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Preface

In the last decade, a new category of financial derivatives was developed, namely,

weather derivatives. These financial products were developed by energy and utility

companies as an effective tool for hedging the volumetric risk of the energy units

sold, rather than the price risk of each unit. Weather derivatives are financial

instruments that can be used in order to reduce risk associated with adverse or

unexpected weather conditions. The payoff of a weather derivative depends upon

the index of an underlying weather measure such as rainfall, temperature, humidity,

or snowfall. In contrast to the classical financial markets, the weather market is

incomplete in the sense that the underlying assets cannot be stored or traded.

The weather market is one of the fastest developing markets. However, many

investors are hesitant to actively enter the market. The main reasons are the

difficulty in pricing the traded financial products as well as the difficulty in

accurately modeling the underlying weather variables. In addition, the number of

publications arising from the academic community is limited. Finally, most

investors lack the knowledge of the existence of the weather market and the benefits

that it can provide.

The aim of this book is to provide a concise and rigorous treatment of the

stochastic modeling of weather market as well as to significantly contribute to the

existing literature. Presenting a pricing and modeling approach for weather

derivatives written on various underlying weather variables will help investors

and companies to accurately price weather derivatives and will help them to

effectively hedge against weather risk.

First, the basic aspects of the weather market are discussed. More precisely, we

discuss about the purpose of weather derivatives and the history of the weather

market, we present the investors of this market, and we point out the differences

between weather derivatives and insurance as well as the main problems of the

market. Next, we discuss methods for data preprocessing. More analytically,

methods for cleaning the data as well as identifying and model trends, jumps, and

discontinuities are presented. Third, we present the available modeling and pricing
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methodologies of weather derivatives. Understanding the weaknesses and

advantages of each method will help us build a model that accurately describes

the dynamics of the weather variables. Fourth, linear and nonlinear, nonparametric

methods are presented in modeling temperature wind and precipitation. Fifth,

the models that developed for the weather variables are used in order to provide

analytical pricing formulas for the various securities that are traded in the weather

market. Next, we discuss how our modeling and pricing methodologies can be

improved using meteorological forecasts. Finally, the notion of basis risk is

explained and discussed. In the sense of weather derivatives, basis risk has two

components arising from both the choice of weather station where a derivative

contract is written, as well as the relationship between the hedged volume and the

underlying weather index.

We tried to make the material accessible and readable without excessive mathe-

matical requirements, for example, at a level of advanced MBA or Ph.D. students

and industry professionals with a background in financial econometrics. Moreover,

there is an introduction – tutorial – to data preprocessing to acquaint non-

statisticians to the basic principles and a similar but more extensive introduction

to stochastic calculus for scientists of non-finance area, firstly introducing the basic

theorems and gradually building up to more complex frameworks. This introduc-

tory chapter to stochastic calculus will present all the necessary material to the

reader to help him understand and follow the sections about the pricing of the

weather derivatives.

Familiarity with the operations of the capital markets will help (e.g., to under-

stand the mechanics of the various weather securities), but it is not a prerequisite.

The book will take the reader to the level where he is expected to be able to apply

the proposed methodologies in modeling and pricing weather derivatives in any

desired location on different weather variables.

Through extensive examples and case studies, this book provides a step-by-step

guide for modeling and pricing various weather derivatives written on different

weather variables. The content is written in an easy to understand way, and the

methodologies are separated in various stages for a better understanding,

constituting the book a guidebook for both investors and students and helping

them to apply the methodologies in order to achieve a successful weather risk

management strategy and accurate weather derivative pricing.

This book is aimed to be used (a) by weather-sensitive companies in sectors

like energy, electricity, agriculture, transportation, retail, construction, and enter-

tainment, whose revenues are exposed to weather risk and are interested in weather

risk management, and (b) by students in advanced postgraduate programs in

finance, MBA, and mathematical modeling courses as well as in agriculture, energy

sector, mathematical, meteorological, and engineering sciences that are seeking

employment in the mathematical modeling and financial services industry.

In addition, the book is aimed to be used (c) by researchers in incomplete financial
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markets, in alternative investments, electricity and CO2 markets, and in relevant

Ph.D. programs and finally, (d) by investment professionals in investment

institutions such as banks, insurance companies, security houses, fund managers,

institutional investors, companies with intensive international activities, and

financial consultancy firms.

During the writing stages of this book, the help of Christina Ioannidou was

significant, and we would like to thank her.

Canterbury, UK Antonis K. Alexandridis

Thessaloniki, Greece Achilleas D. Zapranis
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Chapter 1

The Weather Derivatives Market

1.1 Introduction

Weather derivatives are financial instruments that can be used by organizations or

individuals as part of a risk management strategy to reduce risk associated with

adverse or unexpected weather conditions. Just as traditional contingent claims,

whose payoffs depend upon the price of some fundamental, a weather derivative

has an underlying measure such as rainfall, temperature, humidity, or snowfall. The

difference from other derivatives is that the underlying asset has no value and it

cannot be stored or traded while at the same time the weather should be quantified

in order to be introduced in the weather derivative. To do so, temperature, rainfall,

precipitation, or snowfall indices are introduced as underlying assets.

Today, weather derivatives are being used for hedging purposes by companies

and industries, whose profits can be adversely affected by unseasonal weather or,

for speculative purposes, by hedge funds and others interested in capitalizing on

those volatile markets.

The purpose of this book is to develop a model that explains the dynamics of the

various weather variables. A model that describes accurately the evolution of these

variables can be later used to derive closed form solutions for the pricing of weather

derivatives on various indices. This majority of the material in this book is focused

on temperature since the majority of the traded weather derivatives are written on

temperature indices. Our findings and proposals can be very useful not only to

researchers but also to traders, hedging companies, and new investors.

The rest of the chapter is organized as follows. In Sect. 1.2, the basic aspects of the

weather market are discussed. More precisely, in Sect. 1.2.1, the purpose of weather

derivatives is presented. The history of the weather marker is presented in Sect. 1.2.2,

while in Sect. 1.2.3, the investors that are actively involved in the weather market are

shown. In Sect. 1.2.4, various weather securities are described. The differences

between weather derivatives and insurance are presented in Sect. 1.2.5. The concept

of the basis risk is introduced in Sect. 1.2.6. In Sect. 1.3, the related markets to the

weather market are described. More precisely in Sect. 1.3.1 the electricity market is

A.K. Alexandridis and A.D. Zapranis, Weather Derivatives: Modeling and Pricing
Weather-Related Risk, DOI 10.1007/978-1-4614-6071-8_1,
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described while in Sect. 1.3.2 the oil and gas markets are described. In Sect. 1.4, the

main problems of the weather market are presented. The purpose and the usefulness

of this book are analytically described in Sect. 1.5. Finally, in Sect. 1.6, an outline of

the book and an overview of each chapter are presented.

1.2 The Weather Market

In this section, the basic aspects of the weather market are discussed. More

precisely, the purpose of weather derivatives, the history of the weather marker,

the investors that are actively involved in the weather market, the weather

securities, the differences between weather derivatives and insurance, the basis

risk, and finally the common approaches for pricing temperature derivatives are

described.

1.2.1 The Purpose of Weather Derivatives

Weather derivatives are financial instruments whose payoffs depend upon the value

of some underlying weather index. The underlying weather index can be rainfall,

temperature, humidity or snowfall, or any other weather variable. Weather

derivatives are used by organizations or individuals as part of a risk management

strategy to reduce risk associated with adverse or unexpected weather conditions.

In general, weather derivatives are designed to cover non-catastrophic weather

events. Rainy or dry and warm or cold periods which are expected to occur

frequently can cause large fluctuation on the revenues of a particular company.

A company that uses weather derivatives as a part of its hedging strategy can

eliminate the risk related to weather. As a result, the volatility of the year-to-year

profits will be significantly reduced. Jewson et al. (2005) present various reasons

why this is important. First, low volatility in revenues reduces the risk of great

losses and bankruptcy. Second, it decreases the volatility in the share price of the

company while it increases the share price. Finally, the interest rate that the

company can borrow money is reduced.

Government organizations can also use weather derivatives, in local or national

level, in order to avoid unexpected raise in their running costs.

In Jewson et al. (2005) and Cao and Wei (2003), various examples of weather

hedging are presented. Weather can affect the revenues of a company directly by

affecting the volume of sales. An amusement park that wants to hedge against rainy

days in which fewer visitors will be attracted can enter a weather contract written on

rainfall. Similarly, an electricity company that wants to avoid a reduced demand in

electricity due to a warm winter can use a temperature derivative. A ski resort could

use weather derivatives to hedge against a reduced snowfall which will attract fewer

visitors. On the other hand, government organization can use weather derivatives in
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order to avoid an increase in the costs of cleaning roads in case of snowfall or icy

days.

Weather can also affect the revenues or induce costs to the company indirectly,

for example, a construction company that experiences delays when constructors

cannot work due to weather. Similarly, cancellation of flights due to weather

conditions can cause large costs to airlines. In Table 1.1, various industries that

are exposed to weather risk and the particular risk that they face are presented.

Trading strategies vary from company to company, and weather derivatives can

be used to create profitable investment portfolios in a number of ways (Jewson

2004). High possible returns while keeping the risk very low can be obtained by a

portfolio that contains weather derivatives and commodity trades because of the

correlation between the weather and commodity prices. Alternatively, adding

weather derivatives on a stock portfolio will reduce its risk because of the lack of

correlation between the weather derivatives and the wider financial markets.

Finally, a diversified portfolio of weather derivatives can give good return for

very low risk because of the many different and uncorrelated weather indices on

which weather derivatives are based, (Jewson 2004).

Table 1.1 Industries with weather exposure and the type of risk they face

Hedger Weather type Risk

Agricultural industry Temperature/

precipitation

Significant crop losses due to extreme

temperatures or rainfall

Air companies Wind Cancellation of flights during windy days

Airports Frost days Higher operational costs

Amusement parks Temperature/

precipitation

Fewer visitors during cold or rainy days

Beverage producers Temperature Lower sales during cool summers

Building material

companies

Temperature/

snowfall

Lower sales during severe winters (construction

sites shut down)

Construction

companies

Temperature/

snowfall/rainfall

Delays in meeting schedules during periods of poor

weather

Energy consumers Temperature Higher heating/cooling costs during cold winters

and hot summers

Energy industry Temperature Lower sales during warm winters or cool summers

Hotels Temperature/

precipitation

Fewer visitors during rainy or cold periods

Hydroelectric power

generation

Precipitation Lower revenue during periods of drought

Municipal

governments

Snowfall Higher snow removal costs during winters with

above-average snowfall

Road salt companies Snowfall Lower revenues during low snowfall winters

Ski resorts Snowfall Lower revenue during winters with below-average

snowfall

Transportation Wind/snowfall Cancellation of ship services due to wind or buses

due to blocked roads
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1.2.2 The Weather Market History

The necessity of weather products resulted to the creation of a weather market

which developed very quickly. Since their inception in 1996, weather derivatives

have known a substantial growth. The first parties to arrange for, and issue weather

derivatives in 1996, were energy companies, which after the deregulation of energy

markets were exposed to weather risk.

Energy and utility companies already had tools for hedging the price of the

energy unit. However, as the competition was increasing, the demand in energy was

uncertain. Weather affects both short-term demand and long-term supply of energy.

A particular pattern of weather conditions, like a warming trend, can affect the

long-term supply (Cao and Wei 2003). In addition, weather anomalies could result

to severe changes in the price of energy and gas. Therefore, weather derivatives

were developed as an effective tool for hedging the volumetric risk, rather than the

price risk (Muller and Grandi 2000).

The effects of unpredictable seasonal weather patterns had previously been

absorbed and managed within a regulated, monopoly environment. The deregulated

environment together with the close association between the short-term demand for

energy and the weather conditions created a fertile environment for weather

derivatives and the development of the weather market (Cao and Wei 2003).

The first transaction in the weather derivatives market took place between 1996

and 1997. The weather transaction was executed by Aquila Energy as a weather

option embedded in a power contract (Considine 2000). The first public weather

derivative transaction was between Koch Energy and Enron in 1997 in order to

transfer the risks of adverse weather. The deal was concerning a temperature index

for Milwaukee for the winter of 1997–1998. Since then, the weather market has

quickly expanded. In the following years, transaction in Europe, Asia, and Australia

took place.

In September 1999, the Chicago Mercantile Exchange (CME) launched the first

exchange-traded weather derivatives. In Fig. 1.1, a categorization of the financial

derivatives traded in the CME is presented. CME’s contracts represent the first

exchange-traded, temperature-based weather derivatives (Cao and Wei 2003).

The CME offered new weather derivatives in various cities in the USA, attracting

more participants. Initially, weather derivatives were offered in 10 cities which

were chosen based on population, the variability in their seasonal temperatures, and

the activities seen in over-the-counter (OTC) markets. The regulatory system

offered by the CME helped the market to evolve. The CME eliminated the default

risk. Moreover, the transparency on the transactions was increased since the prices

of the contracts were public. Consequently, the weather market attracted new

participants.

In 2004, the national value of CMEweather derivatives was $2.2 billion and grew

tenfold to $22 billion through September 2005, with open interest exceeding

300,000 and volume surpassing 630,000 contracts traded. However, the OTCmarket

was still more active than the exchange, so the bid-ask spreads were quite large.
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According to the annual survey by the Weather Risk Management Association

(WRMA 2009), the estimated national value of weather derivatives – OTC and

exchange-traded – traded in 2008/2009 was $15 billion, compared to $32 billion the

previous year and $45 billion in 2005–2006. However, there was a significant

growth compared to 2005 and 2004 (Ceniceros 2006). According to CME, the

recent decline reflected a shift from seasonal to monthly contracts.

Although the overall number of contracts decreased, following the general

decline in financial markets, the weather market continues to develop, broadening

its scope in terms of geography, client base, and interrelationship with other

financial and insurance markets. In Asia, the number of contracts in 2009 rose to

250% compared to the period of 2007–2008. In Europe, there were 34,068 contracts

traded in 2008–2009 compared to the previous year’s 25,290 (WRMA 2010).

The weather derivatives market is organized as any other financial market.

Hedgers and speculators are involved on transactions. Transaction between hedgers

and speculators takes place in the primary market. In the secondary market,

speculators trade between themselves.

The group of hedgers consists of companies who buy weather derivatives to

hedge the weather risk in their businesses, while the group of speculators consists of

banks, insurance companies, reinsurance companies, and hedge funds. Speculators

Derivatives

Credit Commodity Interest Rate Foreign
Exchange

Equity Weather

Temperature

Heating
Degree
Days

Cooling
Degree
Days

Cumulative
Average

Temperature

Rainfall

Pacific Rim

Snowfall

Cumulative
Wind Speed

Index

Nordix wind
Speed Index

Precipitation Wind Hurricanes

Fig. 1.1 Categorization of financial derivatives
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are involved in trading weather derivatives in order to make a profit rather than to

hedge their risks.

Today, weather derivatives can be structured in order to cover almost any

weather variable for various periods ranging from a week to several years.

1.2.3 Market Participants

According to Challis (1999) and Hanley (1999), nearly $1 trillion of the US

economy is directly exposed to weather risk. It is estimated that nearly 30% of the

US economy and 70% of the US companies are affected by weather (CME 2005).

The electricity sector is especially sensitive to the temperature. According to Li and

Sailor (1995) and Sailor and Munoz (1997), temperature is the most significant

weather factor explaining electricity and gas demand in the United States. The

impact of temperature in both electricity demand and price has been considered in

many papers, including Henley and Peirson (1998), Peirson and Henley (1994),

Gabbi and Zanotti (2005), Zanotti et al. (2003), Pirrong and Jermakyan (2008), and

Engle et al. (1992). Hence, it is logical that energy companies are the main investors

of the weather market. In 2004, the 69% of the weather market was consisting of

energy companies. As more participants were entering the market, the energy

companies were corresponding to 46% of the weather market in 2005.

Agricultural companies are greatly affected by weather conditions. However,

only recently, companies from the agricultural sector started to participate in the

weather market. The willingness to pay for climate derivatives is measured in

Edwards and Simmons (2004) and Simmons et al. (2007). Under a general class

of mean–variance utility functions with constant absolute risk aversion, they con-

clude that there is a demand for climatic hedging tools by wheat farmers. In

Asseldonk (2003), Dubrovsky et al. (2004), Edwards and Simmons (2004),

Harrington and Niehaus (2003), Hess et al. (2002), Lee and Oren (2007), Myers

et al. (2005), Simmons et al. (2007), and Turvey (2001), the impact of the weather

risk management for agricultural and agri-business is discussed.

Transportation, public utilities, retail sales, amusement and recreation services,

and construction sectors are also very sensitive to weather (Dutton 2002). Figure 1.2

presents the participation of various industry sectors in the weather derivatives

market. It is clear that until 2005, the weather derivatives markets were dominated

by energy companies. However, as weather derivatives gain popularity, new

players enter the market especially from agriculture and retail sectors.

The development of the weather market draws new members whose profits do

not depend on weather conditions, like insurers and reinsurers, investment banks,

and hedge funds.
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Investment banks understood the potential of weather derivatives as a financial

risk management product that they could cross sell along with other financial

products for hedging interest rate or currency risks.1 Finally, some commodity

traders and hedge funds saw opportunities to trade weather on a speculative basis,

or to take advantage of arbitrage opportunities relative to other energy or agricul-

tural commodities.2

Fig. 1.2 Weather derivative potential by sector in 2004–2005 and 2005–2006 (Data obtained

from WRMA. www.wrma.org)

1 Climetrix, http://www.climetrix.com/WeatherMarket/MarketOverview/default.asp
2 Climetrix, http://www.climetrix.com/WeatherMarket/MarketOverview/default.asp
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1.2.4 Weather Securities

The list of traded contracts on the weather derivatives market is extensive and

constantly evolving. The CME offers various weather futures and option contracts.

They are index-based products geared to average seasonal and monthly weather in

46 cities3 around the world – 24 in the USA, 10 in Europe, 6 in Canada, 3

Australian, and 3 in Japan. At the end of 2009, the CME trades weather products

written on the following 10 European cities: Amsterdam, Barcelona, Berlin, Essen,

London, Madrid, Oslo, Paris, Rome, and Stockholm. In the USA, there are contracts

for the following 24 cities: Atlanta, Baltimore, Boston, Chicago, Cincinnati,

Colorado Springs, Dallas, Des Moines, Detroit, Houston, Jacksonville, Kansas

City, Las Vegas, Little Rock, Los Angeles, Minneapolis–St. Paul, New York,

Philadelphia, Portland, Raleigh, Sacramento, Salt Lake City, Tucson, and

Washington D.C. Also, there are 6 Canadian cities, Calgary, Edmonton, Montreal,

Toronto, Vancouver, and Winnipeg; 3 Australian cities, Brisbane, Melbourne, and

Sydney; and finally, there are 3 Japanese cities, Hiroshima, Tokyo, and Osaka.

However, over 95% of the contracts are written on temperature heating degree

days (HDD), cooling degree days (CDD), pacific rim, and cumulative average

temperature (CAT) indices.

In Europe, CME weather contracts for the summer months are based on an index

of CAT. The CAT index is the sum of the daily average temperatures (DATs) over

the contract period. The average temperature is measured as the simple average of

the minimum and maximum temperature over 1 day.

In the USA, Canada, and Australia, CME weather derivatives are based on the

HDD or CDD index. A HDD is the number of degrees by which the daily

temperature is below a base temperature, and a CDD is the number of degrees by

which the daily temperature is above the base temperature. The base temperature is

usually 65 �F in the USA and 18 �C in Europe and Japan. HDDs and CDDs cannot

be negative, and usually, they are accumulated over a month or over a season. The

CME also trades HDD contracts for the European cities.

For the three Japanese cities, weather derivatives are based on the Pacific Rim

Index. The Pacific Rim Index is simply the average of the CAT index over the

specific time period.

A weather contract is specified by the following parameters (Alaton et al. 2002):

• The contract type

• The strike or future price

• The tick size

• The maximum payout

• The contract period

• The underlying index (CAT, HDDs, rainfall, snowfall)

• Weather station from which the underlying variable data are obtained

• A premium paid from the buyer to the seller (negotiable)

3 The number of cities that the CME trades weather contracts at the end of 2009

8 1 The Weather Derivatives Market



Weather derivatives are based on standard derivative structures such as puts,

calls, swaps, collars, straddles, and strangles. As in the classical financial

derivatives, the payout of these contracts depends on the strike price (the value at

which the underlying index may be bought or sold) and the tick size (the smallest

increment of the index that leads to a payout amount). Usually, the payout of the

contract is capped. A cap in the payout is added in order to protect the two parties

against extreme adverse weather conditions. In option derivatives, a premium must

be given from the buyer to the seller. The premium is the price of the option.

All contracts have a defined start date and end date that constrains the period

over which the underlying index is calculated. The period of the contract can range

from 1 week to several years. In CME monthly and seasonal contracts are traded.

Some contracts have more specific periods such as the measurements of the

underlying index are considered only in working days and not at weekends.

In the contract, the underlying index must be specified. The underlying index is

based on a weather variable and defines the payoff of the contract. Usually,

contracts are written on CDDs, HDDs, or CAT over a specified period. Some

derivatives are based on event indexes which count the number of times that

temperature exceeds or falls below a defined threshold over the contract period.

Similar indexes are also used for other variables, for example, cumulative rainfall

or the number of days on which snowfall exceeds a defined level.

All weather contracts are based on the actual observations of weather at one

specific weather station. A backup station is used in the case the main station fails.

Most transactions are based on a single station, although some contracts are based

on a weighted combination of readings from multiple stations and others on the

difference in observations at two stations.

1.2.5 Weather Derivatives and Insurance

In the past, insurance contracts and catastrophe bonds were widely used by

companies in weather-sensitive industry sectors. Like insurance contracts, the

purpose of weather derivatives is to protect the buyer of the contract against adverse

weather conditions. In other words, weather derivatives also provide insurance

against fluctuations of the weather conditions. However, a closer inspection of

these two products reveals many differences.

The first difference is the weather events that each tool covers. Insurance

contracts are written on rare weather events such as extreme cold or heat and

hurricanes or floods. These events are highly liked to create great catastrophes

with huge impact on the revenues of the company. In contrast, weather derivatives

can protect a company from recurrent weather conditions with large probability of

occurrence. Unlike insurance and catastrophe-linked instruments, which cover

high-risk and low-probability events, weather derivatives usually shield revenues

against low-risk and high-probability events (e.g., mild or cold winters).

Claiming compensation from an insurance company usually is time consuming

and expensive. The insured party must first prove that the weather had catastrophic
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effects on his company while the outcome depends on the subjective opinion of

each regulator. On the other hand, in the case of weather derivatives, the company

receives the profit of the contract immediately. In addition, there is no need for a

catastrophe to occur on the company in order to receive the compensation. Weather

derivatives are based on objective criteria like the index of the temperature, the

rainfall, or any other underlying index which is accurately measured on a

predefined weather station.

Another advantage of weather derivatives is the additional freedom that they

offer to the buyer in contrast to the insurance contracts. Hedging the impact of the

weather on the competitive companies using weather derivatives is possible. For

example, an agricultural company on area A can hedge against weather effects in a

different area B where a competitive company is established. Favorable weather

conditions in area B will result to the increase of the quantity and quality of a

particular agricultural product in area B. Consequently, the demand and price for

this particular product from the company in area A will decrease.

Finally, since weather derivatives are financial instruments, a weather derivative

can be later sold in a third party, for speculative reasons, before the expiration day

of the contract.

Companies, especially, on the agriculture and energy sector can significantly

benefit from the advantages that weather derivatives offer as a weather risk man-

agement tool, (Hess et al. 2002; Pirrong and Jermakyan 2008; Simmons et al. 2007;

Turvey 2001).

1.2.6 Basis Risk

Weather risk is unique in that it is highly localized, and despite great advances in

meteorological science, it still cannot be predicted precisely and consistently. Risk

managers often face unique basis risks arising from both the choice of weather

station where a derivatives contract is written as well as the relationship between

the hedged volume and the underlying weather index (Manfredo and Richards

2009). We will refer to the first as spatial or geographical basis risk, while to the

second as basis risk.

The exchange-traded weather derivatives eliminated the default risk while at the

same time the liquidity and the transparency increased. On the other hand, investors

who wish to trade weather derivatives outside the list of the traded cities in CME

face a spatial risk.

Geographical basis risk results from the distance between the hedging company

and the site at which the weather measurement takes place. Geographical basis risk

can reach critical levels in some cases (Rohrer 2004). As the distance between a

hedging company and the measurement weather station of the weather derivative

increases, the demand for weather derivative decreases (East 2005; Edwards and

Simmons 2004).

10 1 The Weather Derivatives Market



It is expected that spatial risk will always be positive. However, Woodard and

Garcia (2008) show that weather derivatives from a variety of stations around the

hedging company can improve the hedging effectiveness. Using nonlocal

derivatives for a weather variable that is highly spatially correlated, the hedging

strategy obtained may be as good as the one obtained using locally derived

contracts (Woodard and Garcia 2008).

In many studies, energy and weather are considered highly correlated. Hence,

companies from the energy sector are extensively using weather derivatives to

hedge both the price and volumetric risk of energy demand (Gabbi and Zanotti

2005; Henley and Peirson 1998; Pirrong and Jermakyan 2008). Moreover, weather

derivatives are used for the valuation of gas and CO2 emissions contracts (Bataller

et al. 2006; Zanotti et al. 2003; Geman 1999).

However, these two variables, energy and temperature (or any other weather

variable), are not perfectly correlated. The payoff of the weather derivative depends

on the weather index, and it is unlikely that the payoff will compensate exactly for

the money lost due to weather (Jewson et al. 2005). As a result, a risk is induced on

the hedging strategy, called basis risk. As the correlation between the weather index

and the financial loss increases, it is expected of the basis risk to decrease.

The study and understanding of spatial and basis risk will draw new participants

to the weather market.

1.3 Weather Derivatives and Related Markets

In this section, we will examine the markets that are closely related to the weather

market. The energy market, for example, electricity, oil, and gas, has similar

characteristics to the weather market. Many power companies trade also weather

derivatives due to the high correlation of the underlying variables between the two

markets. Energy companies are among the most active and sophisticated users of

derivatives (Hull 2003). Many energy products trade in both the OTC and on

exchanges.

1.3.1 The Electricity Market

As it was mentioned earlier, the weather market emerged by contracts developed by

energy companies. At the same time, the majority of the participants in the weather

market consist of companies from the energy sector. On the other hand, temperature

and electricity consumption and prices are highly correlated.

After the deregulation of the energy market in the early 1990s, the energy

companies developed financial derivatives on electricity price in order to hedge

themselves against excess production and limited consumption of electricity. Elec-

tricity is the same as any weather variable in the sense that it cannot be stored.
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Furthermore, it has to be consumed exactly at the same time as it is produced. As a

result, the electricity market cannot be considered complete, and the arbitrage-free

pricing approach cannot be applied. Hence, there is a need in energy market for real

time balancing between supply and demand. The excess power is sold to another

control area through a transmission line. Although supply and demand are the two

key factors determining the price, transmission capacity and costs also play a role.

Each area has to secure its supply of electricity and the stability of its network.

This is the role of a transmission system operator. The system operator in a

deregulated market has to be a noncommercial organization and independent with

regard to the market participants. The operator should not own any generating assets

that could benefit from its decisions. In addition, the independent system operator

has the superior, physical ruling and control of the energy system in his area.

In Table 1.2, the electricity exchanges in the world are presented. The larger are

the Nord Pool that covers the area of the Scandinavia, the European Energy

Exchange (EEX) located in Germany, and the NYMEX and PJM in the USA

which is world’s largest wholesale electricity market. Each power exchange has

its own pricing mechanism, products, and settlement principals.

The contracts traded in the weather market are divided in two categories. In the

first category, physical delivery of electricity is needed, while in the second one,

there is cash settlement of the contracts.

The day-ahead market is the main market where contracts between buyer and

seller have physical delivery of energy the next 24 h. Usually, a utility company has

the role of the buyer. Each day, the buyer bids for price and the amount of electricity

that he needs for the following day, hour by hour. Similarly, the seller, usually an

electricity production unit, announces the price and the amount of electricity he can

deliver the next day, hour by hour. At the Nord Pool, at 12:00 CET is the time of

gate closure for bids. The offer orders are aggregated to form the supply curve,

while bid orders are aggregated to form the demand curve. The price is set where

the curves for sell and buy intersect for each hour and the price is announced to

the market at 13:00 CET, and after that, the contracts are settled. From 00:00 CET

the next day, the settled contracts are delivered physically hour by hour.

Each market is divided in different control areas. Hence, in case of congestion of

power flow, area prices are calculated as mechanism to relieve the power grid. More

specifically, the price in area with the excess electricity is lowered in order to lead to

Table 1.2 Wholesale electricity markets

Location Power exchange Website

Scandinavia Nord Pool Spot http://www.nordpoolspot.com/

France Powernext http://www.powernext.fr/

Germany EEX http://www.eex.com/

Great Britain Elexon http://www.elexon.co.uk/

India PXIL http://www.powerexindia.com/

USA PJM http://www.pjm.com/

USA NYMEX http://www.cmegroup.com/company/nymex.html

USA New York market http://www.nyiso.com/
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an increase in purchase and a decrease in sale. On the other hand, the price is

increasing in the area with lower-electricity production, so the participants in this

area will sell more and purchase less.

There is also the so-called intraday market. In Nord Pool, this market is called

Elbas and helps to secure the necessary balance between supply and demand in the

power market for northern Europe. Balancing between supply and demand is also

secured in the day-ahead market. However, there is a possibility that some incident

between the closing time and the delivery at the next day may break this balance. In

the intraday market, participants can trade electricity close to real time prices in

order to bring the market back to balance.

Elbas is a continuous market, and participants can trade 24 h a day until 1 h

before delivery. Prices are set based on the best prices. The prices are ranked where

highest-buy price and lowest-sell price are the best prices.

The participants in the electricity market are energy producers and retailers,

traders, brokers, financial analysts, and clearing companies. Also, large end users

trade at the exchange and in order to obtain electricity directly from the market

instead of doing it through a supplier.

On the other hand, contracts with financial cash settlement are used for price

hedging and risk management. Usually, these contracts have duration from a day to

up to year and have a time horizon up to 6 years (at Nord Pool). In these contracts,

there is no physical delivery of electricity. The contracts are settled with cash, while

cash settlements take place daily.

1.3.2 The Oil and Gas Market

Crude oil is considered one of the most important commodities since it constitutes a

decisive factor in the configuration of prices of all the other commodities while its

price fluctuation is an indication and also a cause of important changes in global

economies. The rise, the stability, or the decline of crude oil prices have a direct

impact in the economies of various states but also in the more general international

economy. Both oil and natural gas are widely used for heating and electricity

production. As any commodity, the prices of oil and gas are determined by supply

and demand.

The oil and gas market is sharing a lot of characteristics with the electricity

market. However, unlike energy and weather, both oil and gas can be stored and

traded. The market is split between the financial market and the physical market, the

price paid for actual deliveries of natural gas and individual delivery points around

the United States. In general, market mechanisms, although they vary between the

USA and Europe, are similar.

Both oil and gas can be traded through New York Mercantile Exchange

(NYMEX). Henry Hub and Pine Prairie Energy Center is the pricing point for

natural gas future contracts traded on the NYMEX. On the other hand, oil is traded
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in various West Texas Intermediate (WTI), Brent, and Russian Export Blend Crude

Oil indices.

Similar to the electricity market, both oil and gas demands are highly correlated

to temperature. As a result, both their prices and volume are fluctuating, depending

on the temperature. For example, a mild winter will result to a significant lower

demand for gas and oil for heating. As a result, the consumption of oil and gas will

decrease which will lead to a decrease in prices.

However, many other factors affect the final price of oil and gas. For example,

global demand for petroleum products is highly seasonal, and it is higher during the

winter months, when countries increase their use of distillate heating oil and

residual fuels. Supply of crude oil, including both production and net imports,

also shows a similar seasonal variation. Finally, OPEC’s (Organization of Petro-

leum Exporting Countries) decisions have had considerable influence on interna-

tional oil prices, for example, in the 1973 oil embargo which resulted to a great

increase in prices and an economic recession throughout the world. OPEC is an

intergovernmental organization of 12 oil-producing countries.4 OPEC’s objective is

to coordinate and unify petroleum policies among member countries in order to

secure fair and stable prices for petroleum producers; an efficient, economic, and

regular supply of petroleum to consuming nations; and a fair return on capital to

those investing in the industry (OPEC 2012).

1.4 Weather Derivatives Pricing and Other Issues

It is clear that the weather market is developing rapidly as more investors and

participants are actively involved. Nevertheless, there are still some issues that are

hampering the further development of the market. A generally accepted pricing

model, like the Black–Scholes model, does not exist. Also, many companies have to

deal with spatial and basis risk. Finally, the market is still relatively illiquid while

practitioners and risk management companies keep weather market data private and

do not publish their models.

Solving the first two problems would attract new participants in the market, and

the liquidity would increase. By extending the existing list of weather indices,

companies would be able to match the weather effects to their loss of revenues, and

by expanding the list of cities that the CME trades, weather derivatives would

reduce the spatial risk.

As we have already mentioned, in this book we focus on temperature, wind, and

precipitation derivatives. A generally accepted framework for pricing temperature

(or in general weather) derivatives does not exist. Most investors use the historical

burn analysis (HBA) pricing methodology, (Dorfleitner and Wimmer 2010),

4 Algeria, Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United

Arab Emirates, and Venezuela
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which is very easy to understand and to replicate. However, HBA is bound to be

biased and inaccurate. In fact, HBA is considered to be the simplest pricing

method in terms of implementation and the most prone to large pricing errors

(Jewson et al. 2005).

More recent studies utilize dynamic models which directly simulate the future

behavior of temperature. The estimated dynamic models can be used to derive the

corresponding indices and price various temperature derivatives. Using models for

daily temperatures can, in principle, lead to more accurate pricing than other

alternatives. Daily models very often show great potential accuracy since they

make a complete use of the available historical data. Finally, it is easy to incorpo-

rate meteorological forecasts. However, deriving an accurate model for the daily

temperature is not a straightforward process. The risk with daily modeling is that

small misspecifications in the models can lead to large mispricing in the contracts.

Building a dynamic model for the temperature requires the selection of a

stochastic differential equation. Temperature shows seasonality in the mean and

variance, so the seasonality component must be accurately modeled. It is important

that a precise estimate of the speed of mean reversion is obtained and that the

distribution of the residuals is correctly selected. Finally, the appropriate length of

the historical data should be chosen in order to estimate the various parameters of

the discretized version of the stochastic model.

Building an algorithm that would correctly define the basic features of tempera-

ture would lead to an accurate pricing of weather derivatives.

1.5 Purpose of the Book and Readership Level

The purpose of this book is to study analytically and in depth the financial products

that are traded in the weather market. This book provides a concise and rigorous

treatment of the stochastic modeling of weather market. Presenting a pricing and

modeling approach for weather derivatives written on various underlying weather

variables will help investors and companies to accurately price weather derivatives

and will help them to effectively hedge against weather risk. In addition, this book

aims to significantly contribute to the existing literature since only few papers have

been published so far considering the modeling issues of other weather variables

except temperature in the context of weather derivatives pricing. Finally, the study

of the basis risk and the market price of risk expect to draw new participants to the

market while it will provide additional accuracy on pricing decreasing the bid-ask

spreads.

This book is trying to link the mathematical aspects of the modeling procedure

of the weather variables to the financial markets and the pricing of the weather

derivatives. Through extensive examples and case studies, this book will provide a

step-by-step guide for modeling and pricing various weather derivatives written on

different weather variables. The content is written in an easy-to-understand way,
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and the methodologies are separated in various stages for a better understanding,

constituting the book a guidebook for both investors and students.

The book is innovative in making the material accessible and readable without

excessive math requirements, for example, at a level of advanced MBA or Ph.D.

students and industry professionals with a background in financial econometrics.

There is an introduction/tutorial to data preprocessing to acquaint non-statisticians

to the basic principles and a similar but more extensive introduction to stochastic

calculus for scientists of non-finance area, firstly introducing the basic theorems and

gradually building up to more complex frameworks. This introductory chapter to

stochastic calculus will present all the necessary material to the reader to help him

understand and follow the sections about the pricing of the weather derivatives.

Familiarity with the operations of the capital markets will help (e.g., to under-

stand the mechanics of the various weather securities), but it is not a prerequisite.

The book will take the reader to the level where he/she is expected to be able to

apply the proposed methodologies in modeling and pricing weather derivatives in

any desired location on different weather variables.

The objective of this book is twofold: First, to expand the framework that was

developed in (Alexandridis 2010) for modeling and pricing temperature deriva-

tives; second, to develop a framework for modeling and pricing weather derivatives

on the remaining underlying weather variables like wind, rainfall, and snowfall.

In order to accurately price weather derivatives based on weather indices, a model

that will describe the evolution of the underlying weather variable should be

developed. In this book, various methods for modeling the dynamics of tempera-

ture, wind, and precipitation are described. For this purpose, the daily modeling

approach is pursued. First, classic linear models are described in order to develop a

more advance nonlinear model. We intend to do so using wavelet analysis and

wavelet networks, two state-of-the-art tools previously successfully used in various

applications (Zapranis and Alexandridis 2009).

It is also important to study the so-called basis risk. Weather risk is unique in that

it is highly localized, and despite great advances in meteorological science, it still

cannot be predicted precisely and consistently. Risk managers often face unique

basis risks arising from both the choice of weather station where a derivative

contract is written and the relationship between the hedged volume and the under-

lying weather index. We will refer to the first as spatial or geographical basis risk,

while to the second as basis risk.

It is crucial for the accurate pricing of the various weather derivatives the

understanding of the market price of risk. The weather derivatives market is a

classical incomplete market. The basis risk and the market price of risk are very

important for the accurate pricing of weather derivatives and hedging of the

company’s weather risk. However, since today an extended study on basis risk

and market price of risk does not exist. The study and understanding of these two

sources of risk will draw new participants to the weather market and will help

investors to accurately price weather derivatives.

This book sheds light to various topics regarding the modeling of the weather

variables like temperature, wind, rainfall, and snowfall. This book, with its findings
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and proposals, can be very useful not only to researches but also to traders, hedging

companies, and new investors.

Furthermore, our study may prove to be useful to market participants that do not

have the theoretical background to model weather derivatives. Our approach is

described step by step and is presented in an algorithm style. Hence, anyone can

apply or repeat our approach in any length of datasets in any city of preference since

our approach is not restricted to the cities presented here. We hope that our analysis

will help new investors to understand the weather market as well as to attract new

participants to the market.

1.6 Overview of the Book

This book is separated in three parts. Part I consists of the introductory chapters.

The second part, from Chaps. 4, 5, 6, 7, and 8, covers the material for modeling and

pricing temperature derivatives and basis risk. The final part and in the remaining

Chaps. 9 and 10, cover the modeling and pricing issues of the remaining weather

variables.

Chapter 2 offers an introduction to stochastic calculus for scientists of non-

finance area, firstly introducing the basic theorems and gradually building up to

more complex frameworks. This introduction to stochastic calculus chapter will

present all the necessary material to the reader to help him understand and follow

the sections about the pricing of the weather derivatives.

In Chap. 3, the necessary data preprocessing procedures are described. More

precisely, methods for cleaning the data, identifying trends, patterns, and

seasonalities are presented. This chapter further examines the impact of El Niño

and La Niña in the values of the DATs. Finally, a novel method for selecting the

length of the historical data for analysis is analytically described.

In Chap. 4, we focus on pricing approaches of temperature derivatives. This

chapter reviews in detail the most important and more often cited models proposed

in literature to represent the temperature-driving process. In this chapter, the

strengths and weaknesses of prior studies will be analyzed in order to develop an

appropriate model that describes the temperature dynamics and that it can be used

in pricing of various temperature derivatives. More precisely, the following

approaches will be analyzed: the actuarial methods, the historical burn analysis,

index modeling, and daily modeling. Finally, some alternative methods proposed in

literature will be presented and discussed.

Chapter 5 proposes a model for the DAT. More precisely, the purpose of this

chapter is to develop a model that accurately describes the dynamics of the DAT.

The statistical properties of the DATs will be examined in order to propose a

process that exhibits the same behavior. The proposed model will be evaluated

and compared in-sample and out-of-sample in various locations (with active

weather market) against models previously proposed in literature. More precisely,

a statistical model will be built step by step using two state-of-the-art tools: wavelet
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analysis and wavelet networks. In addition, the various dynamics that govern the

temperature process will be analytically studied and discussed. In order to obtain a

better understanding of the distributions of the residuals, we expand our analysis by

fitting additional distributions. More precisely, a Lévy family distribution is fitted to

the residuals. The Lévy family contains many known distributions as subclasses.

Based on the temperature model, we derive pricing formulas for weather

derivatives on various temperature indices in Chap. 6. The model that was devel-

oped in the previous chapter described the daily dynamics of the temperature.

Hence, it can be applied in order to estimate the various indices. In this chapter,

the pricing formulas of various temperature derivatives will be presented first under

the assumption of normal distribution and then under the assumption of a Lévy

motion noise. More precisely, the pricing formulas for the following indices will be

derived: CAT, Accumulated HDDs (AccHDD), Accumulated CDDs (AccCDD),

and the Pacific Rim. Finally, the market price of risk will be analytically examined.

Chapter 7 describes how meteorological forecasts can be used in order to

improve the forecasting ability of the temperature models. More precisely, methods

for incorporating the ensemble or the probabilistic forecasts will be presented.

Finally, the impact of the introduction of meteorological forecast in the pricing

procedures will be discussed.

In Chap. 8, the effects of the geographical and basis risk are discussed. Risk

managers often face unique basis risks arising from both the choice of weather

station where a derivatives contract is written as well as the relationship between

the hedged volume and the underlying weather index. In this chapter, these two

sources of risk will be studied. This analysis will be very helpful for selecting an

appropriate weather risk management and hedging strategy.

Chapter 9 presents methodologies for modeling and pricing the various wind

indices. There are further presented the pricing approaches and the pricing formulas

for the wind derivatives traded in the market.

In Chap. 10, rainfall and snowfall derivatives are discussed. Since the dynamics

of rainfall and snowfall are very similar, both variables are described as precipita-

tion. Precipitation derivatives and precipitation modeling are presented. An indif-

ference pricing framework is presented while hedging precipitation exposure is also

discussed.
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Chapter 2

Introduction to Stochastic Calculus

2.1 Introduction

Any variable whose value changes over time in an uncertain way is said to follow a

stochastic process. Instead of dealing with only one possible way the process might

develop over time, in a stochastic process, there is some indeterminacy described by

probability distributions. This means that even if the initial condition is known,

there are many possibilities the process might follow. However, some paths may be

more possible.

Stochastic process can be classified in time as discrete and continuous. When the

values of a stochastic process change at certain fixed points in time, then this

process is called a discrete time stochastic process. On the other hand, when

changes can occur at any time, this process is called a continuous time stochastic

process.

In addition, stochastic processes can be classified depending on their variable. If

the underlying variable can take only discrete values, then this process is called a

discrete variable stochastic process. On the other hand, when the variable can take

any value (within a range), this process is called continuous variable stochastic

process.

Hence, four categories of stochastic processes exist:

• Discrete time–discrete variable

• Discrete time–continuous variable

• Continuous time–discrete variable

• Continuous time–continuous variable

As an example of stochastic process, we mention the following examples. The

closing price of oil in the exchange is a discrete time–discrete variable process. The

price of a stock between 13:00 and 14:00 is a continuous time–discrete variable

process. The amount of water in a lake is a continuous time–continuous

variable process.

A.K. Alexandridis and A.D. Zapranis, Weather Derivatives: Modeling and Pricing
Weather-Related Risk, DOI 10.1007/978-1-4614-6071-8_2,
# Springer Science+Business Media New York 2013
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The purpose of this chapter is to give the necessary background in stochastic

calculus. It is not meant to provide a complete background in stochastic theory but

rather present all the necessary theorems and results that will be used later on in order

to derive the prices of various weather derivatives on different weather indexes. The

basic concepts and a collection various theorems that will provide the reader an

adequate background in order to follow the rest of the book are presented.We refrain

from providing proofs for most theorems since a higher stochastic and mathematical

level is needed which is beyond the scope of this book. The interested reader can

refer to Mikosch (1998), Shiryaev (1999), Wilmott et al. (1995), Shreve (2005),

Karatzas and Shreve (1991), and Baxter and Rennie (1996).

The rest of the chapter is organized as follows. In Sect. 2.2 some basic families

of stochastic process are presented. In Sect. 2.3 the Itô integral is defined, and its

properties are presented. The various forms of the Itô formula are presented in

Sect. 2.4, while in Sect. 2.5 some applications of the Itô formula are described. In

Sect. 2.6 the Girsanov’s theorem is presented, while an extension of the Girsanov’s

theorem, namely, the Esscher transform, is presented in Sect. 2.7. Finally, in

Sect. 2.8 we conclude.

2.2 Some Stochastic Processes

During the years different stochastic processes were proposed in order to model

stock movements. All four types of stochastic processes that were presented in the

introduction can be used in order to model stock prices. However, the continuous

time–continuous variable types of processes have been proved very useful in stock

price modeling and as a result are commonly used.

A first attempt was by a Markov process. A Markov process is a type of

stochastic process where the future values of the variable depend only on the

present value of a variable and not on how the variable reached its present value.

In other words, the history of the variable is irrelevant for the future behavior of the

variable.

If we focus on the stock market, the Markov property means that any forecasts

for the future values of the stock are irrelevant to the past prices of the stock. The

only relevant information is the present price of the stock. The Markov property of

stock prices is consistent with the weak form of market efficiency, (Hull 2003). In

other words, the present price of a stock includes all the information contained in

the historical prices of the stock.

A particular type of Markov stochastic process with mean rate of zero and

variance rate of t per year is called a Wiener process or Brownian motion.

Definition 2.1 A stochastic process B ¼ BðtÞ; t 2 ½0;1Þð Þ is called ðstandardÞ
Brownian motion or a Wiener process if the following conditions are satisfied:

• It starts at zero: Bð0Þ ¼ 0.

• The function t ! BðtÞ is almost surely continuous.
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• It has independent increments with distribution BðtÞ � BðsÞ � Nð0; t� sÞ, that
is, the random variable BðtÞ � BðsÞ is independent of the random variable

BðuÞ�BðvÞ when t>s � u>v � 0.

The definition of the Brownian motion (BM) indicates that BðtÞ has zero mean

(drift rate) and variance of t. In other words, E BðtÞ½ � ¼ 0 and var BðtÞð Þ ¼ t. The
above definition can be expanded in order to retrieve a stochastic process with any

drift rate a and variance expressed in terms of dBðtÞ.
A process with drift and variance expressed in terms of dBðtÞ is called a

generalized Wiener process or a Brownian motion and can be defined as

dSðtÞ ¼ adtþ bdBðtÞ: (2.1)

Hence, S has drift rate equal to a and variance b2 per unit time. Note that in (2.1)

the parameters a and b are considered constants. This is not very useful if, for

example, we want to model stock price changes. Equation (2.1) implies that an

investor is just as uncertain of the percentage return when the stock price is €50 as

when it is €1, (Hull 2003). More precisely, for a stock price we can speculate that

the expected proportional change in a short period of time remains constant, but not

the expected absolute change in a short period. In addition, we can also speculate

that our uncertainty regarding the magnitude of future changes in share price is

proportional to the share price. Hence, an expansion of model (2.1) can be

constructed:

dSðtÞ ¼ aSðtÞdtþ bSðtÞdBðtÞ: (2.2)

Model (2.2) is called geometric Brownian motion, and it is the most widely used

model of stock price changes. A closer inspection of (2.2) reveals that both the drift

rate and variance rate are not constants but rather functions of S that change over

time. This is known as the Itô process. This is a generalized Wiener process where a
and b are functions of the underlying variable x and time t. The Itô process can be

written as

dSðtÞ ¼ aðS; tÞdtþ bðS; tÞdBðtÞ: (2.3)

Finally, another important category of stochastic processes is the martingale

processes.

Definition 2.2 A stochastic process Xt is called martingale if the following
conditions are satisfied :

• E XðtÞj j½ �<1:
• E XðtÞjXð0Þ;Xð1Þ; . . . ;XðsÞ½ � ¼ XðsÞ; 0 � s<t:

In the second condition, the expectation of the stochastic variable is conditioned

in the history of XðtÞ up to s. Similar this can be written as E XðtÞjFs½ � ¼ XðsÞ.
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We will not dig further into martingales. The interested reader is pointed to the

books of Shiryaev (1999), Mikosch (1998), and Karatzas and Shreve (1991). This

section will be closed with the following theorem:

Theorem 2.1 A Brownian motion is a martingale.

Proof The first condition is straightforward since E BðtÞ½ � ¼ 0. We focus on the

second condition when 0 � s < t.

E BðtÞjFs½ � ¼ E BðtÞ � BðsÞ þ BðsÞjFs½ �
¼ E BðtÞ � BðsÞjFs½ � þ E BðsÞjFs½ �:
¼ E BðtÞ � BðsÞ½ � þ BðsÞ
¼ BðsÞ

□

2.3 Itô Integral

Before we move on presenting the Itô formula, a notion of integration of stochastic

differential equation is needed. In this section some necessary introductory

definitions are given, and then a definition of the Itô integral is presented. Finally,

some useful properties of the Itô integral are presented. These properties will be

used later on deriving weather derivative prices.

Definition 2.3 A s -field F on O is a collection of subsets of O satisfying the
following conditions:

• It is not empty: ; 2 F and O 2 F.
• If A 2 F, then Ac 2 F.
• If A1;A1; . . . 2 F, then

S1
i¼1

Ai 2 F and
T1
i¼1

Ai 2 F.

Definition 2.4 A random variable X is called Fs adapted if X can be written as
ða limit of a sequence of Þ function of BðtÞ for one or more t � s; but not as a
function of anyBðuÞwith u>s. A stochastic processXðsÞ is called adapted if for each
time s 2 0; t½ � the random variable XðsÞ is Fs adapted.

The integrator of the Itô integral is a Brownian motion BðtÞ with an associated

filtration Ft and let an integrand process X have the following properties:

• X is adapted to the Brownian motion on 0; T½ �.
• The integral

Ð T
0
E X2ðsÞ½ �ds is finite.
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The above conditions mean that XðtÞ is a function of BðsÞ for 0 � s<t and thatÐ T
0
E X2ðsÞ½ �ds<1. Now, the Itô integral can be defined as follows:

Definition 2.5 A stochastic processXðsÞ is called Itô integrable on the interval 0; t½ �
if XðsÞ is adapted for s 2 0; t½ � and Ð t

0
E X2ðsÞ½ �ds<1.

The Itô integral is defined as the random variable:

ItðXÞ ¼
ðt
0

XðsÞdBðsÞ ¼ lim
n!1

Xn�1

i¼1

XðsiÞ Bðsiþ1Þ � BðsiÞð Þ:

The Itô integral has the following appealing properties. First, the Itô integral has

the adaptedness property. For each t, It isFt-measurable. Second, it has the linearity

property. For constants c1, c2, and processes Xð1Þ and Xð2Þ on 0; T½ �, we have that
ðt
0

c1X
ð1ÞðsÞ þ c2X

ð2ÞðsÞ
h i

dBðsÞ ¼ c1

ðt
0

Xð1ÞðsÞdBðsÞ þ c2

ðt
0

Xð2ÞðsÞdBðsÞ:

Third, ItðXÞ is amartingale. Fourth, ItðXÞhas expectations zero,E
Ð t
0
XðsÞdBðsÞ� �¼ 0.

Fifth, it has the continuity property. In a more mathematical manner, this means that

ItðXÞ is a continuous function of the upper limit of the integration t. Finally, the Itô
isometry holds:

E

ðt
0

XðsÞdBðsÞ
� �2

¼
ðt
0

E X2ðsÞ� �
ds:

All of these properties will be extensively used in order to solve the stochastic

differential equation that describe the weather variables and then derive a price of

the weather derivatives on various weather indexes.

2.4 Itô Formula

The objective of this section is to derive the Itô formula. The Itô formula derives the

dynamics of an Itô process. More precisely if S is an Itô process, then applying the

Itô formula, we can derive the dynamics of f ðSÞ. The method presented in (Wilmott

et al. 1995) will be followed.

Suppose f ðSÞ is an ordinary function which is a smooth function of S and not a

stochastic one. If S varies by a small amount dS, then f varies by a small amount.

If we use Taylor approximation on ordinary functions, we can write that

df ¼ df

dS
dSþ 1

2

d2f

dS2
dS2 þ � � �: (2.4)
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Although dS is given by (2.3), here is simply a number. Hence, dS2 is given by

dS2 ¼ aðS; tÞdtþ bðS; tÞdBð Þ2

¼ a2ðS; tÞ dtð Þ2 þ 2aðS; tÞbðS; tÞdBdtþ b2ðS; tÞ dBð Þ2: ð2:5Þ

Note that the following calculation rules apply:

dBiðtÞdBiðtÞ ¼ dt

dBiðtÞdBjðtÞ ¼ 0; i 6¼ j

dtð Þ2 ¼ 0

dBiðtÞdt ¼ dtdBiðtÞ ¼ 0:

(2.6)

Hence, (2.5) becomes

dS2 ¼ b2ðS; tÞdt: (2.7)

Finally, replacing (2.3) and (2.7) to (2.4), we get

df ¼ df

dS
aðS; tÞdtþ bðS; tÞdBð Þ þ 1

2

d2f

dS2
b2ðS; tÞdt

¼ aðS; tÞ df
dS

þ 1

2

d2f

dS2
b2ðS; tÞ

� �
dtþ bðS; tÞ df

dS
dB

: (2.8)

This is the Itô formula in differential form. By integrating (2.8), we get the Itô

formula in integral form. Now, we will give a more rigorous definition of the Itô

formula.

Theorem 2.2 Itô Formula for Brownian Motion. Let f ðxÞ be a twice differentiable
function. Then,

f BðtÞð Þ ¼ f BðsÞð Þ þ
ðt
s

f 0 BðuÞð ÞdBðuÞ þ 1

2

ðt
s

f 00 BðuÞð Þdu; s<t (2.9)

is a simple form of the Itô formula.

Theorem 2.3 Extension I of Itô Formula. Let f t; xð Þ be a function whose second-
order partial derivatives are continuous. Then,

f t;BðtÞð Þ ¼ f s;BðsÞð Þ

þ
ðt
s

@f u;BðuÞð Þ
@t

þ 1

2

@f 2 u;BðuÞð Þ
@u2

� �
du þ

ðt
s

@f u;BðuÞð Þ
@u

dBðuÞ; s<t:

(2.10)
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In the previous section, a notion of the Itô process in differential form was

presented. Here, we give amore rigorous definition of the Itô process in integral from.

Definition 2.6 The stochastic processXðtÞ is called Itô process if there exist two Itô
integrable processes aðX; tÞ and bðX; tÞ such that

XðtÞ ¼ Xð0Þ þ
ðt
0

aðX; sÞdsþ
ðt
0

bðX; sÞdBðsÞ: (2.11)

Theorem 2.4 General Itô Formula. Assume that f ðt; xÞ is a function which is once
differentiable in t and twice in x, and XðtÞ is an Itô process. Then,

f t;XðtÞð Þ ¼ f s;XðsÞð Þ þ
ðt
s

bðX; uÞ @f u;XðuÞð Þ
@x

dBðuÞ

þ
ðt
s

@f u;XðuÞð Þ
@t

þ aðX; uÞ @f u;XðuÞð Þ
@x

þ 1

2
b2ðX; uÞ @f

2 u;XðuÞð Þ
@x2

� �
ds;

(2.12)

or equivalently

f t;XðtÞð Þ ¼ f s;XðsÞð Þ þ
ðt
s

@f u;XðuÞð Þ
@t

þ 1

2
b2ðX; uÞ @f

2 u;XðuÞð Þ
@x2

� �
du

þ
ðt
s

@f u;XðuÞð Þ
@x

dXðuÞ;
(2.13)

where

dXðuÞ ¼ aðX; uÞduþ bðX; uÞdBðuÞ: (2.14)

Example 2.1 Let f ðxÞ ¼ x2 and suppose a Brownian motion BðtÞ. Applying the Itô
formula (2.9) in the interval 0; t½ � with f 0ðxÞ ¼ 2x and f 00ðxÞ ¼ 2, we have that

f BðtÞð Þ ¼ f Bð0Þð Þ þ
ðt
0

f 0 BðsÞð ÞdBðsÞ þ 1

2

ðt
0

f 00 BðsÞð Þds

BðtÞ ¼ f ð0Þ þ
ðt
0

2BðsÞdBðsÞ þ 1

2

ðt
0

2ds

BðtÞ ¼ 0þ
ðt
0

2BðsÞdBðsÞ þ
ðt
0

ds

BðtÞ ¼
ðt
0

2BðsÞdBðsÞ þ t:
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Rearranging the above equation, we have that

ðt
0

BðsÞdBðsÞ ¼ 1

2
B2ðtÞ � t

2
:

The reader can notice that there is an extra term � t
2
in contrast to the classical

integral. In order to verify that the above equation is correct, we take expectations

on both sides. We have that by definition

E

ðt
0

BðsÞdBðsÞ
� �

¼ 0

and

E
1

2
B2ðtÞ � t

2

� �
¼ 1

2
E B2ðtÞ� �� t

2
¼ t

2
� t

2
¼ 0:

□
Very often the differential form of the Itô formula is adopted which provides a

more compact notation. Hence, (2.12) can be rewritten as

df t;XðtÞð Þ ¼ @f t;XðtÞð Þ
@t

þ aðX; tÞ @f t;XðtÞð Þ
@x

þ 1

2
b2ðX; tÞ @f

2 t;XðtÞð Þ
@x2

� �
dt

þbðX; tÞ @f t;XðtÞð Þ
@x

dBðtÞ;
(2.15)

or equivalently from (2.13), we get

df t;XðtÞð Þ ¼ @f t;XðtÞð Þ
@t

þ 1

2
b2ðX; tÞ @f

2 t;XðtÞð Þ
@x2

� �
dtþ @f t;XðtÞð Þ

@x
dXðtÞ: (2.16)

As it is mentioned in (Shreve 2005), the mathematical meaningful form of Itô

formula is in integral form. This is because solid definitions exist for both integrals

in the right-hand side which are a summation of an Itô integral and a Riemann

integral. However, for computations, it is more convenient to use the differential

form. The differential formula becomes mathematically respectable only after we

integrate it (Shreve 2005).

Next, we will present a multidimensional Itô formula. First, we define a multidi-

mensional Brownian motion.

Definition 2.7 Multidimensional Brownian Motion. A d-dimensional Brownian
motion is a process

BðtÞ ¼ B1ðtÞ; . . . ;BdðtÞð Þ
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with the following properties:

• Each BiðtÞ is one-dimensional Brownian motion.

• If i 6¼ j, then the processes BiðtÞ and BjðtÞ are independent.
Associated with a d-dimensional Brownian motion, we have filtration Ftf g such

that:

• For each t, the random vector BðtÞ is Ft-measurable.

• For each t � t1 � . . . � tn, the vector increments

Bðt1Þ � BðtÞ; . . . ;BðtnÞ � Bðtn�1Þ

are independent of Ft.

Theorem 2.5 Multidimensional Itô Formula. Let XiðtÞ be Itô processes with
dynamics

dXiðtÞ ¼ aiðX; tÞdtþ bi1ðX; tÞdB1ðtÞ þ � � � þ b1mðX; tÞdBmðtÞ (2.17)

and i ¼ 1 . . . n . If XðtÞ stands for the vector X1ðtÞ; . . . ;XnðtÞð Þ0 and gðt; xÞ ¼
g1ðt; xÞ; . . . ; gpðt; xÞ
� 	0

is a vector-valued function of t and x 2 Rn , then the

stochastic dynamics of gðt;XðtÞÞ are given from

dgk t;XðtÞð Þ ¼ @gk t;XðtÞð Þ
@t

þ
Xn
i¼1

@gk t;XðtÞð Þ
@xi

dXiðtÞ

þ 1

2

Xn
j¼1

Xn
i¼1

@2gk t;XðtÞð Þ
@xi@xj

dXiðtÞdXjðtÞ:
(2.18)

2.5 Applications of Itô Formula

In this section we will write the Itô Lemma in a differential form but in a more

compact form. Then few examples will be presented in order to allow the reader to

become familiar with the use of Itô formula. The Itô formula is probably the most

important theorem in derivative pricing, and it will be used in later on in order to

derive the prices of various weather derivatives.

Itô Lemma. Let x be variable that follows an Itô process:

dx ¼ aðx; tÞdtþ bðx; tÞdz (2.19)

where dz is a Wiener process. The variable x has drift rate a and variance b2. Then,
the process Gðx; tÞ follows also an Itô process:

2.5 Applications of Itô Formula 29



dG ¼ @G

@x
aþ @G

@t
þ 1

2

@2G

@x2
b2

� �
dtþ @G

@x
bdz (2.20)

with drift rate

@G

@x
aþ @G

@t
þ 1

2

@2G

@x2
b2

� �
(2.21)

and variance

@G

@x
b

� �2

: (2.22)

Example 2.2 The Geometric Brownian Motion. Suppose that the changes of a
stock are described by the following dynamics:

dSðtÞ ¼ mSðtÞdtþ sSðtÞdBðtÞ

where m and s are constants. Our objective is to solve the above stochastic
differential equation and find the stochastic process that defines the dynamics of
SðtÞ. According to notation in (2.19), we have that a ¼ mSðtÞ and b ¼ sSðtÞ. We
define a process GðS; tÞ ¼ ln SðtÞ . Note that the processes G satisfy the initial
condition, Gð0Þ ¼ ln Sð0Þ.

In order to apply the Itô Lemma and find the Itô process of dG, first the partial
derivatives of G must be calculated. We have that

Gt ¼ @GðS; tÞ
@t

¼ 0;

GS ¼ @GðS; tÞ
@S

¼ 1

S
;

GSS ¼ @2GðS; tÞ
@S2

¼ � 1

S2
:

Applying formula (2.20), we have that

dG S; tð Þ ¼ mSðtÞ 1

SðtÞ �
1

2S2ðtÞ s
2S2ðtÞ

� �
dtþ sSðtÞ 1

SðtÞ dBðtÞ

¼ m� 1

2
s2

� �
dtþ sdBðtÞ:
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We can integrate the above equation in the interval ½0; t�, and we get

GðS; tÞ � GðS; 0Þ ¼
ðt
0

m� 1

2
s2

� �
dtþ s

ðt
0

dBðsÞ

ln SðtÞ � ln Sð0Þ ¼ m� 1

2
s2

� �
tþ sdBðtÞ

ln
SðtÞ
Sð0Þ ¼ m� 1

2
s2

� �
tþ sdBðtÞ

SðtÞ
Sð0Þ ¼ e m�1

2
s2ð ÞtþsdBðtÞ

SðtÞ ¼ Sð0Þe m�1
2
s2ð ÞtþsdBðtÞ:

□
Next, a more complex problem is considered.

Example 2.3 The Ornstein–Uhlenbeck (O–U) Process. Suppose that XðtÞ follows
the stochastic differential equation:

dXðtÞ ¼ cXðtÞdtþ sdBðtÞ;

where c and s are constants. Our objective is to solve the above stochastic
differential equation. We will do that applying the Itô Lemma. According to notation
in (2.19), we have that a ¼ cXðtÞ and b ¼ s.We define a process Gðx; tÞ ¼ e�ctXðtÞ.
Note that the processes G and X satisfy the same initial condition, Gð0Þ ¼ Xð0Þ.

In order to apply the Itô Lemma and find the Itô process of dG, first the partial
derivatives of G must be calculated. We have that

Gt ¼ @GðX; tÞ
@t

¼ �cectX;

GX ¼ @GðX; tÞ
@X

¼ e�ct;

GXX ¼ @2GðX; tÞ
@X2

¼ 0:

Applying formula (2.20), we have that

dG X; tð Þ ¼ �ce�ctXðtÞ þ ce�ctXðtÞð Þdtþ se�ctdBðtÞ
¼ se�ctdBðtÞ:
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We can integrate the above equation in the interval ½0; t�, and we get

GðX; tÞ � GðX; 0Þ ¼ s
ðt
0

e�csdBðsÞ

e�ctXðtÞ � Xð0Þ ¼ s
ðt
0

e�csdBðsÞ

XðtÞ ¼ ectXð0Þ þ sect
ðt
0

e�csdBðsÞ

which is the solution of the Ornstein–Uhlenbeck process.

□

2.6 Girsanov’s Theorem

In probability theory, the Girsanov’s theorem (named after Igor Vladimirovich

Girsanov) describes how the dynamics of stochastic processes change when the

original measure is changed to an equivalent probability measure. The theorem is

especially important in the theory of financial mathematics as it tells how to convert

from the physical measure which describes the probability that an underlying

instrument (such as a share price or interest rate) will take a particular value or

values to the risk-neutral measure which is a very useful tool for pricing derivatives

on the underlying.

Theorem 2.6 Girsanov’s Theorem. The stochastic process

MðtÞ ¼ exp yBðtÞ � 1

2
y2t


 �
; t 2 0; T½ � (2.23)

is a martingale with respect to the natural Brownian filtration Ft ¼ s BðsÞ; s � tð Þ
for t 2 0; T½ � under the probability measure P.

