networks
underlying corporate communication and how
these linguistic networks shape corporate
linguistic identity.
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Future Directions

It can be predicted that in the future, the network
approach will be even more visible in the studies
on the linguistic performance of modern organi-
zations. The reason for this situation is the grow-
ing interconnectedness of companies and their
dependence on other organizations as coopera-
tives, suppliers, customers, and also competitors.

Cross-References

�Cognitive Strategic Groups
�Collection and Analysis of Relational Data in
Organizational and Market Settings
�Entrepreneurial Networks
� Inter-organizational Networks
� Intra-organizational Networks
�Learning Networks
�Managerial Networks
� Social Network Analysis in Organizational
Structures Evaluation
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Synonyms

Analysis; Consumer; Digital; Linkages;
Networks; Relationships; Social anthropology

Glossary

Consumer An individual or organization that
uses a commodity or service

Research Systematic inquiry or investigation
Social Network Facilitates communication,

provided by a network of related linkages
Digital Data Digitally sourced and/or published

statistics or items of information

Definition

The term “social network analysis” provides
an increasingly overarching research context
for scholars, as well as policy makers, industry,
commercial organizations, and the public sector.
It refers not only to an integrated set of
theoretical concepts and analytic methods but
intends to explain a whole set of relationships
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and their variations as these are defined by
“a specific set of linkages” and their “additional
property” (Mitchell 1969: 2). One outcome of the
burgeoning territory of digital and continuous
development of ubiquitous connectivity has
meant that new informational infrastructures
and data production provide a rich and diverse
series of network contexts, that have significant
implications for scholars and digital researchers.
Recognized as one of the first social network
researchers, Barnes asks a pertinent question
that remains as relevant today: when collecting
data, on social relations that may not hold any
obvious limits, where does the researcher set
their boundaries? (1979: 414). The study of
mediated social networks and increasingly digital
spaces has a well-established concentration as a
field of study in sociology (cf. Wellman 1983;
Rainie et al. 2012). However, the capture of
such data deserves further scrutiny that calls into
question the acquisition and observation of such
linkages that do not remain fixed into place, and
are these equally accessible to all observers. The
issue of technology, and especially digital and
social media platforms, brings social network
analysis into contact with debates about the
nature of its technology, heritage, culture, and
processes. These are debates that are particularly
challenging in terms of the observations that
we may conduct in society and analysis that
any researcher would seek to adopt. Indeed
the persuasive Actor Network Theory (ANT)
provides an additional explanation of networks
that are beyond the agency of the social actors
alone (see Callon 1987; Latour 1996), where
networks themselves become additional vehicles
for social analysis and evaluation.

There are some important points for any re-
searcher to discern and place into context for
social network analysis. First, it is crucial to
establish, at least at an individual level, the role
that technologies have in the formal production of
social practices and relationships. This is to scru-
tinize how, and in what way, technologies may
surround research development and be deeply
bound to political and economic products, as
well as cultural artifacts (see Fine and Kleinman
1983). Second, the researcher must think about

the social interpretation of network construc-
tion. This means the contextualizing of every-
day and seemingly mundane social interactions
within networks and groups of networks. Along-
side these social relationships, consumption, and
consumerism take on significance. We live, as
Mats Alvesson notes, in a society where trendy
jargon, media appeal, and “looking good” define
the successes of individuals, groups, and organi-
zations. It is natural to extend this as an escalation
of expectations that are part of the “gilt edge of
life” (Alvesson 2013: 188), into networks that
provide a growing focus for individuals to pursue
high-status employment, and to seek out socially
prestigious others. Third, in understanding social
networks and stripping away the elements of
analysis, it is necessary to reflect on Barnes’s
question and to put in place some context for
boundaries; whether these are a temporal posi-
tioning, or shaded by cultural, social, political, or
commercial significance. Every researcher needs
to justify such efforts as part of a theoretical
and methodological account and to make explicit
their instrument handling and data processes.

There are, no doubt, additional vulnerabilities
and opportunities that are geared to the stimula-
tion of social network analysis. The points made
here offer an overall condition that is specific to
digital-scientific interest that has been often over-
celebrated without critical treatment and that may
lead us to new interpretations and encounters
with new forms of data.
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Synonyms

Corporate hierarchy; Enterprise management;
Organizational design; Organizational network
analysis; Social network analysis in organizations

Glossary

HR Human resources
Organizational Chart A diagram representing

the formal structure in the organization
ONA – Organizational Network Analysis The

analysis of the organization which focuses on
the relationship between the informal social
network and the formal structures in the

organization: organizational charts, process
definitions, and others

OSN – Organizational Social Network An
informal social network, which was created
from the data collected within the organization
like e-mail logs, phone call records, surveys,
and others

MSN – Multilayered Social Network The social
network which consists of multiple layers;
every of them represents different type of
information used as a source for creating the
network layer

SNA Social Network Analysis

Definition

Although typical social network analysis (SNA)
may bring interesting results while being applied
in an organizational environment, it is a very
promising to have these results compared with
the organization itself in order to gain additional
knowledge about the whole organizational envi-
ronment. This is caused by the fact that each
organization at the moment of performing social
network analysis possesses a more or less struc-
tured hierarchy which regulates the information
and workflow in the formal way. Simultaneously,
members of the organization maintain the infor-
mal social network by contacting and collaborat-
ing with each other. It means that the comparison
of formal and informal structures may enhance
the knowledge about the employees by means of
their role in both of networks. In other words,
one may say that the goal of this comparison
is to check the discrepancy between the visible
(defined, official) and the invisible (unofficial
social network) structures in the organization.

Results of such analysis may bring the
answer on some of the following questions:
are the organization members well placed in
the organizational chart? Is the organization
maximizing its information and decision flow
efficiency by using the recent organizational
design? Are there any substantial discrepancies
in the employees’ formal role in the organization
and their placement in the informal social
network?
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This kind of analysis is a key part of ONA –
organizational network analysis, which may be
described as a framework for understanding for-
mal organizations (Knoke 2001).

Introduction

The possibility to collect the formal structure of
the organization and its communication logs or
collaboration traces has enabled the researchers
to create a new field of social network analysis.
By performing the comparison of both social
networks – the formal and informal ones – some
findings from such analysis may be useful for
organization managers and the HR departments.

While finding a chance to gain a competitive
advantage, organizations are searching for the
solutions that would enable them to beat their
market opponents. It may be crucial to discov-
er, among various ways of increasing company
effectiveness, own potential, hidden in the social
network of the organization. The knowledge de-
rived from this capacity, if properly extracted and
interpreted, may lead to various positive effects
in organization management (Palus et al. 2010;
Song and van der Aalst 2008). The general idea
of SNA application in organizational structure
evaluation is illustrated in Fig. 1.

Managers may often ask the question about
the proper alignment of their employees in the
organization structure. The problem may be par-
ticularly important in fast-growing organizations,
where medium-level management team may be
chosen without prior adequate preparation and
without the use of proper HR tools. Companies,
in which some of the employees are awaiting
retirement, are another example where the knowl-
edge about real worker position may be vital. If a
company decides to search internally for the suc-
cessor or replacement of anybody, social network
analysis may become helpful for such a task. It
may also be helpful in extracting some prospec-
tive problems in the company, like managers
avoiding communication with other employees
within their units.

The problem of a proper organizational design
is considered as a crucial one in corporate

management (Daft 2009), because it strongly
influences the information and decision flow.
In that case, managers should permanently
observe the internal structure of the company in
terms of bottlenecks, overhead, or other possible
problems. However, the task of performing such
analyses manually becomes virtually impossible,
due to the fact that the amount of information
exchanged in the typical organization is too big
even to be just observed. On the other hand,
this process may be automated and more or less
quantified by application of the social network
analysis and using already existing information,
such as organization charts and communication
logs. Still, the final results should be treated
individually, because some of the information
may not be included in the analysis.

Key Points

To benefit from SNA applied to the organization,
a number of steps have to be carried out. There
is a need to obtain both formal and visible and
informal and invisible structures of the organiza-
tion; see Fig. 1.

Overall, in case of organizational structure
evaluation, the most important information and
the starting point is the organization chart. In
the simplest scenario, the organization may use
the functional design where every department is
responsible for different tasks, each organization
member belongs to only one department, and all
the departments form a hierarchy, which starts
from the management board (Daft 2009). Howev-
er, nowadays, some more complicated scenarios
also apply like process-oriented or matrix struc-
tures. These require some more effort while being
analyzed, and they introduce additional limita-
tions as well, which will be discussed later. The
organization chart itself may also be represented
by a graph that eases the further comparison of
both structures. The informal part of the orga-
nization is often a multilayered social network,
which was built by using variety of data sources
available in the company. Some of these data
sources were presented in Fig. 2.
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SocialNetworkAnalysis inOrganizational Structures
Evaluation, Fig. 1 The idea of comparing formal and
visible organizational structure with informal hidden

social network based on real communication, based on
Michalski et al. (2011)
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Social Networking Sites

E-mail logs

Phone billings

IM logs

Directory services

ERP systems

Social Network Analysis in Organizational Structures Evaluation, Fig. 2 A choice of possible data sources for
social network extraction in the organization (Michalski et al. 2011)

The process of evaluation of the organizational
structure actually begins after performing some
preliminary analysis understood as a feasibility
study and conducting matching of entities of both
networks, described later on. The overall result of
the analysis is the report presenting the structural
difference between formal and informal networks
in the organization.

Summarizing, the whole analytical process
consists of the following steps:
– Source data preprocessing
– Social network building
– Network measure calculation
– Social network and corporate hierarchy com-

parison

A complete process and framework that enables
evaluating the organizational structure in the
company by using SNA will be further depicted
by using the example of the Enron company
case.

Historical Background

The idea of performing the SNA in organizations
is not completely new (Tichy et al. 1979); how-
ever, since the introduction of this idea, the gen-
eral SNA measures and metrics were develope-
d intensively (Wasserman and Faust 1994). At
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the beginning, organizational network analysis
(ONA) was more oriented to discovering key
players in the organization without matching or-
ganizational social networks (OSN) to the orga-
nizational charts and finding the structural holes.
Later on, some experiments related to uncover-
ing the informal structure in the organization-
al social network were performed (Borgatti and
Molina 2003), but the real enabler and accel-
erator in the research was the Enron case. It
became especially famous worldwide in 2001
due to financial manipulation scandal. The Enron
e-mail dataset was made public by the Federal
Energy Regulatory Commission during its in-
vestigation (Klimt and Yang 2004). The Enron
official hierarchy structure still remains publicly
unavailable. However, there are some sources
which can provide information concerning plenty
of job positions of selected employees together
with their department or division (Rowe et al.
2007). This led to a number of analyses which
focused on the relationship between formal and
informal structures (Rowe et al. 2007; Diesner
et al. 2005; Hossain 2009; Borgatti and Molina
2003). Nevertheless, any new research is limited
by the data availability – to fully evaluate the
organization by means of the social network, as
it was previously described, not only the social
network data but also organizational details are
needed. As a result, not all the organizations are
happy to disclose this information limiting further
research opportunity.

Analysis of Organizational Structures

A social network, which is built on the basis
of employees communication logs, may be
found useful in the evaluation of formal
organizational structures existing in the company.
The communication-based social network can
provide information about social network
leaders, communication gaps, and anomalies.
However, the problem is what factors in the
social network analysis results should be
considered as important ones and useful in

further company management decisions. Another
problem is how to perform such analysis in
order to ensure its acceptable meaningfulness
and representativeness.

Although this sort of analyses is mostly per-
formed for business companies, other types of
organizations may benefit by performing such
a study as well. Moreover, if a company has
introduced some organizational changes in order
to reach some goals that should also result in
communication changes, these kinds of compar-
isons become essentially useful for validation of
such changes.

The variety of communication forms, which
are already used in organizations, such as e-mails,
instant messaging systems, ERP systems, and
landline and mobile phones, allow to build the
social network as a multilayered one; each lay-
er corresponds to another communication chan-
nel. All these data sources facilitate gathering
more information about the whole communica-
tion in the organization and include more or-
ganization members. Additionally, by applying
separate weights to these layers, some of them
may be interpreted as more important or more
social ones.

Although the formal structure influences all
the communication between members of the
organization, yet there still exists the space for
the informal communication. However, there
is no easy way to distinguish both types of
communication without complex and resource-
consuming analysis. But still, as it will be
shown, such a distinction is not necessarily
needed to perform meaningful and useful
analyses.

In this entry, the typical social network anal-
ysis in organizational structure evaluation is pre-
sented. Especially, the role the preliminary part
of the whole process – the feasibility study – is
underlined and ideas regarding the analysis of the
dynamics of the organizational network are intro-
duced. To complete the study, selected limitations
of the proposed approach are presented as well.
The case study on the Enron company depicts
usability of the proposed method.
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Feasibility Study

As it was mentioned in the Introduction section,
the first step of the process is the source data
preprocessing which may be also treated as a
separate feasibility study, because this part may
even disqualify all source data or part of the
company from further analysis.

There are at least five important factors to
be taken under consideration while obtaining the
data and performing data preprocessing:
- The choice of data sources
- Adjustment of the period of the analysis
- Extraction of the official organizational struc-

ture
- Matching informal social network entities to

employees
- Employees using external communication

channels (or simply not registered by the
organization)

To obtain the comprehensive communication so-
cial network, it is worth to consider multiple data
sources: phone calls, e-mails, instant messaging
systems, or even ERP and workflow manage-
ment systems. These will be used to build a
multilayered social network (MSN), a directed
and weighted graph with weights representing
the importance and intensity of relations between
users. The chance to gather more valuable results
grows up by using more than one data source, but
not without consequences. First of all, if there are
multiple data sources, the researcher should try
to obtain the data of the same or at least similar
time frame. It is caused by the fact that the social
network evolves and the relations (in that case
weights of the graph edges) change over time.
It is nearly impossible to create a representative
multilayered social network by using the data
from different periods, so the nonoverlapping
periods shall be cut off or only the common part
of the datasets should be utilized.

When designing the study, a researcher faces
the problem of choosing the period of the
analysis. The shorter the period, the chance
for matching most of the nodes in the graph
decreases. However, for the longer periods
(years), it is necessary to tackle with the
problem of the probably smaller importance of

old communication compared to the new one.
Typically, it is solved by assignment of higher
weights to newer communication (Kazienko
et al. 2009). On the other hand, some other
difficulties are partially overcome for the longer
periods: holidays and longer illness absences.
In general, the period of half a year should be
considered as representative enough. However, it
is also expected that the formal structure of the
company would not change strongly over time of
analysis. Otherwise, it would be hard to compare
both the social network and the formal structure.
Concluding, the above limitations clearly show
that the selection of the most suitable time frame
for the analysis may be challenging.

Yet one more problem is related to the or-
ganizational hierarchy. Paradoxically, such kind
of relatively well-defined corporate relations,
i.e., the organizational structure, can be hardly
extracted automatically, because, depending on
the size and profile, the company may have no
need to maintain the full company structure drill-
down from board through departments up to a
single employee in their IT systems. That is why
it may be necessary to convert organizational
structure, taken from official documents, into
a graph, where nodes represent employees and
edges – employee-supervisor relations.

Another important problem is the need for
finding the same entities in the datasets, as p-
resented in Fig. 3. If we consider the employ-
ees as entities, there should exist a mapping
between any entities in the other data sources
to the employee. However, due to the nature of
communication systems, such a mapping may not
exist at all. To present one of the examples, let
us assume that albeit every warehouse worker
has got his individual e-mail account, all these
workers may use the same one account in the
instant messenger (IM) system. In that case, the
researcher should decide whether the IM layer
will be analyzed deeper, the IM layer will be
discarded completely, or only the warehouse will
be excluded from the analysis. Alternatively, the
whole warehouse department will be treated as a
single node, and only its relationships with other
departments will be studied. Another source of
potential problems is the fact that the company

http://dx.doi.org/10.1007/978-1-4614-6170-8_277
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SocialNetworkAnalysis inOrganizational Structures
Evaluation, Fig. 3 Mapping social network actors to
employee list (Kazienko et al. 2011)

may use multiple aliases for a single employee,
for instance, in the e-mail system – in that case
they should be merged and mapped to the single
entity in the employee list. Of course, it is also
possible that an employee would not use some
communication systems, which actually is not a
problem for the analysis – a node may be isolated
in some layers.

There might be some employees using
external communication techniques (supervisory
board, expats), and some employees may be
represented by other ones, as it often happens for
top-level managers – they are substituted by their
assistants for writing and sending e-mails. This
should be respected at the preprocessing stage.

The problems discussed above are to be found
in most organizations. However, they may be
overcome and there is still the chance to conduct
reliable studies. However, some more limitations
may be recognized in the organization itself and
they were described in the Limitations section.

Building the Social Network and the
Corporate Hierarchy

The process of building social network consists of
choosing the graph type (directed or undirected)

and weight calculation method for edges linking
nodes. In general, various methods of relationship
valuation may be applied including multilayered
(multigraph) concepts, in which two nodes are
connected by means of multiple edges. However,
in the Enron dataset utilized in the use case,
only one layer exists, so a single-layered social
network has been built. A directed and weighted
graph may be created from e-mail logs using
the following formula for the weight of an edge
between node i and j :

wij D
P

eijP
ei

; (1)

where
P

eij is the number of e-mails sent by
node i to node j and

P
ei is a total number of

e-mails sent by i . It means that weight wij fo-
cuses on the local neighborhood of an employee
rather than on global network characteristic. As it
was mentioned earlier, it is also possible to extend
the above approach by applying the importance
of correspondence in terms of time. Then, each
email would not be counted as 1 (eij =1) but as
a fraction of 1 depending on its time stamp –
smaller values for older messages: eij D 1=�k,
where � 2 .0I 1� is constant, e.g., 0.8, and k is
the period index (0 – for the newest period, 1 – for
the previous one, and so on). Obviously, instead
of numbers of e-mails exchanged, some other
communication logs may be used like phone
records or IM chats.

After building the social network, it is also
required to obtain the organizational hierarchy.
Paradoxically, sometimes it can be even more
difficult than creation of social network. It refer-
s especially informal and vague organizational
structures. Especially for larger companies, their
hierarchy may be extracted from internal phone
books or other catalogues.

Introducing the NetworkMeasures

A variety of measures were computed to reflect
different aspects of the importance of the node
in the social networks (Wasserman and Faust
1994; Scott 2000). They were combined into

http://dx.doi.org/10.1007/978-1-4614-6170-8_277


S 1838 Social Network Analysis in Organizational Structures Evaluation

a single value – social score, as presented in
Rowe et al. (2007) and Palus et al. (2010) by
including:
(a) E-mails count – the number of e-mails a user

has sent and received.
(b) Average response time – the time elapsed

between a user sent an e-mail and later re-
ceived a response e-mail from that same per-
son. The exchange of this nature is consid-
ered a “response” only if a received message
succeeds a sent message within three busi-
ness days.

(c) Response score – a combination of the num-
ber of responses and average response time.

(d) Number of cliques – the number of max-
imal complete subgraphs that the account
belongs to.

(e) Raw clique score – a score computed using a
size of the given account’s clique set. Bigger
cliques are worth more than smaller ones;
importance increases exponentially with size.

(f) Weighted clique score – a score comput-
ed using the importance of the people in
each clique, which is computed strictly from
the number of e-mails and the average re-
sponse time.

(g) Centrality degree – count of the number of
ties to other actors (nodes) in the network.

(h) Clustering coefficient – likelihood that two
associates of a node are also linked with
themselves.

(i) Mean of the shortest path length from a
specific vertex to all vertices in the graph.

(j) Betweenness centrality – reflects the contri-
bution of a given node in all shortest paths
connecting all pairs of nodes, i.e., how im-
portant is a node in linking other nodes.

(k) Hubs-and-authorities importance – refers to
the algorithm proposed in Kleinberg (1999).

Above measures are then weighted and
normalized to a [0, 100] scale, as presented
in Rowe et al. (2007). Obviously, some
other measures can be utilized in a given
organization according to the needs and data
availability.

Hierarchical Position

It is possible to find people who are higher or
lower in the hierarchy for each employee in the
corporate hierarchy. The Hierarchical Position
(HP) is a measure that denotes the importance
of an employee within the company (Kleinberg
1999). For each user i in a company C, there is a
sum of hierarchical differences D between i and
any other user j in the company normalized by
the total number of other users.

HP.i/ D
P

j2C^j¤i D .i; j /

m � 1
(2)

The hierarchical difference D(ij) is computed as
follows:

D.i; j / D

8̂
<
:̂

1; if i is higher in the hierarchy than j

0; if i and j are at the same level of the hierarchy

�1; if i is lower in the hierarchy than j

(3)

At first, the Kendall’s rankings comparison
method was used to compare two rankings
(Kendall and Gibbons 1990). It compares the
nodes in pairs, i.e., the positions of pair nodes
within both rankings. If the position of node A is
related to the position of node B in both rankings
monotonically in the same direction (lower or
higher in the both hierarchies), then this pair is

well correlated. It is assumed that when the level
in hierarchy is the same within the pair, then
it does not matter whether they are in differen-
t positions in the second ranking. Kendall’s 

rank correlation coefficient is a value from the
Œ�1; 1� range, where 1 means that two rankings
are perfectly correlated and �1 means that they
are completely different (in the opposite order).
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It is impossible to distinguish the importance of
departments, e.g., whether the Director of North-
west is higher in the hierarchy than the Director
of Fundamental Analysis; see Fig. 4. Thus, anal-
yses in the Enron use case were not performed
globally, but locally at department level.

Discovering the Organizational Level
of Employees

The structural node measures within the social
network can be utilized to predict hierarchy level
of particular nodes – employees. Some of these
structural features may be more while the other

less correlated with the organizational level. As a
result, the level of a given person in the organi-
zational hierarchy may be discovered based only
on this person’s centrality measures in the social
network.

Some of these typical centrality measures
were compared for the Enron employees; see the
use case described in the following section. The
results are presented in Table 1.

The above analysis clearly shows that some
measures like in-degree centrality and centrality
eigenvector are able to identify the level of the
employee with quite good accuracy and that there
exists the general relation between the employ-
ees’ social network position and the corporate
hierarchy placement.
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Social Network Analysis in Organizational Structures Evaluation, Table 1 The accuracy of management level
matching while using various social network metrics (Michalski et al. 2011)

Percentage of the management
level employees matched

Percentage of regular employees
matched

In-degree centrality 67 85

Out-degree centrality 50 77

Centrality betweenness 33 69

Centrality closeness 33 69

Clustering coefficient 17 62

Centrality eigenvector 67 85

Enron Use Case

The use case for evaluation of the organizational
structure will be presented based on the Enron
dataset that contains e-mail communication be-
tween employees. This e-mail corpus is extract-
ed from mailboxes of 150 Enron employees,
mostly senior management. In total, they contain
517,430 e-mail messages. Because this is the
only available communication channel, only one
layer in the social network, a single-layered social
network, may be built (Klimt and Yang 2004).

Having the social network built, the organi-
zational hierarchy must be identified. There is
an Excel file with a list of over 160 employees
and their job title available at Shetty and Adibi
(2004). Many of them do not exist in the Enron
Corpus, though. Using this list, four groups from
Enron North American West Power Traders are
chosen – it is possible to distinguish levels of
hierarchy by matching them with job titles. Since
only a part of hierarchy is available, the most
complete part of it has been taken for further
analysis. The extracted hierarchy is presented
in Fig. 4.

The list of Enron employees sorted by their
social score (see Introducing the Network Mea-
sures section) is presented in Table 2. The HP
measure (Eq. 2) and Position column indicates
official hierarchy structure. It can be seen very
clearly that social scores of the management is
far higher than the others.

The diagram of Hierarchical Position should
be descending, but there are deep structural holes,
as presented in Fig. 5.

The summary of Kendall’s correlation coeffi-
cient between the official hierarchy (ordered by
HP) and the one derived from the social network
(ordered by social score) for chosen departments
is presented in Table 3.

The main problem with the Enron dataset is
lack of information about direct hierarchy struc-
ture; only partial information was known. How-
ever, the analysis shows the rankings are very
similar with Kendall’s rank over 0.6 with man-
agement department perfectly identical (Kendal-
l’s rank of 1).

An interesting fact is that all employees who
are lower in the hierarchy than who comes from
the social network are women. There are 7
women among 19 analyzed employees, and there
are 5 female workers in the top 6 of the social
ranking, while 4 have been classified as lowest-
level employees according to the hierarchy
(these are marked green in Table 2). There are
three possible reasons of such case. Firstly, a
wrong assumption has been made while ranking
job titles. Secondly, there can be a simple but
important reason that women are underestimated
and maybe should occupy higher company
positions. The last, but not less probable, is that
women may be more likely to gossip than men,
and this fact is disrupting the process of proper
social network extraction. It is possible that the
real reason is the combination of these three.

http://dx.doi.org/10.1007/978-1-4614-6170-8_277
http://dx.doi.org/10.1007/978-1-4614-6170-8_277
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Social NetworkAnalysis in Organizational Structures Evaluation, Fig. 5 Hierarchical positions of Enron employ-
ees sorted by social score (Palus et al. 2010)

SocialNetworkAnalysis inOrganizational Structures
Evaluation, Table 3 Kendall’s correlation coefficient for
each department between official hierarchy and the social
network (Palus et al. 2010)

Department

Kendall’s
correlation
coefficient

Management (official vs. SN) 1.0

California (official vs. SN) 0.8

Fundamental Analysis (official vs. SN) 0.6

Northwest (official vs. SN) 0.6

Limitations

It must be clearly stated that the comparative
analysis may be applied in the more effective
way to companies with the stable (probably func-
tional) organization design (Daft 2009), because
other designs, such as matrix or horizontal ones,
would not allow to create a hierarchy chart easy
comparable with the social network ranks.

However, while performing such an analysis,
there is also the need to consider ethical aspects
of performing such studies inside the organiza-
tion (Borgatti and Molina 2003). That is why ev-
ery result of the evaluation should be individually

interpreted and discussed. In particular, the ac-
cess to organizational communication logs may
be treated as violation of privacy protection re-
strictions. Sometimes, it may be necessary to ob-
tain individual employee permissions to process
the data.

It is also related to very important limita-
tion: this kind of analyses require to process
data, which may be considered as very sensi-
tive for the organization. Even while applying
anonymization procedures on the data, there is
a big chance to map entities to real employees,
especially while analyzing the organizational hi-
erarchy. In fact, the organization must be trustful
and convinced to share this kind of information
with researchers.

Key Applications

The idea of matching organizational structure
and the social network may be regarded as an-
other possible way to improve overall company
management. The idea focuses on the compari-
son of calculated node position ranks using cho-
sen measures within the organization structure.
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The positive results in comparison of formal
structure with communication-based social net-
work may mean that the similar level of man-
agers and regular employees was properly as-
signed to their management levels. However, if
the results differ significantly, some more so-
phisticated analysis might be needed to answer
the question why real-life communication and
hierarchy do not necessarily cover organization
chart. The reasons may be different: (i) not the
most important social network source has been
analyzed; (ii) due to the profile of the company,
communication between company members have
nothing to do with their formal position; (ii) the
relations change too fast to give stable point of
view; or (iv) the company chose inappropriate
persons to hold some management positions.

There might be also another usage of proposed
concepts. The choice of new leaders in the or-
ganization can be supported by the application
of the described set of methods, i.e., through
recognition as prospective candidate for man-
agers those employees who belong to the high-
er level of the management team in based on
unofficial communication (having compared to
the formal organization structure).

There is one more, more controversial, appli-
cation field of the considered methodology. If
someone wants to uncover organizational hier-
archy, e.g., for crime groups, or at least wish-
es to know possible managers of this organiza-
tion using available communication logs (phone
records registered by the telecom company), they
may discover organization managers in the easier,
faster, and safer (passive) way. This may be used
by the police in their investigations.

Despite all the techniques regarding core data
analysis that may be very ambitious for SNA
experts, the real challenge for companies is to
properly interpret and make valuable use of the
achieved corporate SNA results.

Future Directions

A very promising field in ONA is related to the
dynamics of the organization. At monitoring the
social network in organizations and calculating

the HP values, one may discover that in some
parts of the organization some problems, arise
even before they will be officially mentioned.

The other usage of the above approach is the
ability to observe how fast the just introduced
organizational changes are influencing the com-
munication social network. It could be used for
validation of motivation programs.

Cross-References

�Anonymization and De-anonymization of
Social Network Data
�Collection and Analysis of Relational Data in
Organizational and Market Settings
�Managerial Networks
�Multilayered Social Networks
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Glossary

Bipartite A network is bipartite when it con-
tains two distinct node types, and all edges
connect a node of the first type with a node
of the second type

Directed A network is directed when each
edge has an orientation, i.e., each edge
explicitly goes from one node to another
node

Timestamps When a network has timestamps,
the creation time of each edge is known

Undirected A network is undirected when its
edges do not have an orientation
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Unipartite A network is unipartite when it
contains a single node type

Weighted A network is weighted if its edges
are labeled with edge weights, for instance,
rating values

Definition

A social network dataset is a dataset containing
the structural information of a social network. In
the general case, a social network dataset consists
of persons connected by edges. Social network
datasets can represent friendship relationships or
may be extracted from a social networking Web
site (Kunegis 2013). Social network datasets are
widely used, not only in the area of social net-
work analysis but also in the areas of data mining,
Web science, and network analysis as the basis
for various kinds of research.

Introduction

In order to study social networks, social network
datasets are necessary. Thus, the availability of
social network datasets are of crucial impor-
tance in all disciplines covering social networks.
Beyond the area of social network analysis, so-
cial networks are studied in such diverse fields
as data mining, Web science, network science,
recommender systems, and many more. In fac-
t, the majority of research being performed in
these fields takes the form of the analysis of
a social network and its usage as the basis of
further analyses. Therefore, an increasing num-
ber of social network datasets are used in the
literature, of which more and more are openly
available.

Since the success of social media platforms
such as Facebook and Twitter with the
general public, these social networks have
been increasingly studied, and accordingly a
high number of datasets of these sites are
available.

Historical Background

Historically, sociologists and anthropologists
have studied social networks either theoretically
by constructing corresponding models, or
have observed or conducted surveys and then
assembled social network datasets by hand. As
an arbitrary example, the article Cultures of the
Central Highlands, New Guinea by Read (1954)
lists, in the form of a table, the 55 relationships
between 16 tribes of the Central Highlands in
New Guinea.

While a network of 16 nodes is perfectly
correct in that it faithfully represents that ac-
tual relationships between tribes, its 55 edges
are too few for performing statistical analyses.
For instance, a common network analysis tool is
the degree distribution, in which the number of
nodes having a specific number of neighbors (the
degree) are counted, resulting in the observation
of power laws. These power laws reflect the fact
that the number of nodes with n neighbors is
proportional to n�� , for some constant � . When
applied to the network of New Guinean tribes,
power laws are not observed. This does not mean
however that the tribal network is in any way
special. It does just mean that the network is too
small to observe power laws. In fact, the larger
a network, the easier it is to make statistically
significant observations. Thus, small networks
assembled by hand are too small for data min-
ing applications. Instead, larger networks must
be used.

Large social network datasets have become
possible with the World Wide Web. With the
availability of online social networking sites,
large social network datasets have become
available for research and other purposes.
Nowadays, a large selection of large network
datasets can be used, although many datasets
are still proprietary and only available to
the research divisions of social networking
companies. Additionally, social media is used
to collect other types of networks, for instance,
rating graphs, consisting of ratings by users of
items, or communication networks, consisting
of individual messages such as emails sent
between users.
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Social Network Datasets

A social network datasets is mathematically a
graph, with optionally additional structure. In the
simplest case, a social network dataset is simply
a graph

G D .V; E/

in which the vertex set V represents the users
and the edge set E represents the friendships.
In these kinds of datasets, each edge fi; j g is
undirected as are the friendships on Facebook
(www.facebook.com) rather than directed as is
the follow relationship on Twitter (twitter.com).
Also, these kinds of network datasets allow only
a single edge between two nodes.

In the following subsections, we will first
describe basic statistics and analyses that can
be computed and performed with social network
datasets, and then describe additional forms of
structure associated with social network dataset-
s. The possible structural features of network
datasets are summarized in Table 1.

Network Dataset Statistics
Trivial statistics of a social network dataset are
the number of nodes jV j, which is also called
the size of a network, and the number of edges
jEj, also called the volume of a network. The
size of social network datasets range from a
dozen for pre-Internet networks from anthropol-
ogy and sociology to several hundred thousands
for large social networking sites such as Face-
book (Backstrom et al. 2012) and Twitter (Kwak
et al. 2010). Figure 1 shows an overview of
the network datasets from the KONECT project
(Kunegis 2013), a collection of network datasets
of typical sizes.

Other common statistics are described in the
following. We must note that not all notations
are established: While graphs almost universally
written as G D .V; E/, the average degree,
for instance, may be denoted by several sym-
bols. The notation we use here represents a rea-
sonable choice in symbols, although it is not
universal.

The average degree is used as a statistic and
ranges from 1 to about 100 in the most dense

networks datasets. The average degree can be
defined as

d D 2jEj=jV j:
The fill is the proportion of edges to the num-

ber of total possible edges. The fill can be de-
fined as

f D jEj=.
1

2
jV j.jV j � 1//:

Both the average degree and the fill are some-
times called the density in the literature.

The size of the largest connected component
is sometimes given as a social network statistic,
although social network datasets are often con-
nected, making this statistic equal to the network
size.

The clustering coefficient c equals the prob-
ability that two friends of a single persons are
themselves friends. The clustering coefficient is
thus a number between zero and one. A high
clustering coefficient in social networks is used
as an indication that a network is a small-world
network (Watts and Strogatz 1998).

The algebraic connectivity a is defined as
the second-smallest eigenvalue of the social net-
work’s Laplacian matrix L (Fiedler 1973). The
algebraic connectivity is zero when the network
is not connected; otherwise, it is larger than zero.
The algebraic connectivity is used to measure the
connectivity of a network.

The spectral norm kAk2 of a network equals
the largest absolute eigenvalue of its adjacency
matrix. The spectral norm is used as a measure of
the size of a network, complementing the volume.

The diameter ı of a network equals the length
of the longest path in the network. A small
value of the diameter is used in conjunction with
the clustering coefficient to characterize a social
network as a small-world network (Watts and
Strogatz 1998). As a robust replacement of the di-
ameter, the following measures are often used:
• The 90- % effective diameter equals the num-

ber of edges one must take to reach 90 % of all
nodes, on average.

• The mean path length is defined as the average
of the distance between all node pairs.

Typical values for the diameter range from 4 to 6.

www.facebook.com
twitter.com
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Social Network Datasets, Table 1 The possible structural features of social network datasets. Each of these features
is described in one subsection
Feature Description

Directed network datasets Each edge is directed
Bipartite network dataset There are two node types; each edge connects two nodes of different type
Network datasets with multiple edges Multiple edges are permitted between any node pair
Signed network datasets Edges can be positive or negative
Rating network datasets Each edge represents a rating and is thus annotated with a rating value
Temporal network datasets Each edge is annotated with an edge creation time, allowing the evolution

of the network to be studied
Multirelational network datasets Multiple edge types exist
Typed networks There are multiple node and edge types
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Social Network Datasets, Fig. 1 A typical collection of network datasets from social media, from the KONECT
project (Kunegis 2013). Each letter code represents one network dataset

The list of social network statistics is much
longer, and new statistics are constantly intro-
duced in the literature.

Network Dataset Analyses
Social network datasets are used as the basis for a
large number of analysis types. In this section, we
review several very common types of analyses.

The degree distribution represents the distri-
bution of the degree values, i.e., the number of
neighbors in the social graphs, over all nodes
in the networks. The degree distribution can be
visualized in several ways, of which the most
common is by far the simple degree distribution

plot, and another is the cumulated degree dis-
tribution plot. Figure 2 shows the two types of
plots for a subset of the Facebook social network
(Gjoka et al. 2010). Both plots use a doubly
logarithmic scale. Both degree distribution plots
are typically used to point out a power law, i.e.,
the observation than the number of nodes with
degree n is proportional to n�� for a constant � .

The second plot type we show is the hop plot.
The hop plot shows, for each possible distance
n, the average number of nodes at distance n

from any nodes in the network. The hop plot can
be used to read out the diameter, mean average
path length, and 90-% effective diameter of the



S 1848 Social Network Datasets

Degree (n)

F
re

qu
en

cy
 (

C
(n

))

Relative degree (d / D)

P
(x

 ≥
 d

 / 
D

)

100

100

100 101 102 103 104

101

102

103

104

105

106

107 10−1

10−2

10−3

10−4

10−5

10−5

10−6

10−6

10−7

10−8 10−7

108a b

Social Network Datasets, Fig. 2 The simple and cu-
mulated degree distributions of a subset of the Facebook
social network dataset from Gjoka et al. (2010). Both

plots are shown on a doubly logarithmic scale. (a) Degree
distribution. (b) Cumulated degree distribution

0 1 2 3 4 5 6 7 8
0%

20%

40%

60%

80%

100%

Distance [edges]

M
ea

n 
re

ac
ha

bl
e 

pa
rt

δ = 8

δ0.9 = 3.65

δ0.5 = 2.54

δm = 3.05

SocialNetworkDatasets, Fig. 3 The hop plot of the online social network of users of an online community of students
from the University of California at Irvine (Opsahl and Panzarasa 2009)

network. The plot can also be used to measure
the median path length in the network, which
corresponds to the 50-% effective diameter. The
hop plot is expensive to compute. Figure 3 shows
the hop plot of the online social network of users
of an online community of students from the
University of California at Irvine (Opsahl and
Panzarasa 2009).

Directed Network Datasets
Some social networks have directed edges. An
example are trust networks: The fact that person
A trusts person B is independent of the fact the
person B trusts person A. Thus, trust networks are
directed and have directed edges.

Mathematically, directed networks are written
as D D .V; A/, in which D stands for digraph
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(an abbreviation of directed graph) and A is the
set of arcs (or directed edges). A directed edge
between nodes i and j is usually denoted .i; j / in
contrast to the notation fi; j g used for undirected
graphs.

As an example for statistics specific to directed
networks, the largest connected component can
be extended to the largest strongly connected
component. The strongly connected component
of a directed network is defined as the largest set
of nodes in the networks in which every node
is reachable from every other node, using only
directed paths.

In directed networks, two degrees are defined:
the outdegree and the indegree. Thus, in addition
to the usual degree distribution, the outdegree
distribution and the indegree distribution can be
defined. An example of an analysis in which both
distribution behave differently are power laws:
Indegree distributions follow much more often
power laws than outdegree distribution.

Another key feature of directed networks are
reflected in algebraic graph theory, i.e., those
methods that represent the social network as
a matrix. In an undirected social network, the
adjacency matrix A defined as Aij D 1 when
fi; j g is an edge and Aij D 0 when otherwise
is symmetric. In directed networks, the matrix A
is not symmetric. Therefore, methods based on
its eigenvalue decomposition must be modified.
In an undirected network, the adjacency matrix
can be decomposed as A D UƒUT, in which ƒ

contains the real eigenvalues of A. In undirected
networks, this is not possible, and it is neces-
sary to use either a non-orthogonal eigenvalue
decomposition (leading to complex eigenvalues)
or another matrix decomposition altogether.

Bipartite Network Datasets
A bipartite network is a network in which the set
of nodes V can be partitioned into two sets V1

and V2 such that all edges connect a node in V1

with a node in V2. Social networks themselves are
rarely bipartite. However, other networks extract-
ed from social media are bipartite, for instance,
user-item rating graphs or user-group inclusion
graphs.

In bipartite networks, the clustering coeffi-
cient c is trivially equal to zero, since a bipartite
network contains no triangles. Other network
statistics and analyses must be extended to be
used. In many cases, a statistic can be computed
for the nodes in V1 and V2 separately. For
instance, the average degrees of nodes in V1

and V2 can be defined. As another example,
the largest connected component in a bipartite
network contains a certain number of node from
each of V1 and V2.

Network Datasets with Multiple Edges
In some social network datasets, multiple edges
are allowed. An example is an email communica-
tion network, in which the nodes are the users and
each edge represents a sent email. In these types
of networks, also noted G D .V; E/, E does
not represent a set but instead a multiset. Thus,
two nodes, i and j , can be connected by multiple
edges, for instance, denoting multiple emails that
have been sent. Analogously, directed networks
with multiple edges can be defined.

Most network statistics can be applied to net-
works with multiple edges without problem. For
instance, the degree is defined as the number
of edges adjacent to a vertex, counting multiple
edges as such. The resulting degree distributions,
as an example, can be tested for power laws.

When representing a social network with mul-
tiple edges as an adjacency matrix, the multi-
plicities are used as entries. In other words, the
entry Aij is defined to equal the number of edges
between i and j , even when no edges connect the
two nodes. The resulting adjacency matrix can
be used in nearly all algebraic graph theoretical
methods used for simple graphs.

SignedNetwork Datasets
Some social networks contain both positive and
negative edges. An example are social networks
with friendship and enmity links, such as the so-
cial network from the Slashdot technology news
Web site, in which users can mark other users as
friends and foes (Kunegis et al. 2009).

Mathematically, a network with positive and
negative edges is modeled as a signed graph
G D .V; E; �/, in which � is the sign function,
mapping the edges in E to the set f�1;C1g.
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The extension of social network statistics to
signed graphs is not trivial. Using the example
of the degree, each vertex of a undirected signed
graph can be defined to have two degrees: the
positive degree dC.i/ counting the number of
positive incident edges and the negative degree
d�.i/ counting the number of negative incident
edges. Another way of defining degrees consists
in subtracting the number of incident negative
edges from the number of positive incident edges,
giving the signed degree

d.i/ D dC.i/� d�.i/:

Analogous signed definitions can be given, for
instance, for the clustering coefficient (Kunegis
et al. 2009).

The adjacency matrix of signed graphs is typ-
ically defined as a �1=0= C 1 matrix A defined
as Aij D �.fi; j g/ when fi; j g is an edge and
Aij D 0 otherwise.

Rating Network Datasets
Rating network datasets are networks in which
the edges represent ratings. As an example, if
users of a dating site can rate other users, the
resulting social network is a directed rating net-
work between users. The much more common
case however is that of bipartite rating networks,
in which users rate items, for instance, movies
(GroupLens Research 2006), songs (Yahoo! Labs
2011), or jokes (Goldberg et al. 2001). Ratings
are typically numerical and given on a rating
scale, the most common one ranging from 1
(dislike) to 5 (like).

To extend network statistics to rating network-
s, the ratings can be used as weights. However,
care must be taken. In the example of the 1-to-5
rating scale, since the adjacency matrix is defined
to contain the value zero for node pairs that are
not connected, this would imply that a dislike
of weight one counts as more than no rating of
weight zero. Thus, it is typical to subtract the
overall mean rating from all rating values and use
the resulting numbers as weights in the adjacency
matrix. Since the resulting matrix contains pos-
itive and negative values, a rating network can
always be interpreted as a signed graph.

Temporal Network Datasets
A common type of study in social network anal-
ysis consists in observing the evolution of a
network. In order to observe the evolution of a
network, temporal information must be known. In
the simplest case, edge arrival times are known
for all edges, allowing one to reconstruct the
network at any timepoint. All network statistics
mentioned before in this article can be analyzed
temporally, by computing them in function of
time. The result can give insight into the pro-
cesses of graph evolution. As an example, several
network statistics which capture the notion of
diversity of a network in different ways have
been shown to decrease over time in a majority
of social and other networks (Kunegis et al.
2012).

Multirelational Network Datasets
Signed and rating networks can be generalized to
multirelational networks. In multirelational net-
works, any number of edge types are allowed
(Greene and Cunningham 2009). For instance,
edge types can be friend, relative, or cowork-
er. Multirelational networks may be alternatively
called heterogeneous networks.

Since the meaning of the edge types depends
on the specific network, no simple generalization
of network measures to multirelational networks
is possible, beyond ignoring edge types. If the
strength of each relationship type can be assessed,
these values can be used as weights to compute
the degree of nodes or as entries in the adjacency
matrix. Another complication with multirelation-
al networks are the structural properties of the
various relationship types, which can vary. For
instance, one relationship type can be directed,
while another one is undirected.

Although multirelational social network
datasets are available from various sources, only
very few studies consider these types of networks
generically. One example is given in Lippert et al.
(2008).

Typed Networks
A further extension of multirelational networks
are typed networks, in which in addition to mul-
tiple edge types, multiple node types are allowed.
An example is given when a social network is
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combined with a user–item rating network. Such
a network contains users and items as nodes, and
ratings and friendships as edges. Each edge type
must thus connect two nodes of a given type.
The edge and node types of a typed network can
be summarized by an entity–relationship (ER)
diagram. A bipartite network, for instance, can be
modeled as a typed network in which the entity–
relationship diagram consists of two nodes con-
nected by a single edge. Typed networks are often
used but seldom modeled as such. Examples
of studies using typed networks are those com-
bining social and collaborative recommenders
(Adomavicius et al. 2005).

A further generalization of typed networks
results in semantic networks, whose only con-
straints are that it consists of triples, and in which
the fundamental difference between nodes and
edges is removed at lower level and modeled as
part of the network itself.

Practical Considerations

Several practical issue have to be dealt with
when using social network datasets. First, a so-
cial network dataset that may be incomplete are
biased due to the way it was aggregated. Then,
legal considerations may be necessary for using
datasets. Finally, varying data formats may affect
usage.

Bias Due to Data Extraction
An ideal social network dataset is generated di-
rectly from the database of a social network
company. Such a dataset is complete, and all s-
tatistics computed with it reflect that actual social
relationships among the users. In practice howev-
er, most social network datasets are crawled by
scientists from the social networking sites. Thus,
they may be incomplete, corrupted, and reflect
different parts of a social network at different
timepoints. These biases can have a drastic effect
in analyses performed on them. For instance, if
degree distributions are studied in a social net-
work where users with zero friends are excluded
due to the way the data was crawled, the resulting
average degree will be wrong. Other statistics

however will not be affected, for instance, the
diameter of the network.

Typical biases in social network datasets are
the exclusion of nodes with small degree, the
omission of everything except the largest con-
nected component, and the fact that parts of the
network were crawled at different times, resulting
in a social network dataset that has never existed
in that form at any timepoint.

Legal Considerations
Due to the sensitive nature of social networks,
most social networking companies do not
publish their datasets. Thus, datasets are usually
crawled, putting the publication and usage
of these datasets in a legal gray area. As an
example of a large dataset of the Twitter social
network which included user names was retracted
from its Web site from the researcher that
was involved, due to complaints from Twitter.
Nevertheless, many social network datasets are
available online, and many studies are performed
on them. Well-known newly created social
networks are crawled soon after they gain a
sizable market share, as shown by the example of
Google Plus (Schiöberg et al. 2012).

Data Formats
There is no unified data format for the publication
of social network datasets. The formats that are
used can be classified into those that try to be effi-
cient, those that try to make it easy to combine the
datasets with other datasets, and those that make
it easy to access the dataset from a large number
of programming languages and environments.

An example of an efficient format, both in
terms of runtime and memory usage, is the binary
format used by Boldi and Vigna (2004). An
example of a format that makes it easy to combine
a social network with other types of data is given
by all social networks published as RDF. An
example of social network datasets published in
a format that is optimized for easy access from
many programming languages is given by the
tab separated value format used in KONECT
(Kunegis 2013).
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Key Applications

Applications of social network datasets are too
numerous to cite and cover almost all aspects of
data mining, information retrieval, recommender
systems, Web science, and increasingly social
sciences such as sociology.

Future Directions

New applications of social network datasets are
published continuously. New network datasets
are also published regularly. A trend in the re-
cent years has been the aggregation of social
network datasets into collections, for instance, in
the Stanford Network Analysis Project (SNAP)
(Leskovec 2010) and in the Koblenz Network
Collection (KONECT) (Kunegis 2013). Another
trend is the migration toward more interopera-
ble formats, in line with the Link Open Data
initiative.
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Synonyms

Innovation crowdsourcing platforms; Open
innovation social networks; Web problem-solv-
ing platforms

Glossary

Open Innovation A paradigm stating that
companies can and should use both external
and internal ideas to boost their innovation.
This includes both “outside-in” (calling
on external knowledge for use internally)
and “inside-out” (when unused or under-
performing internal knowledge is promoted
outside company walls) approaches. The term
has been attributed to Henry Chesbrough,
professor at the University of California,
Berkeley (USA)

Problem Solving on the Web Using Web user
connectivity to collaborate (e.g., the 2009
Polymath Project) or answer open-problem
challenges as individuals (e.g., P&G Connect,
Innocentive, Hypios)

Crowdsourcing An approach that involves
outsourcing tasks to a distributed group
of people, both online or offline. This can
involve the mass collaboration of thousands
of individuals to accomplish one overall task
(e.g., the Galaxy Zoo project, which recruited
over 200,000 online volunteers to classify
galaxies), or the competition of thousands of
individuals in an open call for solutions (e.g.,
the X-Prize, Innocentive, Hypios)

Social Networking Engaging in social activities
online involving but not solely based on
connected platforms like Twitter, Facebook,
LinkedIn, and Pinterest
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Semantic Web A Web of interconnected self-
describing data structures interpretable by
machines. It represents an extension of the
Web of connected pages, in which data
resources are connected among each other
with typed links thus forming a giant typed
graph

Serendipity The discovery of relevant but unin-
tended and unexpected facts, phenomena, and
ways of thinking

Definition

Social networking for Open Innovation is the
practice of using virtual social networks to iden-
tify and engage with participants, often external
to a company, as part of a larger process to devel-
op innovative solutions and products or acquire
R&D.

The current methodology of online Open
Innovation problem-solving platforms involves
broadcasting problems to either undefined (e.g.,
the Web) or very specific communities (e.g.,
brand consumers, specific solver communities).
Though this “push-out” method does produce
results, it is found to generate excessive noise
and limit the involvement of certain user-
s.

However, coupling data collected on social
networks (user profiles, comments) with various
articles by the same users (publications, resumes)
can allow the “crowdsourcer” – OI platform or
company – to create an ad hoc global virtual com-
munity to address specific issues. This reduces
noise, since only relevant solution providers will
be identified, and increases resolution probability,
as these individuals have not opted into specific
communities and are wide ranging (in both areas
of interest and geography).

Furthermore, and contrary to traditional
“push-out” methods, these solution providers are
personally contacted (via social networks, email,
and sometimes phone calls) by a dedicated team
to generate interest for the problem that needs
to be resolved. Using this “pull-in” method, the
overall success rate of problem resolution has
increased significantly.

Introduction

It was in 2009 that Fields medalist Tim
Gowers decided to use his blog to find a new
combinatorial proof to the density version of the
Hales-Jewett theorem – in other words, to solve
a very complex mathematical problem. More
of social experiment on his part, he decided to
put the question out in the open and see how
long it would take experts, collaborating online,
to crack it. The Polymath project1, as it is now
called, solved the problem in 37 days, with over
800 contributions from 27 people. It even led
to two papers published under the name D.H.J.
Polymath. It is a true example of collaborative
innovation powered by online social networks.

Collaboration is in our DNA. From the study
of animal groups to Georg Simmel’s extensive
research on social geometry, it is clear that social
networks, from family units to tribes, to the
nineteenth century’s great urban centers, have
been critical to all cultural, social, or scientif-
ic advancement. These networks are now more
powerful than ever through the new tools of in-
terconnectivity offered by the Web of the twenty-
first century.

And these tools cater to every aspect of
collaboration, from universal user-generated
encyclopedias (Wikipedia) to sharing documents
both outside (Google Docs) and inside (Share-
point) company walls. Harnessing the power
of effective online collaboration through blogs,
forums, community networks, open problem-
solving platforms, or social platforms is still
a challenge today, even more so for large
organizations, whose internal tools lack the
connectivity enjoyed by their employees outside
company walls. In fact, the flexibility, speed, and
efficiency of temporary online collaborations –
even those found in multiplayer games – are
forcing companies to question internal processes
and adapt from the outside in.

And the crux of the problem is the rapid
identification of groups or individuals who are
best qualified to solve any given challenge. In
this paper we argue that a truly Open Innovation
approach of using external social networks as
basis for such ad hoc groups is key to successful
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problem resolution. Yet to create the most effi-
cient groups, existing social networks must be
broken down to eliminate both homophily and
propinquity. Adequate distance from the subject
matter, bridges, and weak ties are highly impor-
tant in promoting serendipity and guarantee that
novel and often surprising solutions are submitted
or that transferable processes already applied in
different disciplines are quickly located.

We argue that the Semantic Web is best able
to help discover the most relevant keywords for
identifying such individuals on existing social
networks, and from traces (papers, resumes, etc.)
found online. The group can then be asked to
collaborate or answer an open call for solution.
This can be directly handled by the company
or outsourced to a dedicated problem-solving
platform.

Key Points

Using the Web for Open Innovation:
• Speeds up the process of innovation
• Gives access to external know-how
• Leads to unexpected results and solutions

coming from unexpected domains
• Reduces the cost of acquisition of research
• Reduces the need for managing multiple con-

tacts with several academic actors and gives
one point of access to research

Historical Background

In the increasingly competitive market that char-
acterizes the world economy today, the need to
develop innovations quickly has become a Holy
Grail for many companies. The Open Innovation
(OI) model emerged as a response to the limita-
tions of traditional innovation models, involving
mainly internal research departments siloed in
their respective areas of expertise. The traditional
model was perceived as unsatisfactory mostly in
terms of efficiency and heterogeneity of solu-
tions considered. For Henry Chesbrough, who
introduced the term in 2003, “open innovation
is the use of purposive inflows and outflows of

knowledge to accelerate internal innovation, and
expand the markets for external use of innova-
tion, respectively. The open innovation paradigm
assumes that firms can and should use external
ideas as well as internal ideas, and internal and
external paths to market, as they look to advance
their technology” (Chesbrough et al. 2006). Ac-
cording to existing literature, three key process-
es of the Open Innovation can be differentiat-
ed (Enkel et al. 2009): “outside-in” (the use of
external resources), “inside-out” (the realization
of profits from the commercialization of sleep-
ing patents), and the “coupled” (co-creation with
partners). This paper focuses on the outside-in
processes completed by Open Innovation plat-
forms.

Although these three classifications are per-
fectly in line with current company models, the
idea that Open Innovation in its simplest form
did not exist prior to 2003 is a fallacy. Recent
literature argues that “open” practices have been
applied before in companies in different ways
(Trott and Hartmann 2009). Furthermore, open
calls for solutions, for the benefit of organizations
and governments, have been common through-
out history, from the Longitude prize (1714) to
the invention of canned foods (Napoleon’s Food
Preservation Prize 1795) or the development of
submarines (The Confederate Prize for Invention-
s that Sink or Destroy Union Ships 1861).

The successful application of Open Innovation
practices has been well documented by com-
panies like IBM, P&G, Intel, Cisco Systems,
DuPont, Lucent, or Philips (Sari et al. 2007).
What follows are a few examples of how one
open innovation practice in particular, crowd-
sourcing, is adopted by some of today’s leading
firms.
1. Branded Platforms with Corporate Needs

Probably the most famous example of such a
platform is Procter & Gamble’s (P&G) Con-
nect & Develop site. The company formulates
specific needs and posts them on its website
in order to invite innovators and researchers
to submit potential solutions. One challenger
posted on P&G’s platform was the need to
develop a lipstick that would glow for 4 h,
much longer than today’s standard lipsticks.
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While this is not a problem that anyone in
cosmetics would find surprising, the company
with such a solution would gain an essential
edge over its competitors.

2. Corporate Communities for Discussion of
Questions and Needs
Another approach is the one taken by Clorox
with Clorox Connect: building a platform
where innovators and researchers can sign
up to discuss issues with employees of the
company, in a forum led by a corporate
community manager. The downside to
this type of platform is that it competes
with specialized science wikis, forums, or
specialized social networks like Research
Gate, Academia, or university intranets.

3. Communities for Customer Co-Creation
As opposed to (2), this type of platform
addresses customers or fans of a company’s
products. An example of this was Lego
Mindstorms, which during its lifetime led
to the commercialization of several products.
While this kind of initiative tends to lead
to highly motivated and (nearly) self-driven
communities, it is not applicable to every
company.

4. Corporate Idea Boxes
Shell’s Gamechanger exemplifies this type of
platform. While it is rather successful, al-
l ideas that have led to products and pro-
cess improvements have come from inside the
company.

5. Platforms That Centralize Open Problems
As opposed to corporate platforms, websites
like Innocentive or Hypios list problems from
a number of companies. This attracts individ-
uals who are generally interested in solving
problems, wherever they may arise. For a
researcher who wants to maximize the chances
of finding a problem that he/she can solve,
such platforms are highly attractive. These
emerging open innovation platforms are trying
to leverage Web technology and most notably
its social aspects to help innovation occur
faster and more efficiently. Those services
rely on social networks to diffuse innovation
challenges, engage with experts, and boost
collaboration.

Web Technologies for Open
Innovation

Hypios, a Web-BasedMarketplace for
Solutions
Hypios, a French solution marketplace launched
in 2009, best exemplifies the latest methods avail-
able for Web-based innovation. Companies with
R&D problems (called seekers) use Hypios to ex-
ternalize their problems to an ad hoc group of ex-
perts (called solvers), who then submit novel and
often unexpected solutions. Karim Lakhani, HBS
professor and leading academic expert on the
subject, calls this method “problem-broadcast.”
R&D departments usually have expertise in a spe-
cific area and approach problems from a certain
perspective. Yet it is evident that across the world
– thus somewhere on the Web – there are people
with different perspectives who can approach the
problems differently and suggest truly novel solu-
tions. The goal of a marketplace for solutions is to
ensure that R&D problems reach the right people
on the Web. One of the initial observations made
was that companies constantly reinvented the
wheel, simply because they didn’t know where
to look for existing plans for wheels – or because
they were too scared that their competitors could
find out that they were working on the wheel.
Yet the truth is that most of their competitors are
also working on the wheel. In the words of Kevin
McFarthing, who implemented Open Innovation
at Reckitt Benckiser: “R&D problems that would
surprise your competitors are very rare.”

The people-centric approach of Hypios makes
it possible to identify explicit solutions (e.g., in
publications or patents) as well as “incorporated
solutions,” ones that have not been made public
but that can be provided by individuals if you ask
them. The ability to find such “sticky” and im-
plicit knowledge is a key advantage of identifying
people rather than existing explicit solutions.

Semantic Web Technologies for Open
Innovation on the Web
Although there have been studies on online
search (Parkes 2007), the work done in relation to
the use of social networks and new technologies
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by innovation intermediaries are far and between.
What is of particular interest to our research
is that the Social Web and Semantic Web are
powerful tools that can be used for building
and maintaining relationships of dispersed
social communities and thus create and expand
networks to produce synergies through combined
interactions of users (Breslin et al. 2009). While
the Social Web has already been introduced, the
Semantic Web, on the other hand, should be
clearly defined.

The Semantic Web is an extension of the
current Web in which any content is tagged with
a more precise meaning to enable machines to
process it and thus better answer human queries.

In addition to the plain textual, visual, and ad-
ditive content that dominated the initial Web, the
Semantic Web creates structured, self-describing
articles that are published and interconnected on
the Web. In this section, we will discuss how
Semantic Web technologies, as a complement
to the Social Web, can be used to enhance the
problem-solving processes of Open Innovation
platforms.

Expert Identification
The possibility of using the Web as a source
for identifying experts has already been explored
in literature. Web resources that users create or
interact with have been used to assess expertise
for such tasks as human resource management
and finding assistance in e-learning scenarios.

Recently, a new trend has emerged in regard
to how data is published on the Web: Linked
Data (Bizer et al. 2009), which is now seen as an
integral part of the Semantic Web. In contrast
to representing data in the form of regular
Web pages, Linked Data publishes information
in a more structured format with a semantic
overlay. Linked Data publishing is increasingly
widespread, and even large data providers like
Facebook are turning to specific forms of
semantic data representation standards (http://
developers.facebook.com/docs/opengraph/).
Several possibilities of currently available user
data in Linked Data form have already been
explored to identify experts (Stankovic et al.
2010), and further improvements will be made

once data publishers accept richer forms of
expressing expertise-related data (Aleman-Meza
et al. 2007). The benefits of the Linked Data
formats are primarily in the rich structure of
typed nodes and links. When user activities, such
as interaction with Web content, are represented
as Linked Data, the result is a rich structure of
traces, which clearly identify the users’ interests
and knowledge. In the example represented
in Fig. 1, we can see a user interacting with
two articles on the Web. The user read Article
1 and created Article 2. Modern Social Web
applications using Semantic Web standards
would store and selectively publish data about
those activities in the form of a Semantic Web
Graph. In this graph, a node representing a user
would be connected to nodes representing Web
content, which are further connected to nodes
representing topics of interest. The relationship
of the user with the content would determine the
strength and the nature of his relationship with
the topics of the content. Given the diversity of
those links, it is possible to weigh the importance
of certain topics for a given user differently
in different situations. For instance, in our
Fig. 1, when searching for user qualifications, we
would consider the topic “Semantic Web” more
important, because the user created content on
this topic, and when searching for his interests,
we would likely pick “Higgs Boson,” because
the user read content on this topic. In our
previous research, we have constructed a system
Hy.SemEx (Stankovic et al. 2011) that relies
on the diversity of link types to deliver a better
expert identification engine, adapted to different
needs and different situations.

Identifying experts for Open Innovation prac-
tices (especially when dealing with the Hypios
platform) is different than for simple HR needs
or similar queries. For OI, it is essential to find
potential problem solvers that are not necessarily
the best-ranked experts, with rich expertise in the
given problem area (Jeppesen and Lakhani 2009).
It is therefore especially important to adapt the
way experts are selected in order to create a broad
base of individuals with relevant, yet distant areas
of expertise from the context of a specific innova-
tion problem.

http://developers.facebook.com/docs/opengraph/
http://developers.facebook.com/docs/opengraph/
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Social Networking for
Open Innovation, Fig. 1
User activities and their
traces in the Semantic Web
Graph

This is how Semantic Web-based expert i-
dentification technology can be used to reach
the outside solvers, including the ones on the
margin of the area in question, and to encourage
the transfer of knowledge between those fields.
In doing so, it enables “cross-sectorial problem
solving.” Likewise, by identifying experts in pe-
ripheral fields, this technology helps determine
the graph of social behavior between relevant
solvers on the Web and thus identifies “weak
ties.”

Semantic Keyword Discovery
Semantic keyword discovery extends the stan-
dard matching of documents by keywords, with
a notion of semantic proximity of keywords.
By going beyond exact matches, it enlarges the
space of possibilities. This particular property of
semantic keyword matching fills a real need in
Open Innovation models.

Different communities use different words to
express the same or similar concepts. Thus com-
ing from one community of practice and using
one’s own words to express an innovation prob-
lem heavily limits its reach in different areas.
Present technologies exist to find synonyms and
words of similar meaning, based on taxonomies
of concepts (Ziegler et al. 2006) and word co-
occurrence (Cilibrasi and Vitanyi 2007). Such
existing approaches have limitations, however,

as they focus on providing relevant suggestions
and often neglect the need for serendipity and
discovery that are essential to OI scenarios. Novel
approaches that use Linked Data sources, such
as DBPedia.org, to make meaningful connections
between concepts in the area of music (Passant
2010) and enable the discovery of unexpected,
but relevant concepts give hope that such sources
might also serve to establish a notion of semantic
proximity of concepts that would be more open
to serendipity.

When using a problem description to identify
profiles of potential experts, semantic matching
makes it possible to find experts who not only
work in the exact discipline of the problem but
also in areas that are semantically relevant. One
of the primary motivations for using a broad-
er matching approach is to decontextualize the
problem from its context and thus from the lan-
guage prevalent in a particular area of expertise
and increase the diversity of submitted solutions
promised by a truly OI process.

For example, let us imagine an innovation
problem related to detecting cable joints under-
ground. Solving the problem requires expertise
that would allow one to construct a device capa-
ble of precisely detecting cable joins by scanning
the surface of the ground. A standard approach
for finding experts capable of solving this prob-
lem would be to consider different keywords
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Social Networking for
Open Innovation, Fig. 2
A part of DBpedia graph

related to cables, electricity, and metal detection.
However, a semantic approach to keyword dis-
covery might provide less expected keywords, for
instance, those related to the bone and vascular
joints in the body. Those topics might seem un-
expected, but in fact experts working on medical
scanning equipment might have knowledge that
can be transferred to the cable joint problem.

In order to deliver the functionality of
semantic keyword discovery for its problem-
solving platform, Hypios has developed a
unique solution based on Semantic Web data
structures, called Hy.Proximity (Stankovic et al.
2011). Hy.Proximity uses DBpedia, a semantic
version of Wikipedia, to find concepts related
to a number of initial concepts of interests.
DBpedia is composed of a rich structure of
concepts and their typed links. In a small part
of the semantic graph featured in Fig. 2, the
concept “Paris” is connected to the concept
“France” with the link of type “country.” When
calculating the proximity score of two nodes,
Hy.Proximity takes advantage of the different
types of links that connect them and gives
them different weights. In addition to structural
futures of the graph, the semantic nature of
links and nodes open numerous possibilities for
constructing fine-tuned recommender systems.
Hy.Proximity exploits those possibilities to
deliver concept recommendations that are both
relevant and unexpected for the user, encouraging
the discovery of then unknown, but relevant
knowledge.

We have compared the performance of our
system against state-of-the-art keyword rec-
ommendation approaches. While an exhaustive
evaluation has already been made (Damljanovic
et al. 2012), we present here a couple of results
and examples to illustrate the usefulness of the
Semantic Web-based approach. For instance,
we compared our system, Hy.Proximity, with
the AdWords tool (https://adwords.google.com/
o/KeywordTool) for keyword suggestion used
to help advertisers better design their online
promotional campaigns. A main difference
of the Semantic Web-based approach used
by Hy.Proximity is that AdWords applies a
statistical approach, looking for words that co-
occur in search queries and Web documents.
In our evaluations, the two systems performed
similarly on relevance of their proposed
keywords, but in terms of unexpectedness of
relevant suggestions, Hy.Proximity outperformed
AdWords.

To illustrate the usefulness of suggestions
that Hy.Proximity provides, what follows is an
example of keyword suggestions obtained from
our system and from Google AdWords. We have
run both systems to obtain keyword suggestions
that would help us advertise an innovation
problem to an audience of experts, potential
problem solvers. The problem in question deals
with Kaolin extraction and issues with current
mining techniques. The initial keywords we
used for suggestions were Kaolinite, Drying,

https://adwords.google.com/o/KeywordTool
https://adwords.google.com/o/KeywordTool
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Social Networking for Open Innovation, Table 1
Keyword suggestions obtained from Hy.Proximity and
AdWords

Hy.Proximity AdWords

Drying Dry eyes

Induced gas flotation Dry cleaners

Souders-Brown equation Dry shampoo

API oil-water separator Chem dry

Dissolved air flotation Dry tortugas

Froth flotation Dry scalp

Aqueous two-phase system Flights to Brazil

Gas separation Text mining

Adduct purification Dry-erase board

Liquid-liquid extraction Mining companies

Acid-base extraction Filter press

Spinning cone Dry rot

Vapor-liquid separator Cheap flights to Brazil

Settling Brazil holidays

Flotation process Brazil travel

Sublimation apparatus Mining jobs Australia

Filter paper Salvador, Brazil

Azeotrope Dry ice blasting

Supercritical fluid extraction Dry eye syndrome

Fluid extract Dry suit

Mining, Separation process, Settling, Filter
press, Brazil, Mill (grinding), Tailings, and
Redox. The suggestions provided by the two
systems are given in Table 1. While the keyword
obtained through the treatment of the semantic
DBpedia graph (Hy.Proximity) concerns specific
topics likely to be used by experts and includes
diverse topics (some topics related to mining
and some related to similar processes used in
other industries, such as filtering using filter
paper), the topics provided by Google AdWords
represent combinations of terms often used
together on the Web. Their utility is more in
reminding the user of known notions than in
enriching him with unknown concepts. The
Semantic Web structures thus play an important
role in opening the audience to unexpected
disciplines from which knowledge transfer can be
expected – a key feature of the Open Innovation
approach.

Key Applications

Using a semantic graph for identifying relevant,
unexpected, or distant links can have applications
in every industry – from advertising to
recommendation algorithms. Yet our interest
here is how useful this technology can be for
solving complex innovation and R&D problems
and thus accelerating research and reducing time
to market.

The main problem with existing OI open
problem-solving platforms is that the target group
of solvers has either too much heterogeneity
or too much homophily. In the first case,
broadcasting a problem to random solvers
will not necessarily ensure the positive and
rapid resolution of a problem. Furthermore,
no matter the group size, it will be limited
to solvers who have opted into one of these
platforms. The second case exemplifies what
already plagues internal research departments.
Broadcasting a problem in airplane aerodynamics
to experts in the field will seldom lead to
novel, unexpected solutions and discourage any
technological cross-pollination.

A semantic approach for identifying experts,
coupled with an outreach process, solves both
problems at once. By using relevant keywords to
identify experts, an ad hoc group of solvers –
a network – can be created from profiles any-
where in the world, in real time, and for every
specific problem. This group will have enough
heterogeneity – relevant heterogeneity – to offer
novel solutions, limit noise, and encourage the
“systematic serendipity” of ideas.

Future Directions

Social Web technologies for Open Innovation
have so far mostly addressed the field of open
problem solving. However, the field of Open
Innovation is much wider. Different actors in
the OI world still remain to be connected and
their collaboration facilitated by Social Web
technologies. For instance, apart from the need
to connect with problem solvers, companies
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that adopt OI approaches also need to connect
to peer companies with whom they could
codevelop innovative products. Furthermore,
there is also a need for better interactions within
their ecosystem of suppliers, consultants, and
partners. Social networks can still play a role to
encourage a paradigm shift at this level.

Social networks may also prove critical in the
design of novel ways of engaging with consumers
and guiding the companies’ innovation towards
impulses coming from social networks. Many
brands already maintain an online presence via
social networks to promote their products and
control their image. A stronger connection be-
tween innovation research and consumer content
on these social networks could prove useful in the
future, as the use of social networks by customers
becomes increasingly ubiquitous.
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SNS and Politics

In their short history on the political scene,
social networking sites (SNS) have had a
dramatic impact on how political campaigns
function. For instance, in 2004, US Democratic
presidential hopeful Howard Dean used a diverse
network of bloggers and donors to rise from
a relative unknown to a front-runner for the
nomination in only a few months. In fact, the
Dean campaign was hailed by political and media
scholars as the first digital campaign (Hindman
2005). Dean’s willingness to relinquish control
over his campaign empowered Internet opinion
leaders to support and strengthen his campaign.
Still, the Dean campaign presented an enigma to
political scholars as his vast success in the early
stages of the Democratic primary failed to result
in the Democratic nomination.

In 2008, Barack Obama used SNS to develop
a grassroots effort that raised over $750 million
in campaign funds (Bradley 2008) and organized
over 8 million volunteers (Smith 2008) on the
way to becoming the 44th president of the United

States, breaking records for fundraising and
volunteers along the way. The sheer amount
of money raised by the Obama Campaign
more than doubled previous fundraising efforts.
This was especially surprising given the vast
amounts of donations (6 million of the 6.5
million total donations) were less than $100
(Vargas 2008).

In their short history on the political scene,
SNS also have had an impact on how people
acquire and share political information with each
other. Prior to the twenty-first century people
relied ostensibly on the mass media for political
information. Moreover, the flow of this informa-
tion typically moved from political elites such as
the news media and political parties/candidates
to the general population (Haridakis and Hanson
2009). However, the rise of SNS has provided
new outlets for information to flow in multiple
directions. Most notably, it has enabled audience
members to share and disseminate information
with professionals and amongst themselves. With
such changes, the Internet has become an im-
portant gateway connecting users to the larger
world.

Although politics is not the driving force be-
hind the use of SNS, people do use their social
networking pages for politics and to watch po-
litical videos online. Candidates also use social
media to bypass mainstream media and reach
voters directly, and YouTube has become a major
source of campaign videos and other political-
ly related fare (for a more in-depth explana-
tion, see Haridakis and Hanson 2009). In fact,
during an average month during the 2008 US
presidential campaign, more than 81 million u-
nique viewers used SNS for political information
and watched politically related YouTube videos
(Ramirez 2008). SNS also provide people with
additional avenues for exchanging information.
People with access to SNS are not limited to more
one-way directional mass communication for po-
litical information. They are not limited to face-
to-face discussion with those with whom they
have strong ties and weak ties. They can blog,
tweet, text message, tag videos to share with oth-
ers, and/or become Facebook friends with similar
others.
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People have also used SNS to institute politi-
cal changes in and around the globe, serving as a
primary means to connect people and coordinate
their efforts in the uprisings and revolutions in
Algeria, Egypt, Syria, Tunisia, Libya, and Yemen
(Jowett and O’Donnell 2012). With such a vast
array of applications and outcomes in the political
arena, SNS have become a central component
of the political process, serving as venues for
candidates to connect with their constituents as
well as places for citizens to engage in political
activities. In this entry, we discuss the role of
SNS in politics. While the use of social media
is a global phenomenon, in this entry we use
examples largely from the United States, where
major social networks such as Facebook and
Twitter first emerged. The focus will be on three
applications of SNS: the use in campaigns, the
use by and effects on voters during political
campaigns, and the use by citizens to effectuate
social and political change.

Social Networks and Political Campaigns
The role of social networks and use of media
for political information in political campaigns
has been an area of interest for many years. For
example, in a study of the 1940 US presidential
election, Lazarsfeld et al. (1994) set out to study
how and why voters made up their mind about
the candidate for whom to vote and the infor-
mation sources they used to do so. They found
that people in their social networks were more
influential sources of information than were the
media. They termed certain influential interper-
sonal sources as opinion leaders. These opinion
leaders were people who tended to obtain infor-
mation directly from the media and then shared it
with others in their interpersonal networks. This
social networking process was termed the “two-
step flow of communication.” These findings led
mass communication researchers to give greater
weight to social ties among people in the political
communication process.

In later years, researchers found that the flow
of communication within political and other
social systems was more complex than a simple
“two-step” flow. Later investigations expanded
on the complexity of the flow and diffusion of

news and political information and the role of
the media and interpersonal communication in
the diffusion of information and ideas. We have
come to understand the media are particularly
effective at getting information to people, but real
attitudinal and behavioral changes occur through
interpersonal and group influence. The advent of
SNS has provided new channels for effectuating
that interpersonal and social connection, thereby
functioning not only as a viable venue for attitude
and behavior influence but also as a place where
people can easily access information.

Other investigations have considered the role
of social networks in non-mediated settings.
These early explanations of the relationship
between membership in social networks and
political involvement include arguments that
the membership stimulates a collective interest
in politics (Schlozman et al. 1995), makes
people available to elites for mobilization
(Leighley 1996), and helps people learn skills
that make participation easier (Schlozman et al.
1995). More recently, scholars have found that
social networks are a rapid way to disseminate
innovative information and values in a society
(Gibson 2001).

One of the key tenets of these investigations
into social networks is that social interaction
exposes people to a different set of politically rel-
evant information and stimuli than they possess
individually. Since individual understanding, in-
formation, resources, and ability are inherently
limited, this means that social interaction pro-
vides people with other opportunities to accumu-
late resources, such as information, that lower the
barriers to political participation. Consequent-
ly, participation in social networks supplemen-
t (rather than supplant) the person’s resources
and abilities that make participation likely (Mc-
Clurg 2003). McClurg (2003) found that social
interaction has a twofold influence on likelihood
to participate in politics (i.e., vote). First, he
found that social interaction in these networks
exerts a positive and statistically precise effect
on participation, but only when it is politically
relevant. Second, this effect exists even after
controlling for membership in organized groups,
which indicated that formal and informal social
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interaction have theoretically distinct effects on
involvement. While we do have a rather thorough
understanding of non-mediated social networks,
we have yet to fully understand how online social
networks influence the voting public. So how
does the advent of the Internet and the different
structures inherent in it influence these social
networks?

Online Social Networks
The advent and growth of the Internet enhanced
the ability of people to maintain and expand
their social ties with others. For example, as
early as the 1980s, before the Internet was wide-
ly diffused, interactive communities emerged on
the Internet. Some, like the California city of
Santa Monica’s PEN project, were designed for
interactive exchange among citizens and between
citizens and city officials about issues including
political matters. Boyd and Ellison (2007) de-
fined social network sites (SNS) as

Web-based services that allow individuals to (1)
construct a public or semipublic profile within a
bounded system, (2) articulate a list of other users
with whom they share a connection, and (3) view
and traverse their list of connections and those
made by others within the system. The nature and
nomenclature of these connections may vary from
site to site (p. 211).

Not surprisingly, this definition covers a broad
array of various online sources (for a more
in-depth discussion of the different types of SNS,
see Boyd and Ellison 2007) including Facebook,
MySpace, LinkedIn, and even YouTube. In terms
of politics, these sites provide users with a variety
of different options. Individuals can form various
groups that support particular candidates or
issues, seek out political information, engage
in online discussions with others about issues or
candidates, blog about political issues, and even
share videos (Boyd 2008; Brown et al. 2007;
Xenos and Foot 2008).

Even prior to growth in popularity of SNS
such as YouTube and Facebook, social media
such as blogs had become important sources of
political information (Sweetser and Kaid 2008).
However, the effects of blogs and the Internet
generally have been debated. One major debate

has been whether people use online communities
such as those fostered by SNS to become ex-
posed to new ideas, change attitudes and beliefs,
or reinforce existing attitudes and beliefs (for a
more in-depth discussion, see Boyd 2008). The
answers to such questions probably are contin-
gent on how SNS are used. SNS can be used
by small groups of homogeneous people. They
also can be used for mass communication to
reach large groups of people. Regardless of how
they are used, SNS provide users the ability to
generate content, share content, and serve as a
portal to a variety of print and video sources.

Online social networks also have been shown
to have a consistent, prosocial impact on individ-
uals in terms of politics. For instance, Brown
et al. (2007) found that individuals who
participate in online social environments such
as SNS are likely to experience a sense of
understanding, connection, involvement, and
interaction with others who participate in these
environments. Also, individuals who belong
to online civic-political groups report higher
levels of civic participation, both online and
offline, as a result of that participation in online
civic-political groups (Kavanaugh et al. 2007).
While most individuals engage in dialogues
with homogenous others (Boyd 2008), these
interactions have been shown to increase civic
engagement (Xenos and Foot 2008). Xenos and
Foot (2008) suggested that the unique aspects
of online social networks allow individuals a
communicative, creative, and social freedom
to explore their position on a variety of
political issues that appeals to younger adults.
Therefore, SNS not only provide opportunities
for individuals to seek out information and
engage in meaningful conversations about
political issues, but these sites also appeal to
a younger population.

Social Networking Sites and Political
Activity
Previous researchers have shown that people who
use SNS for information about the candidates
or to discuss politics are more likely to engage
in civic and political activities online such as
signing petitions (Abroms and Lefebvre 2009)
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and donating money (Baumgartner and Morris
2010; Valenzuela et al. 2009). Moreover, the
current evidence suggests these online activities
can lead offline activities such as volunteering for
a candidate (Abroms and Lefebvre 2009), talking
with others about candidate preferences, and
voting (Valenzuela et al. 2009). For instance,
Valenzuela et al. (2009) found a positive
relationship between the intensity of SNS use
and students’ life satisfaction, social trust,
civic engagement, and political participation.
However, the contribution of SNS was relatively
small and this led the authors to suggest that
online social networks are not the most effective
solution for youth disengagement from civic duty
and democracy. They did suggest that partici-
pation in Facebook groups tended to increase
political participation more than participation
in other aspects of Facebook (e.g., blogging,
friending political candidates). Conversely,
other scholars have found that this relationship
is inconsistent at best (for a more in-depth
explanation see Baumgartner and Morris 2010).
It is important to note that while there is
evidence suggesting a link between using
SNS and political activity, there has yet to be
a study that tries to create a causal linkage
between SNS use and subsequent political
activity.

While the Internet and SNS can enhance par-
ticipation, whether greater political participation
is necessarily healthy for a democracy or for
political stability is debatable. For example, some
have argued that highly active population acting
through targeted social networks can be disrup-
tive to established order and can advance multi-
ple and sometimes conflicting political agendas
(Jowett and O’Donnell 2012). Internet and SNS
use can allow for greater fragmentation. There
also remains a digital divide. Some have argued
that the Internet and SNS can widen the gap
not just between those who have access or not
but also between those who are more politically
active and those who are less active, because the
former are the ones most likely to take advantage
of these technologies. However, it is important
to note that while SNS may have this effect, TV
remains, at least in the United States, the most

used medium for political information (Smith
2011). Thus, the potential of SNS for robust
public participation and dialogue still has not
supplanted the more traditional media structure,
though it has complemented it.

SNS Use and Attitudinal Effects
Scholars also have examined the relationship
between SNS use and its effects on a person’s
attitudes toward politics. For instance, Vitak
et al. (2011) found a positive relationship bet-
ween a person’s levels of political interest and
engagement in political activities on Facebook.

Valenzuela et al. (2009) found that SNS use
was positively related to higher levels of social
trust. Contrary to previous research that found
a positive relationship between traditional media
use and cynicism (for a more in-depth discussion
see Pinkleton and Austin 2001), Hanson et al.
(2011) found a negative relationship between a
person’s level of political cynicism and their use
of SNS. They suggested that these sites offered
their users the ability to interact with others,
thereby reducing people’s levels of cynicism.
Further, they proposed that these venues offered
their users the ability to interact with other like-
minded people to better understand politics and to
increase feeling of political self-efficacy. Howev-
er, without further investigation, it is impossible
to know if this is a sustainable relationship, an
artifact of a new technology, or a reaction to the
messages used by the candidates of this particular
election.

