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Chapter 9 

Analysis of Monte Carlo 
methods 

9.1 Fundamentals and basic examples 

Monte Carlo methods are useful for getting statistical estimates on the 
values of the connective constant, critical exponents, and other quantities 
related to self-avoiding walks. Essentially, a Monte Carlo simulation is a 
computer experiment which observes random versions of a particular sys­
tem. After we obtain enough data, we can use statistical techniques to get 
estimates and confidence intervals for the desired quantities. 

For definiteness, consider the exponent 11 [defined in (1.1.5)], which mea­
sures the length scale of self-avoiding walks. There are several unresolved 
questions about v, such as: Are the conjectured values (1.1.12) and (1.1.14) 
correct in 2, 3, and 4 dimensions? In particular, is the Flory exponent 3/5 
too large in three dimensions? Do the hyperscaling relations (1.4.14) and 
(1.4.24) hold? In two dimensions, does the average area enclosed by an N­
step self-avoiding polygon scale like N 2v? Good numerical estimates can 
give evidence in support of (or against) these and other conjectures. As we 
saw in Section 2.3, such evidence can also be relevant for analogous con­
jectures in other models; for example, if hyperscaling fails for self-avoiding 
walks in three dimensions, then it is likely to fail for other N-vector models 
as well. 

To get a taste of some of the numerical values that various researchers 
have obtained, let us focus on the value of 11 in three dimensions. An 
early study by Rosenbluth and Rosenbluth (1955) used biased sampling 
(see Section 9.3.1) to generate walks of up to 64 steps, obtaining an esti-
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mate of 0.61 for v. Stellman and Gans (1972) generated walks of up to 
298 steps using a continuum version of the pivot algorithm (see Sectiqn 
9.4.3) to obtain an estimate of 0.610 ± 0.008 for v (this and the following 
are 95% confidence intervals for v; see Section 9.2.1). Grishman (1973) 
generated walks of length 500 using a combination of the dimerization and 
enrichment algorithms (see Sections 9.3.2 and 9.3.3), producing an esti­
mate of 0.602 ± 0.009. However, these early results, which used relatively 
short walks, are biased by significant systematic errors due to unincluded 
correction-to-scaling terms (see Section 9.2.1). Rapaport (1985) generated 
walks of length up to 2400 using a combination of dimerization and enrich­
ment, and estimated 0.592±0.004. Madras and Sokal (1988) used the pivot 
algorithm to generate walks of up to 3000 steps, and obtained 0.592±0.003. 
A very recent study (Li and Sokal, private communication), which uses the 
pivot algorithm to generate walks of up to 80,000 steps, indicates that the 
true value of v is even lower: the preliminary estimate is 0.5883 ± 0.0013, 
which is in remarkable agreement with the field theoretic renormalization 
group prediction of0.5880±0.0015obtained by Le Guillou and Zinn-Justin 
(1989). This brief history illustrates that correction-to-scaling terms are a 
serious danger, and that exponent estimates based on short walks must be 
interpreted with caution. 

There are good reasons why Monte Carlo is "easier" for self-avoiding 
walks than for spin systems. First, there is only one limit to worry about, 
namely the length of the walk going to infinity. In a spin system, one has 
to take a limit going to a critical temperature as well as a thermodynamic 
limit of a finite lattice increasing to zd. The latter is absent for self-avoiding 
walks, which can be simulated without any errors arising from the finite 
volume of the lattice. Secondly, spin system simulations typically exhibit 
"critical slowing-down": as the correlation length e diverges, you must look 
at finite lattices of at least ed sites to learn anything, and you must look at 
each site before you get a new data point. This is not an inherent restriction 
for self-avoiding walks, since you only have to look at sites occupied by the 
walk. This suggests the possibility of more efficient algorithms in which 
critical slowing-down is much less severe. 

Another frequently used numerical method is exact enumeration and 
extrapolation. This approach computes exact values of certain quantities 
for small values of N and then tries to infer an asymptotic behaviour from 
these numbers. We will not discuss this method in this book; the interested 
reader is referred to Guttmann (1989a). 

To conduct a Monte Carlo experiment for the estimation of v, one can 
for example proceed as follows. 

(a) Select several values of N, say Nt, ... , Nm. 
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(b) For each N;, generate many N;-step self-avoiding walks at 
random. Use these to get an estimate Y; of (lw(N;)I2}, along 
with an estimate of the uncertainty in Y;. 

(c) Fit a curve of the form Y = AN28 through the points 
(Ni, 'Y,-). The "best'' value of B will be the estimate of v. 
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Of course, each step raises many questions about how to proceed. In (a), 
how many and which values of N should be chosen? In (b), how many 
is "many"? What is the most efficient way to generate walks at random? 
How can the uncertainty best be estimated, and how does this uncertainty 
vary with N? In (c), how do we use the estimated uncertainties to fit 
data to a curve that is only believed to be asymptotically correct? These 
are the kinds of question that will be addressed in this chapter. We shall 
concentrate, however, on what one can say rigorously about the properties 
of these methods. The reader who wishes to pursue other aspects of Monte 
Carlo in more depth should consult the references listed in the Notes at the 
end of this chapter. 

The remainder of this section will discuss some basic examples of Monte 
Carlo methods for generating self-avoiding walks, and will use them to il­
lustrate various themes that appear throughout the chapter. Section 9.2 fo­
cuses on some statistical aspects-both practical and theoretical-of Monte 
Carlo methods. Sections 9.3 through 9.6 will treat various methods in de­
tail. The longer proofs and calculations are deferred to Section 9.7. 

We use our usual notation that SN is the set of all N-step self-avoiding 
walks that begin at the origin. We shall restrict our attention to walks that 
begin at the origin, unless explicitly stated otherwise. 

We begin with the basic question: How can we choose an N-step self­
avoiding walk at random? (In this context, "at random" means that all 
walks in SN are equally likely. For now, N is a given integer.) One simple 
method is the following: 

Elementary Simple Sampling (ESS). This algorithm generates 
ordinary simple random walks until it obtains an N-step 
walk that is self-avoiding. 

1. Let w(O) be the origin and set i = 0. 
2. Increase i by one. Choose one of the 2d neighbours of w( i -1) 

at random, and let w(i) be that point. 
3. If w(i) = w(j) for some j = 0, 1, ... , i- 1, then go back to 

Step 1. Otherwise, go to Step 2 if i < N, and stop if i = N. 

When this algorithm terminates, the walk W = (w(O), ... , w(N)) is self­
avoiding. Moreover, we claim that for any wE SN we have Pr{W = w} = 
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1feN. To see this, letS~ be the set of all N-step (ordinary) simple walks. 
If we keep choosing members of S~ uniformly at random until one of them 
is in SN, then the final result is evidently uniformly distributed on SN. But 
this is essentially what the above algorithm does; Step 3 is just a short-cut 
to avoid generating the last N - i steps of a walk that we already know 
intersects itself by the i-th step. Thus the ESS algorithm indeed generates a 
self-avoiding walk at random. However, it can be very slow when N is even 
moderately large: the probability that an N-step simple random walk is 
self-avoiding is eN f(2d)N, so the expected number of attempts (i.e. returns 
to Step 1) is (2d)N feN. Therefore, using the notation Tx to represent the 
expected amount of computer time required for algorithm X to generate a 
single N -step self-avoiding walk, we have 

( 2d)N+o(N) 
TEss= -

Jl. 
(9.1.1) 

We can improve on the efficiency of ESS by only generating simple random 
walks with no immediate reversals, as follows: 

Non-Reversed Simple Sampling {NRSS). This algorithm gener­
ates simple random walks with no immediate reversals until 
it obtains an N-step walk that is self-avoiding. 

1. Let w(O) be the origin. Choose one of the 2d neighbours of 
the origin at random, and let w(1) be that point. Set i = 1. 

2. Increase i by one. Of the 2d- 1 neighbours of w(i- 1) that 
are different from w(i- 2), choose one at random, and let 
w(i) be that point. 

3. If w(i) = w(i) for some j = 0, 1, ... , i- 1, then go back to 
Step 1. Otherwise, go to Step 2 if i < N, and stop ifi = N. 

Arguing as for the ESS algorithm, we see that the NRSS algorithm gen­
erates a self-avoiding walk uniformly from SN, and it takes an average of 
2d(2d- 1)N-l feN attempts to do so. Therefore 

(
2d- 1) N+o(N) 

TNRss= -- , 
I' 

(9.1.2) 

which is better than (9.1.1), but still not very good. 
Before continuing, we should mention the following "obvious" algorithm, 

which (perhaps surprisingly at first sight) does not work: 

Myopic Self-Avoiding Walk (MSAW). Execute a random walk, 
at each step choosing only from those sites that have not yet 
been visited. 
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1. Let w(O) be the origin, and set i = 0. 
2. Increase i by one. Of the neighbours of w(i -1) that are not 

in the set { w(O), ... , w( i- 2)}, choose one at random, and 
let w( i) be that point. (If all of the neighbours of w( i - 1) 
are in this set, then the walk is trapped, so return to Step 
1.) 

3. Repeat Step 2 if i < N, and stop if i = N. 
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This algorithm produces a walk in SN, but with the wrong distribution. To 
see where the problem is, consider four-step walks on Z2 : the probability 
of obtaining the walk NEEE on a given attempt is ~ x ~ x ~ x ~~ but 
the probability of obtaining the walk NESE is ~ x ~ x ~ x !· Thus, the 
probabilities are not uniform on SN. In fact, the probabilities become very 
far from uniform for large N. The algorithm MSAW actually defines a 
different model, which is essentially the same as the "true self-avoiding 
walk" of Section 10.4. 

Other algorithms for generating independent self-avoiding walks are de­
scribed in Section 9.3. To varying degrees, they all suffer from the problem 
that they are inefficient for large walks. In fact we have the following 

Open Problem: Is there an algorithm A which generates a 
single N-step self-avoiding walk, with distribution that is ex-
actly uniform on SN, such that the average time TA is bounded 
by a polynomial in N? 

Actually, the problem is only open in low dimensions: for d ~ 5, the av­
erage time of the dimerization algorithm of Section 9.3.2 is known to be 
bounded by a polynomial. Dimerization is also the most efficient known 
algorithm for generating a single walk exactly uniformly in any dimension, 
with an expected running time of N°(logN) (if the usual scaling assump­
tions are true; see Section 9.3.2). However, there do exist more efficient 
algorithms that generate self-avoiding walks with a distribution that is ar­
bitrarily close to uniform. These algorithms do not attempt to generate a 
sequence of independent self-avoiding walks, but rather they use a Markov 

chain to generate a sequence of self-avoiding walks that is not indepen­
dent. Such methods are known as dynamic1 , as opposed to static, Monte 
Carlo methods. Roughly speaking, dynamic methods generate new walks 
by modifying (or "updating") walks that have been previously generated, 
while static methods build up walks from scratch. Static methods yield in­
dependent walks (or independent groups of walks), while dynamic methods 
yield correlated sequences of walks. 

1This usage is distinct from the term "polymer dynamics", which refers to the (real) 
motion of polymers. 



286 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS 

The basic idea of the dynamic approach is the following. Suppose that 
1r is a probability distribution on some set S (i.e., for each i E S, 1r(i) is the 
probability of i, and Lies 11'( i) = 1 ), and that we wish to generate a random 
object with the distribution 71'. If we can find a Markov chain with state 
space S whose unique equilibrium distribution is 71', then the fundamental 
theory of Markov chains tells us that running this chain for a long time 
will produce observations whose distribution approaches 11'. In our case, we 
may takeS= SN and 1r(w) = 1/cN for every self-avoiding walk w in SN. 
We begin with a walk w£01 in SN and apply some (randomized) procedure 
that changes w£01 to get another self-avoiding walk w£11; then we apply the 
same procedure to w£11 to get another walk w£21, and so on. In this way we 
generate a sequence of walks {wlnl : n ~ 0} such that (for sufficiently large 
n) the distribution of w[n] is arbitrarily close to 11'. This sequence of walks 
will be correlated, of course, but one hopes that the relevant correlations 
will decay quickly. 

To make the preceding discussion more precise, we make the following 
definitions, which are fairly standard in probability textbooks: 

Definition 9.1.1 Let {X[t] : t = 0, 1, ... } be a Markov chain on a finite or 
countably infinite state space S. Let 

P(i,j) = Pr{X[t+t) = jjX£tJ = i} (t ~ O,i,j E S) 

be the one-step transition probabilities of the chain, and for every nonneg­
ative integer n let 

P"(i,j) = Pr{X[I+n) = iiX[tJ = i} (t~O,i,jeS) 

be the n-step transition probabilities. (We only consider chains that are 
time-homogeneous, i.e. whose transition probabilities are independent oft.) 
The chain is said to be irreducible if for every i and j in S there exists an 
n > 0 such that P"( i, j) > 0 (i.e. every state can be reached from every 
state). An irreducible chain is said to have period p if p is the greatest 
common divisor of {n : P"(i, i) > 0} for every state i (or equivalently for 
at least one i). A chain which has period 1 is said to be aperiodic. 

We remark that pn is simply the n-th matrix power of P. Notice that if 
an irreducible chain has P(i, i) > 0 for some i, then it is aperiodic. 

The standard theory of Markov chains (see references in Notes) tells 
us the following about the long-term behaviour of an aperiodic irreducible 
chain X[t]. First, the limit 

lim pn(i,j) 
n-+oo 
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exists for every i and j in S, and this limit is independent of i; call it 11'(j). 
Next, if S is finite, then 

L:11'u> = 1 (9.1.3) 
jES 

and 
L 11'(i)P(i,j) = 11'(j) for every j inS; (9.1.4) 
iES 

and moreover 71' is the only nonnegative solution of (9.1.3) and (9.1.4). 
Finally, if S is countably infinite, then there are two possibilities: either 
11'(j) = 0 for every j, in which case (9.1.3) and (9.1.4) have no nonnegative 
solution; or else 71' is the unique solution of (9.1.3) and (9.1.4). 

An important special case is the following: we say that a chain is re­
versible with respect to 71' if 

11'(i)P(i,j) = 11'(j)P(j,i) for every i and j inS. (9.1.5) 

(In alternate terminology, (9.1.5) is called the detailed balance condition.) 
Note that if 71' is the uniform distribution, then reversibility is equivalent to 
symmetry of P. If a chain is reversible with respect to 71' 1 then (9.1.4) holds 
(to see this, sum (9.1.5) over i). In practice, almost all dynamic Monte Carlo 
procedures use reversible chains (or are a combination of several reversible 
chains, as in Section 9.5.2). 

If (9.1.3) and (9.1.4) hold for an irreducible chain and some 71' 1 then 
the chain is said to be positive recurrent, and 71' is called its equilibrium, 
or stationary, distribution. In general, 11'(j) is the fraction of time that the 
chain spends in state j, in the long run (irrespective of the initial state). 
Thus, if our chain X(t] is positive recurrent, and if we observe it for a 
sufficiently long time, then the data should be pretty representative of the 
distribution 71'. For example, this tells us that if the state space is SN 
and we observe end-to-end distance of the walks X(t) for a sufficiently long 
time, then we will obtain a good estimate of the mean square displacement 
(lw(N)I2} computed according to 71'. This is essentially a consequence of 
the ergodic theorem, which tells us that for a real-valued function f on the 
state space of a positive recurrent chain, 

lim _!_ ~ f(Xltl) = ""f(i)11'(i) 
m-oo m LJ LJ 

1=1 iES 

with probability one (assuming that the right hand side, which is just the 
expectation of/(·) with respect to 71' 1 is absolutely convergent). 

Let us now look at a particular example: an algorithm due to Verdier 
and Stockmayer (1962) which turns one self-avoiding walk into another by 
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Figure 9.1: An example of the Verdier-Stockmayer algorithm in action. The 
circled site of w[t] corresponds to the randomly chosen I of Step 2. Observe 
that w[2] = w[l] because the w resulting from w[1] is not self-avoiding. Also 
observe that thew resulting from w[31 in fact equals w[31. 

moving one or two bonds of the walk. Briefly, it picks a site at random and 
tries to "flip" the two incident bonds if they form a right angle (or tries to 
wiggle the end bond if the chosen site is an endpoint of the walk). Here is a 
precise statement of the algorithm; a verbal description follows, and Figure 
9.1 gives an iilustration. 

Verdier-Stockmayer {V-S) Algorithm. This algorithm generates 
a Markov chain {w[t] : t = 0, 1, ... } on the state space SN 
which is reversible with respect to the uniform distribution 
on SN. 

1. Let w[o) be any self-avoiding walk in SN. Set t = 0. 
2. Choose an integer I uniformly at random from {0, 1, ... , N}. 
3. Define a new walk w = (w(O), ... ,w(N)), which is not neces­

sarily self-avoiding, as follows. First set w(l) = w['l(/) for all 
l #I. Then: 

(a) if 0 < I < N, then set w(I) = wl1l(I- 1) + 
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(wl'l(I + 1)- wl1l(I)); 
(b) if I = N, then set w( N) equal to any neighbour 

ofwl1l(N-1) except forwl1l(N'-2) andwi11(N), 
chosen at random; 

(c) if I= 0, then set w(O) equal to any neighbour 
of wl11(1) except for wi11(0) and wl11(2), chosen 
at random. Then translate w so that it begins 
at the origin. 

4. If w is self-avoiding, then set wlt+t) = w; otherwise, set 
wlt+t) = wl'l. 

5. Increase t by one and go to Step 2. 
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To visualize this algorithm, think of the N bonds of a walk w as a sequence 
of N unit vectors Aw(i) = w(i)- w(i- 1) (i = 1, ... , N). Step 2 chooses 
a site w(I) at random. Then Step 3 either interchanges the I-th bond 
with the (I+ 1)-th bond (if 0 < I < N) or else randomly changes the 
first or last bond (if I is 0 or N). [Observe that in Step 3(a) we obtain 
Aw(I) = Aw(I + 1) and Aw(I + 1) = Aw{I).] Step 4 rejects the proposed 
walk w if it is not self-avoiding. 

To show that a certain probability distribution 1r is the equilibrium dis­
tribution of a Markov chain, we check both reversibility and irreducibility. 
First we shall show that the V-S algorithm is reversible (with respect to 
the uniform measure on SN ). To do this, it suffices to check that P is 
symmetric, i.e. 

P(w,w') = P(w',w) whenever w ::f:. w'. (9.1.6) 

So suppose that w and w' are distinct walks in SN. If P(w,w') = 0 and 
P(w',w) = 0, then (9.1.6) holds, so assume without loss of generality that 
P(w, w') > 0. That is, if we start with w, then there is a choice of I 
such that the walk w obtained in Step 3 equals w'. In this case, w and w' 
differ by either one or two bonds, and so there is a unique choice of I that 
transforms w into w'; denote this unique number by i[w, w']. Thus, since 
Pr{I = i[w,w']} = 1/{N + 1), we have 

P(w,w') = { Nh 1 if 0 < i[w,w'] < N 
(N+1)(2a_ 2) if i[w,w'] is 0 or N 

(the second line follows since there are 2d - 2 ways to choose the new 
first or last bond). Now, if w can be transformed into w', then w' can be 
transformed intow; in particular, we have i[w',w] = i[w,w']. Thus P(w',w) 
is given by the right hand side of the above equation, and so (9.1.6) holds. 
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There is a subtlety in the algorithm that makes reversibility so easy to 
prove. Consider a variation of the V-S algorithm in which we wait until a 
successful move occurs before recording the next observation: specifically, 
suppose that Steps 4 and 5 are replaced by 

4'. If w is not self-avoiding, then go to Step 2. If w is self­
avoiding, then set w[t+l] = w, increase t by one, and go to 
Step 2. 

Now there is no guarantee that (9.1.6) holds; the proof fails because in the 
new chain the one-step transition probability from w tow' is P(w, w')/(1-
P(w,w)) (here Prefers to the probabilities in the original chain; observe 
that 1- P(w, w) is the probability that a single attempt turns w into some­
thing different). So we cannot have symmetry in the new chain unless 
P(w,w) is the same for every win the original chain. This does not happen 
for the V-S algorithm, nor for any other interesting algorithm that we know 
of. Thus we see that in order to guarantee that we get the correct equilib­
rium distribution, it is vital to record the current walk after every attempt, 
whether the attempt results in a walk that is self-avoiding (a "success") or 
not (a "rejection"). 

We have seen that the original V-S algorithm is reversible, but unfor­
tunately it is not irreducible. For example, there exist self-avoiding walks 
which are "frozen", i.e. they can never be changed by the V-S algorithm 
{see Figure 9.2). But the irreducibility difficulties are worse than just 

Figure 9.2: A 17-step self-avoiding walk in Z2 which is "frozen" with respect 
to the Verdier-Stockmayer algorithm. 

having a few frozen walks. An ergodicity class of a Markov chain is defined 
to be a maximal subset A of the state space such that for every i and j in 
A, there exists an> 0 such that pn(i,j) > 0. Thus SN is partitioned into 
many ergodicity classes, some of which contain a single walk. If w[o] is in a 
given ergodicity class, then we can view the V-S algorithm as producing a 
Markov chain whose equilibrium distribution is uniform on that ergodicity 
class, not on all of S N. As we shall see, this is a serious concern in principle, 
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because the largest of the ergodicity classes is an exponentially small part 
of SN as N __.. oo (Theorem 9.4.2). 

We conclude this introductory section with some remarks on the fol­
lowing problem, which is relevant to any computer program that works 
with self-avoiding walks: how fast can we check that a given walk is self­
avoiding? To be precise, suppose that you are given a finite sequence of 
lattice sites w(O),w(1), ... ,w(N) such that lw(i)- w(i- 1)1 = 1 for every 
i = 1, ... , N. What is the most efficient way to check whether these N + 1 
sites are all distinct? 

