
N. Madras and G. Slade, The Self-Avoiding Walk,
Modern Birkhäuser Classics, DOI 10.1007/978-1-4614-6025-1_9,
© Springer Science+Business Media New York 2013

Chapter 9

Analysis of Monte Carlo
methods

9.1 Fundamentals and basic examples

Monte Carlo methods are useful for getting statistical estimates on the
values of the connective constant, critical exponents, and other quantities
related to self-avoiding walks. Essentially, a Monte Carlo simulation is a
computer experiment which observes random versions of a particular sys­
tem. After we obtain enough data, we can use statistical techniques to get
estimates and confidence intervals for the desired quantities.

For definiteness, consider the exponent 11 [defined in (1.1.5)], which mea­
sures the length scale of self-avoiding walks. There are several unresolved
questions about v, such as: Are the conjectured values (1.1.12) and (1.1.14)
correct in 2, 3, and 4 dimensions? In particular, is the Flory exponent 3/5
too large in three dimensions? Do the hyperscaling relations (1.4.14) and
(1.4.24) hold? In two dimensions, does the average area enclosed by an N­
step self-avoiding polygon scale like N 2v? Good numerical estimates can
give evidence in support of (or against) these and other conjectures. As we
saw in Section 2.3, such evidence can also be relevant for analogous con­
jectures in other models; for example, if hyperscaling fails for self-avoiding
walks in three dimensions, then it is likely to fail for other N-vector models
as well.

To get a taste of some of the numerical values that various researchers
have obtained, let us focus on the value of 11 in three dimensions. An
early study by Rosenbluth and Rosenbluth (1955) used biased sampling
(see Section 9.3.1) to generate walks of up to 64 steps, obtaining an esti-

281

282 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

mate of 0.61 for v. Stellman and Gans (1972) generated walks of up to
298 steps using a continuum version of the pivot algorithm (see Sectiqn
9.4.3) to obtain an estimate of 0.610 ± 0.008 for v (this and the following
are 95% confidence intervals for v; see Section 9.2.1). Grishman (1973)
generated walks of length 500 using a combination of the dimerization and
enrichment algorithms (see Sections 9.3.2 and 9.3.3), producing an esti­
mate of 0.602 ± 0.009. However, these early results, which used relatively
short walks, are biased by significant systematic errors due to unincluded
correction-to-scaling terms (see Section 9.2.1). Rapaport (1985) generated
walks of length up to 2400 using a combination of dimerization and enrich­
ment, and estimated 0.592±0.004. Madras and Sokal (1988) used the pivot
algorithm to generate walks of up to 3000 steps, and obtained 0.592±0.003.
A very recent study (Li and Sokal, private communication), which uses the
pivot algorithm to generate walks of up to 80,000 steps, indicates that the
true value of v is even lower: the preliminary estimate is 0.5883 ± 0.0013,
which is in remarkable agreement with the field theoretic renormalization
group prediction of0.5880±0.0015obtained by Le Guillou and Zinn-Justin
(1989). This brief history illustrates that correction-to-scaling terms are a
serious danger, and that exponent estimates based on short walks must be
interpreted with caution.

There are good reasons why Monte Carlo is "easier" for self-avoiding
walks than for spin systems. First, there is only one limit to worry about,
namely the length of the walk going to infinity. In a spin system, one has
to take a limit going to a critical temperature as well as a thermodynamic
limit of a finite lattice increasing to zd. The latter is absent for self-avoiding
walks, which can be simulated without any errors arising from the finite
volume of the lattice. Secondly, spin system simulations typically exhibit
"critical slowing-down": as the correlation length e diverges, you must look
at finite lattices of at least ed sites to learn anything, and you must look at
each site before you get a new data point. This is not an inherent restriction
for self-avoiding walks, since you only have to look at sites occupied by the
walk. This suggests the possibility of more efficient algorithms in which
critical slowing-down is much less severe.

Another frequently used numerical method is exact enumeration and
extrapolation. This approach computes exact values of certain quantities
for small values of N and then tries to infer an asymptotic behaviour from
these numbers. We will not discuss this method in this book; the interested
reader is referred to Guttmann (1989a).

To conduct a Monte Carlo experiment for the estimation of v, one can
for example proceed as follows.

(a) Select several values of N, say Nt, ... , Nm.

9.1. FUNDAMENTALS AND BASIC EXAMPLES

(b) For each N;, generate many N;-step self-avoiding walks at
random. Use these to get an estimate Y; of (lw(N;)I2}, along
with an estimate of the uncertainty in Y;.

(c) Fit a curve of the form Y = AN28 through the points
(Ni, 'Y,-). The "best'' value of B will be the estimate of v.

283

Of course, each step raises many questions about how to proceed. In (a),
how many and which values of N should be chosen? In (b), how many
is "many"? What is the most efficient way to generate walks at random?
How can the uncertainty best be estimated, and how does this uncertainty
vary with N? In (c), how do we use the estimated uncertainties to fit
data to a curve that is only believed to be asymptotically correct? These
are the kinds of question that will be addressed in this chapter. We shall
concentrate, however, on what one can say rigorously about the properties
of these methods. The reader who wishes to pursue other aspects of Monte
Carlo in more depth should consult the references listed in the Notes at the
end of this chapter.

The remainder of this section will discuss some basic examples of Monte
Carlo methods for generating self-avoiding walks, and will use them to il­
lustrate various themes that appear throughout the chapter. Section 9.2 fo­
cuses on some statistical aspects-both practical and theoretical-of Monte
Carlo methods. Sections 9.3 through 9.6 will treat various methods in de­
tail. The longer proofs and calculations are deferred to Section 9.7.

We use our usual notation that SN is the set of all N-step self-avoiding
walks that begin at the origin. We shall restrict our attention to walks that
begin at the origin, unless explicitly stated otherwise.

We begin with the basic question: How can we choose an N-step self­
avoiding walk at random? (In this context, "at random" means that all
walks in SN are equally likely. For now, N is a given integer.) One simple
method is the following:

Elementary Simple Sampling (ESS). This algorithm generates
ordinary simple random walks until it obtains an N-step
walk that is self-avoiding.

1. Let w(O) be the origin and set i = 0.
2. Increase i by one. Choose one of the 2d neighbours of w(i -1)

at random, and let w(i) be that point.
3. If w(i) = w(j) for some j = 0, 1, ... , i- 1, then go back to

Step 1. Otherwise, go to Step 2 if i < N, and stop if i = N.

When this algorithm terminates, the walk W = (w(O), ... , w(N)) is self­
avoiding. Moreover, we claim that for any wE SN we have Pr{W = w} =

284 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

1feN. To see this, letS~ be the set of all N-step (ordinary) simple walks.
If we keep choosing members of S~ uniformly at random until one of them
is in SN, then the final result is evidently uniformly distributed on SN. But
this is essentially what the above algorithm does; Step 3 is just a short-cut
to avoid generating the last N - i steps of a walk that we already know
intersects itself by the i-th step. Thus the ESS algorithm indeed generates a
self-avoiding walk at random. However, it can be very slow when N is even
moderately large: the probability that an N-step simple random walk is
self-avoiding is eN f(2d)N, so the expected number of attempts (i.e. returns
to Step 1) is (2d)N feN. Therefore, using the notation Tx to represent the
expected amount of computer time required for algorithm X to generate a
single N -step self-avoiding walk, we have

(2d)N+o(N)
TEss= -

Jl.
(9.1.1)

We can improve on the efficiency of ESS by only generating simple random
walks with no immediate reversals, as follows:

Non-Reversed Simple Sampling {NRSS). This algorithm gener­
ates simple random walks with no immediate reversals until
it obtains an N-step walk that is self-avoiding.

1. Let w(O) be the origin. Choose one of the 2d neighbours of
the origin at random, and let w(1) be that point. Set i = 1.

2. Increase i by one. Of the 2d- 1 neighbours of w(i- 1) that
are different from w(i- 2), choose one at random, and let
w(i) be that point.

3. If w(i) = w(i) for some j = 0, 1, ... , i- 1, then go back to
Step 1. Otherwise, go to Step 2 if i < N, and stop ifi = N.

Arguing as for the ESS algorithm, we see that the NRSS algorithm gen­
erates a self-avoiding walk uniformly from SN, and it takes an average of
2d(2d- 1)N-l feN attempts to do so. Therefore

(
2d- 1) N+o(N)

TNRss= -- ,
I'

(9.1.2)

which is better than (9.1.1), but still not very good.
Before continuing, we should mention the following "obvious" algorithm,

which (perhaps surprisingly at first sight) does not work:

Myopic Self-Avoiding Walk (MSAW). Execute a random walk,
at each step choosing only from those sites that have not yet
been visited.

9.1. FUNDAMENTALS AND BASIC EXAMPLES

1. Let w(O) be the origin, and set i = 0.
2. Increase i by one. Of the neighbours of w(i -1) that are not

in the set { w(O), ... , w(i- 2)}, choose one at random, and
let w(i) be that point. (If all of the neighbours of w(i - 1)
are in this set, then the walk is trapped, so return to Step
1.)

3. Repeat Step 2 if i < N, and stop if i = N.

285

This algorithm produces a walk in SN, but with the wrong distribution. To
see where the problem is, consider four-step walks on Z2 : the probability
of obtaining the walk NEEE on a given attempt is ~ x ~ x ~ x ~~ but
the probability of obtaining the walk NESE is ~ x ~ x ~ x !· Thus, the
probabilities are not uniform on SN. In fact, the probabilities become very
far from uniform for large N. The algorithm MSAW actually defines a
different model, which is essentially the same as the "true self-avoiding
walk" of Section 10.4.

Other algorithms for generating independent self-avoiding walks are de­
scribed in Section 9.3. To varying degrees, they all suffer from the problem
that they are inefficient for large walks. In fact we have the following

Open Problem: Is there an algorithm A which generates a
single N-step self-avoiding walk, with distribution that is ex-
actly uniform on SN, such that the average time TA is bounded
by a polynomial in N?

Actually, the problem is only open in low dimensions: for d ~ 5, the av­
erage time of the dimerization algorithm of Section 9.3.2 is known to be
bounded by a polynomial. Dimerization is also the most efficient known
algorithm for generating a single walk exactly uniformly in any dimension,
with an expected running time of N°(logN) (if the usual scaling assump­
tions are true; see Section 9.3.2). However, there do exist more efficient
algorithms that generate self-avoiding walks with a distribution that is ar­
bitrarily close to uniform. These algorithms do not attempt to generate a
sequence of independent self-avoiding walks, but rather they use a Markov

chain to generate a sequence of self-avoiding walks that is not indepen­
dent. Such methods are known as dynamic1 , as opposed to static, Monte
Carlo methods. Roughly speaking, dynamic methods generate new walks
by modifying (or "updating") walks that have been previously generated,
while static methods build up walks from scratch. Static methods yield in­
dependent walks (or independent groups of walks), while dynamic methods
yield correlated sequences of walks.

1This usage is distinct from the term "polymer dynamics", which refers to the (real)
motion of polymers.

286 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

The basic idea of the dynamic approach is the following. Suppose that
1r is a probability distribution on some set S (i.e., for each i E S, 1r(i) is the
probability of i, and Lies 11'(i) = 1), and that we wish to generate a random
object with the distribution 71'. If we can find a Markov chain with state
space S whose unique equilibrium distribution is 71', then the fundamental
theory of Markov chains tells us that running this chain for a long time
will produce observations whose distribution approaches 11'. In our case, we
may takeS= SN and 1r(w) = 1/cN for every self-avoiding walk w in SN.
We begin with a walk w£01 in SN and apply some (randomized) procedure
that changes w£01 to get another self-avoiding walk w£11; then we apply the
same procedure to w£11 to get another walk w£21, and so on. In this way we
generate a sequence of walks {wlnl : n ~ 0} such that (for sufficiently large
n) the distribution of w[n] is arbitrarily close to 11'. This sequence of walks
will be correlated, of course, but one hopes that the relevant correlations
will decay quickly.

To make the preceding discussion more precise, we make the following
definitions, which are fairly standard in probability textbooks:

Definition 9.1.1 Let {X[t] : t = 0, 1, ... } be a Markov chain on a finite or
countably infinite state space S. Let

P(i,j) = Pr{X[t+t) = jjX£tJ = i} (t ~ O,i,j E S)

be the one-step transition probabilities of the chain, and for every nonneg­
ative integer n let

P"(i,j) = Pr{X[I+n) = iiX[tJ = i} (t~O,i,jeS)

be the n-step transition probabilities. (We only consider chains that are
time-homogeneous, i.e. whose transition probabilities are independent oft.)
The chain is said to be irreducible if for every i and j in S there exists an
n > 0 such that P"(i, j) > 0 (i.e. every state can be reached from every
state). An irreducible chain is said to have period p if p is the greatest
common divisor of {n : P"(i, i) > 0} for every state i (or equivalently for
at least one i). A chain which has period 1 is said to be aperiodic.

We remark that pn is simply the n-th matrix power of P. Notice that if
an irreducible chain has P(i, i) > 0 for some i, then it is aperiodic.

The standard theory of Markov chains (see references in Notes) tells
us the following about the long-term behaviour of an aperiodic irreducible
chain X[t]. First, the limit

lim pn(i,j)
n-+oo

9.1. FUNDAMENTALS AND BASIC EXAMPLES 287

exists for every i and j in S, and this limit is independent of i; call it 11'(j).
Next, if S is finite, then

L:11'u> = 1 (9.1.3)
jES

and
L 11'(i)P(i,j) = 11'(j) for every j inS; (9.1.4)
iES

and moreover 71' is the only nonnegative solution of (9.1.3) and (9.1.4).
Finally, if S is countably infinite, then there are two possibilities: either
11'(j) = 0 for every j, in which case (9.1.3) and (9.1.4) have no nonnegative
solution; or else 71' is the unique solution of (9.1.3) and (9.1.4).

An important special case is the following: we say that a chain is re­
versible with respect to 71' if

11'(i)P(i,j) = 11'(j)P(j,i) for every i and j inS. (9.1.5)

(In alternate terminology, (9.1.5) is called the detailed balance condition.)
Note that if 71' is the uniform distribution, then reversibility is equivalent to
symmetry of P. If a chain is reversible with respect to 71' 1 then (9.1.4) holds
(to see this, sum (9.1.5) over i). In practice, almost all dynamic Monte Carlo
procedures use reversible chains (or are a combination of several reversible
chains, as in Section 9.5.2).

If (9.1.3) and (9.1.4) hold for an irreducible chain and some 71' 1 then
the chain is said to be positive recurrent, and 71' is called its equilibrium,
or stationary, distribution. In general, 11'(j) is the fraction of time that the
chain spends in state j, in the long run (irrespective of the initial state).
Thus, if our chain X(t] is positive recurrent, and if we observe it for a
sufficiently long time, then the data should be pretty representative of the
distribution 71'. For example, this tells us that if the state space is SN
and we observe end-to-end distance of the walks X(t) for a sufficiently long
time, then we will obtain a good estimate of the mean square displacement
(lw(N)I2} computed according to 71'. This is essentially a consequence of
the ergodic theorem, which tells us that for a real-valued function f on the
state space of a positive recurrent chain,

lim _!_ ~ f(Xltl) = ""f(i)11'(i)
m-oo m LJ LJ

1=1 iES

with probability one (assuming that the right hand side, which is just the
expectation of/(·) with respect to 71' 1 is absolutely convergent).

Let us now look at a particular example: an algorithm due to Verdier
and Stockmayer (1962) which turns one self-avoiding walk into another by

288 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

Figure 9.1: An example of the Verdier-Stockmayer algorithm in action. The
circled site of w[t] corresponds to the randomly chosen I of Step 2. Observe
that w[2] = w[l] because the w resulting from w[1] is not self-avoiding. Also
observe that thew resulting from w[31 in fact equals w[31.

moving one or two bonds of the walk. Briefly, it picks a site at random and
tries to "flip" the two incident bonds if they form a right angle (or tries to
wiggle the end bond if the chosen site is an endpoint of the walk). Here is a
precise statement of the algorithm; a verbal description follows, and Figure
9.1 gives an iilustration.

Verdier-Stockmayer {V-S) Algorithm. This algorithm generates
a Markov chain {w[t] : t = 0, 1, ... } on the state space SN
which is reversible with respect to the uniform distribution
on SN.

1. Let w[o) be any self-avoiding walk in SN. Set t = 0.
2. Choose an integer I uniformly at random from {0, 1, ... , N}.
3. Define a new walk w = (w(O), ... ,w(N)), which is not neces­

sarily self-avoiding, as follows. First set w(l) = w['l(/) for all
l #I. Then:

(a) if 0 < I < N, then set w(I) = wl1l(I- 1) +

9.1. FUNDAMENTALS AND BASIC EXAMPLES

(wl'l(I + 1)- wl1l(I));
(b) if I = N, then set w(N) equal to any neighbour

ofwl1l(N-1) except forwl1l(N'-2) andwi11(N),
chosen at random;

(c) if I= 0, then set w(O) equal to any neighbour
of wl11(1) except for wi11(0) and wl11(2), chosen
at random. Then translate w so that it begins
at the origin.

4. If w is self-avoiding, then set wlt+t) = w; otherwise, set
wlt+t) = wl'l.

5. Increase t by one and go to Step 2.

289

To visualize this algorithm, think of the N bonds of a walk w as a sequence
of N unit vectors Aw(i) = w(i)- w(i- 1) (i = 1, ... , N). Step 2 chooses
a site w(I) at random. Then Step 3 either interchanges the I-th bond
with the (I+ 1)-th bond (if 0 < I < N) or else randomly changes the
first or last bond (if I is 0 or N). [Observe that in Step 3(a) we obtain
Aw(I) = Aw(I + 1) and Aw(I + 1) = Aw{I).] Step 4 rejects the proposed
walk w if it is not self-avoiding.

To show that a certain probability distribution 1r is the equilibrium dis­
tribution of a Markov chain, we check both reversibility and irreducibility.
First we shall show that the V-S algorithm is reversible (with respect to
the uniform measure on SN). To do this, it suffices to check that P is
symmetric, i.e.

P(w,w') = P(w',w) whenever w ::f:. w'. (9.1.6)

So suppose that w and w' are distinct walks in SN. If P(w,w') = 0 and
P(w',w) = 0, then (9.1.6) holds, so assume without loss of generality that
P(w, w') > 0. That is, if we start with w, then there is a choice of I
such that the walk w obtained in Step 3 equals w'. In this case, w and w'
differ by either one or two bonds, and so there is a unique choice of I that
transforms w into w'; denote this unique number by i[w, w']. Thus, since
Pr{I = i[w,w']} = 1/{N + 1), we have

P(w,w') = { Nh 1 if 0 < i[w,w'] < N
(N+1)(2a_ 2) if i[w,w'] is 0 or N

(the second line follows since there are 2d - 2 ways to choose the new
first or last bond). Now, if w can be transformed into w', then w' can be
transformed intow; in particular, we have i[w',w] = i[w,w']. Thus P(w',w)
is given by the right hand side of the above equation, and so (9.1.6) holds.

290 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

There is a subtlety in the algorithm that makes reversibility so easy to
prove. Consider a variation of the V-S algorithm in which we wait until a
successful move occurs before recording the next observation: specifically,
suppose that Steps 4 and 5 are replaced by

4'. If w is not self-avoiding, then go to Step 2. If w is self­
avoiding, then set w[t+l] = w, increase t by one, and go to
Step 2.

Now there is no guarantee that (9.1.6) holds; the proof fails because in the
new chain the one-step transition probability from w tow' is P(w, w')/(1-
P(w,w)) (here Prefers to the probabilities in the original chain; observe
that 1- P(w, w) is the probability that a single attempt turns w into some­
thing different). So we cannot have symmetry in the new chain unless
P(w,w) is the same for every win the original chain. This does not happen
for the V-S algorithm, nor for any other interesting algorithm that we know
of. Thus we see that in order to guarantee that we get the correct equilib­
rium distribution, it is vital to record the current walk after every attempt,
whether the attempt results in a walk that is self-avoiding (a "success") or
not (a "rejection").

We have seen that the original V-S algorithm is reversible, but unfor­
tunately it is not irreducible. For example, there exist self-avoiding walks
which are "frozen", i.e. they can never be changed by the V-S algorithm
{see Figure 9.2). But the irreducibility difficulties are worse than just

Figure 9.2: A 17-step self-avoiding walk in Z2 which is "frozen" with respect
to the Verdier-Stockmayer algorithm.

having a few frozen walks. An ergodicity class of a Markov chain is defined
to be a maximal subset A of the state space such that for every i and j in
A, there exists an> 0 such that pn(i,j) > 0. Thus SN is partitioned into
many ergodicity classes, some of which contain a single walk. If w[o] is in a
given ergodicity class, then we can view the V-S algorithm as producing a
Markov chain whose equilibrium distribution is uniform on that ergodicity
class, not on all of S N. As we shall see, this is a serious concern in principle,

9.2. STATISTICAL CONSIDERATIONS 291

because the largest of the ergodicity classes is an exponentially small part
of SN as N __.. oo (Theorem 9.4.2).

We conclude this introductory section with some remarks on the fol­
lowing problem, which is relevant to any computer program that works
with self-avoiding walks: how fast can we check that a given walk is self­
avoiding? To be precise, suppose that you are given a finite sequence of
lattice sites w(O),w(1), ... ,w(N) such that lw(i)- w(i- 1)1 = 1 for every
i = 1, ... , N. What is the most efficient way to check whether these N + 1
sites are all distinct?

