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Preface 

A self-avoiding walk is a path on a lattice that does not visit the same 
site more than once. In spite of this simple definition, many of the most 
basic questions about this model are difficult to resolve in a mathematically 
rigorous fashion. In particular, we do not know much about how far an n­
step self-avoiding walk typically travels from its starting point, or even how 
many such walks there are. These and other important questions about 
the self-avoiding walk remain unsolved in the rigorous mathematical sense, 
although the physics and chemistry communities have reached consensus 
on the answers by a variety of nonrigorous methods, including computer 
simulations. But there has been progress among mathematicians as well, 
much of it in the last decade, and the primary goal of this book is to give 
an account of the current state of the art as far as rigorous results are 
concerned. 

A second goal of this book is to discuss some of the applications of the 
self-avoiding walk in physics and chemistry, and to describe some of the 
nonrigorous methods used in those fields. The model originated in chem­
istry several decades ago as a model for long-chain polymer molecules. Since 
then it has become an important model in statistical physics, as it exhibits 
critical behaviour analogous to that occurring in the Ising model and related 
systems such as percolation. It is also of interest in probability theory as a 
basic example which does not respond well to standard probabilistic meth­
ods. Methods originating in mathematical physics and combinatorics have 
been more successful. Computer simulations have played an important role 
in formulating conjectures, and interesting computational and algorithmic 
issues have arisen in the process. 

We have attempted to make this book as self-contained as possible. It 
should be accessible to graduate students in mathematics and to graduate 
students in physics and chemistry who are mathematically inclined . 

Chapter 1 gives a general introduction to the basic questions and conjec­
tures about the self-avoiding walk. The important notion of subadditivity 
is introduced in Section 1.2. Its relevance was pointed out by Hammers-
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ley and Morton (1954), and its interplay with concatenation is a recurring 
theme throughout the book. 

Chapter 2 is devoted to a discussion of some nonrigorous and applied 
topics, namely scaling theory, the relation to polymers and the Flory argu­
ment, and the identification of the self-avoiding walk as a "zero-component" 
ferromagnet. 

In 1962, Hammersley and Welsh proved an upper bound on the number 
of n-step self-avoiding walks which remains the best available bound in 
two dimensions. Their proof is given in Section 3.1. Shortly afterward, 
Kesten (1964) improved the Hammersley-Welsh bound in three or more 
dimensions. Kesten 's bound is proven in Section 3.3; it remains the best 
bound in dimensions three and four. Bounds on the number of self-avoiding 
polygons are proven in Section 3.2. Subadditivity is the driving force in 
these arguments, implemented at times with considerable sophistication. 

Chapter 4 is concerned with the decay of the subcritical two-point func­
tion. In particular, existence of a mass (or inverse correlation length) is 
proven, as well as existence of Ornstein- Zernike decay near a coordinate 

axis. This chapter also makes use of subadditivity in a fundamental way, 
using bridges and irreducible bridges. It has close connections with proba­
bilistic renewal theory. 

Chapters 5 and 6 are concerned with the self-avoiding walk above four 
dimensions and the recent proof by Hara and Slade (1992a,1992b) of mean­
field behaviour in five or more dimensions. The main tool in the proof 
is the lace expansion of Brydges and Spencer (1985), which is the sub­
ject of Chapter 5. Section 5.5 indicates how the lace expansion can also 
be applied to lattice trees, lattice animals and percolation, and attempts 
to describe the expansions for the various models in a manner which em­
phasizes their similarities. The results in high dimensions are summarized 
in Section 6.1, before proving convergence of the lace expansion in Sec­
tion 6.2. The convergence proof uses a number of estimates for ordinary 
random walk; these are given in Appendix A. In order to keep the conver­
gence proof as simple as possible, we do not prove mean-field behaviour for 
the nearest-neighbour model in five or more dimensions, but rather con­

sider the nearest-neighbour model in sufficiently high dimensions and the 
"spread-out" model above four dimensions; this allows us to present the 
simplest proof of convergence of the lace expansion to appear in print to 
date. Sections 6.3 to 6.8 show how convergence of the lace expansion leads 
to existence of crit ical exponents and other results stated in Section 6.1. 

Chapter 7 is devoted to a proof of the pattern theorem of Kesten (1963) 
and a discussion of some of its consequences . These consequences are pri­
marily in the form of ratio limit theorems for the number of n-step self­
avoiding walks and related quantities. 

xiv 



Chapter 8 contains a short potpourri of additional results: upper bounds 
on the critical exponent a~ing 1 comments on self-avoiding walks in restricted 
geometries, construction of the infinite bridge, and some comments on the 
occurrence of knots in self-avoiding polygons. 

Chapter 9 gives an extensive survey of various Monte Carlo algorithms, 
both static and dynamic, that have been used to simulate self-avoiding 
walks. Special attention is paid to the rigorous analysis of ergodicity prop­
erties and autocorrelation times of the algorithms. 

Finally in Chapter 10 a brief discussion is given of four related topics: 
the Edwards model and weakly self-avoiding walk, the loop-erased self­
avoiding random walk, intersection properties of simple random walks, and 
the "myopic" or "true" self-avoiding walk. 

With the exception of Chapter 10 and the Appendices, most references 
to the literature are postponed to Notes which follow each chapter . 

Enumerations of self-avoiding walks are proceeding at a rapid pace as 
computer technology advances. Appendix C gives tables of the number of 
self-avoiding walks, the square displacement, and the number of polygons, 
on the hypercubic lattice in dimensions two through six. 

An overview of the key concepts, results, and methods of the book can 
be obtained from a reading of all of Chapter 1, together with Sections 
3.1, 3.2, 4.1, 4.2, 5.1, 5.2, 5.4, 6.1, 6.2, 7.1, and 9.1. Any section not on 
the above list is rarely referenced outside its own chapter. In fact, the 
chapters of this book to a large extent can be read in any order, with the 
following exceptions: Chapter 1 should be read first; Chapter 3 should 
precede Chapter 4; Chapter 5 should precede Chapter 6; and Chapters 3, 
4, and 7 should precede Chapter 8. 

In view of our emphasis on rigorous results, we have omitted any de­
scription of such important ideas as the exact solution in two dimensions 
arising from connections with the Coulomb gas due to Nienhuis, and with 
conformal invariance in work of Duplantier and others. Nor have we at­
tempted to describe the work on renormalization in the physics and polymer 
literature. 

We have benefitted from the · help of various people throughout the 
course of writing this book. Takashi Ilara, Alan Sokal and Stu Whit­
tington each read various portions of the m anuscript and made numerous 
suggestions for improvements. Harry Kesten provided extensive notes for 
Section 3.3. Greg Lawler clarified several issues for us in Sections 10.2 and 
10.3. Tony Guttmann kept us up-to-date with the latest world records in 
self-avoiding walk enumerations, and guided us through the related litera­
ture. We extend our thanks to all these, and to the many others who have 
offered advice in correspondence or conversation. NM is indebted to Alan 
Sokal and Stu Whittington for teaching him much about this field while 
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collaborating on various enjoyable and fascinating projects. GS expresses 
special thanks to David Brydges for inspiring his initial interest in the 
lace expansion and suggesting that it might converge in five dimensions, 
and to Takashi Hara for the pleasure of four years of collaboration and 
for permission to include unpublished joint work. We gratefully acknowl­
edge financial support from the Natural Sciences and Engineering Research 
Council of Canada. Finally we offer our thanks and deep appreciation to 
Joyce Kruskal and Joanne Nakonechny for their encouragement, support, 
and tolerance. 

Toronto and Hamilton 
July 7, 1992 
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Chapter 1 

Introduction 

1.1 The basic questions 

Imagine that you are standing at an intersection in the centre of a large 
city whose streets are laid out in a square grid. You choose a street at 
random and begin walking away from your starting point, and at each 
intersection you reach you choose to continue straight ahead or to turn left 
or right. There is only one rule: you must not return to any intersection 
already visited in your journey. In other words, your path should be self­
avoiding. It is possible that you will lead yourself into a trap, reaching an 
intersection whose neighbours have all been visited already, but barring. this 
disaster you continue walking until you have walked some large number N 
of blocks. There are two basic questions: 

• How many possible paths could you have followed? 

• Assuming that any one path is just as likely as any other, how far 
will you be on the average from your starting point? 

These questions are straightforward enough, but the answers are only 
known for small values of N. It is widely accepted that a search for general 
exact formulas is an enormously difficult problem which lies beyond the 
reach of current methods. A less difficult question would be to ask for the 
asymptotic behaviour of the answers as N becomes very large, but this too 
is very hard. Physicists and chemists who are interested in this and related 
problems have applied a variety of methods and have produced many in­
triguing results, but a great deal of work is still needed to settle these issues 
in a mathematically rigorous way. In this book we will state some of the 

1 



2 CHAPTER 1. INTRODUCTION 

results of nonrigorous work in the field, and describe the rigorous work in 
some detail. 

At first glance one might expect that the easiest way to answer the 
above questions, at least approximately, would be to use a computer. Much 
numerical work has been done in this direction, and in Chapter 9 some of 
it will be discussed. Here too, however, the situation is not so easy: exact 
enumeration of all possible routes has been done to date only for N 5 
34, with further enumerations made difficult because of the exponential 
growth in the number of paths as N increas~. Larger values of N can be 
studied by extrapolation of the exact enumeration data, or by Monte Carlo 
simulations. 

There is no need to restrict the walk to a two-dimensional grid, and 
it is easy to generalize the above questions to general dimension d. It is 
also possible to generalize the problem by changing from a rectangular to a 
triangular or other type of grid. There is at least one case where the above 
questions can be easily answered, and this is the case of a one-dimensional 
walk. A self-avoiding walker in one dimension has no alternative but to 
continue travelling in the direction initially chosen, so there are exactly two 
paths for every value of N and the distance travelled is exactly N blocks. 
That was easy, but not very interesting. Higher dimensions provide a vastly 
richer structure. 

In general, a self-avoiding walk takes place on a graph. A graph (more 
precisely, an undirected graph) is a collection of points, together with a 
collection of pairs of points known as edges. The basic example that will 
concern us most is the d-dimensional hypercubic lattice zd. The points of 
this graph are the points of the d-dimensional Euclidean space R d whose 
components are all integers, and the edges are given by the set of all unit 
line segments joining neighbouring points. The points will be referred to 
as sites, and the unit line segments as nearest-neighbour bonds. Sites will 
typically be denoted by letters such as u, v, z, y, and their components by 
subscripts: z = (z1, z 2, ... , Zd)· The usual Euclidean dot product on zd 
will be written z · y = L:f=t ZiYi, and the Euclidean norm will be written 

lzl = vx:z. We will also use the notation llzllp = (L:f=t zf) 11P, and 
llzlloo = max{lz;l: i = 1, ... , d}. 

AnN-step self-avoiding walk won zd, beginning at the site z, is defined 
as a sequence of sites (w(O),w(l), ... ,w(N)) with w(O) = z, satisfying lw(j+ 
1)- w(j)l = 1, and w(i) # w(j) for all i # j. We write lwl = N to 
denote the length of w, and we denote the components of w(j) by w;(j) 
( i = 1, ... , d). Let CN denote the number of N -step self-avoiding walks 
beginning at the origin. By convention, c0 = 1. Then the first of our basic 
questions above is asking for the value of CN. More modestly, we could ask 
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Figure 1.1: A two-dimensional self-avoiding walk with 115 steps. 

for the asymptotic form of CN as N - oo. It is easy to find the exact values 
of eN (as a function of d) for very small values of N, for example c1 = 2d, 
c2 = 2d(2d- 1}, ca = 2d(2d- 1)2, and c4 = 2d(2d- 1)3 - 2d(2d- 2) (for 
c4 the second term subtracts the contribution of squares to the first term). 
However, the combinatorics quickly become difficult as N increases and 
then soon become intractable. Tables in Appendix C give enumerations of 
CN for dimensions two through six. 

The simplest bounds on the behaviour of CN are obtained as follows. 
An upper bound on CN is given by the number of walks which have no 
immediate reversals, or in other words which never visit the same site at 
times i and i + 2. Avoiding immediate reversals allows 2d choices for the 
initial step, and 2d- 1 choices for the N - 1 remaining steps, for a total 
of 2d(2d- 1 )N -l. For a lower bound we simply count the number of walks 
in which each step is in one of the d positive coordinate directions. Such 
walks are necessarily self-avoiding. Thus we have 

(1.1.1) 

To discuss the average distance from the origin after N steps, we need 
to introduce a probability measure on N -step self-avoiding walks. The 
measure that we shall use throughout this book is the uniform measure, 
which assigns equal weight c·;/ to each N-step self-avoiding walk. It is 
worth noting that although we originally introduced the self-avoiding walk 
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in terms of a walker moving in time, the uniform measure is a measure on 
paths of length N and does not define a stochastic process evolving in time 
(for example, a walk may be trapped and impossible to extend without 
introducing a self-intersection). 

Denoting expectation with respect to the uniform measure by angular 
brackets, the average distance (squared) from the origin after N steps is 
then given by the mean-square displacement 

(1.1.2) 

The sum over w is the sum over all N-step self-avoiding walks beginning at 
the origin. Like CN, the mean-square displacement can also be calculated 
by hand for very small values of N, but the combinatorics quickly become 
intractable as N increases. Enumerations are tabulated in Appendix C. 

It is instructive to compare the behaviour of the self-avoiding walk with 
that of the simple random walk. An N-step simple random walk on zd, 
starting at the origin, is a sequence w = (w(O), w{l), ... ,w(N)) of sites with 
w(O) = 0 and jw(j + 1)- w(j)l = 1, with the uniform measure on the set 
of all such walks. Without the self-avoidance constraint the situation is 
rather easy. Indeed, since each site has 2d nearest neighbours, the number 
of N -step simple random walks is exactly (2d)N. To analyse the mean­
square displacement, we represent the simple random walk in the following 
way. Let {X(i)} be independent and identically distributed random vari­
ables with X(i) uniformly distributed over the 2d (positive and negative) 
unit vectors. Then the position after N steps can be represented as the 
sum SN = X(1) + X(2) + ... + X(N). Expanding ISNI2 , the mean-square 
displacement is given by 

N 

(ISNI2} = I: (X(i) · xO>). (1.1.3) 
iJ=1 

Fori'# j, (X(i).X(j)) = 0, using independence and the fact that (X(i)) = 0. 
Since (X(i) ·X(i)) = 1, it follows that the mean-square displacement is equal 
to N. Similarly, if we consider a random walk in zd in which steps lie in 
a symmetric finite set n C zd of cardinality 101, with each possible step 
equally likely, then the number of N -step walks is lOIN and the mean-square 
displacement is N (f2 , where (f2 is the mean-square displacement of a single 
step. 

For the self-avoiding walk it is believed that there is exponential growth 
of eN with power law corrections, unlike the pure exponential growth of 
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the simple random walk. It is also believed that the mean-square displace­
ment will not always be linear in the number of steps, in contrast to the 
diffusive behaviour of the simple random walk. These beliefs are in har­
mony with known properties of other models of statistical mechanics, and 
are supported by numerical and nonrigorous calculations. The conjectured 
behaviour of CN and (lw(N)j2} is thus 

(1.1.4) 

and 
(1.1.5) 

where A, D, Jl, r and v are dimension-dependent positive constants. We 
shall refer to Jl as the connective constant, and r and v are examples 
of critical exponents. In four dimensions the above two relations should 
be modified by logarithmic factors; see (1.1.13) and (1.1.14) below. Here 
f(N) ""g(N) means that f is asymptotic tog as N-+ oo: 

. f(N) 
hm (N) = 1. N-oo g 

For ordinary random walk (1.1.4) and (1.1.5) hold with r = 1 and v = 1/2, 
both for the nearest-neighbour and more general walks. 

In the next section the existence of the limit 

I, l/N 
Jl = liD c 

N-oo N 
(1.1.6) 

will be proven, which is the first step in justifying (1.1.4). The simple 
bounds of (1.1.1) then immediately imply that 

(1.1.7) 

The exact value of Jl is not known for the hypercubic lattice in any dimen­
sion d ?: 2, although for the honeycomb lattice in two dimensions there 
is nonrigorous evidence that Jl = V2 + .../2. Improvements to (1.1.7) will 
be discussed in the next section. For high dimensions it is known that as 
d-+ 00 

1 3 ( 1 ) Jl = 2d- 1- 2d- (2d)2 + 0 (2d)3 ; (1.1.8) 

references are given in the Notes. In fact Fisher and Sykes (1959) estab­
lished the coefficients in the 1/d expansion up to and including order d-4, 
although there is no rigorous control of their error term. Intuitively (1.1.8) 
says that in high dimensions the principal effect of the self-avoidance con­
straint is to rule out immediate reversals. 
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Concerning "'{, we will show in Section 1.2 that CN ~ J.lN and hence 
"'f ~ 1 in all dimensions. There is still no proof, however, that "'f is finite in 
two, three or four dimensions, where the best bounds are 

< { J.lN exp[K N 112] d = 2 
CN - J.lN exp[K N 2/(2+d) log N] d = 3, 4 (1.1.9) 

for a positive constant K; these bounds will be discussed in Sections 3.1 
and 3.3. In Chapter 6 we will describe a proofthat (1.1.4) holds with "'f = 1 
for d ~ 5. In addition to characterizing the asymptotic behaviour of CN, 

the exponent 1 provides a measure of the probability that two N-step self­
avoiding walks starting at the same point do not intersect. In fact, this 
probability is equal to c2N/cj.;, and assuming (1.1.4) we have 

21'-1 
C2N ""--Nl-')' 
cj.; A · 

(1.1.10) 

If "'{ > 1 then this probability goes to zero as N - oo, while if"'{ = 1 it 
remains positive. For the simple random walk the analogous probability is 
known to remain positive as N - oo for d > 4, and roughly speaking to go 
to zero like (log N)- 112 ford= 4 and as an inverse power of N ford= 2, 3. 
A survey of the simple random walk results is given in Section 10.3. 

Intuitively it is to be expected that the repulsive interaction of the self­
avoiding walk will tend to drive the endpoint of the walk away from the 
origin faster than for simple random walk, or in other words that v ~ 1/2. 
However it is still an open question to prove that this "obvious" inequality 
(lw(N)i2} ~ CN holds in all dimensions. On the other hand, bounding 
lw(N)I2 above by N 2 in (1.1.2) gives the upper bound (lw(N)I2} $ N 2, or 
v ~ 1. This bound is optimal in one dimension, but seems far from optimal 
in two or more dimensions. No upper bound of the form C N2-f ( C, e > 0), 
or in other words v < 1, has been proven for dimensions two, three or four, 
however. For d ~ 5 it has been proved that v = 1/2; this proof will be 
described in Chapter 6. It will also be shown that for high dimensions the 
diffusion constant D is strictly greater than the simple random walk value of 
1. Thus in high dimensions the self-avoiding walk does move away from the 
origin more quickly than the simple random walk, but only at the level of 
the diffusion constant and not at the level of the exponent v. The tendency 
of the self-avoiding walk to move away from the origin more quickly than 
the simple random walk should become less pronounced as the dimension 
increases, and hence it is to be expected that v is a nonincreasing function 
of the dimension. 

The critical exponents "'f and v are believed to be dimension dependent, 
but independent of the type of allowed steps (as long as there are only 
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finitely many possible steps and the allowed steps are symmetric) or even 
of the type of lattice-the exponents are believed, for example, to be the 
same for the square and triangular lattices. This· lack of dependence on the 
detailed definition of the model is known as universality, and models with 
the same exponents are said to be in the same universality class. The con­
nective constant Jl appearing in (1.1.4) represents the effective coordination 
number of the lattice and is not universal-it depends on the details of the 
allowed steps and the underlying lattice, as well as the dimension d. 

It seems clear that in high dimensions the self-avoiding walk should be 
closer to the simple random walk than in low dimensions, since a simple 
random walk is less likely to intersect itself in high dimensions. Four di­
mensions plays a special role: for simple random walk the expected time 
of the first return to the origin, conditioned on the event that this return 
occurs, is finite for d > 4; this suggests that above four dimensions self­
avoidance is a short-range effect rather than a long-range one, and hence 
that it will not affect the critical exponents. In addition, as mentioned 
above, the probability that two independent simple random walks of length 
N do not intersect remains bounded away from zero as N - oo for d > 4, 
but not for d :54. 

The conjectured values of"'( and v are as follows: 

r= { 

v= { 

43 
32 
1.162 ... 
1 with logarithmic corrections 
1 

3 
4 

d=2 
d=3 
d=4 
d~5 

d=2 

0.59 ... d=3 
~ with logarithmic corrections d = 4 
1 
2 

(1.1.11) 

(1.1.12) 

Currently the only rigorous results which prove power law behaviour and 
confirm the conjectured values of "'f and v are for d ~ 5. These are discussed 
in detail in Chapter 6. The conjectured logarithmic corrections to "'f and v 
in four dimensions, predicted by the renormalization group, are given by: 

AJlNpogN]l14 , d=4 

D N(Iog Njll4, d = 4. 
(1.1.13) 

(1.1.14) 

Equations (1.1.11) to (1.1.14) are typical of what is found for other statisti­
cal mechanical models, such as the Ising model or percolation. A common 
feature is the existence of a certain dimension, the so-called upper critical 
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dimension, at which there are logarithmic corrections to critical exponents 
and above which all critical exponents are dimension independent and are 
given by the corresponding critical exponents for a simpler model, known 
as the mean-field1 model. For the self-avoiding walk the mean-field model 
is the simple random walk and the simple random walk critical exponents 
are sometimes referred to as the mean-field exponents. 

The rational values for two dimensions given in (1.1.11) and (1.1.12) 
come from a non rigorous exact solution of the 0( N) spin model which 
includes the self-avoiding walk as the special case N = 0 (see Section 2.3). 
This remarkable work exploits a connection between the O(N) model and 
the Coulomb gas and uses the renormalization group. From a different 
approach, nonrigorous conformal invariance arguments reproduce the same 
rational values. There is no analogous exact solution in three dimensions, 
and the d = 3 values given in (1.1.11) and (1.1.12) are from numerical 
results and field-theoretic calculations using the (-expansion. References 
for these topics are given in the Notes. 

An early conjecture for the values of v was made by Flory, and will be 
discussed in Section 2.2. The Flory exponents are given by VFlory = 3/(2 + 
d) ford$ 4 and VFlory = 1/2 ford> 4. This agrees with Equation (1.1.12) 
for d = 2 and d ~ 4 (apart from the logarithmic correction when d = 4), 
and comes very close for d = 3. The exact Flory value VFlory = 3/5 in 
three dimensions has been ruled out by numerical work, however. 

1.2 The connective constant 

If (1.1.4) correctly represents the behaviour of CN for large N, then the 
limit 

1. 1/N p = 1m c 
N-oo N 

(1.2.1) 

must exist. One purpose of this section is to prove the existence of this 
limit as a simple consequence of a subadditive property of log CN. It then 
follows immediately from {1.1.1) that 

(1.2.2) 

The proof involves the notion of concatenation of two self-avoiding 
walks. 

1 This tenninology has its origin in the Ising model. For the Ising model the upper 
critical dimension is also four, and above four dimensions critical exponents are given 
by the exactly solvable model in which a spin interacts with the 1111ert1ge of all the other 
spins. References are given in the Notes. 
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Definition 1.2.1 The concatenation w<1> ow(2) of an M -step self-avoiding 
walk w(2) to anN -step self-avoiding walk w(1) is the (N + M)-step walk w, 
which in general need not be self-avoiding, given by 

w(k) = w(1)(k), k=O, ... ,N 
w(k) = w(l)(N)+w<2>(k-N)-w<2>(0), k=N+l, ... ,N+M. 

The product CNCM is equal to the cardinality of the set of (N + M)-step 
simple random walks which are self-avoiding for the initial N steps and the 
final M steps, but which may not be completely self-avoiding. This can be 
seen by concatenations of M-step walks to N-step walks, and implies that 

(1.2.3) 

In fact equality holds in (1.2.3) only if Nor M is zero, since otherwise there 
will be at least one M -step walk whose concatenation with a given N -step 
walk fails to be self-avoiding. Taking logarithms in (1.2.3) shows that the 
sequence {log Cn} is subadditive: 

(1.2.4) 

The existence of the limit (1.2.1) is a consequence of (1.2.4) and the fol­
lowing standard result; this was first observed by Hammersley and Morton 
(1954). 

Lemma 1.2.2 Let {an }n>t be a sequence of real numbers which is sub­
additive, i.e., an+m ~ an-+ am. Then the limit limn-oo n-1an exists in 
[ -oo, oo) and is equal to 

I. an . f an 
1m-= m -. 

n-oo n n?:l n 

Proof. It suffices to show that 

I. an ak 
tmsup- <­
n-oo n - k 

(1.2.5) 

(1.2.6) 

for every k, since taking the lim infA:-oo in (1.2.6) gives existence of the 
limit, and then (1.2.5) can be seen by taking the infA:?:l in (1.2.6). 

To prove (1.2.6), we fix k and let 

(1.2.7) 

Given a positive integer n we let j denote the largest integer which is strictly 
less than njk. Then n = jk + r for some integer r with 1 ~ r ~ k. Using 
subadditivity, we have 

(1.2.8) 
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Dividing by nand taking the limsupn ..... oo then gives (1.2.6). 
Equation (1.2.5) shows that limn ..... oo n-1an < oo. In general, the possi­

bility that the limit equals -oo cannot be excluded, as is illustrated by the 
example of an = -n2 • For many applications, however, this is ruled out by 
an a priori bound such as an ~ 0. D 

Together with (1.2.4), Lemma 1.2.2 implies the existence of the limit 
logJJ = limN ..... oo N-lJogcN, and hence gives (1.2.1). In fact (1.2.5) shows 
more: 

(1.2.9) 

and hence 
J.'N ~ CN, N ~ 1. (1.2.10) 

This inequality can be summarized by the statement r ~ 1, where r is as 
introduced in (1.1.4), although strictly speaking we do not know that r 
exists. Equation (1.2.10) also yields J.' $ cJ.fN. This gives a sequence of 
upper bounds for J.', but they converge to J.' very slowly. A better bound is 

(
CN) 1/(N-1) 

J.' ~ Ct , N ~ 2. (1.2.11) 

References for this and other improvements are given in the Notes. 
Another sequence of upper bounds for J.' can be obtained by considering 

walks which are self-avoiding only over a finite time scale or memory r. We 
define CN,T to be the number of N-step walks w beginning at the origin, for 
which w(i) ::/: w(j) whenever 0 < li- jl ~ r. Self-intersections occurring 
after an interval of more than r steps are permitted. For example, CN,2 = 
2d(2d- l)N- 1 for N ~ 1, since memory r = 2 simply rules out immediate 
reversals. For r ~ N, CN,T = CN. Memory r = 0 corresponds to the simple 
random walk. 

The sequence {logcN,T }~= 1 is subadditive for every r (for the same 
reason that {log eN }~=l is), and hence by Lemma 1.2.2 there is a J.'T such 
that 

l . 1/N • f 1/N 
J.'T= 1m cNT = m cNT· 

N-+oo ' N~l • 
(1.2.12) 

Since CN,T ~eN, J.'T provides an upper bound for 1-'· The next lemma shows 
that this sequence of upper bounds converges monotonically to J.'· 

Lemma 1.2.3 J.'T '\. J.' as r - oo. 

( ) 1/N Proof. For u ~ r, CN,a ~ CN,T and hence J.'a ~ J.'T· By 1.2.12 , J.'T $ cN,T 
for all N, r. Taking N = r gives 

(1.2.13) 
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Taking the limit r-oo and using (1.2.1) gives the desired result. D 

The connective constant for the walk with memory r = 4 was shown 
in Fisher and Sykes (1959) to be given by the largest root of the cubic 
equation 

(]3- 2(d- 1)02 - 2(d- 1)0- 1 = 0. (1.2.14) 

For d = 2 this gives Jl4(2) = 2.8312, where we have made the dimension 
dependence explicit by writing Jlr( d). 

A number of investigations into the self-avoiding walk have approached 
the problem via the limit of finite memory walks as the memory goes to 
infinity. This approach was used in particular by Brydges and Spencer 
(1985) in applying their lace expansion to study weakly self-avoiding walk 
for d > 4, and will be adopted in Section 6.8 to obtain an upper bound 
in high dimensions on CN(O, x), the number of N-step self-avoiding walks 
which begin at the origin and end at x. 

A lower bound on Jl can be obtained in terms of bridges. 

Definition 1.2.4 An N -step bridge is defined to be an N -step self-avoiding 
walk w whose first components satisfy the inequality 

Wt{O) < Wt{i) $ Wt{N) 

for 1 $ i $ N. The number of N -step bridges starting at the origin is 
denoted bN. By convention, bo = 1. 

The concatenation of two bridges will always yield another bridge, so 

bMbN $ bM+N· 

Hence {-log bn} is subadditive and so by Lemma 1.2.2 the limit 

J.lBridge =: lim b~ln = sup b~ln 
n-oo n~l 

exists. Clearly bn $ Cn. Therefore J.lBridge $ Jl, and so by (1.2.16) 

bl/N 
N :S JlBridge $ J.l· 

(1.2.15) 

(1.2.16) 

{1.2.17) 

In Section 3.1 it will be shown that in fact JlBridge = Jl. Although the 
lower bound (1.2.17) is very slowly convergent, a more sophisticated use of 
bridges leads to better lower bounds. References can be found in the Notes 
at the end of this chapter. 

We conclude this section with a table showing the current best rigorous 
upper and lower bounds on J.l, together with estimates of the precise value, 
for the hypercubic lattice in dimensions d = 2, 3, 4, 5, 6. 
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d lower bound estimate upper bound 

2 2.61987° 2.6381585 ± 0.0000010d 2.695766 

3 4.43733c 4.6839066 ± 0.00021! 4.7566 

4 6.71800C 6. 7720 ± 0.0005/ 6.8326 

5 8.82128C 8.838619 8.881 b 

6 10.871199c 10.878799 10.903b 

Table 1.1: Current best rigorous upper and lower bounds on the hypercubic 
lattice connective constant J.l, together with estimates of actual values. 
a) Conway and Guttmann (to be published), b) Aim (1992), c) Hara 
and Slade (1992b), d) Guttmann and Enting (1988), e) Guttmann (1987), 
f) Guttmann (1978), g) Guttmann (1981). 

1.3 Generating functions 

A common tool for understanding the behaviour of a sequence is its gen­
erating function. The generating function of the sequence { CN} is defined 
by 

00 

x(z) = L CNZN = l:zlwl. (1.3.1) 
N:O w 

The sum over w is the sum over all self-avoiding walks, of arbitrary length 
lwl, which begin at the origin. The parameter z is known as the activ­
ity. Physically the activity occurs in the study of a canonical ensemble 
of polymers of variable length, and in this context is nonnegative. From a 
mathematical point of view, however, it will sometimes be useful to consider 
x to be an analytic function of complex z. 

Given two sites x and y, let cN(x, y) be the number of N-step self­
avoiding walks w with w(O) = x and w(N) = y. The two-point function is 
the generating function for the sequence CN(x, y), i.e., 

00 

Gz(x, y) = L CN(x, y)zN = L zlwl. (1.3.2) 
N:O w:r-+y 

On the right side, the sum over w is the sum over all self-avoiding walks, of 
arbitrary length, which begin at x and end at y. This is clearly translation 
invariant, so Gz(x, y) = Gz_(O, y- x). The two-point function is the self­
avoiding walk analogue of the simple random walk Green function with 
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killing rate 1 - 2dz: 

00 

Cz(x, y) = E PN(x, y)(2dz)N, (1.3.3) 
N:O 

where PN(x, y) is the probability that an N-step simple random walk be­
ginning at x ends at y. 

The generating function for CN can be written in terms of the two-point 
function as 

x(z) = E Gz(O, x). (1.3.4) 

In analogy with spin systems (see Section 2.3) we will refer to the gen­
erating function x(z) as the susceptibility. The power series defining the 
susceptibility has radius of convergence 

[ . 1/N] -l 1 
Zc = hm eN = -, 

N-oo f-t 
(1.3.5) 

and hence defines an analytic function in the complex parameter z if lzl < 
zc. Since cN(O, x) $ CN, the two-point function has radius of convergence at 
least zc. It will be shown in Section 3.2 that in fact the radius of convergence 
is equal to Zc, for all x ::/= 0. We will refer to Zc as the critical point, since it 
plays a role analogous to the critical point in statistical mechanical systems 
such as the Ising model or percolation. 

It follows from (1.2.10) that 

{1.3.6) 

and hence x is "continuous" at the critical point, in the sense that x(z)­
oo as z / Zc. The manner of divergence of x(z) at the critical point is 
related to the behaviour of the coefficients CN for large N. To see this, we 
proceed as follows. 

First we introduce the notation 

f(x) '::! g(x) as x- xo (1.3.7) 

to mean that there are positive constants C1 and C2 such that 

(1.3.8) 

uniformly for x near its limiting value. Assuming that there is a r such 
that 

CN '::! JlN N"~- 1 as N - oo, (1.3.9) 
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it can be concluded that 

(1.3.10) 

as follows. We write z = p.- 1e-t, so that t ~ Zc- z. By the definition of 
x(z), 

x(z) ~ t N"t-le-tN ~ roo x"f-le-t:cdx 

N=l }1 

= t-"1 100 y"t-le-~dy ~ t-"1. 

In the above the sum can be replaced by the integral using Riemann sum 
approximations. The second integral converges as t "-., 0, since by (1.2.10) 
1 ;::: 1. Thus it is conjectured that 

(1.3.11) 

with i' =I· 
As for the converse, it does not follow directly from (1.3.10) that (1.3.9) 

holds, without further assumptions. In general, the problem of extracting 
the Iarge-n asymptotics of a sequence from the manner of divergence of 
its generating function is a Tauberian problem. An example of a Taube­
rian theorem providing a converse to the above argument will be given in 
Lemma 6.3.4. 

Power law behaviour such as (1.3.10) is also observed for spin systems 
and percolation, and is characteristic of critical phenomena. It follows from 
(1.3.6) that t ;::: 1, assuming that t exists. In four dimensions, where it 
is believed that CN ""' Ap.N (log N) 114, we expect similarly that x(z) ""' 
A'(zc- z)- 1 jlog(zc- z)P/4• 

The analogue xo(z) of x(z) for simple random walk can be calculated 
explicitly: 

00 1 
xo(z) = L (2dz)N = 1 _ 2d . 

N=O Z 

Thus the mean-field value oft is 1, which not surprisingly is equal to the 
mean-field value for I· The inequality t ;::: 1 is an example of a mean­
field bound. There is a sufficient condition for the opposite bound i' ~ 1 
known as the bubble condition, which is known to hold for d ;::: 5 (and is 
believed not to hold for d ~ 4), and which will be discussed in detail in 
Section 1.5. There are many examples in critical phenomena of rigorous 
mean-field bounds, but, as mentioned in Section 1.1, no general proof is 
known of the mean-field bound v;::: 1/2. 
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We now turn our attention to the long distance behaviour of the two­
point function. Below the critical point the two-point function decays ex­
ponentially. To see this, we note that CN(O, z) = 0 for N < llzlloo, and 
hence 

00 00 

G.,(O, x) = :L: CN(O, z)zN S :L: CNZN (1.3.12) 
N:ll31lloo N:ll31lloo 

Since c}.IN-+ I' by (1.2.1), for any£> 0 there is a positive Kc such that 

CN S Kc(l' + t:)N {1.3.13) 

for all N ~ 1. Given a positive z < Ze = 1-'- 1, we choose e(z) > 0 such that 
Oz = (1-' + e(z))z < 1. Then substitution of (1.3.13) into (1.3.12) gives 

Gz(O,z) $ C.,exp[-llogOzlllxlloo], (1.3.14) 

with C., = J(f(z)(l - 0., )- 1 . This shows the desired exponential decay of 
the subcritical two-point function. 

We define the mass m(z) to be the rate of exponential decay of the 
two-point function along a coordinate axis: 

( ) I. . f -logGz(O, {n, 0, ... , 0)) 
m z = 1mm . 

n-oo n 
(1.3.15) 

In Theorem 4.1.3 it will be shown that in fact the lim inf in the definition 
of m can be replaced by the limit. The correlation length e(z), defined by 
e( z) = m( z )- 1 ' provides a characteristic length scale for the model. 

The mass m(z) is clearly not infinite for 0 < z < zc: considering only 
the shortest self-avoiding walk from 0 to (n, 0, ... , 0) gives 

Gz(O, (n, 0, ... , 0)) ~ zn, (1.3.16) 

and hence m(z) S-log z. By {1.3.14), m(z) > 0 for z E (0, zc)· By defini­
tion the mass is a nonincreasing function of positive z, and in Section 4.1 
it will be shown that m(z) "-. 0 as z / Zc. Given that the radius of conver­
gence of Gz(O, x) is Zc for all x 'f. 0, it follows that m(z) = -oo for z > Zc· 
It has been proven that m(zc) = 0 ford~ 5; see Corollary 6.1.7. Although 
this is believed to be true in all dimensions, a negative mass at the critical 
point has not yet been ruled out rigorously in dimensions 2, 3 or 4. 

Since the mass m(z) approaches zero as z / Zc, it follows that the 
correlation length e(z) = m(z)-1 diverges as Z / Zc. It is believed that the 
manner of divergence of e(z) is via a power law of the form 

{(z) ""const.(zc- z)-P as z / Zc. (1.3.17) 
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Formal scaling theory predicts that ii = v; this will be discussed in Sec­
tion 2.1. The equality of these two critical exponents is part of a general 
belief that all length scales for the self-avoiding walk should be governed 
by the same critical exponent. The same belief generally applies to other 
statistical mechanical models as well. 

Another correlation length, ep, known as the correlation length of order 
p, is defined for each p > 0 by 

(1.3.18) 

By Holder's inequality eP is increasing in p. A formal argument similar to 
that showing ii = 11 gives 

with lip = 11 for all p. 
For p = 2 there is no need to appeal to scaling theory to argue that 

112 = 11. Instead we can argue as we did for the equality of 'Y and ;y, in 
the following way. We will assume that there exist exponents 'Y and 11 such 
that CN ~ Jl.N N'Y- 1 and (lwl2} ~ N 211 , and show that this implies that 
6(z) ~ (zc- z)- 11 . Given the assumptions, we have 

E lxi2Gz(O, z) = E zN E lw(N)I2 (1.3.19) 
11: N w:lwi=N 

~ E ZN N211 CN ~ E ZN N211+-r-1 JJN. 

N N 

Again writing z = Jl.-te-1, we obtain 

E1zi2Gz(O,z) ~ EN2v+-r-le-IN 
Ill N 

~ 100 x2v+-r-te-1111 dx ~ t- 211 --r. (1.3.20) 

This implies that 
r211--r 

c (z)2 ,..., __ ,..., t-2v--r+'Y 
.. 2 - x(z) - . (1.3.21) 

Using r = 'Y it follows that 6(z) ~ (zc- z)- 11 ' so 112 =II. 
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1.4 Critical exponents 

So far we have introduced the five critical exponents r, r, v, ii, Vp. It was 
shown in Section 1.3 that if r exists then r = r. Heuristic arguments that 
v = ii = Vp (for 0 < p < oo) will be given in the Section 2.1. The exponents 
were defined as follows: 

CN "" AJJN N'Y-l (1.4.1) 

x(z) "" A'(zc- z)-'? (1.4.2) 

(lw(N)I2) "" DN2v (1.4.3) 

e(z) "" B(zc- z)- 17 (1.4.4) 

ep(z) "" Bp(Zc- z)-v,. (1.4.5) 

We have written the above relations as if the various quantities involved 
are asymptotically given by power laws. This is consistent with the existing 
rigorous results, but some authors prefer a more conservative definition of 
the exponents. For example, one could require only that CN :::= JJN N'Y-l [see 
(1.3.7)], with corresponding statements for the other exponents. A weaker 
definition, appearing sometimes in the literature, is to define the exponents 
by equations such as 

r =- lim lo!x(z)), (1.4.6) 
:e/:ec log Zc - Z 

but we will not need this definition. We shall take the optimistic view that 
the power law behaviour is asymptotic, although none of (1.4.1)-(1.4.5) 
has been proven in dimensions 2, 3, or 4 for any of these definitions of the 
exponents. 

We will use the notation 

f(x) ~ g(x) (1.4.7) 

in informal (nonrigorous) discussions to mean that f(x) and g(:r) appear 
to have the same asymptotic behaviour in some sense which we will not 
attempt to specify. 

In this section three additional critical exponents 7], O:aing, and ~4 will 
be introduced. All these critical exponents are believed to be universal in 
the sense that they depend only on the dimension d of the lattice. In par­
ticular, the exponents are believed to be the same for the nearest-neighbour 
self-avoiding walk on zd as for a self-avoiding walk on zd in which steps 
can be within a fixed finite set 0 C zd which is symmetric with respect 
to the symmetries of the lattice. Moreover the exponents ought even to be 
the same for a self-avoiding walk which can take unboundedly long steps, 
provided the weight of a step decays rapidly enough with its length (e.g., 
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exponentially). This independence of the step set 0 is partially borne out 
in the rigorous results in high dimensions in Chapter 6. 

We begin with the exponent TJ, which describes the conjectured long­
distance behaviour of the two-point function at the critical point. Given 
that m(z) - 0 as z / Zc, and given the belief that m(zc) = 0 in all 
dimensions, it might be expected that the two-point function decays via 
a power law at the critical point. For simple random walk (with d > 2) 
the mass is certainly zero at the critical point, as it is well-known that 
the critical simple random walk two-point function C1/2d(O, x) decays like 
lxl2-d at large distances [see for example Lawler (1991)). The conjectured 
large distance behaviour of the critical self-avoiding walk two-point function 
IS 

(1.4.8) 

where C is a constant. This is believed to hold in all dimensions d ~ 2, 
including d = 2. Comparison with the simple random walk decay yields 
the mean field value 0 for TJ· Unfortunately it has not yet been proved 
rigorously that Gzc(O, x) is even finite for d = 2, 3 or 4, for any value of 
x '# 0. Ford~ 5 somewhat weaker decay than (1.4.8) has been proved; see 
Theorem 6.1.6. 

Assuming that (1.4.8) does provide the correct behaviour, it follows 
from the fact that the susceptibility is infinite at the critical point that 
TJ 5 2. The value of TJ is believed to be determined from the values of 1 and 
v according to Fisher's scaling relation 

I = (2- TJ)II. (1.4.9) 

The hypotheses leading to (1.4.9) will be discussed in Section 2.1. Inserting 
the conjectured values for 1 and v given in (1.1.11) and (1.1.12) into (1.4.9) 
gives the values for TJ appearing in Table 1.2. In contrast to 1 and v, 
the renormalization group predicts no logarithmic corrections to TJ in four 
dimensions. Logarithmic corrections are however expected in higher order 
terms in the asymptotic expansion of the critical two-point function in four 
dimensions. 

One way to gain insight into the long distance behaviour of the critical 
two-point function is to examine the behaviour of its Fourier transform near 
the origin. In general, given a function f(x) on the lattice whose absolute 
value is summable, we define its Fourier transform by 

f(k) = L f(x)eik·I:, k E [-11', 1r]d. (1.4.10) 
1:EZd 



1.4. CRITICAL EXPONENTS 19 

d 2 3 ~4 

r 4.3 1.162 ... 1 32 

v 3 0.59 ... ! 4 

'7 5 0.03 ... 0 24. 

Table 1.2: Conjectured values of -y, v, YJ. 

It is generally expected in critical phenomena that (1.4.8) is associated with 
behaviour of the form 

A C' 
Gz.(k)"' k2_ 11 ask- 0 (1.4.11) 

for some constant C'. [However (1.4.8) and (1.4.11) are not mathematically 
equivalent - an example of a function satisfying (1.4.11) but not (1.4.8) 
is given in the Notes at the end of the chapter.] Equation (1.4.11) has 
been established for d ~ 5 with '7 = 0 (see Theorem 6.1.6), but not yet for 
d = 2, 3 or 4. The conjectured values of 71 are all nonnegative. It is thus 
suggestive to conjecture the infrared bound 

(1.4.12) 

with C independent of k E [-11", 1r]d and z ~ Zc. For the nearest-neighbour 
Ising model and other reflection-positive spin systems the infrared bound is 
known rigorpusly to hold and was of considerable importance in the proof 
of mean-field behaviour of such models above four dimensions. For the 
self-avoiding walk it is still an open problem to prove the infrared bound 
in dimensions 2, 3 or 4, but in higher dimensions it has been proved (see 
Theorem 6.1.6). It is worth noting that the infrared bound is believed by 
some to be false for percolation and lattice animals below dimensions six 
and eight respectively (see Section 5.5 for more details about these models). 

The exponent Osing describes the behaviour of the number CN(O,x) 
of N-step self-avoiding walks which begin at the origin and end at x, as 
N --+ oo with x fixed. For x equal to a nearest-neighbour e of the origin, 
CN(O, e) is closely related to the number of self-avoiding polygons. Self­
avoiding polygons will be studied in detail in Section 3.2. It will be shown 
in Corollary 3.2.6 that the leading asymptotic behaviour of CN(O, x) as 
N --+ oo is Jl.N. As is the case for CN, this leading behaviour is believed to 
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have a power law correction of the form 

CN(O, x) f'oJ BJ.t.N Na,;,.g- 2. (1.4.13) 

Here x is fixed and nonzero, and N --+ oo through a sequence of values with 
the same parity as llxllt· It is believed that asing is independent of x, and 
we formalize this conjecture for future reference as follows. 

Conjecture 1.4.1 For every pair of nonzero points x and y in zd, there 
exist positive constants At and A2 and an integer No (all depending on x 
and y) such that 

AtcN(O, y) :$ cN(O, x) :$ A2cN(O, y) 

if llx- Ylh is even, and 

A1cN+1(0,y) :$ CN(O,x) :$ A2cN+1(0,y) 

if llx- Ylh is odd. 

for all N ~No 

for all N ~No 

A special case of this conjecture is proven in Proposition 7.4.4. The value 
of B is also believed to be independent of x (as it is for simple random 
walk). For simple random walk the local central limit theorem states that 
the probability PN(O, x) that a simple random walk starting at 0 ends after 
N steps at x is given asymptotically by const.N-d/ 2 exp[-dlxl 2 /2N] ""' 
const.N-d/2 , as N --+ oo. Hence the mean-field value of a sing- 2 is -d/2. 
The value of a sing is believed to be determined from the value of v and the 
dimension d via the hyperscaling relation 

CXsing - 2 = -dv. (1.4.14) 

This hyperscaling relation will be discussed in Section 2.1. If (1.4.14) and 
the values given for v in Table 1.2 are true, then it would follow that 
a 6 ;ng - 2 < -1 in all dimensions and hence that the critical two-point 
function Gzc(O, x) = LN CN(O, x)J.t.-N is finite in all dimensions, including 
d = 2. This is in contrast to the situation for simple random walk, where 
in two dimensions the Green function is infinite at the critical point. 

The strongest bounds on CN(O, x) are for high dimensions. It is proved 
in Theorem 6.1.3 that ford sufficiently large, orford> 4 for a walk allowed 
to take long enough steps, that 

(1.4.15) 

for some constant B. Although this bound has not yet been extended to 
all d ~ 5 for the nearest-neighbour model, the weaker result that for all 
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a< -1 + d/2 
00 

sup E N°cN(O, z)J.t-N < oo (1.4.16) 
:c N:O 

has been proved for all d ~ 5; see Theorem 6.1.4. Either of (1.4.15) or 
(1.4.16) could be summarized by the inequality o,ing - 2 ::; -d/2. For 
dimensions 2, 3 and 4, the best results are for x a nearest neighbour of the 
origin. These results are described in Section 8.1 and can be summarized 
by the inequalities 

::; 5 (d= 2) (1.4.17) Ctaing 2 
Ctaing ::; 2 (d= 3) (1.4.18) 

Ctaing < 2 (d ~ 4). (1.4.19) 

Finally, we introduce the critical exponent A4. Let CN1 ,N2 (z) denote the 
number of pairs of self-avoiding walks of lengths N1 and N2 and respective 
starting points 0 and z which intersect each other, and let 

{1.4.20) 

This quantity occurs in the study of interacting polymer chains. The 
asymptotic behaviour of CN1 ,N, is believed to be given by 

cN~,N2 ,...,_ const.J.tN1+N, N{t..•+-r- 2 f(Ntf N2) as Nt, N2 __. oo {1.4.21) 

for some critical exponent d 4 and universal scaling function f. The quan­
tity 

00 

L CNt,N,zNt+N, {1.4.22) 
Nt,N,:O 

represents a kind of average intersection probability. In quantum field the­
ory, an analogue of g(z) is referred to as the renormalized coupling constant. 
An informal calculation in which (1.4.21) is substituted into {1.4.22) leads 
to 

g(z) ,...,_ const.(zc- z)dv- 2t.•+"Y as z / Zc. (1.4.23) 

For simple random walk it is known that the analogue of g(z) satis­
fies (1.4.23), with d/2 - 2d4 + 1 = 0 for d = 2, 3, 4 (with a logarithmic 
correction in four dimensions), and d 4 = 3/2 for d ~ 5; see Section 10.3. 
Similar behaviour is believed to hold for the self-avoiding walk. In partic­
ular, for the self-avoiding walk it is believed that in dimensions 2, 3 and 4 
the hyperscaling relation 

dv- 2d4 +r = 0 (1.4.24) 
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is satisfied. Heuristic arguments in support of this hyperscaling relation 
will be given in Section 2.1. It has been proved that ~4 = 3/2 for the 
self-avoiding walk in dimensions d ~ 6 (see Theorem 1.5.5 and the Remark 
following its statement); it is believed that ~4 = 3/2 for all d > 4. 

Elementary bounds on A 4 can be obtained as follows. Consider all pairs 
of N -step self-avoiding walks w<1) and w<2) which intersect somewhere, with 
w(1) beginning at the origin and w<2> beginning anywhere. There are CN N 

such pairs. Since there are N + 1 possible sites on each of w(1) and wl2> 
where an intersection can occur, CN,N ~ (N + 1)2ck. On the other hand if 
we count only those pairs for which w(2)(0) = w(1)(j) for some j = 0, ... , n, 
we obtain CN,N ~ (N + l)ck. Together these bounds give 

This can be rewritten as 

'Y+l<~ <')'+2. 
2 - 4 - 2 

(1.4.25) 

(1.4.26) 

The upper bound implies that the hyperscaling relation (1.4.24) fails if 
dv > 2. Since it is known that v = 1/2 for d ~ 5 (see Section 6.1), this 
implies failure of hyperscaling for d > 4. 

1.5 The bubble condition 
The lower bound on the susceptibility (1.3.6) can be rewritten in terms of 
Zc = f.l-l as 

x(z)~ ~ 
Zc- Z 

{1.5.1) 

for 0 :5 z < Zc. The bubble condition is a sufficient condition for the 
complementary bound 

c 
x(z) :5--

Zc- Z 
{1.5.2) 

for some constant C and for 0 :5 z < Zc. Thus the bubble condition implies 
that r = 1 in the sense that 

(1.5.3) 

The bubble condition was proven to hold in five or more dimensions in Hara 
and Slade (1992b) (see Section 6.1), and is believed not to hold ford :54. 

To state the bubble condition we first introduce the bubble diagram 

B(z) = L Gz(O, z)2• (1.5.4) 
3:EZ4 
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The name "bubble diagram" comes from a Feynman diagram notation in 
which the two-point function or propagator evaluated at sites :c and y is 
denoted by a line terminating at :c and y. In this notation 

B(z) = ~ 0 0 x = 0 
where in the diagram on the right it is implicit that one vertex is fixed at the 
origin and the other is summed over the lattice. The bubble diagram can 
be rewritten in terms of the Fourier transform of the two-point function, 
using (1.5.4) and the Parseval relation, as 

2 • 2 1 . 2 ddk 
B(z) = IIGz(O, ·)112 = IIGzll2 = G:(k) (2 )d' 

[-ll',ll')d 1r 
(1.5.5) 

Definition 1.5.1 The bubble condition states that the bubble diagram is 
finite at the critical point, i.e. 

B(zc) < 00. 

In view of the definition ofT] in (1.4.8) or (1.4.11), it follows from (1.5.5) 
that the bubble condition is satisfied provided TJ > (4- d)/2. Hence the 
bubble condition for d > 4 is implied by the infrared bound TJ ~ 0. If the 
values for T] given in Table 1.2 are correct, then the bubble condition will 
not hold in dimensions 2, 3 or 4, with the divergence of the bubble diagram 
being only logarithmic in four dimensions. 

The next lemma provides the principal step in proving that the bubble 
condition implies (1.5.2) and hence implies (1.5.3). 

Lemma 1.5.2 For any z E [0, zc), the derivative of the susceptibility sat-
isfies 

~((;; - x(z) ~ zx'(z) ~ x(z)2 - x(z). (1.5.6) 

Proof. Below the critical point the derivative of x can be obtained by 
term by term differentiation: 

zx'(z) = 2: lwlztwt = :L<Iwl + l)ztwt- x(z), (1.5.7) 
w w 

where the sums are over self-avoiding walks of arbitrary length which begin 
at the origin. The summation on the right side can be written 

L L L I[w(j) = :c for some j]zlwl 
y w:o-y :c 
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= 2: 2: zlw(l)l+lw(2)1 J[w(l) n w(2) = {X}] 
x,y w< 1) : 0 ...... x 

w< 2): x ...... y 

- Q(z), (1.5.8) 

where I denotes the indicator function and the last summation is over self­
avoiding walks w<1) and w<2) of arbitrary length and having the prescribed 
endpoints. Then 

zx'(z) = Q(z)- x(z). (1.5.9) 

The upper bound in (1.5.6) then follows since the indicator function in the 
middle member of (1.5.8) is bounded above by one. 

The first step toward obtaining the lower bound is to use the inclusion­
exclusion relation in the form 

/[w< 1) nw< 2) = {x}] = 1- I[w< 1) nw<2) =/: {x}]. 

This gives 

Q(z) = x<z) 2 - :L 
x ,y w< 1) : 0 ...... r 

w< 2 ) : r ...... y 

In the last term on the right side of (1.5.10), let w = w<2)(1) be the site of 
the last intersection of w<2) with w(l), where time is measured along w<2 ) 

beginning at its starting point x. Then the portion of w< 2) corresponding 
to times greater than l must avoid all of w(l). Relaxing the restrictions that 
this portion of w< 2) avoid both the remainder of w< 2) and the part of w< 1) 

linking w to x gives the upper bound 

x ,y w< 1) : 0 ...... r 
w< 2 ) : x ...... y 

(1.5.11) 
Here the factor B(z)- 1 arises from the two paths joining w and x. The 
upper bound involves B(z) - 1 rather than B(z) since there will be no 
contribution here from the x = 0 term in (1.5.4). This type of distinction 
will be crucial in similar bounds on the lace expansion used in Chapter 6. 

Combining ( 1.5.10) and ( 1.5.11) gives 

Q(z) 2: x(z)2 - Q(z)[B(z)- 1]. 

This inequality is illustrated in Figure 1.2. Solving for Q(z) gives 

x(z)2 

Q(z) 2:: B(z) · 

(1.5.12) 
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D D B E 

< = = Q(z) S 

A A C F 

[AD] [AD, AB, CD, BD] [EF] 

Figure 1.2: A diagrammatic representation of the inequality x(z)2 -

Q(z)(B(z)- 1] S Q(z) S x(z)2 occurring in the proof of Lemma 1.5.2. 
The list of pairs of lines indicates interactions between the propagators, in 

the sense that the corresponding walks must avoid each other. 

Combining this inequality with (1.5.9) completes the proof of the lemma. 
0 

The quantity x(z)- 2Q(z) can be interpreted as the probability that two 

self-avoiding walks of arbitrary length, which start a.t the origin, do not 

intersect. Lemma 1.5.2 can be restated as saying that this probability lies 

in the interval (B(z)- 1, 1], and hence remains strictly positive a.t the critical 

point if the bubble condition is satisfied. 
In the next theorem it is shown that the lower bound of Lemma. 1.5.2 

implies that if the bubble condition is satisfied, then (1.5.3) holds. 

Theorem 1.5.3 If the bubble condition i.~ satisfied, and hence in particular 

if the infrared bound holds and d > 4, then there is a positive function t(z) 

with limz/zc t:(z) = 0 such that for z less than but near Zc 

Zcz~z Sx(z)S Zc[B~cc~~t:(z)J. 

Hence if in fact there is a constant A such that x(z) "'Azc(zc- z)- 1 , then 

1 SA S B(zc). 

Proof. The lower bound in the statement of the theorem is just (1.5.1). 

For the upper bound, let z1 E (0, zc)· It follows from the lower bound in 

(1.5.6) that for z E [z1, Zc) 

1 1 
~ B(z)- x(z) 

1 1 
> B(zc) - x(z1). 

(1.5.13) 
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We bound the factor of z on the left side by Zc and then integrate from z1 
to Zc. Using the fact that x(zc)- 1 = 0 by (1.5.1), this gives 

(1.5.14) 

Rewriting gives 

( ) < B(zc) Zc 

X Zt - 1- B(zc)x(zt)-1 Zc- Zt · 
(1.5.15) 

This gives the desired upper bound on the susceptibility, since by (1.5.1) 
the inverse susceptibility on the right side can be made arbitrarily small by 
taking z1 sufficiently close to Zc. 0 

Although the bubble condition is expected not to hold in four dimen­
sions, it is nevertheless possible to draw some conclusions from the lower 
bound of Lemma 1.5.2 if we assume the infrared bound (1.4.12). While not 
sharp compared to the expected behaviour 

A 
x(z)- --llog(zc- z)pl4 , 

Zc- Z 

the upper bound that we obtain on x shows that the deviation from mean­
field behaviour is at worst logarithmic in four dimensions, if the infrared 
bound is satisfied. 

Theorem 1.5.4 Let d = 4. If the infrared bound (1.4.12) is satisfied then 
for z less than but near Zc, 

~ $ x(z) $ cllog(zc- z)l 
Zc- Z Zc- Z 

for some constant C which does not depend on z. 

Proof. The lower bound in the statement of the theorem is just (1.5.1), 
which holds in all dimensions. It remains to prove the upper bound. In 
the following, C represents a constant whose value may change from one 
occurrence to another. 

Let 0 < z < Zc· Since 

for all k, it follows from the infrared bound that 

IG (k)l < 2 < 2C 
' - IG,(k)j-1 + x(z)-1 - k2 + Cx(z)-1. 

