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Chapter 10 

Related topics 

10.1 Weak self-avoidance and the 
Edwards model 

The weakly self-avoiding walk, known also as the self-repellent walk and as 
the Domb-Joyce model [Domb and Joyce (1972)], is a. measure on ordinary 
random walks in which self-intersections are discouraged but not forbidden. 
The measure associates to an n-step simple random walk w the weight 

(10.1.1) 

where 0 < A :::; 1, Zn(A) is a normalization constant, the product is over 
pairs of integers s and t, and V1t(w) is 1 if w(s) = w(t) and otherwise is 
0. Taking A = 1 gives the uniform measure on n-step self-avoiding walks, 
while 0 < A < 1 gives a measure in which self-intersections diminish the 
probability of a walk. Setting A = 0 just gives simple random walk. An 
alternate parametrization of the interaction which appears frequently is to 
take 

Then in terms of {J, 

Q~(w) = ___ 1_ IT e-IJv,,(w), 

Zn(fJ) 0$1<t$n 

(10.1.2) 

(10.1.3) 

where Zn(fJ) is a normalization constant. Here it is {J = oo which corre­
sponds to the strictly self-avoiding walk. 
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It is a (nonrigorous) prediction of the renormalization group method 
that the weakly self-avoiding walk, for any A > 0, is in the same universality 
class as the strictly self-avoiding walk. This is borne out in the existing 
rigorous results. Ford= 1 it was shown in Bolthausen (1990), using large 
deviation techniques, that there is a Ao > 0 such that for A E (0, Ao] there 
is a c > 0 such that 

(10.1.4) 

In fact the same conclusion was obtained in a more general setting than 
just the nearest-neighbour walk. This shows that if A is sufficiently small 
then the one-dimensional weakly self-avoiding walk behaves like the strictly 
self-avoiding walk, in the sense that v = 1. For d > 4, Brydges and Spencer 
(1985) used the lace expansion to show that for A sufficiently close to zero 
the mean-square displacement of the model defined by (10.1.1) is linear in 
the number of steps, and the scaling limit of the endpoint of the walk is 
Gaussian. This could be extended to cover all A < 1 ford~ 5, using the 
methods that handled the A = 1 case; see Chapter 6. So also above four 
dimensions the weakly self-avoiding walk has the same scaling behaviour 
as simple random walk. There are no rigorous results in two and three 
dimensions; four dimensions will be discussed below. 

The Edwards model is a continuous space and time analogue of the 
weakly self-avoiding walk, introduced in Edwards (1965). Its relation to 
the weakly self-avoiding walk is similar to that of Brownian motion to 
simple random walk. The strength of the self-avoidance interaction for the 
Edwards model is analogous to the parameter {J of (10.1.2). It could be 
hoped that as this interaction strength goes to infinity the Edwards model 
would approach a limit corresponding to a continuum limit of the self­
avoiding walk; however methods allowing for such a limit to he carried out 
rigorously remain to he found. 

The Edwards model is defined formally as a measure on d-dimensional 
continuous paths on an interval [0, 71, by multiplying the Wiener measure 
on such paths by a factor suppressing self-intersections. Specifically, if we 
denote the Wiener measure by dWT and a typical path by r(t), then the 
Edwards model is defined by the measure 

dJ.LT = -1-e-gJ dWT (10.1.5) 
ZT 

where ZT is a normalization factor, g is a positive parameter measuring the 
strength of the interaction, and J is a functional on paths defined by 

J = J(r) = 1T 1T c(r(s)- r(t))ds dt. (10.1.6) 
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The quantity J(r) can be interpreted as the amount of time spent by the 
path r at its double points, and serves in the measure JJ.T to suppress self­
intersections. 

Rigorous sense can be made of the measure JJ.T by first replacing the 
delta function in (10.1.6) by a regularized delta function 6,, yielding a well­
defined interaction J, and corresponding measure JJ.'f, and then taking the 
limit removing the regularization c This procedure can be carried out lit­
erally when d = 1, but for higher dimensions it is not so simple and a 
renormalization is required. In fact the situation is quite similar to the 
construction of the <p4 quantum field theory [see Glimm and Jaffe (1987)], 
and methods used to construct these theories in two and three dimensions 
provide a basis from which to approach the Edwards model. The required 
renormalization is simplest in two dimensions, and the Edwards model in 
d = 2 was first constructed in Varadhan (1969). In two dimensions the 
Edwards measure is absolutely continuous with respect to the Wiener mea­
sure. For d = 3 the construction was carried out in Westwater (1980,1982) 
for all T and g; here the measure is singular with respect to the Wiener 
measure, in a dramatic departure from the formal expression (10.1.5). For 
small g an alternate construction of the three-dimensional measure was 
given in Bolthausen (1991), which made use of some simplifications in the 
constructive field theory technology [Brydges, Frohlich and Spencer (1983), 
Bovier, Felder and Frohlich (1984)]. 