The most obvious algorithm is to look at every pair i and j such that
0 $ i < j $Nand check whether w(i) equals w(j). There are N(N + 1)/2
such pairs, so the running time of this algorithm is O(N2). A different
algorithm achieves a running time of O(N) by using a "bit map". The
idea behind this method is to simply draw a picture of the walk. For
example, suppose we are working with N-step walks starting at the origin
in Z2 . The simplest bit map is a (2N + 1) x (2N + 1) array, indexed by
(i,j), -N $ i,j :5 +N, with all entries initially 0. Then every site of Z2

that can be reached by an N-step walk corresponds to an entry. For each
i = 0, 1, ... , N in turn, check the entry corresponding to the site w(i): if
the entry is 0 then change it to 1, but if the entry is already 1 then the
walk is not self-avoiding. Afterward, go through the list of sites again to
reset the entries to 0. The running time of this algorithm is clearly O(N).

The disadvantage of a bit map is that it requires a lot of space: in zd, it
requires O(Nd) words of computer memory. An alternative approach uses
a data structure known as a "hash table". A set of N sites can be stored
in a hash table of size 0(N) in such a way that we can check whether
a given site is in the set in average time 0(1) - i.e. independent of N.
Thus a hash table allows one to check self-avoidance in average time O(N)
using only 0(N) words of memory. Thus we have the satisfactory property
that the amount of time and space needed to check self-avoidance are both
proportional to what is required just to write down the walk. References
about hash tables and their implementation for self-avoiding walk problems
can be found in the Notes for this chapter.

9.2 Statistical considerations

In this section we shall survey some of the statistical problems associated
with Monte Carlo methods. In particular, this will lead us to the important
concept of autocorrelation times for dynamic methods.

292 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

9.2.1 Curve-fitting and linear regression

First we shall recall some elementary statistics. If a random variable Y is
normally distributed with (unknown) mean m and (known) variance <T2 ,

then the probability that m lies in the (random) interval [Y - 1.96<T, Y +
1.96<T) is about 0.95. Thus we say Y ± 1.96<T is a 95% confidence interval
for m. Often the variance is also unknown, and we have to compute an
estimate &2 of <T2 • In this case, Y ± 1.96& is only an approximate 95%
confidence interval; for the usual estimates of the variance, the 1.96 should
be replaced by a suitable number from a table of the Student's t distribution
(for more details, consult the statistics references in the Notes).

Now let us consider the scenario described at the beginning of this chap­
ter, in which we attempt to estimate v from several data points (N;, Y;)
(i = 1, ... , m), where N; is chosen in advance by the experimenter and
Y; is an estimate of (lw(N;)12} obtained by generating a large number of
random N;-step self-avoiding walks. Let <Tf be the variance of Y;; since the
variance is generally not known, we will in practice need to compute an
estimate u[of <Tf (we shall discuss how to do this below).

To estimate v, we begin with the scaling relation

(9.2.1)

We can write this asymptotic relation as an equality with (infinitely many)
"correction-to-scaling" terms:

(9.2.2)

The exponents of the correction terms are strictly positive, and A is the
smallest of them, i.e. BN- 11 is the dominant correction term. (Like v, these
exponents are believed to depend only on the dimension. Other forms of
corrections, such as logarithms, are also possible.) Our job is to fit a curve
Y = f(N) to the data; to do this in a meaningful way, we must only
allow a small number of parameters in the family of curves. The obvious
choices are either to eliminate all of the correction-to-scaling terms, giving
the two-parameter family of curves

Y = AN2", (9.2.3)

or else to eliminate all but the dominant correction term, giving the four­
parameter family

(9.2.4)

The form (9.2.3) is appropriate if the N; 's are all large enough so that the
actual corrections to scaling are smaller than the statistical errors in the

9.2. STATISTICAL CONSIDERATIONS 293

data (i.e. smaller than O'i)· In general, however, we cannot expect this a
priori. If we choose to work with {9.2.4), there is no guarantee that the
best curve of this form will reflect the true value of d, since we do not know
the size of the omitted correction terms {when N is small, these terms can
be large, making it hard to see d from data corresponding to small N;;
but when N is large and the omitted terms are small, then the included
term BN-~ is also small). The combination of all of the correction terms
may very well show up in the data as a single "effective exponent" deJ 1,
which has no real relation to {9.2.2). Thus it is a very delicate business to
try to estimate the true value of d. Rather, we may view the role of the
parameter ~ in (9.2.4) as an aid to the extrapolation of a finite amount
of data into the N -+ oo asymptotic regime. {This represents a relatively
cautious viewpoint which is definitely not universally accepted within the
physics community.)

The standard statistical tool for fitting curves of the above forms to data
is the method of least squares. Functions of the form {9.2.3) and (9.2.4)
are examples of regression functions. Linear regression functions are the
easiest to work with, so we begin by taking logarithms of the above two
equations, obtaining

logY = log A + 2v log N (9.2.5)

and
logY= logA + 2vlogN + BN-~, (9.2.6)

where the last term of (9.2.6) was obtained by the approximation log(l +
x) ~ x for x near 0. (If the reader accepts the viewpoint of the preceding
paragraph that the parameter ~ should be regarded merely as an aid to
extrapolation, then this approximation should cause no worries.)

Let us first focus on {9.2.5). Ordinary least squares estimation would
tell us to estimate A and v by the values that minimize the sum of squares

m

L)log 'fi ~ log A - 2v log N;)2.
i=l

This is not appropriate for us because an underlying assumption of this
method is that the variance of log 'fi is the same for every i. Instead, we
should use weighted least squares estimation, weighting each term according
to the inverse of its (estimated) variance, so that the }i's in which we
have more confidence will have more say in determining the best fit. The
general procedure is the following. Suppose that we observe independent
random variables U1, •.• , Um where each U; is normally distributed with
mean a+ bM; (where we know M; and we want to estimate a and b) and
variance v?, (Our case corresponds to b = v, a= logA, U; = log'fi and

294 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

M; = 2log N;.) Then the weighted least squares estimates a and b are the
values of a and b that minimize the weighted sum of squares

m

SS(a, b)= E w;(U;- a- bM;)2, (9.2. 7)
i=l

where w; is a positive "weight" (typically 1/v?, but not necessarily). The
minimizing values are

b _ Ew; Ew;M;U;- Ew;M; Ew;U;
- Ew; Ew;Ml- (l:w;M;)2

(9.2.8)

and

(9.2.9)

These are unbiased estimators of b and a (i.e. E(b) = b and E(a) = a).
Also, b and a are normally distributed with variances

and

V (") _ L:w;M?
ar a - "' "' (. L..J w; L..J w; M? - L: w; M;)2

The variances can be used to give statistical confidence intervals for a and
b in the usual way. We can also formulate a test for the "goodness of
fit" of our model: If the model is correct, and if the weights are given by
w; = l/v?, then the "residual sum of squares" SS(ii, b) has a x2 distribution
with m - 2 degrees of freedom.

When applying this theory in our Monte Carlo setting, we must first
decide whether the estimates ¥; are normally distributed. Typically, ¥; is
the average of a large number of observations

In the case of a static method such as NRSS, the Xt 's all come from different
N;-step walks, so they are i.i.d. (independent and identically distributed).
The central limit theorem t~lls us that their average is normally distributed
if Tis large enough. (For an objective statistical test of normality, one can
use the test of Shapiro and Wilk (1965); see Appendix A of Bratley, Fox,

9.2. STATISTICAL CONSIDERATIONS 295

and Schrage (1987).) Moreover, in the i.i.d. case, the variance of Y; is
Var(Xl)/T, so we can estimate r7f, the variance of¥;, by

A2 1 0 A 2
r7; = T2 L..,..(Xt - Y;) .

1=1

The case of dynamic methods will be discussed in Section 9.2.2.
Suppose now that we believe that Y; is approximately normally dis­

tributed, say with mean Y; and variance r7?, What can we say about

U; = Jog Y;? Assume that r7; is much smaller than Y;, i.e. the uncertainty
is relatively small compared to the magnitude of the quantity being esti­
mated, as should be true in any good Monte Carlo experiment which tries
to estimate something that can only be positive. Then U; is approximately
normally distributed with mean logY; and variance r7f /¥?. To see this, we

write Y; = Y; + Zr7;, where Z is approximately normally distributed with
mean 0 and variance 1; then

[(Zr7·)] (Zr7·) Zr7·
U; = log Y; 1 + Y; 1 = logY; + log 1 + Y; 1 ~ logY; + Y; 1

,

and the assertion follows. Thus iT[j}i2 is an estimate of the variance of
U;. Therefore, in the weighted least squares procedure described above,
the appropriate choices of weights are w; = ¥;2 / o-[.

For completeness, we shall briefly describe weighted least squares es­
timation for more than two parameters. The framework of general linear
regression is best expressed in matrix notation. Put the observed random
variables (Yi, ... , Y m in our case) into an m x 1 column matrix Y. Let
{3 be a p x 1 column vector containing the unknown parameters, and let
X be a known m x p matrix; the model assumes that E(Y) = X{3. (For
example, in the model (9.2.6)2: p is 3; the entries of (3 are Jog A, 2v, and
B; and the i-th row of X consists of the entries 1, log N;, and N;-t>.) Also
let V be a known m x m positive definite matrix, which we assume to be
the covariance matrix of Y (i.e. V = E[(Y - X(J)(Y - X(J)T], where the

T denotes transpose). The weighted least squares estimator is the vector~
which minimizes

SS((3) = (Y- X{3)TV- 1(Y- X{3);

it is given by

2 0bserve that in the context of linear regression, we must assume a fixed value for
A in this model. The most common choice is A = 1; sometimes renormalization group
calculations suggest other values, such as A = 1/2.

296 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

Then /3 has a multidimensional normal distribution whose mean vector is
the true f3 and whose covariance matrix is (XTV-1X)-1• If the model is
correct, then SS(/3) has a x2 distribution with m- p degrees of freedom.

9.2.2 Autocorrelation times: statistical theory

When a dynamic Monte Carlo experiment is performed, the observations do
not form an independent sequence, and so elementary statistical methods
are often not applicable. In this section we shall address the problem of how
to estimate the variance of the average of a large number of observations
from a dynamic Monte Carlo experiment. Once we know how to perform
such estimates, we can apply the regression theory outlined in Section 9.2.1.

To be specific, suppose that {wltl : t = 1, 2, ... } is a stationary Markov
chain. (A stochastic process is said to be stationary if, for every k ~ 0,
the joint distribution of (w[tl, ... ,w[t+kl) is the same for every t.) For a
stationary Markov chain, the distribution of w[t] for any fixed timet must
be the equilibrium distribution. Every positive recurrent Markov chain is
asymptotically stationary; in practice, we can assume that a Markov chain
is stationary if we discard enough initial observations so that the chain has
had enough time to forget any influence of its initial state and has "reached
equilibrium".

Let g be a real-valued function on the state space (e.g. g(w) = lw(N)I2

if the state space is SN). Such a function is often called an "observable"
in the physics literature. Let 0 denote expected value with respect to the
equilibrium distribution of the chain. Then we would like to estimate (g)
by the estimator

• • 1 [1) [T) Y = Y[T) = T[g(w) + · .. + g(w)].

Since the distribution of w[t) is the stationary distribution, it is easy to
see that Y is an unbiased estimator of Y. But what is its variance? This
question is addressed in the following lemma.

Lemma 9.2.1 Suppose {X[1l} is a real-valued stationary process with finite
second moment. Let

Y[T] = ~(X[1l + ... + x[Tl).

For each integer k, let Cx(k) denote the covariance of X[t] and X[t+k]

(observe that this is independent oft by stationarity; we are implicitly re-

9.2. STATISTICAL CONSIDERATIONS 297

stricting consideration to t 2: 1 and t + k 2: 1}. Let

00

v = I: Cx(k),
l:=-oo

and assume that this sum converges absolutely. Then

lim TVar(Y[T]) = v.
T-oo

Proof. We have

T T-1

Var(Y[T]) = ; 2 I: Cov(x£•l,x£tl) = ; 2 I: (T -lki)Cx(k).
•,t:l A::-(T-1)

The result now follows from the dominated convergence theorem. D

In the notation of the above lemma, Cx(O) is the variance of X£11, and
Cx(k)/Cx(O) is called the autocorrelation function. The ratio v/[2Cx(O)]
is called the integrated autocorrelation time, and is denoted Tint,X· When
the X(t) are independent, Tint,X = 1/2.

Returning to our dynamic Monte Carlo algorithm, we shall take X£11 =
g(w£11) in the above lemma. We now write C9 (k) for the covariance of g(wl1l)
and g(wlt+l:l), and the integrated autocorrelation time is

00 C9 (k) 1 oo C9 (k)
Tint,g = I: 2C {0) = 2 +I: C (0)'

l::-oo g k=l g

(9.2.10)

The lemma tells us that

Var(Y[T])""' ~Tint,g Var(g(wl11)) as T-oo. {9.2.11)

This asymptotic relation has a very useful intuitive interpretation. If the
w[tJ•s (and hence the x£t1•s) were independent, then the variance of the
average Y[T] would be given by (9.2.11) with 2Tint,g replaced by 1. This
means that if we are using a dynamic Monte Carlo method and we want
to get an estimator with the same variance as one that samples T indepen­
dent observations, then we need 21'int,gT consecutive observations from the
Markov chain. In other words, 211nt,g is the number of observations from
the chain that we need to get one "effectively independent" data point.

So far we have neglected the question of whether or not the series defin­
ing v in Lemma 9.2.1 converges absolutely. Fortunately, the answer is that
it usually does; in fact, the terms Cx(k) frequently decay exponentially.

298 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

The inverse of this decay rate is known as the eJ:ponential autocorrelation
time. Specifically, given a real-valued function g on the state space of our
stationary Markov chain {w£'1}, we define its exponential autocorrelation
time to be

(9.2.12)

thus, the covariances C1 (k) decay roughly like exp(-k/re:ep,1). We also
define the exponential autocorrelation time of the Markov chain to be

ru:p = sup re:ep,g,
g

(9.2.13)

where the sup is over all g such that E(g(wftl)2) is finite. This means
that re:ep is the relaxation time of the slowest mode in the system. As we
shall see in Section 9.2.3, re:ep plays an important role in measuring the
rate of convergence to equilibrium from an arbitrary initial distribution.
The exponential autocorrelation time could be infinite (as in the BFACF
algorithm of Section 9.6.1), but this is typically not the case. In particular,
as we shall see in Section 9.2.3, rezp is finite whenever the state space is
finite.

Given this theoretical description of the situation, we still need to find
good statistical techniques for estimating the variance of Y[T], or, equiva­
lently, for estimating C1 (0)rint,g· This kind of problem has been the focus
of much research in the field of time series, and we sh~lllimit ourselves here
to a very brief discussion; the Notes at the end of the chapter give some
references for additional information.

One of the simplest procedures is the method of batched means. Given a
long sequence of observations X£11, ... , X[T] of a stationary process, divide
them into some relatively small number n of equal length subsequences, or
"batches". Let b = T/n be the number of observations in each batch, and
let Yi be the average of the i-th batch:

ib

Yi = L: xuJ /b.
j:(i-1)&+1

If we assume that b is much larger than rezp 1 then the Yi's are approxi­
mately independent and approximately normal, each with mean E(Xl1l)
and variance ~ vfb where v is defined as in Lemma 9.2.1 [see for example
Theorem 20.1 of Billingsley (1968) or Corollary 1.5 of Kipnis and Varadhan
(1986)). Thus the overall average Y[T) is the average of the Yi's, and we
can estimate its variance using the sample variance of the Yi 's. For a "quick
and dirty" method, this one is not bad. One serious drawback of course is

9.2. STATISTICAL CONSIDERATIONS 299

the assumption that b >> Terp: in particular, the results of the procedure
cannot be used as a check on the assumption after the fact.

A more developed approach is the spectral analysis of time series. Briefly,
this tries to estimate the infinite sum v (= 2C9(0)Tint ,x) by estimating each
term in the infinite series. By analogy with the usual estimator for covari­
ance, we define the following estimator of Cx(k):

T-k
Cx(k) = - 1- I)x!iJ- Y(T1)(x!iHJ- Y(T1)

T- k i=l

fork= 0, 1, ... , T-1. This is a biased estimator of Cx(k), but it converges
to Cx(k) with probability one as T--+ oo by the ergodic theorem. We next
define the estimators of v

m

Vr,m = Cx(O) + 2 2: Cx(k)
l::l

(the number m is chosen by the user). We don't insist on taking m =
T- 1 because we believe that Cx(k) is close to 0 when k is large, and
so Cx(k) is mostly noise when k is large. (Heuristically: Var(Cx(k)) =
0(1/T), so Var(Vr,r-t) = 0(1)- i.e. the uncertainty does not disappear
as T--+ oo!) How should m be chosen? One reasonable way is the following
"automatic windowing" procedure: Let m be the smallest integer such that
m ;::: 10Vr,m· The factor 10 here is somewhat arbitrary, but the idea is that
we want to make sure that we include contributions from terms that are
up to several Tint's apart.

There is one more statistical issue that we must mention here, and that
is the problem of initialization bias. In this section we have assumed that
our observations come from a stationary process. Although Markov chains
are asymptotically stationary, a simulation typically starts from a state
which is not chosen according the equilibrium distribution. For example, in
the case of self-avoiding walks, one might wish to start with a walk that is
a straight line segment (for programming convenience). Thus, a simulation
typically begins with an initial period which is "far from equilibrium",
and it eventually "approaches equilibrium". The initial period must be
removed from the data lest it introduce a bias to our estimates. Thus
the experimenter must decide when the process has "reached equilibrium".
The simplest procedure is to watch some observables over time until they
all appear to have stabilized. There are also various statistical procedures
that have been developed for removing initialization bias; see Bratley, Fox,
and Schrage (1987) for a survey and references.

For concreteness, let us briefly consider the specific problem of choosing
an initial state for a simulation of a Markov chain on the state space SN

300 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

of N-step self-avoiding walks. We could generate an initial walk using a
static algorithm such as NRSS; although this would be slow, it has the the­
oretical advantage that we would then be starting the chain in equilibrium
(exactly!), and so we would not have to worry about initialization bias at
all. However, even for N around 200, it would be much faster to start with
a straight walk and run until equilibrium is reached than it would be to

generate a single walk by NRSS. But there are better static methods than
NRSS; in particular, it is feasible to use dimerization (Section 9.3.2) to
generate a single self-avoiding walk of two or three thousand steps in two
dimensions (and even longer in three dimensions) to use as an initial state.
(We remark that self-avoiding walks are one of the few interesting systems
where there exists a feasible procedure for generating an initial state from
the exact equilibrium distribution; nothing comparable is known for Ising­
type models.)

9.2.3 Autocorrelation times: spectral theory and
rigorous bounds

Consider an irreducible Markov chain with state space S, transition proba­
bilities P, and equilibrium distribution 71'. Define the inner product of two
complex-valued functions f and g on S to be

u,g) = :LJ(i)g(i)7r(i); (9.2.14)
iES

the associated norm is

()
1/2

11/112 = (!, !)112 = L if(iW7r(i)
iES

(9.2.15)

Let !2(7r) denote the Hilbert space of the complex-valued functions f with
II/I b finite. As usual, the norm of an operator T on 12 (7r) is given by

IITII = sup{IIT/112: f E 12(11'), 11/lb $ 1}.

We view P as an operator on 12(7r) by defining

(P f)(i) = L P(i,j)J(j).
jES

The operator Pis a contraction on !2(7r), i.e. liP II $ 1. To prove this, we
observe that [(Pf)(i)]2 $ (P(j2))(i) for every i by the Schwarz inequality,
and therefore

IIPJm $ 2:<PU2)(i))7r(i) =111m (9.2.16)
iES

9.2. STATISTICAL CONSIDERATIONS 301

[using (9.1.4) to get the equality].
Since IIPII $ 1, all of the eigenvalues of P lie on or inside the unit circle.

Moreover, using Perron-Frobenius theory one can show the following [Sidak
(1964)]: since the chain is irreducible, 1 is a simple eigenvalue of P, with
the constant function 1 as an eigenfunction; and 1 is the only eigenvalue of
P on the unit circle if and only if the chain is aperiodic.

Define the operator II which maps l 2(1r) to the constant functions as
follows:

(II/)(i) = L.: 1r(j)/(j) for every i;
jES

thus (IT/)(i) equals the expectation of f with respect to 11'. The basic
convergence theory of Markov chains tells us that P"' converges to IT in
a sense that will be made precise below. Observe that II2 = II and II is
self-adjoint [i.e. (/, Ilg) = (II/, g)], so II is the orthogonal projection onto
the space of constant functions. Also, liP= II= PII [by (9.1.4)], and so

(I -II)P = P- II= P(I -11). (9.2.17)

We shall focus on the operator P-11, which is 0 on the subspace of constant
functions and equals P on the orthogonal complement of that subspace.

For the rest of this section, we shall also assume that the Markov chain
is reversible with respect to 11'1 i.e. that (9.1.5) holds. This implies that P
is self-adjoint on 12(1r):

(!, Pg) = L I(i) L P(i, j)g(j)11'(i)
j

= LLf(i)g(i)P(i, i)11'(j) = (P/,g).
j

Since a self-adjoint operator must have real spectrum, it follows from the
fact that IIPII :51 that the spectrum of Pis a subset of the interval (-1, 1].