The relation

QðAÞ ¼
ð
A

MðT;oÞdPðoÞ; A 2 F (2.24)

defines a probability measureQ onFwhich is equivalent toP. Under the probability
measure Q, the process WðtÞ defined by

WðtÞ ¼ BðtÞ � yt; t 2 0; T½ � (2.25)

is a standard Brownian motion. The processWðtÞ is adapted to the filtration Ft ¼ s
BðsÞ; s � tð Þ.
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Note, that the Girsanov’s theorem is used in order to change the measure and

eliminate the drift term in a stochastic differential equation. We will use this

theorem in order to price temperature, wind, and rainfall derivatives.

Example 2.4 Geometric Brownian Motion. Consider the stochastic differential
equation

dSðtÞ ¼ mSðtÞdtþ sSðtÞdBðsÞ:

If we define

WðtÞ ¼ BðtÞ þ m
s
t;

we have that dWðtÞ ¼ dBðtÞ þ m
s dt. By replacing this in to the original equation, we

have that

dSðtÞ ¼ mSðtÞdtþ sSðtÞ dWðtÞ � m
s
dt

� 

¼ sSðtÞdWðtÞ: (2.26)

By Girsanov’s theorem, WðtÞ is a standard Brownian motion under the equiva-

lent probability measureQ. Note that the drift rate from (2.26) was eliminated. Also

the solution of (2.26) is a martingale under Q, but not under P.

2.7 Esscher Transform

In the previous section, we defined a risk-neutral probability measure Q � P such

that all tradable assets in the market are martingales after discounting. However,

in this book we are interested in the weather market. Weather variables are not

tradable assets. Temperature, for example, cannot be stored or be traded. As a

result, we find that an infinite number of equivalent probabilities that Q � P is

a risk-neutral probability measure exist. In addition, Girsanov’s theorem transform

a Brownian motion under P to a new Brownian motion under Q . However, the

Brownian motion implies a normal distribution which is preserved through

the transformation. As it presented in the next chapters, weather variables often

are not driven by a normal distribution. Rather, more complicated jump processes

are often suggested which provide a better fit to the residuals of the weather

variables.

In this section an extension of the Girsanov theorem is presented, namely, the

Esscher transform. More precisely, the Esscher transform transforms a probability

density f ðxÞ to a new probability density f ðx; yÞwith a parameter y (Gerber and Shiu
1994). The transform first was introduced by Esscher (1932) and used in derivative

pricing by Gerber and Shiu (1994).
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Theorem 2.7 The Esscher Transform. Let f ðxÞ be a probability density; then, its
Esscher transform is defined as

f ðx; yÞ ¼ eyxf ðxÞÐ1
�1 eyxf ðxÞdx (2.27)

More generally, ifP is a probability measure, then the Esscher transform ofP is a
new probability measure Qy which has density

eyxf ðxÞÐ1
�1 eyxf ðxÞdPðxÞ (2.28)

with respect to P.
The Esscher transform is a generalization of the Girsanov’s theorem. While the

Girsanov’s transform preserves the normality of the distribution of the Brownian

motion, the Esscher transform, on the other hand, is preserving the distributional

properties of a jump process. In other words, the characteristics of the jump process

are also now known under the risk-neutral measure (Benth et al. 2008). Although

the parameter y changes the characteristics of the jump process, the independent

increment property is still preserved (Benth et al. 2008). The Esscher transform will

be used later on in order to derive temperature derivative prices when the noise

process of the temperature is driven by a Lévy process.

2.8 Conclusions

In this chapter the basic notions of stochastic calculus were presented. The purpose

of this chapter was to give the necessary background in stochastic calculus. It is not

meant to provide a complete background in stochastic theory but rather present all

the necessary theorems and results that will be used later on in order to derive the

prices of various weather derivatives on different weather indexes. The basic

concepts and a collection various theorems that will provide the reader an adequate

background in order to follow the rest of the book were presented.

In this sense, various families of stochastic processes were presented. In addi-

tion, the Itô integral was defined in order to present the Itô formula. The Itô formula

is probably the most important theorem that will be used in weather derivative

pricing. Another important theorem that was presented is the Girsanov’s theorem

and its extension, namely, the Esscher transform.

We refrained from providing proofs for most theorems since a higher stochastic

and mathematical level is needed which is beyond the scope of this book. The

interested reader can refer to Mikosch (1998), Shiryaev (1999), Wilmott et al.

(1995), Shreve (2005), Karatzas and Shreve (1991), and Baxter and Rennie (1996).
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Chapter 3

Handling the Data

3.1 Introduction

Since the underlying index of weather derivatives is a weather variable like

temperature, rainfall, precipitation, or snowfall, historical weather data is important

for pricing these derivatives. Not only an adequate amount of data is needed but

also it has to be of high quality for an appropriate pricing and risk management of

the weather risk (Dunis and Karalis 2003).

High-quality weather data are used for weather risk management, weather

derivative pricing, marking to market, and settlement of weather contracts.

Hence, data from meteorological stations must be reported continuously and accu-

rately. However, surprisingly, meteorological data not only offered with great

limitations but at high cost too. As a result, the unavailability and the cost of

meteorological data is one of the major reasons that hinder the weather market to

further expand (Boissonnade et al. 2002).

In the USA the main source of weather data is the National Oceanic and

Atmospheric Administration (NOAA).1 One of the line offices of NOAA is the

National Environmental Satellite, Data, and Information Service (NESDIS)2 which

runs the National Climatic Data Center (NCDC).3 NCDC is the world’s largest

active archive of weather data. NCDC also operates the World Data Center for

Meteorology (WDC).4

In Europe a reliable source of weather data is the European Climate Assessment

& Dataset (ECAD).5 ECAD which offers freely daily datasets from 12 climate

variables observed at 4,641 meteorological stations in 62 countries.

1 http://www.noaa.gov/
2 http://www.nesdis.noaa.gov/
3 http://www.ncdc.noaa.gov/oa/ncdc.html
4 http://www.ncdc.noaa.gov/oa/wdc/index.php
5 http://eca.knmi.nl/

A.K. Alexandridis and A.D. Zapranis, Weather Derivatives: Modeling and Pricing
Weather-Related Risk, DOI 10.1007/978-1-4614-6071-8_3,
# Springer Science+Business Media New York 2013
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However, obtaining weather data from other locations around the world, like

Asia, Africa, or Australia, is often costly (Banks 2002).

Easy access to high-quality weather data for long periods and for various stations

would help the market to evolve and would offer liquidity. Unfortunately it is still

very hard and costly to obtain this type of data. Moreover, the datasets available to

researchers have many flaws, like missing data, gaps, and errors (Nelken 2000).

Some stations had to be moved during the years or to be replaced by more

modern equipment; as a result, jumps will occur on the data. Another aspect is the

range of the data. Previous studies use datasets containing historical data from 5 to

230 years to fit various models. However, if a very long period is considered, then

the datasets will be affected by trends like urban effects. On the other hand, when

studying very small datasets, there is a possibility that important dynamics of the

temperature process will not be revealed which will result to an incorrect model and

to mispricing of the corresponding weather contracts. Some areas exhibit urban

effects due to industrial activity or pollution that result to warming trends. Finally,

there are areas that are affected by extreme weather patterns like the El Niño and La

Niña that must be accounted when pricing a weather derivative.

Both the NCDC and the ECAD offer raw data. In order to clean the data, a series

of techniques must be applied in order to make the data appropriate for weather

derivative pricing and risk management.

Concluding, data inhomogeneities can be separated in two categories. The first

one includes artificial discontinuities. This category includes missing or error

values due to changes in station location and changes or malfunctions of measure-

ment instrumentation. The second category includes climatic inhomogeneities. This

category includes long-term (global warming), regional (El Niño), or local trends.

Both categories will be analytically discussed in the next sections.

The rest of the chapter is organized as follows. In Sect. 3.2 data cleaning and

preprocessing methods are discussed. In Sect. 3.2.1 methods for filling the missing

values are presented, while in Sect. 3.2.2 methods for correcting erroneous values

are described. Methods for detecting and correcting jumps and discontinuities in the

data are presented in Sect. 3.2.3. In Sect. 3.3 the identification and modeling of

trends is analyzed. The reasons that trends appear in meteorological data are

discussed in Sect. 3.3.1. Urbanization effects are explained in Sect. 3.3.1.1, while

the effects of the random and predicted variability are discussed in Sects. 3.3.1.2

and 3.3.1.3, respectively. In Sect. 3.3.2 the various structures of trends are

presented. More precisely, the polynomial trends are described in Sect. 3.3.2.1,

while the filtering methods like the moving average and the Loess and Lowess

methods are described in Sects. 3.3.2.2 and 3.3.2.3, respectively. In Sect. 3.3.2.4 an

example of indentifying and removing a trend from real data is presented. The

procedure of identifying and removing seasonalities from meteorological data is

presented in Sect. 3.4. In Sect. 3.5 how El Nino and La Nina affect the weather is

discussed. In Sect. 3.6 a procedure for selecting the length of historical data is

discussed. Finally, in Sect. 3.7 we conclude.
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3.2 Data Cleaning and Preprocessing

For an expansion of the weather market, providing of continuously and accurate

weather data is crucial. Hence, automated systems must report continuously from

meteorological stations. The stations should also have a long history and not be

prone to relocation (Boissonnade et al. 2002).

A common problem on large dataset is the existence of incorrect values of the

weather variables, for example, temperature. These values must be corrected before

modeling the dynamics of the weather variable. Elsewise, these values can cause

large mispricing errors.

For example, the daily average temperature in CME is measured as the average

of the daily minimum and maximum temperature. Hence, while cleaning a temper-

ature time series, one must check for the following:

• Missing values.

• The minimum value is larger than the maximum value.

• There are no unreasonable values of the weather variable for the particular

location for the time of the year.

• Differences between nearby weather stations are not questionably large.

• Values noted as error or untrusting measurements by the data provider.

• Leap years.

3.2.1 Missing Values

One of the major problems of the data is the missing values. Missing values may

occur because of a broken equipment, a break in the transmission of the weather

observation, or because a weather value is lost after it is recorded (Boissonnade

et al. 2002).

In Dunis and Karalis (2003) different methods for filling, the missing data were

described. In the naı̈ve approach the missing value is replaced by the temperature at

the same day the previous year. This method is highly likely to produce large jumps

in the temperature time series. Another approach is to fill the missing data using

nearby weather stations to the one in interest. Dunis and Karalis (2003) propose and

test more complex methods like the expectation maximization algorithm or the data

augmentation algorithm, state space models and Kalman filter, neural networks

(NNs), and principal component analysis (PCA) with the latter to outperform all

other methods. However, PCA requires additional correlated cleaned temperature

data (Dunis and Karalis 2003). This means that high-quality temperature data from

neighboring meteorological stations is required.

In this book the procedure described below is followed in order to fill the missing

values. Let Tt be the temperature at day t which value is missing. First, the average

temperature of that particular day across the years is calculated denoted by Avy.
Next, the average temperature of 7 days ago and 7 days after the missing value is
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calculated denoted byAvd. Then the missing value,Tt;miss, is replaced by the average
of these two parameters.

Tt;miss ¼
Tavy;t þ Tavd;t
� �

2
: (3.1)

Tavy;t ¼ 1

N

XN
yr¼1

Tt;yr: (3.2)

Tavd;t ¼
P7
i¼1

Tt�i þ
P7
i¼1

Ttþi

14
: (3.3)

The above procedure is very easy in implementation and very efficient. More

precisely a normal average is obtained by (3.2) which is balanced by the temporal

temperature conditions around the missing values by (3.3). However, in some cities

there are consecutive missing values. In this case, the missing values are filled using

only (3.2).

In cases were a large set of consecutive weather values are missing, spatial

interpolation can be used. The missing values are filled by interpolation between

observation across several stations (Boissonnade et al. 2002). However, as in the

case of PCA, more high-quality data are required. In addition, the selection of

related station is not always a straightforward process. Nearby meteorological

stations are not always the higher correlated ones. Existence of microclimates in

some areas is a common issue. Hence, both the correlation and the distance between

meteorological stations must be accounted for in spatial modeling.

Furthermore, each weather variable governed by different correlation dynamics.

As it will be described in Chap. 8, the correlation of both rainfall and temperature

changes differently as the distance increases while the correlation of each variable

changes over time.

3.2.2 Erroneous Values

A common mistake on the data is when the minimum value is greater than the

maximum value in a particular day. The first and simpler test is to check if the

minimum of the daily values is indeed smaller than the maximum values and that

their average is indeed the daily average temperature.

A second test is to check the magnitude of the daily measurements according to

the location and the time of the year.

There is a possibility that a block of data is significantly different than the values

of the nearby weather stations. In such cases the block of data must be removed of

the data or adjusted by a weighted average of the nearby stations.
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Sometimes, data providers note values as error values or not trustworthy. This

means that although there is a measurement for the particular day at the weather

station, this value maybe is not correct due to equipment malfunction, poorly

calibrated equipments, or any other problems.

In order to clean the data for these errors, usually two approaches are followed.

The first one is the meteorological approach. In this case, values from nearby

stations are used. The correlation and the distances between the meteorological

stations are calculated and then a weighted average for the error value is estimated.

The second one is the time-series approach. In this case a model for the dataset is

build (excluding the error values). Then new values are generated and replace the

error values by the estimated model.

However, replacing these erroneous values is not always a straightforward

approach. Different countries report weather data with different time conventions.

For example, in the USA the daily average temperature is measured as the average

of the daily maximum and the daily minimum as they measured from midnight to

midnight. On the other hand, in UK temperature is reported daily from 09:00 a.m. to

09:00 a.m.

One more common problem but easy to solve is the existence of leap years. The

usual and simpler approach is to remove the extra value, 29th of February, in order

to have equal datasets each year. Another approach is to adjust the daily models in

order to include the 29th of February every 4 years.

3.2.3 Jump and Discontinuities Detection

After removing or correcting incorrect values and filling any missing values, one

has to identify any possible jumps in the weather time series. The most common

cause of a jump in weather measurements is the change of the location of the

meteorological stations. Over the years, a meteorological station may be placed in a

different nearby location. For example, a meteorological station may be moved

from the center of the city to the airport or the instrumentation can be lifted few

meters above the ground, that is, to a different floor. Another reason that causes

jumps in the data is the change of the equipment of the meteorological station. Old

measurement equipments in a station may be replaced by new, more sensitive, or

more modern with greater accuracy instruments. These changes result to jumps

in the values of the data that can vary from small changes to several degrees.

Another reason may be the changes of the surroundings of the meteorological

station. A station that was in the shade may now be on sun or the construction of

large building or a parking lot next to the meteorological station, etc.

Identifying jumps is essential for accurate weather pricing. The impact of the

jump or the discontinuities in the pricing of weather contracts can be significant.

Old measurements can have a significant impact on the estimated parameters of

a model. Usually, free weather data are not corrected for such jumps. However,

usually, there is a note on the time series when changes on a meteorological
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station occur. On the other hand, there is possibility of an unknown jump in the

time series. These jumps can be identified either visually using various graphs or

using statistical test, like test for structural breaks. Another approach is to analyze

data from nearby and surrounding meteorological stations (Jewson et al. 2005).

In order to identify and remove the jumps and discontinuities from the data, the

following procedure must be followed. First, the potential dates that a jump occurs

must be identified. Second, the possible jump must be verified. Finally, the verified

jump must be quantified.

It is clear that a historical analysis of a meteorological station will significantly

help the data cleaning and enhancement procedure. This information gathered by

the historical analysis is generally referred to as “metadata.” An accurate history

analysis will provide the exact days and the physical causes of possible

discontinuities in the data. Although, information about the changes in the location

or the equipments of a station is reported in the metadata, information about the

changes in the surrounding of the stations usually is not reported. Hence, additional

statistical test must be performed in order to identify this kind of discontinuities,

like examining a moving average of the temperature or examine each month of the

historical data separately.

There are several approaches in order to verify a discontinuity in the weather

data. These methods can be separated in two categories: methods that use data from

the station in question and methods that used data from several related stations.

An analytic overview of these methods can be found in Boissonnade et al. (2002).

In the first category, quintiles of the distribution can be analyzed (DeGaetano and

Allen 1999), or filters can be applied to the data (Rhoades and Salinger 1993), to

detect large discontinuities. As it is mentioned in Boissonnade et al. (2002), these

methods were applied in literature in order to identify large discontinuities, over 2�.
Alternatively, in Boissonnade et al. (2002) a 12-month moving average is proposed

to indentify smaller jumps.

When multiple stations are used, a weighted average of the neighboring related

stations is estimated. Then the difference between this weighted average and the

values of the meteorological station is used in order to identify the jumps. However,

again more high-quality data from the related station are needed. Also, it is rare for

the weather time series of the related stations not to contain discontinuities.

After the dates of discontinuities have been identified and the jumps have been

verified, the step of quantification of the jumps is estimated. The most common

approaches to adjust the data in order to remove the jumps are the following. If the

jump is very small and does not have a statistical significant effect on the values,

then it can be ignored. If the dataset after the jump is large, over 10 years, then data

before the jump can be disregarded. Finally, if the jump is significant and past data

cannot be removed, then the data prior to the jump must be adjusted according to

the size of the jump. The magnitude of the jump can be estimated as the difference

of the data before and after the jump. For example, yearly means before and after

the discontinuity can be calculated, their difference is an estimation of the magni-

tude of the jump.
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3.3 Identifying and Removing Trends

After cleaning the weather data, one can proceed in modeling the dynamics of the

weather variable. In order to do so, one common approach is to deconstruct the data

in various parts. The first choice that one had to do is to estimate the possible trend

on the data. The researcher must analyze both the historical values of the weather

variable as well as the metadata of the meteorological station. This analysis will

provide valuable insight in understanding the reasons of the existence of the trend

and its structure.

In the next sections, a discussion of the most common reasons that trends in data

are evident is examined. Next, various methods that can be applied to model a trend

in the data are presented together with various examples for better understanding.

3.3.1 Reasons of Trends

The last years’ extreme temperatures both in summer and winter are observed in

various places around the world. The cause of these extreme usually attributed to

global warming. In fact it is believed that global warming affects temperature with

an upward trend while at the same time the remaining weather variables are affected

in various ways. For example, due to global warming, reduced rainfall in summer

and excessive rainfall in winter are observed in some places, like Australia.

However, global warming is not the only reason that a trend might appear in

meteorological data.

Before we proceed to temperature modeling and temperature derivative pricing,

we must understand the reasons that trends appear in data and how we can model

them. Almost all temperature time series appear to incorporate trends in the long

run, and there are a number of possible explanations for such trends. In the next

section, the main reasons that trends in DATs appear will be discussed.

3.3.1.1 Urbanization

The most common reason of trends in temperature measurements is the effect of

urbanization. Temperature is affected by global warming and urban effects. In areas

under development, the surface temperature rises as more people and buildings

concentrate. This is due to the sun’s energy absorbed by the urban buildings and the

emissions of vehicles, release of CO2, industrial buildings, and cooling units.

Hence, urbanization around a weather station results to an increment in the

observed measurements of temperature.
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3.3.1.2 Random Variability

Identifying a trend is very important. However, extra care must be taken when

dealing with trend identification. Before any action is taken, one must be sure that

increase/decrease of the measurements is real and not a part of a random variability.

3.3.1.3 Predicted Variability

An observed trend may be part of larger cycle. Studying 5 or 10 years of data may

result to a linear trend; however, a larger historical dataset like 50 years may

indicate a larger cycle where a slight increase in temperature occurs in the first 25

years and a slight decrease occurs in the last 25 years.

3.3.2 Structures of Trends

As it was already mentioned, weather is highly localized. As a result, there is a

possibility that different dynamics govern the same weather variable in different

locations. For example, different type of trends may characterize the change of

dynamics in temperature in different cities depending on the development and

urbanization effects in each city. Moreover, a different type of trend may be

appropriate for a weather index and a weather variable, for example, the HDDs

index and temperature.

3.3.2.1 Polynomial Trends

The usual approach is to fit a polynomial to the data in order to remove the trend.

The polynomial trend is given by

Trendt ¼ a0 þ a1tþ a2t
2 þ . . .þ ant

n: (3.4)

The simplest polynomial is the linear trend, where n ¼ 1. In this case, a simple

line is fitted to the data.

Trendt ¼ a0 þ a1t: (3.5)

Although the linear trend is the simplest method of detrending , it is also the most

common approach. Sometimes a second-order polynomial is used, while linear

trend of higher order is rarely used.

Trendt ¼ a0 þ a1tþ a2t
2: (3.6)
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When a second- or higher-order polynomial is used, there is possibility that the

observed trend may be part of larger cycle.

In addition, when a jump is identified in the data, a piecewise linear trend can be

used:

Trendt ¼
a1 þ b1t t � t0

a2 þ b2t t � t0

(
: (3.7)

The polynomial trend is used in daily data as well as in detrending index series.

3.3.2.2 Moving Average

Another common approach for detrending time series and is often used in index

detrending is the moving average approach. More precisely the moving average is

actually a smoothing method rather than a method for identifying trends. In contrast

to the polynomial method, the moving average is a nonparametric approach. Hence,

a formula for the possible trend is not provided. The moving average is given by

Trendt ¼ 1

p

Xm
i¼�m

Yðtþ iÞ: (3.8)

where p ¼ 2mþ 1. In this case the trend is an average of past and future data.

The moving average is a rolling window that uses p values of the data to create a
new smoother time series.

3.3.2.3 Loess and Lowess Filtering Methods

A more sophisticated method is to use a filter in order to remove trends and smooth

the data. One approach is the Loess and Lowess methods originally developed by

Cleveland (1979) and Cleveland and Devlin (1988). Loess is built on linear and

nonlinear least squares regression. The Loess is a nonparametric smoothing

method. It fits a low-degree polynomial to localized subsets of the data to build

up a function that describes the deterministic part of the variation in the data, point

by point. The polynomial is fitted using weighted least squares, giving more weight

to points near the point whose response is being estimated and less weight to points

further away. In this book we associate Lowess with a 1st-degree polynomial model,

while the Loess with a 2nd-degree polynomial.

Although Loess has many advantages, Loess requires fairly large, densely

sampled datasets in order to produce good models. In addition, Loess is a computa-

tionally intensive method. Finally, the Lowess algorithm is sensitive and prone to
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the effect of outliers which are common in weather time series. These reasons make

Loess or Lowess an unfavorable option for detrending.

3.3.2.4 An Example of Fitting a Trend in Temperature

In this section we will apply the previous detrending methods on real temperature

data. Figure 3.1 shows different trends fitted to Amsterdam Schiphol Airport. The

data corresponds to historical CAT indices from 1950 to 2007 for the period of May

to September each year. We chose this periods since the CAT index in the CME for

the European cities is measured from May to September.

In Table 3.1 the mean and standard deviation of the various detrending methods

at the CAT index at the Amsterdam Schiphol are calculated: no trend, linear,

quadratic, moving average, Loess, and Lowess.

Fig. 3.1 The CAT index and various fitted trends at Amsterdam Schiphol Airport
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As Jewson et al. (2005) mention, it is only worthy to model the trend if a

significant number of historical data in years are used. Modeling the trend with

only a few years of data can do more harm than good (Jewson et al. 2005).

3.4 Identifying and Removing Seasonalities

It is well known that weather variables and especially temperature exhibit strong

seasonalities. We expect that the temperature each year will move around a

seasonal mean. In order to develop a proper model that fits the dynamics of a

temperature process, the seasonality must be accurately modeled. Removing the

seasonal cycle, we expect to transform our temperature data to a stationary series.

In order to remove the seasonal cycle, one could average the temperature

measurements in daily values. In other words, first we average all the measurements

for the 1st of January, then we move on 2nd of January and so on. If the result is not

smooth enough, a moving average can be used to remove any remaining noise. This

approach is very fast and easy in implementation and can be used on large datasets.

Alternatively, to model the seasonality in temperature, a single sinusoid can be

fitted, SðtÞ ¼ a sin 2pðtþ ’Þ=365ð Þ, adjusted for the amplitude, a, and the phase, ’.
The amplitude points out the difference between the highest and the mean temper-

ature. On the other hand, the phase specifies where in the cycle the oscillation

begins.

A more sophisticated approach is to model the seasonal mean by a truncated

Fourier series:

SðtÞ ¼
XI1
i¼1

ai sin 2ip t� fið Þ 365=ð Þ þ
XJ1
g¼1

bj cos 2jp t� gið Þ 365=ð Þ: (3.9)

Usually, only a few harmonics are sufficient to capture the seasonal mean.

In Fig. 3.2 the DAT and the fitted seasonality and a linear trend are presented for

the period 1/1/1991 to 31/12/2000. The data are taken from the Schiphol airport at

Amsterdam. Note that the fitted seasonality is presented together with a linear trend

Table 3.1 The mean and

standard deviation of the CAT

Index at Amsterdam Schiphol

Airport estimated using

different trends

Trend Residuals

Mean St.D. Mean St.D.

No trend 2329.60 126.58 – –

Linear trend 2329.60 66.84 0.00 107.49

Quadratic trend 2329.60 75.65 0.00 101.49

Moving average 2328.90 81.492 0.71 91.58

Loess 2329.00 101.22 0.58 67.17

Lowess 2329.50 93.96 0.13 72.95
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given by (3.5). The fitted seasonality is modeled by (3.9) with only one sine and

only one cosine, that is, I1 ¼ J1 ¼ 1.

The previous method is very simple and can be easily applied in very large

datasets. On the other hand, Lau and Weng (1995) confirmed periodicities in the

temperature series with a period significantly greater than 1 year. Lau and Weng

(1995) examined the monthly Northern Hemisphere surface temperature for the

period January 1854–July 1993 using wavelet analysis (WA). They reported that

the temperature has three main frequency branches: interannual (2–5 years), inter-

decadal (10–12 years, 20–25years, and 40–60 years), and century (~180 years)

scales.

This conclusion was also reached in Zapranis and Alexandridis (2006, 2008,

2009, 2011). More precisely Zapranis and Alexandridis (2006) used the Daubechies

11 wavelet at level 11 to decompose 100 years of the average daily temperature

time series of Paris. Specifically, in their paper, WA captured dynamics of temper-

ature such as an upward trend, and periodicities expanding up to 13 years. This

method will be analytically discussed in the next chapters.

3.5 El Niño and La Niña Effects

El Niño-Southern Oscillation (ENSO) is defined by prolonged differences in Pacific

Ocean surface temperatures when compared with the average value. The accepted

definition is a warming or cooling of at least 0.5 �C (0.9 �F) averaged over the east-
central tropical Pacific Ocean. Typically, this anomaly happens at irregular

Fig. 3.2 Daily average temperature and fitted seasonality in Amsterdam Schiphol Airport
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intervals of 2–7 years and lasts from 9 months to 2 years. The average period length

is 5 years. When this warming or cooling occurs for only 7–9 months, it is classified

as El Niño/La Niña “conditions”; when it occurs for more than that period, it is

classified as El Niño/La Niña “episodes.”

The first signs of an El Niño are:

• Rise in surface pressure over the Indian Ocean, Indonesia, and Australia.

• Fall in air pressure over Tahiti and the rest of the central and eastern Pacific

Ocean.

• Trade winds in the south Pacific weaken or head east.

• Warm air rises near Peru, causing rain in the northern Peruvian deserts.

• Warm water spreads from the west Pacific and the Indian Ocean to the east

Pacific. It takes the rain with it, causing extensive drought in the western Pacific

and rainfall in the normally dry eastern Pacific.6

The Southern Oscillation is the atmospheric component of El Niño. This com-

ponent is an oscillation in surface air pressure between the tropical eastern and the

western Pacific Ocean waters. In Table 3.2 the historical occurrences of El Niño and

La Niña since 1950 are presented.

El Niño episodes are defined as sustained warming of the central and eastern

tropical Pacific Ocean. This results in a decrease in the strength of the Pacific trade

winds and a reduction in rainfall over eastern and northern Australia. It creates

increased rainfall across the east-central and eastern Pacific Ocean including

several portions of the South American west coast. Winters, during the El Niño

effect, are warmer and drier than average in the Northwest, Northmidwest, and

Table 3.2 Historical El Niño and La Niña episodes since 1950

El Niño La Niña

1957–1958 1950–1951

1965–1966 1954–1957

1968–1969 1965–1965

1972–1973 1970–1971

1982–1983 1973–1974

1986–1987 1975–1976

1991–1992 1988–1989

1997–1998 1995–1996

2002–2003 1998–2000

2004–2005 2000–2001

2006–2007 2007–2008

2009–2010 2010–2011

Source: National Weather Service Prediction Center

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/

enso.shtml#history

6National Climatic Data Center (June 2009). “El Niño / Southern Oscillation (ENSO) June 2009.”

National Oceanic and Atmospheric Administration
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Northmideast United States, and therefore those regions experience reduced

snowfalls. Meanwhile, significantly wetter winters are present in northwest Mexico

and the southwest United States including central and southern California, while

both cooler and wetter than average winters in northeast Mexico and the southeast

United States occur during the El Niño phase of the oscillation.

El Niño’s effects on Europe are not entirely clear. There is some evidence that an

El Niño may cause a wetter, cloudier winter in Northern Europe and a milder, drier

winter in the Mediterranean Sea region.

According to the previous analysis, El Niño/La Niña not only affects various

regions around the world but also affects various weather variables like tempera-

ture, wind, rainfall, and snowfall, while El Niño is credited with suppressing

hurricanes. On the other hand, the 2010–2011 La Niña was one of the strongest

ever observed with devastating effects on eastern Australia. Hence, when modeling

the dynamics of the previous weather variables, first we must decide if the area of

the meteorological station is affected by El Niño or La Niña.

If the area is affected by El Niño\La Niña, then there are two methods for

estimating a weather model and predict the future evolution of the weather variable.

The first, and more common, approach is to use a regime-switching model where

the parameters adjusted depending on the occurrence of an ENSO year.

Alternatively, the effects of the El Niño\La Niña on the historical data can be

quantified and removed. Next, on forecasting the evolution of the weather variable,

when ENSO effects are predicted, the forecasted values must be adjusted according

to the quantified effects of the El Niño\La Niña. However, since the impact on the

weather variables of each El Niño\La Niña varies significantly, this method runs the

danger of under/overestimating the effect of the El Niño\La Niña on the predicted

weather variable.

Hence, first the El Niño\La Niña episodes have to be predicted and then their

effects.

There are two major types of El Niño prediction models. The first category

consists of simple statistical models. In these models, statistical relationships,

derived from historical data, are used to predict future El Niño events. These

modes are easily implemented. However, the period of the historical meteorologi-

cal data is too short. Therefore, the statistical models are usually subjective. In

addition, the dynamics of El Niño are not modeled. As a result, the accuracy of the

prediction of the statistical models is limited.

On the other hand, hydrodynamic-coupled ocean–atmosphere models are widely

used. In this method, a system of differential equation describes the behavior and

the relationship between the ocean and the atmosphere. Although these models

offer more accuracy, they are computationally expensive.

There are also hybrid models, where an ocean model is coupled to a statistical

atmospheric model. These hybrid models try to combine the computational effi-

ciency of the statistical models with the accuracy of the hydrodynamic models.

Given a forecast for El Niño, one has to model the impact of El Niño on the

particular weather variable and meteorological station that he is interested. One

approach is to use statistical models. Jewson (2004) tried to statistically relate El
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Niño and US winter temperatures in New York, Chicago, Portland, and Tucson.

Their results indicate that it is not possible to discern a clear relation and that it is

not possible to fit a simple statistical model. Jewson (2004) studied only the impact

on temperature. A study on wind, rainfall, and snowfall may reveal different results.

Alternatively, modeling the impact of El Niño is to use simulations on the

hydrodynamic-coupled ocean–atmosphere models. This approach is still on early

stages of developing (Jewson et al. 2005).

3.6 Selection of the Length of Historical Data

In this section the subject of selecting the length of the historical data will be

discussed. Fitting a model to datasets of different size, it is expected that the

estimated parameters will deviate.

If the data is of high quality, then using as many years of data usually is good

choice to increase the accuracy of the estimation of the parameters. However, often

this is not the case. In addition, we must ensure that we can identify any trends or

seasonalities.

As it was mentioned earlier, if there is a jump on the data, it is better to remove

the data prior to the jump. However, if the remaining dataset is very small, then it is

better to adjust the data and use the complete set.

A first test is to plot the mean and the standard deviation of the index versus the

number of years. Figure 3.3 shows the estimated mean and standard deviation of

the CAT as a function of the number of years. These plots give an indication of the

sensitivity of our results to the number of years but do not answer the question of

how many years should be used.

In Fig. 3.4 the CAT index at Amsterdam Schiphol Airport together with the

mean CAT index as a function of time is shown. Note that the clear trend was not

removed from the data. As it is shown in Fig. 3.4, the historical average CAT as

function of number of years is almost constant (with a slight upward slope) the last

Fig. 3.3 The estimated mean CAT index at Amsterdam Schiphol Airport and the estimated

standard deviation as a function of the number of years. The dashed lines show the uncertainty

at +/� 1 standard deviation
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35 years. However, it is clear that it almost always underestimates the CAT index,

especially in the most recent years. In other words, the mean CAT index is heavily

influenced by old and probably irrelevant data, and as a result, the future evolution

of the CAT index is always underestimated. On the other hand, one can first detrend

the data and then estimate the mean CAT index as a function of number of years.

Then, the mean CAT index can be adjusted according to the trend to estimate the

future evolution of the CAT index. In Fig. 3.4 a quadratic (second-order) polyno-

mial is fitted to the original CAT index. Then the mean CAT index over the years is

estimated. Finally, the estimated mean CAT index is adjusted according to the

quadratic trend. Although this method indicates that it is best to use the last 20 years

only, where a linear upward trend dominates the data, it does not answer to the

question of how many years should be used.

A common approach to decide the length of the historical data is to follow the

backtesting method. The backtesting method examines how good a model will

work in the previous years. The length of the historical data that produces the best

results is used for forecasting the weather variables and weather indices. However,

this method has a main disadvantage. It assumes that past dynamics that affect a

weather variable, for example, temperature, will continue to affect the temperature

with the same magnitude which is not necessary true.

Market practitioners trading temperature derivatives often use only 10 years of

data to estimate the temperature of index and then derive the payoff of the

temperature contract. However, as it will presented later, more advanced methods

produce more accurate results.

Fig. 3.4 The real CAT index at Amsterdam Schiphol Airport, the historical average CAT index

versus the number of years and the historical average CAT index adjusted for a quadratic trend

versus the number of years
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3.7 Conclusions

For a successful weather risk management, weather derivative pricing, marking to

market, and settlement of weather contracts, the use of high-quality weather data is

necessary. Hence, data from meteorological stations must be reported continuously

and accurately. However, surprisingly, meteorological data not only offered with

great limitations but at high cost too. As a result, the unavailability and the cost of

meteorological data is one of the major reasons that hinder the weather market to

further expand.

In this chapter various techniques for data cleaning and preprocessing were

presented. First, methods for filling missing values were presented. Then, various

approaches for identifying and correcting erroneous values were discussed. Finally,

a framework for identifying and verifying jumps and discontinuities as well as a

methodology for adjusting the data when a jump occurs was analytically presented.

On the second part of this chapter, various methods for identifying and modeling

trends on temperature data were discussed. In addition to the various trends, two

smoothing techniques were presented. We conclude that the choice of trend

depends on the size of the dataset as well as the index that it is modeled. Finally,

a weather variable (temperature) and the corresponding weather index (HDDs) on

the same variable may be governed by a different trend.

Weather variables exhibit strong seasonality. We tried to model and extract the

seasonal mean of daily measurements of the weather variables using truncated

Fourier series.

El Niño and La Niña not only affect various regions around the world but also

affect various weather variables like temperature, wind, rainfall, and snowfall,

while El Niño is credited with suppressing hurricanes. First, the El Niño\La Niña

episodes have to be predicted and then their effects. There are two major types of El

Niño prediction models. The first category consists of simple statistical models. On

the other hand, hydrodynamic-coupled ocean–atmosphere models are widely used.

There are also hybrid models, where an ocean model is coupled to a statistical

atmospheric model. Given a forecast for El Niño/La Niña, one has to model the

impact of El Niño/La Niña on the particular weather variable and meteorological

station that he is interested. If the area is affected by El Niño\La Niña, then there are

two methods for estimating a weather model and predict the future evolution of

the weather variable. The first is to use a regime-switching model. Alternatively, the

effects of the El Niño\La Niña on the historical data can be quantified and removed.

Selecting the length of the historical data is an issue among researchers and

practitioners. Fitting a model to datasets of different size, it is expected that the

estimated parameters will deviate. If the data is of high quality, then using as many

years of data usually is good choice to increase the accuracy of the estimation of the

parameters. However, often this is not the case. A common approach to decide the

length of the historical data is to follow the backtesting method. However, this

method has a main disadvantage. It assumes that past dynamics that affect a
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weather variable, for example, temperature, will continue to affect the temperature

with the same magnitude which is not necessarily true.

Market practitioners trading temperature derivatives often use only 10 years of

data to estimate the temperature of index and then derive the payoff of the

temperature contract. However, as it will be presented later, more advanced

methods produce more accurate results.
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Chapter 4

Pricing Approaches of Temperature Derivatives

4.1 Introduction

Early methods such as the actuarial method or the HBA were used to derive the

price of a temperature derivative written on a temperature index without actually

modeling the dynamics of the temperature. Both methods measure how a tempera-

ture derivative would perform the previous years. The average (discounted) payoff

that was derived from the previous years is considered to be the payoff of the

derivative.

Alternatively, one can directly model the corresponding index, namely, “index

modeling,” such as the HDD index, the CDD index, the CAT index, the AccHDDs

index, or the AccCDDs index. A different model must be developed for each index.

In literature, few papers suggest that temperature index modeling (HDD or CDD

index) might be more appropriate (Davis 2001; Dorfleitner and Wimmer 2010;

Geman and Leonardi 2005; Jewson et al. 2005).

Another approach to estimate the temperature driving process is to use models

based on daily temperatures. Daily modeling can, in principle, lead to more

accurate pricing than modeling temperature indices, (Jewson et al. 2005), as a lot

of information is lost due to existing boundaries in the calculation of temperature

indices by a normal or lognormal process, such as HDD being bounded by zero. On

the other hand, deriving an accurate model for the daily temperature is not a

straightforward process. Observed temperatures show seasonality in all of the

mean, variance, distribution, and autocorrelation, and there is evidence of long

memory in the autocorrelation. The risk with daily modeling is that small misspeci-

fications in the models can lead to large mispricing of the temperature contracts

(Jewson et al. 2005).

In the literature, two methods have been proposed for the modeling of the DAT,

the usage of a discrete or a continuous process. Moreno (2000) argues against the

use of continuous processes in the temperature modeling based on the fact that the

values of temperature are in discrete form; hence, a discrete process should be used

directly. Caballero and Jewson (2002), Caballero et al. (2002), Campbell and

A.K. Alexandridis and A.D. Zapranis, Weather Derivatives: Modeling and Pricing
Weather-Related Risk, DOI 10.1007/978-1-4614-6071-8_4,
# Springer Science+Business Media New York 2013

55



Diebold (2005), Cao et al. (2004), Cao and Wei (1999, 2000, 2003, 2004), Carmona

(1999), Franses et al. (2001), Jewson and Caballero (2003a, b), Moreno (2000),

Roustant et al. (2003a, b), Svec and Stevenson (2007), Taylor and Buizza (2002,

2004), and Tol (1996) make use of a general autoregressive moving average

(ARMA) framework.

On the other hand, Alaton et al. (2002), Bellini (2005), Benth (2003), Benth and

Saltyte-Benth (2005, 2007), Benth et al. (2007, 2008), Bhowan (2003), Brody et al.

(2002), Dischel (1998a, b, 1999), Dornier and Queruel (2000), Geman and Leonardi

(2005), Hamisultane (2006a, b, 2007, 2008), McIntyre and Doherty (1999), Oetomo

and Stevenson (2005), Richards et al. (2004), Schiller et al. (2008), Torro et al.

(2003), Yoo (2003), and Zapranis and Alexandridis (2006, 2007, 2008, 2009a, b)

suggest a temperature diffusion stochastic differential equation. The continuous

processes used for modeling daily temperatures usually take a mean-reverting

form, which has to be discretized in order to estimate its various parameters. Once

the parameters of the process are estimated, one can then value any contingent claim

by taking expectation of the discounted future payoff. Given the complex form of the

process and the path-dependent nature of most payoffs, the pricing expression

usually does not have closed-form solutions. In that case, Monte Carlo (MC)

simulations are used. This approach typically involves generating a large number

of simulated scenarios of weather indices to determine the possible payoffs of the

weather derivative. The fair price of the derivative is then the average of all simulated

payoffs, appropriately discounted for the time value of money; the precision of the

MC approach depends on the correct choice of the temperature process and the look

back period of available weather data. In Fig. 4.1, the evolution of the weather

derivatives literature using continuous stochastic differential equations is presented.

In Fig. 4.2, the main methods for estimating and modeling the temperature

indices and the temperature process for weather derivative pricing can be found.

In this study, we focus on daily modeling since using models for daily temperatures

can, in principle, lead to more accurate pricing than modeling temperature indices

since more information is obtained.

The rest of this chapter is organized as follows. In Sect. 4.2, the actuarial method

that is used for the pricing of various derivatives is described. In Sect. 4.3, the HBA

is discussed. In Sect. 4.4, the advantages and disadvantages of index modeling are

analyzed. Approaches that modeled the temperature using daily models are

presented in Sect. 4.5. More precisely, Sect. 4.5.1 presents the discrete processes

used in previous studies in daily temperature modeling, while Sect. 4.5.2 presents

the continuous processes. In Sect. 4.6, alternative modeling methods are presented.

Finally, in Sect. 4.7, we conclude.

4.2 Actuarial Method

A pricing methodology for weather derivatives that is widely used in insurance is

the actuarial (or insurance) method. In actuarial pricing, appropriate datasets of

meteorological data and forecasts are used in order to derive the distribution of all
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possible outcomes for the settlement index (Jewson 2004), while historical data are

used to calculate the expected payoff. The expected payoff is discounted at the risk-

free rate to obtain the price. This method is based on statistical analysis, and it is

less applicable in contracts with underlying variables that follow recurrent, predict-

able patterns. Since this is the case for most of the weather derivatives contracts,

actuarial analysis is not considered the most appropriate pricing approach unless the

contract is written on rare weather events such as extreme cold or heat. Moreover,

Dischel 1998a

Dornier & Querel
2000

Davis 2001 Alaton, Djehiche,
Stillberger 2002

Brody et al. 2002

Yoo, 2003

Hamisultane 2006
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Torro, Maneu,
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Fig. 4.1 Evolution of weather derivatives literature using continuous stochastic differential

equations
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the estimated expected payoff is in the real world, meaning that the actuarial

approach is correct only when the expected payoff from the derivative is the

same in both the real and the risk-neutral world (Hull 2003, 2005).

4.3 Historical Burn Analysis

A classical approach for weather derivatives pricing is the performing of

simulations based on historical data, known as ΗΒΑ. More precisely, in HBA the

average payoff of the weather derivatives in the past n years is computed. ΗΒΑ is

often considered as a benchmark approach. The main assumption of this method is

that the historical record of the payoff of the weather contract gives a precise

illustration of the distribution of the potential payoffs (Dischel 1999). In other

words, HBA assumes that history will repeat itself with the same likelihood (Turvey

2001; Hamisultane 2008). If weather risk is calculated as the payoffs standard

deviation, then the price of the contract will be P(t) ¼ D(t, T) � (m � a � s),
where D(t, T) is the discount factor from contract maturity T to the pricing time t, m
is the historical average payoff, s is the historical standard deviation of the payoffs,

and a is a positive number denoting risk tolerance. Often time series of length

Temperature
Derivative Pricing

Actuarial Method Burn Analysis Daily Modeling

Discrete
Processes

General ARMA
models

Brownian Motion
Fractional

Brownian Motion
Levy Motion

Mean Reverting
Ornstein-
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Continuous
Processes

Utility Function
Based Models

Scenario Based
Models

Index Modeling
Alternative
Methods

Fig. 4.2 Methods for estimating and modeling the temperature indices and the temperature

process for weather derivative pricing
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between 10 and 30 years are used (Cao et al. 2004). ΗΒΑ is very easy to calculate

since there is no need to fit the distribution of the temperature or to solve any

stochastic differential equations. Moreover, ΗΒΑ is based in very few assumptions.

Firstly, the temperature time series is assumed to be stationary. Next, the data for

different years is assumed to be independent and identically distributed.

A closer inspection of a temperature time series shows that none of these

assumptions is correct. It is apparent that the temperature time series contains

seasonalities, jumps, and trends (Zapranis and Alexandridis 2006, 2007,2008).

Moreover, there is evidence that the volatility and the average of temperature is

not constant for different historical record lengths (Dischel 1999). According to the

observations above and since this approach does not incorporate forecasts, this

method is bound to be biased and inaccurate. Furthermore, the assumption that the

data originating from different years is independent is under question (Moreno

2000). Jewson et al. (2005) suggest that these assumptions can be made if the data is

cleaned and detrended, although their results indicate that pricing still remains

inaccurate. Other methods, such as index and daily modeling, are considered

more accurate, but still HBA is usually regarded as an acceptable first approxima-

tion of the derivative’s price and is widely used by market participants. In fact,

HBA is considered to be the simplest pricing method in terms of implementation

and the most prone to large pricing errors (Jewson et al. 2005). Finally, similar to

the actuarial method, the market price of risk related to the temperature cannot be

estimated in the HBA framework (Cao et al. 2004).

4.4 Index Modeling

Early studies tried to model directly different temperature indices like the HDD, the

CDD, or the CAT index. Geman and Leonardi (2005) discuss the statistical

properties of both HDD and AccHDD indices. Their results from 55 years of data

indicate that, in the case of the December HDDs in Paris, the hypothesis of the

normal distribution is rejected, while in the case of the December AccHDD, the

normality hypothesis is accepted. They conclude that modeling directly the HDDs

is not appropriate. On the other hand, if someone wants to discuss the various issues

related to the valuation of the contracts over a particular period, the AccHDD index

can be modeled directly (Geman and Leonardi 2005).

Davis (2001) tried to model the AccHDD index using a continuous stochastic

differential equation. More precisely, the AccHDD index Xt modeled by a lognor-

mal process:

dXt ¼ vXtdtþ gXtdWt (4.1)

and at time T,

XT ¼ expðmT þ gWTÞ; (4.2)
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where

mT ¼ logX0 þ ðv� 1

2
g2ÞT: (4.3)

Using 11 years of data from Birmingham, England, Davis (2001) concludes that

modeling the AccHDD index Xt as lognormal process is convenient but affects the

pricing. Also, the choice of the initial value X0 can significantly affect the option

prices by �10%.

Jewson et al. (2005) tested HDD, CDD, and CAT indices in various sites in the

USA. Their results indicate that almost always the normality test is accepted for

seasonal contracts. However, for shorter periods, the normality hypothesis is often

rejected. Moreover, Jewson et al. (2005) concludes that there is very little theory in

what distribution should be used to fit the indices. As a result, there is a significant

probability that a non-appropriate distribution is used. In that case, great errors will

be induced in the derived estimated prices.

According to Jewson et al. (2005), most practitioners rely on the index modeling

framework since it is easy to understand. Based on this observation, Dorfleitner and

Wimmer (2010) recently tested the effectiveness of index modeling in forecasting

temperature index and temperature futures prices. Two models were tested, one

incorporating a linear trend and one without a linear trend. In both models, weather

forecast was included. Their results indicate that the model with the linear trend has

better forecasting ability in the case of predicting the temperature HDD and CDD

indices; however, a model without a linear trend is better at forecasting the price of

temperature futures. In other words, although a trend exists in the temperature HDD

and CDD indices, market practitioners prefer a simpler model without a trend.

4.5 Daily Modeling

More recent studies utilize dynamic models which directly simulate the future

behavior of temperature. The estimated dynamic models can be used to derive the

corresponding indices and price various temperature derivatives.

Using models for daily temperatures can, in principle, lead to more accurate

pricing than modeling temperature indices. Daily models very often show greater

potential accuracy than the HBA (Jewson et al. 2005), since daily modeling makes a

complete use of the available historical data. In the contrary, calculating the temper-

ature index, such as HDDs, as a normal or lognormal process, a lot of information

both in common and extreme events is lost (e.g., HDD is bounded by zero).

It is clear that using index modeling a different model must be estimated for each

index. On the other hand, using daily modeling, only one model is fitted to the data

and can be used for all available contracts on the market on the same location. Also

using a daily model, an accurate representation of all indices and their distribution
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can be obtained. Finally, in contrast to index modeling and HBA, it is easy to

incorporate meteorological forecasts.

However, deriving an accurate model for the daily temperature is not a straight-

forward process. The risk with daily modeling is that small misspecifications in the

models can lead to large mispricing in the contracts.

Previous studies propose that modeling DAT can be done either using a discrete

or a continuous process. In the next sections, discrete and continuous daily temper-

ature models previously proposed in the literature will be analytically discussed.

4.5.1 Discrete Process

The values of temperature are in discrete form; hence, a discrete process can be

used directly (Moreno 2000). In Moreno (2000) a mean-reverting discrete process

and a general AR(p) proposed by Carmona (1999) were compared. The temperature

was modeled by a mean-reverting process that was given by

Tiþ1 ¼ Ti þ Siþ1 � Sið Þ þ a Si � Tið Þ þ siei; (4.4)

where Ti is the DAT, Si is the mean seasonal temperature, si is the volatility of the

temperature changes, and ei ~i.i.d follow the Nð0; 1Þ distribution. Moreno (2000)

findings from Paris-Orly and Marseille suggest that the volatility is not constant and

shows seasonality. It is modeled by

si ¼ 1þ sin2 yiþ bð Þ: (4.5)

The temperature Ti in the second model, originally proposed by Carmona (1999), is

given by

Tiþ1 ¼ Siþ1 þ ARðpÞ: (4.6)

The fitting from both models is very good with the autoregressive (AR) model

(4.6) to outperform the mean-reverting model (4.4). Moreno (2000) studied the

distribution of the residuals in a monthly basis and found that the distribution of

the residuals for different periods is not the same. Moreno (2000) concluded that the

distribution of the residuals is not constant through the year. More precisely, the

residuals are independently but not identically distributed. Hence, both models

cannot be used in order to simulate the temperature process.

Cao and Wei (2000) also argue about the use of diffusion processes in tempera-

ture modeling. Using one-factor diffusion processes cannot incorporate autocorre-

lation in the temperature, while there is a possibility that a simulated temperature

path will not resemble a real one. Cao and Wei (2000) suggest a discrete process to

capture the unique characteristics of DAT. Studying temperature data, Cao and Wei
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(1999, 2000, 2003) and Cao et al. (2004) build their framework on the following

five assumptions about DAT:

• It follows a predicted cycle.

• It moves around a seasonal mean.

• It is affected by global warming and urban effects.

• It appears to have autoregressive changes.

• Its volatility is higher in the winter than in summer.

By denoting Tyr;t the temperature on date t in year yr, the variableUyr;t is the daily

temperature whose mean and trend have been removed:

Uyr;t ¼ Tyr;t � T̂yr;t; (4.7)

where T̂yr;t is the adjusted historical mean temperature and

Tt ¼ 1

m

Xm
yr¼1

Tyr;t (4.8)

is the average temperature on a particular date overm years. In Cao and Wei (2000)

a k-lag autocorrelation system is used for the daily temperature residuals:

Uyr;t ¼
Xk
i¼1

riUyr;t�i þ syr;teyr;t; (4.9)

syr;t ¼ s� s1 sin
pt
365

þ ’
� ���� ���; (4.10)

where ri is the autocorrelation coefficient for the ith lag, eyr;t are i.i.d. standard
normally distributed, and syr;t is the volatility. The parameters can be estimated

using the maximum likelihood estimation (MLE). The above model is easy to

estimate and captures features of temperature such as seasonality in mean and

volatility, the autocorrelation property, and uneven variations through the year

(Bellini 2005). Also weather forecast can be used to enhance the predictability of

the model. However, as Cao and Wei (2000) comment, the above model probably

cannot be used for long time periods since long-range forecasts cannot have daily

precision.

In a more recent paper, Cao and Wei (2004) adapt the framework proposed by

Lucas (1978) to derive a valuation framework for temperature derivatives and to

study the market price of risk. Their results indicate that the market price of risk

associated to the temperature is significant and that the market price of risk affects

option values much more than forward prices, mainly due to payoff specification.

Campbell and Diebold (2005) expand the model proposed by Cao and Wei

(2000). They use a low-order Fourier series with autoregressive lags to model the
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seasonal mean temperature. In addition, the conditional variance is allowed to

exhibit seasonality in the variance as well as autoregressive effects:

Tt ¼ St þ
XL
l¼i

rt�lTt�l þ stet; (4.11)

where

St ¼ aþ btþ
XP
p¼1

dc;p cos
2ppt
365

� �
þ ds;p sin

2ppt
365

� �� �
; (4.12)

s2t ¼
XQ
q¼1

gc;q cos
2pqt
365

� �
þ gs;q sin

2pqt
365

� �� �
þ
XR
r¼1

are2t�r; (4.13)

et � i:i:d:Nð0; 1Þ: (4.14)

Using Fourier series in (4.12) and (4.13), Campbell and Diebold (2005) produce

a smooth seasonal pattern while reduce significantly the number of parameters that

have to be estimated. Model (4.11) incorporates a linear trend that reflects dynamics

such as global warming or urban effects around a meteorological station. The

parameters L and P are estimated using both Akaike’s and Schwarz criteria.

Campbell and Diebold (2005) use temperature data from 1/1/1960 to 11/5/2001

to estimate the systems (4.11, 4.12, 4.13 and 4.14) in ten locations in the USA. The

large estimated value of L ¼ 25 reveals a long memory in the temperature

dynamics, and the estimated value of R ¼ 1 reveals autoregressive effects in the

variance. Since L ¼ 25, in order to obtain good estimations of the parameters, large

datasets must be used. Bellini (2005) suggests that the linear trend might be part of a

long-term cycle and also suggests that the quality of the trend might be deteriorate if

large datasets as in Campbell and Diebold (2005) are used.

Roustant et al. (2003a, b) use a general ARMA model to calculate the price

uncertainty of weather derivatives. As in Cao and Wei (1999), the temperature is

modeled by a linear model with periodic variance:

Tt ¼ St þ stZt; (4.15)

where the St is given by (4.12) and

st ¼ aþ b cos
2pt
365

� �
þ c sin

2pt
365

� �
(4.16)

and Zt is the ARMA processes with variance 1:

Zt ¼ ’1Zt�1 þ . . .þ ’pZt�p þ et þ y1et�1 þ . . .þ yqet�q: (4.17)
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Their results from Paris indicate that the ARMA model reduces to a simple AR

(3) model as in many studies such as in Benth et al. (2007) and Carmona (1999).

The seasonal part St has only the two first components of the Fourier series. Their

results indicate large values for the price uncertainty, especially for weather options

prices. Roustant et al. (2003b) conclude that the uncertainty comes from the

modeling of the trend and seasonality. Hence, a sophisticated algorithm for

modeling the trend and seasonal part must be derived.

Results from Tol (1996) indicate that the volatility of temperature is not constant

but shows some systematic variation. A generalized autoregressive conditional

heteroskedastic (GARCH) model is used to capture this feature in temperature

data from the Netherlands.

Franses et al. (2001) propose a nonlinear GARCHmodel for weekly temperature

in the Netherlands. Their results indicate a strong asymmetry in the volatility and

that the nonlinear GARCH outperforms the linear GARCH model.

Taylor and Buizza (2004, 2006) expand the works of Franses et al. (2001) and

Tol (1996) by using a low-order Fourier series to model the seasonality St , as in
Campbell and Diebold (2005). They use only 5 years of DATs from the UK to test

the forecast ability of an AR–GARCH and an atmospheric model as well as the

impact of the inclusion of weather ensemble forecast to the models. The

AR–GARCH model is defined as

Tt ¼ Sm;t þ ’Tt�1 þ et; (4.18)

et ¼ stet; (4.19)

s2t ¼ So;t þ a et�1 � Sg;t
� �2 þ bs2t�1; (4.20)

Sl;t ¼ l0 þ l1 sin
2pt
365

� �
þ l1 cos

2pt
365

� �
þ l1 sin

4pt
365

� �
þ l1 cos

4pt
365

� �
: (4.21)

The results from Taylor and Buizza (2004, 2006) indicate that the atmospheric

model outperforms the AR–GARCH model.

Caballero et al. (2002) argue about the use of simple ARMA models since their

results indicate that a slow decay in the autocorrelation function (ACF) of the

temperature is evident. In order to capture the long memory in the ACF, an

autoregressive fractional integrated moving average model (ARFIMA) is used.

ARFIMA models are defined as the ARIMA (autoregressive integrated moving

average) models proposed by Box and Jenkins (1970):

FðLÞ 1� Lð ÞdTi ¼ CðLÞei; (4.22)

where FðLÞ and CðLÞ are polynomials in the lag operator L and ei is a white

noise process. For 0<d< 1
2

the process has long memory with intensity d, for

� 1
2
<d<0 the process has short memory, while for d � 1

2
the process is
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nonstationary (Bellini 2005). An ARFIMA (p,d,q) model is equivalent to an ARMA

(1,q) model with onlypþ qþ 1parameters. Caballero et al. (2002) use DATs from

the UK, and their results indicate that long-range dependence is present in their data

and that ARFIMA models can accurately and parsimoniously reproduce the auto-

covariance structure of the observed data. However, fitting an ARFIMA model is

extremely computationally expensive and prohibitively for long datasets. Moreover,

the ARFIMA model proposed by Caballero et al. (2002) fails to capture the season-

ality in the ACF of temperature (Jewson and Caballero 2003b). Hence, the memory

is underestimated in summer and overestimated in winter (Bellini 2005).

In Jewson and Caballero (2003b), a new form of AR processes was presented,

called autoregressive on moving average (AROMA) to model the DAT. In

AROMA m1; . . . ;mMð Þ process, the detrended and deseasonalized temperature ~Tt

in day t is regressed onto a number of moving averages of previous detrended and

deseasonalized temperatures; all end in day t � 1:

~Tt ¼
XM
i¼1

ai
Xt�mi

j¼t�1

~Tj

 !
þ et: (4.23)

The AROMA process was extended to incorporate seasonality (SAROMA) by

fitting a different model with different regression parameters for each day. In order

to obtain good estimations of the parameters, the number of moving averages must

be as small as possible (Jewson and Caballero 2003b). The regression parameter for

a moving average of length m can be fitted when the length of the fitting window is

significant larger than m. Jewson and Caballero (2003b) suggest the use of 4

moving averages, and for the length of the moving average, all the possible

combinations with lengths up to 35 were tested. The length of each moving average

was chosen according to the root mean square error (RMSE) between the real ACF

and the modeled ACF. The above method runs the danger of overfitting the data.

Algorithms for the optimal selection of the number of the moving averages as well

as the length of each moving average must be derived. Finally, although the

proposed model can capture the slow decay of the ACF, it cannot capture more

rapid changes (Jewson and Caballero 2003b).

In Svec and Stevenson (2007), various models were compared in modeling and

forecasting DAT. More precisely, one intraday and two daily models based on

Fourier transformation of temperature as well as a wavelet reconstructed Fourier

transformation were compared. The above models were a modification of the model

originally proposed by Campbell and Diebold (2005). The dataset that was used

covers the period from 1997 to 2005, and their results indicate that the modified

models outperform the original model. Finally, Svec and Stevenson (2007) tested

their data for fractionality, and their estimates indicate that Sydney DATs do not

exhibit long memory.
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4.5.2 Continuous Process

The continuous processes used for modeling DAT usually take a mean-reverting

form, which has to be discretized in order to estimate its various parameters. Once

the process is estimated, one can then value any contingent claim by taking

expectation of the discounted future payoff. Given the complex form of the process

and the path-dependent nature of most payoffs, the pricing expression usually does

not have closed-form solutions. In that case, MC simulations are being used. This

approach typically involves generating a large number of simulated scenarios of

weather indices to determine the possible payoffs of the weather derivative. The fair

price of the derivative is then the average of all simulated payoffs, appropriately

discounted for the time value of money; the precision of the MC approach is

dependent on the correct choice of the temperature process and the look back

period of available weather data.

Since temperature exhibits strong and clear seasonality, most models already

proposed in weather derivatives literature make use of a mean-reverting process.

Most models can be written as nested forms of the following mean-reverting O–U

process:

dTðtÞ ¼ dSðtÞ � k TðtÞ � SðtÞð Þdtþ sðtÞdBðtÞ; (4.24)

where T is the temperature, k is the speed of mean reversion, SðtÞ is a deterministic

function modeling the trend and seasonality, sðtÞ is the daily volatility of tempera-

ture variations, and BðtÞ is the driving noise process.

Dischel (1998a, b) is the first to propose a continuous stochastic model. Since

temperature cannot be stored or traded, the weather market has the classical form of

an incomplete market. Dischel (1998b) argues about the use of a Black–Scholes

model to price weather derivatives. Weather derivatives are different from other

financial derivatives in that the underlying weather index (HDD, CDD, CAT, etc.)

cannot be traded. Furthermore, the corresponding market is relatively illiquid.

Consequently, since weather derivatives cannot be cost-efficiently replicated by

other weather derivatives, arbitrage pricing cannot directly apply to them. The

weather derivatives market is a classic incomplete market, because the underlying

weather variables are not tradable. When the market is incomplete, prices cannot be

derived from the no-arbitrage condition, since it is not possible to replicate the

payoff of a given contingent claim by a controlled portfolio of the basic securities.

Consequently, the classical Black–Scholes–Merton pricing approach, which is

based on no-arbitrage arguments, cannot be directly applied. In addition, market

incompleteness is not the only reason; weather indices do not follow random walks

(as the Black and Scholes approach assumes) and the payoffs of weather derivatives

are determined by indices that are average quantities, while the Black–Scholes

payoff is determined by the value of the underlying exactly at the maturity date of

the contract (European options).
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In Dischel (1998b), the following stochastic process is proposed to model

temperature:

dTðtÞ ¼ kSðtÞ þ bTðtÞð Þdtþ gtðtÞdz1 þ dsðtÞdz2; (4.25)

where SðtÞ is the average seasonal historical mean, that is, SðtÞ ¼ 1
m

Pm
i¼1

Ti;t . SðtÞ
represents the average temperature on a particular date across all years of the

dataset. According to Dischel (1998b), SðtÞ also represents the mean reversion

parameter, while k denotes the speed of the mean reversion which is considered

constant. The random part of the process is given by the second part of equation

(4.25), gtðtÞdz1 þ dsðtÞdz2 where dz1; dz2 denote the Weiner processes

corresponding to the distribution of the temperature, TðtÞ, and the distribution of

the changes in temperature,DTðtÞ. Dischel (1998b) makes no assumptions about the

distributions dz1; dz2 and tries to extract them by bootstrapping the past data.

Because two-parameter models can become very unstable, the stochastic simulation

was limited to the temperature changes only. By using finite differences, (4.25) can

be rewritten as

Tnþ1 ¼ aSnþ1 þ bTn þ dDTn;nþ1; (4.26)

where DTn;nþ1 is the randomly selected forward changes.

In a more recent paper, Dischel (1999) focuses on problems corresponding to the

quality of the weather data and also to the quantity of the weather data that one must

use in order to estimate the parameters of the model. Moreover, he discusses the

problem of using constant volatility to a nonstationary time series. The solution that

is proposed is to deconstruct and reconstruct the whole time series. A polynomial

equation is proposed in order to capture the trend of the degree days. Then, the

volatility of the history of the trend is calculated. A moving average scheme is used

and then the time series is reconstructed using the new adjusted volatility.

McIntyre and Doherty (1999), in an attempt to model the DAT in Heathrow

airport in the UK, concluded that a mean-reverting stochastic differential equation

with constant volatility given by

dTðtÞ ¼ k TðtÞ � SðtÞð Þdtþ sdBðtÞ (4.27)

fits the data very well.

Dornier and Queruel (2000) use a more general ARMA model than the AR (1)

model proposed by Dischel (1998a, b). Although they agree with the use of a mean-

reverting model, they argue about the direct use of the Hull and White model. They

prove that the models proposed by Dischel (1998b) and McIntyre and Doherty

(1999) are mean-reverting models, but they revert to a value different from the

historical mean. The only possibility for having a process with mean SðtÞ using

model (4.27) is to take SðtÞ as a constant. However, the seasonality of daily

temperature is clearly not constant.
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Moreover, they show that this can be corrected by the addition of the term dSðtÞ
in (4.27), where dSðtÞ is the changes in seasonal variations.

This means that today’s temperature does not depend only on the previous day

but depends also on the days before yesterday. Also, in their model, they allow the

volatility to change among seasons, but in their analysis, they assume it as a

constant.

