
N. Madras and G. Slade, The Self-Avoiding Walk, 
Modern Birkhäuser Classics, DOI 10.1007/978-1-4614-6025-1_1, 
© Springer Science+Business Media New York 2013 

Chapter 1 

Introduction 

1.1 The basic questions 

Imagine that you are standing at an intersection in the centre of a large 
city whose streets are laid out in a square grid. You choose a street at 
random and begin walking away from your starting point, and at each 
intersection you reach you choose to continue straight ahead or to turn left 
or right. There is only one rule: you must not return to any intersection 
already visited in your journey. In other words, your path should be self­
avoiding. It is possible that you will lead yourself into a trap, reaching an 
intersection whose neighbours have all been visited already, but barring. this 
disaster you continue walking until you have walked some large number N 
of blocks. There are two basic questions: 

• How many possible paths could you have followed? 

• Assuming that any one path is just as likely as any other, how far 
will you be on the average from your starting point? 

These questions are straightforward enough, but the answers are only 
known for small values of N. It is widely accepted that a search for general 
exact formulas is an enormously difficult problem which lies beyond the 
reach of current methods. A less difficult question would be to ask for the 
asymptotic behaviour of the answers as N becomes very large, but this too 
is very hard. Physicists and chemists who are interested in this and related 
problems have applied a variety of methods and have produced many in­
triguing results, but a great deal of work is still needed to settle these issues 
in a mathematically rigorous way. In this book we will state some of the 
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results of nonrigorous work in the field, and describe the rigorous work in 
some detail. 

At first glance one might expect that the easiest way to answer the 
above questions, at least approximately, would be to use a computer. Much 
numerical work has been done in this direction, and in Chapter 9 some of 
it will be discussed. Here too, however, the situation is not so easy: exact 
enumeration of all possible routes has been done to date only for N 5 
34, with further enumerations made difficult because of the exponential 
growth in the number of paths as N increas~. Larger values of N can be 
studied by extrapolation of the exact enumeration data, or by Monte Carlo 
simulations. 

There is no need to restrict the walk to a two-dimensional grid, and 
it is easy to generalize the above questions to general dimension d. It is 
also possible to generalize the problem by changing from a rectangular to a 
triangular or other type of grid. There is at least one case where the above 
questions can be easily answered, and this is the case of a one-dimensional 
walk. A self-avoiding walker in one dimension has no alternative but to 
continue travelling in the direction initially chosen, so there are exactly two 
paths for every value of N and the distance travelled is exactly N blocks. 
That was easy, but not very interesting. Higher dimensions provide a vastly 
richer structure. 

In general, a self-avoiding walk takes place on a graph. A graph (more 
precisely, an undirected graph) is a collection of points, together with a 
collection of pairs of points known as edges. The basic example that will 
concern us most is the d-dimensional hypercubic lattice zd. The points of 
this graph are the points of the d-dimensional Euclidean space R d whose 
components are all integers, and the edges are given by the set of all unit 
line segments joining neighbouring points. The points will be referred to 
as sites, and the unit line segments as nearest-neighbour bonds. Sites will 
typically be denoted by letters such as u, v, z, y, and their components by 
subscripts: z = (z1, z 2, ... , Zd)· The usual Euclidean dot product on zd 
will be written z · y = L:f=t ZiYi, and the Euclidean norm will be written 

lzl = vx:z. We will also use the notation llzllp = (L:f=t zf) 11P, and 
llzlloo = max{lz;l: i = 1, ... , d}. 

AnN-step self-avoiding walk won zd, beginning at the site z, is defined 
as a sequence of sites (w(O),w(l), ... ,w(N)) with w(O) = z, satisfying lw(j+ 
1)- w(j)l = 1, and w(i) # w(j) for all i # j. We write lwl = N to 
denote the length of w, and we denote the components of w(j) by w;(j) 
( i = 1, ... , d). Let CN denote the number of N -step self-avoiding walks 
beginning at the origin. By convention, c0 = 1. Then the first of our basic 
questions above is asking for the value of CN. More modestly, we could ask 
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Figure 1.1: A two-dimensional self-avoiding walk with 115 steps. 

for the asymptotic form of CN as N - oo. It is easy to find the exact values 
of eN (as a function of d) for very small values of N, for example c1 = 2d, 
c2 = 2d(2d- 1}, ca = 2d(2d- 1)2, and c4 = 2d(2d- 1)3 - 2d(2d- 2) (for 
c4 the second term subtracts the contribution of squares to the first term). 
However, the combinatorics quickly become difficult as N increases and 
then soon become intractable. Tables in Appendix C give enumerations of 
CN for dimensions two through six. 

The simplest bounds on the behaviour of CN are obtained as follows. 
An upper bound on CN is given by the number of walks which have no 
immediate reversals, or in other words which never visit the same site at 
times i and i + 2. Avoiding immediate reversals allows 2d choices for the 
initial step, and 2d- 1 choices for the N - 1 remaining steps, for a total 
of 2d(2d- 1 )N -l. For a lower bound we simply count the number of walks 
in which each step is in one of the d positive coordinate directions. Such 
walks are necessarily self-avoiding. Thus we have 

(1.1.1) 

To discuss the average distance from the origin after N steps, we need 
to introduce a probability measure on N -step self-avoiding walks. The 
measure that we shall use throughout this book is the uniform measure, 
which assigns equal weight c·;/ to each N-step self-avoiding walk. It is 
worth noting that although we originally introduced the self-avoiding walk 
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in terms of a walker moving in time, the uniform measure is a measure on 
paths of length N and does not define a stochastic process evolving in time 
(for example, a walk may be trapped and impossible to extend without 
introducing a self-intersection). 

Denoting expectation with respect to the uniform measure by angular 
brackets, the average distance (squared) from the origin after N steps is 
then given by the mean-square displacement 

(1.1.2) 

The sum over w is the sum over all N-step self-avoiding walks beginning at 
the origin. Like CN, the mean-square displacement can also be calculated 
by hand for very small values of N, but the combinatorics quickly become 
intractable as N increases. Enumerations are tabulated in Appendix C. 

It is instructive to compare the behaviour of the self-avoiding walk with 
that of the simple random walk. An N-step simple random walk on zd, 
starting at the origin, is a sequence w = (w(O), w{l), ... ,w(N)) of sites with 
w(O) = 0 and jw(j + 1)- w(j)l = 1, with the uniform measure on the set 
of all such walks. Without the self-avoidance constraint the situation is 
rather easy. Indeed, since each site has 2d nearest neighbours, the number 
of N -step simple random walks is exactly (2d)N. To analyse the mean­
square displacement, we represent the simple random walk in the following 
way. Let {X(i)} be independent and identically distributed random vari­
ables with X(i) uniformly distributed over the 2d (positive and negative) 
unit vectors. Then the position after N steps can be represented as the 
sum SN = X(1) + X(2) + ... + X(N). Expanding ISNI2 , the mean-square 
displacement is given by 

N 

(ISNI2} = I: (X(i) · xO>). (1.1.3) 
iJ=1 

Fori'# j, (X(i).X(j)) = 0, using independence and the fact that (X(i)) = 0. 
Since (X(i) ·X(i)) = 1, it follows that the mean-square displacement is equal 
to N. Similarly, if we consider a random walk in zd in which steps lie in 
a symmetric finite set n C zd of cardinality 101, with each possible step 
equally likely, then the number of N -step walks is lOIN and the mean-square 
displacement is N (f2 , where (f2 is the mean-square displacement of a single 
step. 

For the self-avoiding walk it is believed that there is exponential growth 
of eN with power law corrections, unlike the pure exponential growth of 
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the simple random walk. It is also believed that the mean-square displace­
ment will not always be linear in the number of steps, in contrast to the 
diffusive behaviour of the simple random walk. These beliefs are in har­
mony with known properties of other models of statistical mechanics, and 
are supported by numerical and nonrigorous calculations. The conjectured 
behaviour of CN and (lw(N)j2} is thus 

(1.1.4) 

and 
(1.1.5) 

where A, D, Jl, r and v are dimension-dependent positive constants. We 
shall refer to Jl as the connective constant, and r and v are examples 
of critical exponents. In four dimensions the above two relations should 
be modified by logarithmic factors; see (1.1.13) and (1.1.14) below. Here 
f(N) ""g(N) means that f is asymptotic tog as N-+ oo: 

. f(N) 
hm (N) = 1. N-oo g 

For ordinary random walk (1.1.4) and (1.1.5) hold with r = 1 and v = 1/2, 
both for the nearest-neighbour and more general walks. 