We shall now state a few facts from functional analysis. Let T be a
bounded operator on a Hilbert space, and let O'(T) be the spectrum ofT.
The spectral radius ofT, denoted r(T), is defined to be

r(T) ::sup{ I-XI :.X e O'(T)};

it satisfies the well known "spectral radius formula"

r(T) = lim IITn Win = inf urn Win.
n-oo n~l

Suppose now that T is also self-adjoint, so that O'(T) is real. Then we in
fact have

r(T) = IITII = urnwtn for every n ~ 1. (9.2.18)

302 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

The first equality is well-known [e.g. Theorem VI.6 of Reed and Simon
(1972)]; the second equality follows from r(T) :$!IT'll Pin (from the spectral
radius formula), the inequality IITnll ~ IITIIn, and the first equality. We
also know

inf o-(T) = inf { (/, T f) : ll/ll2 ~ 1} and

sup o-(T) = sup{(/, T f) : ll/ll2 ~ 1} (9.2.19)

(Yosida (1980), p.320); in particular, this implies the "Rayleigh-Ritz prin­
ciple"

r(T) = sup{j(/, T/)1: ll/!12 :$ 1}. (9.2.20)

Finally, we have the relation

r(T) = sup lim sup 1(1, rn J)llln
J n-oo

(9.2.21)

which we shall prove in Section 9.7.1.
Now let us return to our Markov chain. Using the notation of Section

9.2.2, we find for the stationary Markov chain {wl1l} that

C9(k) = E[(g(wl1l)- (g))(g(wltHl)- (g))]

= ~ r(i)[(g - llg)(o)] [~ P'(i, j)(g - llg)(j) l
= ((I- II)g, Pk(I- II)g)

= { (g,(P- II)kg) fork~ 1
(g, (I- II)g) for k = 0, (9·2·22)

where we have used I - II = (I - II)2 and (9.2.17) in the last step. By
definition, limsup,~:_.00 IC9(k)PI"' = exp(-1/ru:p,g) and Tu:p = sup9 Te:rp,g 1

so (9.2.22) and (9.2.21) imply that exp(-1/re:rp) = r(P- II); equivalently,

1
Te:rp = -logr(P- II)· (9.2.23)

Since P - II is self-adjoint,

r(P- II)= liP- III I= II(P -ll)"'W'"' =liP"'- IIW1"'. (9.2.24)

This implies that re:rp also measures the exponential rate of convergence to
equilibrium when the Markov chain is not started in equilibrium. In detail,
consider the metric for probability measures on S defined by

p(ifJ,t/J) = sup{ILf(j)ifJ(j)- Lf(j)t/J(j)l: ll/ll2:::; 1}
j j

9.2. STATISTICAL CONSIDERATIONS 303

[recall that 11·112 is the i2(1r) norm of (9.2.15)]. If a Markov chain begins
with the initial probability distribution ¢ at time 0, then at time k its
distribution is given by the measure {¢Pk)(j):;: Li ¢{i)Pk(i,j). For any
f in P(1r), we have

j j

i,j

and hence

(9.2.25)

Equation (9.2.25) has the following practical interpretation: it tells us
that if we begin from an initial distribution which is different from 1r and
run the Markov chain for 10Tezp iterations, say, then the deviation from
equilibrium (with respect to the metric p) is at most e- 10 (about 0.00004)
times the initial deviation. On the one hand, it is usually very difficult to
get information about the size of Tezp (either rigorously or numerically),
so this is rarely a practical criterion for ensuring that the simulation has
"reached equilibrium". On the other hand, the convergence to equilibrium
could in fact be much faster than the upper bound of (9.2.25) indicates, so
not knowing Tezp may not be a real disadvantage. Ultimately, one has to
analyze the data to determine empirically when the process is sufficiently
close to equilibrium (see the discussion at the end of Section 9.2.2).

We remark that when the state space S is finite, then the spectrum of
P- II is a finite subset of (-1, 1) (assuming aperiodicity), and in particular
Terp must be finite.

Up to now, we have been talking about the spectral radius of P- II, but
in Monte Carlo work one is usually just interested in the spectrum near +1
rather than near -1. An eigenvalue at -1 causes Tezp to be infinite, but
for a trivial reason: it happens if and only if the Markov chain is periodic
with an even period, and so p(tj>Pk, 1r) typically does not even converge to 0
because the chain always remembers which part of the state space it started
in. But this does not prevent the averages Y[T] from converging rapidly to
the correct values. So let us define the modified autocorrelation time

1
r' - --::---..,=---~-~

ezp - -log[sup u(P - II)]"
(9.2.26)

304 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

Then it will be shown in Section 9.7.1 that for every gin l2(1r)

1 (1 +exp[-1/~zp]) 1 (~]
Tint,g ~ 2 1 _ exp[-1/r:zp] = Tezp 1 + 0(1/ ezp) (9.2.27)

for ~rp bounded away from 0.
The following result will be proven in Section 9.7.1. Its corollary below

will be used a number of times in this chapter (see Sections 9.4.1, 9.5.1, and
9.6.1). We remind the reader that the covariances C9 (k) and the various
autocorrelation times are always defined in terms of the stationary Markov
chain corresponding to P and 1r.

Proposition 9,2,2 Suppose that P is reversible with respect to 1r. Then
for any nonconstant g in /2 (1r),

where

. >! (l+p,{l))- 1 _!
Tznt,g_ 2 1-p9 {1) -1-p9 (1) 2'

09 (1)
Pg(1) = c,(o)'

Corollary 9.2.3 Suppose that P is reversible with respect to 1r, and let g
be a function in /2(1r). Assume that there is a finite constant A such that
lu(i)- g(j)l < A whenever P(i, j) > 0 (i.e. the value of g can never change
by more than A during a single step of the Markov chain). Then

209{0) 1
Tintg > ----.

I - A2 2

Proof. First we list the following identities, which may be verified by
direct calculation:

C9 (0)(1- p9 (1)) = C9(0)- 0 9 (1)
= (g, (I- P)g)

= ~~7r(i)P(i,j)lg(i)-g(i)!2 • (9.2.28)
a,J

From (9.2.28), we see that 0 9{0)(1- p9 (1)) :5 A2 /2. The result now follows
immediately from Proposition 9.2.2. D

As a further application· of the identities (9.2.28), we have the following
result:

9.3. STATIC METHODS 305

Proposition 9.2.4 Suppose that P1 and P2 are transition probabilities of
two Markov chains which are reversible with respect to the same 1r, and as­
sume that P1 (i, j) -;:: P2(i, j) whenever i f:. j. Then their respective modified
autocorrelation times satisfy r;:rp(Pl)-:::; T~xp(P2)·

Proof. Fork= 1, 2, we see from (9.2.19) that

sup u(Pk- TI) =sup{(!, (I- TI)/)- (!,(I- Pk)f) : 11/112 $ 1}.

In view of (9.2.28), this implies that sup u(P1 - TI) $sup u(P2 - TI). The
proposition then follows from (9.2.26). D

Remark. Caracciolo, Pelissetto, and Sokal (1990) prove several gener­
alizations of Proposition 9.2.4, including the result due to Peskun (1973)
that the same hypotheses imply that Tint.J(Pt) -:::; Tint.J(P2) for every f.
The intuition behind these results is clear: since P1 makes more transitions
than P2, it approaches equilibrium faster.

9.3 Static methods

In this section we shall discuss a number of static Monte Carlo algorithms.
These algorithms generate either a sequence of independent self-avoiding
walks or a sequence of independent batches of self-avoiding walks (the walks
within each batch possibly being highly correlated).

9.3.1 Early methods: strides and biased sampling

Two methods of generating independent sequences were discussed in Sec­
tion 9.1, namely Elementary Simple Sampling and Non-Reversed Simple
Sampling; both were seen to require an exponentially large amount of com­
puter time for each self-avoiding walk generated. A natural generalization
of these methods uses "strides" to .build walks instead of single steps. An m­
step stride is a self-avoiding walk of length m. For the following algorithm,
let m be a fixed nonnegative integer.

m-Step Stride Method {SM{m)). This algorithm generates a
self-avoiding walk of length km (k an integer). It requires a
list t/1[1], ... , t/J[cm] of all m-step self-avoiding walks.

1. Set W to be the 0-step walk consisting of the single site at
the origin. Set i = 0.

2. Increase i by one. Choose an integer J uniformly at random
from {1, ... , em}. Redefine W to be W o .,P[J], the concate­
nation of .,P[J) to the current W.

306 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

3. If W is not self-avoiding, then go back to Step 1. Otherwise,
go to Step 2 if i < k, and stop if i = k.

The average amount of computer time required to generate one N-step
self-avoiding walk using this algorithm is

(cm)N/m (c:Jm)N+o(N)
TsM(m) = = --CN JJ

This still grows exponentially in N, but at a slow rate if m is large. Of
course, the larger m is, the more overhead must be invested in preparing
and storing the list of all m-step walks.

One easy way to improve the Stride Method (for a given m) is in Step 2
to choose tJI[J] from among only those walks whose first bond is not in the
direction opposite to the last bond of the current W. A more sophisticated
approach, requiring additional work in advance, is the following. For each
i = 1, ... , Cm, make a list Li containing all values of j such that 1f1[i] o
1f1(j], the concatenation of 1f1(j] to 1f1[i], is self-avoiding. Then in Step 2
only choose the next J from the list LJ corresponding to the current J.
Unfortunately, since the lists do not all have the same length, this will not
generate walks with uniform distribution on S~tm unless we exercise some
caution. Specifically, we could let L = maxi ILd (where ILd denotes the
length of the list Li), and replace Steps 1 and 2 above as follows.

11• Choose J(l) uniformly at random from {1, ... , em}. Set
W = 1f1[J(l)] and set i = 1.

2'. Increase i by one. Choose J(i) uniformly at random from
{1, ... , L}. If J(i) > ILJ(i-1)1, then go back to Step 1' and
start over; otherwise, redefine W to be the concatenation of
the J(i)-th walk on the list LJ(i-1) to the current W.

Again we see the usefulness of a "rejection" step (occurring here when
J(i) > ILJ(i- 1)1) in producing the desired distribution. Without this, our
method would suffer from the same flaw as the MSAW algorithm of Sec­
tion 9.1. Having sounded these warnings, let us now say that all is not
necessarily lost if we generate self-avoiding walks with a nonuniform distri­
bution, for we can still estimate interesting quantities by reweighting our
observations, as we shall now explain.

Suppose that w[11, ... , w[m] is an i.i.d. sample from SN with a common
known probability distribution

q(v) = Pr{w[11 = v}

9.3. STATIC METHODS 307

which is not uniform but is strictly positive for every v (for example they
could be generated by the MSAW algorithm). Suppose that we wish to
estimate some quantity (f(w))N, where f is a real-valued function on SN
and (·} N denotes the expectation with respect to the uniform distribution
of w on S N. If we define the reweigh ted average

I - 1 m /(w!il)
Ym =-E-([i])' m i=l q w

then the expectation of Y ,;{ is CN (f(w)) N (that is, Y ,;{/ CN is an unbiased
estimator of (f(w))N). This is because

(/(w!il)) (!(v)) (1)
E q(w!il) = Ls q(v) q(v) = CN CN Ls f(v) .

VE N VE N

(9.3.1)

In particular, if we take f identically 1, then Y~ is an unbiased estimator
of CN. Since the w[il•s are i.i.d., the strong Jaw of large numbers guaran­
tees that Y~ converges to CN(/(w)}N as m ___. oo, with probability one.
Therefore, if we define the ratio

Rfn: Y,/JY~,

then Rfn converges to (f(w))N as m ___. oo, with probability 1.
This theory can be applied to the case of walks generated by the MSAW

algorithm, once we compute the function q. This was done for two examples
offour-step walks in the paragraph following the statement of the algorithm
in Section 9.1. In general, suppose that v = (v(O), ... , v(N)) is a self­
avoiding walk. For each i = 0, ... , N -1, lett; be the number of neighbours
of v(i) that are not in the set { v(O), ... , v(i- 1)}. Then q(v) is the product
of the reciprocals of to, ... , tN -1·

This method is often referred to as "inversely restricted sampling" or
"biased sampling"; it is closely related to "importance sampling" [see for
example Hammersley and Handscomb (1964) or Bratley, Fox and Schrage
(1987)]. It was originally used by Rosenbluth and Rosenbluth (1955) for
the function f(w) = lw(N)l2• Earlier, Hammersley and Morton (1954) had
used a slight variant of Y~ to estimate CN.

Biased sampling has some apparent drawbacks:

• Long walks will eventually become "trapped"; this could lead to many
attempts being necessary to generate a single walk, unless we had
a mechanism of avoiding steps that would lead into a trap. (We
remark that a Monte Carlo study by Hemmer and Hemmer (1984)
concluded that walks in Z2 survive for 71 steps before being trapped,
on average.)

308 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

• The estimator Rfn is not unbiased in general. However, McCrackin
(1972) showed that E(Rfn)- (f(w))N is of order m-1, and hence
for large m the difference is negligible compared with the ubiquitous
m-1/2 statistical error inherent in i.i.d. sampling schemes.

• The weights 1/q vary considerably, and a typical experiment is likely
to end up with most of the overall weight coming from a very small
fraction of the observations [Hammersley and Handscomb (1964), Ba­
toulis and Kremer (1988)]. That is, the variance of the estimator Rfn
is likely to be uncomfortably large for any practical value of m. One
might try to improve this situation by a variant of importance sam­
pling, in which the possibilities in Step 2 of the MSAW algorithm
are weighted so that the walk is encouraged to spread out faster (the
original MSAW produces walks that tend to be more compact than
typical self-avoiding walks). However, any such reweighting method
where the distribution being sampled is substantially different from
the desired (uniform) distribution could quite easily encounter the
same problems, and the situation is rather delicate. Some work in
this direction is surveyed in Kremer and Binder (1988, Sec. 2.1.2).

9.3.2 Dimerization

A different method of generating self-avoiding walks uniformly on SN is
dimerization, which is essentially a recursive procedure. The idea is that
if we wish to generate an N-step self-avoiding walk, then we generate two
independent (N /2)-step self-avoiding walks ("dimers") and try to concate­
nate them. If the result is self-avoiding, we are done; otherwise, we discard
both dimers and start again. To generate each of the (N /2)-step walks,
we generate two (N/4)-step walks and try to concatenate them, and so
on. The recursion can stop at the k-th level if there is a fast way to gen­
erate self-avoiding walks of length N f21c. For example, 10-step walks are
easy to generate by Non-Reversed Simple Sampling, so only three levels are
needed to create an SO-step walk by dimerization. We can express this as
the following recursive procedure.

DIM(N). This procedure generates one N -step self-avoiding
walk w uniformly from SN. Here No is a fixed small integer
(e.g. No = 10).

1. If N $ No, then generate an N-step walk w by NRSS and
then stop.

2. (N >No) Set N1 = LN/2J and N2 = N- N1.
3. Recursively perform DIM(N1) and DIM(N2), yielding the

self-avoiding walks w1 and w2 respectively.

9.3. STATIC METHODS

4. Set w = w1 o w2 , the concatenation of w2 to w1• If w is self­
avoiding, then stop; otherwise, return to Step 2 and start
over.

309

We remark that NRSS in Step 1 could be replaced by any other method
that generates self-avoiding walks uniformly.

We shall use the following lemma to see that the end product w is in fact
uniformly distributed, as well as to investigate the efficiency of dimerization.

Lemma 9.3.1 Let M and N be positive integers. Let v1, v2 , ••• be inde­
pendent self-avoiding walks uniformly distributed on SM, and let <p1 , <p2 , .•.

be independent self-avoiding walks uniformly distributed on SN. For each
i ;::: 1, let t/i denote the concatenation of <p; to vi. Let r be the smallest i
such that t/J; is self-avoiding. Then t/J" is uniformly distributed on SM +N,

and
E(r) = CMCN.

CN+M

Proof. For any fixed i we have

Pr{ t/Ji is self-avoiding} = CM +N ;
CMCN

call this quantity p. Then r has a geometric distribution, i.e.

Pr{ r = i} = (1 - p)i-lp (i ~ 1)

(9.3.2)

so E(r) = 1/p, which proves (9.3.2). Now let w be any fixed (M + N)-step
self-avoiding walk, and let w' and w" be the unique M-step and N-step
walks whose concatenation w' ow" is w. Then

00

Pr{tP" = w} = L Pr{r = i and t/Ji = w}
i:l
00

= :l:(l- p)i-t Pr{v; = w' and <p; = w"}
i:l

= f:(l- p)i-1_1 ~
i:l CM CN

1 =
which proves the lemma. 0

This lemma shows that in the procedure DIM(N), the final walk w is uni­
formly distributed provided that the walks w1 and w2 are uniformly dis­
tributed. We know that this will be true if Nt and N2 are small enough

310 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

(since Step 1 is completely reliable), and so the uniformity of w follows by
induction on the number of levels in the recursion.

We now shall discuss the efficiency of dimerization, under the scaling
assumption (1.1.4), i.e.

CN """ ApN N'Y-l,

For simplicity, we assume N = 2k N0 , where k is the number of levels
of recursion. Let TDrM(N) denote the expected amount of time for the
procedure DIM(N) to produce a walk. By (9.3.2), the average number
of pairs of (N /2)-step walks that must be generated before we get a pair
whose concatenation is self-avoiding is (CN/2) 2 f CN, which is asymptotic to
A(Nf4)'Y- 1 by the above scaling assumption. This gives us the recursive
relation

TDIM(N) ""BN'Y-1(2TDIM(N/2))

(where B = A/4-r-t). (We have omitted the amount of time required to
check whether the two dimers intersect each other, but since this time is
O(N), it will be seen to be negligible compared with 2TDIM(N/2), the time
required to generate the two dimers.) Iterating this relation k times (and
assuming the approximate validity of our scaling assumption all the way
down to No) yields

T ""' (2B N-r-1)k 71 - d Ndtiog:~ N +d:~
DIM(N)"' 2(-y-l)k(k-l)/ 2 DIM(No)- 0 '

where the di are independent of N:

r-1
dt = -2-,

r-1 5-3r
d2 = - 2- + log2(2B) = - 2- + log2 A,

(9.3.3)

and do depends on No. We thus conclude that the growth of TDrM(N) is
slower than exponential in N. We also notice that the anticipated values
for d1 are small: according to (1.1.11), we expect dt to be 11/64 in two
dimensions, 0.081 ... in three, and 0 in four or more dimensions. In par­
ticular, since it is known rigorously that r = 1 in five or more dimensions
(see Theorem 6.1.1), the above argument can be made into a rigorous proof
that TvJM(N) grows polynomially in five or more dimensions. We also note
that d2 is small in high dimensions: in d = 5 we have the rigorous bound
d2 = 1 + log2 A :$ 1 + log2 1.493 $ 1.58, and it is even smaller for d ~ 6
(see Remark following Theorem 6.1.1).

It is tempting to try to squeeze more data out of dimerization than just
the information contained in the final N -step walk. For example, to esti­
mate v as described at the beginning of Section 9.1, one might try to use all
the generated subwalks to get estimates of (lw(N/2i)l2 1} N/ 2' fori= 0, ... , k.

9.3. STATIC METHODS 311

This will give an unbiased estimate for each i, but the k+l estimates will be
mutually correlated; this makes it difficult to find a confidence interval for v
using classical linear regression theory (Section 9.2.1). Things look better if
we are trying to estimate 'Y· For n = N, N/2, ... , N/211:-1, let rnli] denote
the number of attempts needed to produce the j-th n-step self-avoiding
walk (i.e. the number of pairs of (n/2)-step walks that are concatenated
after the (j- 1)-th success until the j-th success). As discussed above,

E(rnUD- 4:-.1 n'Y-t,

so one could try using linear regression here. If we think of repeating
DIM(N) indefinitely to produce an infinite sequence of N-step self-avoiding
walks, then one can easily see that all of the random variables rn[.i] (n =
N, N/2, ... , N/211:-t, j ~ 1) are independent. (This is essentially because
the number of attempts needed to generate an n-step walk is independent
of the walk itself.)

Suppose that we wish to generate m N -step walks by dimerization and
use the rn[.i] data. to estimate 'Y· At the top level, we get m indepen­
dent observations of rN[l]. At the next level, we get a random number
of independent copies of rN/2[·]: in fact, this random number is exactly
2(rN[l]+· .. +rN[m]). Thus there is some dependence between the data at
different levels, but one can argue that it is negligible when m is large. A
more serious difficulty with this scheme is its efficiency. It produces much
more data for small n than for large n (in fact, more than twice as much
data for N /2i+l than for N /2i), but this is where we have the least confi­
dence in our scaling assumption. So it is not clear how useful this method
can be for estimating 'Y·

9.3.3 Enrichment

The enrichment method attempts to overcome the high attrition rate of
simple sampling by reusing intermediate-length walks many times. This
method was originally used by Wall and Erpenbeck (1959). The basic
procedure requires two integer parameters, s and t. We first attempt to
generate s-step self-avoiding walks by NRSS (or a similar method). Each
time that we get an s-step walk, we make t (identical) copies of it and we at­
tempt to extend each copy independently by NRSS to length 2s. Similarly,
each time that we get a self-avoiding walk of length 2s, 3s, ... , we make t
copies of that walk, each of which then evolves independently. The result
will be a collection of self-avoiding walks of various lengths (all multiples of
s). There will be a great deal of correlation between some of these walks,
because they will have exactly the same first s (or 2s, or 3s, ...) steps;

312 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

but any two walks which are not extensions of copies of the same initial
s-step walk will be statistically independent. Thus the enrichment method
produces several independent groups of self-avoiding walks, but the walks
within each group are highly correlated. Finding the correct statistical
approach to handling these correlations remains an open problem.

Let M~.:~ denote the number of ks-step walks that are produced while
performing this method. Then M, is the number of independent groups;
this number in practice is likely to be fixed in advance by the experimenter
(of course, M~.:~ is random for k ~ 2). In the subsequent analysis, we shall
assume for convenience that M, = 1. The probability that a single attempt
to extend a ks-step walk to a (k + 1)s-step walk succeeds is

We can think of M,, M2,, •.• as a branching process in which M~.:~ represents
the number of "individuals" alive in the k-th generation, and each individual
reproduces independently, the number of offspring of an individual being
a binomial random variable with parameters t and p ~ (f.l-/(2d- 1))'. No
individual survives more than one generation. We can also think of every
individual having t offspring, but each offspring only having probability p
of reaching maturity. For more about branching processes, see for example
Feller {1968) or Karlin and Taylor (1975). Strictly speaking, pis different
for each generation, so we really have a time-inhomogeneous branching
process. However we are not going to prove anything rigorously here, and
it will be convenient to ignore this fact..