Alaton et al. (2002) improves Dischel (1998a, b) model using the model (4.24)

proposed by Dornier and Queruel (2000). Also, they incorporate seasonalities in the

mean using a sinusoid function:

SðtÞ ¼ Aþ Btþ C sinðotþ ’Þ; (4.28)

where ’ is the phase parameter that defines the day of the yearly minimum and

maximum temperature. Since it is known that the DAT has a strong seasonality of a

1-year period, the parameterowas set too ¼ 2p=365. This tactic was discouraged
by Moreno (2000), since sinusoids do not fit well the asymmetric evolution of

temperature, and as a result, a biased is induced in the out-of-sample forecasts

despite the goodness of fit. The linear trend caused by urbanization or climate

changes is represented by Aþ Bt. The time, measured in days, is denoted by t. The
parameter C defines the amplitude of the difference between the yearly minimum

and maximum DAT. Using the Itô formula, a solution of (4.24) is given by

TðtÞ ¼ SðtÞ þ TðsÞ � SðsÞð Þe�k T�sð Þ þ
ðt
s

e�k t�tð ÞsðtÞdBðtÞ: (4.29)

In Alaton et al. (2002), in order to find numerical values of the constants, the

function

Yt ¼ a1 þ a2tþ a3 sin otð Þ þ a4 cos otð Þ (4.30)

is fitted to the temperature data using the method of least squares. The constants

between the model (4.28) and (4.30) are connected with the following relations:

A ¼ a1; (4.31)

B ¼ a2; (4.32)

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 þ a24

q
; (4.33)

’ ¼ arctan
a4
a3

� �
� p: (4.34)

Another innovative characteristic of Alaton et al. (2002) framework is the

introduction of seasonalities in the standard deviation. In Alaton et al. (2002),
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two estimators for the standard deviation of the temperature, s, are obtained. The

first estimatorst ¼ sif g12i¼1 is a piecewise constant function, with a positive constant

value each month. Following the notation of Alaton et al. (2002), the estimator is

given by

ŝ2m ¼ 1

Nm

XNm�1

j¼0

Tð jþ 1Þ � Tð jÞð Þ2; (4.35)

where j ¼ 0; . . . ;Nm and Nm is the DAT at day N at month m ¼ 1; . . . ; 12.
By discretizing the mean-reverting O–U given by (4.24), a second estimator is

obtained. Following again the notation of Alaton et al. (2002), the discretized

equation is

Tð jÞ ¼ Sð jÞ � Sð j� 1Þ þ kSð j� 1Þ þ 1� kð ÞTð j� 1Þ þ smeð j� 1Þ j ¼ 1; . . . ;Nm;

(4.36)

where eð jÞ are i.i.d. standard normally distributed.

By denoting

~Tð jÞ ¼ Tð jÞ � Sð jÞ; (4.37)

Equation (4.36) can be rewritten as

~Tð jÞ ¼ 1� kð Þ ~Tð j� 1Þ þ smeð j� 1Þ: (4.38)

Hence, an efficient estimator can be derived as

ŝ2m ¼ 1

Nm � 2

XNm

j¼1

~Tð jÞ � k̂Sð j� 1Þ � 1� k̂ð ÞTð j� 1Þ� �2
(4.39)

which reduces to

ŝ2m ¼
1

Nm � 2

XNm

j¼1

~Tð jÞ � Tð j� 1Þ þ k̂ ~Tð j� 1Þ� �2
: (4.40)

In Alaton et al. (2002), the mean between the two estimators is used for each

month m. Finally, in order to estimate (4.40), an estimator for parameter k is needed.

Alaton et al. (2002) uses a martingale estimation function method suggested by

Bibby and Sorensen (1995):

k̂n ¼ � log

Pn
i¼i

~TðiÞ � ~Tði� 1Þ=s2i�1Pn
i¼i

~T
2ðiÞ=s2i�1

 !
i ¼ 1; 2; . . . ; n: (4.41)
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Alaton et al. (2002) use data from Bromma Airport at Sweden for a period of

40 years in order to estimate the parameters. Their results indicate that the model

fits the temperature data well since it incorporates the main characteristics of the

DAT. However, it is a simplification of the real world. The piecewise constant

volatility results to underestimation of the real volatility and hence to

underestimation of the prices of weather derivatives (Benth and Saltyte-Benth

2005). Finally, the proposed model assumes that the residuals et are uncorrelated

and normally distributed. Alaton et al. (2002) do not provide any statistical tests for

the correlation or the normality of the residuals, while their results suggest that the

small temperature differences have higher frequency than those predicted by the

fitted normal distribution.

Torro et al. (2003) adapt interest rate models by expanding the frameworks of

Bali (1999) and Chan et al. (1992). Based on the DAT in Spanish temperature

index, a general single factor model that captures seasonality, mean reversion,

GARCH structures in volatility, and relationships between volatility and tempera-

ture levels for modeling was developed:

dTðtÞ ¼ SðtÞ þ a2TðtÞð Þdtþ sðtÞdz; (4.42)

where

sðtÞ ¼ cðtÞTðtÞg (4.43)

and seasonality was captured as in Alaton et al. (2002) by a sinusoid function – SðtÞ
¼ a0 þ a1 cosðotþ fÞ – and ct represents the structural changes in volatility

captured by a GARCH model:

c2
tþ1 ¼ b0 þ b1e

2
t þ b2c

2
t : (4.44)

Using different constraints, Torro et al. (2003) obtained a set of nested models.

The results from the Spanish temperature index indicate that an appropriate model

for the DAT should contain a mean reversion term. The volatility shows

autoregressive behavior. Finally, the volatility and the temperature are negatively

related while the sensitivity, between these too variables, is really low.

It is clear that Torro et al. (2003) have not included a trend that represents global

or urban warming. Moreover the model (4.42), and the nested ones, does not revert

to the appropriate value, according to Dornier and Queruel (2000), since the term

dSðtÞ was not included.
Brody et al. (2002) argue about the use of the standard BM. Although the

temperature fluctuations are normally distributed, a slow decay in the ACF of the

temperature can be observed, which BM fails to capture. To overcome this prob-

lem, a fractional Brownian motion (FBM) is proposed for the driving noise. FBM is

a stochastic process that exhibits long-range dependence without significantly

implicating the pricing equations of the future and option weather derivatives.
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FBM models are the continuous analogous of the ARFIMA models proposed by

Caballero et al. (2002).

As the name suggests, FBM is a modified general version of a standard BM that

depends on the Hurst exponent H. The Hurst exponent, H, determines the level of

the correlations of the increments. When H> 1
2 , the correlation is positive, while

whenH< 1
2 ,
the correlation is negative. IfH ¼ 0, then the correlation is zero and the

standard BM is recovered.

Replacing the driving noise process with a FBM, the stochastic equation for the

DAT can be written as

dTðtÞ ¼ kðtÞ SðtÞ � TðtÞð Þdtþ sðtÞdBHðtÞ; (4.45)

where 0<H<1.
Seasonality in the mean and volatility is captured by a sinusoid function similar

to Alaton et al. (2002) and Torro et al. (2003):

SðtÞ ¼ a0 þ a1 sinð2pt
365

þ f1Þ; (4.46)

sðtÞ ¼ b0 þ b1 sinð
2pt
365

þ f2Þ: (4.47)

Moreover, kðtÞ is not limited to a constant value as in previous studies, but it is

rather represented by a bounded deterministic function. Allowing kðtÞ to vary with

time implies seasonalities in the speed of mean reversion. However, Brody et al.

(2002) assume it constant, and they do not proceed in examining the dynamics of

k(t). Finally, the factordSðtÞ should have been added for the temperature to revert to

the seasonal mean.

In Brody et al. (2002), data from the daily central England temperature from the

period 1772–1999 was taken. In contrast to previous studies that usually make use

of 5–40 years of data, Brody et al. (2002) use a significantly larger sample. It is

expected that measurements made during the last 200 years probably will not reflect

the dynamics of the temperature of the next few years (Dischel 1999). Using a very

large sample of historical data of DAT runs the danger for the estimated parameters

to be affected by dynamics of the temperature that do not represent the future

behavior of temperature anymore. Brody et al. (2002) found evidence of

fractionality in the temperature since the estimated Hurst exponent was H ¼ 0:61.
However, the analysis should have been performed after all seasonalities have been

removed from the data (Benth and Saltyte-Benth 2005; Bellini 2005).

Using a FBM process BH , with H different than 0.5, has an impact in the

stochastic calculus. The process is not a semimartingale or a Markov process which

means that standard stochastic methods cannot be used. Recent studies have

developed stochastic methods for FBM analogue to Itô calculus (Aldabe et al.

1998; Hu and Oksendal 2003; Lin 1995). Although these methods lead to arbitrage

opportunities in finance, they can be used in temperature modeling since tempera-

ture cannot be traded or stored (Bellini 2005).
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In Benth (2003), the findings of Brody et al. (2002) comprised the starting point

to derive arbitrage-free pricing formulas for temperature derivatives. A FBMwith a

Hurst exponent between 0.5 and 1 is used to model the DAT. Benth (2003) first

proved that the price of temperature derivatives is arbitrage-free using the quasi-

conditional expectation. Next, Benth (2003) calculated the prices for European and

Asian claims. Their results indicate that the derived theoretical pricing formulas

using a FBM are not a function of T � t as in the case of a BM. More precisely, the

price of the temperature derivative no longer depends on the time to exercise T � t
but on the current time t and the exercise time T separately.

Bhowan (2003) expands the model proposed by Alaton et al. (2002)

incorporating stochastic volatility. The stochastic volatility has the form of a

mean-reverting process that reverts to a long-term trend:

dsðtÞ ¼ a strend � sðtÞð Þdtþ gdBðtÞ; (4.48)

where strend is the long-term trend and it is constant. The parameter g is given by

g2 ¼ 1

n

Xn�1

j¼0

sð j� 1Þ � sð jÞð Þ2 (4.49)

and

â ¼ � log

Pn
i¼i

strend�sðt�1Þ
g2

� �
sðtÞ � strendð Þ

Pn
i¼i

strend�sðt�1Þ
g2

� �
sðt� 1Þ � strendð Þ

0
@

1
A i ¼ 1; 2; . . . ; n: (4.50)

Bhowan (2003) found that their model fits 20 years of data obtained from

Pretoria very well, while Mraoua and Bari (2007) implement the same framework

in 44 years of Moroccan data.

In a more recent paper, Benth and Saltyte-Benth (2005) fit Norwegian data by

modeling the DAT variations with a mean-reverting O–U process where the noise

process is modeled by a generalized hyperbolic Lévy process. Instead of the FBM

used in their previous work, they expand the work of Dornier and Queruel (2000).

Moreover, they argue with Brody et al. (2002) for not performing fractional

analysis at the residuals in their regression model. As in previous works, a sine

function captures the seasonal mean as in (4.46). Also the idea of the seasonal

volatility proposed by Alaton et al. (2002) is expanded. The seasonal volatility has a

continuous form, sðtÞ ¼ sðtþ k � 365Þ for t ¼ 1; . . . ; 365 and k ¼ 1; 2; 3 . . . and is

repeated every year. More precisely, the model they used is given by

dTðtÞ ¼ dSðtÞ þ k TðtÞ � SðtÞð Þdtþ sðtÞdLðtÞ; (4.51)

where LðtÞ is a Lévy noise process.
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Discretizing (4.51) with Dt ¼ 1, the DAT can be written as

DTðtÞ ¼ DSðtÞ þ k TðtÞ � SðtÞð Þ þ sðtÞDLðtÞ
TðtÞ � Tðt� 1Þ ¼ SðtÞ � Sðt� 1Þ þ k Tðt� 1Þ � Sðt� 1Þð Þ þ sðtÞDLðtÞ: (4.52)

By rearranging (4.52), we have that

TðtÞ ¼ SðtÞ þ 1þ kð Þ Tðt� 1Þ � Sðt� 1Þð Þ þ sðtÞeðtÞ (4.53)

since

DLðtÞ ¼ eðtÞ
ffiffiffiffiffi
Dt

p
: (4.54)

Hence, (4.51) can be written as an additive time series:

TðtÞ ¼ SðtÞ þ cðtÞ þ ~eðtÞ; (4.55)

where SðtÞ is given by (4.46), cðtÞ ¼ a Tðt� 1Þ � Sðt� 1Þð Þ, a ¼ 1þ k, and ~eðtÞ
¼ eðtÞsðtÞ. The seasonal variance can be extracted from the residuals as follows.

First, the residuals are grouped into 365 groups, where each group corresponds to a

single day of the year. Then, by taking the average of the squared values of each

group, the variance for that day is obtained. The result yields because eðtÞ has

average value of 0 and variance of 1.

Lévy family-based distributions are flexible processes that allow heavy tails and

skewness that often are observed in temperature time series. On the other hand,

because of the nature of the distribution, no closed-form solution can be found.

Benth and Saltyte-Benth (2005) confirm the existence of heavy tails and skewness

in Norwegian data. Also they did not found any significant linear trend. This is

probably a result of the use of a small dataset since Benth and Saltyte-Benth (2005)

use only 13 years of data. Also, Benth and Saltyte-Benth (2005) examine if the

parameterk is constant or a time-varying function. More preciselykwas assumed to

be a piecewise function with constant value during a month or a year. In contrast to

Brody et al. (2002), they did not find any significant time dependency or variation in

monthly or yearly basis. Again, this is probably a result of the use of a small dataset

or their averaging method in monthly and yearly basis.

Benth and Saltyte-Benth (2005) removed the seasonality from the volatility;

however, they found that the first few lags of the remaining residuals are still

significantly correlated. They suggest that a moving average time series or a

GARCH model will remove this effect but they did not proceed on estimating one.

In Benth and Saltyte-Benth (2007), 40 years of data were used to model the DAT

in Stockholm, Sweden. In order to focus on pricing and to provide closed-form

solution for the pricing of weather derivatives, Benth and Saltyte-Benth (2007) use

a BM as the driving noise process. More precisely, a mean-reverting O–U process

where the noise process is modeled by a simple BM as in (4.24) was suggested.
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In this study, the speed of mean reversion parameter, k, was considered constant.

Both seasonal mean and (square of) daily volatility of temperature variations are

modeled by truncated Fourier series:

SðtÞ ¼ aþ btþ
XI1
i¼1

ai sin 2pi t� fið Þ=365ð Þ þ
XJ1
j¼1

bj cos 2pj t� gj
� �

=365
� �

;

(4.56)

s2ðtÞ ¼ cþ
XI2
i¼1

ci sin 2pit=365ð Þ þ
XJ2
j¼1

dj cos 2pjt=365ð Þ: (4.57)

Using truncated Fourier series, a good fit for both the seasonality and the

variance component can be obtained while keeping the number of parameters

relatively low. The above representation simplifies the needed calculations for the

estimation of the parameters and for the derivation of the pricing formulas.

Equations (4.56) and (4.57) allow both larger and smaller periodicities than the

classical 1-year temperature cycle. In Benth and Saltyte-Benth (2007), the order of

both series was chosen arbitrarily, and no statistical tests were presented for the

significance of each parameter.

The discrete form of (4.24) is given by

DTðtÞ ¼ DSðtÞ � 1� e�kð Þ TðtÞ � SðtÞð Þ þ e�k
ðtþ1

t

sðuÞe� t�uð ÞdBðuÞ; (4.58)

where

DTðtÞ ¼ T tþ 1ð Þ � TðtÞ: (4.59)

This can be easily shown as follows when TðtÞ is given by (4.29)

DTðtÞ ¼ T tþ 1ð Þ � TðtÞ

¼ S tþ 1ð Þ þ Tð0Þ � Sð0Þð Þe�k tþ1ð Þ þ
ðtþ1

0

sðuÞe�k tþ1�uð Þ dBðuÞ � SðtÞ

� Tð0Þ � Sð0Þð Þe�kt �
ðt
0

sðuÞe�k t�uð Þ dBðuÞ
¼ S tþ 1ð Þ � SðtÞ þ Tð0Þ � Sð0Þð Þe�kt e�k � 1ð Þ

þ e�k
ðtþ1

0

sðuÞ e�k t�uð Þ dBðuÞ �
ðt
0

sðuÞe�k t�uð Þ dBðuÞ
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¼ DSðtÞ þ TðtÞ � SðtÞ �
ðt
0

sðuÞe�k t�uð Þ dBðuÞ
� �

e�k � 1ð Þ

þ e�k
ðtþ1

0

sðuÞe�k t�uð ÞdBðuÞ �
ðt
0

sðuÞe�k t�uð Þ dBðuÞ

¼ DSðtÞ þ TðtÞ � SðtÞð Þ e�k � 1ð Þ � e�k
ðt
0

sðuÞe�k t�uð Þ dBðuÞ

þ
ðt
0

sðuÞe�k t�uð ÞdBðuÞ þ e�k
ðtþ1

0

sðuÞe�k t�uð ÞdBðuÞ �
ðt
0

sðuÞe�k t�uð Þ dBðuÞ

¼ DSðtÞ þ TðtÞ � SðtÞð Þ e�k � 1ð Þ þ e�k
ðtþ1

t

sðuÞe�k t�uð Þ dBðuÞ

Approximating (4.58), we have that

DTðtÞ � DSðtÞ � 1� e�kð Þ TðtÞ � SðtÞð Þ þ e�ksðtÞDBðtÞ: (4.60)

By rearranging (4.60) and substituting DBðtÞ ¼ Bðtþ 1Þ � BðtÞ ¼ eðtÞ, we have
that the deseasonalized and detrended temperature is given by an AR(1) model:

~Tðtþ 1Þ ¼ a ~TðtÞ þ ~sðtÞeðtÞ; (4.61)

where eTðtÞ is given by (4.37) and

a ¼ e�k (4.62)

and

~sðtÞ ¼ asðtÞ: (4.63)

In Benth and Saltyte-Benth (2007), the DAT is first detrended and

deseasonalized by fitting SðtÞ to the data. Next, the parameter a of the AR(1)

model (4.61) is estimated. Then the ACF of the residuals is examined. More

precisely, the ACF of the residuals and the squared residuals is examined for

seasonalities. If seasonality in the residuals is found, then the seasonal variance of

the DAT is removed. The seasonal variance can be extracted from the residuals as

follows. First, the residuals are grouped into 365 groups, where each group

corresponds to a single day of the year. Then by taking the average of the squared

values of each group, the variance for that day is obtained. Finally, (4.57) is fitted to

the estimated seasonal variance. In Benth and Saltyte-Benth (2007), the variance is

considered a function of time, and it is repeated every year,

that is; sðtÞ ¼ sðtþ k � 365Þ for t ¼ 1; . . . ; 365 and k ¼ 1; 2; 3 . . .
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Their results indicate that their model is good enough to describe the main

dynamics of temperature data. Moreover, the proposed model allows for closed-

form solutions of the pricing formulas of the HDD and the CAT future and options

contracts. Also, in Benth and Saltyte-Benth (2007), it is shown that the HDD future

curves give higher prices when a seasonal volatility is considered compared to a

constant volatility.

Their results indicate a clear linear trend, while the ACF of the squared residuals

reveals time dependency and seasonality in the variance of the residuals (Benth and

Saltyte-Benth 2007). As in previous studies, their results show higher level of

volatility in the winter period. The seasonal variance is modeled and removed

using (4.57) with I2 ¼ J2 ¼ 4. However, no statistical results were given for the

choice of the length of the truncated Fourier series of the variance or of the

significance of each parameter. Moreover, the autocorrelation for the first lags is

still present. They suggest that a GARCHmodel will remove this effect but they did

not proceed in estimating one. In addition, in contrast to the initial hypothesis of the

BM, the normality test was rejected at the 1% significance level.

Zapranis and Alexandridis (2006) expand the model proposed by Benth and

Saltyte-Benth (2007). They use 101 years of temperature in Paris in order to price

European CAT derivatives. They model the seasonal cycle using an extension and a

combination of discrete FT approach and the regression method. The seasonality

and the seasonal variance were modeled as in Benth and Saltyte-Benth (2007);

however, they propose a novel approach to correctly model (4.56) and (4.57) using

WA. More specifically, they use WA in order to decompose the temperature series

into a series of (orthogonal) basis functions (wavelets) with different time and

frequency locations. As a result, the wavelet decomposition brings out the structure

of the underlying dynamics of the temperature series as well as trends, periodicities,

singularities, or jumps that could not be observed originally. Hence, seasonal

mean and (square of) daily volatility of temperature variations can be modeled

efficiently and accurately. However, the distribution of the residuals of AR(1)

model, before and after dividing out the seasonal variance, differs significantly

from the normal distribution. The next thing that was tried was to assess the impact

of outliers to the original AR(1) model. The differences of today’s average temper-

ature from yesterday’s average temperature were formed, and then the dates

corresponding to the differences with a value greater than plus or minus 3.5

standard deviations were identified. In total, 40 outlier temperature observations

were identified out of the 36,865 temperature values, which were then set equal to

the average value of the temperature for that particular day, calculated from

101 years of data. The smoothness of the above outliers improved the distributional

statistics of the residuals significantly. More precisely the skewness was only

�0.005, the kurtosis was 3.04, and the Jarque–Bera (JB) statistic has fallen to

only 3.77 which lead to the acceptance of the normal distribution.

In order to rectify the rejection of the normality hypothesis, in more recent

chapters, Zapranis and Alexandridis (2007, 2009b) replaced the simple AR(1)

model by more complex ones. They used ARMA(3,1), ARFIMA, and

AFRIMA–FIGARCH models. Their results from the DAT in Paris indicate that,
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as the model gets more complex, the noise part draws away from the normal

distribution. They conclude that, although the AR(1) model probably is not the

best model for describing temperature anomalies, increasing the model complexity

and thus the complexity of theoretical derivations in the context of weather deriva-

tive pricing does not seem to be justified. Next, Zapranis and Alexandridis (2009b)

model nonparametrically the seasonal residual variance with NNs. The improve-

ment regarding the distributional properties of the original model is significant. The

examination of the corresponding Q–Q plot reveals that the distribution is quite

close to Gaussian, while the JB statistic of the original model is almost halved. The

NN approach gives a good fit for the ACF and an improved and reasonable fit for

the residuals.

In Zapranis and Alexandridis (2008), three different decades of DATs in Paris

are examined using the mean-reverting O–U process proposed by Benth and

Saltyte-Benth (2007). The seasonality and the seasonal variance were modeled

using WA. Previous studies assume that the parameter of the speed of mean

reversion, k , is constant. However, the findings of Zapranis and Alexandridis

(2008) indicate some degree of time dependency in kðtÞ. Since kðtÞ is important

for the correct and accurate pricing of temperature derivatives, a significant degree

of time dependency in kðtÞ can be quite important (Alaton et al. 2002). A novel

approach to estimate nonparametrically a nonlinear time-dependent kðtÞwith a NN

was presented. Daily values of the speed of the mean reversion were computed. In

contrast to averaging techniques, in a yearly or monthly basis, which run the danger

of filtering out too much variation, it is expected that daily values will provide more

information about the driving dynamics of the temperature process. Results from

Zapranis and Alexandridis (2008) indicate that the daily variation of the value of the

speed of mean reversion is quite high. Intuitively, it is expected of kðtÞ not to be

constant. If the temperature today is far from the seasonal average (a cold day in

summer), then it is expected that the mean reversion speed will be high, that is, the

difference between today’s temperature and tomorrow’s temperature is expected to

be high. In contrast, if the temperature today is close to the seasonal variance, we

expect the temperature to revert to its seasonal average slowly. In Zapranis and

Alexandridis 2008), kðtÞ is studied. Their data from Paris indicate that kðtÞ has a
bimodal distribution with an upper threshold which is rarely exceeded. Also it was

examined if kðtÞ is a stochastic process itself. Both an Augmented Dickey–Fuller

(ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were used. Both

tests conclude that kðtÞ is stationary. Finally, using a constant speed of mean

reversion parameter, the normality hypothesis was rejected in all three cases,

while in the case of the NN, the normality hypothesis was accepted in all three

different samples.

Bellini (2005), motivated by the papers of Benth and Saltyte-Benth (2005, 2007),

uses a Gaussian O–Umodel with time-dependent mean and volatility to describe the

stochastic dynamics of DATs on four US cities: Chicago, Portland, Philadelphia,

and Tucson. Seasonality in the mean and volatility was also modeled by a truncated

Fourier series. For Chicago, Portland, and Philadelphia, the normal distribution

provides a good fit; however, the estimated JB statistic is over 40 for all cities.
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In the city of Tucson where the normality hypothesis provided the worst fit, a Lévy

process was used. Finally, the study of Bellini (2005) indicates the absence of

fractional characteristics in the standardized residuals after all seasonal cycles

have been removed from the data.

In Benth et al. (2007) a continuous-time autoregressive process with lag p (CAR
(p)-process) and seasonal variation is introduced. Using 40 years of data in

Stockholm, their results indicate that a value of p ¼ 3 is sufficient to explain the

autoregressive temperature dynamics. The detrended and deseasonalized DATs

follow an AR(3) process with seasonal residuals modeled as in (4.57). The overall

fit is very good with R2 ¼ 94:1%; although the distribution of the residuals is close

to normal, the normality hypothesis is rejected.

In Geman and Leonardi (2005), three different modeling methods were com-

pared: HDD index modeling, AccHDDs index modeling, and daily modeling. Their

results from 50 years of DAT in Paris indicate that HDDs distribution differs

significantly from the normal distribution, while in the case of the AccHDDs

distribution, the hypothesis of normal distribution was accepted. Following

McIntyre and Doherty (1999), Geman and Leonardi (2005) used (4.27) to model

the daily temperature index. The discrete version of (4.27) leads to an AR(1) model.

In order to remove the correlation in the residuals, Geman and Leonardi (2005) use

a general AR(q) model with q � 1:

TðtÞ ¼ SðtÞ þ ARðqÞ þ et: (4.64)

Their results indicate that q ¼ 3 and that the residuals et are uncorrelated and follow
the normal distribution. However, the proposed model does not revert to the

appropriate seasonal value since the term dSðtÞ was not included.
In Schiller et al. (2008), a spline model was proposed. Splines used to separate

DAT into a trend and a seasonality component in the mean mðtÞ and a trend and

seasonality component in the standard deviation sðtÞ:

TðtÞ ¼ mðtÞ þ sðtÞRðtÞ: (4.65)

The residuals RðtÞ are modeled separately with an AR process. Their results

indicate that the ACF of an AR(1) model decreases exponentially with time; hence,

it is not able to capture the slow decay of the ACF. In order to rectify this problem,

Schiller et al. (2008) model the residuals with an AROMA process previously

suggested by Caballero et al. (2002) and Jewson and Caballero (2003a). As in

Dubrovsky et al. (2004) and Oetomo and Stevenson (2005), their findings suggest

that daily models tend to underestimate the variance of the error.

Yoo (2003) expands the work proposed by Alaton et al. (2002) by incorporating

seasonal forecasts. The seasonal forecasts were incorporated using a linear combi-

nation of the warm, normal, and cool mean temperature processes:

SðtÞ ¼ pwS
w
t þ pnS

n
t þ pcS

c
t ; (4.66)
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Sit ¼ bi0 þ bi1 sinðotÞ þ bi2 cosðotÞ i ¼ w; n; c; (4.67)

where pw; pn; pc are the probabilities of each scenario (warm, normal, cool). Their

model was tested in five cities in the USA. The volatility was assumed as a

piecewise constant function, with a constant value during each season. Their results

indicate that option values obtained by the MC simulation are very sensitive to the

seasonal forecast probabilities.

In Richards et al. (2004), the DAT in Frenso, CA, was modeled by a general

mean-reverting Brownian motion (MRBM) with lognormal jumps and time-

varying volatility:

dTðtÞ ¼ k SðtÞ � l’� TðtÞð Þdtþ sðtÞdzþ ’dq; (4.68)

where SðtÞ is the seasonal average daily temperature given similar to Alaton et al.

2002; Yoo (2003) and West (2002) slightly modified to incorporate correlated lags

of the temperature process:

SðtÞ ¼ g0 þ g1 sin 2pt=365ð Þ þ g2 cos 2pt=365ð Þ þ g3tþ
Xp
j¼1

rjTðt� jÞ: (4.69)

Jumps occur according to a Poisson processqwith average rate l, anddz is a Wiener

process. Finally, a time-varying volatility is incorporated by an autoregressive

conditional heteroskedasticity (ARCH) process:

sðtÞ ¼ g0 þ g1 Tðt� 1Þ � SðtÞð Þ2: (4.70)

Richards et al. (2004) estimate a series of nested models: a BM, a MRBM, a

MRBM with lognormal jumps, and a MRBM with lognormal jumps and ARCH.

Their results indicate that the latter outperforms the others. However, the term dSðtÞ
should have been added for a proper mean reversion. The results from Hamisultane

(2006a, b, 2007, 2008) indicate that the above models produce very volatile prices

when using MC simulations.

The presence of long memory in DAT was tested in New York data by

Hamisultane (2006b). Following Brody et al. (2002), the Hurst exponent was

calculated around 0.66, indicating the presence of long memory. However, the

term dS should have been included for a proper mean reversion of the temperature

(Dornier and Queruel 2000), and the Hurst exponent should have been estimated

after all seasonal cycles have been removed from the data (Bellini 2005; Benth and

Saltyte-Benth 2005). Hamisultane (2006b) compares long- and short-memory

processes in both continuous and discrete process to calculate prices for New

York CDD future prices. Both financial and actuarial approaches were used for

pricing. Their results indicate that the financial approach produced better results

while MC predictions have appeared to be very volatile. Finally, the results from
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discrete time long-memory and short-memory processes used in the actuarial

method were similar.

Oetomo and Stevenson (2005) compared various methods previously proposed

in literature. More precisely, the following model were compared: a naı̈ve temper-

ature forecasting model which relies on the historical average temperature, the

model proposed by Dischel (1998a, b), the model proposed by Alaton et al. (2002),

an ARMA model, the model proposed by Cao and Wei (2004), and the model

proposed by Campbell and Diebold (2005). The above models were tested in-

sample and out-of-sample in various locations. Their results indicate that none

model was able to constantly outperform the others. Also, their findings suggest that

both stochastic models and time-series models tend to under forecast the DAT,

while forecasts beyond 30 days are unreliable. Finally, their results indicate that

forecasting AccCDDs index is more difficult than forecasting the AccHDDs index.

Finally, in Zapranis and Alexandridis (2009a), WNs were used in order to model

a mean-reverting O–U temperature process, with seasonality in the level and

volatility. The seasonality in the mean and volatility modeled as in Benth and

Saltyte-Benth (2007). They forecast up to 2 months ahead out-of-sample daily

temperatures, and the corresponding CAT and HDD indices were simulated. The

proposed model is validated in eight European and five US cities, all traded in

CME. Their results suggest that the proposed method outperforms alternative

pricing methods proposed in prior studies in most cases. Their findings suggest

that WNs can model the temperature process very well, and consequently, they

constitute a very accurate and efficient tool for weather derivatives pricing.

4.6 Alternative Methods

Since the weather market is a classical form of an incomplete market, standard

hedging-based pricing methods cannot be applied. As a result, many alternative

methods have been proposed in literature.

Zeng (2000a) discusses the limitations of the actuarial methods that originate

from the statistical properties of the weather indices. As an alternative, a modified

MC method, named biased sampling MC, is proposed. The idea of Zeng (2000a)

takes advantages of the seasonal forecasts for a particular underlying weather

variable (temperature, precipitation). By denoting pA; pN , and pB , the probabilities
that the underlying weather variable will be above, near, or below the climate

norm, it is assumed to approximate the probabilities that the corresponding index

(e.g., CDD or HDD) will be above, near, or below the climate norm, respectively.

Results from over 250 weather stations indicate that this assumption is justified

(Zeng 2000b). In the proposed method, first a normal distribution is fitted on the

historical index. Then the historical record is sorted and divided into three groups:

the highest 33%, the middle 34%, and the lowest 33%. Then samples are taken from

the three groups with replacement proportional to the probabilities pA; pN , and pB.
However, the hypothesis that the CDD or the HDD indices follow the normal

distribution contradicts the results of Geman and Leonardi (2005).
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Platen and West (2005) use a fair pricing framework under the benchmark

approach to price weather derivatives. More precisely, the growth optimal portfolio

which is interpreted as a world stock index is used as a benchmark. The framework

of Platen and West (2005) is based on the assumption that the weather market is

liquid; however, the weather market is still emerging and it is illiquid (Platen and

West 2005; Brockett et al. 2006).

Due to the absence of liquid secondary weather market, Brockett et al. (2006)

use the indifference pricing approach to value weather derivatives taking into

account portfolio effects. In this framework, an upper limit of the price of a weather

derivative is the price at which a buyer is indifferent, in terms of expected utility,

between buying and not buying the contract. Brockett et al. (2006) use a

mean–variance utility function:

uðxÞ ¼ EðxÞ � ls2ðxÞ; (4.71)

where l is the risk aversion parameter and it is positive. It is clear that the choice of

the utility function uðxÞ as well as the value of the risk aversion parameter greatly

affects pricing.

Xu et al. (2008) expand the framework proposed by Brockett et al. (2006). They

argue about the use of HBA since it lacks of as sound theoretical basis and about

equilibrium models since they have to resort to simplifying assumptions in order to

become tractable (Xu et al. 2008). In the mean–variance framework, an exponential

utility function was used:

uðxÞ ¼ �e�lx; (4.72)

where l is the risk aversion parameter and it is positive. However, the simplifying

assumptions made by Xu et al. (2008) reduce the model to a straightforward

actuarial interpretation (Xu et al. 2008).

It is clear that the maximization of the expected utility framework is often

proposed in the literature. However, utility functions are too much preference

dependent and sensitive to the selection of the risk aversion parameter (Carr et al.

2001). Moreover, using temperature forecasts with a utility function to estimate the

demand curve for the derivate reduces the proposed methodology to simply using

the forecasts (Campbell and Diebold 2005) (Oetomo and Stevenson 2005).

4.7 Conclusions

In this chapter, the main methodologies proposed in literature for modeling tem-

perature and pricing weather derivatives were presented and reviewed. Studying

and understanding the advantages and disadvantages of prior studies, a new and

effective model can be built.
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The weather market is at its infancy and still developing. Similarly, the literature

is evolving. However, a general accepted model still does not exist. In addition,

practitioners and risk management companies keep weather market data private and

do not publish their models.

The underlying variables of weather derivatives follow predictable recurrent

patterns; hence, the actuarial method is not an appropriate pricing approach. The

HBA is considered as a good first approximation of the price of a weather deriva-

tive. HBA is the simplest pricing method in terms of implementation and the most

prone to large pricing errors.

Alternatively index or daily modeling can be used. In index modeling, the

various temperature indices can be directly modeled. On the other hand, on daily

modeling, the DAT is modeled and then any temperature index can be derived.

Developing a daily model can be done by using either a discrete or a continuous

process.

In this book, we focus on daily modeling. Modeling directly the daily tempera-

ture can, in principle, lead to more accurate pricing than modeling temperature

indices. In the calculation of most indices, a lot of information concerning the

temperature dynamics is lost. The risk with daily modeling is that small misspeci-

fications in the models can lead to large mispricing of the temperature contracts.
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Chapter 5

Modeling the Daily Average Temperature

5.1 Introduction

The purpose of this chapter is to develop a model that accurately describes the

dynamics of the DAT. The statistical properties of the DATs will be examined in

order to propose a process that exhibits the same behavior.

Daily modeling can in principle lead to more accurate pricing than modeling

temperature indices (Jewson et al. 2005), as a lot of information is lost due to existing

boundaries in the calculation of temperature indices by a normal or lognormal

process, such as HDDs being bounded by zero. On the other hand, deriving an

accurate model for the daily temperature is not a straightforward process. Observed

temperatures show seasonality in all of the mean, variance, distribution, and auto-

correlation, and there is evidence of long memory in the autocorrelation. The risk

with daily modeling is that small misspecifications in the models can lead to large

mispricing of the temperature contracts (Jewson et al. 2005).

It is clear that when index modeling is used, a different model must be estimated

for each index. On the other hand, when daily modeling is used, only one model is

fitted to the data, and it can be used for all available contracts in the market on the

same location. Using a daily model, an accurate representation of all indices and

indices distribution can be obtained. Finally, in contrast to index modeling and

HBA, it is easy to incorporate meteorological forecasts.

In this chapter, the DAT time series of seven different European cities will be

examined. The seven European cities are Amsterdam, Berlin, Madrid, Oslo, Paris,

Rome, and Stockholm. Weather derivatives of these cities are traded in CME.

Studying the past behavior of these time series will help us build a model that

can predict the future behavior of the DATs because changes in temperature follow

a cyclical pattern despite the large variability (Bellini 2005).

Following and expanding the previous studies (such as Bellini 2005; Benth and

Saltyte-Benth 2005, 2007; Benth et al. 2007; Zapranis and Alexandridis 2008,

2009b, 2011), a stochastic process is selected for describing the temperature

process. The stochastic process will be build upon the statistical properties found

A.K. Alexandridis and A.D. Zapranis, Weather Derivatives: Modeling and Pricing
Weather-Related Risk, DOI 10.1007/978-1-4614-6071-8_5,
# Springer Science+Business Media New York 2013
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on the seven DAT time series. In this book, WA will be applied in order to correctly

identify the seasonal mean of the temperature and the seasonal variance in the

residuals. In addition, the speed of mean reversion parameter is not considered

constant but rather a time-varying function. A wavelet network (WN) is used to

estimate nonparametrically daily values of the speed of mean reversion. In our

knowledge, we are the first to do so. Estimating daily values of the speed of mean

reversion gives us a better insight of the temperature dynamics. Moreover, the

impact of the false specification of the speed of mean reversion on the accuracy of

the pricing of temperature derivatives is significant (Alaton et al. 2002). Then, our

proposed model will be evaluated and compared against other models previously

proposed in literature in-sample and out-of-sample. The in-sample comparison will

be based upon the distributional statistics of the residuals and fitting criteria, while

the out-of-sample will be based upon the accuracy of predicting the DAT. Finally,

the inclusion of a Lévy process instead of a standard BM is investigated.

The rest of the chapter is organized as follows: in Sect. 5.2, the data is described

and examined. In Sect. 5.3, a model for the DATs is proposed based on the results of

the data examination. Next, in Sect. 5.4 the seasonal mean of the DATs is estimated

using a linear approach in Sect. 5.4.1 and WA in Sect. 5.4.2. In Sect. 5.5 the speed

of mean reversion is estimated. More precisely, a linear approach is applied in

Sect. 5.5.1 while a nonlinear nonparametric WN is applied in Sect. 5.5.2. Next, in

Sect. 5.6, WA is used in order to identify and model the seasonal variance that exists

in the residuals. In Sect. 5.7, the distributional statistics of the residuals after

removing the seasonal variance are examined. Moreover, our proposed model is

compared in-sample against two popular model previously proposed in literature.

Next, the residuals are tested under the assumption of a Lévy motion driving noise

process in Sect. 5.7.3. In Sect. 5.8, an evaluation of our model out-of-sample is

performed. Finally, in Sect. 5.9, we conclude.

5.2 Data Description

Since the underlying index of weather derivatives is a weather variable like

temperature, rainfall, precipitation, or snowfall, weather data is important for

pricing these derivatives. Not only an adequate amount of data is needed but also

it has to be of high quality for an appropriate pricing and risk management of the

weather risk (Dunis and Karalis 2003).

Easy access to high-quality weather data for long periods and for various stations

would help the market evolve and would offer liquidity. Unfortunately, it is still very

hard and costly to obtain this type of data. Moreover, the available to researchers’

datasets have many flaws, like missing data, gaps, and errors (Nelken 2000).

Some stations had to be moved during the years or to be replaced by more

modern equipment; as a result, jumps will occur on the data. Another aspect is the

range of the data. Previous studies use datasets containing historical data from 5 to
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230 years to fir various models. However, if a very long period is considered, then

the datasets will be affected by trends like urban effects. On the other hand, when

studying very small datasets, there is a possibility that important dynamics of the

temperature process will not be revealed which will result to an incorrect model and

to mispricing of the corresponding weather contracts. Finally, there are effects like

urban heating or extreme weather patterns like the El Niño and La Niña that must be

accounted when pricing a weather derivative.

For this book, we obtained data for the cities that are traded in CME. At the end

of 2009, the CME trades weather products written on the following ten European

cities: Amsterdam, Barcelona, Berlin, Essen, London, Madrid, Oslo, Paris, Rome,

and Stockholm. In the USA, there are contracts for the following 24 cities:

Atlanta, Baltimore, Boston, Chicago, Cincinnati, Colorado Springs, Dallas, Des

Moines, Detroit, Huston, Jacksonville, Kansas City, Las Vegas, Little Rock, Los

Angeles, Minneapolis – St. Paul, New York, Philadelphia, Portland, Raleigh,

Sacramento, Salt Lake City, Tucson, and Washington D.C. Also, there are 6

Canadian cities (Calgary, Edmonton, Montreal, Toronto, Vancouver, and

Winnipeg), 3 Australian cities (Brisbane, Melbourne, and Sydney), and finally 3

Japanese cities (Hiroshima, Tokyo, and Osaka). Unfortunately, quality data only for

the European cities were obtained. The data corresponding to the European cities

were provided by the ECAD.1 The weather variable we are interested in is the DAT.

In ECAD, the DAT is measured as the average of the daily maximum and minimum

temperature and is measured in Celsius degrees (�C). European weather contracts

traded on CME use the same measurement for the temperature. Precision with

which temperature in ECAD is measured is 0.1 �C. Unfortunately, data from Essen

were not available, while the missing values from Barcelona and London were

more than 50% of the data; hence, these three cities are not included in our analysis.

The dataset consists of 18.615 values, corresponding to the DAT of 51 years

(1951–2001) in cities that derivatives are actively traded in CME. In order for each

year to have equal observations, the 29th of February was removed from the data.

One of the major problems of the data is the missing values. In Dunis and Karalis

(2003), different methods for filling the missing data were described. In the naı̈ve

approach, the missing value is replaced be the temperature at the same day the

previous year. This method is highly likely to produce large jumps in the tempera-

ture time series. Another approach is to fill the missing data using nearby weather

stations to the one in interest. Dunis and Karalis (2003) propose and test more

complex methods like the expectation maximization algorithm or the data augmen-

tation algorithm, state space models, Kalman filter, NNs, and PCA with the later to

outperform all other methods. However, PCA requires additional correlated cleaned

temperature data (Dunis and Karalis 2003).

In this book, the procedure described below is followed in order to fill the

missing values. Let Tt be the temperature at day t which value is missing. First,

the average temperature of that particular day across the years is calculated denoted

1 http://eca.knmi.nl/
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by Avy. Next, the average temperature of 7 days ago and 7 days after the missing

value is calculated denoted by Avd . Then, the missing value is replaced by the

average of these two parameters:

Tt;miss ¼
TAvy;t þ TAvd;t
� �

2
(5.1)

TAvy;t ¼ 1

N

XN
yr¼1

Tt;yr (5.2)

TAvd;t ¼
P7
i¼1

Tt�i þ
P7
i¼1

Ttþi

14
: (5.3)

The above procedure is very easy in implementation. More precisely, a normal

average is obtained by Equation (5.2) which is balanced by the temporal tempera-

ture conditions around the missing values by (5.3).

In Fig. 5.1, the DATs for the seven European cities for the period 1/1/1991–31/

12/2000 are presented. A closer inspection of Fig. 5.1 reveals a seasonal cycle of

1 year as it was expected. Moreover, extreme values in summer and winter are

evident in all cities. In order to obtain a better insight of the temperature dynamics,

the descriptive statistics of the DATs are examined. In Table 5.1, the descriptive

statistics of the DATs in the seven cities is presented. The mean temperature ranges

from 6.49 in Oslo to 15.57 in Rome. As it is shown on Table 5.1, the variation of the

DAT is quite large in every city. The standard deviation ranges from 6.08 for

Amsterdam, while it is 7.91 for Berlin. It is clear from Table 5.1 that cities with

warmer climate like Amsterdam, Rome, and Paris have smaller standard deviation,

while cities with colder climate with large periods of winter like Oslo, Berlin, and

Stockholm have the largest standard deviation values. The difference between the

maximum and minimum temperatures is around 30� for Rome and Madrid, while it

is over 40� for Berlin, Oslo, and Stockholm. The maximum and minimum

temperatures vary from city to city, but it is explained from their location. The

above results indicate that temperature is very volatile, and it is expected to be

difficult to accurately model and predict it.

Negative skewness is evident in all cities with the exception of Madrid,

Stockholm, and Rome. Moreover, all cities exhibit excess negative kurtosis. The

kurtosis is 2 for Madrid and Rome, while the largest kurtosis value is 2.6 for

Amsterdam. The above results indicate that the distribution of the DAT in Europe

is platykurtic with lower and wider peak where the mass of the distribution is

concentrate on the left tail (on the right tail for Madrid and Rome). Finally, a

normality test is reported on Table 5.1. In all cities, the normality is strongly

rejected by a (Jarque–Bera) JB test. JB tests of the null hypothesis that the sample

in vector sample data comes from a normal distribution with unknown mean and

variance, against the alternative that it does not come from a normal distribution:
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Fig. 5.1 Daily average temperature of the seven cities: Amsterdam, Berlin, Madrid, Oslo, Paris,

Rome, Stockholm
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H0 ¼ The sample comes from a normal distribution

H1 ¼ The sample does not come from a normal distribution (5.4)

The JB test is a two-sided goodness-of-fit test suitable when a fully specified null

distribution is unknown and its parameters must be estimated. The test statistic is

JB ¼ n

6
s2 þ k � 3ð Þ2

4

 !
; (5.5)

where n is the sample size, s is the sample skewness, and k is the sample kurtosis.

For large sample sizes, the test statistic has a chi-square distribution with two

degrees of freedom. The critical value at 5% significance level is 5.93. From

(5.5), it is clear that the JB statistic is very sensitive to large values of kurtosis

and skewness. The JB statistic is over 36 in all cases, and the p values are zero

indicating the rejection of the null hypothesis that the temperature at the seven

European cities follows a normal distribution. Figure 5.2 presents the empirical

distributions of the DAT in the seven European cities. It is clear that all cities

exhibit a bimodal distribution where the two peaks correspond to summer and

winter temperatures.

In order to obtain better understanding of the temperature dynamics, the mean,

the standard deviation, the skewness, and kurtosis of DAT were estimated. The

mean of the DAT, Tavy;t , was estimated by (5.2) using only observations for each

particular day t . In Fig. 5.3, the seasonal pattern is clear. For all cities, the

temperature has its highest values during the end of July and the beginning of

August, while the lowest values are observed during the end of December and until

the beginning of February. A closer inspection of Fig. 5.3 reveals that the mean

DAT in Amsterdam fluctuates from 1:9oC to 19:7oC. Similarly, in Berlin, the mean

temperature fluctuates from � 1:2oC to 22:4oC, from 4:9oC to 28:3oC in Madrid,

from � 5:7oC to 18:8oC in Oslo, from 3:1oC to 23oC in Paris, from 6oC to 27oC in

Rome, and from � 4:2oC to 19:5oC in Stockholm.

Table 5.1 Descriptive statistics of the daily temperature for the period of 1991–2000

Mean St. dev Max Median Min Skewness Kurtosis JB-Stat P value

Amsterdam 10.23 6.08 25.80 10.10 �10.90 �0.18 2.67 36.27 0.0000

Berlin 10.01 7.91 30.40 10.00 �14.70 �0.08 2.38 62.23 0.0000

Madrid 15.06 7.35 32.40 14.15 �0.40 0.30 2.06 189.47 0.0000

Oslo 6.49 7.88 23.90 6.10 �16.40 �0.10 2.29 83.28 0.0000

Paris 12.51 6.44 29.90 12.40 �9.10 �0.04 2.48 41.41 0.0000

Rome 15.57 6.73 29.80 15.10 �1.80 0.07 1.93 178.68 0.0000

Stockholm 6.84 7.68 26.30 6.30 �16.20 0.03 2.20 98.61 0.0000

St. dev standard deviation, JB-Stat Jarque–Bera statistic, P value p value of the JB test
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Next, the standard deviation of the DAT is estimated. The standard deviation is

given by

st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
yr¼1

Tt;yr � Tavy;t
� �2

vuut : (5.6)

In Fig. 5.4, the standard deviation for the seven cities is presented. Observing

Fig. 5.4, it is clear that the standard deviation is higher in the winter period, while it

is smaller in summer for all cities with exception of Madrid. Our results confirm the

studies of Bellini (2005), Benth and Saltyte-Benth (2005, 2007), Benth et al. (2007),

Zapranis and Alexandridis (2008, 2009b, 2011).

Figure 5.5 presents the estimated skewness for each day t for the seven cities. The
skewness is given by

skt ¼ 1

N

XN
yr¼1

Tt;yr � Tavy;t
st

� �3

: (5.7)

Figure 5.5 reveals that the skewness tends to increases during the summer

months, while it decreases during the winter months with exception of Rome and

Madrid. In general, the skewness is negative at winter months and positive at

summer months. This means that it is more likely to have warmer days than average

in summer and colder days than average in winter (Bellini 2005).

Finally, the kurtosis on each day t is estimated by

kt ¼ 1

N

XN
yr¼1

Tt;yr � Tavy;t
st

� �4

(5.8)

and can be found in Fig. 5.6. Observing Fig. 5.6 does not reveal any seasonal pattern

of the kurtosis. On the other hand, it is clear that for all cities the kurtosis has small

deviations around two with many upward large spikes.

Next, the correlation of the temperature between different cities is examined.

If strong correlation is present, then weather derivatives of correlated cities can be

used for risk management and reduction of the basis risk. In Table 5.2, the correla-

tion of the temperature between the different sites in Europe is shown. As it was

expect, the correlation in general is very high and over 0.81, while it is 0.954

between Oslo and Stockholm. The correlation values are explained by the geo-

graphical location of each site. As it was expected, there is large correlation

between Oslo and Stockholm and between Amsterdam and Berlin, while the

correlation is smaller between distant cities like Madrid and Oslo or Stockholm.

However, the correlation should be estimated after removing all seasonal

components.
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In Table 5.3, the Hurst exponent is estimated. In Brody et al. (2002), Benth

(2003), and Caballero et al. (2002), fractional models were proposed with evidence

that the Hurst exponent is greater than 0.5. However, as it was shown in Bellini

(2005), not all seasonal effects were removed from the data before the estimation of

the Hurst exponent which lead to an unsubstantial value. The Hurst exponent was

estimated using iterative methods described in Koutsoyiannis (2003). Our results

indicate that the Hurst exponent is significantly different than 0.5, with an exception

of Oslo. More precisely, the Hurst exponent is 0.5222 for Oslo, and for the

remaining cities, it varies from 0.6161 in Rome to 0.7592 in Madrid. However,

the Hurst exponent must be calculated after all seasonal effects were removed

(Bellini 2005).

In Table 5.4, two unit root tests were performed in the DAT for the seven cities.

Each time series is tested for unit root using an ADF test. The ADF performed

using the Schwartz information criterion in order to select the optimal number of

lagged values. The null hypothesis of the ADF test is that the time series has a unit

root versus the one-sided alternative that the root is less than one:

Table 5.2 Correlation matrix of the temperature before removing the seasonal components

Amsterdam Berlin Madrid Oslo Paris Rome Stockholm

Amsterdam 1.000 0.936 0.819 0.875 0.943 0.833 0.874

Berlin 0.936 1,000 0.811 0.890 0.901 0.851 0.901

Madrid 0.819 0.811 1.000 0.812 0.855 0.858 0.812

Oslo 0.875 0.890 0.812 1.000 0.836 0.821 0.954

Paris 0.943 0.901 0.855 0.836 1.000 0.847 0.834

Rome 0.833 0.851 0.858 0.821 0.847 1.000 0.835

Stockholm 0.874 0.901 0.812 0.954 0.834 0.835 1.000

Table 5.3 Hurst exponent of the temperature before removing the seasonal components

Amsterdam Berlin Madrid Oslo Paris Rome Stockholm

Hurst 0.7514 0.6414 0.7592 0.5222 0.6770 0.6161 0.6256

Table 5.4 Unit root tests of the temperature time series

ADF P value Lags KPSS Bandwidth

Amsterdam �6.0820 0.0000 6 0.0844 44

Berlin �5.1116 0.0000 8 0.0505 44

Madrid �4.6592 0.0001 7 0.0341 45

Oslo �3.6377 0.0051 12 0.0531 45

Paris �5.2100 0.0000 9 0.0543 44

Rome �3.7785 0.0032 9 0.0380 45

Stockholm �4.0654 0.0011 10 0.0753 45

Critical values 5%: �2.8621 0.4630

ADF augmented Dickey–Fuller, KPSS Kwiatkowski–Phillips–Schmidt–Shin
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H0 : r ¼ 1

H1 : r<1 : (5.9)

In Table 5.4, the ADF value as well as the optimal number of lags used and the

p values are reported. The lag length used to perform the test is selected by

minimizing the Schwarz criterion. A close inspection of Table 5.4 reveals that the

null hypothesis of a unit root is rejected since the ADF statistic is always smaller

than the critical value at 5% significance level. Moreover, the p values are almost

zero for the seven cities.

In order to obtain a more powerful test, the KPSS unit root test is also performed.

In contrast to the ADF test, the KPSS tests the null hypothesis that the time series is

stationary versus the alternative that the time series is nonstationary (a unit root

exists):

H0 : r<1

H1 : r ¼ 1 : (5.10)

The optimal bandwidth number was estimated using the Newey–West method.

Table 5.4 reports both the KPSS values and the optimal bandwidth number for each

city. The KPSS statistic has a value smaller than the critical value 0.463 for all

cities; hence, the null hypothesis, which the time series is stationary, cannot be

rejected for all cities.

5.3 Statistical Modeling of Daily Average Temperature

Many different models have been proposed in order to describe the dynamics of a

temperature process. In this section, a model for the seven cities studied in the

previous section will be derived. Studying temperature data, Cao and Wei (1999,

2000, 2003) and Cao et al. (2004) build their framework on the following five

assumptions about DAT:

• It follows a predicted cycle.

• It moves around a seasonal mean.

• It is affected by global warming and urban effects.

• It appears to have autoregressive changes.

• Its volatility is higher in the winter than in summer.

As it will be shown in the rest of the chapter, our results confirm the above

assumptions.

It is known that temperature follows a predicted cycle. As it was expected and it

is shown on Fig. 5.1, a strong cycle of 1 year is evident in all cities. It is also known

that temperature has a mean-reverting form. Temperature moves around a seasonal

mean and cannot deviate from that seasonal mean for long periods. This can be

verified by Figs. 5.1, 5.3 and 5.4. In other words, it is not possible to observe

temperatures of 20oC in winter in Oslo. Additionally, temperature is affected by
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global warming and urban effects. In areas under development, the surface temper-

ature rise as more people and buildings concentrate. This is due to the sun’s energy

absorbed by the urban buildings and the emissions of vehicles, industrial buildings,

and cooling units. Hence, urbanization around a weather station results to an

increment in the observed measurements of temperature. Finally, observing

Fig. 5.4, it is clear that the temperature volatility is higher in winter than in summer.

Following Benth and Saltyte-Benth (2007), a model that describes the temperature

dynamics is given by a Gaussian mean-reverting O–U process defined as follows:

dTðtÞ ¼ dSðtÞ þ k TðtÞ � SðtÞð Þdtþ sðtÞdBðtÞ; (5.11)

where TðtÞ is the average daily temperature, k is the speed of mean reversion, SðtÞ is
a deterministic function modeling the trend and seasonality, sðtÞ is the daily

volatility of temperature variations, and BðtÞ is the driving noise process. As it

was shown in Dornier and Queruel (2000), the term dSðtÞ should be added for a

proper mean reversion toward the historical mean, SðtÞ.
In Benth and Saltyte-Benth (2007), both SðtÞ and s2ðtÞ are being modeled as

truncated Fourier series, that is,

SðtÞ ¼ Trendt þ
XI1
i¼1

ai sin 2ip t� fið Þ 365=ð Þ þ
XJ1
j¼1

bj cos 2jp t� gið Þ 365=ð Þ (5.12)

s2ðtÞ ¼ cþ
XI2
i¼1

ci sin 2ipt 365=ð Þ þ
XJ2
j¼1

dj cos 2jpt 365=ð Þ (5.13)

Trendt ¼ aþ bt: (5.14)

Intuitively, it is expected that the speed of mean reversion is not constant. If the

temperature today is away from the seasonal average (a cold day in summer), then it

is expected that the speed of mean reversion is high, that is, the difference of today

and tomorrow’s temperature is expected to be high. In contrast, if the temperature

today is close to the seasonal variance, we expect the temperature to revert to its

seasonal average slowly. To capture this feature, the speed of mean reversion is

modeled by a time-varying function kðtÞ . Hence, the structure to model the

dynamics of the temperature evolution becomes

dTðtÞ ¼ dSðtÞ þ kðtÞ TðtÞ � SðtÞð Þdtþ sðtÞdBðtÞ: (5.15)

Moreover, in Benth and Saltyte-Benth (2007), the historical mean is captured by

a simple sinusoid, that is, I1 ¼ 1 and J1 ¼ 0 in (5.12). In addition, the length of the

series of thes2ðtÞ is arbitrary set to I2 ¼ 4 and J2 ¼ 4. In this book, the true structure

of the seasonal mean SðtÞ and the seasonal variance s2ðtÞ are extracted using WA.

Hence, we model them as follows:
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SðtÞ ¼ Trendt þ
XI1
i¼1

ai sin 2ip t� fið Þ pi � 365ð Þ=ð Þ

þ aI1þ1 1þ sin 2p t� f
I1þ1

� �
pI1þ1 � 365ð Þ=

� �� �
sin 2pt 365=ð Þ

(5.16)

s2ðtÞ ¼ cþ
XI2
i¼1

ci sin 2p0ipt 365=
� �þXJ2

j¼1

dj sin 2p0jpt 365=
� �

; (5.17)

and the trend is given by (5.14). In order to identify the terms I1; pi in (5.16) and

I2; J2; p0i in (5.17), we decompose the temperature series using a wavelet

transform.

Finally, the driving noise process BðtÞ is modeled by a standard BM. In Fig. 5.7,

the histogram of the first difference of the DAT and the normal distribution (solid

line) is presented. A closer inspection of Fig. 5.7 reveals that the empirical distri-

bution of the first difference of the DAT is similar to the normal distribution. Hence,

selecting the BM as the driving noise process seems logical. This hypothesis will be

further tested later in this chapter.

5.4 The Seasonal Mean

In this section, a method for estimating and removing the trend and the seasonal

component of the temperature series is described.

5.4.1 The Linear Approach

The simplest method is the linear approach, where the trend is modeled by linear

trend. Similarly, the seasonal mean is described by a sinusoid. Thus, method very

simple is accurate also. In Alaton et al. (2002), this method was followed. More

precisely, the seasonal component and the trend were modeled by

SðtÞ ¼ Aþ Btþ C sin 2pt 365= þ ’ð Þ; (5.18)

where A denotes the amplitude of the sinusoid which is the peak deviation of the

function from its center position. In other words, it denotes the difference between

the minimum and maximum temperature from the mean. Since the maximum or the

minimum temperature is not observed in the 1st of January, the parameter ’ is

inserted to the model to calibrate the sinusoid. Equation (5.18) can be written

equivalently
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differences of the seven cities: Amsterdam, Berlin, Madrid, Oslo, Paris, Rome, Stockholm

5.4 The Seasonal Mean 103



SðtÞ ¼ aþ btþ c sin 2pt 365=ð Þ þ d cos 2pt 365=ð Þ: (5.19)

The relation of the parameters between (5.18) and (5.19) is given by the

following equations:

A ¼ a (5.20)

B ¼ b (5.21)

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p
(5.22)

’ ¼ arctan
d

c

� �
� p: (5.23)

The estimated parameters of this model for the seven European cities are

presented in Table 5.20. A closer inspection of Table 5.20 reveals a positive trend

in all cities except Madrid. Hence, an upward trend in temperature for the last

10 years is evident in the remaining six cities. Also, the difference between the

minimum and maximum ranges from 14:5oC in Amsterdam to 19:8oC in Oslo.

In part (a) of Fig. 5.8, the DATs in Berlin and the seasonal mean are presented.

A closer inspection of part (a) of Fig. 5.8 indicates that this simple method cannot

capture the deviation of the temperature when there is a cold winter or a hot

summer. In other words using only one sinusoid, the amplitude of the seasonal

temperature is constant across the years. Clearly, this is not the case as it is shown in

part (a) of Fig. 5.8.

5.4.2 A More Advanced Approach: Wavelet Analysis

Our results in the previous section indicate that a simple sinusoid is not sufficient to

capture the changes in the dynamics of the seasonal mean. Alternatively, a

truncated Fourier series can be used. Moreover, instead of only a summation of

sinusoid, also multiplication between sinusoids is used. Hence, as it was described

in the previous section, the historical mean was modeled by (5.16)

SðtÞ ¼ Trendt þ
XI1
i¼1

ai sin 2ip t� fið Þ pi � 365ð Þ=ð Þ

þ aI1þ1 1þ sin 2p t� f
I1þ1

� �
pI1þ1 � 365ð Þ=

� �� �
sin 2pt 365=ð Þ;

where the trend is given by (5.14).

In order to justify the structure of the seasonal part of the temperature and to

identify the terms I1; pi in (5.16), the temperature series is decomposed using aWT.
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Lau and Weng (1995) confirmed seasonalities in the temperature series with a

period significantly greater than 1 year. Lau and Weng (1995) examined the

monthly Northern Hemisphere surface temperature for the period January

1854–July 1993 using WA. They reported that the temperature has three main

frequency branches: interannual (2–5 years), inter-decadal (10–12 years,

20–25 years, and 40–60 years), and century (~180 years) scales.

Fig. 5.8 Daily average temperature and the seasonal mean in Berlin using (a) the linear approach

and (b) wavelet analysis for the years 1991–2000
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This conclusion was also reached in Zapranis and Alexandridis (2006, 2008,

2009b), and Zapranis and Alexandridis (2009a). More precisely, Zapranis and

Alexandridis (2006) used the Daubechies 11 wavelet at level 11 to decompose

100 years of the average daily temperature time series of Paris. Specifically, in this

chapter, WA captured dynamics of temperature such as an upward trend and

periodicities expanding up to 13 years.

In this book, the Daubechies wavelet family was chosen which has proved to

outperform other wavelet families in various applications (Daubechies 1992). More

precisely, the Daubechies 11 wavelet at level 11 was selected and applied in 50

years of DATs in each city. In Fig. 5.9, the Daubechies 11 wavelet can be found.

Here, for simplicity, we will refer analytically only to the results of the wavelet

decomposition from Berlin. The results of the remaining cities are similar and can

be found in Tables 5.5 and 5.6. Figure 5.10 refers to selected parts of the wavelet

decomposition from Berlin; the results from the remaining cities are similar.

First, an upward trend exists in the DATs, reflecting urban and global warming.

This is clearly shown in Fig. 5.10, in all approximations, aj. Moreover, a series of

cycles affects the dynamics of temperature. As expected, a 1-year cycle exists in the

first seven approximations ðp1 ¼ 1Þ. Additionally, cycles of p2 ¼ 2:12, p3 ¼ 6:88,
andp4 ¼ 13:75years are evident and affect the temperature dynamics (detailsd9,d11
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Table 5.5 Estimated parameters of the linear trend for the period 1991–2000

a P value B P value

Amsterdam 9.42 0.0000 0.000440 0.0000

Berlin 9.37 0.0000 0.000349 0.0038

Madrid 14.62 0.0000 0.000238 0.0335

Oslo 5.79 0.0000 0.000385 0.0011

Paris 11.86 0.0000 0.000353 0.0003

Rome 15.04 0.0000 0.000287 0.0056

Stockholm 5.91 0.0000 0.000509 0.0000

The coefficients of the linear trend and the corresponding p values. The parameter a is the

intercept, and b is the slope

Table 5.6 Estimated parameters of the seasonal part using wavelet analysis

Amsterdam Berlin Madrid Oslo Paris Rome Stockholm

Panel A

p1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p2 2.12 2.12 3.93 2.12 2.20 1.96 2.29

p3 5.50 6.88 9.17 4.58 6.88 4.23 3.93

p4 4.23 13.75 11.00 6.88 13.75 6.11 4.23

p5 7.86 – – 7.86 – 13.75 7.86

p6 13.75 – – 9.17 – – 13.75

p7 – – – 13.75 – – –

pi+1 7 8 – 8 7 7 6

Panel B

a1 �7.56 �9.79 9.27 9.72 �7.99 �8.89 9.39

a2 �0.58 �0.27 �0.25 �0.87 �0.37 �0.29 0.97

a3 4.95 0.56 �0.61 9.26 �0.23 �0.33 �3.00

a4 �2.44 �0.37 0.67 272.14 0.26 0.16 3.23

a5 5.85 – – 650.51 – �0.36 1.04

a6 3.11 – – 480.94 – – 0.32

a7 – – – �101.47 – – –

ai+1 0.73 0.43 – �0.79 0.52 0.24 �0.95

f1 �65.11 �73.79 �254.69 103.74 296.15 �1158.35 109.33

f2 217.60 149.28 484.40 �588.68 111.07 �739.94 �411.27

f3 �168.97 148.27 – 2508.23 43.38 3001.32 1626.54

f4 279.21 981.76 – 1629.79 �935.66 951.38 73.52

f5 370.59 – 184.04 – 1823.78 2938.66

f6 1855.94 – – 4952.47 – �2508.79

f7 – – – 1583.41 – –

fi+1 – – – 1381.93 2647.40 �923.93 1359.63

In Panel A, the length of each cycle in years is presented. In Panel B, the estimated parameters of

the seasonal mean are reported. Only the statistical significant parameters with p value < 0.05 are

presented
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or a10, and a11, respectively). The above results indicate the periodicities in which

the temperature is expected to be above or below the historical average.

Also, a product of two sinusoids was captured by WA, with period of 1 and piþ1

¼ 8years, respectively, (d8 anda7). The above results indicate that every 8 years it is
expected to have warmer than the usual summer and colder than the usual winter or

colder than the usual summer and warmer than the usual winter.

Finally, the lower details (details d1 and d2 ) reflect the noise part of the time

series. A closer inspection of the noise part reveals seasonalities, which will be

extracted later. Hence, modeling the historical seasonal mean by (5.16) is justified

by the results of the previous analysis.