In the next section the existence of the limit 

I, l/N 
Jl = liD c 

N-oo N 
(1.1.6) 

will be proven, which is the first step in justifying (1.1.4). The simple 
bounds of (1.1.1) then immediately imply that 

(1.1.7) 

The exact value of Jl is not known for the hypercubic lattice in any dimen­
sion d ?: 2, although for the honeycomb lattice in two dimensions there 
is nonrigorous evidence that Jl = V2 + .../2. Improvements to (1.1.7) will 
be discussed in the next section. For high dimensions it is known that as 
d-+ 00 

1 3 ( 1 ) Jl = 2d- 1- 2d- (2d)2 + 0 (2d)3 ; (1.1.8) 

references are given in the Notes. In fact Fisher and Sykes (1959) estab­
lished the coefficients in the 1/d expansion up to and including order d-4, 
although there is no rigorous control of their error term. Intuitively (1.1.8) 
says that in high dimensions the principal effect of the self-avoidance con­
straint is to rule out immediate reversals. 
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Concerning "'{, we will show in Section 1.2 that CN ~ J.lN and hence 
"'f ~ 1 in all dimensions. There is still no proof, however, that "'f is finite in 
two, three or four dimensions, where the best bounds are 

< { J.lN exp[K N 112] d = 2 
CN - J.lN exp[K N 2/(2+d) log N] d = 3, 4 (1.1.9) 

for a positive constant K; these bounds will be discussed in Sections 3.1 
and 3.3. In Chapter 6 we will describe a proofthat (1.1.4) holds with "'f = 1 
for d ~ 5. In addition to characterizing the asymptotic behaviour of CN, 

the exponent 1 provides a measure of the probability that two N-step self­
avoiding walks starting at the same point do not intersect. In fact, this 
probability is equal to c2N/cj.;, and assuming (1.1.4) we have 

21'-1 
C2N ""--Nl-')' 
cj.; A · 

(1.1.10) 

If "'{ > 1 then this probability goes to zero as N - oo, while if"'{ = 1 it 
remains positive. For the simple random walk the analogous probability is 
known to remain positive as N - oo for d > 4, and roughly speaking to go 
to zero like (log N)- 112 ford= 4 and as an inverse power of N ford= 2, 3. 
A survey of the simple random walk results is given in Section 10.3. 

Intuitively it is to be expected that the repulsive interaction of the self­
avoiding walk will tend to drive the endpoint of the walk away from the 
origin faster than for simple random walk, or in other words that v ~ 1/2. 
However it is still an open question to prove that this "obvious" inequality 
(lw(N)i2} ~ CN holds in all dimensions. On the other hand, bounding 
lw(N)I2 above by N 2 in (1.1.2) gives the upper bound (lw(N)I2} $ N 2, or 
v ~ 1. This bound is optimal in one dimension, but seems far from optimal 
in two or more dimensions. No upper bound of the form C N2-f ( C, e > 0), 
or in other words v < 1, has been proven for dimensions two, three or four, 
however. For d ~ 5 it has been proved that v = 1/2; this proof will be 
described in Chapter 6. It will also be shown that for high dimensions the 
diffusion constant D is strictly greater than the simple random walk value of 
1. Thus in high dimensions the self-avoiding walk does move away from the 
origin more quickly than the simple random walk, but only at the level of 
the diffusion constant and not at the level of the exponent v. The tendency 
of the self-avoiding walk to move away from the origin more quickly than 
the simple random walk should become less pronounced as the dimension 
increases, and hence it is to be expected that v is a nonincreasing function 
of the dimension. 

The critical exponents "'f and v are believed to be dimension dependent, 
but independent of the type of allowed steps (as long as there are only 
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finitely many possible steps and the allowed steps are symmetric) or even 
of the type of lattice-the exponents are believed, for example, to be the 
same for the square and triangular lattices. This· lack of dependence on the 
detailed definition of the model is known as universality, and models with 
the same exponents are said to be in the same universality class. The con­
nective constant Jl appearing in (1.1.4) represents the effective coordination 
number of the lattice and is not universal-it depends on the details of the 
allowed steps and the underlying lattice, as well as the dimension d. 

It seems clear that in high dimensions the self-avoiding walk should be 
closer to the simple random walk than in low dimensions, since a simple 
random walk is less likely to intersect itself in high dimensions. Four di­
mensions plays a special role: for simple random walk the expected time 
of the first return to the origin, conditioned on the event that this return 
occurs, is finite for d > 4; this suggests that above four dimensions self­
avoidance is a short-range effect rather than a long-range one, and hence 
that it will not affect the critical exponents. In addition, as mentioned 
above, the probability that two independent simple random walks of length 
N do not intersect remains bounded away from zero as N - oo for d > 4, 
but not for d :54. 

The conjectured values of"'( and v are as follows: 

r= { 

v= { 

43 
32 
1.162 ... 
1 with logarithmic corrections 
1 

3 
4 

d=2 
d=3 
d=4 
d~5 

d=2 

0.59 ... d=3 
~ with logarithmic corrections d = 4 
1 
2 

(1.1.11) 

(1.1.12) 

Currently the only rigorous results which prove power law behaviour and 
confirm the conjectured values of "'f and v are for d ~ 5. These are discussed 
in detail in Chapter 6. The conjectured logarithmic corrections to "'f and v 
in four dimensions, predicted by the renormalization group, are given by: 

AJlNpogN]l14 , d=4 

D N(Iog Njll4, d = 4. 
(1.1.13) 

(1.1.14) 

Equations (1.1.11) to (1.1.14) are typical of what is found for other statisti­
cal mechanical models, such as the Ising model or percolation. A common 
feature is the existence of a certain dimension, the so-called upper critical 
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dimension, at which there are logarithmic corrections to critical exponents 
and above which all critical exponents are dimension independent and are 
given by the corresponding critical exponents for a simpler model, known 
as the mean-field1 model. For the self-avoiding walk the mean-field model 
is the simple random walk and the simple random walk critical exponents 
are sometimes referred to as the mean-field exponents. 

The rational values for two dimensions given in (1.1.11) and (1.1.12) 
come from a non rigorous exact solution of the 0( N) spin model which 
includes the self-avoiding walk as the special case N = 0 (see Section 2.3). 
This remarkable work exploits a connection between the O(N) model and 
the Coulomb gas and uses the renormalization group. From a different 
approach, nonrigorous conformal invariance arguments reproduce the same 
rational values. There is no analogous exact solution in three dimensions, 
and the d = 3 values given in (1.1.11) and (1.1.12) are from numerical 
results and field-theoretic calculations using the (-expansion. References 
for these topics are given in the Notes. 

An early conjecture for the values of v was made by Flory, and will be 
discussed in Section 2.2. The Flory exponents are given by VFlory = 3/(2 + 
d) ford$ 4 and VFlory = 1/2 ford> 4. This agrees with Equation (1.1.12) 
for d = 2 and d ~ 4 (apart from the logarithmic correction when d = 4), 
and comes very close for d = 3. The exact Flory value VFlory = 3/5 in 
three dimensions has been ruled out by numerical work, however. 

1.2 The connective constant 

If (1.1.4) correctly represents the behaviour of CN for large N, then the 
limit 

1. 1/N p = 1m c 
N-oo N 

(1.2.1) 

must exist. One purpose of this section is to prove the existence of this 
limit as a simple consequence of a subadditive property of log CN. It then 
follows immediately from {1.1.1) that 

(1.2.2) 

The proof involves the notion of concatenation of two self-avoiding 
walks. 

1 This tenninology has its origin in the Ising model. For the Ising model the upper 
critical dimension is also four, and above four dimensions critical exponents are given 
by the exactly solvable model in which a spin interacts with the 1111ert1ge of all the other 
spins. References are given in the Notes. 



1.2. THE CONNECTIVE CONSTANT 9 

Definition 1.2.1 The concatenation w<1> ow(2) of an M -step self-avoiding 
walk w(2) to anN -step self-avoiding walk w(1) is the (N + M)-step walk w, 
which in general need not be self-avoiding, given by 

w(k) = w(1)(k), k=O, ... ,N 
w(k) = w(l)(N)+w<2>(k-N)-w<2>(0), k=N+l, ... ,N+M. 

