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Chapter 7 

Pattern theorems 

7.1 Patterns 

In this chapter we shall prove a useful theorem due to Kesten (1963) about 
the occurrence of patterns on self-avoiding walks, and investigate a number 
of its applications. Briefly, a pattern is a (short) self-avoiding walk that 
occurs as part of a longer self-avoiding walk. Kesten's Pattern Theorem 
says that if a given pattern can possibly occur several times on a self
avoiding walk, then it must occur at least aN times on almost all N-step 
self-avoiding walks, for some a > 0 (in this context, "almost all" means 
"except for an exponentially small fraction"). This can be viewed as a 
weak analogue of classical "large deviations" estimates for the strong law 
of large numbers, which say that certain events have exponentially small 
probabilities [see for example Chapter 1 of Ellis (1985)]. 

Another statistic of interest regarding patterns is the frequency of oc
currence of a particular pattern at the beginning of self-avoiding walks. In 
general dimension d, it is an open problem to prove that the fraction of 
N-step self-avoiding walks that begin with a given pattern converges as N 
tends to infinity. This has been done in certain special cases: for d ;::: 5 
(see Section 6.7), and for bridges in every dimension (see Section 8.3). The 
existence of such a limit would provide a natural definition of a probability 
measure for infinite self-avoiding walks. We can only prove the following 
weaker results in the general case: if P is a pattern that can occur at the 
beginning of an arbitrarily long self-avoiding walk, then the fraction of N
step self-avoiding walks beginning with this pattern is bounded away from 
zero as N tends to infinity; also, the ratio of these fractions for N and N + 2 
converges to one. These results and some extensions will be discussed in 
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Section 7.4. The proofs of these results rely heavily upon Kesten's original 
pattern theorem. 

Kesten originally applied his pattern theorem to prove the following 
ratio limit theorems: 

lim CN+2 
Jl2, (7.1.1) = N-oo CN 

r q2N+2 Jl2, (7.1.2) tm -- = N-oo q2N 

lim bN+t = Jl· (7.1.3) 
N-oo --;;;:;-

We shall prove these results in Section 7.3. Unfortunately, the same meth
ods do not allow us to prove 

I. CN+t 
tm -- =Jt. 

N-oo CN 
(7.1.4) 

Equation (7.1.4) in zd has only been proven ford~ 5 (see Theorem 6.1.1); 
finding a proof for d = 2, 3, 4 remains an open problem. To get a feeling 
for why (7.1.1) is easier to prove than (7.1.4), consider the following easy 
exercise: prove that 

for every N. (7.1.5) 

The idea of the proof is given in Figure 7.1. (In detail: Given an N-step 

Zt =M 

--

Figure 7.1: The idea behind the proof that CN+2 ~ eN: increasing the 
length of a self-avoiding walk by 2. 

self-avoiding walk w, let M = max{wt(i): 0 =:; i :5 N}. On the one hand, if 
a step of w joins two points u and v in the hyperplane z1 = M, then replace 
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that step by three steps: u to u + (1, 0, ... , 0) to v + {1, 0, ... , 0) to v. On 
the other hand, if this hyperplane does not contain a step of w, then it 
must contain an endpoint [w(O) or w(N)); in this case, add two steps to the 
end of the walk in the +%1 direction. In either case we get an (N + 2)-step 
self-avoiding walk, from which w can be determined unambiguously.) Now 
try the following exercise: prove that 

for every N. (7.1.6) 

It is much harder to construct a one-to-one mapping from the set of N-step 
walks to the set of (N + 1)-step walks, but it can in fact be done; for the 
lengthy details, see O'Brien (1990). Finally, we observe that (7.1.6) is easy 
to prove on the triangular lattice and other lattices which are not bipartite 
(i.e. that contain self-avoiding polygons with an odd number of steps). On 
such lattices, it turns out that (7 .1.4) can be proven by the methods of this 
chapter; see the Remark preceding Theorem 7.3.2. 

Pattern theorems have found several other applications, including: eval
uating the ergodicity properties of certain Monte Carlo algorithms (see Sec
tions 9.4.1 and 9.4.2), investigating self-avoiding walks restricted to subsets 
of zd (see Section 8.2), and establishing the frequency of knots in three
dimensional self-avoiding polygons (see Section 8.4). 

It is now time to make precise definitions about patterns and their 
occurrence. To begin with, we can take the word "pattern" to be a synonym 
for "self-avoiding walk". 

Definition 7.1.1 A pattern P = (p(O), ... ,p(n)) is said to occur at the j-
th step of the self-avoiding walk w = (w(O), ... ,w(N)) if there exists a vector 
v in zd such that w(j + k) = p(k) + v for every k = 0, ... , n. (Evidently, v 
must be w(j)- p(O).J 

Definition 7 .1.2 Let SN denote the set of N -step self-avoiding walks w 
such that w(O) = 0. Fork ~ 0 and P a pattern, let cN(k, P] denote the 
number of walks in SN for which P occurs at no more thank different steps. 
Let :F N(P] denote the subset of walks in SN for which P occurs at the 0-th 
step. We say that P is a proper front pattern if :F N(P] is non-empty for all 
sufficiently large N. We say that P is a proper internal pattern if for every 
k there is a self-avoiding walk on which P occurs at k or more different 
steps. 

Kesten's Pattern Theorem tells us that if Pis a proper internal pattern, 
then there exists an a > 0 such that 

limsup(cN[aN,P])1/N < Jl.. (7 .1.7) 
N->oo 
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Figure 7.2: This pattern can occur twice on a self-avoiding walk in Z2 , but 
not three times. 

The theorem actually tells us a bit more; see Theorem 7.2.3. 
The basic results about "front patterns" say that if P is a proper front 

pattern, then 

I. . f IFN[P]I 0 
•mm > 
N-+oo CN 

(7.1.8) 

(where I ·I denotes cardinality) and 

I. IFN+2[P]I 2 
Im -J.l 

n-+oo IFN[P]I -
(7.1.9) 

Further results about front patterns appear in Section 7.4. 
We take this opportunity to note some equivalent characterizations of 

proper internal patterns. 

Proposition 7.1.3 Let P be a pattern. The following are equivalent: 
(a) P is a proper internal pattern; 
{b) There exists a cube Q = { x : 0 ;:; x; ;:; b} and a self-avoiding walk ¢ 
such that: P occurs at some step of¢, ¢ is contained in Q, and the two 
endpoints of¢ are corners of Q; 
(c) There exists a self-avoiding walk w such that P occurs at three or more 
steps of w. 

We remark that if (b) above holds for P, then it is always possible to take 

b = 2 + max{llu- vlloo : u and v are sites of P}. 