Panel A of Table 5.6 reports all the cycles than can be found on the temperature

dynamics using WA for the seven cities. In Table 5.6, only the statistical significant

parameters with p values <0.05 are reported. Parameters with p values >0.05 are

omitted and removed from our model.

First, the upward trend indicated by the results of theWA is quantified by fitting a

linear regression to the temperature data. Our analysis will be focused on the last 10
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years (1991–2000) since we want to emphasize on the dynamics that currently affect

the temperature. Using a very large sample of historical data of DAT runs the danger

for the estimated parameters to be affected by dynamics of the temperature that do

not represent the future behavior of temperature anymore. Table 5.5 shows the

estimated parameters a and b of the linear trend represented by (5.14). All p values

are smaller than 0.05 suggesting that a trend exists, and it is statistically significant.

Parameterb represents the slope of the trend. It is clear that a positive trend is present
in all seven cities. The parameter b ranges from 0.000238 in Madrid to 0.000509

in Stockholm indicating an upward trend. The value of b indicates an increase in

temperature from 0:9oC in Madrid to 1:9oC in Stockholm the last 10 years.

Subtracting the trend form the original data, we obtain the detrended DAT series.

After removing the linear trend from the data, the seasonal part identified by

the WA can be fitted. The results of the WA indicate that the seasonal part of the

temperature takes the form of equation (5.16). Since parameters pi were already

identified by WA, next, least squares method can be applied in order to fit the

parameters ai and fi.
The estimated parameters of the seasonal part in Berlin are as follows:a1 ¼ �9:79,

a2 ¼ �0:27 , a3 ¼ 0:56 , a4 ¼ �0:37 , aiþ1 ¼ 0:43 , f1 ¼ �73:79 , f2 ¼ 149:28 ,
f3 ¼148:27, and f4 ¼ �981:76. On the other hand, fI1þ1 is not statistically significant

different from zero. It is clear that the 1-year cycle has the biggest impact on

the temperature dynamics since its coefficient has the largest absolute value. The

estimated parameters of the seasonal part ofSðtÞof the remaining cities are reported in

panel B of Table 5.6. In Table 5.6, only the statistical significant parameters are

reported. Hence, parameters with p value greater than 0.05 were considered not

significant and were omitted (Aczel 1993). Next, the temperature series were

deseasonalized by removing SðtÞ from the detrended data.

In the case of Berlin, the DATs and the fitted seasonal mean together with the

linear trend are presented in part (b) of Fig. 5.8. In contrast to the simple method,

the seasonal mean has a better adjustment. A closer inspection of Fig. 5.8 reveals

that the seasonal mean takes higher values at the beginning and at the end of the

10-year period where the temperature has higher values, while it takes lower values

in the middle period where the minimum temperature has lower values.

5.5 The Speed of Mean Reversion

In the previous section, the temperature series were detrended and deseasonalized.

In this section, a model for the detrended and deseasonalized DATs will be

developed. Next, the derived model will be estimated by a nonparametric nonlinear

WN. The variable significance testing framework described in Appendix A will

be applied in order to construct an appropriate training set for the WN.

Then, the model selection algorithm will be applied in order to construct a WN

with the best generalization ability. Finally, the WN will be initialized by applying
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the BE method and will be trained using the BP method. The WNs framework is

analytically presented in Appendix A and Appendix B.

5.5.1 The Linear Approach

Following Benth and Saltyte-Benth (2007) and Zapranis and Alexandridis (2008), a

discrete approximation of (5.11) is obtained and is given by

DTðtÞ ¼ DSðtÞ þ k Tðt� 1Þ � Sðt� 1Þð Þ þ sðtÞDBðtÞ: (5.24)

Expanding (5.24) with Dt ¼ 1, we have that

TðtÞ � Tðt� 1Þ ¼ SðtÞ � Sðt� 1Þ þ k Tðt� 1Þ � Sðt� 1Þð Þ þ sðtÞeðtÞ; (5.25)

and by rearranging, we have that

TðtÞ � SðtÞ ¼ Tðt� 1Þ � Sðt� 1Þ þ k Tðt� 1Þ � Sðt� 1Þð Þ þ sðtÞeðtÞ (5.26)

since

DBðtÞ ¼ eðtÞ
ffiffiffiffiffi
Dt

p
¼ eðtÞ: (5.27)

Next, by setting

~TðtÞ ¼ TðtÞ � SðtÞ; (5.28)

we have that

~TðtÞ ¼ ~Tðt� 1Þ þ k ~Tðt� 1Þ þ sðtÞeðtÞ (5.29)

or equivalently

~TðtÞ ¼ 1þ kð Þ ~Tðt� 1Þ þ sðtÞeðtÞ: (5.30)

Substituting with

a ¼ 1þ k; (5.31)

our model is reduced to

~TðtÞ ¼ a ~Tðt� 1Þ þ sðtÞeðtÞ: (5.32)

Model (5.32) is simple AR(1) model of the detrended and deseasonalized

temperatures with a zero constant. Hence, the parameter a can be easily estimated
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using the least squares method. We continue our analysis from Sect. 5.4.1 where the

trend and the seasonal mean were removed by a simple method previously proposed

by Alaton et al. (2002). On the detrended and deseasonalized data, we estimate the

speed of mean reversion parameter a. The results are presented in the first row of

Table 5.20. Note that in Table 5.20, the parameter k is presented. The relation

between k and a is given by (5.31). The speed of mean reversion ranges from 0.178

in Madrid to 0.251 in Oslo.

5.5.2 A More Advanced Approach: The Nonlinear
Nonparametric Approach

Model (5.32) is a lineal AR(1) model with a zero constant. Since in our analysis the

speed of mean reversion is not considered constant but a time-varying function,

Equation (5.32) can be written as follows:

~TðtÞ ¼ aðt� 1Þ ~Tðt� 1Þ þ sðtÞeðtÞ; (5.33)

where

aðtÞ ¼ 1þ kðtÞ: (5.34)

The detrended and deseasonalized temperature series, ~TðtÞ, can be modeled with

an AR(1) process with a zero constant term, as shown in (5.32). In the context of

such a model, the mean reversion parameter a is typically assumed to be constant

over time. In Brody et al. (2002), it was mentioned that in general a should be a

function of time, but no evidence was presented. On the other hand, Benth and

Saltyte-Benth (2005), using a dataset comprising of 10 years of Norwegian temper-

ature data, calculated mean annual values of a. They reported that the variation of

the values of a from year to year was not significant. They also investigated the

seasonal structures in monthly averages ofa, and they reported that none was found.
However, since to date, no one has computed daily values of the mean reversion

parameter, since there is no obvious way to do this in the context of model (5.33).

On the other hand, averaging techniques, in a yearly or monthly basis, run the

danger of filtering out too much variation and consequently presenting a distorted

picture regarding the true nature of a. The impact of a false specification of a on the
accuracy of the pricing of temperature derivatives is significant (Alaton et al. 2002).

In this section, we address that issue, by using a WN to estimate nonparametrical

relationship (5.33) and then estimate a as a function of time. By computing the

derivative of the network output with respect to (w.r.t.) the network input, we obtain

a series of daily values for a. This is done for the first time, and it gives us a much

better insight in temperature dynamics and in temperature derivative pricing. As we

will see, the daily variation of a is quite significant after all.
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Moreover, previous studies (Alaton et al. 2002; Bellini 2005; Benth and Saltyte-

Benth 2005, 2007; Zapranis and Alexandridis 2008, 2009b) show that an AR(1)

model is not complex enough to completely remove the autocorrelation in the

residuals. Alternatively, more complex models were suggested (Carmona 1999;

Geman and Leonardi 2005).

Using WNs the generalized version of (5.33) is estimated nonlinearly and

nonparametrically, that is,

~Tðtþ 1Þ ¼ f ~TðtÞ; ~Tðt� 1Þ; . . .� �þ eðtÞ: (5.35)

Model (5.35) uses past temperatures (detrended and deseasonalized) over one

period. Using more lags, we expect to overcome the strong correlation found in the

residuals in models such as in Alaton et al. (2002), Benth and Saltyte-Benth (2007),

and Zapranis and Alexandridis (2008). However, the length of the lag series must be

selected. Since theWN is a nonparametric nonlinear estimator results from the ACF

or the Partial ACF (PACF) cannot be used. Similarly, criteria used in linear models

like the Schwarz criterion cannot be applied. Hence, the variable significance

algorithm presented in the previous section is applied in order to determine the

number of significant lags in each city.

5.5.2.1 Variable Selection: Selecting the Significant Lags

In this section, our proposed variable selection framework will be applied on the

detrended and deseasonalized DATs of the seven European cities in order to select

the length of the lag series.

The target values of the WN are the DATs. The explanatory variables are lagged

versions of the target variable. Choosing the length of a lag distribution in linear

models can be done by minimizing an information criterion like Akaike or Schwarz

criteria. Alternatively the ACF and the PACF can be studied. Figures 5.11 and 5.12

present the ACF and PACF of the detrended and deseasonalized DATs in Berlin.

The ACF suggests that the first 35 lags are significant. On the other hand, the PACF

suggests that the 6 first lags as well as the 8th and the 11th lag must be included on the

model. However, results from these methods are not necessarily true in nonlinear

nonparametric models. The results of the remaining cities are also inconclusive.

Alternatively, in order to select only the significant lags, the variable selection

algorithm presented in Sect. 4.4 will be applied. Initially, the training set contains

the dependent variable and 7 lags. Hence, the training set consists of 7 inputs, 1

output, and 3,643 training pairs.

In this study, the relevance of a variable to the model is quantified by the

sensitivity-based pruning (SBP) criterion which was introduced in Appendix A.4.

Our analysis in Appendix A.4 indicates that the SBP fitness criterion was found

to significantly outperform alternative criteria in the variable selection algorithm.
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Fig. 5.11 Autocorrelation function of the detrended and deseasonalized daily average tempera-

ture in Berlin

Fig. 5.12 Partial autocorrelation function of the detrended and deseasonalized daily average

temperature in Berlin
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The SBP quantifies the effect on the empirical loss of replacing a variable by its

mean. The SBP is given by

SBPðxjÞ ¼ Lnðx; ŵnÞ � Lnð�xðjÞ; ŵnÞ; (5.36)

where

�xðjÞ ¼ x1;t; x2;t; . . . ; �xj; . . . ; xm;t
� �

(5.37)

and

�xj ¼ 1

n

Xn
t¼1

xj;t: (5.38)

Here, bootstrap (BS) sampling is used in order to approximate the empirical

distribution of the SBP criterion, since our previous results in Alexandridis (2010)

indicate that BS performs better than the cross-validation (CV) in this part of the

model identification algorithm. Using the empirical distribution of the SBP, hypoth-

esis tests can be constructed. Hence, the removal of a variable is based on testing the

following null hypothesis:

H0 : SBP ¼ 0

H1 : SBP 6¼ 0
: (5.36)

The p values of the hypothesis tests were used to identify insignificant variables.
In statistical hypothesis testing, the p value is the probability of obtaining a value of
the test statistic at least as extreme as the one that was actually observed, assuming

that the null hypothesis is true. Equivalently, p value is the smallest level of

significance, a, at which a null hypothesis may be rejected using the observed

value of the test statistic. The smaller the p values, the more convinced we are that

that the null hypothesis should be rejected (Aczel 1993). The lower the p value, the
more “significant” the result is in the sense of statistical significance. One often

rejects a null hypothesis if the p value is less than 0.05 or 0.01, corresponding to a

5% or 1% significance level.

Following Aczel (1993), in this study, when the p value is less than 0.01, the

variable is considered “very significant.”When the p value is between 0.01 and 0.05,
the variable is “significant.”When the p value is between 0.05 and 0.1, the variable is
“marginally significant.” Finally, when the p value is larger than 0.1, the variable

is “not significant.” Hence, in each step of our algorithm, the variable with the larger

p value greater than 0.1 will be removed from the training set of our model. After

each variable removal, a new architecture of theWNwill be selected, and a newWN

will be trained. However, the correctness of the decision of removing a variable

must be examined. This can be done either by examining the prediction risk or the �R
2
.
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If the new prediction risk is smaller than the new prediction risk multiplied by a

threshold, then the decision of removing the variable was correct. If the prediction

risk increased more than the allowed threshold, then the variable was reintroduced

back to the model. We set this threshold at 5%.

Table 5.7 summarizes the results of the model identification algorithm for

Berlin. Both the model selection and variable selection algorithms are included in

Table 5.7. The algorithm concluded in four steps, and the final model contains only

three variables. The prediction risk for the reduced model is 3.1914, while for the

original model was 3.2004. On the other hand, the empirical loss slightly increased

from 1.5928 for the initial model to 1.5969 for the reduced model indicating that the

explained variability (unadjusted) slightly decreased. However, the explained

variability (adjusted for degrees of freedom) was increased for the reduced model

to 64.61%, while it was 63.98% initially. Finally, the number of parameters was

significantly reduced in the final model. The initial model needed five hidden units

(HUs) and seven inputs. Hence, 83 parameters were adjusted during the training

phase. Hence, the ratio of the number of training pairsn to the number of parameters

p was 43.9. In the final model, only 1 HU and 3 inputs were used. Hence, only 11

parameters were adjusted during the training phase, and the ratio of the number of

training pairs n to the number of parameters p was 331.2.

In Table 5.8, the statistics for the full WN model can be found. More precisely,

the first part of Table 5.8 reports the value of the SBP, its standard deviation, and

its p value. It is clear that the value of the SBP for the last three variables is very

small in contrast to the first two variables. Observing the p values, we conclude that
the last four variables have p value greater than 0.1, while the 6th lag has a p value of
0.8826 strongly indicating a “not significant” variable. In the second part of

Table 5.8, various fitting criteria are reported, more precisely, the mean absolute

error, the maximum absolute error (Max AE), the normalized mean-square error

(NMSE), the mean absolute percentage error (MAPE), the �R
2
, the empirical loss,

and the prediction risk.

The Max AE, MAPE, MAPE, and NMSE are given by

MaxAE ¼ max yi � ŷij jð Þ (5.37)

Table 5.7 Variable selection with backward elimination in Berlin

Step

Variable to

remove (lag)

Variable to

enter (lag)

Variables

in model

Hidden units

(parameters)

n/p

ratio

Empirical

loss

Prediction

risk

– – 7 5 (83) 43.9 1.5928 3.2004

1 X6 – 6 2 (33) 110.4 1.5922 3.1812

2 X7 – 5 1 (17) 214.3 1.5927 3.1902

3 X5 – 4 1 (14) 260.2 1.6004 3.2056

4 X4 – 3 1 (11) 331.2 1.5969 3.1914

The algorithm concluded in four steps. In each step, the following are presented: which variable is

removed, the number of hidden units for the particular set of input variables, and the parameters

used in the wavelet network, the empirical loss, and the prediction risk
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MAPE ¼ 100

n

Xn
i¼1

yi � ŷi
yi

				
				 (5.38)

MAE ¼ 1

n

Xn
i¼1

yi � ŷij j (5.39)

NMSE ¼
Pn
i¼1

yi � ŷið Þ2

Pn
i¼1

yi � �yð Þ2
; (5.40)

where yi are the target values, ŷi is the network output, and �y is the average of the
target values.

The WN was converged after 43 iterations. In general, a very good fit was

obtained. The empirical loss is 1.5928, and the prediction risk is 3.2004. The Max

AE is 11.1823, while the Mean Absolute Error (MAE) is 1.8080, and the NMSE is

0.3521. The MAPE is 3.7336. Finally, the �R
2 ¼ 63:98%.

Table 5.9 shows the statistics for the WN at step 1. The network had 6 inputs,

2 wavelets were used to construct the WN, and 33 weights adjusted during the

training phase. The WN converged after 17 iterations. By removing X6 from

the model, we observe from Table 5.9 that the p value of X5 became 0, while for

Table 5.8 Statistics for the full wavelet neural network model for Berlin (seven inputs, five

hidden units)

Variable SBP St. dev P value

X7 0.0026 0.0129 0.7796

X6 0.0032 0.0129 0.8826

X5 0.0053 0.0163 0.6757

X4 0.0161 0.0241 0.3500

X3 0.2094 0.0944 0.0000

X2 1.1123 0.1935 0.0000

X1 9.8862 0.5112 0.0000

MAE 1.8080

Max AE 11.1823

NMSE 0.3521

MAPE 3.7336

�R
2 63.98%

Empirical loss 1.5928

Prediction risk 3.2004

Iterations 43

The average SBP for each variable of 50 bootstrapped samples, the standard deviation and the

p value

SBP sensitivity-based pruning, MAE mean absolute error, Max AE maximum absolute error,

NMSE normalized mean square error, MSE mean square error, MAPE mean absolute percentage

error
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X7 and X4, the p values became 0.5700 and 0.1403, respectively. The empirical loss

was slightly decreased to 1.5922. However, the MAE and NMSE were slightly

increased to 1.8085 and 0.3529, respectively. On the other hand, theMax AE and the

MAPE were decreased to 11.1446 and 3.7127, respectively. Next, the decision of

removing X6 is tested. The new prediction risk was reduced to 3.1812, while the

explained variability adjusted for degrees of freedom increased to 64.40%. Hence,

the removal of X6 reduced the complexity of the model, while its predictive power

was increased.

At step 2, X7, which had the largest p value ¼ 0.5700 at the previous step, was

removed from the model. Table 5.10 shows the statistics for the WN at step 2. The

new WN had 5 inputs, 1 HU was used, and 17 weights adjusted during the training

phase. The WN converged after 19 iterations. A closer inspection of Table 5.10

reveals that the removal of X7 resulted to an increase in the error measures, and a

worse fit were obtained. The new �R
2
is 64.59%. The new prediction risk increased to

3.1902 which is smaller than the threshold. In other words, by removingX7 the total

predictive power of our model was slightly decreased; however, by adding the

variable X7 on the model, only 0.28% additional variability of our model was

explained, while the computational burden was significantly increased.

Examining the values of the SBP on Table 5.10, it is observed that the first two

variables still have significantly larger values than the remaining variables. The

p values reveal that at in the third step theX5 must be removed from the model since

its p value is 0.1907.

Table 5.9 Statistics for the wavelet neural network model at step 1 for Berlin (six inputs, two

hidden units)

Variable SBP St. dev P value

X7 0.0031 0.0061 0.5700

X5 0.0131 0.0156 0.0000

X4 0.0149 0.0208 0.1403

X3 0.2368 0.0789 0.0000

X2 1.0318 0.1747 0.0000

X1 10.0160 0.4584 0.0000

MAE 1.8085

Max AE 11.1446

NMSE 0.3529

MAPE 3.7127

�R
2 64.40%

Empirical loss 1.5922

Prediction risk 3.1812

Iterations 17

The average SBP for each variable of 50 bootstrapped samples, the standard deviation and the

p value

SBP sensitivity-based pruning, MAE mean absolute error, Max AE maximum absolute error,

NMSE normalized mean square error, MSE mean-square error, MAPE mean absolute percentage

error
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Table 5.11 shows the statistics for the WN at step 3. The network had 4 inputs, 1

HU was used, and 14 weights were adjusted during the training phase. The WN

converged after 4 iterations. When removing X5 from the model, we observe from

Table 5.11 that only X4 has a p value greater than 0.1. Again, the empirical loss and

the prediction risk were increased. More precisely, the empirical loss is 1.6004,

Table 5.10 Statistics for the wavelet neural network model at step 2 for Berlin (five inputs, one

hidden unit)

Variable SBP St. dev P value

X5 0.0206 0.0174 0.1907

X4 0.0216 0.0250 0.1493

X3 0.2285 0.0822 0.0000

X2 1.0619 0.1568 0.0000

X1 9.9858 0.4462 0.0000

MAE 1.8083

Max AE 11.1949

NMSE 0.3525

MAPE 3.7755

�R
2 64.59%

Empirical loss 1.5927

Prediction risk 3.1902

Iterations 19

The average SBP for each variable of 50 bootstrapped samples, the standard deviation and the

p value

SBP sensitivity-based pruning, MAE mean absolute error, Max AE maximum absolute error,

NMSE normalized mean square error, MSE mean-square error, MAPE mean absolute percentage

error

Table 5.11 Statistics for the wavelet neural network model at step 3 for Berlin (four inputs, one

hidden unit)

Variable SBP St. dev P value

X4 �0.0052 0.0064 0.4701

X3 0.1991 0.0628 0.0000

X2 0.9961 0.1502 0.0000

X1 10.0537 0.4011 0.0000

MAE 1.8093

Max AE 11.0800

NMSE 0.3526

MAPE 3.7348

�R
2 64.61%

Empirical loss 1.6004

Prediction risk 3.2056

Iterations 4

The average SBP for each variable of 50 bootstrapped samples, the standard deviation and the

p value

SBP sensitivity-based pruning, MAE mean absolute error, Max AE maximum absolute error,

NMSE normalized mean square error, MSE mean-square error, MAPE mean absolute percentage

error
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and the prediction risk increased 0.48% to 3.2056. The new prediction risk is greater

than the estimated prediction risk of the initial model about 0.16%. Again,

the increase in the prediction risk was significantly smaller than the threshold.

On \the other hand, the �R
2
was increased to 64.61% indicating an improved fit.

Hence, the decision of removing X5 was accepted.

In the final step, the variable X4 had p value ¼ 0.4701, and it was removed from

the model. Table 5.12 shows the statistics for the WN at step 4. The network had 3

inputs, 1 wavelet was used for the construction of the WN, and only 11 weights

were adjusted during the training phase. The WN converged after 19 iterations.

After the removal of X4, a new WN was trained with only one wavelet. The new

empirical loss was decreased to 1.5969. The MAE and NMSE are 1.8095 and

0.3530, respectively, while the Max AE and the MAPE are 11.0925 and 3.7171,

respectively. Next, the decision of removing X4 was tested. The new prediction risk

was reduced to 3.1914, while the explained variability adjusted for degrees of

freedom was 64.61%. Hence, the removal of X4 reduced the complexity of the

model, while its performance was increased. The p values of the remaining

variables are zero indicating that the remaining variables are characterized as

very significant variables. Hence, the algorithm stops. Our proposed algorithm

indicates that only the 3 most recent lags should be used, while PACF suggested

the first 6 lags as well as the 8th and the 11th lag.

Concluding, in the final model, only three of the seven variables were used. The

complexity of the model was significantly reduced since from 83 parameters in

the initial model only 11 parameters have to be trained in the final model. In addition

in the reduced model, the prediction risk minimized when only one HU was used

while five HUs were needed initially. Our results indicate that the in-sample fit was

slightly decreased in the reduced model. However, when an adjustment for the

Table 5.12 Statistics for the wavelet neural network model at step 4 for Berlin (three inputs, one

hidden unit)

Variable SBP St. dev P value

X3 0.2244 0.0573 0.0000

X2 0.9363 0.1581 0.0000

X1 10.1933 0.4442 0.0000

MAE 1.8095

Max AE 11.0925

NMSE 0.3530

MAPE 3.7171

�R
2 64.61%

Empirical loss 1.5969

Prediction risk 3.1914

Iterations 19

The average SBP for each variable of 50 bootstrapped samples, the standard deviation and the

p value

SBP sensitivity-based pruning, MAE mean absolute error, Max AE maximum absolute error,

NMSE normalized mean square error, MSE mean-square error, MAPE mean absolute percentage

error
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degrees of freedom is made, we observe that the �R
2
was increased to 64.61% from

63.98% in the initial model. Finally, the prediction power of the final and less

complex proposed model was improved since the prediction risk was reduced to

3.1914 from 3.2004.

On the first row of Table 5.14, the statistical significant lags for the seven cities are

presented.Thenumberof significant lags for each city is as follows:Oslo2 lags;Berlin,

Paris, and Stockholm 3 lags; Amsterdam 4 lags; Madrid 6 lags; and Rome 7 lags.

5.5.2.2 Model Selection: Selecting the Architecture of the Wavelet Network

In each step, the appropriate number of HUs is determined by applying the model

selection algorithm. The model selection algorithm is presented in Appendix A.3.

For simplicity, we refer only to results from Berlin. The results of the remaining

cities are similar. Table 5.13 shows the prediction risk for the first 5 HUs at each

step of the variable selection algorithm for Berlin. Ideally, the prediction risk will

decrease (almost) monotonically until a minimum is reached, and then it will start

to increase (almost) monotonically. The number of HUs that minimize the predic-

tion risk is selected for the construction of the model.

In the initial model, where all seven inputs were used, the prediction risk with

one HU is only 3.2009. When one additional HU is added to the model, the

prediction risk increases. Then, as more HUs are added to the model, the prediction

risk monotonically decreases. The minimum is reached when five HUs are used

and is 3.2004. When additional HUs are added in the topology of the model, the

prediction risk increases. Hence, the architecture of the WN contains five HUs.

In other words, the five higher ranking wavelets should be selected form the wavelet

basis in order to construct the WN. Observing Table 5.13, it is clear that the

prediction risk at the initial model with only one HU is almost the same as in

the model with five HUs. This due to the small number of parameters that were

adjusted during the training phase when only 1 HU is used and not due to a better fit.

At the second step, when variable X6 was removed, the prediction risk is

minimized when two HUs are used. Similarly, at steps two, three, and four, the

prediction risk was minimized when only one HU is used. Additional HUs does not

improve the fitting or the predictive power of the model. Figure 5.13 presents the

prediction risk for the first 5 HUs of the final model. It is clear that the prediction

Table 5.13 Prediction risk at each step of the variable selection algorithm for the five first hidden

units for Berlin

Step\HU 1 2 3 4 5

0 3.2009 3.2026 3.2023 3.2019 3.2004

1 3.1817 3.1812 3.1828 3.1861 3.1860

2 3.1902 3.1915 3.1927 3.1972 3.1974

3 3.2056 3.2077 3.2082 3.2168 3.2190

4 3.1914 3.2020 3.2182 3.2158 3.2169
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risk is minimized when one HU is used, and then it increases almost monotonically.

Table 5.14 presents the appropriate HUs for the construction of the final WN for

each city. Our results indicate that a very simple model with only one HU is

adequate to fit the DATs in the seven cities of our analysis.

5.5.2.3 Initializing and Training the Wavelet Network

After the training set and the correct topology of the WN are selected, the WN can

be constructed and trained. The backward elimination (BE) method is used to

initialize the WN. A wavelet basis is constructed by scanning the four first levels

of the wavelet decomposition of the DAT of each city.

Focusing on Berlin again, the wavelet basis consists of 168 wavelets. However,

not all wavelets in the wavelet basis contribute to the approximation of the original

time series. Following Zhang (1997), the wavelets that contain less than five sample

points of the training data in their support are removed. Seventy six wavelets that do

not significantly contributed to the approximation of the original time series were

indentified. The truncated basis contains 92 wavelet candidates. Applying the BE

method, the wavelet are ranked in order of significance. The wavelets in the wavelet

library are ranked as follows: the BE starts the regression by selecting all the

available wavelets from the wavelet library. Then the wavelet that contributes

the least in the fitting of the training data is repeatedly eliminated. Since only one

HU is used on the architecture of the model, only the wavelet with the highest

ranking is used to initialize the WN. Figure 5.14 presents the initialization of the

final model using only one HU. The initialization is very good, and the WN

Table 5.14 Model selection and fitness criteria of the wavelet network for the seven cities

Amsterdam Berlin Madrid Oslo Paris Rome Stockholm

Lags k 4 3 6 2 3 7 3

HU 1 1 1 1 1 1 1

n/p ratio 260 332 182 456 332 158 332

MAE 1.3797 1.8090 1.3947 1.6717 1.5868 1.1709 1.5705

Max AE 8.3484 11.0931 8.3846 11.3632 8.2646 7.1735 9.1467

NMSE 0.3193 0.3523 0.2883 0.4202 0.3601 0.3702 0.3787

MSE 3.1829 5.4196 3.1842 4.7831 3.9800 2.4210 4.1678

MAPE 3.0692 3.7154 3.3918 2.9820 2.1585 2.0666 5.9942

POCID 61.62% 60.15% 60.86% 60.84% 59.90% 60.24% 60.12%

IPOCID 56.05% 52.30% 54.54% 47.87% 52.85% 51.13% 51.89%

POS 81.73% 81.49% 82.38% 78.18% 80.39% 80.87% 80.15%

R
2 67.95% 64.61% 71.02% 57.9% 63.88% 62.75% 61.94%

The number of hidden units and lags used in each city to model the daily average temperature is

presented. The fitting criteria using the wavelet network in each city are also presented

HU hidden units, MAE mean absolute error, Max AE maximum absolute error, NMSE normalized

mean square error,MSEmean-square error,MAPEmean absolute percentage error,POCID position

of change in direction, IPOCID independent position of change in direction, POS position of sign
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converged after only 19 iterations. The training stopped when the minimum

velocity, 10�5, of the training algorithm was reached. The final approximation of

the WN to the daily detrended and deseasonalized temperature can be found in

Figure 5.15. The results in the remaining cities are similar.

In Table 5.14, various fitness criteria of the seven WNs corresponding to the

seven cities are presented. A closer inspection of Table 5.14 reveals that the WNs fit

the DATs reasonably well. The overall fit for Oslo is �R
2 ¼ 57:9%, while for Madrid

is �R
2 ¼ 71:02%. The smallest MSE is observed in Rome and is only 2.4210, while

the largest one is observed in Berlin, and it is 5.4196. The MAE is only 1.1709 in

Rome and 1.8090 in Berlin.

In Table 5.14, the prediction of sign (POS), the prediction of change in direction

(POCID), and the independent prediction of change in direction (IPOCID) are also

reported. These three criteria examine the ability of the network to predict changes,

independently of the size of the change, and they are referred as percentages. The

POS measures the ability of the network to predict the sign of the target values,

positive or negative, and it is given by

POS ¼ 100

n

Xn
i�1

di; (5.41)

where

di ¼
1 yi � ŷi>0

0 yi � ŷi � 0

(
(5.42)

Fig. 5.13 The prediction risk for the first five hidden units of the final wavelet network model in

Berlin
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Fig. 5.14 Initialization of the final wavelet network model using the backward elimination

method in Berlin. The daily average temperature (dots) and the wavelet network approximation

(line) are presented

Fig. 5.15 Training the final wavelet network model with one hidden unit. The wavelet network

converged after 19 iterations. The daily average temperature (dots) and the WN approximation

(line) are presented
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and n is the length of the forecasted patterns, yi is the target value, and ŷi is the WN

approximation. The POCID is given by

POCID ¼ 100

n

Xn
i�1

di; (5.43)

where

di ¼
1 yi � yi�1ð Þ ŷi � yi�1ð Þ>0

0 yi � yi�1ð Þ ŷi � yi�1ð Þ � 0

(
; (5.44)

and finally, the IPOCID is given by

IPOCID ¼ 100

n

Xn
i�1

di; (5.45)

where

di ¼
1 yi � yi�1ð Þ ŷi � ŷi�1ð Þ>0

0 yi � yi�1ð Þ ŷi � ŷi�1ð Þ � 0

(
: (5.46)

The POS for the detrended and deseasonalized DATs is very high for all cities,

and it ranges from 78.18% in Oslo to 81.73% in Amsterdam. The POCID ranges

from 59.9% in Paris to 61.62% in Amsterdam. Similarly, the minimum IPOCID

is 47.87%, and it is observed in Oslo, while the maximum is 56.05%, and it is

observed in Amsterdam.

5.5.2.4 The Wavelet Neural Networks Approach: Time-Dependent

Mean Reversion Variable

In this section, we focus on analyzing the speed of mean reversion, kðtÞ. The DATs
are modeled by a nonlinear AR model. By fitting the AR model nonlinearly and

nonparametrically with a WN allows us to examine the time structure of the speed

of the mean reversion of the temperature process. By computing the derivative of

the WN output with respect to the network input, a series of the daily values for the

mean reversion function are estimated. Since the relation between the “coefficient”

of the nonlinear model and the speed of mean reversion function is linear, the

“coefficient” of the nonlinear AR model is examined instead. The relation between

the “coefficient” of the nonlinear AR model and the speed of mean reversion is

given by (5.34).

Using WNs, the generalized version of (5.33) is estimated nonparametrically

by (5.35)

~Tðtþ 1Þ ¼ f ~TðtÞ; ~Tðt� 1Þ; . . .� �þ eðtÞ:
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Once we have the estimator of the underlying functionf, then the daily values of
a can be computed as follows:

a1ðtÞ ¼ d ~Tðtþ 1Þ=d ~TðtÞ ¼ df=d ~T: (5.47)

The analytic expression for derivative of the WN w.r.t. the input variable df=d ~T
can be found in appendix.

We estimate fð�Þ nonparametrically with a WN, gð�Þ. Given an input vector x

(the harmonics) and a set of weights w (parameters), the network response (output)

gl x;wð Þ is

glðx;wÞ ¼ w
½2�
lþ1 þ

Xl
j¼1

w
½2�
j �CjðxÞ þ

Xm
i¼1

w
½0�
i � xi:

In that expression,Cj(x) is amultidimensional waveletwhich is constructed by the

product ofm scalar wavelets, x is the input vector,m is the number of network inputs,

l is the number of HUs, and w stands for a network weight. The multidimensional

wavelets are computed by (A.2). The mother wavelet is given by the Mexican hat

function.

For Berlin, the daily values of aðtÞ (3,647 values) are depicted in Fig. 5.16.

Because in Berlin there are three significant lags, and there are three mean-reverting

functions, aiðtÞ. The corresponding frequency histograms are given in Fig. 5.17.

The graphs for all cities are very similar. The relevant statistics of aiðtÞ for all cities

Fig. 5.16 Daily variation of the speed of mean reversion functions ai in Berlin
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are presented in Table 5.15. Our results indicate that the mean reversion parameter

is not constant. On the contrary, its daily variation is quite significant; this fact

naturally has an impact on the accuracy of the pricing equations, and it has to be

taken into account (Alaton et al. 2002). Intuitively, it was expected aiðtÞ not to

be constant. If the temperature today is away from the seasonal average (a cold day

in summer), then it is expected that the speed of mean reversion to be high, that is,

the difference of today and tomorrows temperature, it is expected to be high.

In contrast, if the temperature today is close to the seasonal average, then is

expected the temperature to revert to its seasonal average slowly.

Referring now to Figs. 5.16 and 5.17, we observe that the spread between the

maximum and minimum value is similar for the three mean-reverting parameters,

0.04. The standard deviation is 0.01, and the mean is 0.90,�0.15, and 0.05 for a1ðtÞ;
a2ðtÞ and a3ðtÞ , respectively. We also observe that there is an upper threshold in

the values of aiðtÞ (0.915,�0.137, and 0.068) which is rarely exceeded. This can also

be seen in the frequency distribution of aiðtÞ in Fig. 5.17. A closer inspection of

Table 5.15 reveals that in every city,a1ðtÞhas the largest value (over 0.79), anda2ðtÞ is
always negative. A closer inspection of Table 5.15 reveals that the absolute average

value of aiðtÞ of higher order lags decreases when the lag order increases which was
expected. The value of a1ðtÞ ranges from 0.79 in Oslo to 0.99 in Amsterdam and

Madrid. Finally, strong autocorrelation is present in the values of aiðtÞ in every city.
Next, the structure of aiðtÞ is examined. More precisely, it is examined if aiðtÞ

are stochastic processes by themselves. Both an ADF and a KPSS tests are used.

The ADF test statistic is �21.12, �25.65, and �21.38 for a1ðtÞ; a2ðtÞ and a3ðtÞ,

Fig. 5.17 Frequency distribution of the speed of mean reversion function ai in Berlin
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respectively, for Berlin. The p value ¼ 0 for the three mean reversion functions that

leads to the rejection of the null hypothesis that aiðtÞ has a unit root. In order to have
a more powerful test, the KPSS test is also applied. The KPSS test statistic is 0.043,

0.045, and 0.044 for a1ðtÞ; a2ðtÞ, and a3ðtÞ, respectively, and less than the critical

values in 1%, 5%, and 10% confidence level. The previous results suggest the

acceptance of the null hypothesis that aiðtÞ is stationary. The results of the

remaining cities are similar. The null hypothesis of the ADF that aiðtÞ have a unit
root is rejected for all cities. Similarly, the null hypothesis of the KPSS that aiðtÞ are
stationary cannot be rejected for all cities.

The histogram in Table 5.16 may suggest that the distributions of aiðtÞ are

bimodal. In order to test the hypothesis of bimodality, the Hartigan’s DIP statistic is

estimated. Hartigan’s DIP statistic is a measure of departure from unimodality. If a

distribution is unimodal, then the DIP converges to zero otherwise converges to

a positive constant (Hartigan and Hartigan 1985). The null hypothesis test is that

aiðtÞ follows a unimodal distribution versus the alternative that aiðtÞ follows a

bimodal distribution:

H0 : aiðtÞ follows a unimodal distribution; DIP ¼ 0

H1 : aiðtÞ follows a bimodal distribution; DIP 6¼ 0
: (5.48)

The estimated DIP statistics for Berlin are 0.0043, 0.0039, and 0.0037 for a1ðtÞ;
a2ðtÞ and a3ðtÞ, respectively, with p values over 0.97. Hence, the null hypothesis that
aiðtÞ follows a unimodal distribution cannot be rejected in Berlin. The results of the

remaining cities are similar.

The results from Zapranis and Alexandridis (2008) indicate that a1ðtÞ follows a
bimodal distribution in Paris. However, in Zapranis and Alexandridis (2008), only

one lag is used in order to estimate model (5.33) which may have a strong impact on

the structure and values of a1ðtÞ.
Moreover, Fig. 5.16 may suggest seasonalities in the structure of aiðtÞ. The ACF

of aiðtÞ is shown in Fig. 5.18. A seasonality of a half year can be shown in the ACF.

Also, the first 35 lags are statistically important and positively correlated, while the

next 20 are negatively correlated.

In this section, the daily values of aiðtÞ were successfully estimated. Hence, the

residuals eðtÞ of model (5.35) can be obtained. In the next section, the residuals eðtÞ
will be examined.

5.6 The Seasonal Variance

In this section, the residuals of the WN will be examined. The initial hypothesis for

the residuals eðtÞ of model (5.35) was that they follow the normal distribution.

However, a closer inspection of the noise part of the wavelet decomposition of

Berlin’s DAT (Fig. 5.10) reveals seasonalities.

The distributional statistics of the residuals of the WN for all cities can be found

on Table 5.16. The mean value of the residuals is very close to zero for all cities;
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however, the standard deviation is around 2. More precisely, the minimum standard

deviation is observed in Rome and is 1.55, while the maximum is observed in

Berlin, and it is 2.33. With an exception of Paris, all cities exhibit large positive

kurtosis. On the other hand, the skewness is �0.40 for Rome, while it is 0.14 for

Amsterdam.

Next, a normality test will be performed on the estimated residuals of the WN.

More precisely, the distance of the empirical distribution of the residuals and the

standard normal distribution will be estimated. The distance between the empirical

distribution of the data and a benchmark distribution is estimated by the Kolmogor-

ov–Smirnov test or the Kolmogorov distance. The Kolmogorov distance is defined

as follows:

KS ¼ ffiffiffi
n

p
sup
x

FðxÞ � FnðxÞj j; (5.49)

where n is the sample size and FnðxÞ is the empirical cumulative density function

(CDF), while FðxÞ is the estimated CDF. The hypothesis test of the Kolmogor-

ov–Smirnov is defined as

H0 ¼ The data have the hypothesized; continuous CDF

H1 ¼ The data do not have the hypothesized; continuous CDF
: (5.50)

In this case, the hypothesized continuous CDF is the standard normal

distributions with mean zero and variance 1, Nð0; 1Þ. The normality hypothesis is

rejected for all cities since the Kolmogorov–Smirnov statistics are larger than 4.5 for

all cities. The critical values of the Kolmogorov–Smirnov test is 1.36 for confidence

level of 5%. Moreover, the p values are 0 for all cities indicating the rejection of the
null hypothesis that the residuals are drawn from the standard normal distribution.

Finally, a Ljung–Box lack-of-fit hypothesis test is performed. The Ljung–Box

tests for model misspecification is based on the Q-statistic. The Ljung–Box test can
be defined as follows:

H0 : The data are random

H1 : The data are not random
(5.51)

and the test statistic is given by

Q ¼ nðnþ 2Þ
Xh
k¼1

r̂2k
n� k

; (5.52)

where n is the sample size, r̂2k is the sample autocorrelation at lag k, and h is the

number of lags being tested. The corresponding statistics and p values can be found
on Table 5.16. All p values are larger than 0.05 with an exception of Berlin where

the p values is 0.0493, indicating the absence of autocorrelation in the residuals of

the WN in 5% significance level.

The above results are confirmed by the ACF of the residuals. The ACF of the

residuals is shown on Fig. 5.19. However, a closer inspection of the ACF reveals a

seasonal component in the residuals in Madrid and Rome.
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Fig. 5.19 Autocorrelation function of the residuals of the wavelet network of the seven cities:

Amsterdam, Berlin, Madrid, Oslo, Paris, Rome, Stockholm

5.6 The Seasonal Variance 133



Previous studies identified the existence of seasonal variance in the residuals of

either the linear or the nonlinear AR model (Benth and Saltyte-Benth 2005, 2007;

Zapranis and Alexandridis 2008, 2009b). Hence, the residuals are further examined.

More precisely, the ACF of the squared residuals are inspected. The ACF of the

squared residuals can be found in Fig. 5.20. By squaring the residuals, the seasonal

pattern in the ACF is clear in every city as it is shown in Fig. 5.20.

As it was mentioned earlier, the seasonal variance can be modeled by a series of

truncated Fourier series. However, we follow a more advance method where the

selection of the parts of the Fourier series is based onWA. This method is similar as

the one presented in Sect. 5.4.2 for the seasonal mean. Hence, the seasonal variance

is modeled by (5.17) as follows:

s2ðtÞ ¼ cþ
XI2
i¼1

ci sin 2p0ipt 365=
� �þXJ2

j¼1

dj cos 2p0jpt 365=
� �

:

Since for the residuals eðtÞ of the nonlinear AR model it is true that

eðtÞ ¼ sðtÞeðtÞ; (5.53)

where eðtÞ are i.i.d.Nð0; 1Þ, the seasonal variance of the residuals can be extracted as
follows: first, the residuals are grouped into 365 groups, comprising 10 observations

each (each group corresponds to a single day of the year). Then, by taking the

average of the 10 squared values, the variance of that day is obtained. That is, we

assume that the seasonal variance is repeated every year:

s2ðtþ 365Þ ¼ s2ðtÞ; (5.54)

where t ¼ 1; . . . ; 3650:
In Fig. 5.21, the empirical variance in Berlin is presented. To decide which terms

of the truncated Fourier series to use in order to model the variance s2ðtÞ, WA is

performed again. The Daubechies 8 wavelet at level 8 was used. The Daubechies

8 wavelet can be found in Fig. 5.22.

In Fig. 5.23, selected parts of the wavelet decomposition of the squared residuals

for Berlin are presented. It is clear that a cycle of 1 year exists (approximation at

level 8, a8) as it was assumed by (5.54). Moreover, a half-year cycle (a6 and d7) as
well as a seasonal cycle exist (d6 ). Hence, in (5.17), we set I2 ¼ 3 and J2 ¼ 3.

Moreover, the results from WA indicate that p01 ¼ 1, p02 ¼ 2, and p03 ¼ 3. In panel A
of Table 5.17, the results of the wavelet decomposition for the remaining cities are

presented. Since parameters p0i were identified by WA, least squares method were

used to fit the parameters ci and dj of (5.17).
The estimated parameters of the seasonal variance in Berlin are as follows:

c0¼ 5:42, c1 ¼ 0:94, c2 ¼ �0:53, d2 ¼ 1:13, and d3 ¼ �0:31. Note that parameters

c3 and d1 are not statistically significant, and they are not reported. In panel B of

Table 5.17, the estimated parameters of the remaining cities are reported. Note that

only the statistically significant parameters (p value < 0.05) are reported. Para-

meters with p value > 0.05 are omitted and removed from the model. Hence, in
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Fig. 5.20 Autocorrelation function of the squared residuals of the wavelet network of the seven

cities: Amsterdam, Berlin, Madrid, Oslo, Paris, Rome, Stockholm
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Fig. 5.21 Empirical seasonal variance in Berlin

Fig. 5.22 The Daubechies 8 wavelet (top right) together with the scaling function (top left). The
decomposition (middle) and reconstruction (bottom) filters are also presented with the low-pass

(left) and high-pass (right) filters
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Fig. 5.23 Selected parts of the discrete wavelet decomposition of the seasonal variance in Berlin:

approximations (aj) and details (dj). The Daubechies 8 wavelet at level 8 was used

Table 5.17 Estimated parameters of the seasonal variance using wavelet analysis

Amsterdam Berlin Madrid Oslo Paris Rome Stockholm

Panel A

p01 1 1 1 1 1 1 1

p02 2 2 – 2 1.5 2 2

p03 5 3 – – – – 4

Panel B

c0 3.18 5.42 3.18 4.78 4.44 2.41 4.16

c1 0.34 0.94 0.38 0.68 1.07 0.25 0.85

c2 �0.42 �0.53 – – �1.28 �0.32 �0.40

c3 – – – – – – 0.43

d1 0.69 – �0.46 2.51 �0.73 – 1.10

d2 0.72 1.13 1.27 – 1.02 0.75

d3 �0.31 0.47 – – – – –

In Panel A, the length of each cycle in years is presented. In Panel B, the estimated parameters of

the seasonal mean are reported. Only the statistical significant parameters with p value < 0.05 are

presented
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Madrid, only three parameters were needed in order to fit and remove the seasonal

variance, while in Amsterdam and Stockholm, six parameters were needed.

The empirical values of the variance of the residuals (365 values) in Berlin

together with the fitted variance can be seen in Fig. 5.24. We observe that the

variance takes its highest values during the winter months, while it takes its lowest

values during the summer months. This is consistent with our initial hypothesis in

Sect. 5.3. Moreover, an increase in variance is observed during May.

In this section, WA was applied in order to indentify the various periodicities

that exist in the seasonal variance. The seasonal variance was successfully captured

by a truncated Fourier series, and then it was divided out from our data. Since the

seasonal variance was successfully fitted, it can be removed from the data to obtain

the final residuals (noise eðtÞ). Note that the residuals of the nonlinear AR model

and the residuals after dividing out the seasonal variance are connected with (5.53).

In the next section, the remaining residuals eðtÞ will be further tested.

5.7 Examination of the Residuals

In this section, the residuals eðtÞ after dividing out the seasonal variance will be

examined. Various statistics of the remaining residuals will be presented as well as

distributional tests will be performed. Finally, a comparison between the proposed

model and previous studies will be presented. More precisely, our model will be

compared against the models proposed by Alaton et al. (2002) and by Benth and

Saltyte-Benth (2007).

Fig. 5.24 Empirical and fitted variance in Berlin
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5.7.1 Testing the Normality Hypothesis

First, the ACF of the residuals after dividing out the seasonal variance is examined.

Figure 5.25 presents the ACF of the squared residuals after dividing out the

seasonal variance for the seven cities. We observe that the seasonality has been

successfully removed from all cities.

In Table 5.18, the descriptive statistics of the residuals after dividing out the

seasonal variance are presented. The residuals for the seven cities have a mean of

almost 0 and standard deviation of 1. In all cities, a negative skewness is present

with an exception of Amsterdam where the skewness is positive. In addition,

positive kurtosis is evident in all cities. Moreover, a Ljung–Box lack-of-fit hypoth-

esis test is performed. The corresponding statistics and p values can be found on

Table 5.18. All p values are larger than 0.05 indicating the absence of autocorrela-

tion in the residuals in confidence level of 5%. Finally, a Kolmogorov–Smirnov is

performed to test the normality hypothesis. In Table 5.18, the corresponding

statistics and p values are presented. In Berlin, Oslo, Paris, and Stockholm, the

null hypothesis that the residuals are drawn from the normal distribution cannot be

rejected in 10% confidence level. Similarly, in Amsterdam, the null hypothesis

cannot be rejected in 1% confidence level. Only in two cities, in Madrid and Rome,

the normality hypothesis is rejected.

Next, the hypothesis of long range dependence in the estimated residuals should

be tested. The Hurst exponent is related to the fractional differencing parameter d
and is given by

H ¼ d þ 1

2
: (5.55)

The Hurst exponent takes values in the interval (0,1). For 1
2
<H<1, the process

has long memory, and for 0<H< 1
2
, the process has short memory, while forH ¼ 1

2
,

the BM is retrieved (Bellini 2005). In Table 5.19, the Hurst exponent for the seven

cities is presented. The Hurst exponent was estimated after all seasonal component

were removed from the data. The iterative method described in Koutsoyiannis

(2003) is followed in order to estimate the Hurst exponent.

Results from Table 5.19 indicate that the Hurst exponent does not differ signifi-

cantly from 0.5. The smallest Hurst exponent was observed in Amsterdam with

value of 0.4874 and standard deviation of 1.0018, while the largest Hurst exponent

was observed in Oslo with value of 0.5201 and standard deviation of 0.99847.

The standard deviation for all cities is very close to 1. The above results indicate

the absence of fractionality characteristics in the dynamics of the temperature

process. Therefore, the assumption of a BM instead of FBM is justified.

Our results are in contrast to those of Brody et al. (2002) and Benth (2003).

In Brody et al. (2002), the Hurst exponent was calculated before the elimination of

any seasonal components. Their results are in line with the results presented in

Table 5.3. Note that results from Table 5.3, where the Hurst exponent was calculated
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Fig. 5.25 Autocorrelation function of the squared residuals after dividing out the volatility

function of the seven cities: Amsterdam, Berlin, Madrid, Oslo, Paris, Rome, Stockholm
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before removing the seasonal components, indicate the presence of long memory.

In this study, WA was used in order to successfully remove all seasonal effects in

temperature and in the seasonal variance. Hence, any possible fractionality was

successfully removed. The same conclusion achieved in (Bellini 2005) using Fourier

theory in order to indentify periodicities in the temperature data.

5.7.2 In-Sample Comparison

Next, the proposedmodel will be compared in-sample against twomodels previously

proposed in the literature. The first model was proposed byAlaton et al. (2002), while

the second model was proposed by Benth and Saltyte-Benth (2007). For simplicity,

we name the two models as the Alaton and the Benth model, respectively.

In Table 5.20, the estimated parameters from Alaton model are presented, while

in Table 5.21, the descriptive statistics of the residuals can be found. In Table 5.20,

only the statistical significant parameters at significance level 5% are reported.

A closer inspection of Table 5.21 indicates that the distributional statistics are

similar to the statistics of the residuals of our proposed model. The mean is almost

zero, and the standard deviation is almost 1 for all cities. With an exception of Paris,

there is positive kurtosis. On the other hand, negative skewness is present in all

cities with the exception of Amsterdam and Berlin. The results of the normality

hypothesis test performed by the Kolmogorov–Smirnov test indicate that the

normality hypothesis is rejected in Amsterdam, Madrid, and Rome, while there is

not enough evidence to reject the normality hypothesis in Oslo, Berlin, Paris, and

Table 5.19 Hurst exponent of the residuals after removing all seasonal components

Amsterdam Berlin Madrid Oslo Paris Rome Stockholm

Hurst 0.4874 0.5078 0.4951 0.5201 0.4928 0.5138 0.5069

Table 5.20 Estimated parameters using the Alaton model for the seven cities

City k A B C ’ R
2

Amsterdam 0.194 9.66 0.000312 7.251 �1.923 71.58

Berlin 0.216 9.59 0.000226 9.658 �1.825 74.79

Madrid 0.178 15.06 – 9.264 �1.898 79.37

Oslo 0.251 6.06 0.000239 9.966 �1.865 80.30

Paris 0.226 12.08 0.000233 7.766 �1.880 72.91

Rome 0.231 15.41 0.000087 8.788 �2.030 85.28

Stockholm 0.220 6.26 0.000319 9.663 �1.966 79.54

The parameters using the Alaton model. k is the speed of mean reversion, A is the intercept, B is

the slope of the linear trend, C is the amplitude of the seasonal component, and ’ is the angle

referring to the day of the maximum temperature. Only the statistical significant parameters with

p value < 0.05 are presented

142 5 Modeling the Daily Average Temperature



T
a
b
le

5
.2
1

D
es
cr
ip
ti
v
e
st
at
is
ti
cs

o
f
th
e
re
si
d
u
al
s
o
f
th
e
A
la
to
n
m
o
d
el

C
it
y

M
ea
n

S
t.
d
ev

M
ax

M
ed
ia
n

M
in

S
k
ew

n
es
s

K
u
rt
o
si
s

K
–
S

P
v
al
u
e

L
B
Q

P
v
al
u
e

A
m
st
er
d
am

0
.0
0

0
.9
9

3
.4
2

�0
.0
4

�4
.0
5

0
.1
6

3
.4
0

1
.8
9

0
.0
0
1
5

1
9
3
.4
3

0
.0
0
0
0

B
er
li
n

0
.0
0

0
.9
9

4
.4
0

�0
.0
2

�3
.8
5

0
.0
1

3
.4
3

0
.9
9

0
.2
7
9
9

8
7
.8
2

0
.0
0
0
0

M
ad
ri
d

0
.0
0

1
.0
0

3
.9
1

0
.0
8

�4
.4
6

�0
.3
1

3
.4
4

2
.1
7

0
.0
0
0
2

1
8
8
.4
5

0
.0
0
0
0

O
sl
o

0
.0
0

0
.9
9

3
.5
1

0
.0
3

�4
.8
4

�0
.0
7

3
.5
1

1
.2
0

0
.1
1
2
6

6
0
.9
6

0
.0
0
0
0

P
ar
is

0
.0
0

0
.9
9

3
.0
3

0
.0
0

�3
.6
1

�0
.1
3

2
.9
5

0
.7
5

0
.6
1
5
6

1
0
0
.6
3

0
.0
0
0
0

R
o
m
e

0
.0
1

0
.9
9

3
.9
2

0
.0
1

�4
.2
0

�0
.0
7

3
.8
5

2
.0
7

0
.0
0
0
4

9
9
.1
3

0
.0
0
0
0

S
to
ck
h
o
lm

0
.0
0

0
.9
9

3
.6
4

0
.0
2

�4
.3
2

�0
.1
2

3
.5
0

1
.1
3

0
.1
5
6
7

1
0
0
.1
5

0
.0
0
0
0

S
t.
d
ev

st
an
d
ar
d
d
ev
ia
ti
o
n
,
K
–
S
K
o
lm

o
g
o
ro
v
–
S
m
ir
n
o
v
g
o
o
d
n
es
s-
o
f-
fi
t,
L
B
Q

L
ju
n
g
–
B
o
x
Q
-s
ta
ti
st
ic

la
ck
-o
f-
fi
t

5.7 Examination of the Residuals 143



Stockholm in 10% confidence level. However, the Ljung–Box Q-statistic lack-of-fit

reveals strong autocorrelation in the residuals. Hence, the results of the previous test

for normality may not lead to substantial values of the Kolmogorov–Smirnov test.

In Table 5.22, the estimated parameters from the Benth model are presented,

while in Table 5.23, the descriptive statistics of the residuals can be found. In

Table 5.22, only the statistical significant parameters at significance level 5% are

reported. A closer inspection of Table 5.23 indicates that the standard deviation is

close to 0.8 in contrast to the initial hypothesis that the residuals follow a Nð0; 1Þ
distribution. This results to an implication of the estimation of the seasonal variance.

In addition, the normality hypothesis is rejected in all cities. More precisely, the

Kolmogorov–Smirnov value is over 3.5 with p value of 0 for all cities. Finally,

the Ljung–Box Q-statistic lack-of-fit reveals strong autocorrelation in the residuals.

The findings of Benth and Saltyte-Benth (2007) for the Stockholm temperature

series are very similar. Although they did not use WA to calibrate their model, they

had managed to remove seasonality from the residuals, but their distribution proved

to be non-normal. They suggested that a more refined model would probably rectify

this problem, but they did not proceed in estimating one. In an earlier paper

regarding Norwegian temperature data, Benth and Saltyte-Benth (2005) suggested

to model the residuals by a generalized hyperbolic distribution. However, as the

same authors comment the inclusion of a non-normal model leads to a complicated

Lévy process dynamics. Recently, Benth et al. (2007) proposed a continuous time

autoregressive process with lag p (CAR(p)-process). Although they managed to

correct the autocorrelation on the residuals, their distribution proved again to be

non-normal.

Table 5.22 Estimated parameters of the Benth model for the seven cities

Parameter Amsterdam Berlin Madrid Oslo Paris Rome Stockholm

a 9.66 9.59 15.06 6.06 12.08 15.41 6.26

b 0.000312 0.000226 – 0.000239 0.000233 0.000087 0.000319

k 0.194 0.216 0.178 0.253 0.226 0.231 0.220

b1 �7.246 �9.654 �9.256 �9.961 �7.762 �8.777 �9.655

g1 20.365 14.676 18.830 16.989 17.870 26.551 22.820

c0 4.983 8.490 4.765 8.020 6.432 3.916 6.658

c1 0.581 1.461 0.416 1.158 0.680 0.384 1.358

c2 �0.675 �0.963 �0.237 �0.292 �0.233 �0.529 �0.618

c3 0.230 0.288 �0.297 0.872 �0.356 �0.064 0.664

c4 0.360 0.071 0.285 0.041 0.303 �0.271 0.739

d1 1.078 �0.011 �0.913 4.292 0.056 1.652 1.803

d2 1.164 1.777 0.231 2.160 0.851 0.316 1.258

d3 0.235 0.726 0.245 0.912 0.011 0.125 0.507

d4 �0.330 �0.251 0.410 0.062 �0.073 0.271 �0.321

The parameters using the Benth model. k is the speed of mean reversion, a is the intercept, and b is
the slope of the linear trend. b1 and g1 is the amplitude and the angle of the seasonal mean. c1 and d1
are the parameters of the seasonal variance. Only the statistical significant parameters with

p value < 0.05 are presented
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Zapranis and Alexandridis (2006) estimated a number of alternatives to the

original AR(1) model. In particular, they estimated an ARMA(3,1) model, a long-

memory homoscedastic ARFIMA model, and a long-memory heteroscedastic

ARFIMA–FIGARCH model. Their findings suggest that increasing the model

complexity and thus the complexity of theoretical derivations in the context of

weather derivative pricing does not seem to be justified.

Our model outperformed the two models in the sense of distributional statistics.

First of all, in contrast to the models of Alaton and Benth, our tests indicate the

absence of autocorrelation in the residuals. Next, only in two of the seven cities

the normality hypothesis was rejected justifying our initial hypothesis of a BM as

the driving noise process. Finally, WA successfully indentified all the seasonal

cycles that affect the temperature dynamics.

5.7.3 Testing Alternative Distributions for the Residuals

In the previous section, the residuals of our proposed model were examined.

We concluded that the use of a BM is justified since the normality hypothesis was

rejected in only two cities. In order to obtain a better understanding of the

distributions of the residuals, we expand our analysis by fitting additional

distributions. More precisely, a Lévy family distribution is fitted to the residuals.

The Lévy family contains many known distributions as subclasses. To our knowl-

edge, only Benth and Saltyte-Benth (2005) and Bellini (2005) used a Lévy process as

the driving noise process. In particular, Benth and Saltyte-Benth (2005) used a

generalized hyperbolic distribution. In Bellini (2005), a hyperbolic distribution

was used which is a limiting case of the generalized hyperbolic distribution.

In this study, two limiting cases of the generalized hyperbolic, the hyperbolic and

the NIG, and one limiting case of the Lévy distribution, the stable distribution, are

examined.

The generalized hyperbolic probability density function (PDF) is given by

fGH x; l; a; b; m; dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
d=

� �l
eb x�mð Þ

ffiffiffiffiffiffi
2p

p
Kl d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p� � �
Kl�1

2
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� mð Þ2

q� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� mð Þ2

q
a=

� �1
2�l

; (5.56)

where m is the location, a controls the steepness of the distribution, b is the

asymmetry parameter, and d is the scale parameter. The parameter l is indentifying
the subfamily within the generalized hyperbolic class, while Kl is the modified

Bessel function of the third kind.

The moment-generating function of the generalized hyperbolic distribution is

given by
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E euX

 � ¼ emu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � bþ uð Þ2

q
0
B@

1
CA
l

�
Kl d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � bþ uð Þ2

q� �

Kl d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p� � : (5.57)

Hence, ifLðtÞ is a Lévy process withLð1Þbeing a generalized hyperbolic distributed
random variable, then LðtÞ is called a generalized hyperbolic Lévy process. Then,

the Lévy measure if l � 0 is given by

lGH ¼ zj j�1ebz
1

p2

ð1
0

1

y

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2yþ a2

p
zj j

� �
J2l d

ffiffiffiffiffi
2y

pð Þ þ Y2
l d

ffiffiffiffiffi
2y

pð Þ dyþ le�a zj j

8<
:

9=
;dz (5.58)

and when l<0 by

lGHðdzÞ ¼ zj j�1ebz
1

p2

ð1
0

1

y

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2yþ a2

p
zj j

� �
J2�l d

ffiffiffiffiffi
2y

pð Þ þ Y2
�l d

ffiffiffiffiffi
2y

pð Þ dydz; (5.59)

where Jl and Yl are the Bessel functions of the first and second kind, respectively,

with index l.
The hyperbolic PDF fH is obtained from (5.56) withl ¼ 1 and the normal inverse

Gaussian (NIG) PDF fNIG with l ¼ � 1
2
. Hence, for the hyperbolic distribution, we

have that

fH x; a; b; m; dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
ffiffiffiffiffiffi
2p

p
dK1 d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p� � e�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2þ x�mð Þ2

p
þb x�mð Þ (5.60)

with Lévy measure given by

lHðdzÞ ¼ zj j�1ebz
1

p2

ð1
0

1

y

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2yþ a2

p
zj j

� �
J21 d

ffiffiffiffiffi
2y

pð Þ þ Y2
1 d

ffiffiffiffiffi
2y

pð Þ dyþ e�a zj j

8<
:

9=
;dz: (5.61)

Similarly, for the NIG distribution, we have that

fNIG x; a; b; m; dð Þ ¼
adK1 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� mð Þ2

q� �

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� mð Þ2

q ed
ffiffiffiffiffiffiffiffiffi
a2�b2

p
þbðx�mÞ (5.62)

with Lévy measure given by

lNIGðdzÞ ¼ ad
p zj jK1 a zj jð Þebzdz: (5.63)
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The Lévy distribution PDF is given by

fL ¼
ffiffiffiffiffiffi
c

2p

r
� e

�c
2 x�mð Þ

x� mð Þ32
; (5.64)

where c is a positive constant. Hence, if X 	 Levy m; cð Þ, then X 	 Stable 1
2
; 1;m; c

� �
.

The PDF for a general stable distribution cannot be written analytically; how-

ever, the general characteristic function can be. The PDF is determined by its

characteristic function ’ðtÞ by

f ðxÞ ¼ 1

2p

ð1
�1

’ðtÞe�ixtdt: (5.65)

The random variable X is called stable if its characteristic function is given by

’ðt; a; b; m; cÞ ¼ exp itm� ctj ja 1� ibsgnðtÞFð Þ½ �; (5.66)

where sgnðtÞ is the sign of t and F is given by

F ¼ tan
pa
2

� �
(5.67)

for all a except a ¼ 1 in which case

F ¼ � 2

p
logðtÞ: (5.68)

In expression (5.66), m is a shift (location) parameter, b 2 ½�1; 1�, and is a measure

of asymmetry, c is the scale parameter, and a 2 ð0; 2� is the exponent or index of

the distribution and specifies the asymptotic behavior of the distribution. Both the

normal and the Lévy distributions are special cases of the stable distribution.

The distance between the empirical distribution of the residuals and the four

distributions is estimated by the Kolmogorov distance. In addition, the

Anderson–Darling test which gives additional weight to the tails of the distribution

is also performed (Bellini 2005). Kolmogorov distance is given by (5.49), while the

Anderson–Darling statistics is given by

AD ¼ sup
x

FnðxÞ � FðxÞj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðxÞ 1� FðxÞð Þp : (5.69)

The Kolmogorov–Smirnov test does not depend on the specific distribution on

calculating critical values. On the other hand, critical values for the Anderson–Darling

test exist only for the normal, lognormal, exponential, Weibull, extreme value type I,

and logistic distributions. In Table 5.24, the estimated Kolmogorov distance and the
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Anderson–Darling statistics are presented for four distributions: normal, hyperbolic,

NIG, and stable. From Table 5.24, it is clear that both statistics have the smallest

values when the hyperbolic distribution is used with an exception of Paris where the

stable distribution provides the smallest Kolmogorov–Smirnov statistic.

Concluding, the hyperbolic distribution provides a slightly better fit than the

normal distribution. However, introducing a Lévy process in the temperature dyna-

mics does not allow to find closed form solutions for the temperature derivatives.

The increased complexity of the pricing formulas of the weather derivatives makes

the use of the normal distribution more favorable.

5.8 The Forecasting Ability of the Daily Models

In this section, our proposed model will be validated out-of-sample. Our method is

validated and compared against two forecasting methods proposed in prior studies,

the Alaton’s and Benth’s models. The three models will be used for forecasting out-

of-sample DATs for different periods. Usually, temperature derivatives are written

for a period of a month or a season and sometimes even for a year. Hence, DATs for

1, 2, 3, 6, and 12 months will be forecasted. The out-of-sample period corresponds

to the period of 1st January–31st December 2001 and every time interval starts at

1st January of 2001. Note that the DATs from 2001 were not used for the estimation

of the parameters of the three models. Next, the corresponding HDDs and CAT

indices will be constructed.