The most obvious algorithm is to look at every pair i and j such that 
0 $ i < j $Nand check whether w(i) equals w(j). There are N(N + 1)/2 
such pairs, so the running time of this algorithm is O(N2). A different 
algorithm achieves a running time of O(N) by using a "bit map". The 
idea behind this method is to simply draw a picture of the walk. For 
example, suppose we are working with N-step walks starting at the origin 
in Z2 . The simplest bit map is a (2N + 1) x (2N + 1) array, indexed by 
(i,j), -N $ i,j :5 +N, with all entries initially 0. Then every site of Z2 

that can be reached by an N-step walk corresponds to an entry. For each 
i = 0, 1, ... , N in turn, check the entry corresponding to the site w(i): if 
the entry is 0 then change it to 1, but if the entry is already 1 then the 
walk is not self-avoiding. Afterward, go through the list of sites again to 
reset the entries to 0. The running time of this algorithm is clearly O(N). 

The disadvantage of a bit map is that it requires a lot of space: in zd, it 
requires O(Nd) words of computer memory. An alternative approach uses 
a data structure known as a "hash table". A set of N sites can be stored 
in a hash table of size 0( N) in such a way that we can check whether 
a given site is in the set in average time 0(1) - i.e. independent of N. 
Thus a hash table allows one to check self-avoidance in average time O(N) 
using only 0( N) words of memory. Thus we have the satisfactory property 
that the amount of time and space needed to check self-avoidance are both 
proportional to what is required just to write down the walk. References 
about hash tables and their implementation for self-avoiding walk problems 
can be found in the Notes for this chapter. 

9.2 Statistical considerations 

In this section we shall survey some of the statistical problems associated 
with Monte Carlo methods. In particular, this will lead us to the important 
concept of autocorrelation times for dynamic methods. 
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9.2.1 Curve-fitting and linear regression 

First we shall recall some elementary statistics. If a random variable Y is 
normally distributed with (unknown) mean m and (known) variance <T2 , 

then the probability that m lies in the (random) interval [Y - 1.96<T, Y + 
1.96<T) is about 0.95. Thus we say Y ± 1.96<T is a 95% confidence interval 
for m. Often the variance is also unknown, and we have to compute an 
estimate &2 of <T2 • In this case, Y ± 1.96& is only an approximate 95% 
confidence interval; for the usual estimates of the variance, the 1.96 should 
be replaced by a suitable number from a table of the Student's t distribution 
(for more details, consult the statistics references in the Notes). 

Now let us consider the scenario described at the beginning of this chap­
ter, in which we attempt to estimate v from several data points (N;, Y;) 
(i = 1, ... , m), where N; is chosen in advance by the experimenter and 
Y; is an estimate of (lw(N; )12} obtained by generating a large number of 
random N;-step self-avoiding walks. Let <Tf be the variance of Y;; since the 
variance is generally not known, we will in practice need to compute an 
estimate u[ of <Tf (we shall discuss how to do this below). 

To estimate v, we begin with the scaling relation 

(9.2.1) 

We can write this asymptotic relation as an equality with (infinitely many) 
"correction-to-scaling" terms: 

(9.2.2) 

The exponents of the correction terms are strictly positive, and A is the 
smallest of them, i.e. BN- 11 is the dominant correction term. (Like v, these 
exponents are believed to depend only on the dimension. Other forms of 
corrections, such as logarithms, are also possible.) Our job is to fit a curve 
Y = f( N) to the data; to do this in a meaningful way, we must only 
allow a small number of parameters in the family of curves. The obvious 
choices are either to eliminate all of the correction-to-scaling terms, giving 
the two-parameter family of curves 

Y = AN2", (9.2.3) 

or else to eliminate all but the dominant correction term, giving the four­
parameter family 

(9.2.4) 

The form (9.2.3) is appropriate if the N; 's are all large enough so that the 
actual corrections to scaling are smaller than the statistical errors in the 
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data (i.e. smaller than O'i)· In general, however, we cannot expect this a 
priori. If we choose to work with {9.2.4), there is no guarantee that the 
best curve of this form will reflect the true value of d, since we do not know 
the size of the omitted correction terms {when N is small, these terms can 
be large, making it hard to see d from data corresponding to small N;; 
but when N is large and the omitted terms are small, then the included 
term BN-~ is also small). The combination of all of the correction terms 
may very well show up in the data as a single "effective exponent" deJ 1, 
which has no real relation to {9.2.2). Thus it is a very delicate business to 
try to estimate the true value of d. Rather, we may view the role of the 
parameter ~ in (9.2.4) as an aid to the extrapolation of a finite amount 
of data into the N -+ oo asymptotic regime. {This represents a relatively 
cautious viewpoint which is definitely not universally accepted within the 
physics community.) 

The standard statistical tool for fitting curves of the above forms to data 
is the method of least squares. Functions of the form {9.2.3) and (9.2.4) 
are examples of regression functions. Linear regression functions are the 
easiest to work with, so we begin by taking logarithms of the above two 
equations, obtaining 

logY = log A + 2v log N (9.2.5) 

and 
logY= logA + 2vlogN + BN-~, (9.2.6) 

where the last term of (9.2.6) was obtained by the approximation log(l + 
x) ~ x for x near 0. (If the reader accepts the viewpoint of the preceding 
paragraph that the parameter ~ should be regarded merely as an aid to 
extrapolation, then this approximation should cause no worries.) 

Let us first focus on {9.2.5). Ordinary least squares estimation would 
tell us to estimate A and v by the values that minimize the sum of squares 

m 

L)log 'fi ~ log A - 2v log N; )2. 
i=l 

This is not appropriate for us because an underlying assumption of this 
method is that the variance of log 'fi is the same for every i. Instead, we 
should use weighted least squares estimation, weighting each term according 
to the inverse of its (estimated) variance, so that the }i's in which we 
have more confidence will have more say in determining the best fit. The 
general procedure is the following. Suppose that we observe independent 
random variables U1, •.• , Um where each U; is normally distributed with 
mean a+ bM; (where we know M; and we want to estimate a and b) and 
variance v?, (Our case corresponds to b = v, a= logA, U; = log'fi and 
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M; = 2log N;.) Then the weighted least squares estimates a and b are the 
values of a and b that minimize the weighted sum of squares 

m 

SS(a, b)= E w;(U;- a- bM;)2, (9.2. 7) 
i=l 

where w; is a positive "weight" (typically 1/v?, but not necessarily). The 
minimizing values are 

b _ Ew; Ew;M;U;- Ew;M; Ew;U; 
- Ew; Ew;Ml- (l:w;M;)2 

(9.2.8) 

and 

(9.2.9) 

These are unbiased estimators of b and a (i.e. E(b) = b and E(a) = a). 
Also, b and a are normally distributed with variances 

and 

V (") _ L:w;M? 
ar a - "' "' ( . L..J w; L..J w; M? - L: w; M; )2 

The variances can be used to give statistical confidence intervals for a and 
b in the usual way. We can also formulate a test for the "goodness of 
fit" of our model: If the model is correct, and if the weights are given by 
w; = l/v?, then the "residual sum of squares" SS(ii, b) has a x2 distribution 
with m - 2 degrees of freedom. 

When applying this theory in our Monte Carlo setting, we must first 
decide whether the estimates ¥; are normally distributed. Typically, ¥; is 
the average of a large number of observations 

In the case of a static method such as NRSS, the Xt 's all come from different 
N;-step walks, so they are i.i.d. (independent and identically distributed). 
The central limit theorem t~lls us that their average is normally distributed 
if Tis large enough. (For an objective statistical test of normality, one can 
use the test of Shapiro and Wilk (1965); see Appendix A of Bratley, Fox, 



9.2. STATISTICAL CONSIDERATIONS 295 

and Schrage (1987).) Moreover, in the i.i.d. case, the variance of Y; is 
Var(Xl)/T, so we can estimate r7f, the variance of¥;, by 

A2 1 0 A 2 
r7; = T2 L..,..(Xt - Y;) . 

1=1 

The case of dynamic methods will be discussed in Section 9.2.2. 
Suppose now that we believe that Y; is approximately normally dis­

tributed, say with mean Y; and variance r7?, What can we say about 

U; = Jog Y;? Assume that r7; is much smaller than Y;, i.e. the uncertainty 
is relatively small compared to the magnitude of the quantity being esti­
mated, as should be true in any good Monte Carlo experiment which tries 
to estimate something that can only be positive. Then U; is approximately 
normally distributed with mean logY; and variance r7f /¥?. To see this, we 

write Y; = Y; + Zr7;, where Z is approximately normally distributed with 
mean 0 and variance 1; then 

[ ( Zr7· )] ( Zr7·) Zr7· 
U; = log Y; 1 + Y; 1 = logY; + log 1 + Y; 1 ~ logY; + Y; 1 

, 

and the assertion follows. Thus iT[ j}i2 is an estimate of the variance of 
U;. Therefore, in the weighted least squares procedure described above, 
the appropriate choices of weights are w; = ¥;2 / o-[. 

For completeness, we shall briefly describe weighted least squares es­
timation for more than two parameters. The framework of general linear 
regression is best expressed in matrix notation. Put the observed random 
variables (Yi, ... , Y m in our case) into an m x 1 column matrix Y. Let 
{3 be a p x 1 column vector containing the unknown parameters, and let 
X be a known m x p matrix; the model assumes that E(Y) = X{3. (For 
example, in the model (9.2.6)2: p is 3; the entries of (3 are Jog A, 2v, and 
B; and the i-th row of X consists of the entries 1, log N;, and N;-t>.) Also 
let V be a known m x m positive definite matrix, which we assume to be 
the covariance matrix of Y (i.e. V = E[(Y - X(J)(Y - X(J)T], where the 

T denotes transpose). The weighted least squares estimator is the vector~ 
which minimizes 

SS((3) = (Y- X{3)TV- 1(Y- X{3); 

it is given by 

2 0bserve that in the context of linear regression, we must assume a fixed value for 
A in this model. The most common choice is A = 1; sometimes renormalization group 
calculations suggest other values, such as A = 1/2. 
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Then /3 has a multidimensional normal distribution whose mean vector is 
the true f3 and whose covariance matrix is (XTV-1X)-1• If the model is 
correct, then SS(/3) has a x2 distribution with m- p degrees of freedom. 

9.2.2 Autocorrelation times: statistical theory 

When a dynamic Monte Carlo experiment is performed, the observations do 
not form an independent sequence, and so elementary statistical methods 
are often not applicable. In this section we shall address the problem of how 
to estimate the variance of the average of a large number of observations 
from a dynamic Monte Carlo experiment. Once we know how to perform 
such estimates, we can apply the regression theory outlined in Section 9.2.1. 

To be specific, suppose that {wltl : t = 1, 2, ... } is a stationary Markov 
chain. (A stochastic process is said to be stationary if, for every k ~ 0, 
the joint distribution of (w[tl, ... ,w[t+kl) is the same for every t.) For a 
stationary Markov chain, the distribution of w[t] for any fixed timet must 
be the equilibrium distribution. Every positive recurrent Markov chain is 
asymptotically stationary; in practice, we can assume that a Markov chain 
is stationary if we discard enough initial observations so that the chain has 
had enough time to forget any influence of its initial state and has "reached 
equilibrium". 

Let g be a real-valued function on the state space (e.g. g(w) = lw(N)I2 

if the state space is SN ). Such a function is often called an "observable" 
in the physics literature. Let 0 denote expected value with respect to the 
equilibrium distribution of the chain. Then we would like to estimate (g) 
by the estimator 

• • 1 [1) [T) Y = Y[T) = T[g(w ) + · .. + g(w )]. 

Since the distribution of w[t) is the stationary distribution, it is easy to 
see that Y is an unbiased estimator of Y. But what is its variance? This 
question is addressed in the following lemma. 

Lemma 9.2.1 Suppose {X[1l} is a real-valued stationary process with finite 
second moment. Let 

Y[T] = ~(X[1l + ... + x[Tl). 

For each integer k, let Cx(k) denote the covariance of X[t] and X[t+k] 

(observe that this is independent oft by stationarity; we are implicitly re-
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stricting consideration to t 2: 1 and t + k 2: 1}. Let 

00 

v = I: Cx(k), 
l:=-oo 

and assume that this sum converges absolutely. Then 

lim TVar(Y[T]) = v. 
T-oo 

Proof. We have 

T T-1 

Var(Y[T]) = ; 2 I: Cov(x£•l,x£tl) = ; 2 I: (T -lki)Cx(k). 
•,t:l A::-(T-1) 

The result now follows from the dominated convergence theorem. D 

In the notation of the above lemma, Cx(O) is the variance of X£11, and 
Cx(k)/Cx(O) is called the autocorrelation function. The ratio v/[2Cx(O)] 
is called the integrated autocorrelation time, and is denoted Tint,X· When 
the X(t) are independent, Tint,X = 1/2. 

Returning to our dynamic Monte Carlo algorithm, we shall take X£11 = 
g(w£11) in the above lemma. We now write C9 (k) for the covariance of g(wl1l) 
and g(wlt+l:l), and the integrated autocorrelation time is 

00 C9 (k) 1 oo C9 (k) 
Tint,g = I: 2C {0) = 2 +I: C (0)' 

l::-oo g k=l g 

(9.2.10) 

The lemma tells us that 

Var(Y[T])""' ~Tint,g Var(g(wl11)) as T-oo. {9.2.11) 

This asymptotic relation has a very useful intuitive interpretation. If the 
w[tJ•s (and hence the x£t1•s) were independent, then the variance of the 
average Y[T] would be given by (9.2.11) with 2Tint,g replaced by 1. This 
means that if we are using a dynamic Monte Carlo method and we want 
to get an estimator with the same variance as one that samples T indepen­
dent observations, then we need 21'int,gT consecutive observations from the 
Markov chain. In other words, 211nt,g is the number of observations from 
the chain that we need to get one "effectively independent" data point. 

So far we have neglected the question of whether or not the series defin­
ing v in Lemma 9.2.1 converges absolutely. Fortunately, the answer is that 
it usually does; in fact, the terms Cx(k) frequently decay exponentially. 
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The inverse of this decay rate is known as the eJ:ponential autocorrelation 
time. Specifically, given a real-valued function g on the state space of our 
stationary Markov chain {w£'1}, we define its exponential autocorrelation 
time to be 

(9.2.12) 

thus, the covariances C1 (k) decay roughly like exp(-k/re:ep,1 ). We also 
define the exponential autocorrelation time of the Markov chain to be 

ru:p = sup re:ep,g, 
g 

(9.2.13) 

where the sup is over all g such that E(g(wftl)2) is finite. This means 
that re:ep is the relaxation time of the slowest mode in the system. As we 
shall see in Section 9.2.3, re:ep plays an important role in measuring the 
rate of convergence to equilibrium from an arbitrary initial distribution. 
The exponential autocorrelation time could be infinite (as in the BFACF 
algorithm of Section 9.6.1), but this is typically not the case. In particular, 
as we shall see in Section 9.2.3, rezp is finite whenever the state space is 
finite. 

Given this theoretical description of the situation, we still need to find 
good statistical techniques for estimating the variance of Y[T], or, equiva­
lently, for estimating C1 (0)rint,g· This kind of problem has been the focus 
of much research in the field of time series, and we sh~lllimit ourselves here 
to a very brief discussion; the Notes at the end of the chapter give some 
references for additional information. 

One of the simplest procedures is the method of batched means. Given a 
long sequence of observations X£11, ... , X[T] of a stationary process, divide 
them into some relatively small number n of equal length subsequences, or 
"batches". Let b = T/n be the number of observations in each batch, and 
let Yi be the average of the i-th batch: 

ib 

Yi = L: xuJ /b. 
j:(i-1)&+1 

If we assume that b is much larger than rezp 1 then the Yi's are approxi­
mately independent and approximately normal, each with mean E(Xl1l) 
and variance ~ vfb where v is defined as in Lemma 9.2.1 [see for example 
Theorem 20.1 of Billingsley (1968) or Corollary 1.5 of Kipnis and Varadhan 
(1986)). Thus the overall average Y[T) is the average of the Yi's, and we 
can estimate its variance using the sample variance of the Yi 's. For a "quick 
and dirty" method, this one is not bad. One serious drawback of course is 
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the assumption that b >> Terp: in particular, the results of the procedure 
cannot be used as a check on the assumption after the fact. 

A more developed approach is the spectral analysis of time series. Briefly, 
this tries to estimate the infinite sum v ( = 2C9(0)Tint ,x) by estimating each 
term in the infinite series. By analogy with the usual estimator for covari­
ance, we define the following estimator of Cx(k): 

T-k 
Cx(k) = - 1- I)x!iJ- Y(T1)(x!iHJ- Y(T1) 

T- k i=l 

fork= 0, 1, ... , T-1. This is a biased estimator of Cx(k), but it converges 
to Cx(k) with probability one as T--+ oo by the ergodic theorem. We next 
define the estimators of v 

m 

Vr,m = Cx(O) + 2 2: Cx(k) 
l::l 

(the number m is chosen by the user). We don't insist on taking m = 
T- 1 because we believe that Cx(k) is close to 0 when k is large, and 
so Cx(k) is mostly noise when k is large. (Heuristically: Var(Cx(k)) = 
0(1/T), so Var(Vr,r-t) = 0(1)- i.e. the uncertainty does not disappear 
as T--+ oo!) How should m be chosen? One reasonable way is the following 
"automatic windowing" procedure: Let m be the smallest integer such that 
m ;::: 10Vr,m· The factor 10 here is somewhat arbitrary, but the idea is that 
we want to make sure that we include contributions from terms that are 
up to several Tint's apart. 

There is one more statistical issue that we must mention here, and that 
is the problem of initialization bias. In this section we have assumed that 
our observations come from a stationary process. Although Markov chains 
are asymptotically stationary, a simulation typically starts from a state 
which is not chosen according the equilibrium distribution. For example, in 
the case of self-avoiding walks, one might wish to start with a walk that is 
a straight line segment (for programming convenience). Thus, a simulation 
typically begins with an initial period which is "far from equilibrium", 
and it eventually "approaches equilibrium". The initial period must be 
removed from the data lest it introduce a bias to our estimates. Thus 
the experimenter must decide when the process has "reached equilibrium". 
The simplest procedure is to watch some observables over time until they 
all appear to have stabilized. There are also various statistical procedures 
that have been developed for removing initialization bias; see Bratley, Fox, 
and Schrage (1987) for a survey and references. 

For concreteness, let us briefly consider the specific problem of choosing 
an initial state for a simulation of a Markov chain on the state space SN 
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of N-step self-avoiding walks. We could generate an initial walk using a 
static algorithm such as NRSS; although this would be slow, it has the the­
oretical advantage that we would then be starting the chain in equilibrium 
(exactly!), and so we would not have to worry about initialization bias at 
all. However, even for N around 200, it would be much faster to start with 
a straight walk and run until equilibrium is reached than it would be to 

generate a single walk by NRSS. But there are better static methods than 
NRSS; in particular, it is feasible to use dimerization (Section 9.3.2) to 
generate a single self-avoiding walk of two or three thousand steps in two 
dimensions (and even longer in three dimensions) to use as an initial state. 
(We remark that self-avoiding walks are one of the few interesting systems 
where there exists a feasible procedure for generating an initial state from 
the exact equilibrium distribution; nothing comparable is known for Ising­
type models.) 

9.2.3 Autocorrelation times: spectral theory and 
rigorous bounds 

Consider an irreducible Markov chain with state space S, transition proba­
bilities P, and equilibrium distribution 71'. Define the inner product of two 
complex-valued functions f and g on S to be 

u,g) = :LJ(i)g(i)7r(i); (9.2.14) 
iES 

the associated norm is 

( ) 
1/2 

11/112 = (!, !)112 = L if(iW7r(i) 
iES 

(9.2.15) 

Let !2( 7r) denote the Hilbert space of the complex-valued functions f with 
II/I b finite. As usual, the norm of an operator T on 12 ( 7r) is given by 

IITII = sup{IIT/112: f E 12(11'), 11/lb $ 1}. 

We view P as an operator on 12( 7r) by defining 

(P f)(i) = L P(i,j)J(j). 
jES 

The operator Pis a contraction on !2( 7r), i.e. liP II $ 1. To prove this, we 
observe that [(Pf)(i)]2 $ (P(j2))(i) for every i by the Schwarz inequality, 
and therefore 

IIPJm $ 2:<PU2)(i))7r(i) =111m (9.2.16) 
iES 
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[using (9.1.4) to get the equality]. 
Since IIPII $ 1, all of the eigenvalues of P lie on or inside the unit circle. 

Moreover, using Perron-Frobenius theory one can show the following [Sidak 
(1964)]: since the chain is irreducible, 1 is a simple eigenvalue of P, with 
the constant function 1 as an eigenfunction; and 1 is the only eigenvalue of 
P on the unit circle if and only if the chain is aperiodic. 

Define the operator II which maps l 2(1r) to the constant functions as 
follows: 

(II/)( i) = L.: 1r(j)/(j) for every i; 
jES 

thus (IT/)(i) equals the expectation of f with respect to 11'. The basic 
convergence theory of Markov chains tells us that P"' converges to IT in 
a sense that will be made precise below. Observe that II2 = II and II is 
self-adjoint [i.e. (/, Ilg) = (II/, g)], so II is the orthogonal projection onto 
the space of constant functions. Also, liP= II= PII [by (9.1.4)], and so 

(I -II)P = P- II= P(I -11). (9.2.17) 

We shall focus on the operator P-11, which is 0 on the subspace of constant 
functions and equals P on the orthogonal complement of that subspace. 

For the rest of this section, we shall also assume that the Markov chain 
is reversible with respect to 11'1 i.e. that (9.1.5) holds. This implies that P 
is self-adjoint on 12( 1r): 

(!, Pg) = L I( i) L P(i, j)g(j)11'( i) 
j 

= LLf(i)g(i)P(i, i)11'(j) = (P/,g). 
j 

Since a self-adjoint operator must have real spectrum, it follows from the 
fact that IIPII :51 that the spectrum of Pis a subset of the interval (-1, 1]. 