The product CNCM is equal to the cardinality of the set of (N + M)-step 
simple random walks which are self-avoiding for the initial N steps and the 
final M steps, but which may not be completely self-avoiding. This can be 
seen by concatenations of M-step walks to N-step walks, and implies that 

(1.2.3) 

In fact equality holds in (1.2.3) only if Nor M is zero, since otherwise there 
will be at least one M -step walk whose concatenation with a given N -step 
walk fails to be self-avoiding. Taking logarithms in (1.2.3) shows that the 
sequence {log Cn} is subadditive: 

(1.2.4) 

The existence of the limit (1.2.1) is a consequence of (1.2.4) and the fol­
lowing standard result; this was first observed by Hammersley and Morton 
(1954). 

Lemma 1.2.2 Let {an }n>t be a sequence of real numbers which is sub­
additive, i.e., an+m ~ an-+ am. Then the limit limn-oo n-1an exists in 
[ -oo, oo) and is equal to 

I. an . f an 
1m-= m -. 

n-oo n n?:l n 

Proof. It suffices to show that 

I. an ak 
tmsup- <­
n-oo n - k 

(1.2.5) 

(1.2.6) 

for every k, since taking the lim infA:-oo in (1.2.6) gives existence of the 
limit, and then (1.2.5) can be seen by taking the infA:?:l in (1.2.6). 

To prove (1.2.6), we fix k and let 

(1.2.7) 

Given a positive integer n we let j denote the largest integer which is strictly 
less than njk. Then n = jk + r for some integer r with 1 ~ r ~ k. Using 
subadditivity, we have 

(1.2.8) 
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Dividing by nand taking the limsupn ..... oo then gives (1.2.6). 
Equation (1.2.5) shows that limn ..... oo n-1an < oo. In general, the possi­

bility that the limit equals -oo cannot be excluded, as is illustrated by the 
example of an = -n2 • For many applications, however, this is ruled out by 
an a priori bound such as an ~ 0. D 

Together with (1.2.4), Lemma 1.2.2 implies the existence of the limit 
logJJ = limN ..... oo N-lJogcN, and hence gives (1.2.1). In fact (1.2.5) shows 
more: 

(1.2.9) 

and hence 
J.'N ~ CN, N ~ 1. (1.2.10) 

This inequality can be summarized by the statement r ~ 1, where r is as 
introduced in (1.1.4), although strictly speaking we do not know that r 
exists. Equation (1.2.10) also yields J.' $ cJ.fN. This gives a sequence of 
upper bounds for J.', but they converge to J.' very slowly. A better bound is 

(
CN) 1/(N-1) 

J.' ~ Ct , N ~ 2. (1.2.11) 

References for this and other improvements are given in the Notes. 
Another sequence of upper bounds for J.' can be obtained by considering 

walks which are self-avoiding only over a finite time scale or memory r. We 
define CN,T to be the number of N-step walks w beginning at the origin, for 
which w(i) ::/: w(j) whenever 0 < li- jl ~ r. Self-intersections occurring 
after an interval of more than r steps are permitted. For example, CN,2 = 
2d(2d- l)N- 1 for N ~ 1, since memory r = 2 simply rules out immediate 
reversals. For r ~ N, CN,T = CN. Memory r = 0 corresponds to the simple 
random walk. 

The sequence {logcN,T }~= 1 is subadditive for every r (for the same 
reason that {log eN }~=l is), and hence by Lemma 1.2.2 there is a J.'T such 
that 

l . 1/N • f 1/N 
J.'T= 1m cNT = m cNT· 

N-+oo ' N~l • 
(1.2.12) 

Since CN,T ~eN, J.'T provides an upper bound for 1-'· The next lemma shows 
that this sequence of upper bounds converges monotonically to J.'· 

Lemma 1.2.3 J.'T '\. J.' as r - oo. 

( ) 1/N Proof. For u ~ r, CN,a ~ CN,T and hence J.'a ~ J.'T· By 1.2.12 , J.'T $ cN,T 
for all N, r. Taking N = r gives 

(1.2.13) 
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Taking the limit r-oo and using (1.2.1) gives the desired result. D 

The connective constant for the walk with memory r = 4 was shown 
in Fisher and Sykes (1959) to be given by the largest root of the cubic 
equation 

(]3- 2(d- 1)02 - 2(d- 1)0- 1 = 0. (1.2.14) 

For d = 2 this gives Jl4(2) = 2.8312, where we have made the dimension 
dependence explicit by writing Jlr( d). 

A number of investigations into the self-avoiding walk have approached 
the problem via the limit of finite memory walks as the memory goes to 
infinity. This approach was used in particular by Brydges and Spencer 
(1985) in applying their lace expansion to study weakly self-avoiding walk 
for d > 4, and will be adopted in Section 6.8 to obtain an upper bound 
in high dimensions on CN(O, x), the number of N-step self-avoiding walks 
which begin at the origin and end at x. 

A lower bound on Jl can be obtained in terms of bridges. 

Definition 1.2.4 An N -step bridge is defined to be an N -step self-avoiding 
walk w whose first components satisfy the inequality 

Wt{O) < Wt{i) $ Wt{N) 

for 1 $ i $ N. The number of N -step bridges starting at the origin is 
denoted bN. By convention, bo = 1. 

The concatenation of two bridges will always yield another bridge, so 

bMbN $ bM+N· 

Hence {-log bn} is subadditive and so by Lemma 1.2.2 the limit 

J.lBridge =: lim b~ln = sup b~ln 
n-oo n~l 

exists. Clearly bn $ Cn. Therefore J.lBridge $ Jl, and so by (1.2.16) 

bl/N 
N :S JlBridge $ J.l· 

(1.2.15) 

(1.2.16) 

{1.2.17) 

In Section 3.1 it will be shown that in fact JlBridge = Jl. Although the 
lower bound (1.2.17) is very slowly convergent, a more sophisticated use of 
bridges leads to better lower bounds. References can be found in the Notes 
at the end of this chapter. 

We conclude this section with a table showing the current best rigorous 
upper and lower bounds on J.l, together with estimates of the precise value, 
for the hypercubic lattice in dimensions d = 2, 3, 4, 5, 6. 



12 CHAPTER 1. INTRODUCTION 

d lower bound estimate upper bound 

2 2.61987° 2.6381585 ± 0.0000010d 2.695766 

3 4.43733c 4.6839066 ± 0.00021! 4.7566 

4 6.71800C 6. 7720 ± 0.0005/ 6.8326 

5 8.82128C 8.838619 8.881 b 

6 10.871199c 10.878799 10.903b 

Table 1.1: Current best rigorous upper and lower bounds on the hypercubic 
lattice connective constant J.l, together with estimates of actual values. 
a) Conway and Guttmann (to be published), b) Aim (1992), c) Hara 
and Slade (1992b), d) Guttmann and Enting (1988), e) Guttmann (1987), 
f) Guttmann (1978), g) Guttmann (1981). 

1.3 Generating functions 

A common tool for understanding the behaviour of a sequence is its gen­
erating function. The generating function of the sequence { CN} is defined 
by 

00 

x(z) = L CNZN = l:zlwl. (1.3.1) 
N:O w 

The sum over w is the sum over all self-avoiding walks, of arbitrary length 
lwl, which begin at the origin. The parameter z is known as the activ­
ity. Physically the activity occurs in the study of a canonical ensemble 
of polymers of variable length, and in this context is nonnegative. From a 
mathematical point of view, however, it will sometimes be useful to consider 
x to be an analytic function of complex z. 

Given two sites x and y, let cN(x, y) be the number of N-step self­
avoiding walks w with w(O) = x and w(N) = y. The two-point function is 
the generating function for the sequence CN(x, y), i.e., 

00 

Gz(x, y) = L CN(x, y)zN = L zlwl. (1.3.2) 
N:O w:r-+y 

On the right side, the sum over w is the sum over all self-avoiding walks, of 
arbitrary length, which begin at x and end at y. This is clearly translation 
invariant, so Gz(x, y) = Gz_(O, y- x). The two-point function is the self­
avoiding walk analogue of the simple random walk Green function with 
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killing rate 1 - 2dz: 

00 

Cz(x, y) = E PN(x, y)(2dz)N, (1.3.3) 
N:O 

where PN(x, y) is the probability that an N-step simple random walk be­
ginning at x ends at y. 

The generating function for CN can be written in terms of the two-point 
function as 

x(z) = E Gz(O, x). (1.3.4) 

In analogy with spin systems (see Section 2.3) we will refer to the gen­
erating function x(z) as the susceptibility. The power series defining the 
susceptibility has radius of convergence 

[ . 1/N] -l 1 
Zc = hm eN = -, 

N-oo f-t 
(1.3.5) 

and hence defines an analytic function in the complex parameter z if lzl < 
zc. Since cN(O, x) $ CN, the two-point function has radius of convergence at 
least zc. It will be shown in Section 3.2 that in fact the radius of convergence 
is equal to Zc, for all x ::/= 0. We will refer to Zc as the critical point, since it 
plays a role analogous to the critical point in statistical mechanical systems 
such as the Ising model or percolation. 

