
Chapter 9

Pricing the Power of Wind

9.1 Introduction

In this book, the various aspects of weather derivative have been presented. So far,

we have focused on modeling and pricing temperature derivatives. In this chapter,

we focus on wind derivatives. A model for the dynamics of the wind-generating

process using a nonparametric nonlinear wavelet network is presented. Moreover,

the proposed methodology is compared against alternative methods, proposed in

prior studies, and the pricing equations for wind futures are provided.

The notional value of the traded wind-linked securities is around $36 million

indicating a large and growing market (WRMA 2009). However, after the close of

the US Future Exchange, wind derivatives are traded in the Chicago Climate

Futures Exchange and in the OTC. The demand from these derivatives exists.

However, investors hesitate to enter into wind contracts. The main reasons of the

slow growth of the wind market compared to temperature contracts are the diffi-

culty in accurately modeling wind and the challenge to find a reliable model for

valuing related contracts. As a result, there is a lack of reliable valuation framework

that makes financial institutions reluctant to quote prices over these derivatives.

The aim of this chapter is to model and price wind derivatives. Wind derivatives

are standardized products that depend only on the daily average wind speed

measured by a predefined meteorological station over a specified period and can

be used by wind (and weather in general)-sensitive business such as wind farms,

transportation companies, construction companies, and theme parks to name a few.

The financial contracts that are traded are based on the simple daily average wind

speed index, and this is the reason that we choose to model only the dynamics of the

daily average wind speeds. The revenues of each company have a unique depen-

dence and sensitivity to wind speeds. Although wind derivatives and weather

derivatives can hedge a significant part of the weather risk of the company always,

some basis risk will still exist which must be hedged from each company separately.

This can be done either by defining a more complex wind index or by taking an

additional hedging position.
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Wind is free, renewable, and environmentally friendly source of energy

(Billinton et al. 1996). While the demand for electricity is closely related to the

temperature, the electricity produced by a wind farm is dependent on the wind

conditions. The risk exposure of the wind farm depends on the wind speed and the

wind direction and in some cases on the wind duration of the wind speed at certain

level. However, modern wind turbines include mechanisms that allow turbines to

rotate on in the appropriate wind direction (Caporin and Pres 2010). However, the

underlying wind indices do not account for the duration of the wind speed at certain

level but rather, usually, measure the average daily wind speed. Hence, the param-

eter of the duration of the wind speed at certain level is not considered in our daily

model. Hence, the risk exposure of a wind farm can be analyzed by quantifying only

the wind speed. On the other hand, companies like wind farms that its revenues

depend on the duration effect can use an additional hedging strategy that includes

this parameter. This can be done by introducing a second index that measures the

duration. A similar index for temperature is the frost day index.

Many different approaches have been proposed so far for modeling the dynamics

of the wind speed process. The most common is the generalized ARMA approach.

There have been a number of studies on the use of linear ARMAmodels to simulate

and forecast wind speed in various locations (Saltyte-Benth and Benth 2010;

Billinton et al. 1996; Caporin and Pres 2010; Castino et al. 1998; Daniel and

Chen 1991; Huang and Chalabi 1995; Kamal and Jafri 1997; Martin et al. 1999;

Tol 1997; Torres et al. 2005). In Kavasseri and Seetharaman (2009), a more

sophisticated ARFIMA model was used. Most of these studies did not consider in

detail the accuracy of the wind speed forecasts (Huang and Chalabi 1995). On the

other hand, Ailliot et al. (2006) apply an AR with time-varying coefficients to

describe the space–time evolution of wind fields. In Benth and Saltyte-Benth

(2009), a stochastic process called CAR model is introduced in order to model

and forecast daily wind speeds. Finally, in Nielsen et al. (2006), various statistical

methods were presented for short-term wind speed forecasting. Sfetsos (2002)

argues about the use of linear or meteorological models since their prediction

error is not significantly lower than the elementary persistent method. Alternatively,

some studies use space–state models to simultaneously fit the speed and the

direction of the wind (Castino et al. 1998; Cripps et al. 2005; Haslett and Raftery

1989; Martin et al. 1999; Tolman and Booij 1998; Tuller and Brett 1984).

Alternatively to the linear models, artificial intelligence was applied in wind speed

modeling and forecasting. In Alexiadis et al. (1998), Barbounis et al. (2006), Beyer

et al. (1994), More and Deo (2003), Sfetsos (2000), Mohandes et al. (1998), and

Sfetsos (2002), neural networks were applied in order to model the dynamics of the

wind speed process. In Mohandes et al. (2004), support vector machines were used

while in Pinson and Kariniotakis (2003), and fuzzy neural networks were applied.

Depending on the application, wind modeling is based on hourly (Ailliot et al.

2006; Castino et al. 1998; Daniel and Chen 1991; Kamal and Jafri 1997; Martin

et al. 1999; Sfetsos 2000, 2002; Torres et al. 2005; Yamada 2008), daily (Benth and

Saltyte-Benth 2009; Billinton et al. 1996; Caporin and Pres 2010; Huang and

Chalabi 1995; More and Deo 2003; Tol 1997), weekly, or monthly basis (More
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and Deo 2003). When the objective is to hedge against electricity demand and

production, hourly modeling is used, while for weather derivative pricing, the daily

method is used. More rarely, weekly or monthly modeling is used in order to

estimate monthly wind indexes. Since we want to focus on weather derivative

pricing, the daily modeling approach is followed; however, the proposed method

can be easily adapted in hourly modeling too.