We shall now state a few facts from functional analysis. Let T be a 
bounded operator on a Hilbert space, and let O'(T) be the spectrum ofT. 
The spectral radius ofT, denoted r(T), is defined to be 

r(T) ::sup{ I-XI :.X e O'(T)}; 

it satisfies the well known "spectral radius formula" 

r(T) = lim IITn Win = inf urn Win. 
n-oo n~l 

Suppose now that T is also self-adjoint, so that O'(T) is real. Then we in 
fact have 

r(T) = IITII = urnwtn for every n ~ 1. (9.2.18) 
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The first equality is well-known [e.g. Theorem VI.6 of Reed and Simon 
(1972)]; the second equality follows from r(T) :$ !IT'll Pin (from the spectral 
radius formula), the inequality IITnll ~ IITIIn, and the first equality. We 
also know 

inf o-(T) = inf { (/, T f) : ll/ll2 ~ 1} and 

sup o-(T) = sup{(/, T f) : ll/ll2 ~ 1} (9.2.19) 

(Yosida (1980), p.320); in particular, this implies the "Rayleigh-Ritz prin­
ciple" 

r(T) = sup{j(/, T/)1: ll/!12 :$ 1}. (9.2.20) 

Finally, we have the relation 

r(T) = sup lim sup 1(1, rn J)llln 
J n-oo 

(9.2.21) 

which we shall prove in Section 9.7.1. 
Now let us return to our Markov chain. Using the notation of Section 

9.2.2, we find for the stationary Markov chain {wl1l} that 

C9(k) = E[(g(wl1l)- (g))(g(wltHl)- (g))] 

= ~ r( i)[(g - llg )( o)] [ ~ P'( i, j)(g - llg )(j) l 
= ((I- II)g, Pk(I- II)g) 

= { (g,(P- II)kg) fork~ 1 
(g, (I- II)g) for k = 0, (9·2·22) 

where we have used I - II = (I - II)2 and (9.2.17) in the last step. By 
definition, limsup,~:_.00 IC9(k)PI"' = exp(-1/ru:p,g) and Tu:p = sup9 Te:rp,g 1 

so (9.2.22) and (9.2.21) imply that exp(-1/re:rp) = r(P- II); equivalently, 

1 
Te:rp = -logr(P- II)· (9.2.23) 

Since P - II is self-adjoint, 

r(P- II)= liP- III I= II(P -ll)"'W'"' =liP"'- IIW1"'. (9.2.24) 

This implies that re:rp also measures the exponential rate of convergence to 
equilibrium when the Markov chain is not started in equilibrium. In detail, 
consider the metric for probability measures on S defined by 

p(ifJ,t/J) = sup{ILf(j)ifJ(j)- Lf(j)t/J(j)l: ll/ll2:::; 1} 
j j 
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[recall that 11·112 is the i2(1r) norm of (9.2.15)]. If a Markov chain begins 
with the initial probability distribution ¢ at time 0, then at time k its 
distribution is given by the measure {¢Pk)(j):;: Li ¢{i)Pk(i,j). For any 
f in P( 1r), we have 

j j 

i,j 

and hence 

(9.2.25) 

Equation (9.2.25) has the following practical interpretation: it tells us 
that if we begin from an initial distribution which is different from 1r and 
run the Markov chain for 10Tezp iterations, say, then the deviation from 
equilibrium (with respect to the metric p) is at most e- 10 (about 0.00004) 
times the initial deviation. On the one hand, it is usually very difficult to 
get information about the size of Tezp (either rigorously or numerically), 
so this is rarely a practical criterion for ensuring that the simulation has 
"reached equilibrium". On the other hand, the convergence to equilibrium 
could in fact be much faster than the upper bound of (9.2.25) indicates, so 
not knowing Tezp may not be a real disadvantage. Ultimately, one has to 
analyze the data to determine empirically when the process is sufficiently 
close to equilibrium (see the discussion at the end of Section 9.2.2). 

We remark that when the state space S is finite, then the spectrum of 
P- II is a finite subset of (-1, 1) (assuming aperiodicity), and in particular 
Terp must be finite. 

Up to now, we have been talking about the spectral radius of P- II, but 
in Monte Carlo work one is usually just interested in the spectrum near +1 
rather than near -1. An eigenvalue at -1 causes Tezp to be infinite, but 
for a trivial reason: it happens if and only if the Markov chain is periodic 
with an even period, and so p(tj>Pk, 1r) typically does not even converge to 0 
because the chain always remembers which part of the state space it started 
in. But this does not prevent the averages Y[T] from converging rapidly to 
the correct values. So let us define the modified autocorrelation time 

1 
r' - --::---..,=---~-~ 

ezp - -log[ sup u( P - II)]" 
(9.2.26) 
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Then it will be shown in Section 9.7.1 that for every gin l2(1r) 

1 (1 +exp[-1/~zp]) 1 ( ~ ] 
Tint,g ~ 2 1 _ exp[-1/r:zp] = Tezp 1 + 0(1/ ezp) (9.2.27) 

for ~rp bounded away from 0. 
The following result will be proven in Section 9.7.1. Its corollary below 

will be used a number of times in this chapter (see Sections 9.4.1, 9.5.1, and 
9.6.1). We remind the reader that the covariances C9 (k) and the various 
autocorrelation times are always defined in terms of the stationary Markov 
chain corresponding to P and 1r. 

Proposition 9,2,2 Suppose that P is reversible with respect to 1r. Then 
for any nonconstant g in /2 ( 1r), 

where 

. >! (l+p,{l))- 1 _! 
Tznt,g_ 2 1-p9 {1) -1-p9 (1) 2' 

09 (1) 
Pg(1) = c,(o)' 

Corollary 9.2.3 Suppose that P is reversible with respect to 1r, and let g 
be a function in /2(1r). Assume that there is a finite constant A such that 
lu( i)- g(j)l < A whenever P( i, j) > 0 (i.e. the value of g can never change 
by more than A during a single step of the Markov chain). Then 

209{0) 1 
Tintg > ----. 

I - A2 2 

Proof. First we list the following identities, which may be verified by 
direct calculation: 

C9 (0)(1- p9 (1)) = C9(0)- 0 9 (1) 
= (g, (I- P)g) 

= ~~7r(i)P(i,j)lg(i)-g(i)!2 • (9.2.28) 
a,J 

From (9.2.28), we see that 0 9{0)(1- p9 (1)) :5 A2 /2. The result now follows 
immediately from Proposition 9.2.2. D 

As a further application· of the identities (9.2.28), we have the following 
result: 
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Proposition 9.2.4 Suppose that P1 and P2 are transition probabilities of 
two Markov chains which are reversible with respect to the same 1r, and as­
sume that P1 ( i, j) -;:: P2( i, j) whenever i f:. j. Then their respective modified 
autocorrelation times satisfy r;:rp(Pl)-:::; T~xp(P2)· 

Proof. Fork= 1, 2, we see from (9.2.19) that 

sup u(Pk- TI) =sup{(!, (I- TI)/)- (!,(I- Pk)f) : 11/112 $ 1}. 

In view of (9.2.28), this implies that sup u(P1 - TI) $sup u(P2 - TI). The 
proposition then follows from (9.2.26). D 

Remark. Caracciolo, Pelissetto, and Sokal (1990) prove several gener­
alizations of Proposition 9.2.4, including the result due to Peskun (1973) 
that the same hypotheses imply that Tint.J(Pt) -:::; Tint.J(P2) for every f. 
The intuition behind these results is clear: since P1 makes more transitions 
than P2, it approaches equilibrium faster. 

9.3 Static methods 

In this section we shall discuss a number of static Monte Carlo algorithms. 
These algorithms generate either a sequence of independent self-avoiding 
walks or a sequence of independent batches of self-avoiding walks (the walks 
within each batch possibly being highly correlated). 

9.3.1 Early methods: strides and biased sampling 

Two methods of generating independent sequences were discussed in Sec­
tion 9.1, namely Elementary Simple Sampling and Non-Reversed Simple 
Sampling; both were seen to require an exponentially large amount of com­
puter time for each self-avoiding walk generated. A natural generalization 
of these methods uses "strides" to .build walks instead of single steps. An m­
step stride is a self-avoiding walk of length m. For the following algorithm, 
let m be a fixed nonnegative integer. 

m-Step Stride Method {SM{m)). This algorithm generates a 
self-avoiding walk of length km (k an integer). It requires a 
list t/1[1], ... , t/J[cm] of all m-step self-avoiding walks. 

1. Set W to be the 0-step walk consisting of the single site at 
the origin. Set i = 0. 

2. Increase i by one. Choose an integer J uniformly at random 
from {1, ... , em}. Redefine W to be W o .,P[J], the concate­
nation of .,P[J) to the current W. 
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3. If W is not self-avoiding, then go back to Step 1. Otherwise, 
go to Step 2 if i < k, and stop if i = k. 

The average amount of computer time required to generate one N-step 
self-avoiding walk using this algorithm is 

(cm)N/m (c:Jm)N+o(N) 
TsM(m) = = --CN JJ 

This still grows exponentially in N, but at a slow rate if m is large. Of 
course, the larger m is, the more overhead must be invested in preparing 
and storing the list of all m-step walks. 

One easy way to improve the Stride Method (for a given m) is in Step 2 
to choose tJI[J] from among only those walks whose first bond is not in the 
direction opposite to the last bond of the current W. A more sophisticated 
approach, requiring additional work in advance, is the following. For each 
i = 1, ... , Cm, make a list Li containing all values of j such that 1f1[i] o 
1f1(j], the concatenation of 1f1(j] to 1f1[i], is self-avoiding. Then in Step 2 
only choose the next J from the list LJ corresponding to the current J. 
Unfortunately, since the lists do not all have the same length, this will not 
generate walks with uniform distribution on S~tm unless we exercise some 
caution. Specifically, we could let L = maxi ILd (where ILd denotes the 
length of the list Li), and replace Steps 1 and 2 above as follows. 

11• Choose J(l) uniformly at random from {1, ... , em}. Set 
W = 1f1[J(l)] and set i = 1. 

2'. Increase i by one. Choose J(i) uniformly at random from 
{1, ... , L}. If J(i) > ILJ(i-1)1, then go back to Step 1' and 
start over; otherwise, redefine W to be the concatenation of 
the J(i)-th walk on the list LJ(i-1) to the current W. 

Again we see the usefulness of a "rejection" step (occurring here when 
J(i) > ILJ(i- 1)1) in producing the desired distribution. Without this, our 
method would suffer from the same flaw as the MSAW algorithm of Sec­
tion 9.1. Having sounded these warnings, let us now say that all is not 
necessarily lost if we generate self-avoiding walks with a nonuniform distri­
bution, for we can still estimate interesting quantities by reweighting our 
observations, as we shall now explain. 

Suppose that w[11, ... , w[m] is an i.i.d. sample from SN with a common 
known probability distribution 

q(v) = Pr{w[11 = v} 
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which is not uniform but is strictly positive for every v (for example they 
could be generated by the MSAW algorithm). Suppose that we wish to 
estimate some quantity (f(w))N, where f is a real-valued function on SN 
and ( ·} N denotes the expectation with respect to the uniform distribution 
of w on S N. If we define the reweigh ted average 

I - 1 m /(w!il) 
Ym =-E-( [i])' m i=l q w 

then the expectation of Y ,;{ is CN (f(w )) N (that is, Y ,;{/ CN is an unbiased 
estimator of (f(w))N ). This is because 

( /(w!il)) (!(v)) ( 1 ) 
E q(w!il) = Ls q(v) q(v) = CN CN Ls f(v) . 

VE N VE N 

(9.3.1) 

In particular, if we take f identically 1, then Y~ is an unbiased estimator 
of CN. Since the w[il•s are i.i.d., the strong Jaw of large numbers guaran­
tees that Y~ converges to CN(/(w)}N as m ___. oo, with probability one. 
Therefore, if we define the ratio 

Rfn: Y,/JY~, 

then Rfn converges to (f(w))N as m ___. oo, with probability 1. 
This theory can be applied to the case of walks generated by the MSAW 

algorithm, once we compute the function q. This was done for two examples 
offour-step walks in the paragraph following the statement of the algorithm 
in Section 9.1. In general, suppose that v = (v(O), ... , v(N)) is a self­
avoiding walk. For each i = 0, ... , N -1, lett; be the number of neighbours 
of v( i) that are not in the set { v(O), ... , v( i- 1)}. Then q( v) is the product 
of the reciprocals of to, ... , tN -1· 

This method is often referred to as "inversely restricted sampling" or 
"biased sampling"; it is closely related to "importance sampling" [see for 
example Hammersley and Handscomb (1964) or Bratley, Fox and Schrage 
(1987)]. It was originally used by Rosenbluth and Rosenbluth (1955) for 
the function f(w) = lw(N)l2• Earlier, Hammersley and Morton (1954) had 
used a slight variant of Y~ to estimate CN. 

Biased sampling has some apparent drawbacks: 

• Long walks will eventually become "trapped"; this could lead to many 
attempts being necessary to generate a single walk, unless we had 
a mechanism of avoiding steps that would lead into a trap. (We 
remark that a Monte Carlo study by Hemmer and Hemmer (1984) 
concluded that walks in Z2 survive for 71 steps before being trapped, 
on average.) 
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• The estimator Rfn is not unbiased in general. However, McCrackin 
(1972) showed that E(Rfn)- (f(w))N is of order m-1, and hence 
for large m the difference is negligible compared with the ubiquitous 
m-1/2 statistical error inherent in i.i.d. sampling schemes. 

• The weights 1/q vary considerably, and a typical experiment is likely 
to end up with most of the overall weight coming from a very small 
fraction of the observations [Hammersley and Handscomb (1964), Ba­
toulis and Kremer (1988)]. That is, the variance of the estimator Rfn 
is likely to be uncomfortably large for any practical value of m. One 
might try to improve this situation by a variant of importance sam­
pling, in which the possibilities in Step 2 of the MSAW algorithm 
are weighted so that the walk is encouraged to spread out faster (the 
original MSAW produces walks that tend to be more compact than 
typical self-avoiding walks). However, any such reweighting method 
where the distribution being sampled is substantially different from 
the desired (uniform) distribution could quite easily encounter the 
same problems, and the situation is rather delicate. Some work in 
this direction is surveyed in Kremer and Binder (1988, Sec. 2.1.2). 

9.3.2 Dimerization 

A different method of generating self-avoiding walks uniformly on SN is 
dimerization, which is essentially a recursive procedure. The idea is that 
if we wish to generate an N-step self-avoiding walk, then we generate two 
independent ( N /2)-step self-avoiding walks ( "dimers") and try to concate­
nate them. If the result is self-avoiding, we are done; otherwise, we discard 
both dimers and start again. To generate each of the ( N /2)-step walks, 
we generate two (N/4)-step walks and try to concatenate them, and so 
on. The recursion can stop at the k-th level if there is a fast way to gen­
erate self-avoiding walks of length N f21c. For example, 10-step walks are 
easy to generate by Non-Reversed Simple Sampling, so only three levels are 
needed to create an SO-step walk by dimerization. We can express this as 
the following recursive procedure. 

DIM(N ). This procedure generates one N -step self-avoiding 
walk w uniformly from SN. Here No is a fixed small integer 
(e.g. No = 10). 

1. If N $ No, then generate an N-step walk w by NRSS and 
then stop. 

2. (N >No) Set N1 = LN/2J and N2 = N- N1. 
3. Recursively perform DIM(N1) and DIM(N2), yielding the 

self-avoiding walks w1 and w2 respectively. 
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4. Set w = w1 o w2 , the concatenation of w2 to w1• If w is self­
avoiding, then stop; otherwise, return to Step 2 and start 
over. 
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We remark that NRSS in Step 1 could be replaced by any other method 
that generates self-avoiding walks uniformly. 

We shall use the following lemma to see that the end product w is in fact 
uniformly distributed, as well as to investigate the efficiency of dimerization. 

Lemma 9.3.1 Let M and N be positive integers. Let v1, v2 , ••• be inde­
pendent self-avoiding walks uniformly distributed on SM, and let <p1 , <p2 , .•. 

be independent self-avoiding walks uniformly distributed on SN. For each 
i ;::: 1, let t/i denote the concatenation of <p; to vi. Let r be the smallest i 
such that t/J; is self-avoiding. Then t/J" is uniformly distributed on SM +N, 

and 
E(r) = CMCN. 

CN+M 

Proof. For any fixed i we have 

Pr{ t/Ji is self-avoiding} = CM +N ; 
CMCN 

call this quantity p. Then r has a geometric distribution, i.e. 

Pr{ r = i} = (1 - p)i-lp (i ~ 1) 

(9.3.2) 

so E(r) = 1/p, which proves (9.3.2). Now let w be any fixed (M + N)-step 
self-avoiding walk, and let w' and w" be the unique M-step and N-step 
walks whose concatenation w' ow" is w. Then 

00 

Pr{tP" = w} = L Pr{r = i and t/Ji = w} 
i:l 
00 

= :l:(l- p)i-t Pr{v; = w' and <p; = w"} 
i:l 

= f:(l- p)i-1_1 ~ 
i:l CM CN 

1 = 
which proves the lemma. 0 

This lemma shows that in the procedure DIM(N), the final walk w is uni­
formly distributed provided that the walks w1 and w2 are uniformly dis­
tributed. We know that this will be true if Nt and N2 are small enough 
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(since Step 1 is completely reliable), and so the uniformity of w follows by 
induction on the number of levels in the recursion. 

We now shall discuss the efficiency of dimerization, under the scaling 
assumption (1.1.4), i.e. 

CN """ ApN N'Y-l, 

For simplicity, we assume N = 2k N0 , where k is the number of levels 
of recursion. Let TDrM(N) denote the expected amount of time for the 
procedure DIM(N) to produce a walk. By (9.3.2), the average number 
of pairs of ( N /2)-step walks that must be generated before we get a pair 
whose concatenation is self-avoiding is ( CN/2 ) 2 f CN, which is asymptotic to 
A(Nf4)'Y- 1 by the above scaling assumption. This gives us the recursive 
relation 

TDIM(N) ""BN'Y-1(2TDIM(N/2)) 

(where B = A/4-r-t ). (We have omitted the amount of time required to 
check whether the two dimers intersect each other, but since this time is 
O(N), it will be seen to be negligible compared with 2TDIM(N/2), the time 
required to generate the two dimers.) Iterating this relation k times (and 
assuming the approximate validity of our scaling assumption all the way 
down to No) yields 

T ""' (2B N-r-1 )k 71 - d Ndtiog:~ N +d:~ 
DIM(N)"' 2(-y-l)k(k-l)/ 2 DIM(No)- 0 ' 

where the di are independent of N: 

r-1 
dt = -2-, 

r-1 5-3r 
d2 = - 2- + log2(2B) = - 2- + log2 A, 

(9.3.3) 

and do depends on No. We thus conclude that the growth of TDrM(N) is 
slower than exponential in N. We also notice that the anticipated values 
for d1 are small: according to (1.1.11), we expect dt to be 11/64 in two 
dimensions, 0.081 ... in three, and 0 in four or more dimensions. In par­
ticular, since it is known rigorously that r = 1 in five or more dimensions 
(see Theorem 6.1.1), the above argument can be made into a rigorous proof 
that TvJM(N) grows polynomially in five or more dimensions. We also note 
that d2 is small in high dimensions: in d = 5 we have the rigorous bound 
d2 = 1 + log2 A :$ 1 + log2 1.493 $ 1.58, and it is even smaller for d ~ 6 
(see Remark following Theorem 6.1.1). 

It is tempting to try to squeeze more data out of dimerization than just 
the information contained in the final N -step walk. For example, to esti­
mate v as described at the beginning of Section 9.1, one might try to use all 
the generated subwalks to get estimates of (lw(N/2i)l2 1} N/ 2' fori= 0, ... , k. 
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This will give an unbiased estimate for each i, but the k+l estimates will be 
mutually correlated; this makes it difficult to find a confidence interval for v 
using classical linear regression theory (Section 9.2.1). Things look better if 
we are trying to estimate 'Y· For n = N, N/2, ... , N/211:-1, let rnli] denote 
the number of attempts needed to produce the j-th n-step self-avoiding 
walk (i.e. the number of pairs of (n/2)-step walks that are concatenated 
after the (j- 1)-th success until the j-th success). As discussed above, 

E(rnUD- 4:-.1 n'Y-t, 

so one could try using linear regression here. If we think of repeating 
DIM(N) indefinitely to produce an infinite sequence of N-step self-avoiding 
walks, then one can easily see that all of the random variables rn[.i] (n = 
N, N/2, ... , N/211:-t, j ~ 1) are independent. (This is essentially because 
the number of attempts needed to generate an n-step walk is independent 
of the walk itself.) 

Suppose that we wish to generate m N -step walks by dimerization and 
use the rn[.i] data. to estimate 'Y· At the top level, we get m indepen­
dent observations of rN[l]. At the next level, we get a random number 
of independent copies of rN/2[·]: in fact, this random number is exactly 
2(rN[l]+· .. +rN[m]). Thus there is some dependence between the data at 
different levels, but one can argue that it is negligible when m is large. A 
more serious difficulty with this scheme is its efficiency. It produces much 
more data for small n than for large n (in fact, more than twice as much 
data for N /2i+l than for N /2i), but this is where we have the least confi­
dence in our scaling assumption. So it is not clear how useful this method 
can be for estimating 'Y· 

9.3.3 Enrichment 

The enrichment method attempts to overcome the high attrition rate of 
simple sampling by reusing intermediate-length walks many times. This 
method was originally used by Wall and Erpenbeck (1959). The basic 
procedure requires two integer parameters, s and t. We first attempt to 
generate s-step self-avoiding walks by NRSS (or a similar method). Each 
time that we get an s-step walk, we make t (identical) copies of it and we at­
tempt to extend each copy independently by NRSS to length 2s. Similarly, 
each time that we get a self-avoiding walk of length 2s, 3s, ... , we make t 
copies of that walk, each of which then evolves independently. The result 
will be a collection of self-avoiding walks of various lengths (all multiples of 
s). There will be a great deal of correlation between some of these walks, 
because they will have exactly the same first s (or 2s, or 3s, ... ) steps; 
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but any two walks which are not extensions of copies of the same initial 
s-step walk will be statistically independent. Thus the enrichment method 
produces several independent groups of self-avoiding walks, but the walks 
within each group are highly correlated. Finding the correct statistical 
approach to handling these correlations remains an open problem. 