(1.5.16) 
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Using the fact that 

1 . 2 d4k 
B(z) = Gz(k) (2 )4 , 

[- ....... ]• 1f' 

a routine calculation using (1.5.16) gives the bound 

B(z) $ C[1 + logx(z)]. (1.5.17) 

By (1.5.6), (1.5.1) and (1.5.17), for z sufficiently close to Zc we have 

and therefore 

dx- 1 1 1 
-zdZ > B(z) - x(z) 

1 
~ 2B(z) 

c 
> 

1 + logx(z) 

d -1 

-[1+logx(z)] ~z ~C. (1.5.18) 

The left side of (1.5.18) is the derivative of -x(z)- 1[2 + Jogx(z)]. Hence 
for z close to Zc integration of (1.5.18) over the interval (z, zc) gives 

x(z)- 1(2 + Iogx(z)] ~ C(zc- z), 

where we used (1.5.1) to see that the contribution from the upper limit of 
integration on the left side is zero. Decreasing C slightly we obtain 

C( 1 ) ~ x(z)[Iogx(z)t 1. 
Zc- Z 

Taking logarithms, and taking z sufficiently close to Zc, gives 

1 
Cllog(zc- z)l ~ logx(z) -Joglogx(z) ~ 2 Iogx(z). 

(1.5.19) 

(1.5.20) 

Inserting the lower bound for (Iogx(z)]- 1 given by (1.5.20) into (1.5.19) 
gives 

C(zc- z)- 1 ~ x(z)IJog(zc- z)l- 1 . 

This gives the upper bound on x in the statement of the theorem. 0 

Finally we turn to a connection between the bubble diagram and the 
critical exponent .6.4 for the renormalized coupling constant g(z), which 
was defined in (1.4.22) by 

00 

g(z) = e(z)-dx(z)-2 2: CN1 ,N2 ZN,+N2 • ( 1.5.21) 
N 1 ,N,:O 
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Here cN,,N~ is the sum over sites x of the number of intersecting pairs of 
self-avoiding walks of length Nt and N2 starting at 0 and x respectively. 
The critical behaviour of g(z) is believed to be of the form (zc-z)dv- 2~•+"Y. 

The next theorem gives sufficient conditions for A4 to take its mean­
field value 3/2. The theorem is most efficiently stated in. terms of the 
repulsive bubble diagram R(z) < B(z), which is defined by taking only 
those contributions to the bubble from pairs of walks which are mutually 
avoiding apart from their common endpoints: 

R(z) = L 
:~:eZd w<t) : 0- :~: 

w< 2): 0- :~: 

Theorem 1.5.5 If B(zc) < oo and in addition R(zc) - 1 < 1/4, then 
g(z) ~ e(z)-d(zc- z)-2 • If also e(z) ~ (zc- z)-v, then A4 = 3/2 in the 
sense that 

g(z) ~ (zc - z)dv-3+'Y = (zc - z)dv-2 

(assuming that the exponent r for en is equal to the exponent for the sus­
ceptibility). 

Remark. The best current bound on R(ze) - 1 in five dimensions is 
0.434636 > 0.25 (Hara and Slade (1991b)]. Ford= 6 the same reference 
reports B(zc)-1 ~ 0.25974. However the repulsive bubble in six dimensions 
satisfies R(zc) - 1 ~ 0.2343 < 0.25, and is smaller still in more than six 
dimensions (Hara and Slade (unpublished)]. Together with Theorem 1.5.5 
and the result of Hara and Slade (1991a) that for d ~ 5 the correlation 
length exhibits the mean-field behaviour e(z) IV const.(zc - z)-112 (and 
that the exponent for Cn is"(= 1), this implies that 

g(z) ~ (zc- z)(d-4)/2 (1.5.23) 

ford~ 6. Although the same conclusion cannot yet be made ford= 5, it 
will be shown in Chapter 6 (see Theorem 6.2.5 and the remark preceding it, 
and Theorem 6.1.5) that for a sufficiently spread-out self-avoiding walk in 
more than four dimensions, B(ze) -1 < 1/4 and e(z) IV const.(ze- z)-112, 
and hence g(z) ~ (zc- z)(d-4)/2. 

Proof of Theorem 1.5.5. By Theorem 1.5.3, the bubble condition implies 
that x(z) ~ (ze- z)- 1• Hence to prove the theorem it suffices to show that 

00 

L ·cN,,N2ZN,+N2 ~ (zc- z)-4. (1.5.24) 
N,,N2=0 
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The left side is equal to 

z,y,v w : 0- tJ 

p:z-y 

29 

( 1.5.25) 

In a nonzero contribution to this sum, let u be the first site along w where 
w and p intersect. Then the portion of w before u avoids p as well as the 
latter part of w, while the latter part of w avoids only the former part of w 
and may intersect p. This gives the following diagrammatic interpretation 
of the left side of (1.5.24) (in which the list of pairs indicates mutually 
avoiding walks): 

u,z:,y,v 

·v· 
~ 

0 y 

[AB,CD,AC,AD] (1.5.26) 

Neglecting all mutual avoidance between the four lines of the diagram gives 
the upper bound x4 ~ const.(zc- z)-4 for the left side of (1.5.24). 

For a lower bound on (1.5.26) we apply inclusion-exclusion, as follows. 
The indicator function for the event that the various mutual avoidances 
shown in (1.5.26) occur can be written as one minus the event that at least 
one of the required mutual avoidances is violated. This leads to the lower 
bound 

u,v,z,y w<t): 0 _ u p(t) : z _ u 

w<2> : u - v p(2) : u - y 

x { 1 - I[w(l) nw(2) 'I= { u}]- J[w(1) n p(1) 'I= { u }] 

-I[w(l> n p(2) #; { u}]- /(p(l) n p{2> #; { u})}. (1.5.27) 

This bound is equal to 

u,z 'Y(l) : 0 .... u 
'Y(2) : u- :1: 

(1.5.28) 
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We now argue as in ( 1.5.11 ), but this time we let w be the site of the first 
intersection (measured along 1(2)) of 1(2) with l(l). This gives the lower 
bound 

x4 - 4x4[R(z)- 1] ~ const.x4 

for (1.5.26), assuming that R(zc)- 1 < 1/4. 

1.6 Notes 

(1.5.29) 

0 

Section 1.1. Existence of the connective constant Jl = limN-oo cJ.fN was 
first proven in Hammersley and Morton ( 1954); this paper essentially marks 
the beginning of rigorous results for the self-avoiding walk. The (nonrigor-

ous) derivation of Jl = V2 + ../2 for the honeycomb lattice is due to Nien­
huis (1982); see also Nienhuis (1984) and Nienhuis (1987). For high dimen­
sions, it was shown in Kesten (1964) that Jl = 2d -1- (2d)- 1 + O(d- 2), and 
this has recently been improved to Jl = 2d- 1- (2d)- 1 - 3(2d)- 2 + 0( d-3 ) 

using the lace expansion [Hara and Slade (unpublished)]. 
The conjectured values for 1 and v in two dimensions arise from an 

exact solution which is described in the articles by Nienhuis cited above. 
An alternate approach, based on conformal invariance, is discussed in Du­

plantier (1989), Duplantier (1990), and references therein. A rigorous argu­
ment leading to these two-dimensional critical exponents remains an open 
problem of major importance, and a solution would likely have far-reaching 
implications. For d = 3, field theoretic computations of the critical expo­
nents are given in Le Guillou and Zinn-Justin (1989). Monte Carlo compu­
tations of the exponents are given for example in Madras and Sakal (1988), 
and numerical computations using extrapolation of exact enumerations are 
given in Guttmann and Wang (1991). The logarithmic corrections in four 
dimensions are obtained in Larkin and Khmel'Nitskii (1969), Wegner and 
Riedel (1973) and Drezin, Le Guillou and Zion-Justin (1973). For recent 
progress on rigorous results in four dimensions, see Brydges, Evans and 
Imbrie (1992) and Arnaudon, Iagolnitzer and Magnen (1991). Existence of 
critical exponents for d ~ 5 is proven in Hara and Slade (1992a,1992b ). 

A necessary and sufficient condition for a bound of the form CN ~ 

const.pN N H for some finite If, i.e. for the finiteness of the critical exponent 
/, is given in Hammersley (1991, 1992). We note the presence of a minor 
error in Hammersley (1991): the right side of (30) does not follow from 
the inequality that precedes it. This is easy to fix, however, as follows. In 
Hammersley's notation, the bound f(m) ~ GmH Jlm implies that f(m, r) :S: 
2:: ern{! n!f · · · n[! p.m, where the sum is over all n1 , ... , nr ~ 1 that sum to 
m. By the arithmetic-geometric inequality we have n1n2 · · · »r :S: (m/rY, 
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which implies f(m,r) =:; (':'-11)Gr(mfrtHf.lm. This gives us (30) with 
HulogH replaced by -Hulogu, and Hammersley's Equation (3) follows. 

A rigorous understanding of the self-avoidi-ng walk on finitely ramified 
fractals has recently emerged; see Hattori (1992) for a review. 

For the Ising model (and also for tp4 field theory), the following refer­
ences prove results concerning mean-field behaviour above four dimensions: 
Sokal (1979), Aizenman (1982), Frohlich (1982), Aizenman and Fernandez 
(1986), Fernandez, Frohlich and Sokal (1992). 

Section 1.2. The bound (cN/c1)1/(N- 1) (for all N ~ 2) is attributed 
to Aim in Ahlberg and Janson {1980). The latter reference obtains an 
improvement when CN/CN-1 > Ct- 2: they show that f.l is bounded above 
by the unique positive root of the polynomial 

(for all N ~ 3). Currently the best upper bounds available are due to Alm 
(1992). 

A method for obtaining lower bounds on p. using bridges was given in 
Guttmann {1983). The current best lower bound in two dimensions, due to 
Conway and Guttmann (to be published), also uses bridges. Ford~ 3, the 
best lower bounds are due to Hara and Slade {1992b), who use a different 
approach involving loop erasure. 

The numerical estimates for f.l cited in Table 1.1 are from exact enumer­
ation data. 

Section 1.3. Exponential decay of the subcritical two-point function was 
proven in Fisher (1966), as part of a study of the form of the distribution 
of CN(O, x). 

Section 1.4. We make no attempt here to refer to the original literature on 
critical exponents; the ideas in this section are part of the standard physics 
picture of critical phenomena. 

The infrared bound was proven for reflection-positive spin systems in all 
dimensions in Frohlich, Simon and Spencer {1976). For branched polymers 
and for percolation, there are arguments that the infrared bound does not 
hold below eight and six dimensions respectively; see Bovier, Frohlich and 
Glaus (1986) and Adler {1984) respectively. 

For d ~ 5 it has been proven that Gz.(k) "" const.k- 2 as k - 0, but 
although it is believed that Gz.(x) is asymptotic to a multiple of lxl2-d, 

this has not yet been proven (see Theorem 6.1.6 for a weaker result). It 
is thus of interest to know under what conditions behaviour of the form 
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k- 2+'1 for a Fourier transform g(k) implies behaviour of the form lxl2-d-11 

for g(x). For the case 7'1 = 0, the following sufficient condition was pointed 
out to us by S. Kotani (private communication); we omit the proof. 

Theorem 1.6.1 Let d ~ 3, and let Td :: (R/211'Z)d. Let g be a func­
tion in Cd-2(Td\{O}), let h(k) = k2g(k), and for X E zd let g(x) = 
(211')-d fr., g(k)e-ik·zddk . Suppose that there is a neighourhood U C Td of 
0 such that 

Then as lxl - oo, 

( ) h·(o) r(d/2) 1 1-(d-2) 
g X - 2( d - 2)11'd/2 :1: • 

The following shows that in general the hypothesis of existence of d- 2 
derivatives for h cannot be relaxed: we give an example2 of a function g 
on Td, for d > 3, which is asymptotic to a multiple of k- 2 as k - 0, with 
h(k) = k2g(k) having d- 3 but not d- 2 derivatives in a neighbourhood of 
k = 0, but for which g(z) is not bounded above by a multiple of lzl2-d for 
large x. 

Example 1.6.2 Let d ~ 3, and let C(z) be the critical simple random 
walk two-point function (or in other words the Green function) studied in 
Appendix A. Then C(z) is asymptotic to a multiple of lxl2-d for large x 
[see, e.g., Lawler (1991)]. Also, C(k)-1 = 1-d-1 L:~= 1 cos k,. is asymptotic 
to (2d)-1k2 ask- 0. Fix q such that d-3 < q < d-2, and for -11':::; t:::; 1r 

define 
00 

j(t) = L 2-qlml exp[it(sgnm)21ml], (1.6.2) 
m=-oo 

where sgn m = +1 ifm > 0; = 0 ifm = 0; = -1 ifm < 0. Fork E [-11', 1r]d, 
let 

d 

F(k) =£II j(k,.) (1.6.3) 
1'=1 

where £ is chosen small enough that 1 + C(k)- 1 F(k) is strictly positive 
uniformly in all k E [-11', 1r]d. (This is possible since C(k)- 1 and the product 
in (1.6.3) are both bounded uniformly ink.) Observe that FE c•(Td) for 
s < q, but that for s > q, a;i'(O) does not exist. Now let 

9(k) = C(k)+ F(k) = C(k)[1 + C(k)-1 F(k)J (1.6.4) 

2 The example was arrived at in conversation with T. Hara. 
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and 
(1.6.5) 

Then g(k) is asymptotic to {2d)k-2 as k - 0, and h(k) E Cd-3(Td). 
However g(:t) is not bounded above by a multiple of 1:~:1 2 -d for large :t, 

because F(:t) = cl:cl-q for :t having one component of the form ±21ml (for 
any integer m) and all other components zero. 

See Appendix A of Sokal (1982) for a discussion of some related issues. 

Section 1.5. For reflection positive spin systems the infrared bound was 
proven in Frohlich, Simon and Spencer (1976). As a consequence the bub­
ble diagram for such systems is finite at the critical point above four di­
mensions, and diverges logarithmically in four dimensions. This was used 
to prove mean-field behaviour for spin systems for dimensions greater than 
four in Aizenman (1982) and Frohlich (1982). In Bovier, Felder and Frohlich 
(1984) Theorem 1.5.3 was proved, although at that time for the self-avoiding 
walk neither the infrared bound nor the bubble condition were known to 
hold in any dimension. In the same paper it was observed that if the in­
frared bound holds in four dimensions then the deviation from mean-field 
behaviour for the susceptibility is at most logarithmic. Our proof of The­
orem 1.5.4 yields this conclusion in a slightly stronger form, following the 
methods used for spin systems in Aizenman and Graham (1983). Results 
analogous to Theorem 1.5.5 were obtained for spin systems in Aizenman 
(1982) and Frohlich (1982). The proof that ~4 = 3/2 ford~ 6 is new, and 
is due to Hara and Slade (unpublished). 

For percolation and branched polymers (lattice trees and lattice ani­
mals) the role of the bubble diagram is played by the triangle and the 
square diagram respectively; see Section 5.5. For percolation see Aizenman 
and Newman (1984), Nguyen (1987), Barsky and Aizenman {1991), Hara 
and Slade (1990a) and Nguyen and Yang (1991). For lattice trees and lat­
tice animals see Bovier, Frohlich and Glaus (1986), Tasaki and Hara (1987) 
and Hara and Slade (1990b). 
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Chapter 2 

Scaling, polymers and 
• spins 

2.1 Scaling theory 

This chapter is concerned with some of the nonrigorous work on the self­
avoiding walk: the scaling theory which leads to the scaling relations stated 
in Section 1.4, the connection with polymers and the derivation of the Flory 
values for the critical exponent v, and finally, the interpretation of the self­
avoiding walk as a "zero-component'' ferromagnet. 

We begin in this section with a discussion of scaling theory, giving 
heuristic derivations of Fisher's scaling relation {1.4.9) and of the hyper­
scaling relations (1.4.14) and {1.4.24). There are a variety of approaches 
which can be used to derive these relations, and here we content ourselves 
with giving a representative sample of the types of arguments which are 
frequently used. Although the sort of arguments we will describe are part 
of the standard lore of theoretical physics (applicable to a wide variety of 
models), from a mathematical point of view they may appear to be on 
rather shaky ground. There will be no rigorous results in this section, and 
we will make frequent use of the symbol ~. which implies a leap of faith. 

Our starting point will be an assumption about the behaviour of the 
two-point function in the limit as both z / Zc and z - oo. The correlation 
length e(z) is to be interpreted as the important length scale of the system. 
For z - oo at fixed z < Zc, the two-point function is believed to obey the 
Ornstein-Zernike decay 

(2.1.1) 

35 
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where Cz depends only on z, and strictly speaking the norm on the right side 
is equivalent to but not equal to the Euclidean norm. A proof of (2.1.1) 
for x on a coordinate axis will be given in Theorem 4.4.7. However the 
Ornstein-Zernike decay describes the behaviour of the two-point function 
on a. length scale lxl > e(z), and is not believed to be accurate on the 
important length scale where X is of the order of e(z). Instead, the decay 
of the critical two-point function is considered to be fundamental on the 
scale of the correlation length, and we define a. function h(z; x) by 

1 
Gz(O, x) = lxld-2+'1 h(z; x). (2.1.2) 

The assumption now is that the important contribution to h(z; x) will come 
from x of the order of the correlation length {(z), and that we can write 

(2.1.3) 

for some universal function g of a single variable. The function g will be 
assumed to decay at infinity sufficiently rapidly that its product with any 
power of x is integrable, for example an exponential function. 

Given (2.1.3), the following argument can be put forth in support of 
Fisher's relation r = (2- q)v. We assume that the main contribution to 
the susceptibility 

x(z) = ~Gz(O,x) 

is due to x of the order of the correlation length, and that we may therefore 
substitute {2.1.3) into the sum over x. By definition of r we then have 

= const.e->~ ...... const.(ze- z)-<2->~)li. (2.1.4) 

This gives 
r = {2- 7J)v. (2.1.5) 

It has already been argued in Section 1.3 that r = r, and we will shortly 
argue that j) = v, which then gives r = (2- q)v. 

The following is an alternate derivation of Fisher's relation which does 
not rely on (2.1.3). In the sum 

00 

Gzc(O, x) = 2:: CN(O, x)ll-N (2.1.6) 
N:O 
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we assume that CN(O, .r) is significant only when l.rl is of the order of N". 
There are about Nd" such sites .r, and we assume that an N -step self­
avoiding walk is equally likely to end at any one of them, or in other words, 

(2.1.7) 

Restricting the sum in (2.1.6) toN between cdxPI" and c2lxPI", for some 
positive constants c1 and c2, and then using (2.1.7), gives 

c~l:rll/v 

G (0 ) "' N'l'-1-dv,.. lxl('l'-dv)fv. z. , X ~ L..J ~ (2.1.8) 

This implies -(d- 2 + 77) = ('Y- dv)Jv, which can be rewritten as 'Y = 
(2- 7J)V. 

Continuing in the spirit of the calculation leading to (2.1.5), we now 
argue that ii = Vp = v. For any p E (O,oo), 

"' 
= const.e+2-'1 ""' const.(zc- z)-(P+2-'7)ii. (2.1.9) 

Using the definition of eP and (2.1.5), this gives 

(2.1.10) 

and hence ii = Vp. To show that ii = v, we first observe that by (1.3.20), 

I: l.ri 2G.:(O, x) ~ (zc- zt<2"+'l'), 

"' 
Comparing with (2.1.9), with p = 2, gives 

(4- 7J)ii = 2v + 'Y· 

(2.1.11) 

(2.1.12) 

Now by (2.1.5) and the equality of r and 'Y we conclude that ii = v. 
We now turn to the hyperscaling relations (1.4.14) and (1.4.24). These 

cannot be derived from the scaling hypothesis (2.1.3) and require additional 
assumptions. Less numerical testing has been done of the hyperscaling 
relations than on the calculation of 'Y and v, but both the Monte Carlo 
and series extrapolation computations which have been done are consistent 
with them. 

The hyperscaling relation involving a 8 ;ng may at first glance seem some­
what surprising. It would perhaps seem natural to assume that the proba­
bility that an N-step self-avoiding walk ends at x would be proportional to 
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the characteristic volume N-dll in the limit as N - oo, as is the case for 
simple random walk. However this leads to the conclusion CX 8 ing- 1- 1 = 
-dv rather than to the hyperscaling relation cx,;ng - 2 = -dv. This in­
correct argument fails to take into account the fact that for fixed :r: it is 
difficult for a long self-avoiding walk to return near to its starting point at 
the origin, and as the length of the walk goes to infinity :r: must be regarded 
as being close to the origin. The argument should be reasonable for x of the 
order of the typical length scale N", and indeed this is what we assumed 
in the second derivation of Fisher's relation given above. 

To obtain the hyperscaling relation cx,;ng - 2 = -dv, we proceed as 
follows. First we assume that cN(O, x) will have the same scaling behaviour 
for any fixed x as N --> oo, and consider the case x = e, with e a nearest 
neighbour of the origin. This assumption is mild in comparison with the 
assumptions we will make next. By adding an extra step to a walk ending 
at e we obtain a closed self-avoiding loop. Let n = (N + 1)/2. Then by 
summing over the position of the walk after n steps, and using symmetry, 
we have 

cN(O, e)= (2d)-1 E 
:r: 

E 
w< 1> :w< 1>(n) = :r: 
w<2>: w< 2l(n) = :r: 

I[w(l> n w<2> = {0, x }]. (2.1.13) 

Here both of the self-avoiding walks w(i) begin at the origin and consist 
of n steps. We now make three assumptions. First, we assume that the 
main contribution to the above sum will be from x of the order of n". Thus 
there are of the order of n"d relevant terms in the sum. Second, we assum~ 
that the effect of the avoidance constraint between w<1> and w(2) can be 
incorporated by replacing the quantity being summed over x by cN(O, x )2 

multiplied by the square of the probability that two n-step self-avoiding 
walks beginning at the same point avoid each other; this probability is 
c2nfc~ "' 2"Y-1A-1n1-'Y. Here we use the square of this probability to 
account for the avoidance both near 0 and near x. Third, we assume that 
for x of the order of n11 the probability that an n-step walk ends at x is of 
the order of the inverse of the characteristic volume n11d, so that Cn (0, x) is 
of the order of J.tnn-r- 1n-"d. With these three assumptions we have from 
(2.1.13) that 

(2.1.14) 

Comparison with the definition of cx8 ;ng gives cx,;ng- 2 = -dv. 
We next turn to the hyperscaling relation (1.4.24) for 6.4 , which is 

believed to hold only ford::; 4. For simplicity, we take Nt = N2 = n in the 
definition (1.4.21) of 6.4 • To begin, we assume that since a self-avoiding 
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walk of length n goes a distance of about n" in each direction, such a 
self-avoiding walk will primarily lie in a hypercube of side n" and volume 
n"d. 

Given 0 $ D $ d, consider a subset of the hypercubic lattice such that 
the cube of side R contains of the order of R0 points as R - oo. Such 
a. subset can in some sense be thought of as being D-dimensional. From 
this point of view a. long self-avoiding walk, which consists of n points in 
volume approximately equal to n"d, is a 1/v-dimensional set. Typically 
two D-dimensiona.l subsets will intersect in d dimensions if 2D ;::: d, but 
otherwise will not. This suggests that two n-step self-avoiding walks with 
a common point will typically have additional intersections if dv ~ 2, and 
typically will not if dv > 2. 

Consider first the case of dv > 2, for which we have already seen in 
(1.4.26) that the hyperscaling relation fails. According to the values of 
v given in Table 1.2, this inequality says d > 4. Two n-step self-avoiding 
walks lying in the cube of volume n"d will typically not intersect each other, 
and so there should be no overcounting in writing 

(2.1.15) 

Here the factor n2 comes from choosing a point on each walk at which the 
two walks can be joined. By definition of A4, this gives 2A4 + -y- 2 = 2-y, 
or A4 = 1 + -y /2. Using the mean-field value -y = 1 known to be correct for 
d;::: 5, we obtain A4 = 3/2 (which of course is consistent with the rigorous 
result for d;::: 6 obtained in Section 1.5). 

We next consider the case dv $ 2, which corresponds to d $ 4. Here the 
factor of n2 in (2.1.15) would overcount. Given one n-step walk, which will 
lie roughly within a. cube of volume n"4 , a. second n-step walk will typically 
intersect the first if it is started at any one of the n"d points in the cube. 
This leads to 

(2.1.16) 

By definition of A4 , this gives 2A4 + -y- 2 = 2"Y- 2 + vd, which simplifies 
to the hypersca.ling relation dv- 2A4 + "Y = 0. 

2.2 Polymers 
One of the most important applications of the self-avoiding walk is as a 
model for linear polymer molecules in chemical physics. In this section 
we shall briefly describe some aspects of this role, including a. nonrigorous 
derivation of the "Flory values" for the critical exponent 11. 

A polymer is a molecule that consists of many "monomers" (groups of 
atoms) joined together by chemical bonds. The functionality of a monomer 
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is the number of available chemical bonds that it has, i.e. the number of 
other monomers with which it must bond. If each monomer has function­
ality two, then a linear polymer is formed. If we denote a monomer by (A), 
then a linear polymer may be represented schematically as 

· · · -(A)-(A)-(A)-(A)-(A)- · · ·. 

One simple example is polyethylene, where each monomer is CH2 (one car­
bon atom and two hydrogen atoms). The pattern terminates either by 
bonding with a monomer of functionality one, such as CHa, at each end, 
or else by closing on itself to form a "ring polymer". When we speak of 
linear polymers, we shall be referring to the former. By way of contrast, if a 
polymer includes monomers of functionality three or more, then a branched 
polymer is formed; these are often modelled by lattice trees or lattice ani­
mals (see Section 5.5.1). 

The preceding paragraph deals only with the topological structure of 
a polymer. Properties of its spatial configuration are no less important. 
Polymers can be very large; some linear polymers consist of more than 105 

monomers. Thus the length scale of the entire polymer is macroscopic with 
respect to the length scale of the individual monomers. Consider a linear 
polymer consisting of N + 1 monomers, and label the monomers 0, 1, ... , N 
from one end to the other. Let x(i) E R3 denote the location of the i-th 
monomer. Then the i-th (monomer-monomer) bond may be represented 
by the line segment joining x(i- 1) to x(i). Typically, the length of each 
bond is essentially constant throughout the chain, as is the angle between 
each pair of consecutive monomer-monomer bonds. However, there is some 
rotational freedom for the i-th bond around the axis determined by the 
( i - 1 )-th bond. In some cases, a reasonably good approximation may 
be obtained by allowing the rotational angle of the i-th bond around the 
(i -1)-th bond to take on three different values, say 0° and ±120°, perhaps 
with different probabilities (an angle of 0° means that the i-th, (i- 1)­
th, and (i- 2)-th bonds all lie in one plane). These angles correspond to 
local configurations of minimal energy, and depend on the details of the 
monomers. 

We see that one possible model for the spatial configuration of a linear 
polymer is simply a random walk in R 3 , and in fact this model is known 
as the ideal polymer chain. Alternatively, one can work with a lattice ap­
proximation, say a random walk on Z3 . The model can be embellished by 
turning it into a Markov chain (or random walk with some finite memory), 
and it works reasonably well in some situations. However, there is a funda­
mental limitation of the ideal polymer chain, namely the excluded volume 
effect. 
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Two monomers cannot occupy the same position in space: the presence 
of a monomer at position x prohibits any other part of the polymer from 
getting too close to x, that is, other monomers· are excluded from a certain 
volume of space. This is the excluded volume effect. When we take this 
effect into account, it becomes apparent that a self-avoiding walk is a more 
appropriate model for a linear polymer than is a random walk. The self­
avoiding walk model is best for the case of a dilute polymer solution (where 
polymers are far apart, so that there is little interaction between distinct 
molecules) and a good solvent (which minimizes attractive forces between 
monomers). 

We remark that there are some situations in which polymers really do 
behave ideally on large length scales, even though excluded volume ef­
fects are present. One is in a dense system (or "melt") of many polymers, 
where monomers fill three-dimensional space uniformly and a given poly­
mer interacts with many other monomers besides its own. Another is at 
certain values of temperature and solvent quality where roughly speaking 
the attractive forces between monomers exactly balance the excluded vol­
ume repulsion (the "B point"). For more details, see the general polymer 
references listed in the Notes at the end of the chapter. 

For the remainder of this section, we shall only discuss linear polymers 
in dilute solutions with good solvents. These are believed to be in the 
same "universality class" as the self-avoiding walk, which means in par­
ticular that they have the same critical exponents. For example, consider 
the radius of gyration of a polymer, which is the average distance of the 
monomers from the centre of mass of the polymer. The radius of gyration 
of polymers can be determined experimentally, for example from light scat­
tering properties. For a polymer consisting of N monomers, the radius of 
gyration is expected to be asymptotic to DN" as N - oo, where D and 
v are constants. The exponent v is believed to be universal: it should be 
the same for all linear polymers (in dilute solution with good solvents), and 
for the self-avoiding walk as well. Moreover the exponent v for the radius 
of gyration is believed to be the same as the critical exponent v defined in 
(1.1.5) for the mean-square displacement, since polymers are expected to 
have only one macroscopic length scale. In contrast, the amplitude D is 
non-universal: it depends on microscopic details of the monomers and the 
solvent molecules. 

The chemist Paul J. Flory developed an effective (but non rigorous) 
method for computing the exponent v [Flory (1949)]. We give a brief de­
scription of this method in general dimension d; for simplicity, we ignore all 
multiplicative constants. (A more probabilistic description of the method 
will be given afterward.) Fix N and consider a linear polymer with N + 1 
monomers, represented by anN-step walk w = (w(O), ... ,w(N)) in zd (not 
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necessarily self-avoiding). Let L be the radius of gyration of w, or any 
other "effective radius" of the walk. Then w consists of N + 1 monomers 
(sites) spread through a box of volume Ld. Assuming uniformity, this gives 
a density of 

N 
p= Ld (2.2.1) 

monomers per unit volume. The repulsive energy per unit volume depends 
on the number of pairs of monomers per unit volume, which we approximate 
by p2 • This is a "mean-field" approximation: it uses the assumption of 
uniformity very heavily, ignoring the strong correlations in the locations of 
consecutive monomers along the polymer. If we accept this approximation, 
then the total repulsive energy of the polymer is given by 

N2 
E _ Ldp2 _ 

rep- - [;f' (2.2.2) 

Naturally the repulsive energy is lower for highly extended chains, i.e. large 
values of L. 

Now consider the free energy F of the polymer of radius L, in the 
absence of the repulsion. This is given (up to constants) by ( -1) times the 
entropy1, and the entropy in turn is just the logarithm of the number of 
walks of radius L. Without repulsions, this can be found from the Gaussian 
behaviour of the ideal chain, as follows. Taking L now to denote the end­
to-end distance and fixing w(O) = 0, we have 

(2.2.3) 

for every X E zd' and hence 

Ld-t 
Pr{lw(N)I = L} ~ Nd/ 2 exp(-L2/N). (2.2.4) 

The total number of N-step walks is (2d)N in the nearest-neighbour case, 
so the free energy is 

F = -log({2d)N Pr{lw(N)I = L}] 
£2 

= -(d- 1) log L + N +terms independent of L. (2.2.5) 

The term F may also be viewed as an "elastic energy" term, which prevents 
L from getting too large. The total energy of the polymer is now given by 

1 In thennodynamics we hav~ F = U- TS, where U is internal energy, Tis temper­
ature, and S is entropy. Here U depends on the number of monomers but not on L, so 
for our purposes it is constant and hence we ignore it. 
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the sum of the two energy terms (2.2.2) and (2.2.5): 

N2 £2 . 
Erep + F = Ld + N - ( d - 1) log L + K, (2.2.6) 

where K is independent of L. Now put L = Nv. Then the total energy 
(2.2.6) becomes 

Erep + F = N 2-dv + N2v- 1 -v(d-1)1ogN + K. (2.2.7) 

The value of v that minimizes the energy (2.2.7) may be found by first 
equating the first two powers of N: solving 2 - dv = 2v - 1 gives 

3 
v= d+2' {2.2.8) 

Substituting this back into (2.2.7), the first two terms become N<4-d)/(d+2), 

and these are the dominant terms if and only if d < 4. Therefore this 
argument predicts that (2.2.8) gives the correct value of v whenever d < 4. 
When d = 4, this argument also predicts 11 = 3/(4 + 2) = 1/2 since this 
is the only value for which the first two terms of (2.2.7) remain bounded. 
However, when d > 4, any value of v in the interval [2/d, 1/2] keeps the 
first two terms of (2.2.7) bounded. Pushing this argument further suggests 
that we should take the largest value in this interval so as to minimize 
the -v(d- 1) log N term in (2.2.7), obtaining v = 1/2 for d > 4. This 
answer makes sense: since v equals 1/2 in the ideal case, the addition of a 
repulsive energy term should not decrease 11 below 1/2, and so we conclude 
that v = 1/2 whenever d > 4. 

v: 
To summarize, the above argument makes the following predictions for 

{ 
1 if d = 1 
3/4 if d = 2 

liFlory = 3/5 if d = 3 
1/2 if d ~ 4. 

(2.2.9) 

These predictions are known as the Flory values for v. As described in 
Section 1.1, they are known to be correct for d = 1 and d ~ 5, and they 
are believed to be correct for d = 2 and d = 4 as well. The Flory value 
for d = 3 is generally believed to be slightly too large: numerical and 
field theory calculations indicate that the actual value is probably close to 
0.59 (some references are given in the Notes for Section 1.1). The success 
of Flory's argument is all the more remarkable when one realizes that it 
benefits greatly from the cancellation of two errors: both Erep and F are 
greatly overestimated (seep. 46 of de Gennes (1979) for a brief discussion). 
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To conclude this section, we shall recast the Flory argument in a more 
probabilistic language. In (2.2.4) we calculated the probability that an 
N-step random walk w (starting at the origin) has lw(N)I = L. Now let 
us estimate the probability that w is self-avoiding given that !w(N)I = L. 
We shall write L = N 11 and choose 11 to maximize this probability. As 
above, we assume that the N + 1 sites of w are spread uniformly through 
a box of volume La. Given that w(O), ... ,w(k -1) are all distinct, the 
probability that w(k) does not coincide with any one of the previous k 
sites is approximately 1 - kL -d (this is the "mean-field" approximation). 
Hence the probability that w is self-avoiding given that !w(N)! = L is 
approximately 

(2.2.10) 

Multiplying (2.2.10) by (2.2.4) yields 

£d-t [ £2 N2] 
Pr{w is self-avoiding and lw(N)I = L} ~ Nd/ 2 exp - N - Ld · 

(2.2.11) 
To find the most likely value of L, we maximize the above probability for 
fixed N. Since the logarithm of this probability is just the negative of the 
total energy (2.2.6), we are again led to the Flory exponents. 

2.3 The N -4 0 limit 

In this section we describe a connection, discovered by de Gennes, between 
the self-avoiding walk and the spin systems of classical statistical mechan­
ics: the self-avoiding walk can be considered to be a "zero-component" 
ferromagnet. Although this connection has not yet provided methods for 
obtaining rigorous results for the self-avoiding walk, it has been an impor­
tant tool for physicists and has been used for example to compute the values 
for the critical exponents 'Y and 11 for d = 2, 3, 4 given in (1.1.11) - (1.1.14). 
To make the discussion more self-contained, we first describe very briefly 
the basic set-up of spin models. The prototype of these models is the Ising 
model, and we begin with this fundamental model of ferromagnetism. 

For simplicity we restrict attention to the hypercubic lattice za, al­
though this is not essential. Let A denote the sites in za which are in the 
cube [-L, L]d, for L 2 1. Eventually we will want to take the limit as 
L --> oo. In the Ising model, a spin variable S(x) taking the value plus one 
or minus one is associated to each site x E A. These spin variables interact 
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via a Hamiltonian 
1i =- L s(x)S(Y), (2.3.1) 

(x,y) 

where the sum represents the sum over all nearest-neighbour pairs of sites in 
A. The Hamiltonian represents the energy of a spin configuration (choice 
of ±1 for each spin), and is lowest when neighbouring spins agree. The 
expected value of any function F of the spins in A is then given by 

(2.3.2) 

where the expectation Eon the right side is with respect to the product of 
the Bernoulli measures assigning probability one-half to each of the possible 
values ±1 for the spin variables, and the partition function 

(2.3.3) 

is a normalization factor. The nonnegative parameter {3 corresponds to 
inverse temperature. The partition function and expectations depend on 
the volume A, but to simplify the notation no subscripts A will be used to 
keep track of this. 

An important example is F = S(0)S(x), the product of the values of the 
spins at the origin and at x. For any finite volume A it follows from the 
symmetry of the Hamiltonian under the global spin flip, in which each spin 
is multiplied by minus one, that (S(Y)) = 0 for any site y E A. Hence the 
two-point function (S(0) S(z)) represents the correlation between the spins 
at the origin and at x. It follows from the fact that the two-point function 
lies in the compact interval [0, 1] that there is a subsequence of volumes 
tending to infinity such that the limit of the two-point function exists along 
the subsequence. (The same subsequence can be used for all x by a diagonal 
argument.) In fact it can be shown using correlation inequalities that the 
infinite volume limit of the two-point function exists, without recourse to 
subsequences. The infinite volume limit is often referred to .as the thermo­
dynamic limit. Here we are using free boundary conditions, in which spins 
on the inside boundary of A interact only with their nearest neighbours in­
side A. It is known that in the thermodynamic limit, for high temperatures 
(or in other words for low {3) the two-point function decays exponentially 
as jxj-+ oo. The inverse of the decay rate defines a correlation length e(/3). 
For dimensions d ~ 2 there is a critical value f3c (corresponding to the Curie 
point) such that the correlation length diverges to infinity as f3 / f3c· This 
corresponds to the onset of long range order. 

Associated with the critical point f3c, a number of critical exponents 
can be defined which are analogous to the exponents defined for the self­
avoiding walk. For example a critical exponent, known as v as for the 
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self-avoiding walk, defines the power law according to which the correlation 
length diverges: 

e(!J) "" const.(!Jc - {J)- 11 as {J /' f3c· (2.3.4) 

The susceptibility is defined by 

(2.3.5) 

for the infinite volume theory with {J < f3c· The susceptibility diverges as 
{J /' !Jc and the power law at which the divergence takes place defines a 
critical exponent r: 

x(!J) ""const.(!Jc- {3)-'Y as {J /' f3c· (2.3.6) 

These qualitative analogies between the critical behaviours of spin sys­
tems and the self-avoiding walk can be made more quantitative. For this 
we need to introduce a generalization of the Ising model, known as the N­
vector or O(N) model. In this generalization the Ising spins are replaced 
by spins taking values in theN-dimensional sphere of radius -/N, for some 
positive integer N, and the Hamiltonian becomes 

1{. =- 2: S(lll). S(Y), (2.3.7) 
(~~:,y) 

where the dot product is the usual Euclidean one. The two-point function 
for the N -vector model is then defined in finite volume as for the Ising 
model, with the change that now the single spin distribution is the uniform 
measure on S(N, -/N), where 

(2.3.8) 

is the sphere of radius r in Rn. For N = 1 this is just the Ising model. 
For N ;;:: 2 the N -vector model also has a critical point, and shares many 
common features with the Ising model (although the change from discrete 
to continuous symmetry group introduces new elements). Critical expo­
nents can be defined, which will in general depend on N as well as on the 
dimension d. In a manner to be described in more detail below, the N­
vector model can be defined in the limit as N -+ 0, and this limit gives 
the self-avoiding walk. TheN-vector model can be analyzed, at least non­
rigorously, using renormalization methods, and this analysis yields values 
for the critical exponents in which N appears as a parameter which may 
be assigned values other than positive integers. Taking N = 0 in the ex­
pression for the critical exponents then gives values which are believed to 
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correspond to the self-avoiding walk exponents, and indeed the values given 
for two dimensions in (1.1.11) and (1.1.12) were obtained by Nienhuis in 
this way. The self-avoiding walk exponents for three dimensions and the 
logarithmic corrections for d = 4 can be arrived at similarly. 

To take the N - 0 limit, consider a fixed finite volume A with free 
boundary conditions (i.e. we consider only sites in A in the sum defining 
the Hamiltonian, and do not take the infinite volume limit). Our aim is to 
show that the two-point function for the N-vector model converges to that 
of the self-avoiding walk, i.e. for any f3 ~ 0 and for any fixed i, j and sites 
x,y, 

lim (sfz) s1Y)} = 6· · "" f31wl = 6· ·G,.(x y) 
N-o I 1 a,J L.J I,J ,., ' ' {2.3.9) 

w:z-y 

where the subscript i denotes the i-th spin component and the sum is over 
all self-avoiding walks (in A) of any length, from x to y. In the process, it 
will be necessary to define what is meant by the limit on the left side of 
(2.3.9), since the N-vector model two-point function has only been defined 
when N is a positive integer. To begin with some notation, for a function 
F of the spins in A and for N a positive integer, we write 

(2.3.10) 

where dflN denotes the product over the spins of uniform measures on 
S(N, ,fN), and the partition function Z is the normalization 

Z = E(e-P'H) = j e-P'HdflN· 

To obtain (2.3.9) it will be argued that 

lim Z = lim E(e-P'H) = 1 
N .... o N-o 

and 

(2.3.11) 

(2.3.12) 

(2.3.13) 

The analysis will not proceed by extending the definitions of the expecta­
tions whose limits are being taken in the above two equations to positive 
real values of N, and then taking the limit in the strict mathematical sense. 
Rather, we will show that a certain plausible interpretation of the limit leads 
to (2.3.12) and (2.3.13); thus our arguments do not lead to these equations 
as rigorous mathematical statements. 
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Both (2.3.12) and (2.3.13) will be obtained in the same way. The first 
step is to expand the exponential in a power series: 

Then we label the nearest-neighbour (undirected) bonds of A by b1, .. . bB, 
and for each bond b01 label one of its endpoints b;; and the other b!. In 
this notation (2.3.14) can be written 

(2.3.15) 

Hence Z or the two-point function be computed in terms of expectations of 
products of powers of spin components. Such expectations can be evaluated 
using the following lemma. 

Lemma 2.3.1 Fix an integer N 2: 1. LetS= (St, ... , SN) denote a vector 
which is uniformly distributed on S(N, VN). Given nonnegative integers 
kt. ... 1 kN, 

all k, even 

otherwise, 

where r denotes the Gamma function. 

Proof. The lemma is clearly true for N = 1, so we fix N 2: 2. Suppose 
U = (U1 1 ••• 1 UN) is uniformly distributed on the sphere S( N 1 1 ). Using 
the fact that r(Ni2) = !fr(!f)1 it suffices to show for all k = 11 ... 1 N 
that if the integers m, are all even then 

(2.3.16) 

and that this expectation is equal to 0 if any m; is an odd integer. The 
latter follows by symmetry. We will prove the former by induction on k. 

For k = 11 we use the fact [proved in Watson (1983) 1 p.44) that the 
marginal density of U; is 

r(!f) (1 -a2)(N-3)/2 
11'1/2f(N;l) 1 

-1~a~l. (2.3.17) 



2.3. THE N -+ 0 LIMIT 

It then follows from the identity 

{ 1 tc(l- t)ddt = r(c+ l)f(d+ 1) 
lo f(c+d+2) 

(for c, d > -1) that 

E(Ur) = o 

E(Ur) 
= r(~)r(mp) 

11'1/2f(Ntm) 

which gives (2.3.16) for k = 1. 

if m is odd, and 

if m is even 
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(2.3.18) 

(2.3.19) 

(2.3.20) 

Suppose now that k > 1 and assume that (2.3.16) is true for k - 1. 
Conditioned on U1 =a, the distribution of (U2, ... , UN) is uniform on the 
setS( N -1, (1-a2 ) 112). The inductive hypothesis then gives the conditional 
expectation 

E(Uf' 2 ... U;'k IU1 =a) (2.3.21) 

r(N-1)Ilk r(m1+1) - (1- a2)(m,+ .. ·+mk)/2 -2- 1=2 -2-
- 11'(k-1)/2f (m2+"+~dN-1)' 

Inserting this into 

E(ur~ur2 .. ·Ur'k) 

1+1 r (N) 
= ami E(Um2 ... umk IU =a) 2 (1- a2)(N-3)/2 da 

_1 2 k 1 11'1/2f ( N 21) 

then gives the desired result (2.3.16). 0 

We now use Lemma 2.3.1 to define what we mean by the limit as N -+ 0 
of expectations like those in the statement of the lemma. It follows from 
the lemma that for any positive integer N and any index i, 

E(Sr) = 1; 

in fact this can be seen more easily by symmetry and the fact that E(S[ + 
···+Sf,;)= N. We will therefore assert, by way of definition, that 

lim E(S?) = 1. (2.3.22) 
N-o 

Also, we will define the limit as N -+ 0 of any expectation as in the state­
ment of the lemma to be zero if k1 + ... + kN > 2. This is consistent with 
the result of the lemma; e.g. if two k,'s equal 2 and the others are 0, then 

E(S2S~) = 2f(f4:1) (~)2 N 
I J f(Nt4) ' 

(2.3.23) 
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which converges to zero as N--+ 0. According to this definition, 

lim E(Sfl:• ... s~:~'~) = { 1 all k, ~ 0, or one k1 = 2 and ki = 0, j :f: 1 
N-o 1 N 0 otherwise. 

(2.3.24) 
Consider now the partition function 

(2.3.25) 

Equation (2.3.24) provides a means of extending Z to N = 0, by taking 
the limit as N --+ 0 termwise in the above sum. A graphical interpretation 
of the sum in (2.3.25) can be obtained by associating to each term in the 
sum a graph whose edges are given by mi undirected edges joining the 
endpoints of the bond bi. It then follows from (2.3.24) that any term whose 
corresponding graph has a vertex from which other than two or zero edges 
emanate will approach zero in the limit as N --+ 0. This can be seen 
by considering a specific example. Consider the graph consisting of the 
four nearest-neighbour edges {z,z},{z,z},{z,y},{z,w}. The expectation 
arising from the corresponding term in (2.3.25) is 

E E ( s[Y) 8[3) sJw) sJ~> ~a:)~~) sf a:) sf~>) ' 
i,j,fl:,l 

(2.3.26) 

where the sum is over spin components. Since spins at different sites are 
independent, the expectation in the above sum factors into a product of 
four expectations. The factor corresponding to the site z is 

E (sfz) ff:z) ~z) 1,z)) 
I J /i: l I 

(2.3.27) 

which will go to zero in the limit as N --+ 0, for any choice of i, j, k, 1, by 
(2.3.24). There is further N-dependence arising from the number of terms 
in the sum over spin components i, j, k, 1, but this will be interpreted as 
only helping to drive the limit to zero. 

The relevant graphs in the limit are therefore the graphs consisting of 
a finite number (possibly zero) of nonintersecting self-avoiding polygons in 
A, where the degenerate polygons consisting of two edges linking a pair 
of nearest-neighbour sites are allowed possibilities. The graph with no 
edges corresponds to the term in the sum with all mi = 0, and contributes 
an amount 1. A two-edge polygon with nearest-neighbour vertices z, y 
contributes an amount 

(2.3.28) 
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Since an expectation involving an odd power of sfz> is zero, this is equal to 

(2.3.29) 

and hence does not contribute in the limit. 
A nondegenerate polygon, in other words a polygon consisting of at 

least four bonds, contributes an amount 

(2.3.30) 

where Yl is a neighbour of Yl+l for each I= 1, ... , r- 1, y,. is a neighbour 
of Yt, and Yt, ... , y,. are distinct. This expression is equal to 

N 

{3/c L E (<s[Y•>sfy,) ... S;(y.))2) = {3/c N, (2.3.31) 
i=l 

which also converges to 0 as N --+ 0. We are thus led to conclude that 

lim Z = 1. 
N-o 

(2.3.32) 

For the two-point function the analysis is similar. We would like to 
compute the limit as N --+ 0 of the expectation 

oo f3Il .. m.. ( ) m.,.~a=O Da- ma-! E sfz>sJY) I](S(b;;). S(bt))m.. . (2.3.33) 

For x = y the limit of the above expression is equal to 1 by an analysis 
similar to that used to analyze the partition function. Suppose now that 
x :/: y. Again there is a correspondence between the terms in the sum 
and graphs on A, but now there can be a nonzero contribution to the limit 
only from those graphs in which exactly one edge emanates from each of 
the vertices x and y, and either two or zero edges emanate from every 
other vertex. Such a graph must consist of a self-avoiding walk from x 
to y together with a finite number of (possibly degenerate) self-avoiding 
polygons. The contribution to the limit from the polygons is equal to zero 
as it is for the partition function. The contribution due to the self-avoiding 
walk with vertices (x, v1, ••• , VIe-t. y) is 
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This expression is equal to [3k 6;,i, since upon expanding the dot products 
everything has expectation 0 except (Si~) B}vt) • · • s!v~-t) SiY))2 • Since there 
is one such term for every self-avoiding walk from :z: to y, 

lim {S~~) S~Y)) = 6· · " [31wl = 6· ·Ga(x y). N-o • J •,; w a,; ,.. ' (2.3.35) 
w:~-Y 

This correspondence of two-point functions is responsible for the general 
belief that the critical exponents 'Y and 11 also correspond in the N -+ 0 
limit. 

We end this section with a nonrigorous discussion of the equality in the 
N -+ 0 limit of the self-avoiding walk critical exponent a,;ng, defined in 
{1.4.13), and the critical exponent for the singular part of the specific heat 
of the N-vector model. To distinguish between these two exponents we 
shall denote the latter by a,. 

To define the specific heat we first introduce the expected energy per 
unit volume, which is given by 

£(j3) = (~ s<o) · s<~)) = 2dN(S~0>sfe>), {2.3.36) 
(o.~) 

for any fixed i and any nearest neighbour e of the origin. The prefactor 
2dN is irrelevant as far as the behaviour of £(j3) near the critical point is 
concerned, so we introduce 

(2.3.37) 

The specific heat is defined as the rate of change of the energy with respect 
to temperature j3- 1 , i.e. 

(2.3.38) 

Typically the specific heat either diverges as {3 increases to f3c, or there is 
a nonnegative integer M such that it has M but not M + 1 derivatives at 
{3-;, with 

M (')( 
C({3) ~ L C J ./c) ({3- f3c)i + (f3c- {3)-cr• 

. 0 J. ;= 

(2.3.39) 

for some exponent -a, E (M, M + 1]. In principle both a, and M can 
depend on N. Here we are using the symbol ~ which indicates a crude cor­
respondence between the right and left sides; in particular in the correction 
term we are dropping sign and constant factors, and also possible logarith­
mic factors which can be expected to be present when -a, is an integer. 
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We also allow M = -1 in (2.3.39), with the empty sum interpreted as zero, 
to deal simultaneously with both finite and infinite C(IJc ). For M = -1, 
requiring that the energy u({J) remains bounded as {J / /Jc implies that 
-a, E ( -1, OJ. 

In view of (2.3.38}, the behaviour (2.3.39) of the specific heat suggests 
that 

M+l (i)(a ) 
u({J) ~ L u .tc (IJ- IJc)i + (IJc - {J)-a.+t. 

j=O J. 
(2.3.40) 

Assuming that the form of the above relation persists in the limit as N-+ 0, 
from {2.3.37) and {2.3.35) we obtain 

oo M+l 

Gt3(0, e)= L Cn(O, e){Jn ~ L gi({J- /Jc)i + (/Jc- /3)-a.+l, {2.3.41) 
n=l j=O 

where 

1 di I 00 
( ) . 9i=1d{3iG{J(O,e) =I:cn(O,e) ; {J~-J. 

J IJ. n=l 

(2.3.42) 

The exponent a, in (2.3.41) is interpreted as the N -+ 0 limit of an N­
dependent exponent. Our goal now is to argue that this limiting value of a, 
is equal to a,ing· We further assume that in (2.3.41) M is the largest integer 
such that 9M+1 is finite, so that 9M+2 = oo. Assuming now that cn(O, e)~ 
n°•i"R-2J.Ln = n°•i"•-2/3;n, 9i will be finite ifand only if a 8 ing -2+ j < -1. 
Thus we have -asing E (M, M + 1], which is consistent with the restriction 
-a8 E (M, M + lj in {2.3.39). 

Writing /3 = f3ce-t, so that f3c - {3 ...., f3ct, we have 

M+l oo [ M+l ( ) l G{3(0, e)- L Yi(IJ- IJc)j ~ L na.;,..-2 e-nt- ~ ; ( -t)i . 
J=O n=l J=O 

(2.3.43) 
Approximating the sum over n on the right side by an integral and then 
making the change of variables y = xt, the right side of (2.3.43) is given 
approximately by 

f ... ;.,-• [·-··- ~· ( ; ) (-t>'] dx 

= ~--.;···· r y ..... -· [·-·-~ ( r~ ) (-t)' l dy. 



54 CHAPTER 2. SCALING, POLYMERS AND SPINS 

As t --+ 0, the right side behaves like 

(2.3.44) 

In view of the fact that -o8 ;ng E (M, M + 1], the above integral is conver­
gent both for large y and for y --+ 0 (apart from a logarithmic divergence 
as y--+ 0 when -08 ing = M + 1). The integral is clearly nonzero, since the 
quantity in square brackets in the integrand is of the same sign for all pos­
itive y, by Taylor's Theorem with remainder. Hence the overall behaviour 
is t-o,;no+ 1 . Comparing now with (2.3.41), we conclude that o 8 = 0 8 ing· 

2.4 Notes 
Section 2.1. Scaling theory is discussed in many theoretical physics texts 
on critical phenomena, for example Amit (1984), and we shall make no 
attempt here to refer to the original literature. 

Section 2.2. Some general references on polymers which elaborate on the 
topics mentioned here include Flory (1971), de Gennes (1979), Doi and 
Edwards (1986), and des Cloiseaux and Jannink (1990). A readable survey 
is given in Flory's 1974 Nobel lecture [Flory (1976)]. Whittington (1982) 
discusses several additional topics in the statistical mechanics of polymers 
and self-avoiding walks. 

Flory (1949) originally discussed only the three-dimensional case of the 
argument presented in this section. The extension to other dimensions was 
first observed by Fisher (1969). There are many other arguments which 
derive the Flory exponents; for example, see Edwards (1965), Freed (1981), 
and Bouchaud and Georges (1989). 

Section 2.3. For a general introduction to rigorous results for spin sys­
tems, see for example Fernandez, Frohlich and Sokal (1992), Thompson 
(1988), Glimm and Jaffe (1987), Ellis (1985), Ruelle (1969). More physics­
oriented accounts are given in for example Itzykson and Drouffe (1989), 
Parisi (1988), Amit (1984). 

The fact that the N --+ 0 limit of the N-vector model gives the self­
avoiding walk was first observed in de Gennes (1972); see also de Gennes 
{1979). The use of Lemma 2.3.1 in deriving the N --+ 0 limit appears to 
be new. Other approaches can be found in Aragiio de Carvalho, Caracci­
olo and Frohlich (1983), Halley and Dasgupta (1983), Domb (1976), and 
Bowers and McKerrell (1973). The calculation of critical exponents for the 
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two-dimensional N-vector model, and corresponding identification of the 
exponents for N = 0, was carried out in Nienhuis (1982); see also Nienhuis 
(1984) and Nienhuis (1987). For d = 3, the N = 0 critical exponents are 
calculated in Le Guillou and Zinn-Justin (1989). Logarithmic corrections in 
four dimensions were computed in Larkin and Khmel'Nitskii (1969), Weg­
ner and Riedel (1973) and Brezin, Le Guillou and Zinn-Justin (1973). 

There is an intimate relation between spin systems and interacting ran­
dom walks of various types (going far beyond the N- 0 limit). This was 
emphasized by Symanzik (1969), and developed further in Brydges, Frohlich 
and Spencer (1982). A detailed account of the random walk representations 
of spin systems is given in Fernandez, Frohlich and Sokal (1992). 
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Chapter 3 

Some combinatorial 
bounds 

3.1 The Hammersley-Welsh method 

As was mentioned in Section 1.1, there is still no rigorous proof of the 
finiteness of the critical exponent r for the number of self-avoiding walks 
[see Equation (1.1.4)] in dimensions two, three and four. The best rigorous 
upper bounds on CN/J.lN are essentially of the form exp(O(NP)) for some 
constant 0 < p < 1. It is a major open problem to replace this bound by 
a polynomial in N. We remark that subadditivity (Section 1.2) by itself 
gives no information about such subexponential behaviour. 

Theorem 3.1.1 below, with its elegant proof, is due to Hammersley and 
Welsh (1962). Although this result (which holds for all d ~ 2) has subse­
quently been improved for d > 2, after three decades it remains the best 
rigorous upper bound on CN in two dimensions. Improved bounds for d > 2 
can be obtained, with considerably more work, using an extension of the 
Hammersley-Welsh method. These improved bounds, which are given in 
Theorem 3.3.1, remain the best available in three and four dimensions. 
In five or more dimensions, entirely different methods have been used to 
prove that CN / J.lN is asymptotically constant (and hence bounded); these 
methods will be described in Chapter 6. 

Theorem 3.1.1 Let d ~ 2. For any constant B > 7r(2/3)112, there exists 
an No( B) independent of d such that 

(3.1.1) 

57 
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The proof relies on bridges (see Definition 1.2.4), and yields as a bonus 
the fact that 1-'Bridge = p. In particular, it uses the fact that walks are 
"subadditive" [Equation (1.2.3)] while bridges are "superadditive" (Equa­
tion (1.2.15)] and plays these two off against each other. The basic idea is 
that every self-avoiding walk can be "unfolded" into a bridge, and that this 
transformation is at most exp(O(N112))-to-one. Before we give the details, 
we require a few definitions, as well as a classical theorem of number theory 
which we will quote without proof. 

Definition 3.1.2 An N -step half-space walk is an N -step self-avoiding 
walk w whose first components satisfy the inequality 

Wt(O) < Wt(i) for all i = 1, ... , N. 

The number of N -step half-space walks starting at the origin is denoted hN. 
By convention, ho = 1. 

In particular, every bridge is a half-space walk. 

Definition 3.1.3 The span of an N -step self-avoiding walk w is 

max w1(j)- min w1(j). 
O$j$N O$j$N 

The number of N -step half-space walks (respectively, bridges) starting at 
the origin and having span A is denoted hN,A (respectively, bN,A)· 

Note that hN,o is 1 if N = 0 and is 0 otherwise. 

Theorem 3.1.4 For each integer A ~ 1, let PD(A) denote the number 
of partitions of A into distinct integers (i.e. the number of ways to write 
A = At + · · · + Ak where At > ... > Ak)· Then 

(A) 1/2 
logPD(A).-...11" "3 asA-too. (3.1.2) 

This theorem is proved in Hardy and Ramanujan (1917). 
The following proposition contains the first part of the proof of Theorem 

3.1.1, in which half-space walks are "unfolded" into bridges by a sequence 
of reflections. 

Proposition 3.1.5 For every N ~ 1, 

{3.1.3) 

where PD(N) is defined in Theorem 3.1.4. 
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Proof. Let N ~ 1, and let w be an N-step half-space walk that starts at 
the origin. Let no= 0. For each j = 1, 2, ... , recursively define A;(w) and 
n;(w) so that 

and nj is the largest value of i for which this maximum is attained. The 
recursion is stopped at the smallest integer k such that nk = N; this means 
that Al:+t (w) and nk+t (w) are not defined. (See Figure 3.1.) Observe that 

w(O) 
w(nt) 

Figure 3.1: A half-space walk win H2o[4, 2, 1] and the transformed walk w' 
in H2o[6, 1). 