Once again, these links suggest a relationship
between SNS use and attitudinal outcomes. Due
to the relatively recent rise of SNS in political
campaigns, the causal linkage between SNS use
and its effects on attitudes has not yet been
examined sufficiently.

Social Networking Sites and Political and
Social Change
The ubiquitous nature of the Internet and the
growth of satellite communications and mobile
technologies such as cell phones have increased
connection among citizens and global commu-
nication. The role of the Internet in politics has
garnered a great deal of inquiry from scholars,
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the public, social movements, and popular press.
Its growth in use, when coupled with increasing
globalization, has highlighted the potential of the
Internet for political use (Jowett and O’Donnell
2012). Its potential for broadening participatory
democracy has long been lauded. At the same
time, some governments around the world have
taken great pains to limit citizen access to the
Internet in efforts to curb such broader political
participation and change and to curb its poten-
tial social and political impact. For example,
Myanmar shut down access to the Internet in
2007 to curb demonstrations. In China, YouTube,
Twitter, and Facebook have been blocked, and
China even shut down access to the Internet in
one region during the fight between Uighurs and
Han in 2009 (Jowett and O’Donnell 2011). The
search engine Google has had to acquiesce to
China’s demands to censor content in order to
operate there. China also has blocked content
from mobile phone text messaging.

Part of the appeal and political potential of the
Internet is due to the attributes of the medium
which include its interactivity, low cost, lack of
control by nations, and potential for anonymity.
The emergence of social media sites in the first
decade of the twenty-first century has expanded
the Internet’s political potential. The growth in
the types of mobile communication technologies
from which the Internet can be accessed such as
cell phones and iPads has expanded opportunities
even further.

In recent years this potential for political
action and participation via social media and
mobile technologies has been very visible in
their use for communication during uprisings
and protests around the globe. Social media such
as Facebook and Twitter and text messaging
via mobile phones have been used for political
protests and/or uprisings in Ukraine in 2004 and
Moldova in 2009 (Jowett and O’Donnell 2012).
Cell phone cameras and other mobile devices
have been used to upload images to social media
sites and effectively spread the images captured.
A well-recognized example occurred in 2009
when Iran cracked down on demonstrators after
Mahmoud Ahmadinejad was elected. In the
face of censorship of mainstream media, cell

phone cameras and text messages were used to
get pictures and descriptions of brutality and
violence of police in cracking down on those
who were marching in protest.

Mobile devices and social media were used at
an unprecedented level to both mobilize and get
images communicated around the world during
the “Arab Spring” revolutions that spread across
North Africa and the Middle East in 2011. In
fact, by 2011 there were more than 27 million
Facebook users in the Middle East (Al-Momani
2011). While a number of factors led to protest-
s and events that toppled several authoritarian
regimes and forced others to institute significant
political reforms, social media such as Facebook,
YouTube, and Twitter provided large numbers
of people a vehicle for communication before,
during, and after the protests and uprisings. To-
day a combination of mobile media (such as
mobile cameras and text messaging) and SNS
(such as Facebook and Twitter) is used to spread
political ideas and foster and advance social and
political movements and change. Therefore, it is
hard to argue that revolutions during Arab Spring
were social media-generated, when much of the
planning and orchestration occurred offline.

In addition to those who challenge mainstream
parties or those currently in power, SNS are
also used by mainstream parties and campaign-
s to advance their agendas. At times, political
candidates use SNS to go around mainstream
media channels to get information from and com-
municate directly with constituents, supporters,
or potential supporters (Jowett and O’Donnell
2012). Whereas traditional Internet sites provide
voters with an avenue for getting political in-
formation on candidates at their discretion, SNS
such as Twitter and Facebook give candidates
an opportunity to connect with voters in a way
much different than just setting up their own
websites to be found when voters want it. SNS
permit candidates to become part of voters’ social
networks and communicate their messages di-
rectly to them, making campaigns potentially
much more interactive (Gilmore 2011). Gilmore
(2011) suggested that such media may help dis-
advantaged groups and their candidates who are
less well established compete with those who
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are more entrenched and have significantly more
resources for campaigning.

Like candidates, citizens, and interest groups
are using social media in progressive movements
such as the environmental movement, United for
Change and Occupy Wall Street. In the United
States, the Tea Party movement and Tea Party
leaders have used SNS to encourage others to
join the movement as well as pressure politicians
on certain issues such as government spending
and taxation (Barrow 2012). These movements
use SNS to disseminate ideas amongst their
members, coordinate movements, and connect
with mainstream media outlets. However, when
broad-sweeping change does occur, it is usually
due to older methods such as marches, pressure
from constituents, mainstream media coverage,
and rallies. Previously those pushing for societal
change had to rely on print media such as
flyers, manifestos, and pamphlets. SNS have
provided new vibrant forms of mass, group, and
interpersonal communication to spread ideas
more quickly and efficiently. Clearly, SNS do
provide new forms of connection.

However, because there is little empirical
research on the uses and effects of SNS for
political communication specifically, we do not
really understand all of their positive and negative
effects at this time.

Conclusion
Newer social media, like media before them, are
tools for accessing and sharing information. They
have only been around for less than a decade,
but they are now part of the media landscape.
How they fit within that landscape, generally,
and their role in politics, specifically, is still
being explored. They are being used in social
and political movements and by candidates,
interest groups, campaigns, and advertisers to
reach potential voters. They can be used by
voters to satisfy their needs and desires for
political information and political entertainment
and to help them make up their minds
and engage in their own political activities.
Researchers are exploring these and other uses
and effects of social-mediated communication.

Nonetheless, more research is needed on
individual differences and desires of users and
the social and political contexts in which SNS
use occurs. Until more is known about such
use and effects, it is difficult to hypothesize or
generalize about the effects of SNS use and/or
the functions of different platforms for accessing
SNS sites.

Understandably, there is still little empirical
research demonstrating their effects on voter
turnout, candidates selected, and impact on
voters. That which does exist has tended to
focus on campaigns in more developed nations
where social media are widely used and diffused.
Many of these nations also have somewhat stable
democratic governments. More research has to
consider variables such as sociopolitical factors
that influence SNS use and effects; these include
the extent of a population’s access to SNS, the
power structure of the different countries in
which the SNS are used, the extent of government
control exerted, the homogeneity of the populace
using social media, the type of political activity,
and a host of other sociopolitical factors.

Future Directions

It has been argued that real activism requires
strong ties among people within a social
system/network. Groups who use social media
for real activism need large numbers of people
beyond their more intimate social networks
to muster the political will and numbers to
effectuate change. Gladwell (2010) argued that
SNS really build weak, not strong, ties and may
not foster long-term relationships necessary to
govern once change has occurred. However,
with so many candidates and political parties
focusing on these sites as venues for engaging
their constituents, it is important to understand if
SNS use is effective at sustaining these changes.

SNS and other Internet sites also can be
used by group to hide their true identities,
making it hard for those who access them to
make informed decisions about the credibility
of sources. This may make SNS potentially
strong tools for spreading misinformation and



S 1868 Social Networking in Political Campaigns

propaganda. Therefore, future scholars should
not only examine the effects of SNS use but also
examine the accuracy and truthfulness of the
information presented to SNS users.

SNS use may assist people in engaging in
more political activities (e.g., voting, protesting)
and becoming more polarized. However, as of
yet, it is impossible to determine if SNS are re-
sponsible for increased political activity and po-
larization or if people who are already politically
active and polarized use these sites to reinforce
such behavior and attitudes.

Future research also needs to explore the
extent of fragmentation in SNS. One of the key
aspects of SNS is that they can connect people
together in groups. However, in the process
of connecting with others in a group, people
also may disconnect from those not associated
with the group. Therefore, future scholars should
examine how this connection and disconnection
influences the public. Specifically, does this
connection lead to negative view of those not
associated with the group? Can it lead to greater
in-group bias and out-group derogation?

Perhaps one of the most negative effects of
SNS use is selective exposure. Specifically, when
a person strongly identifies with a particular po-
litical party or movement, and he or she acquires
most of his or her information through trusted
(and more likely like-minded) political channels,
does that have an impact of his or her own
perceptions of reality? In particular, is he or she
more likely to believe messages from politically
similar people or organizations (in-group mem-
bers) and disbelieve messages from political-
ly dissimilar people or organizations (out-group
members)?

Additionally, many of those who use SNS in
political campaigns may be more likely to be
politically active. However, what is unknown is
if this activity is inherently good for democracy.
Scholars should examine SNS use and determine
if these sites are good for democracy and lead to
productive change, if the use of these sites may
foster partisanship and polarization and other
unproductive changes, and/or if there is a mixture
of both productive and unproductive changes as a
result of using SNS.
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Definition

Soon after the rise of the Social Web on the In-
ternet, pervasiveness, in particular mobile access,
has been fostering the adaptation – and evolution
– of the entire telecom industry. In this essay we
illustrate how mobile devices, and consequently
telco networks, have been tremendously evolving
to support this trend through various approaches
from competition to cooperation, backed up by
examples of massive societal usage. We also re-
port the continuum flow of technical activities on-
going in that area currently moving to the concept
of federation of social networks, or interoperabil-
ity, through standardization efforts, specification
work from the industry and the Web community,
and the deployment of early solutions and open-
source projects.

Social Networks (SN) have introduced a new
paradigm of communication/content exchange
between users that have tremendously boosted
the telecom industry over the last years through
the massive adoption of smartphones and the
explosion of broadband and mobile Internet
accesses worldwide.

However, although widely used from mobile
devices (e.g., 50 % of monthly Facebook users),
SN services are not using mobile assets efficient-
ly. Together with the many over-the-top mobile
applications available nowadays, they are harm-
ing mobile network infrastructures due to heavy
signalling traffic.

The related ecosystem is growing fast, driv-
en mainly by the Web/enterprise industry, and
moving towards standardization and regulatory
institutions. Federation of Social Networks is the
future of the Social Web that is expected to
create brand-new business opportunities based on
interoperable communities of all kinds.

This evolution can also be seen as a concrete
potential opportunity for operators to leverage
(back) their customer base relying on the phone
number as a trusted user identity and on its
reputation to protect customer privacy and ensure
“data portability.” At large scale, the success of
such a service depends on the federation/peering
amongst operators, at least at national level, as for
the GSM service.

Introduction

While chat rooms (remember IRC) and instant
messaging were the first services that gave birth
to users and identities (although usually fake)
within the Internet, their real-time constraints
have been superseded by the advent of the current
popular social networks and their chronological
stream of activities. The epoch-making turn was
made when Facebook launched the news feed
in September 2006 (Marshall 2006) where user-
s could see what their friends were doing at
latest: : :

With a new (tele)communication paradigm
that would sweep away real-time communica-
tion patterns (although still used to some extent)
allowing people to keep in touch with friends
anytime anywhere, with no need for contempo-
raneity, the “always-on” reachability of the wall
de facto created a virtual representation of each
user.

Since then the “wall” has become for its own-
er a history of private/public activities giving
control of their outreach in an implicit manner:
with respect to traditional (telco) systems, target
audience is not defined one by one but grouped
together in a list or circle, which is resolved by
the central (dispatching) entity.

It appears clear that Social Networks have
been facilitating many-to-many communications
with respect to telco messaging systems (e.g.,
SMS). Besides, considering that posting a mes-
sage on a Social Network has little to no cost one
can understand why this mechanism allowed the
massive widespread of information at a world-
wide level. In some cases a single post can reach
millions of users able to interact with each other
up to the point of drastically impacting the so-
ciety, like for earthquake prevention or popular
revolutions. Such scenarios are later described in
this essay.

Key Points

The knowledge user relationships, together with
the real user identity, have become over the years
the most valuable artifacts of the Social Web and



Social Networking in the Telecom Industry 1871 S

S

has led to many battles between telcos and OTTs
on how to leverage, or obtain, this information.

Furthermore the operator’s assets such as
network-based user authentication and location
or mobile push mechanisms are key elements for
which applications, and more recently device
operating systems, have been designing and
implementing alternative solutions that in some
cases still are suboptimal and harm the operator’s
network infrastructures and the device battery
through heavy signalling, awaiting standards
more friendly to the telecom industry.

In parallel the explosion of walled-garden So-
cial Networks has fragmented, and in some cases
replicated, users and their relationships based
on their interests, unavoidably calling for inter-
operability (also called “federation”) of social
networks to avoid isolation (and the failure of
closed social network tentatives of telcos). This
same popular trend of vertical social networks
has created privacy concerns by users in trust-
ing their service providers, which may not have
proven tracking records and which has further led
to some self-regulation principles by regulation
authorities.

Historical Background

It is widely believed that communication can be
considered a primary need for human beings,
such as eating or sleeping, and that is proba-
bly why they keep searching for better ways to
(tele)communicate.

In the BeginningWas the SMS. . .
Even if social networking is quite a new concept,
telecommunications systems exploiting the same
principles have been used for years in many
different ways and contexts. The Short Message
Service (SMS), which was first used in 1993
(MobilePronto 2010), despite of its simplicity
can be considered the first forefather of (mo-
bile) social networks. Somehow SMS clearly
showed the need of a direct, short, effective, and
asynchronous way to communicate with friends,
which can be found in its closest relatives. The
SMS usage exploded also as a (near) real-time

service and incentivized the specification of the
MMS (Multimedia Messaging Service) standard,
introduced in 2002 (Mobile Phones Uk 2012)
to support multimedia content including photos
and animations, which never reached the same
success due to early interoperability problems on
devices and high costs for users.

In the meantime on the Web side, Internet
Relay Chat (IRC), allowing many users to ex-
change text in real time in a chat room, led
to instant messaging, thus making another step
towards Social Networks. Instant messaging re-
duced consistently the number of contacts and the
audience per single message, but increased their
quality and, most of all, introduced the concept of
a “presence” status, a virtual real-time “marker”
of our online availability in the instant messenger.

The Blogger’s Dream. . .
As the Internet grew (Internet World Stats 2012),
IM clients such as ICQ before and MSN and
Yahoo! Messenger later went extremely popular,
leading to a variety of specifications aimed at
standardizing and interconnecting those types of
systems.

Meanwhile, the Web community was experi-
menting different forms of communications. Bul-
letin boards became the best way of discussing
about very specific topics, while weblogs (later
called blogs) evolved from their initial idea of
“online diary” to something more related to opin-
ion and journalism, turning each blogger into a
potential Pulitzer winner. Besides the “illusion”
of blogs, some things became very clear: users
were becoming content “prosumers” initiating
the “Web 2.0” era, but their audience was smaller
than the one they imagined, maybe due to the
missing link with contacts, messaging, and audi-
ence/privacy control.

The Dawn of Social Networking. . .
Social Networking is the form of communication
fitting best this need: a profile, in which users can
put their content and show with whom they are in
contact.

The way to Facebook, by far the most
successful social network as of writing, was
started in 1997 by SixDegrees and passed through
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Friendster, Myspace, and Linkedin. The aces in
the hole for Facebook were probably the insertion
of the Facebook Wall, which somehow overtook
the concept of online “presence” with an always-
available “virtual presence” concept, together
with the “Facebook Platform,” opening the social
network to third-party applications.

Diverging Interests

When looking at what is happening between
telcos and over-the-top service providers (OTT),
one could consider it an “epic battle between
Ying and Yang.” On one side OTTs are dedicated
and structured to offer innovative services but
may not have proven track records in managing
personal information, while on the other side
telco operators control the network and its assets
and have a deep knowledge of their real users and
their relationships but lack of rapid processes as
their strategy is still focused on optimizing their
network.

OTT services are usually offered over an un-
trusted domain by recent lightweight start-ups
with very efficient and restricted process: users
get to know about the specific service offered by
that company, quickly subscribe, and start to use
it, but there is no certainty about the real user’s
identity. This may also explain why Facebook,
Google, and other OTT services are trying to get
more user data such as the actual full name of
their users or their phone number (Smith 2012).
Indeed the competition is not really centered
around the number of subscribers or active users
to a specific service, rather to the quality of these
users. Being able to profile users has become the
key success factor for service providers who often
request additional personal data and permissions
to perform social data mining on profile and
communication data. In a world in which online
services are free of charge, revenues come mainly
from advertising and their value increases the
more it fits with the profile the advertising target.

Furthermore, OTTs count much on network
capabilities that are not under their control. Usu-
ally their services benefit much of “always-on”
users and have further contributed to accelerate

the deployment (and subscription) of broadband
and mobile Internet devices and infrastructures
over the last decade (OMT 2012), also due to a
viral effect amongst users & their friends.

Instead telco operators know their users very
well: they get personal data when customers
subscribe their contracts and also know the most
active contacts of a user through voice or tex-
t communications, but usually have regulatory
restrictions to leverage this data for any oth-
er purpose. Additionally, telcos are traditionally
large companies (especially incumbent operators)
still getting their revenue mainly from the voice
service (Patuano 2012) and used to complex (thus
slower) processes to accommodate high avail-
ability of their network together with regulatory
compliance.

Which Solutions?

It appears clear that OTTs and telcos are n-
early pulling in opposite directions. OTTs often
perceive operators as “carriers”: from their per-
spective operators should offer high-quality data
connectivity to their customer and should not
compete with them on services, which is typically
what telcos want to avoid as the price of mobile
Internet connection is lowering (also due to reg-
ulatory agencies) and so are revenues; offering
high-quality, affordable services and exploiting
user phone number and identity are something
mobile operators perceive as an opportunity, a
way to escape from the dreaded “bit pipe” fate.

One possible solution could be taking this
competition to a higher level. Both OTT and
telcos seem to be aware of the importance of user
profiling (and of the related privacy issues), and
both know very well how a complete user profile
should largely exploit the user relationships. This
can explain the “raison d’être” of Facebook’s
social graph and be even more evident looking at
some used cases and applications: recently many
OTT applications helped by the device evolution
are trying to catch information from the user’s
address book. This is, for example, the case of
WhatsApp (2012) in which users are identified
by their phone number (requested at sign-up) and
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buddies are automatically discovered through the
address book. The WhatsApp intuition is to use
the address book as a social network: one is in
contact with many people in many different social
networks, but the people one really keeps in
contact with is probably a part of her/his address
book.

On the other side, telcos, who easily have
access to the user’s phone number, are trying to
exploit it socially although unsuccessfully. Many
operators have tried to build their own social
networks, e.g., Vodafone360, Orange Pikeo, and
Telefonica KeTeKe, but none of these became
truly popular, probably due to the absence of
integration with other social networks and from
the cold start problem of achieving critical mass.

The ace in the hole could be in making social
network a commodity and move the competition
from the mere “existence” of the social network
service to the quality of the provided service.

New Approaches to Social
Networking

Over the last years new approaches have emerged
from the telecom industry to position themselves
with respect to OTT. This is also related to the
tremendous evolution of smartphones and data
plans that fostered the wide adoption of social
networking on mobile. According to Microsoft,
in March 2011, 91 % of mobile Internet access
was to socialize, and over 1/3 of FB’s 600M
users used it from mobile (Microsoft 2011). In
June 2012, 57 % of Facebook’s 950M users were
mobile according to Facebook itself.

A first cooperative approach is in recognizing
SNs as the owners of the user identity, con-
tacts, and social interactions. This approach can
vary from a plain “proxying” (e.g., through ag-
gregation) to contractual partnership (sometimes
exclusive). The aggregation (or gateway) func-
tionality is nowadays a popular feature provided
by telco operators or embedded within device
operating systems themselves that do not have a
strong relationship with a specific SN, but rather
offer their own customers to connect to their
favorite SN.

Social Network Aggregation services are pop-
ular entry doors to the social activities of user-
s having multiple accounts over the Internet.
They acquire messages, status feeds, content,
and friends from various stand-alone SNs and
aggregate all information in one point (device
and/or server). Some specific – valuable – ap-
plications/features can cause users to migrate
from isolated Social Networks to an Aggregation
Site/Service. For example, some of them also
offer cross-posting capabilities to simultaneously
update all user accounts. This has become very
popular on smartphones as well where the most
popular Social Networks are integrated in operat-
ing systems such as iOS or Android to offer these
features as native capabilities to users. Some
tentatives have also emerged to design “social
smartphones” that are explicitly focused on SN
interactions (Inqmobile 2012). In some cases a
business alliance is established with a specific
SN to facilitate access from mobile devices (such
as KDDI with GREE) in Japan (Fujimura 2011),
although such a tighten relationship could even-
tually lead to fragmentation in “isolating” those
mobile users from their friends on other operators
that partnered to an alternative SN. This can
become particularly risky in case of homegrown
SN that is more popular within a single country
than global players such as Facebook or Twitter.

Yet in other cases telcos have adopted even
stronger strategies, by buying an existing SN
to internalize know-how. This happened with
Spain’s Telefonica buying the national Tuenti
in 2010 (Butcher 2010) to target “local” mo-
bile SN services for youngsters (where telco
can help) and leverage an already-popular and
well-established SN (contrary to other tentatives
of building one from scratch) to grow further.
This challenging approach aims at growing and
merging the SN user base with the telco customer
base (potentially also abroad) while closing it de
facto to “external” users and creating isolation.

Interestingly some telcos have realized the
need to evolve these approaches of providing
their own SN and open to noncustomers. Do-
CoMo in Japan has open its community service
to other Japanese operators (Akimoto 2010), and
more recently Telefonica announced the global
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availability of Tuenti (Lunden 2012). These s-
trategies are clearly tentatives to keep the com-
munity alive and overcome the isolation creat-
ed by the customer-only approach at the time
where mobile users, further assisted by number
portability, are attracted by many offers to keep
switching operators. While the validity of this
approach still remains to be assessed as regards
the long term, it clearly calls for interoperability
and walled gardens end.

Indeed alternative paths have been studied
over the last years for a long-term solution
beyond establishing or partnering with walled-
garden SNs. Such paths aim at defining standard
specifications for the popular service that has
now become SNs. Indeed in the meantime, SNs
evolved from a niche youngsters playground
to a must-have service for the telco industry
now nearly to a commodity and a new global
societal way of communicating and exchanging
content. The telco standard community through
the GSMA association has for several years
been defining the RCS (Rich Communication
Suite) specifications (RCS 2012) based on the
SIP-based IMS infrastructure that focuses on
real-time communications such as chat, file, &
video sharing with other RCS-enabled users.
Recently RCS was universally branded “Joyn”
(Joynus 2012) and is being deployed and offered
commercially by some telcos in Germany and
Spain mainly. In this context, collaboration and
the simultaneous launch of the interoperable
service by multiple operators within the same
country is essential for its success, following
the lessons learned by the GSM cellular
communication standard (in the positive sense)
and the failure of stand-alone attempts of SNs.

In parallel, the Web community has also been
moving towards standardization: while the telco
industry could leverage its standardization and in-
teroperability experience in communication ser-
vices, the Web industry has been inventing the SN
paradigm and improving it through various ini-
tiatives. This naturally led some large companies
in the field as well as self-initiated initiatives to
start building a “Federated Social Web” based on
well-known Web technologies where the telecom
industry is already active. This approach however

is targeting the “wall-based” asynchronous & im-
plicit communication paradigm, which is slightly
different – and actually complementary – to the
RCS-based communication scenarios. Eventually
both these worlds will merge and some telco stan-
dardization initiatives already have been working
in that sense (e.g., OMA Social Network Web).
By participating in the standardization activities,
the telco industry, manufacturers & telcos, can
also improve the architecture and protocols to be
optimized for networks and over-the-air commu-
nications by leveraging well-known assets.

TheWay to Standardization (and
Regulation)

Why?
While the Web is becoming increasingly social,
social networking itself is heavily fragmented
due to the multitude of disparate services, imple-
menting a “walled-garden” approach as reported
above. This limits interaction & sharing between
users belonging to different Social Networks (S-
N).

Furthermore privacy problems arise as global
SN providers reside in different countries than
their users and, besides legal implications, may
not have proven track records in managing per-
sonal information. Users are requesting to have
more control on sharing their own data or for the
“right to be forgotten.”

Besides consumers, businesses rely on popular
SN (e.g., Facebook, Twitter) to promote them-
selves through a Social Media strategy, in the for-
m of pages, advertising, and other initiatives. This
ensures popularity but provides limited control
over the community itself, to customize, manage,
or animate it, or to get statistics, besides moving
users away from the enterprise’s official website.

Alternatively, creating their own user commu-
nity as a stand-alone website typically results
in being isolated from those SNs and remains a
niche with little profit expectations.

Such enterprises, but also public admin-
istrations, are demanding for self-managed
communities that can maximize brand awareness
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and allow users to join while still be connected to
their friends and other SNs.

Federation (or interoperability) is a proven
solution for this type of issues and also a natural
evolution of popular societal trends set by a few
stand-alone competing initiatives that eventually
need to collaborate. In the recent Internet history,
the email communication system is a track record
of such an evolution from proprietary systems
(RFC808) to global standards (POP, IMAP, &
SMTP to cite a few).

But interoperability is also a native concept
within telecom industry (operators are intercon-
nected for telco services, including IP-based, e.g.,
MMS, with well-defined procedures for global
routing of phone numbers including ENUM).

The Evolution of the Social Web
Ecosystem
Between 2008 and 2010 many initiatives within
the Social Web have been dedicated to aggre-
gation as a way to limit market fragmentation:
FriendFeed. Such an approach is now showing
strong limitations.

Starting 2010 this community promoted SN
interoperability (or federation), similarly to email
systems, to overcome silos and provide users
back in control of their own identity & personal
information. Some commercial platforms (e.g.,
Ning) allow users to “easily” set up their own SN
in a hosted environment.

More recently, various initiatives ranging
from stand-alone projects (Diaspora, Vodafone
OneSocialWeb) to community based (OStatus,
OpenSocial) or even commercial platforms
(SocialEngine) now provide solutions to self-
create & host one’s own SN.

The Benefits of Interoperability
It is reasonably foreseeable that Federated Social
Networks are the future of the Social Web. In
this context users can communicate with each
other across domains through global identifiers
(whose syntax is similar to email addresses)
without the need for replicating accounts. User
data portability becomes easier so that users
can choose their favorite social network and
migrate. From a systemic perspective, such

a distributed approach also provides major
scaling & robustness of the overall Social
Web avoiding single points of failure. For the
telecom industry, such interoperability is also
a benefit, besides an opportunity. For telcos it
allows to leverage their existing customer base to
offer SN communication paradigm, letting their
subscribers interact with friends across different
SN/operators similarly as with calls/SMS. By
being involved in the definition of such specifica-
tions, it also allows to leverage mobile assets and
ensure network optimization. For example, it can
enable users to reuse their phone number as social
identity or for authentication, which is seamlessly
recognized and asserted by the operator’s
network. Furthermore by standardizing the core
interaction features of the social networking
communication paradigm, the migration across
platforms provided by vendors should become
seamless and further allow telcos to differentiate
by providing specific rich features (e.g., games)
beyond the “basic” interoperability. On the
other hand device manufacturers can provide
smartphones that can seamlessly connect to any
social networking service irrespective of their
provider, thus allowing users to easily switch
devices & SNs.

The Current Standardization Landscape
As anticipated above, the Web community has the
leading expertise on the SN world driving most of
the specification work.

In particular, large enterprise software players
such as IBM are leading the OpenSocial specifi-
cation work and its reference open-source imple-
mentation work (Apache Shindig project), mostly
targeting enterprise social containers. Similarly,
Google (who initiated the OpenSocial work),
Facebook, and others are either coauthors or early
adopters of some specifications related to social
data models or federation protocols.

In parallel, most of the biggest Web play-
ers are involved in the related standardization
bodies or industry fora such as W3C, IETF,
and the OpenSocial Foundation. While the latter
has long-term expertise in designing client-server
specifications for Social Networking, the IETF is
currently focused on refining discovery protocols
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and social network global identity. Within W3C
several Community Groups were activated in
2012 that act as large discussion forums mainly
targeting the “federation” aspects, anticipated in
2005 by the Social Web incubator group that
started to investigate privacy concerns and a dis-
tributed approach (SW 2005).

Regarding federation specifically in 2010, OS-
tatus created a Web-based specification targeted
to interconnection of social networks by combin-
ing together several other draft specifications re-
lated to protocols and data models for exchanging
social information. This created a de facto early
reference for initial implementations from the
open-source community and for the upcoming
standards.

In the telecom standardization landscape,
“Mobile Social Networking” (SNEW 2011)
is viewed as a bridge between the SN Web
community and the mobile world. OMA has been
recently working at a specification called SNeW
(Social Network Web) that targets this bridge
with an end-to-end vision from the customer
perspective.

Indeed current “mobile” version of SNs suf-
fers from lack of mobile specificities on various
aspects: frequent usage of polling instead of push
notifications, no reuse of mobile identity/authen-
tication, poor user experience in case of loss of
connectivity or roaming (differed delivery not
possible), and no integration with SMS/MMS or
other traditional communication mechanisms.

In addition, most of the current open specifica-
tions are not addressing an end-to-end approach:
OpenSocial or OStatus are in fact focused only on
a specific type of interactions (respectively client-
server and server-server) with a lack of consider-
ation for interworking of such specifications.

Towards Regulation
As described above, standardization initiatives,
and the Web industry, are focusing on solution-
s (protocols, data models, & architectures) for
social network interoperability. In this context,
increasing care is given to tackle data privacy
issues from a technical perspective, in particular
with respect to discovery, sharing, and deletion of
users’ data.

Over the past years, various legal cases have
been targeting SNs on leaks and breaches in
managing user’s data privacy, typically under the
jurisdiction of the SN’s home country that may
bypass institutions or even violate local laws of
their users.

Since 2008 the European Commission has
been working with SN providers on a concept
of self-regulation to overcome the duration of a
European legislation process in that field. The
basic idea is for SNs to self-declare their com-
pliance with “safe principles” that target young
people protection. Most of the current popular
(and mostly non-EU) SNs have provided such a
declaration, further explaining how they imple-
mented it (EU-selfreg 2011). Such declarations
have been assessed periodically (latest in 2011)
by the European Commission through an inde-
pendent assessment on nine social networking
sites (EU-report 2012).

In January 2012, Viviane Reding, Vice-
President of the European Commission, EU
Justice Commissioner, has further announced
her/his commitment to give back users the control
over their personal data (EU-dataprotection
2012):

You will have an effective “right to be forgotten”
so that you can remove your personal information
from any site if you so wish;
Web operators must provide ‘privacy by default’.
The default settings for all services should be the
most privacy-friendly;
You will have the right to know how your personal
data will be used and where your consent is re-
quired, you must give it explicitly;
You will be able to move your personal data from
one service provider to another more easily (“data
portability”);
Organizations processing your personal data must
inform you as soon as possible if your data has
been compromised;
Your personal data will enjoy the same level of
protection if it is transferred outside the EU as
applies within the EU - vital in this age of instant
global data flows.

Although not yet effective, this statement is
clearly attempting to relaunch the debate in over-
coming the current limitations of the privacy
laws in place in most countries regarding digital
identity & related data privacy.
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Key Applications

The Potential of Mobile Social
Networking
It is a fact that SNs are more and more influ-
encing our daily life as they are powerful and
independent sources of information, so powerful
to be used for earthquake prevention, and so inde-
pendent to help in spreading news and organizing
protests during the Arab spring.

Surveys (Huang 2011) showed that nearly 9
in 10 Egyptian and Tunisian used Facebook and
Twitter to organize protests and get news. In
such a context, rapidly evolving and changing
in which the main media were under control
by the government, SNs got a key role, due to
their speed and independence. It has been shown
(Stepanova 2011; Ellis 2011) that the Twitter
updates were faster than the media updates (and
widespread because of low flat costs for mobile
Internet, starting $8 in Egypt).

Twitter’s speed is being exploited also by an-
other application, aiming at reducing the number
of victims caused by earthquakes. It has been
seen (Sakaki et al. 2012) that it is possible to use
Twitter to detect target events such as earthquakes
by using each Twitter user as a sensor revealing
data in real time. Such an earthquake reporting
system has been really developed in Japan where
the earthquakes are more frequent.

Social Network Analysis of Telecom Data
The idea to consider social network services as a
field of convergence for services has been already
taken into account by many players. A proposal
is to identify social networks over the Telco
Networks (Galindo 2008). Each communication
media can be the starting point for a network
of people, and discovering and exploiting this
information can be a valuable opportunity for
telco operators.

Social Network discovery can be performed
by analyzing user’s call and SMS history (Tomar
2010) in order to understand which people in
our address book users are more in touch with.
The basic idea standing behind this approach
is to discover the social graph underneath the
network and exploit this to empower the provided
services.

Future Directions

Nearly related to the concept of FSW stands the
idea of Personal Social Networks (PSN): once a
technology is able to offer users interconnected
social networks, there is theoretically no con-
straint on the dimension of the social network.

The idea standing behind PSN is to have
a trusted environment for user’s data. The us-
er publishes his/her data on the personal social
network, and the federation becomes a way to
share data with users belonging to different SNs
(personal or not). The advantage is that users
can publish their data on a system, which is
under their direct control and thus are free to turn
off at any time, a technology that could com-
ply to the EU Directives about digital oblivion
and data portability. Besides the directives about
privacy already mentioned earlier in this essay,
the European Commission has shown growing
interests about this topic which is standing be-
hind projects such as di.me (Di.me consortium
2010), related to personal services, and Soci-
eties (ICT-Societies.eu), related to community
smartspaces.

In particular, di.me also relates to semantics,
a popular research topic beyond social networks,
where a precursor can be seen in SMOB
(Passant 2008) as early semantic microblogging
tool. The basic idea is to have any social
information semantically described in a machine
understandable language (such as RDF). This
gives the possibility to augment content with
external content (e.g., provided by Linked Open
Data) and thus to provide users the content
they are really searching for through enriched
semantic queries (Rodriguez 2012).
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Glossary

Collective Intelligence Shared or group
intelligence that emerges from the collabo-
ration, collective efforts, and competition of
many individuals and appears in consensus
decision making (http://en.wikipedia.org/
wiki/Collective_intelligence).

Crowdsourcing The practice of obtaining
needed services, ideas, or content by soliciting
contributions from a large group of people,
and especially from an online community,
rather than from traditional employees or
suppliers (http://www.merriam-webster.com/
dictionary/crowdsourcing).

Human Flesh Search, HFS Is the phenomenon
of distributed researching using Internet media
such as blogs, forums, microblog, etc. (Zhang
et al. 2012).

Microblog A broadcast medium that exists in the
form of blog, with content that has a typically
smaller size.

Social Computing, Computational Social
Science Computational facilitation of social
studies and human social dynamics, as well
as the design and use of information and
communication technology technologies that
consider social context (Wang et al. 2007).
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Social Media The forms of Web interactions
among people through which Web users cre-
ate, and share information, personal messages,
ideas, etc. in virtual communities and SNS.

Social Networking Sites, SNS A platform for
Web users to build and maintain social net-
works and share interests, activities, and/or
real-life connections.

Web 2.0 The websites that use advanced tech-
nology beyond the static pages to enhance the
social networking applications.

Web Science The socio-technical science of
understanding the complex, cross-disciplinary
dynamics driving development on the Web
(http://tw.rpi.edu/web/concept/WebScience).

Introduction

The rising popularity and use of social comput-
ing technologies has not only connected people
in new and interesting ways but has also gen-
erated vast amounts of data on human crowd
behavior. This is allowing researchers to view and
study crowds and communities at a scale never
before possible. The growth of social network-
ing sites (SNSs) has dramatically changed the
way people communicate, collaborate, and main-
tain their social connections. Social networking
on the Web has also enabled the emergence of
crowdsourcing and collective intelligence sites,
allowing for new economies and workflows to
develop. In the past decade, SNSs have played an
important role in current movements all around
the world. This article reviews the history of
social network sites on the Web and summarizes
research on SNSs. This article also includes a
review of Chinese SNSs, which has not been fully
taken into consideration previously because of
the isolation of SNSs in the Chinese Mainland.

Social Networking on theWorld
WideWeb

Global SNSs at a Glance
Social networking sites have become predomi-
nant in the age of the World Wide Web. The burst

of social networking sites (SNSs) has dramati-
cally changed the way people communicate, col-
laborate, and maintain their social connections.
SNSs provide platforms and interfaces that en-
able people to follow and communicate with their
friends, families, and other social connections.
The sizes of SNSs have been growing rapidly.
Boyd and Ellison reviewed SNSs in 2006 and
defined SNS as “web-based services that allow
individuals to (1) construct a public or semi-
public profile within a bounded system, (2) artic-
ulate a list of other users with whom they share
a connection, and (3) view and traverse their list
of connections and those made by others within
the system” (boyd and Ellison 2007). We feel
this definition is still appropriate to describe the
phenomena and covers newer SNSs (especially
microblogging sites like Twitter). Figure 1 and
Table 1 show the top ten largest SNSs according
to the number of registered users (date of count
and resources listed in Table 1). In Table 1,
we use “SNS” to refer to traditional SNSs as
defined in boyd and Ellison (2007) and use “mi-
croblog SNS” to annotate Twitter and other e-
quivalent services. Figure 2 is from the June 2013
edition of the World Map of Social Networks
as reported in the Vincos Blog (http://vincos.it/
world-map-of-social-networks/). It shows a map
of the most popular social networking sites by
country, according to Alexa traffic data (http://
www.alexa.com/).

As shown in Figs. 1 and 2, and Table 1,
Facebook is the largest SNS in the world, with
over a billion registered users. Following, Twitter
is the third largest SNS and the largest microblog
site, with over 500 million registered users. These
two US-originated SNSs are dominating the
social networking services all over the world,
except in a small number of countries, which
either have very strong SNSs of their own or have
limits to the access of Facebook and Twitter.

Chinese SNSs
In this article, we use China to refer Chinese
Mainland, which does not include Taiwan, and
China’s Special Administrative Regions of Hong
Kong and Macau. The censorship of Internet in

http://tw.rpi.edu/web/concept/WebScience
http://vincos.it/world-map-of-social-networks/
http://vincos.it/world-map-of-social-networks/
http://www.alexa.com/
http://www.alexa.com/
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Social Networking on theWorldWideWeb, Fig. 1 Ten largest SNSs (with launched year) according to the number
of registered users, as in late 2012 to early 2013. Color represents the origin. Blue, USA; green:, China; red, Russia

Chinese Mainland is stricter. As of July 2013,
the number of Internet users in China is nearly
600 million, which consist over one fifth of the
global Internet users (CNNIC 2013; ITU 2013).
Among them, 78.5 % primarily use mobile phone
to surf the Internet (CNNIC 2013). The very large
number of Chinese Internet users has enabled
the birth of many SNS giants in China (five
of the top ten largest SNSs in the world). As
the access to several SNSs (including Facebook
and Twitter) has been limited in China (most
require use of a virtual private network to visit)
since 2009 (Facebook was also blocked for a
small time period several times before 2009),
the Chinese SNSs do not directly compete with
American SNSs. It is worth noting that the re-
striction to visit oversea SNSs is not the only
reason for the growth of Chinese SNS giants.
The biggest SNS in China, QZone, was founded
in 2005, just after Facebook was born. In fac-
t, a lot of foreign Internet services (like ICQ,
the first Internet-wide instant messaging service
in the late 1990s) were defeated by their Chi-
nese equivalents (which were usually improved
and optimized for Chinese users) due to a vari-
ety of reasons (which will be discussed later in

this paper). In addition, Chinese Internet users
use online forums extensively. There are also
some novel and unique Chinese SNSs which
have no equivalents to any foreign services (like
douban.com, launched in 2005). The more inher-
ent cultural factors of this phenomenon are yet to
be analyzed.

The History of SNSs
As there is a comprehensive review of SNSs
prior to 2006 (boyd and Ellison 2007), we briefly
summarize the history of SNSs before 2006 and
then concentrate on a more recent activity.

Before 2000 (Early Days)
Launched in 1997, SixDegrees.com is usually
cited as the first recognizable SNS. It contains
the basic functions of SNS, including listing
friends and maintaining personal profiles. There
were millions of users in SixDegrees in the late
1990s, before it was closed in 2000. The founder
of SixDegrees thought that, at that time, Internet
users did not have many friends online and people
usually did not want to meet strangers (boyd
and Ellison 2007). The next important SNS
is LiveJournal, which was launched in 1999.

douban.com
SixDegrees.com
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Social Networking on theWorldWideWeb, Table 1 Ten largest SNSs

Name

Registered
users (in
million)

Time
counted

Year
launched

Original
country Type Source

Facebook 1150 Mar 2013 2004 USA SNS http://investor.fb.com/
releasedetail.cfm?Rel
easeID=761090

QZone 610 May 2013 2005 China SNS http://www.tencent.
com/en-us/content/
at2013/attachments/
20130515.pdf

Twitter 500 Mar 2013 2006 USA Microblog
SNS

http://www.
telegraph.co.uk/
technology/twitter/
9945505/Twitter-in-
numbers.html

Google+ 500 May 2013 2011 USA SNS http://googleblog.
blogspot.com/2012/
12/google-
communities-and-
photos.html

Sina Weibo 500 Dec 2012 2009 China Microblog
SNS

http://news.xinhuanet.
com/tech/2013-02/21/
c_124369171.htm

Tencent Weibo 400 Dec 2012 2010 China Microblog
SNS

http://www.techweb.
com.cn/internet/2012-
04-24/1183131.shtml

NetEase Weibo 260 Oct 2012 2010 China Microblog
SNS

http://tech.163.com/
12/1018/18/8E49Q121
000915BF.html

LinkedIn 238 May 2013 2003 USA SNS http://press.linkedin.
com/about

Vkontakte 220 Aug 2013 2006 Russia SNS http://vk.com/catalog.
php

Renren 160 Aug 2012 2005 China SNS http://life.renren.com/

Around the same time, SNSs also emerged in
Asia, for example, Cyworld in South Korea
(launched in 1999, with SNS features added
in 2001) and Tencent QQ, which was launched
in 1999 as a Chinese equivalent of ICQ, and
added SNS-type features known as QZone in
2005. Due to Tencent dominating the instant
messaging field in China (about 800 million
active accounts), QZone, the SNS service for QQ
users, has been one of the biggest SNSs in the
world since its birth in 2005 (QZone was once
the largest SNS before Facebook bypassed it)
(boyd and Ellison 2007). QZone has integrated a
lot of features, first as a blog site, and then music

and photo sharing, and even some microblog-
similar features before microblogging became
popular in China. However, these features did
not bring overwhelming success for QZone in
either SNS or blogging, despite the very large
number of users. Tencent even produced separate
SNS (Tencent Pengyou) and microblog (Tencent
Weibo) services to compete with other Chinese
SNSs. Many of these services failed, but some
eventually became popular. For example, Tencent
Weibo, a microblog service, is now #6 largest
SNS in terms of the number of registered users.
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Social Networking on the World Wide Web, Fig. 2
The most popular SNSs by country, according to Alex-
a traffic data (from June 2013 edition of the World

Map of Social Networks; http://vincos.it/world-map-of-
socialnetworks/; accessed September 5, 2013)

2001–2004 (Burst of SNSs)
Ryze.com was launched in 2001 as a business-
driven SNS. Following Ryze, Friendster was
launched in 2002 as a social networking
complement to Ryze, aiming to help build friend-
of-friend connections. Friendster was the top
SNS until 2004, when it was overtaken by
MySpace. Friendster found a second home in
Asia, as a social gaming site, with over 90 %
traffic coming from Asia. After the success
of Friendster, a large number of SNSs were
launched. Among them, LinkedIn, an SNS for
professional connections and networks, became
one of the most successful and largest SNSs. At
the same time, media-sharing sites like YouTube
and Flickr started to incorporate more SNS-
type features. MySpace was launched in 2003
and because of a variety of both technical and
societal difficulties Friendster was facing (one
of the major difficulty was with the ill-equipped
databases), many Friendster users migrated to
MySpace and other SNSs (boyd and Ellison
2007). MySpace employed the (musical) bands-
and-fans dynamic to attract both bands and

fans to join in and communicate. This strategy
fostered marketing in SNS. Several years later,
a similar and more well-designed strategy was
successfully adopted by Sina to promote their
microblog service in China, Sina Weibo (will
be discussed later). MySpace also allowed users
to add and modify HTML elements into their
profiles to generate more personalized MySpace
pages. In 2004, there were more and younger
Internet users joining MySpace. They joined
MySpace mainly because they would like to
connect with their favorite bands. The “word-of-
mouth” effect quickly spread in the teens’ world,
and MySpace grew very fast during this period.
During this time period, IT giant Microsoft also
released their SNS service in 2004, MSN Spaces,
which became very popular outside the USA
(e.g., China). However, MSN Spaces closed
in 2011.

Since 2004 (Facebook and Its Equivalents)
In early 2004, Facebook was launched as an SNS
only for Harvard students. It opened to other
college students and then high school students

http://vincos.it/world-map-of-socialnetworks/
http://vincos.it/world-map-of-socialnetworks/
Ryze.com
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and corporate networks in 2005. Eventually,
Facebook moved to an open signup (to users
older than 13) in 2006. The social ties in
Facebook are mutual. Users have their profile
pages and news feeds for their home pages to
highlight the updates of users’ activities. Each
user has a “wall,” which summarizes updates
of his or her friends. Facebook also added the
“like” feature so that users can express that
they like others’ content. Facebook also has
messaging functions, and the mobile app of
Facebook enables users to communicate with
their Facebook friends without having to sit
in front of a computer. The major difference
between Facebook and MySpace is that Facebook
requires users to give their true identity (at least
before the open signup). In addition, Facebook
allows developers to produce “applications”
and “games” for Facebook to allow users to
personalize their pages and have more fun
with their friends. Facebook also revealed its
“Facebook Platform” (with “Graph API” as a
core) in May 2007 to allow developers to read
and edit the data of Facebook, especially the
social graph. Facebook overtook MySpace in
April 2008 and eventually became the largest
SNS worldwide. It is also the most popular SNS
in English-speaking countries. Facebook had 500
million users in July 2010 and quickly doubled
it to 1 billion users in October 2012. Today,
Facebook is not only an SNS for many people.
It is an integrated social platform for almost
everyone in many countries around the world
(see Fig. 2).

Because Facebook requires users to use their
real names, privacy has been a big concern. In
November 2007, Facebook implemented its ad-
vertising system, Beacon. It used the data of
Facebook users and advertised to friends of users
using the history of purchases they made, causing
a backlash of criticism. It was shut down in
a month. In 2009, Facebook enabled users to
choose which parts of their profile can be viewed
by everyone, though the name and profile photo
are always accessible to public.

Facebook is not only the largest SNS in Amer-
ica but also the largest SNS in Europe. However,
Facebook is not dominant in Russian-speaking

countries. VKontakte (VK) was launched in Rus-
sia in 2006. It was first only for college students
and then opened to public. It quickly grew and
became the second largest SNS in Europe.

In 2011, Google launched its SNS, Google+,
after the failure of Google Buzz. Google+ has
been described as a combination of Facebook
and Twitter, with an aim to attract users from
both sites. Google+ has its unique “circles” for
users to organize their friendship information.
“Circle” enables Google+ to have “social layers”
and enhanced a major property that Facebook
and Twitter lacked, making users’ updates and
messages visible to only a subgroup of their
contacts, instead of pushing their information
to everyone connected to them (Facebook and
Twitter have since added their own variants of
this capability). Google+ reached 500 million
users in May 2013, making it the fourth largest
SNS worldwide. However, there are many re-
ports saying that Google+ is a “ghost town,”
with a large number of registered users but few
activities (Gonzalez et al. 2013). Gonzalez et al.
conducted a comprehensive empirical study of
Google+, looking at its topological properties and
evolution patterns. They found that the stable
connectivity features of Google+ network were
very similar to Twitter and different from Face-
book, indicating that the use of Google+ was
more like the messaging propagation in Twitter,
rather than pairwise relations in Facebook. They
also found that the user is not actively engaged in
Google+ network, as compared with Twitter and
Facebook (Gonzalez et al. 2013). More research
on Google+ has focused on the privacy issue,
taking a closer look at its “circle” function.

During the same time period, Renren (for-
merly known as Xiaonei, literally “on-campus
network”) was launched in China in 2005. It
is widely known as the Chinese equivalent of
Facebook. Similar to Facebook and VKontakte,
Xiaonei was first only open to college students.
In August 2009, Xiaonei was renamed to Ren-
ren (literally “everyone’s network”), in order to
expand its user size. Renren has been competing
with Kaixin001 since the latter was launched
in 2008. Kaixin001 first aimed at “white col-
lars” (educated people performing professional,
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managerial, or administrative work in office) and
then changed their strategy to compete with Ren-
ren for all users. Both SNSs have their own user
groups. They have been losing active users since
the birth of Sina Weibo, a microblog service. As
it now stands, Sina Weibo and other microblog
services are losing their active users (CNNIC
2013), with the emergency of WeChat (we will
discuss Chinese SNS later in this paper in more
detail).

The burst of SNSs has also attracted the
attention of researchers. The rich data generated
by SNSs provided ideal test-beds for research.
In 2007, Wang et al. revisited the term “social
computing” and gave a new definition to refer
the research on both the design of social software
(which was coined as “social computing” in
1994 by Doug Schuler) (Schuler 1994) and the
study of social systems using computational
science methodologies (Wang et al. 2007). In
2009, another similar term “computational social
science” appeared in Science Magazine (Lazer
et al. 2009). Computational social science refers
to the second part of social computing, and both
terms became popular and widely used among
researchers studying SNSs.

Besides fostering the birth of social computing
and computational social science, the bursts of
SNSs also facilitated the growth of several other
domains, including young fields like network sci-
ence (Barabási 2013) and Web science (Shadbolt
et al. 2013) and mature fields like data mining
(Han et al. 2006), machine learning (Bishop and
Nasrabadi 2006), and natural language process-
ing (Manning and Schütze 1999). In particular,
the study of various social networks formed by
SNSs has been one of the most active research
topics following pioneering work defining prop-
erties such as scale-free and small world net-
works (Barabási 2013). This research on SNSs
expanded earlier small-scale (tens or hundreds
of nodes and edges) survey-based social network
analysis to very large scale, usually from thou-
sands to millions of nodes and edges. The nodes
in these social networks were typically a unique
user ID in SNS, and the edges between nodes
represented different types of social connection-
s/interactions, including directed or undirected

friendship, message exchange, and comment and
reply, which normally indicate the social struc-
ture and the information propagation in SNS.
During the past decade, researchers have studied
almost every popular SNS, including the blo-
gosphere, Facebook, Google+, Renren, various
media-sharing SNSs, and Q&A SNSs (please re-
fer to Recommended Reading section for typical
publications of these SNSs). The social network
analysis (SNA) studies revealed many interest-
ing aspects of the social systems and dynamics
of SNSs. We summarize a few typical research
results. (We summarize the results briefly below.
For more details, please refer to Recommended
Reading section for source publications of the
results).
• In most SNSs, people found that a small por-

tion of the users were controlling the com-
munications and information spread in SNSs,
and people are easily connected with each
other via “travelling” through those key users,
known as hubs.

• Users were clustered around different topics,
and in certain events (like political elections
and revolutions), users were polarized into
two or more big clusters, with few interactions
in between.

• Researchers also conducted temporal and spa-
tial analysis on the conversations in SNSs.

• There are many successful algorithms being
developed to discover the subcommunities in
SNSs based on social networks.

• In addition, topic models and other proba-
bilistic models have been employed to further
explore the implicit subcommunities.

• Furthermore, the privacy and trust issues in
SNSs have also been studied.

• Researchers have conducted empirical stud-
ies of the use of SNSs in social movements
and performed experiments of using SNS for
social mobilization.

• For behavioral and social science researcher-
s, various theories in social network can be
validated with the “big data.” Among them,
balance theory (“the enemy of my enemy is
my friend”) was one of the most intuitive and
early studied theories, and it was found to hold
in most SNSs.
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• The strength of weak ties and the relevant
structural holes theory have also been validat-
ed in SNSs, showing that users in the broker
position of social networks formed by SNS
have the advantage to be more innovative and
productive because they have access to various
fresh ideas.
For details and a more comprehensive review

of state-of-the-art research on SNSs, please refer
to other chapters of the Encyclopedia of Social
Network Analysis and Mining.

Since 2006 (Twitter and Its Equivalents)
The birth of Twitter in 2006 changed the
cyberspace again. Twitter created a new form
of SNS named a microblog, in which users post
short messages (up to 140 characters) via the
Web, smartphone apps, email, mobile phones,
and instant messages. Different from other SNSs,
the relationship in Twitter is not reciprocal,
meaning that a user can follow other users, and a
user can be followed by others without following
them. The followers of a user in Twitter can view
the messages (named as “Tweets”) from the user.
The followers can reply or retweet this user’s
tweets. Twitter users use @ to mention a Twitter
user and hashtag # to represent a topic of the
tweet.

Since its launch, Twitter quickly became
one of the most visited websites as “the SMS
of the Internet” and the largest microblog site
worldwide (though its Chinese equivalent is
close). As compared to traditional blogs and
SNSs, microblogging is a faster method to
communicate, share quick thoughts, and report
news. In addition, the frequency of updating a
microblog is usually much higher than traditional
blogs and SNSs. These features made Twitter
and other microblogging services distinct. In a
recent review, Murthy describes Facebook as to
“keep ties between users active and vibrant,”
while Twitter is used to seek the “accumulation
of more and more followers who are aware of a
user’s published content” (Murthy 2013).

The use of Twitter in China is limited. Twitter
was not popular in China before being blocked.
The first Chinese microblog was Fanfou.com,
which was launched in May 2007. The number
of Fanfou users was around one million in 2009.

Largely because of riots that happened in cer-
tain parts of China, Twitter and Facebook were
blocked in July 2009 and have been limited in
access since then. Fanfou and some other mi-
croblogs were also blocked for a while in July
2009. Chinese IT giant Sina.com grasped this
opportunity and launched Sina Weibo in August
2009 (1 month after Twitter was blocked). “Wei-
bo” means “microblog” in Chinese and Sina reg-
istered weibo.com. Therefore, people usually use
Weibo to refer to Sina Weibo. Sina had its unique
marketing strategy – Sina invited celebrities to
sign up to Sina Weibo and communicate with
their fans. This strategy worked very well and
Sina Weibo quickly became the largest microblog
service in China. Within a year, Twitter’s oth-
er Chinese equivalent, Tencent Weibo, NetEase
Weibo, and Sohu Weibo, started to grow along
with Sina Weibo. Sina Weibo’s competitors al-
so tried to pay some celebrities so that these
celebrities would only use their service to post
microblogs. However, the Sina Weibo commu-
nity had already grown to a large number of
users, who had also connected to their friends
and families and constructed their networks and
thus did not want to turn to another platfor-
m. Some celebrities even flew to Sina Weibo
to be more visible. Therefore, although other
Chinese microblogs have successfully built their
own communities (which are also large scale),
they do not really threaten Sina Weibo, which is
still dominating the Chinese microblog world.

In the West, Facebook still has been growing
since Twitter was born. People are using
Facebook and Twitter for different purposes.
However, in China, traditional SNSs quickly lost
active users, and many of Chinese SNSs became
ghost towns after Sina Weibo’s launch. There is
a sign that it may also happen for Sina Weibo
3 years after its birth. Tencent (the company who
produced QQ and QZone) launched WeChat in
2011. WeChat was first a multimedia (text, voice,
video) messaging software. However, Tencent
soon added its SNS features “Moments” into
WeChat. Moments is a user timeline similar to
Facebook. WeChat now has over 400 million
active users, and many Weibo users moved
to WeChat. Although Moments of WeChat

Fanfou.com
Sina.com
weibo.com
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is growing very fast, currently most WeChat
users are still using it solely for messaging
purposes. Therefore, we do not include it in
the ranking of SNSs (Fig. 1 and Table 1).
According to a report by GlobalWebIndex in
January 2013, the number of active Weibo and
traditional SNS (like Renren) users decreased
significantly in 2012, when Twitter, Facebook,
and Google+ were still increasing (http://
www.pingwest.com/twitter-the-fastest-growing-
social-platform/). This decline is likely attributed
to the changing dynamic between WeChat and its
competitors.

An early and highly cited empirical study of
the topology and intention of Twitter was pub-
lished in 2007, finding users use Twitter to talk
about their daily activities and to seek/share infor-
mation (Java et al. 2007). Since 2008, due to these
unique features, Twitter and other microblog ser-
vices have quickly become the key social me-
dia and SNS for not only in daily conversation
and chats but for news reporting (i.e., discussing
breaking news, report news, political election-
s), business (i.e., marketing, advertising), emer-
gent events (i.e., disasters, protests, and terror-
ist attacks), and social movements (i.e., Occupy
Movement, Arab Spring, civil wars) as well. The
recent research on SNSs has largely focused on
microblogs. Another reason that microblogs are
now the key datasets for research is because it
is easier to retrieve data as compared to other
SNSs like Facebook and Renren. The two biggest
microblogs Twitter and Sina Weibo both have
open APIs that allow people to retrieve all kinds
of data, usually with limits in the volume of data
to be retrieved or the number of requests to the
server. Kwak et al. analyzed a Twitter network of
41.7 million users, 1.47 billion social relations,
and 106 million tweets with 4,262 topics and
conducted a series of quantitative analyses on
the data to reveal the difference between the
Twitter network with other SNSs (Kwak et al.
2010). The research that has been done on tra-
ditional SNSs like Facebook and MySpace has
been repeated with Twitter data, and more novel
research has been conducted to answer many
interesting research questions that could not be
answered before. People have explored whether

the information diffusion seen in Twitter was
due to social connections or external resources,
the roles of Twitter in information diffusion, the
formulation and organization of groups in protest
and revolutions, emerging distributed group chats
on Twitter, and so forth (please refer to Recom-
mended Reading section for corresponding publi-
cations). Currently, Twitter is the most frequently
used data for researchers in social computing and
computational social science, and Sina Weibo is
playing the same role in Chinese academia.

Since 2004 (Crowdsourcing and Collective
Intelligence)
Collective intelligence is defined as the intel-
ligence emerged from the communication, col-
laboration, and competition of a group of in-
dividuals. The term was first coined by sociol-
ogists, who studied the swarm intelligence of
insects, birds, mammals, bacteria, etc. (Lévy and
Bonomo 1999; Bonabeau 2009). With the ad-
vances of SNSs, massive collaboration among
a large number of users around the world has
become a reality. People can collaborate online
to work on the same task and solve problems.
For example, Wikipedia is “a collaborative edit-
ed, multilingual, free Internet encyclopedia sup-
ported by the non-profit Wikimedia Foundation”
(http://en.wikipedia.org/wiki/Wikipedia). The 30
million articles in 287 languages of Wikipedia
were written by volunteers all over the planet.
Anyone has access to edit almost every article of
it (Glott et al. 2010). Wikipedia has been one of
the top ten most popular websites according to
Alexa (http://www.alexa.com/).

Online forums were the first big platform
for collective intelligence. The use of online
forums for collective intelligence ranges from
small-scale Q&A systems (Zhang et al. 2007) to
very large-scale “human flesh search” (a Chinese
translation, in which “human flesh” refers to
human empowerment; it has another name
as crowd-powered search) (Wang et al. 2010;
Zhang 2012; Zhang et al. 2012), in which a
large number of voluntary Web users formed
groups to collaborate on a single task. In
2006, Howe coined the term crowdsourcing
and gave a definition of crowdsourcing as “the

http://www.pingwest.com/twitter-the-fastest-growing-social-platform/
http://www.pingwest.com/twitter-the-fastest-growing-social-platform/
http://www.pingwest.com/twitter-the-fastest-growing-social-platform/
http://en.wikipedia.org/wiki/Wikipedia
http://www.alexa.com/
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act of taking a job traditionally performed
by a designated agent (usually an employee)
and outsourcing it to an undefined, generally
large group of people in an open call” (Howe
2006). This definition covers most collective
intelligence applications (particularly those for
business), but it is a little too narrow to cover
the large, voluntary, and loose organized crowd
behaviors, like human flesh search, or crowd-
funding sites like Crowdfunder and Kickstarter.
Tarrell et al. reviewed 135 crowdsourcing-
related articles from January 2006 to January
2013 (Tarrell et al. 2013). They found that
research on crowdsourcing has been growing
steadily. Researchers from computer science
(CS) and information systems (IS) are the major
contributors to this field. There are different
focuses of CS and IS researchers. Generally
speaking, CS researchers are mainly interested
in modeling the collaboration of crowdsourcing
and the design of better crowdsourcing systems
(Zhang et al. 2007, 2010; Jurca and Faltings
2009; Pickard et al. 2011; Bozzon et al. 2013;
Difallah et al. 2013), while IS researchers
are more interested in the topics related
to traditional IS research, like knowledge
management, knowledge sharing, and incentives
of contribution (Moon and Sproull 2008; Olivera
et al. 2008; Mannes 2009; Bothner et al. 2011;
Boudreau et al. 2011; Bayus 2013). There is also
a trend of researchers from both sides are joining
together to collaborate on crowdsourcing studies.

Since 2009 (Isolated Chinese SNSs)
As mentioned previously, as the country with
the largest number of Internet users, China
has blocked the access to some major SNSs
including Facebook and Twitter (for consistency,
we use “China” to refer Chinese Mainland only.
Facebook and Twitter are popular in Hong Kong,
Macau, and Taiwan, though a portion of people
from these regions also use Chinese SNSs).
However, Renren, Weibo, and other regional
SNSs successfully took over the roles. In fact,
these blocked SNSs did not perform very well
in Chinese Mainland (as compared to their
popularity in Taiwan) before they were blocked.

Although there is censorship upon Chinese
cyberspace, and the “real-name policy” was

recently applied to SNSs, SNSs are still
among the freest platforms for Chinese Internet
users to express their opinions (http://www.
theatlantic.com/china/archive/2013/03/why-chin
as-real-name-internet-policy-doesnt-work/27437
3/). Sometimes, the topics and keywords of
users’ discussions are seen censored and deleted
automatically by SNSs, but users could generally
find an alternative way to express the same mean-
ing. There are countless “juicy stories” being
generated by SNS users, in particular, Weibo
users. The topics of their discussion are not
quite the same as Twitter. Business people and
brands have unique ways of marketing on Weibo
and WeChat. For example, they create WeChat
groups and push multimedia advertisements
to users and communicate with users directly
using the WeChat account. Rumors abound in
the community. People collaborate to conduct
“human flesh search” (Lu and Qiu 2013). The
topics of users’ arguments and fights can range
from a tiny statement made by a celebrity or a TV
program to serious economic or political issues.

Here, we present one example of the hu-
man flesh search (HFS) against corruption that
aroused on Weibo. In 2012, a government official
was photographed smirking after a tragic traffic
accident. It enraged Chinese Internet users and
this official’s life quickly became under scrutiny.
The HFS against him was started right away.
Several photos of him started spreading in Weibo
next day, and people quickly discovered 11 pricey
watches he was wearing from these photos. Wei-
bo users thought that there was no way that he
could afford these watches on an honest govern-
ment official’s salary. The discoveries from HFS
made the government start to investigate whether
he was a corrupt official. Eventually, he lost his
job and political career and is now under further
investigation by judicial departments. The above
story is an illustration of the Chinese Internet
users using SNSs to do HFS for anti-corruption
purposes. However, there are also some other
examples, in which people violated the personal
privacy of others. A complete analysis, in En-
glish, of HFS can be found in Zhang (2012).

There are also “Internet water armies” (paid
Internet commentators) on Weibo (Zheng et al.
2011), for example, groups advertising for

http://www.theatlantic.com/china/archive/2013/03/why-chinas-real-name-internet-policy-doesnt-work/274373/
http://www.theatlantic.com/china/archive/2013/03/why-chinas-real-name-internet-policy-doesnt-work/274373/
http://www.theatlantic.com/china/archive/2013/03/why-chinas-real-name-internet-policy-doesnt-work/274373/
http://www.theatlantic.com/china/archive/2013/03/why-chinas-real-name-internet-policy-doesnt-work/274373/
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a brand and attacking other brands, groups
doing HFS and being HFSed, and groups
criticizing or defending the government (there
are mainly two major groups: (a) those who
mainly criticize the government and would
like a change and (b) those who defend
the government and prefer a more stable
society rather than a radical change). It was
reported that there are government-/institute-
/organization-funded Internet commentators
trying to steer the public opinions towards the
policies of governments (both within China
and overseas) (http://news.bbc.co.uk/2/hi/asia-
pacific/7783640.stm). Internet users called those
defending government as “(RMB) 50 Cent Party”
and those attacking the government (sometimes
with fake rumors) as “(USD) 50 Cent Party,”
because the two “parties” are paid RMB 50
cent by the local government or USD 50 cent
by a foreign government or institutes. These
groups have been fighting each other on Weibo,
and some groups were making up fault rumors
to attack others and try to attract more Weibo
users to support them (Fossato 2009; Bremmer
2010).

To regulate people’s fights and control the ex-
istence of rumors, Sina Weibo proposed a credit
system. In this system, each user has a credit
score, people can sue others if they intentionally
spread fake rumors, insult others, violate others’
personal privacy, etc. If a user’s score is low, he or
she will be marked as a “low-credit user.” A lot of
such interesting things are happening in Chinese
SNSs. However, most research on Chinese SNSs
repeated the study of Twitter. How to distill
interesting and unique research questions based
on Weibo data and to properly answer them is a
strongly promising and needed research.

Conclusion and Future Directions

In this article, we briefly review the history of
SNSs worldwide. In particular, we describe the
use of SNS in China, which has not been well
covered by the literature in the West. SNS is
still a rapidly evolving area, with new types of
SNSs emerging and novel research directions be-
ing explored. Despite numerous powerful quan-

titative analysis methodologies developed, there
are still a large number of unanswered research
questions from theoretical social sciences. The
link between computational sciences and social
sciences could be much stronger with solid re-
search, which answered key research question-
s derived from social theories. Another future
research topic that we anticipate is the cross-
cultural analytics of SNSs. Most researches to
date have been focused on popular SNSs in the
West, with datasets that mostly came from one
SNS and a single country or language. What
are the differences across different SNSs? How
were multiple SNSs linked together? Are there
any cultural differences in the behavior of people
using SNSs? These research topics are expected
to not only fill the holes of current literature, but
also to shed light on an in-depth understanding
of the use in different cultures. We hope that
our review and discussions can help researchers
and practitioners to get a brief overview of SNS
to date and gain an outlook of future research
directions on SNS.
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Synonyms

Collective action; Globalization; Governance;
ICTs; Politics; Social networks

Glossary

Social Networks Specific type of social orga-
nization based on patterns of communication
and exchange among actors involved

Politics A wide variety of dynamics aimed at
the production of public purpose, from laws
and regulations to norms of behavior

Definition

When thinking about the relationship that exists
between social networks and politics, what comes
immediately to mind is a whole set of events,
ranging from the “Arab Spring” to manifestations
of global refusal for the political and financial
status quo as those of the Occupy movement,
passing through the rise of Indignados in Spain
and the mobilization in support of Barack Obama
during the 2008 US presidential elections.
Despite obvious differences in terms of actors
involved, size, goals, geographies, identities,

as well as in terms of the political dynamics
played out, what these events had in common
is that political objectives were pursued through
the rapid construction of wide (trans)national
networks of action which, in turn, were
generated, sustained, and stimulated by a
heavy use of networked information and
communication technologies (ICTs) – Internet
and social media such as Facebook, Twitter, and
YouTube in the first place.

In fact, all the abovementioned episodes pro-
vide good examples of the strict nexus that exists
between politics as political participation and
networks, as both the social network of activists
and the networked communication infrastructure
that sustained political actions – i.e., the Internet.
Indeed, there is a long-term reflection on the role
of social networks in the fostering, structuring,
and renewing of collective action dynamics (e.g.,
Diani 2003). Thus, the very deployment of dra-
matic situations like the Arab Spring invites to in-
clude systematically ICTs within these reflections
and to consider them not only as tool for organiz-
ing but, more properly, as the real organizational
milieu where contemporary mobilizations and
campaigns develop (Bennett and Segerberg
2012).

And yet, the nexus between social networks
and politics needs to be addressed from a wider
perspective which includes, but is not limited
to, widespread ICTs-enforced collective action
instances. In fact, politics embraces a wide set
of dynamics aimed at public purpose production,
which is “an expression of vision, values, plans,
policies and regulations that are valid for and
directed towards the general public” (Sørensen
and Torfing 2006). Moreover, social networks
are first and foremost a specific type of social
organization based on “reciprocal patterns of
communication and exchange” (Powell 1990)
which permeates all domains of society, not only
politics.

Hence, reviewing the nexus between
social networks and politics entails reflecting
systematically on the changes of organizational
modes in the conducts of politics at all levels,
from the local to the global, and for the
production of various types of public purpose,
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from conventional government and regulatory
acts (e.g., Knoke et al. 1996) to norms, i.e.,
cognitive frameworks that guide the action
of institutional and noninstitutional actors
(Finnemore and Sikkink 1998). Also, ICTs are
to be considered as a crucial intervening element
of the “multidimensional context” that shapes
the patterns of political actions (Diani 2011) as
they foster the construction of communication-
based social relations and, in the end, provide
“the means of political debate: the arena, the
communication links, the agenda” (Bijker 2006).

Introduction

Addressing the nexus between social networks
and politics is a complex task which requires, in
the first place, an exploration of the background
scenario which has led to the consolidation of
networks as both metaphors to depict contempo-
rary complex political arrangements and as a true
organizational mode for the conducts of politics
at all levels, from the local to the global. Also, this
task requires some systematization effort aimed
at clarifying the main traits of networked politics
in its most popular declinations: as forms of
collaboration of governments (government net-
works), as multi-actor arrangements for the def-
inition and the implementation of policies (policy
networks), and as the overall perspective to depict
different instances of collective action (collective
action networks).

Globalization, the Overcoming of
Nation-State Politics, and the Role of
Networks

One of the main features of the contemporary
world, perhaps the most emphasized, is intercon-
nectedness. Societies and economies today are
linked in complex webs of interactions, influ-
encing each other in non-trivial ways and both
enhancing possibilities (let’s just think of the
worldwide solidarity response to the 2004 Tsuna-
mi in the Indian Ocean) as well as augmenting the
reach of negative dynamics (as it is in the case of
the global financial crisis).

Whether it is considered its cause or its con-
sequence, interconnectedness is often related to
the concept of globalization, which can be de-
fined as a set of processes impacting the spatial
organization of social relations and transaction-
s “generating transcontinental or inter-regional
flows and networks of activity, interaction and the
exercise of power” (Held et al. 1999). Globaliza-
tion processes have taken place in a variety of
fields (economy, politics, culture, environmental
concerns) and have contributed to the transfor-
mation of the world into a “shared social space”
(Held et al. 1999), where traditional boundaries
(whether these are territorial, thematic, or based
on competences) are now blurred.

At the same time, globalization is present-
ing us with a number of challenging aspects.
Looking in particular at the domains of politics,
many issues (as the sustainable use of energet-
ic resource, the control of financial markets or
even the definition of national labor policies,
etc.) are not any longer managed by single and
rather homogeneous societies or economies em-
bodied by the nation-state. Rather, they are now
spanning a wide range of geographically distan-
t and socioculturally heterogeneous constituen-
cies and represent now global societal challenges
characterized by their global scale and by features
of diversity (of actors and perspectives), dynam-
ics (the continuous evolution of issues at stake as
well of perspectives upon them), and complexity
(of the webs of interaction).

Hence, governments and institutions are pres-
sured to intervene in a complex scenario where
the distinction between domestic and foreign
affairs is blurred and where multiple and
diversified knowledge is required to keep
under control all the facets of global problems.
Shortcomings in facing these challenges have
translated into a threefold deficit of legitimacy,
knowledge, and access (Hockings 2006) which
questions the traditional hierarchical nation-state
model as the preferred governance mechanism.
Thus, the recent global financial crisis has
highlighted the limits of a regulation model based
on free market assets.

Furthermore, the increased level of
interconnectedness fosters the proliferation of
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nontraditional political actors, (e.g., civil society
organizations and coalitions, social movements,
subcultures, single committed individuals, loose
platforms for action) which constitute a plurality
of different publics, all exerting control on
the management of public affairs, possessing
the required knowledge for the management
of global challenges, proposing alternative
solutions to current mechanisms deficiencies, and
willing to take part into reformative dynamics
and governance experiments to increase the
effectiveness and the democratic features of
political mechanisms.

Contemporary global settings call then for
a “decentralized concept of social organization
and governance [for which] society is no longer
exclusively controlled by a central intelligence
(e.g., the state); rather controlling devices are
dispersed and intelligence is distributed amongst
a multiplicity of action (or ‘processing’) units”
(Kenis and Schneider 1991).

Here, networks enter as a powerful image
to depict the growing complexity, but they also
represent a truly new social morphology (Castells
2011): one for which policy outcomes and out-
puts are “generated within multiple-actors-set in
which actions are interrelated in a more or less
systematic way” (Kenis and Schneider 1991).
Within an overall context of uncertainty, due to
the shortcoming of conventional political mech-
anisms and to the difficulties of reorganizing
steering activities so to include all actors and
stakeholders (Börzel 1998), networks emerge to
incorporate, supply, and challenge market and
hierarchies as governance mechanisms for the
production of public purpose (Kahler 2009).

Networks emerge then in response to the lack
of a central authority able to set the widely
accepted benchmarks for the conduct of public
affairs. As a mode of (re)organizing political
dynamics, they are based on cooperation (and yet
allow for the development and management of
conflicts), foster mutual learning and the spread
of knowledge, allow a fast translation of knowl-
edge into action, and, hence, are flexible enough
to compensate the variability and the overall
uncertainty of the future (Powell 1990). For their
peculiarities, networks become then the preferred

arrangement for sustaining contemporary gover-
nance efforts, i.e., for producing rules, norms,
and, more broadly, the conditions for ensuring
order through new strategies of problem-solving
based on relationships between private and public
actors that augment governing capacities.

Networked Politics as Forms of
Communication Networks

For the strict link that exists between networks of
sociopolitical actors and the conducts of politics
in a globalized context, the very concept of
networks has been applied in several ways. In
general, networks in politics have been used to
study both the emergence of coalitions within
states, with a specific accent on resource mobi-
lization and power redistribution, and the creation
of interdependencies between states (Wellman
2002). Over time, labels have multiplied as to
depict the variety of situations in which interde-
pendency between political actors is experienced
and managed. However, the application of a
relational view for studying political transforma-
tions has not happened in consistent ways: similar
situations have been labelled differently, the same
label has been applied to different occurrences,
and the underlying assumptions leading to the
choice of a specific network concept over the
other are seldom made explicit (Börzel 1998).
The heterogeneity of uses somehow jeopardizes
the heuristic potential of the network idea itself
for the study of politics, and despite studies
adopting a network point of view have multiplied
in this field, an overall consensus on what
networks mean for politics (a mere metaphor,
a method, an analytic tool, or a proper theory) is
still missing (Börzel 1998).

However, the heterogeneity of labels and of
their uses is not a total impediment to a sys-
tematic overview of different conceptualizations
of networked politics. In fact, all applications
of the (social) network concept in the study of
politics share the initial assumption that both
the hierarchical nation-state and the market mod-
els present major shortcomings that hinder the
achievement of satisfactory results. Because they
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are not self-sufficient, states need to collaborate
with other actors and to internalize the knowl-
edge coming from these collaborations within
policy-finding and policy-making processes. This
creates an overall situation of interdependency
between institutional and noninstitutional actors
that is managed first and foremost through the es-
tablishment of communication flows from one ac-
tor to others. In this sense, all applications of the
network concept to politics can be summarized
through the idea of communication networks that
join together actors mainly through the exchange
of messages across time and space in the attempt
to stabilize structures of interaction out of the
chaos provided by the globalized context (Monge
and Contractor 2003).

On these bases, we can distinguish between
different types of political communication
networks leaning on the elements that define
networks as specific forms of social organiza-
tions, i.e., actors and relations. Looking then
at which are political actors involved, how
heterogeneous they are, and at why they interact,
we can then make sense of different applications
of the network concept in the study of politics.
Government networks are composed by
national governmental and intergovernmental
organizations officials with the overall aim
of providing traditional political actors with
the necessary global reach they miss in the
contemporary globalized political milieu through
their engagement and exploitation of flexible
arrangements for collaboration (Slaughter 2004).
Examples of such networks are the G-7 or
the G-8 and the G-20 as well as the Asia-
Pacific Economic Cooperation (APEC) or the
Organization for Economic Co-operation and
Development (OECD). Actually, these networks
are not completely new phenomena, but at
the present stage, their scale, scopes, and
type of ties are undergoing an unprecedented
growth.

Government networks are composed of
homogeneous nodes, i.e., they are made of
governmental and intergovernmental actors,
who can be further differentiated on the
bases of interests they carry (Slaughter 2004).
Furthermore, government networks can be

horizontal (aimed at exchanging information and
best practices) or vertical (in which authority
is delegated to a higher-level organization,
e.g., in the field of justice with international
courts). In mobilizing traditional political actors,
Slaughter points out how government networks
respond to the “governance tri-lemma” for
which (a) contemporary political settings see
the need for official regulatory activity at
global level yet without centralization of power
and ensuring accountability across different
policy mechanisms, (b) governmental actors
can and should interact with a multiplicity
of non-governmental organizations that have
emerged as important actors but (c) “their
role in governance bears distinct and different
responsibilities” (Slaughter 2004). In this
context, government networks offer “a flexible
and relatively fast way to conduct the business
of global governance, coordinating and even
harmonizing national government action while
initiating and monitoring different solutions to
global problems. Yet they are decentralized and
dispersed, incapable of exercising centralized
coercitive authority. Further .: : :/ they can
interact with a wide range of NGOs, civic
and corporate, but their responsibilities and
constituencies are far broader” (Slaughter 2004).
Policy networks is probably the most widely
used label to describe a whole set of very differ-
ent processes revolving around transformation-
s of policy-making processes. In their seminal
work, Marin and Mayntz tackle the problematic
issue of identification of policy networks which,
following their argumentation, “are explicitly de-
fined not only by their structure as interorganiza-
tional arrangements, but also by their function –
the formulation and the implementation of poli-
cy” (Marin and Mayntz 1991). Actors involved in
collective decision processes might be of differ-
ent nature, but their ability to enter the network
varies depending on the porosity of the policy
domain under discussion (i.e., the more uncertain
the domain, the wider the constituency of actors
involved).

Policy networks have been studied predomi-
nantly on a national scale, sometimes in compar-
ative terms (Knoke et al. 1996) or loosely applied
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to represent interdependence between public and
private actors at global level. In being the most
widespread label for depicting the nexus between
social networks and politics, policy networks
have been reviewed and classified in several ways
(see Börzel 1998; Adam and Kriesi 2007). Over-
all, existing literature points out the use of this
concept to identify, depending on the concrete
case studies, structures for interest intermediation
among actors; alternative governance structure
challenging markets and hierarchies; multi-actor
arrangements for policy implementation; or a
“formalized, quantitative approach of social net-
work analysis .: : :/ that focuses on the relations
between actors and not on actors’ characteristics”
(Adam and Kriesi 2007).

As a specific approach for studying policy-
making activities through network analysis
techniques, social network analysis of policy
networks (e.g., Knoke et al. 1996) is mostly
concerned with the redistribution of power along
network ties, where the degree of power is
proportional to the degree at which interests
held by different actors involved are reflected
through policy outcomes and not in relation to
innate qualities. Concrete operationalizations of
this relational view of power have translated
into two types of studies: positional, which
are primarily concerned with actors’ positions
within the network, and relational, concerned
with characters and effects of relations existing
between actors in a system (Lotan et al.
2011).

More recently, the idea of governance network
has been proposed to expand the reach of the
policy network approach also to the production
of nonbinding policy outcomes, i.e., of norms
(Sørensen and Torfing 2006). In this sense, as
a sort of “second generation” of policy network
studies, governance networks’ studies are not so
much focused on the actual existence of networks
as distinct and legitimate forms of governance
(Sørensen and Torfing 2006). Rather, they start
from an explicit recognition of networks’ exis-
tence and political meaning to model interactions
thus keeping into account structural, processual,
and cognitive elements. In this sense, governance

networks can be defined as “(1) a horizontal
articulation of interdependent, but operational-
ly autonomous actors; (2) who interact through
negotiations; (3) transpiring within a regulative,
normative, cognitive and imaginary framework;
(4) that to a certain extent is self-regulating; and
(5) which contribute to the production of public
purpose within a particular area” (Sørensen and
Torfing 2006).

Although they are often studied in the context
of policies production and coordination, the
potential of governance network as analytical
tools goes beyond conventional policy making to
include “decision finding rather than decision
making processes” (Hemmati 2002). In this
sense, governance networks are the preferred
label to study those political dynamics that are
not necessarily finalized to the formulation of
binding provisions but, rather, are aimed at the
production of shared norms and knowledge
(e.g., the United Nation World Summit on the
Information Society or the Internet Governance
Forum for the creation of a common vision
between governments, private sector, and civil
society; (see Pavan 2012)).
Collective action networks is a conceptual per-
spective based on social networks that has been
pushed forward within the study of political par-
ticipations and contentious politics to differenti-
ate and underline the specificities of the diverse
collective action instances: social movements,
coalitions, organizational action, and communi-
ties/subcultures (Diani and Bison 2004; Diani
2008). According to this specific perspective, and
in consistency with the premises of the structural
approach to the study of politics, the accent is
put on actors’ interactions rather than on actors’
features (e.g., the level of formalization of orga-
nizational assets, the sociodemographic charac-
teristics of citizens who mobilize or participate
politically). Thus, this perspective was elaborated
in the first place to specify social movements in
comparison to other forms of contentious politics
or political participation (Diani 2008), but it can
be adopted to study of all forms of collective
political participation.