The proof of this proposition is straightforward, except for showing that (c) 
implies the other assertions. This implication is proven in Hammersley and 
Whittington (1985). Although we shall not require part (c) in this book, it 
is worth noting that the proposition is false if we change "three" to "two" 
in part (c), since there exist patterns which can occur at the beginning and 
end of a self-avoiding walk but never in the middle; an example in Z2 is the 
pattern NWS2E4 N2WS shown in Figure 7.2. (In this notation, N denotes 
a step in the direction (0, 1) ["North"], etc.) 
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7.2 Kesten's Pattern Theorem 

In this section, we shall formulate and prove Kesten's Pattern Theorem in 
its full generality, following the structure of Kesten's original proof. The 
general version of the theorem is a bit stronger than (7.1.7): in addition to 
specifying a pattern, one may also require that a certain amount of space 
around the pattern be unoccupied. The precise generalization is as follows. 

Definition 7.2.1 A cube is any set of the form 

Q = {X E zd : a; ~ Xi ~ a; + b for a/1 i = 1, ... , d}, 

where a1 , ... , aa, and b are integers, and b > 0. Each cube has 2d corners 
(extreme points of the convex hull). If Q is a cube as above, then let Q 
denote the cube which is two units larger in all directions: 

Q = {x E zd :a;- 2 ~ x; ~a;+ b + 2 for all i = 1, ... , d}; 

and let aQ denote the set of points in Q but not in Q (a kind of "external 
boundary" of Q), 

aQ = Q \ Q. 

An outer point of aQ is a point of aQ which has at least one nearest 
neighbour that is not in Q. 

Definition 7.2.2 Suppose that Q is a cube and P is ann-step pattern such 
that p(O) and p( n) are corners of Q, and p( i) E Q for every i = 0, ... , n 
(in particular, P is a proper internal pattern; see Proposition 7.1.3). We 
say that (P, Q) occurs at the j-th step of the self-avoiding walk w if there 
exists a v in za such that w(j + k) = p(k) + v for every k = 0, ... , n, and 
w(i) is not in Q + v for every i < j and every i > j + n. For every k ~ 0, 
let cN[k, (P, Q)] denote the number of self-avoiding walks in SN for which 
(P, Q) occurs at no more than k different steps. 

Theorem 7.2.3 (a) Let Q be a cube and P be a pattern as in Definition 
7.2.2. Then there exists an a > 0 such that 

limsup(cN[aN,(P,Q)])1/N < J.l. (7.2.1) 
N-oo 

(b) For any proper internal pattern P, there exists an a > 0 such that 

limsup(cN[aN, P])1/N < p,. 
N-oo 

(7.2.2) 
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Before proceeding, we shall show that part (b) of the theorem [which is 
(7.1.7)] follows from part (a). Let P be a proper internal pattern, and 
choose </J and Q as in Proposition 7.1.3(b). Since P occurs on¢, any walk 
on which ( ¢, Q) occurs at m different steps must have P occurring at m or 
more different steps. Therefore 

cN[k, P] :$ cN[k, (¢, Q)] for every k ~ 0, 

from which we see that part (a) of Theorem 7.2.3 is indeed stronger than 
part (a). Thus it suffices to prove part (a). 

The first ingredient in the proof of Theorem 7.2.3(a) is the following 
basic geometrical lemma. Part (a) of the lemma will construct a pattern 
that exactly fills a cube. Part (b) will show that we can splice a proper 
internal pattern onto a self-avoiding walk if we erase the part of the walk 
that occupies the corresponding enlarged cube Q. 

Lemma 7.2.4 (a) Let Q be a cube in zd. Then there exists a self-avoiding 
walk w, whose endpoints are corners of Q, which is entirely contained in Q 
and visits every point of Q. {In particular, the number of steps in w is one 
less than the number of points in Q.) 
{b) Let P = (p(O), ... ,p(k)) be a pattern contained in the cube Q, whose 
endpoints are corners of Q. Let x and y be two distinct outer points of oQ. 
Then there exists a self-avoiding walk w' with the following properties: its 
initial point is x and its last point is y; it is entirely contained in Q; there 
exists a j such that w' (j + i) = p( i) for every i = 0, ... , k; and w' ( i) E aQ 
whenever i < j or i > j + k. In particular, (P, Q) occurs at the j-th step of 
w'. 

Proof. (a) This is proven by induction on the dimension. It is obvious in 
one dimension. Assume that it has been proven for dimension d- 1. For 
simplicity, assume 

Q = {X E zd : 0 :$ Xi ~ b, i = 1, ... , d}. 

The intersection of Q with each of the hyperplanes Xd = I (I = 0, ... , b) is 
a (d- 1)-dimensional cube embedded in zd; call it Q1. By the inductive 
hypothesis, there is a self-avoiding walk that starts at the origin and fills 
up Q0 while staying inside Q0 , and whose last point is a corner of Q0 • 

Since every corner of Q1 is a nearest neighbour of a corner of Q1+1 , it is 
clear that we can find the desired walk for Q by filling up each of the 
( d- 1 )-dimensional cubes Q0, ... , Qd in turn. 

(b) First choose a self-avoiding walk w[t) from x to p(O) which does not 
touch y and contains only outer points of oQ (except necessarily for the 
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last two points of the walk). Then one can find a self-avoiding walk wl21 
from p(k) toy which stays in 8Q and never touches wl11 (to do this, simply 
avoid outer points until the very end). Then the desired walk w' is the 
concatenation of wl11, P, and wl21. 0 

Now we must add to our stockpile of notation. We fix a positive integer 
r which will be the "radius" of the cube Q of interest that occurs in the 
statement of the Pattern Theorem. For a given N-step self-avoiding walk 
w, we extend Definition 7.2.1 by specifying cubes centred at points of w: 
for j = 0, ... , N, let 

Q(j) = {x E za: lx;- w;(j)l $ r for every i = 1, ... , d}, 

Q(j) = {x E za: lx; -w;(j)l $ r+2 for every i = 1, ... ,d}, 

8Q(j) = Q(j) \ Q(j). 

We say that E• occurs at the j-th step of w if Q(j) is completely covered 
by w [i.e. for every v in Q(j) there exists an i such that v = w(i)]. See 
Figure 7.3. For every k ~ 1, we say that E~c occurs at the j-th step ofw if 
at least k points of Q(j) are covered by w; and we say that E1c occurs at 
the j-th step of w if E• or E1c (or both) occur there. 

0 0 0 0 0 0 

0 0 

r-- ---, 
0 

w(j) 
0 0 

w(O) 

0 0 0 

0 0 

Figure 7.3: An example in Z2 with r = 1: The nine sites inside the dashed 
box comprise Q(j). The sites ofQ(j) are marked with o. Both E• and E29 

occur at the j-th step of this walk. 