Let M~.:~ denote the number of ks-step walks that are produced while 
performing this method. Then M, is the number of independent groups; 
this number in practice is likely to be fixed in advance by the experimenter 
(of course, M~.:~ is random for k ~ 2). In the subsequent analysis, we shall 
assume for convenience that M, = 1. The probability that a single attempt 
to extend a ks-step walk to a (k + 1)s-step walk succeeds is 

We can think of M,, M2,, •.• as a branching process in which M~.:~ represents 
the number of "individuals" alive in the k-th generation, and each individual 
reproduces independently, the number of offspring of an individual being 
a binomial random variable with parameters t and p ~ (f.l-/(2d- 1))'. No 
individual survives more than one generation. We can also think of every 
individual having t offspring, but each offspring only having probability p 
of reaching maturity. For more about branching processes, see for example 
Feller {1968) or Karlin and Taylor (1975). Strictly speaking, pis different 
for each generation, so we really have a time-inhomogeneous branching 
process. However we are not going to prove anything rigorously here, and 
it will be convenient to ignore this fact.. 

Given the number of js-step walks, the expected number of (j + 1 )s-step 
walks produced is 

E(M(i+t)•!Mi,) = tpMi•• 

and by induction we conclude that E(M~.:~) = (tp )k. If tp < 1, then E( Mkl) 
decays exponentially: i.e. the branching process dies out exponentially fast. 
In this case, we do not expect to observe many long walks, and this method 
should not be much of an improvement over ordinary NRSS. If tp > 1, then 
there is a positive probability of a population explosion: that is, of M~.:~ 
increasing exponentially forever. This will lead to an enormous group of 
highly correlated walks. If tp = 1, then the branching process is "criti­
cal": it will die out eventually, but the expected time until this happens is 
infinite. This should produce some large walks, but there can be no pop­
ulation explosion of a single group. The preceding intuitive arguments are 
supported by the theory of branching processes. (This three-way classifi­
cation is a hallmark of critical phenomena; in fact, the above branching 
process is essentially the same as percolation on an infinite tree in which 
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every site hast+ 1 neighbours.) From this discussion, we conclude that the 
best choice of parameters is to take t equal to 1/p, i.e. 

( 2d- 1 ). 
t~ --

Jl. 

One can improve the enrichment method by combining it with the 
dimerization approach, as follows. Suppose that a self-avoiding walk w 
of length ks has just been generated. Make t copies of this walk. For 
each copy, generate an s-step self-avoiding walk (by NRSS or some other 
method) completely independently of w, and then try to concatenate it with 
w. If the result has no intersections, then we have successfully produced 
a (k + l)s-step self-avoiding walk, which we can now copy t times, and so 
on; otherwise, the attempt fails, and this copy of w is no longer used. The 
probability of a success for such an attempt is 

(by the usual scaling assumption ( 1.1.4 )]. The above discussion then sug­
gests taking t to be the inverse of this probability. (Note that allowing t to 
vary with k does not bias our results, whereas allowing t to depend upon 
the generated walks could easily introduce significant biases.) This method 
appears to be significantly more efficient than ordinary enrichment, but of 
course it still has the problem that walks within groups are highly corre­
lated. Variants of this method have been used by Grishman (1973) and 
Rapaport (1985). 

A closely related method has been proposed by Redner and Reynolds 
(1981). Its philosophy is a bit different, in that it estimates the suscep­
tibility and other generating functions directly. A simple version of their 
method may be stated as follows. 

Redner-Reynolds Algorithm. This algorithm generates random 
sets of self-avoiding walks A; C S; ( i ;:::: 0). It requires a 
parameter z between 0 and 1. We denote the 2d (positive 
and negative) unit vectors of zd by e1, •.. , e2d. 

1. Let A0 be the set consisting of the 0-step walk at the origin. 
Set i = 0. (Initially, Ak is empty for every k ;:::: 1.) 

2. Independently, for each walk w in A;, and for each j = 
1, ... , 2d: With probability 1- z, do nothing; otherwise (i.e. 
with probability z) try to add a step ei tow, and if the result 
is self-avoiding, then put it in Ai+l· 

3. Increase i by one and go back to Step 2. 
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The algorithm stops when some Ai is empty. This algorithm is essentially 
a direct exact enumeration procedure in which each possibility is only pur­
sued with probability z. Any given N-step self-avoiding walk is generated 
with probability zN and so the expected cardinality of AN is CN zN. Thus 
the total number of generated walks is an unbiased estimator for the sus­
ceptibility: 

In particular, for the interesting case z < Zc = p-1 , the Redner-Reynolds 
algorithm terminates in finite time with probability one. One can just as 
easily get estimates of other quantities: for example, the sum of the squares 
of the end-to-end distances of all of the generated walks is an unbiased 
estimator of x(z)6(z)2 , where 6(z) is the correlation length of order two 
defined in (1.3.18). 

9.4 Length-conserving dynamic methods 

In this section we shall look at dynamic Monte Carlo methods that gen­
erate walks having a fixed number of steps N. Each method of this type 
corresponds to a Markov chain that takes a self-avoiding walk and tries to 
change it in a random way to get another self-avoiding walk of the same 
length. The Verdier-Stockmayer algorithm, described in Section 9.1, is an 
example of such a method. 

The algorithms that we shall consider in this section are of the following 
form. 

Generic Fixed-Length Dynamic Algorithm. Generates a Markov 
chain {wit) : t = 0, 1, ... } on the state space SN which is 
reversible with respect to the uniform distribution on SN. 

1. Let w[o) be any self-avoiding walk in SN. Set t = 0. 
2. Use a certain randomized procedure to define a new walk 

w = (w(O), ... ,w(N)), which is not necessarily self-avoiding. 
3. If w is self-avoiding, then set wlt+l] = w; otherwise, set 

wlt+t) = wit]. 
4. Increase t by one and go to Step 2. 

Usually, it will be fairly routine to check reversibility, but questions about 
irreducibility (ergodicity) may require some work. 

Before going on, we first make some remarks about conventions for this 
section. We shall always use N to denote the length of the walks being 
generated; N is an arbitrary integer which has been fixed (by the person 
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running the experiment). The state space of the corresponding Markov 
chain is SN. If the algorithm changes the first part of the current walk, 
then its initial point may no longer be the origin (as in Step 3(c) of the 
V-S algorithm); in such a case, we will always implicitly assume that the 
resulting walk is translated so that its initial step is the origin, thereby 
staying in the set SN. (Alternatively, we can think of SN as the set of 
equivalence classes of all N-step self-avoiding walks modulo translation; 
then the starting point of a generated walk is irrelevant, so there is no need 
to worry about translating back to the origin.) The transition probabilities 
will always be written P(·, ·). 

9.4.1 Local algorithms 

A local algorithm operates on walks by attempting to change only a few 
contiguous sites (and bonds) of the current walk at a time. The Verdier­
Stockmayer algorithm is the prototype of this class of methods. Typically, a 
local algorithm chooses a small subwalk of the current walk at random, and 
attempts to replace it with a different (self-avoiding) subwalk having the 
same length and the same endpoints (unless the chosen subwalk includes 
an endpoint of the entire walk, in which case that endpoint may move). We 
keep the new walk if it is self-avoiding and reject it otherwise. The sub walk 
that we delete may uniquely determine the subwalk that replaces it (as in 
Step 3(a) of the V-S algorithm); alternatively, each possible subwalk may 
have a corresponding list of possible replacements, from which one must be 
chosen at random (as in Steps 3(b) and 3(c) of the V-S algorithm). Some 
examples are given in Figure 9.3. 

The main theoretical result about these algorithms is that none of them 
is irreducible: in fact, for any given initial self-avoiding walk, the number 
of different walks that can be obtained from this walk by such an algorithm 
is exponentially smaller than CN (for large N). Before we prove this, we 
shall first make our terms more precise. 

Let k ~ 1 be a fixed integer, and let w and w' be N-step walks. J'hen 
we say that w can be transformed into w' by a k-site move if there exists an 
i (0::; i::; N- k + 1) such that w(j) = w'(j) for every j == 0, 1, ... , i -1, i + 
k, ... , N-that is, if wand w' are the same except for at most k contiguous 
sites. (Observe that the initial points of w and w' may be different if i = 0; 
similarly for their last points if i = N- k + 1.) We say that an algorithm 
is a k-site algorithm if the following holds: P(w, w') > 0 only if w can be 
transformed into w' by a k-site move. Thus the V-S algorithm is a 1-site 
algorithm. Finally, a length-conserving algorithm is said to be local if it is 
a k-site algorithm for some finite k. (Here, k must be independent of N; 
the term "algorithm" technically refers to a collection of algorithms, one 
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..... _j - ..... 1 ..... 1 -
(a) (b) 

- ··· .. ~ 

(c) (d) 

Figure 9.3: Some local length-conserving transformations. The transforma­
tion of (b) depicts the movement of an endpoint. The Verdier-Stockmayer 
algorithm uses (a) and (b), which are "one-site moves". Transformations 
(c) and (d) are "two-site moves" ((d) is shown in three dimensions]. 

for each N, but they are really all defined by exactly the same rules, so we 
use the word algorithm in the singular.) 

We can define the "most general" k-site algorithm according to the 
recipe for the Generic Fixed-Length Dynamic Algorithm, where Step 2 is 
designed to allow transitions to any w into which w[t) can be transformed by 
a k-site move. It is not hard to guarantee reversibility (Equation (9.1.6)]; 
for example, we can use the following rule. 

2. Choose I uniformly at random from {0, 1, ... , N- k + 1}. 
Set w(l) = w[11(1) for every I < I and every I ~ I+ k. If 
0 < I < N- k + 1, then randomly choose a ( k + 1 )-step self­
avoiding walk w• from among those walks in Sk+1 satisfying 
w*(k + 1)- w*(O) = w[1l(I + k)- w[1l(I- 1). If I is 0 or 
N- k + 1, then randomly choose a k-step walk w• from S~c. 
Then w( I), ... , w( I+ k - 1) are obtained by translating w• 
so that it begins at w[1l(J- 1) (or, if I= 0, so that it ends 
at w[1l(k)). 

Then for any two distinct N -step self-avoiding walks w and w', 

P ( w, w') = "" F.· ( w w') ---,---:-:----:-.---:;-;----:-;-:-
1 [N -k 1 

N-k+2 {;;t ' ' ck+ 1(w(i-l),w(i+k)) 
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+(Fo(w,w') + FN-k+t(w,w'))_!_] 
Ck 

= P(w',w), 
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where F;(w,w') is 1 if w(l) = w'(l) for every I < i and every I ~ i + k, 
and it is 0 otherwise. Thus we see that P is symmetric, and moreover that 
P(w,w') > 0 if and only if w can be transformed into w' by a k-site move. 
We shall call this algorithm the Maximal k-Site Algorithm (MAX(k)). 

Observe that two N -step walks w and v are in the same ergodicity class 
of MAX(k) if and only if there exists a finite sequence of N-step walks 
w:: w(0),w(1), •.• ,w(m) = v such that w(i) can be transformed into w(i+l) 

by a k-site move for every i = 0, ... , m - 1. In particular, any ergodicity 
class of any other k-site algorithm is contained in an ergodicity class of 
MAX(k). 

It is not hard to see that the Verdier-Stockmayer algorithm is not ir­
reducible in general. In Z2 , the 17-step walk ENW2S2E5N2W2SE (Figure 
9.2 in Section 9.1) cannot be transformed into any other self-avoiding walk 
by a 1-site move. We say that this walk is frozen (with respect to 1-site al­
gorithms). In Z3 , the V-S algorithm is not irreducible because of knot-like 
configurations: Figure 9.4 shows a 20-step walk which is in a different er­
godicity class from, say, the straight walk for any 1-site or 2-site algorithm. 

Figure 9.4: A knot-like walk in Z3 which cannot be transformed into a 
straight walk using 1-site or 2-site moves. 

The observation that 1-site algorithms have frozen configurations in Z2 

is generalized in the next theorem. 
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Theorem 9.4.1 Let d = 2. For any integer k ;::: 1 and any r ;::: k, there 
exists a (6r + 11)-step self-avoiding walk which cannot be transformed into 
any other (6r + 11)-step walk by k-site moves. 

The idea of the proof is the following construction. Let !/J(r) be the {6r+ 17)­
step walk 

NrEsr+tvv2Nr+2Essr+2VV2Nr+lESr 

(see Figure 9.5). If r ;::: k, then !/J(r) is frozen under k-step moves. The 
details of the proof are given in Section 9. 7 .2. VVe remark that the conclu-

............. _ 

r 

Figure 9.5: The walk !/J(r) from the proof of Theorem 9.4.1. 

sions of this theorem are not restricted to lengths of the form N = 6r + 17. 
In fact, for every k it is true that for all sufficiently large N there exists an 
N -step self-avoiding walk which is frozen with respect to k-site algorithms 
(Madras and Sokal (1987)]. 

The next theorem discusses the cardinality of the largest ergodicity class 
(or CLEC for short) of local algorithms. It proves that for d = 2 or 3 the 
CLEC is exponentially smaller than the cardinality of the entire state space. 
Thus, even if we ran a Monte Carlo experiment for an infinitely long time 
using a local algorithm, we would only observe a small fraction of all N -step 
self-avoiding walks. 
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Theorem 9.4.2 Let d = 2 or 3, and let k be a positive integer. Let 
CLECk,N be the cardinality of the largest ergodicity class of MAX(k) (for 
N -step walks). Then 

limsup(CLECk,N) 11N < J.l. 
N->oo 

The proof of this theorem relies on Kesten's Pattern Theorem. The idea is 
that there are certain patterns that cannot be changed by k-site moves, and 
these patterns can occur many times on a self-avoiding walk. (Of course, 
the pattern depends on k.) A walk on which many such patterns occur must 
be in a small ergodicity class, since only some parts of the walk are able to 
change. But such patterns must occur many times on all but exponentially 
few walks, so those walks which are most able to change are necessarily 
in a small ergodicity class. The full proof is given in Section 9.7.2 for two 
dimensions. The proof will work in any dimension, as long as the existence 
of these special patterns is proven. This has been done in three dimensions 
by Madras and Sokal (1987), but it has not been done in four or more 
dimensions. 

The practical implications of the nonergodicity (i.e. lack of irreducibil­
ity) of local algorithms are somewhat controversial. On the one hand, if 
your sole wish is to study "static" properties of a single self-avoiding walk 
(or a linear polymer), then the nonergodicity of local algorithms together 
with their long autocorrelation times (see below) should convince you to 
look at other algorithms. On the other hand, if you are interested in the 
dynamic properties of real polymers, then local moves are a better model 
for how real polymers move than are, say, the pivots of Section 9.4.3. Also, 
in more complicated systems (e.g. many polymers, or strong attractive in­
teractions between monomers) other methods may be infeasible, and so one 
has little choice but to use local moves and hope that the systematic bias 
due to nonergodicity is negligible. 

To conclude our discussion of local algorithms, we shall briefly discuss 
their autocorrelation times. Technically, they should be infinite, since non­
ergodicity prevents us from ever reaching the desired equilibrium distribu­
tion; so instead our discussion will apply either to the Markov chain whose 
state space is the ergodicity class of the straight walk, or to a Markov chain 
which allows self-intersecting walks (perhaps with reduced probability). 

For each N-step walk w, let g(w) denote the mean distance between 
pairs of sites on w: 

g(w) = N(N1 l) 2: lw(i)- w(j)l. 
+ i~j 
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Then under the usual scaling assumption that the distributionofg(w) scales 
likeN", 

> t N 2+2v Tint,g _ cons . . (9.4.1) 

This follows from Corollary 9.2.3, since the variance C9 (0) of g(w) scales like 
N 2", and since lg(w) - g(w')l = 0(1/ N) whenever w can be transformed 
into w' by a local move. The same lower bound also holds for ~"P' by 
(9.2.27). It is generally believed that r~,P and Terp are in fact proportional 
to N2+2" for local algorithms that allow a wide enough class of moves [see 
Kremer and Binder (1988) for a discussion; note that their definition of 
r differs from ours by a factor of N]. In the "mean-field" case of the VS 
algorithm applied to ordinary random walks (with v = 1/2), one can show 
that r;xp scales like N 3 = N2+2" [see Appendix 4.1 of Doi and Edwards 
(1986)). 

9.4.2 The "slithering snake" algorithm 

A different kind of length-conserving dynamic algorithm was devised by 
Kron (1965) and by Wall and Mandel (1975) [see also Kron et a/. (1967) 
and Mandel (1979)]. The basic move of the algorithm is to remove a bond 
from one end of the current walk while simultaneously trying to add a 
bond to the other end (rejecting the result if it is not self-avoiding). For an 
explicit description, use the following procedure as Step 2 in the Generic 
Fixed-Length Dynamic Algorithm. 

2. Generate a random variable X which equals 0 with probabil­
ity 1/2 and equals N with probability 1/2. If X = 0, then let 
Y be one of the 2d nearest neighbours of w!1l(O) (chosen uni­
formly at random), and set w = (Y,w!1l(O), ... ,wl1l(N -1)). 
If X = N, then let Y be one of the 2d nearest neighbours of 
wl1l(N), and set w = (w!1l(l), ... ,w!1l(N), Y). 

The nature of these moves has earned this algorithm and its variants the 
names "slithering snake" and ((reptation" (the latter term is also used in 
polymer dynamics to describe similar motions of real polymers). This algo­
rithm is reversible, but it is not irreducible: for example the walk of Figure 
9.2 in Section 9.1 is frozen with respect to the slithering-snake algorithm 
in Z2 • In fact, for sufficiently large N, it turns out that a positive fraction 
of all N-step walks are frozen, because there is a positive probability that 
both ends of the walk are ((trapped" and cannot be extended by a single 
step in any direction. To be more precise, let ~N denote the set of all walks 
in SN which are frozen with respect to the slithering-snake algorithm (that 
is, w is in ~ N if and only if the ergodicity class containing w has cardinality 
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one). Using the terminology of Definitions 7.1.2 and 7.4.1, let P be a proper 
front pattern with the property that the 2d nearest neighbours of the first 
site of P are all sites of P. Let R be the walk whose sites are the sites of P 
in reverse order (see Figure 9.6; note that R is a proper tail pattern). Then 
any self-avoiding walk that begins with the pattern P and ends with the 
pattern R must be frozen; i.e. SN(P,R) C <PN. Therefore (7.4.7) implies 
that 

liminf I<PNI > 0. 
N-oo CN 

(9.4.2) 

p(O) r(8) 

p(S) r(O) 

p R 

Figure 9.6: The proper front pattern P = (p(O), ... , p(8)) and the proper 
tail pattern R = (r(O), ... , r(S)). Any two-dimensional self-avoiding walk 
beginning with P and ending with R is frozen with respect to the slithering­
snake algorithm. 

Observe that although the intuitive description of the slithering-snake 
algorithm only involves moving one bond at a time, it is not a local al­
gorithm by the definition of Section 9.4.1, because every site changes its 
position on the walk at every successful attempt [that is, w[1l(i) corresponds 
to w[t+ll(i ± 1)]. To emphasize the difference, we note that the analogue of 
(9.4.2) is false for local algorithms (since Kesten's Pattern Theorem 7.2.3 
implies that most long walks contain many places where at least a single 
1-site move can be made), and also that the analogue of Theorem 9.4.2 
is false for the slithering-snake algorithm (since for example all N-step 
bridges are in the same ergodicity class as t.he straight self-avoiding walk, 
and limN(bN / CN )11 N = 1.) A better lower bound for the size of the largest 
ergodicity class is the following: 
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Proposition 9.4.3 In the slithering-snake algorithm, denote by EN the 
ergodicity class containing the N -step walk from the origin to (N, 0, ... , 0). 

Then IENI ~ c~~· 

Remark. This bound is indeed better than IENI ~ bN because c~{.; ;:=: 
J.lN;::: bN [by (1.2.10) and {1.2.17)). 

Proof. Let e;., denote the set of all N-step walks in SN which can be 
extended (possibly from both ends) to a 2N-step self-avoiding walk; that 
is, w is in t'j:; if and only if there is a walk u E S·m such that w occurs at 
some step of(!. Since every 2N-step self-avoiding walk is the concatenation 
of two walks in £;.,,we see that c2N ~ 1£;.,12• Thus the proposition will be 
proved if we can show that t'N is contained in t'N. 

To complete the proof, let wEt;.,, and let e E S2N such that w occurs 
at some step of (!. Let e(i) be the lexicographically largest site of (! [so 
f1 lies in the half-space x1 ~ u1 (j)]. Now let v be the self-avoiding walk 
(u(j), ... , u(j + N)) if j ~ N, or (u(j- N), ... , e(i)) if j > N (so vis anN­
step subwalk of e and has e(i) as an endpoint). Observe that wand v are in 
the same ergodicity class, since w can be transformed into v by "slithering" 
along the path (]. Since v lies in the half-space x1 :S U1 (j) and has one 
endpoint at w(j) on the boundary of this half-space, it can be transformed 
into the straight walk whose endpoints are w(j) and w(j) + (N, 0, ... , 0). 
Therefore vis in t:N, and hence so is w. This completes the proof. D 

Proposition 9.4.3 and (9.4.2) imply that for sufficiently large N, the 
cardinality of the largest ergodicity class of the slithering-snake algorithm 
on SN, CLECss,N, satisfies 

aN-('Y- 1)/ 2 < CLECss,N < 1 _ £ 

- CN -

for some positive constants a and £. Of course, the lower bound is only 
rigorous if we can prove the expected scaling behaviour CN "" AJ.lN N"'~- 1 • 
We do know that 1 exists and equals 1 in five or more dimensions (see 
Section 6.1), so there CLECss,N/CN stays bounded away from both 0 and 
1; it is not known whether this ratio goes to 0 in 2, 3, or 4 dimensions. 

9.4.3 The pivot algorithm 

The preceding dynamic algorithms only attempt to move a few bonds at 
a time. In contrast, the pivot algorithm attempts to move large pieces of 
the walk at every iteration. These big moves are more likely to be rejected 
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than are local moves, but a success is typically rewarded by a large change 
in global observables such as end-to-end distance. 