Although for both two and three dimensions the Edwards model has 
been constructed for all times T and all g ~ 0, there is insufficient con­
trol to compute the limiting behaviour of the expected value of r(T)2 as 
T -+ oo, and critical exponents such as v are not currently accessible. The 
construction of the Edwards model for any finite T can be considered a 
construction of a subcritical model, and to obtain control of critical expo­
nents a control of the critical T = oo model is required. However in one 
dimension a proof has been given that lr(T)I behaves like a multiple ofT 
as T-+ oo; see Westwater (1985). It is believed that the Edwards model is 
in the same universality class as the self-avoiding walk, i.e. that the critical 
exponents will be the same. 

An alternate regularization of the Edwards measure (10.1.5) is to con­
sider a version of the model in discrete time and space. In Bovier, Felder and 
Frohlich (1984), such a regularization was given, and the necessary renor­
malization was performed to construct the continuum limit of Green func­
tions such as the two-point function in two and three dimensions; the contin­
uum measure itself was however not constructed. A natural discretization 
of the Edwards model is to replace the delta function in the interaction by 
a discrete version. Specifically, we discretize r(t) to n-112w(lntJ), with w 
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a simple random walk, and define 

{ nd/2 if ll.xlloo $ in-1/2 
c5n ( .x) = 0 otherwise. {10.1.7) 

Then we replace J of (10.1.6) by 

1 n n 

n2 L L c5n(n-1/2[w(s)- w(t)]) 
&:Ot:O 

n 

= n(d-4)/2 L v.,(w). (10.1.8) 
s,t=O 

This gives the measure (10.1.3) on simple random walks, with interaction 
strength {3 = 2gn(d-4)/2• From this relation it is clear that in dimensions 
two and three the discrete Edwards model interaction is weaker than that of 
the weakly self-avoiding walk. In Stoll {1989) the two dimensional Edwards 
measure was constructed by taking the continuum limit of this discrete 
model; this has not yet been carried out in three dimensions. 

In four dimensions the discrete Edwards model and the weakly self­
avoiding walk are identical, apart from a factor of two in the coupling con­
stants. As this book is being written, rigorous results in four dimensions 
are beginning to appear. Brydges, Evans and Imbrie (1992) have consid­
ered a model of weakly self-avoiding walk on a four dimensional hierarchical 
lattice, and have proved that a quantity closely related to the critical two­
point function decays asymptotically as a multiple of l.xl- 2 if the interaction 
is sufficiently weak. This work uses an identity to write the two-point func­
tion of the model as the two-point function of a quantum field theory, and 
then performs a renormalization group analysis of the quantum field theory. 
Arnaudon, Iagolnitzer and Magnen (1991) have announced a proof that the 
critical two-point function of a continuum four-dimensional Edwards model 
with fixed ultraviolet cutoff (a regularization analogous to discretization) 
and sufficiently weak interaction behaves asymptotically like a multiple of 
l.xl-2, with log l.xl and log log l.xl corrections, using constructive field theory 
methods. 

10.2 Loop-erased random walk 

During the 1980s considerable progress was made in the study of the loop­
erased self-avoiding random walk, which is a model of self-avoiding walk 
different from the one studied in this book. In this section we give a brief 
definition of the loop-erased random walk, and state the principal rigorous 



10.2. LOOP-ERASED RANDOM WALK 369 

results which have been obtained for it. Most of the rigorous work is due 
to Lawler, and is described in his book [Lawler (1991)]. 