In the following, we will use E to denote any of E•, E~c, or E~c. If m 
is a positive integer, we say that E(m) occurs at the j-th step of w if E 
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occurs at the m-th step of the 2m-step walk (w(j- m), ... ,w(j + m)). [If 
j - m < 0 or j + m > N, then an obvious modification must be made in 
this definition: for j - m < 0, it means that E occurs at the j-th step of 
(w(O), ... ,w(j + m); for j + m > N, it means that E occurs at the m-th 
step of (w(j- m), ... ,w(N)).] In particular, if E(m) occurs at the j-th 
step of w, then E occurs at the j-th step of w; this would not necessarily be 
true if we replaced E by (P,Q). For every k 2:0, let cN[k,E] (respectively, 
CN[k, E(m)]) denote the number of self-avoiding walks in SN for which E 
(respectively, E(m)) occurs at no more thank different steps. Observe that 
CN[k, E(m)] is non-increasing in m for fixed Nand k because occurrences 
of E(m) are more frequent as m increases. 

The next lemma says that if E occurs on almost all walks, then (for 
some m) E(m) must occur on almost all walks (in fact, it must occur often 
on almost all walks). Thus, if a self-avoiding walk is likely to fill a cube, 
then it is also likely to fill a cube within some bounded number of steps. 

Lemma 7.2.5 If 
liminf(cN(O,E])1fN < p., 
N-oo 

(7.2.3) 

then there exists an a1 > 0 and an integer m such that 

limsup(cN[a1N, E(m)]) 11N < IJ. (7.2.4) 
N-oo 

Proof. Since cN[O, E] = cN[O, E(N)], it follows that there exist € > 0 and 
an integer m such that 

Cm[O, E(m)] < (tt(I- €))m 

and 
Cm < (tt(l + €))m · 

Consider anN-step self-avoiding walk w, and let M = lN/mJ. If E(m) 
occurs at most k times in w, then E(m) occurs in at most k of the. M 
m-step subwalks 

(w((i- l)m),w((i- l)m + 1), ... ,w(im)) (i = 1, ... ,M). 

Counting the number of ways in which k or fewer of these subwalks can 
contain an occurrence of E(m) (and remembering to count the last N -Mm 
steps of w), we are led to the bound 

CN[k, E(m)] S t ( Jl.! ) (cm)i(cm[O, E(m)])M-icN-Mm (7.2.5) 
i=O J 

S p.mMCN-Mm t ( ~ ) (1 + €)im(l- €)Mm-im. 
j:O J 
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It suffices to show that there is a p > 0 and at < 1 such that 

CN(pM, E(m)JliM < lJl.m 

237 

(7.2.6) 

for all sufficiently large M, since this gives (7.2.4) whenever 0 < a1 < pfm. 
But if p is a small positive number, then 

(7.2.7) 

(For readability, we often write pM instead of lPM J.) As M -+ oo, the 
M-th root of the right-hand side of (7.2.7) converges to 

1 l+f 1-fm ( )
pm 

pP(l- p)l-P 1- ( ( ) I 

which is less than 1 whenever 0 < p < Po, for some sufficiently small Po· 
Combining this with (7.2.5), we see that (7.2.6) holds if 0 < p <Po and M 
is sufficiently large. D 

Remark. Although we will not need this fact, it is worth pointing out 
that the lim infin (7.2.3) is in fact a limit. This follows from CN+M[O, E]::; 
cN[O, E]cM[O, E] and Lemma 1.2.2. 

The next lemma is the heart of the proof of the Pattern Theorem. It 
says that almost all walks fill some cube (of the fixed radius r). The starting 
point of the proof is the observation that all walks cover at least r+3 points 
of the cube of radius r + 2 centred at the origin; so if the lemma were false, 
then there would exist a J( such that almost all walks cover J( points of 
some cube (and in fact many cubes), but almost never cover J( + 1 points 
of any cube. This is used to obtain a contradiction. 

Lemma 7.2.6 lim infN ..... oo CN[O, E•]1/N < Jl.· 

Proof. Assume that the lemma is false, i.e. assume that 

lim cN[O, E*]ifN = Jl.. 
N-+oo 

(7.2.8) 

We make three observations: First, cN[O, Ek] is a nondecreasing function 
of k. Secondly, if E" does not occur on a given walk then E(2r+S)d cannot 
occur; therefore 

(7.2.9) 



238 CHAPTER 7. PATTERN THEOREMS 

and hence (7 .2.8) implies that 

lim CN[O, E(2r+5)dj1/N =I'· 
N-oo 

(7.2.10) 

Thirdly, CN [0, Er+a] = 0 for all N ;::: r + 2 [since the first r + 3 points of any 
walk w must be in Q(O)]. We conclude from these observations that there 
exists a ]( [with r + 3 ~ K < (2r + 5)d] such that 

(7.2.11) 

and 
(7.2.12) 

By (7.2.11) and Lemma 7.2.5, there exist an a1 > 0 and an integer m such 
that 

limsupcN[a1N, EK(m)PIN <I'· (7.2.13) 
N-oo 

Define the set of self-avoiding walks 

TN= {wE SN : EK+l never occurs; EK(m) occurs at least a1N times}. 
(7.2.14) 

Observe that replacing EK(m) by EK(m) in (7.2.14) does not change any
thing, since the condition that EK+l never occurs ensures that E*(m) never 
occurs. The cardinality of TN satisfies 

ITNI;::: CN[O, EK+d- cN[atN, EK{m)], 

and therefore, by (7.2.12) and (7.2.13), 

lim ITNil/N =I'· 
N-oo 

(7.2.15) 

(7.2.16) 

Thus, there is a number I< such that it is not unusual to find lots of 
cubes with exactly [( points occupied and no cubes with more than K 
points occupied. The rest of the proof is simply a matter of counting. 
The main idea is the following. Given such a walk w E TN, consider the 
collection of all cubes that have exactly K points covered. Remove the 
pieces of w that cover a particular (small) sub collection of these cubes, and 
consider all possible ways of replacing them with pieces that entirely fill 
the same cubes. This is not a one-to-one transformation, and the length of 
the resulting walk is a bit different, but we can still arrange it so that the 
number of resulting walks is larger than ITNI by an exponential factor, and 
this will contradict (7.2.16). 
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Suppose that w is an N-step self-avoiding walk such that EK+l never 
occurs on wand EK{m) occurs at the it-th, h-th, ... ,j,-th steps of w (and 
perhaps at other steps as well). Suppose in addition that 

0 <it- m,j, + m < N, and i1 + m < i1+1- m for all I= 1, ... , 8- 1 
(7.2.17) 

and 
Q(j1 ), ... , Q(j,) are pairwise disjoint. (7.2.18) 

For I= 1, ... , 8, let 

0'1 = min{ i : w( i) E Q(j,)} and 1} = max{ i : w( i) E Q(j,)}. 