Given the number of js-step walks, the expected number of (j + 1)s-step
walks produced is

E(M(i+t)•!Mi,) = tpMi••

and by induction we conclude that E(M~.:~) = (tp)k. If tp < 1, then E(Mkl)
decays exponentially: i.e. the branching process dies out exponentially fast.
In this case, we do not expect to observe many long walks, and this method
should not be much of an improvement over ordinary NRSS. If tp > 1, then
there is a positive probability of a population explosion: that is, of M~.:~
increasing exponentially forever. This will lead to an enormous group of
highly correlated walks. If tp = 1, then the branching process is "criti­
cal": it will die out eventually, but the expected time until this happens is
infinite. This should produce some large walks, but there can be no pop­
ulation explosion of a single group. The preceding intuitive arguments are
supported by the theory of branching processes. (This three-way classifi­
cation is a hallmark of critical phenomena; in fact, the above branching
process is essentially the same as percolation on an infinite tree in which

9.3. STATIC METHODS 313

every site hast+ 1 neighbours.) From this discussion, we conclude that the
best choice of parameters is to take t equal to 1/p, i.e.

(2d- 1).
t~ --

Jl.

One can improve the enrichment method by combining it with the
dimerization approach, as follows. Suppose that a self-avoiding walk w
of length ks has just been generated. Make t copies of this walk. For
each copy, generate an s-step self-avoiding walk (by NRSS or some other
method) completely independently of w, and then try to concatenate it with
w. If the result has no intersections, then we have successfully produced
a (k + l)s-step self-avoiding walk, which we can now copy t times, and so
on; otherwise, the attempt fails, and this copy of w is no longer used. The
probability of a success for such an attempt is

(by the usual scaling assumption (1.1.4)]. The above discussion then sug­
gests taking t to be the inverse of this probability. (Note that allowing t to
vary with k does not bias our results, whereas allowing t to depend upon
the generated walks could easily introduce significant biases.) This method
appears to be significantly more efficient than ordinary enrichment, but of
course it still has the problem that walks within groups are highly corre­
lated. Variants of this method have been used by Grishman (1973) and
Rapaport (1985).

A closely related method has been proposed by Redner and Reynolds
(1981). Its philosophy is a bit different, in that it estimates the suscep­
tibility and other generating functions directly. A simple version of their
method may be stated as follows.

Redner-Reynolds Algorithm. This algorithm generates random
sets of self-avoiding walks A; C S; (i ;:::: 0). It requires a
parameter z between 0 and 1. We denote the 2d (positive
and negative) unit vectors of zd by e1, •.. , e2d.

1. Let A0 be the set consisting of the 0-step walk at the origin.
Set i = 0. (Initially, Ak is empty for every k ;:::: 1.)

2. Independently, for each walk w in A;, and for each j =
1, ... , 2d: With probability 1- z, do nothing; otherwise (i.e.
with probability z) try to add a step ei tow, and if the result
is self-avoiding, then put it in Ai+l·

3. Increase i by one and go back to Step 2.

314 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

The algorithm stops when some Ai is empty. This algorithm is essentially
a direct exact enumeration procedure in which each possibility is only pur­
sued with probability z. Any given N-step self-avoiding walk is generated
with probability zN and so the expected cardinality of AN is CN zN. Thus
the total number of generated walks is an unbiased estimator for the sus­
ceptibility:

In particular, for the interesting case z < Zc = p-1 , the Redner-Reynolds
algorithm terminates in finite time with probability one. One can just as
easily get estimates of other quantities: for example, the sum of the squares
of the end-to-end distances of all of the generated walks is an unbiased
estimator of x(z)6(z)2 , where 6(z) is the correlation length of order two
defined in (1.3.18).

9.4 Length-conserving dynamic methods

In this section we shall look at dynamic Monte Carlo methods that gen­
erate walks having a fixed number of steps N. Each method of this type
corresponds to a Markov chain that takes a self-avoiding walk and tries to
change it in a random way to get another self-avoiding walk of the same
length. The Verdier-Stockmayer algorithm, described in Section 9.1, is an
example of such a method.

The algorithms that we shall consider in this section are of the following
form.

Generic Fixed-Length Dynamic Algorithm. Generates a Markov
chain {wit) : t = 0, 1, ... } on the state space SN which is
reversible with respect to the uniform distribution on SN.

1. Let w[o) be any self-avoiding walk in SN. Set t = 0.
2. Use a certain randomized procedure to define a new walk

w = (w(O), ... ,w(N)), which is not necessarily self-avoiding.
3. If w is self-avoiding, then set wlt+l] = w; otherwise, set

wlt+t) = wit].
4. Increase t by one and go to Step 2.

Usually, it will be fairly routine to check reversibility, but questions about
irreducibility (ergodicity) may require some work.

Before going on, we first make some remarks about conventions for this
section. We shall always use N to denote the length of the walks being
generated; N is an arbitrary integer which has been fixed (by the person

9.4. LENGTH-CONSERVING DYNAMIC METHODS 315

running the experiment). The state space of the corresponding Markov
chain is SN. If the algorithm changes the first part of the current walk,
then its initial point may no longer be the origin (as in Step 3(c) of the
V-S algorithm); in such a case, we will always implicitly assume that the
resulting walk is translated so that its initial step is the origin, thereby
staying in the set SN. (Alternatively, we can think of SN as the set of
equivalence classes of all N-step self-avoiding walks modulo translation;
then the starting point of a generated walk is irrelevant, so there is no need
to worry about translating back to the origin.) The transition probabilities
will always be written P(·, ·).

9.4.1 Local algorithms

A local algorithm operates on walks by attempting to change only a few
contiguous sites (and bonds) of the current walk at a time. The Verdier­
Stockmayer algorithm is the prototype of this class of methods. Typically, a
local algorithm chooses a small subwalk of the current walk at random, and
attempts to replace it with a different (self-avoiding) subwalk having the
same length and the same endpoints (unless the chosen subwalk includes
an endpoint of the entire walk, in which case that endpoint may move). We
keep the new walk if it is self-avoiding and reject it otherwise. The sub walk
that we delete may uniquely determine the subwalk that replaces it (as in
Step 3(a) of the V-S algorithm); alternatively, each possible subwalk may
have a corresponding list of possible replacements, from which one must be
chosen at random (as in Steps 3(b) and 3(c) of the V-S algorithm). Some
examples are given in Figure 9.3.

The main theoretical result about these algorithms is that none of them
is irreducible: in fact, for any given initial self-avoiding walk, the number
of different walks that can be obtained from this walk by such an algorithm
is exponentially smaller than CN (for large N). Before we prove this, we
shall first make our terms more precise.

Let k ~ 1 be a fixed integer, and let w and w' be N-step walks. J'hen
we say that w can be transformed into w' by a k-site move if there exists an
i (0::; i::; N- k + 1) such that w(j) = w'(j) for every j == 0, 1, ... , i -1, i +
k, ... , N-that is, if wand w' are the same except for at most k contiguous
sites. (Observe that the initial points of w and w' may be different if i = 0;
similarly for their last points if i = N- k + 1.) We say that an algorithm
is a k-site algorithm if the following holds: P(w, w') > 0 only if w can be
transformed into w' by a k-site move. Thus the V-S algorithm is a 1-site
algorithm. Finally, a length-conserving algorithm is said to be local if it is
a k-site algorithm for some finite k. (Here, k must be independent of N;
the term "algorithm" technically refers to a collection of algorithms, one

316 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

..... _j - 1 1 -
(a) (b)

- ··· .. ~

(c) (d)

Figure 9.3: Some local length-conserving transformations. The transforma­
tion of (b) depicts the movement of an endpoint. The Verdier-Stockmayer
algorithm uses (a) and (b), which are "one-site moves". Transformations
(c) and (d) are "two-site moves" ((d) is shown in three dimensions].

for each N, but they are really all defined by exactly the same rules, so we
use the word algorithm in the singular.)

We can define the "most general" k-site algorithm according to the
recipe for the Generic Fixed-Length Dynamic Algorithm, where Step 2 is
designed to allow transitions to any w into which w[t) can be transformed by
a k-site move. It is not hard to guarantee reversibility (Equation (9.1.6)];
for example, we can use the following rule.

2. Choose I uniformly at random from {0, 1, ... , N- k + 1}.
Set w(l) = w[11(1) for every I < I and every I ~ I+ k. If
0 < I < N- k + 1, then randomly choose a (k + 1)-step self­
avoiding walk w• from among those walks in Sk+1 satisfying
w*(k + 1)- w*(O) = w[1l(I + k)- w[1l(I- 1). If I is 0 or
N- k + 1, then randomly choose a k-step walk w• from S~c.
Then w(I), ... , w(I+ k - 1) are obtained by translating w•
so that it begins at w[1l(J- 1) (or, if I= 0, so that it ends
at w[1l(k)).

Then for any two distinct N -step self-avoiding walks w and w',

P (w, w') = "" F.· (w w') ---,---:-:----:-.---:;-;----:-;-:-
1 [N -k 1

N-k+2 {;;t ' ' ck+ 1(w(i-l),w(i+k))

9.4. LENGTH-CONSERVING DYNAMIC METHODS

+(Fo(w,w') + FN-k+t(w,w'))_!_]
Ck

= P(w',w),

317

where F;(w,w') is 1 if w(l) = w'(l) for every I < i and every I ~ i + k,
and it is 0 otherwise. Thus we see that P is symmetric, and moreover that
P(w,w') > 0 if and only if w can be transformed into w' by a k-site move.
We shall call this algorithm the Maximal k-Site Algorithm (MAX(k)).

Observe that two N -step walks w and v are in the same ergodicity class
of MAX(k) if and only if there exists a finite sequence of N-step walks
w:: w(0),w(1), •.• ,w(m) = v such that w(i) can be transformed into w(i+l)

by a k-site move for every i = 0, ... , m - 1. In particular, any ergodicity
class of any other k-site algorithm is contained in an ergodicity class of
MAX(k).

It is not hard to see that the Verdier-Stockmayer algorithm is not ir­
reducible in general. In Z2 , the 17-step walk ENW2S2E5N2W2SE (Figure
9.2 in Section 9.1) cannot be transformed into any other self-avoiding walk
by a 1-site move. We say that this walk is frozen (with respect to 1-site al­
gorithms). In Z3 , the V-S algorithm is not irreducible because of knot-like
configurations: Figure 9.4 shows a 20-step walk which is in a different er­
godicity class from, say, the straight walk for any 1-site or 2-site algorithm.

Figure 9.4: A knot-like walk in Z3 which cannot be transformed into a
straight walk using 1-site or 2-site moves.

The observation that 1-site algorithms have frozen configurations in Z2

is generalized in the next theorem.

318 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

Theorem 9.4.1 Let d = 2. For any integer k ;::: 1 and any r ;::: k, there
exists a (6r + 11)-step self-avoiding walk which cannot be transformed into
any other (6r + 11)-step walk by k-site moves.

The idea of the proof is the following construction. Let !/J(r) be the {6r+ 17)­
step walk

NrEsr+tvv2Nr+2Essr+2VV2Nr+lESr

(see Figure 9.5). If r ;::: k, then !/J(r) is frozen under k-step moves. The
details of the proof are given in Section 9. 7 .2. VVe remark that the conclu-

............. _

r

Figure 9.5: The walk !/J(r) from the proof of Theorem 9.4.1.

sions of this theorem are not restricted to lengths of the form N = 6r + 17.
In fact, for every k it is true that for all sufficiently large N there exists an
N -step self-avoiding walk which is frozen with respect to k-site algorithms
(Madras and Sokal (1987)].

The next theorem discusses the cardinality of the largest ergodicity class
(or CLEC for short) of local algorithms. It proves that for d = 2 or 3 the
CLEC is exponentially smaller than the cardinality of the entire state space.
Thus, even if we ran a Monte Carlo experiment for an infinitely long time
using a local algorithm, we would only observe a small fraction of all N -step
self-avoiding walks.

9.4. LENGTH-CONSERVING DYNAMIC METHODS 319

Theorem 9.4.2 Let d = 2 or 3, and let k be a positive integer. Let
CLECk,N be the cardinality of the largest ergodicity class of MAX(k) (for
N -step walks). Then

limsup(CLECk,N) 11N < J.l.
N->oo

The proof of this theorem relies on Kesten's Pattern Theorem. The idea is
that there are certain patterns that cannot be changed by k-site moves, and
these patterns can occur many times on a self-avoiding walk. (Of course,
the pattern depends on k.) A walk on which many such patterns occur must
be in a small ergodicity class, since only some parts of the walk are able to
change. But such patterns must occur many times on all but exponentially
few walks, so those walks which are most able to change are necessarily
in a small ergodicity class. The full proof is given in Section 9.7.2 for two
dimensions. The proof will work in any dimension, as long as the existence
of these special patterns is proven. This has been done in three dimensions
by Madras and Sokal (1987), but it has not been done in four or more
dimensions.

The practical implications of the nonergodicity (i.e. lack of irreducibil­
ity) of local algorithms are somewhat controversial. On the one hand, if
your sole wish is to study "static" properties of a single self-avoiding walk
(or a linear polymer), then the nonergodicity of local algorithms together
with their long autocorrelation times (see below) should convince you to
look at other algorithms. On the other hand, if you are interested in the
dynamic properties of real polymers, then local moves are a better model
for how real polymers move than are, say, the pivots of Section 9.4.3. Also,
in more complicated systems (e.g. many polymers, or strong attractive in­
teractions between monomers) other methods may be infeasible, and so one
has little choice but to use local moves and hope that the systematic bias
due to nonergodicity is negligible.

To conclude our discussion of local algorithms, we shall briefly discuss
their autocorrelation times. Technically, they should be infinite, since non­
ergodicity prevents us from ever reaching the desired equilibrium distribu­
tion; so instead our discussion will apply either to the Markov chain whose
state space is the ergodicity class of the straight walk, or to a Markov chain
which allows self-intersecting walks (perhaps with reduced probability).

For each N-step walk w, let g(w) denote the mean distance between
pairs of sites on w:

g(w) = N(N1 l) 2: lw(i)- w(j)l.
+ i~j

320 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

Then under the usual scaling assumption that the distributionofg(w) scales
likeN",

> t N 2+2v Tint,g _ cons . . (9.4.1)

This follows from Corollary 9.2.3, since the variance C9 (0) of g(w) scales like
N 2", and since lg(w) - g(w')l = 0(1/ N) whenever w can be transformed
into w' by a local move. The same lower bound also holds for ~"P' by
(9.2.27). It is generally believed that r~,P and Terp are in fact proportional
to N2+2" for local algorithms that allow a wide enough class of moves [see
Kremer and Binder (1988) for a discussion; note that their definition of
r differs from ours by a factor of N]. In the "mean-field" case of the VS
algorithm applied to ordinary random walks (with v = 1/2), one can show
that r;xp scales like N 3 = N2+2" [see Appendix 4.1 of Doi and Edwards
(1986)).

9.4.2 The "slithering snake" algorithm

A different kind of length-conserving dynamic algorithm was devised by
Kron (1965) and by Wall and Mandel (1975) [see also Kron et a/. (1967)
and Mandel (1979)]. The basic move of the algorithm is to remove a bond
from one end of the current walk while simultaneously trying to add a
bond to the other end (rejecting the result if it is not self-avoiding). For an
explicit description, use the following procedure as Step 2 in the Generic
Fixed-Length Dynamic Algorithm.

2. Generate a random variable X which equals 0 with probabil­
ity 1/2 and equals N with probability 1/2. If X = 0, then let
Y be one of the 2d nearest neighbours of w!1l(O) (chosen uni­
formly at random), and set w = (Y,w!1l(O), ... ,wl1l(N -1)).
If X = N, then let Y be one of the 2d nearest neighbours of
wl1l(N), and set w = (w!1l(l), ... ,w!1l(N), Y).

The nature of these moves has earned this algorithm and its variants the
names "slithering snake" and ((reptation" (the latter term is also used in
polymer dynamics to describe similar motions of real polymers). This algo­
rithm is reversible, but it is not irreducible: for example the walk of Figure
9.2 in Section 9.1 is frozen with respect to the slithering-snake algorithm
in Z2 • In fact, for sufficiently large N, it turns out that a positive fraction
of all N-step walks are frozen, because there is a positive probability that
both ends of the walk are ((trapped" and cannot be extended by a single
step in any direction. To be more precise, let ~N denote the set of all walks
in SN which are frozen with respect to the slithering-snake algorithm (that
is, w is in ~ N if and only if the ergodicity class containing w has cardinality

9.4. LENGTH-CONSERVING DYNAMIC METHODS 321

one). Using the terminology of Definitions 7.1.2 and 7.4.1, let P be a proper
front pattern with the property that the 2d nearest neighbours of the first
site of P are all sites of P. Let R be the walk whose sites are the sites of P
in reverse order (see Figure 9.6; note that R is a proper tail pattern). Then
any self-avoiding walk that begins with the pattern P and ends with the
pattern R must be frozen; i.e. SN(P,R) C <PN. Therefore (7.4.7) implies
that

liminf I<PNI > 0.
N-oo CN

(9.4.2)

p(O) r(8)

p(S) r(O)

p R

Figure 9.6: The proper front pattern P = (p(O), ... , p(8)) and the proper
tail pattern R = (r(O), ... , r(S)). Any two-dimensional self-avoiding walk
beginning with P and ending with R is frozen with respect to the slithering­
snake algorithm.

Observe that although the intuitive description of the slithering-snake
algorithm only involves moving one bond at a time, it is not a local al­
gorithm by the definition of Section 9.4.1, because every site changes its
position on the walk at every successful attempt [that is, w[1l(i) corresponds
to w[t+ll(i ± 1)]. To emphasize the difference, we note that the analogue of
(9.4.2) is false for local algorithms (since Kesten's Pattern Theorem 7.2.3
implies that most long walks contain many places where at least a single
1-site move can be made), and also that the analogue of Theorem 9.4.2
is false for the slithering-snake algorithm (since for example all N-step
bridges are in the same ergodicity class as t.he straight self-avoiding walk,
and limN(bN / CN)11 N = 1.) A better lower bound for the size of the largest
ergodicity class is the following:

322 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

Proposition 9.4.3 In the slithering-snake algorithm, denote by EN the
ergodicity class containing the N -step walk from the origin to (N, 0, ... , 0).

Then IENI ~ c~~·

Remark. This bound is indeed better than IENI ~ bN because c~{.; ;:=:
J.lN;::: bN [by (1.2.10) and {1.2.17)).

Proof. Let e;., denote the set of all N-step walks in SN which can be
extended (possibly from both ends) to a 2N-step self-avoiding walk; that
is, w is in t'j:; if and only if there is a walk u E S·m such that w occurs at
some step of(!. Since every 2N-step self-avoiding walk is the concatenation
of two walks in £;.,,we see that c2N ~ 1£;.,12• Thus the proposition will be
proved if we can show that t'N is contained in t'N.

To complete the proof, let wEt;.,, and let e E S2N such that w occurs
at some step of (!. Let e(i) be the lexicographically largest site of (! [so
f1 lies in the half-space x1 ~ u1 (j)]. Now let v be the self-avoiding walk
(u(j), ... , u(j + N)) if j ~ N, or (u(j- N), ... , e(i)) if j > N (so vis anN­
step subwalk of e and has e(i) as an endpoint). Observe that wand v are in
the same ergodicity class, since w can be transformed into v by "slithering"
along the path (]. Since v lies in the half-space x1 :S U1 (j) and has one
endpoint at w(j) on the boundary of this half-space, it can be transformed
into the straight walk whose endpoints are w(j) and w(j) + (N, 0, ... , 0).
Therefore vis in t:N, and hence so is w. This completes the proof. D

Proposition 9.4.3 and (9.4.2) imply that for sufficiently large N, the
cardinality of the largest ergodicity class of the slithering-snake algorithm
on SN, CLECss,N, satisfies

aN-('Y- 1)/ 2 < CLECss,N < 1 _ £

- CN -

for some positive constants a and £. Of course, the lower bound is only
rigorous if we can prove the expected scaling behaviour CN "" AJ.lN N"'~- 1 •
We do know that 1 exists and equals 1 in five or more dimensions (see
Section 6.1), so there CLECss,N/CN stays bounded away from both 0 and
1; it is not known whether this ratio goes to 0 in 2, 3, or 4 dimensions.

9.4.3 The pivot algorithm

The preceding dynamic algorithms only attempt to move a few bonds at
a time. In contrast, the pivot algorithm attempts to move large pieces of
the walk at every iteration. These big moves are more likely to be rejected

9.4. LENGTH-CONSERVING DYNAMIC METHODS 323

than are local moves, but a success is typically rewarded by a large change
in global observables such as end-to-end distance.

The pivot algorithm picks a "pivot site" at random on the current walk,
breaks the walk into two pieces at that site, and then applies a randomly
chosen symmetry operation of zd to one piece, using the pivot site as the
origin. As usual, the result is accepted if and only if it is self-avoiding. This
algorithm was originally used by Lal (1969), and has subsequently been re­
discovered by several authors (see the Notes at the end of this chapter). As
we shall see, the pivot algorithm is remarkably efficient for the investiga­
tion of global observables: it requires about 0(N log N) computer time to
generate an "effectively independent" observation. (This is about as good
as one has the right to expect, since it takes time O(N) just to write down
an N-step walk!)