It is the combination of three different network
characteristics that allows to distinguish between
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Social Networks and Politics, Table 1 Typology of
collective action networks

Dense networks
Sparse
networks

High collective
identity

Social movements Communities

Low collective
identity

Coalitions Organizational
action

Source: Adaptation from Diani (2008)

different realizations of collective action: (i) the
presence or absence of conflictual orientations
towards clearly identified opponents, (ii) network
density (sparse vs. dense networks), and (iii)
presence of a strong or weak network collective
identity.

While the presence of conflict refers more to
specific repertoires of actions adopted within all
types of collective actions, levels of density and
of identity sharing are the two main axes along
which instances of action can be distinguished
(see Table 1).

Intensity of network identity divides dense
networks into social movements, characterized
by a strong identity, and coalitions, where col-
lective identity is weak. Collective identity is
important for social movements as it entails the
presence of shared visions and values that sustain
a long-term involvement over time and, in this
sense, is what bonds different individuals and
organizations, each of which with its own agen-
da, modes of behaviors, and perceptions, within
the same mobilization effort over time (Melucci
1996). Thus, although social movements can be
based on consensual repertoires, they are often
coupled by a marked attitude towards conflict, as
they rise as explicit expressions of social dissent
towards identified opponents (Diani and Bison
2004).

When network identity is lower, dense
networks of exchange between actors respond
to instrumental and more short-term goals.
Instrumentality of action is what characterizes
coalitions in general (Gamson 1961), but it is
worth noting that this is not tantamount to the
lack of values or solidarity within coalitional
processes. In fact, although coalitions lack a

long-term vision, in their attempt to pursue
a specific goal they can repeat over time, as
it happens, for example, in the case of the
campaign “16 days against VAW (violence
against women)” every year from November
25 to December 10. Moreover, especially when
coalitions are transnational and the goal they
pursue is linked to a reform of societal assets,
there is the need to supply instrumentality with
shared views and values.

If looser networks are coupled with weak
collective identity, the focus shifts to single
organizations, while if they are associated to
strong identities, they generate communities.
Within specific organizations, such as Green-
peace, Sea Shepherd, or Oxfam, action is carried
on very much following the agenda and the
modus operandi of the single organization, i.e.,
under an organizational (rather than collective)
identity (Diani 2008; Diani and Bison 2004).
Thus, participation to action is consequential
to the ownership of established membership
criteria (e.g., all sorts of eligibility conditions
from having paid a fee to possessing some
specific skills or competences). Differently from
social movements and communities, which join
together a plurality of organizations under widely
shared frames and beliefs systems, organizational
collective action is characterized by a specific
entrenchment within the boundaries of the
organization itself, which is responsible for
determining how the mobilization is carried
on. Conversely, social movements, as well as
communities, are “multicentric” as none can
claim to represent the totality of the network
(Diani 2008).

Communities instead carry on collective
activity through networks which are sparse
and yet are characterized by a shared sense
of belonging diffused among members. Here,
the idea of community can be detached from
that of territoriality (as it is, instead, within
classical sociology) and should be rooted in
the shared practices and views thus blending
the networked structure of mobilization within
daily activities, which are conducted following
the very values and ideals that jointly define the
collective identity (Diani 2008).
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Future Directions

For communication is the very backbone of net-
worked politics, developments in the ICTs field
have a profound impact on network arrangements
in the field. Indeed, in a context of total embed-
dedness of ICTs in all domains of human action,
the social relational infrastructure overlaps with
the technical and physical infrastructure gener-
ating socio-technical systems (Vespignani 2009),
making the distinction between the online and
the offline obsolete and the space for social and
political action hybrid, nurtured by relations that
are built across the boundary between the virtual
and the real world.

When it comes to the study of politics,
this socio-technical breakthrough implies the
difficulty of assessing the role of ICTs, and
of social media in particular, in relation to the
overall set of political transformations outlined
above. The emphasis put by both academics and
mainstream media on Facebook or Twitter in
commenting events like the Arab Spring or the
gatherings of the Occupy movement somehow
biased our understanding of these dynamics as if,
in the absence of social media, these mobilization
episodes could have never happened. In fact,
in spite of the overall enthusiasm for the
“Revolutions through the Internet,” critical
approaches to the study of collective action
transformations invite us to reflect on the fact
that ICTs are not the cause of collective action
but they remain crucial in determining its shape
and forms (Diani 2011). This caveat can be easily
generalized to the totality of political dynamics
beyond the domain of collective action: the nexus
between social networks and politics is deepened,
even radicalized by the presence and diffusion of
ICTs, but it is not caused by them. The main
issue, then, is how to systematically explore,
both conceptually and empirically, the shape, the
form, and the consequences of networked politics
in the ICTs era.

At present, research activities are growing
rapidly and, yet, along two parallel tracks. On the
one hand, there are theoretical attempts to prop-
erly outline the implications and the very defin-
ing features of contemporary forms of political

dynamics: from the transformations of collec-
tive action into “connective action” (Bennett and
Segerberg 2012), to the exploration of genres
and repertoires of action that are made possible
by an extensive use of the Internet (Lievrouw
2011), to the transformations of supra-national
politics towards multi-actor governance arrange-
ments though the construction of offline and
online networks of collaboration (Pavan 2012),
to the redistribution of power along communica-
tion network ties (Castells 2011). On the other
hand, there are attempts to empirically investigate
network structures sustaining political dynamics,
whether these are generated within online forum
discussions (González-Bailón et al. 2010), by
protest participation through Twitter use (Lotan
et al. 2011), by websites pertaining to a certain
issue (Pavan 2012), or by mailing list exchanges
(Pavan 2012). In these studies, network analysis
techniques are often adopted and complex data-
retrieval procedures are enacted. Thus, the explo-
ration of political network structures is done in
search for mechanisms such as contagion, dyad
or triad emergence, and triadic closure effects but
also looking at the emergence from network inter-
actions of specific semantics and shared frames.

However, a full integration between the theo-
retical and the empirical levels appears to be still
missing. The exploration of network properties
is seldom tied to theoretical considerations on
the forms and the effects of networked politics,
while sophisticated theoretical models are rarely
applied to actual data. In this sense, the current
state of research on the nexus between social
networks and politics seems to reproduce the
fracture between “hard” and “soft” applications
of the network idea to the study of politics which
has always characterized the field (see above).

In the attempt to recompose this fracture,
research activities in the field should be carried
on in an integrated manner, joining together
considerations on the communicative and
relational potential of ICTs, actual exploration
of networks’ features, and existing knowledge
on the transformations of political arrangements
in the globalized society. In the first place, this
integration requires avoiding to maintain the
distinction between online and offline. As we live
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in socio-technical systems where the Internet is
perhaps the most diffused physical infrastructure
upon which we create social relation, not only
the social space should be considered hybrid,
but no hierarchy or solution of continuity should
be imposed between the online and the offline
dimensions. In this sense, online relationships do
not substitute but, rather, integrate the relational
capital established by actors offline. Hence, in
evaluating how the continuous developments of
communication technologies affect the creation
and the functioning of networked forms of polit-
ical action, the focus should be set on the totality
of social relations, whether they are grounded in
face-to-face interactions or ICTs mediated.

Second, and in connection to this first point,
if we are to make sense of the potential of com-
munication technologies for the creation of polit-
ically relevant relations at all levels, monolithic
conceptualizations of ICTs (and of the Internet in
particular) should be avoided. Not only is there a
technical difference between an Internet populat-
ed by websites and an Internet crowded by indi-
vidually generated contents that are then put into
global circuits of information transmission and
communication. More than this, the passage from
a Web 1.0 to a Web 2.0 entailed the passage from
a culture of publicity to a culture of participation
which is simply germane, almost a precondition,
for the overcoming of the nation-state models
of politics. However, within the vast realm of
Web 2.0, multiple ways of communicating and
participating are available: the adoption of one
tool in spite of another has consequences on the
very structure of the resulting communication
networks and, hence, on how networked politics
are enacted. In this sense, efforts should be di-
rected towards the identification of the commu-
nicative potential that is proper of different social
media for the production of different types of
public purpose.

Finally, the fruitfulness of future research
activities on the nexus between social networks
and politics depends to a large extent on
interdisciplinarity. There is a relationship of
mutual influence between the two infrastructural
levels that are present within socio-technical
systems, i.e., the social and the technical one.

Expertise on social networks as specific forms of
social organization, hence on networked forms of
politics as alternative modes for organizing and
conducting governance practices, should meet
technical expertise on communication systems
so to balance considerations on the necessities
for reforming existing political assets with a
systematic knowledge on the very way in which
communication technologies are shaped, as
their structure and configuration set the overall
boundary for the establishment of relations. In
this sense, the network approach should not only
be the preferred instrument to conduct research
on how networked politics transform but, more
broadly, the very way of reorganizing research
practices, fostering a global interconnectedness
of disciplinary knowledges across traditional, but
now obsolete, boundaries.
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Social Networks for Quantified Self

Ted Vickey and John Breslin
Digital Enterprise Research Institute, National
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Glossary

Connected Health Health care through the use
of technology

mHealth Mobile Health
Mobile Fitness Apps Mobile Fitness Applica-

tions used from a smartphone or website

Definition

Over three quarters of US health care spending
goes to the care of people with chronic condi-
tions, including heart disease, diabetes, and
asthma, while in 2004, nearly half of the
Americans were diagnosed with one or more
chronic conditions, a number expected to incre-
ase dramatically as the baby boomer generation
rapidly approaches their retirement age (Accen-
ture 2009). The new reality, dubbed “Connected
Health,” incorporates a broad range of health and
fitness applications that are always on, always
active, and always aware(Accenture 2009).

Since many aspects of health promotion pro-
fessionals involve interdependent actors, social
networks are of increasing interest to health
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services researchers (O’Malley and Marsden
2008). The creation of a social network map of
a person’s social network can help visualize and
thus better understand the strengths of the social
ties of the network (Christakis and Fowler 2009).

TechnologyWill Transform the Future
of Chronic Care

In a 1995 editorial in the American Journal
of Public Health, former US Surgeon General
C. Everett Koop stated, “Cutting-edge technology,
especially in communication and information
transfer, will enable the greatest advances yet in
public health. Eventually, we will have access to
health information 24 hours a day, 7 days a week,
encouraging personal wellness and prevention,
and leading to better informed decisions
about health care” (Koop 1995). Technologies
like miniaturized health sensors, broadband
networks, and mobile devices are enhancing
and creating new health-care capabilities such as
remote monitoring and online care (Accenture
2009).

In 2009, management and technology consul-
tant Accenture released a report on how technolo-
gy will transform the future of chronic care. Cited
in the report is the anticipated crisis in care that
will be further challenged as the baby boomer
generation begins to retire.

According to the US Census Bureau, the world’s
population of people age 65 and older is projected
to triple by mid-century, from 516 million in
2009 to 1.53 billion in 2050. This growing
trend places a tremendous economic burden on
governments, private employers and individual
consumers alike. It also puts strain on the capacity
of skilled care professionals and nursing homes.
(Accenture 2009)

In addition to the inexpensive cost of com-
puters and Internet connectivity, the report iden-
tifies three technological advancements that are
paramount to the future of chronic care:
• Seamless capture and sharing of patient infor-

mation in real-world settings
• Improvements in ways to combine and in-

terpret data about an individual’s health and

wellness so that appropriate interventions can
be made before an acute situation occurs

• Innovative tools including user modeling, ad-
vanced visualization, decision support, and
collaboration

Health and Social Networking

One aspect of “Connected Health” is via the
power of a person’s social network. Research
suggests that people interact with their social
network with regard to their health. Christakis
and Fowler (2009) concluded that “. . . a person
with more friends and social contacts generally
has better health than a person with fewer friends,
and a person at the center of a network is more
susceptible to both the benefits and risks of
social connection than those at the periphery
of a network.” This would suggest that a person
is not only affected by their location in a social
network but also influenced by the behaviors of
those who are “close” to them in the network.
Perceived social support and physical activity
are directly associated with a person’s perceived
health status (Almeida 2008).

As technology continues to impact humanity,
the understanding of one’s social network may be
one key to better health. The basic element of a
person’s social network is simple: a social net-
work starts with a central person (called an ego)
and other people (called nodes) that are intercon-
nected by links (called ties). As the numbers of
nodes and links increase, the number of possible
connections grows exponentially – known as the
network effect (Christakis and Fowler 2009).

Christakis and Fowler (2009) suggest that
“people are inter-connected and so their health
is inter-connected. Inter-personal health effects
in social networks provide a new foundation for
public health.” As online connections between
people become ever more interweaved with
offline real-world interests, social networking
methods are moving towards simulating real-life
social interactions, including physical activity,
health, and disease management: rather than
randomly approaching each other, people meet
through things they have in common (Breslin and
Decker 2007).
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Technology and Health Behavior
Modification

By using Mobile Health technology (mHealth),
health providers can practice a more “personal-
ized medicine” and potentially reach more indi-
viduals with effective health-related advice and
information at a very low cost (Strecher 2007).
Griffiths et al. (2006) suggest a number of reasons
for delivering web-based health, wellness, and
fitness interventions including reduced delivery
costs, convenience to users, timeliness, reduction
of stigma, and reduction of time-based isolation
barriers.

Technologies can play three roles with regard
to behavior modification: as tools, as media, and
as social actors.
• As a tool, interactive technologies can be per-

suasive by making target behavior easier, lead-
ing people through a process, or performing
calculations/measurements that motivate.

• As a medium, interactive technologies can
be persuasive by allowing people to explore
cause-and-effect relationships, providing peo-
ple with experiences that motivate, or helping
people to rehearse a behavior.

• As a social actor, interactive technologies can
be persuasive by rewarding people with pos-
itive feedback, modeling a target behavior or
attitude, and providing a social network of
support (Fogg 2002).
Within the health-care field, interactive tech-

nologies can be effectively deployed to take on
multiple roles at the same time. For example, a
simple persuasive tool can measure calories while
at the same time giving a reward upon attainment
of a personal goal. This type of self-monitoring is
a key ingredient in successful behavioral modifi-
cation. In addition, if several people are connect-
ed through the Internet, then social support can
be leveraged, which has been shown to impact
motivation and behavior change (Chatterjee and
Price 2009).

The Quantified Self

The idea of measuring things relative to a
business or personal goal is common in today’s

society. The same measurement tools can be
used within the self-tracking of a person’s health
and fitness. Commonly known as the Quantified
Self movement, this is eclectic mix of early
adopters, fitness fanatics, technology evangelists,
personal development junkies, hackers, and
patients suffering from a wide range of health
challenges (The Quantified Self – Counting
Every Moment 2012). Some measure their hourly
mood swings, while others the stages of their
nightly sleep habits. Some track every meal,
snack, or drink, while others share on Twitter and
Facebook their workout routine complete with
heart rate, time, distance, calories burned, and
musical preferences.

Ongoing research aims to classify and under-
stand why a person shares their workouts within
their social network via Twitter and the associated
benefits. While there are various personal devices
that monitor/track a person’s exercise character-
istics (e.g., Body Media, Fitbit, MapMyFitness,
and Nike+), the effectiveness of online sharing
via social networks of one’s physical activity is
limited in scientific research. Studies have indi-
cated that “lack of motivation” is a key factor in
why a person does not exercise.

One factor to address is the relationship
between participant and provider (i.e., personal
trainer) and/or participant and social network,
including their influence. People join gyms
not only for health and fitness but also for the
social atmosphere. To fully understand the power
of combining social networking and exercise
adherence, the physical barrier of the four walls
of an exercise facility is removed, and technology
is used that enables a measurable improvement
towards one’s fitness goals.

Conclusion

With the move towards making machine-
understandable data available for computers,
allowing exercise data to become accessi-
ble/exchangeable between trusted peers is quite
important. However, one’s historical exercise
records are often locked in to proprietary systems.
By publishing selected aspects of these profiles
using semantic terms, it will become easier
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for people to search for and discover relevant
exercise regimes.

Early prevention and healthy lifestyles may
be the least expensive and best ways to combat
the growing prevalence of avoidable diseases
associated with a lack of physical activity in-
cluding obesity (Almeida 2008). If people who
lead sedentary lives would adopt a more active
lifestyle, there would be enormous benefit to
the public’s health and to individual well-being.
An active lifestyle does not require a regiment-
ed, vigorous exercise program. Instead, small
changes that increase daily physical activity will
enable individuals to reduce their risk of chronic
disease and may contribute to enhanced quality
of life (Pate et al. 1995).
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Glossary

Emergency An unexpected and often danger-
ous situation, typically affecting multiple
individuals and requiring immediate action

Social and Communication Networks Net-
works of people interacting with each other
through web-based (e.g., Twitter) and mobile-
based (e.g., mobile phone) technologies

Social Media Web-based tools that enable peo-
ple to communicate and interact with each oth-
er in various media forms including text and
multimedia. Examples of these tools include
emails, instant messengers (IM), blogs, mi-
croblogs (e.g., Twitter), vlogs (e.g., YouTube),
podcasts, forum, wikis, social news (e.g., Dig-
g), social bookmarking (e.g., Delicious), and
social networks (e.g., Facebook, MySpace,
and LinkedIn)

Definition

Modern datasets derived from telecommunica-
tion technologies such as online social media and
mobile phone systems offer a great potential to
understand the behaviors of large populations
during emergencies and disasters. This entry
reviews recent studies using large-scale, modern
data to understand emergency and disaster re-
sponse, covering work focused on social network
activity during earthquakes and disease outbreaks
and mobile phone communications following
bombing and other emergency events. The key
techniques and research trends are also discussed.

Introduction

Large-scale emergencies and disasters are an
ever-present threat to human society. With
growing populations and looming threat of global
climate change, the numbers of people at risk
will continue to grow. Thus there is a great
need to optimize response efforts from search
and rescue to food and resource disbursement.
Human dynamics research offers a promising
avenue to understand the behaviors of large

populations, and modern datasets derived from
cutting-edge telecommunications such as online
social media and pervasive mobile phone systems
bring a wealth of potential new information. Such
massive data offers a promising complement to
existing research efforts in disaster sociology,
which primarily focus on eyewitness interviews,
surveys, and other in-depth but small-scale data
(Rodríguez et al. 2006).

Yet most current human dynamics research is
focused primarily on data collected under nor-
mal circumstances, capturing baseline activity
patterns. Here we review a number of studies
pushing the envelope of modern data into the
realm of unexpected deviations in these popu-
lation behaviors. We discuss research focused
on massive datasets from social network activi-
ty during earthquakes and disease outbreaks to
mobile phone communications following bomb-
ings, power outages, and more.

We review a number of recent studies using
large-scale, modern data to understand emergen-
cy and disaster response. We begin with a re-
view quantifying how expectations of communi-
cation in today’s world may influence our per-
ception of the severity of an emergency. We
then cover works focused on social media and
mobile phones. These works use Twitter, a promi-
nent online social media service, to understand
more about disease outbreaks and the impact of
earthquakes. The mobile phone studies feature a
number of emergencies, including earthquakes,
bombings, and a plane crash. The results of these
studies have the potential to revolutionize disaster
response in the future, with the critical goal of
saving lives.

Historical Background

Connectivity and information access through
global telecommunications have become in-
creasingly pervasive due to modern technologies
such as mobile phones and the Internet. People
are becoming increasingly reliant on these
communication modes and so an important
question asked by Sheetz et al. (2010) is as
follows: what do people expect about their
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access to these communication channels when
an emergency occurs? They explored how
the expectation of the availability of these
communication technologies may influence
their perceptions of how they would use these
technologies during and after a crisis.

To answer this question, the authors conducted
online surveys and follow-up interviews with
Virginia Tech students, faculty, and staff (partic-
ipants). This university suffered a tragic attack
on April 16, 2007, and the authors reported that
local cellular networks were overwhelmed by
traffic. Surveying witnesses and survivors at the
university allows the authors to study how the
perceptions of information access meshed with
the unfortunate events that occurred.

Through these surveys and interviews, they
found that participants have a range of expecta-
tions for connectedness in normal activities. Most
participants did not expect to be able to immedi-
ately contact someone. This held even for strong
social ties, for example, a student trying to reach
his or her parents. Most importantly, the authors
discovered that participants who do have high
expectations of connectivity (and also tend to be
more extroverted individuals) were more likely
to report problems with connectivity than users
with lesser expectations. These problems can lead
these people to form overestimate of the severity
of the crisis, compared with individuals who have
lower expectations for their communication and
are thus less likely to find communication loss a
cause for concern. This means that an individual’s
personal traits may directly influence how he or
she estimates the severity of a crisis.

While the authors admitted that they had
a small sample size and that their interview
methods may not be perfect, this study is an
important step towards further understanding the
interplay between modern telecommunications
and emergency events.

Emergencies and Social Media

Today, social media such as Twitter and Facebook
have been popularly used as everyday commu-
nication tools. Millions of people use “tweets”

or Facebook “statuses” to inform family, friend-
s, colleagues, or any others about information,
opinion, and emotions about events just hap-
pening, leading to the great potential of using
social media for monitoring and rescue purposes.
Twitter allows users to send and receive tweets
(140-character messages) via text messages and
Internet-enabled devices, providing the public
with detailed anecdotal information about their
surroundings. Given the real-time nature of Twit-
ter and the emerging social networking technolo-
gies, social media has the potential to fundamen-
tally alter our discussions of emergencies. We
briefly review some of the recent work on detect-
ing disease outbreaks and earthquake response
with Twitter.

Twitter and Disease Outbreaks
Various studies have shown the potential of us-
ing Twitter data to monitor the current public
health status of a population, as people often
tweet when they feel ill or recognize disease
symptoms. Quincey and Kostkova (2010) collect-
ed tweets that contained instances of the keyword
“flu” in a week during the swine flu pandemic.
Their study suggests that the copresence of other
words in tweets can be used by public health
authorities to gather information regarding dis-
ease activity, early warning, and infectious dis-
ease outbreak. For example, in the majority of the
collected tweets, the word “swine” was present
along with “flu”; the words “have flu” and “has
flu” may indicate that the tweet contains infor-
mation about the users or someone else having
flu. The words “confirmed” and “case(s)” perhaps
indicate a number of tweets that are publicizing
“confirmed cases of swine flu.” Culotta (2010)
collected over 500,000 influenza-related tweet-
s during 10 weeks and analyzed the correla-
tion between these messages and the Centers for
Disease Control and Prevention (CDC) statistics.
The paper reported a correlation of 0.78 by lever-
aging a document classifier. Chew and Eysenbach
(2010) collected over 2 million tweets containing
the keywords “H1N1,” “swine flu,” and “swinflu”
within 8 months in 2009. Using manual and
automated content coding, they found temporal
correlation of Twitter activity with major news
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stories and H1N1 incidence data. In addition,
they found that the majority of these tweets con-
tained resource-related posts (e.g., links to news
websites). Gomide et al. (2011) analyzed how
the dengue outbreaks in 2009 were mentioned
on Twitter. Using a linear regression model, they
showed promising results to predict the num-
ber of dengue cases by leveraging tweet con-
tent and spatiotemporal information. Signorini
et al. (2011) tracked time-evolving public senti-
ments about H1N1 or swine flu and studied the
probability of using Twitter stream for real-time
estimation of weekly influenza-like illness (ILI)
statistics generated by CDC.

There has also been work addressing the
technical challenges of collecting tweets that
are related to health or disease. Zamite et al.
(2011) proposed a system architecture for
collecting and integrating epidemiological data
based on the principles of interoperability and
modularity. Prier et al. (2011) proposed using
a Latent Dirichlet Allocation (LDA) model
to effectively identify health-related topics
in Twitter. Paul and Dredze (2011) collected
two billion tweets related to illness, disease
symptoms, and treatment from May 2009 to
October 2010. They proposed a probabilistic
aspect model to separate tweets related to health
from unrelated tweets. Aramaki et al. (2011)
collected 300 million tweets from 2008 to 2010.
They applied the Support Vector Machines
(SVMs) to find tweets related to influenza with a
correlation of 0.89 % compared with Google Flu
Trends (Ginsberg et al. 2008). These tools offer
the means to transform the overwhelming flood
of big data into more manageable information.

Besides social media, there are also other
solutions to estimate a population’s health from
Internet activity, most notably Google Flu Trends
service, which correlates search term frequen-
cy with influenza statistics reported by the CD-
C (Ginsberg et al. 2008).

Twitter and Earthquakes
In recent years, tremendous effort has been made
towards leveraging Twitter to study earthquakes,
mainly falling into two lines of research:

real-time detection (Sakaki et al. 2010; Guy et al.
2010; Earle et al. 2012) and crisis management
(Hughes and Palen 2009; Caragea et al. 2011; Li
and Rao 2010; Mendoza et al. 2010).

Early earthquake detection and the delivery of
timely alerts is an extremely challenging task.
Depending on peculiarities of the earthquake,
from size to location, alerts may take between 2
and 20 min to publish, owing to the propagation
time of seismic energy from the epicenter to
seismometers and the latencies in data collection
and validation. Therefore, it has been practical-
ly impossible for affected populations to know
about an earthquake before it arrives. This situa-
tion is changing, however, thanks to the pervasive
use of Twitter. Users submit their tweets via
text messages and Internet-enabled devices, and
these messages are available to their followers
and the public within seconds, making Twitter
an ideal environment for the dissemination of
breaking news to large populations. Therefore, by
using populations as social sensors, Twitter may
be a viable tool for rapid assessment, reporting,
and potentially real-time detection of a hazard
event. Sakaki et al. (2010) investigated events
such as earthquakes and typhoons in Twitter and
proposed an algorithm to monitor tweets and to
detect earthquakes. They extracted features such
as keywords in a tweet by semantic analysis and
used Support Vector Machines (SVMs) to classi-
fy a tweet into a positive or negative class. By re-
garding a tweet as a social sensor associated with
location information, the authors transformed the
earthquake detection problem into an object de-
tection problem in ubiquitous and pervasive com-
puting. They derived a probabilistic model by
applying Kalman filtering and particle filtering
to estimate the epicenter of an earthquake and
the trajectories of a typhoon. They then deployed
an earthquake reporting system in Japan, which
delivers earthquake notifications to their users
faster than the announcements broadcast by Japan
Meteorological Agency. Meanwhile, researchers
from the US Geological Survey (USGS) reported
an earthquake detection system that adopts so-
cial network technologies, called Twitter Earth-
quake Detector (TED) (Guy et al. 2010; Earle
et al. 2012). They downloaded tweets that con-
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tain the words “earthquake,” “gempa,” “temblor,”
“terremoto,” or “sismo” from August to the end
of November 2009. Based on tweet-frequency
time series, they used a short-term-average, long-
term-average algorithm to identify earthquakes,
finding 48 earthquakes around the globe with
only 2 false triggers in 5 months of data. The
detections are faster than seismographic detec-
tions, with 75 % occurring within 2 min. These
results demonstrate the efficiency of using Twitter
as a detection tool, potentially achieving better
and more accurate results when combined with
existing systems.

The rich semantics of tweets and Twitter’s
broadcasting nature also hint at the potential of
using Twitter for rapid emergency response tools
to assist in intervention and crisis management.
Caragea et al. developed a reusable informa-
tion technology infrastructure, called Enhanced
Messaging for the Emergency Response Sector
(EMERSE) Caragea et al. (2011). The system
is aimed at classifying tweets and text messages
automatically, together with the ability to de-
liver relevant information to relief workers. E-
MERSE has four components, including an i-
Phone application, a Twitter crawler, machine
translation, and automatic message classification.
The system analyzed the information about the
Haiti earthquake relief and provided their output
to NGOs, relief workers, and victims and their
friends and relatives in Haiti. To use Twitter as
an emergency response tool, it is important to
assess the information quality of tweets during
an emergency situation. Li and Rao (2010) stud-
ied Twitter usage following the Sichuan earth-
quake in China in 2008. They focused on five
information quality dimensions: timeliness, ac-
cessibility, accuracy, completeness, and collec-
tive intelligence, arguing that Twitter is an effec-
tive tool for information dissemination in critical
moments following earthquake and its broadcast-
ing nature plays an important role in emergency
response. Mendoza et al. (2010) studied the dis-
semination of false rumors and confirmed news
following 2010 Chile earthquake, finding that
false rumors tend to be questioned much more
than confirmed news. Their study indicates the

possibility of using Twitter to detect rumors after
an earthquake to make the rescue efforts more
efficient.

Emergencies andMobile Phones

In addition to social media websites, the perva-
sive adoption of mobile phones provides another
potentially even more detailed avenue to monitor
large populations. Mobile phone records usually
include fine-grained longitudinal mobility traces
and communication logs. The data allows greater
opportunity to study personal social networks
through their relationship with physical space,
compared to the online social networks (e.g.,
“friends” and “followers” on Twitter). Mobile
phones are well established in many areas, even
in third world countries such as Rwanda (Kapoor
et al. 2010). Leveraging their presence to assist
in emergency response has great potential to save
lives. Here we review two recent papers focused
on mobile phones and emergencies. The first
studied an earthquake that occurred in central
Africa (Kapoor et al. 2010). The second analyzed
a corpus of events including non-emergency con-
trols such as music festivals occurring in Western
Europe (Bagrow et al. 2011).

An Earthquake in Central Africa
To understand how effective mobile phones are
at understanding emergency situations, a number
of studies have been conducted. Kapoor et al.
(2010) studied a 5.9 magnitude earthquake that
occurred February 3, 2008, in Lake Kivu region
of the Democratic Republic of Congo Kapoor
et al. (2010). The dataset is the cellular activity
patterns of mobile phone users in Rwanda. They
used daily call volume on a per tower basis, and
they also had the geographic coordinates of the
towers. Their goal was to determine the location
of the epicenter algorithmically using only the
cellular data and to assess or predict what areas
of the country are most in need of aid due to the
earthquake.

To study these problems, they assumed that
(i) cell tower traffic deviates in a statistically
significant manner from normal activity levels
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and trends when an event occurs, (ii) areas that
are more disturbed by the event will display
traffic deviations for longer periods of time, and
(iii) disruptions are inversely proportional to the
distance from the catastrophe.

To detect an event they assumed the typical
daily traffic on a tower obeys a gaussian distri-
bution and they used a negative log-likelihood
score to compare the current traffic with this
distribution. The higher this score, the more likely
there was an anomalous event on that day. They
demonstrated that this score spikes on the day
of the event, although they did not discuss a
specific algorithm to automatically flag scores
(e.g., introducing a threshold score such that an
event is anomalous when its score exceeds that
threshold).

To estimate the location of the event, they
assumed the activity levels at a tower during the
event follow a normal or gaussian distribution
but that the mean of this tower’s distribution is
now a function of the distance from the epicenter.
Specifically they used for tower i a distance-
dependent mean mi C ˛Di .ex; ey/�1, where mi

is the normal mean traffic for i , ˛ is some con-
figurable scaling parameter, and Di .ex; ey/ is the
geographic distance of tower i from an epicenter
located at coordinates .ex; ey/. They determined
this epicenter .ex; ey/ (and also ˛/ using well-
established maximum likelihood estimates, that
is, they found the epicenter and scaling param-
eters that maximize the sum of the log’s of all the
tower’s probabilities.

The other problem they wish to address is to
predict what areas are most in need of emergency
aid. To do this, they want to predict whether
a particular tower will experience a significant
increase in traffic some number of days after
the event. They accomplished this by building
a classifier which allows them to estimate this
persistence probability. Since it is reasonable to
assume that areas with higher populations are
likely to require more aid, they built an “as-
sistance opportunity score” for a location by
taking the product of the persistence probability
estimate for that location and the population at
that location. Such a score allows emergency
responders to potentially prioritize aid efforts.

The authors also pointed out an important
issue when using mobile phone data to study
these problems: the density of towers, and
therefore information, is not uniform. Cities have
many more towers than rural regions, and this
leads to far greater granularity in areas of high
population and greater information uncertainty
in areas with fewer towers. They exploited this
fact to estimate what areas are most valuable to
survey manually for information after an event,
by prioritizing surveys towards areas with more
uncertainty. They did this by devising a simple
mechanism to drive down the entropy in the
information that may be gained from the system,
and they even incorporated geographic distances
since it is more expensive in terms of time and
effort to survey more remote regions.

All of their methods were validated by com-
parison with the February 3 earthquake and were
shown to work rather well. For future work they
discussed a number of interesting advancements
such as incorporating richer models of geograph-
ic terrain.

Mobile Phones andDisasters
Bagrow et al. (2011) performed a data-driven
analysis of a number of emergencies, including
bombings, a plane crash, and another earthquake.
This work reported a number of empirical dis-
coveries regarding the response of populations
in the wake of emergencies (and non-emergency
control events such as festivals), as measured
from the country-wide data of a single mobile
phone provider in Western Europe. The assump-
tions made by Kapoor et al. (2010) are further
justified by their work.

They found that emergencies trigger a sharp
spike in call activity (number of outgoing calls
and text messages) in the physical proximity
of the event, confirming that mobile phones
act as sensitive local “sociometers” to external
societal perturbations. In Fig. 1a, we plot the
relative call volume �V= hVnormali as a function
of time, where �V D Vevent � hVnormali, Vevent

is the number of calls made from nearby towers
during the event, and hVnormali is the average
call volume during the same time period of the
week (Figure adapted from Bagrow et al. (2011)).
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The anomalous traffic starts to decay immediately
after the emergency occurs, suggesting that the
urge to communicate is strongest right at the
onset of the event. There was virtually no delay
between the onset of the event and the jump
in call volume for events that were directly
witnessed by the local population, such as the
bombing, the earthquake, and the blackout. Brief
delay was observed only for the plane crash,
which took place in an unpopulated area and thus
lacked eyewitnesses. In contrast, non-emergency
events, like the festival and the concert, displayed
a gradual increase in call activity.

The temporally localized spikes in call
activity (Fig. 1a) raise an important question:
is information about an event limited to
the immediate vicinity of the emergency
or do emergencies, often immediately cov-
ered by national media, lead to spatially
extended changes in call activity (Petrescu-
Prahova and Butts 2008)? To investigate
this, Bagrow et al. inspected the change in
call activity in the vicinity of each event’s
epicenter, finding that for the bombing, for
example, the change in call volume is strongest
near the event and drops rapidly with the distance
r from the epicenter. To quantify this effect
across all emergencies, they integrated the
call volume over time in concentric shells of
radius r centered on the epicenter. The observed
decay in anomalous traffic was approximately
exponential, �V.r/ � exp .�r=rc/, allowing one
to characterize the spatial extent of the reaction
with a decay rate rc (we present their results for
the plane crash in Fig. 1b). The observed decay
rates ranged from 2 km (bombing) to 10 km
(plane crash), indicating that the anomalous
call activity is limited to the event’s vicinity.
An extended spatial range (rc�110 km) was
seen only for the earthquake. Meanwhile, non-
emergencies are highly localized: they possess
decay rates less than 2 km. This systematic split
in rc between the spatially extended emergencies
and well-localized non-emergencies persisted for
all explored events.

Despite the clear temporal and spatial local-
ization of anomalous call activity during emer-
gencies, one expects some degree of information

propagation beyond the eyewitness population.
To study how emergency information diffuses
through a social network, Bagrow et al. used
mobile phone records to identify those individ-
uals located within the event region, forming a
population called G0 as well as a group called G1

consisting of individuals outside the event region
but who receive calls from the G0 group during
the event, a G2 group that receive calls from G1,
and so on. They reveal that the G0 individuals
typically engage their social network within min-
utes and that the G1, G2, and occasionally even
the G3 group show an anomalous call pattern
immediately after an emergency. We present their
illustration of a segment of this contact network
for the bombing in Fig. 1c. The authors proceeded
to further quantify and control for this social
propagation and showed that the bombing and
plane crash have significant propagation up to the
third and second neighbors of G0, respectively.
They found that other emergencies, the earth-
quake and blackout, displayed relatively little
propagation. This seems reasonable given the less
severe nature of those events (the earthquake was
relatively minor).

Finally, we also presented a breakdown of a
number of measurable features for each emer-
gency and non-emergency and showed that these
features may be used to distinguish anomalous
call activity due to benign events such as music
festivals from spikes in call volume that indicate a
dangerous event has occurred. Using such factors
may allow first responders to more accurately
understand rapidly unfolding events and may
even allow them to actively solicit information
from mobile phone users likely to be near the
event.

Key Techniques

We summarize the key techniques that have been
used in the above-mentioned studies.
Event Detection. The first challenge in large-
scale emergency studies is to determine and col-
lect a subset of data relevant to emergencies
under consideration. With Twitter or other social
media data where the communication content is
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Social Networks in Emergency Response, Fig. 1
Temporal, spatial, and social response during emergen-
cies. a The time dependence of call volume V .t/ after four
emergencies and two non-emergencies. We plot the rela-
tive change in call volume 	V= hVnormali, where 	V D
Vevent�hVnormali, Vevent is the call volume on the day of the
event, and hVnormali is the average call volume during the
same period of the week. b The total change in call volume
during 2-h periods before and after the plane crash, as
a function of distance r from the epicenter of the crash.

Following the event, we see an approximately exponential
decay 	V � exp r=rc characterized by decay rate rc. c
Part of the contact network formed between mobile phone
users in the wake of the bombing. Nodes are colored by
group, with G0 representing phone users calling from the
event region, G1 the recipients of those calls, etc. As
time goes by more users are contacted as information
propagates. Those same users make little contact during
a corresponding time period the week before (Figure
adapted from Bagrow et al. (2011))
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available in text format, most studies begin with a
simple keyword matching, that is, collecting data
that contained instances of the relevant keywords
such as “flu,” “H1N1,” and “earthquake.” The
initial collections could be refined by manual
and automated classification process. Classifica-
tion techniques such as Support Vector Machines
(SVMs) have been employed (Aramaki et al.
2011; Sakaki et al. 2010), and topic cluster-
ing methods such as Latent Dirichlet Allocation
(LDA) can be used to improve the classifica-
tion (Paul and Dredze 2011; Prier et al. 2011).
Validation of this body of work is often conducted
based on authority reports such as Centers for
Disease Control and Prevention (CDC) statistic-
s (Signorini et al. 2011) (for disease outbreaks) or
US Geological Survey (USGS) reports (Guy et al.
2010; Earle et al. 2012) (for earthquakes). While
the messages disseminated in social media might
be inaccurate, there has been work on determin-
ing the quality of information sources (Li and Rao
2010; Mendoza et al. 2010). Further, by applying
time-series analysis and spatiotemporal pattern
analysis (e.g., Kalman filtering and particle fil-
tering in Sakaki et al. (2010)), researchers have
developed powerful earthquake detectors with
performance comparative to existing earthquake
detection systems.

Event Prediction and Forecasting. The devel-
opment of event prediction and forecasting is still
in its early stage. Gomide et al. (2011) used a
linear regression model to predict the number of
dengue cases. The earthquake detectors (Sakaki
et al. 2010; Guy et al. 2010; Earle et al. 2012)
that reported earthquakes faster than the seismo-
graphic detection can be used as early warning
system. There has been work on developing in-
formation infrastructure which has the ability to
deliver relevant information to users once events
are detected (Caragea et al. 2011).

Spatiotemporal Pattern Recognition of
Events. Unlike social media data, the content
of communication is often unavailable in mobile
phone data, and hence the identification of
emergency events in mobile phone data relies
on analyses of spatial and temporal anomalies
of call logs. The main challenge of this research

is to construct reasonable null model in order to
recognize anomaly events. Bagrow et al. (2011)
proposed using pre-emergency normal activities
as well as the activities during non-emergency
events to contrast the activities of emergency
events. Based on this approach the epicenter of
an emergency event can be identified. Kapoor
et al. (2010) used a similar methodology to
identify event epicenters as well as to predict
the locations in need of emergency aid.

Future Trends

Foundational work understanding the sociology
of disaster was limited in scale by available data
but surveys and interviews can ask a number
of in-depth follow-up questions. To understand-
ing population response from, for example, mo-
bile phone call volume alone is potentially more
challenging as such data, while perhaps being
more objective, is also far shallower. This begs
the question: can more depth be found in commu-
nications data? The wealth of textual information
available within social media such as Twitter
can be leveraged to learn more context about
how populations respond to emergencies, and
advances in data mining and natural language
processing techniques offer the promise of even
greater information. This may allow researchers
to separate relevant information from spurious
activity, improving the accuracy and precision of
information available to rescuers.

One can reasonably expect a degree of noise
from any communication system, as users will be
focused on diverse topics. Yet when something
of overwhelming importance occurs, such as an
emergency, it seems reasonable to expect that
event to capture the majority of user attention.
This may lead to a communication system that
is less noisy and more focused as the severity of
the event increases, in the sense that an increasing
fraction of the system’s communication will be
about that event. Given this, it may be worth
trying to develop (rigorous) bounds on how much
useful information can be successfully extracted
from such a system during and immediately fol-
lowing an event. This could allow quantitative
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benchmarking of algorithms designed to assist
rescuers by comparing, for example, how much
emergency information was extracted by an algo-
rithm with the maximum amount possible.

Meanwhile, it will be crucial going forward
to develop algorithms that combine and help
understand multiple data sources—such as cell
phone call volume, twitter messages, and perhaps
even security cameras, all from a given geo-
graphic locale. This trend towards greater data
availability and unification will only continue
as more advanced and entirely new forms of
telecommunication come into widespread use.
Without methods to handle the increased diver-
sity and volume of communication, rescuers may
be unable to capitalize on the extra information
provided by future telecommunications.

Conclusion

We have reviewed a number of works focused
on the use of communications data, from social
media to mobile phones, to understand how peo-
ple react to emergencies and disasters. This prob-
lem is of critical importance: in many areas of
the world, more people than ever are at risk,
as both human populations and threats due to
climate change continue to grow. Hopefully tools
derived from social media and other communi-
cation datasets will help rescuers improve their
emergency and disaster response by providing
accurate, useful, and timely information in the
wake of such events.
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Synonyms

Electronic health record; Patient similarity

Glossary

Patient similarity The clinical similarity score
between pairwise patients derived from their
records

Patient network A network with nodes repre-
senting patient entities, edges representing
pairwise patient similarities

Definition

Constructing an undirected patient network with
patients as nodes and pairwise clinical similari-
ties as edge weights can enable many applications
in modern medical informatics such as physician
decision support, risk stratification, and com-
parative effectiveness research, because similar
patients have similar clinical characteristics and
thus the treatment on one patient might be helpful
to his/her similar patients. Therefore constructing
such a patient network is very important to data-
driven analytics for healthcare, and effective pa-
tient similarity evaluation is the key to construct
the patient network.

Introduction

Healthcare has undergone a tremendous growth
in the use of electronic health records (EHR)
systems to capture patient disease and treatment
histories. However, these systems store the data
in a manner that makes it difficult for clinicians
to extract what is necessary to make clinical deci-
sions at the point-of-care. Most of EHR systems
are primarily used to record clinical events for
bookkeeping and claim purposes as opposed to
be used as a decision support tool for better
diagnosis and treatment. Constructing a patient
network with nodes representing patients and
edges connecting clinically similar patients might
be very helpful to such a clinical decision support
system, as the physician can look at the treat-
ments and disease condition evolutions of the
similar patients to come up with a better care plan
for the current patient.

Actually besides decision support systems,
there are also other areas in medical informatics
where such patient network could be very
helpful, for example, comparative effectiveness
research (CER), which is the direct comparison
of existing healthcare interventions to determine
which work best for which patients and
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which pose the greatest benefits and harms
(http://en.wikipedia.org/wiki/Comparative_effecti
veness_research 2013). In such a case, if we can
first stratify the patients into different cohorts
according to their clinical similarity, then CER
can be performed on the patients within the
same cohorts. Under a similar setting, patient
risk stratification aims to stratify the patients
according to their disease condition risks. This
is a crucial step for effective management of
patients, because for patients with different risks,
we may have different treatment plans. One
step forward, if we can construct an undirected
patient network using such patient similarity, we
can expect to discover some disease and their
evolution patterns, as well as the care/treatment
patterns, which would be clinically very useful.

Current Technologies

There have already been quite a few patient
similarity evaluation techniques. Before giving an
overview of them, we first need to introduce the
vector space representation of the patient clinical
characteristics, which is an enabling technique to
invoke the similarity learning and computations.

Patient Profiling
Patient EHRs contain lots of heterogeneous in-
formation, such as demographic information, di-
agnosis, medication, and lab tests. We call these
different information source features. To facil-
itate the process of similarity learning, some
researchers proposed to construct a profile for
each patient, which is a feature vector with the
dimensionality equal to the number of different
features. Before constructing such a vector, we
first define a time period of interest, within which
we will aggregate the features to get the entries
in the patient profile (e.g., the average value of
a specific lab test or the count of a specific
diagnosis code). In this way, after profiling, each
patient is represented as a feature vector (Wang
et al. 2011a, b, 2012).

Locally SupervisedMetric Learning
Locally Supervised Metric Learning (LSML) is
a supervised metric learning approach that has

been proved to be useful in patient similarity
evaluation (Sun et al. 2010b, a; Ebadollahi et al.
2010). This algorithm was initially proposed in
Wang et al. (2009) for measuring text similarity.
In the following, we use X D Œx1; � � � ; xn� 2
R

d�n to represent a data matrix from a single
specific party, and y D Œy1; � � � ; yn�T 2 R

n

is the corresponding label vector with yi 2
f1; 2; � � � ; C g denoting the label of xi , and C is
the number of classes. Some examples of the
labels here can be diagnosis, for example, the
patient has diagnosis or not, or hospitalization,
meaning the patient is hospitalized or not, etc.

Our goal is to learn a Mahalanobis distance as
follows:

d†.xi ; xj / D
q�

xi � xj

	>
†
�
xi � xj

	
(1)

where † 2 R
d�d is a symmetric positive semi-

definite (SPSD) matrix. Following Wang et al.
(2009), we define the homogeneous neighbor-
hood and heterogeneous neighborhood around
each data point as

(Homogeneous neighborhood). The homoge-
neous neighborhood of xi , denoted as N o

i , is
the jN o

i j-nearest data points of xi with the
same label.

(Heterogeneous neighborhood). The hetero-
geneous neighborhood of xi , denoted as N e

i ,
is the jN e

i j-nearest data points of xi with
different labels.

In the above two definitions, we use j � j
to denote set cardinality. In order to define the
individual distance metric on this party, we need
to first construct the neighborhood N o

i and N e
i .

Then we can define the local compactness and
scatterness around point xi as

Ci D
X

j Wxj2No
i

d 2
†.xi ; xj / (2)

Si D
X

kWxk2N e
i

d 2
†.xi ; xk/ (3)

Then we can learn an optimal distance metric by
minimizing the following discrimination criteri-
on

J D
Xn

iD1
.Ci � Si / (4)
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which makes the data in the same class compact
while data in different class diverse. As † is SPS-
D, we can factorize it using incomplete Cholesky
decomposition as

† DWW> (5)

Then J can be expanded as

J D tr
�
W> .†C �†S/ W

	
(6)

where tr.�/ is the matrix trace, and

†C D
X

i

X
j Wxj2No

i

.xi � xj /.xi � xj /> (7)

†S D
X

i

X
kWxk2N e

i

.xi � xk/.xi � xk/> (8)

are the local compactness and scatterness matri-
ces. Hence the distance metric learning problem
can be formulated as

minWWW>WDI tr
�
W> .†C �†S/ W

	
(9)

Note that the orthogonality constraint W>W D I
is imposed to reduce the information redundancy
among different dimensions of W, as well as con-
trol the scale of W to avoid some arbitrary scal-
ing. The optimal solution of W can be obtained
by doing eigenvalue decomposition to †C � †S
with the largest eigenvectors.

In summary, the individual distance metric,
which is parameterized by a projection matrix W,
can finally be learned from local neighborhood
information. Next, we will show how to combine
these neighborhoods from different base metrics
into a single optimal distance metric.

Efficient Metric Updating: Interactive
Metric Learning
One issue for applying the above LSML tech-
nique in patient similarity evaluation for physi-
cian decision support is that the physician may
give some feedback after he/she sees the results.
Therefore it is important for LSML to be capable
of efficiently incorporating those feedbacks. The
feedbacks in general can be regarded as in the
form of label changes of y, which consequently
leads to changes to †C and †S , and the key is to

efficiently updating the eigenvalue and eigenvec-
tors of †C �†S . In the following we will briefly
describe how the authors in Wang et al. (2011b)
solve this problem.

Definition and Setup To facilitate the discus-
sion, we define the following matrix:

† D †C �†S (10)

Next we introduce an efficient technique based
on matrix perturbation (Stewart and Sun 1990)
to adjust the learned distance metric according to
changes of †. Suppose that after adjustment, L
becomes e† D † C�† (11)

We define .�i ; wi / as one eigenvalue-eigenvector
pair of matrix †. Similarly, we define .e�i ;ewi / as
one eigenvalue-eigenvector pair of e†.

Then we can rewrite .e�i ;ewi / as

e�i D �i C��i (12)

ewi D wi C�wi (13)

Next we can obtain

.†C�†/.wiC�wi / D .�iC��i /.wiC�wi /

(14)
Now the key questions are how to compute
changes to the eigenvalue ��i and eigenvector
�wi , respectively.

Eigenvalue Update Expanding Eq. (14) and us-
ing the fact that †wi D �i wi , we can obtain the
following equation:

.† C�†/wi D �i �wi C��i wi (15)

Now multiplying both sides of Eq. (15) with w>i
and because of the symmetry of †, we get

��i D w>i �†wi (16)

Eigenvector Update Since the eigenvectors are
orthogonal to each other, we assume that the
change of the eigenvector �wi is in the subspace
spanned by those original eigenvectors, i.e.,
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�wi �
Xd

jD1
˛ij wj (17)

where f˛ij g are small constants to be determined.
Bringing Eq. (17) into Eq. (15), we obtain

†

dX
jD1

˛ij wj C�†wi D �i

dX
jD1

˛ij wj C��i wi

Multiplying w>
k

.k ¤ i/ on both side of the above
equation and discarding the high-order term and
bringing in Eq. (17), we get

�wi D �
X
j¤i

w>j �†wi

�i � �j

wj (18)

Collective Intelligence: Composite
Distance Integration
Another challenge in patient similarity is that
different physicians have different opinions, then
how to integrate all of them to come up with an
objective patient similarity? The authors in Wang
et al. (2011a, 2012) presented an approach on in-
tegrating neighborhood information from multi-
ple parties (physicians) when performing LSML.
Next we will briefly review this technique.

Objective Function
The goal here is still learning a Mahalanobis
distance as in Eq. (1) but integrating the neighbor-
hood information from all parties. Here the q-th
party constructs homogeneous neighborhood
N o

i .q/ and heterogeneous neighborhood N e
i .q/

for the i -th data point in it. Correspondingly,
the compactness matrix †

q
C and the scatterness

matrix †
q
S are computed and shared by the q-th

party:

†
q
C D

X
i2Xq

X
j Wxj2No

i
.q/

.xi � xj /.xi � xj />

†
q
S D

X
i2Xq

X
kWxk2N e

i
.q/

.xi � xk/.xi � xk/>

Similar to one party case presented in Eq. (6), we
generalize the optimization objective as

J D
Xm

qD1
˛qJ q

D
Xm

qD1
˛qtr

�
W>

�
†

q
C �†

q
S
	

W
	

(19)

where ˛q is the importance for the q-th party
and ˛ D .˛1; ˛2; � � � ; ˛m/> is constrained to
be in a simplex as ˛q > 0;

P
q ˛q D 1,

and m is the number of parties. Note that by
minimizing Eq. (19), the proposed approach
actually leverages the local neighborhoods of
all parties to get a more powerful discriminative
distance metric. Thus it aims at solving the
following optimization problem:

min˛;W

Xm

qD1
˛q t r

�
W>

�
†

q
C �†

q
S
	

W
	

C��.˛/

s:t: ˛ > 0; ˛>e D 1

W>W D I (20)

Here �.˛/ is some regularization term used to
avoid trivial solutions, and � > 0 is the trade-off
parameter. In particular, when � D 0, i.e., with-
out any regularization, only ˛q D 1 for the best
party, while all the others have zero weight. The
best � can be selected through cross-validation.

Problem (Eq. 20) can be solved by alternating
optimization and the procedure is guaranteed to
converge to a local optimum.

Future Trends

Although LSML is a powerful methodology and
it has been proved to be useful on some real-
world clinical data (Ebadollahi et al. 2010; Sun
et al. 2010b; Wang et al. 2012), there are still
some limitations which include: (1) It is a su-
pervised approach, meaning, for all the training
data, we need to have their supervision infor-
mation (either in terms of labels or pairwise
constraints) – this is difficult in medical scenario
as the supervision information is expensive and
time-consuming to obtain – and (2) it needs to
construct different types of neighborhoods; this
could be time-consuming when the data set scale
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is large. Therefore the future research towards ef-
fective patient similarity evaluation should be the
following: (1) Use less supervisions and more un-
supervised data. Semi-supervised learning tech-
niques (Zhu and Goldberg 2009) could be helpful
in this scenario. (2) Improve the scalability of the
algorithm and make it fit in the scenario when we
have millions of patients.

Conclusion

This chapter reviews the state-of-the-art tech-
nology for patient similarity evaluation, which
can be used for constructing a patient network.
Specifically, we introduced the Locally Super-
vised Metric Learning (LSML) algorithm as well
as its two variants on how to make real-time
updates and integrate multiple experts’ opinions.
We finally point out that the future research
directions of this research topic.
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Glossary

Tie A relationship between two individuals
Social Network A set of individuals connected

by a set of dyadic ties
Online Social Network A social network on the

World Wide Web

Definition

Social order, a technical term from social sci-
ences (Frank 1944), is the study of how so-
cial creatures (such as human beings) are both
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individual and social (Hechter and Horne 2003).
As Hechter and Horne (2003) point out, social
order occurs when individuals coordinate and
cooperate with each other.

Social order in online social networks and the
coordination and cooperation that give rise to
them appear in many different structural forms.
Examples include homophily, communities
(a.k.a. groups), weak ties, structural holes, and
social capital.

Homophily The notion of homophily (i.e., “of
like attracting like”) has been around since the
ancient Greeks. It is often quoted that Plato
said, “Similarity begets friendship.” Previous
research (McPherson et al. 2001) has shown that
homophily is a major criterion governing the
formation of ties in social networks. Many social
networks have high levels of homophily (Easley
and Kleinberg 2010, pp. 79–81). Coordination
and cooperation is often more successful between
people who are similar to each other – either in
terms of status or value (McPherson et al. 2001).

Communities Generally speaking, communities
are defined as groups of individuals that are well
connected to each other. The existing literature
contains many objective functions and algorithms
that formalize the aforementioned definition and
produce communities (Leskovec et al. 2010).
The one pertinent to social order is where a
community has low conductance, i.e., where the
ratio of ties crossing the community boundary
to ties within the community is low (Leskovec
et al. 2010). Members of such communities are
often tightly connected. These highly connected
structures, in turn, promote trust among their
members – an important property for social or-
der.

Leskovec et al. (2008) found that the sizes
of communities in large online networks rough-
ly follow the Dunbar number .�150) (Dunbar
1998) and that large well-defined communities
are absent in online networks. These findings
make intuitive sense since maintaining relation-
ships besides the trivial ones requires substantial
investment in terms of our neocortex processing
capabilities (Dunbar 1998).

Moreover, Leskovec et al. (2008) describe
large social networks as having a nested core-
periphery structure, where the network is com-
posed of layers of large cores and a small number
of dense communities loosely connected to the
core. This result indicates the presence of a hier-
archy or nested social order in online social net-
works. In other words, the levels of coordination
and cooperation vary depending on where in the
nested core-periphery structure a person resides.

Weak Ties Granovetter (2003) was the first to
distinguish between weak and strong ties in social
networks. He informally defined tie strength as
the “amount of time, the emotional intensity, the
intimacy (mutual confiding), and the reciprocal
services which characterize the tie” (Granovetter
2003, p. 1361). Weak ties correspond to “local
bridges” (Easley and Kleinberg 2010), where
two people have zero common friends. The lack
of common friends can make coordination and
cooperation difficult and reduce social order.

Structural Holes Burt (2004) defined structural
holes as the empty spaces (i.e., no connections)
between groups in the social network. People
who fill these structural holes bring social order to
the network because they control the information
flow and are rewarded with power and wealth.

Social Capital Being members of a community
has many advantages (Portes 1998). For exam-
ple, belonging to a community with high triadic
closure (where friend of a friend is a friend) and
embeddedness (where two people share many of
the same friends) enforces norms and maintains
reputational effects. In other words, this “closure”
of friends promotes trust. The counterbalance to
closure is brokerage. People who are “brokers”
interact at the boundary of various communities –
i.e., they fill the structural holes. As mentioned
above, such people have more social capital com-
pared to others in the community.

Social order, in terms of closures and broker-
ages, is essential in the preservation of social net-
works. Closures give rise to communities, while
brokerages give rise to connections across various
communities.
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Glossary

Provenance Sources of a piece of information
Provenance Paths Paths of information propa-

gation from sources to terminals

Definition

Social Provenance
An information propagation network can be rep-
resented as a directed graph G (V; E/, where V is
the node set and E is the edge set. Each node in
the graph represents the entity, which publishes
a piece of information on social media. Entity
may refer to an individual user or a webpage.
A directed edge between nodes represents the
direction of information flow. For a given piece of
information propagating through the social medi-
a, the social provenance informs a user about the
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Social Provenance, Fig. 1 Information propagation in social media

sources of a given piece of information. Sources
refer to the nodes that first publish the concerned
messages.

Figure 1 shows an information propagation
graph indicating the flow of information I D
fI1I I2I I3} which is about the same event. S1, S2,
and S3 are the source nodes, or the originators
of I1; I2, and I3, respectively. The information
is transmitted through different nodes in social
media or recipients. These nodes propagate in-
formation; some may retransmit it with modifica-
tions. Each edge is labeled with the information
indicating where it comes from, e.g., “a” on edge
“A–C” means that it is from “A.” A social prove-
nance problem is to help a recipient (say, node D)
to answer what are possible information sources
in social media for a given piece of information.
A provenance path delineates how information
spreads from a source to a recipient, including
those responsible for retransmitting the informa-
tion from the sources through intermediaries. If
the provenance paths are known, the sources of
information can be determined. More often than
not, however, provenance paths of a known piece
of information are unknown.

Provenance has been studied in the data man-
agement field. In data management, provenance
represents the creator of the data and how data
has been modified and transferred. Provenance
information is used to determine the authenticity
and trustworthiness of information. Provenance
is the key to solve the data conflict problem
(Moreau 2009). Unlike social media, data prop-
agation can be captured in data management
systems. Social provenance has received little
attention in the literature. Shah and Zaman (2011)
proposed a centrality-based method to determine
the single information source among all known
recipients on an undirected network. It assumes
that information spread on a network follows
the susceptible infected (SI) model. Since this
method requires the knowledge of all recipients,
it is not practical for social provenance. Also, the
source computed using this method is more bi-
ased towards higher-degree nodes. Barbier, in his
dissertation (Barbier 2012), proposed a method
to collect metadata about the received informa-
tion. Such metadata is referred as provenance
attributes. Provenance attributes can play a vital
role in obtaining social provenance.
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Social Provenance

Social media can help in solving the problem
of social provenance due to its unique features:
user-generated content (e.g., tweets, blog posts,
news articles), user profiles, user interactions
(e.g., links between friends, hyperlinks on the
blog, or news articles), and spatial or temporal
information. These features can help reconstruct
an information propagation network of a given
message, and the network is essential for social
provenance.

The social provenance problem answers
which nodes are the possible sources of some
particular information, say a text message. The
provenance path problem seeks to identify the
paths that allow us to trace back possible sources.
Solving the social provenance problem entails
solving the provenance path problem. We present
some key research issues in this burgeoning area
below:
(a) What are the characteristics of sources

such that we can identify a source when
we encounter one? It is a challenging task
because source nodes are not necessarily
those without incoming links in social media
networks.

(b) How can we use different parts of social
media data for inferring provenance paths?
Content, user profiles, and interaction pat-
terns can play complementary roles in back-
tracking information propagation. As a pop-
ular source can lead to a shallow cascade
(Leskovec et al. 2009), the study of node
centrality measures can be of help.

(c) How can we infer missing links in recon-
structing a provenance path with partial in-
formation? By the nature of social medi-
a, most information is informal and partial.
Links can expand the network (i.e., new n-
odes can be added), and data associated with
a node provides more information, though
still partial.

(d) How can we limit the search space in the
vast land of social media? It is incumbent
to develop a scalable solution for the social
provenance problem.

(e) What are effective and objective ways of ver-
ifying and comparing different approaches

to social provenance and provenance path
problems? Lack of ground truth constitutes
one of the foremost difficulties.

An Illustrative Example and Impact

One of the important applications of social prove-
nance is to find the rumormongers or disinforma-
tion centers in social media. The “Assam Exodus”
is a recent example that illustrates the importance
of social provenance. Assam is a large state in the
northeast of India and a series of riots broke out
in July and August 2012. Following the riots, vir-
ulent messages along with disinformation were
spread in other parts of India via social media.
Bulk text messages (short message services, SM-
S) and social media sites were extensively used
to spread information, aiming to incite certain
Indian population against the Northeast Indian
population. For example, a Wall Street journalist
reported that a twitter user used a gory video clip
on riots in Indonesia as that of Assam riots (Twit-
ter 2012). Violent messages were also spread
on Facebook that incite hatred and vengeance a-
gainst the Northeast Indian population (Facebook
2012). The disinformation as well as virulent
messages resulted in deep fear among North-
east Indian population, which ultimately led to
their exodus from some major metropolitan cities
across India, which includes Bangalore, Mum-
bai, Hyderabad, Chennai, and Pune (Wikipedia
2012). In all of these cases, social provenance
might be able to help to find the rumormongers
or disinformation sources early and to help stop
the viral spread of disinformation.

The social provenance problem presents
an unprecedented challenge and its research
progress can pave way for many equally
challenging and important issues such as source
trustworthiness, information reliability, and user
credibility.
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Synonyms

Collaborative filtering; Matrix factorization;
Social network analysis; Social recommender
system

Glossary

Recommender System A system that provides
recommendations for users

Collaborative Filtering A type of recommenda-
tion technique

Social Relations Various social relationships be-
tween users, like social trust relationships

Matrix Factorization Factorizing the user-item
matrix into user latent matrix and item latent
matrix

Definition

The research of social recommendation aims at
modeling recommender systems more accurate-
ly and realistically. The characteristic of social
recommendation that is different from the tradi-
tion recommender system is the availability of
social network, i.e., relational information among
the users. Social recommendation focuses on how
to utilize user social information to effectively
and efficiently compute recommendation results.

Introduction

As the exponential growth of information
generated on the World Wide Web, the
Information Filtering techniques like recom-
mender systems have become more and more
important and popular. Recommender systems
form a specific type of information filtering
technique that attempts to suggest information
items (movies, books, music, news, Web pages,
images, etc.) that are likely to interest the users.
Typically, recommender systems are based on
collaborative filtering, which is a technique
that automatically predicts the interest of an
active user by collecting rating information from
other similar users or items. The underlying
assumption of collaborative filtering is that the
active user will prefer those items which other
similar users prefer (Ma et al. 2007). Based on
this simple but effective intuition, collaborative
filtering has been widely employed in some large,
well-known commercial systems, including
product recommendation at Amazon and movie
recommendation at Netflix.

Due to the potential commercial values and
the great research challenges, recommendation
techniques have drawn much attention in data
mining, information retrieval, and machine learn-
ing communities. Recommendation algorithms
suggesting personalized recommendations great-
ly increase the likelihood of customers making
their purchases online.

Traditional recommender systems assume that
users are independent and identically distributed.
This assumption ignores the social relationships
among the users. But the fact is, offline, social
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recommendation is an everyday occurrence. For
example, when you ask a trusted friend for a
recommendation of a movie to watch or a good
restaurant to dine, you are essentially soliciting a
verbal social recommendation. In (2001), Sinha
and Swearingen have demonstrated that, given
a choice between recommendations from trusted
friends and those from recommender systems, in
terms of quality and usefulness, trusted friends’
recommendations are preferred, even though the
recommendations given by the recommender sys-
tems have a high novelty factor. Trusted friends
are seen as more qualified to make good and
useful recommendations compared to traditional
recommender systems (Bedi et al. 2007). From
this point of view, the traditional recommender
systems that ignore the social network structure
of the users may no longer be suitable.

Thanks to the popularity of the Web
2.0 applications, recommender systems are
now associated with various kinds of social
information. This kind of information contains
abundant additional information about users,
hence providing a huge opportunity to improve
the recommendation quality. For example, in
users’ social trust network, users tend to share
their similar interests with the friends they trust.
In reality, we always turn to friends we trust for
movie, music, or book recommendations, and our
tastes and characters can be easily affected by the
company we keep. Hence, how to incorporate
social information into the recommendation
algorithms becomes a trend in the research of
recommender systems.

Historical Background

As mentioned in Huang et al. (2004), one
of the most commonly used and successfully
deployed recommendation approaches is
collaborative filtering. In the field of collaborative
filtering, two types of methods are widely
studied: neighborhood-based approaches and
model-based approaches.

Neighborhood-based methods mainly focus
on finding the similar users (Breese et al. 1998;
Jin et al. 2004) or items (Deshpande and Karypis

2004; Linden et al. 2003; Sarwar et al. 2001)
for recommendations. User-based approaches
predict the ratings of active users based on
the ratings of similar users found, while item-
based approaches predict the ratings of active
users based on the computed information of
items similar to those chosen by the active
user. User-based and item-based approaches
often use Pearson Correlation Coefficient (PCC)
algorithm (Resnick et al. 1994) and Vector Space
Similarity (VSS) algorithm (Breese et al. 1998)
as the similarity computation methods. PCC
method can generally achieve higher perfor-
mance than VSS approach, since the former
considers the differences of user rating style.

In contrast to the neighborhood-based
approaches, the model-based approaches to
collaborative filtering use the observed user-item
ratings to train a compact model that explains the
given data, so that ratings could be predicted via
the model instead of directly manipulating the
original rating database as the neighborhood-
based approaches do (Liu and Yang 2008).
Algorithms in this category include the clustering
model (Kohrs and Merialdo 1999), the aspect
models (Hofmann 2003, 2004; Si and Jin
2003), the latent factor model (Canny 2002), the
Bayesian hierarchical model (Zhang and Koren
2007), and the ranking model (Liu and Yang
2008). Kohrs and Merialdo (1999) presented an
algorithm for collaborative filtering based on
hierarchical clustering, which tried to balance
both robustness and accuracy of predictions,
especially when few data were available.
Hofmann (2003) proposed an algorithm based
on a generalization of probabilistic latent
semantic analysis to continuous-valued response
variables.

Recently, due to the efficiency in dealing
with large datasets, several low-dimensional
matrix approximation methods (Rennie and
Srebro 2005; Salakhutdinov and Mnih 2008a, b;
Srebro and Jaakkola 2003) have been proposed
for collaborative filtering. These methods all
focus on fitting the user-item rating matrix
using low-rank approximations and employ the
matrix to make further predictions. The Low-
rank matrix factorization methods are very
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efficient in training since they assume that
in the user-item rating matrix, only a small
number of factors influence preferences and
that a user’s preference vector is determined
by how each factor applies to that user. Low-rank
matrix approximations based on minimizing the
sum-squared errors can be easily solved using
Singular Value Decomposition (SVD), and a
simple and efficient Expectation Maximization
(EM) algorithm for solving weighted low-
rank approximation is proposed in Srebro and
Jaakkola (2003). In (2004), Srebro et al. proposed
a matrix factorization method to constrain the
norms of U and V instead of their dimensionality.
Salakhutdinov and Mnih presented a probabilistic
linear model with Gaussian observation noise in
(2008b). In Salakhutdinov and Mnih (2008a), the
Gaussian-Wishart priors are placed on the user
and item hyperparameters.

Traditional recommender systems have been
well studied and developed both in academia
and in industry, but they are all based on
the assumption that users are independent
and identically distributed, and ignore the
relationships among users. Based on this
intuition, many researchers have recently
started to analyze trust-based recommender
systems (Bedi et al. 2007; Massa and Avesani
2004, 2007; O’Donovan and Smyth 2005).

Bedi et al. in (2007) proposed a trust-
based recommender system for the Semantic
Web; this system runs on a server with the
knowledge distributed over the network in the
form of ontologies and employs the Web of
trust to generate the recommendations. In Massa
and Avesani (2004), a trust-aware method for
recommender system is proposed. In this work,
the collaborative filtering process is informed by
the reputation of users, which is computed by
propagating trust. Trust values are computed
in addition to similarity measures between
users. The experiments on a large real dataset
show that this work increases the coverage
(number of ratings that are predictable) while not
reducing the accuracy (the error of predictions).
In O’Donovan and Smyth (2005), two trust-
aware methods are proposed to improve standard
collaborative filtering methods. The experimental

analysis shows that these trust information can
help increase recommendation accuracy.

Previously proposed trust-aware methods are
all neighborhood-based methods which employ
only heuristic algorithms to generate recommen-
dations. There are several problems with this
approach, however. The relationship between
the trust network and the user-item matrix has
not been studied systematically. Moreover, these
methods are not scalable to very large datasets
since they may need to calculate the pairwise
user similarities and pairwise user trust scores.

Social Recommendation UsingMatrix
Factorization

Matrix Factorization
In this subsection, we review one popular matrix
factorization method that is widely studied in the
literature.

Considering an m � n matrix R describing
m users’ ratings on n items, a low-rank matrix
factorization approach seeks to approximate the
frequency matrix R by a multiplication of d -rank
factors R � U T V , where U 2 R

d�m and
V 2 R

d�n with d � min.m; n/. The matrix R

in the real world is usually very sparse since most
of the users only visited a few Web sites.

Traditionally, the Singular Value Decomposi-
tion (SVD) method is employed to estimate a
matrix R by minimizing

min
U;V

1

2

mX
iD1

nX
jD1

Iij .rij � uT
i vj /2; (1)

where ui and vj are column vectors with d values
and Iij is the indicator function that is equal to 1
if user i rated item j and equal to 0 otherwise.

In order to avoid overfitting, two regulariza-
tion terms are added into (1). Hence we have the
following Regularized SVD equation:

min
U;V

1

2

mX
iD1

nX
jD1

Iij .rij � uT
i vj /2

C �1

2
jjU jj2F C

�2

2
jjV jj2F ; (2)
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where �1; �2 > 0. The optimization problem in
(2) minimizes the sum-of-squared-errors objec-
tive function with quadratic regularization terms.
Gradient-based approaches can be applied to find
a local minimum. It also contains a nice proba-
bilistic interpretation with Gaussian observation
noise, which is detailed in Salakhutdinov and M-
nih (2008b). In Salakhutdinov and Mnih (2008b),
the conditional distribution over the observed
data is defined as

p.RjU; V; �2
R/ D

mY
iD1

nY
jD1

�
h
N
�
rij juT

i vj ; �2
R

�iIij
;

(3)

where N .xj�; �2/ is the probability density
function of the Gaussian distribution with mean
� and variance �2. The zero-mean spherical
Gaussian priors are also placed on user and item
feature vectors:

p.U j�2
U / D

mY
iD1

N .ui j0; �2
U I/;

p.V j�2
V / D

nY
jD1

N .vj j0; �2
V I/: (4)

Through a Bayesian inference, we can easily
obtain the objective function in (2).

By adopting a simple stochastic gradient de-
scent technique, for each observed rating rij ,
we have the following efficient updating rules to
learn latent variables ui , vj :

ui  ui C �1.�ij vj � �1ui /;

vj  vj C �2.�ij ui � �2vj /; (5)

where �ij D rij � uT
i vj ; and �1; �2 are the

learning rates.
The Regularized SVD algorithm introduced

in this section is both effective and efficient in
solving the collaborative filtering problem, and it
is perhaps one of the most popular methods in
collaborative filtering.

Social Trust Ensemble
However, the above algorithm does not consider
any information from users’ social network. In
order to better model the recommendation prob-
lem, in Ma et al. (2009), Ma et al. proposed a
matrix factorization-based Social Trust Ensemble
(STE) method upon the following intuitions:
• Users have their own tastes.
• Users can also be easily influenced by the

trusted friends they have.
• A user’s final rating is composed of the com-

bination of this user’s own taste and this user’s
friends’ tastes.
Based on the above interpretations, the objec-

tive function can be formulated as

L D 1

2

mX
iD1

nX
jD1

Iij

�
rij �

�
˛uT

i vj C .1 � ˛/
X

k2T .i/

wikuT
k vj

��2

C �1

2
kU k2

F C
�2

2
kV k2

F ; (6)

where ˛ is a parameter to balance the impact
of user’s own taste and user’s friends’ tastes,
T .i/ represents a list of user i ’s trusted friends,
and wik is a normalized weight that equals to
1=jT .i/j.

We can see that in this approach, a user’s
latent factor is smoothly integrated with this

user’s trusted friends’ tastes. This equation
also coincides with the real-world observation
that we always ask our friends for movies, books,
or music recommendations.

For each observed rating rij , the stochas-
tic gradient decent learning rules for this
method are
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ui  ui C �1

�
�ij

�
˛ C .1 � ˛/

X
p2B.i/

wpi

�
vj � �1ui

�
;

vj  vj C �2

�
�ij

�
˛ui C .1 � ˛/

X
k2T .i/

wikuk

�
� �2vj

�
; (7)

where

�ij D rij �
�
˛uT

i vj C .1�˛/
X

k2T .i/

wikuT
k vj

�
;

(8)
and B.i/ is the set that includes all the users who
trust user i .

Social Regularization
The STE method mentioned above is originally
designed for trust-aware recommender systems.
In trust-aware recommender systems, we can
always assume that users have similar tastes with
other users they trust. Unlike trust relationships
among users, the tastes among social friend re-
lationships are more diverse. User k is a friend
of user i does not necessarily indicate that user
k has similar taste with user i . Hence, in order to
model the social recommendation problems more
accurately, another more general social recom-
mendation approach, Social Regularization (SR),
is proposed in Ma et al. (2011).

The objective function of this approach is
formulated as

L D 1

2

mX
iD1

nX
jD1

Iij .rij � uT
i vj /2

C ˛

2

mX
iD1

X
f 2FC.i/

sif kui � uf k2
F

C �1

2
kU k2

F C
�2

2
kV k2

F ; (9)

where sif indicates the similarity between user i

and user f and FC.i/ represents user i ’s outlink
friends.

In this method, the social network information
is employed in designing the social regulariza-
tion term to constrain the matrix factorization
objective function. The social regularization term
also indirectly models the propagation of tastes.
More specifically, if user i has a friend f and
user f has a friend user g, this regularization
term actually indirectly minimizes the distance
between latent vectors ui and ug . The propaga-
tion of tastes will reach a harmonic status once
the learning is converged.

Similarly, for each observed rating rij , we
have the following stochastic gradient descent
updating rules to learn the latent parameters:

ui  ui C �1

�
�ij vj � ˛

X
f 2FC.i/

sif .ui � uf / � ˛
X

g2F�.i/

sig.ui � ug/ � �1ui

�
;

vj  vj C �2.�ij ui � �2vj /; (10)

where �ij D rij � uT
i vj ; and F�.i/ represents

user i ’s inlink friends.
The experiments conducted in Ma et al.

(2009, 2011) suggest that social recommen-
dation algorithms outperform traditional

recommendation algorithms, especially when
the user-item matrix is sparse. This indicates
that using social information is a promising
direction in the research of recommender
systems.



S 1928 Social Recommendation in Dynamic Networks

Future Directions

The methods mentioned above can be solved
efficiently by using simple gradient descent or
stochastic gradient descent algorithms. However,
for statistical machine learning’s point of view,
the methods themselves are not full Bayesian
methods. Hence, learning those methods can eas-
ily have the overfitting problem. How to apply
full Bayesian method on these models hence
becomes worth of studying.

We already demonstrate how to recommend
by incorporating users’ social trust and friend
information. Actually, sometimes there are more
data sources available on Web 2.0 sites, such
as tags issued by users to items and temporal
information. These sources are also valuable in-
formation to improve recommender systems.
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Synonyms

Recommender systems; Social analysis; Social
content search; Social navigation

Glossary

Social Media Online systems with high public
participation and interaction rate

User Metadata Data created as the result of
user interactions in an information space

Socially Enhanced Search Quality-improved
search resulting from employing user
metadata

Personalization Adjustment of a system or pro-
cess to fit user preferences

Blogosphere Collection of interconnected Web
logs

Facebook Graph Search Information lookup
in the Facebook graph-structured data

Collaborative Filtering Discovery of new
knowledge and patterns through filtering data
produced by collaboration between different
individuals

Definition

Social search is an online search process that
employs user-generated data and user-user rela-
tionships produced by social systems including

bookmarking sites, Web forums, social networks,
and blogs to discover the best matching content
to user queries in an information space. This is d-
ifferent from the methods used in traditional Web
search engines in the sense that search techniques
in the latter are mostly based on page-author-
generated data such as page content, anchor text,
and link connections. User-created data forms a
rich source of metadata that expresses single-
user or community preferences, ideas, and needs.
User tags and queries can be considered as new
descriptions of Web page content. Social search
utilizes this new and fast expanding source of
information to establish a fine-grained and more
personalized or community-based online search.

A variety of information systems ranging from
the World Wide Web to special purpose social
systems, such as social networks, bookmarking
sites, document-or media-sharing communities,
and e-commerce, benefit from the capabilities of
social search. In the literature, social search also
refers to the process of the analysis and discovery
of new knowledge from social media.

Introduction

The objective of an online search system is to
locate the relevant objects (e.g., Web pages)
to a user-generated query from the Web-or a
community-based collection. Over the decades,
Web search engines have improved their quality
of search by inventing new techniques to retrieve
query-relevant documents and rank them based
on their quality. The characteristic of almost
all of these techniques is that they are based
on the data created by the Web page builders or
document authors. Two types of ranking methods
are used in search engines: first, query-dependent
or similarity measures that use document content,
title, and anchor text to find similar documents
and second, query-independent or static measures
that use page connectivity (link structure) as a
quality measure to rank similar documents. The
prominent static metrics are PageRank (Page
et al. 1999) and HITS (Kleinberg 1999).

Recently, with the ever-increasing activity
and popularity of social media, a new type of
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information – user-created metadata – is available
that can be used to enhance the quality of search.

User-generated content can be categorized as
explicit or implicit. Explicit user data is created
by visitors of Web sites in the form of annotations
and viewpoints in order to describe, organize,
and share their favorite entities (URLs, movies,
songs, books, articles, etc.) online. Social systems
capture explicit user annotations and viewpoints
(feedback) in different forms. For example, book,
article, and movie review sites collect user re-
views and ratings as text and star points. Social
bookmarking sites store user tags and favorite
URLs, and social networks capture user com-
ments and their likes. User annotations and view-
points constitute a precious information source
that can be utilized to extract, for example, Web
page descriptions (using tags and comments),
page or media popularities (using bookmarks and
ratings), and user preferences (using ratings and
likes).

Monitoring user online behavior builds anoth-
er valuable source of information. Implicit user
data is automatically extracted from system logs
containing user search queries, browsing history
(clickthrough data), and amount of time spent
by users on different pages. This data can help
improve the quality of search in different ways.
For instance, user queries can be considered as
“URL tags” describing the content of pages. User
browsing history is an indication of user interest
and can be used to resolve the ambiguity that
often exists in user queries. The amount of time
spent by users reading the content of Websites
might be an indication of the importance of sites
and can be used to improve the ranking process,
especially in community-based search environ-
ments.

Social Web Search and Analysis

Online social systems holding a rich public par-
ticipation have been able to accumulate valuable
and heterogeneous collections of user metadata.
Social search and analysis is focused on taking
advantage of such data sources by new techniques
that either help to improve the functionality of

already existing systems or devise novel analysis
and knowledge discovery schemes. Social search
and analysis is active in different areas as follows:
(1) socially enhanced Web search, (2) social nav-
igation, (3) social analysis, (4) recommender sys-
tems, and (5) social content search.

Socially EnhancedWeb Search
Social Web search aims at improving the quality
of Web search by combining traditional search
methods, e.g., query-document similarity and
PageRank, with new techniques that employ
social content. For instance, SocialSimRank
(SSR) and SocialPageRank (SPR) (Bao et al.
2007) are two new methods that integrate social
annotations available in social bookmarking sites,
e.g., del.icio.us, into the page ranking process.

SocialSimRank (SSR) is a similarity ranking
algorithm for queries and social annotations. The
algorithm is based on the assumption that so-
cial annotations provide good summaries of Web
pages from various user perspectives. Based on
this observation, similarities for every pair of an-
notations and similarities for every pair of pages
are iteratively computed. The similarities are re-
cursively defined as follows. The more similar the
pages are, the more similar their corresponding
annotations are. Conversely, the more similar
annotations are, the more similar their associated
pages are. These similarities are integrated into
each other’s computation. That is, in the equation
that calculates the similarity between two anno-
tations, one of the parameters is the similarity
between two pages to which these annotations are
assigned, and vice versa. After several iterations,
this process typically converges, and the system
is ready to answer queries. Each query term is
considered to be a page annotation. The similarity
of a query q to a Web page p is computed as the
sum of the similarities of each term in q to each
annotation associated with p.

SocialPageRank (SPR) computes the page
quality (popularity) with the intuition that the
number of annotations assigned to a Web page
indicates the quality of the page in some sense.
SPR uses an iterative algorithm to compute
page popularities based on user and annotation
popularities. Integrating SSR and SPR into

del.icio.us
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a ranking function that also uses traditional
documentsimilarity metric and PageRank
improves the quality of Web search (Bao et al.
2007).