The pivot algorithm picks a "pivot site" at random on the current walk, 
breaks the walk into two pieces at that site, and then applies a randomly 
chosen symmetry operation of zd to one piece, using the pivot site as the 
origin. As usual, the result is accepted if and only if it is self-avoiding. This 
algorithm was originally used by Lal (1969), and has subsequently been re­
discovered by several authors (see the Notes at the end of this chapter). As 
we shall see, the pivot algorithm is remarkably efficient for the investiga­
tion of global observables: it requires about 0( N log N) computer time to 
generate an "effectively independent" observation. (This is about as good 
as one has the right to expect, since it takes time O(N) just to write down 
an N-step walk!) 

. To give a formal description of the pivot algorithm, let us first consider 
the symmetry group of zd. To be precise, let gd be the set of orthogo­
nal linear transformations of Rd which leave the lattice zd invariant. In 
two dimensions, g2 has eight members: two axis reflections, two diagonal 
reflections, rotations by ±rr/2 and rr, and the identity. For general d, a 
transformation g in gd is completely determined by its action on the d pos­
itive unit vectors e1, ... , ed of zd. Since each g( e;) must be a unit vector 
of zd, g can be uniquely specified by a permutation rr of { 1, ... , d} and 
numbers !t, ... , !d = ±1 via the relations 

(9.4.3) 

Thus gd has 2dd! members. Next, observe that each g in gd leaves the 
origin fixed (since g is a linear transformation). For every g in gd and x 
in zd, define Uz to be the corresponding affine transformation that leaves 
x fixed, i.e. 

gz(Y) = g(y- x) +X for every y E zd. 

We can now describe the basic version of the pivot algorithm by using 
the following Step 2 in the Generic Fixed-Length Dynamic Algorithm. 

2. Choose an integer I uniformly at random from {0, 1, ... , N-
1}. Set x =wl1l(I) (the "pivot site"). Choose aGuniformly 
at random from gd· Set w(l) = wl11(1) for every I $ I and 
w(l) = G:r(wl11(1)) for every I > I. 

As we shall see, this procedure is reversible and irreducible. We can get 
variants of this algorithm if we choose I or G from some nonuniform dis­
tribution. We shall also discuss irreducibility and reversibility of these 
variants below. As a different kind of variant, we could always pivot the 
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shorter part of the walk, leaving the longer part fixed. This should improve 
the efficiency of the algorithm without changing the Markov chain in any 
important way. 

It is not hard to check reversibility with respect to the uniform distri­
bution on SN. Suppose that w and w' are distinct self-avoiding walks such 
that P(w,w') > 0. There could be several ways to get from w tow': specif­
ically, suppose that there are m possible pairs {i(j), gU>) (I ~ j ~ m) such 
that applying the operation g(j) tow with pivot site w(iU)) will produce 
w'. Then 

m 

P(w,w') = L Pr{I = i(j)} Pr{G = gU>}. 
i=1 

Observe that applying the operation (gU>)- 1 tow' with pivot site w'(i(j)) 
will produce w. Therefore, we see from the above equation that P(w, w') = 
P(w', w) in the original algorithm, as well as in any variant that satisfies 

Pr{G = g} = Pr{G = g- 1} for every g in (}d. 

We shall now consider the irreducibility of the pivot algorithm and also 
of variants which choose I and G from possibly nonuniform distributions. 
First of all, since the angle between the i-th and ( i + 1 )-th step of the walk 
can only change when I = i, such a variant cannot be irreducible unless we 
require Pr{I = i} > 0 for every i = 1, ... , N- 1. Also, if Pr{I = 0} = 0, 
then irreducibility fails because the direction of the first step never changes. 
(Of course, if the observables being measured are invariant with respect to 
the symmetries of the lattice, then it cannot hurt to take Pr{l = 0} = 0.) 
Thus the interesting questions about irreducibility of the variants arise when 
some symmetries are allowed to have zero probability. The following result 
holds in every dimension d 2: 2. 

Theorem 9.4.4 The pivot algorithm is irreducible, as is any variant which 
gives nonzero probability to all d reflections through coordinate hyperplanes 
Xi = 0 and to all rotations by ±1rj2 (which leaved- 2 axes fixed). In fact, 
any walk in SN can be transformed into a straight walk by some sequence 
of at most 2N - 1 such pivots. 

The proof will be given in Section 9.7.3. The basic idea is that if we 
consider a snug box around a walk, then we can try to "unfold" the walk 
by performing a reflection through one of the faces of the box. 

The above theorem remains true if we replace ±1r /2 rotations by any 
set of symmetries that contains, for every distinct i and j in { 1, ... , d}, a 
symmetry that sends ei to ej and another that sends ei to -ei (for example, 
the set of all reflections through hyperplanes x; = Xj or Xi = -xi). The 
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proof is the same. It is clear that some such set of symmetries must be used; 
notice that if we only allowed reflections through coordinate hyperplanes, 
then we could never change the angle between consecutive steps, and so 
the total number of right-angle turns in the walk could never change (in 
particular, straight walks would be frozen). . 

Some additional results about irreducibility of variants in two dimen­
sions are known. If a variant gives nonzero probability to the three ro­
tations ±1r /2 and 1r, then it is irreducible [see Section 3.5 of Madras and 
Sokal (1988)]. A variant is not irreducible if we only allow rotations by 1r 

(since the number of right-angle turns cannot change) or if we only allow 
rotations by ±7r/2 [a counterexample for N = 223 is shown on p. 139 of 
Madras and Sokal (1988)]. Finally, if we only allow the two diagonal re­
flections, then we do have irreducibility-in fact, any walk in SN having 
exactly k right-angle turns can be transformed into a straight walk by some 
sequence of k diagonal reflections [Madras, Orlitsky, and Shepp (1990)]. As 
a consequence of this last result, we have 

Corollary 9.4.5 Let d = 2. For the transition probability P of the original 
pivot algorithm, P 2N- 1(w,w') > 0 for every w and w' in SN. 

This means that the "diameter" of the state space of the two-dimensional 
pivot algorithm is at most 2N -1 (N -1 pivots to straighten out w, 1 pivot 
at the origin, and then N- 1 to make w'). 

Now that we have seen that the pivot algorithm is a valid method (since 
it is reversible and irreducible), it is is time to discuss why it is a good 
algorithm. Only a limited part of this discussion will be based on rigorous 
proofs; the rest will consist of nonrigorous arguments (scaling theory, etc.) 
supported by numerical evidence from computer experiments. 

The intuitive picture, which we shall elaborate upon below, is the fol­
lowing. Firstly, since a pivot makes a large-scale change in a walk, it is 
reasonable to expect that we will obtain an "effectively independent" con­
figuration (at least with respect to global observables) after relatively few 
successful pivots. It will turn out that "relatively few" means about log N. 
Secondly, the probability of a particular pivot being accepted will tend to 0 
as N --> oo, but as some power law N-P. Since there are no frozen config­
urations, this probability cannot decay faster than N- 1 , and so 0 :=:; p :=:; 1. 
(Numerically, pis estimated to be about 0.19 in two dimensions and 0.11 in 
three.) Thus one expects a successful pivot in every NP attempts. Recalling 
the discussion following (9.2.11), we infer from these first two points that 
the integrated autocorrelation time for a global observable should be about 
NP log N. Finally, we also have to include the average amount of com­
puter time required per attempted pivot. The amount of work-checking 
for intersections, updating arrays, etc.-is at worst proportional to N; so 
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suppose that the amount of computer time per attempt is on the order of 
N'~. Therefore the amount of computer time required per successful at­
tempt is NP+'I, and the amount of computer time required per "effectively 
independent" observation of a global observable is NP+'I log N. We shall 
argue below that p + q = 1. 

In the remainder of the section we shall elaborate on the intuitive ar­
gument described above. As a guide for the first part, which says that 
relatively few successful pivots are needed to get an "effectively indepen­
dent" observation of a global observable, we can consider a simpler model: 
the pivot algorithm applied to ordinary random walk. That is, the state 
space is now S'N (the set of all (2d)N ordinary walks), and the pivot algo­
rithm now does not care about self-avoidance (so in Step 3 of the Generic 
Algorithm, we always set w!t+l] = w). For this model, we can do exact 
calculations to prove rigorously that the integrated autocorrelation time 
r;"nt,g for the global observable g(w) = lw(N)I 2 is asymptotic to 2logN 
as N-> oo (see Proposition 9.7.1 in Section 9.7.3). The same conclusion 
holds (except for a constant factor) for the global observables w;(N) and 
the squared radius of gyration [Madras and Sokal (1988)]. 

It is important to observe that the situation is quite different for the 
exponential autocorrelation times of the ordinary random walk: in particu­
lar, r:xp,g is asymptotically equal toN as N-> oo for the global observable 
g(w) = lw(N)I 2 (Proposition 9.7.1). In fact, the exponential autocorrela­
tion time for the entire chain, r:xp• is also asymptotically proportional to 
N [Madras and Sokal (1988)]. It is easy to understand the situation for 
local observables: consider for example the angle between the 15-th and 
16-th steps. The probability that this changes in a particular pivot is 1/ N 
times a constant, since the angle can only change when the pivot site is 
w(15), which happens with probability 1/N. So both the integrated and 
exponential autocorrelation times for this observable should behave like N. 

To summarize: global characteristics of walks tend to correspond to 
short modes of this system, while the long modes tend to be orthogonal 
to the quantities of interest. This emphasizes how the pivot algorithm is 
specially designed for looking at global quantities. It is reasonable to expect 
this to carry over to the self-avoiding case as well, and results of simulations 
seem to indicate that this is indeed what happens. However, proving such 
claims rigorously remains an open and apparently difficult problem. 

We now turn to the amount of computer time required per attempted 
pivot, and its behaviour as N increases. The main issue is how long it 
takes to discover whether or not the proposed walk w is self-avoiding. If 
we compute all of w and then check for intersections, then each attempted 
pivot requires time proportional to N. But we can do better by looking 
for self-intersections as we compute w, so that we can stop early if one is 
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found. We expect that w is most likely to intersect itself in the vicinity 
of the pivot site, so we first compute w at the pivot site, and then move 
outwards towards both ends of the walk simultaneously, computing w and 
checking for self-intersections as we go. We shall now make the description 
of this procedure more precise. In doing so, it will be convenient to use the 
following notation for integers a $ b satisfying a $ N and b ~ 0: 

w(a, b] = (w(max{a, O}),w(max{a, 0} + 1), ... ,w(min{b, N})). 

Consider the following procedure for a single attempt of the pivot algorithm 
(where w£tJ is the current walk). 

(a) Choose the pivot site I and the symmetry Gat random. Set 
x = wl11(I), j = 1, and w(I) = wl11(1). 

(b) Set w(I + j) = Gz(wl11(1 + j)) (if I+ j =::; N) and set 
w(I- j) = wt11(1- j) (if I- j ~ O). 

(c) If I+ j =::; N, then check to see if w(I + j) is in the set of 
sites w[I- j + 1, I+ j -1). If it is, then the current attempt 
fails, so stop; otherwise, continue. 

(d) If I- j ~ 0, then check to see if w( I- j) is in the set of sites 
w(J- j + 1, I+ j]. If it is, then the current attempt fails, so 
stop; otherwise, continue. 

(e) If j < max{N- I, I}, then increase j by one and go to Step 
(b). Otherwise, the current attempt has succeeded, so set 
w£1+11 = w and stop. 

Steps (a) and (b) can be performed in time 0(1) (i.e. independent of N). 
In addition, Steps (c) and (d) can also be performed in average time 0(1) 
with the use of a bit map or a hash table (see the discussion at the end 
of Section 9.1), as follows. We begin with an empty bit map (or hash 
table); at each step, it will contain the sites of w that have already been 
computed. As each new site of w is computed, we check to see whether its 
location is still vacant in the bit map; if so, then we add this site to the bit 
map, but otherwise we stop because we have found a self-intersection. In 
the case of a success, Step (e) requires time O(N) for recording wlt+t] and 
reinitializing the bit map. In summary, we see that the total amount of 
work is proportional to the number of times that Step (b) is performed (i.e. 
the number of times through the "loop"). Define the random variable H(w) 
to be the smallest value of j such that w[I - j, I+ j] is not self-avoiding 
(and set H(w) = N if w[O, N] is self-avoiding). Thus the amount of work 
per attempt is of order E(H(w)). Evidently this is at most O(N), but we 
can improve this bound by the following heuristic argument. First we have 

Pr{H(w) > k} = Pr{w[I- k, I+ k] is self-avoiding} 
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~ Pr{ a 2k-step self-avoiding walk pivoted at its 

midpoint is again self-avoiding} 
""' const.k-P 

where pis the exponent discussed above. We can now estimate the expec­
tation of H(w): 

N 

E(H(w)) = E Pr{H(w) > k} ~ N1-P. 

k=O 

Therefore the average amount of work per attempt is of order· N 1-P, and 
so p + q = 1 as anticipated. This heuristic argument does in fact agree with 
computational experience. 

This completes our discussion of why the integrated autocorrelation 
times for global observables are believed to be 0( N log N) for the pivot 
algorithm. 

9.5 Variable-length dynamic methods 

In this section we shall discuss two dynamic methods whose state spaces 
include self-avoiding walks of various lengths. The Berretti-Sokal algorithm 
is the conceptually simplest such method: its state space is the set of all self­
avoiding walks. The "join-and-cut" algorithm has as its state space the set 
of all pairs of self-avoiding walks whose lengths sum to some fixed number 
N. A third method, the BFACF algorithm, will be discussed in Section 
9.6.1: its state space is the set of all self-avoiding walks with specified 
endpoints 0 and x for some fixed point x in zd. 

When using variable-length methods, the statistical analysis of the data 
can be more complicated than our discussion in Section 9.2 indicated. In 
that section, we assumed that the estimates from different values of N were 
independent. While this is true for fixed-length methods, where different 
values of N correspond to different simulations, it will be false for the 
algorithms of the present section. Berretti and Sokal (1985) show how to 
use maximum-likelihood estimation for their variable-length algorithm; the 
techniques developed there can be adapted to other algorithms. 

9.5.1 The Berretti-Sokal algorithm 

The Berretti-Sokal algorithm is designed to sample from the set of all self­
avoiding walks of all possible lengths. It will be defined precisely below, 
but the basic idea is that at each step you either delete the last bond of 
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the walk or else you attempt to increase the length of the walk by adding 
a bond to the end (rejecting the attempt if the result is not self-avoiding). 
The state space is 

00 

S:: USN, 
N:O 

which is infinite, so we cannot ask for uniform probabilities on all walks. It 
is natural, however, to ask for uniform probabilities within each S N. The 
Berretti-Sokal algorithm simulates walks in the "canonical ensemble" (in 
contrast to the fixed-length "microcanonical ensemble"). This requires a 
parameter z > 0 (as in the Redner-Reynolds algorithm of Section 9.3.3). 
Each N -step self-avoiding walk is given a weight (i.e. a relative probability) 
of zN. The sum of all the weights of walks inS is just the susceptibility x(z). 
Using this weight to normalize the probabilities, we obtain the probability 
distribution 

(9.5.1) 

Of course, this only makes sense if x(z) is finite, so we shall henceforth 
assume that 

O<z<zc=J.l- 1 • 

(In physical terminology, z is the "fugacity per bond", and x(z) plays the 
role of a "partition function"; also, 1r is a "Gibbs distribution".) Observe 
that 1r is a genuine probability distribution on S. The mean square dis­
placement of a walk chosen at random from this distribution is 

L lw(lwl)l2?r(w) = L lw(lw1)12zlwl =6(z)2, 
wES wES X(z) 

which is the square of the correlation length of order 2. Thus we can obtain 
information about the critical exponent v2, which is believed to equal v. 
Moreover, the canonical ensemble is a natural setting for studying J.l and 
r, since the fraction of time that the Markov chain spends in SN (i.e. the 
fraction of time that an N-step self-avoiding walk is observed) is 

L:: ?r(w) = CNZN ""'A(J.Lz)N N'Y-1 

w:!w!:N x(z) x(z) 

We shall use (·}z to denote expectation with respect to ?Tz. For future 
reference, we note that the mean length of a walk is 

(9.5.2) 
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[under the usual scaling assumptions, arguing as we did for (1.3.11)]. In 
particular, the mean length diverges as z increases to zc. 

We now state the algorithm of Berretti and Sokal (1985). 

Berretti-Soka/ {B-S) Algorithm. This algorithm generates a 
Markov chain {w!11} on the state spaceS which is reversible 
with respect to 1f'z. 

1. Let w!01 be any self-avoiding walk in S. Set t = 0. 
2. Let N = lwl1ll. Generate a random variable X which is 

+1 with probability 2dz/(1 + 2dz) and -1 with probability 
1/(1 + 2dz). If X= +1, then go to Step 3; if X= -1, then 
go to Step 4. 

3. Try to add a step to wft]: Choose one of the 2d nearest 
neighbours of w!'l(N) uniformly at random; call this point 
Y. If Y is not already a site of w!11, then set wft+t] = 
(w!1l(O), ... ,w!1l(N), Y); ifY is a site ofw[11, then set wft+l] = 
w!11. Increase t by one and go to Step 2. 

4. Delete the last step of w!11: If N > 0, then set wft+t] = 
(w!1l(O), ... ,wf1l(N- 1)); if N = 0, then set w!1+11 = wft] 
(the 0-step walk). Increase t by one and go to Step 2. 

It is easy to see that the Markov chain corresponding to the B-S algo­
rithm is irreducible: any N-step walk can be transformed into the 0-step 
walk in N iterations, and vice versa. Now let us check reversibility. Let w 
be anN-step self-avoiding walk, and let w' be an (N + 1)-step self-avoiding 
walk which can be obtained by adding a single step tow. Then 

1 zN ( 2dz 1 ) 
1r(w)P(w,w) = x(z) 1 + 2dz. 2d 

and 
zN+l 1 

1r(w')P(w',w) = x(z) 1 +2dz' 

which implies that 

1r(w)P(w,w') = 1r(w')P(w',w). 

For all other choices of distinct w and w', both sides of the above equation 
are 0. And of course the equation is trivial when w = w'. This proves 
reversibility with respect to lrz. 

We now turn our attention to the autocorrelation times of the Berretti­
Sokal algorithm. Before summarizing what is rigorously known, we shall 
give a heuristic argument which provides a pretty good intuition for what 
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is happening. The first claim is that the autocorrelation times should be 
of the same order as the average time required to reach the 0-step walk 
from a typical initial walk in the state space. This is because before the 
0-step walk is reached, the Markov chain still remembers the first steps of 
the initial walk, but the chain forgets everything once the 0-step walk is 
reached. Next, consider the process N(t) = lw(c)l, i.e. the length of the walk 
at timet. One expects this process to behave more or less like a random 
walk on the nonnegative integers having transition probabilities 

P(i,i+l) 
2dz 1 J.lZ = 2dz + 1 2d J.l = 2dz + 1 

P(i, i) = 
2dz- J.lZ 
2dz+ 1 

P(i,i-1) 
1 

= 
2dz+ 1 

for moderately large i (the factor J.l in the first line is an approximation 
of c;+l/c;, the number of ways in which an average i-step self-avoiding 
walk can be extended by a single step). This random walk has a drift of 
(J.tz-1)/(2dz+1), which is negative. Thus the expected time for the process 
to go from a state No to the state 0 is about N0 divided by the magnitude 
of the drift. Finally, suppose that the initial walk wl01 is drawn at random 
from the equilibrium distribution r; then the expected time to reach 0 is 
about 

(N(O)}z 2dz + 1; 
1-pz 

by (9.5.2), this is asymptotically proportional to {N}~ as z - Zc = J.l- 1• 

Thus we conclude from our heuristic argument that rezp should scale like 
{N)~ (i.e. like (zc- z)-2]. 

This argument does quite well in several respects. First, one can do 
exact calculations when the B-S algorithm is applied to ordinary random 
walks [for which the state space is UNS;.,, and we take 0 < z < Zc = (2d)- 1]. 

In this case, N(t) is exactly a random walk with drift, and the integrated 
autocorrelation time of this observable can be shown to scale like (N}~ [see 
Appendix A of Berretti and Sokal (1985)]. Secondly, the random-walk­
with-drift approximation is in fact a lower bound for the actual chain: an 
application of Corollary 9.2.3 (with g = N, A = 1, and the assumption 
that the probability distribution of N, in particular its standard deviation, 
scales like {N)z) shows that 

r;nc,N ~ const.(N}~; (9.5.3) 

by {9.2.27), this is also a lower bound for r:zp· Thirdly, Sokal and Thomas 
{1989) proved a rigorous upper bound, subject to the assumption that CN 
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scales like JJN N-r- 1, that 

r!zp :5 const.(N)!+-r .. (9.5.4) 

The exponent 1 +"'(is near 2 in all dimensions (and in fact equals 2 when 
d ~ 5; see Section 6.1), so the above two bounds place pretty narrow limits 
on the scaling behaviour of r~zp· The exact behaviour remains an open 
question. (We remark that the proof of Sokal and Thomas also works for 
the B-S algorithm applied to ordinary random walks, where"'(= 1.) 

Lastly, we mention a slightly weaker bound derived by Lawler and Sokal 
(1988), using very different methods: 

r;zp :5 const.(N}~'Y. (9.5.5) 

Their main tool is a general version of Cheeger's inequality, which in its 
original form was a lower bound on the second smallest eigenvalue of the 
Laplacian on a compact Riemannian manifold [Cheeger (1970)]. Cheeger's 
inequality has recently found a wide range of applications in problems in­
volving rates of convergence to equilibrium in Markov chains [see Diaconis 
and Stroock (1991) and references therein, as well as in Lawler and Sokal 
(1988)]. 

Finally, we note that one could implement a variant of the B-S algorithm 
in which one is allowed to add or delete steps from either end of the walk. 
We can regard this as a combination of the B-S and the "slithering snake" 
algorithm. The resulting algorithm should behave very much like the B-S 
algorithm. A form of this variant was used by Kron et al. (1967). 

9.5.2 The join-and-cut algorithm 

The join-and-cut algorithm was invented by Caracciolo, Pelissetto, and 
Sokal (1992) as an efficient method for estimating the exponent "Y· This 
algorithm works on a rather different state space: the set of all pairs of self­
avoiding walks whose combined length is fixed. To formalize the definition, 
let M be a fixed positive integer. We define 'TM to be the set of all pairs 
( f/J, !;') of self-avoiding walks such that 17/JI +liP I= M: 

M 

'TM := U Sm X SM-m• 
m=O 

We shall see that the equilibrium distribution of the algorithm is uniform 
on T M, and hence the distribution of the length of the first walk in the pair 
is 
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from which one can try to estimate 'Y· 
The algorithm is as follows. 