A1(w) is the span ofw; in general, A;H(w) is the span of the self-avoiding 
walk (w(n; ), ... ,w(N)), which is either a half-space walk or the reflection of 
one. Moreover, each of the sub walks (w( n; ), ... , w(ni+t)) is either a bridge 
or the reflection of one. Also observe that At > A2 > ... > Ak > 0. 

For every decreasing sequence of k positive integers at > a2 ... > ak > 0, 
let HN[a 11 ... ,ak] be the set of N-step half-space walks w with w(O) = 0 
and At(w) = at, .. ·,Ak(w) = ak, and nk(w) = N (and hence AHt(w) is 
not defined). Note that in particular HN[a] is the set of N-step bridges of 
span a. 

Given an N-step half-space walk w, define a new N-step walk w' as 
follows: for 0 ~ i ~ nt(w), define w'(i) = w(i); and for nt(w) < i ~ N, 
define w'(i) to be the reflection of the point w(i) in the hyperplane Xt = 
At(w). Observe that ifw is in HN[at,a2, ... ,ak], then w' is in HN[at + 
a2, aa, · · ·, ak)i moreover, this transformation is one-to-one, so 

lHN[at. a2, · · ·, ak]l ~ IHN[at + a2, aa, · .. , ak]l. 

Therefore, summing over all finite integer sequences a1 > ... > ak > 0, 

hN = ~ IHN[at, .. ·,ak]l 
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which tells us that 
N 

hN $I: Pv(A)bN,A· (3.1.4) 
A:l 

Since Pv(A) $ Pv(N) for A$ N, it follows from (3.1.4) that 

N 

hN::::; Pv(N) L bN,A = Pv(N)bN, (3.1.5) 
A=l 

which proves the proposition. 0 

We now complete the proof of the Hammersley-Welsh bound on CN. 
The idea is to split each self-avoiding walk into two half-space walks, and 
then to use Proposition 3.1.5. 

Proof of Theorem 3.1.1. Fix B > 7r(2/3)112 , and choose t: > 0 so that 
B- ( > 7r(2/3)112 • By Theorem 3.1.4, there exists a constant]( such that 

Pv(A)::::; K exp [(B- t:)(A/2) 1' 2] for all A. (3.1.6) 

Given an arbitrary n-step self-avoiding walk w, let M = min; Wt ( i) and 
let m be the largest i such that Wt (i) = M. Then (w(m), ... ,w(n)) is a 
half-space walk, as is 

(w(m)- (1, 0, 0, ... , 0), w(m),w(m- 1), ... ,w(O)). 

Using this decomposition, as well as Proposition 3.1.5, the inequality b;bj $ 
bi+i [from (1.2.15)], (3.1.6), and the inequality x1/2 + y1f2$ (2x + 2y)1/2, 

we obtain 

n 

Cn < L hn-mhm+l 
m:O 

n 

::::; I: bm+tbn-mPv(m + l)Pv(n- m) 
m:O 

n ( [ ( + 1) 1/2 ( ) 1/2]) ::::; bn+1,; K2 exp (B- t:) T + n ~ m 

(3.1. 7) 
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for all n. Therefore, there exists an No( B) (independent of d) such that 

Bn 112 
Cn $; bn+le for all n ~ No. (3.1.8) 

Since bn+l $; Jln+l [Equation (1.2.17)], Theorem 3.1.1 is now proven. 0 

Corollary 3.1.6 Let B be as in Theorem 3.1.1. Then, for all sufficiently 
large N, 

N-t -BN 112 < b < N Jl e _N_Jl. (3.1.9) 

In particular, 

(3.1.10) 

Proof. The right inequality of (3.1.9) is just (1.2.17); the left inequality 
comes from the bound Jln $; Cn (recall (1.2.10)] and from (3.1.8) (with n 
replaced by N- 1). Equation (3.1.10) is then immediate. 0 

Definition 3.1. 7 The generating function for the number of bridges is de­
noted Bz and is given by 

Equation (3.1.10) says that the radius of convergence of Bz is Zc = Jl- 1. 

The following corollary says that Bz actually diverges at z = Zc. 

Corollary 3.1.8 

that is, 

lim Bz = +oo; 
z/zc 

00 

Bze = E bNJl-N = +oo. 
N:l 

(3. J .11) 

Proof. The proof of Theorem 3.1.1 shows that every N-step half-space 
walk may be decomposed into a finite sequence of bridges {w(i)} having 
spans Ai and lengths mi, where At > A2 > ... and E mi = N; moreover, 
the sequence of bridges uniquely determines the original half-space walk. 
Therefore for N ~ 1 

(3.1.12) 
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where the sum is over all integers k ~ 1, all integers A1 > ... > Ak > 0, 
and all integers m1, ... , mk ~ 1 that sum toN. Consequently, for z > 0 

this can be seen by comparing zN terms on both sides and using (3.1.12). 
Combining this inequality with the elementary inequality 1 + x :$ ez:, we 
find t, hNZN :$ exp (~~bn,AZn) = exp(Bz- 1). 

This and the first inequality of(3.1.7) imply 

(3.1.13) 

By Equation (1.3.6), the leftmost term of (3.1.13) diverges at z = zc, hence 
so does the rightmost term. This proves the corollary. 0 

We remark that the above proof gives an explicit bound on the rate of 
divergence of Bz: indeed, combining (3.1.13) with (1.3.6) yields 

1 ZcZ 
Bz ~ 1 + -2 log -- for 0 < z < Zc. 

Zc- Z 
(3.1.14) 

3.2 Self-avoiding polygons 

Intuitively, a self-avoiding polygon may be thought of as a simple (i.e. non­
self-intersecting) closed curve embedded in the lattice, with neither starting 
point nor orientation specified. The precise definition is as follows. 

Definition 3.2.1 Let N be an integer greater than 2. An N-step self­
avoiding polygon is a set P of N nearest-neighbour bonds with the following 
property: there exists a corresponding ( N - 1 )-step self-avoiding walk w 
having lw(N- 1)- w(O)I = 1 such that P consists of precisely the bond 
joining w( N - 1) to w(O) and the N - 1 bonds joining w( i - 1) to w( i) 
(i=1, ... ,N-1). 

Observe that w is not uniquely determined by P; in fact, each N-step self­
avoiding polygon has precisely 2N corresponding self-avoiding walks (there 
are N choices of starting point and two choices of orientation). However, 
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no (N- 1)-step self-avoiding walk corresponds to more than one N-step 
polygon. 

We want to count self-avoiding polygons by ignoring translations and 
only counting different shapes; thus, in Z2 , there should be only one 4-step 
self-avoiding polygon (a unit square) and two 6-step self-avoiding polygons 
(rectangles, one being a 90° rotation of the other). This leads us to the 
following definition. 

Definition 3.2.2 Two N -step self-avoiding polygons are said to be equiv­
alent up to translation if there is a vector v in R d such that translation by 
v defines a one-to-one correspondence from the set of bonds of one polygon 
to the set of bonds of the other polygon. Also, we denote by qN the num­
ber of distinct equivalence classes up to translation of N -step self-avoiding 
polygons. 

Thus, if e is one of the 2d nearest neighbours of the origin in zd, then the 
observations following Definition 3.2.1 tell us that 

2NqN = 2dcN-t(O, e) (3.2.1) 

for every N > 2 (recall from Section 1.3 that cn(x, y) is the number of 
n-step self-avoiding walks from x toy). In particular, for d = 2, we have 
q4 = 1, ca(O, e) = 2, qs = 2, and cs(O, e) = 6. Observe that qN = 0 for 
every odd N. 

Two self-avoiding polygons can be concatenated to form a larger self­
avoiding polygon. The procedure is clear in two dimensions (see Figure 3.2): 
join a "rightmost" bond of one to a "leftmost" bond of the other. In higher 

Figure 3.2: Concatenation of a 10-step polygon and a 14-step polygon to 
produce a 24-step polygon in Z2 . The dots are the endpoints of the bonds 
that are changed during the concatenation. 

dimensions, however, the procedure is slightly more involved, because such 
a pair of edges need not be parallel. In general, the concatenation effectively 
occurs in a (d-1)-dimensional hyperplane, and so there will be an additional 
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factor of d - 1 to account for the number of possible orientations of the 
"leftmost" bond. The correct form of the subadditivity relation for polygons 
is the following. 

Theorem 3.2.3 For even integers M, N ?::: 4, 

(3.2.2) 

and 
(3.2.3) 

Proof. We prove (3.2.2) first; the proof of (3.2.3), which is similar, will 
follow. First, we define the lexicographic ordering on za, as follows. We 
say that (a1, ... ,aa)--< (b1, ... ,ba) if for some j (with 1 ::=; j::::; d) we have: 
a; = b; whenever 1 ::=; i < j, and a1 < bi. For even integers N ?::: 4, let 
Q[N] be the set of N-step self-avoiding polygons whose lexicographically 
smallest point is the origin. Then Q[N] has exactly qN members. 

For each i = 1, ... , d, Jet e(i) be the neighbour of the origin with e~i) = 1 
and e?) = 0 for j =f:. i. Fori= 2, ... , d and for even M;::: 4, let Q;[M] be the 
set of M-step self-avoiding polygons that lie in the half-space Xi ~ 0 and 
that contain the bond joining the origin to e(i). Then Q[M] is contained in 
the union of Q2[M], ... , Qa[M], and so, by symmetry, 

(3.2.4) 

Choose an arbitrary N-step polygon P in Q[N], and let p be its lex­
icographically largest point. There are two values of i (1 ~ i ~ d) such 
that P contains the bond joining p top- e(i); let I be the larger of these 
two values. (In particular, we have I ?::: 2.) Then let Q be an arbitrary 
self-avoiding polygon in Q1[M]. 

We now concatenate P and Q. First translate Q by the vector p- e(I) + 
e<1) (so the resulting polygon lies in the half-space Xi ~ Pl + 1 and contains 
the bond joining p- e(I) + e(i) to p + e(i)). Then take all of the bonds in 
the translated Q except the bond joining p- e<I) + e(i) to p + e(i), and all 
of the bonds of P except the bond joining p to p - e<I), and also take the 
two bonds that join p- e<I) to p- e<n + e(l) and p to p + e(l). Since P is 
contained in the half-space x1 ::=; p1 , the result is a self-avoiding polygon in 
Q[N + M]. Conversely, given an (N + M)-step polygon constructed in this 
fashion, we can reconstruct P and Q, because the N sites with smallest 
first coordinate are precisely the points of P. (Of course, not every polygon 
in Q[N + M] can be obtained by such a concatenation.) 
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Since there were qN ways to choose P, and at least qM /(d- 1) ways to 
choose Q given P [by (3.2.4)], inequality (3.2.2) follows immediately. 

Finally we prove (3.2.3). Choose P, p, ana I as above. Then remove 
the bond joining p to p- e<l) from P, and add the three bonds of the walk 
(p, p+e<1>, p+e<1>-e(I), p-e<1>) toP. The result is a self-avoiding polygon 
in Q[N + 2] from which Q can be unambiguously determined as above. This 
proves (3.2.3). D 

Now let a1 = 0 and an = -log(q2n/(d -1)) for n ~ 2. Then Theo­
rem 3.2.3 says that {an}n>l is a subadditive sequence. Therefore Lemma 
1.2.2 implies that limn-oo(q2n/(d- 1))112n exists and equals some number 
Jl.Polygon ~ J.t, and that 

qN ~ (d- l)(J.tPolygon)N (3.2.5) 

for all even N > 2. In fact, J.tPolygon = J.t; this will be a corollary of the 
next theorem, independent of Theorem 3.2.3. 

Theorem 3.2.4 Let e be a nearest neighbour of the origin in zd. There 
exists a constant K, depending only on the dimension d, such that for every 
integer M ~ 1, 

(3.2.6) 

Proof. For a point X in zd, let B[M, x] denote the set of M-step bridges 
which begin at the origin and end at x, and let IB[M, x]l denote the number 
of bridges in this set. 

Consider a point x for which B[M, x] is not empty, and let w and v be 
bridges in B[M, x] (not necessarily different). See Figure 3.3. Choose any 
vector v:: v(x) in Rd which is orthogonal to the line containing 0 and x. 
Let i (respectively j) be chosen from among those values of {0, 1, ... , M} 
that maximize (respectively, minimize) the dot product w(i)·v (respectively, 
v(j) · v). Define 

w = (w(i), ... ,w(M),w(1) +w(M), ... ,w(i) + w(M)), 
U = (v(j), ... , v(M), v(l) + v(M), ... , v(j) + v(M)). 

It is not hard to cheek that w and u are both self-avoiding walks (since w 
and v were bridges), that w(M) -w(O) and u(M)- u(O) both equal x, and 
that 

w(O). v = w(M). v ~ w(k). v 

U(O) ·V = U(M) •V ~ v(k) ·V 

for all k = 0, ... , M. To interpret these inequalities, think of two hyper­
planes orthogonal to v, one passing through w(O) and the other through 
u(O); then w and U lie on opposite sides of their respective hyperplanes. 
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w v X 

0 \ 
• "v(j) 

X 

w(O) = w(i) 

v(O) = v(j) 

p 

0 
e 

Figure 3.3: Proof of Theorem 3.2.4. HereM= 12. Top: theM-step bridges 
w and v, and the vector v. Middle: the derived walks w and U. Bottom: 
the (2M + 1 )-step walk p. The dotted lines are orthogonal to v. 
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Now let e be a nearest neighbour of the origin such that e · v < 0. Let 
e be the (2M + 1)-step walk starting at the origin and consisting of v, 
followed by one step in the e direction, followed by the reversal of w; that 
is, 

for 0:5 k :5 M, _ { u(k)- u(O) 
u(k)- w(2M+1-k)-w(O)+e for M + 1 :5 k :5 2M + 1. 

Then {! is a self-avoiding walk since the hyperplane with normal vector v 
that passes through the origin separates the first M + 1 points of (} from 
the last M + 1. Also, u(2M + 1)- u(O) = e and p(M) = z. 

Given a self-avoiding walk u that has been constructed as above, we 
could reconstruct the original bridges w and v if we only knew i and j. 
There are M + 1 possible values for each of i and j. Therefore, if S denotes 
the set of (2M+ 1)-step self-avoiding walks {! with u(O) = 0 and le(2M + 
1)1 = 1, then the number of walks in S having u(M) = z is at least 
IB[M, x]l 2f(M + 1)2. Since there are fewer than M(2M + 1)d-t values 
of x for which IB[M, x)l > 0, it follows from the above argument and the 
Schwarz inequality that 

lSI > L2: IB[M, x]l2 > (L:2: IB[M, x]l)2 

- (M + 1)2 - (M + l)2M(2M + 1)d-t. 
(3.2.7) 

The theorem is a direct consequence of (3.2.7). 0 

Corollary 3.2.5 There exists a constant C depending only on the dimen­
sion d such that 

2M -CMt/2 < (O ) < 2(M + 1)(d- 1) 2M+2 
1-1. e _ c2M + 1 , e _ d 1-1. (3.2.8) 

for all M ~ 1. In particular we have 

/-~.Polygon = lim (q2n)1/ 2n = 1-'· 
n-oo 

(3.2.9) 

Proof. The first inequality of (3.2.8) is a direct consequence of Theorem 
3.2.4 and Equation (3.1.9) (the constant C can absorb all factors of poly­
nomial order). The second inequality follows from (3.2.1), (3.2.5), and the 
obvious bound /-I. Polygon $ 1-'· Finally, Equation (3.2.9) follows immediately 
from Equations (3.2.8) and (3.2.1). D 

Remark. It is possible to prove that J.lPolygon = iJ.Bridge directly, without 
using the results of Section 3.1. This can be done using Theorem 3.2.4 to 
prove /-~.Polygon ~ iJ.Bridge 1 and the bound qN $ d(d- 1)bN, which follows 
from Proposition 8.1.2, to prove /-~.Polygon $/-~.Bridge· 
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Corollary 3.2.6 Let {z(N)} be a sequence of sites in zd \ {0} such that 
lz(N)I = o(N) as N -+ oo. To avoid trivialities, we also assume that 
llz(N)IIt has the same parity as N. Then 

(3.2.10) 

In particular, for every z =f:. 0, the two-point function G,~ (0, z) has the same 
radius of convergence Zc = 1'-t as the susceptibility x(z). 

Proof. For fixed N, let ¢ be a fixed self-avoiding walk from the origin to 
z(N) of length llz(N)IIt (or possibly llz(N)IIt + 2) whose lexicographically 
largest point, p, is neither 0 nor z(N). Let LN be the length of </J. Choose 
I ~ 2 so that the bond joining p and p - e<J) is a bond of </J. We now 
consider concatenation of <P and self-avoiding polygons Q in Qr[N- LN], 
as in the fourth paragraph of the proof of Theorem 3.2.3. In detail: Given 
such a polygon Q, translate it by the vector p- e(I) + e<1>. Then take all 
of the bonds in the translated Q except the bond joining p- e(I) + e(1) to 
p + e<1), and all of the bonds of <P except the bond joining p top- e<I), and 
also take the two bonds that join p- e(I) top- e<I) + e<1) and p top+ e<1). 

Since <P is contained in the half-space Zt ~ Pt, and since the translated 
polygon lies in the half-space Zt ~ Pt + 1, the result determines anN-step 
self-avoiding walk from 0 to z(N). We conclude from (3.2.4) that 

(3.2.11) 

Since LN = o(N), the result now follows immediately from Corollary 3.2.5 
and the trivial bound CN(O, z) $ CN. 0 

We remark that for fixed z (i.e. z(N) independent of N), the lower bound 
(3.2.11) can be improved by a factor of order N; see Proposition 7.4.4. 

3.3 Kesten's bound on eN 

In this section, we shall prove the following upper bound on the number of 
self-avoiding walks: 

Theorem 3.3.1 Let d ~ 2. Then there exists a constant Q, depending 
only on d, such that for every N ~ 2 

(3.3.1) 
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As we observed in Section 1.1, this is the best bound that is known rigor­
ously in three and four dimensions. In two dimensions, it is not quite as 
good as the Hammersley-Welsh bound (Theorem 3.1.1), while above four 
dimensions we know that CN """const.JJN (see Section 6.1). 

This theorem first appeared in Kesten (1964). However, that paper only 
presented a proof of the weaker bound 

(3.3.2) 

The proof of Theorem 3.3.1 builds on the proof of (3.3.2) and draws on the 
ideas of the Hammersley-Welsh argument. The full proof was not given 
in Kesten (1964) because it was hoped that someone would find a better 
bound, but almost thirty years later this has still not come to pass for 
d = 3,4. The proofofTheorem 3.3.1 that we present here is due to Kesten 
(private communication). 

To begin with, observe that by the first inequality of (3.1.7) and the 
inequality .2! 0 + y0 :S: 21- 0 (z + y)0 for 0 < a < 1 and z, y ~ 0, it suffices 
to prove the same bound for half space walks, i.e. that there exists a Q 
depending only on d such that 

(3.3.3) 

for every n ~ 2. Therefore we shall work with half-space walks for much of 
the proof. We first need an extension of Definitions 3.1.2 and 3.1.3. 

Definition 3.3.2 For integers N and S, let h'N,s = Ef=o hN,i be the num­
ber of half-space walks starting at the origin and having span at most S. 

Consider an integer n ~ 1. If w is an n-step half-space walk that starts 
at the origin, then let K(w) denote the span of wand let I(w) be the largest 
value of i such that Wt(i) = I<(w). Since lwl > 0, both I<(w) and I(w) are 
nonzero. Observe that the first /(w) steps ofw is a bridge of span I<(w), and 
the remainder of w is (the reflection of) a half-space walk whose span is less 
than K(w). Since there are at most n2 possibilities for the pair I(w) and 
I<(w), there exist integers i[O] and k[O] in {1, ... , n} such that the number 
of half-space walksw having I(w) = i[O] and K(w) = k[O] is at least n-2hn. 
Therefore the above decomposition shows that 

(3.3.4) 

At this point, we shall state a lemma which is crucial for the proof of 
Theorem 3.3.1. Its proof will be deferred to the end of the section. To help 
the reader appreciate the role of the lemma, we shall show how the weaker 
bound (3.3.2) may be obtained as an immediate corollary of the lemma and 
(3.3.4). 
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Lemma 3.3.3 Let k, I, and m be strictly positive integers, and let B be a 
real number satisfying 0 < B < 1. Let V = (m1-Bt)11d. Then there exists 
a constant D, depending only on the dimension d, such that 

b, h* < 11m+l+dV [D(m + 1)]12m8 +3dV. ,k m,k- r- {3.3.5) 

Corollary 3.3.4 Let d?: 2. There exists a constant Q, depending only on 
d, such that (3.3.2) holds for every n?: 2. 

Proof. As explained prior to (3.3.3), it suffices to prove (3.3.2) with Cn 

replaced by hn. Let B = 2/( d + 1 ), and let n ?: 2. If i[O] = n, then the 
result follows from (3.3.4) together with the basic relations bn $ Jl.n and 
h0 k = 1 for every k. Therefore, assume that i[O] < n. By (3.3.4) and 
Lemma 3.3.3, we have 

where 
V = ((n _ i(O])t-Bi(O])l/d $ n(2-B)/d, 

Since (2- B)/d = 2/(d + 1) = B, we see that 

and the result follows. 

(3.3.6) 

(3.3.7) 

(3.3.8) 

0 

We now proceed with the proof of Theorem 3.3.1. The idea is to iterate 
(3.3.4) until certain auxiliary conditions are satisfied, and then to make 
some estimates and apply Lemma 3.3.3. Fix real numbers A and B in the 
interval (0, 1), and fix an integer n ?: 1. (As we shall see by the end of 
the proof, we are specifically interested in the values A = d/(d + 2) and 
B = 2/(d + 2).) 

We shall now give a procedure for defining an integer u?: 0 and integers 
i(O), ... , i(u], k(O], ... , k[u] > 0 (all depending on A and n) having certain 
properties. We have already seen how to define i(O] and k[O]. Next, if 
n2b;[o],k[o] > p.i[O] and i(O] < nA, or if i(O] = n, then set u = 0 and stop; 
otherwise we reapply the decomposition of (3.3.4) with n replaced by n-i[O] 
to choose i[l] and k[l) from {1, ... , n- i[O]} such that 

h~-i(O],k(O] $ ( n- i(0]) 2bi[l],k(l]h~-i(O]-i(1],1:(1] (3.3.9) 

(notice that h~-i[O],k[OJ $ hn-i[OJ)· Then (3.3.4) and (3.3.9) imply that 

(3.3.10) 
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We now repeat this procedure inductively. Suppose that i[j] and k[j] 
have already been defined but i[j + 1] and k[j + 1] have not yet been defined. 
If 

(n- i(O]- ... - i[j- 1])2b;uJ,l:UJ >,_Ail (3.3.11) 

and 
i[j) < (n- i(O)- ·. ·- i[j- 1])A, (3.3.12) 

or if i[O) + · · · + i[j] = n, then set u equal to this value of j and stop the 
procedure. Otherwise, choose i[j + 1) and k[j + 1] from {1, ... , n- i[O]­
· · ·- i[j]} such that 

h~-i[OJ-· .. -i[j],l:[j] (3.3.13) 

$; (n- i[OJ- · · ·- i[j]) 2 bi[j+l],l:[j+t]h~-i[O]-···-i[j+l],l:[j+I]· 

Thus we end up with the inequality 

hn =:;; n 2b;[o],l:(o](n- i[0])2b;[t],l:[l]·.. (3.3.14) 

X (n- i[O]- · • ·- i[u- 1])2bi[u],l:[u]h~-i(O]-· .. -i[u],l:(u]• 

Let I be the set of j's in {0, 1, ... , u-1} with the property that (3.3.11) 
holds (if u = 0, then I is the empty set). Therefore (3.3.12) fails for these 
values of j, i.e. 

i(j] ~ (n- i[O]- ·. ·- i(j- l])A for every j in I. (3.3.15) 

If 0 =:;; j < u and j is not in I, then the reverse inequality of (3.3.11) 
holds (with =:;;), while if j is in I or if j equals u, then we have the simple 
inequality 

(from b; =:;; 1i). Applying these inequalities to (3.3.14) yields 

hn $; n21II+2/li(O]+···+i(u]h~-i[O)-···-i[u],l:(u]· 

(3.3.16) 

(3.3.17) 

Next we claim that there exists a constant C depending on A but not 
on n such that 

III =:;; Cn1-A. (3.3.18) 

To see this, for each integer a ~ 0 we let I 4 denote the subset of integers j 
in I with the property that 

n2-a ~ n- i[O]-. ·.- i[j- 1] ~ n2-a-l. (3.3.19) 

If we can show that 
(3.3.20) 



72 CHAPTER 3. SOME COMBINATORIAL BOUNDS 

for every a 2: 0, then the claim (3.3.18) will follow from 

log2 n 00 

III~ L IIal ~ 1 +log2 n + L (n2-o-l) 1-A. (3.3.21) 
o=O o=O 

If II., I ~ 1, then (3.3.20) is trivial. Otherwise let f., and F., denote the 
smallest and largest members of I., respectively, and let I~ denote the set 
I., with F., removed. By (3.3.19), 

n2-o 2: n-i[O]- .. ·-i(f.,-1] ~ n-i[O]- .. ·-i[F.,-1] ~ n2-o-l, (3.3.22) 

and hence 

F.-1 

I: i[j] ~ I: i[j] ~ n2-o- n2-o-l = n2-o-l. 
jEZ~ i=f• 

Also, (3.3.15) and (3.3.19) imply that 

I: i[j] 2: (IIal- 1)(n2-o-l)A. 
jEZ! 

(3.3.23) 

(3.3.24) 

Combining (3.3.23) and (3.3.24) yields (3.3.20), and the claim (3.3.18) fol­
lows. 

To prepare for the application of Lemma 3.3.3, we let k = k[u), I= i[u), 
and m = n- i(O]- · · ·- i[u]. (Recall that k(u] and i[u] are strictly positive.) 
Then (3.3.17) and (3.3.18) tell us that 

(3.3.25) 

If m = 0, then since h0 k = 1 for every k, the result (3.3.3) follows from 
(3.3.25) by simply taking A = d/(d + 2). So for the remainder of the proof, 
we shall assume that m is strictly positive. By the definition of u, we know 
from (3.3.11 ), (3.3.12), and the bound m +I ~ n that 

(3.3.26) 

and 
I < ( m + I) A ~ nA. (3.3.27) 

Combining (3.3.26) with Lemma 3.3.3 yields 

n-2J.Lih~,k ~ J.lm+l+dV[D(m + l)p2m 8 +3dV 1 (3.3.28) 

which implies 

(3.3.29) 
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Applying (3.3.29) to (3.3.25), we obtain 

(3.3.30) 

Now, V = (m1-Bl)11d $ n(t-B+A)/d by (3.3.27), so we see that there is a 
constant Q, depending only on A, B, and d, such that 

(3.3.31) 

for every n ~ 2. Finally, set A = d/(d + 2) and B = 2/(d + 2), so that 
1- A= (1- B + A)/d = 2/(d+ 2) (these are the optimal choices for A and 
B). This proves (3.3.3), and Theorem 3.3.1 follows. 

Proof of Lemma 3.3.3. Let f3 be an arbitrary /-step bridge starting 
at- the origin and having span k. Let 7J be an arbitrary m-step half-space 
walk starting at the origin and having span at most k. Now let 

Y = {y E zd: Yt ~ 7Jt(m) and !ly-q(m)lloo $ V}. 

Then Y is a half-cube containing (lVJ + 1)(2lVJ + l)d-t points of zd, and 
hence 

(3.3.32) 

For each yin zd, let J(y) denote the number of pairs (i,j) (0 $ i $ m, 
0 $ j $ 1) such that q(i)- f)(j) = y. The sum of J(y) over all y E zd 
equals (m + 1)(1 + 1), and so the average value of J(y) over Y is less than 
or equal to 

(m + 1)(1 + 1) <~= 4mB. 
IYI - m1-B( 

Thus we know that there exists a point Y in Y such that 

J(Y) $4mB. 

Let g = IIY- 7J(m)llt; since Y E Y we know that 

0$ g $ dV. 

(3.3.33) 

(3.3.34) 

Now define a walk p, not necessarily self-avoiding, which consists of 
7], followed by a walk of minimal length from 77( m) to Y, followed by f3 
(translated to begin at Y). Thus p has exactly m + g + l steps. Observe 
that 

0 < Pt(i) $ Yt +k = Yt +f3t(l) = Pt(m+g+l) for all i = 0, ... , m + g +I 
(3.3.35) 



74 CHAPTER 3. SOME COMBINATORIAL BOUNDS 

(this is because (i) Pt(i) = 771 (i) E (O,k] whenever 0 < i ~ m, (ii) 771(m) ~ 
Pt(i) ~ Yt whenever m ~ i ~ m + g, and (iii) Pt(i) = Yt + f3t(i- m- g) E 
[Yt, Yt + k] whenever m + g ~ i ~ m + g + /). Let T be the number of 
self-intersections of p (if p( i) = z for exactly n different values of i, then we 
count n- 1 self-intersections). There are exactly J(Y) intersections of the 
first m + 1 sites of p with the last I+ 1 sites, and at most g- 1 intersections 
of (p(m + 1), ... , p(m + g- 1)) with the rest of p; therefore 

T ~ J(Y) + g - 1 ~ 4m8 + dV - 1 (3.3.36) 

by (3.3.33) and (3.3.34). 
It follows from (3.3.35) that p can be obtained by taking a (self-avoiding) 

bridge of span Yt +k and adjoining at most T self-avoiding polygons (includ­
ing possibly "degenerate" two-step polygons). To understand this, think of 
traversing p one step at a time. When p first intersects itself, remove the 
segment of p between the two visits to the site where the self-intersection oc­
curs. The removed segment is a self-avoiding polygon with a distinguished 
site (where the intersection occurs) and orientation (corresponding to the 
direction in which p traversed the polygon). Observe that some of these 
"polygons" may consist of only two steps, the direction of the second being 
the opposite of the first. Accordingly, we define the number of two-step 
polygons to be q2 = d. Now continue to traverse p, and repeat this proce­
dure: the next time that p visits a site that it has already visited (excluding 
visits that occurred on the removed segment), remove the resulting poly­
gon, and so on. Let tp be the part of p that is never removed; then tp is a 
bridge of span Yt + k. (We remark that this procedure is essentially the 
same as the "loop-erasing" of Section 10.2.) Let r = IIPI, let t be the num­
ber of polygons that have been removed by this procedure, and let a; be 
the number of steps in the i-th polygon. Then r +at + · · · + a1 = !PI· 

Now, the number of different p-step walks p that can give rise to a 
particular choice of tp, t, and at, ... , a1 is at most 

t 

IT (2pajqa;), (3.3.37) 
j=t 

because there are qa; choices for the j-th polygon, exactly ai different points 
on the j-th polygon where it could be attached to the walk (i.e. to tp or one 
of the first j - 1 polygons), at most p places on the walk where the j-th 
polygon can be attached (in fact, at most liP I+ at + · · · + ai -t places), and 
two possible directions that the polygon can be traversed. {If ai equals 2 
for some j, then it in fact would have sufficed to have used 2pq2 for the j-th 
term in (3.3.37).] For every even n ~ 2 we have qn ~ (d- 1)J.tn [by (3.2.5) 
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and (3.2.9) for n ~ 4; the case n = 2 is obvious since J.t ~ d], and so the 
product (3.3.37) can be bounded above by 

[2( d- 1 )p2]1 J.ta 1 + .. ·+a, = [2( d- 1 )p2]1 J.tiPI-r, 

Therefore the number of possible walks p is at most 

(3.3.38) 
p=m+l r=l t:O a1, .. ·, a 1 : 

a1 +···+a, = p - r 

where H = 4m8 + dV - 1 [recall (3.3.36)]. Using the fact that there are 
at least bt,l:h~,k possible walks p, we conclude from (3.3.38) and the bound 
br ::; J.tr [Equation (1.2.17)] that 

p=m+l r=l t=O a1, ... , a 1 : 

at + .. ·+a, = p - r 

m+l+dV 

::; E p(H + l)p"[2(d- l)p2]" J.tp (3.3.39) 
p=m+l 

::; J.tm+l+dV 4(m +I+ dV)3 [2(d- l)(m +I+ dV)3]4m 8 +dV - 1 . 

Finally, we obtain the inequality of the lemma from (3.3.39) and V ::; 
(ml)1/2 ::; (m + 1)/2. 0 

3.4 Notes 

Section 3.1. An earlier paper [Hammersley (196lb)] proved that CN ::; 

I'N exp[O(N(d-l)/dlogN)] ford ~ 2. The proof was more complicated 
than the proof of Theorem 3.1.1, but the methods were similar; they were 
also closely related to the methods of Theorem 3.3.1. 

The asymptotics of the number of partitions of N can also be used to 
study "spiral" walks, which are self-avoiding walks in Z2 that cannot turn to 
the left. Guttmann and Wormald (1984) proved that the number of N-step 
spiral walks is exp[211'(N /3)1/2]N-714[C+O(N-1/2)], where C = 4. 35/ 4 /11'. 

Corollary 3.1.8 is due to Kesten (1963). 

Section 3.2. Theorem 3.2.3 and Coronary 3.2.6 are due to Hammersley 
(1961a), using essentially the same proofs as we present. This paper also 
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contains a proof that J.lPolygon = J.l, using very different methods from ours. 
A result similar to Theorem 3.2.4 appears in Equation (3.7) of Kesten 
(1963). 

Dubins et a/. (1988) proved the following result about self-avoiding poly­
gons in Z2 . Consider the set of all N-step polygons that have the origin 
as one of their sites. Then the probability that the point ( !, !) lies in the 
inside region of a polygon chosen at random from this set equals ! - if. 
(Here, the "inside region" is the bounded subset of R2 whose boundary 
is the simple closed curve determined bythe polygon.) They conjecture 
that the analogous probability for any other point (a, b) of R 2 (with a and 
b non-integer) should likewise increase to 1/2 as N -+ oo, but nothing is 
known even for (a, b)=(~,!). 
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Chapter 4 

Decay of the two-point 
function 

4.1 Properties of the mass 

In this section we shall develop some fundamental properties of the mass 
m, which we originally defined in Equation (1.3.15) as follows: 

( ) 1. . f -logGz(O, (n, 0, ... , 0)) 
m z = 1mm . 

n-oo n 
(4.1.1) 

Thus the mass describes the exponential decay rate of the two-point func­
tion. We shall see that the "lim inf" appearing in (4.1.1) is in fact a limit 
for every z > 0 except perhaps z = Zc, and that the two-point function de­
cays (to leading order) like exp(-m(z)lxlz] for z < Zc, for some norm 1 l·lz· 
We shall also show that m(z) is a reasonably nice function, strictly positive 
below the critical point Zc, identically -oo above Zc, and decreasing to 0 
as z approaches Zc from the left. Finally we shall prove that m(zc) = 0 if 
the "bubble diagram" B(z) = Lz Gz(O, x)2 (see Section 1.5) is finite at the 
critical point z = Zc (as it is ford;::: 5; see Corollary 6.1.7). It is expected 
that m(zc) = 0 in all dimensions (in fact, Gz.(O, x) is believed to decay as 
a power law; see (1.4.8)], but it remains an open problem to prove this for 
d = 2, 3, 4. In particular, it is not even known rigorously that G z. (0, x) is 
finite for any x -::f. 0 in low dimensions. 

1 Alternatively, one can work with the Euclidean norm and a direction-dependent 
mass m[v;z] := m(z)lvla for vectors v E Rd such that lvl = 1. Then Ga(O,x) decays like 
exp[-m[v; z)lxiJ where v = x/lxl. 

77 
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The term "mass" comes from quantum field theory, where the exponen­
tial decay rate of the theory's two-point function defines the physical mass 
of the particles in the theory. In statistical mechanics, the mass tending to 
0 is equivalent to the correlation length e(z) = 1/m(z) tending to oo. In 
the context of the Ising model and the other N-vector models, for example, 
this says that spins are becoming correlated on larger and larger length 
scales. In a spin model, the divergence of the correlation length as z / Zc 

is the precursor of the long range order (and spontaneous magnetization) 
that will occur for z > Zc. The self-avoiding walk corresponds to the N = 0 
case, where the concept of long-range order does not really apply, but we 
are still interested in whether the mass tends to 0 by analogy to spin sys­
tems. In addition, it is believed (and known for d ~ 5) that the mass for 
the self-avoiding walk goes to zero as a power law 

m(z) ,..,_ const.(zc- z)77 as z / Zc, ( 4.1.2) 

with 'i7 = v (recall Section 1.3). Proving that m(z) '\. 0 as z / Zc is a first 
step towards proving (4.1.2). 

Many results of this section extend immediately to self-avoiding walks 
(w(O), ... ,w(N)) whose steps w(i)-w(i-1) all lie in a finite subset n ofzd 
which is invariant under all symmetries of zd. Besides the usual nearest­
neighbour model (0 = {x : llxllt = 1}), in Chapter 6 we shall also be 
interested in the "spread-out" models which have 0 = {x: 0 < llxlloo::::; L} 
for some (large) integer L. In particular, everything in this section up to 
and including Theorem 4.1.6, as well as Theorem 4.1.18, hold for general 
symmetric n with only trivial changes in the proofs. 

Our first proposition establishes some elementary properties. 

Proposition 4.1.1 (a) m(z) is a concave function oflog z for z > 0. 
{b) On the interval (0, zc), m(z) is a nonincreasing, finite, strictly positive, 
and continuous function of z. 
(c) If z > Zc, then Gz(O, x) = +oo for every x '# 0, and hence m(z) = -oo. 

We delay the proof of this proposition just long enough to present the 
following lemma: 

Lemma 4.1.2 Let {an }n>o be a sequence of nonnegative numbers. Then 
-log(En anen/J) is a concave function of f3. 

Proof. This is a consequence of Holder's inequality. For ,\ between 0 and 
1, 

n n n 
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The lemma follows upon taking -log of both sides. 0 

Proof of Proposition 4.1.1. (a) Lemma4.L2 shows that -log G,(O, x) 
is a concave function of log z for any z. Since the lim inf of a sequence of 
concave functions is concave, the result follows. 
(b) Since G,(O, z) is nondecreasing in z, it is apparent from (4.1.1) that 
m(z) is nonincreasing. We already saw in Section 1.3 that 0 < m(z) < +oo 
whenever 0 < z < Zc (recall (1.3.14) and (1.3.16)]. Continuity follows from 
the concavity and finiteness of m( z) on the open interval (0, ze)· 
(c) This is an immediate consequence of Corollary 3.2.6. 0 

Next, we shall show how to replace the "lim inr' in (4.1.1) by a limit, 
obtaining as a by-product an explicit bound on the two-point function in 
terms of the mass and the bubble diagram 8( z) = Lz G z (0, :e )2• We will 
use the notation (n,O) to denote the point (n,O, ... ,O) E zd; this notation 
will be generalized in Definition 4.1.7 below. 

Theorem 4.1.3 (a) /fO < z < Ze, then 

lim -logG,(O,(n,O)) = m(z) = inf -log[Gz(O,(n,O))/B(z)]; (4.1.3) 
n-+oo n n~l n 

in particular, the limit exists and satisfies 

G,(O, (n, 0)) $ B(z)e-m(z)n for every n ~ 1. (4.1.4) 

(b) If B(zc) is finite, then (4.1.3) and (4.1.4) also hold for z = Zc, and 
m(z) is left-continuous at Zc. 

The proof depends on subadditivity and the following lemma. 

Lemma 4.1.4 For any z > 0, and any :e andy in zd, 

Gz(O, :e)Gz(z, y) :5 B(z)G,(O, y). (4.1.5) 

Proof. For each nonnegative integer N, let SN denote the set of all 
ordered pairs of self-avoiding walks (w A, w B) such that: w A starts at 0 and 
ends at x; WB starts at :e and ends at y; and lwAI + lwBI = N. Also, let 
TN denote the set of all ordered triples of self-avoiding walks (we, w D, wE) 
such that: we starts at 0 and ends at y; wn and WE both start at :e and end 
at the same (arbitrary) point; and lwei+ lwnl +lwEI= N. To prove the 
lemma, it suffices to show that there is a one-to-one mapping from SN into 
TN, for this would imply an inequality between their respective generating 
functions, which is precisely the inequality that we we want. 
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Let (wA,WB) be a member of SN. Let I be the smallest value of i such 
that WA(i) is a point of ws. Let u = WA(I). Let we be the walk which 
follows WA from 0 to u and then follows ws from u toy; this is self-avoiding 
by our choice ofu. Let wv (respectively, WE) be the part of WA (respectively, 
ws) between x and u. Then (wc,wv,wE) is in TN. This mapping is clearly 
one-to-one, so the lemma is proven. o 

Proof of Theorem 4.1.3. Fix z with B(z) < oo, so in particular we may 
choose any z in (0, zc) since B(z) :5 x(z)2• For each integer n ;::: 1, define 
hn(z) = -log[G.,(O, (n, 0))/B(z)]. Taking x = (n, 0) and y = (m + n, 0) in 
(4.1.5) and dividing by B(z)2 shows that the sequence {hn(z) : n;::: 1} is 
subadditive. Therefore Lemma 1.2.2 implies that 

lim hn(z) = inf hn(z), (4.1.6) 
n-+oo n n~l n 

which proves ( 4.1.3) in both cases (a) and (b). The bound ( 4.1.4} follows 
immediately from (4.1.3}. 

It only remains to prove that m(z) is left-continuous at Zc if B(zc) is 
finite. Since m(z) is nonincreasing, it suffices to show that 

limsupm(z) :5 m(zc)· 
z/zc 

( 4.1.7) 

Assume B(zc) is finite. This implies that G.,c(O, x) is finite (for every .x); 
hence, since B(z) and G.,(O, x) are power series with nonnegative coeffi­
cients, they must be continuous on (0, zc)· Therefore hn(z) is continuous 
on (0, zc) for every n. Together with the fact that m(z) :5 hn(z}/n for all z 
in (0, zc) [by (4.1.3)], this implies that 

I. ( } 1. hn(z) hn(zc} 1msupm z :5 1msup-- = --. 
z/zc z/zc n n 

(4.1.8} 

Finally, we have seen that m(zc) = infn>l hn(zc)fn when B(zc) is finite, 
so taking the inf over n;::: 1 in {4.1.8) yields {4.1.7), which completes the 
proof. 0 

We now turn our attention to the task of showing that the mass goes to 
0 as z approaches Zc from the left. This turns out to be relatively easy if 
the bubble condition B(zc) < oo holds. However, it is expected that B(zc) 
is infinite in 2, 3, and 4 dimensions, so we will have to work harder there. 
But first we shall take care of the high-dimensional case. 

Lemma 4.1.5 For any z :> 0 and any .x in zd, 
G.,(O,x) :5 B(z}1/2e-m(z)llrlloo. ( 4.1.9) 
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Proof. Given X in zd' let [( = llxlloo and let i be a coordinate such that 
lxd = K. Let u be the vector whose i-th coordinate is x; and whose j-th 
coordinate, for every j # i, is -xi. Then x + u = ±2J<e(i), where e(i) is 
the unit vector whose i-th coordinate is 1. By Lemma 4.1.4 and symmetry 
considerations, we have 

Gz(O, x)Gz(x, x + u) $ B(z)Gz(O, X+ u) = B(z)Gz(O, (2K, 0)). (4.1.10) 

Applyingsymmetryand (4.1.4), we obtain Gz(O,x)2 ::::; B(z)exp[-m(z)2K), 
and (4.1.9) follows. 0 

Theorem 4.1.6 lfB(zc) < oo, then limz/zc m(z) = m(zc) = 0. 

Proof. The first equality was proven in Theorem 4.1.3(b ). Since m( z) > 0 
for z < Zc [by Proposition 4.1.1(b)], we see that m(zc) ~ 0. Finally, ifm(zc) 
were. strictly positive, then Lemma 4.1.5 would imply that the critical two­
point function decays exponentially, which would contradict the fact that 
the susceptibility is infinite at Zc [recall (1.3.6)]. Therefore m(zc) must 
equal 0. 0 

For the rest of this chapter, we will not assume that the bubble con­
dition holds. We will not be able to prove that the mass is 0 at Zc, but 
we will show that the mass decreases to 0 as z approaches zc from the 
left. Some new ideas will be needed to accomplish this. In a nutshell, we 
would like a subadditivity relation in the spirit of Lemma 4.1.4 that holds 
nontrivially at the critical point. As in Section 3.1, we shall use bridges 
to get superadditivity relations instead [e.g. (4.1.13) and (4.1.14) below]. 
We first define generating functions and masses for classes of bridges, prove 
properties about these, and then show that these masses are the same as 
the one defined by (4.1.1). As the reader will discover, it is often easier to 
work with bridges than with general self-avoiding walks. 

Definition 4.1. 7 Let y = (Yt, ... , Yd-t) be a point of zd-1, and let L be 
a nonnegative integer. Then ( L, y) denotes the point ( L, Yt, ... , Yd-1) in 
zd, and bN,L(Y) denotes the number of N -step bridges w with w(O) = 0 and 
w(N) = (L, y). Recalling Definition 3.1.3, we see that 

bN,L = L bN,L(y). 
yEZd-t 

For each real z > 0, we define the generating functions 

00 

Bz(L, y) = L bN,L(y)zN 
N:O 
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(the 11point-to-point" bridge generating function) and 

00 

Bz(L) = E bN,LZN 
N=O 

(the 11point-to-plane" bridge generating function). Observe that 

Bz(L) = E Bz(L,y). 
!IEZd-1 

Remark. To be fully consistent with our notation for the two-point func­
tion, we should be writing Bz(O, (L, y)) instead of Bz(L, y). However, the 
shorter notation should not cause any confusion. 

Proposition 4.1.8 For every real z > 0, the limits 

M() _ 1. -logBz(L,O) dT7() _ 1. -logBz(L) 
z _ 1m L an 1v1 z - 1m L 

L-oo L-oo 
(4.1.11) 

exist in [-oo, +oo), and satisfy 

(4.1.12) 

for every integer L ;::: 1. Also, M(z) and M(z) are nonincreasing functions 
of z, and they satisfy the obvious inequalities M(z) ;::: M(z) and M(z) 2:: 
m(z). 

Proof. Let L1 and L2 be nonnegative integers. The concatenation of a 
bridge of span L1 with a bridge of span L2 is a bridge of span L1 + L2, and 
the result uniquely determines the original pair. Thus it is apparent that 

and 
N 

N 

E bn,L 1 bN -n,L~ ~ bN,L 1 +L~ 
n=O 

E bn,L 1 (0}bN-n,L~(O) ~ bN,L 1 +L~(O) 
n:O 

for every nonnegative integer N, so 

and 

(4.1.13) 

(4.1.14) 
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for all z > 0. Therefore, by Lemma 1.2.2, the limits in (4.1.11) exist and 
satisfy (4.1.12) for all L ~ 1. D 

We will now develop some properties of the mass M, and eventually 
we will show that M and M are identical. We begin with an analogue of 
Proposition 4.1.1. 

Proposition 4.1.9 (a) M(z) s; -log z for all z > 0. 
(b) M(z) ~ -log(~Jz) for 0 < z < Zc. 

(c) M is a concave function oflog z (z > 0). 
In particular, M is finite and continuous on (0, zc)· 

Proof. (a) For every L, h,L(O) = 1, so Bz(L,O) ~ zL. The result follows 
now from (4.1.12). 
(b) Fix z in (0, zc)· Since bN s; llN by (1.2.17), 

Bz(L 0) < ~ llN zN = (~Jz)L 
1 - L...J 1 -~JZ 

N:L 

for every L > 0. The result follows from (4.1.11). 
(c) This follows by applying Lemma 4.1.2 with an = bn,L(O), dividing by 
L, and letting L --+ oo. D 

We now describe "truncated" generating functions for bridges that are 
confined to a tube centred along the x1-axis. The lemma which follows 
shows that the corresponding truncated mass converges to the mass M(z) 
as the radius of the tube tends to infinity. 

Definition 4.1.10 For all positive integers N, L, and T, and for all points 
y in zd-l, let b'fr L (y) be the number of N -step bridges w having w(O) = 0, 
w(N) = (L,y), dnd lw;(k)l5 T for every i = 2, ... ,d and k = O, ... ,N. 
For real z > 0, let 

B;(L,y) = Lb'fr,L(y)zN. 
N 

Observe that the Monotone Convergence Theorem implies that for every 
z>O 

lim B'[(L, y) = Bz(L, y) for all L and y. 
T-oo 

(4.1.15) 

Also, by the usual concatenation argument, for every T we have 

n;(Lt,O)Br(L2,0) $ n;(Lt + L2,0) for all Lt and L2, (4.1.16) 

which implies, by Lemma 1.2.2, that we can define the "truncated masses" 

MT (z) = lim -log B'[(L, 0) = inf -log B'[ (L, 0). 
L-oo L L;::l L 

(4.1.17) 
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Lemma 4.1.11 Let T and L be positive integers, and let z be a positive 
real number. 
(a) Let M[(z)=-(logB'{(L,O))fL. Then 

- (2T + 1)d-1 ~ .!!_Ml{z) ~ _!. 
z dz z 

{b) For Z2 > z1 > 0: 

-(2T + 1)d-1 log(z2/zl) $ MT(z2)- MT(zl) $ -log(z2/zt). 

In particular, MT is a continuous decreasing function of z. 
(c) limT-oo MT(z) = infT~l MT(z) = M(z). 
{d) M is left-continuous; i.e., limu/z M(u) = M(z) for all z > 0. 

In (c) and (d), the limits may be -oo. 

Remark. Part (d) of this lemma is mainly of interest at the critical point, 
since M(z) is already known to be continuous on (0, zc) by Proposition 
4.1.9. 

Proof of Lemma 4.1.11. (a) First observe that B'{(L, 0) is a polynomial 
with positive coefficients, and so MT(z) is differentiable at every z > 0: 

Since b'f; L (0) is nonzero only if N is between L and L(2T + 1 )d-1, the result 
follows. ' 
(b) The result follows upon integrating the inequalities of part (a) from Zt 

to Z2 and then letting L- oo [using (4.1.17)]. 
(c) Since MT(z) is decreasing in T, it suffices to show that infT~ 1 MT(z) = 
M(z). By subadditivity (recall Proposition 4.1.8) and (4.1.15), 

M() . f -logBz(L,O) . f. f -logB'[(L,O) 
z=m =mm . 

L~1 L L~1 T~1 L 

The result now follows by interchanging the order of the infs in the last 
expression and using ( 4.1.17). 
(d) This follows from parts (b) and (c), together with the general fact that 
the inf of a sequence of continuous decreasing functions is left-continuous. 

0 

Lemma 4.1.12 M(z) = M(z) for all z > 0. 
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Proof. Since M(z) ~ M(z), it suffices to prove the reverse inequality. To 

do this, we use a slightly different form of truncation. Let B!' (L, y) denote 
the generating function of the collection of bridges w from 0 to ( L, y) with 
the property that 

lwi(j)- Wi(k)l ~ T for 2 ~ i ~ d whenever w1(j) = w1(k). 

-T -T -T 
Let Bz (L) = L:11 Bz (L, y). The analogue of (4.1.16) holds for Bz (L), 

-T -T 
and hence the mass M (z) of Bz (L) exists and satisfies the analogue of 
(4.1.17). The same arguments as in the proof of Lemma 4.1.11(c) show 

that limr-oo MT (z)= M(z). Observe that. B; (L, y) = 0 if IIYIIoo > LT. 
For any L > 0 and any y in zd-I, we can get a bridge from 0 to 

(2L + 1, 0) by the concatenation of a bridge from 0 to (L, y), a single step 
fr~m (L, y) to (L + 1, y), and another bridge from 0 to (L, y) that has been 
reflected through the hyperplane x1 = L + ~. This construction and the 
Schwarz inequality show that, for any T > 0, 

> 

yeZ•-•:IIlllloo~LT 

z(L:y:llylloo<LT n; (L, y))2 

Ly:lllllloo~LT 12 

= z(B!' (L))2 

(2LT + 1 )d-1. 

This implies that for every fixed T, M(z) ~ MT (z). The lemma follows. 
0 

Theorem 4.1.13 limz/'zc M(z) = M(zc) = 0. 

Proof. First, Lemma4.1.11(d) says that M is left-continuous. By Propo­
sition 4.1.9(b), we know that M(z) > 0 whenever 0 < z < Zc, and so 
M(zc) ~ 0. Next, Lemma 4.1.12 tells us that M(zc) = M(zc), so it only 
remains to prove that M(zc) ~ 0. But if it were true that M(zc) > 0, then 
it would follow from (4.1.12) that 

00 00 

Bz. = L: Bz.(L) ~ L: e-LM(zc) < +oo, 
L:O L:O 

which contradicts Corollary 3.1.8. This completes the proof. 0 

We are finally ready to prove that the various masses are identical below 
the critical point. 
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Theorem 4.1.14 For all z in (0, zc), m(z) = M(z) = M(z). 

Proof. Fix z in (0, zc). Recall M(z) = M(z) by Lemma 4.1.12. Since 
G.,(O,(n,O))~ B.,(n,O), it is clear that m(z) $ M(z). 

Any self-avoiding walk from 0 to (n, 0) can be decomposed into three 
parts: cut the walk at the last time that it visits the hyperplane x 1 = 0 
and at the first time after this that it visits the hyperplane Xt = n. The 
middle piece is a bridge of span n; the other two pieces are self-avoiding 
walks (possibly having length 0). This decomposition shows that 

G.,(O, (n, 0)) $ (x(z))2 B.,(n) =::; (x(z))2e-M(z)n, (4.1.18) 

where we have also used (4.1.12) and M(z) = M(z). Since z < Zc, x(z) is 
finite, so m(z) ~ M(z). The theorem follows. 0 

Corollary 4.1.15 limz/zc m(z) = 0. 

Proof. This is an immediate consequence of Theorems 4.1.14 and 4.1.13. 
0 

Corollary 4.1.16 The mass m(z) is strictly decreasing on (0, zc), and 
limz\,0 m(z) = +oo. 

Proof. By Lemma 4.1.11(b,c), the function M(z) +log z is nonincreasing 
on {0, +oo). Since M(z) is finite and equals m(z) on {0, zc), the corollary 
follows. 0 

Corollary 4.1.17 Define 

G.,(L) = L G.,(O, (L, y)), (4.1.19) 
yEZd-t 

the generating function of all self-avoiding walks from the origin to the 
hyperplane Xt = L. Then 

lim -log~.,(£)= m(z) for all z in (O,zc)· 
L-oo 

(4.1.20) 

In fact, 

(4.1.21) 
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Proof. Equation (4.1.20) follows from 

(4.1.22) 

which may be obtained by the same argument that gave (4.1.18). The 
upper bound of (4.1.21) follows from (4.1.22) and Bz(L) ::; e-m(z)L. The 
lower bound of(4.1.21) follows from the subadditivity relation (1.2.5), since 
Gz(Lt)Gz(L2) ~ Gz(Lt + L2) whenever Lt and L2 are positive integers. 

0 

We now show that Theorem 4.1.3 can be generalized so that z can tend 
to infinity in any direction. We remark that the proof of the following 
theorem relies only on material from the first part of this section (prior to 
Definition 4.1.7). Recall that the bubble diagram B(z) = Lzo Gz(O, x)2 is 
finite for 0 < z < Zc (since B(z) ::; x(z)2). 

Theorem 4.1.18 For any 0 < z < Zc, there exists a norm l·lz on Ra, 
satisfying llulloo :5 lulz :5 llullt for every u in Ra, such that 

I. -logGz(O,z) () 
1m =m z 

lz-1.-oo lxlz 
( 4.1.23) 

and 
Gz(O,x) :5 B(z)e-m(z)lz-1. for every :r in za. ( 4.1.24) 

Proof. Fix z in (0, Zc)· For each v in zd I Lemma 4.1.4 tells us that 

Gz(O,jv) Gz(O, kv) < Gz(O, (j + k)v) 
B(z) B(z) - B(z) 

for all nonnegative integers j and k. Therefore Lemma 1-.2.2 implies that 
the limit · 

I. -logGz(O,nv) liD _ _.:;..._;:.....;..__...;. 
n-co n 

exists, and, if we denote this limit by m[v; z], that 

Gz(O, nv) $ 8(z)e-nm(v;z) for every n ~ 1. ( 4.1.25) 

We have m[O; z] = 0 since Gz(O, 0) = 1, but for every nonzero v in zd 
we have 0 < m[v;z] $llvlltllogzl (the lower bound follows from (1.3.14), 
while 

Gz(O, v) ~ zllvllt (4.1.26) 

gives the upper bound). Also, it follows immediately that 

m[kv; z] = lklm[v; z] (4.1.27) 
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for every integer k and every v in zd, and (from Lemma 4.1.4) that 

m[u + v; z] S m[u; z] + m[v; z] 

for every u and v in zd. 
Define lvl., by 

I vi., = m[v; z] 
m(z) 

for v in zd, and use (4.1.27) to extend the definition to v in Qd (where Q 
denotes the rational numbers). Observe that lui., = 1 if u is one of the 2d 
unit vectors of zd (by Theorem 4.1.3), that lkvl., = lkllvl., for every rational 
k and every v in Qd, and that lu +vi., :::;; lui.,+ I vi., for every u and v in Qd; 
in particular, then, we have lvl., :::;; llvllt for every v in Qd. Consequently, 
we obtain 

I lui., -lvl.~l Slu- vi., Sllu- vlh; 

thus, l·lz is uniformly continuous on Qd, and so it extends to a continuous 
function on all of Rd, which will be a norm on Rd. Next, Lemma 4.1.5 
shows that m[v; z] ~ m(z)llvlloo for every v in zd. From this it follows that 
llvlloo :S: lvl., on zd, and hence on all of Rd. 

From (4.1.25) and the definition of l·lz, we obtain 

Gz(O,v) :s; B(z)exp(-lvlzm(z)) for every v in zd, (4.1.28) 

which is (4.1.24). It follows from this that if (4.1.23) is false then there 
exists a sequence { Xn} of points in zd, tending to infinity in norm, such 
that 

I. -log G.,(O, Xn) ( ) 
1m I I >m z. n-oo Xn _, 

(4.1.29) 

By choosing a subsequence if necessary, we can also assume that there exists 
at in Rd such that Xn/lxnlz converges tot. Let E > 0. Since ltlz = 1, we 
can choose a v in zd and a positive integer J such that 

Next, choose a sequence of integers k(n) such that k(n)/lxnl.: tends to J- 1. 

When n is large, Xn is approximately k(n)v; this will lead to a contradiction 
of (4.1.29), as follows. 