Wind speed modeling is much more complicated than temperature modeling

since wind has a direction and is greatly affected by the surrounding terrain such as

building and trees (Jewson et al. 2005). However, in Benth and Saltyte-Benth

(2009), it is shown that wind speed dynamics share a lot of common characteristics

with the dynamics of temperature derivatives as it was found on Benth and Saltyte-

Benth (2007), Zapranis and Alexandridis (2008, 2009, 2011), and Alexandridis

(2010). In this context, we use a mean-reverting Ornstein–Uhlenbeck stochastic

process to model the dynamics of the wind speed dynamics where the innovations

are driven by a Brownian motion. The statistical analysis reveals seasonality in the

mean and variance. In addition, we use a novel approach to model the autocorrela-

tion of the wind speeds. More precisely, a WN is applied in order to capture

accurately the autoregressive characteristics of the wind speeds.

The evaluation of the proposed methodology against alternative modeling

procedures proposed in prior studies indicates that WNs can accurately model

and forecast the dynamics and the evolution of the speed of the wind. The perfor-

mance of each method was evaluated in-sample as well as out-of-sample and for

different time periods.

The rest of the chapter is organized as follows: in Sect. 9.2, a statistical analysis

of the wind speed dynamics is presented. In Sects. 9.2.1 and 9.2.2, a linear ARMA

model and a nonlinear nonparametric WN is applied, respectively. The evaluation

of the studied models is presented in Sect. 9.2.3. In Sect. 9.3, we derive the pricing

formulas for future derivatives written on the wind index. Finally, in Sect. 9.4, we

conclude.

9.2 Modeling the Daily Average Wind Speed

In this section, we derive empirically the characteristics of the daily average wind

speed (DAWS) dynamics in New York, USA. The data were collected from

NOAA1 and correspond to DAWSs. The wind speed is measured in 0.1 knots.

The measurement period is between 1st January 1988 and 28th February 2008. The

first 20 years are used for the estimation of the parameters, while the remaining

2 months are used for the evaluation of the performance of the proposed model.

In order for each year to have the same number of observations, the 29th of February

1 http://www.noaa.gov
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is removed from the data resulting to 7,359 data points. The time series is complete

without any missing values.

In Fig. 9.1, the DAWSs for the first 20 years are presented. A closer inspection of

Fig. 9.1 reveals seasonality. The descriptive statistics of the in-sample data are

presented in Table 9.1. The values of the data are always positive and range from

1.8 to 32.8 with mean around 9.91. The descriptive statistics of the DAWSs indicate

that there is a strong positive kurtosis and skewness, while the normal hypothesis is

rejected based on the Jarque–Bera statistic. The same conclusion can be reached

observing the first part of Fig. 9.2 where the histogram of the DAWSs is represented.

It is clear that the density of the DAWSs has positive skewness and excess kurtosis.

Hence, the distribution of DAWSs deviates significantly from the normal, and it is

not symmetrical. In literature, theWeibull or Rayleigh (which is a special case of the

Weibull) distributions were proposed (Benth and Saltyte-Benth 2009; Saltyte-Benth

and Benth 2010; Brown et al. 1984; Celik 2004; Daniel and Chen 1991; Garcia et al.

1998; Justus et al. 1978; Kavak Akpinar and Akpinar 2005; Nfaoui et al. 1996;

Torres et al. 2005; Tuller and Brett 1984). In addition, some studies propose the use

of the lognormal distribution (Benth and Saltyte-Benth 2009; Garcia et al. 1998) or

the Chi-square (Dorvlo 2002). Finally, in Jaramillo and Borja (2004), a bimodal

Weibull andWeibull distribution are used. However, empirical studies favor the use

of the Weibull distribution (Celik 2004; Tuller and Brett 1984).

Fig. 9.1 Daily average wind speed for New York

Table 9.1 Descriptive statistics of the wind in New York

Mean Median Max Min St. dev. Skew Kurt J–B p value

Original 9.91 9.3 32.8 1.8 3.38 0.96 4.24 1595.41 0

Transformed 2.28 2.3 3.6 0.6 0.34 0.00 3.04 0.51 1

J–B Jarque–Bera statistic, P value p values of the J–B statistic
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A closer inspection of part (a) of Fig. 9.2 reveals that the DAWSs in New York

follow a Weibull distribution with scale parameter l ¼ 11:07 and shape parameter

k ¼ 3:04. Following Benth and Saltyte-Benth (2009), Brown et al. (1984), Daniel

and Chen (1991), in order to symmetrize the data, the Box–Cox transform is

applied. The Box–Cox transformation is given by

WðlÞ ¼
Wl � 1

l
l 6¼ 0

lnðWÞ l ¼ 0

8<
: (9.1)

whereWðlÞ is the transformed data. The parameter l is estimated by maximizing the

log-likelihood function. Note that the log transform is a special case of

the Box–Cox transform with l ¼ 0. The optimal l of the Box–Cox transform for

the DAWSs in New York is estimated to be 0.014. In the second part of Fig. 9.2, the

histogram of the transformed data can be found, while the second row on Table 9.1

shows the descriptive statistics of the transformed data.