Since EK(m) occurs at the j1-th step and EK+l does not occur at the j,-th 
step, there must be exactly I< points of Q(j1) that are occupied by points of 
w, and those points must lie between w(j1- m) and w(j1 + m) on the walk. 
Therefore i1- m ~ 0'1 < i1 < TJ ~ j, + m for every I. Consider all possible 
ways of replacing each subwalk (w( 0'1 ), ••• , w( TJ)) by a sub walk that stays 
inside Q(j1) and completely covers Q(j1) [such subwalks exist by Lemma 
7.2.4; we can do this operation simultaneously for all subwalks because we 
have ensured that there is no overlap amongst the subwalks nor amongst 
the cubes Q(j,)]. The result is always a self-avoiding walk 1/J on which E* 
occurs at least 8 times, and whose length N' satisfies 

N' < N + 8(2r + 5)d. (7.2.19) 

Now consider all triples (w, 1/J, J) where: w is a self-avoiding walk in TN; 
J = {it, ... ,j,} is a subset of {1, ... ,N} such that (7.2.17) and (7.2.18) 
hold, EK(m) occurs at each i1 in J, and 8 = l6NJ (here 6 is a small 
positive number that will be specified at the end of the proof); and 1/J is 
a self-avoiding walk that can be obtained from w and J by the procedure 
of the preceding paragraph. We shall estimate the number of such triples 
both from above and below to obtain a contradiction. For both estimates, 
we shall use the observation that each cube Q(j) intersects exactly V = 
( 4r + 9)d cubes of "radius" r + 2 [this is because Q(j) intersects the cube 
of radius r + 2 centred at x if and only if llw(j) - x lloo ::; 2( r + 2)]. 

First, the number of such triples is at least the cardinality of TN times 
the minimum number of possible choices of J for walks w in TN. Each 
w in TN contains at least a1N occurrences of EK(m), and so we can find 
ht < ... < hu, where u = latN/((2m + 2)V)J- 2, such that {i) EK(m) 
occurs at the h1-th step of w for every I = 1, ... , u, (ia) 0 < h1 - m, 
hu + m < N, and h1 +m < h1+1- m for every I= 1, ... ,u-1, and (iii) 
the cubes Q(ht), ... ,Q(hu) are pairwise disjoint. Clearly, any subset of 
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{ht, ... , hu} that has cardinality l8NJ is a possible choice for J. So if we 
set p = at/((2m + 2)V), then (dropping l·J from the notation) 

number of triples~ ITNI ( p~; 2 ) . (7.2.20) 

For an upper bound, consider a triple (w, 1/J, J). Observe that E• occurs 
at least IJI = l6NJ times on 1/J; it may occur more than IJI times because 
making a change in a cube Q(jr) can produce occurrences of E• in some of 
the cubes ofradius r+2 that intersect Q(jr ). However, since E• never occurs 
on w, we infer that E• occurs no more than VIII times on w. Therefore, 
given t/J, there are at most (f~N) possibilities for the locations of the cubes 
Q(j,), l = 1, ... , 111. Given t/J and the locations of these Ill cubes, each 
cube Q(jr) determines a subwalk of t/J that replaced some subwalk of w. 
Since each of the replaced subwalks of w had length 2m or less, there are 
at most o:::;::o Cj ) 6N possibilities for W if we know both 1/J and the locations 
of the IJI cubes. Finally, if we know w and the locations of the cubes, 

then J is uniquely determined. So if we define Z = 2:;:0 Ci, then using 
(f~N)::; 2vm and (7.2.19) we see that 

N +(2r+5)d 6N 

number of triples :S 2V6N z6N L: Cj. 

i:O 

(7.2.21) 

We now combine (7.2.20) and (7.2.21), take N-th roots, and let N--+ oo; 
by (7.2.16), we obtain 

Jl pP < 2v6Jl1+(2r+5)d6z6 
§6(p _ §)p-6 - ' 

Setting Y = 2v Jl( 2r+5)d Z and t = 6/ p gives 

1 :S (tl(l- t)l-tyty. 

To obtain a contradiction, then, it suffices to show that the function f(t) = 
t1(1- t) 1- 1Y1 is less than 1 for sufficiently small t > 0; this is true because 
limt''\.0 f(t) = 1 and lim1'\,o f'(t) = -oo. This contradiction proves the 
lemma. 0 

We are now ready to prove Kesten's Pattern Theorem. The ideas for 
this proof are really the same as those already used in the proof of Lemma 
7.2.6. 

Proof of Theorem 7.2.3. First, assume without Joss of generality that 
the cube in the statement of the theorem is 

Q = {x E za: jx;j :S r,i= 1, ... ,d}. 
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Assume that the theorem is false; then for every a > 0, 

lim sup CN[aN, ( P, Q)PIN = Jl. (7.2.22) 
N-oo 

We shall say that E .. occurs at the j-th step of w if the cube Q(j) is 
completely covered by w. By Lemmas 7.2.6 and 7.2.5, there exist a' > 0 
and m' such that 

limsupcN[a'N,E••(m')pfN < Jl. (7.2.23) 
N-oo 

Let a > 0 be a small unspecified number, and let H N denote the following 
set of walks: 

HN {wE SN: (P, Q) occurs at most aN times on w; 

E .. (m') occurs at least a' N times}. 

The cardinality of HN satisfies 

and therefore, by (7.2.22) and (7.2.23), 

lim IHNjlfN = Jl· 
N-oo 

(7.2.24) 

Let 6 be a small positive number, to be specified at the end of the 
proof. Consider all triples (w, v, J) such that: w is in H N; J = {it, ... , j,} 
is a subset of {1, ... , N} such that E••(m') occurs at each ir, (7.2.17) 
holds with m replaced by m', and s = l6NJ; and vis a self-avoiding walk 
obtained by replacing the occurrence of E .. (m') at each j, by an occurrence 
of ( P, Q), analogously to the method described in the proof of Lemma 7 .2.6 
[0'1 and rr are defined in the same way, and we use part (b) of Lemma 7 .2.4]. 
We remark that the occurrences of E••(m') guarantee that (7.2.18) holds. 
Arguing as we did for (7 .2.20), we see that 

number of triples~ IHNI ( p~N 2 ) , (7.2.25) 

where now p = a' /(2m' + 2). For the upper bound, we use the fact that v 
has at most aN +2m'V6N occurrences of(P, Q). (This allows for (t) at most 
aN occurrences of (P, Q) on w, and ( ii) the possibility that changing a single 
occurrence of E .. (m') to a (P,Q) may create several other occurrences of 
(P, Q) either by creating additional occurrences of P or by vacating sites 
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of other cubes.) Also, note that v has at most N steps. Therefore the 
analogue of (7.2.21) here is 

N 

number of triples~ 2aN+2m'V6NZ'6N Eci, 
i=O 

(7.2.26) 

where Z' = L:~:~ Ci. We now combine (7.2.25) and (7.2.26), put a = 6, 
take N-th roots, and let N-+ oo; by (7.2.24), we obtain 

I' pP < 26+2m'V6 z'6J.t 
f56(p- o)P-6 - . 