The Join-and-Cut Algorithm. This algorithm generates a Mar­
kov chain {Xl1l} = {(1/;[11, <p[1l)} on the state space TM which 
is reversible with respect to the uniform distribution on T M. 

1. Let X[0] = ( 1/;[01, <p[01) be any pair of self-avoiding walks in 
TM· Set t = 0. 

2. Apply one iteration of the pivot algorithm (see Section 9.4.3) 
to ,pltl, obtaining ~. Then apply one iteration of the pivot 
algorithm to <pl11, obtaining ljJ. (Alternatively, with the hope 
of reducing autocorrelation times, we could replace "one 
iteration" by "some fixed number npiv of iterations", and 
"pivot algorithm" by "some length-conserving ergodic algo­
rithm whose equilibrium distribution is uniform".) 

3. (Join) Let ( = ~ o ljJ be the concatenation of ljJ to~. 
4. (Cut) Choose J uniformly at random from {0, ... , M}. Set 

,P' = (((O), ... ,((J)) and <p1 = (((J), ... ,((M)). If both ,P' 
and <p' are self-avoiding, then set ,p£1+11 = ,P' and <p[t+t] = <p'; 
otherwise, set ,p[t+l) = ~ and <p(t+l) = t(J. 

5. Increase t by one and go to Step 2. 

333 

We emphasize that in Step 3 one does not need to check whether the walk 
( is self-avoiding. For purposes of comparison, however, let us consider 
also a variant of the join-and-cut algorithm in which we do perform this 
check. Specifically, this variant is obtained by replacing Steps 3 and 4 by 
the following: 

3'. (Join) Let ( = ~ o ljJ be the concatenation of ljJ to ~. If ( 
is self-avoiding, then go to Step 4; otherwise, set 1/J(c+t] = ~ 
and <p[e+t] = tjJ and go to Step 5. 

4'. (Cut) Choose J uniformly at random from {0, ... , M}. Set 
,p[t+IJ = (({0), ... , ({J)) and <p[t+t) = (((J), ... , ((M)). 

(Observe that whenever Step 4' is performed, the resulting 1/J[I+l] and cp[t+t] 

are necessarily self-avoiding.) 
The transition probability matrix P of the join-and-cut algorithm can 

be expressed as the product of two transition matrices Pa and Pb, which 
correspond respectively to Step 2 and to Steps 3 and 4 of the algorithm. 
To describe Pa and Pb more precisely, let Q be the transition matrix of 
the ergodic length-conserving algorithm used in Step 2 for single walks, 
defined with respect to the state spaceS of all self-avoiding walks (thus the 
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ergodic classes of Q are precisely the sets SN, and Q(w,w') = 0 whenever 
lwl :/: lw'l). Then 

Pa(( tPt, 'Pt), ( tP2t 'P2)) = Q( tPlt tP2)Q(cpt, 'P2) 

(for ( tPi, 'Pi) in 'T M, i = 1, 2). If the length-conserving algorithm is reversible 
(i.e. if Q is symmetric), then so is Pa; more generally, if the restriction of Q 
to each SN has the uniform distribution as a stationary distribution, then 
the same is true for the restriction of Pa to each SN, x SN2 • To describe 
Pb, suppose that ( tPlt 'Pt) and ( tb2, 'P2) are distinct members of 'TM whose 
concatenations tbt o 'Pt and tb2 o 'P2 are the same; then 

All other entries of Pa are 0, except for those on the main diagonal (which 
represent either a rejection in Step 4 or else the choice J = lfb[tll). Clearly 
Pb is symmetric. 

Unfortunately, the product of two symmetric matrices is not in general 
symmetric; therefore, even if Pa is symmetric (as it is when we use the 
pivot algorithm in Step 2), the product PaP& cannot be expected to be 
symmetric. Thus the join-and-cut algorithm is not reversible in general. 
However its equilibrium distribution is nevertheless uniform on TM, because 
both Pa and P& have the constant vector as a left eigenvector, and hence 
so does their product. The failure of reversibility is due to the fact that a 
single iteration of the algorithm consists of two stages whose order matters: 
doing the pivoting followed by the join-and-cut steps. We remark that the 
variant of the join-and-cut algorithm corresponding to the transition matrix 
P = ! Pa + ! Pb would be reversible (in this variant, at each iteration one 
randomly decides either to do Step 2 or else to do Steps 3 and 4). 

It is easy enough to prove that the join-and-cut algorithm is irreducible, 
as follows. For any length N, let PN be the N-step walk with PN(i) = 
(i, 0, ... , 0) for every i. Given any tb in Sm and any cp in SM-m 1 there 
exists aT such that QT(fb,pm) > 0 and QT(IP,PM-m) > 0 (assuming that 
the restriction of Q to Sm is aperiodic, as it is in the case of the pivot 
algorithm). Since it is possible to pick J = m on T consecutive iterations, 
we see that pT((tJI,~.p),(Pm 1 PM-m)) and PT((Pm 1 PM-m),(?JI,~.p)) are both 
nonzero. The concatenation of Pm and PM -m is PM, which may be cut 
successfully at any point, so the irreducibility of the algorithm follows. 

It is possible to get some insight into the efficiency of the join-and-cut 
algorithm by a combination of rigorous analysis, scaling arguments and 
numerical work. We shall-only give a brief description of some of these 
results. The reader is referred to Caracciolo et al. (1992) for more details. 
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First, let us estimate W, the amount of computer work that is required 
for a typical attempt to join and cut (that is, for Steps 3 and 4). For a 
given ,P, lj>, and J (as produced by Step 2 and-subsequently by Step 4), 
let n = ltPI and let L = IJ - nl. Then the attempt to join and cut may 
be described as an attempt to transfer the last L steps of ,P to the front 
of if> if J < n (or vice versa if J > n). Roughly speaking this is like an 
attempt to concatenate two independent self-avoiding walks of lengths L 
and M- n (or L and n). Thus if we start looking for self-intersections at 
the joining point and work our way outwards, then the probability that we 
will not have found one before k steps of both walks have been checked 
is approximately the same as the probability that two independent k-step 
self-avoiding walks can be concatenated successfully: 

Pr{W > k} ~ c2; ""const.k-("Y-1). 
cl: 

(9.5.6) 

We have not included any n-dependence in (9.5.6) because we expect it to 
disappear when we average over n (since n, M- n, and L all typically have 
order of magnitude M). Therefore the average amountofwork required for 
Steps 3 and 4 should be 

M 

E(W) = EPr{W > k} ~ M2-"Y. 
l::O 

Recall from Section 9.4.3 that when applying the pivot algorithm to SN 
the average work per pivot should scale like N 1-P. This implies that the 
expected amount of work for one complete iteration of the join-and-cut 
algorithm, in which Step 2 consists of doing some fixed number npiv of 
pivots on each of ,pit) and cpl1l, is 

. Ml-p + M2--r npav • 

By all evidence, p < "'( - 1 in two and three dimensions, and so 1 - p > 
2 - 'Yi this implies that the most of the computer work in the join-and-cut 
algorithm is used in the pivoting step, even when n~iv = 1. 

Suppose for the moment that npiv is very large. Then the join-and-cut 
algorithm can be thought of as an "idealized algorithm", in which Step 
2 actually produces walks ,P and if> that are independent of ,pltJ and cpltl. 
This idealized algorithm is more amenable to rigorous analysis: Caracciolo 
et al. (1992) prove that the exponential autocorrelation time is at most 
M"Y- 1 (under the usual scaling assumption CN ""ApN N"Y- 1 ). This is done 
by showing that Tezp ~ M"Y- 1 for the variant that uses the idealized Step 
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2 in conjunction with Steps 3' and 4' described earlier, and then appeal­
ing to Proposition 9.2.4 (although some extra work is needed, since these 
algorithms are not reversible). 

Now consider the original join-and-cut algorithm with npiv = 1. Since 
the idealized algorithm should be more efficient than the actual algorithm 
with respect to the observable n = lt/>[tll, and more generally observables 
g(n) that depend only on n, we shall define the exponent h by 

"'M-y-t+h Tint,g(n) - · , 

and we can expect that h is positive and hope that it is small. Combining 
this with the discussion above, we conclude that the amount of computer 
time per effectively independent observation scales like M"Y-l+h M 1-P, i.e. 
like M~< where K = 1- p +h. Using the conjectured values of 1 and p 
from ( 1.1.11) and Section 9.4.3 respectively, the bound "'- ~ 1 - p becomes 
(approximately)"'-~ 1.15 in Z2 , "'- ~ 1.05 in Z3 , and"'-~ 1 in four or more 
dimensions. Caracciolo et al. (1992) argue that in fact K should equal 1 
in four or more dimensions, which would virtually make this an optimal 
algorithm there. They also report the results of Monte Carlo runs which 
lead them to estimate that "' is about 1.5 in two dimensions, which is 
significantly better than the Berretti-Sokal algorithm (compare (9.5.3)]. 

9.6 Fixed-endpoint methods 

This section will discuss some dynamic Monte Carlo methods that generate 
self-avoiding walks with endpoints that have been specified in advance. 

First we shall describe the relevant state spaces. For each x in zd 
(x ::/:- 0), we denote by SN(x) the set of all N-step self-avoiding walks w 
having w(O) = 0 and w( N) = x. In this section, we shall always assume 
that N and llxllt have the same parity, since SN(x) is empty otherwise. 
Also, we denote by S(x) = UNSN(x) the set of all self-avoiding walks 
having endpoints 0 and x. When generating walks with fixed length and 
fixed endpoints, then we want to sample from the uniform distribution on 

SN(x): 

1r(w):: 1r~(w) == (~ ) 
CN ,X 

for every w in SN(x). (9.6.1) 

When generating walks from the variable-length fixed endpoint ensemble, 
the situation is similar to that of Section 9.5.1. In addition to specifying 
the endpoint x, we also specify a parameter z (the "fugacity per bond") 
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between 0 and Zc = Jl-1. We sample from the Gibbs distribution 

1 
1r(w) = 7r,;(w) = ----lwlzlwl 

z .::.(z,z) for every w in S(x), (9.6.2) 

where 2(z, x) is the normalizing constant 

00 8 
S(z,z) = E NzNcN(O,z) = z11Gz(O,z). 

N:O uz 
(9.6.3) 

The variable-length ensemble is the natural choice for studying the critical 
exponent Ci 1 ing 1 defined in (1.4.13) by 

CN(O, x)"" BJlN Nor,;,.,- 2 

This is because the fraction of time that the observed walk has length n is 

(9.6.4) 

and so we can estimate a,ing by fitting a distribution of this form to the 
observed data (for fixed z near J.l- 1 and fixed x). 

We remark that the multiplicative factor lwl in (9.6.2) is not there for 
any deep reason, but only because this is what the algorithm of Section 
9.6.1 naturally gives. By modifying the algorithm, one could get a different 
71', but there does not appear to be a good reason to do so. 

Recall from Definition 3.2.1 that when llxlh = 1, we can associate each 
walk in SN(x) with an (N + 1)-step self-avoiding polygon. Thus any of 
the methods discussed in this section can be used to study self-avoiding 
polygons simply by fixing x to be a nearest neighbour of the origin. In this 
case, we say that we are working with the ensemble of "rooted" polygons: 
there is a particular bond (the one joining z to the origin) which must occur 
in every polygon of the state space. It is also possible to work with the 
ensemble of "unrooted" polygons, where each bond of the current polygon 
is allowed to change during the iteration of the algorithm. Then the state 
space is the set of all polygons on the lattice (or their equivalence classes 
up to translation). There is little difference between the two ensembles in 
practice, aside from a factor of N + 1 in their cardina:lities [recall (3.2.1 )] and 
the orientation of the rooted bond (which is irrelevant for most simulations). 
However, the Markov chains that are defined on the two ensembles are 
different in a non-trivial way; for example, a proof of irreducibility for the 
unrooted ensemble may not work for the rooted ensemble. 
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9.6.1 The BFACF algorithm 

We shall first discuss an algorithm due to Berg, Foerster, Aragao de Car­
valho, Caracciolo, and Frohlich (for references, see the Notes at the end of 
the chapter). This algorithm uses transitions of a local nature to gener­
ate walks in the variable-length fixed endpoint ensemble according to the 
distribution given by (9.6.2) and (9.6.3). 

The elementary transformations for this algorithm are depicted in Fig-
ure 9.7. Each transformation is determined by choosing a bond of the 

..... n -- 1 ..... -- L ..... 
Figure 9.7: The elementary transformations of the BFACF algorithm. 

current walk [say the bond from w( i) to w( i + 1 )] and one of the 2d- 2 lat­
tice directions perpendicular to the bond (let e be a unit vector in the chosen 
direction). Let x and y denote the lattice points w{i) + e and w(i + 1) + e 
respectively. The transformation then moves the chosen bond by unit dis­
tance in the direction e, so that its new endpoints are x and y. Then there 
are now three possibilities, as illustrated in Figure 9.8: 

(a) if the original w had w(i- 1) =f. x and w(i + 2) =f. y, then we 
add two bonds: the new walkisw = (w(O), ... ,w(i), x, y,w(i+ 
1), ... ,w(lwl)), and lwl = lwl + 2; 

(b) if the original w had w(i- 1) = x and w(i + 2) = y, then 
we remove two bonds: the new walk is w = (w(O), ... , w( i-
1),w(i + 2), ... ,w(lwl)), and lwl = lwl- 2; 

(c) if the original w had w(i- 1) =f. x and w(i + 2) = y [or, 
respectively, w(i-1) = x and w(i+2) =f. y], then the new walk 
is w = (w(O), ... ,w(i), x,w(i + 2), ... ,w(lwl)) [respectively, 
w = (w(O), ... ,w(i- 1), y, w(i + 1), ... ,w(lwl))]. Here, lwl = 
lwl. 

[If the chosen bond is the first bond of the walk, then i = 0 and we always 
have w(i- 1) =f. x. Similarly, w(lwl + 1) =f. y always.] We shall write AN 
to denote lwl-lwl, the change in the number of bonds of the walk for each 
possibility; we shall say that (a), (b), and (c) are AN = +2, -2, and 0 
transformations respectively. 
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(a) _j. - -J • • z y 
w(i) w(i + 1) 

• • n z y 
(b) -

1 e 
z y 

(e) ~ - L 
z y 

Figure 9.8: The three possibilities for a BFACF move, in detail. 

To complete the definition of the BFACF algorithm, we need three num­
bers p( +2), p( -2), and p(O) between 0 and 1 (they also must satisfy certain 
other conditions; see below). 

BFACF Algorithm. This algorithm generates a Markov chain 
{wl11} on the state space S(z). 

1. Let wl01 be any walk in S(z). Set t = 0. 
2. Choose an integer I uniformly at random from {0, 1, ... , jwltll-

1}. 
3. Consider the 2d-2 walks w that would be obtained by moving 

the I-th bond of w£t) in one of the directions perpendicular 
to the vector wl11( I + 1) - w!tJ (I). Choose one of these walks 
at random, with probabilities p(lwl-lw[tJI). (If these 2d- 2 
probabilities add up to q < 1, then also choose w = w£t] with 
probability 1- q.) 

4. If w is self-avoiding, then set w!t+tJ = w; otherwise, set 
wlt+t] = w!tJ. 

5. Increase t by one and go to Step 2. 
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The necessary constraints on p( +2), p( -2), and p(O) are given by the fol­
lowing lemma. 

Lemma 9.6.1 The BFACF algorithm is well-defined and is reversible with 
respect to ,.; if and only if the following constraints are satisfied: 

p( +2) = z 2p( -2), (9.6.5) 

z2 

p( + 2) 5 1 + (2d - 3)z2 ' 
(9.6.6) 

and 

2p(O) + (2d- 4)p( +2) ~ 1. (9.6.7) 

Proof. First we consider reversibility. Suppose that w and w are distinct 
walks in S(z) such that P(w,w) > 0. On the one hand, if lwl and lwl differ 
by 2, then 

P(w,w) = I~IP(Iwl-lwl); 
the condition (9.1.5) for reversibility in this case reduces to (9.6.5). On the 
other hand, if lwl = lwl, then 

P(w,w) = l~lp(O), 

since there are two possible choices of bond of w that can produce w (for 
example, in (c) of Figure 9.8, we get the same result by choosing the bond 
joining w(i + 1) to w(i + 2) = y and moving it in the direction z- y]; the 
reversibility condition imposes no additional constraint in this case. 

Next, we note that the algorithm is well-defined if and only if the sum 
of the 2d- 2 probabilities in Step 3 does not exceed 1. There are several 
possibilities to consider, depending upon the relative orientations of the 
I-th, (I- 1)-th and (I+ 1)-th bonds of wlt] (see Figure 9.9): 

(i) All 2d- 2 directions yield ~N = +2: This requires (2d-
2)p(+2) ~ 1. 

(ii) One direction yields ~N = 0, while the others yield ~N = 
+2: This requires p(O) + (2d- 3)p( +2) ~ 1. 

(iii) Two directions yield ~N = 0, while the others yield ~N = 
+2: This requires 2p(O) + (2d- 4)p( +2) ~ 1. 

(iv) One direction yields ~N = -2, while the others yield 
~N = +2: This requires p( -2) + (2d- 3)p( +2) ~ 1. 
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(i) (ii) 1 

(iii) ~ or (iv) n 
Figure 9.9: Proof of Lemma 9.6.1: relative orientations of three consecutive 
bonds. 

The inequality of (ii) is redundant, since it follows from those of (i) and 
(iii). Next, substituting (9.6.5) into the inequality of (iv) gives 

(z- 2 + (2d- 3))p(+2) $ 1, (9.6.8) 

which is stronger than the inequality of (i) since z $ Zc < 1. The inequality 
(9.6.8) is the same as (9.6.6), and the inequality of {iii) is the same as 
(9.6.7), so the lemma is proven. D 

Now that we have a continuum of possible parameter values for a valid 
BFACF algorithm, we want to find the "best" choices of p( +2), p( -2), 
and p(O) (for a given fixed z). Intuitively, we should prefer large values 
of these probabilities, so as to reduce the probability of "null transitions" 
(i.e. the quantity 1 - q described in Step 3 of the algorithm). Indeed, as 
we saw in Proposition 9.2.4 and the remark that follows it, increasing the 
off-diagonal elements of the transition matrix can only decrease the auto­
correlation times (or at worst leave them unchanged). In two dimensions, 
the situation is easy: the constraint (9.6. 7) simplifies to p(O) $ 1/2, so the 
three probabilities can be maximized simultaneously: 

p( +2) = z2 /(1 + z2), p( -2) = 1/(1 + z2), p(O) = 1/2. (9.6.9) 

In three or more dimensions, the constraint (9.6.7) forces a tradeoff be­
tween p(O) and p( +2). The standard choice is the point determined by the 
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intersection of the equalities corresponding to (9.6.6) and (9.6.7), which is 

z2 

p( +2) = 1 + (2d- 3)z2 ' 

1 
p(-2) = 1 + (2d- 3)z2 ' 

1 + z2 

p(O) = 2[1 + (2d- 3)z2) · (9.6.10) 

Observe that setting d = 2 in (9.6.10) gives the values of (9.6.9). Caracciolo, 
Pelissetto, and Sokal (1990) have proven rigorously that (9.6.10) is close to 
optimal in every dimension. 

Let us now turn to the problem of irreducibility. In two dimensions, 
the algorithm is irreducible for every x :f: 0 (see Theorem 9.7.2). In three 
dimensions, the algorithm is not irreducible if llxlloo = 1 (in particular, for 
the case of self-avoiding polygons). This is essentially because of knots: 
Consider the closed curve defined by the steps of the current walk of S(x) 
and by the line segment joining x to the origin. Each possible BFACF 
transformation may be viewed as the result of a continuous deformation of 
this closed curve during which it never crosses itself. In the terminology 
of topology, we say that the result of a BFACF transformation is ambient 
isotopic to the initial curve. Thus, for llxlloo = 1, the walks in any given 
ergodicity class of the BFACF algorithm must all correspond to the same 
knot type. The converse assertion, that the ergodicity classes correspond 
precisely to knot classes, has been proven by Janse van Rensburg and Whit­
tington (1991) for the special case of unrooted polygons by showing that 
"Reidemeister moves" on knots can be achieved using BFACF moves. When 
llxlloo ~ 2 in three dimensions, then the BFACF algorithm is irreducible 
(Janse van Rensburg (1992a)]. 

We conclude our discussion of the BFACF algorithm with a look at its 
autocorrelation times. These tend to be large, and it is not hard to identify 
one of the reasons: the "area" determined by a walk is a very slow mode. 
(The meaning of "area" is obvious in the cased= 2, llxlh = 1; in general, 
consider a fixed walk ( from 0 to x and let a(w) be the minimum area of 
a lattice surface whose boundary is the union of w and (.) The problem is 
that an N-step walk w can have a(w) of order N 2 ; since a single BFACF 
move can only change a by one unit, such a configuration can survive a 
very long time before being changed into something substantially different. 
In particular, we can apply Corollary 9.2.3 with A= 1 to obtain 

Tint,a ~ const.(N}411 (9.6.11) 

(under the usual assumption that the probability distribution of a, and 
in particular its standard deviation, scales like N 211 ). The slowness of a 
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to change for certain configurations was exploited further by Sokal and 
Thomas (1988), who proved the unsettling result that the exponential au­
tocorrelation time of the BFACF algorithm is infinite (see Theorem 9.7.4). 

9.6.2 Nonlocal methods 

In Section 9.6.1, we saw that the BFACF algorithm has rather long au­
tocorrelation times. Recalling that the pivot algorithm is more efficient 
than local algorithms in the free-endpoint ensemble (recall Section 9.4), it 
is clearly desirable to try to find large-scale transformations of self-avoiding 
walks that work in the fixed-endpoint ensemble. The transformations of 
the pivot algorithm of Section 9.4.3 do not leave both endpoints fixed, in 
general; however, other fixed-length transformations that use one or two 
"pivot sites" have been used with some success. 