The DAWSs exhibit a clear seasonal pattern which is preserved in the

transformed data. The same conclusion can be reached by examining the ACF of

the DAWS in the first part of Fig. 9.3. In Benth and Saltyte-Benth (2009), Saltyte-

Benth and Benth (2010), and Caporin and Pres (2010), the seasonality was captured

by series of sinusoids. As in Zapranis and Alexandridis (2008, 2009, 2011) and as it

was presented in the previous chapters for the case of temperature process, the

seasonal effects are modeled by a truncated Fourier series given by

SðtÞ ¼ a0 þ b0tþ
XI1
i¼1

ai sin 2pi t� fið Þ 365=ð Þ þ
XJ1
j¼1

bj sin 2pj t� gj
� �

365=
� �

:

(9.2)

Fig. 9.2 Histogram of the (a) original and (b) Box–Cox transformed data
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In addition, we examine the data for a linear trend representing the global warming

or the urbanization around the meteorological station. First, we quantify the trend

by fitting a linear regression to the DAWS data. The regression is statistically

significant with intercept a0 ¼ 2:3632 and b0 ¼ �0:000024 indicating a slight

decrease in the DAWSs. Next, the seasonal periodicities are removed from

the detrended data. The remaining statistically significant parameters of (9.2)

with I1 ¼ J1 ¼ 1 are presented in Table 9.2. As it is shown on the second part of

Fig. 9.3, the seasonal mean was successfully removed. The same conclusion was

reached in previous studies for daily models for both temperature and wind

(Alexandridis 2010; Zapranis and Alexandridis 2008, 2009, 2011; Benth et al.

2009; Benth and Saltyte-Benth 2005, 2007, 2009; Benth et al. 2007).

9.2.1 The Linear ARMA Model

In literature, various methods for studying the statistical characteristics of the wind

speed, in daily or hourly measurements, were proposed. However, the majority of

the studies utilize variations of the general ARMA model (Ailliot et al. 2006;

Billinton et al. 1996; Brett and Tuller 1991; Daniel and Chen 1991; Huang and

Chalabi 1995; Kamal and Jafri 1997; Lei et al. 2009; Nfaoui et al. 1996; Rehman

and Halawani 1994; Torres et al. 2005). In this chapter, we will first estimate the

dynamics of the detrended and deseasonalized DAWSs process using a general

ARMA model, and then we will compare our results with a WN.

Fig. 9.3 The autocorrelation function of the transformed DAWSs in New York (a) before and (b)

after removing the seasonal mean

Table 9.2 Estimated parameters of the seasonal component

a0 b0 a1 f1 b1 g1

2.3632 �0.000024 0.0144 827.81 0.1537 28.9350
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We define the detrended and deseasonalized DAWS as

~W
ðlÞðtÞ ¼ WðlÞðtÞ � SðtÞ: (9.3)

The dynamics of ~W
ðlÞðtÞ are modeled by an O–U stochastic process:

d ~W
ðlÞðtÞ ¼ k ~W

ðlÞðtÞdtþ sðtÞdBt: (9.4)

First, in order to select the correct ARMA model, we examine the ACF of the

detrended and deseasonalized DAWS. A closer inspection of the second part of

Fig. 9.3 reveals that the 1st, 2nd, and the 4th lags are significant. On the other hand,

by examining the PACF in Fig. 9.4, we conclude that the first four lags are

necessary to model the autoregressive effects of the wind speed dynamics.

In order to find the correct model, we estimate the log-likelihood function (LLF)

and the Akaike information criterion (AIC). Consistent with the PACF, both criteria

suggest that an AR (4) model is adequate for modeling the wind process since they

were minimized when a model with four lags was used. The estimated parameters

and the corresponding p values are presented in Table 9.3. It is clear that the three

first parameters are statistically very significant since their p value is less than 0.05.

Fig. 9.4 The partial autocorrelation function of the detrended and deseasonalized DAWS

in New York
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The parameter of the 4th lag is statistically significant with p value 0.0657. The AIC
for this model is 0.46852, while the LLF is �1,705.14.

Observing the residuals of the AR model in the first part of Fig. 9.5, we conclude

that the autocorrelation was successfully removed. However, the ACF of the

squared residuals indicates a strong seasonal effect in the variance of the wind

speed as it is shown in Fig. 9.6. The same conclusion was reached in previous

studies for daily models for both temperature and wind (Alexandridis 2010; Benth

et al. 2009; Benth and Saltyte-Benth 2005, 2007, 2009; Benth et al. 2007; Zapranis

and Alexandridis 2008, 2009, 2011). Following the similar procedure that was

described in the previous chapters for the temperature, we model the seasonal

variance with a truncated Fourier series:

s2ðtÞ ¼ c0 þ
XI2
i¼1

ci sin 2pit 365=ð Þ þ
XJ2
j¼1

dj sin 2pjt 365=ð Þ: (9.5)

Fig. 9.5 Autocorrelation function of the residuals of (a) the linear model and (b) the WN

Table 9.3 Estimated parameters of the linear AR (4) model

Parameter AR (1) AR (2) AR (3) AR (4)

Value 0.3617 �0.0999 0.0274 0.0216

P value 0.0000 0.0000 0.0279 0.0657

Fig. 9.6 Autocorrelation function of the squared residuals of (a) the linear model and (b) the WN
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Note that we assume that the seasonal variance is periodic and repeated every

year, that is,s2ðtþ 365Þ ¼ s2ðtÞwhere t ¼ 1; . . . ; 7359. The empirical and the fitted

seasonal variances are presented in Fig. 9.7, while in Table 9.4, the estimated

parameters of (9.5) are presented. Non-surprisingly, the variance exhibits

the same characteristics as in the case of temperature (Alexandridis 2010;

Zapranis and Alexandridis 2008; Benth and Saltyte-Benth 2007). More precisely,

the seasonal variance is higher in the winter and early summer, while it reaches its

lower values during the summer period.