As in the proof of Lemma 7 .2.6, this leads to a contradiction for sufficiently 
small6, and so the theorem is proven. D 

7.3 The main ratio limit theorem 

The principal task of this section is to prove Equations (7.1.1), (7.1.2), and 
(7.1.3). The proof of each will be based on Lemma 7.3.1 and Theorem 
7.3.2, which will also be used in the next section as the basis for analogous 
results for walks with specified end patterns. 

Lemma 7.3.1 gives three conditions which together are sufficient for the 
ratio limit theorems to hold. The first two conditions will be relatively easy 
to verify in our cases of interest; the third will follow from Theorem 7.3.2 
below. 

Lemma 7.3.1 Let {aN} be a sequence of positive numbers and let tPN = 
aN+2faN. Assume that 
( ') I' 1/N ' lffiN-oo aN = J.t, 
(ii) lim infN-oo tPN > 0, and 
(iii) there exists a constant D > 0 such that 

tPNtPN+2 ~ (tPN)2 - ~ (7.3.1) 

for all sufficiently large N. Then 

lim tPN = J.t2. 
N-oo 

(7.3.2) 

Proof. First observe that ( ii) and (iii) imply that there exists a constant 
B > 0 such that 

for all sufficiently large N. (7.3.3) 
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Let UN = tPN - Jl2. To prove the lemma, we shall show (by contradiction) 
that the lim sup of UN cannot be strictly positive, nor can the lim inf be 
strictly negative. 

First assume that lim supN-oo UN > 0. Then there exists an l > 
0 (possibly l = +oo) and a sequence N(l) < N(2) < ... such that 
lim;-oo UN(j) = l. For each j ~ 1, define 

M(j) = l N(j~;:(i) J ; 
note that M(j)- oo as j- oo. For sufficiently large j and every 0 $ k < 
M(j), (7.3.3) implies that 

kB 
tPN(i)+21c ~ tPN(j) - N(j) 

2 M(j)B 
~ Jl + UN(j) - N(j) 

~ Jl2 + U~(j). 

Therefore 

0 N(j)+2M(j) Mrr(j)-l .1.. > ( 2 + UN(j))M(j) 
a = 'I'N(i)+2/c - P. -2-

N(i) lc:O 

Take M(j)-th roots of this inequality, and let j - oo, obtaining p.2 ~ 
p.2 + E/2, which is a contradiction. Therefore limsupN-oo UN$ 0. 

Next, assume that lim infN-oo UN < 0. The procedure is similar to 
that of the preceding paragraph. Since UN is bounded below, there exists 
an l > 0 anq a sequence N(l) < N(2) < ... such that lim;-oo UN(j) = -l, 
and such that UN(j) < 0 for every j. Without loss of generality, we can 
assume that the constant B of (7.3.3) satisfies B ~ p.2. For each j ~ 1, 
define 

M(j) = l N(j~c;;(i)l J ; 
since -Jl2 < uN(j) < 0, it follows that 

M(J') < N{j)Jl2 < N(j). 
- 4B - 4 

For sufficiently large j and every 0 < k $ M(j), (7.3.3) implies that 

kB 
tPN(j)-2/c $ tPN(j) + N(j)- 2k 
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As before, we obtain 

aN(i) = rf if>N(j)-2/c ~ (J.l2- ju~(j)')M(i) 
aN(j)-2M(j) k:l 

We take M(j)-th roots of this inequality and let j -+ oo, obtaining the 
contradiction p.2 ~ p.2 - f/2. Therefore lim infN-oo O'N ;::: 0. D 

Remark. It is apparent that Lemma 7.3.2 remains true if we replace 

N + 2 by N + 1 everywhere. Our inability to prove that CN+t/CN -+ J.l 
in zd (d = 2, 3, 4) is due to the failure of our proof of the corresponding 
analogue of the next theorem. As will become clear during the course of 
the proof, the reason for this failure can be seen most simply in Figure 7.4: 
there does not exist a pair of patterns U and V in zd having the same 
endpoints whose lengths differ by 1. However on a lattice where such a pair 
of patterns exists, for example the triangular lattice, we can modify our 
argument easily to show that CN+t/CN -+ p. on that lattice. 

Theorem 7.3.2 There exists a constant D > 0 such that 

for all sufficiently large N, 

where if>N is defined according to any one of the following: 
{a) 4>N = CN+2fcN for every N; 
{b) 4>N = bN+2fbN for every N; or 

(7.3.4) 

{c) 4>N = CN+2(0, x)fcN(O, x) for all N of the same parity as llxlh, where 
X is a given point of zd. 

Proof. First we define two patterns, U = (u(O), ... , u(9)) and V = 
(v(O), ... , v(ll)). Each begins at the origin and lies in the (xt, x2)-plane 
(i.e. u;(j) = 0 = v;(j) for all i = 3, ... , d and every j). The steps in the 
(x1 ,x2)-plane are N3E3 S3 for U, and N3 ESENES3 for V (see Figure 7.4). 
Let Q be the cube 

Q = {x E zd: 0 ~Xi~ 3 for every i = 1, ... , d}, 

so that U and V are both contained in Q, and their endpoints are corners 
of Q. The main idea is that (U, Q) and (V, Q) must both occur many times 
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on almost all self-avoiding walks, and changing a U to a V increases the 
length of a walk by two; this gives us a way to transform N-step walks into 
(N +2)-step walks, and (N +2)-step walks into (N +4)-step walks. We will 
then do some counting based on all possibilities for these transformations. 

As usual, SN is the set of N-step self-avoiding walks whose initial point 
is the origin. If we are in case (a) of the theorem, let WN be SN; if we are 
in case (b), let WN be the set of all bridges in SN; and if we are in case 
(c), let WN be the set of all walks win SN such that w(N) = x. Let WN 
denote the cardinality of WN. Then 

I . 1/N 1m w = Jl 
N-oo N 

(7.3.5) 

(where we have used Equation (3.1.10) for part (b) and Corollary 3.2.6 for 
part (c)]. For integers N > 0, i ~ 0, and j ~ 0, Jet WN(i, j) be the set of all 
walks in WN on which (U, Q) occurs at precisely i different steps and (V, Q) 
occurs at precisely j different steps. Let WN( i, j) denote the cardinality of 
WN(i,j). For integers a, b ~ 0, define 

WN(~ a,~ b)= I: WN(i,j). 
i?;a,j?;b 

In particular, WN(~ 0, ~ 0) = WN. 
Consider the collection of all pairs (w,w') such that wE WN(i,j) and 

w' can be obtained from w by changing one occurrence of (U, Q) to an 
occurrence of (V, Q). In other words, (w, w') is an allowed pair if there 
exists a k such that (U, Q) occurs at the k-th step of w, (V, Q) occurs at 
the k-th step of w', w(l) = w'(l) for alii= 0, ... , k, and w(l) = w'(l + 2) for 
alii= k + 9, ... , N. In particular, w' E WN+2(i- l,j + 1). Counting the 
number of allowed pairs in two ways, we see that 