It follows from (1.2.10) that 

{1.3.6) 

and hence x is "continuous" at the critical point, in the sense that x(z)­
oo as z / Zc. The manner of divergence of x(z) at the critical point is 
related to the behaviour of the coefficients CN for large N. To see this, we 
proceed as follows. 

First we introduce the notation 

f(x) '::! g(x) as x- xo (1.3.7) 

to mean that there are positive constants C1 and C2 such that 

(1.3.8) 

uniformly for x near its limiting value. Assuming that there is a r such 
that 

CN '::! JlN N"~- 1 as N - oo, (1.3.9) 
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it can be concluded that 

(1.3.10) 

as follows. We write z = p.- 1e-t, so that t ~ Zc- z. By the definition of 
x(z), 

x(z) ~ t N"t-le-tN ~ roo x"f-le-t:cdx 

N=l }1 

= t-"1 100 y"t-le-~dy ~ t-"1. 

In the above the sum can be replaced by the integral using Riemann sum 
approximations. The second integral converges as t "-., 0, since by (1.2.10) 
1 ;::: 1. Thus it is conjectured that 

(1.3.11) 

with i' =I· 
As for the converse, it does not follow directly from (1.3.10) that (1.3.9) 

holds, without further assumptions. In general, the problem of extracting 
the Iarge-n asymptotics of a sequence from the manner of divergence of 
its generating function is a Tauberian problem. An example of a Taube­
rian theorem providing a converse to the above argument will be given in 
Lemma 6.3.4. 

Power law behaviour such as (1.3.10) is also observed for spin systems 
and percolation, and is characteristic of critical phenomena. It follows from 
(1.3.6) that t ;::: 1, assuming that t exists. In four dimensions, where it 
is believed that CN ""' Ap.N (log N) 114, we expect similarly that x(z) ""' 
A'(zc- z)- 1 jlog(zc- z)P/4• 

The analogue xo(z) of x(z) for simple random walk can be calculated 
explicitly: 

00 1 
xo(z) = L (2dz)N = 1 _ 2d . 

N=O Z 

Thus the mean-field value oft is 1, which not surprisingly is equal to the 
mean-field value for I· The inequality t ;::: 1 is an example of a mean­
field bound. There is a sufficient condition for the opposite bound i' ~ 1 
known as the bubble condition, which is known to hold for d ;::: 5 (and is 
believed not to hold for d ~ 4), and which will be discussed in detail in 
Section 1.5. There are many examples in critical phenomena of rigorous 
mean-field bounds, but, as mentioned in Section 1.1, no general proof is 
known of the mean-field bound v;::: 1/2. 
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We now turn our attention to the long distance behaviour of the two­
point function. Below the critical point the two-point function decays ex­
ponentially. To see this, we note that CN(O, z) = 0 for N < llzlloo, and 
hence 

00 00 

G.,(O, x) = :L: CN(O, z)zN S :L: CNZN (1.3.12) 
N:ll31lloo N:ll31lloo 

Since c}.IN-+ I' by (1.2.1), for any£> 0 there is a positive Kc such that 

CN S Kc(l' + t:)N {1.3.13) 

for all N ~ 1. Given a positive z < Ze = 1-'- 1, we choose e(z) > 0 such that 
Oz = (1-' + e(z))z < 1. Then substitution of (1.3.13) into (1.3.12) gives 

Gz(O,z) $ C.,exp[-llogOzlllxlloo], (1.3.14) 

with C., = J(f(z)(l - 0., )- 1 . This shows the desired exponential decay of 
the subcritical two-point function. 

We define the mass m(z) to be the rate of exponential decay of the 
two-point function along a coordinate axis: 

( ) I. . f -logGz(O, {n, 0, ... , 0)) 
m z = 1mm . 

n-oo n 
(1.3.15) 

In Theorem 4.1.3 it will be shown that in fact the lim inf in the definition 
of m can be replaced by the limit. The correlation length e(z), defined by 
e( z) = m( z )- 1 ' provides a characteristic length scale for the model. 

The mass m(z) is clearly not infinite for 0 < z < zc: considering only 
the shortest self-avoiding walk from 0 to (n, 0, ... , 0) gives 

Gz(O, (n, 0, ... , 0)) ~ zn, (1.3.16) 

and hence m(z) S-log z. By {1.3.14), m(z) > 0 for z E (0, zc)· By defini­
tion the mass is a nonincreasing function of positive z, and in Section 4.1 
it will be shown that m(z) "-. 0 as z / Zc. Given that the radius of conver­
gence of Gz(O, x) is Zc for all x 'f. 0, it follows that m(z) = -oo for z > Zc· 
It has been proven that m(zc) = 0 ford~ 5; see Corollary 6.1.7. Although 
this is believed to be true in all dimensions, a negative mass at the critical 
point has not yet been ruled out rigorously in dimensions 2, 3 or 4. 

Since the mass m(z) approaches zero as z / Zc, it follows that the 
correlation length e(z) = m(z)-1 diverges as Z / Zc. It is believed that the 
manner of divergence of e(z) is via a power law of the form 

{(z) ""const.(zc- z)-P as z / Zc. (1.3.17) 
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Formal scaling theory predicts that ii = v; this will be discussed in Sec­
tion 2.1. The equality of these two critical exponents is part of a general 
belief that all length scales for the self-avoiding walk should be governed 
by the same critical exponent. The same belief generally applies to other 
statistical mechanical models as well. 

Another correlation length, ep, known as the correlation length of order 
p, is defined for each p > 0 by 

(1.3.18) 

By Holder's inequality eP is increasing in p. A formal argument similar to 
that showing ii = 11 gives 

with lip = 11 for all p. 
For p = 2 there is no need to appeal to scaling theory to argue that 

112 = 11. Instead we can argue as we did for the equality of 'Y and ;y, in 
the following way. We will assume that there exist exponents 'Y and 11 such 
that CN ~ Jl.N N'Y- 1 and (lwl2} ~ N 211 , and show that this implies that 
6(z) ~ (zc- z)- 11 . Given the assumptions, we have 

E lxi2Gz(O, z) = E zN E lw(N)I2 (1.3.19) 
11: N w:lwi=N 

~ E ZN N211 CN ~ E ZN N211+-r-1 JJN. 

N N 

Again writing z = Jl.-te-1, we obtain 

E1zi2Gz(O,z) ~ EN2v+-r-le-IN 
Ill N 

~ 100 x2v+-r-te-1111 dx ~ t- 211 --r. (1.3.20) 

This implies that 
r211--r 

c (z)2 ,..., __ ,..., t-2v--r+'Y 
.. 2 - x(z) - . (1.3.21) 

Using r = 'Y it follows that 6(z) ~ (zc- z)- 11 ' so 112 =II. 
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1.4 Critical exponents 

So far we have introduced the five critical exponents r, r, v, ii, Vp. It was 
shown in Section 1.3 that if r exists then r = r. Heuristic arguments that 
v = ii = Vp (for 0 < p < oo) will be given in the Section 2.1. The exponents 
were defined as follows: 

CN "" AJJN N'Y-l (1.4.1) 

x(z) "" A'(zc- z)-'? (1.4.2) 

(lw(N)I2) "" DN2v (1.4.3) 

e(z) "" B(zc- z)- 17 (1.4.4) 

ep(z) "" Bp(Zc- z)-v,. (1.4.5) 

We have written the above relations as if the various quantities involved 
are asymptotically given by power laws. This is consistent with the existing 
rigorous results, but some authors prefer a more conservative definition of 
the exponents. For example, one could require only that CN :::= JJN N'Y-l [see 
(1.3.7)], with corresponding statements for the other exponents. A weaker 
definition, appearing sometimes in the literature, is to define the exponents 
by equations such as 

r =- lim lo!x(z)), (1.4.6) 
:e/:ec log Zc - Z 

but we will not need this definition. We shall take the optimistic view that 
the power law behaviour is asymptotic, although none of (1.4.1)-(1.4.5) 
has been proven in dimensions 2, 3, or 4 for any of these definitions of the 
exponents. 

We will use the notation 

f(x) ~ g(x) (1.4.7) 

in informal (nonrigorous) discussions to mean that f(x) and g(:r) appear 
to have the same asymptotic behaviour in some sense which we will not 
attempt to specify. 