There are two equivalent formulations of the model. The first, from 
which the name is derived, can be described as follows. Consider the path 
of an infinite ordinary simple random walk, for the moment in at least 
three dimensions. We associate to this walk an infinite self-avoiding walk 
by erasing loops from the path chronologically. In more detail, we begin by 
looking for the first time that the walk intersects itself and then erase the 
portion of the walk (the loop) between the (first) two visits to the site where 
the intersection occurs. Then we erase the first loop from the resulting path, 
and continue inductively. This leads to an infinite self-avoiding walk. To 
define a measure on the set of all n-step self-avoiding walks, we assign to 
each n-step self-avoiding walk w a weight equal to the probability that the 
first n steps of the loop-erased walk agree with w. This family of measures 
is consistent, in the sense of (6.7.2). In particular, a walk which cannot be 
extended by a single step and remain self-avoiding is assigned weight zero 
in this measure, and hence the loop erased walk does not define the uniform 
measure on the set of n-step self-avoiding walks. 

The above procedure works in dimensions d ~ 3, where simple random 
walk is transient, but for the recurrent case d = 2 more care is needed. In 
two dimensions it is necessary to use a limiting process to define the model. 
Roughly speaking a measure is defined on n-step self-avoiding walks by first 
performing loop erasure as above on simple random walk paths which lie 
in a finite box of side length N ~ n, thereby obtaining an N-dependent 
measure, and then the limit is taken of this measure as N goes to infinity. 

A second (equivalent) formulation of the model, which goes by the 
name Laplacian self-avoiding walk, provides a description as a "kinetically­
growing" walk, i.e. as a stochastic process defined by transition probabil­
ities. To avoid the special difficulties associated with two dimensions, we 
consider here only d ~ 3. The Laplacian walk is defined to be the process 
whose transition probabilities are as follows. Given an n-step self-avoiding 
walk w, the probability that the next step is to a neighbour x of w(n) is 
proportional to the probability that simple random walk starting from x 
will never intersect w. To state this more precisely we introduce the fol­
lowing definition. Given a site X E zd and a set A c zd, we define QA(x) 
to be the probability that an infinite simple random walk beginning at x 
never enters the set A. The transition probabilities of the Laplacian walk 
are then given, for w = {w(O), ... w(n)} and x a neighbour of w{n), by 

Qw(x) 
P(w(n + 1) = xlw) = E Q ( ) {10.2.1) 

y:ly-w(n)l=l w Y 

A proof that this is equivalent to the loop-erased walk is given in Lawler 
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(1991). The name Laplacian self-avoiding walk derives from the fact that 
QA(x) is a harmonic function on the complement of A, with boundary 
conditions zero on A and one at infinity. 

It is now known that the loop-erased self-avoiding walk has upper critical 
dimension equal to four, and that if (1.1.12) and {1.1.14) accurately rep­
resent the behaviour of the mean-square displacement of the self-avoiding 
walk for dimensions three and four, then the loop-erased self-avoiding walk 
is in a different universality class (i.e. has different critical exponents) than 
the self-avoiding walk defined using the uniform measure. We end this 
section with a statement of the rigorous results, beginning with high di­
mensions, where the results are strongest. 

Theorem 10.2.1 (a) {Lawler {1980)} Let d:;::: 5 and let S(n) denote the 
loop-erased walk after n steps. There is a constant b, depending only on 
the dimension, such that the process Xn(t) = (bn)- 112S(LntJ]) converges 
in distribution to the Wiener process {normalized as in (6.6.9)}. Moreover, 
the mean-square displacement of the loop-erased walk is asymptotic to b 
times the number of steps. 
(p) {Lawler {1986)j_Let d = 4. There is a sequence bn such that the process 
Xn(t) = (bnn)-t/2s([nt]) converges in distribution to the Wiener process. 
The sequence bn satisfies 

1 . , logbn . logbn 1 
-3 < hm mf 1 1 < hm sup 1 1 < -2 - n-oo og ogn - n-oo og ogn -

and the mean-square displacement satisfies 

1 1. . f log[n-1 E(IS(n)l2)] < 1. log[n-1 E(IS(n)l2)] < 1 - < 1mm 1msup -. 
3 - n-oo log log n - n-oo log log n - 2 

It is conjectured in Lawler (1986) that in (b) of the above theorem 
limn-co logbn/loglogn = 1/3. This is different behaviour than the cor­
rection (log n)114 to the mean-square displacement that is predicted by the 
renormalization group for the self-avoiding walk. In two and three dimen­
sions Monte-Carlo results suggest a more dramatic discrepancy between 
the loop-erased walk and the self-avoiding walk, namely 11 = 4/5 in two di­
mensions and 11 ~ 0.616 in three dimensions [Guttman and Bursill (1990)]. 
The following theorem proves that in three dimensions the mean-square 
displacement of the loop-erased walk behaves differently than the nL18 be­
haviour expected for the self-avoiding walk. 