. To give a formal description of the pivot algorithm, let us first consider
the symmetry group of zd. To be precise, let gd be the set of orthogo­
nal linear transformations of Rd which leave the lattice zd invariant. In
two dimensions, g2 has eight members: two axis reflections, two diagonal
reflections, rotations by ±rr/2 and rr, and the identity. For general d, a
transformation g in gd is completely determined by its action on the d pos­
itive unit vectors e1, ... , ed of zd. Since each g(e;) must be a unit vector
of zd, g can be uniquely specified by a permutation rr of { 1, ... , d} and
numbers !t, ... , !d = ±1 via the relations

(9.4.3)

Thus gd has 2dd! members. Next, observe that each g in gd leaves the
origin fixed (since g is a linear transformation). For every g in gd and x
in zd, define Uz to be the corresponding affine transformation that leaves
x fixed, i.e.

gz(Y) = g(y- x) +X for every y E zd.

We can now describe the basic version of the pivot algorithm by using
the following Step 2 in the Generic Fixed-Length Dynamic Algorithm.

2. Choose an integer I uniformly at random from {0, 1, ... , N-
1}. Set x =wl1l(I) (the "pivot site"). Choose aGuniformly
at random from gd· Set w(l) = wl11(1) for every I $ I and
w(l) = G:r(wl11(1)) for every I > I.

As we shall see, this procedure is reversible and irreducible. We can get
variants of this algorithm if we choose I or G from some nonuniform dis­
tribution. We shall also discuss irreducibility and reversibility of these
variants below. As a different kind of variant, we could always pivot the

324 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

shorter part of the walk, leaving the longer part fixed. This should improve
the efficiency of the algorithm without changing the Markov chain in any
important way.

It is not hard to check reversibility with respect to the uniform distri­
bution on SN. Suppose that w and w' are distinct self-avoiding walks such
that P(w,w') > 0. There could be several ways to get from w tow': specif­
ically, suppose that there are m possible pairs {i(j), gU>) (I ~ j ~ m) such
that applying the operation g(j) tow with pivot site w(iU)) will produce
w'. Then

m

P(w,w') = L Pr{I = i(j)} Pr{G = gU>}.
i=1

Observe that applying the operation (gU>)- 1 tow' with pivot site w'(i(j))
will produce w. Therefore, we see from the above equation that P(w, w') =
P(w', w) in the original algorithm, as well as in any variant that satisfies

Pr{G = g} = Pr{G = g- 1} for every g in (}d.

We shall now consider the irreducibility of the pivot algorithm and also
of variants which choose I and G from possibly nonuniform distributions.
First of all, since the angle between the i-th and (i + 1)-th step of the walk
can only change when I = i, such a variant cannot be irreducible unless we
require Pr{I = i} > 0 for every i = 1, ... , N- 1. Also, if Pr{I = 0} = 0,
then irreducibility fails because the direction of the first step never changes.
(Of course, if the observables being measured are invariant with respect to
the symmetries of the lattice, then it cannot hurt to take Pr{l = 0} = 0.)
Thus the interesting questions about irreducibility of the variants arise when
some symmetries are allowed to have zero probability. The following result
holds in every dimension d 2: 2.

Theorem 9.4.4 The pivot algorithm is irreducible, as is any variant which
gives nonzero probability to all d reflections through coordinate hyperplanes
Xi = 0 and to all rotations by ±1rj2 (which leaved- 2 axes fixed). In fact,
any walk in SN can be transformed into a straight walk by some sequence
of at most 2N - 1 such pivots.

The proof will be given in Section 9.7.3. The basic idea is that if we
consider a snug box around a walk, then we can try to "unfold" the walk
by performing a reflection through one of the faces of the box.

The above theorem remains true if we replace ±1r /2 rotations by any
set of symmetries that contains, for every distinct i and j in { 1, ... , d}, a
symmetry that sends ei to ej and another that sends ei to -ei (for example,
the set of all reflections through hyperplanes x; = Xj or Xi = -xi). The

9.4. LENGTH-CONSERVING DYNAMIC METHODS 325

proof is the same. It is clear that some such set of symmetries must be used;
notice that if we only allowed reflections through coordinate hyperplanes,
then we could never change the angle between consecutive steps, and so
the total number of right-angle turns in the walk could never change (in
particular, straight walks would be frozen). .

Some additional results about irreducibility of variants in two dimen­
sions are known. If a variant gives nonzero probability to the three ro­
tations ±1r /2 and 1r, then it is irreducible [see Section 3.5 of Madras and
Sokal (1988)]. A variant is not irreducible if we only allow rotations by 1r

(since the number of right-angle turns cannot change) or if we only allow
rotations by ±7r/2 [a counterexample for N = 223 is shown on p. 139 of
Madras and Sokal (1988)]. Finally, if we only allow the two diagonal re­
flections, then we do have irreducibility-in fact, any walk in SN having
exactly k right-angle turns can be transformed into a straight walk by some
sequence of k diagonal reflections [Madras, Orlitsky, and Shepp (1990)]. As
a consequence of this last result, we have

Corollary 9.4.5 Let d = 2. For the transition probability P of the original
pivot algorithm, P 2N- 1(w,w') > 0 for every w and w' in SN.

This means that the "diameter" of the state space of the two-dimensional
pivot algorithm is at most 2N -1 (N -1 pivots to straighten out w, 1 pivot
at the origin, and then N- 1 to make w').

Now that we have seen that the pivot algorithm is a valid method (since
it is reversible and irreducible), it is is time to discuss why it is a good
algorithm. Only a limited part of this discussion will be based on rigorous
proofs; the rest will consist of nonrigorous arguments (scaling theory, etc.)
supported by numerical evidence from computer experiments.

The intuitive picture, which we shall elaborate upon below, is the fol­
lowing. Firstly, since a pivot makes a large-scale change in a walk, it is
reasonable to expect that we will obtain an "effectively independent" con­
figuration (at least with respect to global observables) after relatively few
successful pivots. It will turn out that "relatively few" means about log N.
Secondly, the probability of a particular pivot being accepted will tend to 0
as N --> oo, but as some power law N-P. Since there are no frozen config­
urations, this probability cannot decay faster than N- 1 , and so 0 :=:; p :=:; 1.
(Numerically, pis estimated to be about 0.19 in two dimensions and 0.11 in
three.) Thus one expects a successful pivot in every NP attempts. Recalling
the discussion following (9.2.11), we infer from these first two points that
the integrated autocorrelation time for a global observable should be about
NP log N. Finally, we also have to include the average amount of com­
puter time required per attempted pivot. The amount of work-checking
for intersections, updating arrays, etc.-is at worst proportional to N; so

326 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

suppose that the amount of computer time per attempt is on the order of
N'~. Therefore the amount of computer time required per successful at­
tempt is NP+'I, and the amount of computer time required per "effectively
independent" observation of a global observable is NP+'I log N. We shall
argue below that p + q = 1.

In the remainder of the section we shall elaborate on the intuitive ar­
gument described above. As a guide for the first part, which says that
relatively few successful pivots are needed to get an "effectively indepen­
dent" observation of a global observable, we can consider a simpler model:
the pivot algorithm applied to ordinary random walk. That is, the state
space is now S'N (the set of all (2d)N ordinary walks), and the pivot algo­
rithm now does not care about self-avoidance (so in Step 3 of the Generic
Algorithm, we always set w!t+l] = w). For this model, we can do exact
calculations to prove rigorously that the integrated autocorrelation time
r;"nt,g for the global observable g(w) = lw(N)I 2 is asymptotic to 2logN
as N-> oo (see Proposition 9.7.1 in Section 9.7.3). The same conclusion
holds (except for a constant factor) for the global observables w;(N) and
the squared radius of gyration [Madras and Sokal (1988)].

It is important to observe that the situation is quite different for the
exponential autocorrelation times of the ordinary random walk: in particu­
lar, r:xp,g is asymptotically equal toN as N-> oo for the global observable
g(w) = lw(N)I 2 (Proposition 9.7.1). In fact, the exponential autocorrela­
tion time for the entire chain, r:xp• is also asymptotically proportional to
N [Madras and Sokal (1988)]. It is easy to understand the situation for
local observables: consider for example the angle between the 15-th and
16-th steps. The probability that this changes in a particular pivot is 1/ N
times a constant, since the angle can only change when the pivot site is
w(15), which happens with probability 1/N. So both the integrated and
exponential autocorrelation times for this observable should behave like N.

To summarize: global characteristics of walks tend to correspond to
short modes of this system, while the long modes tend to be orthogonal
to the quantities of interest. This emphasizes how the pivot algorithm is
specially designed for looking at global quantities. It is reasonable to expect
this to carry over to the self-avoiding case as well, and results of simulations
seem to indicate that this is indeed what happens. However, proving such
claims rigorously remains an open and apparently difficult problem.

We now turn to the amount of computer time required per attempted
pivot, and its behaviour as N increases. The main issue is how long it
takes to discover whether or not the proposed walk w is self-avoiding. If
we compute all of w and then check for intersections, then each attempted
pivot requires time proportional to N. But we can do better by looking
for self-intersections as we compute w, so that we can stop early if one is

9.4. LENGTH-CONSERVING DYNAMIC METHODS 327

found. We expect that w is most likely to intersect itself in the vicinity
of the pivot site, so we first compute w at the pivot site, and then move
outwards towards both ends of the walk simultaneously, computing w and
checking for self-intersections as we go. We shall now make the description
of this procedure more precise. In doing so, it will be convenient to use the
following notation for integers a $ b satisfying a $ N and b ~ 0:

w(a, b] = (w(max{a, O}),w(max{a, 0} + 1), ... ,w(min{b, N})).

Consider the following procedure for a single attempt of the pivot algorithm
(where w£tJ is the current walk).

(a) Choose the pivot site I and the symmetry Gat random. Set
x = wl11(I), j = 1, and w(I) = wl11(1).

(b) Set w(I + j) = Gz(wl11(1 + j)) (if I+ j =::; N) and set
w(I- j) = wt11(1- j) (if I- j ~ O).

(c) If I+ j =::; N, then check to see if w(I + j) is in the set of
sites w[I- j + 1, I+ j -1). If it is, then the current attempt
fails, so stop; otherwise, continue.

(d) If I- j ~ 0, then check to see if w(I- j) is in the set of sites
w(J- j + 1, I+ j]. If it is, then the current attempt fails, so
stop; otherwise, continue.

(e) If j < max{N- I, I}, then increase j by one and go to Step
(b). Otherwise, the current attempt has succeeded, so set
w£1+11 = w and stop.

Steps (a) and (b) can be performed in time 0(1) (i.e. independent of N).
In addition, Steps (c) and (d) can also be performed in average time 0(1)
with the use of a bit map or a hash table (see the discussion at the end
of Section 9.1), as follows. We begin with an empty bit map (or hash
table); at each step, it will contain the sites of w that have already been
computed. As each new site of w is computed, we check to see whether its
location is still vacant in the bit map; if so, then we add this site to the bit
map, but otherwise we stop because we have found a self-intersection. In
the case of a success, Step (e) requires time O(N) for recording wlt+t] and
reinitializing the bit map. In summary, we see that the total amount of
work is proportional to the number of times that Step (b) is performed (i.e.
the number of times through the "loop"). Define the random variable H(w)
to be the smallest value of j such that w[I - j, I+ j] is not self-avoiding
(and set H(w) = N if w[O, N] is self-avoiding). Thus the amount of work
per attempt is of order E(H(w)). Evidently this is at most O(N), but we
can improve this bound by the following heuristic argument. First we have

Pr{H(w) > k} = Pr{w[I- k, I+ k] is self-avoiding}

328 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

~ Pr{ a 2k-step self-avoiding walk pivoted at its

midpoint is again self-avoiding}
""' const.k-P

where pis the exponent discussed above. We can now estimate the expec­
tation of H(w):

N

E(H(w)) = E Pr{H(w) > k} ~ N1-P.

k=O

Therefore the average amount of work per attempt is of order· N 1-P, and
so p + q = 1 as anticipated. This heuristic argument does in fact agree with
computational experience.

This completes our discussion of why the integrated autocorrelation
times for global observables are believed to be 0(N log N) for the pivot
algorithm.

9.5 Variable-length dynamic methods

In this section we shall discuss two dynamic methods whose state spaces
include self-avoiding walks of various lengths. The Berretti-Sokal algorithm
is the conceptually simplest such method: its state space is the set of all self­
avoiding walks. The "join-and-cut" algorithm has as its state space the set
of all pairs of self-avoiding walks whose lengths sum to some fixed number
N. A third method, the BFACF algorithm, will be discussed in Section
9.6.1: its state space is the set of all self-avoiding walks with specified
endpoints 0 and x for some fixed point x in zd.

When using variable-length methods, the statistical analysis of the data
can be more complicated than our discussion in Section 9.2 indicated. In
that section, we assumed that the estimates from different values of N were
independent. While this is true for fixed-length methods, where different
values of N correspond to different simulations, it will be false for the
algorithms of the present section. Berretti and Sokal (1985) show how to
use maximum-likelihood estimation for their variable-length algorithm; the
techniques developed there can be adapted to other algorithms.

9.5.1 The Berretti-Sokal algorithm

The Berretti-Sokal algorithm is designed to sample from the set of all self­
avoiding walks of all possible lengths. It will be defined precisely below,
but the basic idea is that at each step you either delete the last bond of

9.5. VARIABLE-LENGTH DYNAMIC METHODS 329

the walk or else you attempt to increase the length of the walk by adding
a bond to the end (rejecting the attempt if the result is not self-avoiding).
The state space is

00

S:: USN,
N:O

which is infinite, so we cannot ask for uniform probabilities on all walks. It
is natural, however, to ask for uniform probabilities within each S N. The
Berretti-Sokal algorithm simulates walks in the "canonical ensemble" (in
contrast to the fixed-length "microcanonical ensemble"). This requires a
parameter z > 0 (as in the Redner-Reynolds algorithm of Section 9.3.3).
Each N -step self-avoiding walk is given a weight (i.e. a relative probability)
of zN. The sum of all the weights of walks inS is just the susceptibility x(z).
Using this weight to normalize the probabilities, we obtain the probability
distribution

(9.5.1)

Of course, this only makes sense if x(z) is finite, so we shall henceforth
assume that

O<z<zc=J.l- 1 •

(In physical terminology, z is the "fugacity per bond", and x(z) plays the
role of a "partition function"; also, 1r is a "Gibbs distribution".) Observe
that 1r is a genuine probability distribution on S. The mean square dis­
placement of a walk chosen at random from this distribution is

L lw(lwl)l2?r(w) = L lw(lw1)12zlwl =6(z)2,
wES wES X(z)

which is the square of the correlation length of order 2. Thus we can obtain
information about the critical exponent v2, which is believed to equal v.
Moreover, the canonical ensemble is a natural setting for studying J.l and
r, since the fraction of time that the Markov chain spends in SN (i.e. the
fraction of time that an N-step self-avoiding walk is observed) is

L:: ?r(w) = CNZN ""'A(J.Lz)N N'Y-1

w:!w!:N x(z) x(z)

We shall use (·}z to denote expectation with respect to ?Tz. For future
reference, we note that the mean length of a walk is

(9.5.2)

330 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

[under the usual scaling assumptions, arguing as we did for (1.3.11)]. In
particular, the mean length diverges as z increases to zc.

We now state the algorithm of Berretti and Sokal (1985).

Berretti-Soka/ {B-S) Algorithm. This algorithm generates a
Markov chain {w!11} on the state spaceS which is reversible
with respect to 1f'z.

1. Let w!01 be any self-avoiding walk in S. Set t = 0.
2. Let N = lwl1ll. Generate a random variable X which is

+1 with probability 2dz/(1 + 2dz) and -1 with probability
1/(1 + 2dz). If X= +1, then go to Step 3; if X= -1, then
go to Step 4.

3. Try to add a step to wft]: Choose one of the 2d nearest
neighbours of w!'l(N) uniformly at random; call this point
Y. If Y is not already a site of w!11, then set wft+t] =
(w!1l(O), ... ,w!1l(N), Y); ifY is a site ofw[11, then set wft+l] =
w!11. Increase t by one and go to Step 2.

4. Delete the last step of w!11: If N > 0, then set wft+t] =
(w!1l(O), ... ,wf1l(N- 1)); if N = 0, then set w!1+11 = wft]
(the 0-step walk). Increase t by one and go to Step 2.

It is easy to see that the Markov chain corresponding to the B-S algo­
rithm is irreducible: any N-step walk can be transformed into the 0-step
walk in N iterations, and vice versa. Now let us check reversibility. Let w
be anN-step self-avoiding walk, and let w' be an (N + 1)-step self-avoiding
walk which can be obtained by adding a single step tow. Then

1 zN (2dz 1)
1r(w)P(w,w) = x(z) 1 + 2dz. 2d

and
zN+l 1

1r(w')P(w',w) = x(z) 1 +2dz'

which implies that

1r(w)P(w,w') = 1r(w')P(w',w).

For all other choices of distinct w and w', both sides of the above equation
are 0. And of course the equation is trivial when w = w'. This proves
reversibility with respect to lrz.

We now turn our attention to the autocorrelation times of the Berretti­
Sokal algorithm. Before summarizing what is rigorously known, we shall
give a heuristic argument which provides a pretty good intuition for what

9.5. VARIABLE-LENGTH DYNAMIC METHODS 331

is happening. The first claim is that the autocorrelation times should be
of the same order as the average time required to reach the 0-step walk
from a typical initial walk in the state space. This is because before the
0-step walk is reached, the Markov chain still remembers the first steps of
the initial walk, but the chain forgets everything once the 0-step walk is
reached. Next, consider the process N(t) = lw(c)l, i.e. the length of the walk
at timet. One expects this process to behave more or less like a random
walk on the nonnegative integers having transition probabilities

P(i,i+l)
2dz 1 J.lZ = 2dz + 1 2d J.l = 2dz + 1

P(i, i) =
2dz- J.lZ
2dz+ 1

P(i,i-1)
1

=
2dz+ 1

for moderately large i (the factor J.l in the first line is an approximation
of c;+l/c;, the number of ways in which an average i-step self-avoiding
walk can be extended by a single step). This random walk has a drift of
(J.tz-1)/(2dz+1), which is negative. Thus the expected time for the process
to go from a state No to the state 0 is about N0 divided by the magnitude
of the drift. Finally, suppose that the initial walk wl01 is drawn at random
from the equilibrium distribution r; then the expected time to reach 0 is
about

(N(O)}z 2dz + 1;
1-pz

by (9.5.2), this is asymptotically proportional to {N}~ as z - Zc = J.l- 1•

Thus we conclude from our heuristic argument that rezp should scale like
{N)~ (i.e. like (zc- z)-2].

This argument does quite well in several respects. First, one can do
exact calculations when the B-S algorithm is applied to ordinary random
walks [for which the state space is UNS;.,, and we take 0 < z < Zc = (2d)- 1].

In this case, N(t) is exactly a random walk with drift, and the integrated
autocorrelation time of this observable can be shown to scale like (N}~ [see
Appendix A of Berretti and Sokal (1985)]. Secondly, the random-walk­
with-drift approximation is in fact a lower bound for the actual chain: an
application of Corollary 9.2.3 (with g = N, A = 1, and the assumption
that the probability distribution of N, in particular its standard deviation,
scales like {N)z) shows that

r;nc,N ~ const.(N}~; (9.5.3)

by {9.2.27), this is also a lower bound for r:zp· Thirdly, Sokal and Thomas
{1989) proved a rigorous upper bound, subject to the assumption that CN

332 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

scales like JJN N-r- 1, that

r!zp :5 const.(N)!+-r .. (9.5.4)

The exponent 1 +"'(is near 2 in all dimensions (and in fact equals 2 when
d ~ 5; see Section 6.1), so the above two bounds place pretty narrow limits
on the scaling behaviour of r~zp· The exact behaviour remains an open
question. (We remark that the proof of Sokal and Thomas also works for
the B-S algorithm applied to ordinary random walks, where"'(= 1.)

Lastly, we mention a slightly weaker bound derived by Lawler and Sokal
(1988), using very different methods:

r;zp :5 const.(N}~'Y. (9.5.5)

Their main tool is a general version of Cheeger's inequality, which in its
original form was a lower bound on the second smallest eigenvalue of the
Laplacian on a compact Riemannian manifold [Cheeger (1970)]. Cheeger's
inequality has recently found a wide range of applications in problems in­
volving rates of convergence to equilibrium in Markov chains [see Diaconis
and Stroock (1991) and references therein, as well as in Lawler and Sokal
(1988)].

Finally, we note that one could implement a variant of the B-S algorithm
in which one is allowed to add or delete steps from either end of the walk.
We can regard this as a combination of the B-S and the "slithering snake"
algorithm. The resulting algorithm should behave very much like the B-S
algorithm. A form of this variant was used by Kron et al. (1967).

9.5.2 The join-and-cut algorithm

The join-and-cut algorithm was invented by Caracciolo, Pelissetto, and
Sokal (1992) as an efficient method for estimating the exponent "Y· This
algorithm works on a rather different state space: the set of all pairs of self­
avoiding walks whose combined length is fixed. To formalize the definition,
let M be a fixed positive integer. We define 'TM to be the set of all pairs
(f/J, !;') of self-avoiding walks such that 17/JI +liP I= M:

M

'TM := U Sm X SM-m•
m=O

We shall see that the equilibrium distribution of the algorithm is uniform
on T M, and hence the distribution of the length of the first walk in the pair
is

9.5. VARIABLE-LENGTH DYNAMIC METHODS

from which one can try to estimate 'Y·
The algorithm is as follows.

The Join-and-Cut Algorithm. This algorithm generates a Mar­
kov chain {Xl1l} = {(1/;[11, <p[1l)} on the state space TM which
is reversible with respect to the uniform distribution on T M.

1. Let X[0] = (1/;[01, <p[01) be any pair of self-avoiding walks in
TM· Set t = 0.

2. Apply one iteration of the pivot algorithm (see Section 9.4.3)
to ,pltl, obtaining ~. Then apply one iteration of the pivot
algorithm to <pl11, obtaining ljJ. (Alternatively, with the hope
of reducing autocorrelation times, we could replace "one
iteration" by "some fixed number npiv of iterations", and
"pivot algorithm" by "some length-conserving ergodic algo­
rithm whose equilibrium distribution is uniform".)