In this section three additional critical exponents 7], O:aing, and ~4 will 
be introduced. All these critical exponents are believed to be universal in 
the sense that they depend only on the dimension d of the lattice. In par­
ticular, the exponents are believed to be the same for the nearest-neighbour 
self-avoiding walk on zd as for a self-avoiding walk on zd in which steps 
can be within a fixed finite set 0 C zd which is symmetric with respect 
to the symmetries of the lattice. Moreover the exponents ought even to be 
the same for a self-avoiding walk which can take unboundedly long steps, 
provided the weight of a step decays rapidly enough with its length (e.g., 
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exponentially). This independence of the step set 0 is partially borne out 
in the rigorous results in high dimensions in Chapter 6. 

We begin with the exponent TJ, which describes the conjectured long­
distance behaviour of the two-point function at the critical point. Given 
that m(z) - 0 as z / Zc, and given the belief that m(zc) = 0 in all 
dimensions, it might be expected that the two-point function decays via 
a power law at the critical point. For simple random walk (with d > 2) 
the mass is certainly zero at the critical point, as it is well-known that 
the critical simple random walk two-point function C1/2d(O, x) decays like 
lxl2-d at large distances [see for example Lawler (1991)). The conjectured 
large distance behaviour of the critical self-avoiding walk two-point function 
IS 

(1.4.8) 

where C is a constant. This is believed to hold in all dimensions d ~ 2, 
including d = 2. Comparison with the simple random walk decay yields 
the mean field value 0 for TJ· Unfortunately it has not yet been proved 
rigorously that Gzc(O, x) is even finite for d = 2, 3 or 4, for any value of 
x '# 0. Ford~ 5 somewhat weaker decay than (1.4.8) has been proved; see 
Theorem 6.1.6. 

Assuming that (1.4.8) does provide the correct behaviour, it follows 
from the fact that the susceptibility is infinite at the critical point that 
TJ 5 2. The value of TJ is believed to be determined from the values of 1 and 
v according to Fisher's scaling relation 

I = (2- TJ)II. (1.4.9) 

The hypotheses leading to (1.4.9) will be discussed in Section 2.1. Inserting 
the conjectured values for 1 and v given in (1.1.11) and (1.1.12) into (1.4.9) 
gives the values for TJ appearing in Table 1.2. In contrast to 1 and v, 
the renormalization group predicts no logarithmic corrections to TJ in four 
dimensions. Logarithmic corrections are however expected in higher order 
terms in the asymptotic expansion of the critical two-point function in four 
dimensions. 

One way to gain insight into the long distance behaviour of the critical 
two-point function is to examine the behaviour of its Fourier transform near 
the origin. In general, given a function f(x) on the lattice whose absolute 
value is summable, we define its Fourier transform by 

f(k) = L f(x)eik·I:, k E [-11', 1r]d. (1.4.10) 
1:EZd 
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d 2 3 ~4 

r 4.3 1.162 ... 1 32 

v 3 0.59 ... ! 4 

'7 5 0.03 ... 0 24. 

Table 1.2: Conjectured values of -y, v, YJ. 

It is generally expected in critical phenomena that (1.4.8) is associated with 
behaviour of the form 

A C' 
Gz.(k)"' k2_ 11 ask- 0 (1.4.11) 

for some constant C'. [However (1.4.8) and (1.4.11) are not mathematically 
equivalent - an example of a function satisfying (1.4.11) but not (1.4.8) 
is given in the Notes at the end of the chapter.] Equation (1.4.11) has 
been established for d ~ 5 with '7 = 0 (see Theorem 6.1.6), but not yet for 
d = 2, 3 or 4. The conjectured values of 71 are all nonnegative. It is thus 
suggestive to conjecture the infrared bound 

(1.4.12) 

with C independent of k E [-11", 1r]d and z ~ Zc. For the nearest-neighbour 
Ising model and other reflection-positive spin systems the infrared bound is 
known rigorpusly to hold and was of considerable importance in the proof 
of mean-field behaviour of such models above four dimensions. For the 
self-avoiding walk it is still an open problem to prove the infrared bound 
in dimensions 2, 3 or 4, but in higher dimensions it has been proved (see 
Theorem 6.1.6). It is worth noting that the infrared bound is believed by 
some to be false for percolation and lattice animals below dimensions six 
and eight respectively (see Section 5.5 for more details about these models). 

The exponent Osing describes the behaviour of the number CN(O,x) 
of N-step self-avoiding walks which begin at the origin and end at x, as 
N --+ oo with x fixed. For x equal to a nearest-neighbour e of the origin, 
CN(O, e) is closely related to the number of self-avoiding polygons. Self­
avoiding polygons will be studied in detail in Section 3.2. It will be shown 
in Corollary 3.2.6 that the leading asymptotic behaviour of CN(O, x) as 
N --+ oo is Jl.N. As is the case for CN, this leading behaviour is believed to 
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have a power law correction of the form 

CN(O, x) f'oJ BJ.t.N Na,;,.g- 2. (1.4.13) 

Here x is fixed and nonzero, and N --+ oo through a sequence of values with 
the same parity as llxllt· It is believed that asing is independent of x, and 
we formalize this conjecture for future reference as follows. 

Conjecture 1.4.1 For every pair of nonzero points x and y in zd, there 
exist positive constants At and A2 and an integer No (all depending on x 
and y) such that 

AtcN(O, y) :$ cN(O, x) :$ A2cN(O, y) 

if llx- Ylh is even, and 

A1cN+1(0,y) :$ CN(O,x) :$ A2cN+1(0,y) 

if llx- Ylh is odd. 

for all N ~No 

for all N ~No 

A special case of this conjecture is proven in Proposition 7.4.4. The value 
of B is also believed to be independent of x (as it is for simple random 
walk). For simple random walk the local central limit theorem states that 
the probability PN(O, x) that a simple random walk starting at 0 ends after 
N steps at x is given asymptotically by const.N-d/ 2 exp[-dlxl 2 /2N] ""' 
const.N-d/2 , as N --+ oo. Hence the mean-field value of a sing- 2 is -d/2. 
The value of a sing is believed to be determined from the value of v and the 
dimension d via the hyperscaling relation 

CXsing - 2 = -dv. (1.4.14) 

This hyperscaling relation will be discussed in Section 2.1. If (1.4.14) and 
the values given for v in Table 1.2 are true, then it would follow that 
a 6 ;ng - 2 < -1 in all dimensions and hence that the critical two-point 
function Gzc(O, x) = LN CN(O, x)J.t.-N is finite in all dimensions, including 
d = 2. This is in contrast to the situation for simple random walk, where 
in two dimensions the Green function is infinite at the critical point. 

The strongest bounds on CN(O, x) are for high dimensions. It is proved 
in Theorem 6.1.3 that ford sufficiently large, orford> 4 for a walk allowed 
to take long enough steps, that 

(1.4.15) 

for some constant B. Although this bound has not yet been extended to 
all d ~ 5 for the nearest-neighbour model, the weaker result that for all 



1.4. CRITICAL EXPONENTS 21 

a< -1 + d/2 
00 

sup E N°cN(O, z)J.t-N < oo (1.4.16) 
:c N:O 

has been proved for all d ~ 5; see Theorem 6.1.4. Either of (1.4.15) or 
(1.4.16) could be summarized by the inequality o,ing - 2 ::; -d/2. For 
dimensions 2, 3 and 4, the best results are for x a nearest neighbour of the 
origin. These results are described in Section 8.1 and can be summarized 
by the inequalities 

::; 5 (d= 2) (1.4.17) Ctaing 2 
Ctaing ::; 2 (d= 3) (1.4.18) 

Ctaing < 2 (d ~ 4). (1.4.19) 

Finally, we introduce the critical exponent A4. Let CN1 ,N2 (z) denote the 
number of pairs of self-avoiding walks of lengths N1 and N2 and respective 
starting points 0 and z which intersect each other, and let 

{1.4.20) 

This quantity occurs in the study of interacting polymer chains. The 
asymptotic behaviour of CN1 ,N, is believed to be given by 

cN~,N2 ,...,_ const.J.tN1+N, N{t..•+-r- 2 f(Ntf N2) as Nt, N2 __. oo {1.4.21) 

for some critical exponent d 4 and universal scaling function f. The quan­
tity 

00 

L CNt,N,zNt+N, {1.4.22) 
Nt,N,:O 

represents a kind of average intersection probability. In quantum field the­
ory, an analogue of g(z) is referred to as the renormalized coupling constant. 
An informal calculation in which (1.4.21) is substituted into {1.4.22) leads 
to 

g(z) ,...,_ const.(zc- z)dv- 2t.•+"Y as z / Zc. (1.4.23) 

For simple random walk it is known that the analogue of g(z) satis­
fies (1.4.23), with d/2 - 2d4 + 1 = 0 for d = 2, 3, 4 (with a logarithmic 
correction in four dimensions), and d 4 = 3/2 for d ~ 5; see Section 10.3. 
Similar behaviour is believed to hold for the self-avoiding walk. In partic­
ular, for the self-avoiding walk it is believed that in dimensions 2, 3 and 4 
the hyperscaling relation 

dv- 2d4 +r = 0 (1.4.24) 
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is satisfied. Heuristic arguments in support of this hyperscaling relation 
will be given in Section 2.1. It has been proved that ~4 = 3/2 for the 
self-avoiding walk in dimensions d ~ 6 (see Theorem 1.5.5 and the Remark 
following its statement); it is believed that ~4 = 3/2 for all d > 4. 