Lemma 4.1.4 tells us tl)at 

Gz(O, k(n)v)Gz(k(n)v, Xn) S B(z)G.:(O, Xn)· 
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Now take logs of this inequality, divide by -lxnlz, and let n tend to infinity. 
Using 

and [with the help of (4.1.26)] 

I. -logG,(k(n)v,xn) 
lm 

n-oo lxnlz 

we conclude that 

= J-1m[v; z] 

= IJ-1vl,m(z) 

< {1 + e)m(z) 

I. llk(n)v- Xnlh 1 ~ - 1m ogz 
n-oo lxnlz 

= -IIJ-1v- tilt log z 

~ -dogz, 

ll·m -logG,(O,xn) <(1 ) () 1 I I _ + e m z - e og z. 
n-oo Xn z 

Since e can be made arbitrarily close to 0, this contradicts our choice of 
{xn} and completes the proof of the theorem. 0 

4.2 Bridges and renewal theory 

The main goal of the rest of this chapter is to give a more refined analysis 
of the asymptotics of G, (0, (£, 0, ... , 0)) for large L when z < Zc· Most 
of the work can be done by focusing first on bridges and their two-point 
functions. The present section will give the asymptotic behaviour of the 
bridge generating functions. Specifically, we shall prove in Theorem 4.2.5 
that B,(L) exhibits pure exponential decay, and in Theorem 4.2.6 that 
B,(L, y) exhibits exponential decay with a Gaussian power law correction, 
also known as Ornstein-Zernike decay. We shall also prove that the mass 
m(z) is a real analytic function of z in the interval (0, zc)· To obtain these 
results and develop some intuition about why they are true, we shall set 
up a correspondence between generating functions and certain probabilistic 
quantities in renewal theory. 

We begin by discussing the decomposition of bridges. Given an N-step 
bridge w, suppose that i satisfies 0 < i ~ N and 

w1 (j)~wl(i)<w1 (k)forallj=O, ... ,iandk=i+l, ... ,N. (4.2.1) 
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w(13) 

w(O) 

Figure 4.1: The bridge won the left can be decomposed into two smaller 
bridges: a 6-step bridge followed by a 7-step bridge. The bridge v on the 
right is irreducible. 

Then w can be decomposed into two smaller bridges, (w(O), ... ,w(i)) and 
(w(i), ... ,w(N)). (See Figure 4.1.) Observe that (4.2.1) always holds for 
i = N; in this case w is trivially decomposed into w and the 0-step bridge. 

Definition 4.2.1 We say that an N -step bridge is irreducible if the only 
i (0 < i :5 N) for which (4.2.1) holds is i = N. Let >.N denote the number 
of irreducible N -step bridges, and let 

00 

Az = L >.NzN 
N:1 

be the corresponding generating function. 

Observe that if w is an irreducible N-step bridge, then for each a = 
1, ... , Wt ( N), there exist at least three distinct values of i such that Wt ( i) = 
a. 

Given an N-step bridge w (with N > 0), let s be the smallest index i 
for which (4.2.1) holds. Then (w(O), ... ,w(s)) is an irreducible bridge and 
(w(s), ... ,w(N)) is a bridge. It is thus straightforward to see that 

N 

bN = E >.,bN-1 + 6N,O 
•=l 

for every N ~ 0. From this equation we immediately obtain 

Bz = 1 ! Az for all complex z with lzl < Zc, 

(4.2.2) 

(4.2.3) 

where Bz is the generating function for the number of bridges (recall Defi­
nition 3.1.7). For 0 < z < Zc 1 Bz is finite, and so Az < 1; therefore Azc $ 1 



4.2. BRIDGES AND RENEWAL THEORY 91 

by the monotone convergence theorem. Also, B, diverges at Zc (Corollary 
3.1.8), so in fact A,c = 1; that is, 

f: ": = 1. 
k=l ll 

(4.2.4) 

(It turns out that Zc is the radius of convergence of A,; see Corollary 4.4.5.) 
Equation (4.2.2) may now be transformed into a probabilistic renewal 

equation as follows. Let Pk = Ak/l-k (for k ;:::: 1) and aN = bNfl-N (for 
N;:::: 0). Observe that ao = 1, a~c $ 1 by (1.2.17), and l:~c Pk = 1 by (4.2.4). 
Multiplying (4.2.2) by ll-N yields, for N;:::: 1, 

N 

aN= EpkaN-k· (4.2.5) 
k=l 

To interpret this probabilistically, suppose that we have an independent 
sequence of random variables X 1 , X 2, •.. with common distribution Pr {X = 
k} = Pk· Then 

aN= Pr{Xt + ... + X~c = N for some k;:::: 0}; (4.2.6) 

i.e., aN is the probability that there is a "renewal" at "time" N. (To 
understand this terminology, one can think of the X; 's as representing the 
lifetimes of light bulbs, where a new bulb immediately replaces one that 
burns out. Then aN is the probability that a new bulb is installed on 
day N-i.e., that the system is renewed on day N.) Taking (4.2.6) as the 
definition of the sequence aN, it is easy to verify ( 4.2.5). This probabilistic 
interpretation will be exploited later. 

Equation ( 4.2.5) is a discrete renewal equation. The main theorem about 
these equations is the Renewal Theorem, which we state in the following 
form. 

Theorem 4.2.2 Assume that {/n : n ;:::: 1} and {gn : n ;:::: 0} are nonnega­
tive sequences, and let 

00 

/= l:fn and 
n:l 

denote their sums. Assume that 0 < g < +oo and that h > 0. Define the 
new sequence vo, Vt, •.. by 

vo = go 

Vn Yn + fivn-1 + hvn-2 + · · · + fnvo, for all n ~ 1. 
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{a) Iff< 1, then limn-oo Vn = 0 and L~=O Vn = gf(l - /). 
{b) If I= 1, then 

1. g 
1m Vn = "'00 kl n-oo L...l:=l 1: 

{the limit is 0 if the sum in the denominator diverges). Also, Ln Vn di­
verges. 
(c) Iff> 1, then limsupn-oo v~ln > 1. 

In the usual (more general) statements of the Renewal Theorem, the con­
dition It > 0 is replaced by the condition that the greatest common divisor 
of { n : /n > 0} is one. Also, there are more complete results available for 
part (c). For a full statement and proof, see Feller (1968, p. 330). Theorem 
4.2.2 is sufficient for our needs; a proof appears in Appendix B. 

In the present case, f = LA: PI: = 1, Un = 6n,o 1 and Vn = bnJ.l-n. 
Thus, the Renewal Theorem implies that limN-oo bN/JJN exists and equals 
(L:~1 kp1: )-1• If this limit were strictly positive, then it would say that 
the expected "time between renewals" would be finite, and hence that a 
typical N-step bridge would consist of at least eN irreducible bridges for 
some e > 0. But this would imply that the average value of lw(N)I over 
the set of N -step bridges w beginning at 0 would be proportional to N 
rather than to Nv. But scaling theory predicts that only an exponentially 
small fraction of N-step self-avoiding walks have lw(N)I >eN [e.g. Fisher 
(1966)], which contradicts the hypothesis that limN bN / JJN > 0. Therefore 
it is believed that limN bN / JJN = 0, but there is no known proof of this. 

So far, we have only counted bridges according to the z1 coordinates of 
their sites. To obtain more detailed information, we will also want to look 
at the remaining d- 1 coordinates. To this end, we introduce the following 
analogue of Definition 4.1.7 for irreducible bridges. 

Definition 4.2.3 For each point y in zd-t and each positive integer L 
and N, let >IN,L (y) denote the number of N -step irreducible bridges w with 
w(O) = 0 and w(N) = (L, y), and let 

AN,L = E AN,L(y). 
yEZd-t 

For each real z > 0, we define the generating functions 

00 00 

Az(L, y) = L >..;.,L(y)zN and Az(L) = L AN,LZN. 
N=l N=1 
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Using this definition, we have the following refinements of ( 4.2.2): 

N L 

bN,L = 2:2: >.~~:,jbN-k,L-i -f. 6N,o6L,o (4.2.7) 
'k=lj=l 

N L 

bN,L(Y) = 2: L: L: >.k,j(v)bN-k,L-j(Y- v) + 0N,o0L,00y,O· (4.2.8) 
'11:=1 i=lvez•-• 

These imply the following equations for the generating functions: 

L 

B,(L) = L: A,(j)B,(L- j) + oL,o (4.2.9) 
j:l 

L 

B,(L, y) = L: L: A,(j, v)B, (L- j, y- v) + 6L,o611 ,o. (4.2.10) 

For the rest of this section, we shall only consider fixed z < zc, so that 
m(z) = M(z) = M(z) > 0 (by Theorem 4.1.14 and Proposition 4.1.1(b)). 
First, let us turn (4.2.9) into a probabilistic renewal equation. We multiply 
both sides of the equation by exp(m(z)L), and set 

PL:: PL(z) = A,(L)em(z)L (L ~ 1) (4.2.11) 

and 
(L ~ 0). (4.2.12) 

Observe that PL :$ aL :$ 1 (by (4.1.12)). Evidently the renewal equation 
(4.2.5) holds; to complete the probabilistic interpretation, we must show 
that Lk PI!: = 1. Again, this can be accomplished by generating functions: 
take 

00 00 

P(s) = l:PI!:SI!: and A(s) = 2: ansn; (4.2.13) 
k=l n=O 

these are finite for lsi< 1. From (4.2.9) we then get 

1 
A(s) = 1 _ P(s) for lsi< 1. (4.2.14) 

The sequence aL is bounded away from zero (in fact, aL ~ (x(z))- 2 by 
(4.2.12), (4.1.22), and (4.1.21)). Therefore A(s) diverges ass increases to 
1, and so P(1) must equal 1. That is, 

(4.2.15) 
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In addition, since we have just seen that aL is bounded away from 0, the 
renewal theorem tells us that 

(4.2.16) 

Therefore 
00 

2:kPk < +oo. (4.2.17) 
k=l 

Using this kind of soft argument, there is not much more that can be said 
about the moments of the Pk sequence. However it turns out that 

lim sup p~/ k < 1. 
k-oo 

(4.2.18) 

This means that Pk has an exponential moment, or equivalently that the ra­
dius of convergence of P(s) is strictly greater than 1. This can be expressed 
in terms of a "mass" for irreducible bridges: 

Theorem 4.2.4 For 0 < z < Zc, define 

( ) 1. . f -logA.r(L) 
mA z = 1mm L . 

L-oo 
(4.2.19) 

Then 
mA(z) > m(z). (4.2.20) 

This theorem will be proven in the next section. It is clear that ( 4.2.20) is 
equivalent to ( 4.2.18). 

We remark that it is not hard to see that ( 4.2.20) holds when z is 
sufficiently small. This is because an irreducible bridge of span L ;:=: 2 must 
have at least 3L steps, and when z is small the main contributions come 
from the shortest walks. Thus 

oo oo ( )3L 
A.r(L) = E >.N,LZN ~ E JJN zN = _!!!__, 

N:3L N:3L 1 - J.'Z 
(4.2.21) 

so 
mA(z) ;::: -3log(JJz). (4.2.22) 

But m(z) ~ -log z by Proposition 4.1.9(a), so mA(z) > m(z) whenever 
z < JJ-3 / 2• Also note that these inequalities, together with Proposition 
4.1.9(b) and the fact that 

mA(z) ~ -3log z (4.2.23) 
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(which follows from the fact that >.aL,L ~ 1 for L ~ 2), imply that 
mA(z) "" 3m(z) as z '\. 0. This is intuitively clear: for small z, the domi­
nant contributions are from the shortest walks·, and the shortest bridge of 
span L has length L while the shortest irreducible bridge has length 3L. The 
z '\. 0 limit is in fact where the greatest relative discrepancy between the 
two masses occurs, for we shall see in Corollary 4.4.4 that mA(z) 5 3m(z) 
for every z in (0, Zc)· 

For the rest of this section, we will concentrate on some of the conse­
quences of Theorem 4.2.4. The first consequence is that the convergence in 
(4.2.16) is exponentially fast: 

Theorem 4.2.5 For 0 < z < Zc, there exists a strictly positive constant 
e-(z) sttch that 

IBz(L)em(z}L- czj5 e-£(z)L 

for all L ~ 1, where Cz = CEf=t kAz(k)em(z)k)- 1 > 0. 

Proof. Let s be complex, and define P(s) and A(s) as in (4.2.13). We 
know that P(1) = 1 by (4.2.15), and since the coefficients in the series 
defining P(s) are all positive, we must have IP(s)l < 1 for all s :f:. 1 such 
that Isis; 1. By Theorem 4.2.4, (4.2.18) holds, so P(s) is analytic in some 
disc lsi < R with R strictly greater than 1. Therefore there is an r between 
1 and R such that s = 1 is the only zero of P(s)-1 in the disc Isis; r. Next, 
observe that P'(1) = 1/Cz; in particular, P'(1) :f:. 0, by (4.2.16). Denote 
the residue of the function f(s) at a by Res(f(s), a). By the residue theorem 
and the integral theorem for the coefficients of a Laurent series, we have 

aL =-Res(/~~(~)' 1) + 2~i i=r /~~~~)ds. 
The first term on the right is 1/P'(l) and the second is O(r-L-1). This 
proves the theorem. 0 

The probabilistic counterpart to the above theorem-that the proba­
bility of a renewal at time L converges exponentially fast to its limiting 
value when Xt has an exponential moment-is well known (see Nummelin 
(1984), p.107). The next theorem is intrinsically probabilistic in nature: it 
gives a local central limit theorem for the endpoint of a bridge. In the ter­
minology of mathematical physics, the L -(d-l)/ 2 power law correction to 
the pure exponential decay in (4.2.25) below is known as Ornstein-Zernike 
decay. Such decay occurs in the subcritical two-point functions of a wide 
variety of statistical mechanical systems. 
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Theorem 4.2.6 For 0 < z < Zc, there exists a strictly positive constant Oz 
such that 

lim IB (L y)em(z)L£(d-t)/2_C exp(-IYI2/6:L)I =0 
L-+oo z ' z (11'6,)(d-1)/2 (4.2.24) 

uniformly in y in zd-t. Consequently, 

B (L ) "'C -m(z)Lexp(-IYI2f6,L) 
z , y ,e (11'6zL)(d-1)/2 (4.2.25) 

as L-+ oo, uniformly in y in zd-t satisfying IYI 5 I< L112 (for every fixed 
I<> 0). Equivalently we have (by Theorem 4.2.5) 

B,(L, y) exp( -lyj2f6zL) 
B,(L) (11'6zL)(d-1)/2 

(4.2.26) 

for the same range of y. 

Intuitively, the relation ( 4.2.26) says that the endpoint of a bridge of span L 
has an asymptotically Gaussian probability distribution in the hyperplane 
X1 = L. 

We note here that Theorems 4.2.5 and 4.2.6 can be used to prove exactly 
analogous results for the full two-point function G,(O, x). This will be done 
in Section 4.4 (see Theorem 4.4.7). 

We shall now provide a probabilistic context for interpreting and proving 
Theorem 4.2.6. Define the random vector (X, Y) such that X takes values 
in {1, 2, ... } andY takes values in zd-1, and 

Pr{(X, Y) = (L, y)} = A:(L, y)em(z)L for L ~ 1, y E zd- 1. (4.2.27) 

Thus the marginal distribution of X is given by (4.2.11): 

Pr{X = L} = PL(z), for L = 1, 2, ... 

(In particular, (4.2.15) guarantees that (4.2.27) describes a genuine proba­
bility distribution.) Let {(Xn, Yn) : n ~ 1} be a sequence of independent 
copies of (X, Y). Then we claim that 

Bz (L, y)em(z)L = Pr{X1 + · · · + X~c =Land Yt + · · · + Y~c = y for some k} 
(4.2.28) 

for L ~ 1 and y in zd-t. (This also holds for L = 0 if we interpret the 
event on the right as occurring for k = 0 when (L, y) = (0, 0).) Equation 
(4.2.28) follows by iteration of (4.2.10), which gives 

Bz(L, y) = ~ [I:}] A:(ni, vi)] 
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where the inner sum is over all n1, ... , n~: ~ 1 and all v1, ... , VA: in zd-l 
such that n1 + ... + n~: = L and Vt + ... + VA: = y. 

Now, if we let Sn = L:?=t (Xi, Y;), then {Sn} is ad-dimensional random 
walk with positive, finite drift in the :z:1 direction, and B11 (L, y)em(z)L is the 
probability that this walk ever hits the point (L, y). Thus Theorem 4.2.6 
says that for large L, this probability factors into a (d- 1)-dimensional 
Gaussian density, with variance proportional to L, times the inverse of the 
mean of X [which is the limiting probability that the hyperplane x 1 = L 
is ever hit, according to (4.2.16)). This just what one would expect prob­
abilistically, if one knew that Y had finite variance. But in fact Theorem 
4.2.4 implies that IYI has an exponential moment, as we now show. 

Lemma 4.2.7 (a) mA(z) is a concave function oflogz (z > 0). In par­
ticular, it is finite and continuous for 0 < z < Zc· 

(b) Fix 0 < z < Zc. Then there exists an s > 0 for which E(e•IYI) is finite. 

Proof. (a) By Lemma4.1.2, -L-1 1ogA11 (L) is a concave function oflog z 
for every L ~ 1. The desired concavity then follows from the fact that the 
lim inf of a concave sequence is concave. Inequalities ( 4.2.22) and ( 4.2.23) 
prove finiteness, and continuity follows immediately. 
(b) By part (a), mA(z) is continuous at z. Therefore by (4.2.20) there exists 
an s > 0 such that ze' < Zc and mA(ze') > m(z). Then 

E(e•IYI) = 2: e•IYIAz(L, y)em(z)L 
L,y 

< L e•N >.N,L(y)zN em(z)L 
L,y,N 

= 2: Aze.(L)em(z)L < oo. 
L 

0 

We now know exactly why Theorem 4.2.6 should be true-all that is left 
is to complete the technical details. This was done in Chayes and Chayes 
(1986a) via an explicit asymptotic analysis of the generating functions. We 
shall follow a different route here, appealing directly to a theorem from the 
probability literature. 

Proof of Theorem 4.2.6. The following result is a (very) special case 
of Theorem 3.2 of Starn (1971); we shall not reproduce its proof here. Let 
{(Xn, Yn) : n ~ 1} be an independent, identically distributed sequence of 
zd-valued random vectors (we follow our usual notation, so Yn takes values 
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in zd-l ). We write the coordinates as follows: 

(Xn, Yn) = (Xn, Yn2 1 Yna, ... , Ynd)· 

Assume the following: (a) that the expectation of X 1 , which we denote 0, 
is finite and strictly positive; (ia) that the ((d- 1)/2)-th moment of X1 is 
finite; (iii) that the covariance of Yli and Yt; is 0 whenever i ::/: j, and that 
for every i = 2, ... , d the variance ofYli is a strictly positive finite constant 
v; and (iv) that the distribution of (Xn, Yn) has no periodicities (for our 
purposes, it suffices to check that Pr{(X1, Y1) = (L, y)} > 0 for every L ~ 1 
and every y in zd- 1 ). Define 

( 
0 )(d-1)/2 

lfJ(L, y) = 0-1 21rv exp( -Oiyl2 /2vL), 

and let U(L, y) denote the expected number of values of n such that 

(Xt + .. · + Xn, Y1 + .. · + Yn) = (L, y) 

(i.e. the expected number of times that this d-dimensional random walk 
visits the point (L, y)]. Then Starn's theorem says that 

2~~ IL(d- 1>1 2U(L, y) -lfJ(L, y)l = o, 

uniformly in y in zd-t. As a simple corollary, if we restrict IYI to be no 
larger than I< £1/2 for some constant I<, then lfJ(L, y) remains bounded 
away from 0 and so 

U(L, y)"' L-(d-t)f2cp(L, y) 

as L - oo, uniformly for such y. 
In our case, the distribution of the random vector is given by (4.2.27), 

for which assumption ( iv) clearly holds. Since Xt is always a positive 
integer, 0 > 0; in fact, 0 = 1/Cz, where Cz is the positive constant defined 
in Theorem 4.2.5. So assumption ( i) holds. Assumption ( ii) follows from 
the fact that Xt has an exponential moment, by (4.2.18). For (iiz): first, 
the covariances are 0 because the joint distribution of Yli and Ytj is the 
same as the joint distribution of Yu and - Y1j; secondly, symmetry implies 
that the variance of Yu does not depend on i; and thirdly, v is finite by 
Lemma 4.2.7(b). Finally, since X1 is strictly positive, a point which is 
visited once by the random walk is never revisited; thus ( 4.2.28) tells us 
that U(L, y) = Bz(L, y)em(z)L. Now Starn's theorem proves Theorem 4.2.6, 
with 6:~ = 2vf0. D 
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As a final consequence of Theorem 4.2.4, we shall prove that the mass 
is a real analytic function of z in (0, zc)· This will be accomplished by 
applying the analytic implicit function theorem to (4.2.15), which is an 
equation relating z and m(z). 

Theorem 4.2.8 The mass m(z) is a real analytic function of z in the 
interval (0, Zc). 

Proof. Fix a real zo in (0, Zc) and let uo = em(zo). Define the function f 
of two (complex) arguments u and z by 

00 00 00 

f(u,z) := L L >.N,LZNUL = L:,:Az(L)uL. (4.2.29) 
L=1 N=1 L=1 

We must first show that f(u, z) is convergent (and hence holomorphic) 
in some neighbourhood of (uo, zo). To this end, suppose that e is a small 
positive number and suppose that (u, z) satisfies lu-uol < e and lz-zol <e. 
Then 

00 00 00 

L L >.N,LiziNiuiL :$; L Azo+£(L)(em(zo) + e)L. (4.2.30) 
L=1N=1 L=l 

Applying the root test to the right hand sum and recalling the definition 
of mA in (4.2.19), we see that the sum converges absolutely if 

(4.2.31) 

Since mA is continuous at zo [by Lemma4.2.7(a)] and since m(zo)-mA(zo) < 
0 (by Theorem 4.2.4), it is possible to choose e small enough so that ( 4.2.31) 
holds. Therefore f is indeed holomorphic in a neighbourhood of (uo, z0). 

We see from Equations (4.2.29), (4.2.11), and (4.2.15) that 

f(em(z), z) = 1 for all z in (0, Zc); (4.2.32) 

in particular, f(uo,zo) = 1. Also, {}fj{}u is nonzero at (uo,zo), since it 
may be written as a series of positive terms. Therefore the analytic implicit 
function theorem (see for example Griffiths and Harris (1978), p. 19] tells 
us that there exists a function w(z), holomorphic in a neighbourhood of z0 , 

with the following property: in a neighbourhood of (uo, z0), the equation 
f(u, z) = 1 holds if and only if u = w(z). By (4.2.32) we see that m(z) = 
log w( z) for all real z in a neighbourhood of zo. This proves the theorem. 

0 
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4.3 Separation of the masses 

This section is devoted to a proof of Theorem 4.2.4, which states that the 
"mass" mA(z) of irreducible bridges is strictly greater than the mass m(z) 
whenever 0 < z < Zc. 

Definition 4.3.1 Letw = (w(O), ... ,w(N)) be a bridge. A backtrack ofw 
is a subwalk 

w[s; t] = (w(s), .. . ,w(t)) 

(0 ~ s < t ~ N) satisfying: 
(i) w1(t) ~ w1(i) < w1(s) for all i = s + 1, ... , t- 1; 
(ii) w1 (j) ~ w1 ( s) for all j = 0, 1, ... , s - 1; and 
(iii) w1(t) < w1(j) for all j = t + 1, ... , N. 

The span of the backtrack is defined to be w1(s)- w1(t). 

w(26) r------, w(32) 

w(15) 

0 w 12) 
t---''----' 

w(3) w(lO) 

w(5) 

0 1 2 3 4 5 6 7 

Figure 4.2: A bridge of length N = 32, with w1{0) = 0 and w1(N) = 7. 
There are three backtracks: w[3; 5], w[lO; 12], and w[15; 26]. 

Condition (i) says that a backtrack is itself a bridge, except that it goes 
right-to-left instead of left-to-right. Conditions (ii) and (iii) are maximal­
ity conditions: they guarantee that every subwalk w[s; t] satisfying (i) is 
contained in a unique backtrack. In fact, the following is true: 
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Lemma 4.3.2 Let w be an N -step bridge. If 0 ::;; so < to ::;; N and 
Wt(to) < Wt(so), then there is a unique backtrackw[s,tJ ofw that contains 
w(so) and w(to). 

Proof. Given such s0 and t 0 , define 

A = min{wt(i): to::;; i::;; N}, 

B = max{wt(i): 0::;; i::;; so}, 

s = max{i: 0::;; i::;; so,wt = B}, 

= max{i: to::;; i::;; N,w1 =A}. 

Then w[s; t) is the unique backtrack containing w(so) and w(to). Details 
are left to the reader. 0 

Corollary 4.3.3 Two backtracks of the same bridge are either equal or else 
they have no sites in common. 

We now state two additional definitions related to the decomposition of 
a bridge into two smaller bridges, as can be done when (4.2.1) occurs for 
i < N. 

Definition 4.3.4 Let w be an N -step bridge. A backtrack w[s; t) is said to 
cover the integer j ifwt(t)::;; j < Wt(s). We say that the integer j [wt(O) < 
j < Wt ( N)] is a break point of w if there exists an r in { 1, ... , N- 1} such 
that Wt(i)::;; j for all i = 0, ... , r and Wt(i) > j for all i = r + 1, ... , N. 

For example, in Figure 4.2, the backtrack w[15; 26) covers the integers 3, 4, 
and 5; and the integers 2 and 6 are break points (corresponding respectively 
tor = 6 and r = 30 in the definition). Notice that an integer can be covered 
by more than one backtrack (e.g. the integer 4 in Figure 4.2). Several 
remarks about Definition 4.3.4 are in order. Observe that j is a break 
point if and only if there exists an r such that w[O; r] and w[r; N] are both 
bridges, and Wt(r) = j. Also, j is a break point if and only if there is only 
one r such that w1(r) = j and w1(r + 1) = j + 1. A bridge is irreducible 
if and only if it has no break points. Finally, for every j strictly between 
Wt(O) and Wt(N), either j is a break point or j is covered by a backtrack. 

For the rest of this section, we consider a fixed value of z, with 0 < 
z < z~, so we shall usually suppress z in our notation (we shall write m for 
m(z), B(L) for Bz(L), etc.). We will use the following notation: If Sis a 
set of self-avoiding walks, then GF(S) denotes the generating function of 
S: 

GF(S) =. GF(S,z) =. :L>·Iwl. 
wES 



102 CHAPTER 4. DECAY OF THE TWO-POINT FUNCTION 

We begin with a basic lemma which says that break points are common 
in the (subcritical) ensemble of bridges. In particular, it says that a long 
interval on the x1-axis is unlikely to be free of break points. Later we will 
try to apply this bound to many long intervals simultaneously in order to 
prove that a complete absence of break points is exponentially rare, which 
is basically what Theorem 4.2.4 says. 

Lemma 4.3.5 For integers c ~ 0, T ~ 1 and L ~ c + T, let B• ( L; c, T) 
denote the generating function of all bridges of span L with w(O) = 0 
which have no break points among the integers c + 1, ... , c + T- 1. Then 
there exists a decreasing function ((T) (independent of L and c) such that 
limT ..... oo ((T) = 0 and 

B*(L; c, T) ~ e-mL((T) for all L and c (0 ~ c ~ L- T). (4.3.1) 

(For example, the bridge of Figure 4.2 is in B• (7; 2, 4) since 3, 4, and 5 are 
not break points, but it is not in 8"(7; 1, 4) or B•(7; 2, 5).] 
Proof. Considering the last break point j of a bridge before c + 1 and its 
first break point k after c + T- 1, we see that 

c L 

B*(L; c, T) = L L B(j)A(k- j)B(L- k). 
j:Ok=c+T 

Using the notation of the previous section (recall ( 4.2.11) and (4.2.12)], 

c L 

B•(L; c, T)emL = L L aiPk-jaL-k 
j:Ok:c+T 

L 

< L(i -T + l)p; 
i:T 

(where we have used an ~ 1 for all n). Therefore setting 

00 

((T) =Lip; 
i:T 

gives a function with the desired properties, by (4.2.17). 0 

There is a "renewal theory" interpretation of the preceding lemma. The 
quantity B•(L; c, T)emL is the probability that there are no renewals be­
tween c and c + T (and that there is a renewal at L ). Since the mean time 
between renewals is finite, it is unlikely that a given long interval contains 
no renewals. 
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Our strategy now is the following. We want to bound the generating 
function of the set of irreducible bridges of span L (which start at the ori­
gin). We fix a large integer Q and for L > Q we split the interval [0, L] into 
blocks (subintervals) of size Q. Then we look at the backtracks that cover 
the endpoints of these blocks. For the subset of irreducible bridges in which 
many of these backtracks are small, the blocks approximately decouple into 
irreducible bridges, each of which has small probability (by Lemma 4.3.5), 
so many such blocks are exponentially rare. The remaining irreducible 
bridges have many large backtracks, so we use B(k) ~ e-mk to bound the 
contributions of these backtracks, again resulting in exponentially smaller 
quantities. 

For the details, we proceed as follows. Let T and ~ be positive integers 
(to be specified in the proof of Theorem 4.2.4 below), and let Q = 2~ + T. 
For large L, let k :: k(L) be the greatest integer less than or equal to 
(L/Q) -1; we will split [0, L] into k + 1 subintervals (observe that k + 1 is 
of order L). Given L, define the set 

A = { Q, 2Q, ... , kQ}. 

With 0 and L, the elements of A are the endpoints of the blocks. Consider 
any nonempty subsetS= {n1, ... ,nr} of A, with n1 < ... < nr. Put 
no = 0 and nr+l = L. Then 

ni+l- n;;::: Q for all i = 0, 1, ... , T. 

In the rest of this section, T will always denote lSI. Let IL denote the 
set of all irreducible bridges of span L. Let h(~ ~; S) denote the set of 
all irreducible bridges of span L such that no point of S is covered by a 
backtrack having a span of more than ~. For integers 17'1, ... , 17'r ;::: 1, let 
:h ( S, 17'1, ... , q r) denote the set of all irreducible bridges of span L such 
that for each i = 1, ... , T there is a backtrack of span 17'i which covers ni 
but does not cover ni for any other j f:. i. 

We will now state three lemmas. We will then show how they can be 
used to prove that rnA > m, and finally we will prove the lemmas. The first 
lemma says that every irreducible bridge either has lots of small backtracks 
(i.e. of span~ or less) or it has enough large backtracks. The second lemma 
bounds the generating function of the first kind of irreducible bridge, and 
the third lemma does the same for the second kind. The notation of the 
preceding paragraphs is assumed in each lemma. 

Lemma 4.3.6 The set IL is contained in the union of 

u (4.3.2) 
SCA,ISI~k/2 
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and 

u u 
SCA,ISii?:l 171 > ~ •... 1 17r > ~ 

111 + • • • + 11r ) k~/2 

Lemma 4.3.7 GF(IL{$ A;S)) $ e-mL(Xl(T)y+l, 

(4.3.3) 

Here l is from Lemma 4.3.5 and x is the susceptibility [defined in (1.3.4)]. 
Lemma 4.3.8 GF(,JL(S,u1, .. . ,ur)) 5: e-mLX2Te-m(11•+ .. ·+11 •>. 
Proof of Theorem 4.2.4. Fix T so that 

2 (XE(T)) 1/ 2 < ~, (4.3.4) 

and fix A so that 

( 1 + x2 ) e-m~/4 < ~. 
1- e-m/2 2 (4.3.5) 

Set Q = 2A + T. Then, by the preceding three lemmas, 

Az(L) - GF(IL) 
< 2ke-mL (XE(T)f+k/2 

+ e-mL t ( ; ) x2T L e-m(11t+···+17r). 

T=l 171 > .0. 1 ••• 1 11r > .0. 
111 + · · · + 17r ) lc.0./2 

Now, for any positive D and r such that r < m, 

z:: e-m<l1•+ .. +17r) 

171 >~, ... 1 17r>.O. 
171 + · · • + 11r ) D 

$ ( e(r-m).O. ) T -rD 
1 - e-(m-r) e . 

Putting r = m/2 and D = kA/2, we obtain (using ( 4.3.4) and ( 4.3.5)] 

$ e-mL ( [2 (XE(T))t/2] k + [1 + x2e-mt./2] k e-m.O.k/4) 
1- e-m/2 

< e -mL (G)' + G)') 
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Therefore 
m =liminf-logAz(L) > m+ log2 > m. 

A L-oo L - Q 
This proves the theorem. 0 

Proof of Lemma 4.3.6. Suppose w is in IL but not in 

U IL($ d; S). 
SCA,ISI~k/2 

Then at least k/2 points of A are covered by backtracks of span greater 
than d. Some of these backtracks may cover more than one point of A. If 
a backtrack covers j points of A (where j ? 2), then its span is at least 
(j- 1)Q, which is greater than jd (recall Q = 2d + T). Also, some points 
of A may be covered by several backtracks. 

Choose an integer r, as small as possible, having the following property: 
there exists a collection of r backtracks of w, each of span greater than d, 
such that at least k/2 of the points of A are covered by one or more of 
these r backtracks. Then each backtrack covers some point of A which is 
not covered by any of the other r - 1 backtracks (otherwise, this backtrack 
could be removed from the collection, contradicting the minimality of r). 
This shows that for someS= {n1, ... , nr} C A and some 0'1, ... , O'r > d 
satisfying 0'1 + .. · + O'r > (k/2)d, w is in .1L(S, 0'1, ... , O'r ). This proves 
the lemma. 0 

ProofofLemma4.3.7. Suppose thatw is in IL($ d; S), S = {n1, ... , nr }. 

Let 

ro = 0, 

qr+l = lwl, 
q; = min{j:w1(j+l)=n;+l}, i=l, ... ,r, 
r; = max{j:w1(j)=n;}, i=1, ... ,r. 

(See Figure 4.3.) Notice that since w has no break points, q; is always 
strictly less than r;. By our choice of w, we know that 

for all j ~ q; 

and 
for all j 5: r;. 

In particular, ri-1 < q; (i = 1, ... , r + 1), since ni+1 - ni > 2d. Moreover, 
w(r;-1; q;] is a bridge, and the rest of w stays out of the strip 

{ x E R d : n; -1 + d < x 1 < n; - d}. 
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w(q;) 

Xt 

n;- .:l n; 

Figure 4.3: Proof of Lemma 4.3.7: part of a walk w in IL(~ .:l; S). 

So, since w has no break points, w[r;- 1 ; q;) has no break points between 
n;-1 + ~ and ni- ~ (although it could have break points elsewhere). So, 
by cutting w at each of q1, r1 , ... , q,., r,., and looking at the 2T + 1 subwalks 
that are obtained, we deduce (with the help of Lemma 4.3.5) that 

T+l 

GF(IL(~ ~; S)) ~ Xr II B*(ni- ni-1; ~. n;- ni-1- 2~) 
i=1 
T+l 

~ Xr IT e-m(n;-n;_J)((n;- n;-1- 2.:l). 
i=1 

The lemma now follows because x > 1, 'E[t{(ni- ni-t)= L, n;- ni-t-
2~;:::: T, and cis a decreasing function. D 

Proof of Lemma 4.3.8. Suppose w is in .7t (S, 0'1 , ••• , O'r ). For every 
i = 1, ... , T, there is at least one backtrack w[ s;; t;] of span 0'; such that 

ni-l< w1(t;) ~ n; < w1(s;) ~ ni+t· 

(See Figure 4.4.) This implies that t; < si+1 for every i = 1, ... , T- 1. 
Define lo = 0 and, for i = 1, ... , T, 

/; = min{r > [;_1 : w1(r + 1) = n; + 1}, 

l; = max{r: w1(r) = n;}. 
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'------------.w( s;) 

.-----w....,..(s4;_1) w(/;) -------l 
w(/;_t) 
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Xl 
----~----------------~----------------------~--n; 

Figure 4.4: Proof of Lemma 4.3.8: part of a walk w in :h(S, (fl, ... , (fr ). 

Then, for every i = 1, ... , T, 

and w[/;_ 1; /;} is a bridge of span n; -ni-l· If we consider cutting w at 
every /;, s;, t;, and l;, then we deduce that 

GF(:h(S,(ft, ... ,(fr)) < (}] B(n; -n;_t)) g(xB((f;)X) 

< e-mL X2r e-m(<71 +···+ur)' 

since 'LF~l(n;- n;_t) = L. 0 

4.4 Ornstein-Zernike decay of Gz(O, x) 
The preceding section showed that for subcritical z, the spatial decay rate 
for irreducible bridges is strictly larger than for bridges as a whole, or 
in other words that the ratio Az(L)/Bz(L) decays exponentially in L for 
any fixed z < Zc. This may be viewed intuitively as saying that in the 
subcritical ensemble of bridges with distant endpoints, irreducible bridges 
are exponentially rare. (In contrast, bridges with distant endpoints are not 
exponentially rare among all self-avoiding walks with the same endpoints, 
by Theorem 4.1.14). The first part of this section proves some results in 
the opposite direction: we get a lower bound on the scarcity of irreducible 
bridges in the form mA(z) :=:; 3m(z) whenever 0 < z < Zc (Corollary 4.4.4). 
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Since m(z) tends to 0 as z approaches zc, this tells us intuitively that 
irreducible bridges are not exponentially rare in the critical ensemble. We 
shall also prove a more natural interpretation of this intuitive statement, 
namely that the "connective constant" for irreducible bridges is the same 
as for walks (Corollary 4.4.5). Finally, we shall use these results to help us 
prove detailed large-distance asymptotics (the "Ornstein-Zernike" decay) 
of the subcritical two-point function Gz (0, x) (Theorem 4.4. 7). 

Definition 4.4.1 For all nonnegative integers N, L, and r, let BN L r be 
the set of bridges (w(O), ... , w(N)) of span L such that w(O) = 0, w2(N) '= r, 
and 0 ~ w2(i) ~ r for every i = 0, ... , N. Also let BN,L = Ur?_oBN,L,r· 

Such bridges are useful for the following reason, which we shall explain 
more carefully below: we produce an irreducible bridge whenever we per­
form an appropriate concatenation of three of them, all with the same span 
but with the middle one reflected in the x 1 direction so that it goes right­
to-left. Thus to get lower bounds on the number of irreducible bridges, we 
first derive a lower bound on the number of bridges in BN,L. 

Proposition 4.4.2 There exists an No such that bN,L ~ e3N112 IBN,Li for 
every N ~ No and every L ~ 1. 

Proof. The idea is very similar to the proof of Theorem 3.1.1, but now 
we will "unfold" the walk in the x2 direction. Let w be any N-step bridge 
of span L. Let no(w) be the largest value of i such that w2( i) = mini w2(j). 
For each j > 0, recursively define Aj(w) and nj(w) so that 

Aj = m~x (-l)i(w2(nj-t)- w2(i)) 
no<•~N 

and ni is the largest value of i for which this maximum is attained. The 
recursion is stopped at the smallest integer k such that n,. = N. Also, let 
mo(w) = no(w), and for each j > 0 recursively define Aj(w) and mj(w) so 
that 

and mj is the smallest value of i for which this maximum is attained. The 
recursion is stopped at the smallest integer I such that mr = 0. (See Figure 
4.5.) Now, reflect the first mr-t points of w through the hyperplane 
X2 = w2(mr-d, and continue reflecting through x2 hyperplanes at w(mj), 
j = 1-2, ... , 0, and at w(ni ), j = 1, ... , k -1. The result of each reflection 
is still a bridge of span L, and the final result (after a translation in the 
X2 direction and perhaps an overall reflection through x 2 = 0) will be in 
the set L?N,L,A+A' where A = L: Aj and A = l:Ai. Since At > A2 > 
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rr ________ _ 
------Tl 
n3 - - -f A2 A1 

~---tl[ 
n2 

- - - -_ - - - - - - - - - - - - - -
no= mo 

Figure 4.5: Proof of Proposition 4.4.2: The walk w before "unfolding" . 

. . . > Ak. there are Pv(A) possible sequences of Aj's that sum to A; and 
since At ~ A2 > ... >:A,, there are Pv(A + 1) possible sequences of Aj's 
that sum to A. Observe that these two sequences together with the final 
bridge in BN,L,A+A determine the original w uniquely, except perhaps for 

a reflection through x2 = 0. Therefore, since A+ A$ N, we obtain 

N r 

bN,L $ 2 L L Pv(A)Pn(7'- A+ l)IBN,L,rl 
r:O A:O 

N 

$ 2 L(N + l)I< 2 exp [(3- i)(N + 1)1/ 2] IBN,L,rl, 
r=O 

where the second inequality follows as in (3.1.7), having taken B = 3 in 
(3.1.6). The proposition follows. D 

We now establish several corollaries of this result. Recall that M(z) is 
the mass for bridges, and that M(z) = m(z) for all z in (0, zc)· 

Corollary 4.4.3 Let Bz(L) = LN IBN,LizN. Then 

lim -logBz(L) = M(z) 
L-oo L 

for every z > 0. 
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Proof. By Proposition 4.4.2 and the observation that bridges of span L 
must have at least L steps, 

00 

Bz(L) ~ L bN,Le-sN•I, zN 

N=L 

for every L ~ No and every z > 0. Now let c > 0. Choose N1 ~ No such 
3N1,, N A 

that e- > (1- c) for every N ~ N1. Then Bz(L) ~ B(l-£).r(L) for 
every L ~ N1, and hence 

. -log B.r(L) 
hmsup L $ M((1- c)z). 

L.-.oo 
(4.4.1) 

Since cis arbitrary and M is left-continuous [Lemma 4.1.11(d)], we can 
replace M((l - c)z) by M(z) on the right side of (4.4.1). The result 
then follows since the reverse inequality for the lim inf is a consequence 
of B,(L) $ Bz(L). o 

Corollary 4.4.4 mA(z) $ 3m(z) for every z in (0, zc)· Also, mA(zc) = 0. 

Proof. Fix L, and let WA, WB and we be three walks in UNBN L· Let 
WB be the reflection of WB through the hyperplane x1 = 0. L~t w be 
the walk obtained by starting at the origin, taking one step in the +x1 
direction, followed by WA (appropriately translated), followed by one step in 
the +x2 direction, followed by w B, followed by one step in the +x2 direction, 
followed by we. Then w is self-avoiding; in fact, it is an irreducible bridge of 
span L + 1. This proves that A.r(L + 1) ~ [zB1 (L)] 3 , and so Corollary 4.4.3 
implies that mA(z) $ 3M(z) for every z > 0. With Theorem 4.1.14, this 
proves the first assertion of the corollary. The second assertion follows from 
M(z) $ mA(z) $ 3M(z) and the fact that M(zc) = 0 (Theorem 4.1.13). 

0 

Corollary 4.4.5 limN-oo(AN)l/N = p.. 

Proof. Since AN $ CN, it suffices to show that lim infN(AN )1/N ~ p.. 
In the proof of Corollary 4.4.4, suppose that WA, ws, and we are all in 
Bn-l,L; then the resulting irreducible bridge w has 3n steps. Thus Asn,L+l 
is bounded below by IBn-l,£13 . Notice that we can get the same lower 
bound for Asn+t,L+l and Asn+2,L+l• since we can add one or two steps in 
the +x2 direction to the end of w. Therefore 
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(where LzJ denotes the greatest integer less than or equal to z). Proposition 
4.4.2 implies that 

AN,L+l ~ (bLN/3J-l,L)3e-9(N/3)1/2. 

We now sum this inequality over L = 1, ... , Nand apply Holder's inequality 
in the form 

(for a; ~ 0). This gives 

,\ > (bLN/3j-t)3 -9(N/3)112 
N- N2 e 

for every N. Finally we take N-th roots of both sides and let N tend to 
infinity; the desired result is a consequence of Corollary 3.1.6. 0 

For the remainder of this section, we need to extend the definition of 
break point in Definition 4.3.4 to an arbitrary N-step self-avoiding walk w. 
Now we say that that the integer j is a break point of w if there exists an r 
in {1, ... , N -1} such that Wt(i) $ j for all i = 0, ... , rand w1(i) > j for all 
i = r + 1, ... , N. Observe that w cannot have a break point unless w1 (0) < 
w1(N) 1 and that each break point j must satisfy w1(0) :5 j < w1(N). So 
the only real change in the definition is allowing j = w1(0). Notice that the 
two definitions coincide for bridges: if w is a bridge then w1 (0) cannot be a 
break point because we do not allow r to be 0. 

Before proving the Ornstein-Zernike decay of G~(O, z), we require a 
lemma which establishes a decay rate for the point-to-plane generating 
functions of a new class of walks which is larger than the class of irreducible 
bridges. These walks end on a specified hyperplane z1 = L, lie in the half­
space x 1 $ L 1 and have no break points. 

Lemma 4.4.6 Suppose 0 < z < Zc. For each integer L ~ 0, let Hz(L) be 
the generating function of the class of self-avoiding walks (w(O), ... 1 w(N)) 
such that: w(O) = 0; Wt(N) = L; Wt(i) :5 L for every i = 0, ... , N; and w 
has no break points. Then 

l . . f - log Hz ( L) ( ) 
tmm L = mA z. 
L-oo 

Proof. Since Hz(L) ~ Az(L) we have 

l .. f-logHz(L) () 
tmm L $ mA z 1 
L-oo 
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so it remains to prove the reverse inequality. 
Consider any win the class of walks that corresponds to H.(L). LetT 

be the largest i such that w1 ( i) = 0. Let 

J = max{wt(i): 0::; i::; T}, 

and let I be the first value of i for which this maximum is attained. Observe 
that the subwalk (w(T), ... , w(N)) is a bridge of span L, and that if it has 
any break points, then they must all be in {1, 2, ... , J -1}. We cut w at I, 
T, and the last break point of (w(T), ... , w(N)); this decomposition shows 
that 

L J-1 

H.(L):::; 2: c.(J)2 I: B.(k)A.(L- k), 
J:O k:O 

where G.(J) was defined in (4.1.19). 
Choose any number p such that m(z) < p < mA(z). By definition of 

mA(z), there exists an R > 0 such that A.(L) ::; Re-Pi for every j ? 1. 
Using this, (4.1.21), (4.1.12) and Theorem 4.1.14, we obtain 

L J-1 

Hz(L) ~ :l)x(z)2e-m(z)Jj2 L e-m(z)k Re-p(L-k) 
J:O k:O 

L 
< x(z)4 2: e-2m(z)J J Re(p-m(z))J e-pL 

J:O 

< x(z)4 RL2e-pL 

where we have used p ~ 3m(z) (Corollary 4.4.4) in the last line. The result 
now follows because p can be made arbitrarily close to mA(z). D 

Finally we are ready to extend Theorems 4.2.5 and 4.2.6 to complete 
our picture of the long-distance asymptotics of the subcritical two-point 
function c.(o, x). 

Theorem 4.4.7 Fix z with 0 < z < Zc. 

{a) There exist strictly positive, finite constants i(z) and c. such that 

,G.(L)em(z)L- Cz I::; e-<(z)L 

for all sufficiently large L. 
(b) (Ornstein-Zernike decay) For c. as in Theorem 4.2.6, 

lim jc (0 (L y))e~(z)L L(d-1)/2- C exp( -lyl2 jo.L) I= 0 
L-+oo z ' ' z ( 1I'Oz )(d-1)/2 
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uniformly in y in zd-1, 

The analogues of the asymptotic relations (4.2.25) and (4.2.26) also 
hold. 

Proof. The basic idea is that in the subcritical ensemble, most walks 
with distant endpoints will have lots of break points; the difference be­
tween bridges and general walks in this respect is a matter of "boundary 
conditions" (at 2:1 = 0 and 2:1 = L ). Our first job will be to show that walks 
with no break points are negligible. We shall then sum the remaining walks 
according to the locations of their first and last break points (which will 
typically be close to the endpoints). Then we apply Theorems 4.2.5 and 
4.2.6 to the middle parts of the walks, which are bridges. 

Throughout this proof we shall use m to denote m(z). 

(a) Let c:(L) be the generating function of all self-avoiding walks w such 
that w(O) = 0, w1(N) = L, and w has no break points. We claim that 
the mass of G:(L) is is strictly greater than m. The proof is similar in 
spirit to the proof of Lemma 4.4.6, so we shall be brief. For any walk w 
contributing to G:(L), define T and J as in the proof of Lemma 4.4.6, 
and also define the analogous quantities T' = min{i : w1(i) = L} and 
J' = min{wt(i) : T' ~ i ~ lwl}. The contribution of all walks which have 
either J > L/3 or J' < 2L/3 can be bounded by 2Gz(lL/3J)2Gz(L), and 
hence has mass at least 5m/3 by Corollary 4.1.17. The contribution of the 
remaining walks can be bounded by 

L/3 L J J' 

L Gz(J) 2 L Gz(L- J') 2 L L Bz(k)Az(k'- k)Bz(L- k'), 
J=O JI=2L/3 k=Ok 1=0 

which also has mass strictly greater than m. This proves the claim. (We 
remark that with more care, one can show that the mass ofG;(L) is mA(z).) 

By considering the leftmost break point i and the rightmost break point 
L- 1 - j of a given walk, we have 

L-1 L-1-i 

Gz(L) = L L Hz(i)Bz(L- 1- i- j)zHz(i) + G;(L) {4.4.2) 
i=O j=O 

(the factor of z is due to the single step of the walk from x1 = L- 1- j to 
2:1 = L- j). Define Vz = zemcz(Ln>o Hz(n)enm)2 , where Cz is defined 
in Theorem 4.2.5, and the sum in parentheses converges by Lemma 4.4.6 
and Theorem 4.2.4. From the above identity we have 
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L-1 L-1-i L L zHz(i)[Bz(L- 1- i- j)e<L- 1-i-j)m- C.~]H.~(j)e(i+j+1)m 
i:O j:O 

-C.~ L zH.~(i)H.~(j)e(i+j+l)m + a;(L)eLm. 
i+j~L 

Part (a) of the theorem now follows from Theorem 4.2.5 and Lemma 4.4.6. 

(b) The proof is similar to part (a), but we need to pay more attention to 
technicalities. For every (L,y) in zd, let H.~(L,y) and G;(O,(L,y)) denote 
the analogues of Ha(L) and G;(L) when attention is restricted to walks 
that end at (L, y). Then 

Gz(O, (L, y)) = 
L-1 L-1-i 
L L L Hz(i,u)Bz(L-1-i-j,y-u-v)zHz(i,v) 
i:O j:O u,vEZd-1 

+ a;(o, (L, y)). ( 4.4.3) 

Since the last term is less than G; ( L) it decays faster than e-Lm. Therefore, 
after substituting k = i+j+1 in (4.4.3), we are left with the task of showing 
that 

L 1:-1 

sup ILL L zH:(i, u)Bz(L- k, y- u- v)Hz (k -1- i, v)eLm L(d- 1)/2 
yEZd- 1 1::1 i:O u,v 

00 

- zem(L H:(n)enm)2t.p(L, y)l (4.4.4) 
n=O 

converges to 0 as L tends to infinity, where as in the proof of Theorem 4.2.6 

t.p(L, y) = Cz(11'6z)-(d- 1)12 exp(-lvi 2 /6.~L). 

As we shall see, this converges to 0 because the mass of the Hz terms is 
strictly greater than m and because 

B:(L, y)eLm L(d-1)/2- t.p(L, y) _. 0 

uniformly in y as L - oo. To use these facts, we add and subtract several 
terms in (4.4.4) and use the triangle inequality, as well as the bound Bz(L­
k, y- u- v)e(L-k)m :::; 1 [which follows from ( 4.1.12) and Theorem 4.1.14]. 
As a result, (4.4.4) is bounded by 

L/2 1:-1 

L L L zH:(i, u)Hz(k- 1- i, v)ekm(QL,k + rL-1: + SL,k,u+v) 
1::1 i:O u,v 
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L k-1 

+ E E E zHz(i, u)Hz(k- 1- i, v)ekm L(d- 1)12 

k:L/2+1 i:O u,11 

00 A:-1 

+ L L zHz(i)Hz(k- i- 1)ekmso(L, 0), 
I.::L/2+1 i:O 

where we define 

and 

qL,k = sup IL(d-1)/2- (L- k)(d-1)/2jB(L- k, x)e<L-k)m' 
xEZd-1 

rn = sup ln(d-t)f 2Bz(n,x)enm- so(n,x)l, 
xezd-1 

sL,k,w = sup lso(L- k, y- w)- so(L, y)l. 
uezd-1 
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By Lemma 4.4.6, there exist positive constants A and f (depending only on 
z) such that 

1.:-1 A:-1 

L E Hz(i, u)Hz(k- 1- i, v)ekm = E Hz(i)Hz(k- 1- i)ekm 
i=O U,ll i:O 

( 4.4.5) 

for every k ~ 1. Thus, if we can prove that qL,k 1 fL-kt and BL,k,w ( z) 
are bounded uniformly for all L ~ 2k and all w, and ( ia) converge to 0 as 
L --+ oo for every fixed k and w, then the dominated convergence theorem 
will imply that (4.4.4) converges to 0, which is what we want. 

To begin with, limn-oo rn = 0 by Theorem 4.2.6, so (a) a.nd (iz) hold for 
rL-k· Next we consider qL,k· The uniform convergence in Theorem 4.2.6 
implies that there is a. finite constant \II (depending only on z a.nd d) such 
that 

(L- k)(d-1)/2Bz(L- k,x)e<L-k)m $\II 

for every L, k, and :c. This in turn implies that 

( 
L )(d-1)/2 

qL,k $ L - k - 1 \II. (4.4.6) 

This proves (ii) for qL,k· Since 0 $ k $ L/2, the right side of (4.4.6) is 
bounded by (2(d-1)/2 -1)\11, which proves (a). 
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Finally, tp is uniformly bounded, hence so is BL,k,w. This proves ( i) for 
this sequence. To check (ii), we need to consider bounds on 

I exp( -lyl2 /OL)- exp( -ly- wl 2 /6(L- k))l 

that are uniform in y, where 6 is a positive constant. First, the mean value 
theorem gives 

I exp( -lyl2 /6L)- exp( -ly- wl 2 /6£)1 :$ sup I !:..e-t2/611M- IY- wll 
tER dt VI VI 

<_ '2t -t2/6 ,lwl ~~h 6e VI 
lwl < canst. vr· 

Secondly, for arbitrary ( 2: 0 (so in particular for ( = IY- wl 2 / 6): 

I exp(-(/ L)- exp(-(/(L- k))l = exp(-(/L)I1- exp(-(k/ L(L- k))l 
(k 

< exp( -(/ L) L(L- k) 

:$ (~~~te-') L:k 
where we have used 1- e-a ::::; a for a 2: 0. The above two inequalities show 
that 

( lwl k ) 
sr,k,w $ canst. VL + L _ k , 

which proves ( ii). 0 

4.5 Notes 

Section 4.1. Chayes and Chayes (1986a) perform a systematic study of 
the mass, deriving many of the results that are discussed in this section. In 
particular, our presentation of the material from Proposition 4.1.8 through 
Corollary 4.1.17 is largely based upon their work. They also prove that 
M(z) = -oo for all z > Zc· 

Theorem 4.1.18 is modelled upon an analogous result for percolation 
in Alexander, Chayes and Chayes (1990). In place of the FKG inequality 
used in that paper, we require Lemma 4.1.4, which we believe has not been 
used before for this purpose. The proof of Lemma 4.1.4 is closely related 
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to the proof of Lemma 1.5.2 (see in particular the first inequality depicted 
in Figure 1.2). 

Section 4.2. Ornstein-Zernike decay of two-point correlation functions 
occurs in many lattice spin systems and Euclidean quantum field theories 
[see Chayes and Chayes (1986b) for references], as well as in percolation 
[Campanino, Chayes and Chayes (1991)]. The original reference [Ornstein 
and Zernike (1914)] was in the context of fluid mechanics. 

The results of this section are due to Chayes and Chayes (1986a, 1986b). 
They give the Ornstein-Zernike decay with an explicit error term as a power 
of L -l that is uniform over a certain region of y E zd-l [see also the proof 
of Theorem 4.4 of Campanino, Chayes and Chayes (1991) for a correction 
of a misstatement in this respect in Chayes and Chayes (1986b)]. 

Section 4.3. Theorem 4.2.4 is due to Chayes and Chayes (1986b). Their 
proof splits the interval [0, L] into blocks and uses a result similar to our 
Lemma 4.3.5, but then it works with various rescaled block generating 
functions and an "Ornstein-Zernike inequality". The proof that we give in 
this section is from Madras (1991a). 

Section 4.4. Theorem 4.4.7 is due to Chayes and Chayes (1986b), which 
they state in a different form that includes an explicit error term, as they 
did for bridges. This paper also partially anticipates Corollary 4.4.4 and 
Lemma 4.4.6. The other results of this section are new. 
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Chapter 5 

The lace expansion 

5.1 Inclusion-exclusion 

So far the lace expansion is the only method which has led to rigorous 
results proving existence of critical exponents for the self-avoiding walk. 
All results obtained so far are for dimensions greater than the conjectured 
upper critical dimension four. 

The lace expansion was first introduced by Brydges and Spencer {1985), 
who used it to study weakly self-avoiding walk above four dimensions. 
Weakly self-avoiding walk will be defined precisely in the next section; 
roughly speaking it is a model of a random walk where walks which in­
tersect themselves do have a nonzero weight, but this weight is smaller 
than for a walk which does not intersect itself. The size of the probability 
penalty imposed for a self-intersection (i.e. the weakness of the interaction) 
is the small parameter which provided convergence for the lace expansion. 

Now consider a model of self-avoiding walk on a lattice with large co­
ordination number Z, or in other words a walk for which there are a large 
number of steps available at each site. The probability that the concatena­
tion of a randomly chosen single step to a given walk produces an immediate 
reversal is z- 1 , which is small. For example, consider the usual nearest­
neighbour model in high dimensions, with coordination number 2d. As we 
saw in Section 1.2, in high dimensions the main effect of the self-avoidance 
constraint is in some sense to rule out immediate reversals, and now it ap­
pears that immediate reversals are uncommon even in the absence of the 
constraint. This suggests that we can regard the interaction as being weak 
in high dimensions. Alternatively, we may consider a walk on a "low"­
dimensional lattice with large coordination number. Our basic example of 

119 
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this type is a walk on the hypercubic lattice zd, in which we allow all steps 
whose largest component has absolute value less than or equal to L, for 
some large parameter L. Then again the effect of ruling out immediate 
reversals will be small, but we must also worry about long-range effects. It 
will turn out that these are also small for d > 4, so that in this situation the 
self-avoidance is again weak. We shall see in Chapter 6 that in these two 
situations it is possible to obtain convergence of the lace expansion. In the 
former the small parameter responsible for convergence of the expansion is 
(2d)- 1 , while in the latter it is L- 1 • Remarkably, for the nearest-neighbour 
model in five dimensions the small parameter 1/10 is sufficiently small to 
prove convergence. 