Other enhanced search methods are also pro-
posed that benefit from different aspects of user
annotations. A hybrid search technique is pre-
sented in Yanbe et al. (2007) that combines a
link-based ranking method with a new metric that
is based on user-generated data in social book-
marking sites (e.g., del.icio.us). The new met-
ric utilizes SBRank (Social Bookmarking Rank)
which is the number of user bookmarks on a
page, the sentiment-based and temporal informa-
tion extracted from user annotations, as well as
general statistics derived from user interactions
with Web pages.

Community-based search systems improve the
quality of search by incorporating user search be-
haviors within the community, e.g., user queries
and result selections, into the ranking method.
The underlying intuition is that among the users
of similar mind, e.g., social network or enterprise
intranet users, the context of queries is similar, the
query repetition is high, and also there rarely exist
malicious behaviors that can negatively affect
popularity metrics (Freyne et al. 2007). This type
of social search is also called Collaborative Web
Search (CWS) (Morris and Teevan 2009), and
I-SPY (Smyth et al. 2004) is an implementation
of it. Such systems record the queries and result
selection of the community searchers, and upon
exposure to a new query, the information of
search sessions of a similar pattern is retrieved.
The system re-ranks the result returned by the
underlying search engines to reflect the implicit
preferences of the community. Each item in the
result list is also augmented by a set of past
related queries that can be used to start new
searches.

Social Navigation
The goal of social navigation is to enhance the
quality of user browsing by providing various
types of navigational assistance based on the vis-
iting behavior of similar-minded users in the past.
Social navigation systems benefit from different

implicit and explicit user-generated data. They
keep track of the browsing behavior of the users
by collecting user queries and browsing paths
(personal footprints). The time spent reading a
page is also taken into account as an indication
of user intention. Such systems also benefit from
user annotations that can provide useful infor-
mation about the importance of visited pages.
When a user clicks on a source or on a (page)
link in the search result list, the system provides
a visual guide containing different navigation-
al cues, for example, the source or page visit
frequency (browsing popularity), the number of
associated annotations (annotation popularity),
and a list of queries leading to this source or page
(search popularity).

Knowledge Sea II (Brusilovsky et al. 2004) is
an example of a social browsing system that was
developed to help students in a class to find the
most useful sources for a particular course. This
system organizes sources in a table with each cell
associated with one source. The available nav-
igational clues include the background color of
cells indicating visit frequency, a sticky note for
the presence of annotations, and a thermometer
representing the number of positive annotations.

Another interesting system is the one pre-
sented in Freyne et al. (2007) that facilitates
community-based access to the Communications
of the ACM (CACM) magazine. This system
integrates social search and social navigation in
both the interface level and its internal mecha-
nisms. When a new search query is initiated, the
search component of the system retrieves similar
queries and their associated search results. Then,
the results are scored based on their relevance to
the new query, and finally the top-k results are
placed ahead of the other results returned by the
ACM search engine. Each result item is appended
by complementary information presented as icon-
s. Five icons with different levels of filling indi-
cate, respectively, (1) the relevance of the result
to the query (the percentage of times the result
has been selected for the query by community
users), (2) a list of other queries that have led to
the selection of this result by community users,
(3) the last time the result was encountered by the
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users (a view of the freshness), (4) the browsing
popularity of the result (footprints), and (5) the
user annotations. When a result is selected, the
browsing component also augments the opened
pages with social assistance icons.

Social Quality Analysis
The quality of user-generated content in online
social systems varies from excellent to spam
due to the participation of individuals with d-
ifferent intentions and levels of expertise. This
is especially important in knowledge-based so-
cial systems such as question/answering portal-
s, online forums, and networks of email ex-
changers. Social quality analysis aims at identi-
fying knowledge experts and high-quality user-
created content in order to improve the quality of
information-retrieval tasks (cf. Zhang et al. 2007;
Campbell et al. 2003; Agichtein et al. 2008; Yang
et al. 2011). Various analysis methods are used
ranging from link-based ranking algorithms, e.g.,
PageRank (Page et al. 1999) and HITS (Klein-
berg 1999), to text classification techniques and
user clickthrough information.

Since 2006, some interesting systems have
been presented that automatically evaluate
the quality of questions and answers in
question/answering domains (cf. Jeon et al.
2006; Agichtein et al. 2008). The framework
presented in Agichtein et al. (2008) first identifies
a collection of quality-indicating features of
social media and associated interactions. Then,
these features are used as input to a classifier
(a stochastic gradient boosted tree), in order to
extract high-quality content. A wide range of
information sources are used to extract features
of the following categories: (1) contentbased:
textual features of questions and answers,
such as word n-grams, punctuation and typos,
syntactic and semantic complexity measures, and
grammaticality measures; (2) connectivitybased:
link-based metrics (authority scores and
PageRank) in user-item and user-user relation-
ship graphs, where an item is a query or an
answer; (3) usagebased: temporal statistics,
number of clicks on items, and time spent on
reading.

Recommender Systems
In online shopping, movie, and music Web sites,
the goal is to improve the user experience by pro-
viding appropriate recommendations about new
items that match user interests, ideas, and need-
s. These Web sites collect different types of
user-produced data, ranging from explicit us-
er ratings to implicit purchase history, brows-
ing, and search activities. Recommender system-
s (Resnick and Varian 1997), using sophisticat-
ed algorithms, combine data from independent
contributors to discover new knowledge about
relations between users and items.

There are two major approaches in recom-
mender systems: content filtering and collabora-
tive filtering (Koren et al. 2009; Koren and Bell
2011). Content filtering discovers matching users
and items based on their individual characteristic-
s. Items (products) are profiled by domain experts
and user profiles are created by users’ explicit
answers to specific questions, e.g., demographic
questions. A problem with content-based filtering
is the difficulty of gathering relevant information.

Collaborative filtering, on the other hand, is
based on user behavior in the past, for example,
user transactions and product ratings. By ana-
lyzing the relationships among users and among
items, collaborative filtering predicts new rela-
tions between particular users and items. Suppose
that in a movie rental site, user u has not watched
and rated movie x yet, and the system would like
to know whether it should recommend x to u.
In the user-centered collaborative approach, first
the similarity between u and all other users who
have rated x is computed using some similari-
ty measure, e.g., Euclidean distance or Pearson
correlation coefficient. Then, the system predicts
how u would rate x by computing a weighted av-
erage of the ratings for x by the most similar users
to u. If the predicted rating is above a certain
threshold, the system recommends x to u. In the
item-centered approach the prediction is made
based instead on the similarity between items.

Motivated by the Netflix prize contest, signifi-
cant improvements have been made in the quality
of recommender systems. Latent factor models
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are another approach in collaborative filtering
that maps the users and items to a common
multidimensional space based on the past rating
patterns. Latent factor models are based on sparse
matrix factorization, and they are among the
most popular and the best performing approaches
(Koren 2009; Koren et al. 2009; Koren and Bell
2011).

Social Content Search
Despite the similarities between social media
sites such as social networks, the blogosphere,
and microblogging systems like Twitter, they d-
iffer in the type of data predominantly posted and
shared by users, as well as in the form of user in-
terconnections they offer. Based on these charac-
teristics, special-purpose search and information
discovery efforts are applicable on the content
of each site (Facebookgraphsearch; Bansal and
Koudas 2007; Mathioudakis and Koudas 2010).

Facebook has recently launched Graph
Search (Facebookgraphsearch) as a new feature
to benefit from its massive storage of data and
relationships. Using this tool people can search
for real-world objects in Facebook’s knowledge
graph, which is comprised of objects such
as people, places, and things and inter-object
connections, for example, Friendship and Likes.
An important advantage of Facebook’s search
is that it has access to the collective knowledge
of its vast community of users (more than one
billion) to answer questions involving different
layers of searching. Appealing examples are
as follows: “What to read that is liked by my
friends in college,” “Where to eat in Toronto
that my friends living there like,” “Where to
go in Asia that my friends and friends of
friends of my age found interesting,” “What
iPhone app to download that my friends use to
track their jogging and cycling,” etc. People’s
experience with Facebook Graph Search will
highly depend on the level of their connectedness
and participation in the system.

Blogging is another online social activity that
has received an increasing popularity in recent
years. The free context of blogs makes the blogo-
sphere (the collection of connected blogs) a rich
source of heterogeneous information including

personal experiences and opinions about a variety
of subjects. Mining and analysis of blog data can
capture public insight in different topics (Gruhl
et al. 2005; Bansal and Koudas 2007). For in-
stance, BlogScope (Bansal and Koudas 2007) is
one of the systems designed to analyze the textual
content of blogs and to provide information such
as when, where, and why about interesting topics.
When the user selects one of the daily hot key-
words provided by the system or poses a query,
all the relevant blog posts are retrieved and the
result of various analysis on their content is pre-
sented. For example, the system can display the
following information: (1) a popularity curve for
a keyword as a function of time, (2) a list of the
most closely related keywords in blog posts, (3)
a distribution of the related posts on the map, and
(4) a synopsis set which is the maximal set of key-
words correlated with query that exhibits a bursty
behavior in the associated popularity curve.

Future Directions

Whereas the usefulness of the annotations
in small-scaled information communities has
been demonstrated by several works, social
annotations and bookmarks lack yet the sufficient
size and quality to significantly influence the
performance of search engines in a large scale
(cf. Heymann et al. 2008; Bao et al. 2007).
For example, the number of unique URLs in
del.icio.us is relatively small in comparison with
the indexes of the major search engines that
include hundreds of billions of pages.

Augmenting more Web sites with improved
tagging systems and also aggregating the data
from various bookmarking and tagging Web sites
would significantly help to improve the situa-
tion. The design of appealing and structured user
interfaces that could provide a list of possible
tags that do not appear in the page content and
title can enhance the quality of tagging. Provid-
ing incentives, such as site access privileges or
special offers to stimulate user tagging activities,
could be another approach to create enriched user
metadata.

Facebook graph search
Facebook graph search
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Synonyms
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Online social networks’ concepts; Social network
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Glossary

A Network A structure that consists of a set of
actors

A Graph Usually used to represent networks
and consists of nodes to represent actors and
edges to represent relationship

Social Network Data Data available on online
social networks

Socio-graph Analysis Graph-based analysis of
social networks, their concepts, and their data

Introduction

With the proliferation of online social networks,
information sharing on these networks is gaining
an ever-increasing importance. Obviously, online
social networks have found ingenious ways to
collect data as users socialize. Not surprisingly,
when socializing social network users communi-
cate, interact, and tend to freely reveal personal
information in line with their perceptions and
preferences. Understanding the characteristics of
social networks is of considerable importance.
Namely, the structure of the networks, the user-
generated content, the level of interaction, as well
as other dimensions can be used to analyze users’
behaviors and understand their needs. In this
work, we detail the most common representations

of social networks, define their fundamental con-
cepts, describe their social network data, and pro-
vide an overview of their most common analysis
measures.

Representation of Social Networks

Finding an appropriate representation that can
facilitate efficient and accurate interpretation of
network data is an important step in social net-
work studies. Just as graphs are a set of inter-
connected nodes, social networks are built on
the foundation of actors interconnected through
relationships. The use of graphs is a powerful
visual tool and a formal means to represent social
networks as detailed in this section.

Various Notations
There are many notations to represent social net-
works: algebraic notations, matrices, and graphs.
A sample algebraic notation, a matrix represen-
tation, and a graph are illustrated in Fig. 1a.
Depending on the data to be processed, the no-
tation whose representation best fits the social
network to describe is typically selected. But,
there are well-known limits to the extent to which
social networks can be formalized using matrices
or algebraic notations to be recalled here. First,
social networks hold valued relations and user-
related attributes that algebraic notations cannot
handle. Second, matrices are mostly efficient for
small networks. Consequently, due to the large
size of social networks, matrices are not the
most appropriate way to represent these network-
s. Note that to represent a social network using
matrices, a two-way matrix, also called socioma-
trix, can be used. A sociomatrix consists of rows
and columns that denote social actors and num-
bers or symbols in cells that denote existing rela-
tionships. Thus, graph-based representations are
by far the most common form for modeling social
networks (Wasserman and Faust 1994; Newman
2003; Boccaletti et al. 2006). Graphically repre-
senting social networks facilitate the understand-
ing, labeling, and modeling of many properties
of these networks (e.g., friendship networks with
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http://dx.doi.org/10.1007/978-1-4614-6170-8_100001
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Socio-Graph Representations, Concepts, Data, and
Analysis, Fig. 1 A social network representation using a
graph, its related matrix, and a sample algebraic notation

(a), an undirected graph (b), a directed graph (c), a labeled
graph (d), and a weighted graph (e) with n D 5 nodes and
m D 6 links

labeled actors and relationships). Hence, graphs
can represent various social data properties and
their attributes while handling large real-world
networks. Besides an adequate vocabulary to de-
note structural properties, graph-based represen-
tations have shown their mathematical reliability
as well as their capacity to prove theorems for
different social structural properties (Wasserman
and Faust 1994). More details about the advan-
tages and drawbacks of each representation are
provided in Table 1.

Graph Representation
Graphs are usually used to represent networks
in different fields such as biology, sociology,
and computer science (Fortunato 2010). Graphs

consist of nodes to represent actors and edges to
represent relationships. The terms nodes and ob-
jects are usually used to denote actors. Likewise,
edges may also be called links or relationships.
Nodes with multiple edges are used to represent
ties related to pairs of actors with more than one
relationship.

More formally, a graph, G D .V; E/, consists
of a set of nodes, V , and a set of edges, E . The
number of elements in V and E is, respectively,
denoted as n D kV k, the number of nodes, and
m D kEk, the number of edges. The i th node, vi ,
is usually referred to by its order i in the set V .
Note that E consists of a finite set of relationships
that is built from all relationships Ri , RiC1, : : :,
Rk , where k is the total number of relationships
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Socio-Graph Representations, Concepts, Data, and Analysis, Table 1 Social network representations: advantages
and drawbacks

Representation Advantages Drawbacks

Algebraic notations
– Useful for multi-relational networks as

they can easily denote the combination
of relations

– Cannot handle valued relations and
user-related attributes

Matrices
– Efficient for small networks
– Easy to denotes ties between a set of

actors (a matrix for each relationship)

– Not a best choice for large social
networks

– Difficult to use when network data con-
tain information on attributes

Graphs
– Handle large social networks
– Provide a rich vocabulary to easily

model social networks (labels, values,
weights, etc.)

– Provide mathematical operations that
can be used to quantify structural
properties and prove graph-based
theorems

– Scalable visualization techniques are
needed

– Signed and valued graphs have to be
used to represent valued relations

linking the pairs of actors. A subgraph G0 D
.V 0; E 0/ of G D .V; E/ is a graph such that V 0
	 V and E 0 	 E . To represent different forms
of data and to model the structural properties of
social networks, graphs can have their edges and
nodes labeled or unlabeled, directed or undirect-
ed, and weighted or unweighted as explained in
what follows.

Directed and Undirected Graphs
In an undirected graph, the order of the connected
vertices of an edge is not important. We refer
to each link by a couple of nodes i and j such
as e.i; j / or eij , i and j are the end nodes of
the link. A directed graph is defined by a set
of nodes and a set of directed edges. The order
of the two nodes is important: eij denotes the
link from i to j , and eij ¤ ej i . To graphically
indicate the direction of the links, directed edges
are depicted by arrows. Depending on the nature
of the relationship (asymmetric or symmetric),
social network graphs can be undirected or di-
rected. In fact, social networks can be modeled
as undirected graphs when relationships between
actors are mutual (e.g., symmetric relationships
on Facebook (http://www.facebook.com) where

eij and ej i both denote a friendship link be-
tween user i and user j ). Social networks can
also be modeled as directed graphs when rela-
tionships are not bidirectional (e.g., asymmetric
relationships on Twitter (http://www.twitter.com)
where eij stands for user i is following user j ).
Figure 1b, c show, respectively, a representation
of an undirected and a directed graph, both with
n D 5 and m D 6. Directed links are important
to evaluate the role of actors in a social network.
They are key factors in measuring the centrality
of actors in a social network. An interesting
research work conducted by Brams et al. (2006)
described how to transform undirected graphs to
directed ones in order to explore additional infor-
mation about the networks’ structure. This trans-
formation is an important step in understanding
the flow of influence in the context of terror-
ist networks. In another study, Morselli et al.
(2007) investigated and compared the structure
of criminal and terrorist networks. The authors
used links to compute a number of measures such
as degree, betweenness, and centrality measures.
These measures are used in order to discover the
organizational hierarchy and to identify central
and powerful criminal and terrorist actors.

http://www.facebook.com
http://www.twitter.com
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Labeled and Unlabeled Graphs
Labels are important since they can identify the
type of relationships between social network ac-
tors. When graphs are labeled, this means that
a label is used to indicate the type of link that
characterizes the relationship between the con-
nected labeled nodes. Note that labeled graphs
are considered to be signed graphs whenever their
edges are labeled with either a C or a �. For
example, a signed graph can be used to model the
inferred trust or distrust relationships in online
social networks (Bachi et al. 2012). Figure 1d
shows a labeled graph where the relationship
type between linked actors is indicated. On social
networks, relationship can be used to organize
contacts based on their relationship types. This
is useful in different situations such as improving
face clustering and annotation of personal photo
collections (Zhang et al. 2011), organizing friend-
s into social circles (Raad et al. 2013; McAuley
and Leskovec 2012), and enforcing access con-
trol (Carminati et al. 2009). Relationship-based
access control is highly interesting in order to en-
able users to manage and fine-tune their privacy
settings.

Weighted and Unweighted Graphs
Weights represent the strength of relationship-
s between social network actors. When graphs
are weighted, this means that their edges are
assigned with a numerical weight, w, that can
provide various indications such as link capacity,
link strength, level of interaction, or similarity
between the connected nodes (e.g., the number of
messages that actors have exchanged, the number
of common friends). Figure 1e shows a weighted
graph (on a scale of 0–10) where the numeric
values are assigned to the links and indicate
the level of interaction between social network’s
actors. One way to characterize relationships is
by computing their strength. On social networks,
link strength is highly correlated with the level of
interaction between users. Link strength can be
used to model different levels of friendship where
high weights represent “close friends” and low
weights represent “acquaintances.” Xiang et al.
(2010) estimated the link strength from interac-
tion activities (e.g., communication, tagging) and

user similarities. More recently, another research
explored a more specific aspect related to the
predictive capacity of link strength to general-
ize from one social network to another (Gilbert
2012). Typically, link strength is primarily used
to build intelligent systems that can favor interac-
tions with strong ties without missing interesting
activities derived by weak ties. Specifically, this
interesting study showed that the link strength
model captured in one social network can be
generalized to another network, one in which it
did not train.

Social Networks’ Concepts

Networks have been used to model many systems
of interest such as the World Wide Web, computer
networks, biochemical networks, diffusion
networks, and social networks. Each of these
networks is a structure that consists of a set of ac-
tors representing, for instance, web pages on the
World Wide Web or persons in a social network,
connected together by relations, representing
links between web pages or friendships between
persons. Besides these structural properties (ac-
tors and relations), Wasserman and Faust (1994)
identified a number of fundamental concepts
like ties, dyads, triads, subgroups, and groups
that characterize networks. In the following, we
detail the concepts of actors, relations, and ties,
the building blocks of social networks, before
illustrating their use in online social networks.

General Concepts
The following defined concepts (actors, relations,
and ties) are particularly important to understand
and to study social networks.

Actor
An actor is a social entity that interacts with other
entities not only to maintain existing relations but
also to establish new ones. On social networks,
the concept of actors can refer to various types
of entities such as persons, groups, and organi-
zations. Actors interact with each other through
a variety of meaningful relations that denote
different patterns of communication. Relations
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like friendship, collaboration, and alliance can
vary across time, applications, or in terms of the
involved actors (Wilson et al. 2012). Consequent-
ly, there are two main categories of networks that
can be identified based on the type of actors, one-
mode networks and two-mode networks. While
one-mode networks have a single type of actors,
two-mode networks, also called bipartite, are net-
works with two types of actors. For instance, so-
cial networks modeling friendship between actors
are an example of one-mode networks, whereas
those concerned with group memberships or at-
tendance at events are two-mode networks.

Relation
A relation represents a connection from one actor
to another one. A relation, also called relation-
ship, plays an important role when studying the
structure of social networks and the interactions
among their actors. A relationship is character-
ized by various features such as its content, di-
rection, and strength. The relationship types have
been addressed in several studies. Borgatti et al.
(2009) distinguished between four basic types of
relationships: similarities, social relations, inter-
actions, and flows. For instance, these relation-
ships can express memberships (e.g., same club),
kinships (e.g., mother of), affections (e.g., likes),
interactions (e.g., talked to), and flows (e.g., flow
of information), among others. Relationships on
social networks can be directed or undirected.
Depending on their content, relationships may
(or may not) have a specific direction. While
relationships such as “marriage” and “friendship”
are undirected, other relationships such as “par-
ent of” or “fan of” are directed. Social network
relationships can also differ in strength. Usually,
the strength can be estimated in a variety of
ways using information about the actors, their
interaction activities, or the correlation between
them as the most common indicators (Wilson
et al. 2012; Gilbert 2012).

Tie
A tie is the set of all relationships that exist
between two actors. It is tightly connected to
the concept of relationship as it aggregates the

different types of relationships that exist between
two actors. Just like relationships, ties also vary
in terms of their content, direction, and strength.
Actors can be connected either with one rela-
tionship exclusively (e.g., employees of the same
company) or with many relationships (e.g., em-
ployees of the same company and members of
a sport club at the same time). Consequently,
pairs of actors who maintain more than a single
relationship are said to have a tie (Haythornth-
waite 1996; Musial and Kazienko 2013). While
each individual relationship within a tie carries
its own content and direction, the strength of a
tie depends on many factors such as the number
of relationships that actors maintain, the reci-
procity of these relationships, and their duration.
Granovetter (1973) distinguished between strong
and weak ties on the basis of the time actors
spend together, their intimacy, and the emotional
intensity of the existing relationships. Generally,
weak ties are infrequently maintained with little
interactions among actors (e.g., between distant
acquaintances). Strong ties link similar actors,
such as close friends, whose social circles tightly
overlap with each other. Often, actors with strong
ties that maintain many kinds of relations tend to
communicate frequently with each other and use
different channels of communication.

Online Social Networks’ Concepts
Social networks and content-sharing sites with
social networking functionalities have become
an important part of the online activities on
the web and one of the most influencing
media. Facebook, Twitter, LinkedIn (http://www.
linkedin.com), Google+ (http://plus.google.com),
MySpace (http://www.myspace.com), Flickr
(http://www.flickr.com), and YouTube (http://
www.youtube.com) are among the most popular
online social networks. These networks are
attracting an ever-increasing number of users,
many of whom are interested in establishing
new connections, maintaining existing relations,
and using the various social networks’ services.
The impact of social-based technologies on
users, and particularly the influence of online
social networks, is becoming the major source
of contemporary fascination and controversy

http://www.linkedin.com
http://www.linkedin.com
http://plus.google.com
http://www.myspace.com
http://www.flickr.com
http://www.youtube.com
http://www.youtube.com
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(Musial and Kazienko 2013; Heidemann
et al. 2012). A number of studies shed the
light on different research directions like the
implications of online social networks on
individual connectivity (Hua and Wellman 2010),
the capacity of technology to override cognitive
limits in order to socialize with larger groups
(Dunbar 2012), and the challenge to maintain
a balance between security, privacy, usability,
and sociability on online social networks (Zhang
et al. 2010; Zheleva et al. 2012).

Social Network User
While many definitions exist for the term social
network user (Adamic and Adar 2005; Boyd and
Ellison 2007; Schneider et al. 2009), all of them
are centered around social network users. First,
these users create a personal profile which usually
contains identifying information (e.g., name, age,
photos) and captures users’ interests (e.g., joining
groups, liking brands). Afterwards, users start to
socialize by interacting with other network mem-
bers using a wide variety of communication tools
offered by different social networks. In reality,
each social network offers particular services and
functionalities to target a well-defined commu-
nity in the real world. Many of these available
services are designed to help foster information
sharing, bridge online and off-line connections
to enforce interactions, provide instant informa-
tion help, and enable users to derive a variety
of uses and gratifications from these sites. To
make use of the provided functionalities and to
stay tuned with their related members, users cre-
ate several accounts on various social networks
where they disclose personal information with
varying degrees of sensitivity (Raad et al. 2010).
Personal information available on these networks
commonly describes users and their interactions,
along with their published data.

User Profile
Information about each social network user is
maintained in a user profile which contains a
number of attributes related to the demographics
of users, their personal and professional
addresses, their interests and preferences, as
well as different types of user-generated contents

(e.g., posts, photos, videos) (Thelwall 2008).
Prior studies have noted the importance of user
profiles to shape users’ personalities, identities,
and behaviors on social networks (Ryan and
Xenos 2011; Gentile et al. 2012). These studies
showed that among the disclosed attributes
such as personal information and user-generated
contents, photos and status updates have higher
preferences for users.

Social Relationship
While myriad social networks’ services assist
users to find new contacts and establish new con-
nections (e.g., friend suggestion systems through
locations Cranshaw et al. 2010, based on inter-
actions Wilson et al. 2012), users get connected
to different types of contacts such as friends,
relatives, colleagues, and strangers. Nevertheless,
social relationship types between users and their
contacts are rarely identified neither by the users
nor by the existing social network sites (Raad
et al. 2013; Tang and Liu 2009; McAuley and
Leskovec 2012). This diversity, yet the different
levels of social closeness between users and their
contacts, entails an increasing need to analyze
social interactions for better relationship (and
consequently privacy) management. Currently,
users are often provided with an exclusive and de-
fault relationship type connecting them to each of
their contacts within a single social network site.
However, it is common that social network users
initiate connections with other contacts without
any prior off-line connection (Ellison et al. 2011).
On Facebook, for instance, these contacts are
known as friends even though social network
users do not particularly know or trust them.
Consequently, many privacy-related concerns are
raised in terms of identity disclosure, information
sharing, access control, etc. (Zhang et al. 2010).
The default social relationship(s) among the users
of a number of famous social networks, along
with other information, can be found in Table 2.

Social Network Data

Besides the fact that social networks are made
of several components and can have various
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Socio-Graph Representations, Concepts, Data, and Analysis, Table 2 Famous social networks with their main
focus, default relationship(s), and the relationship’s direction

Social network Focus Default relationship(s) Relationship direction

Facebook General use Friendship Symmetrical

Flickr Photo sharing Contact and optionally friend or family Symmetrical

Google+ General use Friends, family, acquaintances, and following Symmetrical

LinkedIn Professional Business Symmetrical

MySpace General use Friendship Symmetrical

Twitter Microblogging Follower followee Asymmetrical

YouTube Video sharing Subscribed to Asymmetrical

representations, online social networks can
also hold different types of data as detailed in
the following. There are many types of social
network data that can be collected from various
sources on the web (i.e., different social network
sites) and extracted from the daily activities
and interactions between users. In this context,
Schneier (2010) proposed a taxonomy of social
data that we further develop into two main
categories:
1. Explicit data is the set of explicit information

that is provided by social network users or
the data that is embedded in the provided
information, i.e., metadata embedded in pho-
tos. Explicit information may include different
forms of data such as text messages, photos,
or videos. In this category, social network
users actively participate in the creation of
information.
(a) Service data is the set of data that a user

provides to the social network to create her
account such as the user’s name, date of
birth, and country.

(b) Disclosed data is what the user posts
on her social network profile. This might
include comments, posted photos, posted
entries, captions, and shared links.

(c) Entrusted data is what the user posts on
other users’ profiles. This might include
comments, captions, and shared links.

(d) Incidental data is what other social net-
work users post about the user. It might in-
clude posted photos, comments, and notes.

2. Implicit data is the set of information that is
not explicitly provided by social network user-
s. However, social networks or third parties
can use the set of explicit data to infer more

information about the user. Inferring implicit
data is founded on the analysis of the users’
behaviors or derived from one or more user-
provided information. For instance, it is pos-
sible to predict the characteristics of relation-
ships between a number of users by examining
the different aspects related to the patterns of
communication between users (e.g., text mes-
sages, published photos, number of common
friends) (Diesner et al. 2005; Raad et al. 2013).
Consequently, in this category social network
users are considered to be passive since the
inferred information is extracted from prior
activities or previously posted data.
(a) Behavioral data is the data inferred from

the user’s behaviors. Social networks can
collect information about the user’s habits
by tracking the patterns of activities of
the user and consequently analyzing the
user’s behavior. Inferred behavioral data
can reveal various information such as
what the user usually do on the social
networks, with whom the user usually in-
teracts, and in what news topics the user
is interested. Social networks collect such
information by analyzing the articles that
the user reads, the posts that the user
publishes, the game that the user plays on
social networks, etc.

(b) Derived data is the data about the user
that can be inferred from all other data.
It is not related to the habit of the user.
For example, the IP address can be used
to infer the users’ actual location. The
derived data can also be inferred from the
combination of two (or more) information.
For example, if a significant number of
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contacts live in one city, one can say that
the social network user might live there as
well. In this case, social networks or third
parties must have access to two informa-
tion in order to infer the derived data (the
contacts of a user as the first information
and their corresponding hometown as the
second information).

Socio-graph Analysis

Concerned with the structural analysis of social
interactions, research in social network analy-
sis developed new models to study the funda-
mental properties of diverse theoretical and real-
world networks (Luke and Harris 2007). Social
network analysis has been used in different ap-
plication domains such as e-mail communica-
tion networks, learning networks, epidemiology
networks, terrorist networks, and online social
networks. These works tried to answer a handful
of questions such as how highly an actor is
connected within a network? Who are the most
influential actors in a network? How central is an
actor within a network?

To capture the importance of actors within a
network, a number of measures have been pro-
posed in the literature (Koschützki et al. 2005).
A commonly accepted measure is the centrality
measure. Centrality consists of giving an impor-
tance order to the actors of a graph by using
their connectivity within the network. Several
structure-based metrics have been proposed to
compute the centrality of an actor within a net-
work, such as degree, closeness, and betweenness
centrality (Freeman 1978). In what follows, we
explain each of these metrics in details. Table 3
summarizes the characteristics of these structure-
based centrality measures. As shown in Fig. 2,
different central actor(s) in a network can be
identified using each of these structural measures
(degree, closeness, and betweenness).

Degree Centrality
Degree centrality measures how much an ac-
tor is highly connected to other actors within
a network. Degree centrality is a local measure
since its value is computed by considering the

Socio-Graph Representations, Concepts, Data, and
Analysis, Table 3 Main centrality measures and their
characteristics

Centrality measure Characteristic

Degree Measures how much an actor is
highly connected to other actors
within a network

Closeness Computes the length of paths from
an actor to other actors in the
network

Betweenness Measures the extent to which an
actor lies on the paths between
other actors

number of links of an actor to other actors directly
adjacent to it. A high degree centrality denotes
the importance of an actor and gives an indication
about potentially influential actors in the network.
With a high degree of centrality, actors in social
networks serve as hubs and as major channels
of information in a network. Degree centrality,
CD , of an actor, vi , can be computed as follows
(Freeman 1978):

CD.vi / D
nX

iD1

a.vi ; vj / (1)

where n is the total number of actors in the social
network, a.vi ; vj / D 1 if and only if vi , and an
actor, vj , are connected by an edge; otherwise
a.vi ; vj / D 0.

Closeness Centrality
Closeness centrality computes the length of paths
from an actor to other actors in the network.
By measuring how close an actor is to all other
actors, closeness centrality is also known as the
median problem or the service facility location
problem. Actors with small length path are con-
sidered more important in the network than those
with high length path. Closeness centrality, CC ,
of an actor, vi , can be computed as follows
(Freeman 1978):

CC .vi / D n � 1
nP

iD1
d.vi ; vj /

(2)
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Socio-Graph Representations, Concepts, Data, and
Analysis, Fig. 2 A network shaped as a kite graph where
each centrality measure yields a different central actor:

degree centrality (D), closeness centrality (F and G),
and betweenness centrality (H). (a) Centrality degree. (b)
Closeness degree. (c) Betweenness degree

where n is the total number of actors in the social
network and d.vi ; vj / is the geodesic distance
from actor vi to another actor vj .

Betweenness Centrality
Betweenness centrality measures the extent to
which an actor lies on the paths between other
actors. It denotes the number of times an actor
needs to pass via a given actor to reach another
one and thus represents the probability that an ac-
tor is involved into any communication between
two other actors. Actors with high betweenness
centrality facilitate the flow of information as
they form critical bridges between other actors
or groups of actors. Such central actors control
the spread of information between groups of
nonadjacent actors. Betweenness centrality, CB ,
of an actor, vi , can be computed as follows
(Freeman 1978):

CB.vi / D
X
j <

X
k

gjk.ni /

gjk

i ¤ j ¤ k

(3)

where n is the total number of actors in the social
network, CB.vi / is the betweenness centrality for
actor vi , and gjk is the number of geodesics
linking actors vj and vk that also pass through
actor vi .

To sum up, structural characteristics of a graph
are a key aspect for social networks as they can be
used to analyze the activity and to understand the
behaviors of social network users. In most cases,
networks of interconnected users are mainly rep-
resented by graphs, while graphs resulting from
users’ activity are usually referred to as the ac-
tivity graphs. The activity captured within social
networks is between users (the nodes) sharing
various social data, connected with directed or
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undirected relationships (the links), and having
different levels of interactions (strong and weak
ties). In this regard, these characteristics can
be used to identify well-connected, central, and
influential users. This would give more visibility
and understanding for the network analyzer, but
at the same time this can possibly reveal addition-
al and sensitive information about the users, thus
raising privacy concerns.

Cross-References

�Centrality Measures
�Classical Algorithms for Social Network
Analysis: Future and Current Trends
�Graph Classification in Heterogeneous
Networks
�Network Data Collected via the Web
� Social Networking Sites
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Social Network A social structure based on a
set of actors (individuals or organizations) and
the ties between these actors

Genealogy A study of families and tracing of
their lineages

Web Crawler An Internet bot that automatical-
ly browses the World Wide Web

Computer-Assisted Text Analysis – CATA
Techniques that model and structure the
information content of textual sources

Cloud Technology A use of hardware and soft-
ware that are delivered as a service over a
network (usually the Internet)

Introduction

We can find the network data almost everywhere
in our lives:
• The cities are linked with roads.
• People in a group are linked by exchange of

messages (mail, phone).
• Works from a field of research are linked with

citations.
• Researchers are linked with their collabora-

tions.
• Atoms in molecules are linked with their

chemical bonds.
• Words are linked according to their coappear-

ance in sentences of some text.
• In genealogies people are linked by marriage

and parent-child ties.
A graph G is an ordered pair of sets .V ;L/

with the set of nodes V and the set of links
L. Every link has two end-nodes. It is either
directed, an arc, or undirected, an edge. A
network N D .V ;L;P ;W/ consists of a graph
G D .V ;L/, describing the structure of network,
and additional data: properties P of nodes and
weights W on links. There are different types of
networks beside ordinary networks.

A two-mode network is a network
N D ..I;J /;L;P ;W/, where the set of nodes
V D I [J is split into two disjoint sets of nodes
I and J and each link from L has one end-node
in I and the other end-node in J .

A multirelational networkN D .V ;L;P ;W/

allows multiple relations to exist in the network
L D .L1;L2; : : : ;Lr /.

In a temporal network N D .V ;L;P ;W ; T /

the time T is attached to a network. For all nodes
and links we have to specify the time intervals
in which the element is active (present) in the
network. Also properties and weights can change
through time.

When constructing a network we must first
specify what are the nodes and which relation is
linking them – the network boundary problem
(Wasserman and Faust 1994; Marsden 2011).
According to the plan of network analyses, we
need to bound the set of nodes to those that we
need. Along with nodes and links, we select also
their properties. We have to decide whether the
network is one-mode or two-mode and which
node properties are important for our intended
analyses. About the links we have to answer to
several questions: Are the links directed? Are
there different types of links (relations)? Can a
pair of nodes be linked with multiple links? What
are the weights on the links? Is the network static,
or is it changing through time?

Sometimes the list of nodes is known in
advance (e.g., students in the class). But often the
set of nodes is constructed during the network
data collection process. In this case we have to
specify the membership criteria determining for
each potential node whether it belongs to the
network or not.

For collecting the network data, the snowball
procedure is often used. We first choose a (small)
set of nodes as initial candidates. Then we collect
the data about each candidate and determine its
neighboring nodes. The new ones among them
we add to the list of candidates. The inclusion of
the new nodes can be ruled also by some other
criteria, for example, by the distance from the
closest initial node. We end this process when the
list of candidates is exhausted or the limit to the
number of inspected nodes is reached.

Another problem that often occurs when
defining the set of nodes is the identification
of nodes. The unit corresponding to a node
can have different names (synonymy), or
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the same name can denote different units
(homonymy or ambiguity). For example,
in a bibliography on mathematics from
Zentralblatt MATH, the names Borštnik, N.
S. Mankoč; Mankoč Borštnik, N.; Mankoč-
Borštnik, Norma; Mankoč Borštnik, Norma
Susana; Mankoc-Borstnik, N.S.; and Mankoč
Borštnik, N.S. belong to the same author. On
the other hand, in Zentralblatt MATH at least
two different Smith, John W. are recorded,
because publications of the author(s) with this
name spanned from 1868 to 2007. There are at
least 57 different mathematicians with the name
Wang, Li in the MathSciNet Database. Its editors
are trying hard, from the year 1985, to resolve
the authors identification problem (Martin et al.
2013) during the data entry phase. In the future
the problem could be eliminated by general
adoption of initiatives such as ResearcherID or
ORCID.

The identification problem appears also when
the units are extracted from the plain text,
for example, “the President of the USA” and
“Barack Obama.” To resolve it we have to
provide lists of equivalent terms. Another source
of identification problems is the grammar rules of
the language used in text. For example, the action
“go” can appear in the text in different forms
“go,” “goes,” “gone,” “going,” and “went.” To
resolve these problems we apply the stemming
or lemmatization procedures from natural
language processing toolkits such as NLTK or
MontyLingua.

A special approach of collecting data for a
network analysis is by forming ego-centered net-
works (Lozar Manfreda et al. 2004). This ap-
proach is used when the population of our interest
is too large. From the population we select a
sample of units (egos) and collect the data about
them and their neighbors (alters) and links among
them. An example is the friendship networks of
selected persons from Facebook.

Collecting the network data we have to re-
spect legal (copyright) and ethical constraints
(Borgatti and Molina 2003; Eynon et al. 2008;
Charlesworth 2008; Breiger 2005).

The network data can be obtained in many
ways:

• By observation
• With surveys or interviews
• From archives and databases
• From data organized in a network form
• Derived from the data
• From semantic web
• With generating random networks

Each of the above methods for gathering the
network data is described in more details in
the following subsections. For details additional
references are provided.

Observation

To form a network we must first obtain the data.
The ways of obtaining the data have been chang-
ing through history following the development of
the technology. A basic approach is the observa-
tion (Mitchell 1969). The observation is a human
activity consisting of receiving information about
the outside world through the senses, or the
recording of data using scientific instruments
and includes also any data collected during this
activity. Scientific instruments were developed to
amplify human powers of observation, such as
weighing scales, clocks, telescopes, microscopes,
thermometers, cameras, and tape recorders and
also to translate into perceptible form events
that are unobservable by human senses, such
as voltmeters, spectrometers, infrared cameras,
oscilloscopes, interferometers, Geiger counters,
x-ray machines, and radio receivers (Shipman
et al. 2009).

Making direct measurements is the most accu-
rate method for many variables but can be limited
by the technology available. The main alternative
to direct observation is to require others to report
their activities.

An example of the observational network
data collection is described in the PhD thesis of
Sampson (1968). He did an ethnographic study
of community structure in a New England
monastery – he divided 18 novices into 4 groups
at 5 time points based on his observations and
analyses. Another example is the detection of
molecular structure of organic molecules.
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Surveys

Survey as a method is a data-gathering method
that actively includes the observeds (Marsden
1990). They allow us to study attitudes, beliefs,
behaviors, and other characteristics. With care-
fully prepared questionnaires one can collect vast
amounts of quality data. A questionnaire is a list
of questions. Answers can be closed – selected
from a given list. They are easier to analyze. But
the open answers, that are not given in advance,
allow the analysts to get a wider amount of
information. A survey can take different forms:
face-to-face, paper and pencil, telephone, e-mail,
or online. Nowadays questionnaires are mostly
digital (online surveys) that allows them to be
adaptable, immediate checking of the entered
data, and also collecting some contextual (obser-
vational) data.

The use of direct observation in combination
with surveys can provide additional information.
It can confirm or negate information gained from
surveys. As observation itself also the observa-
tion in combination with surveys must be pre-
pared. The observant might use appropriate s-
cales, checklists, and other observation materials
that are chosen in accordance with the questions
and possible closed answers in the survey.

An interesting network obtained by interview-
ing is the Edinburgh Associative Thesaurus.

Surveys are the most commonly used methods
to gather social network data. They are also
used to study interorganizational relations
(Mizruchi and Galaskiewicz 1993). For details
on surveys and questionnaires, see the essay “
�Questionnaires for Measuring Social Network
Contacts.”

Archives and Databases

An archive is a collection of historical data, or the
physical place where they are located (Schmidt
2011). Archives have a historical, cultural, and
evidentiary value. Archives exist everywhere,
where data has been stored. Every organization
has an archive of past activities; universities
have archives of past students’ achievements and

research; backup on the personal computer is an
archive of past usage of the computer, etc. With
the transition of office work to computers and the
spread of Internet, many archives became digital.
A database is an organized collection of data,
mostly in digital form. Database is organized in
records and for each record it has stored some
properties (Ullman and Widom 2008). Because
data is organized, it is very easy to transform it in
a collection of (often two-mode) networks which
are then used in the network analysis. Smaller
amounts of data can be presented in a tabular
form as spreadsheets.

For example, there exist many bibliographic
databases (Web of Science, Scopus, Zentralblatt
MATH, etc.) that are keeping data about pub-
lished papers and books. Even the World Wide
Web is being partially collected and preserved as
an archive for future researchers, historians, and
the public.

As a source of data, the archives of various
kinds are inexpensive and advantageous for s-
tudying especially social networks in the past
(Marsden 1990). The network data can be de-
rived from archived data. For example, relations
between corporations can be studied based on in-
formation about persons in the boards of directors
of the corporations.

Historical archives help researchers to gain
knowledge about the development of some field –
economics, scholar, military, etc. For example,
with data from World War II one can study the
military movement through the war, the transfer
of refugees or prisoners, the transfer of weapon-
s, etc. Another example is the analysis of al-
liances between the most powerful countries over
a selected time period.

Archived data about the inhabitants of a
city or an area can be used for genealogical
analysis. In genealogy we can search for typical
marriage patterns and their irregularities. For
example, marriages among relatives to keep
the family’s wealth, or on the other hand,
marriages outside the family to increase its
influence. The genealogical data are often
available in the GEDCOM format. Large
collection of family genealogies is available at the
Genealogy Forum. For “scientific” genealogies

http://dx.doi.org/10.1007/978-1-4614-6170-8_399
http://dx.doi.org/10.1007/978-1-4614-6170-8_399
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used in anthropological research, see the site
KinSource.

Activities on the Internet, such as e-mail, chat,
and forums, leave their traces that can be used as
sources for network data. A notorious example is
the Enron e-mail data.

Especially interesting for network analysis is
the World Wide Web as an archive. The web
crawlers visit the page with URL from the list of
URLs, identify all hyperlinks in it, and add the
URLs of these hyperlinks to the list. The largest
web archiving organization based on crawling
approach is the Internet Archive, but also national
libraries, national archives, and other organiza-
tions are involved in archiving mostly culturally
important web content.

Enormous archives are being formed by differ-
ent social networking services such as Facebook,
Twitter, LinkedIn, and Google+. These organi-
zations are collecting the data about users, their
posts, or tweets. Data about users are not publicly
available. The user can download only the data
about his/her past activity and the data that other
users declared visible for him.

A large amount of data is stored in Internet
Movie Database (IMDb) and services such as
Amazon or lastFM. Converting data into multi-
ple two-mode networks and combining them in
network analysis allows us to obtain information
about collaboration between actors, producers
and composers, similarity of the movies accord-
ing to different measures, etc.

With the development of technology, different
types of databases occurred, where the type of
the database is defined with the way the data is
stored in a database. With growth of available
data the data warehouses were developed. A
data warehouses archive data directly from the
source. It is a central source of data for use by
managers for creating statistical dashboards and
reports about it. The other very popular type of
database is cloud database that relies on the cloud
technology (Voorsluys et al. 2011).

A graph database (Angles and Gutierrez 2008)
is also useful in the network analysis and it is
interesting because of the way the data is stored
in it. It uses graph structure to represent and store
information. Specialized graph database uses a

network model, which is conceived as a flexible
way of representing objects and their relation-
ships.

Everyday large amounts of data are being col-
lected. So big data (White 2012) is considered to
be a collection of large data sets. These data sets
are so large and complex that it is very difficult
to be processed using traditional data processing
applications. Also suitable technologies are re-
quired such as cluster analysis, machine learning,
neural networks, pattern recognition, and anoma-
ly detection.

Many repositories of networks and datasets of
other types are available: Repositories of Dataset-
s, KDnuggets Datasets for Data Mining, Data
Surfing on the World Wide Web, Public Data Sets
on Amazon Web Services, TunedIT, the Inter-
net2 Observatory Data Collections, Infochimps,
CAIDA (the Cooperative Association for Internet
Data Analysis) Data, and Network Data Sources
on Pajek’s web page.

Different activities are traced by their logs.
Mobile network operators record the usage of
the phones by their users, the data from weath-
er stations is collected, online social network
providers collect the data about their users (Ab-
desslem et al. 2012), different sensor networks
are being established, peer-to-peer (P2P) net-
works are more and more interesting, using the
radio-frequency identification (RFID) tags we
can follow the movement of their owners, etc.
Such data can be used for prediction or just for
the behavioral analysis of the users.

Almost Network Data

Some data is already organized in a network
form. A transportation network is a network of
roads, pipes, streets, or any other similar structure
that allows transportation of some kind. They are
represented as links, and crossings are presented
as nodes. Another area that deals with a lot of
data in a network form is chemistry. The struc-
ture of every molecule is a network with atoms
as nodes and covalent chemical bonds as links
between them. The most interesting for network
analysis are organic molecules as proteins, lipids,
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hydrocarbons, and DNA. A lot of molecular data
is available at Protein Data Bank.

To analyze such data using the selected net-
work analysis tool, we usually have to transform
them into the corresponding input network data
format. These issues are elaborated in details in
the essay “ �Network Data File Formats.”

Sometimes special programming solutions
should be developed to perform the required
transformation. For example, the transformation
of the ESRI shape file describing the map of
borders between the country’s administrative
units (states, counties) into the neighborhood
relation of the administrative units can be done
with a short program in R using the function
poly2nb from the package spdep.

Networks Derived from Data

Some data sources require more sophisticated
procedures to transform them into corresponding
networks.

Very interesting data sources are also the daily
news archives of the news agencies (Agence
France-Presse, Reuters, United Press Internation-
al, American Press Agency, Xinhua, ITAR-TASS,
etc.). A single news is essentially a (tagged) plain
text that can be analyzed with computer-assisted
text analysis (Popping 2000). One of the main
approaches to this type of text analysis is the se-
mantic text analysis. The units of the text are en-
coded according to the Chomsky’s subject-verb-
object model which can be directly transformed
into temporal multirelational networks with sub-
jects and objects as nodes and verbs as relations.
Examples of applications of this approach are
the Kansas Event Data System, Paul Hensel’s
International Relations Data Site, or Correlates
of War. An elaboration of this approach is given
in the Franzosi’s book “From Words to Num-
bers” (Franzosi 2004). See also the Centering
Resonance Analysis approach proposed by Steve
Corman.

Another example are the neighbors networks.
Let V be a set of (multivariate) units and d.u; v/

a dissimilarity on it. They determine two types
of networks: the k-nearest neighbors network:

N .k/ D .V ;AA; w/

.u; v/ 2 AA, v is among k

nearest neighbors of u; w.u; v/ D d.u; v/

and the r-neighbors network: N .r/ D .V ; E ; w/

.u W v/ 2 E , d.u; v/ � r;

w.u; v/ D w.v; u/ D d.u; v/

These networks provide a link between (multi-
variate) data analysis and network analysis. For
larger sets of units a problem of an efficient
algorithm for determining the nearest neighbors
arise. David M. Mount wrote the Approximate
Nearest Neighbor Library with fast algorithms
for the (approximate) nearest neighbor search.
In R these algorithms are available through the
function ann in package yaImpute.

Semantic Web

Semantic web (Berners-Lee et al. 2001) is an
upgrade and an extension of the ordinary web. It
provides a data layer in the World Wide Web to be
used by web services. The basis for semantic web
is the semantic description of the web content
with the use of metadata and ontologies. The aim
is to convert web of unstructured documents into
a web of data. This would make also easier to
analyze this data, because it would be already in
a network form.

Semantic web is based on Uniform Resource
Identifier (URI), Resource Description Frame-
work (RDF), and Web Ontology Language
(OWL). The URI is a string used to identify a
name or a resource and enables interaction with
representations of the resource over a network
using specific protocols. RDF is a W3C standard
for encoding knowledge. It is used for conceptual
description or modeling of information from
web resources and by computers to seek the
knowledge. RDF is actually a foundation for
processing metadata; it provides interoperability
between applications that exchange machine-
understandable information on the Web.

http://dx.doi.org/10.1007/978-1-4614-6170-8_298
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The OWL is a family of knowledge represen-
tation languages for authoring ontologies.

A piece of knowledge in RDF is represent-
ed as a triple subject-predicate-object. A sub-
ject denotes the resource; the predicate denotes
aspects of the resource and expresses a relation-
ship between the subject and the object. The
resources are always named by URIs plus option-
al anchor IDs (URL and URN are its subsets).
The triples form a multirelational network with
subjects and objects represented as nodes and
predicates determining types of ties – relations.
There are large collections of RDF triples: Linked
Data – Connect Distributed Data across the Web,
Freebase, and DBpedia.

Different syntax formats exist and are quite
varying by their complexity: N3, N-Triples,
TRiG, TRiX, Turtle, RDF/XML, RDFa, and
JSON-LD. The purpose of RDF is to provide
an encoding and interpretation mechanism so
that resources can be described in a way that
a compatible software can understand it. Some
formats are not human friendly but more machine
friendly. See also SPARQL – an RDF query
language.

Generating RandomNetworks

Generation of random networks (Batagelj and
Brandes 2005; van der Hofstad 2011) has become
important for studies of complex systems such as
electrical power grid, social relations, the World
Wide Web and Internet, and collaboration and
citation networks of scientists. Random networks
are used for modeling classes of graphs.

Paul Erdős and Alfréd Rényi proposed in
Erdős and Rényi (1959) an approach to formalize
the notion of a random graph. The Erdős-Rényi
model, denoted by G.n; m/, where n is the
number of nodes and m is the number of edges,
generates a random graph on n nodes and m

edges (uniformly) randomly selected among the
n.n�1/

2 potential edges.
Another, closely related to Erdős-Rényi

model, is the Gilbert’s model G.n; p/ (Gilbert
1959), where n is the number of nodes and
p is the probability that an edge is included

in the random graph. In this model the n.n�1/
2

potential edges of a simple undirected graph
G.n; p/ 2 G.n; p/ are included independently
with the probability p.

A model called small worlds was introduced
by Watts and Strogatz (1998). This class of ran-
dom graphs depends on two structural features.
The clustering coefficient is high and the av-
erage distance between pairs of nodes is short.
Networks such as social networks, the Internet,
and gene networks all exhibit small world net-
work characteristics.

The degree distribution of random graph from
Erdős-Rényi’s or Gilbert’s model is sharply
concentrated around its average degree. In
most real-life networks, it roughly follows the
powerlaw. Such networks are called scale-free.
Barabási and Albert (1999) described a process
of preferential attachment that generates graphs
with this property. The preferential attachment
process creates one node at a time and each
newly created node is attached to a fixed number
of already existing nodes. The probability of
selecting a specific neighbor is proportional to its
current degree.

Different classes of random graphs can be
described also as probabilistic inductive classes
of graphs (Kejžar et al. 2008).
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Synonyms

Junk e-mail; Social spam; Unsolicited bulk
e-mail

Glossary

Spam Unsolicited, unwanted message intended
to be delivered to an indiscriminate target,
directly or indirectly, notwithstanding
measures to prevent its delivery

Spammer Originator of spam message

Spam Filter An automated tool that is built to
detect spam message with the purpose of
preventing its delivery

Whitelist A list of contacts whose e-mails
should be delivered

Blacklist A list of contacts whose e-mails are
deemed to be spam

Classifier A model that identifies which of a
set of categories an object belongs to

Definition

Spam generally refers to “unsolicited, unwanted
message intended to be delivered to an indis-
criminate target, directly or indirectly, notwith-
standing measures to prevent its delivery” (Cor-
mack 2008). While e-mail spam is the mostly
widely recognized form of spam, spam actually
pervades many existing information systems and
social media, including instant messaging (Paul-
son 2004), blogs (Abu-Nimeh and Chen 2010),
newsgroups and forums (Shin et al. 2011), and
online social media (Jin et al. 2011). Spam al-
so exists in web search, where search engines
are used as a delivery mechanism for web s-
pam (Gyöngyi and Garcia-Molina 2005).

The overwhelming of spam messages in exist-
ing information systems and social media severe-
ly deteriorates the quality of communication. The
objective of spam detection is to develop ef-
fective and efficient anti-spam techniques with
the purpose of preventing the delivery of spam
messages.

Introduction

Regardless of various forms of spam in reali-
ty, sending spam messages is essentially profit-
driven activity. Spammers, the originators of s-
pam message, intend to deliver the information
to a large volume of recipients. Spam messages
often contain advertising for commercial prod-
ucts, URL links to promoted websites which may
serve as means of adult content dissemination and
phishing attacks, or even computer malwares that
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are specifically designed to hijack the recipient’s
computers. Although some forms of spam can
be identified whenever the message is delivered
and viewed by the receipts, spammers can still
be profitable even only a very small fraction of
recipients take responses to spam messages. Due
to the fact that the operating cost of sending spam
messages is substantially cheap and the barrier
to entry is quite low, the volume of spam has
been consistently increasing in the past several
years. According to the 2009 report by Ferris
Research (Jennings 2009), the worldwide finan-
cial losses caused by spam were estimated to
be $130 billion in 2009, a 30 % increase over
the 2007 estimates. Comparing to the estimated
figures in 2005, the total losses were increased by
160 % in 2009.

Spam dramatically deteriorates the quality of
communication. From the users’ point of view,
users are victims affected directly by spam. Not
only users’ material wealth but also their personal
information could be under risk to spammer-
s. From the system providers’ point of view,
they are forced to waste a significant amount
of computational and storage resources for spam
messages. Moreover, if a user receives many
spam messages, his/her trust in the system can
be drastically weakened, which inevitably makes
the user switch from the current system provider
to another competitor. Therefore, both users and
system providers have strong incentive to wipe
out spam thoroughly.

Historical Background

The term “spam” is named for Spam luncheon
meat by way of a Monty Python sketch where
Spam is depicted as ubiquitous and unavoidable.
Among various forms of spam in the literature,
e-mail spam is the most common one. Along
with the vigorous development of the Internet
since the mid-1990s, e-mail becomes a popular
communication and information exchanging
method. E-mail spam started to be a serious prob-
lem since then, and it grew exponentially over
the following years. Nowadays, spam comprises

the vast majority of e-mail messages sent daily.
It is reported that 78 % of the e-mails are
spam (Fletcher 2009). Due to such large impacts,
e-mail spam becomes not only a technical chal-
lenge but also a legal crisis and political issue.
Myriad technological and legal-based attempts
have been developed to combat e-mail spam.

Meanwhile, the user-centered design feature
of Web 2.0 further involves people in a rapid
information sharing and propagation era, which
brings the prosperity of many online social
websites. Social websites are designed to support
and foster various social interactions, which on
the other hand heavily rely on users for content
contribution and distribution. However, such
interactive and dynamic features also provide
fertile soil for spam. Spammers in social websites
disguise their spam messages as links, content,
video, audio, and executable files. Unlike
traditional e-mail spam which usually comes
from strangers, this new form spam, also named
as “social” spam, often appears to be from a
“friend” in social websites. Spammers find social
websites alluring because they can broadcast
spam messages through a chain of trusted sources
and target at a large number of users. According
to Fowler et al. (2012), 4 % of the content shared
on Facebook is spam. Making matters even
worse, a statistical report from Facebook (Fowler
et al. 2012) indicates that the volume of social
spam is growing much faster than its user base.

Foundations

The majority of existing efforts to combat spam
are based on filtering spam messages using spam
filters. In this section, we first describe the general
framework of spam detection using spam filters
and then discuss some representative spam detec-
tion solutions for e-mail spam and social spam,
respectively.

AGeneral Framework
The success of spam detection relies on spam
filters, which are automated tools that are built
to detect spam with the purpose of preventing its
delivery. For every effective spam filter, the core
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component is a spam classifier which categorizes
whether a specific message is spam or not. The
decision of spam classification using a spam
filter is often made based on different pieces of
information. For example, in order to construct
an effective e-mail spam filter, the content of the
e-mail messages and the characteristics of the
e-mail sender and the e-mail receiver are usually
considered. In addition, collaborative knowledge
such as the feedback of other receipts receiving
similar e-mails is also valuable for building the
spam filter. In many cases, some external pieces
of information (e.g., spam repositories) provided
by some third parties are also considered.

Once a spam classifier is constructed, a spe-
cific message can be categorized as spam or not.
A simple way to obtain the spam categorization
results is using a binary classifier. In a binary clas-
sifier, a message is either labeled as spam or non-
spam. Although this solution is simple, it suffers
from the lack of adaptability. Users have little
control in the spam detection process. A more
common way is to use probabilistic classifiers
which can provide more informative indications
on how likely the spam classifier considers the
message to be spam. For example, some spam
classifiers can calculate a spamicity score for
each message. The spamicity score is in the range
[0,1]. The larger the spamicity score, the more
likely the spam classifier considers the message
to be spam. In practice, a spamicity threshold
value is often configured to filter spam messages.
Different from the binary spam classifier, users
are able to adjust the threshold value so as to
capture different spam detection scenarios.

Spam filters automatically filter those
messages that are labeled as spam. For example,
spam e-mails are automatically placed into the
junk folder in each user’s e-mail account; spam
web pages are automatically removed from
the web search results; spam information in
online social media is automatically flagged and
is prohibited to be propagated through social
networks.

E-mail SpamDetection
The methods for e-mail spam detection have been
evolved continuously in the past years. In the

early stage, spam filter for e-mail spam detection
is mainly based on receiver’s judgements. For
example, users have the opportunity to handcraft
several logical rules and guidelines to filter spam
e-mails. A common practice is to maintain a
whitelist and a blacklist in each user’s e-mail
account. A whitelist refers to a list of contacts
whose e-mails should be delivered. Oppositely, a
blacklist refers to a list of contacts whose e-mails
are deemed to be spam. This solution is accept-
able when the volume of contacts and e-mails is
low. However, this solution becomes problematic
when the volume gets larger and larger. In addi-
tion, the success of manually handcrafted spam
filter relies on user’s judgements. The assumption
that users are savvy enough to construct robust
spam filtering rules is questionable. To make
matters worse, when spam e-mails change over
time, it becomes an even time-consuming and
error-prone process for users to constantly turn
and refine those spam filtering rules.

To address the problems with the manual
construction of spam filtering rules, latest
spam filters for e-mail spam detection are
able to automatically adapt to the changing
characteristics of spam e-mails over time.
Machine learning algorithms have been widely
adopted to build robust and adaptive spam filters.
Since those spam filters are built directly from
user’s e-mail repository, they are able to be
personalized to meet particular characteristics
of each user. In other words, these spam filters
are tailored specifically to meet each individual’s
requirements on spam judgements.

Among many machine learning-based spam
filters, the one based on Bayesian classifier is
most popular and widely adopted (Sahami et al.
1998). A Bayesian classifier is a probabilistic
classifier. It uses Bayesian inference to calculate
a probability which indicates how likely an
e-mail message is spam. The motivation of using
Bayesian classifier for e-mail spam detection is
that particular information (e.g., words in the
e-mail) has particular probabilities to occur
in either spam or legitimate e-mails. If all
such probabilities are calculated, they can be
used to compute the overall probability that a
specific e-mail message with a particular set of
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information in it belongs to either spam category
or non-spam category.

In practice, the Vector Space model in which
each dimension corresponds to a given word in
the entire corpus is often adopted. Thus, each
individual message can be represented as a binary
vector denoting which words are present or ab-
sent. Some other pieces of information, for ex-
ample, domain-specific properties, can also be
incorporated into the representation. Specifically,
an e-mail message is represented as a vector of
n features x D .x1; x2; : : : ; xn/. Each feature
Xi (1 � i � n) represents a specific piece of
information, and xi (1 � i � n) is the value
pertaining to feature Xi .

Assume that there are m different classes to
categorize e-mail messages, each is denoted as
cj (1 � j � m). Consider a specific e-mail
message x, the Bayesian classifier can calculate
the probability P.C D cj jX D x/ for each
possible class cj (1 � j � m). The calculation
is achieved according to the well-known Bayes’
theorem, that is,

P.C D cj jX D x/ D P.X D xjC D cj /P.C D cj /

P.X D x/
:

(1)

In Equation 1, the calculation P.X D xj
C D cj / is often impractical without imposing
some independence assumptions. Thus, the Naive
Bayesian classifier is often adopted for the cal-
culation. Given the class variable C , the Naive
Bayesian classifier assumes that each feature Xi

is conditionally independent of every other fea-
ture. As a result, we have

P.X D xjC D cj / D
Y

i

P.Xi D xi jC D cj /:

(2)
Spam filter using Bayesian classifier has been

shown a very powerful technique for dealing with
e-mail spam. It can tailor itself to the specific
needs of individual users and provides low false
positive spam detection rates. However, due to
the intrinsic problem of Bayesian classifier, the
constructed spam filter may also be suscepti-
ble to Bayesian poisoning, a technique used by

spammers in an attempt to degrade the effective-
ness of spam filters.

In the recent decade, many efforts have been
devoted to constructing effective and efficient
machine learning-based spam filters. Many ex-
isting studies mainly focus on two critical is-
sues in building a spam filter: one is feature
selection, that is, selecting a subset of relevant
features for building robust spam filters; the other
is classifier construction, that is, using different
machine learning methods to “learn” robust spam
classifiers from training data.

As many pieces of information can be
extracted from e-mail messages but not all of
them are useful for building spam filters, the
feature selection problem needs to find the best
subset of the available features. The concept of
“best” may rely on different factors including the
number of selected features, the effectiveness of
the trained spam classifier, and the tractability of
the algorithm to perform the selection process.
In general, given n features of e-mail messages,
a straightforward but prohibitively inefficient
solution is to examine all 2n subsets of n

features and choose the one which achieves
the highest spam detection result. In practice,
some greedy heuristics are adopted for ranking
features in decreasing order based on some
characterizations of their usefulness for spam
detection. For example, Sebastiani (2002)
analyzed several heuristics relying on statistics
such as term frequency and information gain
for ranking and selecting features. Regardless of
particular statistics of different features, selecting
the optimal feature set is always a challenge.

The process of feature selection should
not be considered separately from the process
of classifier construction. Different machine
learning algorithms have been considered for
constructing spam filters. For example, the
k-Nearest Neighbors Classifier (Firte et al.
2010) builds on top of the k-NN algorithm and
classifies a message according to the classes
of its nearest neighbors in the training data.
Artificial neural networks are also applicable
for constructing spam filters. In particular, the
algorithms such as perceptron and multilayer
perceptron (Tran et al. 2008) have been shown
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quite successful for filtering e-mail spams.
Several recent studies also considered the
application of SVM for spam detection. The
motivation of the SVM classification (Zhang
et al. 2004) is to find a separation boundary which
can correctly classify training samples. Different
from the perceptron algorithm, the SVM-based
approach tries to find a special maximal margin
separating hyperplane such that the distance to
the closest training sample is maximal.

In practice, there exist some types of e-mail
messages that cannot be clearly categorized as
either spam or non-spam. Such examples include
newsletters and legitimate advertisements. These
types of e-mail messages are usually regarded as
gray mail (Chang et al. 2008). Detecting gray
mail introduces more challenges. Even an opti-
mal spam filter could inevitably perform unsat-
isfactorily on gray mail. Chang et al. (2008)
systematically studied the problem of gray mail
detection and concluded that user preferences
are needed to be considered. The experimen-
tal results in Chang et al. (2008) indicate that
e-mail messages which are labeled differently in
the training data are the most reliable source for
learning a gray mail detector.

Social Networks SpamDetection
Online social websites have different character-
istics comparing to e-mail systems. Some spam
filtering techniques for e-mail spam detection
may be useful to detect spam in social networks
as well; however, some particular requirements
of social spam detection need to be considered.
Following are the four most important features
of online social websites, which to some extent
differentiate the characteristics of social spam
detection compared to traditional e-mail spam
detection:
• Existence of one managing entity. In online

social websites, there exists an entity who
manages and maintains the system, defines the
system policy, and determines the privileges of
participated users.

• Well-defined social interactions. Users have
very close interactions with the social
websites to contribute social contents.
Meanwhile, social websites also provide some

functionalities to share and distribute users’
contents. However, the available interactions
of participated users are constrained in the
system.

• Unique identifier. In online social websites,
each user has to maintain a unique identifier
or a personal profile. This unique identifier is
associated with each user’s interaction in the
websites.

• Multiple views of information access. Users in
online social websites have multiple views to
get access to the available contents.
Users are a key component in social spam

detection. Social spam detection has several u-
nique challenges. First, unlike many e-mail sys-
tems, the managing entity and restricted interac-
tions in online social websites provide the oppor-
tunity to prevent spam effectively even before its
emergence. For example, by defining appropriate
terms of service and adjusting the trade off be-
tween users’ privileges and the information flow
rate, social websites are able to keep spam in the
prevention stage. Second, due to the unique iden-
tifier in social websites, the origins of social spam
can be controlled since users’ interactions are
tied to a specific identifier. Third, multiple views
of information access lead to different snapshots
of available contents in the websites. Therefore,
social spam detection should consider all the
possible spam tricks and various relations among
them. Last but not the least, social websites con-
tain large population and their social interaction-
s, which makes information propagation much
faster. This results in increasing and dynamic
evolution of social spam. Inevitably, scalability
and timely detection requirements become key
issues in social spam detection.

Several popular anti-spam strategies for online
social websites, named as detection, demotion,
and prevention, are analyzed thoroughly in
Heymann et al. (2007). Detection is made
based on the predefined discriminative features
extracted from given spam and non-spam
instances. This is similar to e-mail spam
detection. The features used for building spam
filters are mainly extracted from contents and
topological structure of social networks. In
addition, the analysis of users’ social behavior
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and domain-specific features (e.g., features
extracted from figures or videos) are often
largely considered. Different from e-mail
spam detection, demotion and prevention are
also considered in social spam detection. The
demotion strategy adopts rank-based methods to
downgrade the prominence of contents that are
deemed to be spam. In some situations, due to
the fast propagation and evolution capabilities of
social websites, decreasing the rankings of spam
messages might not be enough.

Many current techniques of social spam
detection largely depend on the set of features
extracted from user behaviors and social
interactions. Although such features are useful
for social spam detection, there is always
a considerable time delay until the spam is
successfully identified. The fast information
exchanging rate in social websites requires a
real-time framework to combat spam. To achieve
this goal, prevention-based strategy to identify
social spam becomes quite useful (Irani et al.
2010). Once user profiles are created in social
websites, some features are directly extracted
from the static profile contents. The motivation
is to identify the potential spammers in the early
stage, even before the creation and propagation
of spam messages in social networks. A popular
solution is to treat social spam detection as
an adversarial classification problem (Dalvi
et al. 2004). However, this prevention-based
solution may be vulnerable. In practice, this
technique is often used as a filter even before
many sophisticated spam detection techniques
are employed. For example, user profiles that
are deemed to be spammers are treated as gray
profiles. These user profiles need particular
attentions for further analysis to support spam
detection.

Some recent studies (Boykin and Roychowd-
hury 2005) proposed an integrated framework
of social spam detection and e-mail spam
detection and applied social network analysis for
e-mail spam detection. The algorithm proposed
in Boykin and Roychowdhury (2005) analyzes
“From,” “To,” Cc” and “Bcc” fields of the e-mail
headers so as to construct a network representing
social relations of different users. The foundation

is based on the fact that the underlying e-mail
social networks are useful for judging the
trustworthiness of users. For example, the trust
can be measured based not only on how well a
user knows a specific person but also on how
well the other users in the e-mail network know
that person. Once the social network of e-mail
communications is built, an automated anti-
spam tool can exploit the properties of social
networks to distinguish spam messages from
non-spam ones.

Conclusion

There is an adversarial relationship between
spam and anti-spam techniques. In recent years,
machine learning-based spam detection ap-
proaches, the probabilistic classifier-based spam
filter in particular, have been widely applied
to detect various forms of spam. However, the
performance of anti-spam techniques is still
far from perfect. The creativity and efforts of
spammers who manage to violate laws and social
norms to deliver spam messages will provide a
continuing challenge for developing anti-spam
techniques. Developing robust and adaptive
anti-spam techniques is a long-term strategy to
combat spam.
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SPARQL 1.1; W3C Standard RDF Query
Language

Glossary

RDF Resource Description Framework
RDFS RDF Schema, a lightweight ontology lan-

guage on top of RDF
Triple An atomic statement of the form (subject

predicate object) in RDF
RDF Graph A set of RDF triples
W3C World Wide Web Consortium
W3C Recommendation Standards published by

the W3C
SPARQL initially “Simple Protocol and RDF

Query Language,” or nowadays more often re-
ferred to by the recursive acronym “SPARQL
Protocol and RDF Query Language”; in its
1.1 version, SPARQL comprises not only a
query language and a protocol but also a data
manipulation language and other features

SPARQL Protocol defines how to invoke S-
PARQL queries and updates via a SPARQL
endpoint and how results should be returned
via HTTP
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SPARQL Service Any implementation conform-
ing to the SPARQL Protocol

SPARQL Endpoint The URI at which a SPAR-
QL service listens for requests from clients

OWL Web Ontology Language, a schema lan-
guage on top of RDF, rooted in Description
Logics

RIF Rule Interchange Format, a standard to en-
code and exchange rules

BGP Basic Graph Pattern, a set of RDF triple
“templates” where variables are allowed in ei-
ther subject predicate or object position, which
can be read as a conjunctive query

HTTP Hypertext Transfer Protocol
URI Universal Resource Identifiers, a generaliza-

tion of URLs (cf. IETF RFC1630)

Definition

SPARQL, the “Simple Protocol and RDF Query
Language,” is the W3C’s standard query lan-
guage for RDF (the Resource Description Frame-
work, an emerging data format on the growing
Web of Data). However, the SPARQL standard
does not only comprise a query language but a
family of W3C standards to access and manipu-
late RDF data; in its current version SPARQL 1.1,
the standard comprises:
• A query language (SPARQL 1.1 Query Lan-

guage)
• A data manipulation language (SPARQL 1.1

Update)
• A mechanism to describe and discover SPAR-

QL endpoints (SPARQL 1.1 Service Descrip-
tion)

• An extension to delegate parts of a query to
a remote SPARQL endpoint (SPARQL 1.1
Federated Query)

• Various result formats (SPARQL 1.1 Query
Results JSON Format, SPARQL 1.1 Query
Results CSV and TSV Formats, SPARQL
Query Results XML Format)

• A normative way to return additional results
entailed by schema and rules languages such

as RDFS, OWL, and RIF (SPARQL 1.1 En-
tailment Regimes)

• A protocol to invoke SPARQL queries and
updates via HTTP (SPARQL 1.1 Protocol)

• An extension to the SPARQL Protocol, to per-
form certain operations to manage collections
of graphs directly via HTTP (SPARQL 1.1
Graph Store HTTP Protocol)

Introduction

The Semantic Web is in principle a family of
standards to enable a Web of Data, with the final
goal of enabling nothing less than the vision of
the Web as a database (Berners-Lee 1999). The
architecture of these standards comprises of (i) a
simple graph-based data model, RDF; (ii) schema
languages, RDFS and OWL; (iii) rules languages,
RIF; and last but not least, (iv) a query language,
sparql. The existence of such a standard query
language has significantly contributed to the in-
creasing uptake of RDF as a basic data format
on the Web over the past years. After SPARQL’s
first edition has become a W3C recommendation
in 2008, the community and implementers have
requested a variety of additional features that the
SPARQL 1.1 working group took as a starting
point in 2009 for re-shaping the next version of
the standard. In March 2013, the group concluded
its work by publishing 11 specification docu-
ments (listed above) as a W3C recommendation.

Methodology

In this section, we introduce various parts of the
SPARQL specification by a short example.

We will illustrate the use of SPARQL’s lan-
guages, protocols, and related specifications with
a small example RDF graph published on the
Web at the URL “http://example.org/alice” which
contains personal information about Alice and
her social contacts. We use Turtle (Beckett et al.
2013) syntax here for illustration:

http://example.org/alice


S 1962 SPARQL

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<http://example.org/alice#me> a foaf:Person .
<http://example.org/alice#me> foaf:name "Alice" .
<http://example.org/alice#me> foaf:mbox
<mailto:alice@example.org> .
<http://example.org/alice#me> foaf:knows
<http://example.org/bob#me> .
<http://example.org/bob#me> foaf:knows
<http://example.org/alice#me> .
<http://example.org/bob#me> foaf:name "Bob" .
<http://example.org/alice#me> foaf:knows
<http://example.org/charlie#me> .
<http://example.org/charlie#me> foaf:knows
<http://example.org/alice#me> .
<http://example.org/charlie#me> foaf:name "Charlie" .
<http://example.org/alice#me> foaf:knows
<http://example.org/snoopy> .
<http://example.org/snoopy> foaf:name "Snoopy"@en .

With SPARQL 1.1, one can query such graphs,
load them into RDF stores, and manipulate them
in various ways.

Firstly, the SPARQL 1.1 Query Language
(Harris and Seaborne 2013) can be used to

formulate queries against RDF ranging from sim-
ple graph pattern matching to complex queries.
For instance, one can ask using a SPARQL SE-
LECT query for names of persons and the number
of their friends:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name (COUNT(?friend) AS ?count)
WHERE{
?person foaf:name ?name .
?person foaf:knows ?friend .
}GROUP BY ?person ?name

Complex queries may include union, optional
query parts, and filters; new features like
value aggregation, path expressions, and nested
queries have been added in SPARQL 1.1. Apart
from SELECT queries – which return variable
bindings – SPARQL supports ASK queries, i.e.,
Boolean “yes/no” queries, and CONSTRUCT
queries, by which new RDF graphs can be
constructed from a query result; all the new query

language features of SPARQL 1.1 are likewise
usable in ASK and CONSTRUCT queries.

Results of SELECT queries in SPARQL com-
prise bags of mappings from variables to RDF
terms, often conveniently represented in tabular
form. For instance, the query from Section 2 has
the following results:

In order to exchange these results in machine-
readable form, SPARQL supports four standard
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?name ?count

"Alice" 3

"Bob" 1

"Charlie" 1

formats to exchange results, namely, the
Extensible Markup Language (XML) (Hawke
2013), the JavaScript Object Notation (JSON)
(Seaborne 2013a), as well as the Comma-
Separated Values (CSV) and Tab-Separated
Values (TSV) (Seaborne 2013b).

The SPARQL 1.1 Federated Query
(Prud’hommeaux and Buil-Aranda 2013)
extension allows to explicitly delegate certain
subqueries to different SPARQL endpoints. For
instance, in our example, one may want to know
whether there is anyone among Alice’s friends
with the same name as the resource identified by
the IRI <http://dbpedia.org/resource/Snoopy> at
DBpedia. This can be done by combining a query
for the names of friends with a remote call to the
SPARQL endpoint at http://dbpedia.org/sparql
finding out the name of <http://dbpedia.org/
resource/Snoopy> using the SERVICE keyword
as follows:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name WHERE {
<http://example.org/alice#me> foaf:knows [ foaf:name ?name] .

SERVICE <http://dbpedia.org/sparql>
{ <http://dbpedia.org/resource/Snoopy> foaf:name ?name } }

Here, the first part of the pattern in the
WHERE part is still matched against the local
SPARQL service, whereas the evaluation of
the pattern following the SERVICE keyword
is delegated to the respective remote SPARQL
service.

SPARQL can be used together with entailment
regimes (Glimm and Ogbuji 2013), that is,
exploiting ontological information in the form
of, for example, RDF Schema (RDFS) or OWL

axioms. For instance, let us assume that – apart
from the data about Alice – some ontological
information in the form of RDFS (Brickley and
Guha 2004) and OWL (2012) constructs defining
the FOAF vocabulary is loaded into our example
SPARQL service.

The FOAF ontology (cf. http://xmlns.com/
foaf/spec/,retrievedApril2013), of which we only
give a small excerpt here, contains, for instance,
the following RDFS axiom:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
...
foaf:name rdfs:subPropertyOf rdfs:label .
...

The following query asks for labels of persons:

SELECT ?label
WHERE {?person rdfs:label ?label}

A SPARQL engine that does not consider
any special entailment regimes (on top

of standard simple entailment) would not
return any results for this query, whereas
an RDF Schema aware query engine will
return

Since foaf:name is a sub-property of
rdfs:label.

http://dbpedia.org/resource/Snoopy
http://dbpedia.org/sparql
http://dbpedia.org/resource/Snoopy
http://dbpedia.org/resource/Snoopy
http://xmlns.com/foaf/spec/, retrieved April 2013
http://xmlns.com/foaf/spec/, retrieved April 2013
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?label

"Alice"

"Bob"

"Charlie"

"Snoopy"@en

The SPARQL 1.1 Update (Gearon et al. 2013)
specification defines the syntax and semantics of
SPARQL 1.1 Update requests. Update operations

can consist of several sequential requests and
are performed on a collection of graphs in a
Graph Store. Operations are provided to update,
create, and remove RDF graphs in a Graph Store.
For instance, the following request inserts a new
friend of Alice named Dorothy into the default
graph of our example SPARQL service and there-
after deletes all names of Alice’s friends with an
English language tag.

PREFIX foaf: <http://xmlns.com/foaf/0.1/> .

INSERT DATA { <http://www.example.org/alice#me> foaf:knows
[foaf:name "Dorothy" ]. } ;
DELETE { ?person foaf:name ?mbox }
WHERE {

<http://www.example.org/alice#me> foaf:knows ?person .
?person foaf:name ?name . FILTER ( lang(?name) = "EN" ) .}

As the second operation shows, insertions and
deletions can be dependent on the results of
queries to the Graph Store; the respective syntax
used in the WHERE part is derived from the
SPARQL 1.1 Query Language.

The SPARQL 1.1 Protocol for RDF (Feigen-
baum et al. 2013) defines how to transfer
SPARQL 1.1 queries and update requests
to a SPARQL service via HTTP. It also
defines how to map requests to HTTP GET
and POST operations and what respective
HTTP responses to such requests should look
like. Additionally, the SPARQL 1.1 Service
Description (Williams 2013) document describes
a method for discovering and an RDF vocabulary
for describing SPARQL services made available
via the SPARQL 1.1 Protocol. According to
this specification, a service endpoint, when
accessed via an HTTP GET operation without
further (query or update request) parameters,
should return an RDF description of the service
provided.

For many applications and services that deal
with RDF data, the full SPARQL 1.1 Update
language might not be required. To this end,
the SPARQL 1.1 Graph Store HTTP Protocol

(Ogbuji 2013) provides means to perform cer-
tain operations to manage collections of graphs
directly via HTTP operations.

For instance, the first part of the update request
in above is a simple insertion of triples into an
RDF graph. On a service supporting this protocol,
such insertion can – instead of via a SPARQL
1.1 Update request – directly be performed via
an HTTP POST operation taking the RDF triples
to be inserted as payload.

Implementations

A list of SPARQL 1.0 implementations is avail-
able at http://www.w3.org/wiki/SparqlImplemen
tations (retrieved April 2013), whereas a
list of implementations of the new features
of SPARQL 1.1 along with reports on test
coverage is available at http://www.w3.org/
2009/sparql/implementations/ (retrieved April
2013). As for performance evaluations, a
list of benchmarks is available at http://
www.w3.org/wiki/RdfStoreBenchmarking; The
Europeana report (Haslhofer et al. 2011)
compares and describes various current SPARQL

http://www.w3.org/wiki/SparqlImplementations
http://www.w3.org/2009/sparql/implementations/
http://www.w3.org/2009/sparql/implementations/
http://www.w3.org/wiki/RdfStoreBenchmarking
http://www.w3.org/wiki/RdfStoreBenchmarking
http://www.w3.org/wiki/SparqlImplementations
http://www.w3.org/wiki/SparqlImplementations
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implementations, not yet mentioning SPARQL
1.1 implementations, though.

SPARQL in Academia

The formal semantics of the SPARQL Query
Language in its original recommendation in 2008
has been very much inspired by academic results,
such as by the papers of Pérez et al. (2006,
2009). Angles and Gutierrez (2008) later showed
that SPARQL – as defined in those papers –
has exactly the expressive power of non-recursive
safe Datalog with negation. Another translation
from SPARQL to Datalog has been presented in
Polleres (2007).