Elementary bounds on A 4 can be obtained as follows. Consider all pairs 
of N -step self-avoiding walks w<1) and w<2) which intersect somewhere, with 
w(1) beginning at the origin and w<2> beginning anywhere. There are CN N 

such pairs. Since there are N + 1 possible sites on each of w(1) and wl2> 
where an intersection can occur, CN,N ~ (N + 1)2ck. On the other hand if 
we count only those pairs for which w(2)(0) = w(1)(j) for some j = 0, ... , n, 
we obtain CN,N ~ (N + l)ck. Together these bounds give 

This can be rewritten as 

'Y+l<~ <')'+2. 
2 - 4 - 2 

(1.4.25) 

(1.4.26) 

The upper bound implies that the hyperscaling relation (1.4.24) fails if 
dv > 2. Since it is known that v = 1/2 for d ~ 5 (see Section 6.1), this 
implies failure of hyperscaling for d > 4. 

1.5 The bubble condition 
The lower bound on the susceptibility (1.3.6) can be rewritten in terms of 
Zc = f.l-l as 

x(z)~ ~ 
Zc- Z 

{1.5.1) 

for 0 :5 z < Zc. The bubble condition is a sufficient condition for the 
complementary bound 

c 
x(z) :5--

Zc- Z 
{1.5.2) 

for some constant C and for 0 :5 z < Zc. Thus the bubble condition implies 
that r = 1 in the sense that 

(1.5.3) 

The bubble condition was proven to hold in five or more dimensions in Hara 
and Slade (1992b) (see Section 6.1), and is believed not to hold ford :54. 

To state the bubble condition we first introduce the bubble diagram 

B(z) = L Gz(O, z)2• (1.5.4) 
3:EZ4 
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The name "bubble diagram" comes from a Feynman diagram notation in 
which the two-point function or propagator evaluated at sites :c and y is 
denoted by a line terminating at :c and y. In this notation 

B(z) = ~ 0 0 x = 0 
where in the diagram on the right it is implicit that one vertex is fixed at the 
origin and the other is summed over the lattice. The bubble diagram can 
be rewritten in terms of the Fourier transform of the two-point function, 
using (1.5.4) and the Parseval relation, as 

2 • 2 1 . 2 ddk 
B(z) = IIGz(O, ·)112 = IIGzll2 = G:(k) (2 )d' 

[-ll',ll')d 1r 
(1.5.5) 

Definition 1.5.1 The bubble condition states that the bubble diagram is 
finite at the critical point, i.e. 

B(zc) < 00. 

In view of the definition ofT] in (1.4.8) or (1.4.11), it follows from (1.5.5) 
that the bubble condition is satisfied provided TJ > (4- d)/2. Hence the 
bubble condition for d > 4 is implied by the infrared bound TJ ~ 0. If the 
values for T] given in Table 1.2 are correct, then the bubble condition will 
not hold in dimensions 2, 3 or 4, with the divergence of the bubble diagram 
being only logarithmic in four dimensions. 

The next lemma provides the principal step in proving that the bubble 
condition implies (1.5.2) and hence implies (1.5.3). 

Lemma 1.5.2 For any z E [0, zc), the derivative of the susceptibility sat-
isfies 

~((;; - x(z) ~ zx'(z) ~ x(z)2 - x(z). (1.5.6) 

Proof. Below the critical point the derivative of x can be obtained by 
term by term differentiation: 

zx'(z) = 2: lwlztwt = :L<Iwl + l)ztwt- x(z), (1.5.7) 
w w 

where the sums are over self-avoiding walks of arbitrary length which begin 
at the origin. The summation on the right side can be written 

L L L I[w(j) = :c for some j]zlwl 
y w:o-y :c 
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= 2: 2: zlw(l)l+lw(2)1 J[w(l) n w(2) = {X}] 
x,y w< 1) : 0 ...... x 

w< 2): x ...... y 

- Q(z), (1.5.8) 

where I denotes the indicator function and the last summation is over self­
avoiding walks w<1) and w<2) of arbitrary length and having the prescribed 
endpoints. Then 

zx'(z) = Q(z)- x(z). (1.5.9) 

The upper bound in (1.5.6) then follows since the indicator function in the 
middle member of (1.5.8) is bounded above by one. 

The first step toward obtaining the lower bound is to use the inclusion­
exclusion relation in the form 

/[w< 1) nw< 2) = {x}] = 1- I[w< 1) nw<2) =/: {x}]. 

This gives 

Q(z) = x<z) 2 - :L 
x ,y w< 1) : 0 ...... r 

w< 2 ) : r ...... y 

In the last term on the right side of (1.5.10), let w = w<2)(1) be the site of 
the last intersection of w<2) with w(l), where time is measured along w<2 ) 

beginning at its starting point x. Then the portion of w< 2) corresponding 
to times greater than l must avoid all of w(l). Relaxing the restrictions that 
this portion of w< 2) avoid both the remainder of w< 2) and the part of w< 1) 

linking w to x gives the upper bound 

x ,y w< 1) : 0 ...... r 
w< 2 ) : x ...... y 

(1.5.11) 
Here the factor B(z)- 1 arises from the two paths joining w and x. The 
upper bound involves B(z) - 1 rather than B(z) since there will be no 
contribution here from the x = 0 term in (1.5.4). This type of distinction 
will be crucial in similar bounds on the lace expansion used in Chapter 6. 

Combining ( 1.5.10) and ( 1.5.11) gives 

Q(z) 2: x(z)2 - Q(z)[B(z)- 1]. 

This inequality is illustrated in Figure 1.2. Solving for Q(z) gives 

x(z)2 

Q(z) 2:: B(z) · 

(1.5.12) 
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D D B E 

< = = Q(z) S 

A A C F 

[AD] [AD, AB, CD, BD] [EF] 

Figure 1.2: A diagrammatic representation of the inequality x(z)2 -

Q(z)(B(z)- 1] S Q(z) S x(z)2 occurring in the proof of Lemma 1.5.2. 
The list of pairs of lines indicates interactions between the propagators, in 

the sense that the corresponding walks must avoid each other. 

Combining this inequality with (1.5.9) completes the proof of the lemma. 
0 

The quantity x(z)- 2Q(z) can be interpreted as the probability that two 

self-avoiding walks of arbitrary length, which start a.t the origin, do not 

intersect. Lemma 1.5.2 can be restated as saying that this probability lies 

in the interval (B(z)- 1, 1], and hence remains strictly positive a.t the critical 

point if the bubble condition is satisfied. 
In the next theorem it is shown that the lower bound of Lemma. 1.5.2 

implies that if the bubble condition is satisfied, then (1.5.3) holds. 

Theorem 1.5.3 If the bubble condition i.~ satisfied, and hence in particular 

if the infrared bound holds and d > 4, then there is a positive function t(z) 

with limz/zc t:(z) = 0 such that for z less than but near Zc 

Zcz~z Sx(z)S Zc[B~cc~~t:(z)J. 

Hence if in fact there is a constant A such that x(z) "'Azc(zc- z)- 1 , then 

1 SA S B(zc). 

Proof. The lower bound in the statement of the theorem is just (1.5.1). 

For the upper bound, let z1 E (0, zc)· It follows from the lower bound in 

(1.5.6) that for z E [z1, Zc) 

1 1 
~ B(z)- x(z) 

1 1 
> B(zc) - x(z1). 