Theorem 10.2.2 {Lawler {1988)} For every f > 0 there is a positive con­
stant [( such that 
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and 
E(IS(n)j2)?: Kn615-£ ford= 3. 

These results for the loop-erased self-avoiding random walk are proved 
using probabilistic methods quite unlike the methods used in this book. 

10.3 Intersections of random walks 

The critical exponents r and a4 for the self-avoiding walk are closely related 
to intersection probabilities for self-avoiding walks. To be specific, assuming 
that en has the asymptotic behaviour specified in (1.1.11) and (1.1.13) [in 
fact we know (1.1.11) does hold ford?: 5), then the probability that two 
n-step self-avoiding walks beginning at the origin do not intersect is given 
by 

df;4 
d=4. (10.3.1) 

The critical exponent a 4 is relevant for intersection probabilities of self­
avoiding walks beginning at different sites. A measure of this is the renor­
malized coupling constant, defined in (1.4.22), which is believed to satisfy 

g(z) ""'const.(zc- z)dv-24•+"Y as z /' Zc 1 (10.3.2) 

with a4 obeying the hyperscaling relation dv- 2a4 + r = 0 in dimensions 
2, 3, 4 (with a logarithmic correction in four dimensions) and a4 = 3/2 for 
d ?: 5 (this is proved for d ?: 6; see Theorem 1.5.5 and the Remark below 
its statement). 

While the above conjectures remain unproven for the self-avoiding walk 
in low dimensions, it is natural to ask if corresponding statements for simple 
random walk can be proven. In the remainder of this section we give a brief 
summary of some of the results which have been obtained in this direction. 

To discuss the analogue of (10.3.1) for simple random walk, we denote 
by /(n) the probability that the paths of two n-step simple random walks 
beginning at the origin do not intersect (apart from the fact that they 
have a common initial point). For the statement of the next theorem we 
introduce the notation /(n) ~ g(n) to mean that logf(n) -logg(n). 

Theorem 10.3.1 Ford> 4, f(n) ""' const. as n-+ oo, for some constant 
strictly between 0 and 1 which depends only on the dimension. Ford= 4, 
f(n) ~ (logn)-112 • Ford = 2 or 3 there is an exponent ( such that 
/{n) ~ n-<, with 

!+ 8\.$(<~ d=2 

~:::; ( < ~ d= 3. 
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For d > 4 this was proved in Lawler (1980). Ford= 4 the proof is given 
in Lawler (1982,1985a,1991), and ford= 2, 3 the proof is given in Burdzy 
and Lawler (1990a,1990b). Nonrigorous conformal field theory arguments 
predict that in two dimensions ( = 5/8; see Duplantier and Kwon (1988). 
Monte-Carlo computations are consistent with this prediction, and also give 
a value near 0.29 for ( in three dimensions [Burdzy, Lawler and Polaski 
(1989), Duplantier and Kwon (1988), Li and Sokal (1990)]. Results for 
generating functions related to the above theorem are given in Park (1989). 

The logarithmic behaviour in four dimensions is the hallmark of the 
critical nature of four dimensions for random walk intersections. Heuris­
tically this can be seen from the fact that Brownian motion paths have 
Hausdorff dimension two, and hence four dimensions is marginal for the 
intersection of two Brownian paths. By the same argument three dimen­
sions is critical for triple points of three paths (two two-dimensional paths 
in three dimensions will typically intersect in a one dimensional set, and the 
intersection of this set with a third two-dimensional path will be marginal 
in three dimensions). Bounds on intersection probabilities of three random 
walks in three dimensions are obtained in Lawler (1985b,1991), and using 
rigorous renormalization group methods in Felder and Frohlich (1985). On 
a nonrigorous level, results of this type have been considerably generalized 
using renormalization methods; see Duplantier (1988). 

We denote the analogue for simple random walk of the renormalized 
coupling constant g(z) by go(z). For Yo(z) the following theorem gives 
~4 = 3/2 for d > 4, and hyperscaling for d :=:; 4 (with a logarithmic 
correction in four dimensions). 

Theorem 10.3.2 Lett = (2d)-1 - z. Then there are positive constants 
Ct, c2, ca, c~, c'2, c~ such that for z < (2d)- 1 

d<4 
d=4 
d> 4. 