The predictive power of the three models will be evaluated using two out-of-

sample forecasting methods. First, we will estimate out-of-sample forecasts over a

period and then 1-day-ahead forecasts over a period. The first case, in the out-of-

sample forecasts, today (time step 0) temperature is known and is used to forecast

the temperature tomorrow (time step 1). However, tomorrow’s temperature is

unknown and cannot be used to forecast the temperature 2 days ahead. Hence, we

use the forecasted temperature at time step 1 to forecast the temperature at time step

2 and so on. We call this method the out-of-sample over a period forecast. The

second case, the 1-day-ahead forecast, the procedure is as follows. Today (time step

0), temperature is known and is used to forecast the temperature tomorrow (time

step 1). Then tomorrow’s real temperature is used to forecast the temperature at

time step 2 and so on. We will refer to this method as the 1-day-ahead over a period

forecast. The first method can be used for out-of-period valuation of a temperature

derivative, while the second one for in-period valuation. Naturally, it is expected

the first method to cause larger errors.

In order to forecast the future DATs in the seven cities, the MC method was

applied. So far, we have modeled temperature by a stochastic differential equation.

The form of the temperature model reveals that the temperature is a path depended

process. However, our temperature model depends on the driving noise process

which is modeled by a BM. Hence, in order to estimate the expected temperature at

some future point, the following procedure is pursued. First, we create a large
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number of paths for the future evolution of temperature. Then, the average of all

paths is estimated. TheMC simulationmethod provides with an unbiased estimate of

the temperatures values. As the number of sample paths, N, increases, the standard

error of the estimate, which is given by 1
ffiffiffiffi
N

p�
, decreases. In this thesis, we create

10.000 sample paths for each model that represent the future evolution of tempera-

ture over a specified period.

Since we are studying 7 cities and 2 indices for 5 different time periods, the three

models are compared in 70 cases for each method. Our results are very promising.

In the out-of-sample forecasts our method outperformed alternative methods in 34

cases out of the 70. In the 1-day-ahead forecasts, our model performed even better

outperforming the Alaton and Benth models in 47 times out of 70.

From Tables 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31, 5.32, 5.33 and 5.34, the out-

of-sample forecasts for the HDD and CAT indices over a period of 1, 2, 3, 6, and 12

months are presented. The first column corresponds to the real index over the

specified index, while the second column to the average historical mean. The next

three columns corresponds to the three models, Alaton, Benth, and the proposed one

using WNs. The second panel of each table corresponds to the relative absolute

percentage errors for each method given by

APE ¼ y� ŷ

y

				
				; (5.70)

where y is the corresponding index and ŷ is the estimated index.

Table 5.25 Out-of-sample comparison for a period of 1 month using the HDD index and the

relative percentage errors

HDD/t1 Real Historical Alaton Benth WN

Amsterdam 463.6 449.49 445.15 439.38 460.57

Berlin 522.4 517.9 531.05 528.1 532.26

Madrid 338.8 366.33 369.61 355.16 369.18

Oslo 646.7 630.45 652.8 679 676.08

Paris 378.6 394.68 395.71 395.43 398.13

Rome 260.1 322.8 335.39 311.02 299.52

Stockholm 555.7 602.13 622.15 599.27 590.74

Relative percentage errors

Amsterdam 3.98% 5.22% 0.65%

Berlin 1.66% 1.09% 1.89%

Madrid 9.09% 4.83% 8.97%

Oslo 0.94% 4.99% 4.54%

Paris 4.52% 4.45% 5.16%

Rome 28.95% 19.58% 15.16%

Stockholm 11.96% 7.84% 6.31%

Real and historical HDDs for the period 1–31 January 2001 and estimated HDDs using the

Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the relative

absolute percentage errors
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Table 5.26 Out-of-sample comparison for a period of 1 month using the CAT index and the

relative percentage errors

CAT/t1 Real Historical Alaton Benth WN

Amsterdam 94.4 108.5 112.9 118.6 97.4

Berlin 35.6 40.1 27.0 29.9 25.7

Madrid 219.2 191.7 188.4 202.8 188.8

Oslo �88.7 �72.5 �94.8 �121.0 �118.1

Paris 179.4 163.3 162.3 162.6 159.9

Rome 297.9 235.2 222.6 247.0 258.5

Stockholm 2.3 �44.1 �64.2 �41.3 �32.7

Relative percentage errors

Amsterdam 19.54% 25.66% 3.21%

Berlin 24.29% 16.02% 27.71%

Madrid 14.06% 7.46% 13.86%

Oslo 6.87% 36.41% 33.12%

Paris 9.54% 9.38% 10.89%

Rome 25.27% 17.09% 13.23%

Stockholm 2889.30% 1894.43% 1523.26%

Real and historical CAT for the period 1–31 January 2001 and estimated CAT using the Alaton’s,

Benth’s, and proposed (WN) methods. The second panel corresponds to the relative absolute

percentage errors

Table 5.27 Out-of-sample comparison for a period of 12 months using the HDD index and the

relative percentage errors

HDD/t2 Real Historical Alaton Benth WN

Amsterdam 840.1 846.8 827.7 814.6 853.8

Berlin 968.3 962.6 971.7 956.6 973.56

Madrid 602.7 642.5 676.1 649.2 678.6

Oslo 1300.4 1195.7 1204.2 1217.3 1228.1

Paris 699.7 733.6 727.5 719.0 723.1

Rome 518.2 602.3 628.6 587.6 566.1

Stockholm 1147.7 1162.0 1163.6 1121.9 1109.9

Relative percentage errors

Amsterdam 1.47% 3.04% 1.63%

Berlin 0.35% 1.21% 0.54%

Madrid 12.17% 7.71% 12.59%

Oslo 7.40% 6.39% 5.56%

Paris 3.97% 2.76% 3.35%

Rome 21.30% 13.39% 9.24%

Stockholm 1.39% 2.25% 3.29%

Real and historical HDDs for the period 1 January–28 February 2001 and estimated HDDs using

the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the relative

absolute percentage errors
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Table 5.28 Out-of-sample comparison for a period of 2 months using the CAT index and the

relative percentage errors

CAT/t2 Real Historical Alaton Benth WN

Amsterdam 221.9 215.3 234.3 247.4 208.2

Berlin 93.7 99.4 90.3 105.4 88.4

Madrid 459.3 419.5 386.0 412.8 383.4

Oslo �238.4 �133.7 �142.2 �155.3 �166.1

Paris 362.3 328.4 334.5 343.0 338.9

Rome 543.8 459.7 433.4 474.4 495.9

Stockholm �85.7 �100.0 �101.6 �59.9 �47.9

Relative percentage errors

Amsterdam 5.57% 11.51% 6.18%

Berlin 3.60% 12.52% 5.61%

Madrid 15.97% 10.12% 16.52%

Oslo 40.36% 34.87% 30.34%

Paris 7.68% 5.34% 6.47%

Rome 20.29% 12.76% 8.80%

Stockholm 18.59% 30.15% 44.07%

Real and historical CAT for the period 1 January–28 February 2001 and estimated CAT using the

Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the relative

absolute percentage errors

Table 5.29 Out-of-sample comparison for a period of 3 months using the HDD index and the

relative percentage errors

HDD/t3 Real Historical Alaton Benth WN

Amsterdam 1251.9 1199.7 1178.6 1155.2 1217.2

Berlin 1429.9 1364.1 1351.7 1324.7 1359.5

Madrid 792.5 832.4 919.6 878.0 927.3

Oslo 1907.3 1717.3 1708.3 1712.3 1735.6

Paris 966.0 1001.1 1012.3 994.1 1002.9

Rome 661.8 836.3 876.4 817.1 788.0

Stockholm 1730.1 1694.9 1671.9 1616.0 1595.6

Relative percentage errors

Amsterdam 5.86% 7.72% 2.77%

Berlin 5.47% 7.36% 4.92%

Madrid 16.03% 10.78% 17.01%

Oslo 10.43% 10.22% 9.00%

Paris 4.79% 2.91% 3.82%

Rome 32.42% 23.46% 19.07%

Stockholm 3.36% 6.59% 7.77%

Real and historical HDDs for the period 1 January–31 March 2001 and estimated HDDs using the

Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the relative

absolute percentage errors
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Table 5.30 Out-of-sample comparison for a period of 3 months using the CAT index and the

relative percentage errors

CAT/t3 Real Historical Alaton Benth WN

Amsterdam 368.1 420.3 441.4 464.8 402.9

Berlin 190.1 255.9 268.3 295.3 260.5

Madrid 827.5 787.7 700.4 742.0 692.7

Oslo �287.3 �97.3 �88.3 �92.3 �115.6

Paris 654.0 618.9 607.7 625.9 617.1

Rome 958.5 784.1 743.7 803.0 832.0

Stockholm �110.1 �74.9 �51.9 4.0 24.4

Relative percentage errors

Amsterdam 19.91% 26.26% 9.44%

Berlin 41.15% 55.35% 37.05%

Madrid 15.35% 10.33% 16.29%

Oslo 69.27% 67.87% 59.77%

Paris 7.08% 4.30% 5.65%

Rome 22.42% 16.23% 13.20%

Stockholm 52.83% 103.64% 122.16%

Real and historical CAT for the period 1 January–31 March 2001 and estimated HDDs using the

Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the relative

absolute percentage errors

Table 5.31 Out-of-sample comparison for a period of 6 months using the HDD index and the

relative percentage errors

HDD/t6 Real Historical Alaton Benth WN

Amsterdam 1782.4 1727.9 1580.5 1534.0 1644.7

Berlin 1914.2 1794.8 1661.4 1622.9 1689.7

Madrid 1018.5 1064.0 1022.7 966.2 1038.0

Oslo 2618.6 2437.3 2325.8 2299.7 2362.8

Paris 1324.9 1339.8 1222.2 1195.0 1203.8

Rome 843.8 1035.1 1005.1 925.8 887.9

Stockholm 2379.2 2472.3 2327.9 2228.8 2194.0

Relative percentage errors

Amsterdam 11.33% 13.94% 7.73%

Berlin 13.21% 15.22% 11.73%

Madrid 0.41% 5.13% 1.91%

Oslo 11.18% 12.18% 9.77%

Paris 7.75% 9.80% 9.14%

Rome 19.12% 9.72% 5.23%

Stockholm 2.16% 6.32% 7.78%

Real and historical HDDs for the period 1 January–30 June 2001 and estimated HDDs using the

Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the relative

absolute percentage errors
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Table 5.32 Out-of-sample comparison for a period of 6 months using the CAT index and the

relative percentage errors

CAT/t6 Real Historical Alaton Benth WN

Amsterdam 1485.0 1549.0 1677.5 1724.0 1613.3

Berlin 1357.6 1523.0 1621.3 1667.8 1588.3

Madrid 2445.9 2350.1 2424.4 2499.5 2400.7

Oslo 648.9 829.2 932.2 958.3 895.2

Paris 2013.6 1973.7 2079.3 2116.0 2104.9

Rome 2568.3 2360.3 2408.5 2518.7 2557.9

Stockholm 890.0 790.6 930.1 1029.2 1064.0

Relative percentage errors

Amsterdam 12.96% 16.09% 8.64%

Berlin 19.42% 22.85% 16.99%

Madrid 0.88% 2.19% 1.85%

Oslo 43.66% 47.68% 37.96%

Paris 3.26% 5.09% 4.53%

Rome 6.22% 1.93% 0.40%

Stockholm 4.50% 15.64% 19.55%

Real and historical CAT for the period 1 January – 30 June 2001 and estimated CAT using the

Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the relative

absolute percentage errors

Table 5.33 Out-of-sample comparison for a period of 12 months using the HDD index and the

relative percentage errors

HDD/t12 Real Historical Alaton Benth WN

Amsterdam 2786.1 2914.0 2612.1 2490.4 2578.4

Berlin 3174.9 3131.1 2861.2 2744.3 2865.9

Madrid 1813.4 1788.7 1629.0 1515.5 1681.4

Oslo 4344.2 4249.3 4030.4 3899.6 4031.6

Paris 2239.3 2261.6 2016.5 1924.5 1949.6

Rome 1371.3 1563.9 1466.1 1323.8 1331.3

Stockholm 3820.7 4133.6 3838.3 3593.9 3620.8

Relative percentage errors

Amsterdam 6.25% 10.61% 7.45%

Berlin 9.88% 13.56% 9.73%

Madrid 10.17% 16.43% 7.28%

Oslo 7.22% 10.23% 7.20%

Paris 9.95% 14.06% 12.94%

Rome 6.91% 3.46% 2.92%

Stockholm 0.46% 5.94% 5.23%

Real and historical HDDs for the period 1 January–31 December 2001 and estimated HDDs using

the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the relative

absolute percentage errors
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Over the 5 different periods, our method gives the best results in 17 times for the

HDD index and 17 times for the CAT. On the other hand, the Alaton method causes

the smallest errors in 11 cases for both indices, while the Benthmodel in 7 and 8 cases

for the HDD and CAT indices, respectively. Observing Tables 5.25, 5.26, 5.27, 5.28,

5.29, 5.30, 5.31, 5.32, 5.33 and 5.34, we conclude that the results for the HDD and the

CAT index are the same. Moreover, we observe that our proposed method gives

almost always better results for the following cities: Berlin, Oslo, and Rome. On the

other hand, Alaton method performs better in Stockholm. Finally, a closer inspection

of Tables 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31, 5.32, 5.33 and 5.34 reveals that the

forecasts of the Benth model deteriorate as the forecast window increases.

Next, our model is validated using the 1-day-ahead forecasts over 5 different

periods. From Tables 5.35, 5.36, 5.37, 5.38, 5.39, 5.40, 5.41, 5.42, 5.43 and 5.44, the

1-day-ahead out-of-sample forecasts for the HDD and CAT indices over a period of

1, 2, 3, 6, and 12months are presented. The first column corresponds to the real index

over the specified index, while the second column to the average historical mean.

The next three columns corresponds to the three models, Alaton, Benth, and the

proposed one usingWNs. The second panel of each table corresponds to the relative

absolute percentage errors for each method.

Over the 5 different periods, our method gives the best results in 23 times for the

HDD index and 24 times for the CAT. On the other hand, the Alaton method causes

the smallest errors only in 7 cases for both indices, while the Benth model only in 5

and 4 cases for the HDD and CAT indices, respectively. Observing Tables 5.35,

5.36, 5.37, 5.38, 5.39, 5.40, 5.41, 5.42, 5.43 and 5.44, we conclude that the results for

the HDD and the CAT index are the same.

Table 5.34 Out-of-sample comparison for a period of 12 months using the CAT index and the

relative percentage errors

CAT/t12 Real Historical Alaton Benth WN

Amsterdam 3873.7 3732.4 3959.5 4095.5 3997.9

Berlin 3569.7 3652.0 3817.8 3958.1 3810.7

Madrid 5493.7 5495.4 5560.3 5749.5 5485.1

Oslo 2266.4 2370.1 2539.6 2670.4 2538.4

Paris 4615.8 4565.4 4735.1 4864.5 4839.9

Rome 5931.8 5682.7 5747.9 5998.2 5965.4

Stockholm 2867.1 2495.9 2731.7 2976.1 2949.2

Relative percentage errors

Amsterdam 2.21% 5.73% 3.21%

Berlin 6.95% 10.88% 6.75%

Madrid 1.21% 4.66% 0.16%

Oslo 12.05% 17.83% 12.00%

Paris 2.58% 5.39% 4.86%

Rome 3.10% 1.12% 0.57%

Stockholm 4.72% 3.80% 2.86%

Real and historical CAT for the period 1 January–31 December 2001 and estimated CAT using the

Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the relative

absolute percentage errors
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Table 5.35 Day-ahead comparison for a period of 1 month using the HDD index and the relative

percentage errors

HDD/t1 Real Historical Alaton Benth WN

Amsterdam 463.6 449.5 460.4 458.3 463.8

Berlin 522.4 517.9 524.8 523.0 523.8

Madrid 338.8 366.3 341.9 340.8 338.5

Oslo 646.7 630.5 654.9 650.6 651.0

Paris 378.6 394.7 381.3 379.9 380.2

Rome 260.1 322.8 272.1 270.6 265.2

Stockholm 555.7 602.1 565.5 562.7 556.8

Relative percentage errors

Amsterdam 0.69% 1.14% 0.04%

Berlin 0.46% 0.11% 0.27%

Madrid 0.90% 0.59% 0.10%

Oslo 1.27% 0.60% 0.67%

Paris 0.72% 0.35% 0.41%

Rome 4.60% 4.04% 1.95%

Stockholm 1.76% 1.26% 0.20%

Real and historical HDDs for the period 1–31 January 2001 and 1-day-ahead estimated HDDs

using the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the

relative absolute percentage errors

Table 5.36 Day-ahead comparison for a period of 1 month using the CAT index and the relative

percentage errors

CAT/t1 Real Historical Alaton Benth WN

Amsterdam 94.4 108.5 97.6 99.7 94.2

Berlin 35.6 40.1 33.2 35.0 34.2

Madrid 219.2 191.7 216.2 217.2 219.5

Oslo �88.7 �72.5 �96.9 �92.5 �93.0

Paris 179.4 163.3 176.7 178.1 177.9

Rome 297.9 235.2 285.9 287.4 292.8

Stockholm 2.3 �44.1 �7.5 �4.7 1.2

Relative percentage errors

Amsterdam 3.40% 5.58% 0.19%

Berlin 6.72% 1.64% 3.92%

Madrid 1.39% 0.91% 0.15%

Oslo 9.29% 4.33% 4.86%

Paris 1.53% 0.74% 0.86%

Rome 4.02% 3.53% 1.71%

Stockholm 425.22% 304.50% 48.43%

Real and historical CAT for the period 1–31 January 2001 and 1-day-ahead estimated CAT using

the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the relative

absolute percentage errors
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Table 5.37 Day-ahead comparison for a period of 2 months using the HDD index and the relative

percentage errors

HDD/t2 Real Historical Alaton Benth WN

Amsterdam 840.1 846.8 836.6 832.7 838.5

Berlin 968.3 962.6 966.2 961.4 964.46

Madrid 602.7 642.5 610.1 607.0 599.8

Oslo 1300.4 1195.7 1282.9 1272.7 1280.6

Paris 699.7 733.6 704.0 700.6 701.2

Rome 518.2 602.3 535.4 530.5 523.4

Stockholm 1147.7 1162.0 1142.4 1134.0 1133.0

Relative percentage errors

Amsterdam 0.42% 0.88% 0.19%

Berlin 0.22% 0.72% 0.40%

Madrid 1.23% 0.72% 0.49%

Oslo 1.35% 2.13% 1.52%

Paris 0.61% 0.12% 0.21%

Rome 3.31% 2.36% 1.00%

Stockholm 0.46% 1.19% 1.28%

Real and historical HDDs for the period 1 January–28 February 2001 and 1-day-ahead estimated

HDDs using the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to

the relative absolute percentage errors

Table 5.38 Day-ahead comparison for a period of 2 months using the CAT index and the relative

percentage errors

CAT/t2 Real Historical Alaton Benth WN

Amsterdam 221.9 215.3 225.4 229.3 223.5

Berlin 93.7 99.4 95.8 100.7 97.545

Madrid 459.3 419.5 451.9 455.0 462.2

Oslo �238.4 �133.7 �220.9 �210.7 �218.6

Paris 362.3 328.4 358.0 361.4 360.8

Rome 543.8 459.7 526.6 531.6 538.6

Stockholm �85.7 �100.0 �80.4 �72.0 �71.0

Relative percentage errors

Amsterdam 1.59% 3.34% 0.72%

Berlin 2.28% 7.42% 4.10%

Madrid 1.61% 0.94% 0.64%

Oslo 7.35% 11.63% 8.32%

Paris 1.19% 0.24% 0.41%

Rome 3.16% 2.25% 0.96%

Stockholm 6.23% 15.94% 17.12%

Real and historical CAT for the period 1 January–28 February 2001 and 1-day-ahead estimated

CAT using the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to

the relative absolute percentage errors
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Table 5.39 Day-ahead comparison for a period of 3 months using the HDD index and the relative

percentage errors

HDD/t3 Real Historical Alaton Benth WN

Amsterdam 1251.9 1199.7 1239.2 1232.8 1250.6

Berlin 1429.9 1364.1 1415.7 1408.7 1422.0

Madrid 792.5 832.4 812.2 808.3 795.7

Oslo 1907.3 1717.3 1875.1 1861.1 1876.1

Paris 966.0 1001.1 975.4 971.0 971.4

Rome 661.8 836.3 699.7 693.5 677.9

Stockholm 1730.1 1694.9 1716.1 1704.7 1710.4

Relative percentage errors

Amsterdam 1.01% 1.53% 0.10%

Berlin 0.99% 1.48% 0.55%

Madrid 2.49% 1.99% 0.41%

Oslo 1.69% 2.42% 1.64%

Paris 0.97% 0.52% 0.56%

Rome 5.73% 4.79% 2.44%

Stockholm 0.81% 1.47% 1.14%

Real and historical HDDs for the period 1 January–31 March 2001 and 1-day-ahead estimated

HDDs using the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to

the relative absolute percentage errors

Table 5.40 Day-ahead comparison for a period of 3 months using the CAT index and the relative

percentage errors

CAT/t3 Real Historical Alaton Benth WN

Amsterdam 368.1 420.3 380.8 387.2 369.4

Berlin 190.1 255.9 204.3 211.3 198.0

Madrid 827.5 787.7 807.8 811.7 824.3

Oslo �287.3 �97.3 �255.1 �241.1 �256.1

Paris 654.0 618.9 644.6 649.0 648.6

Rome 958.5 784.1 920.3 926.5 942.1

Stockholm �110.1 �74.9 �96.1 �84.7 �90.4

Relative percentage errors

Amsterdam 3.46% 5.20% 0.36%

Berlin 7.45% 11.17% 4.16%

Madrid 2.38% 1.91% 0.39%

Oslo 11.22% 16.07% 10.88%

Paris 1.43% 0.76% 0.82%

Rome 3.98% 3.34% 1.71%

Stockholm 12.75% 23.03% 17.92%

Real and historical CAT for the period 1 January–31 March 2001 and 1-day-ahead estimated CAT

using the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the

relative absolute percentage errors
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Table 5.41 Day-ahead comparison for a period of 6 months using the HDD index and the relative

percentage errors

HDD/t6 Real Historical Alaton Benth WN

Amsterdam 1782.4 1727.9 1749.4 1736.2 1783.0

Berlin 1914.2 1794.8 1867.5 1850.3 1893.0

Madrid 1018.5 1064.0 1013.8 1004.3 1015.8

Oslo 2618.6 2437.3 2566.4 2543.2 2570.0

Paris 1324.9 1339.8 1304.3 1291.1 1320.7

Rome 843.8 1035.1 870.6 858.4 851.4

Stockholm 2379.2 2472.3 2368.5 2349.2 2355.6

Relative percentage errors

Amsterdam 1.85% 2.59% 0.03%

Berlin 2.44% 3.34% 1.11%

Madrid 0.46% 1.39% 0.27%

Oslo 1.99% 2.88% 1.86%

Paris 1.55% 2.55% 0.32%

Rome 3.17% 1.73% 0.91%

Stockholm 0.45% 1.26% 0.99%

Real and historical HDDs for the period 1 January–30 June 2001 and 1-day-ahead estimated HDDs

using the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the

relative absolute percentage errors

Table 5.42 Day-ahead comparison for a period of 6 months using the CAT index and the relative

percentage errors

CAT/t6 Real Historical Alaton Benth WN

Amsterdam 1485.0 1549.0 1513.8 1526.7 1482.9

Berlin 1357.6 1523.0 1402.5 1417.3 1377.0

Madrid 2445.9 2350.1 2443.1 2453.8 2444.8

Oslo 648.9 829.2 698.6 720.6 695.6

Paris 2013.6 1973.7 2021.9 2033.7 2011.4

Rome 2568.3 2360.3 2540.8 2557.5 2561.2

Stockholm 890.0 790.6 896.7 916.0 911.3

Relative percentage errors

Amsterdam 1.94% 2.81% 0.14%

Berlin 3.31% 4.40% 1.43%

Madrid 0.11% 0.32% 0.04%

Oslo 7.65% 11.04% 7.19%

Paris 0.41% 1.00% 0.11%

Rome 1.07% 0.42% 0.28%

Stockholm 0.75% 2.92% 2.39%

Real and historical CAT for the period 1 January–30 June 2001 and 1-day-ahead estimated CAT

using the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to the

relative absolute percentage errors
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Table 5.43 Day-ahead comparison for a period of 12 months using the HDD index and the

relative percentage errors

HDD/t12 Real Historical Alaton Benth WN

Amsterdam 2786.1 2914.0 2754.7 2725.4 2781.5

Berlin 3174.9 3131.1 3114.6 3079.8 3142.8

Madrid 1813.4 1788.7 1776.1 1752.1 1805.8

Oslo 4344.2 4249.3 4279.6 4227.6 4274.6

Paris 2239.3 2261.6 2189.0 2158.3 2,219

Rome 1371.3 1563.9 1379.8 1352.7 1369.2

Stockholm 3820.7 4133.6 3809.5 3766.0 3785.5

Relative percentage errors

Amsterdam 1.13% 2.18% 0.17%

Berlin 1.90% 3.00% 1.01%

Madrid 2.06% 3.38% 0.42%

Oslo 1.49% 2.68% 1.60%

Paris 2.25% 3.62% 0.91%

Rome 0.62% 1.36% 0.15%

Stockholm 0.29% 1.43% 0.92%

Real and historical HDDs for the period 1 January–31 December 2001 and 1-day-ahead estimated

HDDs using the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to

the relative absolute percentage errors

Table 5.44 Day-ahead comparison for a period of 12 months using the CAT index and the

relative percentage errors

CAT/t12 Real Historical Alaton Benth WN

Amsterdam 3873.7 3732.4 3889.0 3917.0 3877.3

Berlin 3569.7 3652.0 3614.3 3646.9 3592.8

Madrid 5493.7 5495.4 5507.6 5537.7 5496.7

Oslo 2266.4 2370.1 2321.2 2369.0 2328.7

Paris 4615.8 4565.4 4638.5 4668.8 4624.2

Rome 5931.8 5682.7 5900.4 5944.3 5922.7

Stockholm 2867.1 2495.9 2849.0 2892.2 2888.9

Relative percentage errors

Amsterdam 0.39% 1.12% 0.09%

Berlin 1.25% 2.16% 0.65%

Madrid 0.25% 0.80% 0.05%

Oslo 2.42% 4.53% 2.75%

Paris 0.49% 1.15% 0.18%

Rome 0.53% 0.21% 0.15%

Stockholm 0.63% 0.88% 0.76%

Real and historical CAT for the period 1 January–31 December 2001 and 1-day-ahead estimated

CAT using the Alaton’s, Benth’s, and proposed (WN) methods. The second panel corresponds to

the relative absolute percentage errors
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As it was expected, the absolute percentage errors are very small. Modeling the

DATs using WNs, a very good estimate of the real indices is obtained. The absolute

percentage error is less than 2.5% in all cases for the HDD index. The worst

predicted estimated level of HDD index produced when approximating the

3-month HDD in Rome. In general, the proposed method produces the worst results

when forecasting the DAT in Rome, while the best 1-day-ahead out-of-sample

forecasts are obtained in Amsterdam, Madrid, and Paris with absolute percentage

errors less than 0.2%, 0.5%, and 0.9%, respectively.

Our results corresponding to the CAT index are similar. Finally, as in the case of

the out-of-sample forecasts, a closer inspection of Tables 5.35, 5.36, 5.37, 5.38,

5.39, 5.40, 5.41, 5.42, 5.43 and 5.44 reveals that the forecasts of the Benth model

deteriorate as the forecast window increases.

Table 5.45 summarizes the results of the performance of each method. The

proposed model outperformed the other two methods in 81 cases out of 140

resulting to a success ratio of 58%. On the other hand, the Alaton model gave the

best results in only 35 cases with a success ratio of 25% and the Benth model in only

24 cases with a success ratio of 17%. Our results suggest that the proposed method

significantly outperforms other methods previously proposed in literature.

The previous extensive analysis indicates that our results are very promising.

Modeling the DAT using WA and WNs enhanced the fitting and the predictive

accuracy of the temperature process. Modeling the DAT assuming a time-varying

speed of mean reversion resulted to a better out-of-sample predictive accuracy of

our model. The additional accuracy of the proposed model will have an impact on

the accurate pricing of temperature derivatives.

In the proposed model, weather forecasts can easily be implemented. It is

expected that the use of weather forecasts would further improve the forecasting

ability of the WN model and hence the accuracy of the pricing of weather

derivatives.

5.9 Conclusions

In this chapter, several temperature time series were studied in order to develop

a model that describes the temperature evolution. A mean-reverting O–U with

seasonal mean and variance and time-varying speed ofmean reversion was proposed.

In the context of an O–U temperature process, the time dependence of the speed

of the mean reversion kðtÞwas examined using a WN. By computing the derivative

d ~Tðtþ 1Þ d ~TðtÞ�
of the fitted WN model, daily values of kðtÞwere obtained. To our

Table 5.45 Out-of-sample

performance of the proposed,

the Alaton and Benth models

1-day-ahead Out-of-sample Total

Proposed 46 (66%) 35 (50%) 81 (58%)

Alaton 14 (20%) 21 (30%) 35 (25%)

Benth 10 (14%) 14 (20%) 24 (17%)
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knowledge, we are the first to do so. Our results indicate a strong time dependence

in the daily variations of the values of kðtÞ.
We compared the fit of the residuals with the normal distributions with two types

of models. The first type was the proposed nonlinear nonparametric model wherek is
a function of time. The second type of models were two linear models previously

proposed and often cited in literature where k is constant. It follows that by setting

the speed of mean reversion to be a function of time, the accuracy of the pricing of

temperature derivatives improves. Generally, in our model, a better fit was obtained.

Only in two of the seven cities the normality hypothesis was rejected. Moreover, the

framework presented for selecting the significant lags of the temperature completely

removed the autocorrelation in the residuals. On the other hand, on both Alaton and

Benth models, strong autocorrelation in the residuals was evident. Furthermore, the

normality hypothesis was rejected in every city when the Benth model was applied.

Also, since small misspecifications in the dynamic models lead to large

mispricing errors, an approach to estimate and calibrate the seasonal component

in both the mean and variance using WA was presented. WA is an efficient and

accurate tool that can be successfully used in the analysis of temperature data. WA

was successfully applied in order to indentify and quantify all the statistical

significant cycles in the seasonal mean and variance of DATs.

Finally, the proposed model was evaluated out-of-sample. The predictive power

of the proposed model was evaluated using two out-of-sample forecasting methods.

First, out-of-sample forecasts over a period and then 1-day-ahead forecasts over a

period were estimated. Modeling the DAT using WA and WNs enhanced the fitting

and the predictive accuracy of the temperature process. Modeling the DAT assum-

ing a time-varying speed of mean reversion resulted to a model with better out-of-

sample predictive accuracy. The additional accuracy of our model has an impact on

the accurate pricing of temperature derivatives.

In order to obtain a better understanding of the distributions of the residuals, we

expanded our analysis by fitting additional distributions. Of the four distributions

(normal, hyperbolic, NIG, stable), the hyperbolic distribution provides a slightly

better fit than the normal distribution. However, introducing a Lévy process in the

temperature dynamics does not allow to find closed form solutions for the tempera-

ture derivatives. The increased complexity of the pricing formulas of the weather

derivatives makes the use of the normal distribution more favorable.
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Chapter 6

Pricing Temperature Derivatives

6.1 Introduction

The analysis that was performed in the previous chapter indicates that assuming a

normal distribution is justified. In general, the normal distributions fit the final

residuals after dividing out the seasonal variance reasonably well, while only in two

of the seven cities, the normality hypothesis was rejected. Expanding our research,

three more distributions were tested: the hyperbolic, NIG, and stable distribution.

Our results indicate that the hyperbolic distribution provides the best fit to the

residuals. The Anderson–Darling statistic and the Kolmogorov distance had the

smallest value in every city when a hyperbolic distribution was used. In this

chapter, the pricing formulas of various temperature derivatives will be presented

first under the assumption of normal distribution and then under the assumption of a

Lévy motion noise. More precisely, the pricing formulas for the following indices

will be derived: CAT, AccHDD, AccCDD, and Pacific Rim.

When the market is complete, a unique risk-neutral probability measure Q � P
can be obtained, where P is the real-world probability measure. This change of

measure turns the stochastic process into a martingale. Hence, financial derivatives

can be priced under the risk-neutral measure by the discounted expectation of the

derivative payoff.

The weather market is an incomplete market in the sense that the underlying

weather derivative cannot be stored or traded. Moreover, the market is relatively

illiquid. In principle, (extended) risk-neutral valuation can be still carried out in

incomplete markets (Xu et al. 2008). However, in incomplete markets, a unique

price cannot be obtained using the no-arbitrage assumption. In other words, many

equivalent martingales exist, and as a result, only bounds for prices on contingent

claims can be provided (Xu et al. 2008).

The change of measure from the real world to the risk-neutral world under the

dynamics of a BM can be performed using the Girsanov theorem (or the Esscher

transform for a jump process). The Girsanov theorem tells us how a stochastic

process changes under changes in the measure. Then, the discounted expected

A.K. Alexandridis and A.D. Zapranis, Weather Derivatives: Modeling and Pricing
Weather-Related Risk, DOI 10.1007/978-1-4614-6071-8_6,
# Springer Science+Business Media New York 2013
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payoff of the various weather contracts can be estimated. However, in order to

estimate the expected payoff of each derivative, the solution of the stochastic

differential equation that describes the temperature dynamics must be solved.

This can be done by applying the Itô Lemma when a BM is considered or the Itô

formula for semimartingales when a Lévy motion is considered.

The rest of the chapter is organized as follows. In Sect. 6.2, the organized market

is described, and the various temperature indices are presented. The solution of the

stochastic differential equation that describes the dynamics of the temperature is

presented in Sect. 6.3. In Sect. 6.4, the pricing formulas of the weather derivatives

on various temperature indices under the assumption of the normal distributions are

presented. More precisely, in Sect. 6.4.1, the pricing formulas for the CAT and

Pacific Rim indices are derived, while the prices of HDDs and CDDs future

contracts are presented in Sect. 6.4.2. In Sect. 6.5, the prices of the weather

derivatives are derived under the assumption of a Lévy noise process. Next, the

importance of the market price of risk is analyzed and discussed in Sect. 6.6.

Finally, in Sect. 6.7, we conclude.

6.2 Temperature Derivatives Traded in the CME

The list of traded contracts on the weather derivatives market is extensive and

constantly evolving. CME offers various weather future and option contracts. They

are index-based products geared to average seasonal and monthly weather in 46

cities1 around the world – 24 in the USA, 10 in Europe, 6 in Canada, 3 Australian,

and 3 in Japan.

In Europe, CME weather contracts for the summer months are based on an index

of CAT. The CAT index is the sum of the DATs over the contract period. The

average temperature is measured as the simple average of the minimum and

maximum temperature over 1 day. The value of a CAT index for the time interval

½t1; t2� is given by the following expression:

CAT ¼
ðt2
t1
TðsÞds; (6.1)

where the temperature is measured in degrees Celsius. In London, one CAT index

future contract costs £20 per index point, while it costs €20 per index unit in all

other European locations. CAT contracts have monthly or seasonal duration. CAT

futures and options are traded on the following months: May, June, July, August,

September, April, and October.

In the USA, Canada, and Australia, CME weather derivatives are based on the

HDD or CDD index. A HDD is the number of degrees by which the daily

1 The number of cities that the CME trades weather contracts at the end of 2009.
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temperature is below a base temperature, and a CDD is the number of degrees by

which the daily temperature is above the base temperature, that is,

Daily HDD ¼ max(0, base temperature – daily average temperature),

Daily CDD ¼ max(0, daily average temperature – base temperature).

The base temperature is usually 65 �F in the USA and 18 �C in Europe and Japan.

HDDs and CDDs are usually accumulated over a month or over a season. CME also

trades HDDs contracts for the European cities. In USA, one HDD or CDD index

future contract costs $20 per index point. Contacts on the following months can be

found: November, December, January, February, March, October, and April.

For the three Japanese cities, weather derivatives are based on the Pacific Rim

index. The Pacific Rim index is simply the average of the CAT index over the

specific time period:

PAC ¼ 1

t2 � t1

ðt2
t1
TðsÞds: (6.2)

However, in PAC the average temperature is calculated as the average of 24

hourly measurements. In Asia-Pacific area, one PAC index future contract costs

¥2,500 per index point. The contracts are traded for all 12 calendar months.

Finally, in Australia contracts are based on HDD and CDD indices, while on

Canada, the temperature contracts are base on HDD, CDD, and CAT indices. In

Table 6.1, the contract specifications, the months that are traded, and the contract

size of the temperature contracts traded in the CME are presented.

6.3 Solving the Temperature Stochastic Differential Equation

In the previous chapter, a stochastic differential equation was proposed in order to

model the dynamics of the daily average temperature. The proposed model can be

used in order to derive the theoretical prices of the temperature contracts presented

in the previous section. However, in order to proceed to the pricing of the tempera-

ture contracts, the solution of the stochastic differential equation must be derived.

The pricing of these contracts using daily models is not a straightforward

process. In Alaton et al. (2002), a numerical approach was adapted in order to

find the fair price of HDD option contract; however, strong simplifications were

made that significantly reduced the complexity of the pricing formulas. In Brody

et al. (2002) and later in Benth (2003), the price of various temperature options was

estimated under the assumption that the driving noise process of the temperature is

a FBM. In a more recent paper, Benth and Saltyte-Benth (2005) estimate the prices

of a CAT future and option contracts under the assumption of a Lévy noise process.

More precisely, Benth and Saltyte-Benth (2005) propose that the residuals follow

the generalized hyperbolic distribution. Similarly, Bellini (2005) presents the
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pricing of HDDs and CDDs contracts under the assumption of a Lévy noise process

where the residuals follow the hyperbolic distributions. More recently, Benth and

Saltyte-Benth (2007) presented the pricing formulas of derivatives on various

temperature indices under the normality assumption. More precisely, prices of

futures and options of the following indices were derived: the CAT, Pacific Rim,

HDDs, and CDDs indices. In Benth et al. (2008), the temperature dynamics were

modeled by a CAR(p) process first introduced by Brockwell and Marquardt (2005).

Table 6.1 Specifications of temperature contracts traded in the CME

Contracts Contract months

Contract

size

US cooling monthly May, Jun, Jul, Aug, Sep plus Apr and Oct $20.00

US cooling seasonal Minimum of two and maximum of seven consecutive

calendar months, Apr–Oct

$20.00

US heating monthly Nov, Dec, Jan, Feb, Mar plus Oct and Apr $20.00

US heating seasonal Minimum of two and maximum of seven consecutive

calendar months, Oct–Apr

$20.00

US weekly weather All weeks (Monday–Friday) $100.00

Canada CAT monthly May, Jun, Jul, Aug, Sep plus Apr and Oct $20.00

Canada CAT seasonal Minimum of two and maximum of seven consecutive

calendar months, Apr–Oct

$20.00

Canada cooling

monthly

May, Jun, Jul, Aug, Sep plus Apr and Oct $20.00

Canada cooling

seasonal

Minimum of two and maximum of seven consecutive

calendar months, Apr–Oct

$20.00

Canada heating

monthly

Nov, Dec, Jan, Feb, Mar plus Oct and Apr $20.00

Canada heating

seasonal

Minimum of two and maximum of seven consecutive

calendar months, Oct–Apr

$20.00

Europe CAT monthly May, Jun, Jul, Aug, Sep plus Apr and Oct € 20.00

Europe CAT seasonal Minimum of two and maximum of seven consecutive

calendar months, Apr–Oct

€ 20.00

Europe heating

monthly

Nov, Dec, Jan, Feb, Mar plus Oct and Apr € 20.00

Europe heating

seasonal

Minimum of two and maximum of seven consecutive

calendar months, Oct–Apr

€ 20.00

Asia-Pacific monthly All 12 calendar months ¥2,500.00

Asia-Pacific seasonal Minimum of two and maximum of seven consecutive

calendar months

¥2,500.00

Australia cooling

monthly

Nov, Dec, Jan, Feb, Mar plus Oct and Apr $20.00

Australia cooling

seasonal

Minimum of two and maximum of seven consecutive

calendar months, Oct–Apr

$20.00

Australia heating

monthly

May, Jun, Jul, Aug, Sep plus Apr and Oct $20.00

Australia heating

seasonal

Minimum of two and maximum of seven consecutive

calendar months, Apr–Oct

$20.00
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Under the normality assumption, pricing formulas for the CAT, HDDs, and CDDs

indices were presented. In Zapranis and Alexandridis (2008), the price of CAT

futures were derived when the speed of mean reversion is a time-varying function.

In Geman (1999) and Jewson et al. (2005), various pricing approaches were

presented. These approaches were derived either from daily or index models or

actuarial-based methods. Davis (2001) prices weather derivatives by marginal value

using a modified Black–Scholes equation, while Platen and West (2005) suggest a

fair pricing approach based on an equilibrium method. On the other hand, Garman

et al. (2000) introduce MC to price weather derivatives, while Xu et al. (2008) apply

an indifference pricing approach for weather derivatives that are traded OTC.

Thus far, we have modeled the temperature using an O–U process with time-

varying speed of mean reversion function. We have also used WA to identify and

filter out the seasonal component. Moreover, we have shown that the coefficient a in
the nonlinear AR model (5.27) is characterized by significant daily variation. Recall

that parameter a is connected to our initial model (5.15) as a ¼ 1þ k, where k is the
speed of mean reversion. It follows that the assumption of a constant mean

reversion parameter introduces significant error in the pricing of weather

derivatives. In this chapter, we give the pricing formulas for a future and an option

contract written on the indices presented above that incorporates the time depen-

dency of the speed of the mean reversion parameter. First, we rewrite our model that

describes the temperature dynamics and solve the stochastic differential equation

using the Itô Lemma.

Recall that if the stochastic process of a variable x is known, then Itô Lemma

gives us the stochastic process that a variable Gðx; tÞ follows.
Itô Lemma. Let x be variable that follows an Itô process:

dx ¼ aðx; tÞdtþ bðx; tÞdz; (6.3)

where dz is a Wiener process. The variable x has drift rate a and variance b2. Then,
the process Gðx; tÞ follows also an Itô process:

dG ¼ @G

@x
aþ @G

@t
þ 1

2

@2G

@x2
b2

� �
dtþ @G

@x
bdz (6.4)

with drift rate

@G

@x
aþ @G

@t
þ 1

2

@2G

@x2
b2

� �
(6.5)

and variance

@G

@x
b

� �2

: (6.6)

Hence, the following proposition follows.
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Proposition 6.1 If the DAT follows a mean-reverting O–U process with time-
varying speed of mean reversion and seasonal mean and variance:

dTðtÞ ¼ dSðtÞ þ kðtÞ TðtÞ � SðtÞð Þdtþ sðtÞdBðtÞ; (6.7)

an explicit solution can be derived from the Itô formula:

TðtÞ ¼ SðtÞ þ e
Ð t

0
kðuÞdu

Tð0Þ � Sð0Þð Þ þ e
Ð t

0
kðuÞdu

ðt
0

sðsÞe�
Ð s

0
kðuÞdu

dBðsÞ: (6.8)

Proof Let us rewrite (6.7) as

d ~TðtÞ ¼ kðtÞ ~TðtÞdtþ sðtÞdBðtÞ;

where ~TðtÞ ¼ TðtÞ � SðtÞð Þ. To solve the above stochastic equation, the following

transformation is convenient:

Gð ~T; tÞ ¼ e
�
Ð t

0
kðuÞdu ~TðtÞ:

Note that both processes X and Y satisfy the same initial condition:

~Tð0Þ ¼ Gð0Þ:

Applying the Itô Lemma with

Gt ¼ �kðtÞe�
Ð t

0
kðuÞdu ~T;

G ~T ¼ e
�
Ð t

0
kðuÞdu

;

G ~T ~T ¼ 0;

and

a ¼ kðtÞ ~TðtÞ;

b ¼ sðtÞ;

we have that

dGðtÞ ¼ kðtÞe�
Ð t

0
kðuÞdu ~TðtÞ � kðtÞe�

Ð t

0
kðuÞdu ~TðtÞ

� �
dtþ sðtÞe�

Ð t

0
kðuÞdu

dBðtÞ
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which reduces to

dGðtÞ ¼ sðtÞe�
Ð t

0
kðuÞdu

dBðtÞ:

Integrating the above equation in the interval ½0; t�, we have that

GðtÞ � Gð0Þ ¼
ðt
0

sðtÞe�
Ð s

0
kðuÞdu

dBðtÞ;

and by replacing G, we have that

e
�
Ð t

0
kðuÞdu ~TðtÞ � ~Tð0Þ ¼

ðt
0

sðtÞe�
Ð s

0
kðuÞdu

dBðtÞ:

By rearranging, we have that

~TðtÞ ¼ e
Ð t

0
kðuÞdu ~Tð0Þ þ e

Ð t

0
kðuÞdu

ðt
0

sðtÞe�
Ð s

0
kðuÞdu

dBðtÞ:

Since ~TðtÞ ¼ TðtÞ � SðtÞ;

TðtÞ � SðtÞ ¼ e
Ð t

0
kðuÞdu

Tð0Þ � Sð0Þð Þ þ e
Ð t

0
kðuÞdu

ðt
0

sðtÞe�
Ð s

0
kðuÞdu

dBðtÞ:

Finally, by rearranging, we prove the proposition

TðtÞ ¼ SðtÞ þ e
Ð t

0
kðuÞdu

Tð0Þ � Sð0Þð Þ þ e
Ð t

0
kðuÞdu

ðt
0

sðtÞe�
Ð s

0
kðuÞdu

dBðtÞ:

□
Note that we assumed that driving noise process of the temperature model

follows a Brownian motion BðtÞ. Later in the chapter, the BM will be replaced by

a Lévy noise process. As we will see in the next section, the result of Proposition 6.1

will be used directly in the derivation of the theoretical prices of temperature

derivatives written on CAT, HDD, CDD, and PAC indices.

6.4 Pricing Under the Normal Assumption

In this section, the pricing formulas of the weather derivatives on various tempera-

ture indices under the assumption of the normal distribution are presented. More

precisely, the pricing formulas of futures and options on futures for the CAT,

AccHDD, AccCDD, and Pacific Rim indices are derived.
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6.4.1 CAT and Pacific Rim: Futures and Options

Our aim is to give a mathematical expression for the CAT future price. The weather

derivatives market is a classical incomplete market. Moreover, the market is

relatively illiquid. In principle, risk-neutral valuation can be still carried out in

incomplete markets (Xu et al. 2008). However, in incomplete markets, a unique

price cannot be obtained using the no-arbitrage assumption. Temperature contracts

are written on a temperature index which is not a tradable or storable asset. In order

to derive the pricing formula, first we must find a risk-neutral probability measure

Q � P, where all assets are martingales after discounting. In the case of weather

derivatives, any equivalent measure Q is a risk-neutral probability. If Q is the risk-

neutral probability and r is the constant compounding interest rate, then the

arbitrage-free future price of a CAT contract at time t � t1<t2 is given by

e�rðt2�tÞEQ

ðt2
t1
TðtÞdt� FCATðt; t1; t2Þ Ftj

� �
¼ 0; (6.9)

and since FCAT is Ft adapted, we derive the price of a CAT future to be

FCATðt; t1; t2Þ ¼ EQ

ðt2
t1
TðtÞdt Ftj

� �
: (6.10)

Using Girsanov’s theorem, under the equivalent measure Q, we have

WðtÞ ¼ BðtÞ �
ðt
0

yðuÞdu (6.11)

or equivalently

dWðtÞ ¼ dBðtÞ � yðtÞdt; (6.12)

and note thatsðtÞ is bounded away from zero. Hence, by combining (6.7) and (6.12),

the stochastic process of the temperature in the risk-neutral probability Qy is

dTðtÞ ¼ dSðtÞ þ kðtÞ TðtÞ � sðtÞð Þ þ sðtÞyðtÞð Þdtþ sðtÞdWðtÞ; (6.13)

where yðtÞ is a real-valued measurable and bounded function denoting the market

price of risk. The market price of risk can be calculated from historical data. More

specifically, yðtÞ can be calculated by looking at the market price of contracts. The

value that makes the price of the model fit the market price is the market price of

risk. Using the Itô formula, the solution of (6.13) under Qy is

TðtÞ ¼ SðtÞ þ e
Ð t

0
kðuÞdu

Tð0Þ � Sð0Þð Þ þ e
Ð t

0
kðuÞdu

ðt
0

sðsÞyðsÞe�
Ð s

0
kðuÞdu

ds

þ e
Ð t

0
kðuÞdu

ðt
0

sðsÞe�
Ð s

0
kðuÞdu

dWðsÞ: (6.14)
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The proof of (6.14) is similar to the proof of Proposition 6.1. Note that Q is the

risk-neutral probability measure, where Q � P , while Qy is a subclass of these

probabilities defined by the Girsanov theorem. Since we restrict our attention in

these probabilities, in order to simplify the notation in the remaining of the chapter,

we will define this subclass of probabilities also with the same letter Q.
Replacing expression (6.14) in (6.10), we find the price of a future contract on

the CAT index at time t, where t � t1<t2.

Proposition 6.2 The CAT future price for t � t1<t2 is given by

FCATðt; t1; t2Þ ¼ EQ

ðt2
t1
TðsÞdsjFt

� �
¼

ðt2
t1
SðsÞdsþ I1 þ I2; (6.15)

where

I1 ¼
ðt2
t1
e
Ð s

t
kðzÞdz eTðtÞds; (6.16)

I2 ¼
ðt1
t

ðt2
t1
e
Ð s

0
kðzÞdzsðuÞyðuÞe

Ð 0

u
kðzÞdz

dsduþ
ðt2
t1

ðt2
u

e
Ð s

0
kðzÞdzsðuÞyðuÞe

Ð 0

u
kðzÞdz

dsdu:

(6.17)

Proof From (6.10) and (6.14), we have

FCATðt; t1; t2Þ ¼ EQ

ðt2
t1
TðsÞdsjFt

� �
¼

ðt2
t1
SðsÞdsþ EQ

ðt2
t1

~TðsÞdsjFt

� �
;

and using Itô isometry, we can interchange the expectation and the integral

EQ

ðt2
t1

~TðsÞdsjFt

� �
¼

ðt2
t1
EQ

~TðsÞ Ftj� �
ds

¼
ðt2
t1
e
Ð s

t
kðzÞdz ~TðtÞdsþ

ðt2
t1

ðs
t

sðuÞyðuÞe
Ð s

u
kðzÞdz

duds

¼ I1 þ I2:

Hence,

I1 ¼
ðt2
t1
e
Ð s

t
kðzÞdz ~TðtÞds

and
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I2 ¼
ðt2
t1

ðs
t

sðuÞyðuÞe
Ð s

u
kðzÞdz

duds ¼
ðt2
t1

ðt2
t

1½t;s�ðuÞsðuÞyðuÞe
Ð s

u
kðzÞdz

duds;

where 1½t;s� is zero outside the interval ½t; s�. Then, we can change the order of the

integrals,

¼
ðt2
t

ðt2
t1
1½t;s�ðuÞsðuÞyðuÞe

Ð s

u
kðzÞdz

dsdu:

Next, we split the outer integral in two parts:

¼
ðt1
t

ðt2
t1
1½t;s�ðuÞsðuÞyðuÞe

Ð s

u
kðzÞdz

dsduþ
ðt2
t1

ðt2
t1
1½t;s�ðuÞsðuÞyðuÞe

Ð s

u
kðzÞdz

dsdu:

The second part is zero when s>u. Hence, we can change the limits of the inner

integral

¼
ðt1
t

ðt2
t1
sðuÞyðuÞe

Ð s

u
kðzÞdz

dsduþ
ðt2
t1

ðt2
u

sðuÞyðuÞe
Ð s

u
kðzÞdz

dsdu

or, equivalently,

¼
ðt1
t

ðt2
t1
e
Ð s

0
kðzÞdzsðuÞyðuÞe

Ð 0

u
kðzÞdz

dsduþ
ðt2
t1

ðt2
u

e
Ð s

0
kðzÞdzsðuÞyðuÞe

Ð 0

u
kðzÞdz

dsdu:

□
Proposition 6.2 gives the price of a CAT future at time t � t1<t2. In other words,

the price of a CAT future before the contract period. Hence, (6.15) corresponds to

out-of-period valuation. In order to evaluate the future price inside the contract

period, the above formula can be easily modified.

Proposition 6.3 The CAT future price for t1 � t � t2 is given by

FCATðt; t1; t2Þ ¼
ðt
t1
TðsÞdsþ FCATðt; t; t2Þ: (6.18)

Proof We have that the CAT future price is

FCATðt; t1; t2Þ ¼ EQ

ðt2
t1
TðsÞdsjFt

� �

¼ EQ

ðt
t1
TðsÞdsþ

ðt2
t

TðsÞdsjFt

� �
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¼
ðt
t1
TðsÞdsþ EQ

ðt2
t

TðsÞdsjFt

� �

¼
ðt
t1
TðsÞdsþ FCATðt; t; t2Þ:

Note that the first term is known at time t since it refers to past temperatures,

while the second term is stochastic.

□
Similarly, the in-period pricing formulas of the remaining indices can be easily

extracted from the pricing formulas of the out-of-period valuation. Hence, the

dynamics of the CAT future price under Q is given in the following proposition.

Proposition 6.4 The dynamics of FCATðt; t1; t2Þ under the risk-neutral measure
Q is

dFCATðt; t1; t2Þ ¼ SCATðt; t1; t2ÞdWðtÞ; (6.19)

where

SCATðt; t1; t2Þ ¼ sðtÞ
ðt2
t1
e
Ð s

t
kðzÞdz

ds: (6.20)

Proof FCATðt; t1; t2Þ is Q martingale; hence, the proposition follows after a direct

application of the Itô formula. We focus only on the part dWðtÞ since the drift part is
zero. We have that

dFCAT

dT
¼

ðt2
t1
e
Ð s

t
kðzÞdz

ds;

hence,

dFCATðt; t1; t2Þ ¼ sðtÞ
ðt2
t1
e
Ð s

t
kðzÞdz

dsdWðtÞ:

□
Using Proposition 6.4, the price of call option written on CAT futures can be

estimated.

Proposition 6.5 The price at time t � t of a call option written on a CAT future
with strike price K at exercise time t � t1 is

CCATðt; t; t1; t2Þ ¼ e�rðt�tÞ FCATðt; t1; t2Þ � Kð ÞF dðt; t; t1; t2Þð Þf

þF0 dðt; t; t1; t2Þð Þ
ðt
t

S2
CATðt; t1; t2Þds

�
; (6.21)
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where

dðt; t; t1; t2Þ ¼ FCATðt; t1; t2Þ � Kffiffiffiffiffiffiffi
S2
t;t

q (6.22)

and

S2
t;t ¼

ðt
t

S2
CATðt; t1; t2Þds (6.23)

and F is the cumulative standard normal distribution function.

Proof The option price by definition is given by

CCATðt; t; t1; t2Þ ¼ e�rðt�tÞEQ max FCATðt; t1; t2Þ � K; 0ð ÞjFt½ �:

From Proposition 6.4, we have that the Q dynamics of the future price can be

written as

FCATðt; t1; t2Þ ¼ FCATðt; t1; t2Þ þ
ðt
t

SCATðs; t1; t2ÞdWðsÞ:

From this, it follows that FCATðt; t1; t2Þ conditioned on FCATðt; t1; t2Þ follows
the normal distribution with mean FCATðt; t1; t2Þ and variance given by

ðt
t

S2
CATðs; t1; t2Þds:

Hence,

EQ max FCATðt; t1; t2Þ � K; 0ð ÞjFt½ �

¼ EQ max FCATðt; t1; t2Þ þ
ðt
t

SCATðs; t1; t2ÞdWðsÞ � K; 0

� �
jFt

� �
:

The price CCAT follows by a straightforward calculation using the properties of

the normal distribution.

□
As it was mentioned earlier, the Pacific Rim index is simply the average of the

CAT index over the specific time period. Then, the arbitrage-free future price of a

Pacific Rim contract at time t � t1<t2 is given by

e�rðt2�tÞEQ

ðt2
t1

1

t2 � t1
TðtÞdt� FPACðt; t1; t2ÞjFt

� �
¼ 0; (6.24)
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and since FPAC is Ft adapted, we derive the price of a PAC future to be

FPACðt; t1; t2Þ ¼ EQ
1

t2 � t1

ðt2
t1
TðsÞdsjFt

� �
: (6.25)

Observing (6.10) and (6.25), we conclude that

FPACðt; t1; t2Þ ¼ 1

t2 � t1
FCATðt; t1; t2Þ (6.26)

and, similarly, that the price of call option written on a PAC future is given by

CPACðt; t1; t2Þ ¼ 1

t2 � t1
CCATðt; t1; t2Þ: (6.27)

6.4.2 HDD and CDD Indices: Futures and Options

Next, the pricing formulas for the CDDs and HDDs are presented. The AccCDD

and AccHDD indices over a period ½t1; t2� are given by

HDD ¼
ðt2
t1
max c� TðsÞ; 0ð Þds; (6.28)

CDD ¼
ðt2
t1
max TðsÞ � c; 0ð Þds: (6.29)

Hence, the pricing equations are similar for both indices. Our aim is to give a

mathematical expression for the HDD future price. IfQ is the risk-neutral probabil-

ity and r is the constant compounding interest rate, then the arbitrage-free future

price of a HDD contract at time t � t1<t2 is given by

e�rðt2�tÞEQ

ðt2
t1
max 0; c� TðtÞð Þdt� FHDDðt; t1; t2ÞjFt

� �
¼ 0; (6.30)

and since FHDD is Ft adapted, we derive the price of a HDD future to be

FHDDðt; t1; t2Þ ¼ EQ

ðt2
t1
max c� TðtÞ; 0ð ÞdtjFt

� �
: (6.31)

Similarly, we have that the arbitrage-free future price of a CDD contract at time

t � t1<t2 is given by
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FCDDðt; t1; t2Þ ¼ EQ

ðt2
t1
max TðtÞ � c; 0ð ÞdtjFt

� �
: (6.32)

Observing (6.10), (6.31), and (6.32), we have the following proposition.

Proposition 6.6 The CDD, HDD, and CAT prices are linked by the following
relation:

FHDDðt; t1; t2Þ ¼ c t2 � t1ð Þ � FCATðt; t1; t2Þ þ FCDDðt; t1; t2Þ: (6.33)

Proof We have that

max c� TðtÞ; 0ð Þ ¼ c� TðtÞ þmax TðtÞ � c; 0ð Þ:

Hence, by replacing the above relation to (6.31), we have that

FHDDðt; t1; t2Þ ¼ EQ

ðt2
t1
max c� TðtÞ; 0ð ÞdtjFt

� �

¼ EQ

ðt2
t1

c� TðtÞ þmaxðTðtÞ � c; 0Þð ÞdtjFt

� �

¼ EQ

ðt2
t1
cdtjFt

� �
� EQ

ðt2
t1
TðtÞdtjFt

� �

þ EQ

ðt2
t1
maxðTðtÞ � c; 0ÞdtjFt

� �

¼ c t2 � t1ð Þ � FCATðt; t1; t2Þ þ FCDDðt; t1; t2Þ:

□
Proposition 6.6 indicates that the pricing formulas of futures on CDD and HDD

indices are similar. Hence, we can focus only on the pricing formulas of the CDD

indices.

Proposition 6.7 The CDD future price for 0 � t � t1<t2 is given by

FCDDðt; t1; t2Þ ¼ EQ

ðt2
t1
max TðsÞ � cð ÞdsjFt

� �

¼
ðt2
t1
vðt; sÞC

m t; s; e
Ð s

t
kðzÞdz ~TðtÞ

� �

vðt; sÞ

0
BB@

1
CCAds; (6.34)
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where

mðt; s; e
Ð s

t
kðzÞdz ~TðtÞÞ ¼ SðsÞ þ e

Ð s

t
kðzÞdz ~TðtÞ þ e

Ð s

t
kðzÞdz

ðs
t

sðuÞyðuÞe�
Ð u

t
kðzÞdz

du� c;

(6.35)

v2ðt; sÞ ¼ e
2
Ð s

t
kðzÞdz

ðs
t

s2ðuÞe�2
Ð u

t
kðzÞdz

du; (6.36)

andCðxÞ ¼ xFðxÞ þ F0ðxÞ, whereF is the cumulative standard normal distribution
function.

Proof From (6.31) and (6.14), we have that

FCDDðt; t1; t2Þ ¼ EQ

ðt2
t1
max TðsÞ � cð ÞdsjFt

� �

and using Itô isometry, we can interchange the expectation and the integral

EQ

ðt2
t1
max TðsÞ � cð ÞdsjFt

� �
¼

ðt2
t1
EQ max TðsÞ � cð ÞjFt½ �ds:

TðsÞ is normally distributed under the probability measure Q with mean and

variance given by

EQ TðsÞjFt½ � ¼ SðsÞ þ e
Ð s

t
kðzÞdz ~TðtÞ þ e

Ð s

t
kðzÞdz

ðs
t

sðuÞyðuÞe�
Ð u

t
kðzÞdz

du;

VarQ TðsÞjFt½ � ¼ e
2
Ð s

t
kðzÞdz

ðs
t

s2ðuÞe�2
Ð u

t
kðzÞdz

du:

Hence, TðsÞ � c is normally distributed with mean given by mðt; s; e
Ð s

t
kðzÞdz ~TðtÞÞ

and variance given by v2ðt; sÞ; and the proposition follows by standard calculations
using the properties of the normal distribution.

□
Proposition 6.7 gives the price of a future CDD at time t � t1<t2 . In other

words, the price of a future CDD before the contract period. Hence, (6.34)

corresponds to out-of-period valuation. In order to evaluate the future price inside

the contract period, the above formula can be easily modified.

Proposition 6.8 The CDD future price for t1 � t<t2 is given by

FCDDðt; t1; t2Þ ¼
ðt
t1
max TðsÞ � cð Þdsþ FCDDðt; t; t2Þ: (6.37)
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Proof We have that the future price of a CDD is given by

FCDDðt; t1; t2Þ ¼ EQ

ðt2
t1
max TðsÞ � cð Þds Ftj

� �

¼ EQ

ðt
t1
max TðsÞ � cð Þdsþ

ðt2
t

max TðsÞ � cð Þds Ftj
� �

¼
ðt
t1
max TðsÞ � cð Þdsþ EQ

ðt2
t

max TðsÞ � cð Þds Ftj
� �

¼
ðt
t1
max TðsÞ � cð Þdsþ FCDDðt; t; t2Þ:

Note that the first term is known at time t since it refers to past temperatures,

while the second term is stochastic.

□
Similarly to the case of the CAT contracts, the dynamics of the CDD future price

under Q is given in the following proposition.

Proposition 6.9 The dynamics of FCDDðt; t1; t2Þ for 0 � t � t1 under Q is given by

dFCDDðt; t1; t2Þ ¼ SCDDðt; t1; t2ÞdWðtÞ; (6.38)

where

SCDDðt; t1; t2Þ ¼ sðtÞ
ðt2
t1
e
Ð s

t
kðzÞdzF

m t; s; e
Ð s

t
kðzÞdz ~TðtÞ

� �

vðt; sÞ

0
BB@

1
CCAds (6.39)

and F is cumulative standard normal distribution function.

Proof FCDDðt; t1; t2Þ is Q martingale; hence, the proposition follows after a direct

application of the Itô formula. We focus only on the part dWðtÞ since the drift part is
zero. First, note that vðt; sÞ does not depend on TðtÞ and that

m0 t; s; e
Ð s

t
kðzÞdz ~TðtÞ

� �
¼

dm t; s; e
Ð s

t
kðzÞdz ~TðtÞ

� �

dT
¼ e

Ð s

t
kðzÞdz

:

Also, substituting C0ðxÞ ¼ FðxÞ; we have that

dFCDD

dT
¼

ðt2
t1
vðt; sÞC

m t; s; e
Ð s

t
kðzÞdz ~TðtÞ

� �

vðt; sÞ

0
BB@

1
CCAds
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¼
ðt2
t1
vðt; sÞC0

m t; s; e
Ð s

t
kðzÞdz ~TðtÞ

� �

vðt; sÞ

0
BB@

1
CCA

m0 t; s; e
Ð s

t
kðzÞdz ~TðtÞ

� �
vðt; sÞ

v2ðt; sÞ ds

¼
ðt2
t1
e
Ð s

t
kðzÞdzF

m t; s; e
Ð s

t
kðzÞdz ~TðtÞ

� �

vðt; sÞ

0
BB@

1
CCAds:

Hence, we have that

dFCDDðt; t1; t2Þ ¼ sðtÞ
ðt2
t1
e
Ð s

t
kðzÞdzF

m t; s; e
Ð s

t
kðzÞdz ~TðtÞ

� �

vðt; sÞ

0
BB@

1
CCAdsdWðtÞ:

In Proposition 6.9, the term SCDDðt; t1; t2Þ represents the term structure of the

volatility of CDD futures. Hence, the price of a call option on a CDD future can be

derived. From Proposition 6.9, the price of a CDD future option can be estimated.