(1.5.13) 



26 CHAPTER 1. INTRODUCTION 

We bound the factor of z on the left side by Zc and then integrate from z1 
to Zc. Using the fact that x(zc)- 1 = 0 by (1.5.1), this gives 

(1.5.14) 

Rewriting gives 

( ) < B(zc) Zc 

X Zt - 1- B(zc)x(zt)-1 Zc- Zt · 
(1.5.15) 

This gives the desired upper bound on the susceptibility, since by (1.5.1) 
the inverse susceptibility on the right side can be made arbitrarily small by 
taking z1 sufficiently close to Zc. 0 

Although the bubble condition is expected not to hold in four dimen­
sions, it is nevertheless possible to draw some conclusions from the lower 
bound of Lemma 1.5.2 if we assume the infrared bound (1.4.12). While not 
sharp compared to the expected behaviour 

A 
x(z)- --llog(zc- z)pl4 , 

Zc- Z 

the upper bound that we obtain on x shows that the deviation from mean­
field behaviour is at worst logarithmic in four dimensions, if the infrared 
bound is satisfied. 

Theorem 1.5.4 Let d = 4. If the infrared bound (1.4.12) is satisfied then 
for z less than but near Zc, 

~ $ x(z) $ cllog(zc- z)l 
Zc- Z Zc- Z 

for some constant C which does not depend on z. 

Proof. The lower bound in the statement of the theorem is just (1.5.1), 
which holds in all dimensions. It remains to prove the upper bound. In 
the following, C represents a constant whose value may change from one 
occurrence to another. 

Let 0 < z < Zc· Since 

for all k, it follows from the infrared bound that 

IG (k)l < 2 < 2C 
' - IG,(k)j-1 + x(z)-1 - k2 + Cx(z)-1. 

(1.5.16) 



1.5. THE BUBBLE CONDITION 27 

Using the fact that 

1 . 2 d4k 
B(z) = Gz(k) (2 )4 , 

[- ....... ]• 1f' 

a routine calculation using (1.5.16) gives the bound 

B(z) $ C[1 + logx(z)]. (1.5.17) 

By (1.5.6), (1.5.1) and (1.5.17), for z sufficiently close to Zc we have 

and therefore 

dx- 1 1 1 
-zdZ > B(z) - x(z) 

1 
~ 2B(z) 

c 
> 

1 + logx(z) 

d -1 

-[1+logx(z)] ~z ~C. (1.5.18) 

The left side of (1.5.18) is the derivative of -x(z)- 1[2 + Jogx(z)]. Hence 
for z close to Zc integration of (1.5.18) over the interval (z, zc) gives 

x(z)- 1(2 + Iogx(z)] ~ C(zc- z), 

where we used (1.5.1) to see that the contribution from the upper limit of 
integration on the left side is zero. Decreasing C slightly we obtain 

C( 1 ) ~ x(z)[Iogx(z)t 1. 
Zc- Z 

Taking logarithms, and taking z sufficiently close to Zc, gives 

1 
Cllog(zc- z)l ~ logx(z) -Joglogx(z) ~ 2 Iogx(z). 

(1.5.19) 

(1.5.20) 

Inserting the lower bound for (Iogx(z)]- 1 given by (1.5.20) into (1.5.19) 
gives 

C(zc- z)- 1 ~ x(z)IJog(zc- z)l- 1 . 

This gives the upper bound on x in the statement of the theorem. 0 

Finally we turn to a connection between the bubble diagram and the 
critical exponent .6.4 for the renormalized coupling constant g(z), which 
was defined in (1.4.22) by 

00 

g(z) = e(z)-dx(z)-2 2: CN1 ,N2 ZN,+N2 • ( 1.5.21) 
N 1 ,N,:O 
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Here cN,,N~ is the sum over sites x of the number of intersecting pairs of 
self-avoiding walks of length Nt and N2 starting at 0 and x respectively. 
The critical behaviour of g(z) is believed to be of the form (zc-z)dv- 2~•+"Y. 

The next theorem gives sufficient conditions for A4 to take its mean­
field value 3/2. The theorem is most efficiently stated in. terms of the 
repulsive bubble diagram R(z) < B(z), which is defined by taking only 
those contributions to the bubble from pairs of walks which are mutually 
avoiding apart from their common endpoints: 

R(z) = L 
:~:eZd w<t) : 0- :~: 

w< 2): 0- :~: 

Theorem 1.5.5 If B(zc) < oo and in addition R(zc) - 1 < 1/4, then 
g(z) ~ e(z)-d(zc- z)-2 • If also e(z) ~ (zc- z)-v, then A4 = 3/2 in the 
sense that 

g(z) ~ (zc - z)dv-3+'Y = (zc - z)dv-2 

(assuming that the exponent r for en is equal to the exponent for the sus­
ceptibility). 

Remark. The best current bound on R(ze) - 1 in five dimensions is 
0.434636 > 0.25 (Hara and Slade (1991b)]. Ford= 6 the same reference 
reports B(zc)-1 ~ 0.25974. However the repulsive bubble in six dimensions 
satisfies R(zc) - 1 ~ 0.2343 < 0.25, and is smaller still in more than six 
dimensions (Hara and Slade (unpublished)]. Together with Theorem 1.5.5 
and the result of Hara and Slade (1991a) that for d ~ 5 the correlation 
length exhibits the mean-field behaviour e(z) IV const.(zc - z)-112 (and 
that the exponent for Cn is"(= 1), this implies that 

g(z) ~ (zc- z)(d-4)/2 (1.5.23) 

ford~ 6. Although the same conclusion cannot yet be made ford= 5, it 
will be shown in Chapter 6 (see Theorem 6.2.5 and the remark preceding it, 
and Theorem 6.1.5) that for a sufficiently spread-out self-avoiding walk in 
more than four dimensions, B(ze) -1 < 1/4 and e(z) IV const.(ze- z)-112, 
and hence g(z) ~ (zc- z)(d-4)/2. 

Proof of Theorem 1.5.5. By Theorem 1.5.3, the bubble condition implies 
that x(z) ~ (ze- z)- 1• Hence to prove the theorem it suffices to show that 

00 

L ·cN,,N2ZN,+N2 ~ (zc- z)-4. (1.5.24) 
N,,N2=0 
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The left side is equal to 

z,y,v w : 0- tJ 

p:z-y 

29 

( 1.5.25) 

In a nonzero contribution to this sum, let u be the first site along w where 
w and p intersect. Then the portion of w before u avoids p as well as the 
latter part of w, while the latter part of w avoids only the former part of w 
and may intersect p. This gives the following diagrammatic interpretation 
of the left side of (1.5.24) (in which the list of pairs indicates mutually 
avoiding walks): 

u,z:,y,v 

·v· 
~ 

0 y 

[AB,CD,AC,AD] (1.5.26) 

Neglecting all mutual avoidance between the four lines of the diagram gives 
the upper bound x4 ~ const.(zc- z)-4 for the left side of (1.5.24). 

For a lower bound on (1.5.26) we apply inclusion-exclusion, as follows. 
The indicator function for the event that the various mutual avoidances 
shown in (1.5.26) occur can be written as one minus the event that at least 
one of the required mutual avoidances is violated. This leads to the lower 
bound 

u,v,z,y w<t): 0 _ u p(t) : z _ u 

w<2> : u - v p(2) : u - y 

x { 1 - I[w(l) nw(2) 'I= { u}]- J[w(1) n p(1) 'I= { u }] 

-I[w(l> n p(2) #; { u}]- /(p(l) n p{2> #; { u})}. (1.5.27) 

This bound is equal to 

u,z 'Y(l) : 0 .... u 
'Y(2) : u- :1: 

(1.5.28) 
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We now argue as in ( 1.5.11 ), but this time we let w be the site of the first 
intersection (measured along 1(2)) of 1(2) with l(l). This gives the lower 
bound 

x4 - 4x4[R(z)- 1] ~ const.x4 

for (1.5.26), assuming that R(zc)- 1 < 1/4. 