3. (Join) Let (= ~ o ljJ be the concatenation of ljJ to~.
4. (Cut) Choose J uniformly at random from {0, ... , M}. Set

,P' = (((O), ... ,((J)) and <p1 = (((J), ... ,((M)). If both ,P'
and <p' are self-avoiding, then set ,p£1+11 = ,P' and <p[t+t] = <p';
otherwise, set ,p[t+l) = ~ and <p(t+l) = t(J.

5. Increase t by one and go to Step 2.

333

We emphasize that in Step 3 one does not need to check whether the walk
(is self-avoiding. For purposes of comparison, however, let us consider
also a variant of the join-and-cut algorithm in which we do perform this
check. Specifically, this variant is obtained by replacing Steps 3 and 4 by
the following:

3'. (Join) Let (= ~ o ljJ be the concatenation of ljJ to ~. If (
is self-avoiding, then go to Step 4; otherwise, set 1/J(c+t] = ~
and <p[e+t] = tjJ and go to Step 5.

4'. (Cut) Choose J uniformly at random from {0, ... , M}. Set
,p[t+IJ = (({0), ... , ({J)) and <p[t+t) = (((J), ... , ((M)).

(Observe that whenever Step 4' is performed, the resulting 1/J[I+l] and cp[t+t]

are necessarily self-avoiding.)
The transition probability matrix P of the join-and-cut algorithm can

be expressed as the product of two transition matrices Pa and Pb, which
correspond respectively to Step 2 and to Steps 3 and 4 of the algorithm.
To describe Pa and Pb more precisely, let Q be the transition matrix of
the ergodic length-conserving algorithm used in Step 2 for single walks,
defined with respect to the state spaceS of all self-avoiding walks (thus the

334 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

ergodic classes of Q are precisely the sets SN, and Q(w,w') = 0 whenever
lwl :/: lw'l). Then

Pa((tPt, 'Pt), (tP2t 'P2)) = Q(tPlt tP2)Q(cpt, 'P2)

(for (tPi, 'Pi) in 'T M, i = 1, 2). If the length-conserving algorithm is reversible
(i.e. if Q is symmetric), then so is Pa; more generally, if the restriction of Q
to each SN has the uniform distribution as a stationary distribution, then
the same is true for the restriction of Pa to each SN, x SN2 • To describe
Pb, suppose that (tPlt 'Pt) and (tb2, 'P2) are distinct members of 'TM whose
concatenations tbt o 'Pt and tb2 o 'P2 are the same; then

All other entries of Pa are 0, except for those on the main diagonal (which
represent either a rejection in Step 4 or else the choice J = lfb[tll). Clearly
Pb is symmetric.

Unfortunately, the product of two symmetric matrices is not in general
symmetric; therefore, even if Pa is symmetric (as it is when we use the
pivot algorithm in Step 2), the product PaP& cannot be expected to be
symmetric. Thus the join-and-cut algorithm is not reversible in general.
However its equilibrium distribution is nevertheless uniform on TM, because
both Pa and P& have the constant vector as a left eigenvector, and hence
so does their product. The failure of reversibility is due to the fact that a
single iteration of the algorithm consists of two stages whose order matters:
doing the pivoting followed by the join-and-cut steps. We remark that the
variant of the join-and-cut algorithm corresponding to the transition matrix
P = ! Pa + ! Pb would be reversible (in this variant, at each iteration one
randomly decides either to do Step 2 or else to do Steps 3 and 4).

It is easy enough to prove that the join-and-cut algorithm is irreducible,
as follows. For any length N, let PN be the N-step walk with PN(i) =
(i, 0, ... , 0) for every i. Given any tb in Sm and any cp in SM-m 1 there
exists aT such that QT(fb,pm) > 0 and QT(IP,PM-m) > 0 (assuming that
the restriction of Q to Sm is aperiodic, as it is in the case of the pivot
algorithm). Since it is possible to pick J = m on T consecutive iterations,
we see that pT((tJI,~.p),(Pm 1 PM-m)) and PT((Pm 1 PM-m),(?JI,~.p)) are both
nonzero. The concatenation of Pm and PM -m is PM, which may be cut
successfully at any point, so the irreducibility of the algorithm follows.

It is possible to get some insight into the efficiency of the join-and-cut
algorithm by a combination of rigorous analysis, scaling arguments and
numerical work. We shall-only give a brief description of some of these
results. The reader is referred to Caracciolo et al. (1992) for more details.

9.5. VARIABLE-LENGTH DYNAMIC METHODS 335

First, let us estimate W, the amount of computer work that is required
for a typical attempt to join and cut (that is, for Steps 3 and 4). For a
given ,P, lj>, and J (as produced by Step 2 and-subsequently by Step 4),
let n = ltPI and let L = IJ - nl. Then the attempt to join and cut may
be described as an attempt to transfer the last L steps of ,P to the front
of if> if J < n (or vice versa if J > n). Roughly speaking this is like an
attempt to concatenate two independent self-avoiding walks of lengths L
and M- n (or L and n). Thus if we start looking for self-intersections at
the joining point and work our way outwards, then the probability that we
will not have found one before k steps of both walks have been checked
is approximately the same as the probability that two independent k-step
self-avoiding walks can be concatenated successfully:

Pr{W > k} ~ c2; ""const.k-("Y-1).
cl:

(9.5.6)

We have not included any n-dependence in (9.5.6) because we expect it to
disappear when we average over n (since n, M- n, and L all typically have
order of magnitude M). Therefore the average amountofwork required for
Steps 3 and 4 should be

M

E(W) = EPr{W > k} ~ M2-"Y.
l::O

Recall from Section 9.4.3 that when applying the pivot algorithm to SN
the average work per pivot should scale like N 1-P. This implies that the
expected amount of work for one complete iteration of the join-and-cut
algorithm, in which Step 2 consists of doing some fixed number npiv of
pivots on each of ,pit) and cpl1l, is

. Ml-p + M2--r npav •

By all evidence, p < "'(- 1 in two and three dimensions, and so 1 - p >
2 - 'Yi this implies that the most of the computer work in the join-and-cut
algorithm is used in the pivoting step, even when n~iv = 1.

Suppose for the moment that npiv is very large. Then the join-and-cut
algorithm can be thought of as an "idealized algorithm", in which Step
2 actually produces walks ,P and if> that are independent of ,pltJ and cpltl.
This idealized algorithm is more amenable to rigorous analysis: Caracciolo
et al. (1992) prove that the exponential autocorrelation time is at most
M"Y- 1 (under the usual scaling assumption CN ""ApN N"Y- 1). This is done
by showing that Tezp ~ M"Y- 1 for the variant that uses the idealized Step

336 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

2 in conjunction with Steps 3' and 4' described earlier, and then appeal­
ing to Proposition 9.2.4 (although some extra work is needed, since these
algorithms are not reversible).

Now consider the original join-and-cut algorithm with npiv = 1. Since
the idealized algorithm should be more efficient than the actual algorithm
with respect to the observable n = lt/>[tll, and more generally observables
g(n) that depend only on n, we shall define the exponent h by

"'M-y-t+h Tint,g(n) - · ,

and we can expect that h is positive and hope that it is small. Combining
this with the discussion above, we conclude that the amount of computer
time per effectively independent observation scales like M"Y-l+h M 1-P, i.e.
like M~< where K = 1- p +h. Using the conjectured values of 1 and p
from (1.1.11) and Section 9.4.3 respectively, the bound "'- ~ 1 - p becomes
(approximately)"'-~ 1.15 in Z2 , "'- ~ 1.05 in Z3 , and"'-~ 1 in four or more
dimensions. Caracciolo et al. (1992) argue that in fact K should equal 1
in four or more dimensions, which would virtually make this an optimal
algorithm there. They also report the results of Monte Carlo runs which
lead them to estimate that "' is about 1.5 in two dimensions, which is
significantly better than the Berretti-Sokal algorithm (compare (9.5.3)].

9.6 Fixed-endpoint methods

This section will discuss some dynamic Monte Carlo methods that generate
self-avoiding walks with endpoints that have been specified in advance.

First we shall describe the relevant state spaces. For each x in zd
(x ::/:- 0), we denote by SN(x) the set of all N-step self-avoiding walks w
having w(O) = 0 and w(N) = x. In this section, we shall always assume
that N and llxllt have the same parity, since SN(x) is empty otherwise.
Also, we denote by S(x) = UNSN(x) the set of all self-avoiding walks
having endpoints 0 and x. When generating walks with fixed length and
fixed endpoints, then we want to sample from the uniform distribution on

SN(x):

1r(w):: 1r~(w) == (~)
CN ,X

for every w in SN(x). (9.6.1)

When generating walks from the variable-length fixed endpoint ensemble,
the situation is similar to that of Section 9.5.1. In addition to specifying
the endpoint x, we also specify a parameter z (the "fugacity per bond")

9.6. FIXED-ENDPOINT METHODS 337

between 0 and Zc = Jl-1. We sample from the Gibbs distribution

1
1r(w) = 7r,;(w) = ----lwlzlwl

z .::.(z,z) for every w in S(x), (9.6.2)

where 2(z, x) is the normalizing constant

00 8
S(z,z) = E NzNcN(O,z) = z11Gz(O,z).

N:O uz
(9.6.3)

The variable-length ensemble is the natural choice for studying the critical
exponent Ci 1 ing 1 defined in (1.4.13) by

CN(O, x)"" BJlN Nor,;,.,- 2

This is because the fraction of time that the observed walk has length n is

(9.6.4)

and so we can estimate a,ing by fitting a distribution of this form to the
observed data (for fixed z near J.l- 1 and fixed x).

We remark that the multiplicative factor lwl in (9.6.2) is not there for
any deep reason, but only because this is what the algorithm of Section
9.6.1 naturally gives. By modifying the algorithm, one could get a different
71', but there does not appear to be a good reason to do so.

Recall from Definition 3.2.1 that when llxlh = 1, we can associate each
walk in SN(x) with an (N + 1)-step self-avoiding polygon. Thus any of
the methods discussed in this section can be used to study self-avoiding
polygons simply by fixing x to be a nearest neighbour of the origin. In this
case, we say that we are working with the ensemble of "rooted" polygons:
there is a particular bond (the one joining z to the origin) which must occur
in every polygon of the state space. It is also possible to work with the
ensemble of "unrooted" polygons, where each bond of the current polygon
is allowed to change during the iteration of the algorithm. Then the state
space is the set of all polygons on the lattice (or their equivalence classes
up to translation). There is little difference between the two ensembles in
practice, aside from a factor of N + 1 in their cardina:lities [recall (3.2.1)] and
the orientation of the rooted bond (which is irrelevant for most simulations).
However, the Markov chains that are defined on the two ensembles are
different in a non-trivial way; for example, a proof of irreducibility for the
unrooted ensemble may not work for the rooted ensemble.

338 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

9.6.1 The BFACF algorithm

We shall first discuss an algorithm due to Berg, Foerster, Aragao de Car­
valho, Caracciolo, and Frohlich (for references, see the Notes at the end of
the chapter). This algorithm uses transitions of a local nature to gener­
ate walks in the variable-length fixed endpoint ensemble according to the
distribution given by (9.6.2) and (9.6.3).

The elementary transformations for this algorithm are depicted in Fig-
ure 9.7. Each transformation is determined by choosing a bond of the

..... n -- 1 -- L
Figure 9.7: The elementary transformations of the BFACF algorithm.

current walk [say the bond from w(i) to w(i + 1)] and one of the 2d- 2 lat­
tice directions perpendicular to the bond (let e be a unit vector in the chosen
direction). Let x and y denote the lattice points w{i) + e and w(i + 1) + e
respectively. The transformation then moves the chosen bond by unit dis­
tance in the direction e, so that its new endpoints are x and y. Then there
are now three possibilities, as illustrated in Figure 9.8:

(a) if the original w had w(i- 1) =f. x and w(i + 2) =f. y, then we
add two bonds: the new walkisw = (w(O), ... ,w(i), x, y,w(i+
1), ... ,w(lwl)), and lwl = lwl + 2;

(b) if the original w had w(i- 1) = x and w(i + 2) = y, then
we remove two bonds: the new walk is w = (w(O), ... , w(i-
1),w(i + 2), ... ,w(lwl)), and lwl = lwl- 2;

(c) if the original w had w(i- 1) =f. x and w(i + 2) = y [or,
respectively, w(i-1) = x and w(i+2) =f. y], then the new walk
is w = (w(O), ... ,w(i), x,w(i + 2), ... ,w(lwl)) [respectively,
w = (w(O), ... ,w(i- 1), y, w(i + 1), ... ,w(lwl))]. Here, lwl =
lwl.

[If the chosen bond is the first bond of the walk, then i = 0 and we always
have w(i- 1) =f. x. Similarly, w(lwl + 1) =f. y always.] We shall write AN
to denote lwl-lwl, the change in the number of bonds of the walk for each
possibility; we shall say that (a), (b), and (c) are AN = +2, -2, and 0
transformations respectively.

9.6. FIXED-ENDPOINT METHODS 339

(a) _j. - -J • • z y
w(i) w(i + 1)

• • n z y
(b) -

1 e
z y

(e) ~ - L
z y

Figure 9.8: The three possibilities for a BFACF move, in detail.

To complete the definition of the BFACF algorithm, we need three num­
bers p(+2), p(-2), and p(O) between 0 and 1 (they also must satisfy certain
other conditions; see below).

BFACF Algorithm. This algorithm generates a Markov chain
{wl11} on the state space S(z).

1. Let wl01 be any walk in S(z). Set t = 0.
2. Choose an integer I uniformly at random from {0, 1, ... , jwltll-

1}.
3. Consider the 2d-2 walks w that would be obtained by moving

the I-th bond of w£t) in one of the directions perpendicular
to the vector wl11(I + 1) - w!tJ (I). Choose one of these walks
at random, with probabilities p(lwl-lw[tJI). (If these 2d- 2
probabilities add up to q < 1, then also choose w = w£t] with
probability 1- q.)

4. If w is self-avoiding, then set w!t+tJ = w; otherwise, set
wlt+t] = w!tJ.

5. Increase t by one and go to Step 2.

340 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

The necessary constraints on p(+2), p(-2), and p(O) are given by the fol­
lowing lemma.

Lemma 9.6.1 The BFACF algorithm is well-defined and is reversible with
respect to ,.; if and only if the following constraints are satisfied:

p(+2) = z 2p(-2), (9.6.5)

z2

p(+ 2) 5 1 + (2d - 3)z2 '
(9.6.6)

and

2p(O) + (2d- 4)p(+2) ~ 1. (9.6.7)

Proof. First we consider reversibility. Suppose that w and w are distinct
walks in S(z) such that P(w,w) > 0. On the one hand, if lwl and lwl differ
by 2, then

P(w,w) = I~IP(Iwl-lwl);
the condition (9.1.5) for reversibility in this case reduces to (9.6.5). On the
other hand, if lwl = lwl, then

P(w,w) = l~lp(O),

since there are two possible choices of bond of w that can produce w (for
example, in (c) of Figure 9.8, we get the same result by choosing the bond
joining w(i + 1) to w(i + 2) = y and moving it in the direction z- y]; the
reversibility condition imposes no additional constraint in this case.

Next, we note that the algorithm is well-defined if and only if the sum
of the 2d- 2 probabilities in Step 3 does not exceed 1. There are several
possibilities to consider, depending upon the relative orientations of the
I-th, (I- 1)-th and (I+ 1)-th bonds of wlt] (see Figure 9.9):

(i) All 2d- 2 directions yield ~N = +2: This requires (2d-
2)p(+2) ~ 1.

(ii) One direction yields ~N = 0, while the others yield ~N =
+2: This requires p(O) + (2d- 3)p(+2) ~ 1.

(iii) Two directions yield ~N = 0, while the others yield ~N =
+2: This requires 2p(O) + (2d- 4)p(+2) ~ 1.

(iv) One direction yields ~N = -2, while the others yield
~N = +2: This requires p(-2) + (2d- 3)p(+2) ~ 1.

9.6. FIXED-ENDPOINT METHODS 341

(i) (ii) 1

(iii) ~ or (iv) n
Figure 9.9: Proof of Lemma 9.6.1: relative orientations of three consecutive
bonds.

The inequality of (ii) is redundant, since it follows from those of (i) and
(iii). Next, substituting (9.6.5) into the inequality of (iv) gives

(z- 2 + (2d- 3))p(+2) $ 1, (9.6.8)

which is stronger than the inequality of (i) since z $ Zc < 1. The inequality
(9.6.8) is the same as (9.6.6), and the inequality of {iii) is the same as
(9.6.7), so the lemma is proven. D

Now that we have a continuum of possible parameter values for a valid
BFACF algorithm, we want to find the "best" choices of p(+2), p(-2),
and p(O) (for a given fixed z). Intuitively, we should prefer large values
of these probabilities, so as to reduce the probability of "null transitions"
(i.e. the quantity 1 - q described in Step 3 of the algorithm). Indeed, as
we saw in Proposition 9.2.4 and the remark that follows it, increasing the
off-diagonal elements of the transition matrix can only decrease the auto­
correlation times (or at worst leave them unchanged). In two dimensions,
the situation is easy: the constraint (9.6. 7) simplifies to p(O) $ 1/2, so the
three probabilities can be maximized simultaneously:

p(+2) = z2 /(1 + z2), p(-2) = 1/(1 + z2), p(O) = 1/2. (9.6.9)

In three or more dimensions, the constraint (9.6.7) forces a tradeoff be­
tween p(O) and p(+2). The standard choice is the point determined by the

342 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

intersection of the equalities corresponding to (9.6.6) and (9.6.7), which is

z2

p(+2) = 1 + (2d- 3)z2 '

1
p(-2) = 1 + (2d- 3)z2 '

1 + z2

p(O) = 2[1 + (2d- 3)z2) · (9.6.10)

Observe that setting d = 2 in (9.6.10) gives the values of (9.6.9). Caracciolo,
Pelissetto, and Sokal (1990) have proven rigorously that (9.6.10) is close to
optimal in every dimension.

Let us now turn to the problem of irreducibility. In two dimensions,
the algorithm is irreducible for every x :f: 0 (see Theorem 9.7.2). In three
dimensions, the algorithm is not irreducible if llxlloo = 1 (in particular, for
the case of self-avoiding polygons). This is essentially because of knots:
Consider the closed curve defined by the steps of the current walk of S(x)
and by the line segment joining x to the origin. Each possible BFACF
transformation may be viewed as the result of a continuous deformation of
this closed curve during which it never crosses itself. In the terminology
of topology, we say that the result of a BFACF transformation is ambient
isotopic to the initial curve. Thus, for llxlloo = 1, the walks in any given
ergodicity class of the BFACF algorithm must all correspond to the same
knot type. The converse assertion, that the ergodicity classes correspond
precisely to knot classes, has been proven by Janse van Rensburg and Whit­
tington (1991) for the special case of unrooted polygons by showing that
"Reidemeister moves" on knots can be achieved using BFACF moves. When
llxlloo ~ 2 in three dimensions, then the BFACF algorithm is irreducible
(Janse van Rensburg (1992a)].

We conclude our discussion of the BFACF algorithm with a look at its
autocorrelation times. These tend to be large, and it is not hard to identify
one of the reasons: the "area" determined by a walk is a very slow mode.
(The meaning of "area" is obvious in the cased= 2, llxlh = 1; in general,
consider a fixed walk (from 0 to x and let a(w) be the minimum area of
a lattice surface whose boundary is the union of w and (.) The problem is
that an N-step walk w can have a(w) of order N 2 ; since a single BFACF
move can only change a by one unit, such a configuration can survive a
very long time before being changed into something substantially different.
In particular, we can apply Corollary 9.2.3 with A= 1 to obtain

Tint,a ~ const.(N}411 (9.6.11)

(under the usual assumption that the probability distribution of a, and
in particular its standard deviation, scales like N 211). The slowness of a

9.6. FIXED-ENDPOINT METHODS 343

to change for certain configurations was exploited further by Sokal and
Thomas (1988), who proved the unsettling result that the exponential au­
tocorrelation time of the BFACF algorithm is infinite (see Theorem 9.7.4).

9.6.2 Nonlocal methods

In Section 9.6.1, we saw that the BFACF algorithm has rather long au­
tocorrelation times. Recalling that the pivot algorithm is more efficient
than local algorithms in the free-endpoint ensemble (recall Section 9.4), it
is clearly desirable to try to find large-scale transformations of self-avoiding
walks that work in the fixed-endpoint ensemble. The transformations of
the pivot algorithm of Section 9.4.3 do not leave both endpoints fixed, in
general; however, other fixed-length transformations that use one or two
"pivot sites" have been used with some success.

Fixed-length transformations have been used in the ensemble SN(z) to
study properties such as the radius of gyration or knottedness, particularly
in the case of self-avoiding polygons (liz lit = 1). They have also been used
in the variable-length ensemble S(.x) together with BFACF moves in the
hope of obtaining a more efficient algorithm for this ensemble.

We now describe fixed-length transformations which leave both end­
points fixed (see Figure 9.10). In these descriptions, w is always an N-step
self-avoiding walk.

1. Inversion: For integers k and I (0 $ k < I $ N), define the new walk w
by

w(i)={ w(~)+w(l)-w(k+l-i) ifk$~$1
w(t) otherwise.

Thus the subwalk (w(k), ... ,w(l)) is the inversion through the point (w(k)+
w(l))/2 of the points (w(l), ... ,w(k)). Another way to view inversion is
by the sequence of bonds Aw(i) :: w(i) - w(i- 1). Then the bonds of
w are Aw(l), Aw(2), ... , Aw(k), Aw(l), Aw(l- 1), ... , Aw(k + 2), Aw(k +
1), A.w(l + 1), ... , Aw(N).