The lace expansion was first derived by an expansion and resummation 
procedure reminiscent of the cluster expansions of statistical mechanics 
and constructive quantum field theory. Viewed differently, however, the 
lace expansion can be seen as resulting from repeated application of the 
inclusion-exclusion relation. In this section the derivation of the lace ex­
pansion via the inclusion-exclusion relation will be discussed, and in the 
next section the resummation approach will be described. The inclusion­
exclusion approach is geometric and is useful for providing intuition as to 
the origin of the expansion, while the resummation procedure has the ad­
vantage of generating terms in the expansion in a systematic and algebraic 
manner. In the inclusion-exclusion approach, the name lace expansion may 
seem somewhat inappropriate, but the laces will appear in the next section. 
Both derivations lead to precisely the same expansion. 

At the heart of the lace expansion method is a convolution equation for 
the two-point function which is a multi-dimensional analogue of the renewal 
equations of Section 4.2. Indeed the expansion amounts to identifying an 
"irreducible" two-point function, which will be denoted liz (0, x ), such that 
the two-point function is essentially given by its convolution with the ir­
reducible two-point function. Fourier transform techniques will play a key 
role in the analysis of the convolution equation. 

We now turn to the derivation of the expansion for the case of a walk 
which may take more general steps than just to a nearest neighbour. We 
fix a finite set 0~0 in zd which is symmetric with respect to reflections 
in the coordinate hyperplanes and rotations about coordinate axes by 1r /2. 
The cardinality of n will also be denoted by n. We consider the ordi­
nary random walk taking steps in 0. More precisely, we consider w = 
(w(O), w(1), ... , w(N)), where each w(i) is an element of zd and w(i + 1)­
w(i) E 0. (If 0 is the set of nearest neighbours of the origin then this is 
just the simple random walk.) It is shown in (A.6) that for z < n- 1 the 
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Fourier transform of the two-point function for this walk is given by 

• 1 
Cz(k) = 1- zOD(k)' 

where 

D(k) =A L eik·z. 

zen 

To simplify the notation we will not use a label n to keep track of the fact 
that we are not necessarily dealing with the nearest-neighbour walk; all 
walks in this section will take steps in n. Self-avoiding walks taking steps 
in 0 will satisfy the same subadditivity inequality as the nearest-neighbour 
self-avoiding walk, and hence will have a critical point Zc = zc(O). We 
define Ilz(k), for z < Zc, implicitly by the equation 

- 1 Gz(k) = . . 
1- zOD(k)- Ilz(k) 

(5.1.1) 

Then fiz can be thought of as a measure of the difference between self­
avoiding and simple random walk. The lace expansion is an expansion for 
fiz. 

We denote by CN(z, y) the set of all N-step self-avoiding walks from z to 
y (taking steps in 0), and denote its cardinality by CN(x, y). The first step 
in deriving the expansion is to extract the term in G1 (0, x) corresponding 
toN=O: 

00 

Gz(O,x) = Co,:c + L CN(O,x)zN. (5.1.2) 
N=l 

We shall now argue that for N ~ 1, 

CN(O, X) = L [Ct (0, y)CN-1 (y, X) - L /(0 E w(l )]]. (5.1.3) 
YEO w(l)ECN-I(y,z) 

Diagrammatically the right side of (5.1.3) can be represented by 

y 0(0•1· I:r o 
yEO 

------x 

In the first term on the right side the bold line is unconstrained, apart 
from the fact that it should be self-avoiding. The thin line in the first term 
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represents a single step. Equation (5.1.3) is just the inclusion-exclusion re­
lation: the first term on the right side counts all walks from 0 to :c which are 
self-avoiding after the first step, and the second subtracts the contribution 
due to those which are not self-avoiding from the beginning, i.e., walks that 
return to the origin. Since Ct (0, y) = 1 for y E n, substitution of (5.1.3) 
into (5.1.2) gives 

00 

G~(O, :c)= 6o,:~~ + z L G~(y, :c)- L L zN+t L 1[0 E w<1>]. 
yEO yEON:O w(llECN(!I,:t:) 

(5.1.4) 
The inclusion-exclusion relation can now be applied to the last term on 

the right side of (5.1.4), as follows. Let S be the first (and only) time that 
w<1>(S) = 0. Then 

N 

L 1[0 E w< 1>] = E 
w(l)ECN(!I,:t:) S:l 

E 1[w<2> n w<3) = {0}] 
w< 2l E Cs(y, 0) 

w<3l E CN-s(O, :t:) 

= E [cs(y, O)cN-s(O, :c)- E 1[w<2> nw<3> ¥:- {0}]]. 
5:1 wC 2l E Cs(y, 0) 

w( 3) E CN-s(O,:t:) 

We can interpret cs(y, 0) as the number of (S + 1)-step walks which step 
from the origin directly to y, then return to the origin in S steps, which 
have distinct vertices apart from the fact that they return to their starting 
point. Let Us denote the set of all S-step self-avoiding loops at the origin 
(S-step walks which begin and end at the origin but which otherwise have 
distinct vertices), and let us be the cardinality of Us. Then 

00 

L L zN+l L: 1[0 E w(l)] 
yEO N:O w(l)ECN(Y,:t:) 

00 00 

= L zsus · Gz(O, x) - L L zS+N 1[w<2> nw<3) ¥:- {0}]. 
5=2 S = 2 w(2) E Us 

N = O wC 3) E CN(O, :t:) 

Continuing in this fashion, in the last term on the right side of the 
above equation let T1 ?: 1 b-e the first time along wC3) that w<3>(Tt) E w<2>, 
and let v = w<3>(T1). Then the inclusion-exclusion relation can be applied 
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again to remove the avoidance between the portions of w<3) before and after 
T1 , and correct for this removal by the subtraction of a term involving a 
further intersection. For z < Zc repetition of "this procedure leads to the 
convolution equation 

G.:(O, z) = 6o,z + z L Gz(y, z) + L II.:(O, v)Gz(v, x), (5.1.5) 
11en v 

where the "irreducible" two-point function Ilz(O, z) is given by 

00 

Ilz(O,v) = L(-1)Nrr~N)(O,v), (5.1.6) 
N=l 

with the terms on the right side defined as follows. The N = 1 term is 
given by 

The N = 2 term is 

where I(w1 , w2, wa) is equal to 1 if the w; are pairwise mutually avoiding 
apart from their common endpoints, and otherwise equals 0. Diagrammat­
ically this can be represented by 

rrl'>(o, •) = o 8 . , 
where each line represents a sum over self-avoiding walks between the end­
points of the line, weighted by zT, with mutual avoidance between the three 
pairs of lines in the diagram. Similarly 

II~3)(0, v) = CZ,'SJ 
0 v 

where now there is mutual avoidance between some but not all pairs of 
lines in the diagram; we defer any discussion of the details of this mutual 
avoidance until later in the chapter. The unlabelled vertex is summed over 
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zd. A slashed propagator is used to indicate a walk which may have zero 
length, i.e., be a single site, whereas propagators without a slash correspond 
to walks of at least one step. All the higher order terms can be expressed 
as diagrams in this way, and with some care it is possible to keep track of 
the pattern of mutual avoidance between subwalks (individual lines in the 
diagram) which emerges. The algebraic derivation of the expansion, which 
will be given in the next section, keeps track of this mutual avoidance 
automatically. Equation (5.1.6) is the lace expansion. 

In the above we have tacitly assumed that the lace expansion converges. 
To be more careful, we should have truncated the above procedure after 
some large finite number of terms had been generated, and then taken a 
limit as the number of terms grows to infinity. This convergence assumption 
will be made more explicit in the next section. 

The Fourier transform of a function on zd was defined in (1.4.10). Using 
translation invariance, and the fact that the Fourier transform of a convo­
lution is the product of Fourier transforms, taking the Fourier transform of 
(5.1.5) and solving for Gz(k) gives 

A 1 
Gz(k) = 1- zOD(k)- flz{k) (5.1. 7) 

Here 
00 

flz(k) = L ( -l)Nfi~N)(k). (5.1.8) 
N:l 

In Section 5.4 we will show how fi~N)(k) can by bounded using the dia­
grammatic representation of II~N)(O, z) described above. But first we turn 
to the algebraic derivation of the lace expansion, in the next section. 

5.2 Algebraic derivation of the 
lace expansion 

In this section we give an algebraic derivation of the lace expansion for 
walks taking steps in a fixed set n c zd which respects the symmetries of 
the lattice and does not contain the origin. As in the previous section we 
simplify the notation by omitting the label n. The number of sites in n is 
also denoted n. 

Given a walk w = (w(O),w(l), ... ,w(n)) and two "times" sand tin 
{0, 1, ... , n}, we define 

{ -1 if w(s) = w(t) 
u.,(w) = 0 if w(s) ::/: w(t). (5.2.1) 
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Then the two point function can be written 

Gz(O, x) = 2:: zlwl IT (1 + U81 (w)). (5.2.2) 
w:O-x O~&<t~lwl 

Here the activity z is any complex number for which lzl < Zc = zc(n). 
The sum over w is the sum over all ordinary (possibly self-intersecting) 
walks from 0 to x, although walks which do have self-intersections give zero 
contribution to (5.2.2). The walk w takes steps ( u, v) with v- u En, and 
as usual lwl denotes the number of steps in w. The product in (5.2.2) is 
equal to one if w is self-avoiding, and is equal to zero if not. The weakly 
self-avoiding walk, also known as the Domb-Joyce model, is defined by 
replacing the factor 1 +U81 by 1 + >.U8 t, with ).. E (0, 1 ). Taking)..= 0 gives 
the ordinary unconstrained random walk, while ).. E (0, 1) gives a walk for 
which self-intersections are suppressed but not prohibited. We take ).. = 1. 

We will have need of the self-avoiding walk with a memory T. Its two­
point function is defined by 

II (5.2.3) 
w:o ... x 0 :::; 8 < t :$ lwl 

t-s$r 

If the memory T is equal to zero, then (5.2.3) is just the two-point function 
of ordinary random walk. The case T = oo corresponds to the self-avoiding 
walk. Unless explicitly stated otherwise, the memory may take any value 
0 ~ T ~ 00. 

The Fourier transform of (5.2.3) is given by 

Gz(k; r) = Lzlwleik·w(!wi) 
w 

II 
0 :58< t ~ !wl 

t- 8 ~ T 

(1 +U,t(w)) (5.2.4) 

for k E [-1r, 1r]d; the sum over w is the sum over all ordinary walks of 
arbitrary length beginning at the origin. The right hand side is a power 
series in z. We denote its radius of convergence by zc(k; r). For any k, 

Zc(k; T);::: Zc(O; T) = JL:; 1 , (5.2.5) 

where JLr was defined in (1.2.12). The self-avoiding walk critical point is 
then Zc = Zc(O; oo ). 

To obtain a formula for the inverse of Gz(k), we first introduce some 
terminology. 
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(a) 
a b 

Fr=l 'I ~ 
a b 

(b) ( r-=A' .... 
' I ~ tl 

a b 

(c) ( 1 Fl\ 
a b 

Figure 5.1: Graphs in which an edge st is represented by an arc joining s 
and t. (a) Examples of graphs which are not connected. (b) An example 
of a connected graph. (c) An example of a lace. 

Definition 5.2.1 Given an interval I= [a, b] of positive integers, we refer 
to a pair {s, t} (s < t) of elements of I as an edge. To abbreviate the 
notation, we usually write st for {s, t}. The length of an edge st is t- s. 
A set of edges is called a graph. A graph r is said to be connected if both 
a and b are endpoints of edges in r, and if in addition, for any c E (a, b), 
there are s, t E [a, b] such that s < c < t and st E r. The set of all graphs 
on [a, b] consisting of edges of length T or less is denoted BT [a, b], and the 
subset consisting of all connected graphs is denoted gT(a, b). A lace is a 
minimally connected graph, i.e., a connected graph for which the removal 
of any edge would result in a disconnected graph. The set of laces on [a, b] 
consisting of edges of length T or less is denoted by CT[a, b), and the set of 
laces on [a, b] which consist of exactly N edges is denoted CT,N[a, b]. 

A convenient graphical representation of graphs and laces is illustrated in 
Figure 5.1. 

Given a connected graph r, the following prescription associates tor a 
unique lace .Cr: The lace .Cr consists of edges s1 t 1 , s2t 2 , ... where 

St =a, it = max{t: atE r} 

t;+l :::: max{t: st E f, s < t;} 

s; = min{s: st; E f}. 
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(a) r ( ,....., 1 
, 

'I I 

a b 

Cr ( ::. I ( 'I 
a b 

(b) L ( 

' 1 'I 
\ ') 

a / 
< b 

two compatible edges / 
(c) L ( ::. f 'I 

\.. 
I ) 

a / b 
an incompatible edge 

Figure 5.2: (a) An example of a connected graph rand its associated lace 
L = Cr. (b) Examples of edges compatible with the lace L. (c) An example 
of an edge which is not compatible with the lace L. 

Given a lace L, the set of all edges st~L {of length r or less) such that 
CLU{st} = L is denoted C,.(L). Edges in C,.(L) are said to be compatible 
with L. Figure 5.2 illustrates these definitions. 

For a < b we define 

K,.[a, b] = II 
s, t E [a, b] 

O<t-s$r 

(5.2.6) 

We set K,.[a, a]= 1, and if a > b then we set K,.[a, b] = 0. By expanding 
the product in (5.2.6) we obtain 

K,.[a, b] = L II U,,. (5.2.7) 
res.[a,b)ster 

For a < b we define an analogous quantity, in which the sum over graphs 
is restricted to connected graphs: 

J,.[a, b)= I: II U,,. (5.2.8) 
reg.[a,b]ster 

We set J,.[a, a] = 1, and if a > b then we set J,.[a, b] = 0. Partially 
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resumming the right side of (5.2.8), we obtain 

Jr[a,b] = E E II U,t II u,,,, 
LEC,[a,b) I':Cr=L •tEL 1 1t 1 EI'\L 

= E 11 U,t 11 (1 +U,,,,). (5.2.9) 
LEC,[a,b] 1tEL •'t'EC,(L) 

For a < b we define Jr,N[a, b] to be the contribution to (5.2.9) from laces 
consisting of exactly N bonds: 

Jr,N[a, b] = L IT U,t II (1 + U,,,, ). (5.2.10) 
LE.Cr,N(a,bJ I tEL 11t 1ECr(L) 

Each term in the above sum is either 0 or ( -1 )N. Dy (5.2.9) and (5.2.10), 

00 

Jr[a, b)= L Jr,N[a, b]. (5.2.11) 
N:t 

The sum over N in (5.2.11) is a finite sum, since the sum in (5.2.10) is 
empty for N > b- a and hence Jr,N[a, b] = 0 if N > b- a. By definition 
Jr[a, a+ 1] = 0, since the only lace on [a, a+ 1] consists of the single edge 
{a, a+ 1}, and Ua,a+t(w) = 0 for all w, because a walk cannot be at the 
same place at consecutive times. 

Lemma 5.2.2 For any a < b, 

b 

I<r[a, b] = I<r[a + 1, b] + L Jr[a,j]I<r[.i, b]. (5.2.12) 
i=a+2 

Proof. The contribution to the sum on the right side of (5.2.7) due to 
all graphs r for which a is not in an edge is exactly I<r[a + 1, b]. To resum 
the contribution due to the remaining graphs we proceed as follows. If r 
does contain an edge ending at a, let j(r) be the largest value of j such 
that the set of edges in r with at least one end in the interval [a, j) forms 
a connected graph on [a, j). We lose nothing by taking j ~ a + 2, since as 
argued above the statement of the lemma, Ua,a+l = 0. Then resummation 
over graphs on (.i, b] gives 

b 

I<r[a, b)= I<r[a + 1, b] + L L II U,t Kr[.i, b), (5.2.13) 
j:a+2 I'EO,[a,j] 1tEI' 

which with (5.2.8) proves the lemma. 0 
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Now we define 

(5.2.14) 

and 

00 

Ilz(O,z;r)= E(-1)NIJ~N)(O,z;r)= E zlwiJr[O,!w!], (5.2.15) 
N:l w: 0 ..... z 

fwf ~ 1 

for any z for which the right side converges. The factor ( -1 )N on the right 
side of (5.2.14) ensures that 

rr~N)(O, z; r) ~ 0 for nonnegative z. (5.2.16) 

Since Jr,N[O, 1] = 0, the sum on the right side of (5.2.14) or (5.2.15) could 
equally well be over walks w of length greater than or equal to 2. Recall 
the notation 

D(k) = ~ E ei'=·z 
zen 

Theorem 5.2.3 For any value of z for which Llwl~ 2 zlwiJr[O, lwl] and 

Lfwf~o zlwiT<r[O, lwiJ converge absolutely, 

Gz(O, z; r) = 6o,z + z E Gz(u, z; r) + L IIz(O, v; r)Gz(v, z; r) (5.2.17) 
uen " 

and 
• 1 

G,(k; r) = . . 
1- zOD(k)- II,(k; r) 

(5.2.18) 

Proof. It suffices to obtain (5.2.17), since then (5.2.18) follows imme­
diately upon taking the Fourier transform of (5.2.17) and using the fact 
that the Fourier transform of a convolution is the product of Fourier trans­
forms. Existence of the Fourier transforms of G,(O, ·; r) and II,(O, ·; r) is 
guaranteed by the hypotheses of the theorem. 

To prove (5.2.17), we first extract the contribution to (5.2.2) due to the 
zero step walk: 

G,(O, z; r) = 6o,z + 
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Substitution of (5.2.12) into this equation results in 

G,(O, z; r) = 6o,:r: + 

lwl 
+ L zlwl L JT[O,j]KT[j, lwl]. (5.2.19) 

w: o- z: i=2 
lwl ~ 1 

In the second term on the right side, the factor KT[1, lwl] is nonzero only 
if the walk is self-avoiding after the first step. Explicitly summing over the 
endpoint of the first step in w, the second term is equal to 

z l:G,(y,z;r). 
yen 

The third term on the right side of (5.2.19) is equal to 

N 

E EJT[O,j]KT[j,N]. 
w: 0- :t: j=2 
lwi=N 

Interchanging the order of summation gives the following expression for this 
quantity: 

00 00 

L zi L zN-j L JT[O,j]KT[j, N]. 
j=2 N:j w : 0- :t: 

lwi=N 

In the sum over w, there is no interaction between the initial j-step portion 
and final (N- j)-step portion of the walk. Factorizing the walk into these 
two pieces gives the desired result. 

In the last step we interchanged two infinite sums. This is justified by 
the hypothesis that these two sums converge absolutely. 0 

Next, we prove an identity which will be used to study the finite­
dimensional distributions of the self-avoiding walk. It expresses the dif­
ference between a self-avoiding walk and two independent or decoupled 
self-avoiding walks, in the spirit of the inclusion-exclusion relation. First 
we need a definition. 

Definition 5.2.4 Any graph BE BT[O, b] breaks up into connected compo­
nents in a natural way. Given an integer m in the open interval (0, b), we 
let Cm(B) = {m} if B does not contain a bond st with s < m < t. If B 
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B 

Figure 5.3: An example of a graph Band interval Cm(B). 

does contain a bond st with s < m < t, then there is a connected component 
r of B with bonds having endpoints less than and greater than m. In this 
case we let Cm(B) = [i,jJ, where i is the smallest endpoint of all bonds in 
r 1 and j is the largest, 

An example illustrating the definition is depicted in Figure 5.3. 

Lemma 5.2.5 For any integers 0 ~ m ~ b, 

1<,.[0, b] = L I<r[O,J1]Jr[11,12]I<r[/2, b), 
13m 

where the sum over I is a sum over intervals [h, !2] of integers with either 
0 $; h < m < /2 ~ b or !1 = !2 = m. 

Proof. By definition, Cm(B) is an interval of the type being summed 
over in the statement of the lemma. Therefore a partial resummation of 
(5.2.7) gives 

I<r(O,b] = L L rr u8t. 
13m B:Cm(B)=1 •tEB 

Factoring the sum over B into three independent sums over graphs on [0, / 1], 

connected graphs on I= [h,/2], and graphs on [J2,b], gives 

Kr[O,b] =I: I<r[O,h] L rr Usti<r[hb]. 
13m reQ.(I) &ter 

The lemma then follows from (5.2.8). 0 

Finally we prove a lemma which will be used in Section 6.7 to prove 
existence of the infinite self-avoiding walk above four dimensions. To state 
the lemma we first introduce some notation. Since we will not need a finite 
memory in Section 6.7, we consider only the fully self-avoiding walk, and 
drop subscripts T. Given n ~ m ~ 0 and ann-step self-avoiding walk w, let 
Wm denote the first m steps of w. Form ~ 1, we write k = (kC1l, ... , k(m) ), 
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k(i) E [-11', 1r]d, and k · Wm = L:}:1 kU) ·w(i). We define a quantity similar 

to the Fourier transform Gz(k) of the two-point function by 
00 

fz(k,m) = L L eik·wmK[O,n]zn. (5.2.20) 
n=m lwl=n 

Since 1r z(k, m)l ~ x(lzl), this power series converges for lzl < Zc· We define 
a quantity similar to ft.,(k), again form~ 0, by 

00 

\) z (k, m) = l: z• l: eik·wm J[O, s]. (5.2.21) 
1=m lwl=' 

For j < m we define kj = (kU+l), ... , k(m)). 

Lemma 5.2.6 For m ~ 1 and for any z for which both sides make sense, 
m 

fz(k,m) = zflD(Lk(j))fz(kltm-1) 
i=1 

m-1 m 

+ L z' L exp(iL k(j) · w(min{J, s})]J[O, s]rz(k, m- s) 
•=2 lwl=' i=1 

+ Wz(k, m)x(z). 

Proof. The proof is similar to the proof of (5.2.17), but is complicated by 
the presence of the phase factor. We begin by replacing the factor I<[O, n] 
on the right side of (5.2.20), using Lemma 5.2.2, by 

m-1 n 

I<[O, n] = /([1, n] + L J[O, s]K[s, n] + L J[O, s]K[s, n]. (5.2.22) 

The three terms in the statement of the lemma correspond to the three 
terms on the right side of the above equation. 

For example, the I<[l, n] term can be written 

z ~ •"'''• •'~-• J~ .. exp [it. kU) · (w'(j) + y)l K[O, n1z"' 

m 

= znb(l: k(j))rz(kt' m- 1). 
i=1 

Similarly, in the second and third terms the product J[O, s]J<[s, n] allows 
the sum over w to be replaced by sums over independent walks of lengths s 
and n - s. For s < m the phase factor makes a contribution to the second 
of these walks, while for s ~ m it does not. 0 
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5.3 Example: the memory-two walk 

As an example of a calculation using the lace expansion, we now solve the 
self-avoiding walk with memory equal to two by finding an explicit formula 
for Gz(k; 2). This allows for an explicit calculation of the mean-square dis­
placement. Although the calculation of the mean-square displacement for 
the memory-two walk is much simpler than the corresponding calculation 
for the fully self-avoiding walk, the memory-two calculation does illustrate 
some of the basic features which will occur in Chapter 6. 

We begin with a formula for Tfz(k; 2). The derivation of the formula 
requires lzl < 1, but the resulting expression has an analytic continuation 
to a meromorphic function, which in turn provides a meromorphic extension 
for Gz(k; 2). 

Theorem 5.3.1 For the self-avoiding walk with memory equal to two, 

• z2Q • 
Ilz(k;2) = - 2- 1[1- zD(k)]. 

z -

Proof. We use (5.2.15), (5.2.11) and (5.2.10), with T = 2, to evaluate 
flz(k; 2). When the memory is equal to two, all contributing laces have 
all edges of length exactly equal to two. There is a unique N-edge lace 
LN contributing to J2,N[O, lwl] if lwl = N + 1, illustrated in Figure 5.4. If 
lwl f. N + 1, then J2,N[O, lwiJ = 0. There is therefore exactly one term in 
the sum (5.2.10) defining J2,N[O, lwiJ if lwl = N + 1, and there are no terms 
otherwise. 

Thus we can write the Fourier transform of (5.2.14) as 

= ( -1)N zN+l I: h,N[O, N + 1]eik·w(N+l) 

lwi=N+l 

= ( -1)N zN+l L: IT U,t(w)eik·w(N+t)' (5.3.1) 
lwi=N+l 1tELN 

where LN is the unique memory-two N-edge lace. The product over com­
patible edges in (5.2.10) is equal to 1 here, since all bonds compatible with 
LN have length one. The product n.tELN u,,(w) is equal to (-l)N if it is 
nonzero, and it will be nonzero if and only if w has the topology indicated 
in Figure 5.4. These walks end at the origin if N is odd, and end at a site 
in 0 if N is even. In either case they simply step back and forth repeatedly 
between the origin and a particular site in n. 
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~ ooz 
0 1 2 

~ oa z 
0 1 2 3 

~ o§z 
0 1 2 3 4 

Figure 5.4: The laces for the memory-two walk, together with the corre­
sponding walk topologies for n,tELN Uat i:- 0. Each line in the diagrams on 
the right represents a single step of the walk, and z is a site in n. 

Summing (5.3.1} times (-I}N over N, with the odd and even values of 
N summed separately, gives 

00 00 

fi.:(k; 2) = - L z2ng + L z2n+1 L eik·z 

n:1 n=1 zen 
z2 A 

= z2 _ 1 0[1- zD(k)]. (5.3.2) 

0 

Corollary 5.3.2 For all z E C, 

A I - z2 
G.:(k; 2) = . 

1 + (n- 1)z2- zflD(k) 
(5.3.3} 

Proof. Combining Theorem 5.3.1 with Theorem 5.2.3, we obtain (5.3.3) 
for all lzl < 1'21 = (n- 1)-1 . But since the right side defines a function 
meromorphic in the plane, we have a meromorphic extension of G:(k; 2). 

0 

The denominator of (5.3.3} has zeroes 

A [ A ] 1/2 flD(k) ± 0 2 D(k)2 - 40 + 4 
z:(k) = 2(0- 1) (5.3.4) 

At k = 0 these reduce to 

(5.3.5} 



5.3. EXAMPLE: THE MEMORY-TWO WALK 135 

For k = 0 the singularity at z+(O) = 1 in (5.3.3) is removable, and hence 
the susceptibility Gz(O; 2) has a unique singularity at the simple pole z = 
(0- 1)-1 . Fork near but not equal to 0, Gz(k;2) has two simple poles. 
The location of the closest singularity of Gz(O; 2) to the origin could have 
been anticipated from the fact that zc(O; 2), given in (5.2.5), is equal to 

-1 
Jl2 . 

Let cr,2(0, x) denote the number ofT-step memory-two walks ending 
at x, and denote its Fourier transform by cr,2(k). Then the mean-square 
displacement of the memory-two walk is given by 

(I ( )1 2} _ \7~cT,2(0) 
w T T:2- -0(0-1)T-1' (5.3.6) 

where \7~c denotes the gradient in k-space. 
Let C be a small circle centred at the origin of the complex plane. Since 

00 

Gz(k;2) = L>~T,2(k)zT, (5.3.7) 
T:O 

we have 

(5.3.8) 

By (5.3.3), 

(5.3.9) 

The integral on the right side of (5.3.8) can be evaluated exactly using the 
residue theorem. We deform the contour of integration past the singularities 
of the integrand at (0- 1)-1 and 1 to a large circle of radius R, and then 
let R go to infinity. The integral over the large circle vanishes in the limit, 
leaving the contributions from the residues. Denoting the residue of f(z) 
at zo by Res(f(z), zo), we then have 

2 • 
_1 i -\7JcGz(0;2)dz (53 ) 
211'i c z T+l · .10 

_ -R (-\7~Gz(O; 2) _1_) _ R (-\7~Gz(O; 2) 1) 
- es zT+t ' 0 - 1 es zT+1 ' . 

To abbreviate the notation, let b2 = o-tL:yeO IYI2 and 8 = (0- 1)-1. 

Computing the residues and using (5.3.6) and (5.3.8) then gives 

(I (T)I2} _ = b2 [(1 + 8) T _ 28(1- 8T)] 
W T-2 1-8 {1-8)2 
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(5.3.11) 

Thus the mean-square displacement is as expected asymptotically linear in 
the number of steps. 

5.4 Bounds on the lace expansion 

Equation (5.2.15) can be used to provide. a diagrammatic representation 
for llz(O, x; r) like that obtained using the inclusion-exclusion relation in 
Section 5.1. In this section we describe this diagrammatic representation, 
and then use it to obtain upper bounds on flz(k; r) and some of its deriva­
tives. The bounds we obtain will be in terms of norms of the two-point 
function. Although we drop the memory r from the notation, the results 
of this section are valid for any memory 2 $ r $ oo. The activity z is a 
complex parameter. 

By (5.2.15), (5.2.14) and (5.2.10), 

00 

llz(O,x) = E(-l)Nn~N)(O,x) (5.4.1) 
N:l 

00 

= 2: 2: zlwl L II U,1 II (1 +U,,t•). 
N:l w: 0- z: LE.CN[O,Iwl) •tEL •'t'EC(L) 

lwl ~ 1 

In this section we do not concern ourselves with the convergence or diver­
gence of the above series, or of other related series which will occur. Rather, 
we treat these series as formal power series in z, and obtain upper bounds 
which are valid in this context. The question of whether or not these bounds 
suffice to determine convergence is postponed until Section 6.2. 

A lace L E CN[O, lwl] consists of exactly N edges, and hence the factor 
n,IEL U,, OCCUrring in the sum over W takes on either the value ( -1)N or 0. 
The nonzero value will be attained for those walks w such that w(s) = w(t) 
for each st E L. 

Consider the case N = 1. There is a unique lace in .Ct[O, lwl], namely 
Lt = {0, lwl}. The first product in (5.4.1) is nonzero, in fact -1, for 
precisely those walks which end at the origin. Thus IT~1)(0, x) = 0 if x :f: 0. 
All edges other than {0, jwl} are compatible with L1 , and hence the second 
product in (5.4.1) is nonzero only for those walks which have no other self­
intersections. The sum over walks in ft~1 )(0, x) is thus the sum over all 
self-avoiding loops (walks which begin and end at the origin and otherwise 
are self-avoiding, consisting of at least two steps). Let U denote the set of 
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all self-avoiding loops. Then, introducing a diagrammatic notation, we can 
write 

ll~1 )(0, z) =co,:~: :L: zlwl ::co,:~: 0 0 . 
weu 

We can turn the above into a bound on fi~1 ){k) by simply noting that 

ft~1 )(k) = E zlwl = E zGz(O,x) (5.4.2) 
wEU :~:eO 

and hence 
lfiP>(k)l ~ lzl n sup Glzi(O, z). 

z;tO 
(5.4.3) 

Writing ll·lloo for the .x-space supremum norm 

11/lloo = sup 1/(z)j, (5.4.4) 
zeZ4 

and introducing 

(5.4.5) 

(5.4.2) can be rewritten as 

(5.4.6) 

(Actually Hz is a function of two variables, and in writing norms of Hz we 
mean norms of the function Hz(O, ·)of a single variable.) 

For N = 2, we proceed as follows. Laces in C2[0, lwl] are in a one-one 
correspondence with pairs of times 82, t1 with 0 < 82 < t1 < lwl, as can 
be seen from Figure 5.5. For such a lace L, a walk with TI,teL U,,(w) :/: 0 
breaks up in a natural way into three subwalks. Letting x denote the 
endpoint of w, these three subwalks are of the form w(1) : 0- x, w(2) : x-
0, w(3) : 0- z, of respective lengths 82, t1 - 82, lwl- t1. We can split the 
factor zlwl into three corresponding factors 

3 
lwl - IT lw(i)l z - z . (5.4.7) 

i=l 

Each of the subwalks consists ofat least one step. The factor n,,,,EC(L)(l+ 
U,,,,) ensures that each of these three subwalks is self-avoiding, since any 
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{. . . . . . . . . . . . . . . . . . ) 0 
0 T O,T 

' . l . . \ . . ) 0, tt ( ) 82,T 

0 82 tl T 
82,t2 

{ . ' . . I . l . . . \ . ) (6) 
0 82 tl 83 t2 T 0, tl 83,T 

82,t2 84,T 

{. . ' . . I . l . . \ . . ' . . \ OSD 
0 82 tl 83 t2 84 t3 T 0, tl 83, t3 

Figure 5.5: The left column shows the general form of laces consisting of 
1, 2, 3 or 4 edges. The lace edges are denoted 8;, t;, 1 ~ i ~ N, with 81 = 0 
and tN = T. The right column shows the self-intersections required for a 
walk w with n.teL U.e(w) '# 0. For n,,,,EC(L)(1 + u,,,,) '# 0, each of the 
2N -1 subwalks must be a self-avoiding walk, and in addition there must be 
mutual avoidance between some (but not all) of the subwalks. The number 
of loops in a diagram is equal to the number of edges in the corresponding 
lace. The lines which are slashed correspond to subwalks which may consist 
of zero steps, but the others correspond to subwalks consisting of at least 
one step. The eleven-loop diagram is depicted at the bottom. 
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bond lying entirely in one of the intervals [0, s2], [s2, tl], [tt, lwll is com­
patible with L. (In particular, x "# 0.) This same factor also provides an 
avoidance interaction between the three subwalks, since there are bonds 
in C(L) which link distinct subwalks. This interaction between distinct 
subwalks would be awkward to take into account exactly, but in an upper 
bound it can be disregarded since 1 + U,,1, ~ 1. Therefore 

(5.4.8) 

We now show how (5.4.8) can be used to estimate fi~2)(k) and its second 
derivative with respect to a component kl-' of k. Writing a~ for the u-th 
order partial derivative with respect to kl-', and using the definition of the 
Fourier transform, 

(5.4.9) 

Here ll·ll2 denotes the x-space L2-norm 

[ ]

1/2 

ll/ll2 = L: lf(xW 
reZd 

(5.4.10) 

In terms of the bubble diagram {1.5.4), the right side of (5.4.9) is equal 
to 

(5.4.11) 

This bound provides an indication of the critical nature of d = 4, in the 
following way. Assuming that the infrared bound 17 ~ 0 is indeed valid, 
then B(zc) is finite for d > 4. The infrared bound also implies that the 
critical two-point function decays at least as fast as lxl2-d, so that for 
d > 4 (5.4.11) will be finite at the critical point for u $ 2, and hence so 

will o~fi~~)(k). For models with a suitable weak interaction, such as the 
nearest-neighbour model in sufficiently high dimensions, or a sufficiently 
"spread-out" model above four dimensions (see Chapter 6), the quantity 
B(zc) -1 will be not only finite, but arbitrarily small, and will be the small 
parameter responsible for convergence of the expansion. For this reason the 
distinction between Hz and Gz will be crucial. 

We wish to obtain bounds on fi~N)(k) and some of its derivatives in an 
analogous way for higher values of N. To state these bounds we first need 
to introduce the following definition. 
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Definition 5.4.1 We define a multiplication operator M and convolution 
operators 1(.(0) and 1(.(1) by 

(Mf)(z) = Hlzl(O, z)/(z) 

(1f.(O) /)(z) = L Glzl(z, y)f(y) 
!I 

(1f.(l)!)(z) = LHlzl(z,y)f(y). 
!I 

(5.4.12) 

(5.4.13) 

(5.4.14) 

These operators depend on lzl. but to simplify the notation we do not make 
this dependence explicit. 

Then we have the following bounds on IT~N)(k), for N ;::: 2. (The case 
N = 1 is special and the bound is given in (5.4.3).) 

Theorem 5.4.2 For N ;::: 2, 

(5.4.15) 

Proof. The Fourier transform on the left side of (5.4.15) is obtained by 
multiplying the N-th term of (5.4.1) by eik·z and summing over z. For 
an upper bound, we take absolute values inside all sums in the resulting 
expression. This removes the k dependence, and replaces z by lzl. Then 
we bound by 1 all factors 1 + U, 1 in the product over compatible bonds in 
(5.4.1) for which s and t are times corresponding to distinct subwalks. The 
remaining factors ensure that all subwalks remain self-avoiding, but there 
is no longer any interaction between distinct subwalks. We claim that the 
resulting expression is then exactly equal to the right side of (5.4.15). 

To see this, we note that for N = 2, 3, 4 we have the following dia­
grammatic representations, in which slashed lines correspond to Glzl and 
unslashed lines to H1z1 (i.e. slashed lines correspond to subwalks which may 
consist of no steps, while unslashed lines correspond to subwalks consisting 
of at least one step). To begin, 

0 z 

Q_ Q_ 
0 

where symmetry was used in the last step. Proceeding from the analogue 
of the right side of the above equation, and then again using symmetry, we 
obtain 
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The pattern continues for larger N, and reproduces the diagrams represent­
ing fi~N) when x = 0 (with no mutual avoidance between distinct subwalks). 

0 

Remark. We will require modifications of Theorem 5.4.2 of two types: 
1. The first, and most common, arises when we wish to bound various 
derivatives of fi~N), with respect to z and/or a component of k. For exam­
ple, in bounding the derivative of fi~N) with respect to k,_,, the differentia­
tion of the exponential brings down a factor ix,.,. The factor x,., can then be 
written as a sum of displacements along subwalks, and when absolute val­
ues are taken and interactions between subwalks neglected, the result is a 
sum of diagrams of the same topology as those representing fi~N) itself, but 
with one of the subwalks in each diagram weighted by the absolute value 
of the Jt-th component of its displacement. (Taken together, the weighted 
lines give a path from 0 to x.) Such a diagram is equal to the analogue of 
the right side of (5.4.15) in which the factor corresponding to the weighted 
subwalk is replaced by the corresponding multiplication or convolution by 
lx,.,IHizi{O, x). [Note that by {5.4.5), x,_,Hz(O, x) = x,.,Gz(O, x).] 
2. The second modification concerns an improvement to (5.4.15) for finite 
memory. For finite memory, the laces occurring in the lace expansion con­
sist of bonds of length T or less. Consequently all subwalks in diagrams 
representing fiz consist of at most T steps, so we may replace the operators 
on the right side of (5.4.15) by multiplication and convolution by the cor­
responding generating functions truncated at order zT. This improvement 
will be relevant in this book only in Section 6.8, which is the one place 
where we will not work directly with the fully self-avoiding walk. 

The right side of (5.4.15) will be bounded using the following lemma. 

Lemma 5.4.3 Given functions fo, It, ... ' 12M on zd I define 1l2j and M2j 
to be respectively the operations of convolution with hi and multiplication 
by hi-ll for j = 1, ... , M. Then for any k, 

M 

IIIT(1l2jM2j)folloo $llfklloo IT 11/ilb· (5.4.16) 
j:l 0 ~ j ~2M 

jf;k 
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In the product over j on the left side, factors are to be taken with decreasing 
index from left to right. 

Proof. Fix k E {0, 1, 2, ... , 2M}. Using IIAIIp,r to denote the norm of an 
operator A : fP --+ tr, the left side of (5.4.16) can be bounded above by 

II ll?i2jM 2j lloo,oo ll1l2kM 2k ll2,oo II IIH2iM 2i ll2,2llfollp (5.4.17) 
j>k i<k 

where p = 2 if k > 0 and p = oo if k = 0. (Also the norm of HoMo should 
be omitted if k = 0.) The desired result then follows from the inequalities 

II'H2jM 2j lloo,oo 
II'H2jM2j ll2,2 
II'H2kM2kll2,oo 
1l'H2kM 2k ll2,oo 

$ II'H2jll2,ooiiM2jlloo,2 $ llhill2llhi-dl2 
$ IIH2illt.2IIM2jll2,1 $ llhill2llhi-1ll2 
< II'H2kll2,ooiiM2jlb,2 $ llhkll2llhk-1lloo 
< IIH2kll1,ooiiM2jll2,1 < llhklloollhk-1112, 

where the right hand inequalities follow from the Holder and Young in­
equalities. (The latter states that llg * hll, ~ llullrllhllp for 1 ~ p, r, s ~ oo 
satisfying p-1 + r-1 = 1 + s-1.) 0 

In the next theorem, Lemma 5.4.3 (in conjunction with Remark 1 below 
Theorem 5.4.2) is used to bound various derivatives of IT.;(k). For finite 
memory, the bounds can be improved as in Remark 2 below Theorem 5.4.2. 

Theorem 5.4.4 For any v ~ 0, 

(5.4.18) 

For any integer N ~ 2, 

(5.4.19) 

For any integers v = 0, 1, u ~ 0 and N ~ 2, 

j8;8~ft~N)(k)l $ (2N -l)v [ N: 1 r llz~Hfzdlooll8;1z=fzfH:II2 
X IIHt:tll~ -liiGt:rllf-2• (5.4.20) 

For any N ~ 2 and for any positive p, 

0 $ ft~N)(O)- ft~N)(k) (5.4.21) 

5 ~ t. (I - cos k ,) [ N: 1 r 111•1' H, llro IIH,IIr IIG,IIr-2 • 

For N = 1, iW)(O)- ft~1 )(k) = 0, and hence 8~ft~1 )(k) = 0 for all u ~ 1 . 
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Proof. The bound (5.4.18) follows immediately from (5.4.2). For (5.4.19), 
applying Oz to zlwl brings down a factor lwl. Considering w to consist of 
2N - 1 sub walks Wj, we have 

2N-1 

lwl = L lw;l. 
j:O 

Now we bound the diagram in which the j-th subwalk is weighted by the 
factor lw; I using Lemma 5.4.3, with the infinity norm on the j-th subwalk. 
This gives (5.4.19). 

For (5.4.20) the k-derivative gives rise to an additional factor lz~l· For 
the factor lwl we proceed as for (5.4.19), obtaining a sum of terms in which 
one subwalk is weighted by a factor lwi I· Then for the factor lz~l we choose a 
sequence ofsubwalks (depending on j) connecting 0 and z spatially, without 
using the already weighted j-th subwalk. In general no more than (N + 1)/2 
subwalks will be needed. We then write ziJ as the sum of displacements 
along the subwalks, and use the inequality 

to obtain a sum of diagrams where in each term one subwalk is weighted 
by lw;l and another by lz~l· Then Lemma 5.4.3 is applied. 

To prove (5.4.21), we note that the first inequality follows from the fact 
that by symmetry and (5.2.16), 

fi~N)(O)- fi~N)(k) = L rr~N)(O, x)[1- cos k. x);?: 0. 
:1: 

For the upper bound we write 

fi~N)(O)- fi~N)(k) = L: IT~N)(O, x)(l- eik·r), (5.4.22) 
:1: 

and write the last factor on the right as a telescoping sum 

d 

1 _ eik·r = L:<t _ eik,.r,. > II eik.,r.,. (5.4.23) 
IJ=l v<IJ 

Inserting (5.4.23) into {5.4.22) and using symmetry gives 

d 

fi~N)(O)-fi~N)(k) = E rr~N)(O, x) E(l-cos kjJzjJ) II cos kvXv. (5.4.24) 
:c IJ=l v<IJ 
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Using the fact that for any real y and positive integer m, 

0 $ 1- cos my$ m 2(1- cosy), (5.4.25) 

and again using symmetry, the right side of (5.4.24) can be bounded above 
by 

d 

~ L{l- cosk~) dLx~n~N)(O,x). 
~=1 X 

(5.4.26) 

The bound (5.4.21) then follows, since it was shown in the proof of (5.4.20) 
(with v = 0) that the sum over x on the right side of the above equation is 
bounded above by the right side of (5.4.20). 

Finally, the last statement of the theorem follows immediately from the 
first equality of (5.4.2). D 

We end this section with a lemma which will be used in Section 6.8 
to bound cn(O, x). In the statement of the lemma, Cn, 11 (0, x) denotes the 
number of n-step memory-0' walks from 0 to x. 

Lemma 5.4.5 For memories 0' < r $ oo, 

00 

lflz(k; 0')-flz(k; r)j $ 211 L Cn,.,.(O, x)!zlnlloo 

(5.4.27) 

X [lzl n + %;2 (2N- 1)11Hizi(O, ·; o-)ll:iiiGizi(O, ·; O')llf-2]· 

Proof. Dy Definition 5.2.1, .C.,.[a, b] C .C.,.[a, b), and for L E .C.,.[a, b], we 
have C.,.(L) C C.,.(L). The latter inclusion is often strict, but if L has no 
bond whose length exceeds 0'/2 then C.,.(L) can contain no bond whose 
length exceeds 0', and hence C.,.(L) = C.,.(L). Therefore in the difference on 
the left side of (5.4.27) there will be an exact cancellation of terms arising 
from laces having all bonds of length less than or equal to 0' /2. Temporarily 
writing fim for the contribution to llz(k; m) due to laces having at least 
one bond of length exceeding 0' /2, we have 

(5.4.28) 

A typical bond in a lace spans either two or three subwalks; see Fig­
ure 5.5. For a lace bond of length at least 0' /2, at least one of the subwalks 
must consist of at least 0'/6 steps. Now we bound the right side of (5.4.28) 
as in (5.4.20) (with u = v = 0) and (5.4.3), using the L00 norm on a sub­
walk consisting of at least 0' /6 steps. The factor 2N - 1 arises from the 
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fact that any one of the 2N - 1 subwalks may be the only subwalk of at 
least u /6 steps. Also, the bound on ftT can be written in terms of memory 
u rather than r, since Cn,T(O, x) $ Cn,u(O, x). 

Finally we observe that in the L2 norms on the right side, the generating 
functions H and G can be truncated at the term of order z01 by the second 
Remark under Theorem 5.4.2. 0 

5.5 Other models 

The lace expansion has been adapted to study lattice trees and animals, 
and percolation, and provides a way of proving mean-field critical behaviour 
above eight and six dimensions respectively. For these models it is not the 
finiteness of the bubble diagram which leads to mean-field behaviour, but 
rather the finiteness of the square diagram for lattice trees and animals, and 
of the triangle diagram for percolation. The lace expansion can be used to 
prove that these diagrams are finite. 

In this section we discuss the lace expansion for lattice trees and animals 
and for percolation. The material developed here is not required elsewhere 
in the book. The proof of convergence of the expansion in these contexts 
is very similar to the proof of convergence of the expansion for the self­
avoiding walk (see Section 6.2), and will not be discussed here. Instead we 
just derive the expansions, and briefly indicate how they can be bounded. 
In the bounds the square or triangle diagrams play a key role. 

5.5.1 Lattice trees and animals 

Let n be a finite set of sites in zd, not containing the origin, which is 
symmetric with respect to the symmetries of zd. We refer to a pair { x, y} 
of sites with y- x E n as a bond. A lattice tree is a connected set of bonds 
which has no closed loops. Although a tree T is defined as a set of bonds, 
we write x E T if x is an endpoint of some bond of T. We denote the 
number of bonds in a tree T by ITI. A lattice animal is a connected set of 
bonds which may contain closed loops. We denote a typical lattice animal 
by A and the number of bonds in A by lA I. 

Let tn denote the number of n-bond trees containing the origin, and an 
the number of n-bond animals containing the origin. It can be shown using 
subadditivity arguments that both t~fn and a~/n converge to finite positive 
limits A and Aa as n goes to infinity. The asymptotic behaviour of these 
quantities is believed to be of the form 

(5.5.1) 
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for some critical exponent 0 which is the same for both trees and animals. 
Another quantity of interest is the radius of gyration R(n) (for trees) 

and R .. (n) (for animals). This is defined by 

R(n)2 = Er:~o,ITI=n Es-eT l:z:- zrl2 

Er:~o,ITI=n Es-eT 1 
(5.5.2) 

where ir = (n + 1)-1 Es-eT z is the centre of mass ofT and lzl is the 
Euclidean length of :z:, and similarly for R .. (n). This is believed to behave 
as 

R(n) ""const.n11 , R .. (n) ""const.n11 (5.5.3) 

for some critical exponent v which again is the same for both trees and 
animals. 

The two-point function for trees or animals is defined, for sites :c, y E zd, 
by 

(5.5.4) 
T3z,y A3z,y 

where z is a complex parameter known as the activity. We wish to derive an 
expansion for these two-point functions analogous to the lace expansion for 
the self-avoiding walk. This can be done using either the inclusion-exclusion 
or the resummation approach, and here we shall follow the latter. 

Using the expansion, the following theorem is proven in Hara and Slade 
(1992c). Related results for animals appear in Hara and Slade (1990b). 

Theorem 5.5.1 For n the set of nearest neighbours of the origin and d 
sufficiently large, or for d > 8 and 0 = { :c #:- 0 : ll:clloo =::; L} with L 
sufficiently large, there are positive constants A and D such that 0 = 5/2 
and v = 1/4 in the sense that for any f < min{l/2, (d- 8)/4}, 

tn = A.X"n-312[1 + O(n-t)] 

and 

The expansion for trees 

We begin with lattice trees. Given two distinct sites :c, y and a tree T 3 :c, y, 
the backbone f3T(:c, y) ofT is defined to be the unique path, consisting of 
bonds ofT, which joins z toy. Usually z andy are understood and we write 
simply f3T for f3T(:c, y). Sites in the backbone are labelled consecutively 
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y 

Ro 
Rs 

Figure 5.6: Decomposition of a tree T containing sites x and y into its 
backbone fJT(x, y) and ribs Ro, ... , Rs. The vertices of the backbone are 
indicated by heavy dots. 

from x to y, beginning with PT(O) = x and ending at (say) PT(n) = y. 
Removal of the bonds in the backbone disconnects the tree into n + 1 
mutually nonintersecting trees Ro, ... , Rn, which we refer to as ribs. This 
decomposition is shown in Figure 5.6. 

Given a set R = {Ro, ... , Rn} of n + 1 trees Rj, we define 

U (R) _ { -1 if R, and Rt share a common site 
' 1 - 0 if R, and R1 share no common site. (5.5.5) 

Then the two point function can be written 

(5.5.6) 

where each sum over R; is a sum over trees containing w(i), and R = 
(Ro, ... , Rlwl)· The sum over w is the sum over all ordinary random walks 
from 0 to x (taking steps in 0), although walks that are not self-avoiding 
give zero contribution to (5.5.6). 

We use the terminology of Definition 5.2.1 with a change in the definition 
of connected graph. A graph r on [a, b) will now be said to be connected if 
both a and b are endpoints of edges in r, and if in addition for each c E (a, b) 
there are s,t E [a,b] such that s < c < t with either (i) {s,t} E r, or (ii) 
{ c, t} E r and { s, c} E r. This notion of connectedness is less restrictive 
than that used for the self-avoiding walk, and is better suited for dealing 
with the interaction between ribs. This new definition of connected graph 
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leads to a larger set of laces than before, where we still define a lace to be a 
minimally connected graph, i.e., a connected graph for which the removal of 
any edge would result in a disconnected graph. We modify the prescription 
associating to each connected graph r a unique lace Cr, to conform with 
the new notion of connectedness, and now define Cr to consist of edges 
Bt t1, s2t2, ... where 

Let 

and 

Bt = a, t1 = max{ t : at E f} 

ti+1 = max{t: st e-r,s ~ ti} 

Bi =min{ a: st; E f}. 

K[a,b]= IT (l+U~t) 
aSa<tSb 

J[O, a] = E IT Uat IT {1 + U,,,, ). 
LEC[O,a] atEL a't'EC(L) 

(5.5.7) 

(5.5.8) 

Then following the proof of Lemma 5.2.2 with the modified definition of 
connectedness gives for b ~ 1, 

b-1 

I<[O, b] = K[l, b] + L J[O, a]I<[a + 1, b] + J[O, b]. (5.5.9) 
a=l 

(The middle term on the right side is taken to be 0 if b = 1.) Substitution 
of (5.5.9) into (5.5.6) results in 

G,(O, •) = f:IRol;o,. + ",E • •'"' [IL.E;) ziR;Il K[l, lwll 
JwJ ~ 1 

[
JwJ ]JwJ-1 

+ w :Ez zlwl [!R;~(i) zlR;l ~ J[O,a]K[a+ 1, lwiJ 
Jwl ~ 2 

+ L: [
lwl ] 

zlwf }] R;~(i) zfR;f J[O, lwiJ. (5.5.10) 
w :o-z 

fwf ~ 1 

The first term on the right hand side is due to the contribution to (5.5.6) 
from the trivial zero-step walk, and the other terms are due to the walks w 
with lwl ~ 1. 
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Denoting Gz(O, 0) by 

and writing 

llz(O, x) = 

Uz = Gz(O,O) = L ziTI 
T:IO 

w :o- z 

[
fwf l 

zlwl }] R;~i) zlR;l J[O, lwl], 
fwf ~ 1 
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(5.5.11) 

(5.5.12) 

the first and last terms on the right side of (5.5.10) can be written as oz6o,r 
and llz(O, x) respectively. The second term on the right side of (5.5.10) is 
equal to 

L zlRolz L Gz(u, x). 
Ro:=~o uen 

For the third term on the right side of (5.5.10), we consider w to be com­
posed of an initial a-step walk w1 from 0 to (say) u, followed by a single 
step to (say) v, and then a final portion (possibly consisting of 0 steps) w2 

from v to x. The term in question is then equal to 

rl l zL: L: zlwtf IT L ziR;I J(O, lwtll 
(u,v) Wt: 0- U i:O R;:lw 1(i) 

fwtf ~ 1 

r·,J l X E zfw,f }] R;E(i) zlR;f K(O, lw21] 
w2:v-:c 

fw2f;:: 0 

= z L llz(O,u)Gz(v,x), 
(u,v) 

where the sum over (u, v) denotes the sum over all directed steps with 
v - u E n. Summarizing, (5.5.10) can be rewritten as 

Gz(O, x) = 6o,:c Uz + llz(O, x) + zgz I: G:(u, x) + z I: ll:(O, u)Gz(v, x). 
(O,u) (u,v) 

(5.5.13) 
This is the expansion for trees. 

We can write this more compactly by writing D(x) for n-1 times the 
indicator function of the set n, and defining 

h:(x) = 6o,:~:Uz + ll:(O, x). (5.5.14) 
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Then (5.5.13) becomes 

Gz(O, x) = h,(x) + h, * zO.D * G,(x). (5.5.15) 

The expansion for animals 

For lattice animals the derivation of the expansion requires some modifi­
cation due to the fact that for an animal containing sites x and y there is 
in general not a unique path in the animal from x to y. To describe this 
modification, some definitions are needed. 

A lattice animal A containing x and y is said to have a double connection 
from x to y if there are two disjoint (i.e. sharing no common bond) self­
avoiding walks in A between x and y or if x = y. A bond { u, v} in A is called 
pivotal for the connection from x to y if its removal would disconnect the 
animal into two connected components with x in one connected component 
and y in the other. There is a natural order to the set of pivotal bonds 
for the connection from x to y, and each pivotal bond is ordered in a 
natural way, as follows. The first pivotal bond for the connection from x 
to y (assuming there is at least one) is the pivotal bond for which there 
is a double connection between one endpoint of the pivotal bond and x. 
The endpoint for which there is a double connection to x is then the first 
endpoint of the first pivotal bond. To determine the second pivotal bond, 
the role of x is then played by the second endpoint of the first pivotal bond, 
and so on. 

Given two sites x, y and an animal A containing x and y, the backbone 
of A is now defined to be the set of pivotal bonds for the connection from 
x to y. In general this backbone is not connected. The ribs of A are the 
connected components which remain after the removal of the backbone from 
A. An example is depicted in Figure 5.7. The set of all animals having a 
double connection between x and y is denoted 1Jx,y, and we write 

g:(x,y)= 2:: ziDI. (5.5.16) 
DeV.,,v 

In particular Dx,x is the set of all animals containing x. Let B be an 
arbitrary finite ordered set of directed bonds: 

B = ((ut, vi), ... , (ulBb ViBl)) · 

Let v0 = 0 and u!BI+l = x. Then 
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Do 

X 
Dt D2 

--u J 
IY - n 

~ 

Figure 5.7: Decomposition of a lattice animal A containing x and y into 
backbone and ribs. The backbone, consisting of two bonds, is drawn in 
bold lines. 

where now in the definition of K[O, IBI] in (5.5.7) 

U,t = { 

Define 

and 

-1 if D, and D1 share a common site 
0 if D, and D1 have no common site. 

h~(x) = u;(o, x) + rr;(o, x). 

(5.5.17) 

(5.5.18) 

A calculation similar to that used to derive (5.5.13), using (5.5.9), gives 

G~(O, x) = h~(x) + h~ * zOD * G~(x). (5.5.19) 

Bounds on the expansion for trees 

For proving convergence of the expansions for trees, bounds are required 
on llz(k) and o~flz(k). In this section we indicate how appropriate bounds 
can be obtained on these quantities. The procedure for obtaining bounds 
for lattice animals is similar but more involved, and will not be discussed 
here. 
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We denote by CN[O, a] the set of laces in C[O, a] consisting of exactly N 
edges, and write 

JN[O,a] = L II U8 t II (1 +U.•t•) (5.5.20) 
LE.CN[O,a]&tEL & 1t 1 EC(L) 

and 

w:0-+X 1 

lwl?! 1 

Then from (5.5.12) and (5.5.8) we have 

00 

IIz(O,:r:) = L(-1)Nrr~N)(O,x). (5.5.22) 
N:1 

For a nonzero contribution to II~N)(O, :r: ), the factor TI.teL U8 t in J N en­
forces intersections between the ribs R. and R1• This leads to bounds in 
which the contribution to II~N)(O, z) from theN-edge laces can be bounded 
above by an N-loop diagram. We illustrate this in detail only for the sim­
plest cases N = 1, 2. We also discuss the manner of bounding diagrams 
only for these two simplest cases. For more details the reader is referred to 
Hara and Slade (1990b). 

To bound the term II~1 )(0, x) we proceed as follows. There is a unique 
lace consisting of a single edge, so by definition 

X 

[
Jwl l zlwl IJ L ziR;I Uo,Jwl 

w :o~~, 
lwl ~ 1 

II 
0 ~ • < t ~ lwl 
(•, t) '# (O,Iwl) 

i:O R;:lw(i) 

(1 +U.,). (5.5.23) 

The factor Uo,lwl gives a nonzero contribution only if Ro and R1w1 intersect, 
and the final product in (5.5.23) disallows any further rib intersections. We 
first consider the case x # 0. Relaxing the latter restriction somewhat and 
overcounting an enforcement of the former gives the upper bound 

v w:O~x, 

lwl ~ 1 
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[
lwl-1 l 

x II L lziiRd II (1 + u,,). 
i:l R;3w(i),10,x t$&<t$1w1-t 

Now 

L lziiR.I = Glzi(O, v) 
Ro30,v 

and 
L lziiR1..,11 = Glzl(x, v). 

R1..,13x,v 

Since 

w: 0 ...... x, 
lwl ~ t 

for x # 0 we have 

(5.5.24) 
'II 

When x = 0 in (5.5.23), we can argue similarly that 

IIIP )(O, O)l :5 2: Glzl (0, e )Gizl( e, 0), (5.5.25) 
lel=l 

by decoupling the last step of w from its preceeding steps. Since G1z1 (0, 0) ~ 
1, we can now combine (5.5.24) and (5.5.25) to obtain 

III~t)(O, x)l :5 L [clzi(O, v)Gizl(v, x)Gizl(x, 0)- 6o,v8v,xYrzl] . (5.5.26) 
'II 

Thus frV)(k) is bounded by the triangle diagram minus the trivial contri­
bution arising when all three vertices are the origin. For o~fr~t)(k), the 
corresponding bound is the triangle diagram with one line weighted by x~. 