1.6 Notes 

(1.5.29) 

0 

Section 1.1. Existence of the connective constant Jl = limN-oo cJ.fN was 
first proven in Hammersley and Morton ( 1954); this paper essentially marks 
the beginning of rigorous results for the self-avoiding walk. The (nonrigor-

ous) derivation of Jl = V2 + ../2 for the honeycomb lattice is due to Nien­
huis (1982); see also Nienhuis (1984) and Nienhuis (1987). For high dimen­
sions, it was shown in Kesten (1964) that Jl = 2d -1- (2d)- 1 + O(d- 2), and 
this has recently been improved to Jl = 2d- 1- (2d)- 1 - 3(2d)- 2 + 0( d-3 ) 

using the lace expansion [Hara and Slade (unpublished)]. 
The conjectured values for 1 and v in two dimensions arise from an 

exact solution which is described in the articles by Nienhuis cited above. 
An alternate approach, based on conformal invariance, is discussed in Du­

plantier (1989), Duplantier (1990), and references therein. A rigorous argu­
ment leading to these two-dimensional critical exponents remains an open 
problem of major importance, and a solution would likely have far-reaching 
implications. For d = 3, field theoretic computations of the critical expo­
nents are given in Le Guillou and Zinn-Justin (1989). Monte Carlo compu­
tations of the exponents are given for example in Madras and Sakal (1988), 
and numerical computations using extrapolation of exact enumerations are 
given in Guttmann and Wang (1991). The logarithmic corrections in four 
dimensions are obtained in Larkin and Khmel'Nitskii (1969), Wegner and 
Riedel (1973) and Drezin, Le Guillou and Zion-Justin (1973). For recent 
progress on rigorous results in four dimensions, see Brydges, Evans and 
Imbrie (1992) and Arnaudon, Iagolnitzer and Magnen (1991). Existence of 
critical exponents for d ~ 5 is proven in Hara and Slade (1992a,1992b ). 

A necessary and sufficient condition for a bound of the form CN ~ 

const.pN N H for some finite If, i.e. for the finiteness of the critical exponent 
/, is given in Hammersley (1991, 1992). We note the presence of a minor 
error in Hammersley (1991): the right side of (30) does not follow from 
the inequality that precedes it. This is easy to fix, however, as follows. In 
Hammersley's notation, the bound f(m) ~ GmH Jlm implies that f(m, r) :S: 
2:: ern{! n!f · · · n[! p.m, where the sum is over all n1 , ... , nr ~ 1 that sum to 
m. By the arithmetic-geometric inequality we have n1n2 · · · »r :S: (m/rY, 
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which implies f(m,r) =:; (':'-11)Gr(mfrtHf.lm. This gives us (30) with 
HulogH replaced by -Hulogu, and Hammersley's Equation (3) follows. 

A rigorous understanding of the self-avoidi-ng walk on finitely ramified 
fractals has recently emerged; see Hattori (1992) for a review. 

For the Ising model (and also for tp4 field theory), the following refer­
ences prove results concerning mean-field behaviour above four dimensions: 
Sokal (1979), Aizenman (1982), Frohlich (1982), Aizenman and Fernandez 
(1986), Fernandez, Frohlich and Sokal (1992). 

Section 1.2. The bound (cN/c1)1/(N- 1) (for all N ~ 2) is attributed 
to Aim in Ahlberg and Janson {1980). The latter reference obtains an 
improvement when CN/CN-1 > Ct- 2: they show that f.l is bounded above 
by the unique positive root of the polynomial 

(for all N ~ 3). Currently the best upper bounds available are due to Alm 
(1992). 

A method for obtaining lower bounds on p. using bridges was given in 
Guttmann {1983). The current best lower bound in two dimensions, due to 
Conway and Guttmann (to be published), also uses bridges. Ford~ 3, the 
best lower bounds are due to Hara and Slade {1992b), who use a different 
approach involving loop erasure. 

The numerical estimates for f.l cited in Table 1.1 are from exact enumer­
ation data. 

Section 1.3. Exponential decay of the subcritical two-point function was 
proven in Fisher (1966), as part of a study of the form of the distribution 
of CN(O, x). 

Section 1.4. We make no attempt here to refer to the original literature on 
critical exponents; the ideas in this section are part of the standard physics 
picture of critical phenomena. 

The infrared bound was proven for reflection-positive spin systems in all 
dimensions in Frohlich, Simon and Spencer {1976). For branched polymers 
and for percolation, there are arguments that the infrared bound does not 
hold below eight and six dimensions respectively; see Bovier, Frohlich and 
Glaus (1986) and Adler {1984) respectively. 

For d ~ 5 it has been proven that Gz.(k) "" const.k- 2 as k - 0, but 
although it is believed that Gz.(x) is asymptotic to a multiple of lxl2-d, 

this has not yet been proven (see Theorem 6.1.6 for a weaker result). It 
is thus of interest to know under what conditions behaviour of the form 
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k- 2+'1 for a Fourier transform g(k) implies behaviour of the form lxl2-d-11 

for g(x). For the case 7'1 = 0, the following sufficient condition was pointed 
out to us by S. Kotani (private communication); we omit the proof. 

Theorem 1.6.1 Let d ~ 3, and let Td :: (R/211'Z)d. Let g be a func­
tion in Cd-2(Td\{O}), let h(k) = k2g(k), and for X E zd let g(x) = 
(211')-d fr., g(k)e-ik·zddk . Suppose that there is a neighourhood U C Td of 
0 such that 

Then as lxl - oo, 

( ) h·(o) r(d/2) 1 1-(d-2) 
g X - 2( d - 2)11'd/2 :1: • 

The following shows that in general the hypothesis of existence of d- 2 
derivatives for h cannot be relaxed: we give an example2 of a function g 
on Td, for d > 3, which is asymptotic to a multiple of k- 2 as k - 0, with 
h(k) = k2g(k) having d- 3 but not d- 2 derivatives in a neighbourhood of 
k = 0, but for which g(z) is not bounded above by a multiple of lzl2-d for 
large x. 

Example 1.6.2 Let d ~ 3, and let C(z) be the critical simple random 
walk two-point function (or in other words the Green function) studied in 
Appendix A. Then C(z) is asymptotic to a multiple of lxl2-d for large x 
[see, e.g., Lawler (1991)]. Also, C(k)-1 = 1-d-1 L:~= 1 cos k,. is asymptotic 
to (2d)-1k2 ask- 0. Fix q such that d-3 < q < d-2, and for -11':::; t:::; 1r 

define 
00 

j(t) = L 2-qlml exp[it(sgnm)21ml], (1.6.2) 
m=-oo 

where sgn m = +1 ifm > 0; = 0 ifm = 0; = -1 ifm < 0. Fork E [-11', 1r]d, 
let 

d 

F(k) =£II j(k,.) (1.6.3) 
1'=1 

where £ is chosen small enough that 1 + C(k)- 1 F(k) is strictly positive 
uniformly in all k E [-11', 1r]d. (This is possible since C(k)- 1 and the product 
in (1.6.3) are both bounded uniformly ink.) Observe that FE c•(Td) for 
s < q, but that for s > q, a;i'(O) does not exist. Now let 

9(k) = C(k)+ F(k) = C(k)[1 + C(k)-1 F(k)J (1.6.4) 

2 The example was arrived at in conversation with T. Hara. 



1.6. NOTES 33 

and 
(1.6.5) 

Then g(k) is asymptotic to {2d)k-2 as k - 0, and h(k) E Cd-3(Td). 
However g(:t) is not bounded above by a multiple of 1:~:1 2 -d for large :t, 

because F(:t) = cl:cl-q for :t having one component of the form ±21ml (for 
any integer m) and all other components zero. 

See Appendix A of Sokal (1982) for a discussion of some related issues. 

Section 1.5. For reflection positive spin systems the infrared bound was 
proven in Frohlich, Simon and Spencer (1976). As a consequence the bub­
ble diagram for such systems is finite at the critical point above four di­
mensions, and diverges logarithmically in four dimensions. This was used 
to prove mean-field behaviour for spin systems for dimensions greater than 
four in Aizenman (1982) and Frohlich (1982). In Bovier, Felder and Frohlich 
(1984) Theorem 1.5.3 was proved, although at that time for the self-avoiding 
walk neither the infrared bound nor the bubble condition were known to 
hold in any dimension. In the same paper it was observed that if the in­
frared bound holds in four dimensions then the deviation from mean-field 
behaviour for the susceptibility is at most logarithmic. Our proof of The­
orem 1.5.4 yields this conclusion in a slightly stronger form, following the 
methods used for spin systems in Aizenman and Graham (1983). Results 
analogous to Theorem 1.5.5 were obtained for spin systems in Aizenman 
(1982) and Frohlich (1982). The proof that ~4 = 3/2 ford~ 6 is new, and 
is due to Hara and Slade (unpublished). 

For percolation and branched polymers (lattice trees and lattice ani­
mals) the role of the bubble diagram is played by the triangle and the 
square diagram respectively; see Section 5.5. For percolation see Aizenman 
and Newman (1984), Nguyen (1987), Barsky and Aizenman {1991), Hara 
and Slade (1990a) and Nguyen and Yang (1991). For lattice trees and lat­
tice animals see Bovier, Frohlich and Glaus (1986), Tasaki and Hara (1987) 
and Hara and Slade (1990b). 
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