2. Cyclic permutation: For an integer i (0 < i < N), define the new
walk w by breaking w into two pieces at w(i) and then concatening the
two pieces in the other order. Thus the bonds of w are Aw(i + 1), Aw(i +
2) 1 ••• 1 Aw{N) 1 Aw(1) 1 Aw(2) 1 ••• 1 Aw(i).

3. Lattice symmetries: Using the notation of Section 9.4.3, let g E gd be a
lattice symmetry. Let k and I be integers (0 $ k <I$ N) and let .x = w(k).
If U.z-(w(l)) = w(l), then we get a new walk w by applying this symmetry to

344 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

w(k)
•

[~ 1.

w(l)

w(N- i)

L r p 2. -
w(i)

·. w(k)
•

······ ... [3. -
w(l)·.

w(k)

4. ·_ ...• {[
w(l)

Figure 9.10: Length-preserving fixed-endpoint transformations: 1. inver­
sion; 2. cyclic permutation; 3. reflection through line of slope -1; 4. revers­
ing reflection through line ·of slope +1, where y is the midpoint between
w(k) and w(l).

9.6. FIXED-ENDPOINT METHODS

the part of w between k and 1:

-(') _ { Uz(w(i))
w t - w(i)

ifk~.i~l
otherwise.

Observe that the two "pivot sites" w(k) and w(l) are both fixed by g21 •

345

4. Reversing lattice symmetries: Again, let g be a lattice symmetry and
let k and I be integers (0 ~ k < I~ N). Now suppose that there exists a
y such that gy(w(k)) = w(l) and gy(w(l)) = w(k). Then we can get a new
walk w by applying this symmetry to the part of w between k and I, and
reversing the order in which the sites appear in this part:

w(i) = { gy(w(k + 1- i)) if k ~ ~ ~ I
w(a) otherw1se.

Dubins, Orlitsky, Reeds, and Shepp (1988) proposed (and proved the
irreducibility of) an algorithm for unrooted polygons of fixed length in two
dimensions. The DORS algorithm, as we shall call it, uses only inversion
(1 above) and reversing diagonal reflection (4 above). The latter move may
be described in words as follows. Choose two sites on the polygon such
that the line segment L joining them makes an angle of ±1r/4 with the
coordinate directions. Break the polygon into two pieces by cutting it at
the two chosen sites, and reflect one of the pieces through the line which is
the perpendicular bisector of L.

To prove that the DORS algorithm is irreducible, one shows first that
inversions suffice to transform any polygon into a rectangle, and then that
any rectangle may be transformed into any other rectangle by an inversion
and a reversing reflection. The details of the proof are given in Section 9.7.4
(Theorem 9.7.3). Notice that an inversion does not change the number of
bonds parallel to the x1-axis, and so inversions alone do not suffice for
ergodicity.

For the general fixed-length fixed-endpoint ensemble SN(x) in two di­
mensions, the transformations of the DORS algorithm also provide an ir­
reducible algorithm, but the proof is more involved [Madras, Orlitsky, and
Shepp {1990)]. In higher dimensions, these transformations are not enough
because if the initial walk is contained in the hyperplane x1 = 0, say, then
all of the resulting walks will lie in the same hyperplane.

To ensure irreducibility in SN(x) in three or more dimensions, it suffices
to use inversions (1 above), diagonal reflections (3 above), and reversing di­
agonal reflections (4 above). Here, a "diagonal reflection" is a reflection
through a hyperplane which makes angles of ±1r/4 with two coordinate
directions and angles of 0 with the remaining d- 2 directions. Irreducibil­
ity is proven by a lengthy argument that uses induction on the number of

346 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

dimensions. The proof in d dimensions, even for ll:cllt = 1, requires knowl­
edge of irreducibility of all fixed-length fixed-endpoint ensembles in d - 1
dimensions. For details, see Madras et al. (1990).

Caracciolo, Pelissetto, and Sokal (1990) introduced an algorithm for
the variable-length fixed-endpoint ensemble S(:c), which uses inversion and
cyclic permutation in addition to the usual BFACF transformations. This
algorithm is irreducible in every dimension (Madras et al. (1990)).

9.7 Proofs

This section contains the longer proofs and calculations that have been
deferred from the preceding sections of this chapter. The subsections may
be read in any order.

9. 7.1 Autocorrelation times

In this section we shall provide several arguments which were postponed
from our discussion of the spectral theory of autocorrelation times that was
begun in Section 9.2.3.

LetT be a self-adjoint contraction operator on l2(1r). Then the spectrum
u(T) is a subset of the interval [-1, 1]. The Spectral Theorem (see for
example Reed and Simon (1972)] tells us that there is a spectral measure E
such that

T = f .X dE(.X);
1[-1,1]

in fact, for every positive integer k we have

T" = f .X" dE(.X).
1[-1,1]

Recall that for every Borel subset A of[-1, 1], E(A) is a projection operator;
in particular, E(0) = 0 and E([-1, 1]) = I. Also, for every g in /2(1r) we
define E9 by

E9(A):: (g, E(A)g) = IIE(A)gll~ for Borel sets A C (-1, 1].

Then E9 is a positive measure and

(g, T"g) = f .X" dE9 (.X)
. 1[-1,1]

(9.7.1)

for every positive integer k.

9.7. PROOFS 347

We can use this representation to prove

r(T) =sup lim sup 1(1, rn J)llln,
J n-oo

which is Equation (9.2.21). Let q(T) denote the right hand side of the
above equation. Since r(T) = IITII, we clearly have r(T) ~ q(T). Thus it
suffices to prove the reverse inequality. Choose t so that 0 < t < r(T) and
let A[t] ={A: t < l..\1 ~ 1}. We claim that there is a gin /2(11') such that
E9 (A[t]) > 0. If not, then for every g

l(g, Tg)l ~ lltt ..\ dE9 (..\)I ~ tE9 ([-1, 1]) = tllull~,
which contradicts t < r(T) = IITII, so the claim is true. For g as in the
cl.aim, we have for any even n that

(g, 'I"" g)~ f I..\ In dEg(..\) ~ tn Eg(A[t]), jA[tJ
which implies that q(T) ~ t. Since this holds whenever 0 < t < r(T) we
have q(T) ~ r(T), so Equation (9.2.21) is proven.

We now return to our Markov chain, with T = P- II and E the corre­
sponding spectral measure. Let g be a function in 12 (11') and let h = (I- II)g
be its projection onto the space of functions with mean 0. Since g and h
differ by a constant, we know that C9 (k) = Ch(k) for every k ~ 0. By
(9.2.22) and (9.7.1),

C9(k) = Ch(k) = 1. >.kdEh(>.) for every k ~ 0
[-1,1]

(where we interpret 0° = 1). Using this in (9.2.10), along with the identity

we obtain
~ Ir- 1,11 (~) dEh(..\)

Tint,g = Tint,h = f dE (..\) ·
J[-1,1] h

(9.7.2)

The support of Eh lies in [-1, 8], where 8 =sup u(P- II); together with
(9.7.2) and the fact that (1 + ..\)/(1- ..\)is increasing for..\ in [-1, 1), this
tells us that

1 (1 + 8)
Tjnt,g = Tint,h ~ 2 1 _ 8 ·

348 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

By (9.2.26), this proves (9.2.27).
We can now give a quick proof of Proposition 9.2.2 from Section 9.2.3,

which says that Tint,g ~ ~(l+p9 (1))/(1-p9 (1)), where p9 (1) = C9 (1)/C9 (0).

Proof of Proposition 9.2.2. Let g be a nonconstant function in
l2('1r), and let h = (I - II)g. Then Eh is a finite measure that is not
identically 0, and so Eh/ I dEh(>.) is a probability measure. The function
).. ~--+ (1 + >.)/(1- >.) is convex, so Jensen's inequality implies that the right
hand side of (9.7.2) is bounded below by H1 + Ph(1))/(1- Ph(1)), where

(1) =I)..dEh(>.) = Ch(1) = Cg(l)
Ph f dEh(>.) Ch(O) C9 (0).

This proves the proposition. 0

9.7.2 Local algorithms

We shall begin by proving the two theorems about irreducibility of k-site
algorithms from Section 9.4.1. Theorem 9.4.1 states that in two dimensions
there are frozen (6r+ 17)-step walks for every r ~ k. Theorem 9.4.2 states
that for d = 2 or 3 and for sufficiently large N, the cardinality of the largest
ergodicity class of any k-site algorithm is less than e- 4 N CN for some a > 0.
We give the proof only ford= 2, as discussed in Section 9.4.1.

Proof of Theorem 9.4.1. Let d = 2. For each positive integer r, let
tf;(r) be the (6r + 17)-step walk

WESr+l W2W+2 E5Sr+2W2W+1 ESr

(see Figure 9.5 in Section 9.4.1). We shall show that if r ~ k then tjJ(r) is
frozen under k-step moves.

Let N = 6r+ 17. Let B be the set of all sites of tj;(r), so that B consists of
an (r + 2) x 6 rectangle of sites of Z2 • Consider removing any k contiguous
sites tjJ(r)(I), ... , ,p(r)(J + k- 1) from ,p(r). We want to find k distinct sites
at, ... , a~c such that: lai - ai+d = 1 for j = 1, ... , k- 1; each ai is in the
set

1) = (Z2 \B) U { tj;(r)(l), ... , tjJ(r)(I + k- 1)};

lat- tjJ(r)(I- 1)1 = 1 if I> 0; and la~c- tjJ(r)(I + k)l = 1 if I< N- k + 1.
If the only choice for each a; is ,p(r)(J + j- 1), then we can conclude that
,p(r) is indeed frozen.

If I= 0, then the removed sites all lie on a vertical line (since r ~ k).
Moreover, the only nearest neighbour of tj;(r)(k) that is in 1) is tj;(r)(k- 1),
so we must take a1c to be this site. Similarly, the only choice for ai is

9.7. PROOFS 349

tj;(r)(j- 1) for each j, so no changes are possible when I= 0. Similarly, no
changes are possible when I = N - k + 1.

Suppose now that 0 < I < N - k + 1. The proof now is essentially
by inspection. Look at all possibilities for tj;(r)(I- 1) and tj;(r)(I + k) (in
particular, whether or not they are on the boundary of the box 8), and look
at how to connect these points by a (k + 1)-step self-avoiding walk which
only passes through points of V. On the one hand, if at least one of these
two points are on the boundary of 8, then there is only one possible walk
(in fact, k + 1 is the length of the shortest such walk that joins these points).
On the other hand, if neither point is on the boundary of 8, then the only
points of V that can be reached are precisely tf;(r)(I), ... , tj;(")(I + k- 1),
and there is no choice but to take them in their correct order (since they lie
on either one or two vertical lines, and since all k of them must be used).

0

Proof of Theorem 9.4.2. Let d = 2 and fix k. Let P be the (IOk +39)­
step pattern

Nk+2W3Sk+lENkESk+lW3Nk+3E9Sk+3W3Nk+lESkENk+lW3Sk+2

(see Figure 9.11), and let L = 10k + 39. An argument similar to the proof
of Theorem 9.4.1 shows that if P occurs at the m-th step of a given self­
avoiding walk w, then P must occur at the m-th step of every walk that is
in the same ergodicity class as w.

.l
k

- ~ J
Figure 9.11: The pattern P from the proof of Theorem 9.4.2.

For every integer t 2: 0, and for every sequence 0 ~ m 1 < m 2 < ... <
m1 < N, let £N(mt, m2, ... , mt) denote the set of walks in SN such that P

350 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

occurs at the m1-th step of w for every j = 1, ... , t and nowhere else in w.
(Fort = 0, this is the set of walks on which P does not occur.) Notice that
successive occurrences of P in w cannot overlap, and so we always have
mi -mi-1 > L whenever £N(mt, m2, ... , mt) is nonempty. For each t;::: 0,
let

M(t, k, N) = max{I£N(m1, m2, ... , mt)l : 0 $ m1 < ... < m, < N}.
(9.7.3)

By the conclusion of the preceding paragraph, each ergodic class is con­
tained in some tN(mt, m2, ... , mt), and so

CLECk N < maxM(t, k, N).
' - t~O

(9. 7 .4)

Since P is a proper internal pattern, Kesten's Pattern Theorem 7.2.3
tells us that there exists an a > 0 such that P must occur at least aN times
on "almost all" N -step walks, i.e.

limsup(cN[aN, P])11N < J.t·
N-oo

(9.7.5)

Therefore

[]
1/N

limsup max M(t,k,N) <J.t.
N-oo 0taN

(9.7.6)

Next, we claim that for any t ;::: 0 and any sequence 0 $ m1 < ... <
m1 <N,

(9.7.7)

To see this, define the function I from £N(m1,m2, .. . ,mt) to SN-t(L-1)

which removes each occurrence of P and replaces it by a single bond. Since
I is one-to-one, the bound (9. 7. 7) follows. Therefore

limsup [maxM(t,k,N)] 1
/N $

N-oo t?:_aN
lim sup [max CN-t(L-1)]

1
/N

N-oo t?:.aN

= 1-'1-a(L-1) < J.t. (9.7.8)

The theorem now follows from (9.7.8) and (9.7.6). 0

9.7.3 The pivot algorithm

We begin with a proof of the irreducibility of the pivot algorithm and some
of its variants, which is asserted in Theorem 9.4.4. More precisely, this
theorem says that any walk in SN can be transformed into a straight walk

9.7. PROOFS 351

by a sequence of at most 2N - 1 pivots, each of which is either a reflection
through a coordinate hyperplane or a rotation by ±71'/2.
Proof of Theorem 9.4.4. We begin with some notation. For each
N-step self-avoiding walk w and for each j = 1, ... , d, let

m}(w) = min{wj(k): k = 0, 1, ... , N} (9.7.9)

and
mJ(w) = max{wj(k) : k = 0, 1, ... , N} (9.7.10)

denote the minimum and maximum values of the j-th coordinate of the
sites of w, and let

Mj(w) = mJ(w)- mj(w) (9.7.11)

denote the extension of win the j-th coordinate direction. Let B(w) denote
the smallest rectangular box containing w, i.e.

B(w) = {x E zd: mj (w) $X $ mJ(w) for all j = 1, ... 'd}, (9.7.12)

and let
D(w) = Mt(w) + · · · + Ma(w) (9.7.13)

denote the /1 diameter of B(w). A face of B(w) is any set of the form
{x E B(w) : Xj = m~(w)} for some i = 1, 2 and some j = 1, ... , d. Finally,
let

1
A(w) = l{k: 0 < k <Nand w(k) = 2[w(k- 1) + w(k + 1)]}1 (9.7.14)

denote the number of straight internal angles of w.

The strategy of the proof is the following. Observe that for every N-step
self-avoiding walk w, we have 0 $ D(w) $ Nand 0 $ A(w) $ N- 1, and
moreover D(w)+A(w) = 2N -1 if and only ifw is a straight walk. It suffices
to show that if w is not straight, then there exists another self-avoiding
walk w such that D(w) + A(w) > D(w) + A(w) and w can be obtained
from w by either a single reflection through a coordinate hyperplane or
a single rotation by ±71'/2. Specifically, we shall show that if there is a
face of B(w) which contains neither of the endpoints w(O) nor w(N), then
a reflection through that face will increase D but not change A; and if no
such face exists, then there exists a rotation that increases A by one without
decreasing D.

We now give the details. Consider an arbitrary N-step self-avoiding
walk w that is not straight. We shall consider two cases separately. Since
w is fixed, we shall write 8 for B(w) and m) for m)(w).

352 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

Case I. Suppose that there exists an i E {1, 2} and a j E {1, ... , d} such
that neither w(O) nor w(N) lies in the face {z E 8 : z; = m} }. Let t be
the smallest index such that w(t) lies in this face. Now let w be the walk
obtained by reflecting w(t + 1), ... ,w(N) through the hyperplane z; = m}:
that is, w(k) = w(k) for each k::;; t, while the coordinates of w(k) fork> t
are given by

N (k) _ { 2m} - w;(k) if I= j w, - w,(k) ifl #: j. (9.7.15)

(See Figure 9.12.) It is not hard to see that w is self-avoiding, and that

: w(t)

Ll ~I --
w(O) w(O)

: W(N) w(N):

Figure 9.12: Case I of the proof of Theorem 9.4.4: reflection through the
hyperplane denoted by the dotted line.

A(w) = A(w) [notice that both wand w have right angles at w(t)]. Let us
now show that D(w) > D(w). Writing M;(w[r, s]) to denote the extension
of the subwalk (w(r), ... ,w(s)) in the j-th coordinate direction, we see that

M;(w) = max{M;(w[O, t]), M;(w[t, N])} (9.7.16)

and
(9.7.17)

Since w;(O) # m} and w;(N) # m}, both M;(w[O,t]) and M;(w[t,N]) are
strictly positive, and so we conclude that M;(w) > M;(w). Since M,(w) =
M,(w) whenever I # k, this proves that D(w) > D(w), and hence that
D(w) + A(w) > D(w) + A(w). This completes the proof for Case I.

Case II. Suppose that w is not covered by Case I; that is, suppose
that every face of 8 contains at least one endpoint. This means that w(O)
and w(N) are in diagonally opposite corners of the box 8. Since w is not
straight, let q be the largest index such that w has a right angle at w(q):

1
q = max{k: 0 < k <Nand w(k) # 2[w(k- 1) +w(k + 1)]}. (9.7.18)

9.7. PROOFS 353

Since w(N) is in a corner of B, we will be able to perform a ±7r /2 rotation
to straighten out the angle at w(q). To be precise: the sites w(q), ... ,w(N)
lie on a straight line perpendicular to the line segment joining w(q- 1) to
w(q). Let a be the coordinate such that wo:(q- 1) f:. wo:(q), and let {3 be
the coordinate such that wp(q) f:. wp(N). Observe that a f:. {3. Now we
can define a new walk w by choosing w(q) as a pivot site and performing
a rotation in the (xo:, xp)-plane to get a straight angle at w(q) = w(q).
(See Figure 9.13.) The resulting walk has w(q- 1),w(q), ... ,w(N) all

w(N)

-
w(q)

w(q) w(N)

Figure 9.13: Case II of the proofofTheorem 9.4.4: rotation by -Tr/2. Also
shown are the coordinate directions Xo: and xp.

on a straight line. Since w(O), ... , w(q - 1) are on the opposite side of the
hyperplane Xo: = wo:(q) from w(q + 1), ... ,w(N), we see that w is self­
avoiding. We also see that

Mo:(w) = Mo:(w) + N- q, (9.7.19)

that
(9.7.20)

and that Mi(w) = Mj(w) for all j f:. a,/3. Therefore D(w);::: D(w). Also,
we clearly have A(w) = A(w) + 1, and hence that D(w) + A(w) > D(w) +
A(w). This completes the proof for Case II, and we are done. D

Next we consider the pivot algorithm applied to the ordinary random
walk, without ever checking for intersections. To be precise, the state space
of the algorithm is the set S'Jv of all (2d)N ordinary N-step walks starting
at the origin, and the Generic Fixed-Length Dynamic Algorithm (from the
beginning of Section 9.4) is implemented using the usual Step 2 for the
pivot algorithm as described in Section 9.4.3, but in Step 3 wlt+t] is always
set equal tow. For a given real-valued function g on S'Jv, let r;rp,g and T/'nt,g

354 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

respectively denote the exponential and integrated autocorrelation times of
g with respect to this algorithm [as defined in (9.2.12) and (9.2.10)].

Proposition 9.7.1 For each N, define the function r 2 = r~ on the set
S~ by r~(w) = lw(N)I2, the squared end-to-end distance of wE S~. Then
as N-+ oo

(9.7.21)

and
T;~t,r2,.... 2logN. (9.7.22)

Proof. Fix N. Using the notation dwl1l(i) = wl1l(i) -wl1l(i -1) to denote

the i-th step of the walk wl'l, define A~~] to be the dot product of the i-th
and j-th steps of wl11:

for 1 ::5 i, j ::5 N. Then by expanding the square we have

r2(wl11) = ji:,.N_-t dwl1l(i)l
2

= N + 2 I: A~~~.
ISi<iSN

(9.7.23)

In equilibrium, wltl is uniformly distributed on S~, and so the N steps of
wltJ are independent and uniformly distributed on the set of the 2d (positive
and negative) unit vectors of zd. By symmetry we have

E(A~~J) = 0 whenever i #: j, (9.7.24)

and also

E[(A!~l)2] = Pr{IA~~~~ = 1} = ~- (9.7.25)

We also have that if t ~ 0, i < j, and k <I, then

E(A~~~A~}) = 0 unless i = k and j =I. (9.7.26)

Consider the first iteration of the pivot algorithm with initial walk wl01.
For a given k between 1 and N, a necessary condition for the direction of
the k-th step to change is that the chosen pivot site I is less than k. In
fact, if G is the chosen symmetry, then

[t] · { dwl0l(k)
dw (k) = G (dwM(k))

if I~ k
if I< k.

(9.7.27)

9.7. PROOFS 355

Therefore if I is not in the interval [i, j), then AW = A~~l. Also, since G is
chosen uniformly at random from gd, the vector G (Awl0l(k)) is uniformly
distributed on the set of unit vectors of zd; moreover, it is independent of
the entire walk wl01. In particular, we see that if I is in the interval [i,j),
then AW is independent of A!~l.