A similar strategy can be used to bound II~N)(O, x) for N ~ 2. The 
situation for N = 2 is shown in Figure 5.8. For a lace L = (Ott, 82!wl) 

consisting of exactly two edges, there are two generic configurations possible 
with TI,tELU•t # 0, one for the case 82 <it and the other for 82 =it. We 

illustrate the basic idea for the latter case. The contribution to rr}2) due to 
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Figure 5.8: The two generic laces consisting of two bonds, schematic di­
agrams showing the corresponding rib intersections for a nonzero contri­
bution to ll~2>(o, x), and Feynman diagrams bounding the corresponding 
contributions to II~2)(0, x ). In evaluating the diagrams, sums over vertices 
are constrained to disallow the coincidence of all vertices on any loop. 

laces with s2 = tt can be written 

L zlwl IT E ziR;I E U0,U,Iwl II (l+U,,,,). [
JwJ ]JwJ-1 

w:O-+:c i:OR;3w(i) a:l 6 1t 1EC({O,•},{•,Jwf}) 
lwl ~ 2 ' 

(5.5.27) 
We bound this by replacing z by lzl, and using 1 +U,,,, :5 1 for s' < s < t' 
to decouple the interaction. For U0, :f: 0, Ro and R, must intersect. Let y 
be a site where Ro and R, intersect, and let fiR, (w(s), y) be the backbone 
of R,. For U,lwl :f: 0, RJwl must intersect R,, and hence there must be a rib 
emanating from a site on the backbone .8R,(w(s),y) which intersects Rrwl 
-see Figure 5.8. Now by arguing in a similar fashion to the case N = 1, 
(5.5.27) can be bounded above by the second Feynman diagram depicted 
in Figure 5.8. The contribution from the other type of lace is bounded by 
the first Feynrnan diagram of Figure 5.8. 

In general, lfi~N)(k)l is bounded above by a sum of 2N-t "ladder" di­
agrams, each containing exactly N non-trivial loops. The basic operation 
used in bounding these diagrams is repeatedly to apply the simple inequal­
ity 

I 'L:f(z)g(x)l $ sup 1/(z)l L)g(y)l. 
:c :c 11 

(5.5.28) 
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For the case N = 2, the argument goes as follows. Let 

Tz =sup [2:Gz(O,z)Gz(z,y)Gz(Y,w)-t5o,w(Uz)3] 

weZ" t~:,!J 

Wz = sup L lxi2Gz(O, z)G,(z, y)Gz(Y, w) 
wez• ti:,!J 

Sz = L Gz(O, w)Gz(w, z)Gz(x, y)G1 (y, 0)- (g1 ) 4 • 

Then we have 
IIT~2)(k)l $ 2Tiz1Sizl· 

Also, using the inequality I l:?:t a;l2 $ n E?=t la;l2 to replace lzl2 leads 
to a sum of diagrams in which a single line in each diagram is weighted by 
the square of the difference of the line endpoints, and we obtain 

IV~ft~2)(k)j $ 13Wiz1Sizl· 

Here the factor 13 = 32 + 22 arises from the fact that in the first diagram 
of Figure 5.8 the lxl2 is distributed over n = 3 lines, while in the second 
n=2. 

Higher values of N can be handled in a similar fashion. 

5.5.2 Percolation 

Grimmett (1989) provides a good introduction to percolation. Here we 
mention only those aspects of percolation which are relevant for the de­
velopment of the lace expansion. The expansion can be applied to both 
bond and site percolation, but for simplicity we restrict attention to bond 
percolation. 

Let 0 be a finite set of sites in za, not containing the origin, which is 
symmetric with respect to the symmetries of za. We consider independent 
bond percolation on zd, where the bonds are the pairs { z, y} of sites with 
y- x E 0. This means that to each bond we associate an independent 
Bernoulli random variable n{t~:,y} which takes the value one with probability 
p and the value zero with probability 1 - p, where p is a parameter in 
the closed interval [0, 1). If n{z,y} = 1 then we say that the bond {z, y} 
is occupied, and otherwise we say that it is vacant. A configuration is a 
realization of the random variables for all bonds. Given a configuration 
and any two sites z and y, we say that z and y are connected if there is 
a self-avoiding walk from z to y consisting of occupied bonds, or if z = y. 
For d ~ 2 this model undergoes a phase transition in the following sense: 
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There is a critical value Pc E (0, 1) such that the probability O(p) that the 
origin is connected to infinitely many sites is zero for p < Pc and strictly 
positive for p > Pc· 

We denote the indicator function of an event E by l[E] and expectation 
with respect to the joint distribution of the Bernoulli random variables 
n{r,y} by (·}p· Then the two-point function rp(x, y) is defined to be the 
probability that x and y are connected: 

Tp(x, y) = (I[x andy are connected)}p. (5.5.29) 

For p < Pc the two-point function is known to decay exponentially as lx -
yj _. oo, so that the correlation length 

[ 1 ] -l 
e(p) = - lim -log rp(O, ne1) 

n--+oo n 
(5.5.30) 

is finite and strictly positive. The susceptibility is defined by 

x(p) = L rp(O, x). (5.5.31) 
rEZd 

The susceptibility is known to be finite for p < Pc and to diverge as p / Pc· 
The following power laws are believed to hold: 

x(p) """const.(Pc- Pt.., asp/ Pc 

O(p) """const.(p- Pc)fJ asp'\. Pc 

{(p),..... const.(pc- Pt" asp/ Pc 

(5.5.32) 

(5.5.33) 

(5.5.34) 

for some dimension-dependent critical exponents r, {3, v. Currently the only 
rigorous result proving existence of these critical exponents is the following 
theorem. In the statement of the theorem we as usual write f(x) ::::: g(x) 
to mean that there are positive constants c1, c2 such that c1g(x) ~ f(x) ~ 
c2g(x) for x sufficiently close to its limiting value. References to further 
results in this direction are given in the Notes at the end of the chapter. 

Theorem 5.5.2 For 0 the set of nearest neighbours of the origin and d 
sufficiently large, orford > 6 and 0 = {x -:/: 0 : llxlloo ~ L} with L 
sufficiently large, 

as p / Pc 
as p '\, Pc 
as p / Pc· 
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It is a short step from the behaviour of O(p) given in Theorem 5.5.2 
to the conclusion that the percolation probability is zero at the critical 
point, i.e. that O(pe) = 0. This has otherwise been proven only for the 
nearest-neighbour model in two dimensions; see the Notes for more details. 

An important ingredient in the proof of Theorem 5.5.2 is an expansion 
for the two-point function rp(O, z ), valid for p < Pe, which is analogous 
to the expansions for the self-avoiding walk and lattice trees and animals. 
Our purpose in the remainder of this section is derive the expansion, and 
to indicate how it can be bounded. 

The expansion 

For the expansion we need to define several concepts. 

Definition 5.5.3 (a) A bond is an unordered pair of distinct sites {z, y} 
with y- z E n. A directed bond is an ordered pair (x, y) of distinct sites 
with y - X E n. A path from z to y is a self-avoiding walk from X to y, 
considered to be a set of bonds. Two paths are disjoint if they have no bonds 
in common {they may have common sites). Given a bond configuration, an 
occupied path is a path consisting of occupied bonds. 
{b) Given a bond configuration, two sites z and y are connected if there is 
an occupied path from :t toy or if z = y. We denote by C(z) the random set 
of sites which are connected to z. Two sites z andy are doubly-connected 
if there are at least two disjoint occupied paths from z toy or if x = y. We 
denote by De(x) the random set of sites which are doubly-connected to x. 
Given a bond b = { u, v} and a bond configuration, we define Cb( x) to be the 
set of sites which remain connected to z in the new configuration obtained 
by setting nb = 0. 
(c) Given a set of sites A C zd and a bond configuration, two sites x and 
y are connected in A if there is an occupied path from z to y having all of 
its sites in A (so in particular it' is required that x, yEA), or if x = y E A. 
Two sites x and y are connected through A if they are connected in such 
a way that every occupied path from x to y has at least one bond with an 
endpoint in A, or if z =yEA. 
(d) The restricted two-point function is defined by 

r:(x, y) = (I(x andy are connected in Zd\A])p. 

(e) Given a bond configuration, a bond {u,v} (occupied or not) is called 
pivotal for the connection from x toy if (i) either x E C(u) andy E C(v), 
or x E C(v) andy E C(u), and (ii) y¢C{u,v}(x). Similarly a directed 
bond ( u, v) is pivotal for the connection from x to y if x E C{u,v}( u), y E 
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C{u,v}(v) and y~C{u,v}(x). lfx andy are connected then there is a natural 
order to the set of occupied pivotal bonds for the connection from x to y 
(assuming there is at least one occupied pivotal bond), and each of these 
pivotal bonds is directed in a natural way, as follows. The first pivotal 
bond from x toy is the directed occupied pivotal bond (u, v) such thai u is 
doubly-connected to x. If (u, v) is the first pivotal bond for the connection 
from x to y, then the second pivotal bond is the first pivotal bond for the 
connection from v to y, and so on. 

The basic idea behind the expansion is similar to that underlying the 
expansion for lattice animals. Given a configuration in which 0 and x are 
connected, the connected bond cluster of the origin is a lattice animal con­
taining the sites 0 and x. The occupied pivotal bonds divide the cluster into 
doubly-connected pieces, as in Figure 5.7. No two of these pieces can share 
a common site, so there is a kind of "repulsive interaction" between these 
pieces. However the situation is not as simple as it was for lattice animals, 
because the pieces interact also when they share a common boundary bond. 
Rather than try to formalize this interaction into a quantity U as we did 
for lattice animals, we shall proceed instead to derive the expansion along 
the lines of the inclusion-exclusion approach outlined in Section 5.1. 

In this approach, we think of the pivotal bonds as corresponding to the 
steps of a walk. The first thing to do is to extract the contribution due 
to the zero-step walk, which in the percolation context corresponds to the 
event that 0 and x are doubly-connected. Thus we have 

Tp(O, x) = (I[x E Dc(O)]}p + (I[x E C(O), x ~ Dc(O)])p. (5.5.35) 

If 0 is connected to x, but not doubly, then there is a pivotal bond for the 
connection from 0 to x and hence a first pivotal bond, so that 

Tp(O, X) = (I[x E Dc(O)]}p (5.5.36) 

+ E {I[x E C(O), (u, v) is the first pivotal bond])p. 
(u,u) 

To proceed further, we need a way of writing the last term on the right side 
as a convolution with Tp. This is achieved using the next lemma. 

For the statement of the lemma, given sites x, y and a set of sites A 
we introduce two events. Let Et(x, y) be the event that y E Dc(x), and 
let E2(x, y; A) be the event that x is connected to y through A and there 
is no pivotal bond for the connection from x to y whose first endpoint is 
connected to x through A. In particular, E2(x,y;A) includes the event 
that x and yare doubly-connected and connected through A. Observe that 
Et(x, y) = E2(x, y; zd). 
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Figure 5.9: The event of Lemma 5.5.4, that E2(0, u; A) occurs and ( u, v) 
is occupied and pivotal for the connection from 0 to x. The dotted lines 
represent the sites in A. There is no restriction on intersections between A 
and C{u,v}(x). 

Lemma 5.5.4 Given a nonempty set of sites A and a site u, let E = 
E2(0, u; A). Let p < Pc· Then 

(I[E]I[( u, v) is occupied and pivotal for the connection from 0 to x])p 

= p(l[E] r;<•.v)(O)(v, x)}p· (5.5.37) 

Proof. The event appearing in the left side of (5.5.37) is depicted in Fig­
ure 5.9. The proof is by conditioning on C{u,v}(O), which is the connected 
cluster of the origin which remains after setting n{u,v} = 0. This cluster is 
finite with probability one, since p < Pc· 

We first observe that for the event E under consideration, the event that 
E occurs and (u, v) is pivotal (for the connection from 0 to x) is independent 
of the occupation status of the bond (u, v). Therefore the left side of the 
identity in the statement of the lemma is equal to 

p(I[E]I[(u, v) is pivotal for the connection from 0 to x])p· 

By conditioning on C{u,v} (0), (5.5.38) is equal to 

p L (J[E occurs, (u, v) is pivotal, C{u,v}(O) = S]}p, 
8:8;)0 

where the sum is over all finite sets of sites S containing 0. 

(5.5.38) 

(5.5.39) 

In (5.5.39), the statement that (u, v) is pivotal can be replaced by the 
statement that v is connected to x in zd\S. This event depends only on 
the occupation status of the bonds which do not have an endpoint in S. 
On the other hand, the event E under consideration is determined by the 
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occupation status of bonds which have an endpoint in C{u,v}(O). Similarly, 
the set C{u,v}(O) is self-determined in the sense that for a deterministic 
(finite) set of sites S, the event that C{u,v}(O) = S depends on the values 
of nb only for bonds b which have one or both endpoints in S. Hence the 
event that both E occurs and C{u,v}(O) = Sis independent of the event 
that v is connected to x in zd\S, and therefore (5.5.39) is equal to 

p L (I[E occurs and C{u,v}(O) = S]),rff(v,x). (5.5.40) 
5:530 

Bringing the restricted two-point function inside the expectation, replacing 
the superscript S by C{u,v}(O), and performing the sum over S, (5.5.40) is 
equal to 

(5.5.41) 

This completes the proof. 0 

We now apply the lemma to the second term on the right side of (5.5.36), 
with E = E1 (0, u) = E2(0, u; za). The summand in this term is equal to 
the probability that 0 is doubly-connected to u and ( u, v) is occupied and 
pivotal for the connection from 0 to x. Hence by the lemma it is equal to 

(5.5.42) 

To extract a term involving a convolution with rp from this quantity, we 
write 

r;<•.•l(O\v, x) = r,(v, x)- [r,(v, x)- r;{v,v)(O)(v, x)]. 

Using (5.5.42) and (5.5.43) in (5.5.36), we obtain 

r,(O, x) = {I[x E Dc(O)]), + p L {I[u E Dc(O)]),r,(v, x) 
(u,v) 

(5.5.43) 

- p L (I[u E Dc(O)]{r,(v, x)- r;<•.•)(o\v, x)}),. (5.5.44) 
(u,v) 

The above equation gives the lowest order expansion with remainder. 
We abbreviate the notation by writing 

g,(O, x) = (I[x E Dc(O)]), (5.5.45) 

and 

R~0)(0, x) = p L {I[u E Dc(O)]{ r,( v, x)- r;<•.•l(O)(v, x)} }, . (5.5.46) 
(u,v) 
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We denote by D the function on zd which takes the value n-1 at sites in 
n and otherwise is zero. Then (5.5.44) can be rewritten as 

(5.5.47) 

To proceed further, we will use the following lemma to expand the remain­
der term R~0)(0, z). For the statement of the lemma, we write I 2 (v, z; A) 
for the indicator function of the event E2(v, z; A). 

Lemma 5.5.5 Given a set of sites A and two sites v and z, 

rp(v, z)- r:(v, z) = (I2(v, z; A)}p + p I: (I2(v, y; A)r,?h· 11'}(v)(y', z))p· 
(y,y') 

(5.5.48) 

Proof. The left side is the probability of the event that v and z are con­
nected but are not connected in zd\A. By definition, this is the probability 
that v is connected to z through A. If v is connected to z through A then 
either (i) there is no pivotal bond for the connection from v to :z: whose 
first endpoint is connected to v through A, or (ii) there is such a pivotal 
bond. Case (i) is exactly the event E2(v,z;A), and gives the first term on 
the right side of (5.5.48). In case ( ii), let (y, y') denote the first pivotal 
bond for the connection from v to z such that y is connected to v through 
A. The contribution to the left side of (5.5.48) due to this case is 

I: (I[E2( v, y; A) occurs and (y, y') is occupied and pivotal 
(y,y') 

for the connection from v to x]}p. 

Then by Lemma 5.5.4, with (v, y) playing the role of (0, u), the contribution 
due to this case gives the second term on the right side of (5.5.48). 0 

Using Lemma 5.5.5 and (5.5.46), and replacing the summation index 
( u, v) by (Yt, vi), we have 

R~0)(0, :z:) = P L (l[Yt E Dc(O)](I2(Yt, z; Cf111 ,11 :>(0))}(1)}(0) 
(llloiiD 

Here and in the following we simplify the notation by dropping the subscript 
p from the angular brackets denoting expectation. In addition we have 
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introduced a superscript to coordinate random sets with the appropriate 
expectation, in nested expectations. Thus for example in the second term 
in the right side of the above equation, the set Cf11 .,11 n(O) is random with 
respect to the outer expectation, but may be treated as deterministic in 
the evaluation of the inner expectation. Using the analogue of (5.5.43) to 
replace the restricted two-point function on the right side by an unrestricted 
two-point function plus a correction, and defining 

and 

II~1 >(o, x) = p L (I(yt E Dc(O)](I2(Yt,x; Cf11 .,11 n(O)))(l))(o) 
(Yt,YD 

R~1 )(0,x) = p2 L L (I(y1 E Dc(O)](I2(Yt,Y2;Cfy 1 ,y\}(O)) 
(!It,!/:) (Y2o!l~} 

ct (y') 
x{rp(Y:z,x)- rp <~N~} 1 (1/:z,x)})(t))(o), 

we now have from (5.5.47) that 

rp(O, x) = Up(O, x)-II~1 >(0, x)+(gp-II~1)]*pOD*rp(z)+R~1 >(o, x), (5.5.49) 

where D denotes n-1 times the indicator function of the set 0. 
The above procedure can be iterated as many times as desired. The 

result is the lace expansion for percolation, which is stated in the next 
theorem. We refrain from giving the simple but tedious details of the proof. 
For the statement of the theorem we write 1lo = 0 and introduce for n ~ 1, 

and 

cn-1 cn-1 (·' ) = bn,Y~} Yn-1 ' 

(!It ,y:) (!In,!/~) 

n 

h~">(o, x) = Up(O, x) + L( -l)irry>(o, x) 
j=1 

R~">(o, x) = p"+l L . . . L (I[Yt E Dc(0)]{/1(12 ... (J" 
(!It ,yD (Yn+t ,y~+t) 

x { rp(Yn+l, x) - rff" (Yn+l, x)} }(n) ... }(3)}(2)}(1)}(0). 
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Finally defining h~0>(o, x) = gp(O, x), we have the following theorem. 

Theorem 5.5.6 For p < Pc and N ;::: 0, 

Bounds on the expansion 

For effective bounds on the expansion the main requirement is to bound 
Up(k)- 1 and ft~n)(k), as well as their second derivatives with respect to 
k. Bounds on the remainder term then follow readily. The method for 
obtaining bounds is to first obtain upper bounds in terms of Feynman 
diagrams, and then bound the diagrams in terms of the triangle diagram: 

Tp= E rp(O,x)rp(x,y)rp(y,0)-1. (5.5.51) 
:r:,yEZ4 

For second derivatives with respect to k!i, the bubble diagram with one line 
weighted with x! will also occur in upper bounds. Here we will discuss the 
main idea used in obtaining bounds in terms of Feynman diagrams. 

To obtain a diagrammatic bound on fi~n)(k) for the self-avoiding walk 
(or for lattice trees), an important role was played by the repulsive character 
of the interaction: we were able to ignore interactions between distinct 
subwalks in upper bounds. For percolation this step is performed using 
the inequality of van den Berg and Kesten (1985). This is a rather general 
inequality, but for our purposes the following special case will suffice. 

Lemma 5.5. 7 Let Vt, V2, ... , Vn be sets of paths in the lattice, and let E; 
( i = 1, ... , n) be the event that at least one of the paths in V; is occupied. 
Let F be the event that there are pairwise disjoint occupied paths from each 
of the sets Vt, V2, ... , Vn. Then 

n 

(I[F]}p :5 IT (I[E;]}p. 
i=l 

It follows immediately from Lemma 5.5.7 and the definition of gp in 
(5.5.45) that 

lup(k)- 11 :52: rp(O, x)2 • (5.5.52) 
:r:~O 
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The right side is the percolation bubble diagram, with the trivial unit term 
omitted. An additional factor of lxl2 appears on the right side in the anal­
ogous bound on V~gp(k). 

To bound TI~n)(k), the following lemma is used. Its proofrelies heavily 
on Lemma 5.5.7. 

Lemma 5.5.8 The following inequalities are satisfied: 
(a) 

{I2(y', 2:; A)}p $ L I[u E A] L:rp(y', z')rp(z', u)rp(u, x)rp(z', x) 
u z' 

(b) 

(!2(1/;, Yi+l; A)l[v E Cb;+t,Yl+t} (if; ))p (5.5.53) 

~ L I[u E A) (E' rp(Y;, z')rp(z', u)rp(u, Yi+t)rp(Yi+l• w)rp(w, z')rp(w, v) 
u w,z' 

+ l: rp(if;, w)rp(w, v)rp(w, z')rp(z', u)rp(u, Yi+t)rp(Yi+l, z')) , 
w,z' 

where the primed sum is restricted to disallow a term with w = z' = u = 
Yi+t· 

Proof. (a) There are two distinct ways that the event E 2(y', x; A) can 
occur: either {i) y' and 2: are doubly-connected and connected through A, 
or ( ii) y' and x are not doubly-connected and there is a last pivotal bond 
(z, z') for the connection from y' to x, with z' and :t doubly-connected and 
connected through A, and with z connected to y' in zd\A. In case (i), 
either y' E A, or x E A, or we can find a site u E A\ {y', x} and disjoint 
occupied paths connecting y' to 2:, y' to u, and u to 2:. The probability of 
the latter of these three events is bounded above by 

2: rp(y',2:)rp(y',u)rp(u,x), 
uEA\{y',z} 

(5.5.54) 

by the van den Berg-Kesten inequality. The first two of the events in case 
(i) can be similarly bounded, with the overall result that the contribution 
from case (i) is bounded above by (5.5.54) with the summation expanded to 
all u E A. Subsequently in the proof we shall leave implicit any discussion 
of configurations like those in case ( i) with y' E A or x E A. 
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v 
v 

( i) I z' Yi+1 ( ii) 
1A w v 1A 

Yi+1 
z' 

u u 

Figure 5.10: The configurations of Lemma 5.5.8(b). 

For case ( ii), z' :f. y', and we can similarly find a site u E A and four 
distinct occupied paths from y' to z', z' to u, u to z, and z' to z. Hence 
by the van den Berg-Kesten inequality the contribution from case (ii) is 
bounded above by 

L L rp(y', z')rp(z', z)rp(z', u)rp(u, z). (5.5.55) 
ueA z';/:11' 

The desired result then follows by combining the contributions due to (i) 
and (ii). 

(b) For a configuration in which E2(JA, Yi+l; A) occurs and in addition v E 
C{YHt.YI+tl(JA), either (i) we can find a site u E A, sites w, z' E zd and 
distinct paths connecting JA and w, w and v, w and z', z' and u, u and Yi+l, 
and Yi+t and z', or (ii) we can find sites u E A, w, z' E zd and distinct 
paths connecting 1A and z', z' and w, wand v, wand Yi+l• z' and u, and u 
and Yi+l· (Since z' and Yi+t are doubly-connected and connected through 
A, each path connecting z' to Yi+t passes through A, and hence u E A 
can be chosen such that w and u lie on distinct paths from z' to Yi+t). 
Diagrams illustrating these two possibilities are given in Figure 5.10. It is 
possible that for example 1A = z' in (i) and/or (ii), but we refrain from 
giving a detailed discussion of this or other such special cases. However 
we do note that in case (ii) a configuration having z' = w = u = Yi+l is 
already accounted for in case ( i), and we therefore need not include such 
configurations also in case ( ii). The desired inequality then follows from 
the van den Berg-Kesten inequality. D 

This lemma can then be used in an iterative fashion to estimate the 
nested expectations occurring in the definition of fi~n) from the inside out. 

We now describe this in detail for fi~1 ), which was defined above as 

11~1 )(0, z) = p L {/(yt E Dc(0)]{/2(Yt, x; Cf11 ,,11n (0))}(1)}(o). (5.5.56) 
(y,,yl) 
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(a) 0~ 

(b) 0 ~.____: '----liJ + 0 m 
Figure 5.11: The diagrams bounding (a) fi~1 )(k) and (b) fi)2)(k). The seven 
shaded triangles can shrink to a single point, but the six unshaded loops 
cannot. 

Using Lemma 5.5.8(a) to estimate the inner expectation gives 

(y 1 ,yl) u,z 1 

To estimate the remaining expectation, we observe that it is bounded above 
by the probability that there are two disjoint occupied paths from 0 to Y1, 
with one of the paths containing a site w which is connected to u by an 
occupied path which is disjoint from the other two. Applying the van den 
Berg-Kesten inequality to the expectation then gives 

(5.5.57) 

Then ft)1)(k) is bounded by the sum over x of the right side of(5.5.57). This 
bound is illustrated in Figure 5.11, together with the analogous bound for 
fi~2)(k) (which uses Lemma 5.5.8(b)). In the diagrams the unshaded loops 
are restricted to disallow the coincidence of all vertices on the loop, and the 
shaded loops are unrestricted. A pair of vertical bars implies a sum over 
directed bonds. Any loop containing a pair of vertical bars automatically 
disallows the coincidence of all vertices on the loop (since the endpoints of 
the directed bond are distinct) and hence is unshaded. 

The diagrams which bound fi~n) can then be estimated in terms of 

sup [z::rj,(O, z)rp(z, y)rp(y, w)- 8o,w] , 
wEZd z:,y 
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which is closely related to the triangle diagram with the trivial unit contri­
bution omitted. For further details the reader is referred to Hara and Slade 
(1990a). 

5.6 Notes 

Sections 5.1 and 5.2. The idea of expanding the self-avoidance interac­
tion is a natural one which has occurred from time to time in the literature. 
However the lace expansion is the first such expansion which has been con­
trolled rigorously. The lace expansion was first introduced in Brydges and 
Spencer (1985), who applied it to the weakly self-avoiding walk [defined 
below (5.2.2)], with interaction strength A sufficiently small and dimension 
d > 4. In this context, they proved that the mean-square displacement is 
asymptotically linear in the number of steps and the scaling limit of the 
endpoint is Gaussian. 

The connection between the lace expansion and the cluster expansions 
of statistical mechanics and constructive quantum field theory is discussed 
in Brydges (1986). The derivation of the lace expansion via the inclusion­
exclusion relation, described in Section 5.1, was first given in Slade (1991). 
Lemma 5.2.6 was first proved in Lawler (1989). 

Section 5.3. The memory-two walk has been studied by many authors. 
The expression (5.3.11) for the mean-square displacement was first obtained 
in Domb and Fisher (1958), in a more general setting. See also Barber and 
Ninham (1970), and Ernst (1988). For finite memory greater than two it 
is unclear how to evaluate fi~(k; r) explicitly. 

Section 5.4. The bounds given on the lace expansion generally follow 
the method of Brydges and Spencer (1985). Hara and Slade (1992b) use 
considerably more elaborate bounds to obtain convergence of the expansion 
for the strictly self-avoiding walk in five or more dimensions. 

Section 5.5.1. For lattice trees and lattice animals subadditivity argu­
ments showing that tn ~ An and an $ A~ are given in Klein (1981) and 
Klarner (1967) respectively. A lower bound tn ?: const.Ann-const.logn is 
given in Janse van Rensburg (1992b). A field theory representation was 
given in Lubensky and Isaacson (1979), where arguments were put forth 
that the upper critical dimension is eight. Skeleton inequalities were used in 
Bovier, Frohlich and Glaus (1986) and Tasaki and Hara (1987) to illustrate 
the importance of the square diagram and the relevance of its finiteness at 
the critical point for mean-field behaviour. 
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Lace expansion methods were first applied to trees and animals in Hara 
and Slade (1990b). They considered the nearest-neighbour model in suf­
ficiently high dimensions, and spread-out models above eight dimensions, 
and proved that the susceptibility (defined by summing the two-point func­
tion over the lattice) is bounded above and below by constant multiples of 
(ze- z)- 112 , and the correlation length of order two is bounded above and 
below by constant multiples of (ze- z)- 114 • These results were improved 
in Hara and Slade (1992c) to give the control of fixed-n quantities for trees 
stated in Theorem 5.5.1. The proof uses the fractional derivative methods 
of Section 6.3. 

Section 5.5.2. Introductions to percolation, with varying perspectives, 
are given in the books by Grimmett (1989), Durrett (1988), Stauffer (1985) 
and Kesten (1982); see also the review article Kesten (1987). The lace ex­
pansion for percolation was introduced in Hara and Slade (1990a), where it 
was proven that the triangle condition is satisfied for the nearest-neighbour 
model above 48 dimensions (now improved to 42 -still not optimal!) and 
for spread-out models (of greater generality than stated in Theorem 5.5.2) 
above six dimensions. The triangle condition states that the triangle dia­
gram Lz,y rp(O, .r)rp(x, y)rp(Y, 0) is finite at the critical point p = Pe· It 
is not obvious that the triangle condition holds, since Lz rp(O, .r) diverges 
asp/ Pe· The triangle condition was first introduced by Aizenman and 
Newman (1984) as a sufficient condition for mean-field behaviour of the 
susceptibility (expected cluster size). Later it was shown in Nguyen (1987) 
that the gap exponents also take their mean-field values if the triangle con­
dition is satisfied. Then Barsky and Aizenman (1991) showed that if the 
triangle condition is satisfied then the critical exponents for the percolation 
probability 8(p) and the magnetization (the critical exponent 6) exist and 
take their mean-field values. Thus the portion of Theorem 5.5.2 correspond­
ing to the susceptibility and the percolation probability is a combination 
of results of Aizenman and Newman (1984), Barsky and Aizenman (1991) 
and llara and Slade (1990a). The control of the correlation length stated 
in Theorem 5.5.2 was later obtained in llara (1990), using a modification of 
the lace expansion method. Section 6.5.1 describes an analogous argument 
for the self-avoiding walk correlation length. A further result for the critical 
behaviour of high dimensional percolation was obtained in Yang and Zhang 
(1992), who showed that given a nonnegative integer n the cluster density 
function K(p) has a finite n-th left derivative at Pe, if dis sufficiently large. 

Combining the result of Hara (1990) with the upper and lower bounds 
in terms of the percolation correlation length for the time constant for first 
passage percolation (due respectively to Chayes (1991) and Chayes and 
Chayes (1986a)], the time constant for the nearest-neighbour model in high 
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dimensions is seen to behave like (Pc- p)112 • 

It follows from Theorem 5.5.2 that under the hypotheses of the theorem 
the percolation probability is continuous at the critical point in the sense 
that O(pc) = 0. Although this is very strongly believed to be true in all 
dimensions, the only other instance of a rigorous proof that the critical 
percolation probability vanishes is for the nearest-neighbour model in two 
dimensions [see Grimmett ( 1989) for a proof and references to original work 
of Harris and Kesten]. Continuity at all points other than Pc is proven in 
Aizenman, Kesten and Newman (1987). 

The lace expansion also leads to a bound on the nearest-neighbour per­
colation critical point of the form (2d- 1)-1 5 Pc 5 (2d)- 1 + O(d-2); see 
Hara and Slade {1990a). This improves an estimate of Kesten (1990). For 
the spread-out model in more than six dimensions it is implicit in Hara and 
Slade (1990a) that the critical point satisfies o-1 5 Pc 5 o-1 + o(L-d- 2). 

For spread-out percolation in general dimensions d?: 2, Penrose (1992) has 
shown that Pc ""' 0-1 as L -+ oo. 

As stated, Lemma 2.1 of Hara and Slade (1990a) is incorrect: the class of 
events in the statement is too large. However the conclusion of the lemma 
is true for the events to which the lemma is applied. The error, which 
was pointed out by Y. Higuchi, is corrected in Lemma 5.5.4. Lemma 5.5.4 
considers a slightly different event than that used in Hara and Slade {1990a), 
to simplify the presentation. 

The lace expansion has also been applied to oriented percolation models, 
in which bonds are oriented in one direction. The upper critical dimension 
for these models is believed to be five [Obukhov (1980)). Strong evidence in 
favour of this belief is given by the results of Nguyen and Yang (1991), who 
proved that the triangle condition holds for the nearest-neighbour model 
in very high dimensions or for spread-out models above five dimensions. 
This implies mean-field behaviour for various critical exponents as for the 
unoriented case. It appears that the lace expansion can also be applied to 
prove Gaussian behaviour of the two-point function at the critical point, 
at least for the nearest-neighbour model in high dimensions [Nguyen and 
Yang (in preparation)]. 
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Chapter 6 

A hove four dimensions 

6.1 Overview of the results 

The lace expansion has been used to resolve many of the issues concerning 
the self-avoiding walk in five or more dimensions. Proving convergence of 
the lace expansion ford = 5 involves a myriad of major technical difficulties, 
due to the fact that the best bound on the small parameter responsible for 
convergence ofthe expansion, namely IIHzcll~ = B(zc)-1, is 0.493. However 
many of these technical difficulties are not present if the small parameter 
can be taken to be arbitrarily small, and it is in the context of an arbitrarily 
small parameter that the proof becomes most transparent. For this reason, 
in this chapter we give the proof of convergence of the lace expansion and 
its consequences for the critical behaviour in two contexts: for the nearest­
neighbour model with large d, and for the "spread-out" self-avoiding walk 
with steps (z, y) satisfying 0 < liz- Ylloo $ L, ford> 4 and large L. 

For each of these two models we will use 0 to denote the coordination 
number, i.e. 0 = 2d for the nearest-neighbour model and 0 = (2L + l)d -1 
for the spread-out model. It will be shown that in either case the behaviour 
of IIHzcll~ is governed by the contribution to the corresponding ordinary 
random walk critical (z = o-1) bubble diagram due to the 0 terms in 
which two single step walks end at the same site, i.e. 0/02 = o-1• Hence 
the small parameter can be made arbitrarily small by increasing 0. 

In the remainder of this section we summarize the results that will be 
obtained in this chapter. We discuss both the nearest-neighbour model and 
the spread-out model simultaneously, combining the statements that d is 
sufficiently large for the nearest-neighbour model, and L is sufficiently large 
for the spread-out model, into the single statement that 0 is sufficiently 

171 
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large. We emphasize that all of the results stated in this section, with the 
exception of Theorem 6.1.3, have been proven in Hara and Slade (1992a,b) 
for the nearest-neighbour model for d ;:::_ 5. 

Asymptotic formulas for Cn and the mean-square displacement are given 
in the following theorem, whose proof can be found in Section 6.4.2. 

Theorem 6.1.1 There is an 0 0 such that for n ;:::_ flo there are positive 
A, D such that the following hold (assuming d > 4 for the spread-out model). 

(a) Cn = AJJn(l + O(n-t)] as n-+ oo, for·any c < min{(d- 4)/2, 1}. 

(b) (lw(n)l2} = Dn(l +O(n-t)] as n-+ oo, for any c < min{(d-4)/4, 1}. 

Remark. Bounds on the constants A and D will be given in Section 6.2.3. 
In particular, for the nearest-neighbour model in high dimensions D is 
strictly greater than one, indicating that the self-avoiding walk does move 
away from the origin more quickly than ordinary random walk, although 
only at the level of the diffusion constant. For the nearest-neighbour model 
in five dimensions the current best bounds are given in Hara and Slade 
(1992b) to be 1 :$A:$ 1.493 and 1.098 :$ D :$ 1.803. 

A corollary of (a) is that limn-oo Cn+lfcn = JJ [cf. Equation (7.1.4)]. 
This is believed to be true in all dimensions, but remains unproved for 
d = 2, 3, 4. Theorem 6.1.1 is proven via a Tauberian-type theorem, after 
first controlling the susceptibility and correlation length of order two. The 
results for X and e2 are stated in the next theorem, which is proved in 
Section 6.2.3. [The notation f(z) ""g(z) means limz/zc f(z)jg(z) = 1.) 

Theorem 6.1.2 There is an flo such that for 0;::: Oo (assuming d > 4 for 
the spread-out model) 

and 

( ) Azc 
X z IV-­

Zc- Z 

6(z) ,...., ( Dzc ) 1/2' 
Zc- Z 

where the constants A, D are the same as in Theorem 6.1.1. 

For en (0, x) we will prove the following theorem, which gives the hyper­
scaling inequality CL 1ing - 2 :$ -d/2. In fact this inequality is believed to 
be an equality; see Section 2.1. Theorem 6.1.3 is the only result stated in 
this section which has not been proved for the nearest-neighbour model for 
all d ;:::_ 5. 
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Theorem 6.1.3 There is an no such that for n;::: no (assuming d > 4 for 
the spread-out model) there is a constant B such that 

sup cn(O,x) $ Bf..tnn-d/2 . 
rEZd 

This theorem is proved in Section 6.8. An immediate consequence of Theo­
rem 6.1.3 is the following result, which is a weaker version of the statement 
that a,;ng - 2 $ -d/2. This weaker statement has been proven for the 
nearest-neighbour model for all d ;::: 5; we comment briefly on the method 
of proof in the Notes for this chapter. 

Corollary 6.1.4 There is an no such that for n ;::: no {assuming d > 4 
for the spread-out model) 

for any a< (d- 2)/2. 

00 

sup L nacn(O, x)f..t-n < oo 
rEZdn=O 

For the correlation length e(z) = 1/m(z) [see (1.3.15)] we have the 
following result, which is proved in Section 6.5.1. 

Theorem 6.1.5 There is an no such that for n;::: no (assuming d > 4 for 
the spread-out model) 

{D ( ) 1/2 
e(z)---vu Zcz~z ' 

with the same constant D as in Theorem 6.1.1. 

By Theorems 6.1.1, 6.1.2 and 6.1.5, the length scales defined by the mean 
square displacement, the correlation length of order two, and the correlation 
length are as expected all governed by the same critical exponent v = 1/2. 

Using Theorem 6.1.5 it can be shown that the renormalized coupling 
constant g(z) of(1.4.22) obeys 

g(z) ~ (zc- z)(d-4)/2 as z / Zc, (6.1.1) 

for the spread-out model with n sufficiently large and for the nearest­
neighbour model for d ;::: 6. Unfortunately (6.1.1) remains unproven for 
d = 5. Further details are given in the Remark under Theorem 1.5.5. 

The results for the critical two-point function are stronger in k-space 
than in x-space, and are summarized in the following theorem, whose proof 
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can be found in Section 6.5.2. The upper bound on G,c(O, x) in the theorem, 
for p < (d- 2)/2, follows immediately from Corollary 6.1.4 and the fact 
that lziPcn(O, .x) :5 nPcn(O, x). The k-space result provides a strong infrared 
bound. 

Theorem 6.1.6 There is an Oo such that for 0 ~ Oo (assuming d > 4 
for the spread-out model) the following hold. For any p satisfying p < 
(d-2)/2 or p :52, there is a constant C(p) such that for all x, Gzc(O, x) :5 
C(p )lx 1-p. There is a positive constant such that the Fourier transform 
satisfies G:c(k) = const.[k2 + O(k2+£)]- 1 ask- 0, for any f < min{(d-
4)/2, 1}. In addition, there is a positive constant such that 0 $ G:Jk) $ 
const.k- 2 for all k E [-1r, 1r]d. 

Corollary 6.1. 7 There is an no such that for n ~ no (assuming d > 4 
for the spread-out model) 

m(zc) = 0. 

Proof. The bound on Gz (k) of Theorem 6.1.6 implies that the criti­
cal bubble diagram B(zc) =c (211")-d fr-,..,,..14 Gz 0 (k)2ddk is finite (see Sec­

tion 1.5). It then follows from Theorem 4.1.6 that m(zc) = 0. 0 

To discuss the scaling limit, we first introduce some notation. Let 
Cd[O, 1] denote the continuous Rd-valued functions on [0, 1], equipped with 
the supremum norm. Given an n-step self-avoiding walk w, we define 
Xn E Cd[O, 1] by setting Xn(k/n) = (Dn)- 112w(k) for k = 0, 1, 2, ... , n, 
and taking Xn(t) to be the linear interpolation of this. We denote by dW 
the Wiener measure on Cd[O, 1]. Expectation with respect to the uniform 
measure on the n-step self-avoiding walks is denoted by On. The following 
theorem is proved in Section 6.6. 

Theorem 6.1.8 There is an Oo such that for 0 ~ Oo (assuming d > 4 for 
the spread-out model), the scaled self-avoiding walk converges in distribution 
to Brownian motion. In other words for any bounded continuous function 
I on Cd(O, 1], 

The next result concerns the existence of a measure on infinitely long 
self-avoiding walks. We defer the precise definition of this measure until 
Section 6. 7, where the following theorem will be proved. 
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Theorem 6.1.9 There is an flo such that for 0 ~ Oo (assuming d > 4 for 
the spread-out model) the infinite self-avoiding walk exists. 

The key ingredient in the proofs of the above theorems is the conver­
gence of the lace expansion, which is proved in the next section. 

6.2 Convergence of the lace expansion 

This section is divided into three parts. The first part proves a lemma 
which encapsulates the basic structure of the proof of convergence of the 
lace expansion, and also gives a number of properties of simple random 
walk which will be needed in the convergence proof. The second part gives 
the proof of convergence of the lace expansion, and states a number of 
consequences. The last part gives the proof of Theorem 6.1.2, i.e. existence 
of and mean-field values for the critical exponents for the susceptibility and 
the correlation length of order two. 

6.2.1 Preliminaries 

The following elementary lemma will be used to prove convergence of the 
lace expansion. It states that under an appropriate continuity assumption, 
if a set of inequalities implies a stronger set of inequalities, then in fact the 
stronger inequalities must hold. 

Lemma 6.2.1 Let ft, ... , /n be nonnegative functions defined on the in­
terval [0, p1), and let po E [0, pt) and a < 1 be given. Suppose that 

1. f; is continuous on the interval[O,pt), fori= l, ... ,n, 

2. f;(p) ~ a for 0 ~ p ~ po, fori = 1, ... , n, 

3. for each p E (po, Pt), if /;(p) ~ 1 for all i = 1, ... , n, then in fact 
f;(p) ~a for all i = l, ... ,n. (In other words a set of inequalities 
implies a stronger set of inequalities.) 

Then f; (p) ~ a for all p E [0, Pt) and all i = 1, ... , n. 

Proof. Define lma:r(P) = maXt<i<n /;(p). By the second assumption, it 
suffices to show that fma:r(P) ~ a for p E [po,Pt)· By the third assump­
tion fma:r(P)¢(a, 1) for all p E (po,Pt)· By the first assumption fma:r(P) is 
continuous in p E (O,pt)· Since fma:r(Po) ~ a by the second assumption, 
the above two facts imply that fma:r(P) cannot enter the forbidden interval 
(a, 1] when p E (po,pt) and hence fma:r(P) ~a for all p E (O,pt). 0 
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Before defining the functions /; that we will use, we need to introduce 
two models of ordinary random walk corresponding to the two models of 
self-avoiding walk discussed in the previous section. For the usual nearest­
neighbour simple random walk we denote the coordination number by n = 
2d, and also use n to denote the set of sites which are nearest neighbours 
of the origin. The critical ( z = n-1) two-point function for this model is 
shown in (A.8) to be given by 

c<o)(o, x) = J e-~k·:c da k a' 
[-,.,,.Jd 1- Do(k) (211') 

(6.2.1) 

where 
d 

Do(k) =A L:>ik·:c = d- 1 l:cosk11 . 

:cen 11=1 

(6.2.2) 

Let L ~ 1 be an integer. For the ordinary "spread-out" random walk in 
za whose steps (x, y) satisfy 0 < llx- Ylloo ~ L, we will use 0 to denote 
the set of X E zd with 0 < llxlloo ~ L, and also write n for the cardinality 
of this set, i.e. n = (2L + 1)d- 1. For X E za, let C(L)(O,x) denote the 
critical spread-out ordinary random walk two-point function. This is given 
in (A.8) by 

C(L)(Q ) -1. e-ik·:c ddk 
,x - A d' 

[-w,,.ld 1- DL(k) (21r) 
(6.2.3) 

where 
A 1 """ 'k 1 """ Dr(k) = O LJ e' ·:c = O LJ cos(k. x). 

:cen :cen 
(6.2.4) 

We write simply C(O, x) and D(k) when we wish to discuss both the 
spread-out and nearest-neighbour models simultaneously. The following 
lemma is a combination of the statements of Lemmas A.3 and A.5, in 
which some bounds have been degraded for a unified statement. 

Lemma 6.2.2 For any d ~ 1 there is an 0 0 such that for any k E [-11', 1r]d 
and 0 ~ Oo, 

A k2 
1- D(k) ~ 211'2d' (6.2.5) 

For any d ~ 1 there is an 0 0 such that for all n ~ Oo 

sup nd/211Dnllt < 00. (6.2.6) 
n?:O 

Let s denote a fixed small ·positive number for the spread-out model, and 
let s = 0 for the nearest-neighbour model. There is a K such that for all 
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0 (assuming d > 4 for the spread-out model and d ~ 5 for the nearest­
neighbour model) 

(6.2.7) 

and 

a:~ + 2 (B"bt $ Kn-1+,+2/d (6.2.8) 
[1 - D)2 1 [1 - D)3 1 

(the 2/d in the exponent can be omitted for the nearest-neighbour model). 
The above norms are all LP norms on (-1r, 1r]d with measure (211")-dddk. 
The constant I< depends on the dimension (but not on L) for the spread­
out model, and is a universal constant for the nearest-neighbour model. 

In the following we will maintain the convention that I< and Oo depend 
on the dimension when a statement is applied to the spread-out model, but 
are universal constants when the same statement is applied to the nearest­
neighbour model. 

6.2.2 The convergence proof 

To prove convergence of the lace expansion, we will use Lemma 6.2.1 with 
n = 2, Po = n-1 , Pl = Zc, a= 2/3, 

(6.2.9) 

with I< the constant of Lemma 6.2.2. Here s is as in the statement of 
Lemma 6.2.2, and the 2/d can be omitted from the exponent in the defini­
tion of 12 for the nearest-neighbour model. 

The following three results confirm that the hypotheses of Lemma 6.2.1 
are satisfied, either for the nearest-neighbour model in sufficiently high di­
mensions, or for the spread-out model in more than four dimensions with 
0 sufficiently large. It will then follow from the lemma that IIHpll~ and 
113:~Gplloo are both small (for large 0) uniformly in p E [0, zc)· This 
will give good bounds on the lace expansion, when combined with The­
orem 5.4.4. 

For simplicity we deal explicitly only with the strictly self-avoiding walk, 
although the results of this section also hold for all finite memories 2 ~ r < 
oo, subject to the replacement of Zc by the finite memory critical point 
zc(O; r). In particular, the constants of Corollaries 6.2.6 and 6.2.7 and 
Theorem 6.2.9 are independent of r. Finite memory is used only to prove 
the bound on cn(O,x) of Theorem 6.1.3. 
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Lemma 6.2.3 The above functions It and /2 are continuous on the inter­
val [0, Ze)· 

Proof. We begin with ft. Since the subcritical two-point function decays 
exponentially by (1.3.14), IIHpll~ is finite for p < Ze. This norm can be 
rewritten as a power series in p with positive coefficients, which therefore 
must have radius of convergence at least Zc. Hence it is continuous in 
p E [0, Zc)· 

For /2, we fix r E [0, zc)· Arguing as in the derivation of (1.3.14), there 
is a constant M, depending on r but not on x, such that for any p E [0, r] 
and any x, 

dd x~Gp(O, x) < M. 
p - (6.2.10) 

Hence for Pt < P2 $ r we have 

0 < /2(p2) - /2(pt) 
::; (3K)- 1 nt-•- 2/d sup x~[Gp2 (0, x)- Gp 1 (0, x)] 

X 

$ (3K)-tnt-•-2fdM(P2- Pt)· 

This implies continuity of /2 for p < r, and hence for p < Zc since r is 
arbitrary. o 

Lemma 6.2.4 For p E [0, n-1], f;(p):::; 1/3 fori= 1, 2. 

Proof. For p E [0, n- 1], Gp(O, x) $ G1fn(O, x). Since in general the self~ 
avoiding walk two-point function is bounded above by the ordinary random 
walk two-point function having the same activity, Gp(O, x) $ Gttn(O, x) $ 
C(O,x). Now Hp(O,x) = Gp(O,x)-6o,x, so IIHPII~ = IIGpm-1 $IICm-1. 
Hence by the Parseval relation IIHpll~ $ IICII~- 1, and the desired bound 
on ft follows from (6.2.7). For /2 we use the Fourier transform to write 

The desired bound then follows from (6,2.8). 0 

This leaves the last and most substantial assumption of Lemma 6.2.1 
to be shown. The following result confirms that the final hypothesis of 
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Lemma 6.2.1 is satisfied for ft and h of (6.2.9), i.e. that for each p E 
[n-1,zc), if /;(p)::; 1 (i = 1,2) then in fact /;(p)::; 2/3 (i = 1,2). 

Remark. The next theorem states that a pair of inequalities implies 
a stronger pair. In conjunction with Lemmas 6.2.1, 6.2.3 and 6.2.4, this 
means that in fact the stronger pair of inequalities holds. Hence the weaker 
inequalities also hold, and any consequences of the weaker inequalities used 
in the course of the proof [such as the infrared bound (6.2.19)] will have 
been shown to hold, once the theorem is proved. 

Theorem 6.2.5 There is an Oo such that for n 2:: Oo (with d > 4 for the 
spread-out model) the following implication holds. For any p E [0- 1 , zc), if 

(6.2.12) 

then in fact 

(6.2.13) 

Heres is as in the statement of Lemma 6.2.2, and the 2/d in the exponent 
in the bound on llx~Gplloo can be omitted for the nearest-neighbour model. 

Proof. We assume the weaker pair of bounds, and prove the stronger pair. 
For the proof we will work with Fourier transforms. As will be described 
in more detail below [in the paragraph containing (6.2.27)], the assumed 
bounds (6.2.12), together with Theorem 5.4.4, imply (absolute) convergence 
of the lace expansion. Hence by (5.2.18), 

Fp(k):: Gp(k)-1 = 1- pOD(k)- fip(k). (6.2.14) 

Since Fp(O) = x(p)- 1 > 0 for p < Zc, it follows by adding and subtracting 
Fp(O) to Fp(k) that for p;::: n-1 

Fp(k) = Fp(O) + p!l[l- D(k)] + ftp(O)- ftp(k) 

~ [1- b(k)] + [fip(O)- ftp(k)]. (6.2.15) 

The basic idea of the proof is that the assumed bounds imply that the 
second term on the right side is a small perturbation of the first, which in 
turn implies that Gp = 1/ Fp(k) is bounded above by a small perturbation 
of its ordinary random walk counterpart, and hence by Lemma 6.2.2 the 
improved bounds hold. 
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We now bound the difference fip(O) - ilp(k), using Theorem 5.4.4. It 
follows from (5.4.1), (5.2.16), symmetry, and (5.4.21) that 

00 

fip(O)- flp(k) ~ - ~)il~2i+ 1)(0)- fl~2i+ 1 )(k)] 
j:l 

d 

> - 2:(1- cos k11)llx~Hplloo 
1.1=1 

00 

X 2:U + 1)2 11Hpll~i+l11Gpll~j-l. 
j:l 

(6.2.16) 

For the norm IIGplla, we note that by definition Hp(O, x) = Gp(O, x)- c5o,x, 
and hence using (6.2.12) we have 

(6.2.17) 

for sufficiently large n. The right side of (6.2.16) is dominated for large 0 
by the j = 1 term, and hence by (6.2.5) and (6.2.12) we have 

(6.2.18) 

where u = 3/2 for the nearest-neighbour model and u = 5/2 - 5s/2 - 2/d 
for the spread-out model, and K1 is a constant which is independent of L 
for the spread-out model and independent of d for the nearest-neighbour 
model. We will use [(1 as a "variable constant" in what follows, to denote 
various constants which are independent of L or d as in (6.2.18) and whose 
precise values are irrelevant. Substituting (6.2.18) into (6.2.15) gives the 
infrared bound 

(6.2.19) 

We are now in a position to obtain the improved bound on IIHpm· By 
the Parseval relation and (6.2.17), 

where the norm on the right side denotes the £ 2 norm on [-1r, 1r]d with 
measure (211")-dddk. Hence by (6.2.19) we have 

(6.2.20) 
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Applying (6.2.7), this gives 

IIHPII~:::; (1 + I<tn-u+t-•)Kn-1+•. (6.2.21) 

For the nearest-neighbour model -u + 1- s = -1/2, while for the spread­
out model with d > 4, -u + 1 - s = -3/2 + 3s/2 + 2/d < 0. This gives 
the desired result that for n sufficiently large 

(6.2.22) 

We turn now to the bound on llx~Gplloo· We give the proof with the 
2/ d present in the exponent, but for the nearest-neighbour model this can 
be omitted by following the same proof. [The significant difference between 
the two models occurs in (6.2.31).] 

In terms of the Fourier transform we can write 

2 J 2' -ik·X ddk x1,Gp(O, x) =- apGp(k)e (21r)d. (6.2.23) 

Explicit computation of the derivative on the right side gives the following 
expression, in which we have simplified the notation by dropping arguments 
and denoting partial differentiation with respect to kp by the subscript Jl. 

(6.2.24) 

We insert (6.2.24) into (6.2.23), and take absolute values inside the integral 
and the sum of five terms. Applying (6.2.19) to bound F from below gives 
fl'-i :::; (1 + I<1n-u)(l- b)-i for j ~ 1. Applying (6.2.8) and using I :::; pf! 

then yields 

x~Gp(O, x) :::; (1 + K 1n-u)(p0)2 

x [Kn-1+•+2/d+llfiJ.l,J.lllooll1~bl[ 

+ 4 (~~ ~)' 
1 
+ 2 (I ~~)' J (6.2.25) 

The last three terms on the right side are error terms. Before bounding 
these, we first bound the factor pO. By (6.2.12), 

IIHPIIoo :::; llx!Gplloo :::; 3Kn-1+•+2/d; (6.2.26) 

this follows from the facts that Hp(O, 0) = 0, and for x f. 0, Hp(O, x) = 
Gp(O, x) and 1 :::; x~ for some Jl. (This bound on IIHplloo is inefficient for 
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the spread-out model, for which the factor 0 2/d on the right side should 
not be necessary, but it is adequate for our needs.) Applying (6.2.26) and 
(6.2.12) to (5.4.18) and (5.4.20), we see that for sufficiently large 0 the lace 
expansion converges and 

lfip(k)l:::; pOK1o-t+•+2/d. (6.2.27) 

Since x(p)- 1 = 1- pO- fip(O) > 0, 

pO:::; 1- fip(O):::; 1 + pOK1o-t+•+2/d, 

so that for 0 sufficiently large 

P:::; o-1[1 + K1o-1+•+2/d]. (6.2.28) 

Since -u:::; -1 + s + 2/d, the factor (1 + K1o-u)(p0)2 in (6.2.25) can be 
replaced by 1 + K10-1+•+2/d, for 0 large. 

We next consider bounds on the derivatives of fip appearing in (6.2.25). 
It follows from (6.2.12) and (5.4.20) that 

(6.2.29) 

(the N = 2 loop term dominates). We also will need a bound on opfip(k). 
Since by symmetry this derivative is zero whenever kp = 0, it follows from 
Taylor's Theorem and the above bound on the second derivative that 

(6.2.30) 

Similarly, 
(6.2.31) 

Turning now to the three error terms in (6.2.25), for the first we use 
(6.2.29) and (6.2.7) to bound it above by K10-2+2•+2/d. For the other two 
terms we first note that by symmetry, (6.2.5) and (6.2.7), 

II (1 ~~ ii)•ll, ~ K l• 
(6.2.32) 

Hence by (6.2.30) and (6.2.31) the second error term is bounded above by 

(6.2.33) 



6.2. CONVERGENCE OF THE LACE EXPANSION 183 

Finally, the last error term can be bounded above by K1n-4+4•+4/d, using 
(6.2.30) and then (6.2.32). Taking n sufficiently large then gives the desired 
result 

(6.2.34) 

0 

The following results, which follow relatively easily from Theorem 6.2.5, 
will be fundamental in the rest of the chapter. 

Corollary 6.2.6 For n ~ no (with d > 4 for the spread-out model), 

IIHzlloo :$ 2Kn-t+•+2/d, 
ll.:z:!Gzlloo :$ 2Kn-1+•+2/d, 

and 
IIHzll~ :$ 2Kn-t+• 

for all complex z in the closed disk lzl :$ Zc. Heres is as in the statement of 
Lemma 6.2.2, and for the nearest-neighbour model the 2/d can be omitted 
from the exponent in the first two inequalities. 

Proof. Since the left sides are largest at z = Zc, we can restrict attention 
to this case. The left sides are monotone increasing in real positive z, 
and satisfy the above bounds uniformly in z < Zc by Theorem 6.2.5 (see 
(6.2.26) and the Remark preceding Theorem 6.2.5). Therefore the same 
bounds hold at z = Zc by the monotone convergence theorem. 0 

Corollary 6.2.7 For n ~no (with d > 4 for the spread-out model), there 
is a constant I<1 such that the following bounds hold uniformly in k E 
[-11', 7r]d and lzl :$ Zc.' 

lflz(k)l :$ K1n-t+•+2/d 

l811 flz(k)l < K1n-2+2•+2/djk11 1 

182rr' (k)l :$ r/1n-2+2•+2/d. p z H H 

In fact the series representations of these quantities are bounded absolutely 
(absolute values inside sums over .x, N) and uniformly by the right sides. 
The critical point obeys 

n-1 < z < n-1[1 + K n-t+'+2faJ. - c- 1 

Also, 
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For any p E [0, Zc] 

flp(O)- ilp(k);:::: -K1o-u[l- D(k)] 

and for any p E [0- 1 , Zc] 

Fp(k) ;:::: [1- K 1o-u][1- D(k)]. 

Heres is as in the statement of Lemma 6.2.2, and for the nearest-neighbour 
model the 2/d can be omitted from the exponents in the first four inequali­
ties. The exponent u is equal to 3/2 for the nearest-neighbour model, while 
for the spread-out model u = 5/2 - 5sf2 - 2/d. 

Proof. Given Corollary 6.2.6, the first four inequalities follow exactly 
as in the proof of Theorem 6.2.5. It then follows from the dominated 
convergence theorem that for u E {0, 1, 2}, o~frz(k) is continuous on the 
closed disk lzl ::5 Zc. Since x(p)-+ oo asp/ Zc by (1.3.6), we have 

-1 • • 
x(p) = Fp(O)- 1- ZcO- IIzc(O) = 0. 

The last two bounds of the corollary follow from (6.2.18) and (6.2.19) for 
p < Zc, and then follow at Zc by taking the limit. 0 

By Corollary 6.2.7 and the fact that -V~D(O) ~ 1, there is a constant 
c4 such that for 0 sufficiently large and p E [O-t, Zc], 

(6.2.35) 

The following lemma. will allow for bounds on Oz ftz(k) in the closed disk 
lzl ::5 Zc· 

Lemma 6.2.8 For any p E (0, zc] and m = 1, 2, 3, ... , 

a;'Gp(O, x) :$ m!p-m Hp * · · · * Hp * Gp(x), 

where there are m factors of Hp in the convolution. 