Proposition 6.10 The price at time t � t of a call option written on a HDD future
with strike price K at exercise time t � t1 is

CCDDðt; t; t1; t2Þ ¼ e�r t�tð ÞEQ max

ðt2
t1
vðt; sÞZ t; s; t; ~TðtÞ
 �

ds� K; 0

� �� �
; (6.40)

where

Z t; s; t; ~TðtÞ
 � ¼ ~C t; s; e
Ð s

t
kðzÞdz ~TðtÞ þ

ðt
t

sðuÞyðuÞe
Ð s

u
kðzÞdz

du

�
þ Sðs; t; tÞYÞ

(6.41)

and

~Cðt; s; xÞ ¼ C
m t; s; xð Þ
vðt; sÞ

� �
; (6.42)

and

S2ðs; t; tÞ ¼
ðt
t

s2ðuÞe2
Ð s

u
kðzÞdz

du (6.43)

and Y is a standard normal random variable.
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Proof The option price is given as

CCDDðt; t; t1; t2Þ ¼ e�r t�tð ÞEQ max FCDDðt; t1; t2Þ � K; 0ð ÞjFt½ �;

we have that

FCDDðt; t1; t2Þ ¼
ðt2
t1
vðt; sÞ ~C t; s; e

Ð s

t
kðzÞdz ~TðtÞ

� �
ds

¼
ðt2
t1
vðt; sÞ ~C t; s; e

Ð s

t
kðzÞdz ~TðtÞ þ

ðt
t

sðuÞyðuÞe
Ð s

u
kðzÞdz

du

�

þ
ðt
t

sðuÞe
Ð s

u
kðzÞdz

dWðuÞ
�
ds:

The Itô integral inside the expectation is independent of Ft and has varianceÐ t
t s

2ðuÞe2
Ð s

u
kðzÞdz

du. Taking the conditional expectation yields the result.

□

6.5 Pricing Under the Assumption of a Lévy Noise Process

Under the assumption of a Lévy motion as the driving noise process, the stochastic

differential equation that describes the DAT is a generalization of the proposed

model (6.7). Hence, the DATs follow a mean-reverting O–U process with time-

varying speed of mean reversion and seasonal mean and variance and a Lévy

driving noise process given by

dTðtÞ ¼ dSðtÞ þ kðtÞ TðtÞ � SðtÞð Þdtþ sðtÞdLðtÞ; (6.44)

where LðtÞ is Lévy noise. Applying the Itô formula for semimartingales (Ikeda and

Watanabe 1981), the explicit solution of (6.44) is obtained:

TðtÞ ¼ SðtÞ þ e
Ð t

0
kðuÞdu

Tð0Þ � Sð0Þð Þ þ e
Ð t

0
kðuÞdu

ðt
0

sðtÞe�
Ð s

0
kðuÞdu

dLðtÞ: (6.45)

As in the case of the BM, we derive the price of a CAT future to be

FCATðt; t1; t2Þ ¼ EQ

ðt2
t1
TðtÞdt Ftj

� �
:
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Proposition 6.11 The cumulative temperature over the time interval ½t1; t2� is
given by

ðt2
t1
TðtÞdt ¼

ðt2
t1
SðtÞdtþ

ðt2
t1
e
Ð t

0
kðzÞdz

Tð0Þ � Sð0Þð Þdt

þ
ðt1
0

ðt2
t1
sðtÞe

Ð t

s
kðzÞdz

dtdLðtÞ þ
ðt2
t1

ðt2
t

sðtÞe
Ð t

s
kðzÞdz

dtdLðtÞ: (6.46)

Proof We have that

ðt2
t1
TðtÞdt ¼

ðt2
t1
SðtÞdtþ

ðt2
t1
e
Ð t

0
kðzÞdz

Tð0Þ � Sð0Þð Þdtþ
ðt2
t1

ðt
0

sðtÞe
Ð t

s
kðzÞdz

dLðtÞdt:

Focusing on the last integral, we have that

ðt2
t1

ðt
0

sðtÞe
Ð t

s
kðzÞdz

dLðtÞdt ¼
ðt2
t1

ðt2
0

1½0;t�sðtÞe
Ð t

s
kðzÞdz

dLðtÞdt

¼
ðt2
0

ðt2
t1
1½0;t�sðtÞe

Ð t

s
kðzÞdz

dtdLðtÞ

¼
ðt1
0

ðt2
t1
1½0;t�sðtÞe

Ð t

s
kðzÞdz

dtdLðtÞ þ
ðt2
t1

ðt2
t1
1½0;t�sðtÞe

Ð t

s
kðzÞdz

dtdLðtÞ

¼
ðt1
0

ðt2
t1
sðtÞe

Ð t

s
kðzÞdz

dtdLðtÞ þ
ðt2
t1

ðt2
t

sðtÞe
Ð t

s
kðzÞdz

dtdLðtÞ:

□
In the previous section, the Girsanov theorem was applied in order to find an

equivalent probability measure Q. The Girsanov theorem is a special case of the

Esscher transform when the distribution is a BM. In the case of a jump process, the

Esscher transform is applied.

Let yðtÞ to be a real-valued measurable and bounded function denoting the

market price of risk and consider the stochastic process

ZðtÞ ¼ exp

ðt
0

yðsÞLðsÞ �
ðt
0

’ yðsÞð Þds
� �

; (6.47)

where ’ðlÞ is the logarithm of the moment-generating function of LðtÞ

’ðlÞ ¼ ln E exp lLð1Þð Þ½ �: (6.48)

We make the same assumptions as in Benth and Saltyte-Benth (2005) and

Bellini (2005). We assume that the process ZðtÞ is well defined under natural
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exponential integrability conditions on the Lévy measure lðdzÞ, which we assume to

hold. Then, the following proposition for the price of CAT futures follows:

Proposition 6.12 The future prices FCATðt; t1; t2Þ at time t � t1<t2 written on
CAT over the interval ½t1; t2� is

FCATðt; t1; t2Þ ¼
ðt2
t1
SðtÞdtþ

ðt2
t1
e
Ð t

0
kðzÞdz

Tð0Þ � Sð0Þð Þdt

þ
ðt
0

ðt2
t1
sðuÞe

Ð u

s
kðzÞdz

dudLðuÞ þ
ðt2
t

ðt2
u

sðuÞe
Ð u

s
kðzÞdz

du’0 yðuÞð Þdu

�
ðt1
t

ðt1
u

sðuÞe
Ð u

s
kðzÞdz

du’0 yðuÞð Þdu:
(6.49)

Proof First, we prove that for a real-valued measurable and bounded function f ðtÞ;

EQ

ðt
t

f ðuÞdLðuÞjFt
� �

¼
ðt
t

f ðuÞ’0 yðuÞð Þdu: (6.50)

The proof of (6.50) can be found in many studies. For reasons of completeness of

this study, we reproduce the proof here. We follow the method presented in Benth

and Saltyte-Benth (2005). First, note the following lemma:

E exp

ðt
s

gðuÞdLðuÞ
� �� �

¼ exp

ðt
s

’ gðuÞð Þdu
� �

(6.51)

ifg : s; t½ � ! R is a bounded and measurable function and the integrability condition

of the Lévy measure holds. The proof of this lemma can be found in Benth and

Saltyte-Benth (2004). Hence, we have that

EQ

ðt
t

f ðuÞdLðuÞjFt

� �
¼ EQ

ðt
t

f ðuÞdLðuÞ ZðtÞ
ZðtÞ

� �

¼ exp �
ðt
t

’ yðuÞð Þdu
� �

d

dl
EQ exp

ðt
t

lf ðuÞ þ yðuÞdLðuÞ
� �� �

l¼0

¼ exp �
ðt
t

’ yðuÞð Þdu
� �

d

dl
exp

ðt
t

’ lf ðuÞ þ yðuÞð Þdu
� �

¼
ðt
t

f ðuÞ’0 yðuÞð Þdu:

Hence, (6.50) holds.
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Next, the dynamics of the price of the CAT future

EQ

ðt2
t1
TðsÞdsjFt

� �
¼ EQ

ðt2
t

TðsÞdsjFt

� �
� EQ

ðt1
t

TðsÞdsjFt

� �
:

From (6.46) and the adaptivity property of the Lévy process, we have that

EQ

ðt
t

TðsÞds Ftj
� �

¼
ðt
t

SðuÞduþ
ðt
t

e
Ð u

0
kðzÞdz

Tð0Þ � Sð0Þð Þdu

þ EQ

ðt
0

ðt
t

sðuÞe
Ð u

s
kðzÞdz

dudLðuÞ þ
ðt
t

ðt
u

sðuÞe
Ð u

s
kðzÞdz

dudLðuÞ Ftj
� �

¼
ðt
t

SðuÞduþ
ðt
t

e
Ð u

0
kðzÞdz

Tð0Þ � Sð0Þð Þdu

þ EQ

ðt
0

ðt
t

sðuÞe
Ð u

s
kðzÞdz

dudLðuÞ Ftj
� �

þ EQ

ðt
t

ðt
u

sðuÞe
Ð u

s
kðzÞdz

dudLðuÞ Ftj
� �

:

Hence, using the adaptivity property again and (6.50), we have that

EQ

ðt
t

TðsÞds Ftj
� �

¼
ðt
t

SðuÞduþ
ðt
t

e
Ð u

0
kðzÞdz

Tð0Þ � Sð0Þð Þdu

þ
ðt
0

ðt
t

sðuÞe
Ð u

s
kðzÞdz

dudLðuÞ

þ
ðt
t

ðt
u

sðuÞe
Ð u

s
kðzÞdz

du’0 yðuÞð Þdu:

Substituting the above equation to the initial expectation yields the result.

□
As it was mentioned earlier, the Pacific Rim index is simply the average of the

CAT index over the specific time period. Then, the arbitrage-free future price of a

CAT contract at time t � t1 � t2 is given by

e�rðt2�tÞEQ

ðt2
t1

1

t2 � t1
TðtÞdt� FPACðt; t1; t2Þ Ftj

� �
¼ 0;

and since FPAC is Ft adapted, we derive the price of a PAC future to be

FPACðt; t1; t2Þ ¼ EQ
1

t2 � t1

ðt2
t1
TðsÞdsjFt

� �
: (6.52)
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Hence we conclude that

FPACðt; t1; t2Þ ¼ 1

t2 � t1
FCATðt; t1; t2Þ: (6.53)

Unfortunately, introducing the Lévy noise process prevents the calculation of

option prices. In addition, finding closed form solutions for AccHDD and AccCDD

futures and options including a Lévy process in the temperature stochastic differ-

ential equation is not possible. The problem arises from the fact that the class of

generalized hyperbolic distributions is not closed under convolution (Bellini 2005).

Alternatively, estimating the prices of weather derivatives under the Lévy assump-

tion can be done numerically. One approach is by applying the Fourier transform

(FT). In order to do so, it is necessary to know the distributional properties of the

random variable TðtÞ. The unknown density fTðxÞ can be estimated by a Fourier

approach of the following integral of the characteristic function CTðlÞ :

fTðxÞ ¼ 1

2p

ðþ1

�1
e�isxCTðsÞds: (6.54)

Hence, if the characteristics function of the Lévy process is known, then option

prices as well as futures on AccHDD and AccCDD can be estimated. This approach

is analytically discussed in Carr and Madan (1999).

Proposition 6.13 The characteristic function of TðtÞ under the risk-neutral mea-
sure Q is given by

CTðlÞ ¼ EQ exp ilTðtÞf gjFt½ � ¼ exp CðlÞf g; (6.55)

where

CðlÞ ¼ ilSðtÞ þ ile
Ð t

s
kðzÞdz

TðsÞ � SðsÞð Þ �
ðt
s

’ yðuÞð Þdu

þ
ðt
s

’ ilsðuÞe
Ð t

u
kðzÞdz þ yðuÞ

� �
du: (6.56)

Proof We have that

EQ exp ilTðtÞf gjFt½ �

¼ EQ exp ilSðtÞ þ ile
Ð t

s
kðzÞdz

TðsÞ � SðsÞð Þ þ il
ðt
s

sðuÞe
Ð t

u
kðzÞdz

dLðuÞ
� �

jFt

� �

¼ exp ilSðtÞ þ ile
Ð t

s
kðzÞdz

TðsÞ � SðsÞð Þ
� �

EQ exp il
ðt
s

sðuÞe
Ð t

u
kðzÞdz

dLðuÞ
� �

jFt

� �
:

(6.57)
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Focusing on the expectation, we have that

EQ exp il
ðt
s

sðuÞe
Ð t

u
kðzÞdz

dLðuÞ
� �

jFt

� �

¼ EQ exp il
ðt
s

sðuÞe
Ð t

u
kðzÞdz

dLðuÞ
� �

ZðtÞ
ZðsÞ jFt

� �

¼ EQ exp il
ðt
s

sðuÞe
Ð t

u
kðzÞdz

dLðuÞ þ
ðt
s

yðuÞdLðuÞ �
ðt
s

’ yðuÞð Þdu
� �

jFt

� �

¼ exp �
ðt
s

’ yðuÞð Þdu
� �

EQ exp il
ðt
s

sðuÞe
Ð t

u
kðzÞdz þ yðuÞdLðuÞ

� �� �

¼ exp �
ðt
s

’ yðuÞð Þdu
� �

exp

ðt
s

’ ilsðuÞe
Ð t

u
kðzÞdz þ yðuÞ

� �
du

� �
: (6.58)

From (6.55), (6.57), and (6.58) yields the result

CðlÞ ¼ ilSðtÞ þ ile
Ð t

s
kðzÞdz

TðsÞ � SðsÞð Þ �
ðt
s

’ yðuÞð Þdu

þ
ðt
s

’ ilsðuÞe
Ð t

u
kðzÞdz þ yðuÞ

� �
du;

where ’ð�Þ is the moment-generating function of Lð1Þ and i2 ¼ �1.

□
In the case of the generalized hyperbolic distribution (and hyperbolic distribu-

tion), the moment-generating function ’ is known. Hence, the characteristic

function CðlÞ ¼ ’ðilÞ is also known. Now, the distribution of our model can be

found by numerical inversion of the characteristic function. Hence, we can proceed

on deriving the pricing formulas for the CDDs futures using a Lévy process:

FCDDðt; t1; t2Þ ¼ EQ

ðt2
t1
max TðsÞ � cð ÞdsjFt

� �

¼
ðt2
t1
EQ max TðsÞ � cð ÞjFt½ �ds

¼
ðt2
t1

ðþ1

c

x� cð ÞfTðxÞdxds; (6.59)

where fTðxÞ is the density function of TðtÞ under the risk-neutral measure Q
conditional on Ft and it is given by (6.54). Similarly, the HDD future price is

given by

FCDDðt; t1; t2Þ ¼
ðt2
t1

ð65
0

c� xð ÞfTðxÞdxds: (6.60)
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Practitioners often prefer easy-to-implement models than realistic ones. A classic

example is the Black–Scholes equation. The above solution of the price of a CAT

future is not easy to solve, and to calculate the above pricing formulas is not a

straightforward process. Alternatively, the price of a future or an option contract on a

temperature index can be estimated using numerical procedures.

6.6 The Market Price of Risk

The weather derivatives market is a classical incomplete market. In incomplete

markets, the derivative contract cannot be replicated by the underlying index.

Moreover, in incomplete markets, there are infinite equivalent martingale measures.

Here, we limit our choices by selecting a parametric class of probabilitiesQy, where

yðtÞ is square integrable function as it is assumed by equation. Since temperature is

non-tradable, the market price of risk must be incorporated in the pricing model.

The parameter yðtÞ is called the market price of risk. The choice of yðtÞ actually
captures the risk preference of the market participants. In other words, it reflects the

trader’s view on exposing themselves to risk (Benth 2004). The market price of risk,

yðtÞ, was introduced by applying the Girsanov’s theorem (or the Esscher transform).

The change of measure of an asset’s stochastic process is closely related to the

concept of the market price of risk (Xu et al. 2008). Actually the drift rate of the

asset’s stochastic process is corrected by a parameter that reflects the market price

of risk (Xu et al. 2008).

In most studies so far, the market price of risk was considered zero. However,

recently many studies examine the market price of risk and found that it is different

than zero.

Turvey (2005) proposed to estimate the market price of risk by using the capital

asset pricing model. Cao and Wei (2004) and Richards et al. (2004) apply a

generalized Lucas’ (1978) equilibrium pricing model to study the market price of

risk. In that framework, direct estimation of the weather risk’s market price is

avoided (Xu et al. 2008). Their findings indicate that the market price of risk

associated with the temperature variable is significant. They also conclude that

the market price of risk affects option values much more than forward prices,

mainly due to the payoff specification. In Xu et al. (2008), an indifference pricing

approach which is also based on utility maximization is proposed.

The most common approach is the one presented in Alaton et al. (2002), and

it was followed by Bellini (2005), Benth et al. (2009), and Hardle and Lopez

Cabrera (2009).

Alaton et al. (2002) suggest that the market price of risk can be estimated from

the market data. More precisely, the market price of risk is derived as follows: we

examine what value of the yðtÞ gives a price from the theoretical model that fits the

observable market price.

In Bellini (2005), the implicit market price of risk is estimated by comparing

theoretical future prices, given in previous formulas, to the prices observed in the
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market under the assumption of a Lévy noise process. Their results indicate that for

four cities in use that market price of risk has always a negative sign while it was

found not to be constant. Moreover, in Bellini (2005), the time dependence of the

market price of risk is examined. It was found that there is a relation between yðtÞ
and its lag as well as with the number of available for trading future contracts.

In Hardle and Lopez Cabrera (2009), the implied market price of risk from

Berlin was estimated. Their results indicate that the market price of risk for CAT

derivatives is different from zero and shows a seasonal structure that increases as

the expiration date of the temperature future increases. In a more recent paper,

Benth et al. (2009) study the market price of risk in various Asian cities. The market

price of risk was estimated by calibrating model prices. Their results indicate that

the market price of risk for Asian temperature derivatives is different from zero and

shows a seasonal structure that comes from the seasonal variance of the temperature

process. Their empirical findings suggest that by knowing the formal dependence of

the market price of risk on seasonal variation, one can infer the market price of risk

for regions where weather derivatives market does not exist.

Similar, in Huang et al. (2008), a pricing method for temperature derivatives in

Taiwan is presented. Since no active weather market exists in Taiwan, the parameter

y is approximated by a function of the market price of risk of the Taiwan Stock

Exchange.

6.7 Conclusions

In this chapter, the pricing formulas for the weather derivatives on various temper-

ature indices were presented. Assuming a normal distribution, the pricing formulas

for the following indices were derived: CAT, AccHDD, AccCDD, and Pacific Rim.

The appealing properties of the normal distributions allows for derivation of pricing

formulas in both futures and options on the above indices. In order to find the

pricing formulas, the Itô Lemma and the Girsanov theorem were applied.

Then, based on our results that the hyperbolic distribution provides a better fit to

the residuals, a Lévy motion noise process was assumed. In this case, the pricing

formulas for the CAT and Pacific Rims futures were presented. Under the assump-

tion of a jump process, the Esscher transform and the Itô formula for

semimartingales were applied. However, finding closed form solutions including

a Lévy process in the temperature stochastic differential equation is not possible.

Alternatively, estimating the prices of weather derivatives under the Lévy assump-

tion can be done numerically. We provided a representation of the characteristic

function of the temperature dynamics under the risk-neutral probability measure

which is crucial for finding the density function necessary for pricing options and

futures on AccHDD and AccCDD.

Finally, the importance of the market price of risk was discussed, and an

estimation method was presented.
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Chapter 7

Using Meteorological Forecasts for Improving

Weather Derivative Pricing

7.1 Introduction

Weather risk is unique in that it is highly localized, and despite the new

technologies in meteorological science, it still cannot be predicted precisely and

consistently. Due to the chaotic nature of the equations involved in predicting the

behavior of the atmosphere, weather cannot be forecasted accurately more than few

days in advance. However, even short forecasts are useful for contracts that have

already started or that will start in the next few days.

The availability of historical weather data is central to the success of any

weather risk management program (Banks 2002). Similarly, available and accu-

rate weather forecasts can significantly improve both weather derivative pricing

and weather risk management. Considerable advances have been made in the

meteorological science. Satellite images have improved the ability of observing

the state of the atmosphere and, combined with mathematical models, allow

forecasters to produce weather forecasts and climate predictions.

Weather forecasting focuses on shorter maturity weather events while climate

prediction centers on longer-term phenomena. Weather forecasting is typically

divided into several ranges: very short-range forecasts with time horizon of

0–12 h, short forecasts that range from 12 to 72 h, and medium forecasts with

time horizon that range from 3 to 5 days. Moreover, there are more extended

forecasts that cover monthly periods. Long-range climate forecasts extend onto

seasonal and interannual forecasts. Finally, climate prediction refers to periods of

over 2 years (Banks 2002). In Table 7.1, the different forecasting categories, the

time horizon of each category, and the typical events that are forecasted in each

category are presented.

Forecasters employ different techniques in developing weather forecasts. Com-

mon approaches include the numerical weather prediction methods, ensemble

forecasts, and probabilistic forecasts.

Despite the great advances in technology and the development of newmodels, the

maximum forecast window for useful daily estimates of weather is limited to 5–7
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days, rather than the 10–14 days that meteorologists believe is theoretically possible,

due to practical limitations (Banks 2002). Although satellite observations and com-

puting speed and power have significantly improved, further improvement in these

areas will bring forecasting accuracy close to the theoretical level (Banks 2002).

In the perspective of weather derivative pricing and weather risk management,

only few papers take into consideration the possible usefulness of weather

forecasts. In Alaton et al. (2002), it is suggested that meteorological forecasts for

short to medium range should be used. On the other hand, for long-term pricing, a

general trend is suggested (Ritter et al. 2011).

In Zeng (2000a, b), a framework where seasonal forecasts are employed in the

pricing of weather derivatives is presented. Three scenarios are assumed: the above,

below, or near normal. Obtaining probabilities for each scenario, the derivatives are

priced using a weighted HBA.

A similar method is followed in Yoo (2003). Again, three possible forecasting

scenarios are assumed. For each scenario, a different O–U temperature process is

estimated. Depending on the seasonal forecast, the parameters of the corresponding

O–U are used in order to determine the future evolution of the temperature process

and the price of the contract.

In using single and ensemble forecasts, Jewson and Caballero (2003) derive

probabilistic weather forecasts to price derivatives which have already begun or

will begin in the forecast period. Furthermore, they present two methods that

combine probabilistic forecasts and climatological models to improve the estimates

of the distribution of the index.

In a more recent paper, Dorfleitner andWimmer (2010) estimate the temperature

index including meteorological forecasts in their model. Then, they compare their

results with the prices of monthly and seasonal contracts traded in the CME. Their

results indicate that meteorological weather forecasts have to be included into the

pricing process. However, their approach is accurate only if the forecasts reach into

the accumulation period (Ritter et al. 2011).

Taylor and Buizza (2002, 2003) describe an “end-to-end” application of ensem-

ble forecasts to predict electricity load and demand. In more recent papers, Taylor

and Buizza (2004, 2006) have investigated the use of ensemble predictions in

forecasting the density of temperature at five locations in the UK. Then, the

Table 7.1 Forecasting categories, time horizon, and typical events

Forecast category Time horizon Typical event

“Nowcast” <2 h Tornado strike

Very short range 12 h Severe storm

Short-range forecast 12–72 h Developing cold front

Medium-range forecast 3–10 days Developing high-/low-pressure zone

Extended-range climate forecast 1 month Anticipated rain shortfall

Long-range climate forecast Season/1–2 years Deviations in regional temperature ranges

Climate prediction 2+ years Developing global warming patterns

Source: (Banks 2002)
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ensemble prediction was compared against an AR–GARCH model that is based on

simple information. Their results indicate that the ensemble predictions

outperformed the point forecast from the AR–GARCH models in all cases.

In Ritter et al. (2011), a daily modeling approach which also regards meteoro-

logical temperature forecasts is introduced in order to explain the market prices.

Their results indicate that the inclusion of meteorological forecasts has a clear

impact on the pricing of weather contracts. Since meteorological forecasts are more

reliable in the short term, this effect is more significant near the expiration of the

contract. On the other hand, Ritter et al. (2011) conclude that the value of meteoro-

logical forecasts declines with a longer forecast horizon.

The rest of the chapter is organized as follows. In Sect. 7.2, the numerical

weather prediction approach is presented. In Sect. 7.3, the ensemble methods are

described. The probabilistic and seasonal forecasts are presented in Sect. 7.4. In

Sect. 7.5, approaches of weather derivative pricing using meteorological forecasts

are presented. Finally, in Sect. 7.6, we conclude.

7.2 Numerical Weather Prediction

By collecting quantitative data about the current state of the atmosphere and using

scientific understanding of atmospheric processes to project how the atmosphere

will evolve, weather forecasts are made. The atmosphere is a complex dynamical

system with many degrees of freedom (Taylor and Buizza 2003).

Numerical weather prediction applies mathematical models of the atmosphere

and oceans and predicts the weather based on the current atmosphere state. The

current state of atmosphere is described by studying different variables such as the

spatial distribution of the wind, temperature, humidity, and surface pressure (Taylor

and Buizza 2006).

The atmosphere is considered to be a fluid. Hence, in numerical weather

prediction, the equations of fluid dynamics and thermodynamics are applied in

order to estimate the state of the atmosphere at some time in the future.

First, the initial conditions, for example, the current state of the atmosphere, are

estimated. The best estimate of the current state of the system usually is determined

using observations from earth, ocean, and satellite platforms taken during the

preceding 12 h (Taylor and Buizza 2006). Then, the initial conditions are entered

in the equations and then meteorological forecasts are produced. More precisely,

computer programs are used to produce meteorological forecasts at future times at a

given location and altitude.

The forecasts are produced by solving the nonlinear partial differential equations

that describe the dynamics of the atmosphere. However, the scale of some meteo-

rological processes is too small or too complex to be explicitly included in numeri-

cal weather prediction models. In order to rectify this, parameterization is used.

Examples of parameterization are the simulation of effects of clouds, radiation, air

quality, humidity, or raindrops. The nonlinear partial differential equations cannot
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be solved using analytical methods (Pielke 2002). These equations are solved using

numerical methods. An exact solution is not obtained but rather an approximate

one. Different models use different solution methods. In Strikwerda (2004), various

methods for solving differential equations are described such as the finite difference

methods that are used in global and regional models for all three dimensions or

spectral methods that are used for the horizontal dimensions and finite difference

methods in the vertical (Strikwerda 2004).

After solving the nonlinear partial differential equations, the state of the atmo-

sphere is predicted at a short time into the future. Then, the parameters of the

equations are reestimated to predict further time steps ahead. Different models use

different time steps that range from 1 to 40 min (Bourchtein 2005; Michalakes et al.

2000). The forecast window of each meteorological center depends on the compu-

tational power and resources. The UKMET Unified Model is run 6 days into the

future, while the European Centre for Medium-Range Weather Forecasts

(ECMWF) run out to 10 days into the future, and the Global Forecast System

model run by the Environmental Modeling Center is run 16 days into the future.1

7.3 Ensemble Forecasts

It is considered that the weather has a chaotic nature. Hence, small errors in the

initial conditions can produce large errors in forecasting. In other words, the

accuracy of the predictability is significantly reduced when the time horizon

increases. On the other hand, despite the advances on meteorological modeling,

the approximation of the atmospheric dynamics by a numerical model induces

model errors to the forecasts because of imperfections in the model, such as the

finite grid spacing. As a result, the above sources of uncertainty reduce the

forecasting ability of existing models that are based on the estimate of the initial

conditions (Taylor and Buizza 2003).

The most common approach to overcome this problem is the use of ensemble

forecasts (Lynch 2008). Nowadays, ensemble forecasts are made at most of the

major operational weather prediction facilities worldwide, including the National

Centers for Environmental Prediction (US), the ECMWF, the United Kingdom Met

Office, Meteo France, Environment Canada, the Japanese Meteorological Agency,

the Bureau of Meteorology (Australia), the China Meteorological Administration,

the Korea Meteorological Administration, and CPTEC (Brazil).2

Ensemble forecasting is a form of MC analysis. Ensemble forecasting is a

numerical prediction method that is used to attempt to generate a representative

sample of the possible future states of a dynamical system. Multiple numerical

predictions are conducted using slightly different initial conditions that are all

1 http://en.wikipedia.org/wiki/Numerical_weather_prediction
2 http://en.wikipedia.org/wiki/Ensemble_forecasting
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plausible given the past and current set of observations or measurements. Some-

times, the ensemble of forecasts may use different forecast models for different

members, or different formulations of a forecast model. The frequency distribution

of the different outcomes, which are known as ensemble members, provides an

estimate of the PDF (Taylor and Buizza 2006).

The weather prediction model is both complex and high dimensional (Taylor and

Buizza 2006). Hence, because the demand of producing forecast is fast and because

of the existing computer power, some limitations are induced to ensemble

forecasting. The initial conditions are not sampled as in a statistical simulation

because this is not practical. The number of ensemble members is limited. In

practice, forecasters try to guess a small number of perturbations (usually around

20) that they deem are most likely to yield distinct weather outcomes. The ECMWF

uses a more sophisticated algorithm. It operates on one forecast started from the

unperturbed best estimate of the atmosphere initial state plus 50 others generated by

varying the initial conditions (Taylor and Buizza 2006). Ensemble predictions are

generated using a lower resolution (horizontal grid spacing) than traditional single

point forecasts (Taylor and Buizza 2003; Taylor and Buizza 2006).

7.4 Probabilistic Forecasts and Scenario Analysis

Probabilities are often used in the publication of precipitation in the form of

probability of precipitation. For example, there might be 40% of precipitation in

a particular area. This allows for a degree of uncertainty to be incorporated in the

forecast. The probability of precipitation is given by

PoP ¼ C� A; (7.1)

where C is the confidence that precipitation will occur somewhere in the forecast

area and A the percent of the area that will receive measurable precipitation, if it

occurs at all.

Similarly, probabilistic forecasts can be given for temperature. Temperature

cannot be forecasted accurately more than 6–10 days in advance. However, reports

are published for seasonal forecasts by the NOAA and the National Center of

Environmental Forecasts (NCEF). These forecasts report the probabilities of devi-

ation of the temperature from its historical normal up to 3–6 months ahead. These

forecasts can be used on a hedging strategy to price a weather contract long before

its starting date. For example, there is a possibility that an energy producer might

want in autumn to hedge against adverse weather condition in winter.

Assume that the parameters pA , pB , and pN are the probabilities that the

temperature will be above, below, or near the climate normal during the next 3

months. We focus on the temperature in Berlin for the years 1951–2008. The first

57 years are used to estimate the historical mean and the last year to evaluate the

scenario analysis and HBA methods.
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An energy producer wants to hedge against adverse weather condition for the

period of January. Hence, he is interested in the HDD index. Studying the HDDs in

the past years, the HBA suggests that the mean of the HDD index is 550.17 and the

standard deviation is 90.47. Hence, a hedger that uses the HBA method will price

the weather contract based on these two estimations.

Considering different lengths of historical datasets, both the mean and the

standard deviation change. In Table 7.2, the mean and standard deviation for

different lengths of historical data are presented. A warming trend is evident. It is

clear that a decrease in the level of the HDDs is observed in the last years. This is

also evident from Fig. 7.1 where the HDD index and a simple linear trend are

presented.

Alternatively, suppose that the energy producer instead of the mean and the

standard deviation of the HDD index also possesses seasonal forecasts that report

the probabilities of deviation of the temperature from its historical normal. As an

illustration example, we suppose that the probabilities for above, near, and below

Table 7.2 Mean and standard deviation of the HDD index for different historical lengths for

Berlin

Years Mean St. D.

57 550.17 90.47

Last 50 549.62 94.93

Last 40 542.27 96.60

Last 30 538.52 100.19

Last 20 509.65 80.95

Last 10 512.81 82.22

St. D. ¼ standard deviation

Fig. 7.1 The CDDs index and a linear trend for the years of 1951–2007 at Berlin

196 7 Using Meteorological Forecasts for Improving Weather Derivative Pricing



the climate normal are 0:7, 0:2, and 0:1 respectively. A slightly different approach of

MC will be applied. First, it is assumed that the probabilities pA , pB , and pN
approximate the probabilities that the HDDs will be above, below, and near the

historical normal. This is justified since the correlation between HDDs and temper-

ature is close to one. Next, the historical observations of the HDD index are

separated in the lower, middle, and higher values. Next, a bootstrapped sample is

created sampling from the lower, middle, and higher part of the values of the HDD

index using the probabilities pA, pB, and pN. In other words, a biased MC simulation

method is applied. Hence, if the bootstrapped sample has 10,000 simulations, 7,000

are drawn from the lower part, 2,000 from the middle part, and 1,000 from the upper

part. Finally, the weighted average of the HDD index is estimated. Our results

indicate that the weighted average of the HDDs is 494.14, which is closer to the

actual value 436.20. Note that the classical HBA suggested that the HDD is 550.17.

Also, the standard deviation is reduced and it is only 36.68. In Table 7.3, the

forecasted HDD index using the HBA and scenario analysis methods is presented.

When someone is interested in the daily temperature, a similar procedure can be

followed. Suppose that the temperature process is given by (5.15), the seasonal

mean by (5.16), and the seasonal variance by (5.17). As it is described in Yoo

(2003), the seasonal mean is a linear combination of the mean temperatures for each

scenario and is given by

SðtÞ ¼ pASAðtÞ þ pNSNðtÞ þ pBSBðtÞ; (7.2)

where SAðtÞ , SBðtÞ , and SNðtÞ correspond to an above-, below-, or near-normal

seasonal temperature. For each scenario, a different seasonal mean is estimated

according to (5.16).

In order to estimate (7.2), the following procedure is followed. First, the available

years of historical data are separated in above, below, and near normal. Then, in each

set, the corresponding above-, below-, or near-normal seasonal mean is estimated as

it was described in Chap. 5. Finally, the unconditional seasonal mean is estimated by

weighted linear combination according to (7.2). The procedure for estimating the

remaining parts of the temperature process and for forecasting the future evolution of

the temperature process is the same as it was described in Chap. 5.

Table 7.3 Forecasted HDD

index using the HBA and

scenario analysis methods

Method Mean St. D.

HBA 550.17 90.47

Scenario analysis 494.14 36.68

Actual 436.20

St. D. ¼ standard deviation
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7.5 Meteorological Forecasts and Pricing

As it was shown in the previous chapter, the price of the weather derivatives

depends on the expectation of future of the evolution of the temperature. If

meteorological forecasts are not available, all uncertainty is included in the market

price of risk (Yoo 2003). On the other hand, if meteorological forecasts are

available, then the pricing of a weather derivative can be improved.

Depending on the length of the contract, the length of the available meteorologi-

cal forecasts and the how many days before the start of the contract different

approaches are followed.

In the first case, the valuation of the contract is conducted long before the

starting day of the weather derivative. Hence, meteorological forecasts are not

available for the period of life of the weather derivative.

To illustrate this, we suppose that there are available forecasts for today’s DAT

and forecasts for the next 10 days. Also, t denotes the current day, t1 denotes the day
that the weather derivative starts, and t2 denotes the expiration day of the weather

derivative. In our example, the contract starts at the first of July and has duration of

1 month. In the first case, a company wants to enter to a CAT future during the first

days of May. Since the available forecasts are only for 10 days, they do not add any

additional information to the statistical models. Hence, the procedure described in

Chap. 5 is followed to produce statistical forecasts of the temperature and then

valuate the CAT future contract using the formulas presented in Proposition 6.2 in

Chap. 6.

In the second case, the valuation of the contract is conducted before the starting

day, but meteorological forecasts are available during the life of contract but not

until the expiration day.

Suppose that the company wants to buy a CAT future few days before the start of

the contract, hence few days before the 1st of July. In this case, the inside the

contract period valuation is used. At the 30th of June, the company has a forecast for

the DAT of this day and for the next 10 days. Hence, the valuation formula is

separated in two parts. The first one consists of the meteorological forecasts of the

next 10 days and is deterministic. The second one is the stochastic part for the

period of the 10th to the 31st of July. Hence, the valuation is given by

FCATð10; 1; 31Þ ¼
ð10
1

TðsÞdsþ FCATð10; 10; 31Þ: (7.3)

Weather derivatives are path dependent. In order to evaluate a weather contract,

simulations of the paths of the temperature are produced. In Fig. 7.2, five

simulations of the temperature process are presented. In the first part of Fig. 7.2,

meteorological forecasts are not included. Hence, simulations for the whole period

of 31 days are conducted. On the second part, meteorological forecasts for the first

10 days are available. Hence, it is considered that the temperature for the first 10

days is known. Also, the forecast of the last day, the 10th of July, is used as a starting

198 7 Using Meteorological Forecasts for Improving Weather Derivative Pricing

http://dx.doi.org/10.1007/978-1-4614-6071-8_5
http://dx.doi.org/10.1007/978-1-4614-6071-8_6


point for the simulations of the temperature paths for the rest of the period. Note

that the two procedures result to different outcomes, hence to a different valuation

of the contract.

The first 10 days are replaced by the meteorological forecasts. In general, it is

expected that these forecasts are more accurate than the forecasts produced by

statistical models.

The final case is to estimate the price of the future contract on the CAT index

inside the contract period and when meteorological forecasts are available until the

end of the life of the contract. Suppose that the company wants to enter a CAT

future at the 21st of July. Also, the company has available forecasts for the 21st of

July and for the next 10 days, till the 31st of July when the contract expires. This is

the simplest case. The temperature of the first 20 days of the contract – the 1st to the

20th of July – is known, while the temperature of the last days is replaced by

the meteorological forecasts. Hence, the price of the contract is given by the inside

the contract period valuation formula presented in Chap. 6:

FCATð21; 1; 31Þ ¼
ð21
1

TðsÞdsþ FCATð21; 21; 31Þ: (7.4)

However, the second part is replaced by the meteorological forecasts. Hence, we

have that

FCATð21; 1; 31Þ ¼
ð21
1

TðsÞdsþ
ð31
21

TðsÞds ¼
ð31
1

TðsÞds: (7.5)

7.6 Conclusions

The availability of historical weather data is central to the success of any weather

risk management program. Similarly, available and accurate weather forecasts can

significantly improve both weather derivative pricing and weather risk

management.

Fig. 7.2 Five sample paths of simulated temperature forecasts (a) without meteorological

forecasts and (b) with meteorological forecasts
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Forecasters employ different techniques in developing weather forecasts. Com-

mon approaches include the numerical weather prediction methods, ensemble

forecasts, and probabilistic forecasts.

Numerical weather prediction applies mathematical models of the atmosphere

and oceans and predicts the weather based on the current atmosphere state. It is

considered that the weather has a chaotic nature. Hence, small errors in the initial

conditions can produce large in forecasting. The most common approach to over-

come this problem is the use of ensemble forecasts. Multiple numerical predictions

are conducted using slightly different initial conditions that are all plausible given

the past and current set of observations or measurements.

Probabilistic seasonal forecasts are reported for temperature. The probabilities

that the temperature will be above, below, or near the climate normal during the

next 3 months are available to risk managers. Since the dynamics of the climate

system are chaotic, seasonal forecasts are necessarily less specific than weather

forecasts. Using weighted average techniques, a better estimate of the temperature

can be calculated using numerical models.

The accuracy of meteorological forecasts declines with a longer forecast hori-

zon. Weather and climate forecasts only have value if they result in improved

decision making.

Despite the great advances in technology and the development of new models,

the maximum forecast window for useful daily estimates of weather is limited to

5–7 days. Although satellite observations and computing speed and power have

significantly improved, further improvement in these areas will bring forecasting

accuracy close to the theoretical level.
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Chapter 8

The Effects of the Geographical

and Basis Risk

8.1 Introduction

In Hull (2003), the basis risk is defined as the difference between the spot and future

price. In other words, it is the risk to a hedger arising from uncertainty about the

basis at a future time. In the sense of weather derivatives, basis risk has a different

definition. Weather risk is unique in that it is highly localized, and despite great

advances in meteorological science, it still cannot be predicted precisely and

consistently. Risk managers often face unique basis risks arising from both the

choice of weather station where a derivative contract is written, as well as the

relationship between the hedged volume and the underlying weather index

(Manfredo and Richards 2009). We will refer to the first as spatial or geographical

basis risk while to the second as basis risk.

The exchange-traded weather derivatives eliminated the default risk while at the

same time the liquidity and the transparency increased. On the other hand, investors

who wish to trade weather derivatives outside the list of the traded cities in CME

face a spatial risk.

Geographical basis risk or spatial risks results from the distance between the

hedging company and the site at which the weather measurement takes place.

Geographical basis risk can reach critical levels in some cases (Rohrer 2004).

As the distance between a hedging company and the measurement weather station

of the weather derivative increases, the demand for weather derivative decreases

(East 2005; Edwards and Simmons 2004).

It is expected that spatial risk will always be positive. However, Woodard and

Garcia (2008) shows that weather derivatives from a variety of stations around the

hedging company can improve the hedging effectiveness. Using nonlocal

derivatives for a weather variable that are highly spatially correlated, the hedging

strategy obtained may be as good as the one obtained using locally derived

contracts (Woodard and Garcia 2008).

In many studies, energy and weather are considered highly correlated. Hence,

companies from the energy sector are extensively using weather derivatives to

A.K. Alexandridis and A.D. Zapranis, Weather Derivatives: Modeling and Pricing
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hedge both the price and volumetric risk of energy demand (Gabbi and Zanotti

2005; Henley and Peirson 1998; Pirrong and Jermakyan 2008). Moreover, weather

derivatives are used for the valuation of gas and CO2 emissions contracts (Bataller

et al. 2006; Zanotti et al. 2003; Geman 1999)

However, these two variables, energy and temperature (or any other weather

variable), are not perfectly correlated. The payoff of the weather derivative depends

on the weather index, and it is unlikely that the payoff will compensate exactly for

the money lost due to weather (Jewson et al. 2005). As a result, a risk is induced on

the hedging strategy, called basis risk. As the correlation between the weather index

and the financial loss increases, it is expected that the basis risk will decrease.

Rohrer (2004) mentions another source of basis risk, called time basis risk. In

analogy to commodity markets, Rohrer (2004) defines time basis risk as the

difference between the period of exposure and period of reference of the weather

derivatives. However, this risk can be easily overcome by using a combination of

weather derivatives with different maturities. Hence, we will not further study the

time basis risk.

However, a lack of understanding of weather basis risk has contributed to

liquidity problems (Manfredo and Richards 2009). The study and understanding

of spatial and basis risk will draw new participants to the weather market.

The rest of the chapter is organized as follows. In Sect. 8.2, the notion of the

geographical/spatial risk and how can affect the weather risk management is

presented. In Sect. 8.2.1, a spatial model for temperature is introduced. The basis

risk and its impact on the weather risk management are presented in Sect. 8.3.

Finally, in Sect. 8.4 we conclude.

8.2 Weather Risk Management

and the Geographical/Spatial Risk

It is often cited that one of the major problems facing weather-based derivatives is

that of the weather basis risk. However, only few studies take into consideration the

impact of basis risk. Geographical basis risk results from the distance between the

hedging company and the site at which the weather measurement takes place.

Although the list of contracts in CME and the locations that these contracts are

traded is constantly expanding, it is not possible to cover every location in the world.

For example, in the USA, the CME trades temperature derivatives in 24 states.

As a result, the question of weather hedging for the firms in the remaining

states arises.

Geographical basis risk can reach critical levels in some cases (Rohrer 2004).

As the distance between a hedging company and the measurement weather

station of the weather derivative increases, the demand for weather derivative

decreases (East 2005; Edwards and Simmons 2004). However, great differences
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can be observed even in small distances. Often, in regions like coastal or mountain-

ous areas, microclimates are created (Brockett et al. 2005; Manfredo and

Richards 2009).

One solution is the OTC market. In the OTC market, a firm eliminates the basis

risk. However, measurement and monitoring may be costly. At the same time, the

firm has to develop a fair price for the contract. In addition, the OTC market offers

limited liquidity. At the same time, in OTC market, there is always the danger of

default or credit risk. Finally, usually it is very hard to close your position in a

contract bought in OTC market.

Another solution to reduce the effects of geographical risk is the use of basis

derivatives. Basis derivatives are written on the difference between the indexes on

two different meteorological stations. For example, on one station that weather

derivatives are traded on CME, and one station more close to the location of the

firm that want to hedge the weather exposure (Considine 2000). Basis weather

derivatives reduce the basis risk; however, create some credit risk as basis

derivatives are OTC contracts (Brockett et al. 2005).

Trading a weather derivative in an exchange offers liquidity and fair priced

contracts. At the same time, the exchange eliminates the default risk.

In the rest of the section, we will examine the geographical/spatial risk between

five meteorological stations in Germany. Two of them are located in Berlin. The

first one in Dahlem, and the second one is in Tempelhof. The distance between

these two stations is less than 7 km. The remaining three stations are located in

Bremen, Munich, and Hannover. The distances between theses cities range from

100 km between Bremen and Hannover to 584 km between Bremen and Munich.

All distances were measured in straight lines between the cities. Hence, the spatial

risk will be examined in cases of large and small distances.

First, we examine the correlation of the temperature. In Table 8.1, the correlation

of the temperature time series in the five meteorological stations is presented. The

upper part of Table 8.1 corresponds to the original time series, while the lower part

refers to the detrended and deseasonalized temperature series. It is clear from

Table 8.1 that the correlation is very high. Even between Bremen and Munich

where the distance is 620 km, the correlation is 0.9249, while the correlation

between the two stations in Berlin is 0.9983. However, as it was shown on

the previous chapters, temperature is dominated by a strong seasonal component.

Table 8.1 Correlation of temperature (original and deseasonalized) measured in five meteorolog-

ical stations in Germany for 2000–2009

Berlin-Dahlem Bremen Munich Hannover Berlin-Tempelhof

Berlin-Dahlem 1.0000 0.9699 0.9388 0.9753 0.9983

Bremen 0.8845 1.0000 0.9249 0.9924 0.9699

Munich 0.7473 0.7141 1.0000 0.9361 0.9397

Hannover 0.9110 0.9719 0.7636 1.0000 0.9764

Berlin-Tempelhof 0.9933 0.8812 0.7501 0.9127 1.0000

The upper diagonal part of the matrix corresponds to the original time series, while the lower

diagonal part of the matrix refers to the deseasonalized time series
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It is expected that the seasonal mean will affect the correlation between the

temperature series. Hence, we next examine the correlation of the detrended and

deseasonalized temperature between the five stations. The results are presented in

the lower part of Table 8.1. In this case, the correlation between Bremen and

Munich is significantly reduced to 0.7141. On the other hand, the correlation

between the stations in Berlin and Hannover remain over 0.90. In addition, the

correlation between Berlin-Dahlem and Berlin-Tempelhof is almost unaffected

since from 0.9983 it slightly reduced to 0.9933.

One might argue that it is more interesting, from the practitioners point of view,

to examine the correlation of the temperature indices instead of the temperature

itself. Table 8.2 presents the correlation of the HDD’s for January measured in the

five meteorological stations in Germany. More precisely, the HDD’s over January

for 10 years, 2000–2009, was estimated in each city and then the correlation was

calculated. Again, close meteorological stations have higher correlation, while the

level of correlation drops as one moves farther away. However, it is clear that

regions of high correlation extend out to for hundred of kilometers. More precisely,

the correlation ranges from 0.9160 between Bremen and Munich to 0.994 between

Dahlem and Tempelhof.

The previous example shows that temperature risk can be hedged using nearby

stations to the location where the end user has temperature exposure. However, this

is not the case for the remaining weather variables. Since precipitation, snowfall,

rainfall, and wind speed are local phenomena, it is expected to have lower correla-

tion. Table 8.3 presents the correlation of precipitation between the five meteoro-

logical stations in Germany. The correlation was estimated for the years

2000–2009.

Table 8.2 Correlation of the HDD’s for January measured in five meteorological stations in

Germany for 2000–2009

Berlin-Dahlem Bremen Munich Hannover Berlin-Tempelhof

Berlin-Dahlem 1.0000 0.9762 0.9290 0.9848 0.9984

Bremen 0.9762 1.0000 0.9160 0.9932 0.9686

Munich 0.9290 0.9160 1.0000 0.9390 0.9236

Hannover 0.9848 0.9932 0.9390 1.0000 0.9783

Berlin-Tempelhof 0.9984 0.9686 0.9236 0.9783 1.0000

Table 8.3 Correlation of precipitation measured in five meteorological stations in Germany for

2000–2009

Berlin-Dahlem Bremen Munich Hannover Berlin-Tempelhof

Berlin-Dahlem 1.0000 0.3597 0.1635 0.3938 0.9178

Bremen 0.3597 1.0000 0.1375 0.6353 0.3812

Munich 0.1635 0.1375 1.0000 0.1444 0.1806

Hannover 0.3938 0.6353 0.1444 1.0000 0.3962

Berlin-Tempelhof 0.9178 0.3812 0.1806 0.3962 1.0000
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The smallest correlations are observed between distant cities as it was expected.

Hence, the correlation between Munich and Tempelhof, Dahlem, Hannover, and

Bremen is only 0.1806, 0.1635, 0.1444, and 0.1375, respectively. On the other

hand, the correlation between the two stations in Berlin is 0.9178. Even if the

distance between these two stations is only 7 km, we observe that the correlation for

precipitation is significant smaller than in the case of temperature.

Hence, our analysis so far shows that measurements from local phenomena such

as snowfall, rainfall or precipitation, and wind speed significantly differ even in

distances of few kilometers. The sum of rainfall for the first 3 months of 2000 at

Berlin-Dahlem is 175.7 mm, while it is 192.2 mm for the same period at Berlin-

Tempelhof. In other words, even if the two stations have a distance of only 7 km,

the difference of the index is about 10 %. Hence, the outcome of a hedging strategy

will provide 10 % less revenues.

Next, we will further investigate the spatial risk in temperature derivatives.

In this section, we will examine the correlation of temperature in monthly basis.

The data from the 2000 to 2009 period are grouped in monthly basis, and then the

correlation of each meteorological station to a reference station is estimated. The

reference station is the Berlin-Tempelhof station. Table 8.4 presents the monthly

temperature correlation between Berlin-Tempelhof and the remaining four stations.

Table 8.4 presents the results from the original and the deseasonalized data. A closer

inspection of Table 8.4 reveals that only the correlation between Dahlem and

Tempelhof is almost constant. On the other hand, the correlation for the remaining

stations significantly changes over different months with great variations. More-

over, comparing the results from Tables 8.1 and 8.4, we conclude that the

Table 8.4 Monthly temperature correlation between Berlin-Tempelhof and four meteorological

stations in Germany for 2000–2009

Berlin-Dahlem Bremen Munich Hannover

Original Deseason Original Deseason Original Deseason Original Deseason

Jan 0.9964 0.9965 0.7666 0.7759 0.6852 0.6871 0.8556 0.8613

Feb 0.9971 0.9968 0.7738 0.7068 0.7987 0.7872 0.8538 0.8112

Mar 0.9913 0.9943 0.7654 0.8609 0.7505 0.8110 0.7496 0.8528

Apr 0.9881 0.9865 0.4730 0.4766 0.1685 0.3222 0.6211 0.6391

May 0.9786 0.9718 0.7757 0.6701 0.6700 0.6263 0.8846 0.8350

Jul 0.9935 0.9897 0.9055 0.8728 0.4578 0.3726 0.9428 0.9245

Jun 0.9946 0.9950 0.8830 0.8863 0.7903 0.7887 0.9318 0.9344

Aug 0.9860 0.9853 0.6996 0.6743 0.7743 0.7775 0.8082 0.8008

Sep 0.9769 0.9650 0.8037 0.6919 0.7207 0.6566 0.8801 0.8322

Oct 0.9958 0.9942 0.8411 0.8247 0.8943 0.8368 0.9279 0.9248

Nov 0.9970 0.9984 0.7308 0.8650 0.6891 0.8220 0.7888 0.8903

Dec 0.9985 0.9984 0.8872 0.8730 0.8056 0.7951 0.9377 0.9294

Mean 0.9912 0.9893 0.7755 0.7649 0.6838 0.6903 0.8485 0.8530

StD 0.0073 0.0108 0.1150 0.1243 0.1941 0.1739 0.0949 0.0827

Original: Original temperature series

Deseason: Deseasonalized temperature series

StD: Standard deviation
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correlation is significantly smaller when it is estimated in monthly basis rather than

in the case of estimating the correlation for the whole 10-year period.

Since temperature derivatives are usually written on a period of a month or a

season, an analysis in monthly basis is more of an interest since estimating the

correlation for the whole period may provide an overestimation of the correlation.

Hence, the results from Table 8.4 indicate that spatial risk can be significant and

difficult to estimate even in the case of temperature.

Finally, the correlation between the precipitation and the temperature is exam-

ined. Table 8.5 presents the correlation between precipitation and temperature for

the five meteorological stations in Germany for the period 2000–2009. Intuitively, a

negative correlation between these two variables is expected. However, the results

presented in Table 8.5 indicate a very low positive correlation between these two

weather variables.

It is clear that for an effective hedging strategy, a hedger will buy a weather

derivate with the smallest geographical basis risk (Manfredo and Richards 2009).

Our previous analysis indicates that the contracts written on a meteorological that is

closest to the firm is the best choice. However, in some cases, a weather derivative

written on multiple nearby stations is more appropriate (Martin et al. 2001).

8.2.1 A Spatial Model for Temperature

The previous example shows that temperature risk can be hedged using nearby

stations to the location where the end user has temperature exposure. On the other

hand, precipitation is much localized, and there is very little correlation even

between neighboring cities. Hence, in this section, we focus on building a spatial

model for temperature. The new model is a modification of the model presented in

Chap. 5.

First, we assume that the temperature on each station is given by the model

proposed in Chap. 5. Hence, at location i, the temperature time series at time t is

denoted by TiðtÞ. Hence, the mean reverting O–U stochastic model for temperature

at location i is given by

Table 8.5 Correlation between the temperature and the precipitation in five meteorological

stations in Germany for the period 2000–2009

Precipitation

Temperature

Berlin-Dahlem Bremen Munich Hannover Berlin-Tempelhof

Berlin-Dahlem 0.0707 0.0677 0.0877 0.0699 0.0687

Bremen 0.0869 0.0687 0.0960 0.0818 0.0839

Munich 0.1087 0.0827 0.0939 0.0848 0.1063

Hannover 0.0505 0.0375 0.0646 0.0394 0.0484

Berlin-Tempelhof 0.0615 0.0588 0.0810 0.0626 0.0587
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dTiðtÞ ¼ dSiðtÞ þ kiðtÞ TiðtÞ � SiðtÞ� �
dtþ siðtÞdBiðtÞ; (8.1)

where SiðtÞ is the seasonal mean of temperature at meteorological station i and the

seasonal variance is denoted by s2;i. Both SiðtÞ and s2;i are the same as presented in

Chap. 5. For simplicity, we assume that BiðtÞ is BM process. However, as it was

presented in the Chap. 5, there are cases where the hyperbolic distribution provides

a better fitting to the residuals. In such cases, theBiðtÞ is replaced by a Lévy motion-

driven process. We also assume thatBiðtÞ is independent in time, and the correlation

between two difference locations i; j is given by

rði; jÞ ¼ corr BiðtÞ;BjðtÞ� �
; (8.2)

for all i; j 2 D. We assume that the cross-correlation in time and space is equal to

zero.

The estimating procedure is similar as the one described in Chap. 5 where only

one location was considered. The linear trends and the seasonal mean can be

estimated simultaneously for all locations. Next, as in the case of only one location,

the autoregressive models can be estimated. Finally, the seasonal variance is

estimated from the data.

8.3 Weather Risk Management and the Basis Risk

It is estimated that nearly 30 % of the US economy and 70 % of the US companies

are affected by weather (CME 2005). More precisely, agriculture, construction,

energy, entertainment, governments, insurance, manufacturing, offshore, retailing,

and transportation are sectors of the economy that are heavily affected by the

weather. Companies from these sectors can use weather derivatives to hedge

against weather exposure. However, the quantification of the weather impact in

each company must be estimated carefully in order to have an effective hedging

strategy.

The concept of basis is less clear when weather derivatives are used to hedge

volumetric risks (e.g., crop yields) associated with unfavorable weather conditions

(Rohrer 2004; Manfredo and Richards 2009). The payoff of a weather derivative

depends on a weather index and not on the actual amount of money lost due to

weather; it is unlikely that the payoff will compensate exactly for the money lost.

The potential for such a difference is known as basis risk. In general, basis risk is

smallest when the financial loss is highly correlated with the weather and when

contracts of the optimum size and structure, based on the optimum location, are

used for hedging. For a company deciding how to hedge its risk, there is usually a

trade-off between basis risk and the price of the weather hedge (Jewson et al. 2005).

It is ultimately the behavior of the basis that determines the effectiveness of a hedge

(Manfredo and Richards 2009). In practice, it may be difficult to find a counterpart
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willing to offer the index or the combination of indexes best suited for the exposure

to be hedged. Moreover, in most cases, there is a residual volume risk not related to

weather.

Similarly, in agriculture sector, crop yields decrease due to unfavorable temper-

ature and rainfall conditions during the critical growing periods (Manfredo and

Richards 2009; Turvey 2001). It is clear that the correlation between the weather

index and the yield is important. For example, weather risk can affect both the

quantity and the quality of the grapes destined for winemaking (Zara 2010). The

correlation itself depends on the definition of the index and the considered product.

Second, the quantification of the weather–yield relationship is subject to estimation

errors (Odening and Musshoff 2007). Temperature and precipitation are among the

most important factors contributing to yield variability. However, establishing a

link between yields and weather is not a simple task. Part of the problems stems

from the tendency of this relationship to be localized and crop dependent (Vedenov

and Barnett 2004).

In the case of hedging crop yields with weather derivatives, basis risk not only

depends on the spatial risk but also on the relationship between yields and weather

conditions. This relationship is not always linear (Manfredo and Richards 2009).

In Turvey (2001), a simple model that relates rainfall and crop yield is presented.

The model is based on the Cobb-Douglas production function (Cobb and Douglas

1928). Hence, the crop yield is given by

Y ¼ ARaHb; (8.3)

where Y is the crop yield, R is cumulative daily rainfall during the critical growing

period, H is the growing degree days – similar to HDDs but with different base

temperature – and a and b are the output elasticities of rainfall and growing

degree days.

Previous studies have shown that electricity consumption is mostly affected by

temperature (Engle et al. 1992; Li and Sailor 1995; Sailor and Munoz 1997; Valor

et al. 2001; Henley and Peirson 1998; Peirson and Henley 1994; Pirrong and

Jermakyan 2008; Stoft 2002; Zanotti et al. 2003). In Valor et al. (2001) and

Moral-Carcedoa and Vicens-Otero (2005), the daily air temperature and electricity

load in Spain was investigated. In Engle et al. (1986) and (1992), temperature was

used as an explanatory variable to model electricity consumption.

Hence, an energy producer can hedge the profit of the electricity consumption

using temperature indexes. For example, a simple model is given by

Y ¼ aþ bPþ cT þ e; (8.4)

where Y is the profit of the energy company for a month, P is the average energy

prices for the month, T corresponds to the relevant temperature index, for example,

HDDs or CDDs for the month, and e is the error term.
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A similar but more advance framework is proposed by Engle et al. (1992) and

Pardo et al. (2002). This framework incorporates various dummy variables to model

the day and the monthly seasonality of the electricity demand. Hence, the electricity

consumption was modeled by

Et ¼ c1 þ a1tþ b1HDDt þ g1CDDt

þ
X7
i¼2

d1iWit þ o1Ht þ k1Ht�1 þ
X12
j¼2

l1jMjt þ e1t: (8.5)

The electricity demand depends on CDDs and HDDs. Moreover, six dummy

variables are introduced to capture the day effect of the electricity consumption.

The index i represents all days in the week except the base day Monday, andWit is 1

if t belongs to i and 0 otherwise. The index j indicates the month, and Mjt is 1 if t
belongs to j and 0 otherwise, and January is the base month. The parameterHt is 1 if t
is a holiday and zero otherwise. Similarly, Ht�1 is 1 if t corresponds to a day

following a holiday and 0 otherwise.

Figure 8.1 shows the relationship between the electricity consumption and the

temperature in Copenhagen. Similarly, Fig. 8.2 shows the relationship between the

electricity consumption and the HDDs in Copenhagen. It is clear that these two

variables are highly correlated. The correlation between the consumption and the

temperature or the HDD’s in Copenhagen is estimated to be �0.83 and 0.84,

respectively. Hence, an energy provider can use weather derivatives to hedge a

significant part of its volumetric risk. This volumetric risk arises from unfavor

Fig. 8.1 Electricity consumption and temperature in Copenhagen

8.3 Weather Risk Management and the Basis Risk 211



weather conditions. In the case of an energy provider, both the price and the volume

of sales are affected. A closer inspection of Figs. 8.1 and 8.2 reveals that the lower

the temperature, the more electricity is consumed for heating. On the other hand, as

Fig. 8.2 Electricity consumption and HDD in Copenhagen

Fig. 8.3 Scatter plot between electricity consumption and temperature in Copenhagen
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the temperature increases beyond a “normal comfortable” level, the electricity

consumption starts to increase again. In other words, electricity consumption

increases at both low and high temperatures (Engle et al. 1986). Observing

Fig. 8.3, we conclude that the electricity consumption is minimized when the

temperature is between 17 �C and 20 �C. This is further confirmed by Fig. 8.2

where the electricity consumption and HDDs are plotted. It is clear that the

electricity consumption almost perfectly follows the HDDs.

8.4 Conclusions

In this chapter, the concept of basis risk was presented in the context of weather

derivatives. Unlike in the case of classical financial markets, the notion of basis risk

is different for weather derivatives. Risk managers often face unique basis risks

arising from both the choice of weather station where a derivative contract is

written, as well as the relationship between the hedged volume and the underlying

weather index. The first one is referred as spatial or geographical basis risk while to

the second as basis risk.

So far, basis risk has not sufficiently studied. Hence, investors who lack of

understanding of weather basis risk avoid the use of weather derivative for hedging

purposes. As a result, basis risk contributes to liquidity problems in the weather

market (Manfredo and Richards 2009).

In our analysis, first, the correlation of temperature and precipitation between

five cities in Germany was studied. The correlation coefficients for temperature

between the five German cities are very high even in the cases of distant cities.

Similarly, the correlation coefficients for temperature-based indexes are also high.

Next, we examined the changes in the correlation coefficients in monthly basis. Our

results indicate that the correlation coefficients exhibit significant variation over the

months. Hence, one must be very careful when estimating the basis risk for his

hedging strategy.

Next, the correlation of precipitation levels between various meteorological

stations was examined. Our results indicate that, unlike temperature, precipitation

is localized, and the correlations coefficients are very low and significantly differ

even when the distance is very small. Finally, the correlation between precipitation

and temperature was examined. We found that the correlation coefficients are very

small. Finally, a spatial model for temperature was presented. The new model is a

system of stochastic equations. Each equation represents each meteorological

station. The parameters of the system of equations are simultaneously estimated.

In the second part of the chapter, the basis risk between temperature and

electricity was estimated. Our results indicate that temperature and electricity are

highly correlated. Also, the electricity consumption increases when we have a cold

winter or a hot summer. In other words, the electricity consumption is smaller when

the temperature is between 17� and 20�.
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Chapter 9

Pricing the Power of Wind

9.1 Introduction

In this book, the various aspects of weather derivative have been presented. So far,

we have focused on modeling and pricing temperature derivatives. In this chapter,

we focus on wind derivatives. A model for the dynamics of the wind-generating

process using a nonparametric nonlinear wavelet network is presented. Moreover,

the proposed methodology is compared against alternative methods, proposed in

prior studies, and the pricing equations for wind futures are provided.

The notional value of the traded wind-linked securities is around $36 million

indicating a large and growing market (WRMA 2009). However, after the close of

the US Future Exchange, wind derivatives are traded in the Chicago Climate

Futures Exchange and in the OTC. The demand from these derivatives exists.

However, investors hesitate to enter into wind contracts. The main reasons of the

slow growth of the wind market compared to temperature contracts are the diffi-

culty in accurately modeling wind and the challenge to find a reliable model for

valuing related contracts. As a result, there is a lack of reliable valuation framework

that makes financial institutions reluctant to quote prices over these derivatives.

The aim of this chapter is to model and price wind derivatives. Wind derivatives

are standardized products that depend only on the daily average wind speed

measured by a predefined meteorological station over a specified period and can

be used by wind (and weather in general)-sensitive business such as wind farms,

transportation companies, construction companies, and theme parks to name a few.

The financial contracts that are traded are based on the simple daily average wind

speed index, and this is the reason that we choose to model only the dynamics of the

daily average wind speeds. The revenues of each company have a unique depen-

dence and sensitivity to wind speeds. Although wind derivatives and weather

derivatives can hedge a significant part of the weather risk of the company always,

some basis risk will still exist which must be hedged from each company separately.

This can be done either by defining a more complex wind index or by taking an

additional hedging position.

A.K. Alexandridis and A.D. Zapranis, Weather Derivatives: Modeling and Pricing
Weather-Related Risk, DOI 10.1007/978-1-4614-6071-8_9,
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Wind is free, renewable, and environmentally friendly source of energy

(Billinton et al. 1996). While the demand for electricity is closely related to the

temperature, the electricity produced by a wind farm is dependent on the wind

conditions. The risk exposure of the wind farm depends on the wind speed and the

wind direction and in some cases on the wind duration of the wind speed at certain

level. However, modern wind turbines include mechanisms that allow turbines to

rotate on in the appropriate wind direction (Caporin and Pres 2010). However, the

underlying wind indices do not account for the duration of the wind speed at certain

level but rather, usually, measure the average daily wind speed. Hence, the param-

eter of the duration of the wind speed at certain level is not considered in our daily

model. Hence, the risk exposure of a wind farm can be analyzed by quantifying only

the wind speed. On the other hand, companies like wind farms that its revenues

depend on the duration effect can use an additional hedging strategy that includes

this parameter. This can be done by introducing a second index that measures the

duration. A similar index for temperature is the frost day index.