Finally, the descriptive statistics of the final residuals are examined. A closer

inspection of Table 9.5 shows that the autocorrelation has successfully removed as

indicated by the Ljung–Box Q-statistic. In addition, the distribution of the residuals

is very close to the normal distribution as it is shown on the first part of Fig. 9.8;

however, small negative skewness exists. More precisely, the residuals have

mean 0 and standard deviation of 1. In addition, the kurtosis is 3.03 and the skewness

is �0.09.

9.2.2 Wavelet Networks for Wind Speed Modeling

In this section, WNs are used in the transformed, detrended, and deseasonalized

wind speed data in order to model the daily dynamics of wind speeds in New York.

Fig. 9.7 Empirical and fitted seasonal variance of (a) the linear model and (b) the WN

Table 9.4 Estimated parameters of the seasonal variance in the case of the linear model

c0 c1 c2 c3 c4 d1 d2 d3 d4

0.0932 0.000032 �0.0041 0.0015 �0.0028 0.0358 �0.0025 �0.0048 �0.0054

Table 9.5 Descriptive statistics of the residuals for the linear AR (4) model

Var Mean

St.

dev. Max Min Skew Kur JB

P
value KS

P
value LBQ

P

value

Noise 0 1 3.32 �5.03 �0.09 3.03 10.097 0.007 1.033 0.2349 8.383 0.989

St. dev. standard deviation, JB Jarque–Bera statistic, KS Kolmogorov–Smirnov statistic, LBQ
Ljung–Box Q-statistic
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Motivated by the waveform of the data, we expect a wavelet function to better

fit the wind speed. In addition, it is expected that the nonlinear form of the WN will

provide more accurate representation of the dynamics of the wind speed process

both in-sample and out-of-sample.

The structure and the mathematical expressions of a WN are presented analyti-

cally in Appendices A and B, while in Alexandridis (2010), detailed explanation of

how to use WNs in model identification problems is described. Since WNs are

nonlinear tools, criteria like AIC or LLF cannot be used. Hence, in this section,

WNs will be used in order to select the significant lags, to select the appropriate

network structure, to train a WN in order to learn the dynamics of the wind speeds,

and finally, to forecast the future evolution of the wind speeds.

The algorithm developed by Alexandridis (2010) simultaneously estimates the

correct number of lags that must be used in order to model the wind speed dynamics

and the architecture of the WN by using a recurrent algorithm. An illustration of the

model identification algorithm is presented in Appendix A.

Our backward elimination algorithm examines the contribution of each available

explanatory variable to the predictive power of the WN. First, the prediction risk of

the WN is estimated as well as the statistical significance of each variable. If a

variable is statistically insignificant, it is removed from the training set, and the

prediction risk and the new statistical measures are estimated. The algorithm stops

if all explanatory variables are significant. Hence, in each step of our algorithm, the

variable with the larger p value greater than 0.1 will be removed from the training

set of our model. After each variable removal, a new architecture of the WN will be

selected and a new WN will be trained. However, the correctness of the decision of

removing a variable must be examined. This can be done either by examining the

prediction risk or the �R
2
. If the new prediction risk is smaller than the new prediction

risk multiplied by a threshold, then the decision of removing the variable was

correct. If the prediction risk increased more than the allowed threshold, then the

variable was reintroduced back to the model. We set this threshold at 5%. In this

study, the selected statistical measure is the SBP proposed by Moody and Utans

(1992). Previous analysis in Alexandridis (2010) indicates that the SBP fitness

Fig. 9.8 Empirical and fitted normal distribution of the final residuals of the WN
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criterion was found to significantly outperform alternative criteria in the variable

selection algorithm. The SBP quantifies the effect on the empirical loss of replacing

a variable by its mean. Analytical description of the SBP is given in Alexandridis

(2010), Zapranis and Refenes (1999), and Moody and Utans (1992). In each step,

the SBP and the corresponding p value are calculated. For analytical explanation of
each step of the algorithm, we refer to Alexandridis (2010).

The proposed variable selection framework will be applied on the transformed,

detrended, and deseasonalized wind speeds in New York in order to select the

length of the lag series. The target values of the WN are the DAWSs. The

explanatory variables are lagged versions of the target variable. The relevance of

a variable to the model is quantified by the SBP criterion which was introduced in

Moody and Utans (1992). Initially, the training set contains the dependent variable

and seven lags. The analysis in the previous section indicates that a training set with

seven lags will provide all the necessary information of the ACF of the detrended

and deseasonalized DAWSs. Hence, the training set consists of 7 inputs, 1 output,

and 7,293 training pairs.

Table 9.6 summarizes the results of the model identification algorithm for New

York. Both the model selection and the variable selection algorithms are included in

Table 9.6. The algorithm concluded in four steps and the final model contains only

three variables, that is, three lags. The prediction risk for the reduced model is

0.0937 while for the original model was 0.0938. On the other hand, the empirical

loss slightly increased from 0.0467 for the initial model to 0.0468 for the reduced

model indicating that the explained variability (unadjusted) slightly decreased.

Finally, the complexity of the network structure and number of parameters were

significantly reduced in the final model. The initial model needed one hidden unit

(HU) and seven inputs. Hence, 23 parameters were adjusted during the training

phase. Hence, the ratio of the number of training pairs n to the number of

parameters p was 317.4. In the final model, only two HU and three inputs were

used. Hence, only 18 parameters were adjusted during the training phase, and the

ratio of the number of training pairs n to the number of parameters p was 405.6.