Extensions that were now standardized in
SPARQL 1.1 such as subqueries (Angles and
Gutierrez 2011), path expressions (Alkhateeb
et al. 2009; Pérez et al. 2010), or aggregates
(Polleres et al. 2007) have also been discussed
or proposed in some variants in the academic
literature. Details about the differences of
the semantics as defined in the official W3C
specification and in most of these academic
papers are discussed in Polleres (2012). Query
optimization and particularly equivalence of
SPARQL queries have been discussed to some
extent already in Pérez et al. (2009). These results
were refined and extended in Schmidt et al.
(2008), Letelier et al. (2012), and Chekol et al.
(2012). The semantics of SPARQL entailment
regimes has been discussed in Kollia et al.
(2011); foundational aspects of federated queries
are discussed in Buil-Aranda et al. (2013). The
semantics of path expressions in SPARQL 1.1
has been discussed in Arenas et al. (2012) and
Losemann and Martens (2012), and it should
be noted that these papers to some extent
influenced the definition of the semantics of
path expressions in the final specification. More
practical proposals for query optimizations are
discussed in Stocker et al. (2008) and Vidal et al.
(2010). Overall, SPARQL is a source of ongoing
research and inspired various academic works on
its foundations, optimization, and extensions, a
full account of which would be beyond the scope
of this article.

Future Directions

Various additional features requested to the
query language could not yet be taken into
account for SPARQL 1.1, and the working
group has collected a list of open work items
on its wiki page (http://www.w3.org/2009/sparql/
wiki/Future_Work_Items, retrieved April 2013)
which comprises features that had to be left
out either for reasons of priorities or missing
implementation experience to be standardized
already. It may be expected that – just like in the
transition from SPARQL 1.0 to SPARQL 1.1 –
upon implementation experience and community
feedback from implementers, a new working
group by W3C will be formed in the future to
add additional features. As already mentioned
in the previous section, academic research can
potentially impact these future directions; for
instance, extensions of regular path queries
(a small subset of which is now incorporated
into SPARQL 1.1) which are currently being
investigated in academia (e.g., Barceló et al.
2010) might be viewed as very valuable additions
to query graph data in RDF.
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Synonyms

Network geography; Space-embedded networks;
Transportation systems; Urban networks

Glossary

Graph (or Network) A set of vertices connected
by edges

Adjacency Matrix A matrix A which represents
the structure of a graph. The element Aij

is either 0 if i and j are not connected or
Aij D 1 if there is an edge from i to j . For a
spatial network, the position of the nodes fxi g
is needed in order to completely characterize
the network

Betweenness Centrality The betweenness cen-
trality of a vertex (or an edge) x is defined as
BC.x/ D P

s;t2V
�st .x/

�st
, where �st .x/ is the

number of shortest paths between s and t using
x and �st is the number of all shortest paths
between s and t

Betweenness Centrality Impact Measures how
a new link affects the average betweenness
centrality of a graph. This quantity can help in
characterizing the different types of new links
during the evolution of a (spatial) network

Cell Also called face for planar network is a
region bounded by edges. The Euler formula
relates the number of nodes, edges, and cells
(faces)

Diameter The diameter of a graph is defined
as the maximum value of all `.i; j /, is the

distance between i and j , and is used to
measure the “size” of it. For most real-world
spatial network, the diameter scales as the
number of nodes to the power 1=d where d

is the dimension of the embedding space
Planar Graph A planar graph can be drawn in

2-D such that none of its edges are crossing
Organic Ratio Measures the proportion of

degree 1 (“dead ends”) and degree 3 nodes
(“T-shaped intersections”). If the organic ratio
is small, the corresponding spatial network is
very close to a regular rectangular lattice

Alpha Index Also called the meshedness, it mea-
sures the ratio of observed circuits to the maxi-
mum number of elementary circuits which can
exist in the network

Gamma Index Ratio of the number of edges to
the maximum number possible for a planar
graph with the same number of nodes

Shape Factor Ratio of the area of a cell to the
area of the circumscribed circle

Route Distance Distance between two nodes
measured by the length of the shortest path
connecting them

Detour Index Ratio of the route distance be-
tween two nodes and the euclidean distance
between them

Network Cost Ratio of the total length of the
network to the total length of the minimum
spanning tree constructed on the same set of
nodes

Network Performance Ratio of the average
shortest path of the network to the average
shortest path of the minimum spanning tree
constructed on the same set of nodes

Definition

More generally, the term “spatial network” has
come to be used to describe any network in which
the nodes are located in a space equipped with
a metric (Barthelemy 2011). For most practical
applications, the space is the two-dimensional
space and the metric is the usual euclidean dis-
tance. For these networks we thus need both the
topological information about the graph (given by
the adjacency matrix) and the spatial information

http://dx.doi.org/10.1007/978-1-4614-6170-8_322
http://dx.doi.org/10.1007/978-1-4614-6170-8_100720
http://dx.doi.org/10.1007/978-1-4614-6170-8_100721
http://dx.doi.org/10.1007/978-1-4614-6170-8_100722
http://dx.doi.org/10.1007/978-1-4614-6170-8_100723
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about the nodes (given by the position of the
nodes).

Transportation and mobility networks, Inter-
net, mobile phone networks, power grids, so-
cial and contact networks, and neural networks
are all examples where space is relevant and
where topology alone does not contain all the
information.

Characterizing and understanding the struc-
ture and the evolution of spatial networks is cru-
cial for many different fields ranging from urban-
ism to epidemiology. An important consequence
of space on networks is that there is usually a cost
associated to the length of edges which in turn
has dramatic effects on the topological structure
of these networks. Indeed, a long link will be
very costly and can exist if this cost if balanced
with another good reason (economical or connec-
tion to a hub, . . . ). For most real-world spatial
networks, we indeed observe that the probabil-
ity of finding a link between two nodes will
decrease with the distance. Spatial constraints
affect not only the structure and properties of
these networks but also processes which take
place on these networks such as phase transitions,
random walks, synchronization, navigation, re-
silience, and disease spread.

All planar graphs can be embedded in a two-
dimensional space and can be represented as spa-
tial networks, but the converse is not necessarily
true: there are some spatial and nonplanar graphs.
In general, however, most spatial networks are, to
a good approximation, planar graphs (Clark and
Holton 1991), such as road or railway networks,
but there are some important exceptions such as
the airline network (Barrat et al. 2004): in this
case the nodes are airports and there is a link
connecting two nodes if there is at least one direct
connection. For many infrastructure networks,
however, planarity is unavoidable. Power grids,
roads, rail, and other transportation networks are
to a very good accuracy planar networks. For
many applications, planar spatial networks are
the most important and most studies have focused
on these examples.

Also, the above definition does not imply
that the links are necessarily embedded in s-
pace. Indeed, in social networks, individuals are

connected through a friendship relation which is
a virtual network of relations. There is however
a strong spatial component in these networks as
the probability that individuals located in space
are friends generally decreases with the distance
between them (Liben-Nowell et al. 2005).

Introduction

For many critical infrastructures, communication
or biological networks, space is relevant: most of
the people have their friends and relatives in their
neighborhood, power grids and transportation
networks depend obviously on distance, many
communication network devices have short radio
range, the length of axons in a brain has a cost,
and the spread of contagious diseases is not
uniform across territories. In particular, in the
important case of the brain, regions that are
spatially closer have a larger probability of being
connected than remote regions as longer axons
are more costly in terms of material and energy
(Bullmore and Sporns 2009). Wiring costs
depending on distance are thus certainly an
important aspect of brain networks, and we
can probably expect spatial networks to be very
relevant in this rapidly evolving topic. Another
particularly important example of such a spatial
network is the Internet which is defined as the set
of routers linked by physical cables with different
lengths and latency times. More generally, the
distance could be another parameter such as
a social distance measured by salary, socio-
professional category differences, or any quantity
which measures the cost associated with the
formation of a link.

All these examples show that these networks
have nodes and edges which are constrained by
some geometry and are usually embedded in a
two- or three-dimensional space, and this has
important effects on their topological properties
and consequently on processes which take place
on them. If there is a cost associated to the
edge length, longer links must be compensated by
some advantage, for example, being connected to
a well-connected node – that is, a hub. The topo-
logical aspects of the network are then correlated
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to spatial aspects such as the location of the nodes
and the length of edges.

Tools for Characterizing Spatial
Networks

Graphs are usually characterized by the adja-
cency matrix A where the elements are Aij D
1 if nodes i and j are connected (see, e.g., a
graph textbook Clark and Holton 1991). This
matrix completely characterizes the topology of
the graph and is enough for most applications.
This is however not the case for spatial networks
where the spatial information is contained in the
location of the nodes xi . Two topologically iden-
tical graphs can then have completely different
spatial properties, and this is at the heart of the
richness and complexity of spatial networks.

In this section we will discuss some tools
which can be helpful to characterize some aspects
of spatial networks.

Degree Distribution, Clustering, and
Average Shortest Path Length

Degree Distribution
In complex networks, the degree distribution,
the clustering spectrum, and the average shortest
distance are of utmost importance (Albert and
Barabasi 2002). Their knowledge already gives
a useful picture of the graph under study. In
contrast, in spatial networks, physical constraints
impose some of the properties. In particular, there
is usually a sharp cutoff on the degree distribution
P.k/ which is therefore not broad. This is true for
most spatial and planar networks such as power
grids or transportation networks, for example. For
a spatial, nonplanar network such as the airline
network, the cutoff can be large enough and
the degree distribution could be characterized as
broad.

Clustering
The clustering coefficient of a node counts how
its neighbors are connected with each other. For
spatial networks, the dominant mechanism is usu-
ally to minimize cost associated with length, and

nodes have a tendency to connect to their nearest
neighbors, independently from their degree. This
in general implies that the clustering spectrum
C.k/ is relatively flat for spatial networks. The
same argument can be used to show that the
assortativity “spectrum” defined as the function
knn.k/ is also approximately constant in general
when spatial constraints are very strong (see
Barthelemy 2011 for more details).

Average Shortest Distance
Usually, there are many paths between two nodes
in a connected network, and the shortest one
defines a distance on the network:

`.i; j / D min
paths.i!j /

jpathj (1)

where the length jpathj of the path is defined
as its number of edges. This quantity is infinity
when there are no paths between the nodes and
is equal to one for the complete graph (for which
`.i; j / D 1). For weighted graphs, we assign to
each link e a weight we and the length of a path
is given by jpathj DPe2Path we.

In most complex networks, one observes a
small-world behavior (Watts and Strogatz 1998)
of the form

h`i � log N (2)

In contrast, for a real-world spatial network em-
bedded in a d-dimensional space, we usually
observe the very different behavior:

h`i � N 1=d (3)

which also means that to go from one node to
another one, one has to cross a path of length
of the order of the diameter (which is not the
case when shortcuts exist). The measure of the
average shortest path length could thus be a first
indication whether a network is close to a lattice
or if long-range links are important.

Organic Ratio
We note that more recently, other interesting
indices were proposed in order to characterize
specifically road networks (Xie and Levinson
2007). Indeed, the degree distribution is very
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peaked around 3–4, and an interesting informa-
tion is given by the ratio

rN D N.1/CN.3/P
k¤2 N.k/

(4)

where N.k/ is the number of nodes of degree k. If
this ratio is small, the number of dead ends and of
“unfinished” crossing (k D 3) is small compared
to regular crossing with k D 4, signalling a more
organized city. In the opposite case of large rN '
1, there is dominance of k D 1 and k D 3 nodes
which signals a more “organic” city.

Betweenness Centrality

Anomalies
The betweenness centrality (BC) of a vertex
(Freeman 1977) is determined by its ability to
provide a path between separated regions of
the network. Hubs are natural crossroads for
paths, and it is natural to observe a marked
correlation between the average g.k/ DP

i=kiDk g.i/=N.k/ and k as expressed in the
following relation:

g.k/ � k
 (5)

where � depends on the characteristics of the
network. We expect this relation to be altered
when spatial constraints become important, and
in order to understand this effect, we consider
a one-dimensional lattice which is the simplest
case of a spatially ordered network. For this
lattice the shortest path between two nodes is
simply the euclidean geodesic, and for two points
lying far from each other, the probability that
the shortest path passes near the barycenter of
the network is very large. In other words, the
barycenter (and its neighbors) will have a large
centrality as illustrated in Fig. 1a. In contrast, in
a purely topological network with no underlying
geography, this consideration does not apply any-
more, and if we rewire more and more links (as
illustrated in Fig. 1b), we observe a progressive
decorrelation of centrality and space while the
correlation with degree increases. In a lattice, it
is easy to show that the BC depends on space

Spatial Networks, Fig. 1 (a) Betweenness centrality for
the (one-dimensional) lattice case. The central nodes are
close to the barycenter. (b) For a general graph, the central
nodes are usually the ones with large degree

and is maximum at the barycenter, while in a
network the BC of a node depends on its degree.
When the network is constituted of long links
superimposed on a lattice, we then expect the
appearance of “anomalies” characterized by large
deviations around the behavior g � k
 .

Betweenness Centrality Impact
When studying the time evolution of networks,
it is important to be able to characterize quan-
titatively new links. This is particularly true for
spatial networks, but what follows could also be
applied to general, complex networks.

We consider a time-evolving graph Gt de-
scribed by a set of nodes Vt and edges Et at
time t . In order to evaluate the impact of a new
link on the overall distribution of the betweenness
centrality in the graph at time t , we first compute
the average betweenness centrality of all the links
of Gt as

b.Gt / D 1

.N.t/ � 1/.N.t/� 2/

X
e2Et

b.e/ (6)
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where b.e/ is the betweenness centrality of the
edge e in the graph Gt . Then, for each new link e�
added in the time window Œt � 1; t �, we consider
the new graph obtained by removing the link e�
from Gt , denoted by Gt nfe�g. The impact ıb.e�/
of edge e� on the betweenness centrality of the
network at time t is then defined as (Strano et al.
2012)

ıb.e�/ D
h
b.Gt /� b.Gtnfe�g/

i

b.Gt /
(7)

The betweenness centrality impact is thus the rel-
ative variation of the graph average betweenness
due to the removal of the link e� and can thus
help to characterize quantitatively the various
mechanisms at play during the evolution of the
network (Strano et al. 2012).

Mixing Space and Topology
All the previous indicators describe essentially
the topology of the network, but are not specif-
ically designed to characterize spatial network-
s. We will here briefly review other indicators
which provide useful information about the s-
patial structure of networks. Different indices
were defined a long time ago mainly by scien-
tists working in quantitative geography since the
1960s and can be found in Haggett and Chorley
(1969) (see also the more recent paper by Xie and
Levinson (2007)). Most of these indices are rela-
tively simple but still give important information
about the structure of the network in particular
if we are interested in planar networks. These
indices were used so far to characterize trans-
portation networks such as highways or railway
systems.

Alpha and Gamma Indices
The most important indices are called the “alpha”
and the “gamma” indices. The simplest index is
called the gamma index and is simply defined by

� D E

Emax
(8)

where E is the number of edges and Emax is the
maximal number of edges (for a given number of
nodes N ). For nonplanar networks, Emax is given
by N.N � 1/=2 for nondirected graphs and for
planar graphs Emax D 3N � 6 leading to

�P D E

3N � 6
(9)

The gamma index is a simple measure of the
density of the network, but one can define a
similar quantity by counting not the edges but
the number of elementary cycles. The number of
elementary cycle for a network is known as the
cyclomatic number (see, e.g., Clark and Holton
1991) and is equal to

� D E �N C 1 (10)

For a planar graph this number is always less
or equal to 2N � 5 which leads naturally to
the definition of the alpha index (also coined as
meshedness in Buhl et al. 2006)

˛ D E �N C 1

2N � 5
(11)

This index belongs to Œ0; 1� and is equal to 0 for a
tree and equal to 1 for a maximal planar graph.

Cell Area and Shape
For planar spatial networks, we have faces or cell-
s which have a certain area and shape. In certain
conditions, it can be interesting to characterize
statistically these shapes, and various indicators
were developed in this perspective (see Haggett
and Chorley 1969 for a list of these indicators).

The first, simple important information is the
distribution of the area P.A/ which for many
cases follows a power law (Lammer et al. 2006;
Barthelemy and Flammini 2008):

P.A/ � A�� (12)

where  � 2. We can note here that a simple ar-
gument on node density fluctuation leads indeed
to this value  D 2 and further empirical analysis
is needed to test the universality of this result.
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In addition to the area of the cell, its shape
distribution is also interesting and contains a large
part of the information about the structure of the
network. A simple way to characterize the shape
is given by the form factor �. If we denote by L

the major axis, the shape ratio is defined as A=L2

(or equivalently, we can define the elongation
ratio

p
A=L). In the paper (Lammer et al. 2006)

on the road network structure, Lämmer et al. use
another definition of the form factor and define
it as

� D 4A

�D2
(13)

where �D2 is the area of the circumscribed cir-
cle. If this ratio is small, the cell is very anisotrop-
ic, while on the contrary if � is closer to one,
the corresponding cell is almost circular. In many
cases where rectangles and squares predominate
(Lammer et al. 2006; Strano et al. 2012), we have
� � 0:5 � 0:6.

Detour Index
When the network is embedded in a two-
dimensional space, we can define at least two
distances between the pairs of nodes. There is
of course the natural euclidean distance dE .i; j /

which can also be seen as the “as crow flies”
distance. There is also the total “route” distance
dR.i; j / from i to j by computing the sum of
lengths of segments belonging to the shortest
path between i and j . The detour index – also
called the route factor – for this pair of nodes
.i; j / is then given by (see Fig. 2 for an example)

Q.i; j / D dR.i; j /

dE .i; j /
(14)

This ratio is always larger than one, and the closer
to one, the more efficient the network. From this
quantity, we can derive another one for a single
node defined by

hQ.i/i D 1

N � 1

X
j

Q.i; j / (15)

which measures the “accessibility” for this spe-
cific node i . Indeed the smaller it is, the easier it is
to reach the node i . This quantity is related to the

Spatial Networks, Fig. 2 Example of detour index cal-
culation. The “as crow flies” distance between the nodes A
and B is dE.A; B/Dp10, while the route distance over
the network is dR.A; B/ D 4 leading to a detour index
equal to Q.A; B/D 4=

p
10 ' 1:265

quantity called “straightness centrality” (Crucitti
et al. 2006):

C S .i/ D 1

N � 1

X
j¤i

dE .i; j /

dR.i; j /
(16)

And if one is interested in assessing the global
efficiency of the network, one can compute the
average over all pairs of nodes:

hQi D 1

N.N � 1/

X
i¤j

Q.i; j / (17)

The average hQi or the maximum Qmax, and
more generally the statistics of Q.i; j /, is impor-
tant and contains a lot of information about the
spatial network under consideration (see Aldous
and Shun 2010 for a discussion on this quanti-
ty for various networks). For example, one can
define the interesting quantity Aldous and Shun
(2010)

�.d/ D 1

Nd

X
ij=dE.i;j /Dd

Q.i; j / (18)

(where Nd is the number of nodes such that
dE .i; j / D d ) whose shape can help in
characterizing combined spatial and topological
properties.
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Cost and Efficiency
The minimum number of links to connect N

nodes is E D N � 1 and the corresponding
network is then a tree. We can also look for the
tree which minimizes the total length given by the
sum of the lengths of all links:

`T D
X
e2E

dE .e/ (19)

where dE .e/ denotes the length of the link e. This
procedure leads to the minimum spanning tree
(MST) which has a total length `MST

T (see, e.g.,
Clark and Holton 1991). Obviously the tree is not
a very efficient network (e.g., from the point of
view of transportation), and usually more edges
are added to the network, leading to an increase
of accessibility but also of `T . A natural measure
of the “cost” of the network is then given by

C D `T

`MST
T

(20)

We note here that we easily estimate the total
length if the segment length distribution is peaked
around its average `1, and if the node distribution
is uniform, `1 � 1=

p
� where � D N=A is

the average node density (A is the area of the
system). In this case, the total length is given by
`T D E`1 leading to

`T D hki
2

p
AN (21)

where hki is the average degree of the graph.
Adding links thus increases the cost but im-
proves accessibility or the transport performance
P of the network which can be measured as the
minimum distance between all pairs of nodes,
normalized by the same quantity computed for
the minimum spanning tree:

P D h`i
h`MSTi (22)

Another measure of efficiency was also proposed
in Latora and Marchiori (2001) and is defined as

E D 1

N.N � 1/

X
i¤j

1

`.i; j /
(23)

where `.i; j / is the shortest path distance from
i to j . Combination of these different indicators
and comparisons with the MST or the maximal
planar network can be constructed in order to
characterize various aspects of the networks un-
der consideration (see, e.g., Buhl et al. 2006).

Finally, adding links improves the resilience of
the network to attacks or dysfunctions. A way to
quantify this is by using fault tolerance (FT) (see,
e.g., Tero et al. 2010) measured as the probability
of disconnecting parts of the network with the
failure of a single link. The benefit/cost ratio
could then be estimated by the quantity F T=`MST

T

which is a quantitative characterization of the
trade-off between cost and efficiency (Tero et al.
2010).

Future Directions

In this final section, we discuss briefly two di-
rections for future research which seem very
promising. Both directions come from the fact
that ever more data are available, opening the
path for new measures, new models, and new
understanding of the formation and evolution of
spatial networks.

Measuring andModeling the Time
Evolution of Spatial Networks
Thanks to the efforts of GIS scientists (Batty
2005), we now have digitalized maps, combined
with data from remote sensing, which allows for
studying the time evolution of spatial networks
such as roads and streets over long periods. Un-
derstanding the evolution of transportation net-
works (Xie and Levinson 2009) is important from
a fundamental point of view but also sheds some
light on the crucial problem of understanding the
time evolution of a city. Recent studies (Xie and
Levinson 2009; Strano et al. 2012; Barthelemy
et al. 2013) started to quantify the evolution of
spatial networks, and more empirical results are
certainly to come (Fig. 3).
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Spatial Networks, Fig. 3 (continued)
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Spatial Networks, Fig. 3 (a) Evolution of the road net-
work from 1833 to 2007 (for each map we show in grey
all the nodes and links already existing in the previous
snapshot of the network and in colors the new links
added in the time window under consideration). (b) Map

showing the location of the studied area (Groane area in
the metropolitan region of Milan). (c) Time evolution of
the total number of nodes N in the network and of the total
population in the area (obtained from census data) (Figure
taken from Strano et al. 2012)

At the time this article is written, we are
still in the process of collecting data, processing
them, and extracting stylized facts. The next
important step will be the modeling of the
evolution of these systems. There are already
some simplified models, but we will now be able
to confront theoretical models with stylized fact
and hopefully converge to simple realistic models
of spatial network evolution. In particular, all
these studies will have to address the issue of
self-organization versus centralized planning for
different time scales, a crucial problem in the
modeling of urban systems.

Connecting Spatial Networks with
Socioeconomical Indicators
Revealing the relationships of network topology
to socioeconomical features is not a new project.
There is indeed a wealth of papers in quantitative
geography of the 1960s–1970s (see, e.g., Haggett
and Chorley 1969; Radke 1977 and references
therein). In 1969, for example, (Kissling 1969)
concludes that the analysis of the network
structure is “likely to reveal probable growth
points in the system.” However, the recent
availability of spatial data on networks and on
socioeconomical indicators reinvigorates this
direction of research. This can even be done
at various scales. At large scales, for example,
one can try to understand the relation between
population, activity densities, and the structure

of transportation networks. At a smaller scale,
one can try to understand crime rates and
activity density fluctuation in terms of topological
properties of the transportation network.

This problem will also require a lot of efforts
from the modeling side. In particular, we know
that there is strong coupling between the popu-
lation density and the network structure, but we
still need a modeling framework for describing
such a coupling and coevolution. From a longer
time scale perspective, these studies on spatial
networks belong to the more general problem
of understanding the time evolution of a city.
So far, modeling a city has mostly been done
in the field of spatial economics (Fujita et al.
1999). However most of these studies consider
monocentric structures and static properties, and
their predictions are not compared with empirical
data. Gathering various data, proposing simple
dynamical models integrating the most relevan-
t economical ingredients, and confronting their
prediction to data will certainly lead in some
future to a wealth of new and original results
about this very complex system that is a city.
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Random Field A collection of random variables
indexed by location

Stationarity Property of random fields in which
their mean and covariance functions are invari-
ant under translation of locations

Variogram/Semivariogram Measures of dis-
similarity between observations

Definition

Spatial statistics is a branch of statistics that
studies methods to make inference based on data
observed over spatial regions. In typical applica-
tions these regions are either 2- or 3-dimensional.
The methodology is mostly aimed at accounting
and modeling aspects of the so-called First Law
of Geography: attributes from locations that are
closer together are more closely related than
attributes from locations that are farther apart.
This is accomplished through appropriate mea-
sures of spatial association. An overview of mod-
els and methods is given for the three main types
of spatial data: geostatistical, lattice, and point
pattern.

Introduction

Spatial data refer to measurements of phenomena
that vary over a region of space D 
 R

d , d � 1,
which would be called the region of interest. Each
datum is associated to a subset of D that indicates
where it was collected, often called the datum’s
support. This may be a single point or a larger
subset, depending on the context.

There are three basic types of spatial data:
geostatistical (or point referenced), lattice (or
areal), and point pattern. The three types may
be viewed as pairs f.si ; ´i / W i D 1; : : : ; ng
where the interpretation and characteristics of
the data components vary from type to type.
For geostatistical data ´1; : : : ; ´n are measure-
ments or observations of a phenomenon of in-
terest taken at sampling locations s1; : : : ; sn 2
D, which are single points. In the models to be
described later, the ´i s are random, while n (the
sample size) and the si s are known and fixed.

For lattice data s1; : : : ; sn are subregions that
form a partition of D, such as counties or postal
codes, and ´1; : : : ; ´n are averages or summaries
of the phenomenon of interest over these subre-
gions. For this type of data, it also holds that the
´i s are random, while n and the si s are known
and fixed. For point pattern data s1; : : : ; sn are
points where a certain event of interest occurs,
such as the presence of a type of tree or the
epicenter of an earthquake, and ´1; : : : ; ´n are
a feature of the aforementioned events, such as
the diameter of the tree at breast height or the
magnitude of the earthquake. In the models for
point pattern data to be described later, all compo-
nents n, si and, ´i are random. Often the ´i s are
absent when interest centers only on the pattern
of occurrences. For all three types of spatial data,
additional variables could also be available, that
serve as explanatory variables. Comprehensive
treatments of statistical models and methods for
all three types of data appear in Cressie (1993),
Schabenberger and Gotway (2005), and the re-
cent edited volume by Gelfand et al. (2010).
Table 1 summarizes the key concepts and gives
an overview of models and examples.

Key Points

Random Fields
A random field fZ.s/ W s 2 Dg on the region
D 
 R

d is a collection of random variables
indexed by the elements of D, where D can
be finite or infinite. These random variables are
often nonidentically distributed and dependent,
so modeling these aspects is a key starting point.
The simplest way to do this is through the mean
and covariance functions of the random field,
defined as

�.s/ WD EfZ.s/g and

C.s; u/ WD covfZ.s/; Z.u/g; s; u 2 D:

The former determines the spatial trend, a
measure of variation over large distances, while
the latter determines the spatial association,
a measure of variation over small distances.
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Spatial Statistics, Table 1 Summary and overview of concepts, models, and examples in the three types of spatial
data

Geostatistical Lattice Point pattern

Domain D Fixed, continuous Fixed, discrete Random, continuous

Observation sites si fixed si fixed si random
fsi W i D 1; : : : ; ng n fixed n fixed n random

Inference for Z.s/ only Z.s/ only Both Z.s/ and D

Main
models for
Z.s/

Sum of regression Simultaneous Poisson process
trend and stationary Autoregressive (homogeneous and
random field Model (SAR) inhomogeneous)

Key aims,
concepts

Kriging (minimum Spatial proximity Assess tendency
MSE prediction) matrix .W / for clustering

Examples Meteorological and Geographic and Location and
geological variables demographic variables intensity of events

Other features of a random field also related
with spatial association are the correlation
function and semivariogram function, defined
respectively as

K.s; u/ WD corrfZ.s/; Z.u/g D C.s; u/

�.s/�.u/

�.s; u/ WD 1

2
varfZ.s/ �Z.u/g

D 1

2

�
�2.s/C �2.u/ � 2C.s; u/

	
;

where �2.s/ WD varfZ.s/g is the variance func-
tion. The functions C.s; u/ and �.s; u/ provide
similar information about the spatial association
of the random field, with the former being a
measure of similarity between Z.s/ and Z.u/,
while the latter is a measure of dissimilarity.
When choosing the aforementioned functions, it
is important to note that any function can be used
as a mean function, but not any function can be
used as a covariance function. The latter needs
to be positive semi-definite, meaning that for any
m 2 N, s1; : : : ; sm 2 D and a1; : : : ; am 2 R it
holds that

mX
iD1

mX
jD1

ai aj C.si ; sj / � 0:

This is a difficult condition to verify, but
fortunately the literature provides many functions

known to be positive semi-definite; see Cressie
(1993) and Chilès and Delfiner (1999) for
examples. These references also provide an
intermediate treatment on the theory and methods
of random fields and their application to spatial
statistics, while Matérn (1986), Yaglom (1987),
and Stein (1999) provide more mathematical
treatments.

Lattice data usually represent averages
or summaries of a quantity of interest over
subregions, so covariance and semivariogram
functions are not the most suitable to quantify
spatial association among this type of data.
Instead, neighborhood relations and weight
matrices are used. In this case the collection
of subregions fs1; : : : ; sng is endowed with a
neighborhood system fNi W i D 1; : : : ; ng,
where Ni denotes the subregions that are, in a
precisely defined way, neighbors of subregion si .
For rectangular regular lattices where the
subregions may be thought of as pixels, it
is common to use first-order neighborhood
systems, where the neighbors of a pixel are the
pixels adjacent to the north, south, east, and
west; see Fig. 1a. Second-order neighborhood
systems are also used, where the neighbors
of a pixel are its first-order neighbors and
their first-order neighbors; see Fig. 1b. In
these cases all pixels have the same number
of neighbors, except for pixels at (or near)
the boundary of D. For regions divided in
unequally shaped subregions (like counties in
a state), a commonly used neighborhood system
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Spatial Statistics, Fig. 1 Examples of first-order (a) and
second-order (b) neighborhood systems. Pixels in blue are
the neighbors of the pixel marked with an “x”

is defined in terms of geographic adjacency,
Ni D fsj W subregions si and sj share a boundaryg;
other examples not based on geographic
adjacency are also possible. In these cases the
number of neighbors for each subregion usually
differs.

In addition a weight (or neighborhood) matrix
W D .wij / is specified, where wij measures
the strength of direct association between sites si

and sj . It must satisfy that wij � 0, wi i D 0
and wij > 0 if and only if si and sj are
neighbors (i.e., sj 2 Ni ). The most common
example of weight matrix is wij D 1 if si and
sj are neighbors and wij D 0 otherwise, but oth-
er more refined specifications are also possible,
e.g., based on distance between subregions’ cen-
troids. Anselin (1988), Cressie (1993), Rue and
Held (2005), and LeSage and Pace (2009) pro-
vide ample treatments of models and methods for
the analysis of lattice data.

For geostatistical and lattice data, the sam-
pling locations s1; : : : ; sn are fixed and known,
so these types of data are usually written as z D
.´1; : : : ; ´n/| (| denotes transpose of a vector or
matrix). The stochastic approach for modeling
and inference assumes the data are a part of a
realization of a random field Z.�/, so datum ´i is
the realized value of the random variable Z.si /.

Stationarity and Ergodicity
Spatial data typically contain no replicates as
usually a single observation is available at each
location, so some assumptions on the random
field are needed to make statistical inference

feasible. To illustrate this point consider the con-
ceptual decomposition Z.si / D �.si / C ".si /,
with ".�/ a random field with mean zero and co-
variance function C.s; u/. Without some extra as-
sumptions it is not possible to identify both �.si /

and ".si / with a single observation at si . This
is so because a term can be added to �.si / and
subtracted from ".si / in infinitely many ways,
any of which will not change the datum Z.si /

but will change the components that seek to be
identified.

The assumptions alluded above are those of s-
tationarity and ergodicity. A random field Z.s/ is
said to be (second-order or weakly) stationary if

�.s/ D � .constant/ and

C.s; u/ D QC .s � u/; s; u 2 D;

where QC .�/ is a function of a single spatial vari-
able. The above means that the mean and covari-
ance functions are invariant under translations of
the spatial locations. From these follow that the
variance, correlation, and semivariogram func-
tions are also invariant under translations of the
spatial locations, and we have

�2.s/ D �2; C.s; u/ D �2 QK.s � u/;

�.s; u/ D �2�1 � QK.s � u/
	
:

An important and commonly used special case
of stationarity is called isotropy, meaning that
C.s; u/ D NC .ks � uk/, where khk WD .h2

1 C
� � � C h2

d
/1=2 is the Euclidean norm of h 2 R

d

and NC .�/ is a function of a single real variable. In
this case the covariance function is also invariant
under rotations of the spatial locations, so the
nature of spatial association is the same in all
directions; see Ripley (1981), Cressie (1993), and
Schabenberger and Gotway (2005) for further
discussion on stationarity.

A precise definition of ergodicity is somewhat
technical (see Cressie 1993, pp. 53–58), but this
assumption is key to make statistical inference
based on spatial data feasible. This is so because
the meaning and interpretation of many features
of a random field, such as the mean function,
are based on ensemble (i.e., population) averages,
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namely, averages over the possible realizations
of the random field. Ergodicity requires that spa-
tial averages computed from a single realization
converge to their respective ensemble averages as
the sample size increases to infinity.

A complete description of a random
field requires specifying its family of finite-
dimensional distributions, namely, the family
of joint distributions

Fs1;:::;sm.x1; : : : ; xm/ D P fZ.s1/

� x1; : : : ; Z.sm/ � xmg;

8 m 2 N and s1; : : : ; sm 2 D. The simplest
and most commonly used of such specification
is that of Gaussian random fields, meaning that
all the aforementioned distributions are multi-
variate normal. Gaussian random fields are com-
pletely specified by their mean and covariance
functions, and when they are stationary, a suf-
ficient condition for them to be ergodic is that
limkhk!1 QC .h/ D 0. Gaussian random fields
are the most commonly used models because
of their convenient mathematical properties and
wide applicability, as well as their use as “build-
ing blocks” for more complex random fields
models. Examples of the latter are hierarchical
models used to describe discrete spatial data; see
Banerjee et al. (2004) and Diggle and Ribeiro
(2007).

Models and Inference

Geostatistical Data Models
The basic geostatistical model is based on the
conceptual decomposition of the random field of
interest as

Z.s/ D �.s/C ".s/; s 2 D;

where �.s/ is the mean function (spatial trend)
and ".�/ is a zero-mean random field that
describes the short-range variation, with the same
covariance function as Z.�/. The usual model for
the spatial trend is similar to that used in linear
regression models

�.s/ D
pX

jD1

fj .s/ˇj D f .s/|ˇ;

where ˇ D .ˇ1; : : : ; ˇp/| are unknown regres-
sion parameters and f .s/ D .f1.s/; : : : ; fp.s//|

are known location-dependent covariates. The
latter may include related spatially varying pro-
cesses. For instance, if Z.s/ D rainfall amount
that fell over a period of time at locations s, then
f .s/ D altitude at location s may be a useful
explanatory variable. More often a spatial trend is
described in terms of a polynomial in the spatial
coordinates. For the case when d D 2 and s D
.x; y/, this would be

�.s/D
X

0�iCj�p

ˇij xi yj; for some p� 1 known:

Many examples of stationary covariance mod-
els have been proposed in the literature (see
Cressie 1993; Chilès and Delfiner 1999). An
example of a flexible family of isotropic covari-
ance functions is the so-called Matérn family
(Matérn 1986; Stein 1999)

NC .t/ D 2�2

�.�/

�
t

2�

��

K�

�
t

�

�
; t � 0;

where �.�/ is the gamma function and K�.�/ is
the modified Bessel function of the second kind
and order �. For such model � > 0 (mainly)
controls how fast the correlation decreases with
distance, and � > 0 controls the smoothness of
the realizations of the random field. The com-
monly used exponential and Gaussian covariance
functions are special cases obtained, respectively,
by setting � D 1=2 and � !1.

The above description assumes the process
of interest is measured exactly (or nearly so),
but more often the data contain measurement
error; see Le and Zidek (2006) for an extensive
discussion. In this case the simplest model for the
observed data is

Zi;obs D Z.si /C 	i ; i D 1; : : : ; n;
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where 	1; : : : ; 	n are assumed i.i.d with mean
0, variance 2 > 0 and independent of Z.�/.
Under the above model the data Zobs D
.Z1;obs; : : : ; Zn;obs/

| follow the general linear
model

Zobs D Xˇ C ";

where X is the n by p matrix with entries
.X/ij D fj .si / and " is a random vector with
Ef"g D 0 and varf"g D varfZobsg D †� , with
the n by n matrix †� having entries .†�/ij D
�2.2=.�//.tij =2�/�K� .tij =�/ and tij D ksi �
sj k; 1.A/ denotes the indicator function of A.
This basic specification of a geostatistical model
depends on unknown regression parameters ˇ

and covariance parameters � D .�2; �; �; 2/.

Parameter Estimation
The classical geostatistical method of estima-
tion uses a distribution-free approach (Journel
and Huijbregts 1978; Cressie 1993; Chilès and
Delfiner 1999). First, the regression parameters
are estimated by least squares, resulting in

Ǒ D .X 0QX/�1X|QZobs;

where Q D In (ordinary least squares) or
Q D †�1

� (generalized least squares); the latter
requires an estimate of †� . In both cases X is
assumed to have full rank. The second choice
of Q results in a more efficient estimator, but
often in practice there is little difference between
them. The resulting trend surface estimate is
O�.s/ D f .s/| Ǒ .

Second, when the mean function is constant,
the covariance parameters are estimated by the
following two-stage approach: For selected dis-
tances t1 < : : : < tk , the (model-free) semivari-
ogram estimates are first computed

O�.tj / D 1

2jN.tj /j
X

N.tj /

�
´i;obs � ´j;obs

	2
;

where N.t/ D f.i; j / W t � �t < ksi � sj k <

t C �tg, with �t > 0 fixed and jN.t/j the
number of elements in N.t/. A proposed semi-
variogram model, say �.t I�/, is then fitted to the
above semivariogram estimates O�.t1/; : : : ; O�.tk/

using (nonlinear) least squares, so the covariance
parameter estimates are

O� D arg min
kX

jD1

� O�.tj / � �.tj I�/
	2

:

The resulting semivariogram function estimate is
�.� I O�/. When �.s/ is not constant a similar pro-
cedure is done using the residuals e D zobs�X Ǒ ,
rather than the observed data. This estimation
method is popular among practitioners, but the
statistical properties of the resulting estimators
are not well understood.

When the random field Z.�/ is Gaussian, al-
l the parameters can be jointly estimated by
maximum likelihood (Cressie 1993; Stein 1999),
resulting in the estimators

. Ǒ ; O�/ D arg max L.ˇ; �I zobs/; (1)

where

L.ˇ; �I zobs/ D
� 1

2��2

� n
2 j†� j�

1
2

� exp



� 1

2�2

�
zobs �Xˇ

	|
†�1

�

�
zobs �Xˇ

	�
:

(2)

This method is more statistically satisfactory
than the two-stage approach described above but
is also more computationally demanding, to the
point of not being feasible for very large datasets
(n very large) due the need of storing and numer-
ically inverting the n by n matrix †� ; see Cressie
(1993), Schabenberger and Gotway (2005), and
Chap. 4 in Gelfand et al. (2010) for other methods
of estimation.

Spatial Prediction (Kriging)
The primary task in the analysis of geostatistical
data is often spatial prediction, also known as
kriging, which consists of making inference
about Z.s0/ where s0 2 D is an unsampled
location. The classical approach uses optimal
linear unbiased prediction and only requires
knowledge of the mean and covariance
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(or semivariogram) functions. Specifically, the
method seeks to minimize the mean squared
prediction error

MSPE. OZ.s0// D Ef�Z.s0/� OZ.s0/
	2g;

over the class of linear unbiased predictors,
that is, predictors of the form OZ.s0/ DPn

iD1 �i .s0/´i;obs that satisfy Ef OZ.s0/g D
EfZ.s0/g. Under the aforementioned linear
model, the optimal coefficients are obtained as
the solution of a linear system of equations, and
the resulting optimal predictor is

OZK.s0/ D
�
� 0 CX.X|†�1

� X/�1.f .s0/

� X|†�1
� � 0/

�|
Zobs;

where � 0 D covfZobs; Z.s0/g; this is called
the best linear unbiased predictor (BLUP) or
kriging predictor of Z.s0/. The usual uncertainty
measure associated with the kriging predictor is
MSPE. OZK.s0//, which is given by

� 2K.s0/ D C.0/� �
|
0 †�1

� � 0 C .f .s0/

�X|†�1
� � 0/|.X|†�1

� X/�1.f .s0/

�X|†�1
� � 0/:

When the random field Z.�/ is Gaussian, then
OZK.s0/ is also the best unbiased predictor (it

minimizes MSPE.�/ over the class of all unbi-
ased predictors), and a 95 % prediction interval
for Z.s0/ is OZK.s0/ ˙ 1:96� K.s0/; see Cressie
(1993), Chilès and Delfiner (1999), and Schaben-
berger and Gotway (2005) for methodological
details and Stein (1999) for theoretical underpin-
nings.

The computation of kriging predictors and the
validity of their optimality properties require the
covariance parameters � to be known, which
is certainly not the case in practice. The sim-
plest and most commonly used practical solu-
tion is to use empirical or plug-in predictors
and mean squared prediction errors obtained by
replacing in the above formulas unknown co-
variance parameters with their estimates. But the

properties of the resulting plug-in predictors and
mean squared prediction errors differ from those
of their known covariance parameters counter-
parts since the former do not take into account
the sampling variability of parameter estimators.
As a result plug-in mean square prediction errors
tend to underestimate the true mean square pre-
diction errors of plug-in predictors, and the true
coverage probability of plug-in prediction inter-
vals tends to be smaller than nominal. Possible
approaches to account for parameter uncertain-
ty when performing predictive inference include
using bootstrap (Sjöstedt-De Luna and Young
2003) and the Bayesian approach (Banerjee et al.
2004; Diggle and Ribeiro 2007), where the latter
approach appears to be the most effective.

Lattice Data Models
The starting point in the construction of models
for lattice data is to empirically assess the exis-
tence of spatial association, which as mentioned
in a previous section is usually specified in terms
of neighborhood systems and weight matrices.
The two most common statistics to diagnose s-
patial association among lattice data are Moran’s
I (an analogue of the lagged autocorrelation used
in time series) and Geary’s c (an analogue of the
Durbin-Watson statistic used in time series). For
random fields with constant mean, these statistics
are defined as

I D n
Pn

iD1

Pn
jD1 wij

�
Z.si /� NZ

	�
Z.sj /� NZ	

S0
Pn

iD1

�
Z.si /� NZ

	2

c D .n � 1/
Pn

iD1

Pn
jD1 wij

�
Z.si /�Z.sj //2

2S0
Pn

iD1

�
Z.si /� NZ

	2 ;

where NZ D 1
n

Pn
iD1 Z.si / and S0 DPn

iD1

Pn
jD1 wij . For Gaussian processes,

EfI g D �.n � 1/�1 and Efcg D 1 when
observations are independent. Hence, observed
values of I substantially below/above�.n�1/�1

indicate negative/positive spatial association,
while for Geary’s c the interpretation is reversed,
with observed values of c substantially above/-
below 1 indicating negative/positive association.
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When the random field has a nonconstant mean,
the above statistics are computed using residuals;
see Cressie (1993) and Cliff and Ord (1981) for
further details.

A large number of models for lattice data
have been proposed in the literature (see Cressie
1993 and LeSage and Pace 2009), where most of
them involve the specification of a neighborhood
system fNig and weight matrix W . One of the
most common models for lattice data is the Simul-
taneous Auto-regressive (SAR) model specified
by a set of autoregressions

Z.si / Df .si /
|ˇC �

nX
jD1

wij

�
Z.sj /�f.sj /|ˇ

	

C 	i ; i D 1; : : : ; n;

where f .sj / and ˇ have the same interpretation
as in models for geostatistical data and 	i �
N.0; �i / are independent errors. This is a spatial
analogue of autoregressive time series models,
but unlike the latter the response and error vectors
are correlated. Provided In��W is non-singular,
it follows that Z � Nn

�
Xˇ; .In��W /�1M.In�

�W |/�1
	
, where M D diag.�1; : : : ; �n/. It is

common to assume �i D � for all i , in which
case the model parameters are ˇ and � D .�; �/.

Another large class of models for lattice data
is that of Markov random fields (Rue and Held
2005; Li 2009). These models construct the joint
distribution for the data by specifying the set
of all full conditional distributions, namely, the
conditional distributions of Z.si / given Z.i/, i D
1; : : : ; n, where Z.i/ D

�
Z.sj / W j ¤ i

	
. In

addition, these models assume a Markov property
stating that the distribution of each datum de-
pends on the rest only through its neighbors. An
example of this is the class of Conditional Auto-
regressive (CAR) models with full conditional
distributions

�
Z.si / j Z.sj /; j ¤ i

	 � N
�
f .si /

|ˇ

C �

nX
jD1

wij

�
Z.sj /� f .sj /|ˇ

	
; �2

i

�
;

i D 1; : : : ; n:

To guarantee the above set of full conditional
distributions determines a unique joint distribu-
tion, it is required that �2

j wij D �2
i wj i for all

i; j , and M�1.In � �W / be positive definite,
with M D diag.�2

1 ; : : : ; �2
n/, in which case

Z � Nn

�
Xˇ; .I � �W /�1M

	
. It is common to

assume that �2
i D �2 for all i , in which case

the model parameters are ˇ and � D .�2; �/. An
extensive comparison between the SAR and CAR
models is given in Cressie (1993, Chap. 6).

The most commonly used method for parame-
ter estimation in these models is maximum likeli-
hood. As for geostatistical models, the resulting
estimators are given by (Eq. 1) where in the
likelihood (Eq. 2) †�1

�
D .In � �W |/M�1.In �

�W / for SAR models and †�1
�
D M�1.I �

�W / for CAR models. For both models (as for
geostatistical models) the computation of these
estimators requires the use of numerical iterative
methods.

A point worth noting is that, unlike in geo-
statistical models, in SAR and CAR models the
spatial association structure is specified in terms
of the inverse covariance matrix, rather than
the covariance matrix, so the interpretation of
parameters controlling spatial association is less
straightforward than that in geostatistical models.

Point Process Models
A point process on D 
 R

d is a random field
whose realizations are sets of points in D, called
point patterns (events). In the most general case
attributes may also be observed along with the
location of the events, resulting in a marked point
process. For any A 
 D, let N.A/ denote the
number of events in A and �.A/ the size of
A
�D R

A
ds
	
. The intensity function of a point

process is the function � W D ! Œ0;1/ with
the property that EfN.A/g D R

A
�.s/ds. Alter-

natively, using an “infinitesimal disc” ds centered
at s the intensity function can be defined as the
ratio of the expected number of points in ds to its
size, that is,

�.s/ D lim
�.ds/!0

EfN.ds/g
�.ds/

:
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The most fundamental point process model is
the Poisson process with intensity function �.s/,
which satisfies the following: For any n 2 N

and A1; : : : ; An disjoint subsets of D, it holds
that (i) N.Ai / has Poisson distribution with meanR

Ai
�.s/ds, and (ii) N.A1/; : : : ; N.An/ are in-

dependent random variables. When the intensity
function is constant, �.s/  �, the above is called
a homogeneous Poisson process (HPP), and oth-
erwise it is called an inhomogeneous Poisson
process (IPP). Point patterns from HPP have the
property of complete spatial randomness (CSR):
given the number of events in a set A, these events
are independently and identically distributed over
A, so there is no “interaction” between events.
Poisson processes are often used on their own
for the analysis of point patterns, or as “building
blocks” for more complex models; see Diggle
(2003) and Illian et al. (2008) for introductory
treatments and Cressie (1993) and Daley and
Vere-Jones (2003, 2007) for more mathematical
treatments.

A basic question in the analysis of point pat-
terns is to assess whether the events have the CSR
property. Departures from this comprise either
clustering (events tend to aggregate) or regular-
ity (events tend not to aggregate). The standard
model by which to assess the CSR property is the
HPP. Testing for CSR is based on either counts
of events in regions (quadrants) or distance-based
measures using the event locations. Focusing on
the former, the distributions of some test statistics
are known (usually only asymptotically), which
allows for closed-form tests. The default is the
chi-square test, whereby the region D is bounded
by a rectangle and divided into r rows and c

columns. If nij denotes the number of events in
the quadrant corresponding to the i -th row and
j -th column, and Nn is the expected number of
events in any quadrant, then under CSR the statis-
tic

�2 D
rX

iD1

cX
jD1

.nij � Nn/2

Nn ;

follows a �2
rc�1 distribution, asymptotically. Test-

s based on more complex nonstandard statistics
can be carried out by resorting to Monte Carlo
simulation.

Rejection of CSR may lead one to consider
modeling a possibly nonconstant intensity func-
tion. This can be done either parametrically, by
proposing a specific function for the intensity
whose parameters are then estimated via maxi-
mum likelihood, or nonparametrically by means
of kernel smoothing. For example, under an IPP
�.s/ can be estimated as a function of coordinates
or covariates by fitting a log-linear model of the
form

log
�
�.s/

	 D ˇ0 C
pX

jD1

ˇj fj .s/;

which provides a way to accommodate departures
from CSR based on changes in the mean struc-
ture.

Alternatively, rejection of CSR may lead
one to consider modeling interactions between
events, when for non-overlapping regions
A and B , N.A/, and N.B/ are correlated. The
second-order intensity function, �2.s; u/, extends
the definition of �.s/ to measure the covariance
between points at s and u, defined as

�2.s; u/ D lim
�.ds/;�.du/!0

EfN.ds/N.du/g
�.ds/�.du/

:

For stationary and isotropic processes, where
�.s/  � and �2.s; u/ D �2.ks � uk/  �2.t/,
the K-function is a more informative tool for
assessing dependence defined, when d D 2, as

K.t/ D 2�

�2

Z t

0
x�2.x/dx:

Then, �K.t/ represents the expected number of
extra events within a distance t from the origin,
given that there is an event at the origin. For
a HPP one has K.t/ D �t2; values larger
(smaller) than this being indicative of cluster-
ing (regularity) on that distance scale. Plotting
the estimated K.t/ vs. t , or the closely related
L-function, L.t/ D p

K.t/=� , enables one to
glean the degree of dependence with reference to
the HPP for which L.t/ D t ; see Diggle (2003)
and Illian et al. (2008) for further details.
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Key Applications

Example 1 As an illustration of a geostatistical
dataset Fig. 2a displays pH measurements of wet
deposition (acid rain) at 39 rainfall stations taken
in April 1987 over the Lower Saxony state in
northwest Germany (Berke 1999). Each datum is
associated with the sampling location where the
pH measurement was taken. For instance, a pH
value of 4.63 was observed at the sampling loca-
tion s D .0:61; 0:1/ (the southernmost station).
For this dataset the coordinates of the sampling
locations were provided without units and are all
between 0 and 1, which (presumably) mean they
were scaled by the maximum distance between
stations. A key characteristic of this phenomenon
is that a pH value is associated with each location.
A typical goal in the analysis of such datasets is
the prediction of pH values over a dense grid of
prediction locations, which together provide an
estimated map of pH over the entire region.

By plotting the pH values against the spatial
coordinates, it can be seen that the pH values
tend to decrease in the eastward direction and
increase in the northward direction. We use a
model with �.s/ D ˇ1 C ˇ2x C ˇ3y, with
s D .x; y/, for which the OLS estimates are
. Ǒ1; Ǒ2; Ǒ3/ D .5:627;�1:440; 0:761/. The
second-order specification is completed by
assuming the covariance function of the true pH
process is isotropic and exponential. Figure 2b
shows empirical semivariogram estimates at a
few selected distances (dots) based on the OLS
residuals. It displays an apparent discontinuity
at the origin, suggesting the data contain
measurement error, so the covariance function
of the pH data is C.h/ D �2 exp.�h=�/ C
21fh D 0g. The estimated semivariogram
function is also displayed in Fig. 2b (line),
obtained using the parameters . O�2; O�; O2/ D
.0:270; 0:070; 0:059/, estimated by least squares.

Figure 3a shows a map of estimated pH values
obtained by computing the kriging predictor with
estimated parameters at about 4,200 prediction
locations located inside the convex hull of the
sampling locations. Except for the northwest cor-
ner of the prediction region that correspond to
a group of islands, the pH values are high in

the northwest of the state and decrease toward
the south and east. Figure 3b shows a map of the
square root of the kriging variance at the predic-
tion locations, displaying the typical behavior of
having small values at prediction locations close
to some sampling location and larger values away
from sampling locations.
Example 2 As an illustration of a lattice dataset,
we study the relation between poverty level
(POV) and total population (POP) at the county
level in 2009 in the US state of Texas, using data
obtained from the US Census Bureau. Figure 4
displays the state of Texas, composed of 254
counties color-coded by the 2009 logarithm
of poverty levels. By plotting the data it can
be seen that the logarithm of poverty level is
closely linearly related with the logarithm of
total population, where the least squares fit
is OEflog.POV/ j POPg D �1:741 C 0:992 �
log.POP/. Based on the residuals from this fit,
we have that Moran’s and Geary’s statistics are
I D 0:391 and c D 0:568, respectively, which
are both highly significant for the hypothesis of
no spatial association (p-values < 10�15). Hence,
there is substantial spatial association among
county log poverty levels, even after accounting
for log total population.

We fitted both CAR and SAR models using
log poverty level as the response and log to-
tal population as the explanatory variable, and
the neighborhood system based on geographic
adjacency: two counties are neighbors if and
only if their boundaries intersect. As for the
weights we assume that wij D 1 for any t-
wo neighbors si and sj . The SAR model is fit
by maximum likelihood, resulting in the esti-
mates OEflog.POV/ j POPg D �2:123C 1:034 �
log.POP/, and . O�2; O�/ D .0:067; 0:116/. The
estimated mean for the CAR model is similar, but
the fit is slightly inferior.
Example 3 As an illustration of a point pattern
data, we consider earthquakes (with magnitude
1.0 or more on the Richter scale) that occurred
worldwide in 2011 over the 8 consecutive days
beginning at 00:00 h UTC on May 20. Figure 5a
displays the locations of the 981 events as a “bub-
ble map” with respect to magnitude (size of bub-
ble is proportional to square root of earthquake’s
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Spatial Statistics, Fig. 2 (a) pH measurements and sampling locations and (b) empirical and fitted semivariogram
function of pH measurements

magnitude) and so provides a fair visual com-
parison of the relative sizes (magnitudes) among
events. The color-coding scheme renders earlier
events in lighter shades of orange and later events
in darker shades of red. Since magnitude is an at-
tribute recorded along with each event’s location,
this is a marked point pattern.

We focus merely on assessing tendency for
clustering and disregard magnitude. It is obvious
in the current context that there is clustering
as geology informs us that this tends to occur
at the junction of tectonic plates and fault
zones. The Aleutian Islands/Bering Strait and
southern Alaska are prominent “hot spots.”
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Spatial Statistics, Fig. 3 (a) Map of kriging predictor of pH and (b) map of square root of kriging variance of pH

In fact, a chi-square test strongly rejects CSR
(p-value � 10�16). Assuming (for the sake of
illustration) stationarity and isotropy, the esti-
mated L-function reveals a pronounced upward
bow that falls well outside the 95 % confidence
envelopes for a HPP, thus further confirming
the strong tendency for clustering on this spatial
scale.

Since a constant intensity function is an inad-
equate hypothesis, we continue the analysis by

producing an estimate of the intensity function in
the context of an IPP. The result is displayed in
Fig. 5b which shows a kernel smoothing estimate
(with bandwidth selected by cross-validation; see
Diggle 2003). Since intensity is the expected
number of (random) points per unit area, the units
are “earthquakes per unit area.” The two Alaskan
hot spots alluded to earlier are clearly visible.
Interestingly, the central Caribbean emerges as a
third hot spot.
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Spatial Statistics, Fig. 4 Choropleth map of county log poverty level in the US state of Texas in 2009

Historical Background and Final
Remarks

Early pioneers of statistical inference (e.g., Fish-
er, Gossett, Pearson) alluded to issues arising
from the correlation of observations due to spatial
proximity in designed experiments and proposed
methods to account for it. Some of the history
and early developments in spatial statistics is
reviewed in Chap. 1 of Gelfand et al. (2010).
Since some areas of spatial statistics have not
been included in this brief overview, we end with
some additional pointers to the literature. A re-
view of non-stationary spatial processes is given
in Chap. 9 of Gelfand et al. (2010). The prob-
lems of spatial sampling and design (how and
where to collect the data) are treated in Cressie
(1993), Le and Zidek (2006), Müller (2007), and
Chap. 10 of Gelfand et al. (2010). Multivariate
methods in spatial statistics are treated in Baner-
jee et al. (2004), Le and Zidek (2006), Wack-
ernagel (2010), and Chap. 21 of Gelfand et al.
(2010). Hierarchical models for the modeling of
non-Gaussian spatial data, specially models for
discrete spatial data, are discussed in Banerjee
et al. (2004) and Diggle and Ribeiro (2007),

where the Bayesian approach is featured promi-
nently. Models for more complex types of spatial
random objects are treated in Matheron (1975),
Cressie (1993), and Nguyen (2006). Finally, an
extensive discussion of available software written
in R that implements the methods described here
for the statistical analysis of the three types of
spatial data appears in Bivand et al. (2008).
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Synonyms

Check-in; Location; Movement; Spatial interac-
tion; Time; Trajectory

Glossary

GPS Global Positioning System, a satellite-
based navigation system that provides location
and time almost anywhere near the Earth’s
surface

VGI Volunteered geographic information, a type
of user-generated content with a spatial com-
ponent (Goodchild 2007)

Flickr A popular photo-sharing website allow-
ing people to upload and share photos that may
be tagged with location

Twitter A popular microblogging and social
networking service that supports sending text
messages (which are called tweets) of less
than 140 characters. Tweets may be associated
with location

Spatial Interaction Models Models describing
interaction between two locations as a variable
dependent on distance

Definition

Spatiotemporal footprints discussed in this chap-
ter are locational and temporal information re-
garding people’s occurrences that are digitally
recorded. Spatial location may be automatically
captured as latitude and longitude by a GPS re-
ceiver or provided by a user as a place name, e.g.,
a city or neighborhood. Along with spatial infor-
mation, time is usually automatically recorded,
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too. Spatiotemporal footprints may be intention-
ally collected as a series of point locations when
people move around, such as GPS tracks. They
may also be attached to instant messages, as-
sociated with telephone calls, tagged to photos,
or linked with other forms of human activities.
Footprints are basically location and time that
indicate where a person went and when. Several
other terms are also partially synonymous with
spatiotemporal footprints. Check-in is used by
social networking services, such as Foursquare
and Google Latitude, to allow users to instantly
share their physical locations. Concatenation of
spatial footprints in the order of time generates
trajectories of human movements, which have
been a long-lasting research topic in the social
sciences, where they are studied in the context of
migration, travel, commuting, etc.

Introduction

Society is comprised of many different type-
s of social networks on various levels. Social
networks play a critical role in achieving goals
and solving problems. While traditional social
networks only existed within a very limited geo-
graphical distance (e.g., villages) constrained by
temporal factors, modern technologies – espe-
cially the growth of the Internet, the wide adop-
tion of cell phones, and the support of Web 2.0
technologies – have greatly reduced spatiotempo-
ral limitations on human communication. People
who live on different continents in different time
zones can interact with each other using phones,
emails, and websites. Particularly, online social
networking services provide an effective channel
to enhance existing social networks and to initiate
new ones. Facebook, for example, offers services
to create profiles, add friends, and exchange in-
formation. Twitter, as another example, provides
a platform to share and discover “what is happen-
ing right now (at where)?” These services offer
an alternative and complementary form of social
networks with a growing number of users.

Human activities take place in particular loca-
tions at specific times; activities in online social
networks may reflect activities in the physical

world. For instance, people may comment on an
event that they are currently experiencing, such
as a football game or a fire. On the other hand,
activities in the physical world may generate a
virtual social network. To facilitate organization
of regular gatherings, local friends may create a
virtual group on Facebook to publish information
and to share photos. One of the major reasons
for people to record spatiotemporal footprints of
activities is to share them with family and friends,
basically with people within their social network-
s; such sharing has generated large amounts of
locational and temporal data. This phenomenon
has attracted increasing attention from both a-
cademia and industry, because the prevalence of
such information provides a great potential to
study human mobility, human activities, and the
composition of large-scale social networks, using
vast volumes of geospatial data on large samples
of people, for the first time in history.

Uncertainty in Footprints

Spatiotemporal footprints are voluminous with
very rich information; however, we need to be
aware of the inherent uncertainty associated with
them in order to validate conclusions based on
these data. Spatial uncertainty is the difference
between a recorded position and the correspond-
ing position in reality. It is critical to under-
stand uncertainty when dealing with locational
information, so it has been studied extensively in
the field of GIScience. For example, Goodchild
and Gopal (1989) compiled a set of papers that
address accuracy of spatial data from a wide
range of applications, including both physical and
social phenomena. Zhang and Goodchild (2002)
systematically examined spatial uncertainty mod-
elling in continuous and categorical variables.
Footprints generated in social media and social
networks are a type of VGI. Unlike location
recorded in a scientific database that aims to min-
imize spatial uncertainty and inaccuracy as much
as possible with standard quality control pro-
cedures, uncertainty associated with footprints
may vary from case to case due to the nature of
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Spatiotemporal Footprints in Social Networks, Fig. 1 Latitude and longitude associated with tweets in Twitter and
photos in Flickr

VGI (Goodchild and Li 2012). Users may choose
to disclose or hide footprints and select the level
of disclosure. For example, they can reveal their
exact point location as coordinates, or they can
show only the city name as the location.

When users of social networking services or
social media share their locations, they usually
have several options. If GPS is enabled in a
mobile device such as a smart phone, location is
recorded automatically as latitude and longitude.
Otherwise, users can select a city or neighbor-
hood name from a set of provided place names
that are usually reverse geocoded based on an
estimate of their device location. The degree of
uncertainty in footprints depends on the mech-
anism used to record location. There are two
major categories of footprints: those recorded by
a digital system automatically and those provided
by a user manually. Automatic footprints may be
generated by GPS, relative location of cell phone
towers, or IP address. Location produced by the
same method has a similar level of uncertainty,
but it varies from one method to another. Spatial
footprints captured by GPS (either a GPS unit
or built-in GPS in mobile phones or cameras)
in the form of latitude and longitude are sup-
posed to be the most accurate means to record
location. Uncertainty of footprints recorded by
GPS is usually several meters, depending on the
particular device and the surrounding conditions

(e.g., satellite visibility). However, the number of
decimal digits of stored coordinates may not re-
flect their actual degree of uncertainty. For exam-
ple, latitude and longitude associated with tweets
in the Twitter database and photos in the Flickr
database both have 5 decimal places (Fig. 1),
indicating that spatial precision should be around
1 m, which is not the correct expectation of GPS
uncertainty in most devices. In addition, approx-
imate location may be determined by the rela-
tive position of a user’s equipment in a cellular
network, leading to uncertainty as large as a cell
area, ranging from 150 to 30,000 m (Zhao 2000).
Physical location inferred from an IP address
may be at the level of ZIP code, city, state,
or even country and thus show varying accura-
cy. Databases have been established to map the
correspondence between IP address and physi-
cal address (e.g., http://whatismyipaddress.com/
ip-lookup), and efforts have been made to in-
crease accuracy of IP address locators (Guo et al.
2009). Uncertainty of temporal footprints is less
complex. Time of users’ interaction with the
Web or mobile services is always automatically
recorded with good accuracy. However, temporal
information provided by a user may be arbitrary
with an uncertainty that is difficult to estimate.
For instance, there are various degrees of un-
certainty in the times associated with photos in
Flickr.

http://whatismyipaddress.com/ip-lookup
http://whatismyipaddress.com/ip-lookup
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Key Applications

Numerous questions that were not answerable
before due to the lack of data can now be investi-
gated using spatiotemporal footprints. In general,
footprints have been utilized to study place and
people. Place refers to geographic features that
are present at particular locations on the Earth’s
surface. A place could be a simple feature such
as a road or a restaurant with a clear boundary
or a vague feature without an exact agreed-upon
location, such as “downtown.” The focus of this
type of research is on the geographic landscape
associated with footprints without explicit con-
sideration of the people who provide them. The
second category of research on footprints empha-
sizes the people who record them, their behav-
ior, and the relationships that may be inferred
from the pattern of their whereabouts. Here are
some example research questions. How do people
move around a city? What percentage of their
trips is captured by footprints recorded in social
networking services? What relationships can be
extracted from the pattern of spatiotemporal foot-
prints of two people or a group of people in a
social network?

Locational information in footprints can be
used to characterize the position and shape of
geographic features. This type of footprint is
usually called VGI – a special form of user-
generated content with a geographic component
(Goodchild 2007). A typical example is
OpenStreetMap (http://www.openstreetmap.
org/), with a goal to create a free editable
map of the world. Originally, map data were
contributed by volunteers using a handheld
GPS to record their walking or biking paths.
People purposefully collect continuous footprints
to produce geographic infrastructure data, mostly
of roads and points of interest (POIs). In this
case, spatial footprints are used to identify
the location of geographic features: what is
available at that particular location on the Earth’s
surface? People may choose to map whatever
features that are interesting to them. For instance,
SeeClickFix, a Web service supported by both
Web browsers and mobile apps, enables citizens
to report the location of nonemergency issues
within their communities (e.g., a broken traffic

light), while governments use this information to
respond more promptly to the problems and take
actions to fix them. In addition to geographic
features created by individual users, places
may also be inferred by aggregating spatial
footprints generated by multiple people. Clusters
of spatial footprints suggest popular places, and
clusters of footprints in both space and time may
indicate events. For example, location and spatial
extent of specific places can be constructed as
a probability-density surface by extracting and
summarizing footprints of photos tagged with
the same place name (Li and Goodchild 2012).
Spatial boundaries of city cores (e.g., downtown,
CBD) may also be defined based on photo
footprints obtained from Flickr (Hollenstein and
Purves 2010). Lee and Sumiya (2010) proposed
a method to detect unusual geo-social events
(e.g., local festivals) by comparing spatiotem-
poral patterns of footprints in the study area
with the distribution of footprints in normal
times.

Spatiotemporal footprints can also be used
in combination with other information to gain
knowledge about the Earth. Together with visual
information in photos, representative scenes at
different locations were automatically selected
from vast volumes of geotagged photos in Flick-
r (Crandall et al. 2009). In another type of appli-
cation, location is attached to collected data about
some natural phenomenon as a systematic spa-
tial sampling strategy to facilitate scientific data
analysis. One famous example is the Audubon
Society’s Christmas Bird Count project that start-
ed in 1900. Volunteer birdwatchers are divided
into small groups to follow assigned routes and to
count birds they see along the routes. Moreover,
locational information with regard to disaster sta-
tus contributed by citizens has been proved very
helpful in emergency response (Li and Goodchild
2010), such as wildfires (Goodchild and Glennon
2010). A spatial model was proposed to estimate
the location of an earthquake and the trajectory
of a typhoon in Japan based on georeferenced
tweets (Sakaki et al. 2010).

Furthermore, footprints are also used to s-
tudy the people who generate them. Concatena-
tion of spatiotemporal footprints of a single user
provides a trajectory of the places he or she has

http://www.openstreetmap.org/
http://www.openstreetmap.org/
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visited at specific time of the day, which may
shed light on people’s daily activities. We may
collect data automatically on places people have
been to or how long they stay at a particular place.
For example, georeferenced tweets may provide
a real-time record of people’s activity episodes
that is even more accurate than a travel diary
recorded from memory recall. Besides, this data
collection is nonintrusive, so subjects do not need
to write down what they are doing and at what
time, because the time of a tweet is recorded
automatically by the online service and the tweet
content may suggest their activities. Tradition-
ally, travel behavior was studied using travel
diaries that were a part of a travel survey, which
is very expensive in terms of time and labor.
Research has already been done on methods to
use recorded footprints as complementary to tra-
ditional self-reported travel surveys in studying
travel behavior. Murakami and Wagner (1999)
discussed the use of GPS to collect automatically
date, start time, end time, and vehicle position in
trips at frequent intervals. A comparison between
GPS-recorded trips and self-reported trips shows
that self-reported distances are much longer than
the actually traveled distances. In addition to
locational and temporal information stored by
GPS in trips, even purposes of trips may be
inferred from footprints with auxiliary land-use
data (Wolf et al. 2001). Crandall et al. (2009)
reconstructed the pathways of people who visit
Manhattan and the San Francisco Bay area based
on footprints associated with photos uploaded to
Flickr. Although footprints recorded by GPS have
been used to study travel behavior and trajec-
tories may be extracted from photo footprints,
not much research has been done to investigate
detailed travel behavior at the level of traditional
travel surveys using footprints collected in social
networks and social media.

Comparison of spatiotemporal footprints be-
tween different users or groups of people may
indicate the relationship between them in social
networks. According to the first law of geogra-
phy, “Everything is related to everything else,
but near things are more related than distant
things” (Tobler 1970). If this is true for social
phenomena, we can infer the strength of social

interactions between people at two places based
on their spatial footprints. Distance between peo-
ple may signify the probability of them being
friends or acquaintances. Spatial interaction mod-
els have been developed to describe this relation-
ship (Isard 1960). The distance-decay effect is
characterized this way: as the distance between
two locations increases, the interaction between
them decreases. A typical example is a gravity
model (Abler et al. 1971):

Iij D a
MiMj

d b
ij

(1)

where Iij is the interaction between i and j , a is
a constant, Mi and Mj are properties associated
with i and j , dij is the distance between i and
j , and b is another constant, dependent on the
phenomenon.

Researchers have started to investigate the role
of distance derived from footprints in studying
social relations. A collection of maps were pro-
duced to represent cyberspace, including online
communications and connections between people
located in different places (Dodge and Kitchin
2001). Strong connections may exist between
people who visit the same place at the same time
regularly. Using geotagged photos from Flickr,
the probability of a social tie between people is
calculated based on the co-occurrences of their
spatial and temporal footprints (Crandall et al.
2010). Cho et al. (2011) studied the relation-
ship between social ties and people’s movement
patterns using data collected from public check-
ins in online social networks and cell phone
location trace data. A study on mobile phone data
demonstrates that distance decay is present in the
number of calls and the number of co-locations,
defined as people sharing the same location at the
same time (Calabrese et al. 2011). Hardy et al.
(2012) applied a gravity model to describe the de-
crease of the likelihood of a person to contribute
to a georeferenced article in Wikipedia when the
distance between the user and the subject place in
the article increases.
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Future Directions

Although voluminous amounts of footprints are
generated in social networks every day, data dis-
covery and data access are still two important
considerations. How can we find relevant geo-
graphic data in social media? How can we collect
more spatial and temporal footprints of social net-
works from spatially embedded populations, both
online and off-line? How can geography promote
the “human as sensor” paradigm in spatial data
generation? How can we harvest spatio-temporal
footprints about involved people from existing
sources?

Another critical question is the synthesis of
footprints with various accuracies generated in
different contexts. How can we quantify the un-
certainty in a particular footprint? Can we ap-
ply mathematical models of uncertainty devel-
oped in the GIScience literature to study uncer-
tainty in footprints? How can we use footprints
that are available as both coordinates and place
names to do cross-validation, so as to increase
spatial accuracy? Currently, research has been
done with only a single source of footprint data
(i.e., footprints created in one social network-
ing service). It would be valuable to investi-
gate the potential for using footprints collected
from different sources to improve the data qual-
ity and quantity. Geographic data conflation has
been applied to merge spatial data from multiple
sources (Saalfeld 1988; Li 2010; Li and Good-
child 2011). Can these techniques be used in
integration of spatiotemporal footprints generated
in various social networks? What type of new
methodologies might be required in footprint data
synthesis?

Furthermore, representativeness of the avail-
able footprints is an interesting yet challenging
research area. Since systematic sampling strate-
gies are not applied in the collection of footprints,
how representative are these data compared to
the total population under study? (Li et al. 2013)
What are the major types of motivation of peo-
ple who join online social networks? The usu-
al users of social media are undoubtedly self-
selected. What characteristics cause them to join
online social networks and to leave spatiotempo-

ral footprints? Is there a way to measure the bias
in this type of data source?

More analyses could be performed using foot-
prints generated in social networks. How can
we identify social relations and mobile patterns
from heterogeneous footprint data? Social net-
works are embedded in space and time. Howev-
er, that embedding may not always be relevant
to specific analysis. How can we incorporate
spatial interaction functions into different types
of network, particularly when space and time
vary significantly? For example, spatial depen-
dence and distance decay are valid in many pro-
cesses in geographic space but are less relevant
when all people in the social network are in
the same room. While it is known that social
network links decay with distance and that new
technologies do not completely overcome this
decay, what is not known is the circumstances
where the technologies overcome the decay (e.g.,
where in a task cycle). Moreover, the predic-
tive value of knowing that network links fall
off with distance seems low. What can be pre-
dicted with a better understanding of the rela-
tionship between space and networks? What are
the types of activities in social networks that
are strongly constrained by space and time? For
what type of groups is group maintenance and
persistence dependent on spatial locations? How
can we use spatiotemporal footprints to infer
missing network data, select specialized social
network subgroups, and forecast change? How
are network-mediated processes (e.g., informa-
tion diffusion, VGI) influenced by spatial and
temporal relations (e.g., nearness in space or
time)?

Finally, privacy in social network studies has
attracted much attention (Li and Goodchild
2013). When is it appropriate to collect
information on people’s footprints and to study
them without their knowledge? Revelation of
locations may lead to crimes, such as stalking
and burglary. Is there a way to preserve
spatiotemporal patterns of social networks and
to protect privacy simultaneously? What types
of generalization and aggregation from statistics
and cartography can be adapted to achieve the
two objectives? What would be an appropriate
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level of generalization of locational data for a
particular application? How does the level of
abstraction limit the types of network questions
that can be answered?

Cross-References

� Spatiotemporal Information for the Web
� Spatio-Temporal Outlier and Anomaly
Detection
� Spatiotemporal Proximity and Social Distance
� Spatiotemporal Reasoning and Decision
Support Tools
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Synonyms

Spatial-textual Web search; Spatiotemporal Web;
Temporal-textual Web search

Glossary

Location A site name or geographic scope men-
tioned in Web pages

Time One or more units of chronons. It can be a
time instant or a time period

OID Object identifier
AD Attribute descriptor
LD Location descriptor
TD Time descriptor
Search Engine Search engine is a popular tool

to find information in the Web
Primary Time The most appropriate time asso-

ciated with a Web page
Primary Location The most appropriate loca-

tion associated with a Web page
GEO/GEO Ambiguity it refers that many loca-

tions can share a single place name
GEO/NON-GEO Ambiguity it refers that a

location name can be used as other types of
names

NER Named entity recognition
GRT Global reference time
LRT Local reference time

Definition

This subject is mainly towards the spatiotemporal
information involved in the Web, particularly in
Web pages. Typical spatiotemporal information

in the Web includes the locations and time men-
tioned in Web pages, the update date of We-
b pages, and the Web server locations. As we
know, location and time are the essential dimen-
sions of information including Web information.
However, they are usually ignored in traditional
keyword-based Web search engines.

Traditional search engines are basically based
on keyword-based approaches or content-based
methods. Though many contributions have been
presented in both directions, in some cases users
are still difficult to express their search need-
s. For example, more than 70 % Web queries
are related with time and locations (Setzer and
Gaizauskas 2002; Sanderson and Kohler 2004),
but spatiotemporal Web queries such as “to get
the news about Olympic Beijing in recent three
days” or “to get the sales information about
Nike in Beijing in this week” are often with bad
results in traditional search engines. One reason
is that such queries are difficult to express in
keyword-based search engines. Moreover, tradi-
tional search engines also lack of the ability to
process such spatiotemporal queries.

Aiming at improving the effectiveness and
efficiency of spatiotemporal queries in search
engines, many researchers began to study the
spatiotemporal information in the Web. How-
ever, most of previous researches focused on
time-based Web search (Nunes et al. 2008) and
location-based Web search (Wang et al. 2005;
Ding et al. 2000; Zhou et al. 2005; Markowetz
et al. 2005) separately. And few works consid-
ered the temporal information of the content in
Web pages. In this entry, we will describe the
semantics of spatiotemporal information in the
Web and try to present a framework for spa-
tiotemporal information extraction under the Web
context.

Introduction

The main goal of incorporating spatiotemporal
semantics into search engines is to develop a
search engine that is able to express and pro-
cess spatiotemporal queries. Figure 1 shows the

http://dx.doi.org/10.1007/978-1-4614-6170-8_100523
http://dx.doi.org/10.1007/978-1-4614-6170-8_100524
http://dx.doi.org/10.1007/978-1-4614-6170-8_100525
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Spatiotemporal
Semantics and Rules

Web Pages

Extract Spatiotemporal
Information

Construct Index

results spatiotemporal queries

Spatiotemporal Information for the Web, Fig. 1 The framework of Web search system based on spatiotemporal
semantics

framework of a spatiotemporal Web search en-
gine. In this framework, spatiotemporal informa-
tion is first extracted from Web pages based on
spatiotemporal semantics and rules, and then we
use them to construct a spatiotemporal index for
Web pages, using the extracted spatiotemporal
information. Users can input location- or time-
related queries through the user interface, and the
query processing engine will interpret the queries
and perform an index-based search on archived
Web pages. Finally, the resulted Web pages are
returned to users according to an improved rank-
ing algorithm, which combines text ranking tech-
niques with new temporal and spatial ranking
mechanisms.

Spatiotemporal information has been deeply
studied in spatiotemporal database area, in which
moving geographic objects are concentrated.
However, they are not popular in Web context.
So at present, the main focus on spatiotemporal
information in the Web is to integrate location
and time information into search process, such
as information extraction, indexing, querying,
ranking, and visualization.

In this entry, we focus on the spatiotemporal
semantics of Web information, mainly of We-
b pages, and present a framework to represent
and extract the spatiotemporal information in
the Web.

Key Points

The spatiotemporal semantics of Web pages re-
fer to the ontological meaning of the time and
location information of Web pages. The Web can
be regarded as a database of Web pages, so a
Web page can be looked as an object in the Web.
According to the object-oriented theory, an object
consists of a unique identifier and other attributes
that describe the properties of the object. Based
on this view, a Web page is a spatiotemporal
object which contains the following parts:

Identifier: The identifier of a Web page is
usually the URL.

Locations: The spatial information of a Web
page may consist of two types of location-
s, which are provider location and content
locations (Wang et al. 2005). The provider
location refers to the physical location of the
provider who owns the Web resource. The
content locations are the geographic locations
that are described in the content of a Web page.

Time: The temporal information of a Web page
has two types: update time and content time.
The update time is the latest modified time
of a Web page. The content time is the time
that the content of a Web page indicates. The
content time may contain implicit time such as
“Today” and “Three Days Ago”.
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Non-spatiotemporal attributes: The non-
spatiotemporal attributes of a Web page refer
to the traditional keywords set of the Web
page.

Historical Background

Most Web pages contain location and time in-
formation. Previous works regard the locations
in Web pages as geographic scope (Ding et al.
2000), which can be determined by analyzing the
content and links in the Web page. The locations
in a Web page usually have spatial containmen-
t relationships. For example, “China” contains
“Beijing.” In the literatures (Zhou et al. 2005),
a classification framework for Web locations is
presented, and an algorithm to extract the loca-
tions in Web pages is further proposed. In order
to support spatial computation, they use MBRs
(Minimal Bounding Rectangle) to represent the
geographic scope of Web pages. There are also
some other methods proposed to represent ge-
ographic scopes, such as raster-based represen-
tation (Markowetz et al. 2005). Generally, the
MBR-based method is widely used (Lee et al.
2003; Ma and Tanaka 2004). One problem of
those previous works is that they treat the geo-
graphic scope of a Web page as exact one MBR,
which is not very precise for many Web pages.

Temporal information is also very common in
Web pages, especially in news pages. Temporal
information extraction first appeared in MUC-5
whose task was to extract from business news
when a joint venture took place. In MUC-6 some
research was done on extracting absolute time
information as part of general tasks of named en-
tity recognition (Sundheim and Chinchor 1995).
In MUC-7, the notion of temporal information
extraction was expanded to include relative time
in named entities (Chinchor 1998). MUC is prac-
tically the pioneer and prime driver of temporal
information extraction research.

The temporal information of a Web page refers
to the time related with it, e.g., the created date of
the Web page and the date of an event reported
in the Web page. There are many representa-
tion forms for the temporal information in Web

pages, such as yesterday, Christmas, and August
15, 2012. Besides, many Web queries are time
sensitive. Fresh Web pages have more important
roles when users are searching news or sales
information.

Proposed Solution andMethodology

In this section, we introduce the approach in cap-
turing spatiotemporal information in Web search.
The proposed approach consists of three main
components: (1) Semantic Modeling for Spa-
tiotemporal Information in the Web, (2) Extract-
ing Primary Location from the Web, and (3)
Extracting Primary Time for Web Pages.

SemanticModeling for Spatiotemporal
Information in theWeb
From an object-oriented perspective, a Web page
can be defined as follows:

Definition 1 A Web page is a quintuple O D
< OID; LD; TD; AD >, where OID (Object
IDentifier) is the identifier of the Web page, LD
(Location Descriptor) is the location descriptor
describing the location information of the Web
page, TD (Time Descriptor) is the time descriptor
describing the temporal information of the Web
page, and AD is the attribute descriptor which
describes the non-spatiotemporal properties of
the Web page.