Many different approaches have been proposed so far for modeling the dynamics

of the wind speed process. The most common is the generalized ARMA approach.

There have been a number of studies on the use of linear ARMAmodels to simulate

and forecast wind speed in various locations (Saltyte-Benth and Benth 2010;

Billinton et al. 1996; Caporin and Pres 2010; Castino et al. 1998; Daniel and

Chen 1991; Huang and Chalabi 1995; Kamal and Jafri 1997; Martin et al. 1999;

Tol 1997; Torres et al. 2005). In Kavasseri and Seetharaman (2009), a more

sophisticated ARFIMA model was used. Most of these studies did not consider in

detail the accuracy of the wind speed forecasts (Huang and Chalabi 1995). On the

other hand, Ailliot et al. (2006) apply an AR with time-varying coefficients to

describe the space–time evolution of wind fields. In Benth and Saltyte-Benth

(2009), a stochastic process called CAR model is introduced in order to model

and forecast daily wind speeds. Finally, in Nielsen et al. (2006), various statistical

methods were presented for short-term wind speed forecasting. Sfetsos (2002)

argues about the use of linear or meteorological models since their prediction

error is not significantly lower than the elementary persistent method. Alternatively,

some studies use space–state models to simultaneously fit the speed and the

direction of the wind (Castino et al. 1998; Cripps et al. 2005; Haslett and Raftery

1989; Martin et al. 1999; Tolman and Booij 1998; Tuller and Brett 1984).

Alternatively to the linear models, artificial intelligence was applied in wind speed

modeling and forecasting. In Alexiadis et al. (1998), Barbounis et al. (2006), Beyer

et al. (1994), More and Deo (2003), Sfetsos (2000), Mohandes et al. (1998), and

Sfetsos (2002), neural networks were applied in order to model the dynamics of the

wind speed process. In Mohandes et al. (2004), support vector machines were used

while in Pinson and Kariniotakis (2003), and fuzzy neural networks were applied.

Depending on the application, wind modeling is based on hourly (Ailliot et al.

2006; Castino et al. 1998; Daniel and Chen 1991; Kamal and Jafri 1997; Martin

et al. 1999; Sfetsos 2000, 2002; Torres et al. 2005; Yamada 2008), daily (Benth and

Saltyte-Benth 2009; Billinton et al. 1996; Caporin and Pres 2010; Huang and

Chalabi 1995; More and Deo 2003; Tol 1997), weekly, or monthly basis (More
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and Deo 2003). When the objective is to hedge against electricity demand and

production, hourly modeling is used, while for weather derivative pricing, the daily

method is used. More rarely, weekly or monthly modeling is used in order to

estimate monthly wind indexes. Since we want to focus on weather derivative

pricing, the daily modeling approach is followed; however, the proposed method

can be easily adapted in hourly modeling too.

Wind speed modeling is much more complicated than temperature modeling

since wind has a direction and is greatly affected by the surrounding terrain such as

building and trees (Jewson et al. 2005). However, in Benth and Saltyte-Benth

(2009), it is shown that wind speed dynamics share a lot of common characteristics

with the dynamics of temperature derivatives as it was found on Benth and Saltyte-

Benth (2007), Zapranis and Alexandridis (2008, 2009, 2011), and Alexandridis

(2010). In this context, we use a mean-reverting Ornstein–Uhlenbeck stochastic

process to model the dynamics of the wind speed dynamics where the innovations

are driven by a Brownian motion. The statistical analysis reveals seasonality in the

mean and variance. In addition, we use a novel approach to model the autocorrela-

tion of the wind speeds. More precisely, a WN is applied in order to capture

accurately the autoregressive characteristics of the wind speeds.

The evaluation of the proposed methodology against alternative modeling

procedures proposed in prior studies indicates that WNs can accurately model

and forecast the dynamics and the evolution of the speed of the wind. The perfor-

mance of each method was evaluated in-sample as well as out-of-sample and for

different time periods.

The rest of the chapter is organized as follows: in Sect. 9.2, a statistical analysis

of the wind speed dynamics is presented. In Sects. 9.2.1 and 9.2.2, a linear ARMA

model and a nonlinear nonparametric WN is applied, respectively. The evaluation

of the studied models is presented in Sect. 9.2.3. In Sect. 9.3, we derive the pricing

formulas for future derivatives written on the wind index. Finally, in Sect. 9.4, we

conclude.

9.2 Modeling the Daily Average Wind Speed

In this section, we derive empirically the characteristics of the daily average wind

speed (DAWS) dynamics in New York, USA. The data were collected from

NOAA1 and correspond to DAWSs. The wind speed is measured in 0.1 knots.

The measurement period is between 1st January 1988 and 28th February 2008. The

first 20 years are used for the estimation of the parameters, while the remaining

2 months are used for the evaluation of the performance of the proposed model.

In order for each year to have the same number of observations, the 29th of February

1 http://www.noaa.gov
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is removed from the data resulting to 7,359 data points. The time series is complete

without any missing values.

In Fig. 9.1, the DAWSs for the first 20 years are presented. A closer inspection of

Fig. 9.1 reveals seasonality. The descriptive statistics of the in-sample data are

presented in Table 9.1. The values of the data are always positive and range from

1.8 to 32.8 with mean around 9.91. The descriptive statistics of the DAWSs indicate

that there is a strong positive kurtosis and skewness, while the normal hypothesis is

rejected based on the Jarque–Bera statistic. The same conclusion can be reached

observing the first part of Fig. 9.2 where the histogram of the DAWSs is represented.

It is clear that the density of the DAWSs has positive skewness and excess kurtosis.

Hence, the distribution of DAWSs deviates significantly from the normal, and it is

not symmetrical. In literature, theWeibull or Rayleigh (which is a special case of the

Weibull) distributions were proposed (Benth and Saltyte-Benth 2009; Saltyte-Benth

and Benth 2010; Brown et al. 1984; Celik 2004; Daniel and Chen 1991; Garcia et al.

1998; Justus et al. 1978; Kavak Akpinar and Akpinar 2005; Nfaoui et al. 1996;

Torres et al. 2005; Tuller and Brett 1984). In addition, some studies propose the use

of the lognormal distribution (Benth and Saltyte-Benth 2009; Garcia et al. 1998) or

the Chi-square (Dorvlo 2002). Finally, in Jaramillo and Borja (2004), a bimodal

Weibull andWeibull distribution are used. However, empirical studies favor the use

of the Weibull distribution (Celik 2004; Tuller and Brett 1984).

Fig. 9.1 Daily average wind speed for New York

Table 9.1 Descriptive statistics of the wind in New York

Mean Median Max Min St. dev. Skew Kurt J–B p value

Original 9.91 9.3 32.8 1.8 3.38 0.96 4.24 1595.41 0

Transformed 2.28 2.3 3.6 0.6 0.34 0.00 3.04 0.51 1

J–B Jarque–Bera statistic, P value p values of the J–B statistic
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A closer inspection of part (a) of Fig. 9.2 reveals that the DAWSs in New York

follow a Weibull distribution with scale parameter l ¼ 11:07 and shape parameter

k ¼ 3:04. Following Benth and Saltyte-Benth (2009), Brown et al. (1984), Daniel

and Chen (1991), in order to symmetrize the data, the Box–Cox transform is

applied. The Box–Cox transformation is given by

WðlÞ ¼
Wl � 1

l
l 6¼ 0

lnðWÞ l ¼ 0

8<
: (9.1)

whereWðlÞ is the transformed data. The parameter l is estimated by maximizing the

log-likelihood function. Note that the log transform is a special case of

the Box–Cox transform with l ¼ 0. The optimal l of the Box–Cox transform for

the DAWSs in New York is estimated to be 0.014. In the second part of Fig. 9.2, the

histogram of the transformed data can be found, while the second row on Table 9.1

shows the descriptive statistics of the transformed data.

The DAWSs exhibit a clear seasonal pattern which is preserved in the

transformed data. The same conclusion can be reached by examining the ACF of

the DAWS in the first part of Fig. 9.3. In Benth and Saltyte-Benth (2009), Saltyte-

Benth and Benth (2010), and Caporin and Pres (2010), the seasonality was captured

by series of sinusoids. As in Zapranis and Alexandridis (2008, 2009, 2011) and as it

was presented in the previous chapters for the case of temperature process, the

seasonal effects are modeled by a truncated Fourier series given by

SðtÞ ¼ a0 þ b0tþ
XI1
i¼1

ai sin 2pi t� fið Þ 365=ð Þ þ
XJ1
j¼1

bj sin 2pj t� gj
� �

365=
� �

:

(9.2)

Fig. 9.2 Histogram of the (a) original and (b) Box–Cox transformed data
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In addition, we examine the data for a linear trend representing the global warming

or the urbanization around the meteorological station. First, we quantify the trend

by fitting a linear regression to the DAWS data. The regression is statistically

significant with intercept a0 ¼ 2:3632 and b0 ¼ �0:000024 indicating a slight

decrease in the DAWSs. Next, the seasonal periodicities are removed from

the detrended data. The remaining statistically significant parameters of (9.2)

with I1 ¼ J1 ¼ 1 are presented in Table 9.2. As it is shown on the second part of

Fig. 9.3, the seasonal mean was successfully removed. The same conclusion was

reached in previous studies for daily models for both temperature and wind

(Alexandridis 2010; Zapranis and Alexandridis 2008, 2009, 2011; Benth et al.

2009; Benth and Saltyte-Benth 2005, 2007, 2009; Benth et al. 2007).

9.2.1 The Linear ARMA Model

In literature, various methods for studying the statistical characteristics of the wind

speed, in daily or hourly measurements, were proposed. However, the majority of

the studies utilize variations of the general ARMA model (Ailliot et al. 2006;

Billinton et al. 1996; Brett and Tuller 1991; Daniel and Chen 1991; Huang and

Chalabi 1995; Kamal and Jafri 1997; Lei et al. 2009; Nfaoui et al. 1996; Rehman

and Halawani 1994; Torres et al. 2005). In this chapter, we will first estimate the

dynamics of the detrended and deseasonalized DAWSs process using a general

ARMA model, and then we will compare our results with a WN.

Fig. 9.3 The autocorrelation function of the transformed DAWSs in New York (a) before and (b)

after removing the seasonal mean

Table 9.2 Estimated parameters of the seasonal component

a0 b0 a1 f1 b1 g1

2.3632 �0.000024 0.0144 827.81 0.1537 28.9350
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We define the detrended and deseasonalized DAWS as

~W
ðlÞðtÞ ¼ WðlÞðtÞ � SðtÞ: (9.3)

The dynamics of ~W
ðlÞðtÞ are modeled by an O–U stochastic process:

d ~W
ðlÞðtÞ ¼ k ~W

ðlÞðtÞdtþ sðtÞdBt: (9.4)

First, in order to select the correct ARMA model, we examine the ACF of the

detrended and deseasonalized DAWS. A closer inspection of the second part of

Fig. 9.3 reveals that the 1st, 2nd, and the 4th lags are significant. On the other hand,

by examining the PACF in Fig. 9.4, we conclude that the first four lags are

necessary to model the autoregressive effects of the wind speed dynamics.

In order to find the correct model, we estimate the log-likelihood function (LLF)

and the Akaike information criterion (AIC). Consistent with the PACF, both criteria

suggest that an AR (4) model is adequate for modeling the wind process since they

were minimized when a model with four lags was used. The estimated parameters

and the corresponding p values are presented in Table 9.3. It is clear that the three

first parameters are statistically very significant since their p value is less than 0.05.

Fig. 9.4 The partial autocorrelation function of the detrended and deseasonalized DAWS

in New York
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The parameter of the 4th lag is statistically significant with p value 0.0657. The AIC
for this model is 0.46852, while the LLF is �1,705.14.

Observing the residuals of the AR model in the first part of Fig. 9.5, we conclude

that the autocorrelation was successfully removed. However, the ACF of the

squared residuals indicates a strong seasonal effect in the variance of the wind

speed as it is shown in Fig. 9.6. The same conclusion was reached in previous

studies for daily models for both temperature and wind (Alexandridis 2010; Benth

et al. 2009; Benth and Saltyte-Benth 2005, 2007, 2009; Benth et al. 2007; Zapranis

and Alexandridis 2008, 2009, 2011). Following the similar procedure that was

described in the previous chapters for the temperature, we model the seasonal

variance with a truncated Fourier series:

s2ðtÞ ¼ c0 þ
XI2
i¼1

ci sin 2pit 365=ð Þ þ
XJ2
j¼1

dj sin 2pjt 365=ð Þ: (9.5)

Fig. 9.5 Autocorrelation function of the residuals of (a) the linear model and (b) the WN

Table 9.3 Estimated parameters of the linear AR (4) model

Parameter AR (1) AR (2) AR (3) AR (4)

Value 0.3617 �0.0999 0.0274 0.0216

P value 0.0000 0.0000 0.0279 0.0657

Fig. 9.6 Autocorrelation function of the squared residuals of (a) the linear model and (b) the WN
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Note that we assume that the seasonal variance is periodic and repeated every

year, that is,s2ðtþ 365Þ ¼ s2ðtÞwhere t ¼ 1; . . . ; 7359. The empirical and the fitted

seasonal variances are presented in Fig. 9.7, while in Table 9.4, the estimated

parameters of (9.5) are presented. Non-surprisingly, the variance exhibits

the same characteristics as in the case of temperature (Alexandridis 2010;

Zapranis and Alexandridis 2008; Benth and Saltyte-Benth 2007). More precisely,

the seasonal variance is higher in the winter and early summer, while it reaches its

lower values during the summer period.

Finally, the descriptive statistics of the final residuals are examined. A closer

inspection of Table 9.5 shows that the autocorrelation has successfully removed as

indicated by the Ljung–Box Q-statistic. In addition, the distribution of the residuals

is very close to the normal distribution as it is shown on the first part of Fig. 9.8;

however, small negative skewness exists. More precisely, the residuals have

mean 0 and standard deviation of 1. In addition, the kurtosis is 3.03 and the skewness

is �0.09.

9.2.2 Wavelet Networks for Wind Speed Modeling

In this section, WNs are used in the transformed, detrended, and deseasonalized

wind speed data in order to model the daily dynamics of wind speeds in New York.

Fig. 9.7 Empirical and fitted seasonal variance of (a) the linear model and (b) the WN

Table 9.4 Estimated parameters of the seasonal variance in the case of the linear model

c0 c1 c2 c3 c4 d1 d2 d3 d4

0.0932 0.000032 �0.0041 0.0015 �0.0028 0.0358 �0.0025 �0.0048 �0.0054

Table 9.5 Descriptive statistics of the residuals for the linear AR (4) model

Var Mean

St.

dev. Max Min Skew Kur JB

P
value KS

P
value LBQ

P

value

Noise 0 1 3.32 �5.03 �0.09 3.03 10.097 0.007 1.033 0.2349 8.383 0.989

St. dev. standard deviation, JB Jarque–Bera statistic, KS Kolmogorov–Smirnov statistic, LBQ
Ljung–Box Q-statistic
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Motivated by the waveform of the data, we expect a wavelet function to better

fit the wind speed. In addition, it is expected that the nonlinear form of the WN will

provide more accurate representation of the dynamics of the wind speed process

both in-sample and out-of-sample.

The structure and the mathematical expressions of a WN are presented analyti-

cally in Appendices A and B, while in Alexandridis (2010), detailed explanation of

how to use WNs in model identification problems is described. Since WNs are

nonlinear tools, criteria like AIC or LLF cannot be used. Hence, in this section,

WNs will be used in order to select the significant lags, to select the appropriate

network structure, to train a WN in order to learn the dynamics of the wind speeds,

and finally, to forecast the future evolution of the wind speeds.

The algorithm developed by Alexandridis (2010) simultaneously estimates the

correct number of lags that must be used in order to model the wind speed dynamics

and the architecture of the WN by using a recurrent algorithm. An illustration of the

model identification algorithm is presented in Appendix A.

Our backward elimination algorithm examines the contribution of each available

explanatory variable to the predictive power of the WN. First, the prediction risk of

the WN is estimated as well as the statistical significance of each variable. If a

variable is statistically insignificant, it is removed from the training set, and the

prediction risk and the new statistical measures are estimated. The algorithm stops

if all explanatory variables are significant. Hence, in each step of our algorithm, the

variable with the larger p value greater than 0.1 will be removed from the training

set of our model. After each variable removal, a new architecture of the WN will be

selected and a new WN will be trained. However, the correctness of the decision of

removing a variable must be examined. This can be done either by examining the

prediction risk or the �R
2
. If the new prediction risk is smaller than the new prediction

risk multiplied by a threshold, then the decision of removing the variable was

correct. If the prediction risk increased more than the allowed threshold, then the

variable was reintroduced back to the model. We set this threshold at 5%. In this

study, the selected statistical measure is the SBP proposed by Moody and Utans

(1992). Previous analysis in Alexandridis (2010) indicates that the SBP fitness

Fig. 9.8 Empirical and fitted normal distribution of the final residuals of the WN
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criterion was found to significantly outperform alternative criteria in the variable

selection algorithm. The SBP quantifies the effect on the empirical loss of replacing

a variable by its mean. Analytical description of the SBP is given in Alexandridis

(2010), Zapranis and Refenes (1999), and Moody and Utans (1992). In each step,

the SBP and the corresponding p value are calculated. For analytical explanation of
each step of the algorithm, we refer to Alexandridis (2010).

The proposed variable selection framework will be applied on the transformed,

detrended, and deseasonalized wind speeds in New York in order to select the

length of the lag series. The target values of the WN are the DAWSs. The

explanatory variables are lagged versions of the target variable. The relevance of

a variable to the model is quantified by the SBP criterion which was introduced in

Moody and Utans (1992). Initially, the training set contains the dependent variable

and seven lags. The analysis in the previous section indicates that a training set with

seven lags will provide all the necessary information of the ACF of the detrended

and deseasonalized DAWSs. Hence, the training set consists of 7 inputs, 1 output,

and 7,293 training pairs.

Table 9.6 summarizes the results of the model identification algorithm for New

York. Both the model selection and the variable selection algorithms are included in

Table 9.6. The algorithm concluded in four steps and the final model contains only

three variables, that is, three lags. The prediction risk for the reduced model is

0.0937 while for the original model was 0.0938. On the other hand, the empirical

loss slightly increased from 0.0467 for the initial model to 0.0468 for the reduced

model indicating that the explained variability (unadjusted) slightly decreased.

Finally, the complexity of the network structure and number of parameters were

significantly reduced in the final model. The initial model needed one hidden unit

(HU) and seven inputs. Hence, 23 parameters were adjusted during the training

phase. Hence, the ratio of the number of training pairs n to the number of

parameters p was 317.4. In the final model, only two HU and three inputs were

used. Hence, only 18 parameters were adjusted during the training phase, and the

ratio of the number of training pairs n to the number of parameters p was 405.6.

The proposed algorithm suggests that a WN needs only three lags to extract the

autocorrelation from the data while the linear model needed four lags. A closer

inspection of Table 9.6 reveals that the WN with three and four lags have the same

Table 9.6 Variable selection with backward elimination in New York

Step

Variable to

remove (lag)

Variable to

enter (lag)

Variables

in model

Hidden units

(parameters)

N/P
ratio

Empirical

loss

Prediction

risk

– 7 1 (23) 317.4 0.0467 0.0938

1 7 – 6 1 (20) 365.0 0.0467 0.0940

2 5 – 5 1 (17) 429.4 0.0467 0.0932

3 6 – 4 2 (23) 317.4 0.0467 0.0938

4 4 - 3 2 (18) 405.6 0.0468 0.0937

The algorithm concluded in four steps. In each step, the following are presented: which variable is

removed, the number of hidden units for the particular set of input variables and the parameters

used in the wavelet network, the ratio between the parameters and the training patterns, the

empirical loss, and the prediction risk
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predictive power in-sample and out-of-sample. Hence, we chose the simpler model.

Our model is similar to an AR (3) model with time-varying parameters.

Examining the second part of Fig. 9.5, we conclude that the autocorrelation was

successfully removed from the data; however, the seasonal autocorrelation in the

squared residuals is still present as it is shown in Fig. 9.6. We will remove the

seasonal autocorrelation using (9.5). The estimated parameters are presented in

Table 9.7, and as it was expected, their values are similar to those of the case of the

linear model. In Fig. 9.7, the empirical and the fitted seasonal variance is presented.

Again, the same conclusions are reached for the seasonal variance. The variance is

higher at winter period, while it reaches its minimum during the summer period.

Finally, examining the final residuals of the WN model, we observe that the

distribution of the residuals is very close to the normal distribution as it is shown

in Fig. 9.8, while the autocorrelation was successfully removed from the data.

In addition, we observe an improvement in the distributional statistics in contrast

to the case of the linear model. The distributional statistics of the residuals are

presented in Table 9.8.

Concluding, the distributional statistics of the residuals indicate that in

in-sample, the two models can accurately represent the dynamics of the DAWSs;

however, an improvement is evident when a nonlinear nonparametric WN is used.

9.2.3 Forecasting Daily Average Wind Speeds

In this section, our proposed model will be validated out-of-sample. In addition, the

performance of our model will be tested against two models, first, against the linear

model previously described and, second, against the simple persistent method

usually referred as benchmark. The linear model is the AR (4) model described in

the previous section. The persistent method assumes that today’s and tomorrow’s

DAWSs will be equal, that is, W�ðtþ 1Þ ¼ WðtÞ where the W� indicates the

forecasted value.

Table 9.7 Estimated parameters of the seasonal variance in the case of the WN

c0 c1 c2 c3 c4 d1 d2 d3 d4

0.0935 �0.000020 �0.0034 0.0014 �0.0026 0.0353 �0.0016 �.0042 �0.0052

Table 9.8 Descriptive statistics of the residuals for the WN model

Var Mean

St.

dev Max Min Skew Kur. JB

P
value KS

P
value LBQ

P
value

noise 0 1 3.32 �4.91 �0.08 3.04 8.84 0.0043 0.927 0.3544 13.437 0.858

St. dev. standard deviation, JB Jarque–Bera statistic, KS Kolmogorov–Smirnov statistic, LBQ
Ljung–Box Q-statistic
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The three models will be used for forecasting DAWSs for two different periods.

Usually, wind derivatives are written for a period of a month. Hence, DAWSs for 1

and 2 months will be forecasted. The out-of-sample dataset correspond to the period

from January 1 to February 28, 2008, and were not used for the estimation of the

linear and nonlinear models. Note that our previous analysis reveals that the

variance is higher in the winter period indicating that it is more difficult to forecast

accurately DAWS for these two months.

In Table 9.9, the performance of the three methods when the forecast window is

1 month is presented. Various error criteria are estimated like the mean, median,

and max. AE; the mean square error (MSE); the POCID; and the IPOCID. As it is

shown on Table 9.9, our proposed method outperforms both the persistent and the

AR (4) model. The AR (4) model performs better than the naı̈ve persistent method;

however, all error criteria are improved when a nonlinear WN is used. The MSE is

16.3848 for the persistent method, 10.6127 for the AR (4) model, and 10.3309 for

the WN. In addition, our model can predict more accurately the movement of the

wind speed since the POCID is 80% for the WN and the AR (4) models, while it is

only 47% for the persistent method. Moreover, the IPOCID is 37% for the proposed

model, while it is only 33% for the other two methods.

In order to compare our model directly with the linear method, we estimate a

linear AR (3) model. However, our proposed methodology still outperforms the

linear method.

Next, the three forecasting methods are evaluated in 2 months day-ahead

forecasts. The results are similar and presented in Table 9.10. The proposed WN

outperforms the other two methods. Only the max. AE and the POCID are slightly

smaller when the AR (4) model is used. However, the IPOCID is 38% for both

methods. Also, our results indicate that the persistent method produces significantly

Table 9.9 Out-of-sample comparison. One month

Persistent AR (4) WN

Md.AE 2.3000 2.2147 2.1081

MAE 3.3000 2.5547 2.5026

Max AE 8.2000 7.9217 7.7590

SSE 507.9300 328.9947 320.2573

RMSE 4.0478 3.2577 3.2142

NMSE 1.5981 1.0351 1.0076

MSE 16.3848 10.6127 10.3309

MAPE 0.3456 0.2744 0.2680

SMAPE 0.3233 0.2570 0.2518

POCID 47% 80% 80%

IPOCID 33% 33% 37%

POS 100% 100% 100%

Md. AE median absolute error, MAE mean absolute error, Max AE maximum absolute error, SSE
sum of squared errors, RMSE root-mean-square error, NMSE normalized mean square error, MSE
mean square error, MAPE mean absolute percentage error, SMAPE symmetric MAPE, POCID
position of change in direction, IPOCID independent POCID, POS position of sign
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worse forecasts. Finally, the WN and the linear AR (3) model are compared with

first to show better forecasting ability.

Our results indicate that the WN can forecast the evolution of the dynamics of

the DAWSs, and hence, they constitute an accurate tool for wind derivatives

pricing.

In order to have a better insight of the performance of each method, the

cumulative average wind speed (CAWS) index is calculated. Since we are inter-

ested in weather derivatives, one common index is the sum of the daily rainfall

index over a specific period. In Table 9.11, the estimation of three methods is

presented. More precisely, the WN, the AR (4), as well as the HBA methods are

compared. The HBA is a simple statistical method that estimates the performance

of the index over the specific period the previous years and it is often used in the

industry. In other words, it is the average of 20 years of the index over the period of

January and February, and it serves as a benchmark.

The final row of Table 9.11 presents the actual values of the cumulative rainfall

index. An inspection of Table 9.11 reveals that the WN significantly outperforms

the other two methods. For the first case, where forecasts for 1 month ahead are

estimated, the forecast of the CAWS index using WN is 312.7, while the actual

index is 311.2. On the other hand, the forecast using the AR (4) model is 305.1.

However, when the forecast period increases, the forecast of the AR (4) model

Table 9.11 Estimation of the cumulative rainfall index for 1 and 2 months using an AR (4) model,

WN, and historical burn analysis

AR (4) WN HBA Actual

1 month 305.1 312.7 345.5 311.2

2 months 579.5 591.1 658.3 600.6

Table 9.10 Out-of-sample comparison. Two months

Persistent AR (4) WN

Md.AE 2.4000 2.7981 2.6589

MAE 3.3678 2.8126 2.7976

Max AE 11.2000 7.9345 8.0194

SSE 1054.3500 706.1806 702.4437

RMSE 4.2273 3.4596 3.4505

NMSE 1.4110 0.9450 0.9400

MSE 17.8703 11.9692 11.9058

MAPE 0.3611 0.3014 0.3001

SMAPE 0.3289 0.2798 0.2782

POCID 45% 71% 69%

IPOCID 36% 38% 38%

POS 100% 100% 100%

Md. AE median absolute error, MAE mean absolute error, Max AE maximum absolute error, SSE
sum of squared errors, RMSE root-mean-square error, NMSE normalized mean square error, MSE
mean square error, MAPE mean absolute percentage error, SMAPE symmetric MAPE, POCID
position of change in direction, IPOCID independent POCID, POS position of sign
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significantly deviates. More precisely, for the second case, the forecast of the WN is

591.1 while the actual index is 600.6 and the AR (4) forecast is 579.5. Finally, we

have to mention that the WN uses less information than the AR (4) model, since in

the case of WN, only the information of three lags is used.

Since we are interested in wind derivatives and the valuation of wind contracts,

next, an illustration of the performance of each method using a theoretical contract

is presented. A common wind contract has a tick size of 0.1 knots and pays 20$ per

tick size. Hence, for the case of a 1-month contract, the AR (4) method

underestimates the contract size for 1,200$, while the WN overestimates the

contract for 300$ only. Similarly, for the case of a 2-month contract, the AR (4)

method underestimates the contract size for 4,220$, while the WN underestimates

the contract for 1,900$.

Incorporating meteorological forecasts can lead to a potentially significant

improvement of the performance of the proposed model. Meteorological forecasts

can be easily incorporated in both the linear and the WN models previously

presented. A similar approach was followed for temperature derivatives by

Dorfleitner and Wimmer (2010) for temperature derivatives. However, this method

cannot be always applied. Despite great advances in meteorological science,

weather still cannot be predicted precisely and consistently, and forecasts beyond

10 days are not considered accurate (Wilks 2011). If the day that the contract is

traded is during or close to the life of the derivative (during the period that wind

measurements are considered), the meteorological forecasts can be incorporated in

order to improve the performance of the methods. However, very often, weather

derivatives are traded long before the start of the life of the derivative. More

precisely, very often, weather derivatives are traded months or even a season before

the starting day of the contract. In this case, meteorological forecasts cannot be used.

9.3 Pricing Wind Derivatives

In this section, the pricing formulas for wind derivatives are presented under the

assumption of a normal driving noise process. The analysis performed in the

previous section indicates that the assumption that the final residuals, after dividing

out the seasonal variance, follow a normal distribution is justified.

When the market is complete, a unique risk-neutral probability measure Q � P
can be obtained, where P is the real-world probability measure. This change of

measure turns the stochastic process into a martingale. Hence, financial derivatives

can be priced under the risk-neutral measure by the discounted expectation of the

derivative payoff.

The same implications that we faced in the pricing of temperature derivatives

appear also in the pricing of wind derivatives. The wind market is an incomplete

market. The underlying weather derivative cannot be stored or traded. Moreover,

the market is relatively illiquid. In principle (extended), risk-neutral valuation can

still be carried out in incomplete markets.
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The method that was used in order to proceed in temperature derivative pricing

will be followed also in this section. The change of measure from the real world to

the risk-neutral world under the dynamics of a BM can be performed using the

Girsanov’s theorem.

The statistical analysis indicates that the transformed DAWSs can be modeled

by a mean-reverting O–U process where the speed of mean reversion variable is a

function of time:

dW
ðlÞ
t ¼ SðtÞ þ aðtÞ W

ðlÞ
t�1 � Sðt� 1Þ

� �
dtþ sðtÞdBt; (9.6)

whereSðtÞ is the seasonal function,sðtÞ is the seasonal variance which is bounded by
zero, aðtÞ is the speed of mean reversion, and Bt is the driving noise process.

Using the Girsanov’s theorem, under the risk-neutral measure Q, we have that

dBy
t ¼ dBt � yðtÞ; (9.7)

where yðtÞ is the market price of risk and

ðT
0

y2ðtÞdt<1: (9.8)

Hence, applying Itô formula on (9.6) and (9.7), the solution of the transformed

DAWS under the risk-neutral measure Q is given by

W
ðlÞ
t ¼ SðtÞ þ e

Ð t

0
aðzÞdz

W
ðlÞ
0 � Sð0Þ

� �
þ e

Ð t

0
aðzÞdz

ðt
0

sðsÞyðsÞe�
Ð s

0
aðzÞdz

ds

þ e
Ð t

0
aðzÞdz

ðt
0

sðsÞe�
Ð s

0
aðzÞdz

dBy
t : (9.9)

The proposed model is an extension of the CAR (p) introduced by Brockwell and
Marquardt (2005) and applied by Benth and Saltyte-Benth (2009) in wind deriva-

tive pricing. Hence, we follow a similar pricing approach presented in Benth and

Saltyte-Benth (2009).

The transformed, detrended, and deseasonalized DAWS ~W
ðlÞ
t ¼ W

ðlÞ
t � SðtÞ are

normally distributed with mean

myðt; s; ~WðlÞ
t Þ ¼ e

Ð s

t
aðzÞdz ~WðlÞ

s þ e
Ð s

t
aðzÞdz

ðs
t

sðuÞyðuÞe�
Ð u

t
aðzÞdz

du; (9.10)
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and variance

S2ðt; sÞ ¼ e
2
Ð s

t
aðzÞdz

ðs
t

s2ðsÞe�2
Ð u

t
aðzÞdz

du: (9.11)

The market price of wind risk is necessary in pricing wind derivatives. However,

in order to estimate y , the actual prices of derivatives are required. Since the

shutdown of the US Future Exchange, wind derivatives are traded only in the

Chicago Climate Futures Exchange and in the OTC market, and as a result, it is

hard to obtain market data. Hence, it is very difficult to estimate the market price of

wind risk. However, the trading volume of wind derivatives is increasing every year

(WRMA 2010), and it is expected that wind derivatives will be soon included in the

listed products of the CME.

A solution to this problem is presented by Benth et al. (2009) where they study

the market price of risk for temperature derivatives in various Asian cities. The

market price of risk was estimated by calibrating model prices. Their results

indicate that the market price of risk for Asian temperature derivatives is different

from zero and shows a seasonal structure that comes from the seasonal variance of

the temperature process. Their empirical findings suggest that by knowing the

formal dependence of the market price of risk on seasonal variation, one can infer

the market price of risk for regions where weather derivative market does not exist.

Similarly, in Huang et al. (2008), a pricing method for temperature derivatives in

Taiwan is presented. Since no active weather market exists in Taiwan, the parame-

ter y is approximated by a function of the market price of risk of the Taiwan Stock

Exchange.

9.3.1 The Cumulative Average Wind Speed Index

In this section, we derive the pricing equation for the CAWS index. Similar to the

CAT index, the CAWS index is the sum of the DAWSs over a specific period t1; t2½ �,
and it is given by

CAWS ¼
ðt2
t1
WðsÞds: (9.12)

Our aim is to give a mathematical expression for the CAWS future price. If Q is

the risk-neutral probability and r is the constant compounding interest rate, then the

arbitrage-free future price of a CAT contract at time t � t1<t2 is given by

e�rðt2�tÞEQ

ðt2
t1
WðsÞds� FCAWSðt; t1; t2ÞjFt

� �
¼ 0; (9.13)
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and since FCAWS is Ft adapted, we derive the price of a CAT futures to be

FCAWSðt; t1; t2Þ ¼ EQ

ðt2
t1
WðsÞdsjFt

� �
: (9.14)

To derive the future price, we must calculate the conditional expectation ofWðsÞ
givenFt, for s� t. This is done in the following Lemma, first presented in Benth and

Saltyte-Benth (2009). For reasons of completeness, we reproduce this Lemma here.

Lemma 9.1 Let 0 � t � s � T, then for l 2 ð0; 1�, it holds that

EQ WðsÞjFt½ � ¼ M1 l= 1þ l SðsÞ þ my t; s; ~W
ðlÞ
t

� �
; l2S2ðt; sÞ

� �� �
; (9.15)

where Mkða; b2Þ is the kth moment of a normal random variable with mean a and

variance b2 and my t; s; ~W
ðlÞ
t

� �
and S2ðt; sÞ are given by (9.10) and (9.11),

respectively.

Proof From (9.1) and (9.9), we have that the wind speed at time s given Ft can be

represented (for l 6¼ 0) as

WðsÞ ¼ l SðsÞ þ my t; s; ~W
ðlÞ
t

� �
þ Sðt; sÞZ

� �
þ 1

h i1
l

;

where Z is a standard normally distributed random variable independent of Ft .

Further, my t; s; ~W
ðlÞ
t

� �
is Ft measurable. Hence, the result follows from a direct

calculation. The lognormal case l ¼ 0 follows similarly.

□
Hence, the arbitrage-free price of the CAWS index easily follows fromLemma9.1.

Proposition 9.1 The arbitrage-free price of CAWS index at time t � t1<t2 is
given by

FCAWSðt; t1; t2Þ ¼
ðt2
t1

M1 l= 1þ l SðsÞ þ my t; s; ~W
ðlÞ
t

� �
; l2S2ðt; sÞ

� �� �� �
ds;

(9.16)

where Mkða; b2Þ is the kth moment of a normal random variable with mean a and

variance b2 and my t; s; ~W
ðlÞ
t

� �
and S2ðt; sÞ are given by (9.10) and (9.11),

respectively.

Proof We have from (9.14) that
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FCAWSðt; t1; t2Þ ¼ EQ

ðt2
t1
WðsÞdsjFt

� �
;

and using Itô’s isometry, we can interchange the expectation and the integral

EQ

ðt2
t1
WðsÞdsjFt

� �
¼

ðt2
t1
EQ WðsÞjFt½ �ds;

and from a direct application from Lemma 9.1, we have that

FCAWSðt; t1; t2Þ ¼
ðt2
t1
M1 l= 1þ l SðsÞ þ my t; s; ~W

ðlÞ
t

� �
; l2S2ðt; sÞ

� �� �
ds:

□

9.3.2 The Nordix Wind Speed Index

In this section, we derive the pricing equations for the Nordix wind speed index.

The Nordix wind speed index is the index that the US Future Exchange used to

settle wind derivatives. The Nordix index is given by

I t1; t2ð Þ ¼ 100þ
Xt2
s¼t1

WðsÞ � w20ðsÞð Þ; (9.17)

and measures the daily wind speed deviations from the mean of the past 20 years

over a period ½t1; t2�.
The result of Lemma 9.1 is applied again to derive the price of a Future Nordix

wind speed index.

Proposition 9.2 The arbitrage-free price of Nordix wind future speed index at time
t � t1<t2 is given by

FNWIðt; t1; t2Þ ¼ 100�
Xt2
s¼t1

w20ðsÞ

þ
Xt2
s¼t1

M1 l= 1þ l SðsÞ þ myðt; s; ~WðlÞ
t

� �
; l2S2ðt; sÞ

� �
; (9.18)

where Mkða; b2Þ is the kth moment of a normal random variable with mean a and

variance b2.

Proof IfQ is the risk-neutral probability and r is the constant compounding interest

rate, then the arbitrage-free future price of a Nordix wind speed index contract at

time t � t1<t2 is given by
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e�r t2�tð ÞEQ 100�
Xt2
s¼t1

w20ðsÞ þ
Xt2
s¼t1

WðsÞ � FNWIðt; t1; t2ÞjFt

" #
¼ 0;

and since FNWIðt; t1; t2Þ is Ft adapted, we derive the price of a Nordix wind future

index to be

FNWIðt; t1; t2Þ ¼ 100�
Xt2
s¼t1

w20ðsÞ þ EQ

Xt2
s¼t1

WðsÞjFt

" #
:

Applying the Lemma 4.1 from Benth and Saltyte-Benth (2009), we find the explicit

solution for the price of the Nordix wind future index:

FNWIðt; t1; t2Þ ¼ 100�
Xt2
s¼t1

w20ðsÞ

þ
Xt2
s¼t1

M1 l= 1þ l SðsÞ þ myðt; s; ~W
ðlÞ
t

� �
; l2S2ðt; sÞ

� �
;

where Mkða; b2Þ is the kth moment of a normal random variable with mean a and

variance b2.
□

9.4 Conclusions

In this chapter, DAWSs from New York were studied. Our analysis revealed strong

seasonality in the mean and variance. The DAWSs were modeled by a mean-

reverting Ornstein–Uhlenbeck process in the context of wind derivative pricing.

In this study, the dynamics of the wind-generating process are modeled using a

nonparametric nonlinear WN. Our proposed methodology was compared in-sample

and out-of-sample against two methods often used in prior studies. The

characteristics of the wind speed process are very similar to the process of daily

average temperatures.

Our method is validated in a 2-month-ahead out-of-sample forecast period.

Moreover, the various error criteria produced by the WN are compared against

the linear AR model and the persistent method. Results show that the WN

outperforms the other two methods, indicating that WNs constitute an accurate

model for forecasting DAWSs. More precisely, the WN’s forecasting ability is

stronger in both samples. Testing the fitted residuals of the WN, we observe that the

distribution of the residuals is very close to the normal. Also, the WN needed only

the information of the past 3 days, while the linear method suggested a model with

four lags. Finally, we provided the pricing equations for wind futures of the Nordix
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index. Although we focused on DAWSs, our model can be easily adapted in hourly

modeling.

The results in this chapter are preliminary and can be further analyzed. More

precisely, alternative methods for estimating the seasonality in the mean and in

the variance can be developed. Alternative methods could improve the fitting to the

original data as well as the training of the WN.

Also, it is important to test the largest forecasting window of each method. Since

meteorological forecasts of a window larger than few days are considered inaccu-

rate, this analysis will suggest the best model according to the desired forecasting

interval.

Finally, a large-scale comparison must be conducted. Testing the proposed

methods as well as more sophisticated models, like general ARFIMA or

GARCH, in various meteorological stations will provide a better insight in the

dynamics of the DAWS as well as in the predictive ability of each method.
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Chapter 10

Precipitation Derivatives

10.1 Introduction

As it is already shown on the previous chapter, the modeling procedure of daily

average temperature and daily wind speed is similar. Both weather variables are

sharing common characteristics and as a result were modeled by a mean-reverting

stochastic process with seasonality in mean and variance. In this chapter we focus

on a different type of weather contracts, namely, precipitation derivatives. The first

objective of this chapter is to present a daily model for the underlying weather

variable, that is, precipitation. The second objective is to use the daily model in

order to derive a valuation framework for precipitation derivatives. Although

rainfall and snowfall are two different weather variables and contracts are traded

separately, as it is shown in this chapter, they share a lot of common characteristics.

Hence, the same model can be used for both of them. From now on we will refer to

both of them as precipitation.

Currently, CME trades snowfall futures and options for the following US cities:

Boston, New York, Chicago, Minneapolis, and Detroit. Contracts are offered for

trading on a monthly or seasonal basis from November through April. For futures,

the contract size is $500 the CME snowfall index. The snowfall in CME is

measured in inches, and the corresponding index is the cumulative snowfall over

a period measured in inches. The accuracy of the index is 0.1 in., and 1 in.

corresponds to 1 index point. Finally, the tick size is 0.1 points in the respective

index. The options are European type written on futures on the snowfall index.

Similarly, CME trades rainfall futures and options for the following US cities:

Chicago, Dallas, Des Moines, Detroit, Jacksonville, Los Angeles, New York,

Portland, Raleigh, and Kansas. Contracts are offered for trading on a monthly or

seasonal basis from March to October. For futures, the contract size is $500 the

CME rainfall index. The rainfall in CME is measured in inches, and the

corresponding index is the cumulative rainfall over a period measured in inches.

The accuracy of the index is 0.1 in., and 1 in. corresponds to 1 index point. Finally,

A.K. Alexandridis and A.D. Zapranis, Weather Derivatives: Modeling and Pricing
Weather-Related Risk, DOI 10.1007/978-1-4614-6071-8_10,
# Springer Science+Business Media New York 2013
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the tick size is 0.1 points in the respective index. The options are European type

written on futures on the rainfall index.

Probably, agriculture is the most depended sector of the economy to precipita-

tion. For a successful crop, precipitation must occur in particular times and at

particular amounts. Although government programs are used in order to secure

farmers against adverse weather condition, they are plagued with moral hazard and

adverse selection problems. Further, federal crop insurance policies all contain

deductibles that leave growers with some exposure to losses associated with

extreme weather (Martin et al. 2001). Hydroelectric energy producers, construction,

and retail clothing are some of the sectors that are interested in precipitation

derivatives. Also, governments are interested in using precipitation derivative in

order to quantify the risk of floods and droughts or snow removal. Airports have

begun to purchase snow insurance to reduce the cost associated with an exception-

ally snowy winter. In addition, restaurants, theme parks, beach resorts, golf courses,

automobile insurers, tourism, and entertainment are sectors of the economy that are

heavily depended in rainfall and snowfall.

Common underlying weather variables for weather derivatives are temperature,

rainfall, and wind. As it is already mentioned, the majority of weather market is

dominated by temperature derivatives. However, there is evidence of a growing

demand for precipitation weather derivatives especially by farmers, tourism indus-

try, and hydroelectric producers. The demand from these derivatives exists. How-

ever, investors hesitate to enter into precipitation contracts. The main reasons of the

slow growth of the market compared to temperature contracts are the difficulty in

accurately modeling precipitation and the challenge to find a reliable model for

valuing related contracts (Cao et al. 2004; Goncu 2011). As a result, there is a lack

of reliable valuation framework that makes financial institutions reluctant to quote

prices over these derivatives (Goncu 2011).

Unlike temperature, precipitation is harder to model. First, precipitation is not a

continuous variable. Rainfall is a binary event. In each, day may or may not be

observed precipitation. Moreover, precipitation evolves much more irregularly and

unevenly than temperature changes (Stowasser 2012).

In Dischel (2000) and Cao et al. (2004), various difficulties are presented in

modeling precipitation. These difficulties include difficulty in accurate

measurements. Since most measurement methods depend on the collection of

raindrops, the accuracy of the collection accuracy can be affected by local winds

or extreme weather and can contain melted snow or hail. Alternatively, radar

measurements can be used. Satellites can detect low-altitude atmospheric water

content and have excellent spatiotemporal resolution. However, there are two

drawbacks on satellites measurements. The current geographic coverage is limited

while the historical record is short (Little et al. 2009). Secondly, precipitation is

highly localized, and basis risk is present for precipitation contracts for sites that are

relative away from the measurement site. Purchasers of weather derivatives are

generally exposed to some degree of geographical basis risk (Martin et al. 2001);

however, rainfall geographical risk is greater than in the case of temperature. This is

already demonstrated in chapter 8. Finally, the statistical properties of precipitation
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are complex. Hence, it is difficult to select an appropriate distribution to describe

precipitation data.

Two settings exist for modeling precipitation amounts, single-site (Goncu 2011)

and multisite models (Wilks 1998, 1999). Single-site models try to model the

dynamics of precipitation in a single site, while multisite models are multifractal

cascades to describe rainfall (Carmona and Diko 2005).

Precipitation can be forecasting using meteorological models which seek to

capture the dynamics of the large-scale atmospheric processes controlling precipi-

tation (Little et al. 2009). Meteorological approaches are of limited use to this book

for two reasons, namely, their complexity and limited forecasting horizon. These

facts seem to suggest a preference for a statistical approach. The literature on

statistically forecasting precipitation includes a variety of distributional

approaches. Statistical models use purely statistical techniques to fit the rainfall

data to well-known distribution types with little emphasis on underlying physical

processes (Coles et al. 2003). Since we want a process to describe the underlying

dynamics of precipitation, a stochastic process-based model is applied. Stochastic

process-based models try to describe the rainfall behavior by a small set of

physically meaningful parameters driving a stochastic process (Carmona and

Diko 2005).

In some recent studies, precipitation was modeled by artificial neural networks

(Feng and Kitzmiller 2006; Williams 1998; Valverde Ramı́rez et al. 2005). The

framework in these studies was similar. A set of meteorological variables like

temperature, humidity, and wind were used in order to forecast possible precipita-

tion amounts.

In this chapter, we follow a similar approach presented in Wilks 2011. Precipi-

tation modeling is separated in two stages. In the first step, a Markov chain process

is applied in order to model the frequency of precipitation. Then, a distribution is

fitted to the data in order to model the magnitude of the precipitation conditional on

the likelihood of a rainy day. In density forecasting a distribution over all possible

future rainfall events, rather than a single-point forecast that misrepresents these

uncertainties. Density forecasts are particularly flexible, allowing the calculation of

the probability of any event of interest, such as the probability of occurrence of rain

or of extreme rainfall above any threshold.

The rest of the chapter is organized as follows: in Sect. 10.2, an introduction in

precipitation modeling is presented. More precisely, in Sect. 10.2.1, annual

modeling of precipitation is presented, while in Sects. 10.2.2 and 10.2.3, monthly

and daily modeling is discussed. A daily rainfall model is described in 10.3. More

precisely, a process to describe the frequency of precipitation is presented in 10.3.1.

A two-state, first-order Markov chain is described in 10.3.1.1, while in 10.3.1.2, a

higher-order Markov chain is presented. In Sect. 10.3.1.3, a method for selecting

the appropriate order of a Markov chain is presented, while in 10.3.1.4, the

presented framework was applied in real data. In Sect. 10.3.1.5, a method for

estimating time-varying transition probabilities is described. The magnitude

modeling procedure is described in Sect. 10.3.2. More precisely, the gamma

distribution is described in Sect. 10.3.2.1, while the exponential and the mixed
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exponential distributions are described in Sects. 10.3.2.2 and 10.3.2.3, respectively.

An example of magnitude modeling in read data is presented in Sect. 10.3.2.4.

A pricing framework for precipitation derivatives is presented in 10.4. More

precisely, in Sect. 10.4.1, indifference pricing methodology is presented, while in

Sect. 10.4.2, some limitations of this framework are discussed. In Sect. 10.4.3, the

hedging effectiveness using rainfall derivative is presented. An alternative pricing

methodology using MC simulations is described in Sect. 10.4.4. Finally, in

Sect. 10.5, we conclude.

10.2 Precipitation Modeling

In this section, we will investigate the concept of precipitation modeling. More

precisely, we will investigate modeling precipitation in annual, monthly, and daily

bases. Our dataset consists of daily rainfall observations in Berlin-Tempelhof and

Berlin-Dahlem. We have collected daily observations from 1st of January 1951 until

31st of December 2010, resulting to 21,000 values from each station. The data were

collected from ECAD.1 The daily precipitation is measured from 06:00 in the

morning till 06:00 the next morning. The precipitation is measured in 0.1 mm.

Precipitation under 0.1 mm is considered as an event of nonprecipitation. In other

words, the precipitation in this case is labeled as zero. The meteorological station at

Tempelhof is located in +52:28:07 latitude and +013:24:14 longitude and in 48 m

height. The meteorological station at Tempelhof is located in +52:27:50 latitude

and +013:18:06 longitude and in 51 m height. The distance between the two stations

is less than 7 km in a straight line. Finally, the dataset is complete without missing

or suspicious values.

10.2.1 Annual Rainfall

As it was presented in Moreno (2002), a water company is interested in annual

amounts of precipitation. Annual amounts are the period basis on which water

companies usually make their plans for water storage (Moreno 2002).

In Fig. 10.1, the yearly precipitation magnitude in Berlin-Tempelhof and Berlin-

Dahlem is presented. A closer inspection of Fig. 10.1 reveals that there are years

where the difference in the rainfall magnitude is significant between the two

meteorological stations. More precisely, the absolute relative difference varies

from 0.17% in 1967 to 23.58% in 1959, while the average absolute relative

difference for the last 60 years is 6.25%. Hence, even if the distance between

these two meteorological stations is only 7 km, there are cases where the difference

1 http://eca.knmi.nl/
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in the annual magnitude of rainfall is significant. Precipitation is a localized weather

variable even when it is measured in annual averages where small errors are

canceled out. As a result, basis risk is significant and can lead to large errors in

hedging and valuation strategies.

The relation between the Tempelhof and Dahlem is presented in Fig. 10.2.

Moreover, a linear fitting is presented also with R2 ¼ 83:83%. The correlation of

the annual precipitation magnitude between the two stations is 91%.

10.2.2 Monthly Rainfall

In Leobacher and Ngare (2010), monthly precipitation modeling was proposed.

More precisely, the precipitation is modeled in monthly basis by a Markov-gamma

process with seasonality. In Fig. 10.3, the average cumulative monthly precipitation

in Berlin-Tempelhof and Berlin-Dahlem is presented. Although the monthly pre-

cipitation pattern is similar, the absolute relative error is up to 10% in August, while

the average absolute relative error is 3.05%. In Fig. 10.4, the correlation of the

monthly precipitation is presented. A closer inspection of Fig. 10.4 reveals that the

correlation is higher from October till April and it is over 95% with an exception of

February where it is around 92%. On the other hand, the correlation is significantly

smaller between May and September with values ranging from 86% to 89%.

Fig. 10.1 Yearly precipitation magnitude in Berlin-Tempelhof and Berlin-Dahlem
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A closer inspection of Fig. 10.3 reveals that rainfall is more intense in summer

than it is in winter. More precisely, in winter, rainfall occurs more often; however, it

has small intensity. On the other hand, during summer, rainfall occurs in a form of

short intense storms. Moreover, these storms last for few minutes and usually affect

only a very small area. This is the main reason why correlation is significantly lower

during the summer period.

Fig. 10.2 Correlation between yearly magnitude in Berlin-Tempelhof and Berlin-Dahlem

Fig. 10.3 Monthly precipitation magnitude in Berlin-Tempelhof and Berlin-Dahlem
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As a result, for hedging purposes one must be very careful. Even in the case of

small distances, the localization of rainfall can induce large error in the hedging

strategy or in the derivative valuation process. In addition as it is shown from

Fig. 10.4, the correlation between the two meteorological stations in Berlin is not

constant but it rather has a strong seasonal variation.

10.2.3 Daily Rainfall

Daily precipitation modeling is more difficult than modeling rainfall in annual or

yearly basis. Precipitation is not a continuous variable. In other words, there is

possibility to occur several days without any precipitation. However, a model for

daily precipitation provides more flexibility and more information regarding

the dynamics that govern the frequency and amount processes of precipitation.

After a daily model is estimated, it can be used in order to derive any rainfall index

in daily, monthly, or yearly basis.

In Fig. 10.5, the average daily rainfall magnitude for the period between 1951

and 2010 for Berlin-Tempelhof and Berlin-Dahlem is presented. The correlation

between monthly magnitude in Berlin-Tempelhof and Berlin-Dahlem is presented

in Fig. 10.6. A closer inspection of Fig. 10.6 reveals the existence of really big

differences between the two metrological differences. Hence, in the case of daily

rainfall protection, the reference site upon which a contract is based should be

extremely close to the location to be insured (Moreno 2002). As it is mentioned in

Fig. 10.4 Correlation of monthly precipitation between Berlin-Tempelhof and Berlin-Dahlem
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Moreno (2002), for longer periods, proxy sites can be considered with caution.

Moreover, if the required protection on a site is daily, the use of several meteoro-

logical stations surrounding the location should be considered (Moreno 2002).

Fig. 10.5 Average daily rainfall magnitude for the period between 1951 and 2010 for Berlin-

Tempelhof and Berlin-Dahlem

Fig. 10.6 Correlation between monthly magnitude in Berlin-Tempelhof and Berlin-Dahlem
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10.3 A Daily Rainfall Process

As it is already mentioned, a daily model provides more flexibility, since every

precipitation index can be built in easily and more information regarding the

dynamics that govern the frequency and amount processes of precipitation. In

addition, the accuracy of a daily model is expected to be higher since a large

amount of data is used in order to calibrate it (Stowasser 2012). Finally, it is

possible to incorporate weather and seasonal forecasts. However, small misspeci-

fications in the model can lead to large pricing errors in the valuation of precipita-

tion derivatives. In Musshoff et al. (2006), the basic characteristics of a

precipitation model are presented. A precipitation model should capture the follow-

ing characteristics of daily rainfall:

• The probability of rainfall occurrence obeys a seasonal pattern.

• The sequence of wet and dry days follows an autoregressive process.

• The amount of precipitation on a wet day varies with the season.

• The volatility of the amount of rainfall also changes seasonally.

In Fig. 10.7, the rain frequency pattern in Berlin-Tempelhof for the year 2000 is

presented.
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Fig. 10.7 Rain frequency pattern in Berlin-Tempelhof for the year 2000
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Investigating the data from Berlin for the last 60 years for both meteorological

stations, we conclude that there is evidence of absence of a linear trend. In addition

a linear trend was fitted to the precipitation occurrence days only. Again, the slope

of the linear trend is not significantly different than zero. The same conclusion is

reached when only the last 10 years were examined.

Inspecting Fig. 10.7, we conclude that rainfall occurred more frequently in

winter and midsummer while on the other hand precipitation occurred more rarely

during the late spring and early summer and during the late summer and early

autumn periods. Finally, in Fig. 10.8 the historical distribution of the length of

consecutive rainy and dry days in Tempelhof and Dahlem is presented.

10.3.1 Frequency Modeling

As it is already mentioned, precipitation is a different variable in contrast to wind or

temperature. In order to develop a model for the daily average rainfall, first we must

understand with which probability rainfall occurs. Figure 10.7 detects if there is any

persistence of rainfall. Figure 10.7 represents the events of “precipitation” or “no

precipitation” on a daily basis during the year of 2000. Consistent with previous

studies, Figure 10.7 reveals that a rainy day is more likely to be followed by a rainy

day. Similarly, a dry day is more likely to be followed by a dry day than a rainy one.

Hence, the probability that it rains is conditional on the past.

10.3.1.1 A Two-State, First-Order Markov Chain

AMarkov chain model is described by two properties. The first is the values that the

variable can take. This is known as the state of the chain. In the case of

Fig. 10.8 Historical distribution of the length of rainy (white) and dry (black) days in (a) Berlin-

Tempelhof and (b) Berlin-Dahlem
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precipitation, there are two states. The random variable Xt is defined to describe the

two states, “precipitation” ðXt ¼ 1Þ and “no precipitation” ðXt ¼ 0Þ:

Xt ¼
0 precipitation

1 no precipitation:

(
(10.1)

The second property is the order of the chain. The order defines the number of

previous values that are necessary to determine the state-to-state transition

probabilities. Hence, the simplest Markov model is a two-state, first-order Markov

model used in Cao et al. (2004), Odening et al. (2007), Goncu (2011), and Moreno

(2002) (Fig. 10.9). In this case, the Markovian property can be expressed as

Pr Xtþ1jXt;Xt�1; . . . ;X1f g ¼ Pr Xtþ1jXtf g: (10.2)

A two-state, first-order Markov chain is described by four transition

probabilities. The transition probabilities are conditional probabilities for the state

time at time tþ 1 given the state at time t:

p00 ¼ Pr Xt ¼ 0jXt�1 ¼ 0f g (10.3)

p01 ¼ Pr Xt ¼ 1jXt�1 ¼ 0f g (10.4)

p10 ¼ Pr Xt ¼ 0jXt�1 ¼ 1f g (10.5)

p11 ¼ Pr Xt ¼ 1jXt�1 ¼ 1f g: (10.6)

Hence, (10.3) and (10.4) define the conditional probability distribution for the

value of the variable at time tþ 1 given that Xt ¼ 0 at time t. Similarly, (10.5) and

(10.6) define the conditional probability distribution for the value of the variable at

time tþ 1 given that Xt ¼ 1 at time t.

State 0
(no precipitation)P00

P01

P11

P10

State 1
(precipitation)

Fig. 10.9 A two-state, first-order Markov chain for precipitation occurrence
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It is crucial to estimate the transition probabilities given by (10.3, 10.4, 10.5 and

10.6). However, it is not necessary to estimate all four parameters since there is

some redundant information given by (10.3, 10.4, 10.5 and 10.6) (Wilks 2011).

More precisely, we have that p00 þ p01 ¼ 1 and that p10 þ p11 ¼ 1. Hence, we can

focus on estimating only two parameters, one of each pair of the transition

probabilities. For example, we focus on p01 (the probability that precipitation will

occur tomorrow given that precipitation did not occur today) and p11 (the probabil-
ity that precipitation will occur tomorrow given that precipitation did occur today).

Estimations of the transition probabilities can be obtained using the MLEs:

p̂01 ¼
n01

n00 þ n01
(10.7)

p̂11 ¼
n11

n10 þ n11
; (10.8)

where n01 is the historical count of wet days that followed dry days and n00 is the
number of transitions from state 0 (dry day) to state 0 (dry day).

As it is suggested by Wilks (2011), the estimation of parameters of (10.7) and

(10.8) for a two-state, first-order Markov chain is equivalent to fitting two Bernoulli

distributions with N ¼ 1. The first Bernoulli distribution describes the behavior of

the points in the time series that follow the state 0 while the second one describes

the behavior of the points in the time series that follow the state 1.

Due to the properties of the Markov chain, various properties for the time series

can be computed. These properties are described by the transition probabilities.

First, we estimated the stationary probabilities. The stationary probabilities are the

long-run relative frequencies of the events corresponding to a two-state Markov

chain (Wilks 2011). In the case of precipitation, the stationary probability p1
describes the unconditional probability of precipitation and it is given by

p1 ¼ p01
1þ p01 � p11

(10.9)

and for state 0, the stationary probability is given by p0 ¼ 1� p1 . According to

Wilks (2011), the serial correlation that often exhibits the precipitation time series

results to p01<p1<p11 . This means that the conditional probability of a dry day

followed by a wet dry is less than the unconditional probability of a wet day which

in turn is less than the conditional probability of a wet day followed by a wet day

(Wilks 2011).

As it is already presented, precipitation time series exhibit strong autocorrela-

tion. In the sense of the transition probabilities, the lag-1 autocorrelation is given by

r1 ¼ p11 � p01: (10.10)

Relation (10.10) reveals that as the value of r1 increases, the difference between
p11 and p01 increases. Hence, it follows that a wet day is more likely to be followed

by a wet day. Similarly, the lag-k autocorrelation can be easily calculated. Due to
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the Markovian property the lag-k autocorrelation is simply the lag-1 autocorrelation

at the power of k:

rk ¼ r1ð Þk: (10.11)

10.3.1.2 A Higher-Order Markov Chain

As it is already mentioned in the previous section, in a first-order Markov chain the

transition probabilities depend only on the state of the variable in the previous time

period. Similarly, anm-order Markov chain is one where the transition probabilities

depend on the states of the variable in the previous m time periods only (Stowasser

2012). The transition probabilities are conditional probabilities for the state time at

time tþ 1given the states at time t; t� 1; . . . ; t� m. Hence, the Markovian property

is expressed as

Pr Xtþ1jXt;Xt�1; . . . ;X1f g ¼ Pr Xtþ1jXt;Xt�1; . . . ;Xt�mf g: (10.12)

For example, in a second-order Markov chain the transition probabilities depend

on the states at lags of both one and two time periods. Hence, the transition

probability for a second-order Markov chain can be defined as

phij ¼ fXtþ1 ¼ jjXt ¼ i;Xt�1 ¼ hg: (10.13)

Note that in the case of precipitation, there are only two states ðs ¼ 2Þ. As a result
the subscripts h, i, and j take the values 0 (no precipitation) and 1 (precipitation).

As in the case of the first-order Markov chain, the transition probabilities are

estimated by the historical transition counts that are obtained from the data.

However, since the state at the next time period depends on more previous time

steps, more transition probabilities must be estimated. In general, for an s-state, m-

order Markov chain there are smþ1 different transition probabilities. It is clear that

the number of the possible transition probabilities increases exponentially with the

order, m.
For a two-state, second-order Markov chain where s ¼ m ¼ 2, the number of

transition probabilities that must be estimated is 8. In Table 10.1 the different

possible outcomes as well as the historical counts for these outcomes for a two-

state, second-order Markov chain are presented. The historical counts are deter-

mined by examining consecutive groups of three historical values. In the general

case, these groups consists of m + 1 data points. In order to simplify the equation

complexity, the notation from Wilks (2011) is adapted were n00� ¼ n000 þ n001 .
Hence, for a second-order Markov chain the conditional transition probabilities are

obtained from the conditional relative frequencies of the transition counts:

p̂hij ¼
nhij
nhi�

: (10.14)
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Note that if only two states exist, as in the case of precipitation, then the two-

state, second-order Markov chain conditional transition probabilities that are given

by (10.14) result to

p̂000 ¼
n000
n00�

¼ n000
n000 þ n001

: (10.15)

Similarly, the higher-order transition probabilities are obtained. For example,

the conditional transition probabilities for a third-order Markov chain are given by

p̂ghij ¼
nghij
nghi�

¼ nghij
nghi0 þ nghi1

: (10.16)

10.3.1.3 Selecting the Order of the Markov Chain

In order to determine the order of the Markov chain, two criteria can be used. The

first one is the AIC proposed by Akaike (1974), and the second one is the Bayesian

information criterion (BIC) proposed by Schwarz (1978). The AIC were proposed

to estimate the order of the Markov chain byWilks (2011), while the BIC by Schoof

and Pryor (2008), Stowasser (2012), and Wilks (2011).

Both criteria are based on the log-likelihood function. In Wilks (2011), the log-

likelihoods for s-state Markov chains of order 0, 1, 2, and 3 are presented:

L0 ¼
Xs�1

j¼0

nj ln p̂j
� �

(10.17)

L1 ¼
Xs�1

i¼0

Xs�1

j¼0

nij ln p̂ij
� �

(10.18)

L2 ¼
Xs�1

h¼0

Xs�1

i¼0

Xs�1

j¼0

nhij ln p̂hij
� �

(10.19)

and

L3 ¼
Xs�1

g¼0

Xs�1

h¼0

Xs�1

i¼0

Xs�1

j¼0

nghij ln p̂ghij

� �
: (10.20)

Table 10.1 Arrangement of

the 22þ1 ¼ 8 transition counts

for the two-state, second-

order Markov chain

Xt�1 Xt Xtþ1 ¼ 0 Xtþ1 ¼ 1 Marginal Totals

0 0 n000 n001 n00� ¼ n000 þ n001
0 1 n010 n011 n01� ¼ n010 þ n011
1 0 n100 n101 n10� ¼ n100 þ n101
1 1 n110 n111 n11� ¼ n110 þ n111
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The extension to higher-order Markov chains can be easily obtained similarly.

The two criteria try to find the model with best fit given the minimum

parameters. In other words, there is a penalty function depending on the number

of the parameters used to fit the model. The AIC criterion for order m is given by

AICðmÞ ¼ �2Lm þ 2smðs� 1Þ; (10.21)

while the BIC is given by

BICðmÞ ¼ �2Lm þ sm lnðnÞ: (10.22)

The only difference on the two criteria is the penalty function. However, the use

of the BIC in general is more preferable (Stowasser 2012; Wilks 2011).

10.3.1.4 An Example of Selecting the Order of the Markov Chain

In this section, the BIC and AIC will be used in order to select the appropriate order

of a Markov chain that describes the precipitation in Berlin.