Proof. By definition, 

a;'Gp(O, x) = m!p-m E 
w:O-o21 
lwl~m 

(6.2.36) 

where the sum is over all self-avoiding walks from 0 to x. The binomial 
coefficient on the right side counts the number of ways to choose 0 < it < 
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i2 < · · · < im :$ lwl, so it is also the number of ways to break w into 
m + 1 pieces such that the first m pieces each consist of at least one step. 
The upper bound then follows by neglecting the mutual avoidance between 
these pieces. 0 

Theorem 6.2.9 For 0 sufficiently large (with d > 4 for the spread-out 
model), 

(6.2.37) 

uniformly in k E [-11", 1r]d and lzl :$ Zc. In fact the series representation of 
the left side is bounded absolutely (absolute values inside sums over x and 
N) and uniformly by the right side. Here/( is the constant of Lemma 6.2.2, 
s is as in the statement of Lemma 6.2.2, and the 2/d can be omitted from 
the exponent for the nearest-neighbour model. Hence for 0 sufficiently large 
there is a positive constant C3 such that for any p E (0, zc] 

(6.2.38) 

Proof. The bound (6.2.38) clearly follows from (6.2.37), so it suffices to 
obtain {6.2.37). But by (5.4.18), (5.4.19), Corollary 6.2.6 and the upper 
bound on zcO of Corollary 6.2.7, to prove (6.2.37) it suffices to show that 

(6.2.39) 

Since llp{O, x) is a power series with nonnegative coefficients, it suffices to 
obtain (6.2.39) at z = Zc. By Lemma 6.2.8 and the fact that G:(O, x) = 
H:(O, x) + 6o,z, 

8:H:.(O, x) = 8:G:.(O, x) < z; 1 H:. * H:.(x) + z; 1 H,r.{O, x) 
:$ z; 1 IIH:.II~ + z;1 H:.(O, x). 

The desired result now follows from Corollary 6.2.6 and the fact that Zc is 
bounded below by o-t. 0 

We conclude this section with an upper bound on the susceptibility, 
which in particular implies that it is finite in the closed disk lzl :$ Ze 

everywhere except at the critical point itself. 

Theorem 6.2.10 For 0 sufficiently large (with d > 4 for the spread-out 
model}, the inverse susceptibility F: (0) = 1 - zO - llz (0) satisfies 

(6.2.40) 

for all z with lzl :$ Ze. 
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Proof. Let lzl $ Zc. By Corollary 6.2.7 .F,.(O) = 0 and hence 

IFz(O)I = 11: BzFz(O)dzl 

= lzc- ziiO + 11 
8,fi(1-t)z.+tz(O)dtl. (6.2.41) 

The lemma then follows, using Theorem 6.2.9. 0 

6.2.3 Proof of Theorem 6.1.2 

The critical bubble diagram B(zc) = IIGz.ll~ = 1 + IIHz.m is finite by 
Corollary 6.2.6. It follows from Theorem 1.5.3 that .Y = 1, in the sense that 
there are positive constants c1 and c2 such that for all p < Zc, 

(6.2.42) 

To obtain the stronger asymptotic behaviour stated in Theorem 6.1.2, 
we observe that since fr.,.(O) = 1 - zcO- flz.(O) = 0 by Corollary 6.2.7, 

x(z) = 
1 

Fz(O)- Fz.(O) 

= (-1-) (n + fi,.(O)- fiz(O)) -
1 

Zc- Z Zc- Z 
(6.2.43) 

It then follows from Theorem 6.2.9 that as z /' Zc 

(6.2.44) 

Defining 
(6.2.45) 

gives the statement of Theorem 6.1.2 for the susceptibility. 
For the correlation length of order 2, we note that by symmetry and 

direct calculation, 

(6.2.46) 

The desired asymptotic behaviour of 6(z) now follows from the asymptotic 
behaviour of x(z) and (6.2_.35), if we define 

(6.2.47) 
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[Continuity at Zc of 'V~fiz(O) is discussed in the proof of Corollary 6.2.7.] 
0 

We end this section with bounds on the constants A and D, for sim­
plicity restricting the discussion to the nearest-neighbour model in high 
dimensions. 

Proposition 6.2.11 For the nearest-neighbour model with d sufficiently 
large, there are positive universal constants Ct, c2, cs such that 

In particular D is strictly greater than 1. 

Proof. For the first bound we conclude from Theorem 1.5.3 that 1 $ A $ 
B(zc)· But by Corollary 6.2.6, B(zc) $ 1 + c1d- 1 for some constant c1. 

For the bound on the diffusion constant D, we have from (6.2.47) and 
(6.2.45) that 

D = 1- (2dzc)- 1 'V~fizc(O). 
1 + (2d)-18.:IIzc(O) 

It suffices to show that there are positive constants a; such that 

- a1d-312 $ -(2dzc)- 1 'V~fizc(O) $ a2d-1 

and 

(6.2.48) 

(6.2.49) 

(6.2.50) 

Beginning with (6.2.49), it follows from Corollary 6.2.7 and the fact that 
2dzc ~ 1 that 

(6.2.51) 

This gives the upper bound of (6.2.49). For the lower bound, by symmetry 
it can be concluded that for fixed p. 

00 

- V~fizc(O) 2: -d L: L:>~n~~J+l)(O, x). (6.2.52) 
i=l $ 

By (5.4.20) and Corollary 6.2.6 the right side is bounded below by a multiple 
of -d-312• 

Turning now to (6.2.50), the lower bound follows immediately from 
(6.2.37). For the upper bound, we write 

00 

8zfiz.(O) = -8zfi}~>(O) + L(-1)N8zfi}~>(O). (6.2.53) 
N:2 
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The first term on the right side (with its minus sign) is bounded above by 
the contribution due to the walk which steps to a neighbour of the origin 
and then back to the origin, which is -8z(2dz2 ) = -4dzc 5 -2. Thus 
it suffices to show that the second term on the right side is bounded in 
absolute value by a multiple of d-1• This follows from Corollary 6.2.6 and 
the bound ll8:Hzelloo ~ Kt of (6.2.39), together with (5.4.19). 0 

6.3 Fractional derivatives 
In this section we describe some elementary properties of what we term 
fractional derivatives. This terminology is somewhat inaccurate, but is 
useful in a suggestive sense in the analysis of the Iarge-n asymptotics of 
power series coefficients. Given a power series f(z) = L:::o anzn and 
l ~ 0, we define the fractional derivative 

00 

6;f(z) =I: nEanzn. (6.3.1) 
n:O 

Note that for l equal to a positive integer, 6! does not give the usual 
derivative. We will use (6.3.1) with l E (0, 1). Allowing l to take on 
arbitrary negative values defines a relative of the antiderivative, as follows. 
For Cl:' > 0 we define 

00 

6;a f(z) =I: n-aanzn. (6.3.2) 
n=l 

Both of the above quantities will be finite at least strictly within the circle 
of convergence of f(z). 

The following lemma provides formulas which are convenient for esti­
mating fractional derivatives. 

Lemma 6.3.1 Let f(z) = L::=o anzn have radius of convergence R. Then 
for any z with lzl < R, and for any Cl:' > 0, 

(6.3.3) 

where Ca = [CI:'f(CI:'))- 1. In addition, for any z with lzl < R and for any 
lE(O,l), 

(6.3.4) 

The identities {6.3.3} and (6.3.4) also hold for z = R, if an ~ 0. 
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Proof. Let lzl < R. We first note that for any a> 0, 

-a - _1_ roo -n>.l/"'d' 
n - ar(a) lo t At 

(6.3.5) 

as can be seen by making the substitution y = nA1101 in the integral on the 
right side. Therefore 

(6.3.6) 

Since the right side converges absolutely the order of integration and sum­
mation can be interchanged to yield (6.3.3). 

For (6.3.4), we write nl = n-<1-E)n and use (6.3.5) with a = I - f: to 
obtain 

00 00 100 
"' f n- C "' ( ->.1/(1-<))n-1 ->.1/(1-•)d' LJ n anz - 1-lz LJ nan ze e A. 

n=O n=1 0 

(6.3.7) 

Since the right side converges absolutely we can interchange the order of 
summation and integration to obtain 

00 100 "' f n- C f'( ->.1/(1-•)) ->.1/(1-<)d' L...Jn anz - 1-lz ze e A. 

n=O 0 
(6.3.8) 

Now suppose that an ~ 0 and take z = R. Then the above interchanges 
of sum and integral are justified by Fubini's Theorem. 0 

The following lemma provides an error estimate analogous to the error 
estimate in Taylor's theorem. In applications of the lemma, R will be the 
radius of convergence of f. 

Lemma 6.3.2 Let f: E (0, 1) and let f(z) = L::=o anzn. Let R > 0 and 
suppose that Al = L:::o nllanlRn-l < oo, so in particular f(z) converges 
for lzl ~ R. Then for any z with lzl ~ R, 

(6.3.9) 

Suppose that Bl = L::=1 nl+llaniRn-1-l < oo, so in particular f'(z) = 
L::=1 nanzn-1 converges for lzl ~ R. Then for any z with lzl ~ R, 

(6.3.10) 
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Proof. We just give the proof of (6.3.10). The proof of (6.3.9) is similar 
and simpler. By definition, 

But in general 

wi -1 

. (6.3.12) 

Taking absolute values in (6.3.12) and using w = z/R and lwl ~ 1 gives 

(6.3.13) 

Since Ej,:-~ je $ {1 + f)- 1nl+e, (6.3.10) follows from {6.3.11) and {6.3.13). 
0 

The intuition behind the following lemma is that if a power series with 
radius of convergence R behaves like IR- zl-6 near z = R, for some b ~ 1, 
then roughly speaking it should have coefficient of zn not much worse than 
order n-nnb-l. 

Lemma 6.3.3 Let f(z) = E::o anz" have radius of convergence greater 
than or equal to R > 0. 
(i) Suppose that for lzl < R, 1/(z)l $ const.IR- zl-b for some b ~ 1. Then 
lanl $ O(R-nna), for any~> b -1. 
(ii) If for some b ~ 1 a bound on the derivative of the form 1/'{z)l ~ 
const.!R- zj-b holds for every lzl < R, then lanl ~ O(R-nn-a) for any 
a< 2- b. 

Proof. (i) Fix b ~ 1 and let a> b- 1. Since n-aan is the coefficient of 
zn in the fractional antiderivative 6;-a- /(z), 

-a - 1 f ~-af( ) dz (6 3 14) n an - 21f"i uz z zn+l ' . . 

where the integral is around a circle of radius r < R centred at the origin. 
By Lemma 6.3.1, 

n-alanl ~ const.r-n j . .,. d9100 d.XIf(reille-.\'1'")- /(0)1. (6.3.15) 
-11' 0 



6.3. FRACTIONAL DERIVATIVES 191 

Since f(z) - /(0) = O(lzl) for z near zero, the contribution to the integral 
with respect to A due to A E [1, oo) is finite. Using the assumed bound on 
f(z), we thus have 

n-olan I::; const.r-n [1 + 1: dO fo1 d..\lR- re;8e->. 11'"1-b]. 

Replacing the Ron the right side by r gives an upper bound. Taking the 
limit r --+ R in the upper bound leads to 

n-alanl $ const.n-n-b [1 + [1r1r dO fo 1 dAI1- e; 9e->. 11'"1-b]. (6.3.16) 

To check that the integral on the right side is finite, it suffices to show 
that the corresponding quantity with limits of integration () = ±1 is finite 
(or any other small finite interval containing () = 0). Thus it suffices to 
verify that 

(6.3.17) 

As we now show, it is an exercise in calculus to see that the left side is 
bounded for a> b- 1 > 0. 

Making the substit~tion u = Al/o and writing the absolute value on 
the right side as the square root of the sum of the squares of its real and 
imaginary parts leads to an upper bound for (6.3.17) of the form 

11 dO 11 duu 0 - 1[(1- e-u)2 + e- 2u92]-bf2 . (6.3.18) 

The change of variables 01 = Oe-u /(1- e-u) in (6.3.18) gives 

1 -u e-"/(1-e-") fo duu 0 - 11 :-: (1- e-u)-b fo dth[l + o?]-b/2• (6.3.19) 

The 01-integral is bounded uniformly in u if b > 1, while if b = 1 it is 
finite for u near 1 and O(pogul) for u near 0. Hence forb 2: 1, (6.3.19) is 
bounded above by a multiple of 

fo 1 du uo-b I log uj, (6.3.20) 

which is finite for a > b - 1. 

(ii) Given the bound on the derivative, it follows from (i) that lnanl ::; 
O(R-nnP) for any p > b- 1. Therefore lanl $ O(R-nnP- 1) for any a= 
1- p < 2- b. 0 
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Remark. The hypothesis b ~ 1 in Lemma 6.3.3(i) is not artificial. For 
example, let f(z) = L:~=l n-2z2n. Then f(z) is finite for lzl :::; 1 so in par­
ticular 1/(z)):::; const.)1- zj-b for any bE [0, 1). However aN= [log2 N)- 2 

for N = 2n, so an 'f: O(nb-l+c) for£ E {0, 1- b). 

The following lemma is a kind of Tauberian theorem, in which informa­
tion more detailed than merely the asymptotic form of a power series near 
its singularity provides information about the Iarge-n asymptotics of the 
coefficients of the power series. 

Lemma 6.3.4 Let 
1 00 

f(z) = (z) = L bnzn, 
'{) n=O 

where ~.P(z) = L~=O anzn. Suppose that for some £ E (0, 1) 

00 

L nl+cJan)Rn < oo, 
n=O 

so in particular I.P(z) and I.P'(z) are finite when lzl = R. Assume in addition 
that IP'(R) '# 0. Suppose that ~.P(R) = 0 and that ~.P(z) '# 0 for lzl ~ R, z '# 
R. Then 

f(z) = -~.P~(R) R ~ z + O(IR- zlc-l) (6.3.21) 

uniformly in lzi :::; R, and 

bn = R-n-l [ 1 + O(n-o:)] as n _,. oo, 
-~.P'(R) 

for every a < £. 

Proof. Since ~.P(R) = 0, 

Let 

and 

f(z) = 

= 

~.P(R)- ~.P(z) 
1 

~.P'(R)(R- z) + [~.P(R)- ~.P(z)- I.P'(R)(R- z)]' 

h(z) = ~.P(R)- ~.P(z)- I.P'(R)(R- z) 
R-z 

h(z) cp'(R) 
t/;(z) = - IP'(R) + h(z) = - 1 - ~.P(z) (R- z). 

(6.3.22) 

(6.3.23) 

(6.3.24) 

(6.3.25) 
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Then t/J is analytic in lzl < R. Also, 

1 1 
f(z) =- tp'(R) R _ z [1 + t/J(z)]. (6.3.26) 

Since h(z) = O(IR-zjt} uniformly in lzl S R by Lemma 6.3.2, it is also the 
case that t/J(z) = O(IR- zit) uniformly in lzl SR. This proves (6.3.21). 

Let C,. be the circle of radius r centred at the origin and oriented coun­
terclockwise. The coefficient bn is given by the contour integral 

(6.3.27) 

so by (6.3.26) 

bn = __ 1_ [-1- + _1 { t/J(z) dz] 
tp'(R) Rn+l 211'i JcR12 (R- z)zn+l · 

(6.3.28) 

It remains to show that the second term in (6.3.28) gives a correction of 
the desired size. 

We use statement ( ii) of Lemma 6.3.3 for the correction term, as follows. 
A straightforward calculation using the bound on the (1 +£)-derivative of tp 
assumed in the statement of the lemma, together with Lemma 6.3.2, gives 

I.!!_ t/J( z) I < O(!R- zlt- 2) 
dz R- z - (6.3.29) 

uniformly in lzl S R. Hence the coefficient of z" of (R- z)- 1t/J(z) is 
bounded above by O(R-nn-a), for every a< E:, by Lemma 6.3.3(ii). This 
gives the required bound on the second term of (6.3.28). D 

6.4 en and the mean-square displacement 

This section consists of two parts. In the first part we obtain bounds on 
fractional derivatives involving iiz(k), and then in the second part these 
bounds are used in conjunction with the results of Section 6.3 to prove 
Theorem 6.1.1. 

6.4.1 Fractional derivatives of the two-point function 

We begin by obtaining bounds on norms of fractional derivatives of the two­
point function. Bounds on fractional derivativesofii1 (k) are then obtained, 
using a generalization of Theorem 5.4.4 involving fractional z-derivatives. 
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The results of this section hold for finite or infinite memory, subject 
to the replacement of Zc by the finite memory critical point zc(O; r) in all 
occurrences. We use K2 and c in this section to denote constants which 
may depend on 0, and which may change from one occurrence to the next. 
They are however independent of the memory. 

For >. ~ 0 we define 
->.1/(1-<) 

P>. = Zce , (6.4.1) 

and as usual we write 

' 1 ' ' Fz(k) = -,- = 1- zOD(k)- llz(k). 
Gz(k) 

(6.4.2) 

The following lemma will be used to bound norms of fractional derivatives 
of the two-point function. 

Lemma 6.4.1 For 0 sufficiently large (with d > 4 for the spread-out 
model), there is a positive constant c such that for any k or >. 

Fp~ (k) ~ c[l- e->. 11<1-•> D(k)). (6.4.3) 

Proof. Since Fzc(O) = 0, 

Fp,. (k) = [Fp,. (k)- Fp,. (0)] + [Fp,. (0)- fl'zc(O)] (6.4.4) 

= p>.O[l- b(k)] + [fip,. (0)- frp,. (k)) + tc [-opFp(O)]dp. 
}p,. 

By Theorem 6.2.9, 

tc[-fJpFp(O)Jdp ~ C3(zc- P>.)· 
}p,. 

Also, by Corollary 6.2.7, 

(6.4.5) 

(6.4.6) 

Take 0 ~ max{ 4C3/3, 64I<f}, and consider first the case of,\ bounded 
away from infinity in such a way that P>. ~ 4K10-312. Then by (6.4.4)­
(6.4.6) 

Fp,. (k) > . ap~O (1- D(k)] + C3(Zc- P>.) 

> C3zc[1- e->.'/( 1-•> D(k)], (6.4.7) 
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which gives (6.4.3) for this range of A. For A such that P>. ~ 4K1 n-3/ 2, we 
have P>. ~ (20)-1, and so we use 

Gp,.(k) S Gp,.(O) 

and hound the right side by the ordinary random walk susceptibility at p = 
(20)- 1 , which is finite. Therefore Fp,. (k) is bounded below by a constant, 
and so (6.4.3) holds (decreasing c if necessary). D 

We are now able to obtain hounds on fractional derivatives of the two­
point function. 

Theorem 6.4.2 For 0 sufficiently large (with d > 4 for the spread-out 
model) there is a positive constant ](2 (which may depend on£ and 0) such 
that for any p E [0, zc], 

and 

llc5;8pGplloo ~ K2 if 0 < £ < min{(d- 4)/2, 1}, 

llc5;Gpll2 S I<2 if 0 < e < min{(d- 4)/4, 1}, 

llz!cS;Gplloo S K2 if 0 < £ < min{(d- 4)/2, 1}. 

(6.4.8) 

(6.4.9) 

(6.4.10) 

Proof. Let £ E (0,1). For an upper hound, we take p = Zc. We define P>. 
as in (6.4.1). The proof of each of these three inequalities is similar, and we 
focus mainly on the first one. By Lemma 6.3.1 [using the fact that Gp(O, .r) 
has nonnegative coefficients cn(O, z)], we have 

( 100 2 ->.1/(1-<) 6p8pGp(O,.r) = Ct-£Zc 8pGp(O,z)l_ e dA. 
O P-P>. 

(6.4.11) 

Using Lemma 6.2.8 to hound the derivative of Gp in the integrand, and 
then going to the Fourier transform, we can bound the right side as 

£ < ! ddk roo >,1/(1-·) 21. 2 • I c5p8pGp 0, .r) $ 2 (21r)d Ct-£Zc Jo d>-.e- p~ Hp,. (k) Gp,. (k) . 

(6.4.12) 
Using the fact that fl,(k) = [zOD(k) + fi,(k)]F,(k)- 1 , and then using 

(6.2.37) to bound z-1fi,(k), it can be shown that there is a constant ](4 

(depending on n hut not on >-.) such that 
1 • • 1 

p); IHp,.(k)l ~ ](4Fp,.(k)- . (6.4.13) 

We bound the right side of (6.4.12), using (6.4.13) and (6.4.3), by 

•2 J ddk roo ->.1/(1-<) • -3 
21\4 (211")dCt-£Zc Jo dAe Fp,.(k) 

S const. J (~:~d loo d)..e->.1/(l-<)[1- e->.l/(l-•) D(k)J-3. 
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Now by (6.3.4), the right side of the above inequality is equal to 

J ddk 1 ( [ • -2] I const. (2 )d -, - cP (1- pD(k)) 
"' D(k) p=1 

J ddk ~ ( )£ • ( )n-2 = const. (21r)d ~ n n- 1 D k . 

By (6.2.6), the right side is finite for 1 +t:- (d/2) < -1. This proves (6.4.8). 
For (6.4.9}, we proceed in a similar fashion. Using Lemmas 6.3.1 and 

6.2.8 and the Parseval relation gives 

llo~Gpll 2 $11C1-£Zc 100 d.Xe->. 11 < 1 -•>p~ 1 HpA(k}GpA(k)ll 2 , 
where the norm on the left is with respect to normalized Lebesgue measure 
on [-11', 1r]d. Arguing as above and using the triangle inequality for 11·112 
gives 

00 

llcS~Gplh $ const. l: n(IID(k)n-1112· 
n:l 

The desired bound now follows from the fact that IID(k}nll2::; O(n-d/4}, 

by (6.2.6). 
For (6.4.10), by Lemma 6.3.1 we have 

2 ( roo ->. 1/(1-<) 2 
:c11 6pGp(O, :c)= Ct-£ Zc Jo d.Xe :c,/)pGpA (0, :c). (6.4.14) 

It follows from (6.2.10) that x!8PGPA (0, :c) is bounded uniformly in x and 
.X ~ .X0, for any fixed positive .X0. Taking for simplicity .X0 = 1, it suffices 
to bound 11 d.Xe->. 1/(l-•) x!8pGpA (0, x). (6.4.15) 

Applying Lemma 6.2.8 and the Fourier transform, and noting that P>. is 
bounded below by Pt for .X E (0, 1], the above integral is bounded above by 

rl ->.1/(1-·) f ddk I 2[. • 11 < ) const. lo d.Xe (211')d aj.l HpA(k)GpA(k) . 6.4.16 

It follows from Corollary 6.2.7 that 18~FPA(k)l is bounded (uniformly in 
.X). Also, it follows from Taylor's theorem and the bound on 18/Jft,(k)l of 
Corollary 6.2.7, together with (6.2.5), that 

d 

2:[8pFpA (k)]2 ::; const.k2 ~ const.[l- e->.l/(l-<) D(k)]. 
IJ=1 
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It then follows from direct computation of the second derivative of 

occurring in (6.4.16), together with (6.4.3) and symmetry, that 

2 ~a ( ) [ 100 ->-1/(1-•) j ddk • ( )-31 xJ.I6P P 0, x $ const. 1 + 0 d>.e (21r)d FPA k . 

Now the discussion below (6.4.13) can be applied. 0 

The following corollary of Theorem 6.4.2 will be used to prove Theo­
rem 6.1.1. 

Corollary 6.4.3 For 0 sufficiently large (with d > 4 for the spread-out 
model), there is a I<2 (which may depend on e and 0) such that for any 
k E [-11", 1r]d and lzl $ Zc, 

l6!8:frz(k)l, l6!8~fr:(k)l $ I<2, (6.4.17) 

for u = 0, 1, 2, where the first bound holds for any nonnegative e < min { ( d-
4)/2,1} and the secondfor any nonnegative£ <min{(d-4)/4,1}. lnfact 
the series representations of the left side are bounded absolutely by I<2. 

Proof. We write the left sides as sums over sites x and number of loops 
N. For upper bounds, we take absolute values inside sums over both x and 
N, and consider z = Zc. For the first bound, the derivatives bring down a 
factor lwll+£. This can be distributed among the subwalks of the N loop 
diagram, using Holder's inequality in the form 

The resulting diagrams can then be bounded using Lemma 5.4.3, with the 
subwalk weighted by lwl1+£ bounded with the L00 norm. Convergence 
then follows using an extension of Theorem 5.4.4 for fractional derivatives, 
together with Corollary 6.2.6 and (6.4.8). 

Similarly, for the second bound, the derivatives bring down factors lwl£ 
and lx~l· As in the proof of Theorem 5.4.4, these can be distributed among 
the subwa.lks in a diagram, with each factor on a. distinct subwalk (the 
one-loop diagram does not contribute). The subwalk weighted with lx~l is 
bounded using the L00 norm, and all other subwalks are bounded using the 
L 2 norm, using (6.4.9) for the subwalk weighted with lwl£. Convergence 
follows using Corollary 6.2.6. 0 
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6.4.2 Proof of Theorem 6.1.1 

In this section we give the proof of Theorem 6.1.1. We begin with Cn. 

Proof of Theorem 6.1.1(a). The susceptibility is given by 

1 1 
x(z) = P.(O) = 1- zn- fi.(O) 

(6.4.18) 

Fix ( < min{(d-4)/2, 1}. By Corollary 6.4.3, for any (1 < min{(d-4)/2, 1}, 
Ln nt+c'I1Tnlz~ < oo, where 1Tn is the coefficient of zn in the power series 

representation of fi.(O). Moreover by Theorem 6.2.9 8:Fzc(O) f. 0, and 
by Theorem 6.2.10 the only singularity of x(z) on the circle lzl = Zc is at 
z = Zc. It then follows immediately from Lemma 6.3.4 that 

(6.4.19) 

where in agreement with (6.2.45) 

(6.4.20) 

0 

We now turn to the mean-square displacement. 

Proof of Theorem 6.1.1(b). By definition of the Fourier transform, 

(6.4.21) 

The asymptotic behaviour of the denominator on the right side was ob­
tained in (6.4.19), and we now proceed to analyze the numerator. 

Since cn(k) is the coefficient of zn in G.(k), 

2 " 

- \7~cn(O) = -~ f \7~0.(0)~ = ~ f \7~F.(O) dz 1 , (6.4.22) 
2n zn+l 21Tz Fz (0)2 zn+ 

where the integrals are performed around a small circle centred at the origin. 
We define an error term E(z) by 

(6.4.23) 
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Inserting the right side of (6.4.23) into the right side of (6.4.22), the integral 
corresponding to the first term can be performed exactly to give 

2 • 

- V'~cn(O) = V' ~c!z.{O) (n + 1)z;(n+2) + -21 . f E(z) d+zl. {6.4.24) 
[8:Fz.{0))2 11'l zn 

The remaining task is to bound the last term in {6.4.24). This is done us­
ing Lemma6.3.3. Let c < min{(d-4)/4, 1}. It follows from Lemma6.3.3(i) 
that if it can be shown that IE(z)l ~ const.jzc-zl-2+f for alljzj ~ Zc, then 
the second term on the right side of (6.4.24) is O(z;nna) for every a > 1-c. 
Assuming for the moment this bound on the error term and using {6.4.19), 
we then have the desired result 

(lw(n)i2}n = Dn + O(na-), (6.4.25) 

with 

{6.4.26) 

We now establish the upper bound on IE(z)l used in the previous para­
graph. We first use (6.4.23) to write E(z) as a difference of two fractions, 
and then write this difference over a common denominator and add and 
subtract V'~Fz(O)F:(0) 2 in the numerator. This leads to 

E(z) = T1 + T2 (6.4.27) 

with 

(6.4.28) 

and 
To _ -V'~Fz(O)[F:(0) 2 - [8zF:.(0)]2(zc- z)2] 

2 - [8:Fz.(0))2Fz(0)2(zc- z)2 . 
(6.4.29) 

For T1 , we use existence of an c-derivative in the numerator by Corol­
lary 6.4.3, together with the Taylor theorem type bound of (6.3.9) to con­
clude that 

(6.4.30) 

For T2 we factor the difference of squares in the numerator and bound the 
denominator using Theorem 6.2.10, obtaining 

IT2I ~ const.(zc- z)-4(Fz(O) + 8:Fz.(O)(zc- z)][F:(O)- 8:Fz.(O)(zc- z)). 
{6.4.31) 

The middle factor on the right side is O(lzc- zll+f), by Corollary 6.4.3 and 
Lemma 6.3.2. For the last factor, the second term is clearly O(lzc- zl), 
as is the first, by virtue of the bound on the middle factor. Therefore 
IT2I ~ O(lzc- zjf-2). 0 
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6.5 Correlation length and infrared bound 

6.5.1 The correlation length 

In this section we prove Theorem 6.1.5, which states that for sufficiently 
large n, 

{D ( )1/2 e(z>-vu Zcz~z asz./'zc. (6.5.1) 

We work with the fully self-avoiding walk, with positive activity p < Zc, 

and as usual write m(p) = e(p)-1 • 

By Proposition 4.1.1(b) and Theorem 4.1.6 [and the fact that B(zc) < oo 
by Corollary 6.2.6], m(p) is strictly positive and finite for p < Zc, and 
m(p) '\. 0 asp/ Zc. For any function f defined on zd, and m E R., we 
define 

(6.5.2) 

The following lemma, whose proof is deferred to the end of this section, is 
a key ingredient in the proof of (6.5.1). 

Lemma 6.5.1 For 0 sufficiently large {with d > 4 for the spread-out 
model), there is a 6 > 0 (which may depend on 0) such that for p E 
[zc- 6, Zc) and m < m(p), 

IIH~m)ll~ = l:fH~m)(O, z)emz-1 ] 2 ~ 2KO-l+', 
Z' 

where K and s are as in the statement of Lemma 6.2.!1. 

Lemma 6.5.1 leads to the following result. 

Corollary 6.5.2 Let 0 be sufficiently large (with d > 4 for the spread-out 
model). There is a positive constant Ks which is independent of p and m 
{but may depend on£ and 0) such that 

E lzd2+fln~m)(O, z)l ~ Ks 
Z' 

for all p E [zc- 6, Zc), m < m(p) and l < min{(d- 4)/2, 1}. 

Proof. The sum on the left side involves diagrams having two or more 
loops, weighted with both lztl2+f and em~~:,. We split the former among 
subwalks along one side of"the diagram using Holder's inequality, and factor 
the latter along subwalks on the other side of the diagram. We then bound 
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the resulting diagrams using Lemma 5.4.3. The subwalk weighted with 
!x1!2+£ is bounded using the infinity norm, as follows: 

sup !x1!2+£ I: cn(O, x)p" $ sup !x1!2 I: nfcn(O, x)p" 
:c n :t: n 

(6.5.3) 

The right side is finite for e as in the statement of the corollary, by The­
orem 6.4.2. All other subwalks are bounded as in Lemma 5.4.3 using the 
L2 norm, yielding factors of I!Hp!b, I!Gplb = 1 + I!Hp1!2, IIH~m)ll2 and 
IIG~m)ll2 = 1 + IIH~m)lb· The sum of all diagrams is then bounded above 
by a geometric series with an m-dependent ratio. The geometric series 
converges for 0 sufficiently large by Lemma 6.5.1 and Corollary 6.2.6, uni­
formly for p and m as in the statement of the lemma. 0 

Proof of Theorem 6.1.5. The proof is modelled on the corresponding 
random walk result in Theorem A.2(b). Let p E [zc- 6, zc)· For m < 
m(p), let x(m)(p) = L:c G~m)(O, x). Because Gp(O, x) decays exponentially 
with decay rate m(p) by Lemma 4.1.5, x<m>(p) is finite if m < m(p). By 
multiplying (5.2.17) by em:c 1 and then taking the Fourier transform, we 
obtain 

G(m)(k) = 1 
p 1- p!lD(m)(k)- ft~m)(k). 

(6.5.4) 

[The Fourier transform ft~m) exists for p E [zc- 6, zc) and m < m(p), by 
Corollary 6.5.2.) The function b(m)(k) is defined by 

b(m)(k) =A I: emYieik·y. 

yen 

Using (6.5.4) and (6.5.5), 

{6.5.5) 

x(p)-1 - x(m)(p)-1 = p ~)cosh myl - 1) + ft~m)(O)- ITp(O). (6.5.6) 
yen 

We intend to take the limit as m / m(p) in (6.5.6). As a first observa­
tion, we show that for any p < Zc, 

lim x(m)(p) = 00. 
m)'m(p) 

(6.5.7) 

This can be seen as follows. For simplicity we deal in the remainder of this 
paragraph only with the nearest-neighbour model; a modified argument 
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applies to the spread-out model. Let BR = {y E zd : IIYIIoo :::; R} and 
8BR = {y E zd: IIYIIoo = R}. For y E 8BR let G~{O,y) = L:zlwl where 
the sum is over all nearest-neighbour self-avoiding walks from 0 to y which 
hit 8BR for the first and only time at y. Then for :r:ft.BR, we have the 
following Lieb-Simon type inequality: 

Gp(O, :r:):::; E a:(o, y)Gp(y, z):::; E Gp(O, y)Gp(y, :r:). (6.5.8) 
YE8BR YE8BR 

Multiplying this inequality by em(p)z•, it follows from Lemma A.1 that if 
x<m(p))(p) were finite then G(m(p))(O, x) would decay exponentially, contra­
dicting the definition of m(p). It then follows from the monotone conver­
gence theorem, and the fact that x<m)(p) is finite if m < m(p), that (6.5.7) 
holds. 

The remainder of the proof is concerned with showing that the limit of 
the right side of (6.5.6), as m / m(p), is a multiple of m(p)2 plus a higher 
order correction. Together with Theorem 6.1.2, which states that x(p) """ 
const.(z~- p)- 1, this will show that m(p)2 is asymptotic to a multiple of 
z~- pas p /' Zc. 

By definition and symmetry, 

:r: 

+ L [cosh mx1 -1- m~x~] Ilp(O, x). (6.5.9) 
:r: 

Fix f < min{(d- 4)/2, 1}. There is a positive constant C such that 

(6.5.10) 

Hence by Corollary 6.5.2, 

~~[cosh m:r:t- 1- m~:r:~] Ilp(O, x)l < Cm2+£ ~ l:r:ti 2+€1IJ~)(O, .x)l 

:::; CI<3m2+£, 

uniformly in m < m(p) and p E [zc- 6, zc)· Hence the limit of the left side 
as m / m(p) is O(m(p)2+£]. 
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From this fact, together with (6.5.7) and (6.5.9), we conclude that taking 
the limit as m / m(p) in (6.5.6) gives 

x(p)- 1 = p z)cosh(m(p)Yt)- 1] 
yen 

+ m;12 2:1~12IIp(O,~)+O(m(p)2+(). (6.5.11) 
t: 

Since as noted at the beginning of this section m(p) - 0 as p / Zc, the 
right side of (6.5.11) is asymptotic to 

( ) 2 [ze ""' 2 1 ""'I j2 ( )] m(p)2 2 • ( ) m P 2 L...J Yt + 2d L...J ~ liz. 0, ~ = -u \7 kFz. 0 
yen t: 

asp/ Zc. The right side is positive, by (6.2.35). Also, by Theorem 6.1.2 
the left side of (6.5.11) is asymptotic to (Azc)- 1(zc- p). Thus by (6.4.20) 
and (6.4.26) we have 

m(p)2,.... 2~ Zc- p = 2d Zc- p 
1 

A \7~Fz.(O) Zc D Zc 
(6.5.12) 

which proves Theorem 6.1.5. 0 

We now complete the remaining step of the proof. 

Proof of Lemma 6.5.1. The proof uses Lemma 6.2.1 with m playing the 
role of p, n = 1, a= 2/3, Po= 0, Pt = m(p) and 

IIH(m)ll2 

ft(m) = 3[{~-t+~. 

We begin by considering the hypotheses of Lemma 6.2.1 in this context. 
First, for any p < Zc, ft (m) is continuous in m E [0, m(p)). This fol-

lows from the fact that if p < zc and m < m(p) then IIH~m)m < oo (by 
Lemma4.1.5), together with the monotone convergence theorem. Next, by 
Corollary 6.2.6, ft(O) :5 2/3 for all p < Zc, if n is sufficiently large. 

It thus suffices to show that the remaining, and substantial, hypothesis 
of Lemma 6.2.1 is satisfied, namely that there is a 6 > 0 such that given 
p E [zc- 6, zc), m < m(p) and n sufficiently large (independently of p, m), 
if IIH~m)m :5 3Kn-t+• then in fact IIH~m)ll~ :5 2Kn-t+•. The remainder 
of the proof is concerned with showing the existence of such a 6. 
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Denoting the reciprocal of G~m)(k) by PJm>(k), we have 

la(m)(k)l < 1 
p - IRefrJm>(k)l. 

(6.5.13) 

Now 

RefrJm)(k) > RefrJm)(k)- frJm)(O) 

= pORe[b(m)(O)- b(m)(k)] + Re[fi~m)(O)- fi~m)(k)]. 

But for p ~ n-t, 

pORe[b(m)(O)- b(m)(k)] = p L emYt [1- cos k · y] 
yen 

Also, by Corollary 6.2.7 we have 

Re[fi~m)(O)- fi~m)(k)] 

= p 2:::::: cosh my1 (1 - cos k · y] 
yen 

> 1-b(k). (6.5.14) 

= [flp(O)- ftp(k)] + Re [ (fi~m)(O)- nr>(k))- (fip(O)- flp(k))] 

~ -K1n-u[l- D(k)] +I) cosh mx 1 - l]ITp(O, x)[l- cos k · x] 
:r 

(with u = 3/2 for the nearest-neighbour model and u = 5/2 - 5s/2 - 2/d 
for the spread-out model). Therefore 

RefrJm>(k) ~ [1- K1n-u][l- D(k)] 

+ L[cosh mx1- l]ITp(O, x)[l- cos k · x]. 
:r 

Since 
0 :$ cosh t - 1 :$ const.IW cosh t 

for 0 :$ £ :$ 2, and since [by (6.2.5)] 

0::; 1- cos k · x::; (k '2x)2 
::; 1r2dlxl 2[l- D(k)], 

we have 

~)cosh mxt - l]Ilp(O, x)[l- cos k · x] 
:r 

::; Ctdmt[l- D(k)J L lxl 2 l.rdtiii~m)(O, x)l, 
:r 
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where c1 is a universal constant. Now the proof of Corollary 6.5.2 goes 
through equally well assuming IIH~m)ll~ < 3I<n-l+• rather than IIH~m)ll~ < 
2Kn-1+•, so under this assumption we have a bound on the sum over x in 
the right side of the above inequality by a constant independent of p and 
m < m(p) (but possibly depending on f and 0). Changing the value of K 1, 

we then have 

(6.5.15) 

where cis independent of p but may depend on n. 
Using (6.5.15), the Parseval relation, the fact that IIH~m)m = IIG~m)ll~-

1, and the ordinary random walk bound of (6.2. 7) gives 

IIH~m)ll~ < [1 + I<tn-u + Cm{] Ill~ b II:- 1 

< Kn-1+'[1 + K1n-u + Cm(] + K1n-u + Cm{. 

For d > 4, -u < -1 + s, so if n is sufficiently large, say n 2: 01 (not 
depending on m, p), then 

For fixed n 2: 0 1 we then choose 6 sufficiently small that 

Cm(py $ min{l/4, Kn-1+• /4} 

for p E [zc- 6, zc); this is possible because m(p) --+ 0 asp/ Zc. Then for 
p E [zc- 6, Zc) and m < m(p) we have 

IIHr(m)ll~ < Kn-1+• [1 +! + !) + !Kn-1+·· + !I<n-t+• 
4 4 4 4 

0 

6.5.2 The infrared bound 

In this section we give the proof of Theorem 6.1.6, apart from the bound 
GzJO, x) $ C(p)lxl-r for p < (d- 2)/2, which is a consequence of Corol­
lary 6.1.4. The bound Gzc(O, x) $ const.lxl- 2 has already been established 
in Corollary 6.2.6, and the upper bound on G:c(k) follows from the last 
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inequality of Corollary 6.2.7. Let£< min{(d -4)/2, 1}. Here we show that 
ask-+ 0, 

0 (k) _ 2d 1 
Zc - 'V~Fz.(O) k2 + O(k2+£)' 

(6.5.16) 

Since Gzc(0)- 1 = 0 by Corollary 6.2.7, 

Gz.(k)- 1 = Gzc(k)-1 - Gzc(0)-1 

= ZcO(l- D{k)] + llz.{O)- ITzc(k). (6.5.17) 

The last two terms on the right side can be written as 

The quantity in square brackets can be bounded above by c2k2+e!x!2+e, for 
some universal constant c2. The sum over x can then be bounded as in 
Corollary 6.5.2. The result is 

(6.5.18) 

where 

(6.5.19) 

6.6 Convergence to Brownian motion 

Given an n-step self-avoiding walk w, we define 

Xn(k/n) = (Dn)- 112w(k), k = 0, 1, ... , n (6.6.1) 

where D is the diffusion constant given in (6.4.26). We then obtain a con­
tinuous function Xn on the interval [0, 1], taking values in Rd, by defining 
Xn(t) to be the linear interpolation of Xn(k/n). In this section we prove 
Theorem 6.1.8, which states that if n is sufficiently large (with d > 4 for 
the spread-out model) then Xn(t) converges in distribution to Brownian 
motion, or in other words that 

lim (f(Xn)}n = jtdW n-oo 
(6.6.2) 
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for every bounded continuous function f on Cd(O, 1] (the latter denotes 
the R"-valued continuous functions on [0, 1], equipped with the supremum 
norm). Here W is the Wiener measure, normalized such that 

J eik·B'dW = e-k2 tf2d, (6.6.3) 

and the angular brackets on the left side of (6.6.2) denote expectation with 
respect to the uniform measure on the set of n-step self-avoiding walks 
beginning at the origin. 

To prove this result it suffices to show both convergence of the finite­
dimensional distributions to Gaussian distributions and tightness [see e.g. 
Billingsley (1968)]. Tightness follows readily from Theorem 6.1.1 and will 
be discussed at the end of this section. 

For convergence of the finite-dimensional distributions, we need to prove 
that for any positive integer N, any 0 < t 1 < t2 < ... < tN $ 1 and any 
bounded, continuous function g on RdN, 

(6.6.4) 

Since weak convergence of probability measures on nm is implied by con­
vergence of the corresponding characteristic functions, it suffices to consider 
only 

(6.6.5) 

where x = (z<1>, ... ,z(N)) with each z(i) E R", and similarly fork, and 

k · x = Ef:1 k(i) · z(i), Equivalently, we can replace this g by 

g(x) = exp [it k(i). (z(i)- z(i-1))] , 
J=l 

(6.6.6) 

which will be better suited to take into account the "effective independence" 
of the self-avoiding walk on distinct intervals [t;, ti+tl· 

Let a= ( a1, ... , aN), with each a; a nonnegative integer, and let 

(6.6.7) 

We define 
M(k,a) = L eik·.1w(a)J<[O,aN], (6.6.8) 

w:lwl=aN 

where the sum over w is a sum over simple random walks, and I<[ a, b] 
was defined in (5.2.6). (We work in this section with infinite memory, i.e., 
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with the fully self-avoiding walk.) Inserting (6.6.6) into (6.6.4) and using 
the above notation, we see that for convergence of the finite-dimensional 
distributions it suffices to show that for N = 1, 2, 3, ... , 

[ 1 N . 2 l nl~c;;lNM(k/VDn,nt)=exp - 2dt;1(k<•>) (t;-ti-t) . (6.6.9) 

[The nt and ntN on the left are to be interpreted as (lntd, ... , lntNJ) and 
LntnJ respectively; similar shorthand is use~ throughout this section. Also, 
(k(i))2 denotes the square of the Euclidean norm of the vector k(i). Finally, 
there is no difficulty in the replacement of Xn(t) by (Dn)-112w(Lntj) that 
has been made in the left side of (6.6.9).] 

We obtain (6.6.9} for N = 1 in Section 6.6.1, and prove (6.6.9) for N ~ 2 
by induction on N in Section 6.6.2. 

6.6.1 The scaling limit of the endpoint 

In this section we prove (6.6.9) for N = 1. In fact, a minor generalization 
of (6.6.9) will be needed to take the induction step, and we prove the 
generalization here. 

Theorem 6.6.1 Let 0 be sufficiently large (with d > 4 for the spread-out 
model). Let hn be any fixed nonnegative sequence with limn-oo hn = 0, and 
let g = {un} be any real sequence with lgnl ~ hn for all n. Fix t > 0 and 
letT= t(1- Un)· Then for any k E Rd, 

lim Cnr(kj$n) = exp [-k2tf2d], 
n-oo CnT 

(6.6.10) 

uniformly in g. 

Proof. Fix any e < min{(d- 4)/4, 1}. By (6.4.19), the denominator of 
(6.6.10) can be written 

(6.6.11) 

uniformly in g. The numerator of (6.6.10) is the coefficient of znT in 
Gz(k/VJJTi), and hence is given by 

• rr::L 1 f 1 dz cnr(k/v Dn) = -2 . • .fDn --r---+1 • 
11'l Fz(k/ Dn) zn 

(6.6.12) 

where the integration contour is a small circle centred at the origin. The 
task now is to obtain the asymptotic form of the integral on the right side. 
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We extract the leading contribution to the right side of (6.6.12) as fol­
lows. We subtract Fz.(O) = 0 from Fz(k/ffn), and then add and subtract 

. 1 2. p 
Oziiz.(O)(zc- z) + 2d \7 ,~:IIz.(O) Dn · 

The result can be written 

where 

and 

. rn- . 1 2. k2 
a= a(k/v un) = -zco,F,.(O)- 2d \7 ,~:II.~.(O) Dn' 

/3 = /3(k/..fi5n) = -ozi'z.(O)- 0(1- D(k/..fi5n)], 

(6.6.13) 

(6.6.14) 

(6.6.15) 

. . rn- . . k2 2. 
E= -IIz(k/vDn)-oziiz.(O)(zc-z)+IIz.(0)+ 2dDn V~:IIz.(O). (6.6.16) 

The error term can be written 

(6.6.17) 

where 

Et = fiz.(k/..fi5n)- fiz(k/..fi5n)- OziTz.(k/..fi5n)(zc- z), (6.6.18) 

E2 = [oziTz.(k/..fi5n)- OziTz.(O)](zc- z), (6.6.19) 

(6.6.20) 

1 1 E 
Fz(k/ffn) = 0'- /3z- (a- {3z)Fz(k/ffn) · 

(6.6.21) 

We now insert (6.6.21) into (6.6.12). The integral corresponding to the 
first term on the right side of (6.6.21) is pnT a-(nT+l). A straightforward 
calculation using the definition of D in (6.4.26) and the fact that 1- D( u) "J 

-(1/2d)u2\72 D(O) shows that 

pnT 1 [ k2 ] nT 
- 1--anT+l -Oz i',.(O)z~T+l 2dn 

,.., • 1 T+l exp(-k2t/2d], (6.6.22) 
-oz F,. (O)z~ 
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uniformly in g. Comparing (6.6.11), the theorem follows from (6.6.22) if it 
can be shown that 

1 f E dz ( -nT) 
211'i (a- {3z)F2 (kf-/l5Ti) znT+l = 0 Ze 

(6.6.23) 

uniformly in g. We show that (6.6.23) holds by using Lemma 6.3.3. 
The first step is to obtain lower bounds on the two factors in the denom­

inator of the integrand of (6.6.23). We begin with Ia- Pzl = .Bia/.8- zl. 
For large n, {3 is bounded away from zero by Theorem 6.2.9. Also, it can 
be seen from (6.6.22) that af/3 ~ Zc for n large. Hence there is a positive 
constant such that for large n and lzl $ ze, 

Ia - ,8zl ~ const.lze - zj. (6.6.24) 

For a lower bound on 1Fz(kf-/l5Ti)l, we write 

By Corollary 6.4.3 and Lemma 6.3.2, the first two terms on the right side 
combine to give -82 F2 .(k/v'Dfi)(zc-z)+O(lzc-zll+£). By the dominated 
convergence theorem the derivative appearing here is continuous in k, and 
hence differs from its value at k = 0 by o(l). Thus we have 

Fz(k/..fi5n) = [-8zFz.(O) + O(lze- zn + o(l)](zc- z) + Fz.(k/..fi5n). 
(6.6.26) 

By Corollary 6.2.7, the last term on the right side is nonnegative. Since 
the first term in square brackets on the right side is also nonnegative by 
Theorem 6.2.9, it follows that for z in a small neighbourhood of Zc (inside 
the closed disk of radius ze), the right side of (6.6.26) is bounded below by 
const.lzc-zl (for large n). Outside ofthis neighbourhood, by Lemma6.2.10 
there is a constant c > 0 such that IFa(O)I ~ c. Hence IF,~(kf-/l5Ti)l ~ c/2 if 
n is sufficiently large, since by Corollary 6.2.7 there is a bound on IV' kFz(k)l 
which is uniform in k and lzl S Zc· Therefore for lzl S Zc we have 

(6.6.27) 

We now turn to upper bounds on Ei for i = 1, 2, 3. Beginning with Et. 
it follows from (6.6.24), (6.6.27), and a straightforward calculation using 
Corollary 6.4.3 and Lemma 6.3.2 that 

1
.!!._ El I < O(lz - zl£-2) 
dz (a- {3z)(Fz(kf..Jl5Ti)) - c ' 

(6.6.28) 



6.6. CONVERGENCE TO BROWNIAN MOTION 211 

and hence by Lemma 6.3.3(ii) (6.6.23) is satisfied if E is replaced by Et. 
For E2, we show 

(6.6.29) 

which suffices by Lemma6.3.3(i). To do so we write 11'm(z) for the coefficient 
of zm in 11,(0, z), so that 

a,fr,.(k/ffn)- a,fr,.(O) =-L m11'm(z)z~-l[l- eos(k. z/..ffin)]. 
z,m 

(6.6.30) 
Since 11-costi $OW) for small£$ 2, and since lxlfl11'm(x)l $ mfl11'm(x)l, 
the right side of (6.6.30) is O(n-f/2) by Corollary 6.4.3, which gives (6.6.29). 

Finally, for Ea we use symmetry to write 

"' [ k . :t ( k . z )2 ] Ea = L...J 11'm(x)z~ 1- cos .trL- 2Dn . 
zm vDn . (6.6.31) 

For small positive e, 11- cost- t2 /2l $ O(lti2+E). Since lxl2+fl11'm(x)l $ 
mtlxl 2111'm(x)l, it follows from Corollary 6.4.3 that lEal ~ O(n-l-t/2). 

Then Lemma 6.3.3(i) gives (6.6.23) forE replaced by Ea. D 

6.6.2 The finite-dimensional distributions 

In this section we complete the proof of Theorem 6.1.8 by showing that 
(6.6.9) holds for N ~ 2. The proof of (6.6.9) is by induction on N, with 
the case N = 1 having been treated in the previous section. Lemma 5.2.5 
is a basic element of the induction argument. 

To perform the induction step, some flexibility is needed in the number 
of steps in the walk. Let g = {gn} be any sequence satisfying 0 ~ 9n ~ 
n- 112, and let T = (tt, t2, ... , tN-t, T), where T = tN(l - 9n)· It suffices 
to prove the following theorem. 

Theorem 6.6.2 Let 0 be sufficiently large (with d > 4 for the spread-out 
model) and let N ~ 2. Suppose that 

(6.6.32) 

holds uniformly in g, when N is replaced by N- 1. Then in fact (6.6.32) 
holds as stated, uniformly in g. 
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Proof. To simplify the notation we write ,. = {K.1, ••• , l'i'.N) = kj../lfii. 
By (6.6.8), and Lemma 5.2.5 with m = ntN-11 

M(K.,nT) = L: L: ei"·4 w(nT)K[O,It]J[It,I2]K[hnT]. 
l:lnt/IT-1 w:lwl=nT 

(6.6.33) 
The sum over I is the sum over intervals [It,l2] of integers with either 
0 ~It < ntN-t < I2 ~ nT or It = I2 = ntN-t· 

In (6.6.33) we factor the walk w into three independent subwalks on 
the subintervals [0, It], I= [It, I2] and [h nT]. We fix a sequence bn with 
limn-oo bn = oo and bn = o(nt/2), for example bn = n114 • It will become 
apparent that the significant contribution to the right side of (6.6.33) is due 
to intervals I with III $ bn. We take n sufficiently large that for such I, 
ntN-2 <It $ ntN-l $ I2 < nT. 

Denote by Mf and M~ respectively the contributions to the right side 
of (6.6.33) due to III ~ bn and III > bn. By factoring the exponential we 
can resum to obtain 

where 

x L Et(w,l)J[O, III]cnT-r2 (K.N), 
w:lwl=lll 

(6.6.34) 

Et(w, I) = exp[iK.N-t · w(ntN-l -It)+ iK.N · w{l2- ntN-d] 
= 1 + O(bnn-112) (6.6.35) 

uniformly in w and III $ bn. For III $ bn and n sufficiently large, It E 
[ntN-t(l- n-112), ntN-1]. Hence by the induction hypothesis, 

[ [ 1 N-1 2 l l =c11 exp - 2d~(k(i)) (ti-ti-t) +E2(I), (6.6.36) 

where IE2(I)I = o(l) uniformly in III ~ bn. Similarly it follows from 
Theorem 6.6.1 that for III$ bn, 

CnT-I2 (K.n) = CnT-12 [exp [- 2~ ( k(N)f (tN- tN-l)] + Ea(I)] , 

(6.6.37) 
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where IE3(/)I = o(1) uniformly in Ill$ bn. 
Substituting (6.6.35)-(6.6.37) into (6.6.34) leads to 

(6.6.38) 

where 

IAI $ o(1) L CJ, L IJ[O, lliJicnT-12 • (6.6.39) 
I~ ntN-1 fwf=flf 
IllS b,. 

Since M(O, nT) = CnT, we have M6 = CnT- M~. Hence 

c~J.M(~,nT) = exp[- 2~t.(k(i)r(ti-ti-dl [1-c~J,M~) 
+ c~J.A + c~J.Mk. (6.6.40) 

Now by Theorem 6.l.l(a) and (6.6.39), 

b,. 

c~J.IAI :5 o(l) I: Ill I: IJ[O, IIIJ1zl11 (6.6.41) 
111=1 lwi=ITI 

(here III is merely a summation index and the sum is no longer a sum over 
intervals). In (6.6.41) the factor Ill counts the number of possibilities for 
ntN-1 E /. Extending the summation over III on the right side to infinity, 
it follows from the (absolute) bound on ozfi of Theorem 6.2.9 that 

c~J.IAI $ o(t). (6.6.42) 

It suffices now to show that c~J.Mk = o(l) as n-+ oo. Arguing as for 

Mf, 
00 

c~J.IMkl $ 0(1) I: III L IJ[O, IIIJ1zl11. (6.6.43) 
lll:b,.+l lwi=ITI 

The right side goes to zero as n-+ oo since by Theorem 6.2.9 

00 

I: Ill L IJ[O, lliJizllf < oo. 
111=1 w:fwl=lll 

0 
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6.6.3 Tightness 

Tightness is proved via the following lemma. Although not stated explic­
itly in Billingsley (1968), the lemma follows in a straightforward manner 
from Theorem 8.4 and results on pages 87-89 [both references to Billingsley 
(1968)]. For the statement of the lemma, we define a process closely related 
to Xn(t) by 

Yn(t) = (Dn)-112w(LntJ). (6.6.44) 

Lemma 6.6.3 The sequence {Xn} is tight if there exist constants I<~ 0 
and a > 1/2 such that for 0 ~ t1 < t2 < ta ~ 1 and for all n, 

(1Yn(t2)- Yn(tt)I 24 IYn{ta)- Yn(t2)l24)n ~ Klt2- td4lta- t2l4, (6.6.45) 

where the angular brackets denote expectation with respect to the uniform 
measure on the set of n-step self-avoiding walks. 

We will use Theorem 6.1.1 to show that (6.6.45) holds with a= 1. With 
a= 1 the left side of (6.6.45) is equal to 

D2 12 L lw(nt2)- w(ntt)l2lw(nta)- w(nt2)l2 K[O, n], (6.6.46) 
n Cn 

lwl=n 

where the sum on the right side is over all n-step ordinary random walks, 
and brackets indicating integer part have been omitted to simplify the no­
tation. The inequality 

(6.6.47) 

allows for the replacement of the sum over w by sums over independent 
subwalks on the intervals [0, ntt], [ntt, nt2], [nt2, nta], [nta, n], for an upper 
bound on (6.6.46). Also, by Theorem 6.1.1(a), 

(6.6.48) 

Using the above two inequalities in (6.6.46) gives 

{1Yn{t2)- Yn{tt)I21Yn(ta)- Yn(t2)12)n 

E 
-1 

X Cnls-nl2 
jwj:nt3-nt2 

= const.n-2{lw(nt2- ntt)l2)nt2 -nt 1 {lw(nta- nt2W)nt 3 -nt2 • 

But by Theorem 6.1.1(b ),·the expectations on the right side are bounded 
above by a multiple of (nt2- ntt)(nta- nt2), which gives (6.6.45). 
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6. 7 The infinite self-avoiding walk 
In this section we give the proof of Theorem 6.1.9. Throughout the section 
we work only with the fully self-avoiding walk, i.e. r = oo. 

We begin by defining the infinite self-avoiding walk. Given n ~ m and 
an m-step self-avoiding walk w, we let Pm,n(w) denote the fraction of n-step 
walks whose first m steps are given by w. In other words, Pm,n(w) is the 
fraction of n-step self-avoiding walks which extend w. Then we define 

Pm(w) = lim Pm n(w) (6.7.1) 
n--oo ' 

if the limit exists. If the limit does exist, then the probability measures Pm 
on m-step walks will be consistent in the sense that for each n ~ m and 
each m-step self-avoiding walk w, 

Pm(w) = E Pn(P), (6.7.2) 
p>w 

where the sum is over all n-step self-avoiding walks p which extend w. This 
consistency property allows for the definition via cylinder sets of a measure 
P 00 on the set of all infinite self-avoiding walks. The measure P 00 is the 
infinite self-avoiding walk. 

Although the limit (6.7.1) is believed to exist in all dimensions, the clos­
est results to existence of the limit in general dimensions are Theorems 7 .4.2 
and 7.4 .5( a). These state that for any m-step self-avoiding walk w which can 
be extended to an infinite self-avoiding walk, liminfn-oo Pm,n(w) > 0 and 
limn-oo Pm,nH(w)/Pm,n(w) = 1. (For bridges the situation is easier, and 
existence of the infinite bridge in all dimensions is proven in Section 8.3.) 
The remainder of this section is devoted to a proof that the limit in (6.7.1) 
exists if 0 is sufficiently large (with d > 4 for the spread-out model). 