Let Q :: Q;,j,t be the event that at least one of the pivot sites of the
first t iterations is in the interval [i, j). Then as in the preceding paragraph
we see that conditioned on the occurrence of Q the quantities Aljl and A~~]
are independent; hence by (9.7.24),

E(A~~~A~t)IQ) = 0
1) I) '

(9.7.28)

lfQ does not occur, then A~jl = A~~l, and hence by (9.7.25)

(9.7.29)

Since the probability of Qc is [1- (j- i)/ N]1, we see from (9.7.28), (9.7.29)
and (9.7.24) that

Cov(A(~l A(t)) = ~ (1 - j- i) 1 for i < j and t ;::: 0.
'1' IJ d N (9.7.30)

Using (9.7.23), (9.7.26) and (9.7.30), we see that for every t;::: 0

Cr2(t):: Cov(r2 (wl01), r 2(wl11)) = 4 E Cov(A~~I, Aljl)
l~i<j~N

4 N-1 t

= df.(N-m)(t-~)
N-1

= 4dN " (1- mN)t+l. L...J (9.7.31)
m=l

Them= 1 term in (9.7.31) is dominant; in fact,

4N (1- .!_)t+t < C 2(t) < 4N(N -1) (1- .!_)t+t
d N _r- d N'

and so the definition of exponential autocorrelation time in (9.2.12) implies
that

-1
r;:r:p,r2 = log (l _ -Jt) = N + 0(1), (9.7.32)

356 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

which proves (9.7.21). Next, (9.7.31) tells us that C,.2(0) = 2N(N- 1)/d,
and putting this and (9.7.31) into the definition of integrated autocorrela­
tion time [recall (9.2.10)] yields

1 d 00 4N N-l m t+l

= 2 + 2N(N- 1) t;t d l-; (l- N)

1 2 N-1 (1- N)
= 2+N-1E m

m:l 1if

= -+- NE--<N-1) 1 2 [N-l 1 l
2 N -1 m=l m

= 2logN + 0(1), (9.7.33)

which proves (9.7.22). 0

9. 7.4 Fixed-endpoint methods

In this section we shall prove three results. Theorems 9.7.2 and 9.7.3 prove
the irreducibility of the BFACF and DORS algorithms, respectively, in two
dimensions. Finally, Theorem 9.7.4 proves that the exponential autocorre­
lation time of the BFACF algorithm is infinite.

We first establish some terminology that will be needed for the proofs of
the first two theorems. Every self-avoiding polygon 1' in Z2 forms a simple
closed curve, and hence has an inside and an outside (in the sense of the
Jordan curve theorem). If vis a site of 1', then we say that vis convex,
concave, or straight according as to whether the inside angle of 1' at v is
90°, 270°, or 180°.

Theorem 9. 7.2 For every nonzero endpoint :1: in Z2 , the BFA CF algo­
rithm is irreducible on S(:~:).

Proof. We begin by looking at a special case in which the endpoint is
on the :l:t·axis. For every integer L > 0, let p(L) denote the straight L­
step walk from (0, 0) to (L, 0). For N > L, let Sh((L, 0)) be the set of
N -step self-avoiding walks beginning at (0, 0) and ending at (L, 0) such
that none of the sites (1, 0), (2, 0), ... , (L- 1, 0) is occupied by a site of w.
We shall henceforth assume implicitly that N and L have the same parity,
since otherwise Sf,((L, 0)) is empty. Observe that Sf,((L, 0)) C SN((L, 0))
whenever N > L > 0, with equality if L = 1. Every walk w in S'f.r((L, 0))
has an associated (N +L)-step self-avoiding polygon 1' = 'P(w) whose bonds
are the N bonds of w together with the L bonds of p(L).

9.7. PROOFS 357

Our first goal is to prove the following:

Claim A: Suppose that N > L > 0 and w is in S;.,((L, 0)). Then it is
possible to transform w into the straight walk p(L) by BFACF moves in
such a way that none of the intermediate walks obtained in this process has
a site lying outside of (the original) 'P(w).
Claim A implies irreducibility in the case ll.rlh = 1 (upon taking L = 1),
and the approach that we take to prove it will also be used in the proof for
general .r.

To prove Claim A, we need some additional terminology. If w is in
S,V((L, 0)), then we say that the subwalk w[i,j):: (w(i), ... ,w(j)) {0 :5 i <
j :5 N) is a U-turn of w if j- i ~ 3, w[i + 1, j -1] lies on a straight line, and
the sites w(i + 1) and w(j - 1) are both convex sites of 'P(w). We say that
w(k) is an obstruction of the U-turn w[i,j] if w(k) is on the line segment
whose endpoints are w(i) and w(j), and k :f. i, j. We say that the U-turn
w[i, j] is unobstructed if it has no obstructions. Observe that if w[i, j] is

w(i)

- - -
w(j)

Figure 9.14: How the BFACF algorithm can use the presence of an unob­
structed U-turn to shorten the length of a walk by 2.

an unobstructed U-turn of w, then w can be transformed into a walk w' of
length N- 2 using j- i- 2 BFACF moves as in Figure 9.14. Moreover, if
N- 2 = L then w' = p(L), while if N- 2 > L then w' E S,V_ 2((L,O)). So
Claim A will be proven if we can prove the following:

Claim B: For every N > L > 0, every walk in S;.,((L, 0)) contains an
unobstructed U-turn.

We now prove Claim B by induction on N.
Let P(N) be the assertion that whenever L satisfies N > L > 0, every

walk in Siv((L, 0)) contains an unobstructed U-turn. To start the induction,
we note that P(3) and P(4) are clearly true. Let N 2:: 5, and assume that

358 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

P(n) is true for every n < N. Let w be an arbitrary walk in S'f..r((L, 0))
for some L, with associated polygon P. It is not hard to see that w always
contains aU-turn w[i, j). (First observe that for every self-avoiding polygon,
the number of convex sites exceeds the number of concave sites by exactly
4, because the sum of the signed inside angles must be exactly +360°.
Therefore there must exist integers a and b with 0 < a < b < N such that
w(a) and w(b) are both convex sites of P and such that if b > a+ 1 then
the intervening sites w(a+ 1), ... , w(b- 1) are all straight sites of P. Then
w[a - 1, b + 1] is a U-turn.) If it is unobstructed, then we are done, so
assume that it has an obstruction w(k). Then there exists an 1 satisfying
i + 1 < 1 < j- 1 such that llw(k)- w(l)llt = 1. Suppose that 0 ~ k < i (the
same argument will work if j < k $ N). Let (denote the subwalk w[k, 1);
since (has endpoints that are nearest neighbours, we can let Q denote its
associated polygon. Observe that the bond (w(k),w(/)) lies inside P, since
we know that w(i) and w(j) are convex sites of P. Therefore the inside
of Q is a subset of the inside of P, and hence all the sites of w that are
not part of (must lie outside of Q. The inductive assumption tells us that
(contains an unobstructed U-turn, and the observation of the preceding
sentence guarantees that this must also be an unobstructed U-turn for w.
Therefore P(N) is true.

We have now proven Claims B and A. To complete the proof of the
theorem, consider the case of a general site x. Now the terms ((inside"
and "outside" are not meaningful, so we first need to find something to
use in the place of U-turns. Let w be an arbitrary walk in S(x), and let
N = lwl. We say that the subwalk w[i,j) (0 ~ i < j $ N) is a C-turn of
w if j- i ~ 3, w[i + 1, j - 1) lies on a straight line that is perpendicular to
the steps Aw(i + 1) and Aw(j), and Aw(i + 1) = -Aw(j). (Observe that
in the case llxlh = 1, every U-turn is a C-turn.) We define obstruction for
C-turns exactly as we did for U-turns. The walk w has no C-turns if and
only if it has minimal length, i.e. N = l!x!lt, and it is easy to see that any
minimal length walk can be transformed into any other by BFACF moves.
So suppose N > llxllt; to prove the theorem, we need to show that it is
always possible to reduce the length of w using BFACF moves. Analogously
to the case llxllt = 1, it suffices to prove that w must have a C-turn with
no obstructions.

Let w[I, J) be a smallest C-turn of w (i.e., satisfying J - I ~ j - i
for every other C-turn w[i, j]). If w[I, J) has no obstructions, then we
are done, so assume w[I, J] has one or more obstructions. It is not hard
to see that one of these obstructions must be an endpoint of w (because
otherwise the obstructions would have to be part of a C-turn that is smaller
than w[I, J], which contradicts our choice of I and J). Without loss of
generality, assume that w(O) is an obstruction of w[I, J) [the same argument

9.7. PROOFS 359

will work for w(N)]. Let M be the (unique) integer such that I+ 1 <
M < J- 1 and llw(O)- w(M)Ih = 1. Let (denote the subwalk w[O, M];
since (has endpoints that are nearest neighbours, we can let Q denote its
associated polygon. There are two eases that could occur: either the sites
w(M + 1), ... ,w(N) all lie outside Q, or else they all lie inside Q (there are
no other possibilities because the subwalks w[O, M] and w[M + 1, N] cannot
intersect). We shall consider these two eases in turn.

Case I: The sites w(M + 1), ... ,w(N) all lie outside Q. By Claim B,
we see that (has an unobstructed U-turn; since the sites of w that are not
part of (all lie outside Q, this must be an unobstructed C-turn of w.

Case II: The sites w(M + 1), ... ,w(N) all lie inside Q. Let u = 6.w(N)
be the direction of the last step of w. Let

L =min{!> 0: w(N) + lu is a site of w}

(note that L < oo because w(N) lies inside Q). Let t be the integer such
that w(t) = w(N)+Lu. Observe that the subwalk w[t, N] is (the translation
and rotation/reflection of) a walk in SN--t((L,O)). Let 'R be the polygon
consisting of the bonds of w[t, N] and the straight line segment joining w(N)
to w(t). Then the inside of n is a subset of the insiae of Q. In particular,
the sites w(O), ... , w(t - 1) all lie outside 'R. Now Claim B shows that the
subwalk w[t, N] has an unobstructed U-turn, and since the rest of w lies
outside n, this must also be an unobstructed C-turn of the entire walk w.
This proves the theorem in Case II. D

Recall that the state space of the DORS algorithm is the set of equiva­
lence classes of N-step self-avoiding polygons in Z2 (Definition 3.2.2). Re­
call also that these polygons are <~unrooted", as opposed to the set of poly­
gons associated with SN-I(e) (where llellt = 1) which are <~rooted" by the
bond (0, e) which can never be moved.

Theorem 9. 7.3 For every even N, the DORS algorithm is irreducible for
unrooted N -step polygons in two dimensions. In fact, if Ql and Q2 are
N -step polygons in Z2, then there is a sequence of at most 2N - 2 trans­
formations that transforms Ql into Q2.

Proof. Let c(P) denote the total number of convex and concave sites on
the polygon P. A rectangle is a polygon P that has c(P) = 4. The theorem
is an immediate consequence of the following two facts.

A. Any polygon P that is not a rectangle can be transformed
into some other polygon Q having c(Q) = c(P) - 2 using at
most two transformations.

B. Any rectangle can be transformed into any other rectangle
using one inversion and one reversing diagonal reflection.

360 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

..
-

Figure 9.15: Proof of Theorem 9.7.3: a polygon with a supporting chord
that is not parallel to a coordinate axis (left). Using the chord's endpoints
as pivot sites for an inversion decreases the number of right angles by 2
(right).

-

Figure 9.16: Proof of Theorem 9.7.3: a polygon whose two supporting
chords are each parallel to a coordinate axis (left). Using one chord's end­
points as pivot sites for an inversion yields a polygon with a diagonal sup­
porting chord (right).

9.7. PROOFS 361

We shall prove A first. A line segment is said to be a supporting chord of
1' if its endpoints are both on,'P, its interior points are all on the outside of
1', and it is contained in the boundary of the convex hull of 1'. (See Figure
9.15.) Observe that any polygon that is not a rectangle ha.s a. supporting
chord.

Suppose that a polygon 1' ha.s a. supporting chord that is not parallel
to either coordinate axis. It is not hard to see that performing a.n inversion
on 1' with pivot sites chosen to be the endpoints of this supporting chord
will yield a self-avoiding polygon Q with c(Q) = c('P}- 2 (see Figure 9.15}.
Next, suppose that 1' is not a rectangle but each of its supporting chords
is parallel to a. coordinate axis (see Figure 9.16). Performing a.n inversion
on 1' with pivot sites chosen to be the endpoints of some supporting chord
will yield a self-avoiding polygon 1'' with c('P') = c('P), and it is not hard
to see that this 1'' will have a supporting chord that is not parallel to either
coordinate axis. Thus we have proven A.

Finally we turn to fact B, whose proof is illustrated in Figure 9.17. Let

(a, b)
r--o---'-1

-d--+

(c,d)
__.... __....

I
(0,0) (0, 0)

Figure 9.17: The DORS algorithm transforming one rectangle into another,
using an inversion followed by a reversing diagonal reflection. The pivot
sites are denoted by circles.

R1 and 'R2 be two N-step rectangles. Assume that the corners of R1 are
at (0, 0), (a, 0}, (a, b), and (0, b), while the corners of'R2 are at (0, 0), (c, 0},
(c, d), and (0, d), where a, b, c, and d are all positive and a + b = c + d.
Without loss of generality, we can assume that c > a ~ d. Performing
an inversion on 'R1 with pivot sites (0, d) and (a - d, b) gives a polygon
u' which in turn can be transformed into n2 by performing a reversing
diagonal reflection with pivot sites (a, 0) and (a-d, d). 0

Theorem 9.7.4 The exponential autocorrelation time Terp for the BFACF
algorithm is infinite {for every x and z).

362 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

Proof. Fix x and z. Let ¢1 and 1/J be two points (walks) in the state space,
and letT[¢, 1/1] be the smallest value of n such that pn(¢1,1/1) > 0; i.e. T[<P, 1/1]
is the smallest time in which it is possible to get from ¢1 to 1/1. Let I~ and
I.p be the indicator functions of the singletons { ¢1} and { 1/1}. Consider any
k < T[¢1, 1/J]. On the one hand, using the inner product defined in {9.2.14),

(I~, (PI:- II)I.;.) = P"(¢1, tP)Tr(f/1) -Tr(f/J)Tr(t/J) = -Tr(f/J)Tr(t/J).

On the other hand, using (9.2.23) and (9.2.24), we have

1(1~, (P"- IT)I.p)l :$ III~II2IIPk- llll III.pll2 = (Tr(f/J)Tr(t/1))112 exp[-k/T<!zp]·

Combining the above two observations, rearranging and taking k = T[¢1, t/o]-
1 gives

2(T[¢, t/1]- 1)
Tezp 2: - log(7r(¢1)7r(tP)) . (9.7.34)

This inequality says that if there are two states that are far apart, but not
too unlikely, then Tezp must be large.

To apply (9.7.34), consider N >> llxlh· Let ¢1 be a shortest walk from
0 to x, and let 1/1 = .,pCNJ be a walk of length N which does not intersect ¢1
and whose shape is approximately square; this means that the area of the
smallest surface whose boundary is the union of ¢1 and .,p£NJ is approximately
N 2 /16. Since the BFACF algorithm only modifies a walk by adding and
removing bonds around a single lattice square, this surface area cannot
change by more than 1 in a single iteration. Therefore T[¢, tJ~[N)] ~ N 2 •

Also, 1r(,P) = llxlhzllzlhjE:(z,x) and 7r(.,PCN1) = NzN/E:(z,x), so the right
side of (9.7.34) behaves like a constant times N as N - oo. Therefote,
since N can be arbitrarily large, we must have Tezp = +oo. D

9.8 Notes

Section 9.1. One of the best general overviews of Monte Carlo methods is
Hammersley and Handscomb (1964), whose age has done remarkably little
to diminish its appeal. Bratley, Fox and Schrage (1987) is a more recent
general reference to various theoretical and practical issues in simulation
and Monte Carlo. Binder and Heermann {1988) is a useful step-by-step
guide to the practical aspects of Monte Carlo experiments in statistical
mechanics. Kremer and Binder (1988) is a detailed survey of Monte Carlo
methods for polymers in general. Sokal (1991) is a review on the problem
of critical slowing-down.

General references for· the theory and applications of Markov chains
include Feller (1968), Karlin and Taylor (1975), and Nummelin (1984).

9.8. NOTES 363

These authors and others usually say that a Markov chain is ergodic if it is
irreducible, positive recurrent, and aperiodic. Most chains arising in Monte
Carlo are positive recurrent and aperiodic, and for these chains questions
of ergodicity are equivalent to questions of irreducibility. Although the
Monte Carlo literature tends to use the term "ergodicity" when discussing
irreducibility, we prefer the term "irreducibility" in this book to emphasize
the specific nature of these problems.

The classic reference for hash tables is Knuth (1973), which is still highly
recommended. Hashing is also treated in most computer science books on
data structures. Early uses of hash tables for the self-avoiding walk problem
are Gans (1965) and Jurs and Reissner (1971); a description is also given
in Madras and Sakal (1988).

Section 9.2. Two general references on statistics are Silvey (1970) and
Cox and Hinkley (1974). References on time series analysis include Priest­
ley (1981) and Brockwell and Davis (1987). Bratley, Fox, and Schrage
(1987) discuss time series analysis and other statistical issues in the specific
context of simulation. Geyer (1992) and Gelman and Rubin (1992) present
two contrasting views on problems of statistical inference for Markov chain
simulations.

Proposition 9.2.2, Corollary 9.2.3, and Proposition 9.2.4 are from Ap­
pendix A of Caracciolo, Pelissetto, and Sokal (1990). The proof of Equation
(9.2.21) in Section 9.7.1 is from Sokal and Thomas (1989), who actually
prove a stronger theorem. The proof of Equation (9.2.27) is from Sokal
(1989). The exposition of Section 9.2.3 is largely based upon the preceding
three papers.

Section 9.3. Strides and biased sampling are reviewed in Hammersley
and Handscomb (1964). Kremer and Binder (1988) includes a more recent
review of biased sampling, with many references. The dimerization method
is due to Suzuki (1968) and Alexandrowicz (1969). The derivation of (9.3.3)
is from Madras and Sokal (1988).

Section 9.4. Many local algorithms have appeared in the literature; see
Madras and Sokal (1987) and Kremer and Binder {1988) for some refer­
ences. The failure of irreducibility for local algorithms was noticed early,
by Heilmann (1968) (who observed that knots could cause problems) and
by Verdier (1969) (who noted the existence of three-dimensional frozen con­
figurations analogous to Figure 9.2). Theorems 9.4.1 and 9.4.2, as well as
Proposition 9.4.3, are due to Madras and Sokal (1987); as explained there,
the methods also allow one to prove Theorem 9.4.1 in d = 3. The proof of
(9.4.1) under the stated assumption is due to Caracciolo et al. (1990).

364 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS

Wall and Mandel {1975) commented that the probability of frozen con­
figurations for the slithering snake algorithm did not tend to 0, but expected
it to be negligibly small for practical purposes. The rigorous proof of the
former assertion [Equation {9.4.2)] is due to Madras {1988).

Reiter (1990) proved irreducibility for a fixed-length algorithm in the
spirit of the slithering snake: in this algorithm, a single bond in the walk
can be replaced by a 3-bond U while simultaneously removing two bonds
from the ends (and of course the reverse of this move can also be done).

The pivot algorithm has been independently rediscovered by many dif­
ferent authors since Lal {1969): Curro (1974), Olaj and Pelinka (1976), and
MacDonald et al. (1985). Continuum analogues have been used by Stell­
man and Ga.ns (1972) and Freire and Horta (1976). Except 'where cited
otherwise, the results and discussion of Section 9.4.3 are from Madras and
Sokal (1988).

Section 9.5. The rigorous proof of (9.5.3) appeared in Caracciolo et al.
(1990).

Section 9.6. The BFACF algorithm is due to Berg and Foerster (1981),
Aragao de Carvalho, Caracciolo and Frohlich {1983), and Aragao de Car­
valho and Caracciolo {1983); some ambiguities in these papers about the
details of the algorithm were clarified in Caracciolo et a/. (1990), whose
presentation we follow here. The irreducibility of the BFACF algorithm
in two dimensions (Theorem 9.7.2) is due to Madras (1986, unpublished).
The bound (9.6.11) is due to Caracciolo et al. (1990).

Janse van Rensburg, Whittington, and Madras (1990) described a non­
local fixed-length algorithm for polygons on the face-centred cubic lattice,
and proved that it is irreducible.

	Chapter 9 Analysis of Monte Carlo methods
	9.1 Fundamentals and basic examples
	Definition 9.1.1

	9.2 Statistical considerations
	9.2.1 Curve-fitting and linear regression
	9.2.2 Autocorrelation times: statistical theory
	Lemma 9.2.1

	9.2.3 Autocorrelation times: spectral theory and rigorous bounds
	Proposition 9.2.2
	Corollary 9.2.3
	Proposition 9.2.4

	9.3 Static methods
	9.3.1 Early methods: strides and biased sampling
	9.3.2 Dimerization
	Lemma 9.3.1

	9.3.3 Enrichment

	9.4 Length-conserving dynamic methods
	9.4.1 Local algorithms
	Theorem 9.4.1
	Theorem 9.4.2

	9.4.2 The "slithering snake" algorithm
	Proposition 9.4.3

	9.4.3 The pivot algorithm
	Theorem 9.4.4
	Corollary 9.4.5

	9.5 Variable-length dynamic methods
	9.5.1 The Berretti-Sokal algorithm
	9.5.2 The join-and-cut algorithm

	9.6 Fixed-endpoint methods
	9.6.1 The BFACF algorithm
	Lemma 9.6.1

	9.6.2 Nonlocal methods

	9.7 Proofs
	9.7.1 Autocorrelation times
	Proof of Proposition 9.2.2

	9.7.2 Local algorithms
	Proof of Theorem 9.4.1
	Proof of Theorem 9.4.2

	9.7.3 The pivot algorithm
	Proof of Theorem 9.4.4
	Proposition 9.7.1

	9.7.4 Fixed-endpoint methods
	Theorem 9.7.2
	Theorem 9.7.3
	Theorem 9.7.4

	9.8 Notes
	Section 9.1
	Section 9.2
	Section 9.3
	Section 9.4
	Section 9.5
	Section 9.6