The proposed algorithm suggests that a WN needs only three lags to extract the

autocorrelation from the data while the linear model needed four lags. A closer

inspection of Table 9.6 reveals that the WN with three and four lags have the same

Table 9.6 Variable selection with backward elimination in New York

Step

Variable to

remove (lag)

Variable to

enter (lag)

Variables

in model

Hidden units

(parameters)

N/P
ratio

Empirical

loss

Prediction

risk

– 7 1 (23) 317.4 0.0467 0.0938

1 7 – 6 1 (20) 365.0 0.0467 0.0940

2 5 – 5 1 (17) 429.4 0.0467 0.0932

3 6 – 4 2 (23) 317.4 0.0467 0.0938

4 4 - 3 2 (18) 405.6 0.0468 0.0937

The algorithm concluded in four steps. In each step, the following are presented: which variable is

removed, the number of hidden units for the particular set of input variables and the parameters

used in the wavelet network, the ratio between the parameters and the training patterns, the

empirical loss, and the prediction risk
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predictive power in-sample and out-of-sample. Hence, we chose the simpler model.

Our model is similar to an AR (3) model with time-varying parameters.

Examining the second part of Fig. 9.5, we conclude that the autocorrelation was

successfully removed from the data; however, the seasonal autocorrelation in the

squared residuals is still present as it is shown in Fig. 9.6. We will remove the

seasonal autocorrelation using (9.5). The estimated parameters are presented in

Table 9.7, and as it was expected, their values are similar to those of the case of the

linear model. In Fig. 9.7, the empirical and the fitted seasonal variance is presented.

Again, the same conclusions are reached for the seasonal variance. The variance is

higher at winter period, while it reaches its minimum during the summer period.

Finally, examining the final residuals of the WN model, we observe that the

distribution of the residuals is very close to the normal distribution as it is shown

in Fig. 9.8, while the autocorrelation was successfully removed from the data.

In addition, we observe an improvement in the distributional statistics in contrast

to the case of the linear model. The distributional statistics of the residuals are

presented in Table 9.8.

Concluding, the distributional statistics of the residuals indicate that in

in-sample, the two models can accurately represent the dynamics of the DAWSs;

however, an improvement is evident when a nonlinear nonparametric WN is used.

9.2.3 Forecasting Daily Average Wind Speeds

In this section, our proposed model will be validated out-of-sample. In addition, the

performance of our model will be tested against two models, first, against the linear

model previously described and, second, against the simple persistent method

usually referred as benchmark. The linear model is the AR (4) model described in

the previous section. The persistent method assumes that today’s and tomorrow’s

DAWSs will be equal, that is, W�ðtþ 1Þ ¼ WðtÞ where the W� indicates the

forecasted value.

Table 9.7 Estimated parameters of the seasonal variance in the case of the WN

c0 c1 c2 c3 c4 d1 d2 d3 d4

0.0935 �0.000020 �0.0034 0.0014 �0.0026 0.0353 �0.0016 �.0042 �0.0052

Table 9.8 Descriptive statistics of the residuals for the WN model

Var Mean

St.

dev Max Min Skew Kur. JB

P
value KS

P
value LBQ

P
value

noise 0 1 3.32 �4.91 �0.08 3.04 8.84 0.0043 0.927 0.3544 13.437 0.858

St. dev. standard deviation, JB Jarque–Bera statistic, KS Kolmogorov–Smirnov statistic, LBQ
Ljung–Box Q-statistic
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The three models will be used for forecasting DAWSs for two different periods.

Usually, wind derivatives are written for a period of a month. Hence, DAWSs for 1

and 2 months will be forecasted. The out-of-sample dataset correspond to the period

from January 1 to February 28, 2008, and were not used for the estimation of the

linear and nonlinear models. Note that our previous analysis reveals that the

variance is higher in the winter period indicating that it is more difficult to forecast

accurately DAWS for these two months.

In Table 9.9, the performance of the three methods when the forecast window is

1 month is presented. Various error criteria are estimated like the mean, median,

and max. AE; the mean square error (MSE); the POCID; and the IPOCID. As it is

shown on Table 9.9, our proposed method outperforms both the persistent and the

AR (4) model. The AR (4) model performs better than the naı̈ve persistent method;

however, all error criteria are improved when a nonlinear WN is used. The MSE is

16.3848 for the persistent method, 10.6127 for the AR (4) model, and 10.3309 for

the WN. In addition, our model can predict more accurately the movement of the

wind speed since the POCID is 80% for the WN and the AR (4) models, while it is

only 47% for the persistent method. Moreover, the IPOCID is 37% for the proposed

model, while it is only 33% for the other two methods.

In order to compare our model directly with the linear method, we estimate a

linear AR (3) model. However, our proposed methodology still outperforms the

linear method.

Next, the three forecasting methods are evaluated in 2 months day-ahead

forecasts. The results are similar and presented in Table 9.10. The proposed WN

outperforms the other two methods. Only the max. AE and the POCID are slightly

smaller when the AR (4) model is used. However, the IPOCID is 38% for both

methods. Also, our results indicate that the persistent method produces significantly

Table 9.9 Out-of-sample comparison. One month

Persistent AR (4) WN

Md.AE 2.3000 2.2147 2.1081

MAE 3.3000 2.5547 2.5026

Max AE 8.2000 7.9217 7.7590

SSE 507.9300 328.9947 320.2573

RMSE 4.0478 3.2577 3.2142

NMSE 1.5981 1.0351 1.0076

MSE 16.3848 10.6127 10.3309

MAPE 0.3456 0.2744 0.2680

SMAPE 0.3233 0.2570 0.2518

POCID 47% 80% 80%

IPOCID 33% 33% 37%

POS 100% 100% 100%

Md. AE median absolute error, MAE mean absolute error, Max AE maximum absolute error, SSE
sum of squared errors, RMSE root-mean-square error, NMSE normalized mean square error, MSE
mean square error, MAPE mean absolute percentage error, SMAPE symmetric MAPE, POCID
position of change in direction, IPOCID independent POCID, POS position of sign
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worse forecasts. Finally, the WN and the linear AR (3) model are compared with

first to show better forecasting ability.