Figure 2 shows the spatiotemporal semantic
model of Web pages.

Location Descriptor
Location descriptor represents the location in-
formation of a Web page. A Web page has a
unique provider location which is the geographic
location of the Web server containing the Web
page. The location information that described
in the content of a Web page is called content
locations. For example, in a company’s home-
page, the provider location may be “Beijing,”
since the Web server containing the homepage
is located in Beijing, while the content locations
may include the address of the company and other
locations. As many locations may be involved in
the content of a Web page, we should define a
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primary location for the content of a Web page.
The primary location is the most appropriate
location that describes the location information of
a Web page. In the previous example, the primary
location of the Web page could be the address
of the company. However, how to compute the
primary location of a Web page is an unrevealed
issue in location-based Web search area.

Time Descriptor
Time descriptor represents the temporal infor-
mation of a Web page. There are two types of
temporal information related to Web pages:

Update Time. This refers to the update time of
the corresponding file of a Web page. For a
given Web page, the update time is unique and
can be regarded as the timestamp of the Web
page. Whenever a Web page is updated, the
update time is also renewed.

Content Time. This refers to the involved tem-
poral information in the text content of a Web
page. Compared with update time, which is
unique and explicit for a specific Web page,
the content time is a set of time instant or time

period which may be explicit or implicit. For
example, a news page may contain the explicit
published time “2008-1-24” of the news in the
title. Meanwhile, in the news body, there may
have some temporal keywords such as “three
days ago” and “today.” The implicit content
time should be translated into calendar time.
Among the many time instants and periods de-
scribed in the content of a Web page, we also
need to define and compute the primary time
of the Web page. The primary time of a Web
page is the most appropriate time related to the
Web page. In time-based Web search engine,
primary time and secondary time should be
treated and searched in different ways.
The above classification on the Web page time
mainly considers the role of time in Web
pages. Upon another view on time structure,
there are two types of time: instant and period.

Instant. Instant is a specific point in the time-
line. An instant may be a second, e.g., “2008-
04-01 11:59:59.” It also can be a time point
related to current time, e.g., “one hour ago”
means the time instant which is one hour
before current time.
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Period. Period is time duration. It contains
a pair of instants and represents the
time duration between the instants. For
example, “[2000-09-01 00:00:00, 2003-02-
01 00:00:00]” represents the time duration
from “2000-09-01 00:00:00” to “2003-02-
01 00:00:00,” and “[2002-09-01 00:00:00,
NOW]” indicates the time duration since
“2002-09-01 00:00:00.”

Another issue when considering the temporal
semantics of Web pages is the granularity of the
time. Different events in Web pages will have
different granularities, e.g., the foundation event
of a company may use “day” as the granular-
ity, while a news report about earthquake may
use “second.” How to set up a unified referen-
tial framework for the temporal granularity is a
critical issue in the spatiotemporal information
modeling of Web pages.

Attribute Descriptor
Attribute descriptor describes the text keywords
that mostly depict the content of a Web page.
Generally, it consists of a set of keywords which
are extracted from the Web page. Many tradi-
tional technologies can be used to construct the
attribute descriptor of a Web page, such as word
segment and keyword extraction in commercial
search engines.

Extracting Primary Locations from
theWeb

Most Web pages are associated with certain
locations, e.g., news report and retailer
promotion. Therefore, how to extract locations
for Web pages and then use them in Web search
process has been a hot and critical issue in current
Web search.

As a Web page usually contains two or more
location words, it is necessary to find the pri-
mary locations of the Web page. The primary
locations represent the most appropriate loca-
tions associated with contents of a Web page.
Generally, we assume that each Web page has
several primary locations. The most difficult issue

in determining primary locations is that there
are GEO/GEO and GEO/NON-GEO ambiguities
existing in Web pages. The GEO/GEO ambiguity
refers that many locations can share a single place
name. For example, Washington can be 41 cities
and communities in the USA and 11 locations
outside. The GEO/NON-GEO ambiguity refers
that a location name can be used as other types
of names, such as person names. For example,
Washington can be regarded as a person name
as George Washington and as a location name as
Washington, D.C. Mark Sanderson’s work (2000)
shows that 20–30 % extent of error rate in loca-
tion name disambiguation was enough to wors-
en the performance of the information retrieval
methods. Due to those ambiguities in Web pages,
previous research failed to reach a satisfied per-
formance in primary location extraction.

On the other side, it is hard to resolve the
GEO/GEO and GEO/NON-GEO ambiguities as
well as to determine the primary locations of
Web pages through the widely studied named
entity recognition (NER) approaches. Current N-
ER tools in Web area aim at annotating named
entities including place names from Web pages.
However, although some of the GEO/NON-GEO
ambiguities can be removed by NER tools, the
GEO/GEO disambiguation is still a problem. Fur-
thermore, NER tools have no consideration on the
extraction of the primary locations of Web pages.
Basically, the NER tools are able to extract place
names from Web pages, which can be further
processed to resolve the GEO/GEO ambiguities
as well as the GEO/NON-GEO ones. Thus, we
will not concentrate on the NER approaches but
on the following disambiguation and primary
location determination. Those works differ a lot
from traditional NER approaches.

The General Framework
Figure 3 shows the general process to extract pri-
mary locations from Web pages, in which we first
extract geo-candidates based on Gazetteer and N-
ER (named entity recognition) techniques. After
this procedure, we get a set of geo-candidates.
In this set, the relative order of candidates is the
same as that in the text. Here, geo-candidates are
just possible place names, e.g., “Washington.”
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Then, we run the disambiguation procedure to
assign a location for each GEO/GEO ambiguous
geo-candidate and remove GEO/NON-GEO
ambiguous geo-candidates. A location means
a concrete geographic place in the world,
e.g., USA/Washington, D.C. As a geo-candidate
may refer to many locations in the world, the
GEO/GEO disambiguation will decide which is
the exact location that the geo-candidate refers
to, and the GEO/NON-GEO disambiguation is
going to determine whether it is a location or
not. Finally, we present an effective algorithm
to determine the primary locations among the
resolved locations.

Geo-candidates Disambiguation
As Fig. 3 shows, we get a set of geo-candidates
before the disambiguation procedure. We assume
that all geo-candidates are associated with the
locations in the Web page.

Basically, we assume there are n geo-
candidates in a Web page and totally N locations
that those geo-candidates may refer to. Then
the GEO/GEO disambiguation problem can be
formalized as follows:

Given a specific geo-candidate G, determining
the most appropriate location among its possible
locations.

We use a basic idea similar to PageRank (Brin
and Page 1998) to resolve the GEO/GEO ambi-
guity, which is named GeoRank. The PageRank
algorithm introduced an iterated voting process
to determine the ranking of a Web page. We also
regard the GEO/GEO disambiguation in a Web
page as a voting process. Figure 4 shows the sim-
ilar problem definition between PageRank and
our GeoRank algorithm. Specially, in GeoRank,
nodes are the possible locations corresponding
to geo-candidates, and a linkage from one node
A to another node B is marked with a score of
evidence which represents A’s voting for B to be
the right location for the given geo-candidate.

In detail, as a geo-candidate can give more
evidence to the one near to it in a Web page
(text contribution) and a location can give more
evidence to the one near to it in the geographic
context (geographic contribution), we first con-
struct a matrix M involving all locations (with
each location occupies one row and one column),
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whose values are scores of each location of each
geo-candidate voted by other ones that belong
to different geo-candidates. This procedure is
much like the voting process in PageRank, except
that the items in M are locations but not Web
pages and the scoring policy is based on text
contribution and geographic contribution but not
based on Web links.

Named entity recognition tools usually can
remove some types of the GEO/NON-GEO am-
biguities in a Web page. In order to get an
improved performance, we propose two addition-
al heuristics to further resolve GEO/NON-GEO
ambiguities.

Rule 1: In the matrix M , if a location of a
geo-candidate gets score averagely from all
locations of other geo-candidates, it is not
considered as a location, because none of any
possible location of any other geo-candidate
can give evidence to locations of this geo-
candidate.

Rule 2: After removing the GEO/GEO ambigu-
ity, if a non-country location does not have
the same country with any other location, it
is considered not a location. Here we get the
rule from our observation that a Web page
is unlikely to mention a non-country location
that does not share a same country with any
other locations.

Determining Primary Locations
In this stage, we calculate the scores of all the
locations after disambiguation and then return
the focused ones for the Web page. We consider

three aspects when computing the scores of a
location, namely, the term frequency, position,
and geographic contributions (the contributions
from locations geographically contained by the
location). The motivation of the geographic con-
tribution is that if there are many states of USA
in a Web page, the location “USA” will receive
contributions from those states, as those states
are all geographically contained in the USA. As
a result, we use an explicit score to represent the
term frequency of a location name and an implicit
score for the geographic contribution. The score
of a location is determined by its explicit score
and implicit score.

For a location Di its explicit score, denoted as
ES (Di ), is defined as the term frequency of Di

in the Web page.
Then we use the following heuristics to modi-

fy ES (Di /:
1. If Di follows on the heels of the other location

Dj and Di has some relationship with Dj ,
suppose Dj is contained in Di , then we think
the appearance of Di in the page will empha-
size Dj , so we take 0.5 away from Di and add
it to Dj , i.e., ES(Di/ = ES(Di/� 0:5, ES(Dj /

= ES(Dj / + 0.5.
2. If Di appears in the title of a Web page, then

we add half of SUM to Di to emphasize this
appearance, where SUM is the sum of all the
ES values, as defined in the formula (1):

SUM D
Xn

iD1
ES.Di / (1)
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For the implicit scores, since many locations
that appear in one Web page usually have some
geographic relationships, we take this feature
when computing the implicit score of a location.
In particular, we add some contributions from
those locations contained by the given location
into the score. Suppose a location Di contains
n sub-locations in the Gazetteer: S1, S2; : : :; Sn,
and the former m sub-locations appear along with
Di in the Web page, then those m sub-locations
will provide geographic contributions to Di . The
implicit score of Di is defined in the formula (2)
and (3)

IS.Di / D
Xm

kD1
.ES.Sk/

C IS.Sk// � m

n � diff
(2)

diff D avg.S1; S2; : : : ; Sm/

max.S1; S2; : : : ; Sm/
(3)

Here, diff refers to the score difference a-
mong S1, S2,. . . ,Sm. The average value of S1,
S2; : : :; Sm must be less than or equal the maxi-
mum value of them, so diff <D 1. If Di contains
no sub-locations, then IS(Di/ = 0.

Based on a Gazetteer, we can build a hierarchy
location tree. Then we start from the leaf nodes
and compute the scores of all locations. After
that, we sort all locations according to their scores
and partition locations into three groups based on
the scores. The first group with the highest scores
is determined as the primary locations.

Extracting Primary Time from
theWeb

The various forms of temporal expressions in
Web pages impose some challenging issues to
temporal information extraction within the scope
of Web search:
1. How to determine the right temporal informa-

tion for implicit expressions contained in Web
pages? Differing from the explicit expression-
s, which can be directly found in a calendar,
the implicit expressions need a transformation

process and usually a referential time is re-
quired.

2. How to determine the primary time for a
Web page? A Web page may contain a lot
of temporal information, but which ones are
the most appropriate times associated with the
Web page? This is very important to temporal-
textual Web search engines which support
both term-based and time-based queries, as
they aim at finding “the Web pages associated
with the given terms and under the given
temporal predicate.” For instance, to answer
the query specifying “finding the informa-
tion about tourism during the National Day,”
the search engines have to first determine
which Web pages are mostly related with “the
National Day.”
For the first issue, namely, implicit time reso-

lution, the difficult part is to select the referential
time which is used to resolve implicit expres-
sions. For example, to determine the exact time
of the implicit expression “Yesterday” in a Web
page, we must know the date of NOW under the
context.

For the second issue, namely, primary time
determination, the difficult part is to develop an
effective scoring technique to measure the im-
portance and relevance of the extracted temporal
information. As there may be some containmen-
t relationship among temporal information, the
time ranking task has to consider both frequen-
cy and the temporal containment. For instance,
suppose “April, 2011” and “17 April, 2011” are
two extracted time words, and “17 April, 2011”
is contained in “April, 2011.” Therefore, even
“April, 2011” rarely appears in the Web pages, it
will still be the primary time for the page in case
that there are a great number of extracted time
words contained by “April, 2011.”

We focus on the above two issues and aim
to propose effective solutions to the resolution
of implicit expressions and the extraction of the
primary time for Web pages. The main ideas can
be summarized as follows:
1. We propose a new dynamic approach to re-

solve the implicit temporal expressions in Web
pages. We classify the implicit expressions
into global and local temporal expressions
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and then use different methods to determine
the referential time for global expressions and
local expressions.

2. We present a score model to determine the
primary time for Web pages. Our score model
takes into account both the frequency of
temporal information in Web pages and the
containment relationship among temporal
information.

Temporal Expressions Extraction
Temporal expressions in Web pages can be gen-
erally classified into two categories.

Explicit Temporal Expressions. These tem-
poral expressions directly describe entries in
some timeline, such as an exact date or year.
For example, the token sequences “December
2004” or “September 12, 2005” in a document
are explicit temporal expressions and can be
mapped directly to chronons in a timeline.

Implicit Temporal Expressions. These tempo-
ral expressions represent tempo-ral entities
that can only be anchored in a timeline in
reference to another explicit or implicit, al-
ready anchored temporal expression. For ex-
ample, the expression “today” alone cannot
be anchored in any timeline. However, it can
be anchored if the document is known to
have a publication date. This date then can be
used as a reference for that expression, which
then can be mapped to a chronon. There are
many instances of implicit temporal expres-
sions, such as the names of weekdays (e.g.,
“on Thursday”) or months (e.g., “in July”) or
references to such points in time like “next
week” or “last Friday.”

The explicit temporal expressions can be rec-
ognized by many time annotation tools, such
as TempEx and GUTime (GUTime 2012). The
temporal expressions in the GUTime output are
annotated with TIMEX3 tags, which is an ex-
tension of the ACE 2004 TIMEX2 annotation
scheme (tern.mitre.org).

For the extraction of implicit temporal ex-
pressions, the biggest difference of recognition
between the explicit and implicit temporal ex-
pressions is that the implicit temporal expressions

need to determine a reference time, so choosing
the right reference is the key to the identification
of the implicit temporal expression. The refer-
ence time can either be the publication time or
another temporal expression in the document.
Although the GUTime has a good performance
in the extraction of explicit temporal expressions,
it does not perform very well in dealing with the
implicit temporal expressions, especially in the
case of lacking of the document publication time.
To improve the GUTime performance, we need
to improve the reference-choosing mechanism of
GUTime.

In this entry, we suppose that an implicit time
expression consists of a modifier and a temporal
noun which is modified by the modifier. For
instance, a news report is as follows:

(Beijing, May 6, 2009) B company took over A
company totally on March 8, 200000After one week,
B company listed in Hong Kong, and became the
first listed company in that industry. However,
owing to the decision-making mistakes in
the leadership and the company later poor
management, B company got into debt for
several hundred million dollars, and was forced
to announce bankruptcy this Monday.

In this news report, “ten days” is a temporal
noun, but “ten days ago” is modified after adding
the modifier “ago.” For the two temporal expres-
sions that hold reference relations in this text, “af-
ter one week” and “this Monday,” we can achieve
the anchor direction easily from the modifiers
through some mapping rules. Meanwhile, the
offsets are able to understand directly by machine
with pattern matching. But for the anchor points
(referents), we must build the context-dependent
reference reasoning to trace them. The full tem-
poral reference comes from two parts: modifier
reference and temporal noun reference. Because
the former is inferred from the latter, the temporal
noun reference reasoning plays more important
roles in normalizations. Actually, we notice that
the temporal noun can be classified into two
classes according to the reference attributes. One
is called Global Time (GT) whose temporal se-
mantics is independent with the current context
and takes the report time or publication time
as the referent. Another one, Local Time (LT),

tern.mitre.org
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makes reference to the narrative time in text
above on account of depending on the current
context.

In our approach, there is a reference time table
which is used to hold full reference time for the
whole text, and we need to update and maintain it
dynamically after each normalizing process. The
time table consists of two parts: Global Reference
Time and Local Reference Time.

Global Reference Time: Global Reference
Time (GRT) is a type of reference time which
is referred to by the Global Time. Specifically,
it is the report time or the publication time of
the document.

Local Reference Time: Local Reference Time
(LRT) is referenced by the Local Time. It will
be updated dynamically after each normaliz-
ing.

Different classes of time will dynamically and
automatically choose references based on their
respective classes rather than doing it using the
fixed value or the inconsiderate rule under the
static mechanism. And the reference time table is
updated in real time finishing each normalizing,
which makes the temporal situation compliable
with dynamically changeable contexts.

Determining the Primary Time
We proposed a score model to calculate the s-
core of each temporal expression. In detail, we
consider two aspects when calculating the score
of a temporal expression, namely, the term fre-
quency of the temporal expression and the rele-
vance between temporal expressions. It is easy to
understand that the term frequency is related to
the score of a temporal expression. Here we focus
attention on introducing the relevance between
temporal expressions. We make an assumption
that there is an article which contains some tem-
poral expressions, and most of them refer to a
certain day in March. In this case, we tend to
choose March as the primary time rather than any
one of them. Based on this view, we think that a
temporal expression will make a contribution to
its parent temporal expression. For example, the
expression March 7, 2012 makes a contribution

to its parent expression March 2012, and the ex-
pression 1983 contribute to its parent expression
1980s.

Here, we define the score of a temporal ex-
pression as a combination of an explicit score and
an implicit score. The explicit score is related to
the term frequency of a temporal expression, and
accordingly, the implicit score is related to the
contribution made by all its children expressions.
The score of Ti , denoted as S.T:i /, is the sum
of its explicit score, denoted as ES(Ti/, and its
implicit score, denoted as IS(Ti/.

The explicit score ES(Ti/ is defined as the term
frequency of Ti in the article. As compared to im-
plicit temporal expressions, the explicit temporal
expressions are more accurate in the extraction.
In other words, the explicit temporal expressions
are more credible, so we add a weighting factor d

to the implicit temporal expressions. The explicit
score of Ti is defined as formula (4):

ES.Ti / D TFETE .Ti /C d � TFITE .Ti / (4)

Here, TFETE .Ti / refers to the term frequency
of the explicit temporal expressions which are
recognized as Ti . TFITE .Ti / refers to the term
frequency of the implicit temporal expressions
which are calculated as Ti . d is the weighting
factor; if d is set to 1, it means that the explicit
and implicit temporal expression have the same
credible level; if d is set to 0, it means that we
take no account of implicit temporal expressions.

The implicit score IS(Ti/ is related to all the
scores of its children, we denoted as C1, C2,
. . . , Cn, respectively, and we use the symbol
N to represent the number of children that Ti

contains. For example, if the granularity of Ti

is MONTH, then the value of N is 30 because
a month contains about 30 days. Likewise, if
the granularity of Ti is QUARTER, the value
of N should be 3 because a quarter contains
3 months. Here, we use the factor ˛ to represent
how much contribution the children of Ti make.
So the implicit score IS(Ti/ can be defined as
formula (5):

IS.Ti / D 1

˛ �N

Xn

iD1
S.Ci / (5)
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Finally, we can compute the scores of each
time expression based on its explicit score and
implicit one and then choose the Top-K time
expressions as the primary time of the Web page.

Illustrative Example

In order to show the usability of spatiotemporal
information in Web search, we present and imple-
ment a prototype system for temporal-sensitive
queries called TASE (Time-Aware Search
Engine) (Lin et al. 2012). The major features
of TASE can be described as follows:
1. TASE extracts the temporal expressions for

each Web page and calculates the relevant
score between the Web page and each tem-
poral expression. Compared with traditional
approaches, TASE uses a new reference time
dynamic-choosing approach to extract implicit
temporal expressions in Web pages. Besides,

it distinguishes the temporal expressions with
their relevant score and takes the containment
relationship among the temporal expressions
into consideration.

2. TASE combines the temporal similarity and
the textual similarity to re-rank the search
results. Our experiments demonstrate its
effectiveness in dealing with temporal-
sensitive Web queries.
Figure 5 shows the architecture of TASE, and

the interface of TASE is shown in Fig. 6. The four
major modules in TASE are described as follows:

Extract Candidate Documents. This module
extracts the original Top-K documents from
the search results which are used as the
candidate documents.

Extract Temporal Expressions. This module
extracts all the temporal expressions in
each candidate document, including the
explicit temporal expressions and the implicit
temporal expressions.
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Calculate Relevant Score. The relevant score
between a temporal expression and a Web
page will be calculated in this module.

Calculate Temporal Similarity. It calculates
the similarity between the temporal expres-
sions in a query and a document.

Calculate Textual Similarity. TASE is built
on Lucene, an open-source search engine.
Therefore, we use the textual similarity
determined by Lucene as the original textual
similarity.

Re-ranking. In this module, it used the tempo-
ral similarity and the original textual similarity
to determine the final relevant score of a doc-
ument.

Key Applications

Spatiotemporal information presented here may
be used in many applications. First of all,
spatiotemporal information can be used in search
engines to improve the quality of results. By
designing spatiotemporal indexes and ranking
algorithms, search engines can be enhanced to
process time-and-location-related Web queries
effectively and efficiently. Secondly, our method
is also useful in focused search engines, such as
news search, product search, or stock search. In
such applications, time and location information
play an important role and our approach can be
applied to offer better solutions to the search
needs. Thirdly, spatiotemporal information can
be utilized in question answering or automatic
summarization in the Web. Many questions in the
Web are related with time and location, which can
be answered if we extract facts as well as their
associated time and locations. For the automatic
summarization, as events are usually described
along a timeline, so it can be well done with the
help of the extracted time of the specified topic.

Future Directions

This work can be extended to spatiotemporal
analysis and mining in Web data, which may
bring values for Web knowledge discovery.

As Web has been regarded a major source
of competitive intelligence, how to acquire
competitive intelligence from the Web has been
a hot topic. By using spatiotemporal information,
we are able to find some historical information
about interested competitors and further detect
their future strategic planning in the near future.
Spatiotemporal information can also be used
to measure the credibility of Web information.
With the rapid development of Web 2.0 and
social network applications, there are many
fakes and false information in the Web, which
will introduce a lot of risks in decision making
and other applications. Though information
credibility involves many aspects of factors,
spatiotemporal information can be used as one
type of measurement to validate the credibility of
specific information. For example, when we want
to determine the credibility of a piece of news
reporting “Apple iPhone 5 has been released,”
we can collect the Web pages or microblogs
mentioning the news and perform spatiotemporal
clustering process to detect its credibility.

Acknowledgments

We would like to thank the University of
Science and Technology of China for providing
the environment where the study described in
this entry was completed. The work involved
in this article is partially supported by the
National Science Foundation of Anhui Province
(NO. 1208085MG117) and the USTC Youth
Innovation Foundation.

Cross-References

�Modeling and Analysis of Spatiotemporal
Social Networks
�Social Web Search
�Spatiotemporal Personalized Recommendation
of Social Media Content
�Spatiotemporal Reasoning and Decision
Support Tools

http://dx.doi.org/10.1007/978-1-4614-6170-8_320
http://dx.doi.org/10.1007/978-1-4614-6170-8_320
http://dx.doi.org/10.1007/978-1-4614-6170-8_261
http://dx.doi.org/10.1007/978-1-4614-6170-8_325
http://dx.doi.org/10.1007/978-1-4614-6170-8_325
http://dx.doi.org/10.1007/978-1-4614-6170-8_327
http://dx.doi.org/10.1007/978-1-4614-6170-8_327


S 2010 Spatiotemporal Outlier

References

Brin S, Page L (1998) The anatomy of a large-scale hyper
textual web search engine. In: Proceedings of WWW,
Brisbane, pp 107–117

Chinchor N (1998) MUC-7 information extraction task
definition, version 5.1. In: Proceedings of the 7th
message understanding conference (MUC-7), Fairfax

Ding J, Gravano L, Shivakumar N (2000) Computing
geographical scopes of web resources. In: Proceedings
of VLDB, Cairo, pp 545–556

GUTime (2012) http://www.timeml.org/site/tarsqi/
modules/gutime/index.html. Accessed Aug
2012

Lee R et al (2003) Optimization of geographic area to a
web page for two-dimensional range query process-
ing. In: Proceedings of fourth international conference
on web information systems engineering workshop-
s (WISEW 2003), Roma. IEEE Computer Society,
pp 9–17

Lin S, Jin P, Zhao X, Yue L (2012) TASE: a time-aware
search engine. In: Proceedings Of CIKM’12, Maui.
ACM

Ma Q, Tanaka K (2004) Retrieving regional information
from web by contents localness and user location. In:
Proceedings of AIRS, Beijing, pp 301–312

Markowetz A, Chen Y, Suel T, Long, X, Seeger B (2005)
Design and implementation of a geographic search en-
gine. Technical report TR-CIS-2005-03, Polytechnic
University, Brooklyn

Nunes S, Ribeiro C, David G (2008) Use of temporal ex-
pressions in web search. In: Proceedings of ECIR’08,
Glasgow, pp 580–584

Sanderson M (2000) Retrieving with good sense. Inf Retr
2(1):45–65

Sanderson M, Kohler J (2004) Analyzing geographic
queries. In: Proceedings of GIR’04, Sheffield. ACM

Setzer A, Gaizauskas R (2002) On the importance of
annotating event-event temporal relations in text. In:
Proceedings of LREC’02, Paris

Sundheim B, Chinchor N (1995) Named entity task def-
inition, version 2.0. In: Proceedings of the 6th mes-
sage understanding conference (MUC-6), Columbia.
Morgan Kaufman, pp 319–332

Wang C, Xie X et al (2005) Web resource geographic
location classification and detection. In: Proceedings
of WWW’05, Chiba. ACM

Zhou Y, Xie X, Wang C et al (2005) Hybrid index struc-
tures of location-based web search. In: Proceedings of
CIKM’05, Bremen

Spatiotemporal Outlier

�Detection of Spatiotemporal Outlier Events in
Social Networks

Spatiotemporal Personalized
Recommendation of Social Media
Content

Bee-Chung Chen
LinkedIn, Mountain View, CA, USA

Synonyms

Location-based recommendation; Positional
or layout effect in recommender systems;
Spatiotemporal collaborative filtering; Time-
sensitive recommendation

Glossary

Recommender A system that recommends
items (e.g., news articles, blog posts) to users

Response Rate The probability that a user
would respond to (e.g., click, share) a
recommended item

Feature Information (about a user, an item, and
the context in which the item may be recom-
mended to the user) that can be used to predict
the response rate

Page A web page on which recommended items
are placed

Context The situation (which includes time,
geographical location, location of a web page,
etc.) in which recommendations are made to a
user

Graph A set of nodes connected by a set of
edges

Definition

Social media sites (like twitter.com, digg.com,
blogger.com) complement traditional media by
incorporating content generated by regular peo-
ple and allowing users to interact with content
through sharing, commenting, voting, liking, and
other actions. Since the number of content items
is usually too large for a person to manually
examine to find interesting ones, it is important
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for social media sites to recommend a small set of
items that are worth looking at for each user. To
satisfy each individual user, recommended items
have to match the user’s personal interests and
be relevant to the user’s current spatiotemporal
context. For example, a content item about the
user’s hometown is usually a better choice than
an item about an unknown foreign country, and a
content item on a fresh trending topic is usually
more interesting than an item on a stale topic.

Spatiotemporal personalized recommendation
of social media content refers to techniques
used to make personalized recommendation
based on:
• The geographical location of a user and an

item (the location of an item can be the loca-
tion that the item is about or the location of the
author of the item)

• The location of a user in the social space (e.g.,
the neighborhood of a user in a friendship
graph)

• The position of an item placed on a page and
the layout of the page

• Temporal evolution of user interests
• Temporal behavior of the popularity of an item
• Identification of trending topics

Introduction

Social media usually refers to a group of Internet-
based applications that allow creation and
exchange of user-generated content (Kaplan and
Haenlein 2010). For example, weblog sites like
blogger.com provide regular people the ability of
publishing any article (called blog) on the web,
microblogging sites like twitter.com facilitate fast
distribution of short messages of any topic posted
by any one, and social news sites like digg.com
allow their users to vote news articles (and other
web content) up or down in order to present
popular and interesting news stories based on the
wisdom of the crowd (i.e., votes from users), just
to name a few. Because of the success of such
social media sites, almost all online media sites
now provide their users with the functionality
of sharing and commenting on content items
(e.g., news articles, photos, songs, movies), no

matter whether the content items are generated
by regular users. Since sharing and commenting
are usually considered as social activities, the
distinction between social media and online
media (which includes social media) blurs.
Thus, in this article, we discuss recommendation
methods suitable for any online media with a
special emphasis on spatial, temporal, and social
characteristics of users and content items.

The large amount of content generated by
social media makes it difficult for users to find
personally relevant content. To alleviate such in-
formation overload, many social media sites rec-
ommend a small set of content items to each user
based on what they know about the user and the
items. We use the term “item” to refer to any
candidate objects to be recommended to users,
which include (but are not limited to):
• Publisher-generated items like articles, songs,

and movies, which are not generated by reg-
ular users, but are voted, shared, liked, or
commented on by them

• User-generated items like blogs, tweets (short
messages posted on twitter.com), photos,
videos, status updates, and comments on other
items

Good recommendations help social media sites
keep their users engaged and interested.

Key Points

When recommending items to users, it is im-
portant to consider whether an item is relevant
to a user in the spatiotemporal context in which
recommendations are to be made. A few key
reasons are listed below. Notice that we take a
broad view of the spatial aspect that includes
locations in geographical space, social space, and
positions on a web page:
• Users are likely to be more interested in items

about their current geographical location than
items about a random location, which is e-
specially true for mobile applications (see,
e.g., Zheng et al. (2010)).

• In some applications, users tend to have simi-
lar preferences to those who are close to them
in the social space, which is especially true
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when closeness is defined based on a trust
network (see, e.g., Jamali and Ester (2010)).

• It is generally true that items placed at
prominent positions (e.g., top) on a page
generate more responses from users than same
items placed at non-prominent positions (see,
e.g., Agarwal et al. (2009)).

• Users change their interests in topics over time
(see, e.g., Ahmed et al. (2011)).

• Popularity of items also changes over time
(see, e.g., Agarwal et al. (2009)).

Many methods have been developed to exploit
these spatiotemporal characteristics to improve
the performance of recommenders. A compre-
hensive review of these methods is beyond the s-
cope of this article. Instead, after providing a brief
historical background, we illustrate key ideas
in spatiotemporal personalized recommendation
through a generic supervised learning approach,
which handles spatiotemporal characteristics by
(1) defining features that capture those charac-
teristics and (2) learning a function that predicts
whether a user would respond to an item pos-
itively based on these features from a dataset
that records users’ past responses to items. This
approach generally applies to recommendation of
any kind of item.

Historical Background

There have been many approaches developed
to make personalized recommendations. When
the items to be recommended are text articles,
which may be represented as a bag of words, an
early approach is to also represent a user as a
bag of words. The user’s bag of words can be
constructed by including representative words in
the articles that the user likes to read. Then, we
can recommend a user the articles which bags of
words are most similar to the user’s bag of words
through Salton’s vector space model (Salton et al.
1975). For items that are not easily representable
as bags of words, how other users respond to
an item may provide a clue as to whether to
recommend the item to a user who has not yet
responded to the item. Agrawal et al. (1993) pro-
posed that, in a retail store setting, products can

be recommended based on customers’ co-buying
behavior. For example, if the majority of cus-
tomers who buy product A also buy product B ,
then we may recommend product B to a customer
who only bought product A. This idea was then
extended by incorporating a notion of similarity
of users or items. For example, when we decide
whether to recommend item B to user i , we look
at whether users “similar” to user i respond to
item B positively. Notice that Agrawal’s method
is based on the similarity definition that if two
customers buy the same product, then they are
similar. A different definition of similarity be-
tween users leads to a different method. Fur-
thermore, we can also exploit similarity between
items in a similar way – when deciding whether
to recommend item B to user i , check whether
user i liked items that are “similar” to B in
the past. Here, similarity between two items can
be defined by looking at whether most users
responded to the two similarly. Adomavicius and
Tuzhilin (2005) provided a good review of such
methods. This kind of methods is generally re-
ferred to as collaborative filtering, because the
recommendations that a user receives depend on
other users’ responses to candidate items – this
process can be thought of as a collaboration
among users to help one another find interesting
items (although users may not be aware of the
collaboration).

Conceptually, one can put users’ past respons-
es to items into a matrix. Since this matrix-
oriented approach is popular in movie recom-
mendation (Koren et al. 2009), we use it as an
example in the following discussion. In a movie
recommender system, users rate movies. Let yij

denote the rating that user i gives to movie j .
For example, yij may be a numeric value ranging
from 1 to 5, representing 1 star to 5 stars. Let Y

denote the m�n matrix such that the value in the
.i; j / entry is yij , where m is the number of users
and n is the number of movies in the system.
Notice that there are many entries with missing
(i.e., unknown) values in matrix Y because most
users only rate a small number of movies. For
user i , if we can predict the missing values in
the i th row of matrix Y accurately (where the
entries with missing values correspond to movies
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that have not yet been rated by user i and are thus
candidate items to be recommended to him/her),
then we can recommend user i the movies having
the highest predicted rating values. One popular
way of making such predictions is through ma-
trix factorization – approximate matrix Y as the
product U V 0 of two low rank matrices U of size
m � r and V of size n � r , where V 0 denotes the
transpose of matrix V and the rank r of matrices
U and V is much smaller than the numbers m

and n of users and items, respectively. Let ui

denote the i th row of matrix U , vj denote the
j th row of matrix V , and ˝ D f.i; j / W user
i rated movie j g denote the set of observed
entries in matrix Y . This approximation then can
be mathematically formulated as the following
optimization problem.

Find U and V that minimize
X

.i;j /2˝

.yij�u0i vj /2;

(1)
where u0i vj is the inner product of two vectors
ui and vj . Notice that u0i vj is the .i; j / entry of
matrix .U V 0/ and is also the predicted value of
yij . Thus, the above optimization seeks to mini-
mize the difference between matrix Y and matrix
.U V 0/ over only the set ˝ of observed entries
of Y . Sum of squared differences is a common
choice, while other choices are also available for
different problem settings. Recent studies, such
as Koren et al. (2009), Agarwal and Chen (2009),
and many others, suggest that matrix factoriza-
tion usually provides superior recommendations
than more traditional methods.

A survey of a wide range of approaches to rec-
ommender systems can be found in Jannach et al.
(2010) and Ricci et al. (2011). Here, we focus on
how to make use of spatial, temporal, and social
information to make good recommendations of
social media content. In particular, we illustrate
key ideas in spatiotemporal personalized recom-
mendation through a general supervised learning
(or statistical modeling) approach, which gener-
ally applies to recommendation of any kind of
item.

Supervised Learning Approach

In general, a recommendation problem can be
formulated as follows. A recommender is giv-
en:
• A user, who is associated with a vector of user

features, e.g., age, gender, and location
• A context, which is associated with a vector

of context features, e.g., day of week when the
recommendation is to be made

• A set of candidate items, each of which is
associated with a vector of item features, e.g.,
topics and keywords

The goal of the recommender is to rank and
pick the top few items from the set of candidate
items that best “match” the user’s interests and
information need in the context. The supervised
learning approach exploits the fact that, in many
recommenders, a dataset of users’ past responses
(e.g., click, share) to items can be collected and
defines the degree that an item matches a user
as the response rate of the user to the item (e.g.,
the probability that the user would click the item
if he/she sees the item on a web page). Such
predictions can be made by using a statistical
(regression or machine learning) model, which
“learns” the user and item behavior that allows
accurate predictions from the dataset, where
users’ past responses in the dataset “supervise”
the learning process via giving desired (e.g.,
click) and undesired (e.g., no click) examples.
When such a model is available, recommen-
dations for a user can be made by picking the
top few items having the highest response rates
among the set of candidate items. This supervised
learning approach applies to recommendation of
any kind of item, where spatiotemporal and other
characteristics can be incorporated by defining
features that capture those characteristics.

To use this supervised learning approach, a
developer of a recommender needs to make the
following three decisions:
• What response should the model try to

predict?
• What features should the model use to capture

the characteristics of users, items, and the
spatiotemporal context?

• What class of model do we want to use?



S 2014 Spatiotemporal Personalized Recommendation of Social Media Content

After introducing a running example, we discuss
how to choose the response, provide a number
of useful features, and then introduce two com-
monly used classes of models, namely feature-
based regression model and latent factor model.
See Jannach et al. (2010) and Ricci et al. (2011)
for other classes of models. See Hastie et al.
(2009) for a general introduction to supervised
learning.

Example Recommender
For concreteness, we use blog article recom-
mendation as a running example. Consider that
we want to develop a recommender for a blog
service provider (e.g., blogger.com) that seeks to
recommend each user with a set of interesting
blog articles posted by other users. To make
modeling more interesting, assume that a user
can declare friendship with other users and such
friendship connections between users are avail-
able to the recommender. In this example, the set
of candidate items for each user consists of all of
the articles posted within a 1-week time window
(to ensure freshness) by any user of this service
provider. Notice that the set of candidate items
changes over time. For simplicity, we only need
to recommend 10 articles for each user, once per
day, and the recommended articles are displayed
in a list on the sidebar of each user’s homepage
(they are only visible to the owner of the home-
page, not the visitors of the homepage, since the
recommendations are made to the owner).

Choice of Response
The choice of response depends on the objective
that a recommender is developed for and avail-
ability of user feedback that the recommender
receives. A common objective is to maximize
clicks on recommended items because the fact
that a user clicks an item indicates that the user
is interested in knowing more about the item.
Note that clicks are user feedback that can easily
be made available to a recommender through
logging whether each user clicks the recommend-
ed items. In this case, a natural choice of the
response is whether a user would click an item if
he/she sees the item being recommended. Here,
the goal of learning is to predict the probability

that a user would click an item based on a dataset
that records what items each user clicked and
what items each user did not click in the past.

Beyond clicks, a recommender may be de-
veloped for other objectives. For example, if
the objective of recommendation is to encourage
users to make comments on recommended items,
then a natural choice of the response would be
whether a user would comment on a recommend-
ed item or not. On some sites, users can explicitly
rate items (e.g., using one star to five stars);
then, a natural choice of the response would be
the rating that a user would give to an item.
For simplicity, we only consider methods that
seek to achieve a single objective and model the
response rate of a single type of choice (e.g.,
modeling either click rate or explicit star rating,
but not both). See Agarwal et al. (2011a) for an
example of multi-objective recommendation, and
see Agarwal et al. (2011b) for an example of joint
modeling of multiple types of responses.

Let y ijk denote the response that user i gives
to item j in context k. For concreteness, assume
that we choose to model whether the user would
click the item.

Feature Engineering
Having good features is essential to an accurate
model, but one usually does not get good features
automatically. It requires domain knowledge,
good intuition, and experience in the application
to define good features. Here, for illustration
purposes, we only show a number of example
features that can potentially capture different
kinds of spatiotemporal characteristics for our
example recommender. Real-life recommenders
usually need to use much more features than the
following ones.

User Features
Let wi denote the vector of features of user i . For
simplicity, we mostly consider binary features,
meaning each element in the vector is either
0 or 1. Example features are as follows:
• Gender: From the user’s registration record

when he/she signed up on the site, the rec-
ommender obtains the gender of each user.
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The numeric value of the feature is 1 if the
user is a male and 0 if the user is a female.

• Age: Also from the user’s registration record,
the recommender obtains the age of each user.
For example, we can group age values into 10
age groups, which give 10 age features. If the
user’s age is in an age group, the value of the
feature corresponding to that age group is 1,
and the rest age groups get feature value 0.

• City: From the IP address of a user, the
recommender can guess the city that the user
is in. Here, we use a set of features, one for
each city, to represent the user’s geographic
location. For example, assume the user lives
in New York City. Then, the value of the New
York City feature is 1 and the values of the
rest of the city features are all 0 for the user.
It is common to only include cities that have
at least n users, where n is a threshold that a
developer of the recommender can choose to
reduce the number of features.

Item Features
Let xj denote the vector of features of item j .
Example features are as follows:
• Bag of words: It is common to represent the

text content of an article as a bag of words,
which corresponds to a set of features, one for
each keyword. For simplicity, we only con-
sider binary keyword features. The value of a
keyword feature is 1 if the article contains the
keyword and 0 if the article does not contain
the keyword. Since the total number of words
in all articles is usually too large, it is also
common to reduce the space of all keywords to
a relatively small number of important words,
e.g., location names or other named entities.

• Topics: Another way to reduce the space of
words in articles is to group words into topics
and then assign topics to articles based on
the words in articles. This process can be
automated through topic models like latent
Dirichlet allocation (Blei et al. 2003). One
output from such a model is a vector of topic
membership for each article, where each ele-
ment in the vector represents the probability
that the article is about a particular topic.

Context Features
Let ´ijk denote the vector of features of the
context in which user i is (to be) recommended
with item j in context k (which include
time and location). Example features are as
follows:
• Day of week: This is the day of week

(weekday vs. weekend) when the recom-
mendation is to be made. User behavior
during the weekday can be quite different
from that during the weekend. The value
of this feature is 1 for weekday and 0 for
weekend.

• Article age: This is the age of an article (not
to be confused with the age of a user), which
is the number of days since the article was
posted. We put it into the category of context
features, instead of item features, because it
depends on both the article and time, instead
of the article alone. For example, assume the
article was posted 2 days ago; then, the value
of the feature corresponding to 2 days ago
is 1, and the other days get feature value 0.
To model finer-grained temporal effect, one
may choose a finer time resolution (e.g., hour,
instead of day).

• Position on page: It is well known that the
click rate of an item put on the top of a list
on a page is usually higher than that of the
same item put in the middle or the bottom of
the page. To capture this positional bias, we
define a set of features, each of which corre-
sponds to a position in the list. For example,
assume the article is put at the third position,
the value of the feature corresponding to the
third position is 1 and all other positions have
feature value 0.

• Friendship: This feature is 1 if user i is
connected to the author of item j through a
friendship connection and is 0 otherwise.

• Same city: This feature is 1 if user i is in
the same city as the author of item j and is
0 otherwise.
Note that the above features are only simple

examples. The goal here is to provide concrete
examples of features for illustration purposes,
instead of suggesting good features for practical
implementation.
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Feature-Based RegressionModel
After defining the response and features, we have
a standard supervised learning problem. When
the response is binary (e.g., either click or no
click), we can use logistic regression. See Hastie
et al. (2009) for an introduction to logistic regres-
sion. Let pijk denote the probability that user i

would respond to item j when he/she sees it in
context k. There are many ways in which one
can define a function that predicts pijk based
on features. A useful prediction function is as
follows:

pijk D �.w0iAxj C ˇ0´ijk/; (2)

where �.a/ D 1
1Cexp.�a/

is the sigmoid function
that transforms an unbounded value a into a
number between 0 and 1 (since pijk is a proba-
bility), A is a regression coefficient matrix, ˇ is
a regression coefficient vector, and w0i and ˇ0 are
the row vectors after transposing the two-column
vectors wi and ˇ, respectively. Given a dataset of
users’ past responses to items, where each record
is in the form .yijk ; wi ; xj ; ´ijk/, off-the-shelf
logistic regression packages can be applied to
learn the regression coefficients A and ˇ.

To better understand this model, we take a
closer look at the prediction function. Let Amn

denote the .m; n/ entry of matrix A, wim denote
the mth user feature in vector wi , and xjn denote
the nth item feature in vector xj . By definition,
we have

w0i Axj D
X

m

X
n

Amnwimxjn: (3)

For example, assume wim is the feature that
indicates whether user i lives in New York City
and xjn is the feature that indicates whether
article j contains keyword “new york.” Then, the
regression coefficient Amn would try to capture
the propensity that users living in the New York
City would click an article that contains keyword
“new york” after adjusting for all other factors.
Now, assume that the mth and nth context fea-
tures in ´ijk indicate whether article j is posted
1 day ago and whether j is posted 5 days ago,
respectively. Then, the difference between regres-
sion coefficients ˇm � ˇn would try to quantify

how much the popularity of an article drops from
day 1 to day 5 when all other conditions being
equal.

Latent Factor Model
Although feature-based regression models are
useful for predicting users’ response rates to
items, they depend highly on the availability
of predictive features, which usually requires
a significant feature engineering effort with no
guarantee of obtaining predictive features. Also,
feature vectors may not be sufficient to capture
the differences between users or items. For
example, when two users have identical feature
vectors, feature-based regression models would
be unable to tell the differences between the two.
One way of addressing these issues is to add
latent factors into the prediction function; i.e.,

pijk D �.w0i Axj C ˇ0´ijk C u0ivj /; (4)

where ui and vj are two r-dimensional vectors
both to be learned from data like regression
coefficients A and ˇ, where r is much smaller
than the number of users and the number of
items. Recall that we have seen u0ivj in the matrix
factorization method in the historical background
section. The difference is that, instead of factor-
izing the response matrix, here we factorize the
residual (i.e., prediction error) matrix of feature-
based regression in order to capture the behavior
of users and items that the features fail to capture.

Intuitively, one can think of ui and vj as
“latent feature” vectors of user i and item j ,
respectively. We do not determine the values of
these r latent features per user or item before
learning the model. Instead, ui and vj are treated
as variables that can be used to reduce the error
of predicting the responses in the dataset used for
learning. The inner product u0ivj then represents
the affinity between user i and item j ; the larger
the inner product value, the higher the probability
that user i would click item j . After the learning
process, we simultaneously obtain the values of
these latent features and also the regression coef-
ficients A and ˇ. See Agarwal et al. (2010) for an
example of such a latent factor model.

Spatiotemporal contexts can also be involved
in a latent factor model. For example, assume we
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want to model a temporal effect through latent
factors. Let context index k represent the kth time
period (e.g., day). One way of capturing user or
item behavioral changes over time is through the
following model:

pijk D �.w0iAxj Cˇ0´ijk Chui ; vj ; tki/; (5)

where hui ; vj ; tki D
P

` ui`vj`tk` is a form of
tensor product of three vectors ui , vj and tk .
Note that ui` denotes the `th element of vector ui

and so on. Similar to the previous model, ui , vj ,
and tk are all latent feature vectors, which values
are to be learned from data. Unlike the previous
model where the affinity u0i vj between user i

and item j is fixed over time, now the affinity
hui ; vj ; tki is a function of time period k, which
means this model captures the changing behavior
of user-item affinity. Specifically, in this model,
the user and item latent feature vectors are fixed
over time, but the affinity between the two is a
weighted sum of the element-wise product of the
two latent feature vectors ui and vj , where the
weight vector tk changes over time. See Xiong
et al. (2010) for an example of such a temporal
latent factor model.

Summary

Personalized recommendation is an importan-
t mechanism for surfacing social media content.
The spatiotemporal context in which a recom-
mendation is made provides a key piece of infor-
mation that helps a recommender to recommend
the right item to the right user at the right time.
While many methods have been proposed in the
literature, the supervised approach is attractive
because of its generality, where spatiotemporal
characteristics can be incorporated as features
or latent factors. In this article, we introduced
a number of example features and two example
models. In practice, many features need to be e-
valuated and a number of different models need to
be tried, so that a good recommender can be built.

Future Directions

Personalized content recommendation is current-
ly an active research area in data mining, infor-
mation retrieval, and machine learning. A lot of
progress has been made in this area, but chal-
lenges remain.
• Improving response rate prediction accuracy:

Although many models have been proposed to
predict response rates and we have seen pre-
diction accuracy improve over time, accurate
prediction of the probability that a user would
respond to an item is still a challenging prob-
lem, especially for users and items that the rec-
ommender knows little about. What are the s-
patial, temporal, social, and other kinds of fea-
tures that can further improve accuracy? How
can a recommender actively collect data to
achieve better model learning and evaluation?

• Multi-objective optimization: A recommender
usually is designed to achieve multiple objec-
tives. For example, many web sites put adver-
tisements on article pages to generate revenue.
In addition to recommend articles that users
like to click, we may also want to recommend
articles that can generate high advertising rev-
enue. How can a recommender optimize mul-
tiple objectives in a principled way?

• Multi-type response modeling: In social me-
dia, users respond to items in multiple ways,
e.g., clicks, shares, tweets, emails, and likes.
How can we jointly model such different types
of user responses in order to find out the items
that a user truly want to be recommended?

• Whole-page optimization: On a web page,
there can be multiple recommender modules.
For example, one recommends news articles,
another recommends updates from a user’s
friends, and yet another recommends online
discussions the user may be interested
in. How can we jointly optimize multiple
recommender modules on a page to leverage
the correlation among modules and to ensure
consistency, diversity, and serendipity?

• Collaborative content creation: Wikipedia
demonstrated high-quality content creation
through massive collaboration. However,
in most recommender systems, items to
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be recommended are created by a single
party (e.g., a publisher or a user). How can
we synthesize items at the right level of
granularity to recommend to users in a semi-
automatic collaborative way?
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Synonyms

Information filtering; Report confirmation

Glossary

LBSN Location-based social network
Heuristic Principle An experience-based, but

fallible, problem-solving approach
Information Filtering An algorithm that aims

at identifying relevant pieces of information
User-Generated Content Text, images, or other

media published in a LBSN

Definition

Spatiotemporal proximity and social distance
are two heuristic principles for filtering user-
generated content produced by the members of
a location-based social network (Schlieder and
Yanenko 2010; Yap et al. 2012). Information
filtering addresses the quality problem which
arises when content is created by a large com-
munity of voluntary contributors as is the case
in Web-based forms of participatory or citizen
journalism. While the computational filtering
approaches share some basic assumptions with
the evaluation approach adopted in classical
journalism, there are significant differences
with respect to the scale of the problem and
the methods for establishing confirmation
relationships between reports.

User-GeneratedContent in
Location-Based Social Networks
The idea of citizen reporters who complemen-
t the news coverage provided by professional
journalists predates the Web by several decades
(Deuze et al. 2007). With the diffusion of s-
mart phones and the mobile access to the Web,
however, it became much easier for eyewitnesses
of events to report their observations to digi-
tal communities. Observation reports are pub-
lished in location-based social networks (LBSN),
that is, any type of Web-based social medium
which provides geo-location metadata about its
members and the user-generated content (Jensen
et al. 2011). Such LBSN also makes available the
temporal metadata used by conventional social
media services. In other words, each observation
reported in the LBSN comes with a time stamp
and a place stamp. A prominent example of
LBSN technology supporting citizen reporting
is the Ushahidi platform which was originally
created to collect and visualize reports about
incidents of politically motivated violence (Okol-
loh 2009). Other scenarios include emergency
response to natural disasters, the documentation
of urban sprawl (Bishr and Mantelas 2008), and
reports on wild animal sightings (Schlieder and
Yanenko 2010).

Often it is useful to combine automatic filter-
ing as a preprocessing step with manual post-
processing by human experts who examine the
remaining set of critical cases. Note, however,
that in classical journalism, a small number of
authors contribute articles each stating a large
number of facts, whereas in citizen journalism,
a large number of contributors publish reports
that mostly state a single elementary fact such as
a tweet about the sighting of a wood fire. Only
the automatic approaches scale easily with the
number of reports.

Constraint-Based Approaches for Report
Confirmation
Different heuristic principles are used by the au-
tomatic filtering approaches. Bishr and Mantelas
(2008) argue for using the spatial proximity of
the observer to the object described in the re-
port as a measure of the observer’s reputation in

http://dx.doi.org/10.1007/978-1-4614-6170-8_110003
http://dx.doi.org/10.1007/978-1-4614-6170-8_110004
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contributor status filtering. The rationale behind
this heuristic principle of spatial proximity is
that an eyewitness should have higher reputation
than someone who reports from hearsay and that
spatial proximity constitutes a necessary – though
not sufficient – condition for observing the object.
In scenarios such as reporting about natural dis-
asters, however, eyewitnesses are often first-time
or infrequent contributors which cannot be han-
dled by reputation models. Report confirmation
approaches have been proposed as an alternative
by Schlieder and Yanenko (2010) and Yanenko
and Schlieder (2012) to handle such scenarios.

Confirmation focuses on events instead of ob-
jects, that is, entities extended in time. As a
consequence, the principle of spatial proximity
needs to be complemented by a related principle
of temporal proximity. A report of the sighting
of a rare bird species, for instance, could be
confirmed by a second report one hour later
stating the sighting of the same species at a place
nearby. Generally, a smaller distance corresponds
to better confirmation. Both the spatial and the
temporal proximity interact in confirmation and
are therefore referred to as a single heuristic
principle of spatiotemporal proximity.

In many application scenarios, observations
are informed by the social role of the observer,
by his or her affiliation to a subcommunity of the
LBSN. An example is the competitive situation
in a location-based game. The categorization of a
game event as foul play is likely to be affected by
which team the observer belongs to or supports
(Yanenko and Schlieder 2012). In reporting about
political events, such biases become even more
important. The confirmation principle of social
distance addresses such cases. It states that a
report from an observer from a subcommunity of
the LBSN which takes a different stance on the
issue provides better confirmation than a report
from an observer from the same subcommunity.
According to this principle, a foul play reported
by at least one member of both teams is consid-
ered having higher confirmation than a foul play
reported only by members of the same team. This
principle reflects the confirmation approach taken
by classical journalism which requires at least
two independent sources for each fact reported.

Spatiotemporal Proximity and Social Distance, Fig. 1
Space-time diagram

Space-Time Diagram
In terms of input and output, report confirma-
tion approaches start from a collection of reports
published in an LBSN where each report is rep-
resented by a tuple r = (observer, time, place,
observation). A confirmation value is comput-
ed for each ordered pair of reports as output.
Consider the following example: six reports have
been published by six different observers who
are all positioned on the central avenue of the
same city. The observations either affirm or deny
that a protest march is moving along the avenue
from point s1 to point s2 during the time period
[t1, t2]. Since positions and movements refer to a
linear geographic object, only a single spatial di-
mension needs to be represented in the example.
In practice, however, confirmation filtering refers
to two, sometimes to three, spatial dimensions
(latitude, longitude, geoid height). Each of the
reports r1; : : :; r6 corresponds to a point in the
space-time diagram (Fig. 1).

Affirmative observations are denoted by (+),
negative ones which deny the event by (–). In
the example, every observer either supports or
opposes the issue of the protest march with social
ties being established only within each of the
two subcommunities. The space-time diagram
distinguishes reports of supporters (white) from
those of opposers (black). While reports appear
as points in the diagram, events have a spatial and
a temporal extension, that is, they cover regions.
The spatiotemporal coverage of a protest march
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Spatiotemporal Proximity and Social Distance, Fig. 2 Agreement graph and confirmation graph

of length D moving with constant speed is a
parallelogram.

Without spatiotemporal and social context, it
is only possible to determine agreement and dis-
agreement between reports. An affirmative report
r agrees with every report ri affirming the same
observation. This is expressed by the affirmation
value ï£¡a.r; ri / D 1. Similarly, the affirmative
report r disagrees with any negative report rj

resulting in ï£¡a.r; rj / D �1. The graph in Fig. 2
shows agreement by solid lines and disagreement
by dashed lines. Agreement, however, is only a
necessary, not a sufficient, condition for confir-
mation.

Confirmation Graph
Confirmation is modelled by a real-valued func-
tion which maps a pair of reports onto a confir-
mation value c W .ri ; rj / ! v 2 Œ�1; 1� where
c.ri ; rj / D 1 corresponds to maximal confir-
mation, c.ri ; rj / D 0 to unrelated reports, and
c.ri ; rj / D �1 to maximal conflict. The spatial
proximity of two reports ri and rj is computed by
considering the straight line distance or the street
distance d.ri ; rj / between their place stamps and
by taking into account additional spatial con-
straints. In the example, an additional constraint
is the maximal length D, of a protest march in
that city. If the place stamps are farther apart than
D then it is rather unlikely that the two reports
refer to the same event: cspa.ri ; rj / D a.ri ; rj /

when d.ri ; rj / � D, and cspa.ri ; rj / D 0
otherwise. Often, a logistic function is used to
express the vagueness of the spatial threshold,
c.ri ; rj / D a.ri ; rj /=.1C ed.ri ; rj /�D/.

In a comparable way, temporal constraints
such as the maximal duration of an event are
exploited to determine temporal proximity. S-
patial and temporal constraints interact in the
movement of the protest march. In such cases
spatial distances and temporal distances cannot
be considered independently. Measures of spa-
tiotemporal proximity take account of the depen-
dency of spatial and temporal constraints such as
the assumption of uniform motion of the protest
march in the example.

Figure 2 shows the agreement graph (left) and
the result of confirmation filtering with the spatial
confirmation function cspa.ri ; rj / and an analo-
gous temporal confirmation function. Generally,
confirmation filtering removes edges. Report r6,
for instance, agrees with reports r1, r2, r3, and
r5 but is not considered to confirm those reports
because it is spatially farer than D from each of
these reports. For the same reason, the negative
report r4 does not confirm the negative report r2.

A further filtering step evaluates social
distance and addresses the issue of (social)
independence of sources. In the example,
the authors of the reports r1, r3, r4, and r6

have established links in the social network
forming a connected component isomorphic
to K4 while the authors of r2 and r5 form
a second connected component isomorphic
to K2. There are only two social distances:
between different nodes of the same component
dsoc.ri ; rj / D 1, otherwise dsoc.ri ; rj / D
1. The simplest filtering approach only
identifies confirmation edges between socially
distant nodes: csoc.ri ; rj / D c.ri ; rj / when
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csoc.ri ; rj / > 1 and csoc.ri ; rj / D 0 otherwise.
Applying this filter results in a further pruning
of the confirmation graph. Only the edges
between r1 and r5; r1 and r2; r2 and r3, as well as
between r3 and r5 remain.

In application scenarios, the graphs are much
larger and the distance measures reflect more
complex modelling assumptions. Often it is pos-
sible to represent a further filtering step which ex-
ploits confirmation relations between more than
just two reports as a finite domain constraint sat-
isfaction problem which can be solved with algo-
rithmic methods from qualitative spatiotemporal
reasoning (Ligozat 2012; Yanenko and Schlieder
2012).
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Glossary

Computational Reasoning Is a process to solv-
ing problems, designing systems, and under-
standing human behavior that draws on the
concepts fundamental to computer science

Deductive Reasoning Is a process based on a
hierarchy of statements or truths in which it is
thought that the observations provide a guar-
antee of the truth of the conclusion. Deduc-
tive reasoning arrives at a specific conclusion
based on generalizations

Inductive Reasoning Is a process of creating
probable true conclusions by starting from
many specific observations. Inductive reason-
ing progresses from observations of individual
cases to the development of a generality

Decision Support System According to
Geoffrion’s definition, a DSS has six char-
acteristics (Geoffrion 1983): (1) is designed
to solve ill- or semi-structured problems,
i.e., where objectives cannot be fully or
precisely defined; (2) has an interface that
is both powerful and easy to use; (3) enables
the user to combine models and data in a
flexible manner; (4) helps the user explore
the solution space (the options available to
them) by using the models in the system to
generate a series of feasible alternatives; (5)
supports a variety of decision-making styles
and easily adapted to provide new capabilities
as the needs of the user evolves; and (6) allows
an interactive and recursive process in which
decision making proceeds by multiple passes,
perhaps involving different routes, rather than
a single linear path

http://dx.doi.org/10.1007/978-1-4614-6170-8_319
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Mobility Data Is any type of large volume
datasets – structured and unstructured data –
containing the information about the positions
of a moving entity over time. It is usually
represented as trajectories

Domain Knowledge Is the knowledge which
is valid and directly used for a preselected
domain of human or an autonomous computer
activity. Different specialists and experts use
and develop their own domain knowledge

Geographic Information System Integrates
hardware, software, and data for capturing,
managing, analyzing, and displaying all forms
of geographically referenced information

Definition

One of the most universal theories about
computational spatiotemporal reasoning is that
the flow of inference is inherently unidirectional,
moving from premises to be accepted as given to
inferred conclusions. The direction of inference
may vary depending on what is initially known,
but it is generally assumed that in any reasoning
task certain information constitutes the fixed
premises (e.g., facts, observations, or events)
from which certain other information can be
derived as a tentative conclusion. In deductive
reasoning, one moves from a general premise to
a more specific conclusion. In contrast, inductive
reasoning moves from specific premises to a
general conclusion.

Premises based on experience or observations
are best expressed inductively, while premises
based on laws, rules, or other widely accepted
principles are best expressed deductively. Spatial
decision support systems (SDSS) have been
largely developed based on the integration of
deductive reasoning techniques and geographic
information systems (GIS). The reasoning tasks
of SDSS have been typically formulated as a set
of rules, constraints, and multi-criteria matrices
and/or functions representing possibilities (e.g.,
possible beliefs or actions over space and time),
interconnected by links representing positive and
negative support relations between pairs of these
possibilities.

In contrast, social networks are transforming
SDSS because their feeds (e.g., twits, microblogs,
mobility traces) exist in data streams that are
processed on the fly, producing a continuous flow
of information for automated (near) real-time
decision making. Indeed new models of scien-
tific discovery are emerging from developments
in rather focussed crowdsourcing, and these are
applicable to how we might figure out good
designs for the future generation of SDSS which
must deliver real-time information and changing
knowledge to decision makers.

Introduction

Currently, each individual of a social network
is generating automatically sensed mobility data
that is revolutionizing the traditional fields of
spatiotemporal reasoning and decision-making
analysis, not only to scale up to the large and near
real-time data volumes but also to address com-
plex questions related to change, trends, duration,
and evolution. The mobility datasets are usually
ground truthed: real trajectories are directly and
continuously sampled as they occur in real time,
but clearly they do not have any semantic anno-
tation or context. Therefore, their interpretation
requires rich domain background knowledge to
fulfill meaningful reasoning tasks.

For example, behavior recognition in smart
homes often employs graphical models like
hidden Markov chains. By combining them
with contextual information about space and
time, the performance of these models can
be boosted (e.g., see Chua et al. 2009). Such
cross-fertilizations are clearly identifiable in the
recent work in cognitive vision (Dubba et al.
2010), where the demonstrated interactions and
integrations of techniques from machine learning,
inductive logic programming, and spatiotemporal
modelling may serve as a blueprint for the
construction of hybrid intelligent systems dealing
with real-time spatial information.

The combination of deductive and inductive
reasoning tasks is also needed to extend the
notion of SDSS, which will involve reasoning in
real time on huge and possibly noise mobility
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data generated by social networks. In perspective,
by coupling the social and mobility networks
with further context information, it will be pos-
sible to explore the evolution dynamics of the
urban social sphere; to predict the spreading of
sentiments, opinions, and diseases; and thus to
understand in real time the evolving borders of
the community structure of a city.

Key Points

The analysis, reasoning, and, consequently, tak-
ing decisions based on the mobility traces of any
social network bring several challenges. First of
all, there is a need to properly represent the mul-
tidimensional aspects that mobility data brings
not only because space and time are inextrica-
bly linked but also for its inherent contextual
dimension that comes from the semantics of a
domain knowledge. We argue that an automat-
ed real-time decision-making process cannot be
achieved based on the pattern discovery analysis
of the raw mobility data alone but requires a
platform for reasoning on massive heterogeneous
information such as social media data. The plat-
form might have a cloud architecture to exploit
techniques and heuristics from diverse areas such
as databases, machine learning, and the Semantic
Web. Extending reasoning approaches to support
such a platform is a known challenge for the
reasoning community. In deductive reasoning, d-
ifferent approaches have been developed to revise
beliefs based on recent information. In inductive
reasoning, a body of research in data mining
and machine learning already supports online
data analysis (Giannotti et al. 2011). However,
more research is needed for dealing with rich and
unstructured data streams. Second, when dealing
with mobility, domain knowledge, and social in-
teractions, all the standard methods developed for
computational reasoning are no longer sufficient
to clearly separate the static and dynamic parts of
a domain knowledge. Some examples include the
development of new areas such as the emergence
of integrated spatiotemporal calculi, spatiotem-
poral dynamics, commonsense reasoning about
space, and the use of non-monotonic reasoning

techniques for reasoning about spatial change
(Galton 2000).

The set of spatial relations used in the
9-Intersection Model (Egenhofer and Franzosa
1991) has become part of the OpenGIS Imple-
mentation Specifications (ISO 19107) and are
currently also supported by some commercial
GIS products. In the domain of spatial computing
for design (Freksa 1991), e.g., for architecture
design assistance, the integration of spatial
reasoning with other forms of reasoning
such as conceptual/ontological and (spatio-)
terminological inference and constraint logic
programming (CLP) (Jaffar and Maher 1994)
has led to encouraging results, interesting
fundamental questions, and possibilities for the
application of QSTR in an area (i.e., CAAD) with
a potential industrial impact.

This new paradigm is providing new research
directions for the development of new spatiotem-
poral reasoning and decision-making tools for a
better understanding of social process over space
and time, such as influence, trust, and information
spreading.

Finally, the data mining community has
seen a growing interest in providing sev-
eral algorithms and techniques tailored on
trajectory data. However, decision making
needs to take into consideration some sort of
interactions between moving entities, thereby
extracting valid, novel, and useful patterns
in networks ranging from transportation
networks to World Wide Web and to social
networks (Memom et al. 2010). This area
is still in its infancy but rapidly evolving
to provide examples of new techniques
and applications, leading to future research
directions.

An important research issue that may arise
from this data combination is the impact of social
networks on human mobility (and vice versa).
Some example of research questions are the fol-
lowing: How do the social communities of a
person “geographically move” across the time? Is
there any relationship between the social contacts
of a person and their location/co-location over
time? Is there any relation between location visit-
ed by a person and the locations visited by his/her
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friend? These are open questions that could give
rise to a new research area at the cross line
of spatiotemporal reasoning, mobility, and social
networks.

Proposed Solution andMethodology

Analyzing mobility data can be rephrased in
how, when, where, and why entities move. This
knowledge gives to a user – who could be a
traffic manager or an urban planner – a better
understanding on how to increase the efficiency
of energy systems and the delivery of services
ranging from utilities to retailing in cities and
to improve communications and transportation.
However, the semantic lift from finding how
movement happened to understanding why enti-
ties are moving in that way needs a new compu-
tational reasoning approach tailored on mobility
and network characteristics and possibly enriched
with contextual semantic information from a do-
main knowledge.

The classical knowledge discovery (KDD)
process is mainly characterized by inductive
reasoning, which begins with gathering data (i.e.,
facts) that are specific and limited in scope. Then,
it proceeds to a generalized conclusion with
a certain degree of uncertainty, depending on
the accumulated evidences. By gathering data,
seeking patterns, and building hypothesis, this
process allows us to explain what has been
observed, having the ultimate goal of enhancing
a domain knowledge. However, the generalized
conclusions are not absolutely certain, even after
taking into account any premises on human
behavior.

We propose a semantic-enriched knowledge
discovery process that makes use of domain
knowledge (i.e., the users’ a priori knowledge
on human behavior) by developing a mobility
behavior ontology where trajectory data and
movement patterns are to be classified. This
process is based on the integration of inductive
reasoning (pattern discovery) and deductive
reasoning (behavior inference) that allows
discovered mobility patterns to be understood
in terms of human behavior. Essentially, this

new process allows the integration of querying
and mining tasks with reasoning tasks, and it
is illustrated in Fig. 1 below. The trajectories
measured from location devices along with
contextual data such as geographical objects are
first preprocessed to be adapted for the mining,
or inductive, step. This reasoning step returns
patterns representing models of the mobility,
further post-processed in a deductive step to get
meaningful knowledge. An ontology supports
the steps of the semantic-enriched KDD process
in defining the mobility behavior interesting for
the mobility decisions and performing the final
deductive reasoning step. The KDD process is
said to be interactive and iterative. Interactive
since the user is expected to interact with the
process choosing the most appropriate algorithm
and setting the best parameters. Iterative since
the process has typically to be repeated in a
progressive manner to refine the results. This
semantic-enriched mobility knowledge discovery
process was implemented as a tool called
M-Atlas which provides the basic components for
supporting a decision support system (Giannotti
et al. 2011; Renso et al. 2013).

M-Atlas
M-Atlas handles all the steps of the mobility
knowledge discovery process providing a SQL-
based trajectory data mining query language.
Besides the mechanisms for storing and querying
trajectory data, M-Atlas has mechanisms for
mining trajectory patterns and models that, in
turn, can be stored and queried. The basic design
choice is compositionality, i.e., querying and
mining of trajectory data, patterns, and models
may be freely combined, in order to provide
the expressive power needed to master the
complexity of the mobility knowledge discovery
process. The conceptual model behind M-Atlas
provides the interaction between two conceptual
worlds: the data world and the model world. The
former is a set of entities to be mined, trajectories
in our case; the latter is a set of models and
patterns inferred from the data, representing the
result of mining tasks. Mining operators map
data into models, or patterns, while entailment
operators map models, patterns, and data into
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Spatiotemporal Reasoning and Decision Support Tools, Fig. 1 The semantic enriched knowledge discovery
process

the data that satisfy the property expressed in
the given model or pattern. This view supports
compositionality, since data can be mapped onto
models and vice versa, coherently with inductive
databases vision introduced in Imielinski and
Mannila (1996).

The M-Atlas system is equipped with a graph-
ical user interface and a set of interactive tools
allowing the user to navigate the data and model
easily. Each interaction of the analyst with the
interface is compiled into a sequence of M-Atlas
queries which can be retrieved at any moment to
describe or review the entire process. A screen-
shot of the M-Atlas interface is shown in Fig. 2.

However, getting useful information from
a knowledge discovery process is not a
straightforward process; in fact usually it is
difficult even for an expert analyst user to choose
the correct algorithm and set up all the parameters
in order to extract meaningful patterns. This is
especially true in decision support systems due
to the complexity of the mobility data under
analysis as well as the application requirements.
For this reason, the inferred behavior can be

only meaningful if a proper semantic-enriched
mobility knowledge discovery process has been
set up. This is detailed below following the steps
of the KDD process: preprocessing, mining, post-
processing.

Preprocessing
Data Reconstruction The mobility data mining
algorithms apply to the concept of trajectory:
but which is the definition of a trajectory? Is it
simply the ordered sequence of observations of
the user’s history or a subsequence representing
the movements between the stationary points?
And how to define and compute a stop? An-
swering to these questions is crucial and affects
deeply the reasoning tasks of a decision support
system. There are several ways of reconstruct-
ing trajectories considering different constraints
and thresholds thus leading to different sets of
trajectories.
Data Manipulation Before the execution of a da-
ta mining algorithm, the analyst can manipulate
(e.g., selecting the data in a particular area or pe-
riod) or transform the data (e.g., anonymization).
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For this reason, M-Atlas integrates a rich set
of spatiotemporal primitives and transformation-
s. For example, it is possible to compute the
temporal distribution of the movements, and this
is useful in the inductive reasoning task when
the data to be mined have to be selected based
on space and/or time as in the example above.
An example of a transformation operation is the
anonymization of trajectories, where the initial
dataset is transformed in order to guarantee the
anonymity of the users.

Data Mining
The induction step is the core of the process
and consists in the proper execution the mining
algorithms on trajectory data. M-Atlas realizes
this step using a mining statement which creates
a new model as the result of a mining task,
specifying the inductive algorithm to execute on
a selection of trajectories with the set of the
parameters.
Mining a Data Sample Applying a data mining
algorithm on a large trajectory dataset may be
extremely time and memory consuming, mak-
ing the direct application of the algorithm to
the entire dataset not possible due the time or
memory limitation. This problem can be solved
using the data mining algorithms in combina-
tion with data sampling techniques. In gener-
al, data sampling is a technique to reduce the
size of the data without altering the statistical
properties.

The data can be sampled using semantic crite-
ria such as dividing the data using the spatial or
temporal characteristics of the trajectories. What-
ever sampling technique is chosen by the analyst,
the important issue is to maintain the consistency
of the data or, at least, understand exactly the
bias introduced since this may strongly affect the
extracted patterns.
Model Manipulation Similarly to the trajectory
data, the models resulting from the mining step
can be stored and manipulated to produce a useful
and meaningful representation of the trajectory
behaviors. For this reason, the M-Atlas state-
ments can be used also on models. In particular,
M-Atlas provides a relation which is a bridge
between data and models, called entails, which

identifies the data which support a model. This
relation is crucial in a decision support system
since it allows the interaction between data and
models where models are progressively mined
and combined with data.
Progressive Reasoning As described above, a
decision support system does not entail a straight-
forward sequence where a single run of data
mining algorithm can perform the whole reason-
ing task. The iterative and interactive aspects are
crucial to get a real understanding of the data
and extracted patterns. The progressive inductive
reasoning technique is the concatenation of a
series of mining algorithms which restrict at each
step their constraints removing the not-interesting
data or noise. At each step the models are ex-
tracted and the data supporting them are reused
in order to apply a more rigorous version of the
mining algorithm.

Post-processing
Post-processing refers to techniques that can be
applied once the inductive task have been per-
formed and refers to the evaluation or interesting-
ness of the extracted patterns. The result of this
step may trigger a new iteration of the knowledge
discovery process. The validation of the patterns
aims at measuring how much the extracted pat-
terns are valid and not just random results. The
pattern reasoning task, instead, is more semantic
in the sense that it aims at interpreting the patterns
in the light of a domain knowledge.
Patterns Interpretation The intrinsic difficulty
of pattern interpretation lies in the need of inte-
grating into the discovery process the contextual
dimension. We define contextual dimension as
any kind of information that is not only geometric
and that has some relation with data domain
knowledge. Examples of contexts are the geo-
graphical environment where the entities move
(e.g., hotels, roads, parks), any non-geometric
moving entity feature (e.g., the age of the tracked
person), or the application-specific concepts and
behavior (e.g., purpose of the movement or pre-
defined behavior like commuting, shopping, or
leisure travelling).

The domain knowledge may be globally
represented by formally encoding it into a
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knowledge representation structure such as an
ontology which can be used to represent the main
concepts of the application.

An interesting feature of combining data
mining with ontologies in a decision support
system is the possibility of integrating deduction
and induction aspects (Renso et al. 2013). The
inductive power of the data mining, extracting
patterns from data (bottom–up), is enriched with
the possibility to deductively infer additional
information based on some application domain
knowledge (top–down). This combination allows
us to classify the mobility patterns, as extracted
from the mining step, into the domain knowledge
concepts encoded in the ontology. An example
of this induction-deduction combination is the
framework Athena, an extension of M-Atlas that
is an attempt to exploit ontologies in a knowledge
discovery process. Athena represents domain
knowledge into an ontology where axioms define
the behavior we want to find in the mobility
data. Therefore a classification of the extracted
patterns into predefined behavior is performed
directly by the ontology reasoning engine.

Illustrative Example

We present an example where park managers are
interested in decision making to create and deliv-
er recreation and fitness programs in a variety of
settings, based on the understanding of the visitor
behavior in the Dwingelderveld National Park, in
the Netherlands. They are particularly interested
in exploring and understanding the disturbing
types of behavior of different types of visitors in
this park (van Marwijk and Pitt 2008).

The data to be analyzed was obtained from
three different information sources. The first
source was a questionnaire containing records
about visitor characteristics, preferences, and
motivations for visiting the national park. The
questionnaire was manually filled in by all
visitors in the experiment. The raw trajectory
data has been collected by the visitors carrying
a GPS receiver during their visit in the park.
This experiment was carried out during 7 days

(weekend and weekdays) in spring and summer
of 2006 for a total of 461 visitors.
Data Preprocessing During the data preprocess-
ing step, the stop and move segments of the
trajectories were computed. The spatial and tem-
poral thresholds used to identify the stops were
10 min and 20 m, respectively. We extracted the
interesting places (e.g., radio telescope, café)
from the questionnaire filled in by the visitors.
Ontology The ontology, illustrated in Fig. 3,
consists of nine concepts:

Interesting places: The places in the park
where a visitor usually stops for recreational
activity – such as eating and bird watching.
Some examples include the café or the radio
telescope located in the Dwingelderveld
National Park.

Forbidden areas: The areas where a visitor
should not stop at any time during his/her visit
to the park to avoid disturbing the animals.

Intersection path: The path intersections where
a visitor stops for orientation purposes.

Long: The period of time which identifies a
stop with a long period of stay.

Flock pattern: Consists of a type of mobility
mining pattern representing groups of entities
moving closely at the same time.

Visitor behavior: Represents a trajectory
where the stops occur at the predefined places
such as interesting places, path intersections,
and forbidden areas.

Exploring behavior: Is the movement of visi-
tors in the park who are interested in exploring
the features of the park.

Socializing behavior: Is defined as visitors en-
countering and staying together for a given
period of time.

Disturbing behavior: A group of visitors who
have stopped in a forbidden zone of the park
for a given period of time.

Suspicious behavior: Any individual belong-
ing to a disturbing group for a long period of
time.

Inductive Reasoning During the mining step,
we run the flock algorithm (more details on the
algorithm is found in Wachowicz et al. (2011)) on
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the trajectories to find clusters of people moving
closely at the same time.

Figure 4 shows the visitors’ trajectories (dark
grey) belonging to the discovered flock patterns
where the stops are depicted by one of the fol-
lowing:
• Interesting places: such as camp (green), radio

telescope (purple), or cafe (yellow)
• Path intersections (blue)
• Forbidden areas (red)
Deductive Reasoning All the patterns are im-
ported into the mobility behavior ontology and
then the reasoning engine is run to obtain the
classification of visitors’ behavior based on the
ontology axioms. Once the reasoning step is com-
pleted, the graphical interface visualizes the dif-
ferent types of trajectories. For example, the user
can visualize the visitors’ trajectories belonging
to disturbing and exploring behaviors as shown
Fig. 5. The left part depicts the disturbing be-
havior whereas the right part shows the exploring
behavior.

We can notice how the trajectories expressing
the exploring behavior tend to be sparser and
reach further areas of the park. To the contrary,
the disturbing trajectories tend to stay around the
forbidden area.

Key Applications

A variety of sources of information captured in
real time by the pervasive digital media tech-
nology connecting us through smart indoor/out-
door sensors, remote sensing, mobile devices,
and the “Internet of Things” are fuelling expo-
nential growth in voluminous amount of mobility
data. This exponential growing of mobility data
is comparable to a similar growing rate of un-
structured data generated by social networks such
as Facebook, Google+, Twitter, and Foursquare.
This big data revolution will continue over the
next decade and beyond with opportunities that
will include:
– Smart governance: enhancement of citi-

zen participation in the decision-making
process, creation of new public and social
services, support for transparent gover-
nance, and advance political strategies and
perspectives.

– Transport and ICT: improve local accessibil-
ity and develop sustainable, innovative, and
safe transport systems.

– Natural resources: reduce pollution, support
environmental protection, and achieve a sus-
tainable resource management.
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– Quality of life: creates new cultural, housing,
and education facilities and improves health
conditions and individual safety.

Future Directions

The integration of mobility mining with social
mining is naturally a growing and promising
future direction in this field. The challenge is to
reach a deeper understanding of patterns regu-
lating how people move and communicate. How
does the social dimension affect the movements
of an individual? What is the role of mobility

in creation of new social ties? How do social
communities change and “move” in time?

Although extremely challenging, it is obvious
that this topic brings many issues. First of all
the privacy of the individuals, already sensitive
in the mobility case, becomes even more sen-
sitive when, for example, combining the user-
s’ locations with their social contacts. New s-
patiotemporal reasoning techniques are needed
for supporting privacy-preserving reasoning in
which decision makers can securely pose queries
against a decision support system using infer-
ences drawn based on both hidden and visi-
ble part of a knowledge base, without revealing
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the hidden knowledge. Second, collecting proper
datasets for the analysis becomes much more
cumbersome, and we can expect to rely more
on location-enabled social networks like Flickr
and Twitter. In these cases, new spatiotemporal
reasoning techniques are required to infer from
data having different spatiotemporal scales (e.g.,
from centimeters to kilometers; from seconds to
years). Finally, it is clear that new ad hoc tech-
niques have to be developed to take into account
the combination of these two aspects (i.e., privacy
and scale) in a proper way.
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Synonyms

Spectral graph analysis; Spectral network analy-
sis; Spectral technique

Glossary

Network (graph) A network G is a triple con-
sisting of a node set V.G/; a link set E.G/,
and a relation that associates each link with
two nodes

Adjacency Matrix Let G D .V .G/; E.G// be
a network with V.G/ D fv1; � � � ; vng. The
adjacency matrix A.G/ D .aij / of G is n � n

matrix with aij D 1 if vi is adjacent to vj , and
0 otherwise

Eigenvalues of a Graph All eigenvalues of the
adjacency matrix A.G/ of a graph G are called
eigenvalues of G and denoted by

�1 � �2 � � � � � �n

Degree Diagonal Matrix The degree diagonal
matrix D.G/ of a network G is the diagonal
matrix whose diagonal entries are degrees of
the corresponding nodes

Laplacian Matrix The Laplacian matrix L.G/

is defined to be L.G/ D D.G/�A.G/, where
D.G/ is the degree diagonal matrix and A.G/

is the adjacency matrix
Laplacian Eigenvalues of a Graph All eigen-

values of the Laplacian matrix L.G/ of a
graph G are called the Laplacian eigenvalues
of G and denoted by

�1 � �2 � � � � � �n D 0

Normal Matrix The normal matrix N.G/ is de-
fined to as the product of the inverse of degree
diagonal matrix and the adjacency matrix

Normal Eigenvalues of a Graph All eigenval-
ues of the normal matrix N.G/ of a graph
are called the normal eigenvalues of G and
denoted by

1 D �1 � �2 � � � � � �n

Adjacency (Laplacian, Normal) Spectrum The
set of all eigenvalues of the adjacency (Lapla-
cian, normal) matrix

Walk A walk is a list v0; e1; : : : ; ek; vk of nodes
and links such that, for 1 � i � k, the link
ei has endpoints vi�1 and vi . The length of a
walk is its number of links

Bipartite Network A network GD .V; E/ is
called bipartite if V is decomposed into two
disjoint sets such that each link has its ends in
different sets

Definition

In this paper, we describe spectral analysis of
networks. Generally speaking, the eigenvalues
and eigenvectors of the different matrices asso-
ciated with networks are intimately connected to
important topological features, such as diameter,
community structure, node centrality, etc.