Number of pairs= iwN(i,j) = (j + l)wN+2(i -l,j + 1). 

u v 
u(O) v(O) 

Figure 7.4: The patterns U and V in the ( x1, x2)-plane. 
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Therefore 

( 0 ) "" (' . ) "" iwN(i,j) ( ) WN+22: ,2:1= LJ WN+2l-1,J+1= LJ . 1 7.3.6 
i>l '>O i>l '>O J + _,)_ _,J_ 

and 

"" . . "" i(i- 1)wN(i,j) 
WN+4(2:0,2:2)= LJ WNH(l-2,J+2)= LJ (" 1)(" 2) · 

i>2 '>O i>2 '>O J + J + _,}_ _,}_ 

(7.3.7) 
The Schwarz inequality tells us that 

( L iw:V(i,j)) 2 S 
i>l '>O J + 1 - ,} -

( "" (. ·)) ( "" i2wN( i, j)) . LJ WN l, J LJ . 2 ' 
i~ l,j~O i~ l,j~O (J + 1) 

(7.3.8) 
combining this with (7.3.6) implies that 

(7.3.9) 

For N 2: 1, define 

2,N = WN+4(2: 0, 2: 2) _ (WN+2(2: 0, 2: 1)) 2 

WN WN 
(7.3.10) 

and 
SN = ¢N¢N+2- (rPN )2 - SN. (7.3.11) 

The error term SN is easy to bound: 

ISNI < I WN+4- w::4(2: 0, 2: 2) I+ I w}.r+2 - (wN:t2: 0, 2: 1)]21 

< CNH(l, (V, Q)] 2WN+2CN+2[0, (V, Q)] 
_;..._:_--'-'---'----'""-= + 2 ' 

WN WN 

and hence Theorem 7.2.3 and Equation (7.3.5) imply that SN decays to 
0 exponentially fast. Therefore to prove the theorem it suffices to find a 
lower bound for '2N of the form -const.f N. By Theorem 7.2.3 and Equation 
(7.3.5), there exists an a > 0 such that 

I. 1 WN(> 0, > aN) l ( ) 
1/N 

tmsup - - - < . 
N-oo WN 

(7.3.12) 
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Using (7.3.7) and (7.3.9), 

( L i(i- l)wN(i,j) L i2wN(i,j)) _1 

i~O,j~O (j + l)(j + 2) i~O,j~O (j + 1)2 WN 

( L (-i2 -ij-i)wN(i,j)) _1 
i>O '>O (j + 1)2(j + 2) WN. 
- .J_ 

Since WN( i, j) = 0 if i > N or j > N, we can bound the factor -i2 - ij- i 
below by -3N2 • Splitting the sum over j into aN ::=; j ::=; N and 0 ::=; j < aN, 
we then obtain 

=.N > -3N2wN(~ 0, ~ aN) + ( _3N 2) (t _ WN(~ 0, ~ aN)) . 
- (aN)3WN WN 

By (7.3.12), the second term in the last line above decays to 0 exponentially 
fast, and the first term is asymptotic to -3/a3 N. Thus the theorem is 
proven. D 

Before we proceed with the proofs of the main ratio limit theorems, we 
prove a lemma that will be needed to prove assumption ( ii) of Lemma 7 .3.1 
in the fixed-endpoint case. 

Lemma 7.3.3 Let x be a nonzero point oJZd. Then CN+ 2(0, x) ~ CN(O, x) 
for all sufficiently large N having the same parity as llxlh. 

Proof. The idea is similar to the proof that CN+2 ~ CN as depicted 
in Figure 7.1, but now we must not touch the endpoints. Fix an integer 
A> llxlloo· Suppose N > (2A + 1)d, and let w be anN-step self-avoiding 
walk with w(O) = 0 and w(N) = x. Then at least one point of w must 
lie outside the cube {y E zd : I!YIIoo ::=; A}; notice that the endpoints of 
w lie inside this cube. Let M = max{llw(i)lloo : 0 ::=; i ~ N}. Observe 
that M > A. Then there exists j E {0, ... , N} and i E {1, ... , d} such 
that lw;(j)l = M. Choose j as small as possible; then, since w(j) is not 
an endpoint of w, we must have w;(j) = w;(j + 1). Let v be the vector 
whose coordinates are all 0 except the i-th, which is +1 if w;(j) = M and 
is -1 if w; (j) = - M. Thus, v is the unit outer normal vector to the cube 
{y : I!YIIoo ::=; M} at the point w(j). Define the new (N + 2)-step walk w* 

by 

{ 
w(k), k=O, ... ,j; 

*(k)- w(j)+v, k=j+1; 
w - w(j+1)+v, k=j+2; 

w(k-2), k=j+3, ... ,N+2. 
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(Thus we replace the step from w(i) to w(i + 1) by three steps.) Then w• 
is self-avoiding, and has the same endpoints as w. 

No two w's can give rise to the same w•, because the the two added 
points have larger norm II· lloo than any other points of w• and hence are 
unambiguously determined. This proves the lemma. o 

We are now ready to prove the main ratio limit theorem. 

Theorem 7.3.4 (a) limN-oo CN+2/cN = J.L2. 
{b) For every fixed nonzero x in zd, limN-oo CN+2(0, x)/cN(O, x) = J.L2 
(here, N is restricted to having the same parity as llxlh). 
(c) limN-oo q2N+2/q2N = J.L2. 
{d) limN-+oo bN+tfbN = J.l· 

Proof. Part (a) follows immediately from Lemma 7.3.1, Theorem 7.3.2(a), 
and (7.1.5) (which implies ¢N? 1). Similarly, part (b) follows from Lemma 
7.3.1, Corollary 3.2.6, Theorem 7.3.2(c), and Lemma 7.3.3. Part (c) is a 
direct consequence of part (b) and the basic relation (3.2.1 ). 

Part (d) requires some additional work. First we apply Lemma 7.3.1 
with aN = bN [the hypotheses of the lemma follow from Corollary 3.1.6, 
Theorem 7.3.2(b), and the inequality bN+2/bN? 1, which is a consequence 
of (1.2.15)] to obtain 

For every integer j, define 

L I .. fbN-i 
i = 1mm - 6-; N-+oo N 

(7.3.13) 

we want to show that L 1 = J.l-t and that the lim inf is in fact a limit. 
By (7.3.13), Li+2 = J.'- 2 Li for every j. Therefore 

Li = J.l-i for all even j, and Lj = J.ll-i L 1 for all odd j. 

From (4.2.2), we see that for every j and every N > j, 

Applying Fatou's Lemma to the above equation gives 

00 

Lj ? L >.,Li+•· (7.3.14) 
•=1 
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Define 

•~l,•odd 

By (4.2.4), Eo+ Ee = 1. Applying (7.3.14) with j = 0 yields 

1 ~ L11'Eo + Ee, 

which implies that L 11' :5 1. Next, applying (7.3.14) with j = 1 gives 

Lt ~ I'-1Eo + LtEe, 

which implies that L111. ~ 1. Therefore L1 = 1'-1 , i.e. 