Our results indicate that the WN can forecast the evolution of the dynamics of

the DAWSs, and hence, they constitute an accurate tool for wind derivatives

pricing.

In order to have a better insight of the performance of each method, the

cumulative average wind speed (CAWS) index is calculated. Since we are inter-

ested in weather derivatives, one common index is the sum of the daily rainfall

index over a specific period. In Table 9.11, the estimation of three methods is

presented. More precisely, the WN, the AR (4), as well as the HBA methods are

compared. The HBA is a simple statistical method that estimates the performance

of the index over the specific period the previous years and it is often used in the

industry. In other words, it is the average of 20 years of the index over the period of

January and February, and it serves as a benchmark.

The final row of Table 9.11 presents the actual values of the cumulative rainfall

index. An inspection of Table 9.11 reveals that the WN significantly outperforms

the other two methods. For the first case, where forecasts for 1 month ahead are

estimated, the forecast of the CAWS index using WN is 312.7, while the actual

index is 311.2. On the other hand, the forecast using the AR (4) model is 305.1.

However, when the forecast period increases, the forecast of the AR (4) model

Table 9.11 Estimation of the cumulative rainfall index for 1 and 2 months using an AR (4) model,

WN, and historical burn analysis

AR (4) WN HBA Actual

1 month 305.1 312.7 345.5 311.2

2 months 579.5 591.1 658.3 600.6

Table 9.10 Out-of-sample comparison. Two months

Persistent AR (4) WN

Md.AE 2.4000 2.7981 2.6589

MAE 3.3678 2.8126 2.7976

Max AE 11.2000 7.9345 8.0194

SSE 1054.3500 706.1806 702.4437

RMSE 4.2273 3.4596 3.4505

NMSE 1.4110 0.9450 0.9400

MSE 17.8703 11.9692 11.9058

MAPE 0.3611 0.3014 0.3001

SMAPE 0.3289 0.2798 0.2782

POCID 45% 71% 69%

IPOCID 36% 38% 38%

POS 100% 100% 100%

Md. AE median absolute error, MAE mean absolute error, Max AE maximum absolute error, SSE
sum of squared errors, RMSE root-mean-square error, NMSE normalized mean square error, MSE
mean square error, MAPE mean absolute percentage error, SMAPE symmetric MAPE, POCID
position of change in direction, IPOCID independent POCID, POS position of sign
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significantly deviates. More precisely, for the second case, the forecast of the WN is

591.1 while the actual index is 600.6 and the AR (4) forecast is 579.5. Finally, we

have to mention that the WN uses less information than the AR (4) model, since in

the case of WN, only the information of three lags is used.

Since we are interested in wind derivatives and the valuation of wind contracts,

next, an illustration of the performance of each method using a theoretical contract

is presented. A common wind contract has a tick size of 0.1 knots and pays 20$ per

tick size. Hence, for the case of a 1-month contract, the AR (4) method

underestimates the contract size for 1,200$, while the WN overestimates the

contract for 300$ only. Similarly, for the case of a 2-month contract, the AR (4)

method underestimates the contract size for 4,220$, while the WN underestimates

the contract for 1,900$.

Incorporating meteorological forecasts can lead to a potentially significant

improvement of the performance of the proposed model. Meteorological forecasts

can be easily incorporated in both the linear and the WN models previously

presented. A similar approach was followed for temperature derivatives by

Dorfleitner and Wimmer (2010) for temperature derivatives. However, this method

cannot be always applied. Despite great advances in meteorological science,

weather still cannot be predicted precisely and consistently, and forecasts beyond

10 days are not considered accurate (Wilks 2011). If the day that the contract is

traded is during or close to the life of the derivative (during the period that wind

measurements are considered), the meteorological forecasts can be incorporated in

order to improve the performance of the methods. However, very often, weather

derivatives are traded long before the start of the life of the derivative. More

precisely, very often, weather derivatives are traded months or even a season before

the starting day of the contract. In this case, meteorological forecasts cannot be used.

9.3 Pricing Wind Derivatives

In this section, the pricing formulas for wind derivatives are presented under the

assumption of a normal driving noise process. The analysis performed in the

previous section indicates that the assumption that the final residuals, after dividing

out the seasonal variance, follow a normal distribution is justified.

When the market is complete, a unique risk-neutral probability measure Q � P
can be obtained, where P is the real-world probability measure. This change of

measure turns the stochastic process into a martingale. Hence, financial derivatives

can be priced under the risk-neutral measure by the discounted expectation of the

derivative payoff.

The same implications that we faced in the pricing of temperature derivatives

appear also in the pricing of wind derivatives. The wind market is an incomplete

market. The underlying weather derivative cannot be stored or traded. Moreover,

the market is relatively illiquid. In principle (extended), risk-neutral valuation can

still be carried out in incomplete markets.
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The method that was used in order to proceed in temperature derivative pricing

will be followed also in this section. The change of measure from the real world to

the risk-neutral world under the dynamics of a BM can be performed using the

Girsanov’s theorem.