Results for the probability of intersection of walks of fixed length n, one 
beginning at the origin and the other at x ~ Vii, are given in Lawler 
(1982,1991). These results effectively yield more detailed information than 
Theorem 10.3.2. In (and near) four dimensions the above result was proved 
in Felder and Frohlich (1985) using a rigorous renormalization group ar­
gument; see also Aizenman (1985) for related work on the intersection of 
Brownian paths. A proof of Theorem 10.3.2 using inclusion-exclusion meth­
ods is given in Park (1989). 
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10.4 The "myopic" or "true" 
self-avoiding walk 

The model of self-avoiding walk discussed in this book is not a random walk 
in the usual sense, being defined via a measure on paths rather than via 
transition probabilities as a stochastic process. One model of self-avoiding 
walk which is defined by transition probabilities is the so-called "true" self­
avoiding walk; this model is essentially described by the MSAW algorithm1 

of Section 9.1. The epithet "true" is a misnomer, as the paths of this model 
need not in general be self-avoiding, nor is it the model of self-avoiding 
walk which is most commonly studied. In Lawler (1991) this model is 
referred to as the "myopic" self-avoiding walk; this name emphasizes the 
short-sightedness of the walk in its effort to be self-avoiding. Although the 
myopic self-avoiding walk has played a relatively minor role in applications 
[see however Family and Daoud (1984) for an application to polymers under 
certain conditions), it is interesting to see how it compares to the usual self­
avoiding walk. 

The transition probabilities for the myopic self-avoiding walk are defined 
as follows. Consider a walker on the hypercubic lattice zd, beginning at 
the origin and taking nearest-neighbour steps. The first step is to a nearest 
neighbour of the origin, each neighbour being chosen with equal probability 
(2d)- 1 • In subsequent steps, if there are neighbours of the current position 
which have not yet been visited, the next site is chosen uniformly from 
the neighbours not yet visited. If all neighbours have already been visited 
(i.e. if the walk is trapped) then the next site is chosen uniformly from 
among those neighbours which have been visited least often in the past. 
This leads to paths with self-intersections - looking just one step ahead 
cannot prevent the walk from becoming trapped, and a step must always be 
taken to some neighbour. A simple example demonstrates the computation 
of weights assigned to paths by the myopic self-avoiding walk: the myopic 
self-avoiding walk assigns to the walk ENWN in two dimensions the weight 
! i i ~ = /2 ; for comparison the self-avoiding walk assigns to the same path 
c4 1 = 1 ~ 0 • It is worth noting that the weights associated to the myopic 
self-avoiding walk are not symmetric with respect to time-reversal: in two 
dimensions the walk ENWN has weight A whereas the time-reversed walk 
SESW has weight t!s. 

The above description defines a walk which is prohibited from stepping 
to neighbours which were visited most often in the past. A less restrictive 

1There is a slight difference between the MSAW algorithm and the model treated in 
this section, as the fonner assigns nonzero weight only to self-avoiding walks, unlike the 
latter. 
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self-avoidance constraint would merely discourage such steps. This leads us 
to consider a nearest-neighbour walk, starting at the origin, with transition 
probabilities 

e->.N,+• 
P(w(n + 1) = x + alw(n) = x) = E ->.N 

b:lbl=l e "H 
(10.4.1) 

where lal = 1, A ~ 0 represents the strength of the repulsion, and Nu 
denotes the number of visits to the site u up to time n. The case A = oo then 
corresponds to the prohibitive model introduced in the previous paragraph. 

There are as yet no rigorous results concerning the critical behaviour 
of the myopic self-avoiding walk. However the nonrigorous results indi­
cate that the myopic self-avoiding walk behaves quite differently from the 
self-avoiding walk. Both field theoretic methods [Amit, Parisi and Peliti 
(1983)] and calculations related to those leading to the Flory exponents 
for the self-avoiding walk (Pietronero (1983)] point to an upper critical di­
mension of two. The diffusive behaviour v = 1/2 is expected above two 
dimensions, logarithmic corrections to diffusive behaviour are obtained in 
two dimensions, and the exponent v = 2/3 is found in one dimension. The 
claim that 11 = 2/3 in one dimension clearly does not apply when >. = oo, 
for which the myopic walk behaves ballistically and 11 = 1. This indicates 
that the A = oo walk belongs to a different universality class than the fi­
nite A version; however the nonrigorous results appear to claim that the 
upper critical dimension is two for all >. $ oo. A survey, with references to 
numerical calculations, is given in Peliti and Pietronero (1987). 
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