For simplicity, we start with a two-state, first-order Markov chain. First, the

historical counts for each event are counted. For Berlin-Tempelhof, we have that

n00 ¼ 8025, n01 ¼ 3551, n10 ¼ 3550, and n11 ¼ 6774. Hence, from (10.7) and

(10.8), the conditional transition probabilities can be calculated. Hence, we have

that p̂00 ¼ 0:6932, p̂01 ¼ 0:3068, p̂10 ¼ 0:3439, and p̂11 ¼ 0:6561. In Table 10.2 the
transition probabilities and the historical counts for a two-state, first-order Markov

chain for Berlin-Tempelhof and Berlin-Dahlem are presented.

Next, the stationary probabilities and the lag-1 autocorrelation can be estimated.

Following (10.9), we have that p1 is 0.4715 and 0.4753 for Tempelhof and Dahlem,

respectively. Moreover, p2 ¼ 1� p1 is 0.5285 and 0.5247 for Tempelhof and

Dahlem, respectively. The lag-1 autocorrelation, r1 , in terms of the transition

probabilities is given by (10.10), and it is 0.3494 and 0.3414 for Tempelhof and

Dahlem, respectively.

In order to calculate the AIC and BIC, first, the log-likelihood function must be

estimated. Since our starting model is a two-state, first-order Markov order, (10.18)

is used. Hence, for Tempelhof we have that L1 ¼ �13781, while for Dahlem

L1¼ �13853 . Once the log-likelihood function is estimated, the AIC and BIC

criteria can be derived applying (10.21) and (10.22), respectively.

Table 10.2 The Historical counts and the transition probabilities for a two-state, first-order

Markov chain for the two meteorological stations in Berlin

Berlin-Tempelhof Berlin-Dahlem

Historical counts Probability Historical counts Probability

State 0 to state 0 8,025 0.6932 7,885 0.6867

State 0 to state 1 3,551 0.3068 3,598 0.3133

State 1 to state 0 3,550 0.3439 3,597 0.3453

State 1 to state 1 6,774 0.6561 6,820 0.6547
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In Table 10.3, the AIC and BIC criteria for Berlin-Tempelhof and Berlin-

Dahlem for different orders of the Markov chain are presented. A closer inspection

of Table 10.3 reveals that AIC tends to propose higher-order models than BIC.

Moreover, BIC proposed a third-order model for Tempelhof and a second-order

model for Dahlem.

Finally, Fig. 10.10 shows the historical and the simulated frequency of rainy

days for the two meteorological stations in Berlin. The simulated data produced by

Markov chain on which order was suggested by the BIC criterion. Hence, a third-

order Markov chain was used for Tempelhof while a second order was used for

Dahlem. A closer inspection of Fig. 10.10 reveals that, for both stations, the

historical and simulated probabilities of up to 10 consecutive days of rain are

very close. As a result these models can be used in order to simulate the frequency

process of precipitation in the two under inspection meteorological stations.

10.3.1.5 Time-Varying Transition Probabilities

The framework presented in the previous section is very elegant and easy in

implementation. However, it has the disadvantage of not taking into account

Table 10.3 Estimation of

AIC and BIC for Berlin-

Tempelhof and Berlin-

Dahlem for different orders of

the Markov chain

Tempelhof Dahlem

m AIC BIC AIC BIC

0 30,290 30,298 30,310 30,318

1 27,565 27,581 27,710 27,726

2 27,428 27,460 27,578 27,610

3 27,387 27,451 27,552 27,616

4 27,382 27,509 27,546 27,674

5 27,389 27,645 27,552 27,808

6 27,419 27,931 27,585 28,096

Fig. 10.10 Historical (black) and simulated (white) frequency of rainy days in (a) Berlin-

Tempelhof and (b) Berlin-Dahlem. The simulated data produced by a third- and a second-order

Markov chain, respectively
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seasonal variation of rainfall. For some countries this disadvantage may even render

that model useless (Leobacher and Ngare 2010).

In order to overcome this drawback, in this section, an algorithm that estimates the

daily and monthly transition probabilities is presented. First, the amounts of precipi-

tation are grouped into 365 groups, comprising 60 observations each (each group

corresponds to a single day of the year). Then, starting from the first group (1st of

January) for each observation, the historical counts are calculated. Then, transition

probability for that day can be estimated. Finally, the same procedure is repeated for

the remaining groups. That is, we assume that the transition probabilities vary

seasonally and are repeated every year, that is, p̂11ðtþ 365Þ ¼ p̂11ðtÞ.
In Fig. 10.11, the estimated daily transition probabilities p̂01 and p̂11 for Berlin-

Tempelhof are presented. For simplicity, the transition probabilities p̂01 and p̂11 in
Fig. 10.11 are produced by applying a two-state, first-order Markov chain. It is

clear, a seasonal component is presented. More precisely, a yearly seasonal com-

ponent is present in the p̂11 series, while a biannual seasonal component is present in

the p̂01 series. The seasonality in the transition probabilities can be easily estimated

by fitting a truncated Fourier series:

p̂ðtÞ ¼ cþ
XI

i¼1

ci sin 2ipt 365=ð Þ þ
XJ
j¼1

dj cos 2jpt 365=ð Þ: (10.23)

In this example, a second-order I ¼ J ¼ 2ð Þ truncated Fourier series was used in
order to fit the seasonal component of p̂01 while a first order I ¼ J ¼ 1ð Þ for p̂11. The
results for the meteorological station in Berlin-Dahlem are similar. In general, as I
and J increase, (10.23) produces more cycles in the seasonality pattern of the

transition probabilities. However, larger I and J reduce the estimation accuracy (Cao

et al. 2004).

Fig. 10.11 Empirical (thick line) and historical transition probabilities (a) p̂01 and (b) p̂11 for

Berlin-Tempelhof
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Alternatively, the transition probabilities can be estimated in monthly basis.

Figure 10.12 presents the monthly transition probabilities p̂01 and p̂11 for Berlin-

Tempelhof. As it was expected, the form of the seasonal components is preserved.

The advantage of this method is that it allows us to build a multi-order Markov

chain model. More precisely, the transition probabilities can be used to estimate the

log-likelihood function and then AIC or BIC criteria for each month. Hence, it is

possible to apply a different Markov chain model in order to simulate the frequency

process in each month. This method has the potential of additional accuracy since a

differentMarkov chain is applied in eachmonth of the year and potentially can capture

various dynamics of the rainfall process that a constantmodelmay be not able to do so.

10.3.2 Magnitude Modeling

The second part of the modeling process is to estimate the magnitude of the

precipitation conditional on the fact that it rains on that particular day. This is

usually done by fitting a distribution to the data.

In order to indentify a proper distribution to fit the data, first, the histogram of the

daily rainfall is examined. In part (a) of Fig. 10.13, the histogram of the daily

Fig. 10.12 Monthly transition probabilities p̂01 and p̂11 for Berlin-Tempelhof
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precipitation in Berlin-Tempelhof from 1/1/1951 to 31/12/2010 is presented.

A closer inspection of Fig. 10.13 reveals that the distribution of the precipitation

is asymmetric, skewed to the right, and with only positive values.

However, almost 50% of the data have the same value, zero indicating days of no

precipitation. In the second part of Fig. 10.13, the histogram of the precipitation

levels, excluding the days of no precipitation, is presented. A closer inspection of

part (b) of Fig. 10.13 reveals that the distribution remains asymmetric and positive

skewed.

Different distributions with a nonnegative domain have been proposed to fit the

historical precipitation data in literature so far. A gamma distribution is proposed

by Stowasser (2012), Cao et al. (2004), Leobacher and Ngare (2010), Williams

(1998), Goncu (2011), Vedenov and Miranda (2001), Martin et al. (2001), and

Wilks (1999, 2011) while a mixed exponential distribution is proposed by Cao et al.

(2004), Goncu (2011), and Wilks (1999). This distribution has the advance to better

represent extreme events. Similarly, in Odening et al. (2007), a beta distribution is

found to provide the better fit in data, while in Odening et al. (2007) and Musshoff

et al. (2006), a Weibull distribution is used. A kernel density estimation method is

applied in Goncu (2011) and Cao et al. (2004).

Since events of extreme rainfall are often reported, Goncu (2011) and Carmona

and Diko (2005) propose a Markov chain that incorporates jumps driven by a

Poisson process. Finally, Coles et al. (2003) propose the generalized extreme

value family of distributions for annual rainfall and a Pareto distribution for daily

rainfall in order to capture events of extreme rainfall in Venezuela.

10.3.2.1 The Gamma Distribution

Given that we are on a wet day (i.e.,Xt ¼ 1), the amount of rainfall Yt is modeled as

a random variable that follows a particular distribution. It is clear from the literature

that a widely used choice is the gamma distribution. The gamma distribution is

often used to describe the distribution of various atmospheric variables such as

Fig. 10.13 Histogram of the (a) daily precipitations in Berlin-Tempelhof and (b) daily precipita-

tion excluding zeros
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precipitation amounts or wind speeds (Wilks 2011). The gamma distribution

exhibits the same characteristics as the distribution of precipitation amounts. It is

positive skewed, asymmetric, and bounded on the left by zero. The gamma distri-

bution is defined by its PDF which is given by

fGðxÞ ¼ x b=ð Þa�1e �x b=ð Þ

bGðaÞ x; a; b>0; (10.24)

where a is the shape parameter and b is the scale parameter. GðaÞ is a gamma

function evaluated at a, and it is given by

GðaÞ ¼
Z þ1

0

ta�1e�tdt: (10.25)

From (10.24), it is clear that the PDF of a gamma distribution is fully defined by

the parameters a and b . The simplest method to estimate the scale and shape

parameters is to use the method of moments. The mean of the gamma distributions

is given by ab, while the variance by ab2. Hence, we have that

â ¼ �x2

s2
(10.26)

and

b̂ ¼ s2

�x
¼ �x

â
; (10.27)

where s2 is the estimated variance and �x is the estimated mean. However, this

method can yield poor results from small values of the shape parameter (Wilks

2011). Alternatively, the parameters can be estimated using the maximum likeli-

hood estimation method.

Following the method presented in Wilks (2011), the maximum likelihood

estimator can be estimated by first calculating the sample statistic:

D ¼ ln �xð Þ � 1

n

Xn
i¼1

ln xið Þ: (10.28)

Then, the shape parameter is given by

â ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D 3=

p
4D

(10.29)
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and the scale parameter by

b̂ ¼ �x

â
: (10.30)

However, precipitation contains a lot of zero values. In this case a different

approach in estimating the maximum likelihood estimator is followed. Suppose that

the given dataset contains N0 data points recorded as zeros and NW is the number of

nonzero data points. Then, the likelihood function is given by

Lðx; a; bÞ ¼
YN0

i¼1

Gða; b;CÞ
YNw

i¼1

fGða; b; xiÞ

¼ Gða; b;CÞ½ �N0
YNw

i¼1

fGða; b; xiÞ; (10.31)

where C denotes the censoring level and the CDF Gða;b;CÞ is given by

Gða; b;CÞ ¼
Z C

0

fGða; b; xiÞdx ¼ P xi �C½ �: (10.32)

In the case where N0 ¼ 0, we obtain the same maximum likelihood estimators. In

the case where N0 6¼ 0, the log-likelihood function is given by

L x; a; bð Þ ¼ N0 ln Gða;b;CÞ½ � � Nw a ln bð Þ þ ln GðaÞð Þ½ �

þ a� 1ð Þ
XNw

i¼1

ln xið Þ � 1

b

XNw

i¼1

xi: (10.33)

The amount of censored values in (10.33) depends on the censoring levelC. The
maximization of (10.33) for the parameters a and b can be computed numerically.

10.3.2.2 The Exponential Distribution

The exponential distribution is a special case of the gamma distribution. It is

obtained by setting a ¼ 1. The PDF of the exponential distribution is given by

fEXPðxÞ ¼ 1

b
e �x b=ð Þ x � 0; (10.34)

while the CDF is defined by

FEXPðxÞ ¼ 1� e �x b=ð Þ: (10.35)
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The exponential distribution describes the time between the events in a Poisson

process, that is, a process which events occur continuously and independently at a

constant average rate. The mean of the distribution is given byb and the variance by
b2. The main application area is in studies of lifetime. The exponential distribution

is special because of its utility in modeling events that occur randomly over time.

As a result it is often used in rainfall modeling.

10.3.2.3 The Mixed Exponential Distribution

Alternatively, to the gamma distribution, a mixed exponential distribution is often

used in order to describe the distribution of the precipitation amount. The mixed

exponential is a weighted combination of two simple exponential distributions and

inherits their properties (Odening et al. 2007). This distribution has the advantage of

a better representation of extreme events.

The mixed exponential distribution is defined by the following PDF:

fMIXðxÞ ¼ a
b1

e
� x

b1 þ 1� a
b2

e
� x

b2 0 � a � 1; 0<b1<b2; (10.36)

and the CDF is defined by

FMIXðxÞ ¼ ae�
x
b1 þ 1� að Þe� x

b2 : (10.37)

The maximum likelihood estimators for three parameters a; b1 and b2 can only

evaluated numerically.

10.3.2.4 An Example of Magnitude Modeling

In this section, a gamma distribution will be used in order to simulate the daily

average rainfall given the probability that the particular day is a rainy day in Berlin-

Tempelhof.

Applying (10.33) to the rainfall dataset from Tempelhof, the two parameters that

define the gamma distribution can be estimated. The estimated shape parameter is

a ¼ 0:2576 while the estimated scale parameter is b ¼ 6:2152. A closer inspection

of Fig. 10.14 reveals that the simulation underestimated the daily average rainfall

over the summer period. This is clear in both parts of Fig. 10.14 that correspond to

the daily and to the cumulative monthly rainfall. Among the three distributions –

gamma, exponential and a mixed exponential – the gamma distribution provided

the best results.

Finally, in Table 10.4 the estimation of the first four moments are presented

using the HBA, a 3rd order Markov chain with gamma distribution and a 3rd order

Markov chain with exponential distribution. Again, the gamma distribution
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provides the best results. However, although a very close estimation of the mean is

produced, all models underestimate the standard deviation, the skewness and the

kurtosis. This is a common pitfall of daily models often reported in literature

(Musshoff et al. 2006; Dubrovsky et al. 2004).

10.4 Pricing Precipitation Derivatives

In this section, a pricing framework for rainfall derivatives will be presented.

First, we define the cumulative rainfall (CR) index. The CR for a period ½t1; t2� is
defined by

CR ¼
Xt2
t¼t1

YðtÞ: (10.38)

The CR index is simply the sum of the rainfall over the period ½t1; t2�. If Q is the

risk-neutral probability and r is the constant compounding interest rate, then the

arbitrage-free future price of a CR contract at time t � t1<t2 is given by

Fig. 10.14 Historical and simulated (a) monthly and (b) daily rainfall in Berlin-Tempelhof. The

simulated rainfall magnitude produced by a gamma distribution with a ¼ 0.2576 and b ¼ 6.2152

Table 10.4 Comparison of the gamma, exponential, and HBA models in estimating the descrip-

tive statistics

Actual HBA Gamma Exp

Mean 0.67419 1.4328 0.65409 0.63468

Std 1.3178 0.32567 0.42555 0.29224

Kurtosis 6.5895 2.01570 4.61450 3.31100

Skewness 2.1807 0.17269 1.08990 0.52240

Std standard deviation, HBA historical burn analysis, Gamma a 3rd-order Markov model with

gamma distribution, Exp a 3rd-order Markov model with exponential distribution
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e�rðt2�tÞEQ

Xt2
t¼t1

YðtÞ � FCRðt; t1; t2Þð ÞjFt

" #
¼ 0 (10.39)

and since FCR is Ft adapted, we derive the price of a CR futures to be

FCRðt; t1; t2Þ ¼ EQ

Xt2
t¼t1

YðtÞjFt

" #
: (10.40)

Unfortunately, we cannot pursue the same methodology that we followed in the

derivation of the pricing formulas for temperature and wind futures contracts.

In this chapter a different method will be followed, namely, indifference pricing.

The indifference pricing framework will be applied in order to derive theoretical

derivative prices for the CR index.

10.4.1 Indifference Pricing for Rainfall Derivatives

In this section, the indifference pricing approach will be applied. More precisely,

the method proposed by Brockett et al. (2006) and Xu et al. (2008) will be followed.

Note that this framework is different than the one presented in previous chapters in

order to derive arbitrage-free prices for temperature and wind derivatives.

We assume that the market consists from two participants, a seller and a buyer.

Furthermore, it is assumed a two-date economy where at t ¼ 0 both the buyer and

seller try to optimize their wealth at time T. Finally, no trading between these two

dates is allowed.

The financial market consists of two assets, a risky asset with a random gross rate

of return r at date 1 and a savings account with a gross risk-free rate of return rf , as
well as some random weather indexes on which weather derivatives can be written.

The maximization of the wealth of an investor depends on a utility function.

Here, the negative exponential utility function is assumed. The negative exponen-

tial utility function is given by

uðXÞ ¼ � exp �lXð Þ; (10.41)

whereX are the revenues and l is the absolute risk aversion parameter. The investor

wants to maximize the mean variance of his terminal wealth at date T ¼ 1 by

using weather derivatives.

We will focus on the seller, but the framework for the buyer is similar. The seller

has initial wealth xs. In the first scenario, a strategy without the weather derivative is
considered. The amount as is invested to the risk capital market portfolio while the

remaining amount is invested to a risk-free asset. Hence, the value of the portfolio

without a weather derivative, Xwo
s , at time T is given by
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Xwo
s ¼ xs � asð Þqf þ asqs; (10.42)

where

qf ¼ 1þ rf ; qs ¼ 1þ rs; (10.43)

where rf and rs denote the return of the risk-free asset and the return of capital

market investment.

In the second scenario, the seller can additionally sell k shares of the weather

contract for a price Fs . In this case, the value of the portfolio with a weather

derivative, Xw
s , at time T is given by

Xw
s ¼ xs � as þ kFsð Þqf þ asqs � kWTðCRÞ: (10.44)

Similar equation can be derived for the buyer. Hence, the value of the portfolio

for the buyer without and with a weather derivative is given by

Xwo
b ¼ xb � abð Þqf þ abqb (10.45)

Xw
b ¼ xb � ab � kFbð Þqf þ abqb þ kWTðCRÞ; (10.46)

where qb ¼ 1þ rb and rb is the return of production or yield in the case of a farmer.

The indifference price is obtained when the seller is indifferent in which of the

two strategies to follow. In other words, we have that

sup
as

E u Xwo
s

� �� � ¼ sup
as

E u Xw
s

� �� �
: (10.47)

By replacing the expected utility by the certainty equivalent given by

CE ¼ E X½ � � l
2
s2ðXÞ (10.48)

and following Xu et al. (2008), we have that

sup
as

E Xwo
s

� �� ls
2
s2 Xwo

s

� �	 

¼ sup

as

E Xw
s

� �� ls
2
s2 Xw

s

� �	 

: (10.49)

Hence, explicit expressions for the CE of the wealth at time T, without and with

the weather derivative, are obtained:

CEwo ¼ xsqf þ as E qs½ � � qf
� �� ls

2
a2ss

2
qs

(10.50)
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CEw ¼ xs þ kFsð Þqf þ as E qs½ � � qf
� �� kE W½ �

� ls
2
a2ss

2
qs
� ls

2
k2s2W þ lsaskcov qs;Wð Þ: (10.51)

If we differentiate (10.50) and (10.51) with respect to as and set the derivatives

equal to zero, we get that the optimal as which is given by

awo;�s ¼ E qs½ � � qf
lss2qs

(10.52)

aw;�s ¼ E qs½ � � qf þ lskcov qs;Wð Þ
lss2qs

: (10.53)

Then we replace (10.52) and (10.53) to (10.50) and (10.51), respectively. The

indifference pricing approach assumes that (10.50) and (10.51) must be equal.

Hence, the price of the weather derivative for the seller, Fs, can be obtained:

Fs ¼ 1

qf
E W½ � þ psð Þ; (10.54)

where

ps ¼ � ls
2
ks2W r2qs;W � 1

� �
� sW

sqs
E qs½ � � qf
� �

r2qs;W (10.55)

andrqs;Wmeasures the correlation between the return of the market portfolio and the

payoff of the derivative. Similarly, the price of the weather derivative for the buyer,

Fb, can be derived:

Fb ¼ 1

qf
E W½ � þ pbð Þ; (10.56)

where

pb ¼ lb
2
ks2W r2qb;W � 1

� �
� sW

sqs
E qs½ � � qf
� �

r2qb;W : (10.57)

10.4.2 Limitations of Indifference Pricing Method

Expected utility maximization is a powerful tool for deciding whether or not to

accept a project at a given time and scale. An investor will accept a project if and

only if it increases her expected utility. In the framework of weather derivatives,
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indifference pricing, and expected utility, maximization was proposed by Brockett

et al. (2006), Xu et al. (2008), Odening et al. (2007), Richards et al. (2004),

Carmona and Diko (2005), Leobacher and Ngare (2010), Edwards and Simmons

(2004), and Simmons et al. (2007).

It is clear that the indifference pricing methodology is very simple and easy to

follow. Moreover, in Sect. 10.4.1, a general framework was developed. Note that

we did not define exactly the payoff of the weather derivative, W. In other words,

this framework can be followed for any weather derivative written on any weather

index and is not limited only to the CR index.

However, there is a series of limitations and drawbacks that an investor should

take into account. Utility functions are too much preference dependent and sensi-

tive to the selection of the risk aversion parameter (Carr et al. 2001). In other words,

the results are sensitive to the risk aversion parameter lwhile at the same time extra

care must be taken when a utility function is selected. In our case the negative

exponential utility function was used. However, other functions can be applied, like

the mean variance proposed by Brockett et al. (2006). Hence, the utility function is

quite difficult to describe exactly as the real utility function of the investor.

In Carr et al. (2001), strong criticism over the utility maximization theory is

applied. It is mentioned that utility maximization has had limited acceptance in

practice. This is due to the difficulty in specifying the required inputs to the

optimization problem. These inputs include the current endowment, the joint

stochastic process over all assets, and the utility function over all certain wealth

levels (Carr et al. 2001). Unfortunately, the maximization of the utility function is

sensitive to these three inputs. Hence, the difficulty to fully and accurately specify

these parameters renders the methodology potentially useless (Carr et al. 2001).

Moreover, using temperature or rainfall forecastswith a utility function to estimate

the demand curve for the derivate reduces the proposed methodology to simply using

the forecasts (Campbell and Diebold 2005; Oetomo and Stevenson 2005).

10.4.3 Hedging Effectiveness

In this section, we will investigate if it is attractive for a farmer to buy a weather

derivative. Farmers are interested in knowing if and to what extend the existing

yield risk can be eliminated by holding this security. The risk reduction that can be

attributed to weather insurance is measured by comparing the revenue distribution

of a production activity or a whole farm with and without possessing the weather

derivative. Farmers usually are interested in smoothing their income since yield and

product prices are highly volatile.

Assume that there is linear relationship between the production Q and the CR

index. Then, the production function that gives the amount of the produced product

depending on the rainfall index is given by

QðCRÞ ¼ kCRþ o; (10.58)
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where Q CRð Þ gives the amount of the product depending on the outcome of the

cumulative rainfall index. Hence, the amount that the risk is reduced by the

inclusion of a weather derivative into the farmer’s portfolio can be estimated by

comparing the distribution of the farmer’s revenues with and without the

corresponding weather derivative.

Following Xu et al. (2008) and Stowasser (2012), the present value of the

revenues, R , of a farmer who produces Q and holds a position of the weather

derivative on the CR index, W CRð Þ, with price F is defined by

R ¼ QðCRÞ � CþWðCRÞð Þe�rT � F; (10.59)

whereC is the product price, which, for simplicity, is assumed to be constant. It can

be easily shown that without a position in the rainfall derivative, the termsW and F
vanish. Obviously, the risk-reducing potential of any weather insurance depends on

the correlation between the weather index and the considered product.

10.4.4 Monte Carlo Simulation

Alternative to the indifference pricing method, the MC technique can be used. The

MC is applied in order to numerically estimate the expected value in (10.40)

without any simplifying assumptions. The main objective is to simulate different

rainfall scenarios over the period t1; t2½ �. For the period t1; t2½ �, a scenario of the

daily rainfall is simulated. Each day is determined if it is a rainy or a dry day by

using a Markov chain model (the model that was estimated from our historical

data). Then, in the case of a rainy day, the appropriate rainfall amount is generated

by the gamma distribution. This method is repeated n times. In our case, we choose

n ¼ 10; 000. Finally, the CR index is calculated for the period t1; t2½ � by averaging

each scenario. Given that the representation of the rainfall is well defined by our

model, the forecasted CR index will be very close to the real one and hence the

discounted payoff of the futures CR derivatives (10.40) can be easily calculated.

10.5 Conclusions

In this chapter, we focused on precipitation derivatives. Although rainfall and

snowfall are two different weather variables and contracts are traded separately,

as it is shown in this chapter, they share a lot of common characteristics. Hence, the

same model can be used for both of them. Unlike other weather variables that were

studied in this book so far, precipitation is not a continuous variable.

The first objective of this chapter was to present a daily model for the underlying

weather variable, that is, precipitation. The modeling procedure was separated in
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two steps. In the first step, a Markov chain model was used in order to model the

frequency of the precipitation occurrence. In this chapter three different types of

Markov chain models were presented. The first one is the classic Markov chain

model with constant transition probabilities. The other two models assume seasonal

and daily transition probabilities than have better potential in capturing the dynam-

ics of the frequency process of precipitation.

In the second step, gamma distribution was selected as an appropriate distribu-

tion to fit the precipitation amount conditioned on a rainy day. Alternatively, the

exponential and the mixed exponential distributions were presented.

The second objective was to use the daily model in order to derive a valuation

framework for precipitation derivatives. An indifference pricing methodology

was proposed. In this framework, an investor tries to maximize its utility function.

A negative exponential utility function was proposed.
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Appendix A: Wavelet Networks

for Weather Derivatives Modeling

A.1 Introduction

Wavelet networks (WNs) are a new class of networks that combine the classic

sigmoid NNs and the WA. WNs have been used with great success in a wide range

of applications. In this appendix, we present a complete statistical model identifi-

cation framework in order to apply WNs in weather derivative modeling and

pricing. Model identification can be separated in two parts, variable significance

testing and model selection. The first will be used in order to indentify the statistical

significant lags of a weather process like temperature or wind, while the later will be

used in order to build the optimal WNs that will be used in order to model the

dynamics of the underlying weather process. More precisely, the following subjects

were thoroughly presented: the structure of a WN, methods to train a WN,

initialization algorithms, variable significance and variable selection algorithms, a

model selection method, and finally methods to construct confidence and prediction

intervals.

In Pati and Krishnaprasad (1993), it has been demonstrated that it is possible to

construct a theoretical formulation of a feedforward NN in terms of wavelet

decompositions. WNs were proposed by Zhang and Benveniste (1992) as an

alternative to feedforward NNs which would alleviate the aforementioned

weaknesses associated with each method. The WNs are a generalization of radial

basis function networks (RBFN). WNs are one hidden layer networks that use a

wavelet as an activation function, instead of the classic sigmoidal family. It is

important to mention here that the multidimensional wavelets preserve the “univer-

sal approximation” property that characterizes NNs. The nodes (or wavelons) of

WNs are the wavelet coefficients of the function expansion that have a significant

value. In Bernard et al. (1998), various reasons were presented in why wavelets

should be used instead of other transfer functions. In particular, firstly, wavelets

A.K. Alexandridis and A.D. Zapranis, Weather Derivatives: Modeling and Pricing
Weather-Related Risk, DOI 10.1007/978-1-4614-6071-8,
# Springer Science+Business Media New York 2013
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have high compression abilities, and secondly, computing the value at a single point

or updating the function estimate from a new local measure involves only a small

subset of coefficients.

WNs have been used in a variety of applications so far, that is. in short-term load

forecasting (Bashir and El-Hawary 2000; Benaouda et al. 2006; Gao and Tsoukalas

2001; Ulugammai et al. 2007; Yao et al. 2000), in time-series prediction (Cao et al.

1995; Chen et al. 2006; Cristea et al. 2000), signal classification and compression

(Kadambe and Srinivasan 2006; Pittner et al. 1998; Subasi et al. 2005), signal

denoising (Zhang 2007), static, dynamic (Allingham et al. 1998; Oussar and

Dreyfus 2000; Oussar et al. 1998; Pati and Krishnaprasad 1993; Postalcioglu and

Becerikli 2007; Zhang and Benveniste 1992), and nonlinear modeling (Billings and

Wei 2005), nonlinear static function approximation, (Jiao et al. 2001; Szu et al.

1992; Wong and Leung 1998), to mention the most important. In Khayamian et al.

(2005), WN were even proposed as a multivariate calibration method for simulta-

neous determination of test samples of copper, iron, and aluminum.

In contrast to classical “sigmoid NNs,” WNs allow for constructive procedures

that efficiently initialize the parameters of the network. Using wavelet decomposi-

tion, a “wavelet library” can be constructed. In turn, each wavelon can be

constructed using the best wavelet of the wavelet library. The main characteristics

of these procedures are (1) convergence to the global minimum of the cost function

and (2) initial weight vector into close proximity of the global minimum, and as a

consequence drastically reduced training times (Zhang 1997; Zhang and

Benveniste 1992). In addition, WNs provide information for the relative participa-

tion of each wavelon to the function approximation and the estimated dynamics of

the generating process. Finally, efficient initialization methods will approximate the

same vector of weights that minimize the loss function each time.

In Zapranis and Alexandridis (2008) and Zapranis and Alexandridis (2009), we

give a concise treatment of wavelet theory. For a complete theoretical background

on wavelets and wavelet analysis, we refer to Daubechies (1992) and Mallat (1999).

Here the emphasis is in presenting the theory and mathematics of wavelet neural

networks.

The rest of the chapter is organized as follows: in Sect. A.2, we present the WN.

More precisely, in Sect. A.2.1, the structure of a WN is described. In Sect. A.2.2,

various initialization methods were described. In Sect. A.2.3, a training method of

the WN is presented, and in Sect. A.2.4, the stopping conditions of the training are

described. A model selection algorithm is described in Sect. A.3, and a model

selection algorithm without training is presented in Sect. A.3.1. Next, a criterion for

selecting significant variables is presented in Sect. A.4, while a variable selection

algorithm is analytically presented in Sect. A.4.1. In Sect. A.5, methods to estimate

the model and variance uncertainty are described. In Sect. A.5.1, a framework for

constructing confidence intervals is presented, while in Sect. A.5.2, a framework for

constructing prediction intervals is presented. Finally, in Sect. A.6, we conclude.
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A.2 Wavelet Neural Networks for Weather Variables Modeling

A.2.1 Structure of a Wavelet Network

AWN usually has the form of a three-layer network. The lower layer represents the

input layer, the middle layer is the hidden layer, and the upper layer is the output

layer.

In the input layer, the explanatory variables are introduced to the WN. The

hidden layer consists of the hidden units (HUs). The HUs are often referred as

wavelons, similar to neurons in the classical sigmoid NNs. In the hidden layer, the

input variables are transformed to dilated and translated version of the mother

wavelet. Finally, in the output layer, the approximation of the target values is

estimated.

The idea of a WN is to adapt the wavelet basis to the training data. Hence, the

wavelet estimator is expected to be more efficient than a sigmoid NN, (Zhang

1993).

In this book, we implement a multidimensional WN with a linear connection

between the wavelons and the output. Moreover, in order for the model to perform

well in the presence of linearity, we use direct connections from the input layer to

the output layer. Hence, a network with zero HUs is reduced to the linear model.

The structure of a single hidden-layer feedforward WN is given in Fig. A.1. The

network output is given by the following expression:

glðx;wÞ ¼ ŷðxÞ ¼ w
½2�
lþ1 þ

Xl
j¼1

w
½2�
j �CjðxÞ þ

Xm
i¼1

w
½0�
i � xi (A.1)

In that expression, Cj(x) is a multidimensional wavelet which is constructed by

the product of m scalar wavelets, x is the input vector, m is the number of network

inputs, l is the number of HUs, and w stands for a network weight. The multidi-

mensional wavelets are computed as follows:

CjðxÞ ¼
Ym
i¼1

cðzijÞ (A.2)

where c is the mother wavelet and

zij ¼
xi � w

½1�
ðxÞij

w
½1�
ðzÞij

(A.3)

In the above expression, i ¼ 1, . . ., m, j ¼ 1, . . ., l + 1 and the weights

w correspond to the translation (w
½1�
ðxÞij) and the dilation (w

½1�
ðzÞij) factors. The complete
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vector of the network parameters comprises w ¼ w
½0�
i ;w

½2�
j ;w

½2�
lþ1;w

½1�
ðxÞij;w

½1�
ðzÞij

� �
.

These parameters are adjusted during the training phase.

In bibliography, three mother wavelets are usually suggested, the Gaussian

derivative; the second derivative of the Gaussian, the so-called Mexican Hat; and

the Morlet wavelet.

The selection of the mother wavelet depends on the application and is not limited

to the above choices. The activation function can be a wavenet (orthogonal

wavelets) or a wave frame (continuous wavelets). Following Zhang (1994), Billings

and Wei (2005), and Becerikli et al. (2003), we use as a mother wavelet the

Mexican Hat function which proved to be useful and to work satisfactorily in

various applications and is given by

cðzijÞ ¼ ð1� z2ijÞe�
1
2
z2ij (A.4)

A.2.2 Initialization of the Parameters of the Network

In WNs, in contrast to NNs that use sigmoid functions, selecting initial values of the

dilation and translation parameters randomly may not be suitable (Oussar et al.

Fig. A.1 A feedforward wavelet neural network
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1998). A wavelet is a waveform of effectively limited duration that has an average

value of zero and localized properties; hence, a random initialization may lead to

wavelons with a value of zero. Random initialization may result to wavelons that do

not represent the dynamics of the underlying weather variable.

Training algorithms like gradient descent with random initialization are ineffi-

cient (Zhang 1993), since random initialization affects the speed of training and

may lead to a local minimum of the loss function (Postalcioglu and Becerikli 2007).

Utilizing the information that can be extracted by theWA from the input weather

dataset, the initial values of the parameters w of the network can be selected in an

efficient way. Efficient initialization will result to less iterations in the training

phase of the network and training algorithms that will avoid local minimums of the

loss function in the training phase. Finally, efficient initialization methods will

approximate the same vector of weights that minimize the loss function each time.

Various methods have been proposed for an optimized initialization of the

wavelet parameters. Recent studies proposed complex methods that utilize the

information extracted by the WA (Oussar and Dreyfus 2000; Zhang 1997; Xu

and Ho 2002; Wong and Leung 1998; Oussar et al. 1998; Kan and Wong 1998).

These methods are not optimal but a trade-off between optimality and efficiency

(He et al. 2002).

The implementation of these methods can be summed in the following three

steps:

1. Construct a library W of wavelets.

2. Remove the wavelets that their support does not contain any sample points of the

training data.

3. Rank the remaining wavelets and select the best wavelet regressors.

In the first step, the wavelet library can be constructed either by an orthogonal

wavelet or a wavelet frame (He et al. 2002; Postalcioglu and Becerikli 2007). By

determining an orthogonal wavelet basis, the WN is simultaneously constructed.

However, in order to generate an orthogonal wavelet basis, the wavelet function has

to satisfy strong restrictions (Daubechies 1992; Mallat 1999). In addition, the fact

that orthogonal wavelets cannot be expressed in closed form constitutes them

inappropriate for applications of function approximation or process modeling

(Oussar and Dreyfus 2000).

On the other hand, constructing wavelet frames is very easy and can be done by

translating and dilating the selected mother wavelet. The results from Gao and

Tsoukalas (2001) indicate that a family of compactly supported non-orthogonal

wavelets is more appropriate for function approximation. Due to the fact that a

wavelet family can contain a large number of wavelets, it is more convenient to use

a truncated wavelet family than an orthogonal wavelet basis (Zhang 1993).

However, constructing a WN using wavelet frames is not a straightforward

process. The wavelet library may contain a large number of wavelets since only

the input data were considered in the construction of the wavelet frame. In order to

construct a WN, the “best” wavelets must be selected. However, arbitrary

Appendix A: Wavelet Networks for Weather Derivatives Modeling 275



truncations may lead to large errors (Xu and Ho 2005). In the second step, Zhang

(1993) proposes to remove the wavelets that have very few training patterns in their

support. Alternatively, in Cannon and Slotine (1995), magnitude-based methods

were used to eliminate wavelets with small coefficients.

In the third step, the remaining wavelets are ranked, and the wavelets with the

highest rank are used for the construction of the WN.

In Zhang (1994) and Zhang (1997), three alternative methods were proposed in

order to reduce and rank the wavelets in the wavelet library: residual based

selection (RBS), stepwise selection by orthogonalization (SSO), and backward

elimination (BE).

In the framework of RBS, first, the wavelet that best fits the output data is

selected. Then the wavelet that best fits the residual of the fitting of the previous

stage is repeatedly selected. RBS is considered as a very simple method but not an

effective one (Juditsky et al. 1994). However, if the wavelet candidates reach a very

large number, computational efficiency is essential and the RBS method may be

used (Juditsky et al. 1994). In Kan and Wong (1998) and Wong and Leung (1998),

the RBS algorithm was used for the synthesis of a WN. In Xu and Ho (2002), a

modified version of the RBS algorithm was used. More precisely, an orthogonalized

residual based selection (ORBS) algorithm is proposed for the initialization of the

WN. The ORBS method combines both the RBS and the orthogonalized least

squares method. In this way, high efficiency is obtained, while relatively low

computational burden is maintained.

The SSO method is an extension of the RBS first proposed by Chen et al. (1989)

and Chen et al. (1991). In order to initialize the WN, the following procedure is

followed: first, the wavelet which best fits the output data is selected. Then the

wavelet that best fits the residual of the fitting of the previous stage together with the

previous selected wavelet is repeatedly selected. In other words, the SSO considers

the interaction or the non-orthogonality of the wavelets. The selection of the

wavelets is performed using the modified Gram–Schmidt algorithm that has better

numerical properties and is computationally less expensive than the ordinary

Gram–Schmidt algorithm (Zhang 1997). SSO is considered to have good efficiency

while it is not computationally expensive. In Oussar and Dreyfus (2000), an

algorithm similar to SSO was proposed.

In contrast to previous methods, the BE starts the regression by selecting all the

available wavelets from the wavelet library. Then the wavelet that contributes the

least in the fitting of the training data is repeatedly eliminated. The drawback of BE

is that it is computationally expensive, but it is considered to have good efficiency.

In this book, the BE method is the preferred initialization framework that it is used

in order to model the temperature and the wind.

All methods described above are used just for the initialization of the dilation

and translation parameters. Then the network is further trained in order to obtain the

vector of the parameters w ¼ ŵn which minimizes the cost function.

It is clear that additional computational burden is added in order to initialize

efficiently the WN. However, the efficient initialization significantly reduces the
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training phase; hence, the total amount of computations is significantly smaller than

in a network with random initialization.

A.2.3 Training a Wavelet Network with Back-Propagation

After the initialization phase, the network is further trained in order to find the

weights which minimize the cost function.

In our implementation, the ordinary back-propagation (BP) was used. BP is

probably the most popular algorithm used for training WNs (Oussar and Dreyfus

2000; Oussar et al. 1998; Postalcioglu and Becerikli 2007; Zhang 1997, 2007;

Zhang and Benveniste 1992; Fang and Chow 2006; Jiao et al. 2001). Ordinary BP is

less fast but also less prone to sensitivity to initial conditions than higher order

alternatives (Zapranis and Refenes 1999).

The basic idea of BP is to find the percentage of contribution of each weight to

the error. The error ep for pattern p is simply the difference between the target (yp)
and the network output (Ep ). By squaring and multiplying by ½, we take the

pairwise error which is used in network training:

Ep ¼ 1

2
yp � ŷp
� �2 ¼ 1

2
e2p (A.5)

The weights of the network were trained to minimize the mean quadratic cost

function (or loss function):

Ln ¼ 1

n

Xn
p¼1

Ep ¼ 1

2n

Xn
p¼1

e2p ¼
1

2n

Xn
p¼1

yp � ŷp
� �2

: (A.6)

Other functions can be used instead of (A.6); however, the mean quadratic cost

function is the most commonly used. The network is trained until a vector of

weights w ¼ ŵn that minimizes the proposed cost function is found. The previous

solution corresponds to a training sample of size n. Computing the parameter vector

ŵn is always done by iterative methods. At each iteration t, the derivative of the loss
function with respect to the network weights is calculated. Then, the updating of the

parameters is performed by the following (delta) learning rule:

wtþ1 ¼ wt � �
@Ln
@wt

þ k wt � wt�1ð Þ (A.7)

where � is the learning rate and it is constant. The complete vector of the network

parameters comprises w ¼ w
½0�
i ;w

½1�
ðxÞij;w

½1�
ðzÞij;w

½2�
j ;w

½2�
lþ1

� �
.
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A constant momentum term, defined by k , is induced which increases the

training speed and helps the algorithm to avoid oscillations. The learning rate and

momentum speed take values between 0 and 1. The choice of the learning rate and

the momentum depends on the application and the training sample. Usually, values

between 0.1 and 0.4 are used.

The partial derivative of the cost function with respect to a weight w is given by

@L

@w
¼ 1

2n

Xn
p¼1

@Ep

@w
¼ 1

2n

Xn
p¼1

@Ep

@ŷp

@ŷp
@w

¼ 1

n

Xn
p¼1

� yp � ŷp
� � @ŷp

@w
¼ 1

n

Xn
p¼1

�ep
@ŷp
@w

(A.8)

The partial derivatives with respect to each parameter,
@ŷp
@w , and with respect to

each input variable,
@ŷp
@xi

, are presented in Appendix B.

A.2.4 Stopping Conditions for Training

After the initialization phase of the network parameters w, the weights w
½0�
i and w

½2�
j

and parameters w
½1�
ðxÞij and w

½1�
ðzÞij are trained during the learning phase for

approximating the target function. A key decision related to the training of a WN

is when the weight adjustment should end. Under the assumption that the WN

contains the number of wavelets that minimizes the prediction risk, the training is

stopped when one of the following criteria is met: the cost function reaches a fixed

lower bound or the variations of the gradient or the variations of the parameters

reach a lower bound or the number of iterations reaches a fixed maximum, which-

ever is satisfied first. In our implementation, the fixed lower bound of the cost

function, of the variations of the gradient, and of the variations of the parameters

was set to 10�5.

A.3 Model Selection for Weather Time-Series Modeling

In this section, we describe the model selection procedure. One of the most crucial

steps is to identify the correct topology of the network. A desired WN architecture

should contain as few HUs as necessary while at the same time it should explain as

much variability of the training data as possible. A network with less HUs than

needed would not be able to learn the underlying function that describes the weather
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process, while selecting more HUs than needed will result to an over-fitted model.

Therefore, an algorithm to select the appropriate WN model for a given problem is

necessary to be derived.

The minimum prediction risk (MPR) principle can be applied (Efron and

Tibshirani 1993; Zapranis and Refenes 1999). The idea behind MPR is to estimate

the out-of-sample performance of incrementally growing networks. Assuming that

the explanatory variables xwere correctly selected and remain fixed, then the model

selection procedure is the following: the procedure starts with a fully connected

network with 0 HUs. The WN is trained, and then the prediction risk is estimated.

Then, iteratively a new HU is added to the network. The new WNs are trained, and

the new prediction risk is estimated at each step. The number of HUs that minimizes

the prediction risk is the appropriate number of HUs that should be used for the

construction of the WN.

The prediction risk measures the generalization ability of the network. More

precisely, the prediction risk of a network glðx; ŵnÞ is the expected performance of

the network on new data that were not introduced during the training phase and is

given by

Pl ¼ E
1

n

Xn
p¼1

y�p � ŷ�p
� �2

" #
(A.9)

where x�p; y
�
p

� �
are the new observations that have not been used in the construction

of the network glðx; ŵnÞ and ŷ�p is the network output using the new observations,

glðx�;wÞ.
However, finding a statistical measure that estimates the prediction risk is not a

straightforward procedure. The use of sampling methods such as bootstrap and

cross-validation can be employed since they do not depend on any assumptions

regarding the model (Efron and Tibshirani 1993). The only assumption made by

sampling methods is that the data are a sequence of independent and identically

distributed variables. Another advantage of bootstrap and cross-validation is their

robustness. In contrast to sampling methods, alternative methods like the

generalized cross-validation (GCV) and the final prediction error (FPE) require a

roughly correct model to obtain the estimate of the noise variance.

The bootstrap and the n-fold cross-validation approaches are analytically

described in Efron and Tibshirani (1993). It is known that the simple estimation

of the bootstrap approach is not very accurate (Efron and Tibshirani 1993).

Hence, we estimate the improved estimation of the prediction risk following the

suggestion of Efron and Tibshirani (1993). The number of new samplesB is usually

over 30 (Aczel 1993; Efron and Tibshirani 1993). It is clear that as the number of

new samples B increases, the bootstrap method becomes more accurate but also

more computationally expensive. Cross-validation is an another standard tool for

estimating the prediction error that makes an efficient use of the available
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information (Efron and Tibshirani 1993). The n-fold cross-validation is applied as

described in Efron and Tibshirani (1993).

A.3.1 Model Selection Without Training

In Zhang (1997), the estimation of the preferred information criteria is performed

after the initialization stage of the network. More precisely, in the SSO and RBS,

the preferred information criteria are evaluated after the selection of each wavelet in

the initialization stage. Similarly, when the BE algorithm is used, the preferred

information criteria are evaluated after the elimination of each wavelet in the

initialization stage. Since the initialization of the WN is very good, as presented

in the previous section, the initial approximation is expected to be very close to

the target function. Hence, a good approximation of the prediction risk is expected

to be obtained. The same idea can also be applied when the BS or the CV are used.

The above procedure is significantly less computational expensive.

However, the above procedure is similar to early stopping techniques. Usually

early stopping techniques suggest a network with more HUs than necessary, though

the network is not fully trained to avoid over-fitting (Samarasinghe 2006), while

they do not work satisfactorily in complex problems (Samarasinghe 2006).

Since sampling techniques are computationally expensive methods, the FPE

criterion can be used initially. Then the BS or the CV methods can be used in

+/�5 HU around the HUs proposed by FPE in order to define the best network

topology.

A.4 Selecting the Significant Lags of the Weather Variables

In real problems it is important to determine correctly the independent variables.

In most problems there is a little information about the relationship of any explana-

tory variable with the dependent variable. As a result, unnecessary independent

variables are included in the model, reducing its predictive power. Similarly, in the

case of temperature and wind modeling, the length of the lag series must be chosen.

Hence, the lags that contribute statistically significant to our model must be

selected. Since WN are nonlinear, nonparametric tools, methods derived from

linear models like the partial autocorrelation function cannot be used.

In linear models, in order to determine if a coefficient, and as a result an input

variable, is significant, the t-stats or the p values of each coefficient are examined.

Applying the previous method in WNs is not a straightforward process since the

coefficients (weights) are estimated iteratively and each variable contribute to the

output of the WN linearly through the direct connections and nonlinearly through

the HUs.

280 Appendix A: Wavelet Networks for Weather Derivatives Modeling



In this book, the sensitivity based pruning (SBP) proposed by Moody and Utans

(1994) is used in order to define the statistical significant lags that must be used in

temperature and wind modeling. The SBP method quantifies a variable’s relevance

to the model by the effect on the empirical loss of the replacement of that variable

by its mean. The SBP is given by

SBPðxjÞ ¼ Lnðx; ŵnÞ � Lnð�xðjÞ; ŵnÞ (A.10)

where

�xðjÞ ¼ x1;t; x2;t; . . . ; �xj; . . . ; xm;t
� �

(A.11)

and

�xj ¼ 1

n

Xn
t¼1

xj;t (A.12)

Additional criteria can be used like the ones presented in Dimopoulos et al.

(1995) and Alexandridis (2010). For additional information on the SBP criterion

presented above, we refer to Alexandridis (2010) and Zapranis and Refenes (1999).

A.4.1 An Algorithm for Selecting the Significant Lags
in Modeling of Weather Processes

In order to statistically test whether a variable is insignificant and can be removed

for the training dataset or not, the distribution of the criterion presented in the

previous section is needed. Without the distribution of the preferred measure of

relevance, it is not clear if the effects of the variable xi on y are statistically

significant (Zapranis and Refenes 1999). More precisely, the only information

obtained by criteria described in the previous section is how sensitive is the

dependent variable to small perturbations of the independent variable. It is clear

that the smaller the value of the preferred criterion, the less significant is the

corresponding variable. However, there is no information if this variable should

be removed from the model or not. In other words, we cannot define the correct

number of lags that should be used in order to model the dynamics of the tempera-

ture or wind processes.

In order to approximate asymptotically the distribution of the measures of

relevance, we use the bootstrap method. More precisely, a number of bootstrapped

training samples can be created by the original training dataset. The idea is to

estimate the preferred criterion on each bootstrapped sample. If the number of the

bootstrapped samples is large, then a good approximation of the empirical distribu-

tion of the criterion is expected to be achieved. Obtaining an approximation of the
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empirical distributions, confidence intervals and hypothesis tests can be constructed

for the value of the criterion. The variable selection algorithm is analytically

explained bellow and is illustrated in Fig. A.2.

The procedure is the following: the algorithm starts with the training sample that

consists of all available explanatory variables.

Start with all available explanatory
variables

Create B bootstrapped samples from the
training sample

Start with zero hidden units
l = 0

For each new sample Dx
*(b)

 estimate the
Prediction Risk and the MFS criterion

Estimate the improved Prediction Risk and
the p-values for the MFS

Add one hidden unit
l = l + 1

l ≥ l max
NO

NO
NO

NOAny variables with
p-value>0.1

Remove variables next largest
p-value

Is the new Prediction
Risk<Prediction Risk*tr ?

Put variable back

Any variables with
p-value>0.1

Any variables left ?

Is this the first pass?

NO NO

YES

YES
YES

YES

YES

YES

Choose model that minimizes Prediction
Risk and the corresponding p-values of

the MFS

END

Model Selection Variable Selection

Fig. A.2 Model identification. Model selection and variable selection algorithms
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The first step is to create B bootstrapped training samples from the original dataset.

The second step is to identify the correct topology of the WN following the

procedure described in the previous section and estimate the prediction risk.

The third step is to estimate the preferred measure of relevance for each explanatory

variable for each one of the B bootstrapped training samples.

The fourth step is to calculate the p values of the measure of relevance.

The fifth step is to test if any explanatory variables have a p value greater than 0.1 If
variables with a p value greater than 0.1 exist, then the variable with the largest

p value is removed from the training dataset else the algorithm stops.

The sixth step is to estimate the prediction risk and the new p values of the reduced
model. If the new estimated prediction risk is smaller than the prediction risk

multiplied by a threshold (usually 1.05), then the decision of removing the

variable was correct and we return to the fifth step.

If the new prediction risk is greater than the new prediction risk multiplied by a

threshold (usually 1.05), then the decision of removing the variable was wrong, and

the variable must be reintroduced to the model. In this case the variable with the

next largest p value which is also greater than 0.1 is removed from the training

sample, and we return to step six. If the remaining variables have p values smaller

than 0.1, then the algorithm stops.

In order to have a good estimation of the prediction risk as well as an approxi-

mation of the distribution of the measure of relevance, a large number of

bootstrapped samples B are needed. As B increases, the accuracy of the algorithm

also increases but also increases the computational burden. In Zapranis and Refenes

(1999), two different bootstrap methods were presented, the local bootstrap and the

parametric sampling, which are significantly less computationally expensive. How-

ever, the bootstrapped samples may significantly differ from the original sample.

Hence, applying local bootstrap or parametric sampling may lead to wavelets

outside their effective support, that is, wavelets with value of zero, since wavelets

are local functions with limited duration. In addition, in contrast to the case of NNs,

the asymptotic distribution of the weights of a WN is not known. These

observations constitute both local bootstrap and parametric sampling inappropriate

for WNs.

Alternatively new samples from training patterns can be constructed. This can be

done by applying bootstrap from pairs and train a WN for each sample. Since, the

initialization of a WN is very good, this procedure is not of a prohibited computa-

tional cost.

A.5 Modeling the Uncertainty of the Weather Predictions

In the previous sections, a framework were a WN can efficiently be constructed,

initialized, and trained was presented. In this section, this framework is expanded

by presenting two methods for estimating confidence and prediction intervals. The
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output of the WN is the approximation of the underlying function f ðxÞ obtained

from the noisy data. In many applications and especially in finance, risk managers

may be more interested in predicting intervals for future movements of the under-

lying function f ðxÞ than simply point estimates. Similarly, in weather risk manage-

ment, confidence and prediction intervals can be used in order to derive bounds for

the possible outcomes of the evolution of the weather variables and adjust the

weather risk management strategies analogously.

In weather datasets, the training patterns usually are inaccurate since they

contain noise or they are incomplete due to missing observations. Especially

financial time series as well as temperature time series are dominated by these

characteristics. As a result, the validity of the predictions of our model (as well as of

any other model) is questioned. The uncertainty that results from the data

contributes to the total variance of the prediction, and it is called the data noise

variance, s2e (Papadopoulos et al. 2000; Breiman 1996; Carney et al. 1999; Heskes

1997).

On the other hand, presenting to a trained network new data that were not

introduced to the WN during the training phase, additional uncertainty is introduced

to the predictions. Since the training set consists of a finite number of training pairs,

the solution ŵn is likely not to be valid in regions not represented in the training

sample (Papadopoulos et al. 2000). In addition, the iterative algorithm that is

applied to train a network often results to local minima of the loss function. This

source of uncertainty that arises from misspecifications in model or parameter

selection as well as from limitation of the training algorithm contributes also to

the total variance of the prediction, and it is called the model variance, s2m
(Papadopoulos et al. 2000).

The model variance and the data noise variance are assumed to be independent.

The total variance of the prediction is given by the sum of two variances:

s2p ¼ s2m þ s2e (A.13)

If the total variance of a prediction can be estimated, then it is possible to

construct confidence and prediction intervals. The rest of the section is dedicated

to this purpose. We assume that the total variance of the prediction is not constant

and is given by

s2pðxÞ ¼ s2mðxÞ þ s2e ðxÞ (A.14)

Two of the most often cited methods is the bagging (Breiman 1996) and

balancing method (Carney et al. 1999; Heskes 1997). In this section, we adapt

these two methods in order to construct confidence and prediction intervals under

the framework of WNs. A framework similar to the one presented in Carney et al.

(1999) to estimate the total prediction variance, s2p , and construct confidence and

prediction intervals is adapted.
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A.5.1 Confidence Intervals

To generate confidence intervals, the distribution of the accuracy of the network

prediction to the true underlying function is needed. In other words, the variance of

the distribution of

f ðxÞ � ŷ � f ðxÞ � gl x; ŵnð Þ (A.15)

must be estimated.

The model variance s2m will be estimated using the balancing method proposed

by Heskes (1997) and Carney et al. (1999).

First, B ¼ 200 new random samples with replacement are created from the

original training sample. Each new sample is used to train a new WN with the

same topology as the original one, glðxð�iÞ; ŵð�iÞÞ, where ð�iÞ indicates ith the ith

bootstrapped sample and ŵð�iÞ is the solution of the ith bootstrapped sample. Then

each new network is evaluated using the original training sample x . Next, the

average output of the B networks is estimated by

gl;avgðxÞ ¼ 1

B

XB
i¼1

gl x; ŵð�iÞ
� �

(A.16)

It is assumed that the WN produces an unbiased estimate of the underlying

function f ðxÞ. This means that the distribution ofP f ðxÞjgl;avgðxÞ
� �

is centered on the

estimate gl;avgðxÞ (Carney et al. 1999; Heskes 1997; Zapranis and Livanis 2005).

Since the WN is not an unbiased estimator (as any other model), it assumed that the

bias component arising from the WN is negligible in comparison to the variance

component (Carney et al. 1999; Zapranis and Livanis 2005). Finally, if we assume

that the distribution of P f ðxÞjgl;avgðxÞ
� �

is normal, then the model variance can be

estimated by

ŝ2m xð Þ ¼ 1

B� 1

XB
i¼1

gl x; ŵð�iÞ
� �

� gl;avg xð Þ
� �2

(A.17)

In order to construct confidence intervals, the distribution of P gl;avgðxÞjf ðxÞ
� �

is

needed. Since the distribution ofP f ðxÞjgl;avgðxÞ
� �

is assumed to be normal, then the

“inverse” distributionP gl;avgðxÞjf ðxÞ
� �

is also normal. However, this distribution is

unknown. Alternatively it is empirically estimated by the distribution of

P glðxÞjgl;avgðxÞ
� �

(Carney et al. 1999; Zapranis and Livanis 2005). Then the

confidence intervals are given by

gl;avg xð Þ � ta
2
ŝmbf ðxÞbgl;avg xð Þ þ ta

2
ŝm (A.18)
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where ta
2
can be found in a student’s t table and 1� a is the desired confidence level.

However, the estimator of the model variance, ŝ2m, given by (A.17) is known to

be biased (Carney et al. 1999); as a result, wider confidence intervals will be

produced. Carney et al. (1999) proposed a balancing method to improve the

model variance estimator.

The B bootstrapped samples are divided in M groups. More precisely the 200

ensemble samples are divided in 8 groups of 25 samples each. Next, the average

output of each group is estimated:

z ¼ g
ðiÞ
l;avg xð Þ

n oM

i¼1
(A.19)

The model variance is not estimated just by the M ensemble output since this

estimation will be highly volatile (Carney et al. 1999). In order to overcome this, a

set of P ¼ 1000 bootstraps of the values of z are created:

Y ¼ z�j
n oP

j¼1
(A.20)

where

z�j ¼ g
ð�j1Þ
l;avg xð Þ; gð�j2Þl;avg xð Þ; . . . ; gð�jMÞ

l;avg xð Þ
n o

(A.21)

is a bootstrapped sample of z. Then the model variance is estimated on each one of

these sets by

ŝ2�j xð Þ ¼ 1

M

XM
k¼1

g
ð�jkÞ
l;avg xð Þ � gjl;avg xð Þ

� �2

(A.22)

where

gjl;avg xð Þ ¼ 1

M

XM
k¼1

g
ð�jkÞ
l;avg xð Þ (A.23)

Then the average model variance is estimated by taking the average of all ŝ2�j xð Þ:

ŝ2m xð Þ ¼ 1

P

XP
j¼1

ŝ2�j xð Þ (A.24)

This procedure is not computationally expensive since there is no need to train

new networks. Since a good estimator of the model variance is obtained, the

improved confidence intervals using the balancing methods are given by
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gl;avg xð Þ � za
2
ŝmbf ðxÞbgl;avg xð Þ þ za

2
ŝm (A.25)

where za
2
can be found in a standard Gaussian distribution table and 1� a is the

desired confidence level.

A.5.2 Prediction Intervals

To generate prediction intervals, the distribution of the accuracy of the

network prediction to target values is needed. In other words, the variance of the

distribution of

y� ŷ � y� gl x; ŵnð Þ (A.26)

must be estimated.

In order to construct prediction intervals, the total variance of the prediction, s2p,
must be estimated. As it was presented earlier, the total variance of the prediction is

the sum of the model variance and the data noise variance. In the previous section, a

method for estimating the model variance was presented. Here we emphasize on a

method for estimating the data noise variance.

In order to estimate the noise variance s2e , maximum likelihood methods are

used. First, the initial WN, glðx; ŵnÞ, is estimated and the solution ŵn of the loss

function is found. Since it is assumed that the estimated WN is a good approxima-

tion of the unknown underlying function, the vector ŵn is expected to be very close

to the true vectorw0 that minimizes the loss function. Hence, the noise variance can

be approximated by a second WN, fn x; ûnð Þ , where the squared residuals of the

initial WN are used as target values (Satchwell 1994). In the second WN, fn x; ûnð Þ, v
is the number of HUs and ûn is the estimated vector of parameters that minimizes

the loss function of the second WN. Since it is assumed that the estimated WN is a

good approximation of the unknown underlying function, the vector ûn is expected

to be very close to the true vector u0 that minimizes the loss function. Hence, the

following cost function is minimized in the second network:

Xn
i¼1

gl xi;w0ð Þ � yið Þ2 � fn xi; u0ð Þ
n o2

(A.27)

and for a new set of observations, x�, that were not used in the training:

ŝ2e ðx�Þ � fn x�; u0ð Þ (A.28)

This technique assumes that the residual errors are caused by variance alone

(Carney et al. 1999). In order to estimate the noise variance, data that were not used
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in the training of the bootstrapped sample should be used. One way to do this is to

divide the dataset in training and a validation set. However, leaving out these test

patterns is a waste of data (Heskes 1997). Alternatively, an unbiased estimation of

the output of the WN, ŷubðxÞ, can be approximated by

ŷubðxÞ ¼
XB
i¼i

qmi ŷiðxÞ
XB
i¼i

qmi

,
(A.29)

where qmi is 0 if pattern m appears on the ith bootstrap sample and 1 otherwise.

Constructing the new network fn x; uð Þ , we face the problem of model selection

again. Using the methodology described in the previous section, the correct number

of v HUs is selected. Usually, 1 or 2 HUs are enough to model the residuals. In

finding the estimator of the noise variance, the prediction intervals can be

constructed:

gl;avgðx�Þ � za
2
ŝpðx�Þbf ðx�Þbgl;avgðx�Þ þ za

2
ŝpðx�Þ (A.30)

where za
2
can be found in a standard Gaussian distribution table and 1� a is the

desired confidence level.

A.6 Conclusions

In this appendix, a complete statistical model identification framework in order to

apply WNs in weather derivative modeling and pricing was presented. Model

identification can be separated in two parts, variable significance testing and

model selection. The first was used in order to indentify the statistical significant

lags of a weather process like temperature or wind, while the latter was used in

order to build the optimal WNs that will be used in order to model the dynamics of

the underlying weather process. Finally, methods for constructing confidence and

prediction intervals were presented.

Although a framework for selecting an appropriate model was presented, the

adequacy of the final model must be further tested. This is usually done by

examining the residuals by various criteria in order to indentify if the residuals

satisfy the initial conditions of the proposed model. However, the selection of these

criteria depends on the nature of the underlying function and the assumptions made

while building the model.
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Appendix B: First-Order Derivatives of the

Wavelet Network w.r.t the Network Weights

This appendix contains the derivations of the various derivatives of the first order

needed for the calculation of the updates of the wavelet network weights during the

training procedure. The loss function is the normal quadratic given by

Ln ¼ 1

n

Xn
p¼1

Ep ¼ 1

2n

Xn
p¼1

e2p ¼
1

2n

Xn
p¼1

yp � ŷp
� �2

where n is the number of training pairs. The output of the wavelet network is given

by

glðx;wÞ ¼ ŷðxÞ ¼ w
½2�
lþ1 þ

Xl
j¼1

w
½2�
j �CjðxÞ þ

Xm
i¼1

w
½0�
i � xi

The partial derivatives with respect to each parameter,
@ŷp
@w , and with respect to

each input variable,
@ŷp
@xi

, are presented here.

B.1 Partial Derivatives w.r.t. the Bias Term

@ŷp

@w
½2�
lþ1

¼ 1
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B.2 Partial Derivatives w.r.t. the Direct Connections

@ŷp

@w
½0�
i

¼ xi i ¼ 1; . . . ;m

B.3 Partial Derivatives w.r.t. the Linear Connections Between

the Wavelets and the Output

@ŷp

@w
½2�
j

¼ Cj xð Þ j ¼ 1; . . . ; l

B.4 Partial Derivatives w.r.t. the Translation Parameters

@ŷp

@w
½1�
xð Þij

¼ @ŷp
@Cj xð Þ �

@Cj xð Þ
@c zij

� � � @c zij
� �
@zij

� @zij

@w
½1�
xð Þij

¼ w
½2�
j � c z1j

� � � � � c0 zij
� � � � � c zmj

� � � �1

w
½1�
ðzÞij

¼� w
½2�
j

w
½1�
ðzÞij

c z1j
� � � � � c0 zij

� � � � � c zmj
� �
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B.5 Partial Derivatives w.r.t. the Dilation Parameters

@ŷp

@w
½1�
zð Þij

¼ ŷp
@Cj xð Þ �

@Cj xð Þ
@c zij

� � � @c zij
� �
@zij

� @zij

@w
½1�
zð Þij

¼ w
½2�
j � c z1j

� � � � � c0 zij
� � � � � c zmj

� � � xi � w
½1�
ðxÞij

w
½1�
ðzÞij

2

¼� w
½2�
j

w
½1�
ðzÞij

xi � w
½1�
ðxÞij

w
½1�
ðzÞij

2
c z1j
� � � � � c0 zij

� � � � � c zmj
� �

¼� w
½2�
j

w
½1�
ðzÞij

zijc z1j
� � � � � c0 zij

� � � � � c zmj
� �

¼ zij
@ŷp

@w
½1�
xð Þij

B.6 Partial Derivatives w.r.t. the Input Variables

@ŷp
@xi

¼ w
½0�
i þ

Pl
j¼1

w
½2�
j @Cj xð Þ

@c zij
� � � @c zij

� �
@zij

� @zij
@xi

¼ w
½0�
i þ

Xl
j¼1

w
½2�
j � c z1j

� � � � � c0 zij
� � � � � c zmj

� � � 1

w
½1�
ðzÞij

¼ w
½0�
i þ

Xl
j¼1

w
½2�
j

w
½1�
ðzÞij

� c z1j
� � � � � c0 zij

� � � � � c zmj
� �

¼ w
½0�
i �

Xl
j¼1

@ŷp

@w
½1�
xð Þij
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