The statistical analysis indicates that the transformed DAWSs can be modeled

by a mean-reverting O–U process where the speed of mean reversion variable is a

function of time:

dW
ðlÞ
t ¼ SðtÞ þ aðtÞ W

ðlÞ
t�1 � Sðt� 1Þ

� �
dtþ sðtÞdBt; (9.6)

whereSðtÞ is the seasonal function,sðtÞ is the seasonal variance which is bounded by
zero, aðtÞ is the speed of mean reversion, and Bt is the driving noise process.

Using the Girsanov’s theorem, under the risk-neutral measure Q, we have that

dBy
t ¼ dBt � yðtÞ; (9.7)

where yðtÞ is the market price of risk and

ðT
0

y2ðtÞdt<1: (9.8)

Hence, applying Itô formula on (9.6) and (9.7), the solution of the transformed

DAWS under the risk-neutral measure Q is given by

W
ðlÞ
t ¼ SðtÞ þ e

Ð t

0
aðzÞdz

W
ðlÞ
0 � Sð0Þ

� �
þ e

Ð t

0
aðzÞdz

ðt
0

sðsÞyðsÞe�
Ð s

0
aðzÞdz

ds

þ e
Ð t

0
aðzÞdz

ðt
0

sðsÞe�
Ð s

0
aðzÞdz

dBy
t : (9.9)

The proposed model is an extension of the CAR (p) introduced by Brockwell and
Marquardt (2005) and applied by Benth and Saltyte-Benth (2009) in wind deriva-

tive pricing. Hence, we follow a similar pricing approach presented in Benth and

Saltyte-Benth (2009).

The transformed, detrended, and deseasonalized DAWS ~W
ðlÞ
t ¼ W

ðlÞ
t � SðtÞ are

normally distributed with mean

myðt; s; ~WðlÞ
t Þ ¼ e

Ð s

t
aðzÞdz ~WðlÞ

s þ e
Ð s

t
aðzÞdz

ðs
t

sðuÞyðuÞe�
Ð u

t
aðzÞdz

du; (9.10)
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and variance

S2ðt; sÞ ¼ e
2
Ð s

t
aðzÞdz

ðs
t

s2ðsÞe�2
Ð u

t
aðzÞdz

du: (9.11)

The market price of wind risk is necessary in pricing wind derivatives. However,

in order to estimate y , the actual prices of derivatives are required. Since the

shutdown of the US Future Exchange, wind derivatives are traded only in the

Chicago Climate Futures Exchange and in the OTC market, and as a result, it is

hard to obtain market data. Hence, it is very difficult to estimate the market price of

wind risk. However, the trading volume of wind derivatives is increasing every year

(WRMA 2010), and it is expected that wind derivatives will be soon included in the

listed products of the CME.

A solution to this problem is presented by Benth et al. (2009) where they study

the market price of risk for temperature derivatives in various Asian cities. The

market price of risk was estimated by calibrating model prices. Their results

indicate that the market price of risk for Asian temperature derivatives is different

from zero and shows a seasonal structure that comes from the seasonal variance of

the temperature process. Their empirical findings suggest that by knowing the

formal dependence of the market price of risk on seasonal variation, one can infer

the market price of risk for regions where weather derivative market does not exist.

Similarly, in Huang et al. (2008), a pricing method for temperature derivatives in

Taiwan is presented. Since no active weather market exists in Taiwan, the parame-

ter y is approximated by a function of the market price of risk of the Taiwan Stock

Exchange.

9.3.1 The Cumulative Average Wind Speed Index

In this section, we derive the pricing equation for the CAWS index. Similar to the

CAT index, the CAWS index is the sum of the DAWSs over a specific period t1; t2½ �,
and it is given by

CAWS ¼
ðt2
t1
WðsÞds: (9.12)

Our aim is to give a mathematical expression for the CAWS future price. If Q is

the risk-neutral probability and r is the constant compounding interest rate, then the

arbitrage-free future price of a CAT contract at time t � t1<t2 is given by

e�rðt2�tÞEQ

ðt2
t1
WðsÞds� FCAWSðt; t1; t2ÞjFt

� �
¼ 0; (9.13)
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and since FCAWS is Ft adapted, we derive the price of a CAT futures to be

FCAWSðt; t1; t2Þ ¼ EQ

ðt2
t1
WðsÞdsjFt

� �
: (9.14)

To derive the future price, we must calculate the conditional expectation ofWðsÞ
givenFt, for s� t. This is done in the following Lemma, first presented in Benth and

Saltyte-Benth (2009). For reasons of completeness, we reproduce this Lemma here.

Lemma 9.1 Let 0 � t � s � T, then for l 2 ð0; 1�, it holds that

EQ WðsÞjFt½ � ¼ M1 l= 1þ l SðsÞ þ my t; s; ~W
ðlÞ
t

� �
; l2S2ðt; sÞ

� �� �
; (9.15)

where Mkða; b2Þ is the kth moment of a normal random variable with mean a and

variance b2 and my t; s; ~W
ðlÞ
t

� �
and S2ðt; sÞ are given by (9.10) and (9.11),

respectively.

Proof From (9.1) and (9.9), we have that the wind speed at time s given Ft can be

represented (for l 6¼ 0) as

WðsÞ ¼ l SðsÞ þ my t; s; ~W
ðlÞ
t

� �
þ Sðt; sÞZ

� �
þ 1

h i1
l

;

where Z is a standard normally distributed random variable independent of Ft .