Fixed-length transformations have been used in the ensemble SN(z) to 
study properties such as the radius of gyration or knottedness, particularly 
in the case of self-avoiding polygons (liz lit = 1). They have also been used 
in the variable-length ensemble S(.x) together with BFACF moves in the 
hope of obtaining a more efficient algorithm for this ensemble. 

We now describe fixed-length transformations which leave both end­
points fixed (see Figure 9.10). In these descriptions, w is always an N-step 
self-avoiding walk. 

1. Inversion: For integers k and I (0 $ k < I $ N), define the new walk w 
by 

w(i)={ w(~)+w(l)-w(k+l-i) ifk$~$1 
w( t) otherwise. 

Thus the subwalk (w(k), ... ,w(l)) is the inversion through the point (w(k)+ 
w(l))/2 of the points (w(l), ... ,w(k)). Another way to view inversion is 
by the sequence of bonds Aw(i) :: w(i) - w(i- 1). Then the bonds of 
w are Aw(l), Aw(2), ... , Aw(k), Aw(l), Aw(l- 1), ... , Aw(k + 2), Aw(k + 
1), A.w(l + 1), ... , Aw(N). 

2. Cyclic permutation: For an integer i (0 < i < N), define the new 
walk w by breaking w into two pieces at w( i) and then concatening the 
two pieces in the other order. Thus the bonds of w are Aw(i + 1), Aw(i + 
2) 1 ••• 1 Aw{N) 1 Aw(1) 1 Aw(2) 1 ••• 1 Aw(i). 

3. Lattice symmetries: Using the notation of Section 9.4.3, let g E gd be a 
lattice symmetry. Let k and I be integers (0 $ k <I$ N) and let .x = w(k). 
If U.z-(w(l)) = w(l), then we get a new walk w by applying this symmetry to 
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w(k) 
• 

[ ~ 1. 

w(l) 

w(N- i) 

L r p 2. -
w(i) 

·. w(k) 
• 

······ ... [ 3. -
w(l)·. 

w(k) 

4. ·_ ...• {[ 
w(l) 

Figure 9.10: Length-preserving fixed-endpoint transformations: 1. inver­
sion; 2. cyclic permutation; 3. reflection through line of slope -1; 4. revers­
ing reflection through line ·of slope +1, where y is the midpoint between 
w(k) and w(l). 
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the part of w between k and 1: 

-(') _ { Uz(w(i)) 
w t - w(i) 

ifk~.i~l 
otherwise. 

Observe that the two "pivot sites" w(k) and w(l) are both fixed by g21 • 
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4. Reversing lattice symmetries: Again, let g be a lattice symmetry and 
let k and I be integers (0 ~ k < I~ N). Now suppose that there exists a 
y such that gy(w(k)) = w(l) and gy(w(l)) = w(k). Then we can get a new 
walk w by applying this symmetry to the part of w between k and I, and 
reversing the order in which the sites appear in this part: 

w(i) = { gy(w(k + 1- i)) if k ~ ~ ~ I 
w(a) otherw1se. 

Dubins, Orlitsky, Reeds, and Shepp (1988) proposed (and proved the 
irreducibility of) an algorithm for unrooted polygons of fixed length in two 
dimensions. The DORS algorithm, as we shall call it, uses only inversion 
( 1 above) and reversing diagonal reflection ( 4 above). The latter move may 
be described in words as follows. Choose two sites on the polygon such 
that the line segment L joining them makes an angle of ±1r/4 with the 
coordinate directions. Break the polygon into two pieces by cutting it at 
the two chosen sites, and reflect one of the pieces through the line which is 
the perpendicular bisector of L. 

To prove that the DORS algorithm is irreducible, one shows first that 
inversions suffice to transform any polygon into a rectangle, and then that 
any rectangle may be transformed into any other rectangle by an inversion 
and a reversing reflection. The details of the proof are given in Section 9.7.4 
(Theorem 9.7.3). Notice that an inversion does not change the number of 
bonds parallel to the x1-axis, and so inversions alone do not suffice for 
ergodicity. 

For the general fixed-length fixed-endpoint ensemble SN(x) in two di­
mensions, the transformations of the DORS algorithm also provide an ir­
reducible algorithm, but the proof is more involved [Madras, Orlitsky, and 
Shepp {1990)]. In higher dimensions, these transformations are not enough 
because if the initial walk is contained in the hyperplane x1 = 0, say, then 
all of the resulting walks will lie in the same hyperplane. 

To ensure irreducibility in SN(x) in three or more dimensions, it suffices 
to use inversions (1 above), diagonal reflections (3 above), and reversing di­
agonal reflections (4 above). Here, a "diagonal reflection" is a reflection 
through a hyperplane which makes angles of ±1r/4 with two coordinate 
directions and angles of 0 with the remaining d- 2 directions. Irreducibil­
ity is proven by a lengthy argument that uses induction on the number of 
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dimensions. The proof in d dimensions, even for ll:cllt = 1, requires knowl­
edge of irreducibility of all fixed-length fixed-endpoint ensembles in d - 1 
dimensions. For details, see Madras et al. (1990). 

Caracciolo, Pelissetto, and Sokal (1990) introduced an algorithm for 
the variable-length fixed-endpoint ensemble S(:c), which uses inversion and 
cyclic permutation in addition to the usual BFACF transformations. This 
algorithm is irreducible in every dimension (Madras et al. (1990)). 

9.7 Proofs 

This section contains the longer proofs and calculations that have been 
deferred from the preceding sections of this chapter. The subsections may 
be read in any order. 

9. 7.1 Autocorrelation times 

In this section we shall provide several arguments which were postponed 
from our discussion of the spectral theory of autocorrelation times that was 
begun in Section 9.2.3. 

LetT be a self-adjoint contraction operator on l2(1r). Then the spectrum 
u(T) is a subset of the interval [-1, 1]. The Spectral Theorem (see for 
example Reed and Simon (1972)] tells us that there is a spectral measure E 
such that 

T = f .X dE( .X); 
1[-1,1] 

in fact, for every positive integer k we have 

T" = f .X" dE(.X). 
1[-1,1] 

Recall that for every Borel subset A of[-1, 1], E(A) is a projection operator; 
in particular, E(0) = 0 and E([-1, 1]) = I. Also, for every g in /2(1r) we 
define E9 by 

E9(A):: (g, E(A)g) = IIE(A)gll~ for Borel sets A C (-1, 1]. 

Then E9 is a positive measure and 

(g, T"g) = f .X" dE9 (.X) 
. 1[-1,1] 

(9.7.1) 

for every positive integer k. 
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We can use this representation to prove 

r(T) =sup lim sup 1(1, rn J)llln, 
J n-oo 

which is Equation (9.2.21). Let q(T) denote the right hand side of the 
above equation. Since r(T) = IITII, we clearly have r(T) ~ q(T). Thus it 
suffices to prove the reverse inequality. Choose t so that 0 < t < r(T) and 
let A[t] ={A: t < l..\1 ~ 1}. We claim that there is a gin /2(11') such that 
E9 (A[t]) > 0. If not, then for every g 

l(g, Tg)l ~ lltt ..\ dE9 (..\)I ~ tE9 ([-1, 1]) = tllull~, 
which contradicts t < r(T) = IITII, so the claim is true. For g as in the 
cl.aim, we have for any even n that 

(g, 'I"" g)~ f I..\ In dEg(..\) ~ tn Eg(A[t]), jA[tJ 
which implies that q(T) ~ t. Since this holds whenever 0 < t < r(T) we 
have q(T) ~ r(T), so Equation (9.2.21) is proven. 

We now return to our Markov chain, with T = P- II and E the corre­
sponding spectral measure. Let g be a function in 12 ( 11') and let h = (I- II)g 
be its projection onto the space of functions with mean 0. Since g and h 
differ by a constant, we know that C9 (k) = Ch(k) for every k ~ 0. By 
(9.2.22) and (9.7.1), 

C9(k) = Ch(k) = 1. >.kdEh(>.) for every k ~ 0 
[-1,1] 

(where we interpret 0° = 1). Using this in (9.2.10), along with the identity 

we obtain 
~ Ir- 1,11 (~) dEh(..\) 

Tint,g = Tint,h = f dE (..\) · 
J[-1,1] h 

(9.7.2) 

The support of Eh lies in [-1, 8], where 8 =sup u(P- II); together with 
(9.7.2) and the fact that (1 + ..\)/(1- ..\)is increasing for..\ in [-1, 1), this 
tells us that 

1 ( 1 + 8) 
Tjnt,g = Tint,h ~ 2 1 _ 8 · 
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By (9.2.26), this proves (9.2.27). 
We can now give a quick proof of Proposition 9.2.2 from Section 9.2.3, 

which says that Tint,g ~ ~(l+p9 (1))/(1-p9 (1)), where p9 (1) = C9 (1)/C9 (0). 

Proof of Proposition 9.2.2. Let g be a nonconstant function in 
l2('1r), and let h = (I - II)g. Then Eh is a finite measure that is not 
identically 0, and so Eh/ I dEh(>.) is a probability measure. The function 
).. ~--+ (1 + >.)/(1- >.) is convex, so Jensen's inequality implies that the right 
hand side of (9.7.2) is bounded below by H1 + Ph(1))/(1- Ph(1)), where 

(1) =I )..dEh(>.) = Ch(1) = Cg(l) 
Ph f dEh(>.) Ch(O) C9 (0). 

This proves the proposition. 0 

9.7.2 Local algorithms 

We shall begin by proving the two theorems about irreducibility of k-site 
algorithms from Section 9.4.1. Theorem 9.4.1 states that in two dimensions 
there are frozen (6r+ 17)-step walks for every r ~ k. Theorem 9.4.2 states 
that for d = 2 or 3 and for sufficiently large N, the cardinality of the largest 
ergodicity class of any k-site algorithm is less than e- 4 N CN for some a > 0. 
We give the proof only ford= 2, as discussed in Section 9.4.1. 

Proof of Theorem 9.4.1. Let d = 2. For each positive integer r, let 
tf;(r) be the (6r + 17)-step walk 

WESr+l W2W+2 E5Sr+2W2W+1 ESr 

(see Figure 9.5 in Section 9.4.1). We shall show that if r ~ k then tjJ(r) is 
frozen under k-step moves. 

Let N = 6r+ 17. Let B be the set of all sites of tj;(r), so that B consists of 
an (r + 2) x 6 rectangle of sites of Z2 • Consider removing any k contiguous 
sites tjJ(r)(I), ... , ,p(r)(J + k- 1) from ,p(r). We want to find k distinct sites 
at, ... , a~c such that: lai - ai+d = 1 for j = 1, ... , k- 1; each ai is in the 
set 

1) = (Z2 \B) U { tj;(r)(l), ... , tjJ(r)(I + k- 1)}; 

lat- tjJ(r)(I- 1)1 = 1 if I> 0; and la~c- tjJ(r)(I + k)l = 1 if I< N- k + 1. 
If the only choice for each a; is ,p(r)(J + j- 1), then we can conclude that 
,p(r) is indeed frozen. 

If I= 0, then the removed sites all lie on a vertical line (since r ~ k). 
Moreover, the only nearest neighbour of tj;(r)(k) that is in 1) is tj;(r)(k- 1), 
so we must take a1c to be this site. Similarly, the only choice for ai is 
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tj;(r)(j- 1) for each j, so no changes are possible when I= 0. Similarly, no 
changes are possible when I = N - k + 1. 

Suppose now that 0 < I < N - k + 1. The proof now is essentially 
by inspection. Look at all possibilities for tj;(r)(I- 1) and tj;(r)(I + k) (in 
particular, whether or not they are on the boundary of the box 8), and look 
at how to connect these points by a ( k + 1 )-step self-avoiding walk which 
only passes through points of V. On the one hand, if at least one of these 
two points are on the boundary of 8, then there is only one possible walk 
(in fact, k + 1 is the length of the shortest such walk that joins these points). 
On the other hand, if neither point is on the boundary of 8, then the only 
points of V that can be reached are precisely tf;(r)(I), ... , tj;(")(I + k- 1), 
and there is no choice but to take them in their correct order (since they lie 
on either one or two vertical lines, and since all k of them must be used). 

0 

Proof of Theorem 9.4.2. Let d = 2 and fix k. Let P be the (IOk +39)­
step pattern 

Nk+2W3Sk+lENkESk+lW3Nk+3E9Sk+3W3Nk+lESkENk+lW3Sk+2 

(see Figure 9.11), and let L = 10k + 39. An argument similar to the proof 
of Theorem 9.4.1 shows that if P occurs at the m-th step of a given self­
avoiding walk w, then P must occur at the m-th step of every walk that is 
in the same ergodicity class as w. 

. .. . . . .l 
k 

- ~ ..... J 
Figure 9.11: The pattern P from the proof of Theorem 9.4.2. 

For every integer t 2: 0, and for every sequence 0 ~ m 1 < m 2 < ... < 
m1 < N, let £N(mt, m2, ... , mt) denote the set of walks in SN such that P 
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occurs at the m1-th step of w for every j = 1, ... , t and nowhere else in w. 
(Fort = 0, this is the set of walks on which P does not occur.) Notice that 
successive occurrences of P in w cannot overlap, and so we always have 
mi -mi-1 > L whenever £N(mt, m2, ... , mt) is nonempty. For each t;::: 0, 
let 

M(t, k, N) = max{I£N(m1, m2, ... , mt)l : 0 $ m1 < ... < m, < N}. 
(9.7.3) 

By the conclusion of the preceding paragraph, each ergodic class is con­
tained in some tN(mt, m2, ... , mt), and so 

CLECk N < maxM(t, k, N). 
' - t~O 

(9. 7 .4) 

Since P is a proper internal pattern, Kesten's Pattern Theorem 7.2.3 
tells us that there exists an a > 0 such that P must occur at least aN times 
on "almost all" N -step walks, i.e. 

limsup(cN[aN, P])11N < J.t· 
N-oo 

(9.7.5) 

Therefore 

[ ] 
1/N 

limsup max M(t,k,N) <J.t. 
N-oo 0$t$aN 

(9.7.6) 

Next, we claim that for any t ;::: 0 and any sequence 0 $ m1 < ... < 
m1 <N, 

(9.7.7) 

To see this, define the function I from £N(m1,m2, .. . ,mt) to SN-t(L-1) 

which removes each occurrence of P and replaces it by a single bond. Since 
I is one-to-one, the bound (9. 7. 7) follows. Therefore 

limsup [maxM(t,k,N)] 1
/N $ 

N-oo t?:_aN 
lim sup [max CN-t(L-1)] 

1
/N 

N-oo t?:.aN 

= 1-'1-a(L-1) < J.t. (9.7.8) 

The theorem now follows from (9.7.8) and (9.7.6). 0 

9.7.3 The pivot algorithm 

We begin with a proof of the irreducibility of the pivot algorithm and some 
of its variants, which is asserted in Theorem 9.4.4. More precisely, this 
theorem says that any walk in SN can be transformed into a straight walk 
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by a sequence of at most 2N - 1 pivots, each of which is either a reflection 
through a coordinate hyperplane or a rotation by ±71'/2. 
Proof of Theorem 9.4.4. We begin with some notation. For each 
N-step self-avoiding walk w and for each j = 1, ... , d, let 

m}(w) = min{wj(k): k = 0, 1, ... , N} (9.7.9) 

and 
mJ(w) = max{wj(k) : k = 0, 1, ... , N} (9.7.10) 

denote the minimum and maximum values of the j-th coordinate of the 
sites of w, and let 

Mj(w) = mJ(w)- mj(w) (9.7.11) 

denote the extension of win the j-th coordinate direction. Let B(w) denote 
the smallest rectangular box containing w, i.e. 

B(w) = {x E zd: mj (w) $X $ mJ(w) for all j = 1, ... 'd}, (9.7.12) 

and let 
D(w) = Mt(w) + · · · + Ma(w) (9.7.13) 

denote the /1 diameter of B(w). A face of B(w) is any set of the form 
{x E B(w) : Xj = m~(w)} for some i = 1, 2 and some j = 1, ... , d. Finally, 
let 

1 
A(w) = l{k: 0 < k <Nand w(k) = 2[w(k- 1) + w(k + 1)]}1 (9.7.14) 

denote the number of straight internal angles of w. 

The strategy of the proof is the following. Observe that for every N-step 
self-avoiding walk w, we have 0 $ D(w) $ Nand 0 $ A(w) $ N- 1, and 
moreover D(w)+A(w) = 2N -1 if and only ifw is a straight walk. It suffices 
to show that if w is not straight, then there exists another self-avoiding 
walk w such that D(w) + A(w) > D(w) + A(w) and w can be obtained 
from w by either a single reflection through a coordinate hyperplane or 
a single rotation by ±71'/2. Specifically, we shall show that if there is a 
face of B(w) which contains neither of the endpoints w(O) nor w(N), then 
a reflection through that face will increase D but not change A; and if no 
such face exists, then there exists a rotation that increases A by one without 
decreasing D. 

We now give the details. Consider an arbitrary N-step self-avoiding 
walk w that is not straight. We shall consider two cases separately. Since 
w is fixed, we shall write 8 for B(w) and m) for m)(w). 
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Case I. Suppose that there exists an i E {1, 2} and a j E {1, ... , d} such 
that neither w(O) nor w(N) lies in the face {z E 8 : z; = m} }. Let t be 
the smallest index such that w(t) lies in this face. Now let w be the walk 
obtained by reflecting w(t + 1), ... ,w(N) through the hyperplane z; = m}: 
that is, w(k) = w(k) for each k::;; t, while the coordinates of w(k) fork> t 
are given by 

N (k) _ { 2m} - w;(k) if I= j w, - w,(k) ifl #: j. (9.7.15) 

(See Figure 9.12.) It is not hard to see that w is self-avoiding, and that 

: w(t) 

Ll ~I --
w(O) w(O) 

: W(N) w(N): 

Figure 9.12: Case I of the proof of Theorem 9.4.4: reflection through the 
hyperplane denoted by the dotted line. 

A(w) = A(w) [notice that both wand w have right angles at w(t)]. Let us 
now show that D(w) > D(w). Writing M;(w[r, s]) to denote the extension 
of the subwalk (w(r), ... ,w(s)) in the j-th coordinate direction, we see that 

M;(w) = max{M;(w[O, t]), M;(w[t, N])} (9.7.16) 

and 
(9.7.17) 

Since w;(O) # m} and w;(N) # m}, both M;(w[O,t]) and M;(w[t,N]) are 
strictly positive, and so we conclude that M;(w) > M;(w). Since M,(w) = 
M,(w) whenever I # k, this proves that D(w) > D(w), and hence that 
D(w) + A(w) > D(w) + A(w). This completes the proof for Case I. 

Case II. Suppose that w is not covered by Case I; that is, suppose 
that every face of 8 contains at least one endpoint. This means that w(O) 
and w(N) are in diagonally opposite corners of the box 8. Since w is not 
straight, let q be the largest index such that w has a right angle at w(q): 

1 
q = max{k: 0 < k <Nand w(k) # 2[w(k- 1) +w(k + 1)]}. (9.7.18) 
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Since w(N) is in a corner of B, we will be able to perform a ±7r /2 rotation 
to straighten out the angle at w(q). To be precise: the sites w(q), ... ,w(N) 
lie on a straight line perpendicular to the line segment joining w(q- 1) to 
w(q). Let a be the coordinate such that wo:(q- 1) f:. wo:(q), and let {3 be 
the coordinate such that wp(q) f:. wp(N). Observe that a f:. {3. Now we 
can define a new walk w by choosing w(q) as a pivot site and performing 
a rotation in the (xo:, xp)-plane to get a straight angle at w(q) = w(q). 
(See Figure 9.13.) The resulting walk has w(q- 1),w(q), ... ,w(N) all 

w(N) 

-
w(q) 

w(q) w(N) 

Figure 9.13: Case II of the proofofTheorem 9.4.4: rotation by -Tr/2. Also 
shown are the coordinate directions Xo: and xp. 

on a straight line. Since w(O), ... , w( q - 1) are on the opposite side of the 
hyperplane Xo: = wo:(q) from w(q + 1), ... ,w(N), we see that w is self­
avoiding. We also see that 

Mo:(w) = Mo:(w) + N- q, (9.7.19) 

that 
(9.7.20) 

and that Mi(w) = Mj(w) for all j f:. a,/3. Therefore D(w);::: D(w). Also, 
we clearly have A(w) = A(w) + 1, and hence that D(w) + A(w) > D(w) + 
A(w). This completes the proof for Case II, and we are done. D 

Next we consider the pivot algorithm applied to the ordinary random 
walk, without ever checking for intersections. To be precise, the state space 
of the algorithm is the set S'Jv of all (2d)N ordinary N-step walks starting 
at the origin, and the Generic Fixed-Length Dynamic Algorithm (from the 
beginning of Section 9.4) is implemented using the usual Step 2 for the 
pivot algorithm as described in Section 9.4.3, but in Step 3 wlt+t] is always 
set equal tow. For a given real-valued function g on S'Jv, let r;rp,g and T/'nt,g 



354 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS 

respectively denote the exponential and integrated autocorrelation times of 
g with respect to this algorithm [as defined in (9.2.12) and (9.2.10)]. 

Proposition 9.7.1 For each N, define the function r 2 = r~ on the set 
S~ by r~(w) = lw(N)I2, the squared end-to-end distance of wE S~. Then 
as N-+ oo 

(9.7.21) 

and 
T;~t,r2,.... 2logN. (9.7.22) 

Proof. Fix N. Using the notation dwl1l(i) = wl1l(i) -wl1l(i -1) to denote 

the i-th step of the walk wl'l, define A~~] to be the dot product of the i-th 
and j-th steps of wl11: 

for 1 ::5 i, j ::5 N. Then by expanding the square we have 

r2(wl11) = ji:,.N_-t dwl1l(i)l
2 

= N + 2 I: A~~~. 
ISi<iSN 

(9.7.23) 

In equilibrium, wltl is uniformly distributed on S~, and so the N steps of 
wltJ are independent and uniformly distributed on the set of the 2d (positive 
and negative) unit vectors of zd. By symmetry we have 

E(A~~J) = 0 whenever i #: j, (9.7.24) 

and also 

E[(A!~l)2] = Pr{IA~~~~ = 1} = ~- (9.7.25) 

We also have that if t ~ 0, i < j, and k <I, then 

E(A~~~A~}) = 0 unless i = k and j =I. (9.7.26) 

Consider the first iteration of the pivot algorithm with initial walk wl01. 
For a given k between 1 and N, a necessary condition for the direction of 
the k-th step to change is that the chosen pivot site I is less than k. In 
fact, if G is the chosen symmetry, then 

[t] · { dwl0l(k) 
dw (k) = G (dwM(k)) 

if I~ k 
if I< k. 