Introduction

In the past decade, networks have attracted con-
siderable attention in many disciplines such as
statistical physics, social science, and applied
mathematics. Generally speaking, the study of
network representations of physical, biological,
and social phenomena leading to predictive mod-
els of these phenomena is now called network
science. Newman (2003) reviews some features
of real-world networks and properties of several
network models, including random graphs, the
small-world model, models of network growth,
and epidemiological processes. Boccaletti et al.
(2006) survey the important concepts and results

http://dx.doi.org/10.1007/978-1-4614-6170-8_100261
http://dx.doi.org/10.1007/978-1-4614-6170-8_100262
http://dx.doi.org/10.1007/978-1-4614-6170-8_100262
http://dx.doi.org/10.1007/978-1-4614-6170-8_100263
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in the network science, in particular the topologi-
cal structure and synchronization and collective
dynamics of complex networks. One important
class of complex networks is the class of social
networks, which are social structures consisting
of individuals (or groups) called nodes and their
relationships, such as friendship, common in-
terest, and financial exchange, called links. The
analysis of social networks is used in epidemiol-
ogy, mass surveillance, diffusion of innovations,
etc. There are many measures (metrics) in social
network analysis, such as betweenness, central-
ity, and clustering coefficient. The community
structure, or clusters, is one of the most impor-
tant features in sociology. Recently, Fortunato
(2010) gave a thorough exposition of community
deletion, from the several main definitions of the
community problem to the presentation of most
methods developed.

In mathematics, spectral graph theory (or
analysis) is the study of properties of a graph
(network) in relationship to the characteristic
polynomial, eigenvalues, and eigenvectors of
matrices associated to the graph, such as its
adjacency matrix or Laplacian matrix. There
are two excellent books, i.e., “Spectral Graph
Theory (Chung 1997)” and “Spectra of Graphs-
Theory and Applications (Cvetkovi et al. 1995),”
which focus on deducing the properties and
structure of a graph from its graph spectrum
and reveal increasingly rich connections with
many areas of mathematics and other disciplines,
such as quantum chemistry, statistical physics,
and computer science. The canonical example
is the use of eigenvalue techniques to prove
that certain extremal graphs cannot exist.
The eigenvalues of a network are intimately
connected to important topological features
such as diameter (average distance), clustering
coefficient, connectivity, and how random the
network is. The associated eigenvectors can be
used to detect community structure or clustering.
What is more, some important results purely on
networks cannot be proved without resorting to
algebraic methods, involving a consideration of
eigenvalues of adjacency (Laplacian) matrices of
graphs. For example, Gkantsidis et al. (2003) use
the weights of the eigenvector corresponding to

the largest eigenvalue of the adjacency matrix
to obtain an alternative hierarchical ranking of
the Autonomous System. Spectral analysis has
been successfully applied to the detection of
community structure of networks, being based
on the adjacency matrix, the Laplacian matrix,
the normalized Laplacian matrix, etc. Moreover,
many real networks may be visualized by spectral
methods (see Seary and Richards 2005). Social
network analysis can be dated back in the early
1920s and has now become one of the most
important methods in investigating the features
and structures of social systems (see Scott 2000;
Wasserman and Faust 1994).

In this entry we introduce results about spec-
tral analysis of social networks and explain how
to find the community structure and centrality of
social networks by the means of spectral network
theory.

Adjacency Spectrum

There are several matrices associated with
a network. For a network GD .V; E/ with
V Dfv1; � � � ; vng, the most commonly used ma-
trix may be the adjacency matrix A.G/ D .aij /

of order n. Clearly the adjacency matrix of a
network is symmetric and the entries of the
main diagonal are zeros. In this way, there is
one to one correspondence between networks
and .0; 1/-symmetric matrices with zeros on the
main diagonal. So all information of networks
can be presented and obtained by the properties
of matrices. By the way, the adjacency matrix
can also be generalized to represent weighted
networks.

Example 1 For the Graph G in Fig. 1: G, five
vertices and eight edges.

Then the adjacency matrix is

A D

0
BBBB@

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

1
CCCCA :
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One of the important sets associated with a net-
work is the set of all walks between any pair of
nodes vi and vj .

Proposition 1 Let G D .V; E/ be a network
associated with the adjacency matrix A. Then the
number of walks of length k starting at node vi

and ending at node vj is the .i; j / entry of Ak .

From this proposition, if the entry .i; j / of Ak is
positive, then there exists at least one path from
node vi to node vj . Hence, we can conclude that
the diameter of a network is at most d if there
exists an integer d such that all entries of Ad are
positive.

Another property of networks is revealed by
the entries of A.

Proposition 2 Let G D .V; E/ be a network
associated with the n � n adjacency matrix A.
Then G is bipartite if and only if for some odd
integer r , the diagonal entries of Ar are all zero.

Since the adjacency matrix of G is symmetric,
all eigenvalues of A are real and can be denot-
ed by

�1 � �2 � � � � � �n:

Moreover, A is nonnegative matrix. By the
Perron-Frobenius theorem, �1 must be positive
and be greater than or equal to the absolute
values of the other eigenvalue, i.e., �1 � j�i j

for i D 2; : : : ; n. Further, there exists, up to
constant multiplication, only one eigenvector
with all nonnegative entries, corresponding to the
eigenvalue �1. For example, the eigenvalues of
the star network of order n are

p
n � 1; �pn � 1; 0; : : : ; 0:

The eigenvalues of the complete network of order
n are

n � 1; �1; : : : ; �1:

The eigenvalues of a path of order n are

2 cos
�

2.nC 1/
; 2 cos

2�

2.nC 1/
; : : : ;

2 cos
k�

2.nC 1/
; : : : ; 2 cos

n�

2.nC 1/
: (1)

The eigenvalues of cycle are

2; 2 cos
2�

n
; 2 cos

4�

n
; 2 cos

2k�

n
; : : : ;

2 cos
2.n� 1/�

n
: (2)

The eigenvalues of G in Fig. 1 are

3:2361; 0; 0;�1:2361;�2;

and corresponding to eigenvectors,

.0:4253; 0:4253; 0:4253; 0:4253; 0:5257/T ;

.�0:6932;�0:1398; 0:6932; 0:1398; 0:0000/T ;

.�0:1398; 0:6932; 0:1398;�0:6932;�0:0000/T ;

.�0:2629;�0:2629;�0:2629;�0:2629; 0:8507/T ;

.0:5000;�0:5000; 0:5000;�0:5000; 0:0000/T :

The following proposition reveals the relation-
ship between the structure of the network and its
spectrum.

Proposition 3 Let G be a network with adjacen-
cy matrix A.G/. Then

(i) G is bipartite if and only if �1 D ��n.
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(ii)
Pn

iD1 �k
i D t rAk , where t rM which is the

trace of a matrix M is equal to the sum of
all entries of the main diagonal of M .

(iii) If H is subnetwork of a G, then

�min.G/ � �min.H/ � �max.H/ � �max.G/:

In fact, (ii) of Proposition 3 is true for the
Laplacian and normal matrices, while (iii) of
Proposition 3 is not true for the normal matrix.
For example, let G be a complete network of
order 3 and H be a subnetwork of G by deleting
an edge. Then

�1.G/ D 2; �2.G/ D �3.G/ D �1; �1.H/

D p2; �2.H/ D 0; �3.H/�p2;

�1.G/ D 3 D �2.G/ D 3; �3.G/ D 0; �1.H/

D 3; �2 D 1; �.H/ D 0;

�1.G/ D 1; �2.G/ D �3 D �1

2
; �1.H/

D 1; �2.H/ D 0; �3.H/ D �1:

Laplacian Spectrum

The Laplacian matrix of a network dates back to
the Kirchhoff matrix-tree theorem. The discrete
graph Laplacian shares many important proper-
ties with the well-known continuous Laplacian
operator of mathematical physics. It is easy to see
that the Laplacian matrix L.G/ of a network is
symmetric positive semi-definite, that zero is its
smallest eigenvalue, and that this eigenvalue cor-
responds to the eigenvector x D .1; : : : ; 1/T . One
of the most important results is the following:

Proposition 4 Let G be a graph of order n with
the Laplacian matrix L. Then the number of
nonidentical spanning trees of G is equal to any
cofactor of L. Moreover, the number of nonidenti-
cal spanning trees of G is equal to 1

n
�1 � � ��n�1.

From this proposition, we can see that the second
smallest eigenvalue is positive if and only if G

has a spanning tree. In other words, G is con-
nected if and only if G has only one zero Lapla-
cian eigenvalue. Further, there is a relationship

between the number of zero eigenvalues and the
number of connected components of a graph.

Proposition 5 Let G be a simple network with
the Laplacian matrix L. Then the number of
zero eigenvalues of L is equal to the number of
connected components of G.

This proposition asserts that G is connected if and
only if �n�1 > 0. Hence, Fiedler (1973) called
�n�1 the algebraic connectivity of G and denoted
˛ or ˛.G/. He also proved the following:

Proposition 6 Let G be a simple graph other
than the complete graph. Then the algebraic con-
nectivity is no more than the vertex connectivity.
In other words, the algebraic connectivity of G is
bounded above by the vertex connectivity of G.

This proposition suggests that the algebraic con-
nectivity is a suitable measure for connectivity of
a network.

Normal Spectrum

It is easy to see that the normal matrix of
G N D D.G/�1A.G/ is a stochastic matrix
and serves as the probability transition matrix of
a random walk, where D.G/ is degree diagonal
matrix and A.G/ is the adjacency matrix of G.
Consider a random walk on a network G, starting
at a node vi , at each step to each neighbor
with probability 1=d.vi/, where d.vi / is the
degree of vertex vi . Random walks arise in many
models in mathematics and physics and have
important algorithmic applications. They can
be used to reach “obscure” parts of large sets
and also generate random elements in large and
complicated sets. We observe that the random
walk on a connected network is a Markov chain
and the probability distribution is proportional to
the degree distribution. But a major problem
is how to determine the number of steps k

required for the distributions of a random walk to
become close to its stationary distribution, given
an arbitrary initial distribution. Here the second
modular eigenvalue � of N plays an important
role in the analysis of rapidly mixing Markov
chains: if � is far from 1, i.e., there is a large
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eigenvalue gap, then the walk quickly forgets
where it started. If � closes to 1, then there must
be parts of the network that are not easy to reach
in a random walk, implying long paths or a nearly
disconnected network. An important measure of
the speed of convergence, called the relative
pointwise distance, is given by

�.k/ D max
x;y

N k.y; x/ � �.x/

�.x/
;

where N k.y; x/ is value of the .y; x/ entry of N k

and � is the stationary distribution of the random
walk. Chung (1997) showed that

�.t/ � e�t vol.G/

minx dx

;

where vol(G) is the sum of all degrees in G.
E et al. (2008) and Li et al. (2009) proposed

several effective algorithms for network partition
based on the framework of optimal predictions
and probabilistic framework which is related to
a discrete-time Markov chain with the normal
matrix N of a network.

Finding Community Structure

A common feature of many networks in bio-
logical and social system is “community struc-
ture,” which means that network nodes can be
divided into groups, with dense connections with-
in groups and sparse connections between them.
For example, in the friendship school studied by
Moody (2001), one of the principal divisions in
the network is by individuals’ race. The analysis
of the community structure in large collabora-
tion networks can be used to reveal the infor-
mal organization and the nature of information
flows through the whole system. It will be of
interest and practical importance if we are able
to find community structure from the networks.
Several methods to detect community structure
have already been proposed. Girvan and Newman
(2002) proposed a fast and effective algorithm,
based on the link betweenness, which measures

the fraction of all shortest paths passing through
a given link. But it does not give an indication
of the resolution of the clustering. An alternative
way to deal with the communities is by spectral
analysis. Further, Newman (2006a,b) proposed
a number of possible algorithms for detecting
community structure by means of the Laplacian
eigenvectors. Recently, Bickel and Chen (2009)
proposed the Random Graph Models which are
aimed at unifying points of view and analyses of
networks from social sciences. If a network has
k clearly distinct communities, then the largest
k � 1 eigenvalues of the normal matrix is close
to 1, the other eigenvalues being far from 1.
Hence, there exists an eigenvector among k � 1
eigenvectors corresponding to the largest k � 1
eigenvalues, whose components are approxima-
tively constant values on nodes belonging to the
same community. Servedio et al. (2004) proposed
an optimization problem based on the matrix of a
network. The objective function is

´.x/ D 1

2

X
.i;j /2E.G/

.xi � xj /2wij ;

where the sum is taken over all edges .i; j / 2
E.G/ and xi are values assigned to the nodes,
with the constraint function

nX
i;j;D1

xixj mij D 1;

where mij are elements of a given symmetric
matrix M . Then the stationary points of ´ are the
solutions of

.D �A/x D �M x;

where D is the diagonal matrix and � is a
Lagrange multiplier. If we choose M D D, then
the solutions become the eigenvalue problem of
D�1W x D .1�2�/x. If we choose M D I , then
the solutions becomes the Laplacian eigenvalue
problem .D �W /x D �x.

For example, the graph in Fig. 2 below,
H : 9 vertices and 15 edges
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v1

v2 v3

v4 v5

v6 v7

v9 v8

Spectral Analysis, Fig. 2 Graph H

Then the Laplacian matrix of H is

L.H/ D

0
BBBBBBBBBBBB@

3 �1 �1 �1 0 0 0 0 0
�1 3 �1 �1 0 0 0 0 0
�1 �1 3 �1 0 0 0 0 0
�1 �1 �1 4 �1 0 0 0 0
0 0 0 �1 3 �1 0 0 �1
0 0 0 0 �1 4 �1 �1 �1
0 0 0 0 0 �1 3 �1 �1
0 0 0 0 0 �1 �1 3 �1
0 0 0 0 �1 �1 �1 �1 4

1
CCCCCCCCCCCCA

;

where vertex vi is corresponding to the i�th
rows in H . The eigenvector of H correspond-
ing to the second smallest eigenvalue 0:2783
is (0.3911, 0.3911, 0.3911, 0.2822, �0.1228,
�0.3082, �0.3581, �0.3581, �0.3082)T . Clear-
ly, the positive components of the eigenvector
correspond with the nodes v1; v2; v3; v4 and the
negative components of the eigenvector corre-
spond with nodes v5; v6; v7; v8; v9. Obviously
the nodes of the network can be divided two
groups, with one group v1; v2; v3; v4 and the other
group v5; v6; v7; v8; v9. In addition, Chauhan et al.
(2009) investigate the properties of spectra of
networks with community structure. Nascimento
and de Carvalho (2011) presented a survey
of graph clustering algorithms and different
graph clustering formulations in literature, while
Newman (2012) discussed the relations among
communities, modules, and large-scale structure
in networks. Wu et al. (2011) presented a

graph partition algorithm adjcluster based on line
orthogonality in adjacency eigenspace.

Eigenvector Centrality Structure

The concept of centrality in a network plays an
important role in the analysis of its structure.
However, there are many different features which
have been used to create measures of a centrality.
Ruhnau (2000) gave the following definition:

Definition 1 Let G D .V; E/ be a connected
network with jV j D n and nc be a function which
assigns a real value to every node of G: nc.vi / is
called a node centrality of node vi if
(i) nc.vi / 2 Œ0; 1� for every vi 2 V .

(ii) nc.vi / D 1 if and only if G is the star S1;n�1

and i D 1.

Bonacich (1972) defines the centrality c.vi / of
a node vi to be a positive multiple of the sum of
adjacent centralities, i.e.,

�c.vi / D
nX

jD1

aij c.vj /; 8 i;

where A D .aij / is the adjacency matrix of
a network. The equations are equivalent to
the eigenvalue-eigenvector problem of A. By
the Perron-Frobenius theorem, there exists, for
connected graphs, an eigenvector corresponding
to the largest eigenvalue, with all positive



Spectral Analysis 2039 S

S

entries. The entry c.vi / is called the eigenvector
centrality of node vi . Then the function

nce.vi / 
p

2c.vi /qPn
iD1 c.vi /2

is node centrality. Ruhnau analyzes the struc-
ture of networks by using several centrality con-
cepts, including degree centrality, closeness, and
betweenness eigenvector centrality. On the other
hand, Van Mieghem et al. (2010) established
some relationships among the spectrum, the max-
imum modularity, and assortativity. In particular,
they showed that the maximum modularity in-
creases as the number of clusters decreases, and
the average hop count and the effective graph
resistance increase with increasing assortativity.

Conclusions

In this entry, we have described some proper-
ties of three kinds of matrices associated with a
network, which are used to analyze the topologi-
cal structure, community structure, and centrality.
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Synonyms

Spectral evolution model

Glossary

Adjacency Matrix A characteristic matrix of a
social network, typically denoted A. If the so-
cial network contains n persons, the adjacency
matrix is a 0/1 n � n that contains 1 in the
entries Aij that correspond to an edge fi; j g
and 0 otherwise

Eigenvalue Decomposition A decomposition of
a square matrix giving A D UƒUT, in which
U contains the eigenvectors of A and ƒ con-
tains the eigenvalues

Singular Value Decomposition A decomposi-
tion of any matrix giving A D U†VT, in
which † contains the singular values of A

Spectral Evolution Model The model that states
that over time, eigenvectors stay constant and
eigenvalues change

Spectrum The set of eigenvalues or singular
values of a matrix

Definition

The term spectral evolution describes a model of
the evolution of network based on matrix decom-
positions. When applied to social networks, this
model can be used to predict friendships, rec-
ommend friends, and implement other learning
problems.

Introduction

The analysis of the evolution of social networks
is an important field of study in the areas of
information retrieval, data mining, recommender
systems, and network science. As an example,
models of the evolution of social networks can be
used to solve the problem of link prediction, i.e.,
to predict which edges will appear in a network
in the future (Liben-Nowell and Kleinberg 2003).
Another common problem associated to models
of network evolution is the friend recommenda-
tion problem, in which users of social networking
sites are recommended to other users.

The spectral evolution model describes the
evolution of network using matrix decomposi-
tions, in particular the eigenvalue and singular
value decompositions of matrices associated with
a network, such as the adjacency matrix and the
Laplacian matrix. In its most generic version,
the spectral evolution is based on the eigenvalue
decomposition of the symmetric adjacency ma-
trix of an undirected social network and can be
stated in terms of eigenvectors and eigenvalues.
The spectral evolution model then asserts that
over time, the eigenvectors stay constant and
the eigenvalues grow. Other similar formulation-
s exist for other matrix decompositions, other

http://dx.doi.org/10.1007/978-1-4614-6170-8_125
http://dx.doi.org/10.1007/978-1-4614-6170-8_100895
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characteristic graph matrices, and other types of
social networks, such as directed networks.

Historical Background

In order to analyze graphs, algebraic graph theory
is a common approach. In algebraic graph theory,
a graph with n vertices is represented by an n�n

matrix called the adjacency matrix, from which
other matrices can be derived.

The edge set of an undirected graph G D
.V; E/ can be represented by a matrix whose
characteristics follow those of the graph. An
unweighted undirected graph on n vertices can be
represented by an n � n 0=1 matrix A defined by

Aij D



1 if fi; j g 2 E

0 otherwise.

The matrix A is called the adjacency matrix of G.
Spectral graph theory is a branch of algebraic

graph theory that applies matrix decompositions
to characteristic graph matrices in order to study a
graph’s properties (Chung 1997; Cvetković et al.
1997). The word spectral refers to the spectrum
of networks, which is given by the eigenvalue de-
composition of a graph’s adjacency or Laplacian
matrix. Spectral graph theory can be used to study
graph properties such as connectivity, centrality,
balance, and clustering.

A square symmetric matrix A can be written
in the following way:

A D UƒUT (1)

where U is an n�n orthogonal matrix and ƒ is an
n � n diagonal matrix. A matrix U is orthogonal
when UUT D I or equivalently when UTU D I.
Another characterization of an orthogonal matrix
U is that its columns are pairwise orthogonal
vectors and each has unit norm. The values ƒkk

are the eigenvalues of A, and the columns of
U are its eigenvectors. We will designate the
eigenvalues by �k D ƒkk and the eigenvectors
by uk D U�k for 1 � k � n.

A certain number of interesting graph
properties can be described spectrally, such as

connectivity (Mohar 1991), centrality (Brin and
Page 1998), conflict and balance (Kunegis et al.
2010c), and clustering (Luxburg 2007). Spectral
transformations were considered in 2009 in
Kunegis and Lommatzsch. The spectral evolution
model itself was introduced in 2010 (Kunegis
et al. 2010b) and in detail in 2011 (Kunegis
2011).

The Spectral EvolutionModel

We first describe the spectral evolution model for
unweighted, undirected social networks based on
the eigenvalue decomposition of the adjacency
matrix, and will then review extensions of it to
other types of networks and other characteristic
graph matrices and decompositions.

Let Gt D .V; Et / be a social network that
evolves over time, at time t . We assume that
the set of vertices V is constant and will only
consider evolving sets of edges Et . Let At be
the adjacency matrix of the social network as
time t . We can now consider the eigenvalue
decomposition

At D Ut ƒUT
t :

A priori, this eigenvalue decomposition will
change from timepoint to timepoint. The spectral
evolution model can now be stated as:

Definition 1 (Spectral evolution model) A net-
work that changes over time is said to follow the
spectral evolution model when its eigenvalues ƒt

evolves while its eigenvectors Ut stay approxi-
mately constant.

The spectral evolution model is a quantitative
statement: The eigenvectors do not need to be
exactly constant. In the general case, the spectral
evolution model can be stated to hold when the
eigenvectors change less than predicted by a
random graph model and the eigenvalues change
more than predicted by a random graph model.

Relationship to Link Prediction
The spectral evolution model can be compared
to a number of link prediction models that are
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special cases of it. A link prediction function is
a function used to implement the link prediction
problem in social networks (Liben-Nowell and
Kleinberg 2003).

Let A1 be the current adjacency matrix of the
social network. A link prediction function is a
function

f W Rn�n ! R
n�n

that maps the current adjacency matrix A1 to its
predicted value in the future A2. We will call f a
spectral transformation when it can be expressed
using the eigenvalue decomposition A1 D UƒUT

as

f .A1/ D Uf .ƒ/UT:

The spectral evolution model can then be stat-
ed as:

Definition 2 (Spectral evolution model, alter-
native definition) A network follows the spectral
evolution model when a future value of its adja-
cency matrix can be predicted by application of a
spectral evolution function.

Friend of a Friend Count
For instance, the friend of a friend count (or
common neighbor count) is one such model:
Given two users i; j 2 V , the number of com-
mon friends of i and j can be used as a link
prediction function. The higher the number of
common neighbors, the more likely it is that an
edge will appear between them in the social net-
work. An example of that method is used on the
social network Facebook (www.facebook.com)
for recommending new friends. Mathematically,
the common neighbor count can be expressed
using the social network’s adjacency matrix as
the square A2. In fact, the entry .A2/ij equals
the number of common friends of users i and j .
Assuming that the probability that an edge will
appear between i and j is proportional to .A2/ij ,
there is a constant ˛ such that the adjacency
matrix in the future can be expressed as a spectral
transformation of the original adjacency matrix:

A2 D AC ˛A2

D UƒUT C ˛.UƒUT/2

D U.ƒC ˛ƒ2/UT:

Thus, the friend of a friend model predicts
a spectral transformation of A and thus justifies
the spectral evolution model of social networks.
This argument can be extended to the friend-of-a-
friend-of-a-friend model and models based paths
of any length.

Graph Kernels
A related class of link prediction functions are
given by graph kernels. The exponential graph
kernel is defined as the exponential function of
the adjacency matrix (Kondor and Lafferty 2002):

e˛A D IC ˛AC ˛2

2
A2 C ˛3

6
A3 C : : : :

The Neumann graph kernel is defined using ma-
trix inversion (Kandola et al. 2002):

.I� ˛A/�1 D IC ˛AC ˛2A2 C ˛3 1

6
A3 C : : : :

Both graph kernels can be expressed as a spectral
transformation:

e˛A D Ue˛ƒUT

.I� ˛A/�1 D U.I � ˛ƒ/�1UT

Thus, the two graph kernels justify the spectral
evolution model in the sense that if they produce
accurate link predictions, the social network will
grow according to the spectral evolution model.

Preferential Attachment
Preferential attachment is a simple link prediction
model based on the idea that the probability of
a new link being formed is proportional to the
degrees of the nodes it connects. This idea can
be extended to the decomposition of a graph’s
adjacency matrix, resulting in the latent preferen-
tial attachment model, first described in Kunegis
(2011).

www.facebook.com
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The eigenvalue decomposition of A can be
written as a sum of rank-one matrices:

A �
rX

kD1

�kukuT
k

where r is the rank of the decomposition. The
usual interpretation of a matrix factorization is
that each latent dimension k represents a topic in
the network. Then Uik represents the importance
of vertex i in topic k, and �k represents the
overall importance of topic k. Each rank-one
matrix A.k/ D �

k
u

k
uT

k
can be interpreted as

the adjacency matrix of a weighted graph. Now,
assume that preferential attachment is happening
in the network, but restricted to the subgraph Gk .
Then the probability of the edge fi; j g appearing
will be proportional to dk.i/dk.j /, where dk.i/

is the degree of node i in the graph Gk . This
degree can be written as the sum over edge
weights in Gk:

dk.i/ D
X

l

A.k/

il
D
X

l

�kUikUlk

D Uik�k

X
l

Ulk � Uik:

In other words, dk.i/ is proportional to Uik.
Therefore, the preferential attachment value is
proportional to the corresponding entry in A.k/:

dk.i/dk.j / � UikUjk :

These values can be aggregated into a matrix P.k/

giving the preferential attachment values for all
pairs .i; j /:

P.k/ � ukuT
k:

Assuming that a preferential attachment pro-
cess is happening for each subgraph Gk separate-
ly, with a weight "k depending on the topic k,
then the overall preferential attachment predic-
tion can be written as P D P

k "
k

u
k

uT
k

. Here,
we replace proportionality by equality since the
proportionally constants are absorbed by the con-
stants "k . The matrix P can then be written in

the following form, giving its eigenvalue decom-
position P D UEUT, where E is the diagonal
matrix containing the individual topic weights
Ekk D "k . This prediction matrix is a spectral
transformation of the adjacency matrix A. Under
this model, network growth can be interpreted as
the replacement of the eigenvalues ƒ by ƒC E:

f .A1/ D AC P D U.ƒC E/UT:

Since the values E are not modeled by the la-
tent preferential attachment model, every spectral
transformation can be interpreted as latent prefer-
ential attachment, and thus, the latent preferential
attachment model is equivalent to the spectral
evolution model.

Learning Spectral Transformations
Under the assumption that a social network e-
volves according to the spectral evolution model,
the best possible link prediction function can be
learned using curve fitting (Kunegis and Lom-
matzsch 2009).

Given the current adjacency matrix A1 and the
future adjacency matrix A2, the best possible link
prediction function f that maps A1 to A2 is given
by the following minimization problem:

min
f
kf .A1/� A2kF:

Using the eigenvalue decomposition A1 D
UƒUT of rank r , this problem is equivalent to

min
f
kf .ƒ/�UTA2UkF:

Since ƒ is diagonal and f .ƒ/ is diagonal too,
only the diagonal elements of UTA2U influence
the minimization problem. Thus, the minimiza-
tion problem is equivalent to

min
f

rX
iD1

.f .ƒi i /� .UTA2U/i i /
2: (2)

This is a one-dimensional curve-fitting problem
with r parameters and can be solved efficiently.
For each spectral link prediction function, the
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corresponding spectral transformation function
can be fitted to solve the optimization problem in
Eq. 2, learning its parameters in the process, for
instance, the parameter ˛ for the exponential and
Neumann graph kernels.

An alternative way of learning spectral trans-
formations is based on the extrapolation of the
eigenvalues into the future (Kunegis et al. 2010b).
This gives new values for the eigenvalues, which
can be combined with the unchanging eigenvec-
tors to give the predicted value of the adjacency
matrix.

Tests of the Spectral Evolution Model
In addition to the fact that the spectral evolution
model has known link prediction functions as
special cases, it can be verified experimentally
by measuring the change in the eigenvectors and
eigenvalues of actual social networks, of which
the temporal evolution is known. These obser-
vations can then be combined with the changes
predicted by a random graph growth model in
which edges are added randomly to a network.

When adding a small random perturbation E
of size kEkF D " to the adjacency matrix A to
give QA D A C E, the expected change in the
new eigenvalues Qƒ and the new eigenvectors QU
is given by

ƒ � Qƒ


F
D O."2/

ˇ̌̌
U�k � QU�k

ˇ̌̌
D O."/:

These results can be shown by a perturbation ar-
gument (Stewart 1990) and ultimately can be de-
rived from theorems by Weyl (1912) and Wedin
(1972). As a result, eigenvectors are expected
to change faster than eigenvalues for random
additions to the adjacency matrix, justifying the
spectral evolution model for social networks.

When the growth of actual social network
can be observed over time, the spectral evolution
model can be verified directly. As an example for
a method of achieving this, we describe the spec-
tral diagonality test. The spectral diagonality test
can be computed from the snapshot of a network
at two different times 1 and 2, using the adjacency
matrices A1 and A2 (Kunegis et al. 2010b).
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Spectral Evolution of Social Networks, Fig. 1 The
spectral diagonality test matrix � for a subset of the Face-
book social network (Viswanath et al. 2009). Since the
matrix is almost diagonal, the test shows that the evolution
of that subset of Facebook follows the spectral evolution
model

Using the eigenvalue decomposition A1 D
UƒUT, the spectral diagonality test consists
in verifying the diagonality of the matrix
� D UTA2U. If the matrix � is diagonal,
the evolution of the social network is perfectly
spectral. In practice, � is not perfectly spectral,
but almost so. An example of the matrix �

is given Fig. 1 for a subset of the Facebook
social network (Viswanath et al. 2009). In this
instance of the spectral diagonality test, � is
indeed almost diagonal, and the evolution of that
network can be concluded to follow the spectral
evolution model.

Normalized Adjacency Matrix
The spectral evolution model can be extended
to the normalized adjacency matrix, defined as
N D D�1=2AD�1=2; in which D denotes the
diagonal degree matrix with Di i being the degree
of node i . In this definition, we assume that
the social network does not contain any isolated
nodes, i.e., users without friends.

The theory of spectral network evolution can
be extended to using the matrix N instead of the
matrix A without much change. A key difference
to the unnormalized case is in the evolution of the
eigenvalues over time: While the eigenvalues of
A grow in the general case, the eigenvalues of N
cannot grow without bounds, as by construction,
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they lie in the interval Œ�1;C1�. In fact, the
eigenvalues of N will typically shrink over time
(Kunegis et al. 2012).

Another difference in using N over A lies in
the interpretation of corresponding link predic-
tion functions. For instance, the exponential and
Neumann graph kernels give the following link
prediction functions in the normalized case:

e˛N D IC ˛NC ˛2

2
N2 C ˛3

6
N3 C : : :

.I � ˛N/�1 D IC ˛NC ˛2N2 C ˛3 1

6
N3 C : : : :

LaplacianMatrix
The Laplacian matrix L D D � A, too, can
be used as the basis for studying the spectral
evolution of networks. This leads to a more com-
plicated situation. Although the eigenvectors do
stay constant in the general case, the eigenvalues
will not change continuously, but grow in steps,
which makes the diagonality test impracticable.
However, link prediction function can still be
used in that case. These include the regularized
commute-time kernel .I C ˛L/�1 and the heat
diffusion kernel e�˛L.

Bipartite Networks
Bipartite networks are networks in which the
set of nodes V can be partitioned into two sets
V D V1 [ V2 such that all edges connect a node
in V1 with a node in V2. Social networks are not
bipartite in the general case, since they contain
triangles. Still, many bipartite networks can be
found in social media, for instance, user–group
inclusion networks or user–item rating networks.
In such networks, the spectral evolution model
can be applied as is with good results. However,
a simplification of the expression is possible, due
to the special structure of the networks (Kunegis
et al. 2010a).

The adjacency matrix A of a bipartite network
can always be written as

A D
�

0 B
BT 0

�

for a matrix B of size jV1j � jV2j. The matrix
B is then called the biadjacency matrix of the
network. This can be exploited to reduce the
eigenvalue decomposition of A to the singular
value decomposition of B. Given the singular
value decomposition B D U†VT, the eigenvalue
decomposition of A is given by

A D
� NU NU
NV � NV

� �C† 0
0 �†

� � NU NU
NV � NV

�T

(3)

with NU D U=
p

2 and NV D V=
p

2. In this decom-
position, each singular value � corresponds to the
eigenvalue pair f˙�g. Odd powers of A then have
the form

A2kC1 D
�

0 .BBT/kB
.BTB/kBT 0

�
;

where the alternating power .BBT/kB can be
explained by the fact that in the bipartite network,
a path will follow edges from one vertex set to
the other in alternating directions, corresponding
to the alternating transpositions of B.

Thus, it is sufficient, in a bipartite network, to
consider only odd functions of the biadjacency
matrix B. Here, an odd function is to be under-
stood as a function f for which it holds that
f .�A/ D �f .A/. Examples of resulting odd
link prediction functions are the matrix hyperbol-
ic sine sinh.˛A/ and the Neumann pseudokernel
˛A.I � ˛2A/�1. These functions are pseudok-
ernels and not kernels, as they are not positive
definite.

Directed Networks
The case of directed networks is more complicat-
ed than the other cases, since the eigenvectors of
the adjacency matrix are not orthogonal anymore
in that general case. Four methods can be used for
directed networks:
Ignoring Edge Directions By ignoring edge di-
rections, the problem is reduced to the undirected
case. This is sensible in social networks that
tend to be symmetric, such as communication
networks, but does not give good results in net-
works that are inherently directed, such as trust
networks.
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Working on the Bipartite Double Cover By
considering the bipartite double cover of a direct-
ed network, the problem reduces to the bipartite
case. The bipartite cover of a directed graph is
constructed by replacing each node by two nodes,
one that keeps all in-edges and one that keeps all
out-edges. The resulting link prediction methods
work well when the primary mechanism of graph
growth follows paths of alternating signs. An ex-
ample of such networks are citation networks, in
which co-citation can be interpreted using paths
of alternating directions.
Non-orthogonal Decomposition The non-
orthogonal eigenvalue decomposition of a
directed network can be used with difficulty.
Since the matrix A is asymmetric, the eigenvalue
decomposition must be written as A D UƒU�1

and will contain complex eigenvalues. The link
prediction methods described in the previous
sections do not perform well in that case. In the
extreme case, if a directed network is acyclic,
for instance, a scientific citation network, then
all eigenvalues are zero, and all graph kernels
and other link prediction methods return only the
value zero.
DEDICOM The last variant uses matrix decom-
positions of the form A D UXUT in which U
is orthogonal and X is not diagonal. Such de-
compositions are called DEDICOM (decomposi-
tion into directed components) (Harshman 1978).
This decomposition is not unique, and thus, there
are multiple variants of DEDICOMs. In general,
the choice of a variant will involve the trade-
off between a fast computation and an accurate
decomposition. This method is best suited to
networks in which directed triangle closing is the
main mechanism by which new edges are formed,
for instance, in trust networks.

Key Applications

The spectral evolution model can be used to
implement link prediction functions which them-
selves can be used to solve several different kinds
of problems in social networks:
• Applying the link prediction problem to

an ordinary social network leads to the

recommendation of new friends. In this case,
edges are unweighted, and the links to be
predicted describe the similarity between
nodes.

• Trust prediction in a social network consists
of predicting trust edges in a directed social
network consisting of trust edges. In some
cases, distrust edges are additionally known.

• Rating prediction is a special case of link
prediction, where edges are weighted. An im-
portant application of rating prediction is col-
laborative filtering, in which the network is
either unipartite when users are rated as in
dating sites or items are rated as in movie
rating sites.

• In a signed network, the prediction of an
edge’s sign, knowing that the edge is part
of the network, is known as the link sign
prediction problem.

• To predict future interactions in social net-
works, for instance, emails or scientific coau-
thorship, link prediction can be performed in
a network with multiple edges.

The spectral evolution model applies equally to
all these variants of the link prediction problem,
with appropriate choice of matrix and decompo-
sition type.

Future Directions

As of 2012, the link prediction problem in all
its variants is not fully covered by research,
and new applications are still being published.
In particular, the application of social network
analysis methods such as the spectral evolution
model is increasingly applied to other kinds
of networks, such as content networks or
hyperlink networks. Another area of research
lies in the exploration of more complex
matrix decompositions, such as nonnegative
decompositions and tensor decompositions.
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to papers
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Introduction

Nowadays one of the most pressing as well as
interesting scientific challenges deals with the
analysis and the understanding of social systems’
dynamics and how these evolve according to
the interactions among their components. The
efforts in this area strive to understand what are
the driving forces behind the evolution of social
networks and how they are articulated together
with social dynamics – e.g., opinion dynamics,
the epidemic or innovation diffusion, the teams
formation, and so forth (Deffuant et al. 2001;
Moore and Newman 2000; Lelarge 2008; Butts
and Carley 2007; Powell et al. 2005; Guimera
et al. 2005; Quattrociocchi et al. 2009, 2010).
In this paper we approach the challenge of de-
picting the evolution of social systems from a
network science’s perspective. As an example,
we chose the case of scientific communities by
analyzing a portion of the American Physical
Society dataset (APS). The analysis addresses the
coexistence of coauthorship and citation behav-
iors of scientists. On the one hand, the studies
on scientific network dynamics deal with the un-
derstanding of the factors that play a significant
role in their evolution, not all of them being
neither objective nor rational, e.g., the existence
of a star system (Wagner and Leydesdorff 2005;
Newman 2001a, 2004a; Jeong et al. 2002), the
blind imitation concerning the citations (Mac-
Roberts and MacRoberts 1996), and the repu-
tation and community affiliation bias (Gilbert
1977). On the other hand, having some elements
to understand such dynamics could enable for
a better detection of the hot topics and of the
vivid subfields and how the scientific produc-
tion is advanced with respect to the selection
process inside the community itself. Among the
available data to analyze such a system, a subset
of the publications in a given field is the most
frequently used such as in De Solla Price (1965),
Newman (2001b); ?, Quattrociocchi et al. (2012),
Amblard et al. (2011), Santoro et al. (2011), and
Radicchi et al. (2009). The scientific publications
correspond to the production of such a system
and clearly identify who are the producers (the
authors), which institution they belong to (the
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affiliation), which funded project they are work-
ing on (the acknowledgement), and what are the
related publications (the citations), having most
of the time a public access to these data explain
also a part of its frequent use in the analyses of the
scientific field. Classical analyses concern either
the coauthorships network (Jeong et al. 2002;
Newman 2001a) or the citation network (Hum-
mon and Dereian 1989; Redner 2005), more
rarely the institutional network (Powell et al.
2005). Moreover, such networks are often consid-
ered as static and their structure is rarely analyzed
over time (an exception is the one performed
by Radicchi et al. (2009), and Leskovec et al.
(2005a). The illustrative analysis presented in the
paper passes through different data transforma-
tions aimed at providing different perspectives on
the APS network and its evolution. In Newman
(2001a) the network of scientific collaborations,
explored upon several databases, shows a clus-
tered and small-world structure Watts (1999) and
Tang et al. (2009). Moreover, several differences
between the collaborations’ patterns of the differ-
ent fields studied are captured. Such differences
have been deepened in Newman (2004a) with
respect to the number of papers produced by a
given group of authors, the number of collab-
orations, and the topological distances between
scientists. Peltomaki and Alava in Peltomaki and
Alava (2006) propose a new emulative model
aimed at approximating the growth of scientific
networks by incorporating bipartition and sub-
linear preferential attachment. A model for the
self-assembly of creative teams based on three
parameters (e.g., team size, the rate of newcomers
in the scientific production, and the tendency of
authors to collaborate with the same group) has
been outlined in Guimera et al. (2005). Connec-
tivity patterns in a citations network have been
studied with respect to the development of the
DNA theory (Hummon and Dereian 1989). The
work of Klemm and Eguiluz (2002) observed that
real network (e.g., movie actors, coauthorship
in science, and word synonyms) growing pat-
terns are characterized by a clustering trend that
reaches an asymptotic value larger than regular
lattices of the same average connectivity. In the
field of social network analysis, several works

have approached the problem of temporal metrics
(Holme 2005; Kostakos 2009; Kossinets et al.
2008). The focus is on the definition of instru-
ments able to capture the intrinsic properties of
complex systems’ evolution, that is, character-
izing the interdependencies and the coexistence
between local behaviors (interactions) and their
global effects (emergence) (Davidsen et al. 2002;
Mataric 1992; Woolley 1994; Deffuant et al.
2001; Quattrociocchi et al. 2010). The research
approach to characterize the evolution patterns of
social networks at the very beginning was mainly
based upon simulations, while in the past few
years, due to the large availability of real datasets,
either the methodology of analysis or the object
of research has changed (Taramasco et al. 2010;
Leskovec et al. 2007; Kossinets et al. 2008).

Analysis of Scientific Network
Dynamics

In this work we present a very basic analysis
aiming at understanding the social aspects of the
scientific systems by coupling the collaborations
between scientists and their effect on the
scientific community itself through the citation
network. The data to build up the networks
analyzed in this work has been extracted from the
APS (American Physical Society) dataset, made
available upon request by the APS for research
purposes. The database contains information
about 463,343 articles published on 11 journals
of the APS in a time span ranging from 1892
to 2009. For the citations network we used a
list of 2,944,144 DOI pairs in which the first
DOI identifies an article containing a reference
to the article identified by the second DOI. A
date flag corresponding to the issue date of the
citing article has been associated to each couple
of DOIs in the list to represent the citation date.
Such information has been obtained from the
“Article metadata” part of the database which
is divided by journal and provides for each
paper the following fields: DOI, journal, volume,
issue, first page, and last page OR article ID
and number of pages, title, authors, affiliations,
publication history, PACS codes, table of contents
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heading, article type, and copyright information.
The list of authors provided for each DOI has
been used to generate the collaboration network
where authors of the same paper form small
coauthorship cliques. Starting from the metadata
a list of 17,069,841 total coauthorships has been
generated for 119,172 unique authors’ surnames.
In order to assign a date to the collaboration,
the submission date of the coauthored article
has been associated to each couple of authors.
The data transformation is performed through
the time-varying graphs formalism. The time-
varying graph (TVG) formalism, recently
introduced in Casteigts et al. (2010), is a
graph formalism based on an interaction-centric
point of view and offers concise and elegant
formulation of temporal concepts and properties
(Santoro et al. 2010). Let us consider a set
of entities V (or nodes), a set of relations
E among entities (edges), and an alphabet
L labeling any property of a relation (label),
that is, E 	 V � V � L. The set E enables
multiple relations between any given pair of
entities, as long as these relations have different
properties, that is, for any e1 D .x1; y1; �1/ 2 E ,
e2 D .x2; y2; �2/ 2 E , .x1 D x2 ^ y1 D
y2 ^ �1 D �2/ H) e1 D e2. Relationships
between entities are assumed to occur over a
time span T 	 T, namely, the lifetime of the
system. The temporal domain T is assumed to be
N for discrete-time systems or R for continuous-
time systems. The time-varying graph structure
is denoted by the set G D .V; E;T; �; �/, where
� W E � T ! f0; 1g, called presence function,
indicates whether a given edge is present at a
given time and � W E � T ! T, called latency
function, indicates the time it takes to cross a
given edge if starting at a given date. As in this
paper the focus is on the temporal and structural
analysis of a social network, we will deliberately
omit the latency function and consider TVGs
described as G D .V; E;T; �/. Given a TVG
G D .V; E;T; �/, one can define the footprint
of this graph from t1 to t2 as the static graph
GŒt1;t2/ D .V; E Œt1;t2// such that 8e 2 E ,
e 2 E Œt1;t2/ ” 9t 2 Œt1; t2/; �.e; t/ D 1. In
other words, the footprint aggregates interactions
over a given time window into static graphs.

Let the lifetime T of the time-varying graph
be partitioned in consecutive subintervals
 D Œt0; t1/; Œt1; t2/ : : : Œti ; tiC1/; : : :, where each
Œtk ; tkC1/ can be noted k . We call sequence
of footprints of G according to  the sequence
SF./ D G�0 ; G�1 ; : : :.

Hence, we derive two time-varying graphs:
the temporal coauthorships network, with undi-
rected edges and authors as nodes where a link
stands for the relations of coauthoring a paper
and the temporal citations network having papers
as nodes and the links (directed) representing
the citations from a paper to another one. The
temporal dimension of both networks is derived
by the paper’s submission date. The temporal
coauthorship network has edges labeled with the
date of submission, while the temporal citations
network has the nodes labeled with the publica-
tion date of papers citing other papers.

More formally, we can define this system as
two networks:
• The temporal coauthorships network as a

quadruplet Gt
a W .V; E;T; �/, where the nodes

in v 2 V are the authors and links e 2 E

connect a couple of scientists coauthoring a
paper. The temporal domain T D Œta; tb/ of
the function � is the lifetime of each node v

that in this context is assumed as ta to be the
submission date of the paper and tb D1.

• The temporal citations network as a quadru-
plet Gt

c W .V; E;T; �/, where the nodes in the
set V are the papers and each edge e 2 E

corresponds to a citation to another paper. As
for the coauthorships network, the temporal
dimension T D Œta; tb/ of the presence func-
tion � of Gt

c is defined within the submission
date of papers and1.

Networks Evolution

In Fig. 1 we show the number of authors and the
number of papers for each year. One can observe
from such figures an exponential growth of both
the number of authors and of papers along time.
Such results are not surprising and have been
highlighted by several former works (for instance
in Radicchi et al. (2009)). The exponential growth
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Stability and Evolution
of Scientific Networks,
Fig. 1 (a) Number of
authors and (b) number of
papers

in the number of publications is more or less
directly attributed to a change in the behavior
of scientists induced by the pressure to publish
all along their career (it has been popularized
through the proverb publish or perish). The ex-
ponential growth of the number of authors is
more surprising at a first attempt, as it does not
translate an exponential increase of the positions
in research that does not exist. It is much more
seriously explained by an indirect effect of the
exponential growth of publications. We have to
remind that this dataset concerns the APS publi-
cations, and such publications do not render the
effective number of physicists. As the popularity

of the APS journals increases, they probably
attract more and more physicists worldwide, and
we can expect a stabilization of such tendency
once as the APS will tend to reference nearly the
whole population of physicists worldwide.

In Fig. 2 we show the number of collabora-
tions within authors and the number of citations
within papers. Those two measures correspond
basically to the number of edges in each of the
two networks. The first important element con-
cerns the increase of the number of collaborations
that scales as a power law rather than an expo-
nential. This feature results clearly of a double
effect over the past few years. The first one is
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Stability and Evolution
of Scientific Networks,
Fig. 2 (a) Number of
collaborations and (b)
number of citations

directly linked to the increase in the number of
papers that increases the potential of collabora-
tion among authors. The other effect comes from
the progressive increase of the number of authors
per paper. Translated into network terms, it means
that each paper coauthored by N scientist creates
N*(N�1)/2 links in the collaboration network.
As a consequence, if you follow the current
tendency to increase the number of authors, you
increase the power coefficient, the number of
links among them. Concerning the other figure,
the exponential growth is probably less essential
but again it results from two combined effects.
On the one hand, the number of papers published
increases in the same way as the total number

of citations. On the one end, the slight tendency
to progressively increase the number of papers
cited in each paper straightened again the slope.
Considering the two graphs mentioned in Fig. 1,
the basic feature that we can observe is a global
tendency of the increase of the number of nodes
in the corresponding networks. The point that
the number of links on each graph increases
more rapidly than the number of nodes leads
to the conclusion that the coauthorship and the
citation graphs tend to grow and densify as well.
However, we don’t have any clue concerning the
properties of such a density growth, mainly, is
it an egalitarian growth or is it an elitist sys-
tem with some few nodes benefiting from this
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Stability and Evolution
of Scientific Networks,
Fig. 3 The evolution of
the clustering coefficient.
(a) Collaboration network.
(b) Citation network

increase in density and the majority of nodes
being left behind without many links? The mea-
sure of the evolution of the clustering coefficient
on such networks can bring arguments for this
distinction.

In Fig. 3 we show the clustering coefficien-
t – i.e., the transitivity among nodes – for the
collaboration and citation network. Qualitatively,
the curves are totally different on the two net-
works. On the coauthorship network, the evolu-
tion follows first an important decrease and then
stabilizes before increasing again. On the citation
network instead, we can observe an increase that

tends to stabilize in the last 20 years. The ele-
ments of interpretation behind those two figures
are the following. From the coauthorship net-
work, the first global decrease can be explained
mainly because it starts from an important num-
ber of non-connected components in the network.
Therefore, the creation of new links among those
components (or communities) that corresponds to
a porosity of the different communities in physics
results in a global decrease of the clustering coef-
ficient as it tends to dissolve locally the density of
each component. Once a global giant component
is created (corresponding to the observe plate on
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the figure), then there is a stabilization of the
clustering coefficient. The final increase is maybe
the most interesting feature of this analysis as it
corresponds to the case where, in a global single
component, the clustering is increasing. This is
the case where communities tend to emerge from
a global network. Therefore this last increase
could be interpreted as the formation and the radi-
calization of scientific communities on the global
network. Such network communities correspond
to the effective work in the scientific communi-
ties, i.e., coauthorship. Concerning the evolution
of the clustering coefficient in the citation net-
work, the first observation we have to make is that
the global big component appears very soon on
this network (this is much more probable to cite
works from outside the field than to collaborate
with people from outside the field). Therefore this
global and progressive increase of the clustering
coefficient corresponds solely to the progressive
formation of scientific communities on the net-
work. However, the final stabilization of the index
results from a consolidation of the communities
that have reached a relative equilibrium. We have
to notice that in the case of the creation of new
communities or emerging fields, we could see
the global clustering coefficient increase again.
Such an observation can be made on the figure
where around 1940, we can observe a global
stabilization of the index and therefore of the cor-
responding communities before than to increase
again, such a new burst being the result of the
inclusion of new communities in the network.
However, in order to relativize such an effect,
we have to remind that the dataset we analyze
corresponds to the publications of the APS, and
such an inclusion of new communities can result
simply from an editorial choice corresponding
to the launch of new journals on new thematics
for the APS, but not necessarily for the scientific
domain of physics.

Conclusions

In this paper we characterize the evolution of
a scientific community extracted by the APS
dataset. The temporal dimension and the metrics

used for the analysis were formalized using time-
varying graphs (TVG), a mathematical frame-
work designed to represent the interactions and
their evolution in dynamically changing environ-
ments.

Since we are interested in the relationships
between collaborations and citation behaviors of
scientists, we focus on the network of most cited
authors and on its structural evolution where
several interesting aspects emerge. Through our
approach, we capture the role played by famous
authors on coauthorship behaviors. They act as
attractors on the community. The driving force
is a sort of preferential attachment driven by the
number of citations received by a given group that
in terms of the goal of any scientific community
indicates a strategy oriented to the community
belonging.

Furthermore, the evolution of the network
from a sparse and modular structure to a denser
and homogeneous one can be interpreted as a
threefold process reflecting the natural selection.
The first phase is the exploration of ideas by
means of separated works, once some ideas
start to be cited (selected) more than others,
then authors tend to join groups that have
produced highly cited works. The selection is
performed by individuals in a goal-oriented
environment, and such a (social) selection
produces self-organization because it is played
by a group of individuals which act, compete,
and collaborate in order to advance science.
In fact, the driving force is an emergent effect
of the interdependencies between citations and
the goal of the scientific production since the
social selection determines the emergence of
a topic and of the scientists working on it by
determining the so called preferential attachment
toward groups and topics having high potential
of citations.

Acknowledgments

Thanks to the American Physical Society for
allowing us to use the APS dataset.



Stability and Evolution of Scientific Networks 2055 S

S

Cross-References

�Analysis and Visualization of Dynamic
Networks
�Community Evolution
�Dynamic Community Detection
�Modeling and Analysis of Spatiotemporal
Social Networks

References

Amblard F, Casteigts A, Flocchini P, Quattrociocchi W,
Santoro N (2011) On the temporal analysis of scientif-
ic network evolution. In: CASoN, Salamanca, pp 169–
174

Butts CT, Carley KM (2007) Structural change and
homeostasis in organizations: a decision-theoretic ap-
proach. The Journal of Mathematical Sociology 31(4):
295–321

Casteigts A, Flocchini P, Quattrociocchi W, Santoro N
(2010) Time-varying graphs and dynamic networks.
Technical report, University of Carleton, Ottawa

Davidsen J, Ebel H, Bornholdt S (2002) Emergence
of a small world from local interactions: modeling
acquaintance networks. Phys Rev Lett 88(12):128701

Deffuant G, Neau D, Amblard F, Weisbuch G (2001) Mix-
ing beliefs among interacting agents. Adv Complex
Syst 3:87–98

De Solla Price DJ (1965) Networks of scientific papers.
Science 149(3683):510–515

Gilbert N (1977) Referencing as persuasion. Soc Stud Sci
7:113–122

Guimera R, Uzzi B, Spiro J, Amaral LA (2005) Team
assembly mechanisms determine collaboration net-
work structure and team performance. Science
308(5722):697–702

Holme P (2005) Network reachability of real-world
contact sequences. Phys Rev E 71(4):46119

Hummon NP, Dereian P (1989) Connectivity in a citation
network: the development of DNA theory. Soc Netw
11(1):39–63

Jeong H, Neda Z, Ravasz E, Schubert A, Barabasi AL,
Vicsek T (2002) Evolution of the social network of
scientific collaborations. Physica A 311:590–614

Klemm K, Eguíluz VM (2002) Highly clustered scale-free
networks. Phys Rev E 65(3):036123+

Kossinets G, Kleinberg J, Watts D (2008) The structure
of information pathways in a social communication
network. In: Proceedings of the 14th ACM SIGKDD
international conference on knowledge discovery and
data mining (KDD 2008), Las Vegas, pp 435–443

Kostakos V (2009) Temporal graphs. Phys A Stat Mech
Appl 388(6):1007–1023

Lelarge M (2008) Diffusion of innovations on random
networks: understanding the chasm. In: Papadimitriou

CH, Zhang S (eds) Internet and network economics.
Springer, Berlin, Vol. 5385, pp 178–185

Leskovec J, Kleinberg J, Faloutsos C (2005a) Graph-
s over time: densification laws, shrinking diameters
and possible explanations. In: Proceedings of the
eleventh ACM SIGKDD international conference on
knowledge discovery in data mining, Chicago. ACM,
pp 177–187

Leskovec J, Kleinberg JM, Faloutsos C (2007) Graph evo-
lution: densification and shrinking diameters. TKDD
1(1)

MacRoberts MH, MacRoberts BR (1996) Problems of
citation analysis. Scientometrics 36(3):435–444

Mataric M (1992) Designing emergent behaviors: from
local interactions to collective intelligence. In: Pro-
ceedings of the international conference on simulation
of adaptive behavior: from animals to animats, Hon-
olulu, Hawai, USA. vol 2, pp 432–441

Moore C, Newman MEJ (2000) Epidemics and per-
colation in small-world networks. Phys Rev E
61:5678–5682

Newman MEJ (2001a) Proceedings of the National A-
cademy of Sciences of the United States of America
98(2):404–409

Newman MEJ (2001b) Clustering and preferential attach-
ment in growing networks. Phys Rev E 64:025102

Newman MEJ (2004a) Coauthorship networks and pat-
terns of scientific collaboration. Proc Natl Acad Sci
101:5200–5205

Newman MEJ (2004b) Who is the best connected sci-
entist? A study of scientific coauthorship networks.
In: Ben-Naim E, Frauenfelder H, Toroczkai Z (eds)
Complex Networks Lecture Notes in Physics Springer.
Berlin/New York. Vol. 650, pp 337–370
Complex networks. Lecture notes in physics.

Peltomaki M, Alava M (2006) Correlations in bipartite
collaboration networks. J Stat Mech 2006:P01010

Powell WW, White DR, Koput KW (2005) Network dy-
namics and field evolution: the growth of interorgani-
zational collaboration in the life sciences. Am J Sociol
110(4):1132–1205

Quattrociocchi W, Paolucci M, Conte R (2009) On the
effects of informational cheating on social evaluations:
image and reputation through gossip. Int J Knowl
Learn 5(5/6):457–471

Quattrociocchi W, Conte R, Lodi E (2010) Simulating
opinion dynamics in heterogeneous communication
systems. In: ECCS 2010, Lisbon

Quattrociocchi W, Amblard F, Galeota E (2012) Se-
lection in scientific networks. Soc Netw Anal Min
2(3):229–237

Radicchi F, Fortunato S, Markiness B, Vespignani A
(2009) Diffusion of scientific credits and the ranking
of scientists. Phys Rev E 80:056103

Redner S (2005) Citation statistics from 110 years of
physical review. Phys Rev Phys Today 58:49–54

Santoro N, Quattrociocchi W, Flocchini P, Casteigts A,
Amblard F (2010) Time varying graphs and social
network analysis: temporal indicators and metrics.
Technical report, University of Carleton, Ottawa

http://dx.doi.org/10.1007/978-1-4614-6170-8_382
http://dx.doi.org/10.1007/978-1-4614-6170-8_382
http://dx.doi.org/10.1007/978-1-4614-6170-8_223
http://dx.doi.org/10.1007/978-1-4614-6170-8_383
http://dx.doi.org/10.1007/978-1-4614-6170-8_320
http://dx.doi.org/10.1007/978-1-4614-6170-8_320


S 2056 Statistical Analysis

Santoro N, Quattrociocchi W, Flocchini P, Casteigts A,
Amblard F (2011) Time-varying graphs and social
network analysis: temporal indicators and metrics. In:
3rd AISB social networks and multiagent systems
symposium (SNAMAS), York, Apr 2011, pp 32–38

Tang J, Scellato S, Musolesi M, Mascolo C, Latora V
(2009) Small-world behavior in time-varying graphs.
Arxiv preprint arXiv:0909.1712

Taramasco C, Cointet J-P, Roth C (2010) Academic team
formation as evolving hypergraphs. Scientometrics
85:721–740

Wagner CS, Leydesdorff K (2005) Network structure,
self-organization, and the growth of international col-
laboration in science. Res Policy 34(10):1608–1618

Watts DJ (1999) Networks, dynamics and the small world
phenomenon. AJS 105:493–527

Woolley DR (1994) Plato: the emergence of online
community. Comput Mediat Commun Mag 1(3):5

Statistical Analysis

�Extracting Individual and Group Behavior from
Mobility Data

Statistical Inference

�Theory of Statistics, Basics, and Fundamentals

Statistical Modeling

� Siena: Statistical Modeling of Longitudinal
Network Data

Statistical Models

�Theory of Statistics, Basics, and Fundamentals

Statistical Relational Learning

� Probabilistic Logic and Relational Models
�Relational Models

Statistical Relational Models

�Relational Models

Statistical Research in Networks –
Looking Forward

Eric D. Kolaczyk
Department of Mathematics and Statistics,
Boston University, Boston, MA, USA

Synonyms

Propagation of uncertainty; Research challenges

Glossary

Network Summary Statistic A statistic summa-
rizing a network graph

Propagation of Uncertainty Understanding the
effect of uncertainty in an initial set of measure-
ments on functions thereof

Introduction

The emerging field of network analysis, through
its roots in social network analysis, has had a
nontrivial statistical component from the start. In
the ensuing years, problems in network analysis
have motivated – and continue to motivate – new
research in the field of statistics. Conversely, new
developments in statistics are routinely integrated
into network research. It is therefore rather sur-
prising that, despite the many interesting and im-
portant statistical challenges in network analysis
to which researchers have already been able to
respond, there nevertheless are a number of chal-
lenges of an entirely fundamental nature that
remain almost untouched!

We will support this central claim through
two examples. Additional examples will be men-
tioned in passing at the end. All of these examples
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Statistical Research in Networks – Looking Forward, Fig. 1 A bipartite representation of Internet traffic flow
measurements, from ten sources (i.e., 1 through 10) to four destinations (i.e., a through d)

relate to the basic problem of propagation of un-
certainty – understanding the effect of uncertain-
ty in an initial set of measurements on functions
thereof.

Network construction is often a sophisticated
(and frequently complicated) process. Important-
ly, the network graph G D .V; E/ that is con-
sidered to be “observed” typically is the result of
taking some sort of basic measurements and then
going through a series of steps (whether formal
or informal) before arriving at a set of vertices
V and edges E . Accordingly, to the extent that
there is uncertainty in the basic underlying mea-
surements, there will be uncertainty in the cor-
responding edges (and perhaps vertices as well,
depending on context). In turn, therefore, this
uncertainty will impact any further processing of
G.

The examples of such “processing” that we
will consider are (i) network summary statistics
and (ii) network modeling. Before doing so, how-
ever, the following motivating illustration from
the context of Internet traffic data analysis will
be useful.

Illustration: Network Traffic Graphs

Consider the recent trend towards using social
network principles and analysis in the study of
Internet traffic flow data. Each time an actor,
working from an Internet-capable device (e.g., a
smartphone), uses an Internet application (e.g.,
an iPhone or Android app), traffic is generated
in the form of packets of information that are
exchanged between the device and the relevant
Internet destination(s). The collection of such
packets relevant to a given basic task (e.g., open-

ing a webpage in a browser or downloading
a new song) is termed a flow. It is possible,
using measurement technology deployed within
the physical layer of the Internet (typically at
Internet routing devices), to capture information
on such flows. Researchers then use bipartite
graphs to represent these flows, with vertices
corresponding to origins (e.g., the IP address of
an actor’s iPhone) and destinations (e.g., the IP
address of a server hosting a webpage), and edges
indicating that a flow was declared to have passed
between the two. A small graph of this sort is
shown in Fig. 1.

Social network tools are then used to study
these typically massive networks, or variations
thereof. For example, beginning with the bipartite
representation just described, Ding et al. (2012)
construct networks G D .V; E/ of actors v 2 V

(formally, IP addresses understood to correspond
to users) that have an edge e D .u; v/ 2
E between them when there is least one we-
b server with which both u and v exchanged
flows, indicating some level of common behavior.
(Formally, these authors construct a one-mode
projection of the bipartite network traffic graph).
An example may be found in Fig. 2. Exploiting
data on IP addresses known to have exhibited
malicious behavior during the same time period,
they find that the corresponding vertices, say
v� 2 V , in the graph G tend to be overrep-
resented in regions of G falling between natu-
ral communities (e.g., as bridge nodes between
communities). Thus, these nodes demonstrate a
curious (anti)social behavior.

Ding et al. (2012) use this observation to
create an anomaly detection strategy for finding
IP addresses participating in malicious behav-
ior. Similarly, other authors have used networks
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Fig. 2 One-mode projection of the bipartite network in
Fig. 1

of this type (termed “traffic activity graphs” or
“traffic dispersion graphs”) for a variety of pur-
poses, ranging from characterization to detection.
See, for example, Jiang et al. (2010), Jin et al.
(2009), Iliofotou et al. (2009), and Iliofotou et al.
(2007).

Notwithstanding such successes, it is impor-
tant to note that there are various sources of
uncertainty in the basic measurements underly-
ing these networks, and hence in the networks
themselves. Most fundamentally, Internet routers
typically do not keep record of every packet
to pass through them. Rather, they record only
some fraction of those packets (e.g., 1 in 1,000),
through either random or deterministic sampling.
Hence, some flows will not be observed at all,
corresponding to missing edges in the initial
bipartite graph representation. In addition, again
due to sampling, a single flow initially may be
recorded as multiple flows. As a result, what
should be a single edge in the bipartite graph ends
up being represented as multiple edges. Post-
processing typically is done to ameliorate this
latter effect of sampling, but cannot be expected
to succeed completely.

The extent to which such low-level sources
of uncertainty in the initial underlying flow
measurements affect high-level Internet traffic
analysis tasks, like characterization and anomaly
detection, appears not to have been studied
systematically to date. However, there has been
promising work understanding and statistically

correcting for sampling artifacts at the level of
flow summary statistics (e.g., distributions of
flow counts and lengths) and queries thereof.
See, for example, Duffield et al. (2005a,b)
and Cohen et al. (2008). For a general overview
of Internet traffic packet sampling and related
issues, see Duffield (2004).

Propagation of Uncertainty in
Network Analysis

As noted earlier, the issues just described per-
tain to the problem of propagation of uncer-
tainty – from the initial measurements to the
network graph G to any further processing of G.
Of course, the statistical analysis of network
data – and, in particular, attempting to account
for uncertainty inherent to the data – is by no
means new. See Kolaczyk (2009), for example,
for a recent overview of statistical methods and
models in network analysis. However, there re-
mains much to be done and, surprisingly, some
of it of a particularly fundamental nature, that is,
“fundamental” in the sense that any student of a
one-semester elementary statistics course can be
expected to have tools for doing analogous tasks
with classical data (i.e., independent and identi-
cally distributed observations). Yet we lack these
same tools in the context of network analysis. We
describe two examples in detail below.

Uncertainty in Network Summary
Statistics
A standard paradigm in network analysis goes
as follows. Data are obtained from a complex
system of interest, a network graph G is con-
structed, and summary statistics of G, say �.G/,
are reported (e.g., degree distribution, clustering
coefficient, and various measures of centrality).
When G itself is the primary object of interest,
this is a sensible paradigm. However, when in
reality we have only a “noisy” version of G, say
G�, then the statistic we calculate, i.e., �.G�/,
is only a noisy version of �.G/. In that case,
interpreting �.G�/ as a point estimate of �.G/, it
is natural to wish to equip this estimate with some
quantification of its inherent uncertainty, such as
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a standard error or, more ambitiously, confidence
intervals.

To date there is little in the way of general
statistical methodology for this problem. Some
progress has been had for (a) certain sources
of uncertainty and (b) certain summary statistics
�.�/. Frank and colleagues have, for example,
established standard errors for statistics in the
form of dyad and triad sums, when G� is obtained
from G through specific sampling plans, such as
induced subgraph sampling. See Frank (2004) for
an overview of such results.

More generally, Viles (2013) has recently
established the limiting distribution of statistics
�.�/ that take the form of sums of configurations
of G�, such as dyads and triads, under a general
measurement error model, in the limit as the
number of vertices tends to infinity. Intriguingly,
rather than the seemingly ubiquitous standard
normal distribution, this limiting distribution is a
so-called Skellam distribution – the difference of
two independent Poisson random variables.

To see intuitively why this distribution might
arise, consider the case where �.�/ simply counts
the number of edges in its argument. The error
in �.G�/ in estimating the true �.G/ will be
(proportional to) the difference of (i) the total
number of edges in G� that are false (i.e., not
in G) and (ii) the total number of non-edges in
G� that are false (i.e., in G). These totals are
each sums of binary random variables and hence
might be expected to possess characteristics of
a Poisson distribution, under appropriate condi-
tions. That this is the case, however, is nontrivial
to demonstrate, since the binary variables are
dependent. The arguments in Viles (2013) make
use of Stein’s method, typically part of the toolset
learned in advanced graduate statistics courses.

These preliminary results suggest that the
problem of propagating uncertainty to network
summary statistics, although fundamental, has a
complexity associated with it that goes beyond
that of, say, a simple sample mean as encountered
in “Statistics 101”. More general results will
likely depend on the smoothness of �.�/, with
respect to changes in G� and the measurement
error involved in obtaining G�, as well as
characteristics of the true underlying G itself.

Formal statistical arguments establishing such
results will require techniques beyond those
employed in the classical setting and quite
possibly the development of new techniques
altogether.

Uncertainty in Network Modeling
While the above paradigm, in which we concep-
tualize ourselves as having observed a “noisy”
version G� of a “true” graph G, is appropriate
for many contexts, another useful perspective is
that in which we think of G� as having derived
from some network distribution, P.G/. This per-
spective underlies, for example, the large body of
work in social network analysis using exponential
random graph models (ERGMs).

With a history going back roughly 30 years,
ERGMs have become a mainstay of social
network analysis. See the edited volume
by Luscher et al. (2012), for example, for a recent
overview. This class of models specifies that the
distribution of the adjacency matrix, say Y , for a
random graph G, follows an exponential family
form, i.e., p� .Y D y/ / exp

�
�T g.y/

	
, for

vectors � of parameters and g.�/ of sufficient
statistics. However, despite this seemingly
appealing feature, work in the last 5 years has
shown that exponential random graph models
must be handled with some care, as both
their theoretical properties and computational
tractability can be rather sensitive to model
specification. See Robins et al. (2007), for
example, and Chatterjee and Diaconis (2011),
for a more theoretical treatment. Benefiting from
these findings, software is now available for
dependably fitting well-posed ERGM models,
and typically estimates of model parameters � are
accompanied by standard errors, where the latter
are based on standard arguments for exponential
families.

Unfortunately, while such standard errors are
perhaps useful in summarizing relative levels
of uncertainty associated with estimates of the
parameters in � , there is to date no general theory
supporting their use in creating confidence inter-
vals or performing tests. Even more unfortunate
is that the importance of this fact does not ap-
pear to be universally appreciated, since it is not
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unheard of to find applied papers in social net-
work analysis in which ERGM parameter esti-
mates are cited with what are purported to be
confidence intervals or results of significance
tests! Contrast this situation with that of, say,
linear regression analysis, for which a “Statis-
tics 101” student would, by the end of a single
semester, typically have been exposed to methods
for confidence intervals and tests of all sorts in the
classical setting.

In recent work, Kolaczyk and Krivitsky (2013)
have demonstrated that the asymptotic analy-
sis necessary to establish a parallel theory for
ERGMs likely will be rather more subtle. These
authors concentrate on the simplest of ERGM
models, in which dyads .yij ; yj i / are indepen-
dent, and focus on a comparison of the cases of
sparse versus non-sparse networks. (We consider
a network graph G to be sparse if the number of
edges is of the order of the number of vertices,
i.e., Ne D O.Nv/, rather than the square of that
number, i.e., Ne D O.N 2

v /.) In that setting they
demonstrate that the very order of the asymptotic-
s will depend critically on the sparseness of G.
More specifically, they show that the maximum
likelihood estimates of the ERGM parameters for
attraction and mutuality will converge asymptot-
ically to a bivariate normal distribution in both
sparse and non-sparse cases but at rates N

1=2
v and

Nv, respectively.
At an intuitive level, these results say that the

nature of the dependency in the relational mea-
surements yij leads to variations in the effective
sample size. For non-sparse networks, we have
effectively O.N 2

v / measurements – in fact, the
same number as entries in the adjacency matrix Y.
But for sparse networks, we have effectively only
Nv measurements! Since the effective sample
size drives the relative magnitude of the standard
error, as a function of network order, it is a
critical factor in establishing asymptotic results
justifying confidence intervals and tests based on
the latter.

While the results of Kolaczyk and Krivitsky
(2013) use tools from, say, the latter part of a first-
year course in theoretical statistics (i.e., stochas-
tic convergence of estimating equations, coupled
with a double-array central limit theorem), it is

likely that additional traction on this problem
for ERGM models with more complex forms
of dependency (e.g., stars, triadic structure) will
require the development of new tools.

Future Directions

In looking forward at the challenges facing us for
statistical research in relation to social network
analysis, there is a curious feeling of looking
back as well, that is, “looking back” in the sense
that we realize there is much to be done in this
context when we note what has already been done
previously in more established contexts. Much
that is now considered foundational, in that it is
part of a now-standard toolset.

Certainly the classical case of independent
and identically distributed observations forms the
gold standard. As noted earlier, much of the foun-
dational material in the classical setting – such
as confidence intervals for summary statistics and
regression model parameters – forms part of the
core of what is presented to students at the very
earliest stage of statistics education. Social net-
work analysis currently lacks a number of such
foundational aspects. Yet it can arguably take
hope from the example of time series analysis
and spatial data analysis. In both cases, the data
deviate from the classical case in that they are
dependent. And, moreover, in both cases, over
time, the analogous foundations were laid. See,
for example, the books Brockwell and Davis
(2009) and Cressie (1993) for time series and
spatial analysis, respectively.

It can be expected that new tools and tech-
niques will be required from statisticians to fill
the gaps in the foundations for network analysis.
Networks share dependency with time series and
spatial data but lack the temporal and geometric
aspects of the latter. (More formally, they lack the
properties of Euclidean space that can be exploit-
ed in the context of time series and spatial data.)
These aspects were critical for successfully ex-
tending classical results to time series and spatial
data, due to the fact that they facilitate a notion
of “local” dependence (e.g., local in time or in
space) that emerges naturally as a “loosening” of
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the stricter assumption of independent and iden-
tically distributed. Developing and working with
analogous notions of “localness” in the network
context is a key hurdle to be faced.

In terms of specific areas requiring work, from
the descriptions above, it should be clear that
progress is only just starting to be made on the
two examples cited. For confidence intervals for
summary statistics, there is much to be explored
in understanding the interaction between (a) char-
acteristics of the sources of uncertainty (e.g.,
based on sampling, measurement, missingness),
on the one hand, and (b) the nature of the sum-
mary statistics to be computed (e.g., smooth or
unsmooth, in an appropriate sense), on the other
hand. Furthermore, establishing limiting para-
metric distributions (such as the Skellam distribu-
tion in Viles (2013)) is one key way to facilitate
the construction of confidence intervals; it would
be useful to see a version of bootstrapping or
related resampling approaches justified in the
context of networks.

Similarly, asymptotic theory supporting meth-
ods for the construction of confidence intervals
for network parameters is only beginning to e-
merge. The most traction appears to have been
gained in the context of stochastic block models
(e.g., Bickel and Chen 2009; Choi et al. 2010;
Celisse et al. 2011; Rohe et al. 2011), although
progress is beginning to be had with exponential
random graph models as well (e.g., Chatterjee
et al. 2011; Chatterjee and Diaconis 2011; Ri-
naldo et al. 2013). Most of these works present
consistency results for maximum likelihood and
related estimators, with the exception of Bickel
and Chen (2009), which also includes results on
asymptotic normality of estimators. See Haber-
man (1981) for another contribution in this di-
rection, proposed as part of the discussion of the
original paper of Holland and Leinhardt (1981).
Finally, for some initial (non-asymptotic) results
in the context of more mathematical models (e.g.,
preferential attachment, copying), see Wiuf et al.
(2006).

While there are various other similarly impor-
tant statistical topics that remain to be explored in
network analysis, arguably one of the most press-
ing of those is that of missing data. It is known,

again in the classical setting first and foremost,
that depending on the mechanism of missingness,
the impact of missing data on statistical infer-
ence can range anywhere from mild to devas-
tating. See Kolaczyk (2009, Chap. 3) for some
general discussion, including comparisons to the
importance of missingness and related notions in
the context of spatial data analysis. A general
framework for thinking about the impact of miss-
ingness on network modeling has recently been
initiated in Handcock and Gile (2010) and Jiang
and Kolaczyk (2012) have recently demonstrated
that accounting for observation errors that in-
clude missingness (using a hierarchical modeling
formulation) can lead to marked improvement
in accuracy of link prediction. But, as with the
other areas cited above, much remains to be done
to explore and develop the necessary statistical
infrastructure for understanding and dealing with
missingness generally in network contexts.
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Synonyms

Continuous query processing; Dynamic social
networks; Incremental computation; Temporal
analytics

Glossary

Social Data Stream A time-stamped sequence of
updates to a social network

SNA Social network analysis
CQP Continuous query processing
CEP Complex event processing

Introduction

Since the inception of online social networks, the
amount of social data that is being published on a
daily basis has been increasing at an unprecedent-
ed rate. Smart, GPS-enabled, always-connected
personal devices have taken the data generation
to a new level by making it tremendously easy to
generate and share social content like check-in in-
formation, likes, microblogs (e.g., Twitter), multi-
media data, and so on. There is an enormous
value in reasoning about such streaming data
and deriving meaningful insights from it in real
time. Examples of potential applications include
advertising, sentiment analysis, detecting natural
disasters, social recommendations, personalized
trends, spam detection, to name a few. There is
thus an increasing need to build scalable systems
to support such applications. Complex nature of
social networks and their rapid evolution, coupled
with the huge volume of streaming social data
and the need for real-time processing, raise many
computational challenges that have not been ad-
dressed in prior work.

Social network data comprises two major
components. First, there is a network (linkage)
component that captures the underlying
interconnection structure among the entities in
the social network. Second, there is content data
that is typically associated with the nodes and the
edges in the social network. The social network
data stream contains updates to both these
components. The structure of the network may
itself change rapidly in many cases, especially
when things like webpages and user tags (e.g.,
Twitter hashtags) are treated as nodes of the
network. However, most of the social network
data stream consists of updates to the data
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StreamQuerying and Reasoning on Social Data, Fig. 1 High-level overview of a stream querying system

associated with the nodes and the edges, e.g.,
status updates and other content uploaded by
the users, communication among the users, and
so on. There is interest in performing a wide
variety of queries and analytics over such data
streams in real time. The queries can range from
simple publish-subscribe queries, where a user
is interested in being notified when something
happens in his or her friend circle, to complex
anomaly detection queries, where the goal is to
identify anomalous behavior as early as possible.

In this paper, we present an introduction to
this new research area of stream querying and
reasoning over social data. This area combines
aspects from several well-studied research areas,
chief among them, social network analysis, graph
databases, and data streams. We provide a formal
definition of the problem, survey the related prior
work, and discuss some of the key research chal-
lenges that need to be addressed (and some of the
solutions that have been proposed). We note that
we use the term stream reasoning in this paper to
encompass a broad range of tasks including var-
ious types of analytics, probabilistic reasoning,
statistical inference, and logical reasoning. We
contrast our use of this term with the recent work
by Valle et al. (2008, 2009) who define this ter-
m more specifically to refer to integration of
logical reasoning systems with data streams in
the context of the Semantic Web. Given the vast
amount of work on this and related topics, it is
not our intention to be comprehensive in this brief

overview. Rather we aim to cover some of the key
ideas and representative work.

Problem Definition

An online social network is defined to be a
community of people (called users) connected
via a variety of social relations, that use online
technologies to communicate with each other and
share information. Social data is defined to be
the data arising in the context of a social net-
work that includes both the embedded structural
information as well as the data generated by
the users. Online social networks continuously
generate a huge volume of such social data that
includes both structural changes to the network
and updates that are associated with the nodes
or the edges of the network. The task of “stream
querying and reasoning” refers to ingesting and
managing such continuously generated data and
querying and/or reasoning over it in real time as
the data arrives (Fig. 1).

To make the discussion more concrete and
formal, let Gt .Vt ; Et / denote the underlying so-
cial graph at time t , with Vt and Et denoting
the sets of nodes and edges at time t , respec-
tively. In general, Gt is a heterogeneous, multi-
relational graph that may contain many different
types of nodes and may contain both directed
and undirected edges (Fig. 2 shows an example
graph). Along with nodes representing the users
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of the network, Vt may include other types of
nodes, e.g., nodes representing communities or
groups, user tags, webpages, and so on. Similarly,
Et includes not only symmetric friendship (or
analogous) edges, but may include asymmetric
follows edges, membership edges, and other type-
s of semipermanent edges that are usually in
existence from the time they are formed till the
time they are deleted (or till the current time).
We distinguish such edges from transient edges
that can be used to capture specific interaction
between two nodes in Vt (e.g., a message being
sent from one node to another). A transient edge
is typically time-stamped and is only valid for
the specific time instance. To allow us to clearly
distinguish between these two types of edges,
we do not include such transient edges in Et ;
instead, we use M�t to denote all such transient
edges that were generated from the beginning
(i.e., from time 0) till time t . This distinction
is not necessary, but affords clearer distinctions
between different types of stream reasoning tasks
in many cases.

The information associated with the nodes and
edges can be captured through a set of key-value
pairs (also called attribute-value pairs) associated
with them. We once again can make a distinction
between semipermanent information associated
with the nodes or the edges (e.g., user names,
interests, or locations) and transient informa-
tion associated with them (e.g., status updates).
The former type of information can be seen as
being valid for a given time period, whereas
the latter is typically associated with a single

time instance. Given this, we define a stream
reasoning or querying task to be a declaratively-
specified query or an analysis or reasoning task
that is posed (submitted) once by the user, but
is executed continuously (or periodically with a
user-specified frequency) as updates arrive into
the system (Fig. 1). Along with a task, denoted
f ./, the user must specify what forms the input to
the task, when to compute the output, and when
to return the output to the user.

In many cases, the input is the current graph,
i.e., the input is Gt .Vt ; Et / (that is continuously
changing). An example of such a task is dense
subgraph maintenance (Angel et al. 2012) where
the goal is to compute and maintain the dense
subgraphs in a dynamically changing graph. In
other cases, the input to f ./ may be defined
using a sliding window, i.e., it may be defined
as the set of all updates that arrived in recent
past. An example of such a task is continuously
identifying dense subgraphs in the graph formed
by all message edges over say the last 24 h (i.e.,
the input to the task is M�t � M�.t�24 hours/).
As time progresses, the window slides and new
message edges will be added to the graph, and
old message edges (that fall out of the window)
will be deleted (Table 1).