I. bN+l 
1m sup -b- = I'· 
N-oo N 

Combining this with (7.3.13), we finally obtain 

I. . f bN+l I' . f bN+l bN-1 2£ 
1mm -b- = tmm -b--b- =1' 1 =Jl, 
N-oo N N-oo N-l N 

and so part (d) is proven. 

7.4 End patterns 

249 

0 

In this section, we shall prove Equations (7.1.8) and (7.1.9), as well as 
various extensions of these results. To begin, we extend the notion of front 
patterns from Definition 7.1.2 to the analogous notion of tail patterns. 

Definition 7.4.1 Let P = (p(O), ... ,p(n)) and R = (r(O), ... , r(m)) be 
patterns. Let TN[R] denote the subset of walks in SN for which R occurs 
at the (N- m)-th step. We say that R is a proper tail pattern ifTN[R] is 
non-empty for all sufficiently large N. Let SN[P, R] denote the intersection 
of FN[P] with TN[R]. For every x in zd, let SN[x; P, R] denote the set of 
all walks in SN(P, R] whose last point w(N) is x. 

Consideration of front patterns and tail patterns together leads to results 
such as (7.4.7), which is used to analyze the behaviour of the "slithering
snake" Monte Carlo algorithm in Section 9.4.2, and Proposition 7.4.4, a 
lower bound for cN(O, x) which is stronger than the earlier bound (3.2.11 ). 

In Section 6. 7, we saw how the lace expansion is used to prove the 
existence of limN-co I.1'N[P]IfcN in high dimensions. (That section used 
the notation Pn,N(P) to denote .1'N(P]/cN where n = !Pl.) This limit is 
believed to exist in every dimension, but this remains unproven in 2, 3, 
or 4 dimensions, where the best results are Theorem 7.4.5 below and the 
following theorem. 



250 CHAPTER 7. PATTERN THEOREMS 

Theorem 7.4.2 If P is a proper front pattern and R is a proper tail pat-
tern, then 

1. . f IFN[P]I 0 lmm > 
N-co CN 

(7.4.1) 

and 

I. . f ITN[R]I 0 1mm > . 
N-co CN 

(7.4.2) 

Proof. It suffices to prove (7 .4.1 ), since (7 .4.2) then follows by considering 
walks with reversed steps. Suppose P = (p(O), ... , p(n)). Since Pis a proper 
front pattern, there must be a cube Q and a self-avoiding walk wP of length 
n' with the following properties: wP is entirely contained in Q; wP(n') is 
a corner of Q; and P occurs at the 0-th step of wP (see Figure 7.5). By 

p 

0 

. ......•... 

..------0 

. 
• n' '-------.q 

Figure 7.5: Proof of Theorem 7.4.2: the proper front patterns P, wP, and 
wG. The dotted lines in the centre picture denote the boundary of Q. 

Lemma 7.2.4(a), there exists a self-avoiding walk wG whose last point equals 
wP ( n'), whose first point is another corner of Q, which is entirely contained 
in Q and visits every point of Q. Let q denote the number of steps in wG. 
Evidently, q ?: n'. 

Our first observation is that for every N ?: n1 

(7.4.3) 

The first inequality is obvious, since FN[wP] C .FN[P]. For the second, 
we can define a one-to-one transformation w ~--+- w* from .F N +q-n' [wG] to 
FN[wP] as follows: for each win FN+q-n'[wG], let w* be the (unique) N
step walk that has wP occurring at its 0-th step and whose last N -n' steps 
are identical to those of w, and translated so that w* (0) = 0 (see Figure 
7.6). Then w* is self-avoiding, hence it must be in FN[wP]. Now, because 
of the observation (7.4.3), and because CN ~ CN+q-n' [by (7.1.6)], it suffices 



7.4. END PATTERNS 251 

.------0 

0 

w w* 

Figure 7.6: Proof of Theorem 7.4.2: the transformation of w in 
:F N +q-n' [wQ] to w* in :F N [wP]. 

to show that 
1. . f I:F M [wQ]I 0 
1mm > . 
M-oo CM 

(7 .4.4) 

[We remark that it is not necessary to invoke (7.1.6) here; we could instead 
use (7.1.5) and CN :5 2dcN-1 to conclude that CN ::;; 2dcN+q-n'• which 
suffices for (7.4.4).] 

Since wQ is a proper internal pattern (see Proposition 7.1.3), Theorem 
7.2.3 says that there exists an £ > 0 and an even integer k such that 

(7.4.5) 

For all integers I ;::: j ;::: 0, let 9z,j be the set of walks w in Sz such that wQ 

occurs at the j-th step of w, and let 1-lz,j = u{=09z,i. Thus 1-lz,j is the set of 
/-step self-avoiding walks starting at the origin on which wQ occurs at one 
of the first j steps. Then by (7.4.5), 

Therefore 

ISM+k \ 1-lM+k,ki < ck[O,wQ]cM 

< ti(l- £)kcM. 

CM+k- CMJlk(l- tl < 11fM+k,kl 
k 

::;; Li9M+k,il 
i=O 

k 

S I:Cii:FM[wQJh-i· 
i=O 
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(7.4.6) 

Since k is a fixed even number, Theorem 7.3.4(a) implies that CM+k/cM 
converges to JLk, and hence the left side of (7.4.6) has a strictly positive 
limit as M--+ oo. This proves (7.4.4) and the theorem. D 

An extension of the preceding proof allows one to prove the stronger 
statement 

I. . f ISN[P, R]l 0 
tmm > 
N-+oo CN 

(7.4.7) 

whenever P and R are proper front and tail patterns, respectively. For 
details, see Madras (1988). 

We shall now consider the occurrence of end patterns on walks with 
specified endpoints. 

Proposition 7 .4.3 Let e be a point in zd with lei = 1. Let P and R be 
patterns such that SN[e; P, R] is non-empty for all sufficiently large odd N. 
Then 

liminf ISN[e;P,R]I > 0 
N-+oo,Nodd CN(O, e) . 