Further, my t; s; ~W
ðlÞ
t

� �
is Ft measurable. Hence, the result follows from a direct

calculation. The lognormal case l ¼ 0 follows similarly.

□
Hence, the arbitrage-free price of the CAWS index easily follows fromLemma9.1.

Proposition 9.1 The arbitrage-free price of CAWS index at time t � t1<t2 is
given by

FCAWSðt; t1; t2Þ ¼
ðt2
t1

M1 l= 1þ l SðsÞ þ my t; s; ~W
ðlÞ
t

� �
; l2S2ðt; sÞ

� �� �� �
ds;

(9.16)

where Mkða; b2Þ is the kth moment of a normal random variable with mean a and

variance b2 and my t; s; ~W
ðlÞ
t

� �
and S2ðt; sÞ are given by (9.10) and (9.11),

respectively.

Proof We have from (9.14) that
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FCAWSðt; t1; t2Þ ¼ EQ

ðt2
t1
WðsÞdsjFt

� �
;

and using Itô’s isometry, we can interchange the expectation and the integral

EQ

ðt2
t1
WðsÞdsjFt

� �
¼

ðt2
t1
EQ WðsÞjFt½ �ds;

and from a direct application from Lemma 9.1, we have that

FCAWSðt; t1; t2Þ ¼
ðt2
t1
M1 l= 1þ l SðsÞ þ my t; s; ~W

ðlÞ
t

� �
; l2S2ðt; sÞ

� �� �
ds:

□

9.3.2 The Nordix Wind Speed Index

In this section, we derive the pricing equations for the Nordix wind speed index.

The Nordix wind speed index is the index that the US Future Exchange used to

settle wind derivatives. The Nordix index is given by

I t1; t2ð Þ ¼ 100þ
Xt2
s¼t1

WðsÞ � w20ðsÞð Þ; (9.17)

and measures the daily wind speed deviations from the mean of the past 20 years

over a period ½t1; t2�.
The result of Lemma 9.1 is applied again to derive the price of a Future Nordix

wind speed index.

Proposition 9.2 The arbitrage-free price of Nordix wind future speed index at time
t � t1<t2 is given by

FNWIðt; t1; t2Þ ¼ 100�
Xt2
s¼t1

w20ðsÞ

þ
Xt2
s¼t1

M1 l= 1þ l SðsÞ þ myðt; s; ~WðlÞ
t

� �
; l2S2ðt; sÞ

� �
; (9.18)

where Mkða; b2Þ is the kth moment of a normal random variable with mean a and

variance b2.

Proof IfQ is the risk-neutral probability and r is the constant compounding interest

rate, then the arbitrage-free future price of a Nordix wind speed index contract at

time t � t1<t2 is given by
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e�r t2�tð ÞEQ 100�
Xt2
s¼t1

w20ðsÞ þ
Xt2
s¼t1

WðsÞ � FNWIðt; t1; t2ÞjFt

" #
¼ 0;

and since FNWIðt; t1; t2Þ is Ft adapted, we derive the price of a Nordix wind future

index to be

FNWIðt; t1; t2Þ ¼ 100�
Xt2
s¼t1

w20ðsÞ þ EQ

Xt2
s¼t1

WðsÞjFt

" #
:

Applying the Lemma 4.1 from Benth and Saltyte-Benth (2009), we find the explicit

solution for the price of the Nordix wind future index:

FNWIðt; t1; t2Þ ¼ 100�
Xt2
s¼t1

w20ðsÞ

þ
Xt2
s¼t1

M1 l= 1þ l SðsÞ þ myðt; s; ~W
ðlÞ
t

� �
; l2S2ðt; sÞ

� �
;

where Mkða; b2Þ is the kth moment of a normal random variable with mean a and

variance b2.
□

9.4 Conclusions

In this chapter, DAWSs from New York were studied. Our analysis revealed strong

seasonality in the mean and variance. The DAWSs were modeled by a mean-

reverting Ornstein–Uhlenbeck process in the context of wind derivative pricing.

In this study, the dynamics of the wind-generating process are modeled using a

nonparametric nonlinear WN. Our proposed methodology was compared in-sample

and out-of-sample against two methods often used in prior studies. The

characteristics of the wind speed process are very similar to the process of daily

average temperatures.

Our method is validated in a 2-month-ahead out-of-sample forecast period.

Moreover, the various error criteria produced by the WN are compared against

the linear AR model and the persistent method. Results show that the WN

outperforms the other two methods, indicating that WNs constitute an accurate

model for forecasting DAWSs. More precisely, the WN’s forecasting ability is

stronger in both samples. Testing the fitted residuals of the WN, we observe that the

distribution of the residuals is very close to the normal. Also, the WN needed only

the information of the past 3 days, while the linear method suggested a model with

four lags. Finally, we provided the pricing equations for wind futures of the Nordix

236 9 Pricing the Power of Wind



index. Although we focused on DAWSs, our model can be easily adapted in hourly

modeling.

The results in this chapter are preliminary and can be further analyzed. More

precisely, alternative methods for estimating the seasonality in the mean and in

the variance can be developed. Alternative methods could improve the fitting to the

original data as well as the training of the WN.

Also, it is important to test the largest forecasting window of each method. Since

meteorological forecasts of a window larger than few days are considered inaccu-

rate, this analysis will suggest the best model according to the desired forecasting

interval.

Finally, a large-scale comparison must be conducted. Testing the proposed

methods as well as more sophisticated models, like general ARFIMA or

GARCH, in various meteorological stations will provide a better insight in the

dynamics of the DAWS as well as in the predictive ability of each method.
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