The second key issue is when to compute
the output and when to return it to the user.
In some cases, the user may desire continu-
ous execution of the query, i.e., for every rel-
evant change in the input, f ./ needs to be re-
computed (from either scratch or incrementally).
Anomaly detection queries typically need to be
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Stream Querying and Reasoning on Social Da-
ta, Table 1 Notation
Notation Description

Gt .Vt ; Et / Current state of the network

M�t Transient edges generated till time t

f1./; f2./; : : : Stream querying or reasoning tasks

Nk.v/ k-hop ego network of node v

executed in this fashion since anomalies must be
detected as soon as they are formed. But in other
cases, the user may specify a frequency with
which to execute the query or the task (e.g., every
hour or every day). Finally, for simplicity, we will
assume that the user should be notified anytime
the output of f ./ is computed and is different
from the prior output. However, in many cases,
the output may need to be returned to the user
only when he asks for it. In those cases, partial
pre-computation of the query results (with the
rest of the processing performed at query time)
becomes a possibility.

Historical Background

Stream querying and reasoning over social net-
works combines aspects from several different
research areas that have been very well studied
over the last few decades. Here we will provide
very brief background on three of the most close-
ly related research areas: social network analysis,
data streams, and graph databases. A more de-
tailed background, including references to related
work, can be found in an extended version of this
article (Mondal and Deshpande 2013).

Social Network Analysis (SNA) Social network
analysis, sometimes called network science, has
been a very active area of research over the last
decade, with much work on network evolution
and information diffusion models, community
detection, centrality computation, and so on. We
refer the reader to well-known surveys and text-
books on that topic (see, e.g., Newman 2003;
Scott 2012; Boccaletti et al. 2006). There has
been an increasing interest in dynamic or tempo-
ral network analysis in recent years, fueled by the

increasing availability of large volumes of tem-
porally annotated network data and the real-time
requirements of various popular online services.
Such analysis has the potential to lend much bet-
ter insights into various phenomena, especially
those relating to the temporal or evolutionary
aspects of the network. Many works have focused
on designing analytical models that capture how
a network evolves, with a primary focus on social
networks and the Web. There is also much work
on understanding how communities evolve, iden-
tifying key individuals, locating hidden groups,
identifying changes, and visualizing the temporal
evolution in dynamic networks. Most of that prior
work, however, focuses on off-line analysis of
static datasets.

Data Streams Data stream management is anoth-
er research area that has seen tremendous amount
of work over the last decade (see Aggarwal 2007;
Muthukrishnan 2005; Garofalakis et al. 2011 for
comprehensive surveys), resulting in several data
management systems being built. Several SQL
extensions have also been proposed to express
continuous queries over data streams. Similarly,
languages have also been designed for specify-
ing event patterns to be matched against data
streams. Continuous query processing (CQP) al-
so bears strong resemblance to materialized view
maintenance, an area that has also seen much
work (Gupta and Mumick 1999). The key differ-
ence between the two research areas has been that
CQP systems are designed to simultaneously sup-
port large numbers of relatively simple queries
over highly dynamic data, whereas view mainte-
nance techniques usually focus on a small num-
ber (usually just one) of more complex queries.
The former also tend to build intermediate data
structures like predicate indexes to efficiently
identify the queries whose results are affected by
new updates. Another line of work has focused
on development of one-pass algorithms that can
incrementally compute some quantities of inter-
est over very large volumes of data (e.g., statistics
or aggregates) while using very small amounts of
memory (see, e.g., Muthukrishnan 2005).
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Graph Databases Since social networks are
naturally represented as graphs, specialized graph
data management systems are a natural option
to store social network data. There has been
much work on single-site graph databases and,
in recent years, on distributed graph databases
and programing frameworks for specifying batch
analysis tasks over graphs. There is also much
work on executing specific types of queries
efficiently over graphs (both in centralized or
distributed settings) through strategic traversal of
the underlying graph, e.g., reachability, keyword
search queries, subgraph pattern matching,
and shortest path queries. However, distributed
management of dynamic graph data is not as
well studied, especially in the data management
research community.

Proposed Solution andMethodology

The area of stream querying and reasoning over
social networks is still in its infancy, and as a
result, the research in this area is somewhat frag-
mented with several ongoing attempts at unifying
the different research themes. Here we begin with
a broad classification of the different types of
stream querying and reasoning tasks and give
examples of different types of tasks that have
been studied in prior literature. We then discuss
some of the key research challenges in effective
stream querying and reasoning that need to be
addressed.

Classifying Tasks by Scope
Here we attempt to classify stream reasoning and
querying tasks by their input scope, i.e., what data
forms the input to the task at anytime. Broadly
speaking, there are two crucial dimensions along
which the tasks may differ.

Temporal Scope
The first key dimension captures the temporal
scope of the task and has a direct impact on the
amount of state that must be stored and reasoned
about.

Entire Stream At one extreme, the temporal
scope of a stream reasoning task may stretch from
the beginning of the stream to the current time.
Note that not all the data generated so far may be
of interest – e.g., the task may only see a subset
of the data by choosing to focus only on certain
attributes of the nodes or edges. However, the
data of interest may have arrived into the system
at any point in the past. For example, in a social
network with location data, a stream reasoning
task may wish to process all the location updates
ever produced by a user for predicting future
user movements. We expect such types of stream
reasoning tasks to be somewhat uncommon given
the large volumes of data generated in most
online social networks.

Current State of the Network Many stream
reasoning tasks will take the current state of
the network (i.e., Gt .Vt ; Et /) as the input. An
example of this task is online dense subgraph
maintenance (Angel et al. 2012) where the goal
is to maintain the dense subgraphs of the current
social network at all times.

Sliding Window The third alternative that falls
in between the two extremes above is that the
reasoning task defines a sliding window on the
data stream and the input consists of all updates
that arrive during that window. For instance, one
may be interested in analyzing all messages that
were exchanged during the last 24 h among the
users of a network to identify anomalous behavior
in real time. Another example of such a task is
detection of personalized trends where the goal is
to find the most commonly seen words or phrases
in the recent status updates or blog posts by the
friends of a user.

Network Traversal Scope
The second key dimension is what we call net-
work traversal scope of a query, which refers to
the portion of the network that provides the input
to a stream reasoning query or task.

Global Scope Many stream reasoning tasks
require reasoning over the entire network. An ex-
ample of such a task is computation of PageRank
(or other centrality measures like betweenness
centrality, eigenvector centrality, etc.). Dense
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subgraph maintenance task discussed above is
also an example of a task with global scope.

Egocentric Scope On the other hand, in many
cases, a reasoning task or a query may only focus
on a local neighborhood in the network, often
termed ego networks. For example, if the goal is
to identify social circles for a user (McAuley
and Leskovec 2012), then only a 1- or 2-
hop neighborhood around the user may be of
interest (Fig. 3). Personalized trend detection
task, discussed above, is another example of
such a task. Note that, in many cases, we
may want to execute the same task for every
node in the network (e.g., we may wish to
do continuous trend detection for every user
of the social network), and in total, updates
in the entire network may need to examined.
However, those should be treated as separate
tasks, each of which is egocentric in scope.
The most common example of an ego network
is the network over the immediate set of
neighbors of a node. However, in general, an
ego network of node could be defined as k-hop
neighborhood containing all nodes reachable
within k hops from the node (and all the incident
edges among those).

Types of Stream Reasoning Tasks
Next we attempt to provide a categorization of
different stream reasoning and querying tasks
by type. Given the wide variety in the stream
reasoning tasks of interest, unlike the categoriza-
tion by scope, the categorization that follows is
less precise and not fully disjoint. Our intention
here is not to be comprehensive, but rather to dis-
cuss some representative stream reasoning tasks.

Publish-Subscribe Queries
Perhaps the simplest kind of queries over stream-
ing data is what are commonly referred to as
publish-subscribe queries. These queries form a
subclass of the more general class of event mon-
itoring queries, where the users specify events or
updates of interest and they should be notified
as soon as a matching event is detected in the
data stream. We make a loose distinction between
simple event monitoring queries (what we cal-

l publish-subscribe queries) and more complex
event monitoring or anomaly detection queries
(discussed subsequently). For publish-subscribe
queries, the events are typically defined over one
or a few data stream updates (i.e., they have
very limited temporal and traversal scopes). For
example, a user may be interested in tweets that
contain a particular key word, or a user may
want to know as soon as a friend is online. In
a location-enabled social network, a user may
be interested in getting notified when one of his
friends checks-in in a nearby restaurant or cafe.
The key challenge with executing simple event
monitoring queries is not so much the complexity
of detecting the events, but rather dealing with
the very large update rates as well as a very large
number of queries.

Complex Event Processing (CEP)
On the other hand, in complex event processing,
the events (often called patterns) to be detected
often have larger temporal or network traversal
scopes or both. Hence, unlike simpler publish-
subscribe queries, efficiently detecting the events
can be a major challenge in CEP. An exam-
ple of such a query is a continuous subgraph
pattern matching query, where the goal is to
detect matches to a given query graph in real
time. Choudhury et al. (2012) use such queries
for continuous detection of accidents from in-
coming traffic information. CEP systems often
support specification of the events using a high-
level declarative language. For example, in re-
cent work, Anicic et al. (2011) proposed a lan-
guage called EP-SPARQL that extends the S-
PARQL query language with support for specify-
ing complex event processing queries over RDF
data streams. Similarly, Mozafari et al. (2012)
present a language for detecting hierarchical pat-
terns over hierarchical data (e.g., XML data), that
may be generalizable to graph-structured data
as well.

Anomaly Detection
Anomaly detection queries can be seen as a form
of complex event processing; however, due to
their importance, we discuss them separately.
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The goal with real-time anomaly detection is
to identify anomalous behavior in a dynamic
network as quickly as possible. Two issues need
to be addressed: (1) how to define what consti-
tutes an “anomaly?” and (2) how to efficiently
detect anomalies in presence of very high data
rates? Generally speaking, anomalous behavior
can be defined as behavior that deviates signifi-
cantly from normal behavior. However, in high-
ly dynamic and rapidly changing environments
like an online social network, there is often no
clear definition of normal behavior, making it a
challenge to identify anomalous behavior. There
have been many proposals for defining anoma-
lous behavior in social networks over the years.
For example, Akoglu et al. (2010) present an ap-
proach called Oddball that is based on analyzing
the ego-networks of the nodes in the network.

Aggarwal et al. (2011) propose a probabilistic al-
gorithm that maintains summary structure models
about graph streams to detect outliers. We refer
the reader to the tutorial by Akoglu and Faloutsos
(2013) for a more comprehensive discussion of
different anomaly detection algorithms.

Perhaps because of a lack of a clear definition
of an anomaly, there is much less work on
efficient techniques for real-time anomaly
detection. From the efficiency perspective, an
important issue is the scope (both temporal
and network traversal) of an anomaly detection
task. For example, if the goal is to identify
users with anomalous behavior, then the
network traversal scope could be limited to ego
networks of the users. However, in many cases,
detecting anomalous behavior may require global
reasoning over the entire network.
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Continuous Aggregates/Statistics
Computation
In these types of queries, the goal is to
incrementally maintain or compute an aggre-
gate or a statistic over the network (Mondal
and Deshpande 2013, Supporting ego-centric
aggregate queries over large dynamic graphs,
unpublished manuscript). An example of such a
task is maintaining the top-k trending hashtags
in Twitter, i.e., hashtags with the highest activity
over a recent window in past. Another well-
studied task is the computation of global cluster-
ing coefficient in presence of streaming updates
to the network structure (Jowhari and Ghodsi
2005; Becchetti et al. 2008). A simpler aggregate
query might be to continuously maintain, for
all users, their friends that are (physically)
closest to them (the aggregate function here is
MIN). There are two key properties of aggregate
functions that have significant impact on the
computational complexity of the computation
task: duplicate sensitivity and decomposability.
A duplicate-insensitive aggregate function will
return the same value even if some of its inputs
are repeated. Examples include MAX, MIN, and
UNIQUE. Duplicate-insensitive aggregates are
amenable to additional optimizations during
computation (Madden et al. 2002a). On the other
hand, whether the aggregate function is holistic
or decomposable has a significant impact on
the optimizations that we can perform (Madden
et al. 2002a). A holistic aggregate function (e.g.,
MEDIAN) requires all the input values to compute
the final result, whereas decomposable aggregate
functions are amenable to optimizations centered
around partial aggregate computation and can be
computed with much less memory. Clustering
coefficient is an example of the latter type of
aggregate function since the number of triangles
can be counted (mostly) independently for each
node.

Maintenance of Views or Other Derived
Information
In this type of a task, the goal is to incrementally
maintain the result of running an algorithm
or performing a computation on the social
network in presence of updates. Such tasks

can be seen as a generalization of materialized
view maintenance in traditional relational
databases. In traditional view maintenance, the
goal is to incrementally maintain the result
of a declaratively specified query; however,
in social networks, the focus is often on
more complex reasoning tasks. Examples of
such tasks include incremental maintenance of
PageRank, dense subgraphs, spanning trees,
shortest paths, and communities. In general,
for any graph algorithm that is of interest in
SNA, the question of incremental maintenance
of the result in a dynamic setting may need to be
addressed. For example, Bahmani et al. (2010)
address the problem of incrementally maintaining
PageRank over a social network. Several works
have considered the problem of incremental
maintenance of dense subgraphs (e.g., Angel
et al. 2012). The key challenge here is to avoid
re-computation from scratch, and so far, most of
the proposed techniques are heavily focused on a
specific task.

Research Challenges and Future
Directions
In this section, we look at some of the key
research challenges in supporting stream reason-
ing and querying tasks over social networks and
briefly review the prior work on addressing those
challenges. We stress that the area of stream rea-
soning over social network is still in its infancy,
and the solutions discussed here should be con-
sidered as the starting point for future research
on this topic.

Query Language
One of the major challenges in building general-
purpose data management techniques or systems
for stream reasoning over social networks is the
lack of a high-level declarative query language
for specifying the tasks. This issue arises in
the context of graph data management in static
settings as well. Well-established relational or
XML query languages are not appropriate for
graph-structured data because they lack support
for specifying graph traversals. Although there
have been proposals for graph query languages,
none has gained wide acceptance; perhaps the
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only exception is the SPARQL query language,
but the use of that query language has been
largely limited to RDF datasets. This lack of
a declarative language has led to a significant
repetition of work by researchers that are devel-
oping tools for stream reasoning and querying
over social networks. Clearly it is impossible to
specify all of the wide range of tasks that we
discussed in the previous section using a high-
level, declarative language. However, we believe
that it is possible to develop a declarative query
language that will serve the needs of many stream
reasoning and querying tasks; further, those tasks
that cannot be fully expressed in the language can
use the language to do part of the computation,
with the remaining part done using a program
written in a procedural language that ingests the
result (analogous to how user-defined functions
(UDFs) are often used in conjunction with SQL
in relational databases).

There are several starting points for designing
such a query language. Several languages
have been proposed in recent years that
build upon SPARQL, e.g., streaming SPAR-
QL (Bolles et al. 2008), continuous SPARQL
(C-SPARQL) (Barbieri et al. 2009), and EP-
SPARQL (Anicic et al. 2011). Although these
languages focus on RDF data streams, they could
be adapted to use in social networks by treating
social network data as RDF data. Example 1
shows a C-SPARQL query that, given a stream
of tweets along with the identified hashtags in
it, returns all the hashtags with their cumulative
frequencies within the last hour. Some of the
key extensions to SPARQL include the use
of “REGISTER QUERY” keyword to specify
a continuous query that should be evaluated
continuously and a way to specify a window
over the stream (using keyword “RANGE”).

Another option is to generalize XPath. For
example, Mozafari et al. (2012) propose XSeq,
an extension to XPath to express both sequen-
tial and Kleene-closure expressions for XML
streams. Example 2 shows an XSeq query that
reports Twitter users who have been active for
over a month. A key challenge here is that X-
Path is designed to operate on tree-structured
data, not graph-structured data. However, recent

Example 1: C-SPARQL Example (Barbieri
et al. 2009). Given the static user information
and a stream of tweets, compute the total
number of tweets per hashtag in last hour.

1: REGISTER QUERY
NumberOfTweetsPerHashTag COMPUTE
EVERY 10m AS

2: PREFIX ex: <http://example/>
3: SELECT DISTINCT ?hashtag ?total
4: FROM STREAM <http://twitter.com/alltweets>

[RANGE 1h STEP 10m]
5: WHERE
6: ?user ex:from ?country .
7: ?user ex:tweets ?tweet .
8: ?tweet ex:has ?hashtag FILTER

(?country="USA")
9: AGGREGATE { (?total. COUNT(?tweet).

?hashtag }

Example 2: XSeq Example: In a stream of
tweets, report users who have been active
over a month. A user is active if he posts at
least a tweet every 2 days.

1: return first(T)@userid
2: from /twitter/ Z* ($T)*
3: where tag(Z) = ’tweet’ and tag(T) = ’tweet’
4: and T@date-prev(T)@date < 2
5: and last(T)@date-first(T)@date > 30
6: partition by /twitter/tweet@userid

theoretical work suggests that it may be possible
to use XPath for specifying graph queries (Libkin
et al. 2013).

Finally, the option that we have taken
in our work (Moustafa et al. 2011; Mondal
and Deshpande 2013 Supporting ego-centric
aggregate queries over large dynamic graphs.
Unpublished manuscript) is to extend Dat-
alog (Ramakrishnan and Ullman 1995) for
this purpose. In recent years, Datalog has
been shown to be an effective centerpiece in
enabling declarative specification in a range of
domains including networking, data cleaning,
machine learning, and SNA. Compared to the
above two languages, Datalog seems more
amenable to be extended to support a large
class of complex aggregate queries (e.g.,
global queries like PageRank computation and
shortest paths can be specified using recursion).

http://example/
http://twitter.com/alltweets
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Example 3: Datalog Example (Moustafa
et al. 2011): Compute the clustering coeffi-
cient of each node.
1: NeighborCluster(X, COUNT<Y, Z>) :=
2: Edge(X,Y),

Edge(X,Z), Edge(Y,Z)
3: Degree(X, COUNT<Y>) := Edge(X, Y)
4: ClusteringCoeff(X, C) :=
5: NeighborCluster(X,N), Degree(X,D),

C=2*N/D*(D-1)

Datalog snippet in Example 3 specifies computa-
tion of local clustering coefficient, a measure of
connectedness of a node’s neighborhood. With
some extensions, Datalog can also be used to
specify social network transformation tasks as we
showed in our prior work (Moustafa et al. 2011,
2013). Such flexibility may make a Datalog-
based language, a superior option in the end to
specify a wide variety of stream reasoning tasks
over social data.

Efficient Execution Strategies
Irrespective of how the stream reasoning tasks
are specified, we must devise efficient execution
strategies that can handle the very high update
rates expected in online social networks. Below
we briefly survey the key ideas that have been
used successfully in past research on data streams
for low-latency execution.

Incremental Computation The naive option of
re-executing a query or a reasoning task when
a new update arrives is likely to be infeasible
except for very low-rate data streams. Instead
the goal of incremental computation is to main-
tain sufficient intermediate state in memory so
that the new answer can be computed in an
incremental fashion with minimal work. Such
incremental techniques are unfortunately often
specific to the task at hand. Eppstein et al. (1999)
did an early survey on the related topic of dy-
namic graph algorithms. In a recent work, An-
gel et al. (2012) and Agarwal et al. (2012) de-
vise techniques for maintaining dense subgraph-
s; Bahmani et al. (2010) present an approach to
incremental computation of PageRank; Kutzkov
and Pagh (2013) present an incremental algorith-

m for computing clustering coefficient; and so on.
A key research challenge here is to identify incre-
mental techniques that are applicable to a wide
variety of tasks (one way to do that is to focus on
a high-level query language as we discussed in
the previous section, e.g., C-SPARQL (Barbieri
et al. 2010)). There is also often a natural trade-
off between the amount of intermediate state that
is maintained and the amount of work that needs
to be done when a new update arrives. Better
understanding of this trade-off also presents a
rich area for future work.

Sharing Across Multiple Queries Unlike tradi-
tional data management systems, in stream query
processing systems, we may have thousands to
millions of continuous queries running simulta-
neously. For instance, a personalized trend detec-
tion query where the goal is to monitor trend-
s in every user’s ego network can be seen as
a collection of a large number of independent
queries, one for each user. Sharing of compu-
tation across these queries is crucial in order
to limit the computational cost. Such sharing
has been shown to be an effective way to deal
with high-rate data streams in past work on data
streaming systems (Madden et al. 2002b; Diao
et al. 2002). However, these types of techniques
have not been well studied in social network
setting. In a recent work, we designed novel
techniques based on graph compression to exploit
such sharing for continuous aggregate compu-
tation in social networks (Mondal and Desh-
pande (2013) Supporting ego-centric aggregate
queries over large dynamic graphs. Unpublished
manuscript).

Approximate Computation One way to mit-
igate the execution complexity is to consider
computing approximate answers instead of exact
answers. This is especially attractive in scenarios
where exact computation can be shown to be
prohibitively expensive. For example, Becchetti
et al. (2008) show how one can incrementally
compute local clustering coefficient with small
error bounds where the exact algorithm (Alon
et al. 1997) can require O.n2:3727/ time. Although
there is much work on this topic in the da-
ta streams community, only recently have re-
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searchers started investigating similar problems
for network algorithms. Zhao et al. (2011) present
a graph-sketching technique, called gSketch, and
show it can be used to answer several primitive
frequency estimation techniques. Similarly, Ahn
et al. (2012) present graph-sketching techniques
for approximating cut values and for approxi-
mating the number of matches to a subgraph
pattern query.

Sampling Another general technique to deal with
the high update rates is use random sampling
to reduce the size of the data that needs to be
processed. We may sample at two levels in a
social network: first, we can try to sample from
the network structure itself to reduce the size of
the graph that needs to be processed; second,
we can sample from the updates to the content.
The latter is generally well understood, and the
theory developed in the data streams literature
could be extended for some types of queries.
However, sampling the network structure is tricky
since a naive random sample is likely to yield a
network with very different properties than the
original network. We refer the reader to Ahmed
et al. (2012) for a detailed discussion of network
sampling, both in static and streaming settings.

Parallel Computation The increasing scale of
most online social networks necessitates use of
parallel and distributed solutions. Unfortunately
computations on social networks are not eas-
ily distributable because of their highly inter-
connected nature. In fact, partitioning a social
graph, which is key to distributed graph pro-
cessing, is a hard problem to tackle because of
overlapping community structure and existence
of highly connected dense components (cores)
in most social networks. One of the simplest
examples of a stream query on social data is
a publish-subscribe query that asks to fetch all
updates from all friends (this is also called feed
following). Answering such queries with very low
latencies is challenging if the data is distributed
across a set of machines – for most users, their
friends’ data is likely to be located across multi-
ple machines necessitating expensive distributed
traversals. One extreme option is to replicate the
data sufficiently so that, for each user, the re-

quired data (i.e., status updates of all their friend-
s) is located on some machine (Pujol et al. 2010).
However, both the memory overhead and the
replica maintenance overhead can be very high
for that solution (Mondal and Deshpande 2012).
More intelligent and sophisticated techniques for
partitioning and replica maintenance must be de-
veloped to address these issues for more general
stream reasoning and querying tasks. Another
key challenge is designing appropriate distributed
programing frameworks to support specifying
general-purpose stream querying and reasoning
tasks. Although there has been some progress on
addressing this challenge in recent years (e.g.,
Kineograph (Cheng et al. 2012), GraphInc (Cai
et al. 2012)), much more needs to be done to
scalably support a variety of complex stream
querying and reasoning tasks.

Conclusions

Stream querying and reasoning over social data is
an emerging research area that combines aspects
from social network analysis, graph databases,
and data streams and is motivated by an increas-
ing need for real-time processing of continuously
generated social data. In this paper we presented
a brief overview of this field and discussed some
of the key research challenges therein. There has
been much work on specific problems in this field
over the last few years (e.g., detecting specific
types of events or anomalies, incremental mainte-
nance of derived structures like dense subgraphs,
approximating different types of summary statis-
tics). However, designing general-purpose da-
ta management systems that enable declarative
specification of stream querying and reasoning
tasks and that can efficiently execute such tasks
over high-rate data streams remains a fruitful
direction for future research.
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Glossary

Secondary Hole Gaps in the networks of a focal
actor’s primary contacts

Dyadic Constraint Degree to which a focal ac-
tor’s primary contact can constrain exchange
opportunities with third parties

Aggregate Constraint The sum of dyadic con-
straints imposed on a focal actor by all his
contacts

Redundant Tie A tie to a cluster of contacts to
which a focal actor already has ties with other
actors

Effective Size The number of non-redundant
contacts in a focal actor’s personal network

Definition

A structural hole refers to an “empty space"
between contacts in a person’s network. It means
that these contacts do not interact closely (though
they may be aware of one another). Actors on
either side of the structural hole have access
to different flows of information (see Fig. 1).
Structural holes therefore reflect “an opportunity
to broker the flow of information between people,
and control the projects that bring together people
from opposite sides of the hole” (Burt 2000).
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Structural Holes, Fig. 1

Several measures are used to capture structural-
hole networks.

Effective network size is an elementary build-
ing block in all structural-hole measures. It is
composed of three elements: First, the proportion
of an actor i ’s time and energy invested in a
relation with q:

piqD.´iq C ´qi /=

2
4X

j

.´ij C ´j i /

3
5 ; (1)

´iq , ´qi;´ij , ´j i represent time or energy actor i

invests in q, i in j, and j in i, respectively.
Second, the marginal strength of j ’s relation

with q:

mjqD.´jq C ´qj /= max.´jk C ´kj / j ¤ k:

(2)
mjq is the marginal strength of contact j ’s re-
lation with actor q. Zjq is the network variable
measuring the strength of the relation from j to q

and max(´jq/ is the largest of j ’s relations with
anyone (Burt 1992:51).

Third, the redundant portion (RP) of i ’s net-
work. The portion of i ’s relation with j that
is redundant to i ’s relations with other primary
contacts is defined as the following:

RP D
X

q

piqmjq : (3)

Effective size (ES) is obtained by aggregating
across all of i ’s primary contacts j :

ES D
X

i

"
1�

X
q

piqmjq

#
: (4)

The effective size of i ’s network ranges from
1 (network provides one single contact) to N

(all contacts are non-redundant), with N being
the number of all contacts in i ’s network. The
efficiency of an actor’s network is computed as
the effective size divided by the number of actors
in the network.

Dyadic constraint Cij measures the degree to
which an actor j imposes structural constraint
on the focal actor i . Dyadic constraint is highest
in a situation where the focal actor’s network is
inefficient (i.e., he or she invests time and energy
in the relation to someone whose network lacks
structural holes and is also tied to other contacts
in the focal person’s network). A low dyadic
constraint originates from actors who do not have
many ties to a focal person’s contacts. Dyadic
constraint is a function of effective size:
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Cij D
 

pij C
X

q

piqpqi

!2

: (5)

Cij = level of constraint that contact j poses on
focal actor i ; pij , piq, pqj see Eq. (1).

Aggregate constraint indicates the extent to
which an actor is constrained by the structure of
the network involving other members of his or
her group. High constraint values indicate low
autonomy: the actor has few structural holes, i.e.,
little entrepreneurial opportunities. Technically,
aggregate constraint is the sum of all contact-
specific dyadic constraints in an actor’s network.
This indicator is also the most frequently used
one in structural-hole research.

Hierarchy (H) indicates the extent to which
aggregate constraint on ego is concentrated in
a single alter. If the total constraint on the per-
son is concentrated in a single other actor, the
hierarchy measure will have a higher value. If
the constraint results more equally from multi-
ple actors in a person’s network, hierarchy will
be less. The hierarchy measure, in itself, does
not assess the degree of constraint. Independent-
ly of the constraint on a focal actor, it mea-
sures inequality in the distribution of constraints
on a focal person across the other actors in its
neighborhood.

H D
�

Cij

C=N

�
: (6)

Cij = level of constraint that j poses on
i ; C = sum of constraint (from an actor’s
network) across all N relationships of an
actor; N = number of contacts in the actor’s
network; C=N = mean level of constraint
per contact; and the ratio is 1 for contact
j posing an average level of constrain-
t.

Oligopoly Primary structural holes were de-
fined as the aggregate of all dyadic constraint on
a focal actor. Contact j ’s constraint on a focal
actor i was defined as the product of two terms
(Burt 1992:62): (1) the network time and energy
i invested to reach j multiplied by (2) the lack
of structural holes around j . The second term, in

turn, is the product of two conditions: (a) the lack
of primary structural holes between the contact j

and others in the player’s network and (b) the lack
of secondary structural holes between the contact
and others outside the network who could replace
the contact. Burt refers to this second term as
the oligopoly: “a measure of the organization of
players within the cluster around contact j such
that it would be difficult to replace j , or threaten
him with being replaced, by some other player in
the cluster” (Burt 1992:62).

Hole signatures of a focal actor’s network
describe “the distribution of opportunity and con-
straint across the individual relationships in a
player’s network” (Burt 1992:62). Hole signa-
tures can be graphically represented, with the
time and energy devoted by a focal actor i to a
specific alter j (pij / delimiting the upper bound-
ary and the dyadic constraint (cij / defining the
lower boundary. Hole signatures allow to as-
sess structural features of a focal actor’s network
(clique, center-periphery, leader hierarchy, and
leaderless hierarchy).

Hole depth The depth of a structural hole
reflects “the ease with which it can be devel-
oped for control and information benefits” (Burt
1992:42–44). The depth of a hole between two
actors is a function of both the degree of cohesion
between two players and the degree of structural
equivalence of their ties to others: in the ideal-
typical structural hole, both actors are neither
connected nor do they have equivalent relations
to others. A deep structural hole characterizes two
unrelated actors with equivalent ties to third par-
ties: they are “competitors in the same market.”
In a shallow structural hole, two actors have a
tie, but do not share equivalent relations to third
parties.

Historical Background

Structural-hole theory and the related measures
can be seen as the confluence of three streams
of work. First, during the late 1960s and
early 1970s, Harrison White and his group
(now often referred to as the Harvard School),
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formalized ideas focusing on the absence of ties
between individuals (“gaps”). This resulted in
the development of blockmodeling algorithms,
which grouped structurally equivalent nodes into
blocks, and identified “zero blocks” – nodes that
did not share similar relations with third parties.
These “zero blocks” have qualities similar to
structural holes.

Second, the article “The Strength of
Weak Ties” by one of White’s graduate students
(Granovetter 1973) produced the counterintuitive
empirical finding that in some situations – like
job search, the topic of Granovetter’s study –
individuals benefit more from weak ties (like
acquaintances) rather than strong ties (like
friends or relatives), because one’s weak ties
can provide access to circles of information we
usually are not familiar with. The “strength” of
an interpersonal tie is a linear combination of
the amount of time, the emotional intensity,
the intimacy (or mutual confiding), and the
reciprocal services which characterize each
tie. Strong ties represent closer friendship and
greater frequency of interaction, whereas weak
ties correspond to acquaintances (Granovetter
1973). Members of closely knit groups connected
through strong ties tend to be exposed to similar
sources of information. Truly novel, valuable
information is often likely to come from more
distant acquaintances who may serve as a conduit
to hard-to-reach parts of the network. A key
proposition in Granovetter’s argument is that
“all bridges are weak ties,” which rules out
that strong ties can be bridges (also known as
the “forbidden triad” assumption). However,
Burt (1992:27) argues that the main source of
benefits in a network is not the weakness of the
tie, but the hole it spans. From this perspective,
the focus on the weakness or strength of a tie
even obscures the importance of control benefits.
“Bridge strength is an aside in the structural
hole argument, since information benefits are
expected to travel over all bridges. Benefits vary
between redundant and non-redundant ties” (Burt
1992:30).

But Granovetter’s article by now is among
the most frequently cited papers in the social
sciences. In addition to stimulating much sub-

stantive research, e.g., on job search, it also s-
parked the interest for social network indicators
reflecting an individual’s centrality in the net-
work (Freeman 1979). Degree centrality captures
communication activity and has been defined by
the number of ties an actor has with others in
the network or the number of others who choose
a focal actor. Betweenness centrality reflects the
potential for control of communication and has
been defined as the extent to which an actor
has control over other actors’ access to vari-
ous regions of the network. Closeness centrality
captures either independence or efficiency and
has been conceptualized as an actor’s ability
to access independently all other members of
the network. Eigenvector centrality (Bonacich
1987:1172) measures centrality as the summed
connection to others, weighted by their centrali-
ties. This measure allows to distinguish situations
in which being connected to others with many
contacts (powerful others) is advantageous for a
focal actor (as is the case in communication net-
works), from situations in which being connected
to powerful others is a liability (as is the case in
bargaining situations). These centrality measures
only partly capture the essence of structural holes,
mainly because they are less sensitive to the
gaps in the networks of a focal actor’s primary
contacts.

Third, Burt was among the first who did a
serious effort to ground structuralist reasoning
on a behavioral micro-foundation. Many of the
ideas presented in his 1992 book on structural
holes – including the core argument on struc-
tural autonomy – had actually been elaborated
in detail about a decade earlier in his Toward
a Structural Theory of Action. Network Mod-
els of Social Structure, Perception and Action
(Burt 1982). Here, he exposes the rational choice
framework underlying structural-hole theory. A
key assumption is that individuals are purpose-
ful actors, who strive for improving their well-
being by evaluating the costs and benefits of
different action alternatives, taking into consider-
ation structural constraints. Individuals in similar
network positions face similar constraints. As a
result, the network is simultaneously an indicator
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of entrepreneurial opportunity and of motivation
(Burt 1992:35).

By combining an innovative structural ap-
proach with a theory of action, Burt’s structural-
hole framework significantly advanced previous
network research, which clearly lacked a behav-
ioral micro-foundation.

Structural-Hole Theory

In social networks, access to advantageous struc-
tural positions is not equally distributed across
all actors: some group members may be posi-
tioned at the interface between multiple groups
with access to boundary-spanning links, while
others are positioned in the middle of a single
tightly knit group. Structural holes offer two main
benefits.

Information benefits come in three forms:
access, timing, and referrals. A network rich in
structural holes provides one with access to non-
redundant sources of information originating in
multiple, noninteracting parts of the network.
It also increases the likelihood of receiving
information earlier than individuals in less
advantageous network positions (timing) and
that others talk positively about the focal actor in
their own networks (referrals).

Control benefits of structural holes result from
the opportunity to either play two unrelated par-
ties out against each other (tertius gaudens) or
to bring them together (tertius iungens). In both
cases, the third party can reap benefits.

Structural-hole theory further assumes actors
to strategically and proactively creating and man-
ufacturing their social network. This means that
actors will actively develop the information and
control benefits of existing structural holes and
manage the constraint of absent structural holes
(Burt 1992:230). They have three strategies to
achieve this: they can withdraw from a contac-
t, they can expand their network by adding a
contact’s competitor to their network, or they
can “leave the constraint-generating network in
place but to manage the offending constraint by
embedding it in a second relationship over which
you have more control” (Burt 1992:233).

Key Applications

Structural-hole theory has stimulated consider-
able empirical research on networks, mostly in
and between organizations, as well as on en-
trepreneurship. It was used to explain a wide
range of outcomes at the level of individuals and
organizations.

Performance With information being a critical
resource in organizational settings (McCall 1979;
Mechanic 1962; Pettigrew 1972; Pfeffer 1981),
individuals rich in structural holes have a better
opportunity to manipulate information for their
purpose. According to a meta-analysis (Balkundi
et al. 2009), and a recent review (Brass 2011),
spanning structural holes increased performance
or innovation for the focal actor (Ahuja 2000;
Burt 1992, 2004; Mehra et al. 2001; Seibert
et al. 2001). Disconnected networks help brokers
realize value by offering them the opportunity to
transfer ideas from one isolated group to another,
a process that involves recognizing when solu-
tions current in one part of the network are likely
to have applications elsewhere in the network
(Hargadon and Sutton 1997).

Promotions Knowing whom to consult for in-
formation and aid becomes of crucial importance
at times of competition for career opportuni-
ties within organizations. In his work “Structural
Holes” (1992), Burt has systematically explored
the network effects on career advancement within
the firm. According to his analysis, a configura-
tion of network ties that creates opportunities for
brokering and entrepreneurialism (i.e., a network
full of structural holes) enhances career opportu-
nities for actors competing for promotions within
organizations (Burt 1992, 2005). The findings of
another study on social networks and mobility at
the workplace further substantiated Burt’s claims
that the network structures most conducive to
maximizing access to information, resources, and
brokerage opportunities (i.e., large, sparse net-
works) are a meaningful determinant of intraor-
ganizational advancement (Podolny and Baron
1997).

Creativity A network “rich in structural holes”
has also been found to facilitate the development
of novel valuable ideas by increasing the actor’s
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ability to merge the distinct sources of infor-
mation in new ways, thus boosting individual
creativity. The empirical findings suggest that
between-group brokers are more likely to have a
vision advantage, express ideas evaluated as valu-
able, and are less likely to have ideas dismissed
(Burt 2004). Moreover, brokerage appears to pro-
vide the opportunity for social “gatekeeping” –
regulating the access of others to the tightly knit
group one belongs to, while at the same time
controlling the ways in which one’s own group
members learn about information coming from
other groups (Burt 2004).

Power Occupying a strong or weak structural
position in the network has recently been found
to affect the inferences organizational actors draw
about one another (Labun 2012). In particular,
the empirical evidence suggests that the more an
individual is constrained by the structure of his
network, the more likely he is to attribute power
to others. Embeddedness in networks “poor in
structural holes” implies a condition of depen-
dence and limited autonomy (Burt 1992), po-
tentially triggering feelings of helplessness and
apprehension, and thereby contributing to in-
creased number of power attributions to other
group members (Labun 2012).

Trust and gossip Trustworthy and confidential
collegial environment may be advantageous
when establishing informal cooperation and
forming alliances against powerful third parties.
According to Burt’s study on trust and gossip
in social networks (2001), gossip can act as a
strategic tool in this process, allowing the group
members to control their fellow members’ actions
and to weaken the reputation of competitors.
The manipulation of information flow to one’s
own advantage becomes easier when employees
occupy brokerage positions in the organizational
network – connect to colleagues who are not
connected with one another. The more trust
exists in an employee network, the further
negative gossip echoes, so that single incidents
of negative gossip can have far-reaching impacts
(Burt 2001). Thus, people may ensure norms of
cooperation and punish the uncooperative actors
(i.e., the untrustworthy group members) through
gossiping – by spreading reputation-harming

information about them in the broader informal
network (Burt 2005).

The gender contingency effects The synthesis
of the informal social network theories with re-
search related to career advancement of women
has generated interesting insights. Burt (1998) ar-
gued that women often lack sufficient legitimacy
in their organizations and therefore need to “bor-
row” social capital (i.e., structural holes) from a
strategic partner (sponsor) in order to get promot-
ed. Whereas senior male managers indeed benefit
more from a personal network rich in structural
holes, women (as well as junior and non-White
managers) fare better with a hierarchical network,
in which a tie to an influential “sponsor” provides
access to this person’s entrepreneurial network
(Burt 1998).

The hierarchy contingency effects Actor’s
position in an organizational hierarchy may
serve as one of the conditions under which
either structural-hole networks or cohesive
networks are likely to provide the focal actor
with advantages. Burt (1997) showed that the
benefits of structural holes flow mainly to
members of senior management. Other research
has shown that the benefits of cohesion flow
mainly to people occupying lower hierarchical
levels in organizations, for whom issues of
organizational identity and belonging remain
salient for potential career advancement (Podolny
and Baron 1997).

The cultural contingency effects Another con-
tingent factor that has been found to moderate
the effect of structural holes includes the specific
cultural and organizational context in which the
mechanisms of social capital operate. In stark
contrast to the results of studies using Western
samples, the empirical findings of Xiao and T-
sui (2007) show that in a collectivistic Chinese
culture, structural holes in an employee’s career
network tend to be detrimental to the employee’s
career development. Moreover, it has been sug-
gested that the network consequences of social
capital may differ across organizations: whereas
in a market-like, low commitment organizational
culture, structural holes bring positive returns
to individual actors, it is network closure that
appears to bring advantages to the actors by
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facilitating trust, reciprocity, and reputation in a
clan-like, cohesive, high-commitment organiza-
tion with a strong cooperative culture (Lazega
2001; Xiao and Tsui 2007).

Future Directions

The existing work utilizing the insights from
Burt’s structural-hole theory has recently been
extended in a number of interesting direction-
s, namely, explicit inclusion of actor character-
istics, agency, and cognitions, as well as in-
creasing use of longitudinal (dynamic) research
designs. Drawing inspiration from the leading
ideas of social network research, new theory
and innovative hypotheses are being proposed,
providing additional valuable insights.

Actor characteristics Researchers have
increasingly started to incorporate personality
variables in their study designs (e.g., self-
monitoring) as potential predictors of variance
in network outcomes (Kilduff and Krackhardt
2008; Mehra et al. 2001). People with different
self-monitoring orientations have been suggested
to occupy different structural positions. High self-
monitors, relative to low self-monitors, tend to in-
gratiate themselves into distinctly different social
circles of acquaintances with few links between
these clusters and thereby occupy structural
holes. Burt’s (2005:34) “structural entrepreneur
personality index” quantifies the individual
inclination to exploit social resources. Structural
entrepreneurs recognize the opportunities offered
by structurally advantageous positions and place
themselves in the “hole” by initiating ties with
actors from opposite sides of the hole who can
subsequently be played off against each other.
This recent work challenges the ideological
refusal of the traditional social network research
to acknowledge ways in which individual actors
differ in their attributes and actively explore the
possibility of complementary synergies between
actors and network structure (Kilduff and Brass
2010). Future research on personality and social
networks is likely to be generative of compelling
insights on the link between individual attributes
and structural outcomes.

Agency Social network research also moves
forward by explicitly assuming that actors differ
in their abilities, skills, and motivation to take ad-
vantage of advantageous network positions. The
earlier research has shown that some individuals
can choose not to reap the profits derived from
their network (Burt 1992). Drawing on these
earlier findings, the more recent studies suggest
that the more strategically skilled group members
enjoy greater access to network resources and
appear to be more competent at utilizing and
leveraging these resources to advance their career
and performance (Ferris et al. 2007; Labun 2012;
Wei et al. 2012). This work uncovers the compre-
hensive role that individual strategic skills may
play in the process of network resource building.
Following this line of analysis, the incorpora-
tion of additional types of personal or social
influence skills that may affect network resource
development would be an interesting and fruitful
avenue for future research. Moreover, future work
might consider more closely the question of how
much control actors have over the networks that
constrain and enable their behaviors (Kilduff and
Brass 2010).

Cognition Another research area drawing from
the core concepts of social network program
puts a special emphasis on subjective meanings
(i.e., cognitions) inherent in networks rather than
on “concrete” relations such as exchanges be-
tween actors (Kilduff and Brass 2010). The cog-
nitive social network research line has led to
the conceptualization of networks as “prisms”
through which others’ reputations and potentials
are perceived, as well as “pipes” through which
resources flow (Podolny 2001). Perceived status
of one’s exchange partners may indeed act as a
distorting prism filtering attributions concerning
the focal individual (Labun 2012): having a trust
relationship with a superior had a significant pos-
itive effect on other’s perceptions of one’s power.
The role of cognitions inherent in networks was
further accentuated in a study demonstrating that
individuals tend to bias perceptions to highlight
small world features of clustering and connec-
tivity (Kilduff et al. 2008): across four different
organizational friendship networks, people have
been found to perceive more “small worldedness”
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than was actually the case, including the per-
ception of more network clustering than actually
existed and the attribution of more popularity and
brokerage to the perceived popular than to the
actually popular.

Network dynamics Finally, longitudinal
research designs that allow considering and
effectively addressing the dynamic nature of
networks is likely to drive the social network
research program forward. The very recent
analytical developments (Snijders et al. 2010)
allow unraveling and tackling the intriguing
novel phenomena concerning interpersonal
network change, coevolution of networks, and
individual behavior (e.g., friendship, music
preferences, and alcohol consumption (Steglich
et al. 2006); friendship and smoking behavior
(Mercken et al. 2010)), as well as different
types of networks (e.g., friendship and gossip
(Ellwardt et al. 2012); friendship and power
(Labun 2012)). For example, the friendship and
power study showed that power perceptions
breed friendship (Labun 2012). Through a
power attribution to a colleague, an individual
may signal his or her trust in the colleague’s
competence, thereby triggering a friendship
nomination from/facilitating friendship with
him or her. The multiplex effect showed up also
when analyzing the conditions that influence the
formation of social ties (i.e., friendship) to the
high-power organizational actors. However, in
this case, the relationship between two networks
appeared to depend on individual’s strategic
orientations (Labun 2012). This emergent
research contributes to a better understanding
of the coevolution of multiplex networks as well
as networks and individual behavior, thereby
allowing us to fully grasp the antecedents,
dynamics, and consequences of the “informal
organization.”

Using a game theoretic model of network for-
mation, Buskens and Van de Rijt (2008) confirm
Burt’s own speculation that when the monopoly
on structural entrepreneurship is lifted, structural
advantages most likely disappear (Burt 2005):
when everyone strives for structural holes, no one
will be able to maintain a structural advantage in
the long run (Buskens and Van de Rijt 2008).

It would be interesting to perform further em-
pirical studies in different types of organiza-
tional settings to help elucidate the dynamics
of structural holes. The ongoing methodolog-
ical advancements and the theoretical insights
gained from the above-mentioned recent work are
certainly beneficial for the future development
and possible extension of existing structural-hole
research.
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Synonyms

Interaction network; Subgraph discovery; Trust
evaluation; Trust network; Trust prediction

Glossary

Social Network A graph in which the nodes
represent the participants in the network and
the edges represent relationships

Trust-Based Social Network A directed
weighted graph in which the nodes represent
the participants in the network, the edges
represent trust relationships and the weight
on each edge indicates the local trust value
derived from the historical interactions

Trust Inference A mechanism to build new
trust relationships based on existing ones

Subgraph A subgraph of graph G is a graph
whose node set is a subset of that of G,
and whose edge set is a subset of that of G

restricted to the node subset
Subgraph Extraction Discovery of a subgraph

from a whole graph

Definition

Trust-based social networks might contain a large
amount of redundant information, making exist-
ing trust inference suffer from the scalability and
usability issues. Therefore, it is natural to apply
subgraph extraction as an intermediate step to
speed up as well as to interpret the trust inference
process.

Introduction

Trust inference, which aims to infer a trustwor-
thiness score from the trustor to the trustee in
the underlying social network, is an essential
task in many real-world applications including
e-commerce (Xiong and Liu 2004), peer-to-
peer networks (Kamvar et al. 2003), and mobile
ad hoc networks (Buchegger and Le Boudec
2004).

To date, many trust inference algorithms have
been proposed, which can be categorized in-
to two main classes (see the next section for
a review): (a) path-based inference (Mui et al.
2002; Wang and Singh 2006; Hang et al. 2009;
Wang and Wu 2011) and (b) component-based
inference (Guha et al. 2004; Massa and Avesani
2005; Ziegler and Lausen 2005; Zhou and Hwang
2007).

Despite their own success, most of the existing
inference algorithms have two limitations. The
first challenge lies in scalability – many exist-
ing algorithms become very time-consuming or
even computationally infeasible for the graphs
with more than thousands of nodes. Additionally,
some algorithms assume the existence of a sub-
graph while how to construct such a subgraph
remains an open issue (Wang and Wu 2011). The
second challenge is the usability of the inference
results. Most, if not all, of the existing inference
algorithms output an abstract numerical trustwor-
thiness score. This gives a quantitative measure of
to what extent the trustor should trust the trustee
but gives few cues on how the trustworthiness
score is inferred. This usability/interpretation is-
sue becomes more evident when the size of the

http://dx.doi.org/10.1007/978-1-4614-6170-8_357
http://dx.doi.org/10.1007/978-1-4614-6170-8_357
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underlying graph increases, since we cannot even
display the entire graph to the end users (see
Fig. 9 for an example).

In this article, we propose subgraph extraction
to address these challenges. The core of our
subgraph extraction consists of two stages: path
selection and component induction. In the first
(path selection) stage, we extract a few, important
paths from the trustor to the trustee. In the second
(component induction) stage, we propose a novel
evolutionary algorithm to generate a small sub-
graph based on the extracted paths. The outputs
of these two stages are then used as an interme-
diate step to speed up the path-based inference
and component-based inference algorithms, re-
spectively. Our experimental evaluations on real
graphs show that the proposed method can sig-
nificantly accelerate existing trust inference algo-
rithms (up to 2,400� speedup) while maintaining
high accuracy (P-error is less than 0.04). In addi-
tion, the extracted subgraph provides an intuitive
way to interpret the resulting trustworthiness s-
core by presenting a concise summarization on
the relationship from the trustor to the trustee.
To the best of our knowledge, we are the first to
propose subgraph extraction for trust inference.
We believe that our work can improve most of
the existing trust inference algorithms by (1)
scaling up as well as (2) delivering more usable
(i.e., interpretation-friendly) inference results to
the end users.

Historical Background

We review the historical background in this
section, which can be categorized into two
parts: trust inference algorithms and subgraph
extraction.

Trust Inference
We categorize existing trust inference algorithms
into two main classes: path-based trust inference
and component-based trust inference.

In the first class of path-based inference, trust
is propagated along a path from the trustor to
the trustee, and the propagated trust from mul-
tiple paths can be combined to form a final

trustworthiness score. For example, Wang and
Singh (2006, 2007) as well as Hang et al. (2009)
propose operators to concatenate trust along a
path and aggregate trust from multiple paths. Liu
et al. (2010) argue that not only trust values but
social relationships and recommendation role are
important for trust inference. However, these al-
gorithms are only suitable for small networks due
to their complexity. Some other path-based trust
inference algorithms, such as Mui et al. (2002)
and Wang and Wu (2011), assume the existence
of an extracted subgraph while how to construct
such a subgraph remains an open issue (Wang and
Wu 2011).

In the second class of component-based infer-
ence, EigenTrust Kamvar et al. (2003) tries to
compute an objective trustworthiness score for
each node in the graph. In contrast to Eigen-
Trust, our main focus is to provide support for
subjective trust metrics where different trustors
can form different opinions on the same trustee.
In contrast to path-based trust inference algo-
rithms, there is no explicit concept of paths in
component-based trust inference. Instead, exist-
ing subjective trust algorithms, including Guha
et al. (2004), Massa and Avesani (2005), Ziegler
and Lausen (2005), and Nordheimer et al. (2010),
take the initial graph as input and treat trust
as random walks on a Markov chain or on a
graph (Richardson et al. 2003). For example, in
MoleTrust (Massa and Avesani 2005) and Apple-
seed (Ziegler and Lausen 2005), trust propagates
along the edges according to the trust values on
the edges. Our subgraph extraction method not
only can speed up many of these algorithms but
also can provide interpretive result which is not
considered by the existing algorithms.

Overall, our subgraph extraction is motivated
to address the two common challenges (i.e., s-
calability and usability) shared by most of these
existing trust inference algorithms.

Subgraph Extraction
Several end-to-end subgraph extraction algo-
rithms are developed to solve different problems.

In the field of graph mining, Faloutsos et al.
(2004) refer to the idea of electrical current where
trust relationships are modeled as resistors and try
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to find a connection subgraph that maximizes the
current flowing from source to target. Later, Tong
et al. (2007) generalize the connection subgraph
to directed graphs and use the subgraph to com-
pute proximities between nodes. Similar to Tong
et al., Koren et al. (2006) also try to induce a
subgraph for proximity computation. In addition,
Koren et al. search the k-shortest paths to provide
a basis for measuring the proximity.

Recently, several algorithms are proposed
for reliable subgraph extraction. Among them,
Monte Carlo pruning (Hintsanen and Toivonen
2008) measures the relevance of each edge by
Monte Carlo simulations and tends to remove
the edge of lowest relevance one by one. The
most related work is perhaps the randomized
Path Covering algorithm (Hintsanen et al. 2010)
which also consists of two stages of path
sampling and subgraph construction. However,
both Monte Carlo pruning and Path Covering
tend to find a subgraph with highest probability
to be connected, while we aim to find a subgraph
to address the scalability and usability issues in
trust inference.

The Proposed Subgraph Extraction
Method

In this section, we first formalize the subgraph
extraction problem for trust inference in social
networks and then introduce our proposed solu-
tion which consists of two stages: path selection
and component induction.

ProblemDefinition
Following the standard notations in the existing
trust inference algorithms, we model the trust
relationships in social networks as a weighted
directed graph (Barbian 2011; Yao et al. 2011).
The nodes of the graph represent the participants
in the network, and the weight on each edge
indicates the local trust value derived from the
historical interactions.

We then categorize the existing trust infer-
ence algorithms into two major classes: path-
based trust inference and component-based trust
inference.

Definition 1 Path-Based Trust Inference
Path-based trust inference includes the approach-
es, which are started by the trustor, to evaluating
the trustworthiness of the trustee, through a set
of paths from the trustor to the trustee in the
network.

Definition 2 Component-Based Trust Inference
Component-based trust inference includes the ap-
proaches, which are started by the trustor, to eval-
uating the trustworthiness of the trustee, through
a connected component from the trustor to the
trustee in the network.

Both classes belong to the subjective trust
metrics (Ziegler and Lausen 2005), where differ-
ent trustors can form different opinions on the
same trustee. Accordingly, path-based trust infer-
ence such as Mui et al. (2002), Wang and Singh
(2006), Liu et al. (2010), Hang et al. (2009),
and Wang and Wu (2011) and component-based
inference such as (Guha et al. 2004), Massa
and Avesani (2005), Ziegler and Lausen (2005),
and Zhou and Hwang (2007) all belong to trust
inference algorithms. Although the main focus
of this article is on the subjective metrics, our
proposed subgraph extraction can also be applied
to the objective trust metrics.

Despite the success of most existing infer-
ence algorithms, they share the scalability and
usability limitations. To address these issues, we
propose subgraph extraction for trust inference.
The core of our subgraph extraction consists of
two stages. The first stage, which serves for path-
based trust inference, selects a set of paths from
the trustor to the trustee. The second stage aims
to produce a connected component between the
trustor and the trustee for component-based trust
inference. In addition, the second stage of our
subgraph extraction produces a relatively small
subgraph which can be clearly displayed and
help the end user better understand the inference
result.

We now formally define the subgraph
extraction problem for trust inference. In
accordance to the corresponding two stages,
the problem is divided into two subproblems:
path selection problem and component induction
problem.
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Definition 3 Path Selection Problem

Given: a weighted directed graph G.V; E/;
two nodes s; t 2 V ; and an integer K

Find: a set C with K paths from s to t that
minimizes the error function f .C /

Definition 4 Component Induction Problem

Given: a set C of paths from s to t and an
integer N

Find: an induced component H.V 0; E 0/ with
at most N edges that minimizes the error func-
tion g.H/, where V 0 	 fvj.u; v/ or .v; u/ 2
P; P 2 C g and E 0 	 feje 2 P; P 2 C g
We next discuss the error function in the def-

initions. The error function f .C / in Definition 3
indicates the goodness of the extracted paths, and
f .C / reaches its minimum value when C con-
tains all the possible paths from s to t . Similarly,
the error function g.H/ in Definition 4 reaches its
minimum value if H D G. In this article, we use
P-error, which is defined as follows, as the error
function for both subproblems, i.e., f D g D P-
error.

Definition 5 P-error
For a given trustor-trustee pair, the error function
P-error is defined as

P -error D jpsub � pwholej;

where psub is the trustworthiness score inferred
from the subgraph and pwhole, which serves as a
ground truth, is the trustworthiness score inferred
from the whole graph.

Path Selection
In the path selection stage, we aim to extract a few
paths from the trustor to the trustee as an interme-
diate step to speed up path-based trust inference
algorithms. These extracted paths will also serve
as the input for the component induction stage.

There are two preprocessing steps in our ex-
traction method. First of all, trust is interpreted
as the probability by which the trustor expects
that the trustee will perform a given action. This
interpretation of trust is adopted by many existing
trust inference algorithms, and it allows trust
to be multiplicatively propagated along a path

Algorithm 4: KS algorithm (see the ap-
pendix for the details)

Input: Weighted directed graph G.V; E/, two nodes
s; t 2 V , and a parameter K of path number

Output: Set C with K paths from s to t
1: C = k-shortest(G, s, t , K)
2: return C

(Liu et al. 2010). Second, we transform proba-
bility into weight by negative logarithm. Namely,
the local trust value on the edge e is interpreted
as probability p.e/, and the probability p.e/

is transformed to weight w.e/ D �log.p.e//.
Based on these two steps, the weight of a path
P can be presented as

w.P / D
X
e2P

�log.p.e// D �log.
Y
e2P

p.e//

D �log.P r.P //:

As a result, finding a path of high trustworthiness
in the original network is equivalent to finding a
short path in the transformed network. We will
use this transformed weighted graph G.V; E/ as
the input of our method.

Then, the path selection problem becomes to
extract top-k short paths from the trustor to the
trustee in the transformed graph G.V; E/. Many
existing algorithms can be plugged into this stage,
such as Yen’s k-shortest loopless paths (KS) (Yen
1971), and path sampling (PS) (Hintsanen et al.
2010). In our experiments, we found that KS
algorithm performs best even if the multiplica-
tive property of the interpretation does not hold,
and we therefore recommend KS in this stage.
A brief skeleton of the KS algorithm is shown
in Algorithm 4, and the detailed algorithms for
KS and PS are presented in the appendix for
completeness.

Algorithm Analysis
The worst-case time complexity of KS is
O.KjV j.jEj C jV jlogjV j//, which is known
as the best result to ensure that k-shortest
loopless paths can be found in a directed graph
(Hershberger et al. 2007). However, the actual
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wall-clock time of KS on many real graphs is
often much better than such worst-case scenario
(Martins and Pascoal 2003). In fact, based on our
experiments, we find that it empirically scales
near linearly wrt the graph size jV j in the chosen
datasets.

Component Induction
In the component induction, we take the output
of path selection stage (i.e., a set of K paths) as
input and output a small connected component
from the trustor to the trustee. The output of
the component induction stage not only acts as
an intermediate step to speed up component-
based trust inference algorithms but also helps
to improve the usability of trust inference by in-
terpreting the inference results for the end users.
Notice that although our upcoming proposed al-
gorithm EVO could also be applied on the whole
graph, we do not recommend it in practice for the
following two reasons: (1) most trustworthy paths
have already been captured by the path selection
stage (i.e., KS), and (2) applying EVO on the
whole graph would cost more memory and time
to achieve high accuracy. We will present more
detailed experimental evaluations to validate this
in the next section.

In general, our proposed EVO algorithm
(shown in Algorithm 5) belongs to the so-called
evolutionary methods (Bäck 1996). It aims to
minimize P-error under the constraint of edge
number. The input component Gc.V c; Ec/ is
directly induced from the set C of paths from
s to t , where V c D fvj.u; v/ 2 P or .v; u/ 2
P; P 2 C g and Ec D feje 2 P; P 2 C g. There
are two implicit parameters in the algorithm, i.e.,
the initial vector number m and iteration number
iter.

We now explain EVO in detail. The first step
of EVO is to establish a one-to-one correspon-
dence between the edges in Gc and the elements
in vector B . Each element of B is a 0/1 bit where
1 indicates that the corresponding edge exists
and 0 indicates otherwise. The vector has exactly
jEcj bits where jEcj is the edge number of Gc .
In the second step, the algorithm generates m

vectors B1; B2; : : : ; Bm, and each of them has at
most N 1-bits. In our implementation, we apply

Algorithm 5: EVO algorithm
Input: Set C of paths from s to t and the directly

induced component Gc.V c ; Ec/, as well as a
constraint N of the edge number

Output: Induced component H.V 0; E 0/ with at most
N edges

1: define 0/1 vector B of size jEcj where each
element in B stands for the existence of a
corresponding edge in Gc

2: initialize m vectors S  fB1; B2; : : : ; Bmg,
with at most N 1-bits for each vector

3: while iter > 0 do
4: for each vector Bi in S do
5: repeat
6: mutate Bi to BiCm with mutation

probability 1=jEc j
7: until the number of 1-bits in BiCm 6 N
8: end for
9: compute P-error results for the 2m vectors

fB1; B2; : : : ; B2mg
10: S the best m vectors from the 2m ones
11: iter iter - 1
12: end while
13: Bf inal  the best vector in S
14: return the corresponding component H.V 0; E 0/

of Bf inal

a constant-time search in C to find a subset of
paths with minimized P-error. In the following
steps, EVO adopts mutation on each of these
vectors to separately generate m new vectors
BmC1; BmC2; : : : ; B2m. In the mutation from Bi

to BiCm, each bit of Bi is changed with probabili-
ty 1=jEcj. If the resulting vector has more than N

1-bits, the mutation operation is redone. The error
function, which is P-error in our case, is then
computed on each of these 2m vectors, and the m

vectors with smallest P-error are kept to the next
iteration. For efficiency, the P-error computation
on vector B herein means computing the P-
error between Gc.V c ; Ec/ and the component
corresponding to the vector B . Namely, we use
the input component Gc.V c ; Ec/ as an approxi-
mation of the ground truth in this stage.

Algorithm Analysis
The time complexity of EVO is summarized in
the following lemma, which basically says that
the expected time complexity of EVO scales
linearly wrt both initial vector number m and
iteration number iter.
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Subgraph Extraction for Trust Inference in Social Networks, Table 1 High-level statistics of advogato datasets

Graph Nodes Edges Avg. degree Avg. clustering Avg. diameter Date

Advogato-1 279 2,109 15.1 0.45 4.62 2000-02-05

Advogato-2 1,261 12,176 19.3 0.36 4.71 2000-07-18

Advogato-3 2,443 22,486 18.4 0.31 4.67 2001-03-06

Advogato-4 3,279 32,743 20.0 0.33 4.74 2002-01-14

Advogato-5 4,158 41,308 19.9 0.33 4.83 2003-03-04

Advogato-6 5,428 51,493 19.0 0.31 4.82 2011-06-23

Lemma 1 The average-case time complexity of
EVO is O.iter � m.jEcj=N C �//, where � is the
time complexity of the error function computa-
tion.

Proof In the mutation step of EVO, with mu-
tation probability 1=jEcj, the expected number
of bit changes is 1. This step is expected to be
redone only when the number of 1-bits is N

and the bit change is from 0 to 1. Under this
condition, the probability of bit change from 0
to 1 is .jEcj �N /=jEcj. Therefore, the expected
iteration number of the mutation step is jEcj=N .
Therefore, the whole expected time complexity
of EVO is O.iter.m � jEc j=N Cm�// D O.iter �
m.jEcj=N C �//, which completes the proof. �

Experimental Evaluation

In this section, we first describe the experimental
setup and then present the results.

Experimental Setup
We first describe the datasets and the represen-
tatives of path-based and component-based trust
inference algorithms. All algorithms are imple-
mented in Java and have been run on a T400
ThinkPad with 1,280 m jvm heap space. Few
other activities are done during the experiments.

Datasets Description
We use the advogato (http://www.trustlet.
org/wiki/Advogato_dataset) datasets in our
experiments, because advogato is a trust-based
social network and it contains multilevel trust
assertions. There are four levels of trust assertions
in the network, i.e., “Observer,” “Apprentice,”
“Journeyer,” and “Master.” These assertions can

be mapped into real numbers in [0,1]. In our
experiments, we map “Observer,” “Apprentice,”
“Journeyer,” and “Master” to 0.1, 0.4, 0.7, and
0.9, respectively. The statistics of the datasets is
shown in Table 1.

Trust Inference Representatives
To evaluate our subgraph extraction method, we
need to apply trust inference algorithms on the
whole graph and on our extracted subgraph to
compare their effectiveness and efficiency. We
chose CertProp (Hang et al. 2009) as the rep-
resentative of path-based inference algorithms,
and Appleseed (Ziegler and Lausen 2005) as
the representative of component-based inference
algorithms.

P-error computation in CertProp needs to first
compute the ground truth pwhole by finding all
paths from the trustor to the trustee in the whole
graph. This computation, however, easily causes
the overflow of the jvm heap space even on the
advogato-1 graph. Following the suggestions in
the original CertProp (Hang et al. 2009), we
apply the fixed search strategy and search all
paths whose length is not longer than seven as an
approximation of the ground truth. For CertProp,
we define collapsed samples as the trustor-trustee
pairs of which the P-error computation either
exceeds the range of Java.lang.Double or runs out
of the jvm heap space. We randomly select 100
node pairs out of 122 samples, where the rest 22
of them are collapsed samples. Our experimental
results are all based on the average of these
100 samples. Notice that, as discussed in the
path selection section, the multiplicative property
of the probability interpretation does not hold
in CertProp. As to Appleseed, we apply linear
normalization on the outputs, since the algorithm
can produce arbitrary trustworthiness scores.

http://www.trustlet.org/wiki/Advogato_dataset
http://www.trustlet.org/wiki/Advogato_dataset
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Experimental Results
We now present the experimental results of our
subgraph extraction method. In our experiments,
the effectiveness, efficiency comparisons, and
interpretation results are all based on the
advogato-1 graph, as we found CertProp on the
whole graph becomes computationally infeasible
on all the other larger datasets. We evaluate the
scalability of our method using all the datasets
(i.e., advogato-1 to advogato-6). As for EVO,
we set m D 5 and iter D 10 unless otherwise
specified. The edge constraint N is set as K=2.

Effectiveness
For effectiveness, we first study how CertProp
and Appleseed perform on the KS subgraph (the
output of path selection stage) and EVO subgraph
(the output of component induction stage), re-
spectively. The results are shown in Fig. 1. We
can observe that all the P-error values of CertProp
and Appleseed are less than 0.04, indicating that
our extracted subgraphs, which are based on
a small set of carefully selected paths and an
evolutionary strategy, provide high accuracy for
the trust inference algorithms.

Remember that the proposed EVO is always
applied on the output of the path selection stage
(referred to as “EVO C KS”). Here, for compar-
ison purpose, we also apply EVO on the entire
graph (referred to as “EVO C whole graph”).
With the same parameter setting, the results are
shown in Fig. 2. It can be seen that EVO on KS
outperforms EVO on the whole graph. The reason
is as follows. As an evolutionary algorithm, EVO
(either on KS or on the entire graph) finds a local
minima. By restricting the search space to those
highly trustworthy paths (i.e., the output of KS),
it converges to a better local minima in terms of
P-error.

Finally, to compare EVO with existing com-
ponent induction algorithms, we implement the
Monte Carlo pruning (MC) method (Hintsanen
and Toivonen 2008) and the proximity extraction
(PE) method (Koren et al. 2006). As mentioned
in the historical background, MC is proposed
for the reliable subgraph extraction problem. The
key idea of MC is to measure a relevance s-
core for each edge by Monte Carlo simulations

and then remove the edges of lowest relevance
scores. On the other hand, PE is proposed for
the proximity computation problem where a s-
mall set of paths are selected to maximize the
proposed proximity objective function. We plot
the comparison results in Fig. 3. Again, we can
see that EVO outperforms both MC and PE wrt
P-error. In fact, MC induces a component by suc-
cessively deleting edges (edge-level component
induction), while PE only selects a smaller set
of paths (path-level component induction). Our
EVO algorithm outperforms MC and PE because
EVO combines these two levels of component
induction by searching a smaller set of paths in
the initial step and then evolving the resulting
component on the edge level.

Efficiency
First, we compare the different algorithmic choic-
es in the path selection stage. To this end, we
compare the wall-clock time of KS with an al-
ternative path selection algorithm path sampling
(PS) (Hintsanen et al. 2010). The results are
shown in Fig. 4. Note that the y-axis is of log
scale. As we can see from the figure, although
PS is slightly faster than KS when K D 5, the
wall-clock time of PS is much longer than that of
KS when K is greater than 30. For example, the
wall-clock time of PS is more than 170� longer
than that of KS when K D 100. Therefore, we
recommend using KS for path selection.

Next, we study the computational savings by
applying the proposed subgraph extraction as the
intermediate steps for the existing trust inference
algorithms. To this end, we report the wall-clock
time of CertProp on the output of the path s-
election stage and Appleseed on the output of
the component induction stage, respectively. The
results are shown in Fig. 5 where the y-axis
is of log scale. Notice that the reported time
includes the wall-clock time of both subgraph
extraction and trust inference. In the figure, we
also plot the wall-clock time of CertProp and
Appleseed on the entire graph for comparison.
We can see that our subgraph extraction method
saves the wall-clock time for both path-based
trust inference and component-based trust infer-
ence, especially for the former one. For example,
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when K D 10, our subgraph extraction method
achieves up to 2,400� and 5.4� speedup for Cert-
Prop and Appleseed, respectively. Even when K

grows to more than 60, our method can still
achieve 200 – 400� speedup for CertProp.

Next, we compare the efficiency between
applying EVO on KS and applying EVO on
the whole graph. With N D K=2, the results
are shown in Fig. 6. As we can see, the wall-
clock time of EVO on KS (which includes the
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wall-clock time of both EVO and KS) is much
faster than EVO on the whole graph. Together
with the effectiveness results (Fig. 2), we
recommend running EVO on the KS subgraph in
practice.

Finally, we evaluate how the parameters m and
iter in EVO affect the wall-clock time. In this
experiment, we fix K D 20 and N D 10, and
the results are shown in Fig. 7. We can observe
that the wall-clock time of EVO scales linearly
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wrt iter for any fixed m, which is consistent with
the time complexity analysis shown before.

Scalability
We now evaluate the scalability of our method
on datasets advogato-1 to advogato-6. Figure 8

shows the results, where the y-axis is of log scale.
In this experiment, we fix K D 10 and N D 5.

We can observe from the figure that even
on the largest graph of 5,428 nodes and 51,293
edges, KS can help to infer the trustworthiness
score within 25 s. In addition, KS scales near
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linearly wrt the underlying graph size. As to
EVO, the wall-clock time stays stable in spite
of the growth of the graph size. The reason is
that jEcj scales near linearly to K due to many
overlapping edges and N is set to K=2. Conse-
quently, jEcj=N is close to a constant, and the

time complexity of EVO can be approximated to
O.iter �m � �/.

Usability/Interpretation
Another important goal of the proposed EVO
is to improve the usability in trust inference by
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interpreting the inferred trustworthiness score for
end users. An illustrative example is shown in
Fig. 9. The whole graph and the induced KS
subgraph by the path selection stage are also
plotted for comparison.

From the figures, we can see that the whole
graph is hard for interpretation. As to the KS
subgraph, although the number of edges has sig-
nificantly decreased compared with the original
whole graph, there are still some redundant edges
which might diverge end users’ attention. On
the other hand, the EVO subgraph only presents
the most important participants and their trust

opinions, providing a much clearer explanation
on how the trustworthiness score is inferred.

Future Directions

On one hand, much of the research in trust infer-
ence focuses on the inference accuracy, while in-
ference efficiency is also important in real-world
trust inference applications, especially in those
online applications. Future work should be able to
find the best trade-offs between effectiveness and
efficiency according to the specific applications.
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Algorithm 6: Detailed KS algorithm
Input: Weighted directed graph G.V; E/, two nodes

s; t 2 V , and a parameter K of path number
Output: Set C with K paths from s to t
1: X shortest path from s to t
2: C  shortest path from s to t
3: while jC j < K and X ¤ Ø do
4: P  remove the shortest path in X
5: d  the deviation node of P
6: for each node v between d (inclusive) and

trustee t (exclusive) in P do
7: pre subpath from trustor s to v in P
8: post the deviated shortest path from v to t
9: combine pre and post , and add it to X

10: end for
11: C  C + the shortest path in X
12: end while
13: return C

On the other hand, we believe that usability is
becoming a new requirement for trust inference.
Users start to care about not only who they should
trust but also why they should trust. It is also
interesting to incorporate distrust in the subgraph
extraction as users may also concern about why
they should not trust someone.
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Appendix

To find K short paths from graph G.V; E/ in the
path selection stage, many existing algorithms
can be used. We consider two representative al-
gorithms from the literature. Here, we present the
detailed algorithm description for completeness.

The first algorithm is Yen’s k-shortest loopless
paths (KS) algorithm (Yen 1971), which is shown
in Algorithm 6.

Algorithm 7: PS algorithm
Input: Weighted directed graph G.V; E/, two nodes

s; t 2 V , and a parameter K of path number
Output: Set C with K paths from s to t
1: C  shortest path from s to t
2: while jC j < K do
3: re-decide all the edges in E
4: for each path P in C do
5: if P is decided as true then
6: F  F + P
7: end if
8: end for
9: while F ¤ Ø do

10: re-decide the most overlapped edge in F as
failed

11: remove failed paths from F , if there are any
12: end while
13: P  the shortest path among the non-failed

edges from s to t
14: if P ¤ Ø then
15: C  C + P
16: end if
17: end while
18: return C

In the algorithm, we use Dijkstra’s algorithm
for finding a shortest path. All the computed
paths are loopless by temporarily removing vis-
ited nodes. The key idea of the KS algorithm
is deviation. The deviation node d of path P

is the node that makes P deviate from existing
paths in the candidate set C . For each node v

between d (inclusive) and trustee t (exclusive)
in P , the deviated shortest path from node v

to t is computed by temporarily removing the
edge starting at v in P . The computed deviated
shortest path post and the subpath pre (the path
from s to v in P ) are combined to form a possible
path candidate. For the nodes before d , possible
shortest paths are already computed and included
in X . Based on deviation, KS finds the K-shortest
paths from trustor s to trustee t one by one.
Following Martins and Pascoal’s implementation
(Martins and Pascoal 2003), we compute the
deviated shortest path from deviation node d to
the trustee in a reverse order.

The other algorithm is the randomized algo-
rithm path sampling (PS) (Hintsanen et al. 2010),
which is proposed for the most reliable sub-
graph problem (Hintsanen and Toivonen 2008).
While PS is proposed for undirected graphs, trust
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relationships in social networks should be direct-
ed as trust is asymmetric in nature (Golbeck and
Hendler 2006). Therefore, we adapt PS (as shown
in Algorithm 7) for a directed graph.

PS considers the input graph as a Bernoulli
random graph (Robins et al. 2007), and the algo-
rithm is based on the edge decision of this random
graph. An edge is randomly decided as true with
probability p.e/, and a path is decided as true
if all the edges on the path are decided as true.
At the beginning of each iteration, all the edges
of the graph are re-decided, and these graph
decisions provide opportunities for distrust infor-
mation to be contained. Like KS, PS first adds a
shortest path into candidate set C . PS then tries to
find a graph decision based on which none of the
paths in C are true. To avoid the situation when
this graph decision is hardly found, PS stores the
true paths in C to a temporary set F and deliber-
ately fails the most overlapping edges in F until
none of the paths in F are true. Finally, based on
the results of graph decision and edge failing, PS
finds the shortest path P among the non-failed
edges from trustor s to trustee t and adds it to C .
The algorithm ends until K paths are found.

PS allows some distrust information to be
incorporated into the extracted subgraph, which
could in turn lower the P-error based on our
experiments. However, the time complexity of
PS is difficult to estimate, since the wall-clock
time depends on the graph density. In addition,
as shown in our experiments, the wall-clock time
of PS is especially long when K becomes suf-
ficiently large. We conjecture that PS can be
used in dense graphs where numerous paths exist
between node pairs.
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is closely related to the definition of supply chain
(management) by Christopher (1998) defined as
the management of “a network of connected and
interdependent organisations mutually and co-
operatively working together to control, manage
and improve the flow of goods and materials
and information from suppliers to end users”
(p. 19). In other words, it is the network of
organizations that are involved, through upstream
and downstream linkages, in the different
processes and activities that produce value in
the form of products and services in the hands of
the ultimate consumer. Thus, for example, a shirt
manufacturer is a part of a supply chain that
extends upstream through the weavers of fabrics
to the manufacturers of fibers, and downstream
through distributors and retailers to the final
consumer.

Supply Chain Networks

Introduction
Over the last two decades, supply chain man-
agement has become one of the major fields of
attention both in organizational practice and in
academia. This is reflected in a shift from concen-
trating on internal flows and internal processes to
managing buyer-supplier relationships and even
more managing relationships across the whole
chain and across the network that supplies to and
buys goods and services from an organization.
Some of the underlying reasons are that organiza-
tions compete globally, aim at being good at one
specific task, and outsource all remaining activi-
ties. Additionally, consumers demand increasing-
ly customized products at the same prices as nor-
mal products, while requirements and customer
wishes change frequently. In order to be respon-
sive and at the same time cost effective, increased
focus on the management of the supply chain or
network is needed, often enabled by the use of
novel ICT developments that link organizations
to their suppliers and buyers. In this perspective,
it is stated that “Competing is between supply
chains instead of firms.” Below we will sketch
what supply chain networks are and how to map
and understand them. The concluding remarks

will relate to some empirical findings and future
research directions.

Supply Chain Networks
Supply chain networks cover in principle al-
l organizations that together produce services or
products starting from basic raw materials until
the final point of consumption. Such an end-to-
end, integrated point of view is also reflected in
statements like “from paddock to plate,” “from
mine to motorcar,” or “from field to flower”
that companies use to reflect their concern for
the whole process. In order to better understand
supply chain networks and to be able to map
and manage them, Lambert and Cooper (2000)
propose three key issues or questions:
1. Who are the key supply chain members with

whom to link processes?
2. What processes should be linked with each of

these key supply chain members?
3. What level of integration and management

should be applied for each process link?
Below we will shortly address each of these.

Structure
Companies are engaged in multiple networks
such as the Chamber of Commerce, and local
industrial networks. From a supply chain network
perspective, we are mainly interested in those
companies that directly are involved in the value-
adding activities for particular customers. Other
organizations are addressed as supportive, such as
banks and local authorities.

Networks can be distinguished along the num-
ber of partners in the chain (the number of tiers or
horizontal structure) and the number of organi-
zations (competitors, suppliers, or customers) at
each level or tier in the network (vertical struc-
ture). Probably different from social networks,
supply chain networks are always considered
from a specific point of view, taking the perspec-
tive of one single company that is labeled as the
focal company. Therefore, in drawing a network,
there is always one central point and it might be
evident that the position of the focal firm in the
network (being more located to the source of raw
materials or more towards the final consumer),
together with the vertical and horizontal position,
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Supply Chain Networks, Fig. 1 Supply chain network structure (Source: Lambert and Cooper 2000)

is an important factor for the possibilities, but
also the wish, to manage the – entire – network.
Examples and studies often focus on large and
influential companies and their networks, e.g.,
Wal-mart, Ford, or Toyota, which are all powerful
organizations that are able to direct and manage
actively their networks. This might distort a gen-
eral applicable approach. It might be evident that
all organizations have their own network, albeit
with rather different characteristics: vertical, and
horizontal structure and position in the network
together indicate the complexity of the network.
Figure 1 sketches a network structure with mul-
tiple suppliers/customers, but also suppliers’ sup-
pliers and customers’ customers, etc. These are
respectively indicated as first tier, second tier, etc.

Processes
The key process in any supply chain network is
the provision of products or services to final con-
sumers. As such the product flow is the point of
departure of any network. The physical product
flow involves processes such as transportation,
warehousing, manufacturing, and distribution of
finished goods. Mostly, depending on the nature

of product and the network, each of these physi-
cal processes will be executed several times when
products go from one stage to another stage in
the network. In order to be able to execute those
processes adequately, information processes have
to be well organized as well, often enabled by
ICT. Such processes relate to the physical flow
directly such as ordering and purchasing process-
es, while others are more supportive and indi-
rectly such as customer service management and
customer relationship management. The central
tenet of supply chain management is that all such
processes need to be well aligned or integrated in
order to be successful both within organizations
(removing functional barriers) as well as along
the whole network between organizations. While
often formal alignment is stressed, based on for-
mal ICT systems, there is evidence that personnel
contacts between employees of different orga-
nizations in a network are important for proper
functioning, as well.

Integration
A supply chain network might consist of nu-
merous links and for each of the links different
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processes have to be dealt with. In order to be
able to manage the network, three types of links
can be distinguished: managed links, monitored
links, and non-managed links. Managed links
will most likely be the links with the main first
tier suppliers and first tier customers, but might
also be the links with second tier suppliers or cus-
tomers. For example, it is quite common that car
manufacturers manage the relationship between
a part manufacturer and a module manufacturer.
Monitored links are links that are not actively
managed but some control is needed to be sure
that such links are properly managed without
directly interfering with the day-to-day manage-
ment of the link. Finally, all other links are non-
managed as they are of less interest for the focal
company. Even in managed links, it seems likely
that not all processes need to be firmly tuned, as
will be shortly discussed below.

Reflection and Critical Issues
While theory explains and shows the benefits
of supply chain management, there is little
empirical evidence of management of whole
supply chain networks. Part of that stems from
the complexity explained above, and partly
it might stem from the difference between
the rhetoric and the practice of supply chain
management. As Storey et al. (2006) explain,
literature (as probably in more management
areas) is not always clear in distinguishing
between description and prescription. Part of
the reality of supply chain management is that
only a limited part of the chain is managed, and
mostly at the buyer-supplier relationship level
and not along the whole chain or network. There
is sufficient empirical evidence that shows the
benefits of even such seemingly limited types
of supply chain integration and management.
Apart from the limited scope, there are serious
barriers to supply chain integration such as
misalignment of organizational and interorga-
nizational performance measurement systems,
along with misaligned – interorganizational –
information systems and limited information
transparency (e.g., Storey et al. 2006). In
addition, different contexts (e.g., depending on
product and/or market characteristics) might need

different approaches, as Fisher (1997) argued.
Also here, there is growing empirical evidence
that shows the influence of such contextual
factors (e.g., Van der Vaart and van Donk 2006;
Giménez et al. 2012). Extending the benefits of
buyer-supplier relationship management to the
network level, while taking into account possible
limitations and removing barriers is one of the
challenging issues in supply chain networks
and their management. Social network theory
is certainly one of the theoretical stances that can
help to pave the way for further exploration, and
understanding of supply chain networks and their
behavior.
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