Proof. Assume P = (p(O), ... ,p(n)) and R = (r(O), ... ,r(m)) with 
p(O) = 0 and r(m) =e. Let P' = (r(O), ... , r(m), p(O), ... , p(n)). Since the 
pattern P' can occur on arbitrarily large self-avoiding polygons, P' must 
be a proper internal pattern. Therefore, by Theorem 7.2.3 there exists an 
E > 0 such that 

limsup(cN[cN, P']) 1/N < p.. (7.4.8) 
N-oo 

Let SN(e) be the set of walks in SN having w(N) = e, and let S#(e) 
be the set of walks in SN(e) on which P' occurs at more than EN different 
steps. By (7.4.8) and Corollary 3.2.6, 

(7 .4.9) 

for all sufficiently large (odd) N. If w is in SN(e) and P' occurs at the j-th 
step of w, then (w(j +m+ 1), ... ,w(N),w(O), ... ,w(j +m)) is a translation 
of a self-avoiding walk t/J in SN[e; P, R]. Consider all pairs (w, t/J) such that 
w E S}v(e) and t/J can be obtained from w in this way. On the one hand, 
since each w gives rise to at least EN different 1/J's, the number of such 
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pairs is bounded below by t:NISfv(e)l. On the other hand, each t/J can be 
obtained from no more than N different w's, and so the number of pairs is 
bounded above by NISN[e; P, R]l. Therefore 

for all sufficiently large N [the second inequality is given by (7.4.9)]. The 
theorem follows. D 

One would like to prove the analogue of Proposition 7.4.3 when e is 
replaced by any given point x in zd (and N is restricted to having the 
same parity as llxllt). However, the best known result is the following. Let 
e be a nearest neighbour of the origin, and let x be a non-zero point in zd. 
Assume that SN[x; P, R] is non-empty for all sufficiently large N with the 
same parity as llxllt· Then for odd llxlh we have 

lim inf ISN[x; P, R]l > 0 
N -oo,N odd CN (0, e) ' 

(7.4.10) 

and for even llxllt {7.4.10) holds after we replace N by N + 1 in the numer
ator. For the proof, see Madras (1988). lfwe knew that cN(O,e)/cN,(O,x) 
(where N' equals Nor N + 1, according to whether llxlh is odd or even) 
had a positive lower bound for sufficiently large N, then we could imme
diately deduce the desired analogue of Proposition 7.4.3. Unfortunately, it 
remains an open problem to prove this lower bound, which is a particular 
case of Conjecture 1.4.1. We can however use Proposition 7.4.3 to prove a 
corresponding upper bound. This does not help to generalize Proposition 
7.4.3, but it does prove a special case of Conjecture 1.4.1. 

Proposition 7.4.4 Let e and x be non-zero points of zd, with llell2 = 1. 
Then there exists a positive constant A and an integer N A (both depending 
on x) such that 

CN(O,e) $ AcN(O,x) 

ifllxllt is odd, and 

CN(O, e) $ AcN+t (0, x) 

if llxlh is even. 

for all N ~ NA 

for all N ~ NA 

Proof. Let ( r(O), ... , r(m+ 1)) be a proper internal pattern having r(O) = 
x, r(m) = e, and r(m + 1) = 0. Then m has the opposite parity to 
llxlh· Let R = (r(O), ... , r(m)) and let P be the 0-step pattern (0). Then 
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Proposition 7.4.3 holds for this P and R, so there exists a K > 0 such 
that ISN[e; P, RJI ~ KCN(O, e) for all sufficiently large N. The first N- m 
steps of a walk in SN[e; P, R] is a self-avoiding walk from 0 to x, and so 
ISN[e; P, R]l $ CN-m(O, x). The proposition now follows from these two 
inequalities and Lemma 7 .3.3. 0 

We are now ready to prove ratio limit theorems for the number of walks 
with specified end patterns. The procedure is the same as in Section 7.3. 

Theorem 7.4.5 Let P be a proper front pattern and let R be a proper tail 
pattern. Then: 
(a) limN-co IFN+2[P]I/IFN[PJI = J.t 2 • 

{b) limN-co ISN+2[P, R]I/ISN[P, R]l = J.l 2 • 

(c) Suppose in addition that x is a fixed nonzero point of zd and that 
SN[x; P, R] is non-empty for all sufficiently large N having the same parity 
as llxlh· Then limN-co ISN+2[x;P,R]I/ISN[x;P,R]I = J.t 2 (where N is 
restricted to having the same parity as llx I h). 

Proof. We apply Lemma 7.3.1 in each case. Beginning with the most 
substantial hypothesis of the lemma, we observe that the analogue of The
orem 7.3.2 holds in each of the three present cases. In fact, the same proof 
works, with the following modifications: 

1. Let WN be FN[P] in case (a), SN[P, R] in case (b), and SN[x; P, R] 
in case (c). 

2. In the definition of W N( i, j), count only those occurrences of (U, Q) 
and (V, Q) which do not touch the end patterns; i.e. only count 
occurrences after the IPI-th step, and no later than the (N -IRI- 9)
th step for (U, Q) and the (N- IRI- 11)-th step for (V, Q). 

3. limN-oo w;/N = J.l by Theorem 7.4.2 for case (a), Equation (7.4.7) 
for case (b), and Equation (7.4.10) and Corollary 3.2.6 for case (c). 

Now we verify that the hypotheses of Lemma 7.3.1 all hold. The pre
vious paragraph shows that assumption (iii) of Lemma 7 .3.1 holds in each 
of the present three cases. Also, assumption (i) holds in each case by point 
3 in the preceding paragraph. So it only remains to check the second as
sumption of Lemma 7 .3.1 in each case. 

For case (a), Theorem 7.3.4(a) and Theorem 7.4.2 imply that 
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Case (b) is similar, using (7.4.7). For case (c), we use the inequality 
ISN+2[x; P, R]l ~ ISN[x; P, R]l for all sufficiently large N (the proof is ex
actly as the same as for Lemma 7 .3.3, except that A must be taken large 
enough so that w(j) is not on either end pattern; A= max{IPI, llxlh + IRI} 
suffices). 0 

7.5 Notes 

Sections 7.2 and 7 ,3, The results of these sections are due to Kesten 
(1963). In that paper Kesten also proved the following bounds on the 
convergence rates in the ratio limit theorems: for all sufficiently large N, 

I c;;2 _ 1121 ::=;I< N-1/3, (7.5.1) 

- J{N-1/3 < CN+((O,))- /12 < J{N-1/4, (7.5.2) 
- CN O,x r -

where J( is a constant [and N has the same parity as llxlh in (7.5.2)]. 
We conjecture that the following strengthening of the Pattern Theorem 

is true: for every proper internal pattern P, there exists at = t(P) > 0 
such that for any (. > 0 only exponentially few N-step walks have fewer 
than (t- (.)Nor more than (t +(.)N occurrences of P. A more modest open 
problem is to prove that the expected number of occurrences of a proper 
internal pattern P on an N-step walk is asymptotic to tN as N - oo, 
for some t = t(P) > 0 (where expectation is with respect to the uniform 
probability measure on SN ). 

The proof of part (d) of Theorem 7 .3.4 is essentially a special case of a 
ratio limit theorem in renewal theory; see Proposition 1.2 in Chapter 3 of 
Orey {1971). 

Section 7.4. The results of this section are due to Madras (1988). That 
paper also showed that the convergence rate of (7 .5.1) holds in Theorem 
7.4.5(a,b), and the rate of (7.5.2) holds in Theorem 7.4.5(c). 
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