(9.7.27) 
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Therefore if I is not in the interval [i, j), then AW = A~~l. Also, since G is 
chosen uniformly at random from gd, the vector G (Awl0l(k)) is uniformly 
distributed on the set of unit vectors of zd; moreover, it is independent of 
the entire walk wl01. In particular, we see that if I is in the interval [i,j), 
then AW is independent of A!~l. 

Let Q :: Q;,j,t be the event that at least one of the pivot sites of the 
first t iterations is in the interval [i, j). Then as in the preceding paragraph 
we see that conditioned on the occurrence of Q the quantities Aljl and A~~] 
are independent; hence by (9.7.24), 

E(A~~~A~t)IQ) = 0 
1) I) ' 

(9.7.28) 

lfQ does not occur, then A~jl = A~~l, and hence by (9.7.25) 

(9.7.29) 

Since the probability of Qc is [1- (j- i)/ N]1, we see from (9.7.28), (9.7.29) 
and (9.7.24) that 

Cov(A(~l A(t)) = ~ (1 - j- i) 1 for i < j and t ;::: 0. 
'1' IJ d N (9.7.30) 

Using (9.7.23), (9.7.26) and (9.7.30), we see that for every t;::: 0 

Cr2(t):: Cov(r2 (wl01), r 2(wl11)) = 4 E Cov(A~~I, Aljl) 
l~i<j~N 

4 N-1 t 

= df.(N-m)(t-~) 
N-1 

= 4dN " (1- mN)t+l. L...J (9.7.31) 
m=l 

Them= 1 term in (9.7.31) is dominant; in fact, 

4N (1- .!_)t+t < C 2(t) < 4N(N -1) (1- .!_)t+t 
d N _r- d N' 

and so the definition of exponential autocorrelation time in (9.2.12) implies 
that 

-1 
r;:r:p,r2 = log (l _ -Jt) = N + 0(1), (9.7.32) 
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which proves (9.7.21). Next, (9.7.31) tells us that C,.2(0) = 2N(N- 1)/d, 
and putting this and (9.7.31) into the definition of integrated autocorrela­
tion time [recall (9.2.10)] yields 

1 d 00 4N N-l m t+l 

= 2 + 2N(N- 1) t;t d l-; ( l- N) 

1 2 N-1 (1- N) 
= 2+N-1E m 

m:l 1if 

= -+- NE--<N-1) 1 2 [ N-l 1 l 
2 N -1 m=l m 

= 2logN + 0(1), (9.7.33) 

which proves (9.7.22). 0 

9. 7.4 Fixed-endpoint methods 

In this section we shall prove three results. Theorems 9.7.2 and 9.7.3 prove 
the irreducibility of the BFACF and DORS algorithms, respectively, in two 
dimensions. Finally, Theorem 9.7.4 proves that the exponential autocorre­
lation time of the BFACF algorithm is infinite. 

We first establish some terminology that will be needed for the proofs of 
the first two theorems. Every self-avoiding polygon 1' in Z2 forms a simple 
closed curve, and hence has an inside and an outside (in the sense of the 
Jordan curve theorem). If vis a site of 1', then we say that vis convex, 
concave, or straight according as to whether the inside angle of 1' at v is 
90°, 270°, or 180°. 

Theorem 9. 7.2 For every nonzero endpoint :1: in Z2 , the BFA CF algo­
rithm is irreducible on S(:~:). 

Proof. We begin by looking at a special case in which the endpoint is 
on the :l:t·axis. For every integer L > 0, let p(L) denote the straight L­
step walk from (0, 0) to (L, 0). For N > L, let Sh((L, 0)) be the set of 
N -step self-avoiding walks beginning at (0, 0) and ending at ( L, 0) such 
that none of the sites (1, 0), (2, 0), ... , (L- 1, 0) is occupied by a site of w. 
We shall henceforth assume implicitly that N and L have the same parity, 
since otherwise Sf,((L, 0)) is empty. Observe that Sf,((L, 0)) C SN((L, 0)) 
whenever N > L > 0, with equality if L = 1. Every walk w in S'f.r((L, 0)) 
has an associated (N +L)-step self-avoiding polygon 1' = 'P(w) whose bonds 
are the N bonds of w together with the L bonds of p(L). 
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Our first goal is to prove the following: 

Claim A: Suppose that N > L > 0 and w is in S;.,((L, 0)). Then it is 
possible to transform w into the straight walk p(L) by BFACF moves in 
such a way that none of the intermediate walks obtained in this process has 
a site lying outside of (the original) 'P(w). 
Claim A implies irreducibility in the case ll.rlh = 1 (upon taking L = 1), 
and the approach that we take to prove it will also be used in the proof for 
general .r. 

To prove Claim A, we need some additional terminology. If w is in 
S,V((L, 0)), then we say that the subwalk w[i,j):: (w(i), ... ,w(j)) {0 :5 i < 
j :5 N) is a U-turn of w if j- i ~ 3, w[i + 1, j -1] lies on a straight line, and 
the sites w( i + 1) and w(j - 1) are both convex sites of 'P(w ). We say that 
w(k) is an obstruction of the U-turn w[i,j] if w(k) is on the line segment 
whose endpoints are w( i) and w(j), and k :f. i, j. We say that the U-turn 
w[i, j] is unobstructed if it has no obstructions. Observe that if w[i, j] is 

w(i) 

- - -
w(j) 

Figure 9.14: How the BFACF algorithm can use the presence of an unob­
structed U-turn to shorten the length of a walk by 2. 

an unobstructed U-turn of w, then w can be transformed into a walk w' of 
length N- 2 using j- i- 2 BFACF moves as in Figure 9.14. Moreover, if 
N- 2 = L then w' = p(L), while if N- 2 > L then w' E S,V_ 2((L,O)). So 
Claim A will be proven if we can prove the following: 

Claim B: For every N > L > 0, every walk in S;.,((L, 0)) contains an 
unobstructed U-turn. 

We now prove Claim B by induction on N. 
Let P(N) be the assertion that whenever L satisfies N > L > 0, every 

walk in Siv((L, 0)) contains an unobstructed U-turn. To start the induction, 
we note that P(3) and P( 4) are clearly true. Let N 2:: 5, and assume that 
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P(n) is true for every n < N. Let w be an arbitrary walk in S'f..r((L, 0)) 
for some L, with associated polygon P. It is not hard to see that w always 
contains aU-turn w[i, j). (First observe that for every self-avoiding polygon, 
the number of convex sites exceeds the number of concave sites by exactly 
4, because the sum of the signed inside angles must be exactly +360°. 
Therefore there must exist integers a and b with 0 < a < b < N such that 
w(a) and w(b) are both convex sites of P and such that if b > a+ 1 then 
the intervening sites w( a+ 1 ), ... , w(b- 1) are all straight sites of P. Then 
w[a - 1, b + 1] is a U-turn.) If it is unobstructed, then we are done, so 
assume that it has an obstruction w(k). Then there exists an 1 satisfying 
i + 1 < 1 < j- 1 such that llw(k)- w(l)llt = 1. Suppose that 0 ~ k < i (the 
same argument will work if j < k $ N). Let ( denote the subwalk w[k, 1); 
since ( has endpoints that are nearest neighbours, we can let Q denote its 
associated polygon. Observe that the bond (w(k),w(/)) lies inside P, since 
we know that w(i) and w(j) are convex sites of P. Therefore the inside 
of Q is a subset of the inside of P, and hence all the sites of w that are 
not part of ( must lie outside of Q. The inductive assumption tells us that 
( contains an unobstructed U-turn, and the observation of the preceding 
sentence guarantees that this must also be an unobstructed U-turn for w. 
Therefore P( N) is true. 

We have now proven Claims B and A. To complete the proof of the 
theorem, consider the case of a general site x. Now the terms ((inside" 
and "outside" are not meaningful, so we first need to find something to 
use in the place of U-turns. Let w be an arbitrary walk in S(x), and let 
N = lwl. We say that the subwalk w[i,j) (0 ~ i < j $ N) is a C-turn of 
w if j- i ~ 3, w[i + 1, j - 1) lies on a straight line that is perpendicular to 
the steps Aw(i + 1) and Aw(j), and Aw(i + 1) = -Aw(j). (Observe that 
in the case llxlh = 1, every U-turn is a C-turn.) We define obstruction for 
C-turns exactly as we did for U-turns. The walk w has no C-turns if and 
only if it has minimal length, i.e. N = l!x!lt, and it is easy to see that any 
minimal length walk can be transformed into any other by BFACF moves. 
So suppose N > llxllt; to prove the theorem, we need to show that it is 
always possible to reduce the length of w using BFACF moves. Analogously 
to the case llxllt = 1, it suffices to prove that w must have a C-turn with 
no obstructions. 

Let w[I, J) be a smallest C-turn of w (i.e., satisfying J - I ~ j - i 
for every other C-turn w[i, j]). If w[I, J) has no obstructions, then we 
are done, so assume w[I, J] has one or more obstructions. It is not hard 
to see that one of these obstructions must be an endpoint of w (because 
otherwise the obstructions would have to be part of a C-turn that is smaller 
than w[I, J], which contradicts our choice of I and J). Without loss of 
generality, assume that w(O) is an obstruction of w[I, J) [the same argument 
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will work for w(N)]. Let M be the (unique) integer such that I+ 1 < 
M < J- 1 and llw(O)- w(M)Ih = 1. Let ( denote the subwalk w[O, M]; 
since ( has endpoints that are nearest neighbours, we can let Q denote its 
associated polygon. There are two eases that could occur: either the sites 
w(M + 1), ... ,w(N) all lie outside Q, or else they all lie inside Q (there are 
no other possibilities because the subwalks w[O, M] and w[M + 1, N] cannot 
intersect). We shall consider these two eases in turn. 

Case I: The sites w(M + 1), ... ,w(N) all lie outside Q. By Claim B, 
we see that ( has an unobstructed U-turn; since the sites of w that are not 
part of ( all lie outside Q, this must be an unobstructed C-turn of w. 

Case II: The sites w(M + 1), ... ,w(N) all lie inside Q. Let u = 6.w(N) 
be the direction of the last step of w. Let 

L =min{!> 0: w(N) + lu is a site of w} 

(note that L < oo because w(N) lies inside Q). Let t be the integer such 
that w(t) = w(N)+Lu. Observe that the subwalk w[t, N] is (the translation 
and rotation/reflection of) a walk in SN--t((L,O)). Let 'R be the polygon 
consisting of the bonds of w[t, N] and the straight line segment joining w(N) 
to w(t). Then the inside of n is a subset of the insiae of Q. In particular, 
the sites w(O), ... , w(t - 1) all lie outside 'R. Now Claim B shows that the 
subwalk w[t, N] has an unobstructed U-turn, and since the rest of w lies 
outside n, this must also be an unobstructed C-turn of the entire walk w. 
This proves the theorem in Case II. D 

Recall that the state space of the DORS algorithm is the set of equiva­
lence classes of N-step self-avoiding polygons in Z2 (Definition 3.2.2). Re­
call also that these polygons are <~unrooted", as opposed to the set of poly­
gons associated with SN-I(e) (where llellt = 1) which are <~rooted" by the 
bond (0, e) which can never be moved. 

Theorem 9. 7.3 For every even N, the DORS algorithm is irreducible for 
unrooted N -step polygons in two dimensions. In fact, if Ql and Q2 are 
N -step polygons in Z2, then there is a sequence of at most 2N - 2 trans­
formations that transforms Ql into Q2. 

Proof. Let c(P) denote the total number of convex and concave sites on 
the polygon P. A rectangle is a polygon P that has c(P) = 4. The theorem 
is an immediate consequence of the following two facts. 

A. Any polygon P that is not a rectangle can be transformed 
into some other polygon Q having c( Q) = c(P) - 2 using at 
most two transformations. 

B. Any rectangle can be transformed into any other rectangle 
using one inversion and one reversing diagonal reflection. 
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.. . . . . .. 
-

Figure 9.15: Proof of Theorem 9.7.3: a polygon with a supporting chord 
that is not parallel to a coordinate axis (left). Using the chord's endpoints 
as pivot sites for an inversion decreases the number of right angles by 2 
(right). 

-

Figure 9.16: Proof of Theorem 9.7.3: a polygon whose two supporting 
chords are each parallel to a coordinate axis (left). Using one chord's end­
points as pivot sites for an inversion yields a polygon with a diagonal sup­
porting chord (right). 
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We shall prove A first. A line segment is said to be a supporting chord of 
1' if its endpoints are both on,'P, its interior points are all on the outside of 
1', and it is contained in the boundary of the convex hull of 1'. (See Figure 
9.15.) Observe that any polygon that is not a rectangle ha.s a. supporting 
chord. 

Suppose that a polygon 1' ha.s a. supporting chord that is not parallel 
to either coordinate axis. It is not hard to see that performing a.n inversion 
on 1' with pivot sites chosen to be the endpoints of this supporting chord 
will yield a self-avoiding polygon Q with c(Q) = c('P}- 2 (see Figure 9.15}. 
Next, suppose that 1' is not a rectangle but each of its supporting chords 
is parallel to a. coordinate axis (see Figure 9.16). Performing a.n inversion 
on 1' with pivot sites chosen to be the endpoints of some supporting chord 
will yield a self-avoiding polygon 1'' with c('P') = c('P), and it is not hard 
to see that this 1'' will have a supporting chord that is not parallel to either 
coordinate axis. Thus we have proven A. 

Finally we turn to fact B, whose proof is illustrated in Figure 9.17. Let 

(a, b) 
r--o---'-1 

-d--+ 

(c,d) 
__.... __.... 

I 
(0,0) (0, 0) 

Figure 9.17: The DORS algorithm transforming one rectangle into another, 
using an inversion followed by a reversing diagonal reflection. The pivot 
sites are denoted by circles. 

R1 and 'R2 be two N-step rectangles. Assume that the corners of R1 are 
at (0, 0), (a, 0}, (a, b), and (0, b), while the corners of'R2 are at (0, 0), (c, 0}, 
( c, d), and (0, d), where a, b, c, and d are all positive and a + b = c + d. 
Without loss of generality, we can assume that c > a ~ d. Performing 
an inversion on 'R1 with pivot sites (0, d) and (a - d, b) gives a polygon 
u' which in turn can be transformed into n2 by performing a reversing 
diagonal reflection with pivot sites (a, 0) and (a-d, d). 0 

Theorem 9.7.4 The exponential autocorrelation time Terp for the BFACF 
algorithm is infinite {for every x and z ). 
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Proof. Fix x and z. Let ¢1 and 1/J be two points (walks) in the state space, 
and letT[¢, 1/1] be the smallest value of n such that pn( ¢1,1/1) > 0; i.e. T[<P, 1/1] 
is the smallest time in which it is possible to get from ¢1 to 1/1. Let I~ and 
I.p be the indicator functions of the singletons { ¢1} and { 1/1}. Consider any 
k < T[¢1, 1/J]. On the one hand, using the inner product defined in {9.2.14), 

(I~, (PI:- II)I.;.) = P"(¢1, tP)Tr(f/1) -Tr(f/J)Tr(t/J) = -Tr(f/J)Tr(t/J). 

On the other hand, using (9.2.23) and (9.2.24), we have 

1(1~, (P"- IT)I.p)l :$ III~II2IIPk- llll III.pll2 = (Tr(f/J)Tr(t/1))112 exp[-k/T<!zp]· 

Combining the above two observations, rearranging and taking k = T[¢1, t/o]-
1 gives 

2(T[¢, t/1]- 1) 
Tezp 2: - log( 7r( ¢1 )7r( tP)) . (9.7.34) 

This inequality says that if there are two states that are far apart, but not 
too unlikely, then Tezp must be large. 

To apply (9.7.34), consider N >> llxlh· Let ¢1 be a shortest walk from 
0 to x, and let 1/1 = .,pCNJ be a walk of length N which does not intersect ¢1 
and whose shape is approximately square; this means that the area of the 
smallest surface whose boundary is the union of ¢1 and .,p£NJ is approximately 
N 2 /16. Since the BFACF algorithm only modifies a walk by adding and 
removing bonds around a single lattice square, this surface area cannot 
change by more than 1 in a single iteration. Therefore T[¢, tJ~[N)] ~ N 2 • 

Also, 1r(,P) = llxlhzllzlhjE:(z,x) and 7r(.,PCN1) = NzN/E:(z,x), so the right 
side of (9.7.34) behaves like a constant times N as N - oo. Therefote, 
since N can be arbitrarily large, we must have Tezp = +oo. D 

9.8 Notes 

Section 9.1. One of the best general overviews of Monte Carlo methods is 
Hammersley and Handscomb (1964), whose age has done remarkably little 
to diminish its appeal. Bratley, Fox and Schrage (1987) is a more recent 
general reference to various theoretical and practical issues in simulation 
and Monte Carlo. Binder and Heermann {1988) is a useful step-by-step 
guide to the practical aspects of Monte Carlo experiments in statistical 
mechanics. Kremer and Binder (1988) is a detailed survey of Monte Carlo 
methods for polymers in general. Sokal (1991) is a review on the problem 
of critical slowing-down. 

General references for· the theory and applications of Markov chains 
include Feller (1968), Karlin and Taylor (1975), and Nummelin (1984). 
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These authors and others usually say that a Markov chain is ergodic if it is 
irreducible, positive recurrent, and aperiodic. Most chains arising in Monte 
Carlo are positive recurrent and aperiodic, and for these chains questions 
of ergodicity are equivalent to questions of irreducibility. Although the 
Monte Carlo literature tends to use the term "ergodicity" when discussing 
irreducibility, we prefer the term "irreducibility" in this book to emphasize 
the specific nature of these problems. 

The classic reference for hash tables is Knuth (1973), which is still highly 
recommended. Hashing is also treated in most computer science books on 
data structures. Early uses of hash tables for the self-avoiding walk problem 
are Gans (1965) and Jurs and Reissner (1971); a description is also given 
in Madras and Sakal (1988). 

Section 9.2. Two general references on statistics are Silvey (1970) and 
Cox and Hinkley (1974). References on time series analysis include Priest­
ley (1981) and Brockwell and Davis (1987). Bratley, Fox, and Schrage 
(1987) discuss time series analysis and other statistical issues in the specific 
context of simulation. Geyer (1992) and Gelman and Rubin (1992) present 
two contrasting views on problems of statistical inference for Markov chain 
simulations. 

Proposition 9.2.2, Corollary 9.2.3, and Proposition 9.2.4 are from Ap­
pendix A of Caracciolo, Pelissetto, and Sokal (1990). The proof of Equation 
(9.2.21) in Section 9.7.1 is from Sokal and Thomas (1989), who actually 
prove a stronger theorem. The proof of Equation (9.2.27) is from Sokal 
(1989). The exposition of Section 9.2.3 is largely based upon the preceding 
three papers. 

Section 9.3. Strides and biased sampling are reviewed in Hammersley 
and Handscomb (1964). Kremer and Binder (1988) includes a more recent 
review of biased sampling, with many references. The dimerization method 
is due to Suzuki (1968) and Alexandrowicz (1969). The derivation of (9.3.3) 
is from Madras and Sokal (1988). 

Section 9.4. Many local algorithms have appeared in the literature; see 
Madras and Sokal (1987) and Kremer and Binder {1988) for some refer­
ences. The failure of irreducibility for local algorithms was noticed early, 
by Heilmann (1968) (who observed that knots could cause problems) and 
by Verdier (1969) (who noted the existence of three-dimensional frozen con­
figurations analogous to Figure 9.2). Theorems 9.4.1 and 9.4.2, as well as 
Proposition 9.4.3, are due to Madras and Sokal (1987); as explained there, 
the methods also allow one to prove Theorem 9.4.1 in d = 3. The proof of 
(9.4.1) under the stated assumption is due to Caracciolo et al. (1990). 
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Wall and Mandel {1975) commented that the probability of frozen con­
figurations for the slithering snake algorithm did not tend to 0, but expected 
it to be negligibly small for practical purposes. The rigorous proof of the 
former assertion [Equation {9.4.2)] is due to Madras {1988). 

Reiter (1990) proved irreducibility for a fixed-length algorithm in the 
spirit of the slithering snake: in this algorithm, a single bond in the walk 
can be replaced by a 3-bond U while simultaneously removing two bonds 
from the ends (and of course the reverse of this move can also be done). 

The pivot algorithm has been independently rediscovered by many dif­
ferent authors since Lal {1969): Curro (1974), Olaj and Pelinka (1976), and 
MacDonald et al. (1985). Continuum analogues have been used by Stell­
man and Ga.ns (1972) and Freire and Horta (1976). Except 'where cited 
otherwise, the results and discussion of Section 9.4.3 are from Madras and 
Sokal (1988). 

Section 9.5. The rigorous proof of (9.5.3) appeared in Caracciolo et al. 
(1990). 

Section 9.6. The BFACF algorithm is due to Berg and Foerster (1981), 
Aragao de Carvalho, Caracciolo and Frohlich {1983), and Aragao de Car­
valho and Caracciolo {1983); some ambiguities in these papers about the 
details of the algorithm were clarified in Caracciolo et a/. (1990), whose 
presentation we follow here. The irreducibility of the BFACF algorithm 
in two dimensions (Theorem 9.7.2) is due to Madras (1986, unpublished). 
The bound (9.6.11) is due to Caracciolo et al. (1990). 

Janse van Rensburg, Whittington, and Madras (1990) described a non­
local fixed-length algorithm for polygons on the face-centred cubic lattice, 
and proved that it is irreducible. 
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