Given a nonnegative integer m, let k = {k(1), •.• , k(m)), where k(i) E 
[-11', 1r]d. Given n ~ m and an n-step self-avoiding walk w, let Wm be the 
first m steps of w, and 

Let 

m 

k · Wm = L k(i) · w(i). 
i=l 

c,Om,n(k) = I: eik·wm K[O, n], 
lwl=n 

where the sum is over all n-step ordinary random walks and I< was intro­
duced in (5.2.6). We also define 

Y'm,n(k) = E eik.w Pm,n(w) = c1 <Pm,n(k), 
lwl=m n 
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where the sum is over all m-step self-avoiding walks (walks which do have 
self-intersections would make no contribution so the sum can also be con­
sidered to be over ordinary random walks). Since {Pm,n}n is clearly tight, 
a standard convergence theorem [see Billingsley (1968), p. 46] guarantees 
that existence of the limit (6. 7.1) follows from existence of the limit 

<pm(k) = lim <j?m n(k), 
n-co ' 

(6.7.3) 

for all k E [-11', 1r]md. 

We now recall some notation and a lemma from Section 5.2. Form~ 0, 
we defined a quantity similar to the Fourier transform G.(k) of the two­
point function by 

00 

r.(k,m) = 2: <Pm,n(k)zn. 
n=m 

Since lf,(k, m)l :$ x(lzl), this power series converges for lzl < Zc. We also 
defined a quantity similar to fi.(k), again for m ~ 0, by 

00 

w.(k, m) = L z& L eik.w,.J[O, s], (6.7.4) 
&:m lwl:& 

where the sum is over ordinary random walks. It follows from the absolute 
bound on the lace expansion ofTheorem 6.2.9 that for v = 0, 1, a~w.(k, m) 
is bounded by a finite constant uniformly in k and lzl :$ Zc. For j < m 
we define kj = (kU+l), ... , k(m)). In Lemma 5.2.6, it was shown that for 
m ~ 1 

m 

r.(k, m) = znb(l: k(j))f.(kt' m- 1) 
i=l 

m-1 m 

+ L z• L exp(i L kU) · w(min{j, s })]J[O, s]f,(k&, m- s) 
&:2 lwl=& j=l 

+ w.(k, m)x(z). 

Let N.(k, m) = x(z)- 1 r.(k,m). The above identity and induction on 
m then can be used to argue that for v = 0, 1, 8~ Nz (k, m) is uniformly 
bounded in k and lzl :$ Zc. 

To prove existence of the limit (6.7.3), we proceed as follows. By defi­
nition of N., 

<Pm,n(k) = (6.7.5) 
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where the contour is a small circle centred at the origin. It suffices to show 
that the second term on the right side is o(cn), which by Theorem 6.1.1(a) 
is equivalent to o(z;n). Hence by Lemma 6.3.3(ii) it suffices to show that 
for izl $ Zc, 

(6.7.6) 

for this would imply that the second term on the right side of (6.7.5) is 
O(z;nn-a), for every a< 1. 

Now since lozNz I is uniformly bounded for lzl $ Zc, 

d d 
dz [Nz(k, m)- Nze(k, m)]x(z) = O(l)x(z) + O(lzc- zl) dzx(z). 

The first term on the right side is O(lzc-zl-1) by Theorem 6.2.10. It follows 
easily from Theorem 6.2.9 and Theorem 6.2.10 that the second term on the 
right side is also O(lzc - zl- 1 ). Thus we have (6. 7.6), and the proof of 
Theorem 6.1.9 is complete. 

6.8 The bound on cn(O, x) 
In this section we prove Theorem 6.1.3, which states that for the nearest­
neighbour model in sufficiently high dimensions or for the spread-out model 
with d > 4 and L sufficiently large, there is a positive constant B such that 

sup Cn(O,x) $ BJ.tnn-d/2 • 
:rEZ4 

(6.8.1) 

This shows that if as believed cn(O, x)"" const.J.tnna,;,.,- 2 then a,;ng- 2 $ 
-d/2, i.e. we have proved an inequality corresponding to the conjectured 
hyperscaling relation a,;ng- 2 = -dv. This is the only result stated in 
Section 6.1 which has not yet been proved for the nearest-neighbour model 
for all d ~ 5. We assume in this section that n and llxllt have the same 
parity; otherwise cn(O, x) = 0. 

For reasons to be discussed momentarily, with some reluctance we rein­
troduce a finite memory as in Section 5.2; recall that the estimates of 
Section 6.2 are uniform in the memory. Let Cn,r(O, x) denote the number of 
n-step walks ending at x which are self-avoiding with memory T. For any 
T E [0, oo] and for any x, 

(6.8.2) 
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Denote by i the d-dimensional vector whose components are all11'. Then 
since n and llzllt have the same parity, 

(6.8.3) 

Using this fact, together with periodicity, we can then conclude that the 
integral on the right side of (6.8.2) is twice the integral over [-11' /2, 11' /2) x 
[-11', 11']d-t, and hence 

To estimate the integral on the right side, we will first use contour integra­
tion to estimate the integrand. In Theorem 6.6.1 we have already obtained 
good control of cn(k) for k of order n-112, but now we require estimates 
valid for all k. 

In (5.2.5), we introduced zc(k; r) as the radius of convergence of G.:(k; r). 
Thus zc(k; r) is the zero of Fz(k; r) = G.:(k; r)- 1 which is closest to the 
origin. Our contour integration method requires us to track this zero as a 
function of k, and because it will occur frequently we abbreviate the no­
tation by writing zr(k) = zc(k; r) and Zr = Zc(O; r). In general zeroes of 

F.:(k; r) occur in complex conjugate pairs since Gz(k; r) = Gz(k; r), but 
it will be shown that for small k there is a unique, and hence real, zero 
near Zr. Clearly Zr(k);::: Zr, since IG.:(k; r)l ~ 0.:(0; r). Similarly, Zr ~ Zc· 
Without introducing a finite memory we are unable to control ft.: beyond 
Zc and therefore are unable to analyze z00 (k) for k bounded away from 0. 
However with a memory we will see that there is an analytic continuation 
of G.:(k; r) beyond Zr, which permits us to control the integral in (6.8.4). 

For £ > 0 and r ;::: 4 we define 

(6.8.5) 

We wish to show that there is an analytic continuation of Gz(k; r) to the 
disk Dr(£), for some positive£. As a first step we have the following con­
sequence of Theorem 6.4.2. 

Theorem 6.8.1 Let 0 be sufficiently large (with d > 4 for the spread-out 
model). There is a positive constant £o (which may depend on d, n but not 
on r) such that for any r ~ oo, £ < £o and p E (0, Zr], 

(6.8.6) 

(6.8.7) 
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and 
(6.8.8) 

Here I< is the constant of Lemma 6.2.2, s = 0 for the nearest-neighbour 
model, s = 1/20 for the spread-out model, and the 2/d in the exponents can 
be omitted for the nearest-neighbour model. 

Proof. Theorem 6.4.2 (with finite memory) immediately gives finite 
bounds (uniform in r) for the left sides, for any f < min{(d- 4)/4, 1}. 
In fact, if we take f < min{(d- 4)/8, 1/2} (say), then Theorem 6.4.2 can 
be used to give finite bounds (again uniform in r) on the derivatives with 
respect to f of the norms on the left sides. Hence the left sides can be 
made as close as desired to their f = 0 values by taking f sufficiently small, 
independent of r. The theorem then follows from the f = 0 bounds given 
in Corollary 6.2.6 and (6.2.39). 0 

This leads to the following corollary, which extends Corollary 6.2.7 and 
Theorem 6.2.9. The corollary in particular provides an analytic contin­
uation of fiz(k; r) to Dr( Eo), and hence a meromorphic continuation of 
Gz(k; r) to the same disk. 

Corollary 6.8.2 Let 0 be sufficiently large (with d > 4 for the spread-out 
model). There is a positive constant I<t which is independent of 0 such 
that for any f :5 Eo, any r, k, and any z E Dr(fo), 

lfiz(k; r)l :5 I<tn-~+•+2/d, (6.8.9) 

lozfiz(k; r)l < Ktf2•+2/d, (6.8.10) 

lopfiz(k; r)l < Ktn-2+2•+2/dlkpl. (6.8.11) 

lo~fiz(k; r)l < I<tn-2+2,+2/d, (6.8.12) 

lfiz(O; r)- fiz(k; r)l < I<tf2-2+2&+2/dk2. {6.8.13) 

Proof. By Theorem 5.4.4 and the second Remark below Theorem 5.4.2, 
the quantities on the left sides of (6.8.10)-(6.8.13) can be bounded in terms 
of various norms involving 

r 

Hz(O, x; r) = l: Cn,r(O, X )z". (6.8.14) 
n=l 

Here we have used the fact that for finite memory, all diagram subwalks 
have length at most r, and hence the sum in the above equation can be 
truncated at n = r. 
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For example, the left side of the second inequality can be bounded in 
terms of the norms 

Each of these norms can be bounded using Theorem 6.8.1. To see this, we 
note that for z E D,.(e) and v E {0, 1}, 

7' 

a~ Hlzl(O, x; r) ~ E n11 Cn,,.(O, :r:)z~-fl{l + £r- 1 log r)"- 11 • (6.8.15) 
n=l 

For 1 ~ n ~ r, 

(6.8.16) 

Taking v = 0, using (6.8.16) in (6.8.15), and extending the summation to 
all n;?: 1 gives 

IIHI.ri(O, ·; r)lloo ~ (1 + fr- 1 logr)II6!G.r,(O, z; r)lloo· (6.8.17) 

Similarly, 

(6.8.18) 

The case of v = 1 is slightly more involved: 

7' 

8:Hlzl(O, x; r) ~ (1 + £r-1 log r) L nt+tcn,,.(O, :r:)z~- 1 • (6.8.19) 
n=l 

Since 
00 

6!8:G.r(O,z;r) = L(n -1Yncn,.(O,z)z"- 1, (6.8.20) 
n=2 

it follows from (6.8.19) that 

ll8aHI.ri(O, ·; r)lloo ~ (1+£r- 1 log r) (2tll6!8,G:,(O, ·; r)lloo + 1). (6.8.21) 

The second bound of the corollary then follows just as in Section 6.2, using 
Theorem 6.8.1. 

The other bounds are similar, apart from the last one, which follows by 
integration of the third bound. 0 

By (5.2.18), 
F.r(k; r) = 1- zOD(k)- flz(k; r). 

Also, by Corollary 6.2.7, F.r,(O; r) = 0. The next lemma provides an ex­
tension of Theorem 6.2.10 for finite memory. 
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Lemma 6.8.3 Let 0 be sufficiently large (with d > 4 for the spread-out 
model). Then 

(6.8.22) 

for all r, and for all z E D.,.(t:o). In particular, z.,. is the unique zero of 
Fz(O; r) in D.,.(t:o). 

Proof. The proof is identical to that of Theorem 6.2.10, using Corol­
lary 6.8.2. o 

The next lemma gives bounds which allow for the estimation of cn,.,.(k) 
by contour integration. There are separate estimates for two distinct sets 
of k values. 

Lemma 6.8.4 Let 0 be sufficiently large (with d > 4 for the spread-out 
model). There is a positive constant c1 (depending on d, n but not on r) 
such that the following hold. 
(a) Fork E [-?r/2, ?r/2) x [-11", 1r]d-l with P $ Ctr- 1 \ogr, Fz(k; r) has 
a unique zero z.,.(k) in D.,.(t:0 ), which is in fact located inside D.,.(t:o/2). 
Moreover, z.,.(k) is a simple zero and 

(6.8.23) 

for all r and all z E D.,.(t:o). 
(b) There is a positive (t < £o (depending on d, 0 but not on r) such that 
fork E [-11"/2,11"/2] x[-11",11']d-l with k2 ;:::: Ctr-1logr, Fz(k;r) has no zero 
in D.,. ( £1 ). Moreover there is a constant c2 (depending on d, n but not on 
r) such that for these values of k 

lFz(k; r)l ;::: c2[r-1 log r + lzarg zl] (6.8.24) 

for all r and all z E D.,.((t)· (Here arg z E [-11', 1r].) 

Proof. (a) Consider k near the origin. By Lemma 6.8.3 and Rouche's 
Theorem, to see that there is a unique zero in D.,.((o) it suffices to show 
that lFz(k; r)- Fz(O; r)l < lFz(O; r)l on the boundary of D.,.(t:o). But the 
left side is equal to 

{6.8.25) 

by (6.8.13) and the fact that 1 - D(k) is order k2, where c' is independent 
of r. By Lemma 6.8.3, on the boundary of D.,.((o) 

I A ( ) I z.,. n(o -1 Fz 0; T ;::: - 2-r logr. (6.8.26) 



222 CHAPTER 6. ABOVE FOUR DIMENSIONS 

Since zT ~ zo = 1/0., uniqueness of the zero follows if 

k2 < ;~ r- 1 log r. 

Thus we take Ct < £o/(2c'). 

(6.8.27) 

To see that the zero is located in DT(£o/2), we proceed as follows. Dif­
ferentiation of the equation Fz,(k)(k; r) = 0 with respect to kJJ, together 
with Corollary 6.8.2, gives 

18JJzT(k)l =I~: I $ const.lkJJI (6.8.28) 

for small k. Therefore 

11 d 
zT(k) = zT(O) + 

0 
dtzT(tk)dt $ zT(O) + const.k2 , (6.8.29) 

with the constant independent of r. This gives the desired result, if we take 
c1 sufficiently small. 

For the lower bound on F, we have 

!Fz(k; r)l = !Fz(k; r)- Fz,(k)(k; r)l 

= jzT(k)- zjjO.D(k) + ll 8zflz,+t(zr(k)-z)(k; r)dtj 

n > 21z- zT(k)l, (6.8.30) 

for k near zero and n sufficiently large, by Corollary 6.8.2. 

(b) It suf!ices to proye the lower bound (6.8.24). For this we add and 
subtract Ilz(O; r) to Fz(k; r), and then subtract Fz,(O; r) = 0, obtaining 

Fz(k; r) = O.(zT- zb(k)) + fiz,(O; r)- fiz(O; r) + fiz(O; r)- fiz(k; r). 
(6.8.31) 

Using Corollary 6.8.2 then gives 

IF.,(k; r)l ~ O.lzT- zb(k)l- Ktf2'+2/dlzT- zl- Ktk20-2+2'+2/d. (6.8.32) 

For the middle term on the right side, we use 

lzT- zl $ lzT- zD(k)l + lzll1- D(k)l. (6.8.33) 

It follows from the fact that 11- cost! $ t 2 /2 for all t E R that 11-
D( k) I is bounded above by k2 / (2d) for the nearest-neighbour model and 
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by (k20 2/d)/2 for the spread-out model. We write this upper bound as 
a(O)P. Then using lzl $ 2z,. we have 

IFz(k; r)l ~ (0- Ktn•+2/d)lz,.- zD(k)l 
- [2z,.a(O)K1n•+2/d + K1n-2+2•+2/d]k2. 

Next we write z = lzlei 11 , and use the inequality Ia I+ lbl $ v'21a + ibl to 
obtain 

lz,.- zD(k)l ~ ~ [lz,. -lziD(k)cosOI + lzD(k)sinOI]. (6.8.34) 

Now for z E D,.(lt), and for k2 large as stated in the lemma but within a 
small sphere of radius 0(1) centred at the origin [so that D(k) is bounded 
away from zero], it follows from (6.2.5) that 

lzD(k)cosOI < z,.(I +ltr- 1 logr) (1- 2!:d) 
$ z,. ( 1- 4~:d) ' 

if we choose lt sufficiently small (independent of r). For this range of k 
and for n sufficiently large we then have 

(6.8.35) 

for some constant c2 depending on d, n, but not on r. 
For k2 at least 0(1) from the origin, D(k) is bounded away from 1. 

Hence by (6.8.9) and the fact that z,.O = 1 - flz. (0; r), for 0 sufficiently 
large there are (J, (J' E (0, 1) such that 

IFz(k; r)l ~ 1 -lzOD(k)l-lfiz(k; r)l 
~ 1- (J(l + o(1))(1 + ltr- 1 logr)- o(l) 

> (J'. 

[Here o(l) denotes a quantity which goes to zero as 0 increases, uniformly 
in r.] 

This completes the proof. 0 

We are now in a position to estimate Cn,,.(k). 

Lemma 6.8.5 Let 0 be sufficiently large (with .d > 4 for the spread-out 
model). 
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(a) Fork E [-11'/2,11',2] x [-11',11']d-l with k 2 :$ c1r-1Jogr, 

Cn,r(k) = Zr(k)-(n+l) [-ozFz,(k)(k; r)- 1 

+ 0[(1 + {(o/3)r- 1 logr)-(n+l)JogrJ]. (6.8.36) 

(b) Fork E [-11'/2,11',2] x [-11',11']d-l with k2 ~ c1r-1Jogr, 

(6.8.37) 

Here O[f(n, r)] denotes a quantity wh.ich is bounded in absolute value by 
const.lf(n, r)l, with the constant independent of n, r. 

Proof. (a) Let C be the circle of radius Zr /2 centred at the origin, oriented 
clockwise. Then 

1 i . dz Cn r(k) = -2 . Gz(k; r)-+1 . , 11'z c zn {6.8.38) 

Since lzr{k)l ~ Zr, Zr(k) is not inside C. By Lemma6.8.4 and the Residue 
Theorem, deforming the contour from C to the boundary 8Dr ( (o) of Dr ( (o) 
gives 

Cn,r(k) = Zr(k)-(n+t)[-ozFz,(k)(k; r)- 1 

+ _21. 1 Gz(k; r) (Zr(k))n+l dz]. 
11't Jav,(eo) z 

To bound the integral on the right side we first note that since Zr(k) E 
Dr((o/2), for z E 8Dr((o) we have 

I Zr;k) r+l :$ 0[(1 + ((o/3)r- 1 logr)-(n+l)]. (6.8.39) 

Also, by {6.8.23) 

1 IGz(k;r)l!dzl < O[lloglzr(l+(or- 1 logr)-zr(k)I,IJ 
JeD,( eo) 

< O[logr). (6.8.40) 

This proves {6.8.36). 

(b) We perform contour integration as in part (a), deforming the contour 
to 8Dr((t). Here there is no singularity inside 8Dr((!), and only the error 
term contributes. Explicitly, 

• . 1 t 1 
Cn r(k) = -. . dz. 

' 211'z 8D,(e 1 ) Fz(k; r)zn+l 
{6.8.41) 
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The factor z-(n+I) in the integrand is responsible for everything in the 
upper bound stated in the lemma except for the log T, which comes from 
integrating 1/ P using the lower bound of Lemina 6.8.4(b ). D 

We need one more lemma before proving Theorem 6.1.3. Recall from 
Lemma 1.2.3 that as the memory T goes to infinity, zT converges to Ze. The 
next lemma gives a bound on the rate of this convergence. 

Lemma 6.8.6 Let n be sufficiently large (with d > 4 for the spread-out 
model) and£ < min{(d- 4)/2, 1}. There is a Kt (possibly depending on 
d, £ 1 {l but not on T) such that for al/ T, 

. (6.8.42) 

Proof. Consider two memories u < T. Then Za 5 zT. Since P.r(O; T) = 
F:.,(O; u) = 0, 

(zT - Za )0 = (fiz., (0; u) - fiz., (0; T)) + (fi,,(O; T) - fi,r(O; T)). (6.8.43) 

Using (6.8.10) to estimate the second term on the right side, for some 
constant C we have 

(6.8.44) 

By Lemma 5.4.5 and Corollary 6.2.6, the right side is bounded by a multiple 
of 

00 

II L Cn,a(O, ·)z~lloo, (6.8.45) 
n:a/6 

Inserting 1 5 (6n/u]l+f into the summation, the above norm is bounded 
above by a multiple of 

-(l+f) ua G (0 · )I (T 11z !I z I :Z: I (T z:z, • (6.8.46) 

The bound on the fractional derivative of (6.8.46) given in Theorem 6.4.2, 
together with (6.8.44), then gives 

(6.8.47) 

for some constant K1• Letting T-+ oo, we obtain (6.8.42). D 

Proof of Theorem 6.1.3. We now take T = n1/b with bE (1, 1 + £), and 
use (6.8.4). As a first observation, by Lemma 6.8.6 we have 

lim (Znl/b)n = lim [1- O(n-(l+f)/b)]n = 1. 
n-oo Ze n-oo 

(6.8.48) 
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To estimate the integral of len nl/b(k)l, we divide the integral over k into 
two parts as in Lemma 6.8.5. F~r k as in part (b) of the lemma, we have 
from (6.8.48) and the lemma that 

(6.8.49) 

Integrating this over k as in part (b) of the lemma gives a bound of the 
desired form (in fact the decay is much better than required). 

We now bound en nl/b fork as in part (a) of the lemma. The quantity in 
square brackets on the right side of (6.8.36) is bounded above uniformly in 
k and T = n1fb, so we just concentrate on the factor zT(k)-n. By (6.8.48), 
for T = n1fb we have 

(6.8.50) 

By (6.8.29), 

ZT(k) = ZT [~ + z;- 1 t 11 
8/1zT(tk)kJJdt]. 

!1=1 0 

(6.8.51) 

Jt SUfficeS to ShOW that the right side is bounded below by ZT [1 + C1 k2], for 
some constant C1 > 0 which is independent of both T and small k. In fact, 
given such a bound we would have 

lcn,n'/b(k)l ~ CJ.ln[1- C2k2]n ~ Cttne-nC2k2
, (6.8.52) 

and extending the integration domain to Rd then gives an upper bound of 
the required form ttnn-d/2, 

We now complete the proof by obtaining such a lower bound on the 
right side of (6.8.51). As in (6.8.28), we have 

aj1zT(/) = a/1fr~r(l)(/; T) , (6.8.53) 
-8zFz,(l)(l; r) 

The denominator on the right side is positive and bounded above uniformly 
in T and small/, by Corollary 6.8.2. For the numerator, we use zT(l) ~ n-1 

and Corollary 6.8.2 to obtain 

aj1frz,(l)(/; r) ~ n-1 L x/1 sin/. X- I<1n-2+2•+2/dllj11· (6.8.54) 
rEO 

Expanding sin I · x and using symmetry, the first term on the right side is 
given by n-1 Lren x~/11 plus a term of order /3 which is negligible for I 
going to zero depending on n. Thus the first term dominates the second, 
and we have the desired lower bound. This completes the proof. D 
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6.9 Notes 

Section 6.1. The results stated in Section 6.1-for sufficiently large n have 
all been proven in Hara and Slade (1992a,1992b) for the nearest-neighbour 
model with d ~ 5, except for Theorem 6.1.4. Their proof relies on the 
fortuitous fact that the critical bubble diagram is not too large in five 
dimensions. Since the critical bubble diagram can be expected to diverge 
as d- 4+ (with any reasonable definition for noninteger dimensions), the 
proof is not entirely natural. A more natural proof (which we hope will one 
day be forthcoming) would rely on the fact that the bubble is finite rather 
than small. The methods used for the nearest-neighbour model with d ~ 5 
are quite similar to those of Chapter 6, except for the proof of convergence 
of the lace expansion. The latter, while similar in spirit to the proof given in 
Section 6.2, is enormously more complex (and in fact is computer assisted) 
due to the fact that the small parameter cannot be taken to be arbitrarily 
small. 

For the nearest-neighbour model with d ~ 5, Corollary 6.1.4 cannot be 
deduced from Theorem 6.1.3 since the latter has not yet been proven in this 
context. Instead, in Hara and Slade (1992a) (6.4.8) is extended to show that 
the supremum norm of the a-th derivative of the critical two-point function 
is finite [rather than just the (1 + £)-th derivative]. 

Section 6.2. The first proof of convergence of the lace expansion was 
for weakly self-avoiding walk with d > 4, in Brydges and Spencer (1985). 
The proof began by considering walks which are self-avoiding with finite 
memory r, and then used an intricate induction on the memory. Later, in 
Yang and Klein (1988), the same methods were applied to a weakly self­
avoiding walk taking steps of arbitrary length m parallel to the coordinate 
aXeS in zd With probability prOpOrtional tO m-2 I and it Was ShOWn that if 
the self-avoidance is sufficiently weak then the scaling limit of the endpoint 
has a Cauchy distribution if d > 2 (which is the distribution of the scaling 
limit in any dimension for the corresponding random walk without the self­
avoidance constraint). An alternate proof of Brydges and Spencer's results, 
which uses the lace expansion and an induction on finite memory but avoids 
the use of generating functions, is given in Golowich and Imbrie (1992). 

In Slade (1987) and Slade (1989) it was proven that v = 1/2 and r = 1 
for the strictly self-avoiding walk in sufficiently high dimensions. Conver­
gence of the expansion was proven using Lemma 6.2.1. No estimate was 
given of how high the dimension had to be. 

The convergence proof used in Section 6.2 is the prototype for the proofs 
of convergence of the lace expansions for lattice trees and animals and for 
percolation, used to prove Theorems 5.5.1 and 5.5.2. 



228 CHAPTER 6. ABOVE FOUR DIMENSIONS 

Section 6.3. The fractional derivative analysis is taken from Hara and 
Slade (1992a). 

Section 6.4. This section follows the methods of Hara and Slade (1992a). 

Section 6.5. The proof of mean-field behaviour for the correlation length 
in Theorem 6.1.5 is modelled on the proof of the analogous result for per­
colation in Jlara (1990), and follows Jlara and Slade (1992a). 

Section 6.6. It was proven in Slade (1988, 1989) that the scaling limit of 
the self-avoiding walk is Gaussian in sufficiently high dimensions, using a 
finite-memory cut-off. Hara and Slade (1992a) used the fractional derivative 
argument presented here. 

Section 6. 7. The definition used here for the infinite self-avoiding walk 
was introduced in Lawler (1980). Lawler (1989) constructed the infinite 
self-avoiding walk in sufficiently high dimensions. 

Section 6.8. The bound on cn(O, x) obtained in Section 6.8 is new. The 
method of proof takes its inspiration from Brydges and Spencer (1985). 
The proof is unsatisfactory in its use of finite memory; it should be possible 
to improve Theorem 6.1.4 to prove that cn(O, x) is asymptotic to a multiple 
of n-d/2 (for fixed x, as n - oo), without making use of finite memory. 
To do so remains an open problem. No estimate has been made of how 
high the dimension need be for the proof to work for the nearest-neighbour 
model, but we would guess something on the order of d ~ 10. 
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Chapter 7 

Pattern theorems 

7.1 Patterns 

In this chapter we shall prove a useful theorem due to Kesten (1963) about 
the occurrence of patterns on self-avoiding walks, and investigate a number 
of its applications. Briefly, a pattern is a (short) self-avoiding walk that 
occurs as part of a longer self-avoiding walk. Kesten's Pattern Theorem 
says that if a given pattern can possibly occur several times on a self­
avoiding walk, then it must occur at least aN times on almost all N-step 
self-avoiding walks, for some a > 0 (in this context, "almost all" means 
"except for an exponentially small fraction"). This can be viewed as a 
weak analogue of classical "large deviations" estimates for the strong law 
of large numbers, which say that certain events have exponentially small 
probabilities [see for example Chapter 1 of Ellis (1985)]. 

Another statistic of interest regarding patterns is the frequency of oc­
currence of a particular pattern at the beginning of self-avoiding walks. In 
general dimension d, it is an open problem to prove that the fraction of 
N-step self-avoiding walks that begin with a given pattern converges as N 
tends to infinity. This has been done in certain special cases: for d ;::: 5 
(see Section 6.7), and for bridges in every dimension (see Section 8.3). The 
existence of such a limit would provide a natural definition of a probability 
measure for infinite self-avoiding walks. We can only prove the following 
weaker results in the general case: if P is a pattern that can occur at the 
beginning of an arbitrarily long self-avoiding walk, then the fraction of N­
step self-avoiding walks beginning with this pattern is bounded away from 
zero as N tends to infinity; also, the ratio of these fractions for N and N + 2 
converges to one. These results and some extensions will be discussed in 

229 
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Section 7.4. The proofs of these results rely heavily upon Kesten's original 
pattern theorem. 

Kesten originally applied his pattern theorem to prove the following 
ratio limit theorems: 

lim CN+2 
Jl2, (7.1.1) = N-oo CN 

r q2N+2 Jl2, (7.1.2) tm -- = N-oo q2N 

lim bN+t = Jl· (7.1.3) 
N-oo --;;;:;-

We shall prove these results in Section 7.3. Unfortunately, the same meth­
ods do not allow us to prove 

I. CN+t 
tm -- =Jt. 

N-oo CN 
(7.1.4) 

Equation (7.1.4) in zd has only been proven ford~ 5 (see Theorem 6.1.1); 
finding a proof for d = 2, 3, 4 remains an open problem. To get a feeling 
for why (7.1.1) is easier to prove than (7.1.4), consider the following easy 
exercise: prove that 

for every N. (7.1.5) 

The idea of the proof is given in Figure 7.1. (In detail: Given an N-step 

Zt =M 

--

Figure 7.1: The idea behind the proof that CN+2 ~ eN: increasing the 
length of a self-avoiding walk by 2. 

self-avoiding walk w, let M = max{wt(i): 0 =:; i :5 N}. On the one hand, if 
a step of w joins two points u and v in the hyperplane z1 = M, then replace 
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that step by three steps: u to u + (1, 0, ... , 0) to v + {1, 0, ... , 0) to v. On 
the other hand, if this hyperplane does not contain a step of w, then it 
must contain an endpoint [w(O) or w(N)); in this case, add two steps to the 
end of the walk in the +%1 direction. In either case we get an (N + 2)-step 
self-avoiding walk, from which w can be determined unambiguously.) Now 
try the following exercise: prove that 

for every N. (7.1.6) 

It is much harder to construct a one-to-one mapping from the set of N-step 
walks to the set of (N + 1)-step walks, but it can in fact be done; for the 
lengthy details, see O'Brien (1990). Finally, we observe that (7.1.6) is easy 
to prove on the triangular lattice and other lattices which are not bipartite 
(i.e. that contain self-avoiding polygons with an odd number of steps). On 
such lattices, it turns out that (7 .1.4) can be proven by the methods of this 
chapter; see the Remark preceding Theorem 7.3.2. 

Pattern theorems have found several other applications, including: eval­
uating the ergodicity properties of certain Monte Carlo algorithms (see Sec­
tions 9.4.1 and 9.4.2), investigating self-avoiding walks restricted to subsets 
of zd (see Section 8.2), and establishing the frequency of knots in three­
dimensional self-avoiding polygons (see Section 8.4). 

It is now time to make precise definitions about patterns and their 
occurrence. To begin with, we can take the word "pattern" to be a synonym 
for "self-avoiding walk". 

Definition 7.1.1 A pattern P = (p(O), ... ,p(n)) is said to occur at the j-
th step of the self-avoiding walk w = (w(O), ... ,w(N)) if there exists a vector 
v in zd such that w(j + k) = p(k) + v for every k = 0, ... , n. (Evidently, v 
must be w(j)- p(O).J 

Definition 7 .1.2 Let SN denote the set of N -step self-avoiding walks w 
such that w(O) = 0. Fork ~ 0 and P a pattern, let cN(k, P] denote the 
number of walks in SN for which P occurs at no more thank different steps. 
Let :F N(P] denote the subset of walks in SN for which P occurs at the 0-th 
step. We say that P is a proper front pattern if :F N(P] is non-empty for all 
sufficiently large N. We say that P is a proper internal pattern if for every 
k there is a self-avoiding walk on which P occurs at k or more different 
steps. 

Kesten's Pattern Theorem tells us that if Pis a proper internal pattern, 
then there exists an a > 0 such that 

limsup(cN[aN,P])1/N < Jl.. (7 .1.7) 
N->oo 
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Figure 7.2: This pattern can occur twice on a self-avoiding walk in Z2 , but 
not three times. 

The theorem actually tells us a bit more; see Theorem 7.2.3. 
The basic results about "front patterns" say that if P is a proper front 

pattern, then 

I. . f IFN[P]I 0 
•mm > 
N-+oo CN 

(7.1.8) 

(where I ·I denotes cardinality) and 

I. IFN+2[P]I 2 
Im -J.l 

n-+oo IFN[P]I -
(7.1.9) 

Further results about front patterns appear in Section 7.4. 
We take this opportunity to note some equivalent characterizations of 

proper internal patterns. 

Proposition 7.1.3 Let P be a pattern. The following are equivalent: 
(a) P is a proper internal pattern; 
{b) There exists a cube Q = { x : 0 ;:; x; ;:; b} and a self-avoiding walk ¢ 
such that: P occurs at some step of¢, ¢ is contained in Q, and the two 
endpoints of¢ are corners of Q; 
(c) There exists a self-avoiding walk w such that P occurs at three or more 
steps of w. 

We remark that if (b) above holds for P, then it is always possible to take 

b = 2 + max{llu- vlloo : u and v are sites of P}. 

The proof of this proposition is straightforward, except for showing that (c) 
implies the other assertions. This implication is proven in Hammersley and 
Whittington (1985). Although we shall not require part (c) in this book, it 
is worth noting that the proposition is false if we change "three" to "two" 
in part (c), since there exist patterns which can occur at the beginning and 
end of a self-avoiding walk but never in the middle; an example in Z2 is the 
pattern NWS2E4 N2WS shown in Figure 7.2. (In this notation, N denotes 
a step in the direction (0, 1) ["North"], etc.) 
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7.2 Kesten's Pattern Theorem 

In this section, we shall formulate and prove Kesten's Pattern Theorem in 
its full generality, following the structure of Kesten's original proof. The 
general version of the theorem is a bit stronger than (7.1.7): in addition to 
specifying a pattern, one may also require that a certain amount of space 
around the pattern be unoccupied. The precise generalization is as follows. 

Definition 7.2.1 A cube is any set of the form 

Q = {X E zd : a; ~ Xi ~ a; + b for a/1 i = 1, ... , d}, 

where a1 , ... , aa, and b are integers, and b > 0. Each cube has 2d corners 
(extreme points of the convex hull). If Q is a cube as above, then let Q 
denote the cube which is two units larger in all directions: 

Q = {x E zd :a;- 2 ~ x; ~a;+ b + 2 for all i = 1, ... , d}; 

and let aQ denote the set of points in Q but not in Q (a kind of "external 
boundary" of Q), 

aQ = Q \ Q. 

An outer point of aQ is a point of aQ which has at least one nearest 
neighbour that is not in Q. 

Definition 7.2.2 Suppose that Q is a cube and P is ann-step pattern such 
that p(O) and p( n) are corners of Q, and p( i) E Q for every i = 0, ... , n 
(in particular, P is a proper internal pattern; see Proposition 7.1.3). We 
say that (P, Q) occurs at the j-th step of the self-avoiding walk w if there 
exists a v in za such that w(j + k) = p(k) + v for every k = 0, ... , n, and 
w(i) is not in Q + v for every i < j and every i > j + n. For every k ~ 0, 
let cN[k, (P, Q)] denote the number of self-avoiding walks in SN for which 
(P, Q) occurs at no more than k different steps. 

Theorem 7.2.3 (a) Let Q be a cube and P be a pattern as in Definition 
7.2.2. Then there exists an a > 0 such that 

limsup(cN[aN,(P,Q)])1/N < J.l. (7.2.1) 
N-oo 

(b) For any proper internal pattern P, there exists an a > 0 such that 

limsup(cN[aN, P])1/N < p,. 
N-oo 

(7.2.2) 
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Before proceeding, we shall show that part (b) of the theorem [which is 
(7.1.7)] follows from part (a). Let P be a proper internal pattern, and 
choose </J and Q as in Proposition 7.1.3(b). Since P occurs on¢, any walk 
on which ( ¢, Q) occurs at m different steps must have P occurring at m or 
more different steps. Therefore 

cN[k, P] :$ cN[k, (¢, Q)] for every k ~ 0, 

from which we see that part (a) of Theorem 7.2.3 is indeed stronger than 
part (a). Thus it suffices to prove part (a). 

The first ingredient in the proof of Theorem 7.2.3(a) is the following 
basic geometrical lemma. Part (a) of the lemma will construct a pattern 
that exactly fills a cube. Part (b) will show that we can splice a proper 
internal pattern onto a self-avoiding walk if we erase the part of the walk 
that occupies the corresponding enlarged cube Q. 

Lemma 7.2.4 (a) Let Q be a cube in zd. Then there exists a self-avoiding 
walk w, whose endpoints are corners of Q, which is entirely contained in Q 
and visits every point of Q. {In particular, the number of steps in w is one 
less than the number of points in Q.) 
{b) Let P = (p(O), ... ,p(k)) be a pattern contained in the cube Q, whose 
endpoints are corners of Q. Let x and y be two distinct outer points of oQ. 
Then there exists a self-avoiding walk w' with the following properties: its 
initial point is x and its last point is y; it is entirely contained in Q; there 
exists a j such that w' (j + i) = p( i) for every i = 0, ... , k; and w' ( i) E aQ 
whenever i < j or i > j + k. In particular, (P, Q) occurs at the j-th step of 
w'. 

Proof. (a) This is proven by induction on the dimension. It is obvious in 
one dimension. Assume that it has been proven for dimension d- 1. For 
simplicity, assume 

Q = {X E zd : 0 :$ Xi ~ b, i = 1, ... , d}. 

The intersection of Q with each of the hyperplanes Xd = I (I = 0, ... , b) is 
a (d- 1)-dimensional cube embedded in zd; call it Q1. By the inductive 
hypothesis, there is a self-avoiding walk that starts at the origin and fills 
up Q0 while staying inside Q0 , and whose last point is a corner of Q0 • 

Since every corner of Q1 is a nearest neighbour of a corner of Q1+1 , it is 
clear that we can find the desired walk for Q by filling up each of the 
( d- 1 )-dimensional cubes Q0, ... , Qd in turn. 

(b) First choose a self-avoiding walk w[t) from x to p(O) which does not 
touch y and contains only outer points of oQ (except necessarily for the 
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last two points of the walk). Then one can find a self-avoiding walk wl21 
from p(k) toy which stays in 8Q and never touches wl11 (to do this, simply 
avoid outer points until the very end). Then the desired walk w' is the 
concatenation of wl11, P, and wl21. 0 

Now we must add to our stockpile of notation. We fix a positive integer 
r which will be the "radius" of the cube Q of interest that occurs in the 
statement of the Pattern Theorem. For a given N-step self-avoiding walk 
w, we extend Definition 7.2.1 by specifying cubes centred at points of w: 
for j = 0, ... , N, let 

Q(j) = {x E za: lx;- w;(j)l $ r for every i = 1, ... , d}, 

Q(j) = {x E za: lx; -w;(j)l $ r+2 for every i = 1, ... ,d}, 

8Q(j) = Q(j) \ Q(j). 

We say that E• occurs at the j-th step of w if Q(j) is completely covered 
by w [i.e. for every v in Q(j) there exists an i such that v = w(i)]. See 
Figure 7.3. For every k ~ 1, we say that E~c occurs at the j-th step ofw if 
at least k points of Q(j) are covered by w; and we say that E1c occurs at 
the j-th step of w if E• or E1c (or both) occur there. 

0 0 0 0 0 0 

0 0 

r-- ---, 
0 

w(j) 
0 0 

w(O) 

0 0 0 

0 0 

Figure 7.3: An example in Z2 with r = 1: The nine sites inside the dashed 
box comprise Q(j). The sites ofQ(j) are marked with o. Both E• and E29 

occur at the j-th step of this walk. 

In the following, we will use E to denote any of E•, E~c, or E~c. If m 
is a positive integer, we say that E(m) occurs at the j-th step of w if E 
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occurs at the m-th step of the 2m-step walk (w(j- m), ... ,w(j + m)). [If 
j - m < 0 or j + m > N, then an obvious modification must be made in 
this definition: for j - m < 0, it means that E occurs at the j-th step of 
(w(O), ... ,w(j + m); for j + m > N, it means that E occurs at the m-th 
step of (w(j- m), ... ,w(N)).] In particular, if E(m) occurs at the j-th 
step of w, then E occurs at the j-th step of w; this would not necessarily be 
true if we replaced E by (P,Q). For every k 2:0, let cN[k,E] (respectively, 
CN[k, E(m)]) denote the number of self-avoiding walks in SN for which E 
(respectively, E(m)) occurs at no more thank different steps. Observe that 
CN[k, E(m)] is non-increasing in m for fixed Nand k because occurrences 
of E(m) are more frequent as m increases. 

The next lemma says that if E occurs on almost all walks, then (for 
some m) E(m) must occur on almost all walks (in fact, it must occur often 
on almost all walks). Thus, if a self-avoiding walk is likely to fill a cube, 
then it is also likely to fill a cube within some bounded number of steps. 

Lemma 7.2.5 If 
liminf(cN(O,E])1fN < p., 
N-oo 

(7.2.3) 

then there exists an a1 > 0 and an integer m such that 

limsup(cN[a1N, E(m)]) 11N < IJ. (7.2.4) 
N-oo 

Proof. Since cN[O, E] = cN[O, E(N)], it follows that there exist € > 0 and 
an integer m such that 

Cm[O, E(m)] < (tt(I- €))m 

and 
Cm < (tt(l + €))m · 

Consider anN-step self-avoiding walk w, and let M = lN/mJ. If E(m) 
occurs at most k times in w, then E(m) occurs in at most k of the. M 
m-step subwalks 

(w((i- l)m),w((i- l)m + 1), ... ,w(im)) (i = 1, ... ,M). 

Counting the number of ways in which k or fewer of these subwalks can 
contain an occurrence of E(m) (and remembering to count the last N -Mm 
steps of w), we are led to the bound 

CN[k, E(m)] S t ( Jl.! ) (cm)i(cm[O, E(m)])M-icN-Mm (7.2.5) 
i=O J 

S p.mMCN-Mm t ( ~ ) (1 + €)im(l- €)Mm-im. 
j:O J 
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It suffices to show that there is a p > 0 and at < 1 such that 

CN(pM, E(m)JliM < lJl.m 

237 

(7.2.6) 

for all sufficiently large M, since this gives (7.2.4) whenever 0 < a1 < pfm. 
But if p is a small positive number, then 

(7.2.7) 

(For readability, we often write pM instead of lPM J.) As M -+ oo, the 
M-th root of the right-hand side of (7.2.7) converges to 

1 l+f 1-fm ( )
pm 

pP(l- p)l-P 1- ( ( ) I 

which is less than 1 whenever 0 < p < Po, for some sufficiently small Po· 
Combining this with (7.2.5), we see that (7.2.6) holds if 0 < p <Po and M 
is sufficiently large. D 

Remark. Although we will not need this fact, it is worth pointing out 
that the lim infin (7.2.3) is in fact a limit. This follows from CN+M[O, E]::; 
cN[O, E]cM[O, E] and Lemma 1.2.2. 

The next lemma is the heart of the proof of the Pattern Theorem. It 
says that almost all walks fill some cube (of the fixed radius r). The starting 
point of the proof is the observation that all walks cover at least r+3 points 
of the cube of radius r + 2 centred at the origin; so if the lemma were false, 
then there would exist a J( such that almost all walks cover J( points of 
some cube (and in fact many cubes), but almost never cover J( + 1 points 
of any cube. This is used to obtain a contradiction. 

Lemma 7.2.6 lim infN ..... oo CN[O, E•]1/N < Jl.· 

Proof. Assume that the lemma is false, i.e. assume that 

lim cN[O, E*]ifN = Jl.. 
N-+oo 

(7.2.8) 

We make three observations: First, cN[O, Ek] is a nondecreasing function 
of k. Secondly, if E" does not occur on a given walk then E(2r+S)d cannot 
occur; therefore 

(7.2.9) 
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and hence (7 .2.8) implies that 

lim CN[O, E(2r+5)dj1/N =I'· 
N-oo 

(7.2.10) 

Thirdly, CN [0, Er+a] = 0 for all N ;::: r + 2 [since the first r + 3 points of any 
walk w must be in Q(O)]. We conclude from these observations that there 
exists a ]( [with r + 3 ~ K < (2r + 5)d] such that 

(7.2.11) 

and 
(7.2.12) 

By (7.2.11) and Lemma 7.2.5, there exist an a1 > 0 and an integer m such 
that 

limsupcN[a1N, EK(m)PIN <I'· (7.2.13) 
N-oo 

Define the set of self-avoiding walks 

TN= {wE SN : EK+l never occurs; EK(m) occurs at least a1N times}. 
(7.2.14) 

Observe that replacing EK(m) by EK(m) in (7.2.14) does not change any­
thing, since the condition that EK+l never occurs ensures that E*(m) never 
occurs. The cardinality of TN satisfies 

ITNI;::: CN[O, EK+d- cN[atN, EK{m)], 

and therefore, by (7.2.12) and (7.2.13), 

lim ITNil/N =I'· 
N-oo 

(7.2.15) 

(7.2.16) 

Thus, there is a number I< such that it is not unusual to find lots of 
cubes with exactly [( points occupied and no cubes with more than K 
points occupied. The rest of the proof is simply a matter of counting. 
The main idea is the following. Given such a walk w E TN, consider the 
collection of all cubes that have exactly K points covered. Remove the 
pieces of w that cover a particular (small) sub collection of these cubes, and 
consider all possible ways of replacing them with pieces that entirely fill 
the same cubes. This is not a one-to-one transformation, and the length of 
the resulting walk is a bit different, but we can still arrange it so that the 
number of resulting walks is larger than ITNI by an exponential factor, and 
this will contradict (7.2.16). 
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Suppose that w is an N-step self-avoiding walk such that EK+l never 
occurs on wand EK{m) occurs at the it-th, h-th, ... ,j,-th steps of w (and 
perhaps at other steps as well). Suppose in addition that 

0 <it- m,j, + m < N, and i1 + m < i1+1- m for all I= 1, ... , 8- 1 
(7.2.17) 

and 
Q(j1 ), ... , Q(j,) are pairwise disjoint. (7.2.18) 

For I= 1, ... , 8, let 

0'1 = min{ i : w( i) E Q(j,)} and 1} = max{ i : w( i) E Q(j,)}. 

Since EK(m) occurs at the j1-th step and EK+l does not occur at the j,-th 
step, there must be exactly I< points of Q(j1) that are occupied by points of 
w, and those points must lie between w(j1- m) and w(j1 + m) on the walk. 
Therefore i1- m ~ 0'1 < i1 < TJ ~ j, + m for every I. Consider all possible 
ways of replacing each subwalk (w( 0'1 ), ••• , w( TJ)) by a sub walk that stays 
inside Q(j1) and completely covers Q(j1) [such subwalks exist by Lemma 
7.2.4; we can do this operation simultaneously for all subwalks because we 
have ensured that there is no overlap amongst the subwalks nor amongst 
the cubes Q(j,)]. The result is always a self-avoiding walk 1/J on which E* 
occurs at least 8 times, and whose length N' satisfies 

N' < N + 8(2r + 5)d. (7.2.19) 

Now consider all triples (w, 1/J, J) where: w is a self-avoiding walk in TN; 
J = {it, ... ,j,} is a subset of {1, ... ,N} such that (7.2.17) and (7.2.18) 
hold, EK(m) occurs at each i1 in J, and 8 = l6NJ (here 6 is a small 
positive number that will be specified at the end of the proof); and 1/J is 
a self-avoiding walk that can be obtained from w and J by the procedure 
of the preceding paragraph. We shall estimate the number of such triples 
both from above and below to obtain a contradiction. For both estimates, 
we shall use the observation that each cube Q(j) intersects exactly V = 
( 4r + 9)d cubes of "radius" r + 2 [this is because Q(j) intersects the cube 
of radius r + 2 centred at x if and only if llw(j) - x lloo ::; 2( r + 2)]. 

First, the number of such triples is at least the cardinality of TN times 
the minimum number of possible choices of J for walks w in TN. Each 
w in TN contains at least a1N occurrences of EK(m), and so we can find 
ht < ... < hu, where u = latN/((2m + 2)V)J- 2, such that {i) EK(m) 
occurs at the h1-th step of w for every I = 1, ... , u, (ia) 0 < h1 - m, 
hu + m < N, and h1 +m < h1+1- m for every I= 1, ... ,u-1, and (iii) 
the cubes Q(ht), ... ,Q(hu) are pairwise disjoint. Clearly, any subset of 
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{ht, ... , hu} that has cardinality l8NJ is a possible choice for J. So if we 
set p = at/((2m + 2)V), then (dropping l·J from the notation) 

number of triples~ ITNI ( p~; 2 ) . (7.2.20) 

For an upper bound, consider a triple (w, 1/J, J). Observe that E• occurs 
at least IJI = l6NJ times on 1/J; it may occur more than IJI times because 
making a change in a cube Q(jr) can produce occurrences of E• in some of 
the cubes ofradius r+2 that intersect Q(jr ). However, since E• never occurs 
on w, we infer that E• occurs no more than VIII times on w. Therefore, 
given t/J, there are at most (f~N) possibilities for the locations of the cubes 
Q(j,), l = 1, ... , 111. Given t/J and the locations of these Ill cubes, each 
cube Q(jr) determines a subwalk of t/J that replaced some subwalk of w. 
Since each of the replaced subwalks of w had length 2m or less, there are 
at most o:::;::o Cj ) 6N possibilities for W if we know both 1/J and the locations 
of the IJI cubes. Finally, if we know w and the locations of the cubes, 

then J is uniquely determined. So if we define Z = 2:;:0 Ci, then using 
(f~N)::; 2vm and (7.2.19) we see that 

N +(2r+5)d 6N 

number of triples :S 2V6N z6N L: Cj. 

i:O 

(7.2.21) 

We now combine (7.2.20) and (7.2.21), take N-th roots, and let N--+ oo; 
by (7.2.16), we obtain 

Jl pP < 2v6Jl1+(2r+5)d6z6 
§6(p _ §)p-6 - ' 

Setting Y = 2v Jl( 2r+5)d Z and t = 6/ p gives 

1 :S (tl(l- t)l-tyty. 

To obtain a contradiction, then, it suffices to show that the function f(t) = 
t1(1- t) 1- 1Y1 is less than 1 for sufficiently small t > 0; this is true because 
limt''\.0 f(t) = 1 and lim1'\,o f'(t) = -oo. This contradiction proves the 
lemma. 0 

We are now ready to prove Kesten's Pattern Theorem. The ideas for 
this proof are really the same as those already used in the proof of Lemma 
7.2.6. 

Proof of Theorem 7.2.3. First, assume without Joss of generality that 
the cube in the statement of the theorem is 

Q = {x E za: jx;j :S r,i= 1, ... ,d}. 
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Assume that the theorem is false; then for every a > 0, 

lim sup CN[aN, ( P, Q)PIN = Jl. (7.2.22) 
N-oo 

We shall say that E .. occurs at the j-th step of w if the cube Q(j) is 
completely covered by w. By Lemmas 7.2.6 and 7.2.5, there exist a' > 0 
and m' such that 

limsupcN[a'N,E••(m')pfN < Jl. (7.2.23) 
N-oo 

Let a > 0 be a small unspecified number, and let H N denote the following 
set of walks: 

HN {wE SN: (P, Q) occurs at most aN times on w; 

E .. (m') occurs at least a' N times}. 

The cardinality of HN satisfies 

and therefore, by (7.2.22) and (7.2.23), 

lim IHNjlfN = Jl· 
N-oo 

(7.2.24) 

Let 6 be a small positive number, to be specified at the end of the 
proof. Consider all triples (w, v, J) such that: w is in H N; J = {it, ... , j,} 
is a subset of {1, ... , N} such that E••(m') occurs at each ir, (7.2.17) 
holds with m replaced by m', and s = l6NJ; and vis a self-avoiding walk 
obtained by replacing the occurrence of E .. (m') at each j, by an occurrence 
of ( P, Q), analogously to the method described in the proof of Lemma 7 .2.6 
[0'1 and rr are defined in the same way, and we use part (b) of Lemma 7 .2.4]. 
We remark that the occurrences of E••(m') guarantee that (7.2.18) holds. 
Arguing as we did for (7 .2.20), we see that 

number of triples~ IHNI ( p~N 2 ) , (7.2.25) 

where now p = a' /(2m' + 2). For the upper bound, we use the fact that v 
has at most aN +2m'V6N occurrences of(P, Q). (This allows for (t) at most 
aN occurrences of (P, Q) on w, and ( ii) the possibility that changing a single 
occurrence of E .. (m') to a (P,Q) may create several other occurrences of 
(P, Q) either by creating additional occurrences of P or by vacating sites 
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of other cubes.) Also, note that v has at most N steps. Therefore the 
analogue of (7.2.21) here is 

N 

number of triples~ 2aN+2m'V6NZ'6N Eci, 
i=O 

(7.2.26) 

where Z' = L:~:~ Ci. We now combine (7.2.25) and (7.2.26), put a = 6, 
take N-th roots, and let N-+ oo; by (7.2.24), we obtain 

I' pP < 26+2m'V6 z'6J.t 
f56(p- o)P-6 - . 

As in the proof of Lemma 7 .2.6, this leads to a contradiction for sufficiently 
small6, and so the theorem is proven. D 

7.3 The main ratio limit theorem 

The principal task of this section is to prove Equations (7.1.1), (7.1.2), and 
(7.1.3). The proof of each will be based on Lemma 7.3.1 and Theorem 
7.3.2, which will also be used in the next section as the basis for analogous 
results for walks with specified end patterns. 

Lemma 7.3.1 gives three conditions which together are sufficient for the 
ratio limit theorems to hold. The first two conditions will be relatively easy 
to verify in our cases of interest; the third will follow from Theorem 7.3.2 
below. 

Lemma 7.3.1 Let {aN} be a sequence of positive numbers and let tPN = 
aN+2faN. Assume that 
( ') I' 1/N ' lffiN-oo aN = J.t, 
(ii) lim infN-oo tPN > 0, and 
(iii) there exists a constant D > 0 such that 

tPNtPN+2 ~ (tPN)2 - ~ (7.3.1) 

for all sufficiently large N. Then 

lim tPN = J.t2. 
N-oo 

(7.3.2) 

Proof. First observe that ( ii) and (iii) imply that there exists a constant 
B > 0 such that 

for all sufficiently large N. (7.3.3) 
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Let UN = tPN - Jl2. To prove the lemma, we shall show (by contradiction) 
that the lim sup of UN cannot be strictly positive, nor can the lim inf be 
strictly negative. 

First assume that lim supN-oo UN > 0. Then there exists an l > 
0 (possibly l = +oo) and a sequence N(l) < N(2) < ... such that 
lim;-oo UN(j) = l. For each j ~ 1, define 

M(j) = l N(j~;:(i) J ; 
note that M(j)- oo as j- oo. For sufficiently large j and every 0 $ k < 
M(j), (7.3.3) implies that 

kB 
tPN(i)+21c ~ tPN(j) - N(j) 

2 M(j)B 
~ Jl + UN(j) - N(j) 

~ Jl2 + U~(j). 

Therefore 

0 N(j)+2M(j) Mrr(j)-l .1.. > ( 2 + UN(j))M(j) 
a = 'I'N(i)+2/c - P. -2-

N(i) lc:O 

Take M(j)-th roots of this inequality, and let j - oo, obtaining p.2 ~ 
p.2 + E/2, which is a contradiction. Therefore limsupN-oo UN$ 0. 

Next, assume that lim infN-oo UN < 0. The procedure is similar to 
that of the preceding paragraph. Since UN is bounded below, there exists 
an l > 0 anq a sequence N(l) < N(2) < ... such that lim;-oo UN(j) = -l, 
and such that UN(j) < 0 for every j. Without loss of generality, we can 
assume that the constant B of (7.3.3) satisfies B ~ p.2. For each j ~ 1, 
define 

M(j) = l N(j~c;;(i)l J ; 
since -Jl2 < uN(j) < 0, it follows that 

M(J') < N{j)Jl2 < N(j). 
- 4B - 4 

For sufficiently large j and every 0 < k $ M(j), (7.3.3) implies that 

kB 
tPN(j)-2/c $ tPN(j) + N(j)- 2k 
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As before, we obtain 

aN(i) = rf if>N(j)-2/c ~ (J.l2- ju~(j)')M(i) 
aN(j)-2M(j) k:l 

We take M(j)-th roots of this inequality and let j -+ oo, obtaining the 
contradiction p.2 ~ p.2 - f/2. Therefore lim infN-oo O'N ;::: 0. D 

Remark. It is apparent that Lemma 7.3.2 remains true if we replace 

N + 2 by N + 1 everywhere. Our inability to prove that CN+t/CN -+ J.l 
in zd (d = 2, 3, 4) is due to the failure of our proof of the corresponding 
analogue of the next theorem. As will become clear during the course of 
the proof, the reason for this failure can be seen most simply in Figure 7.4: 
there does not exist a pair of patterns U and V in zd having the same 
endpoints whose lengths differ by 1. However on a lattice where such a pair 
of patterns exists, for example the triangular lattice, we can modify our 
argument easily to show that CN+t/CN -+ p. on that lattice. 

Theorem 7.3.2 There exists a constant D > 0 such that 

for all sufficiently large N, 

where if>N is defined according to any one of the following: 
{a) 4>N = CN+2fcN for every N; 
{b) 4>N = bN+2fbN for every N; or 

(7.3.4) 

{c) 4>N = CN+2(0, x)fcN(O, x) for all N of the same parity as llxlh, where 
X is a given point of zd. 

Proof. First we define two patterns, U = (u(O), ... , u(9)) and V = 
(v(O), ... , v(ll)). Each begins at the origin and lies in the (xt, x2)-plane 
(i.e. u;(j) = 0 = v;(j) for all i = 3, ... , d and every j). The steps in the 
(x1 ,x2)-plane are N3E3 S3 for U, and N3 ESENES3 for V (see Figure 7.4). 
Let Q be the cube 

Q = {x E zd: 0 ~Xi~ 3 for every i = 1, ... , d}, 

so that U and V are both contained in Q, and their endpoints are corners 
of Q. The main idea is that (U, Q) and (V, Q) must both occur many times 
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on almost all self-avoiding walks, and changing a U to a V increases the 
length of a walk by two; this gives us a way to transform N-step walks into 
(N +2)-step walks, and (N +2)-step walks into (N +4)-step walks. We will 
then do some counting based on all possibilities for these transformations. 

As usual, SN is the set of N-step self-avoiding walks whose initial point 
is the origin. If we are in case (a) of the theorem, let WN be SN; if we are 
in case (b), let WN be the set of all bridges in SN; and if we are in case 
(c), let WN be the set of all walks win SN such that w(N) = x. Let WN 
denote the cardinality of WN. Then 

I . 1/N 1m w = Jl 
N-oo N 

(7.3.5) 

(where we have used Equation (3.1.10) for part (b) and Corollary 3.2.6 for 
part (c)]. For integers N > 0, i ~ 0, and j ~ 0, Jet WN(i, j) be the set of all 
walks in WN on which (U, Q) occurs at precisely i different steps and (V, Q) 
occurs at precisely j different steps. Let WN( i, j) denote the cardinality of 
WN(i,j). For integers a, b ~ 0, define 

WN(~ a,~ b)= I: WN(i,j). 
i?;a,j?;b 

In particular, WN(~ 0, ~ 0) = WN. 
Consider the collection of all pairs (w,w') such that wE WN(i,j) and 

w' can be obtained from w by changing one occurrence of (U, Q) to an 
occurrence of (V, Q). In other words, (w, w') is an allowed pair if there 
exists a k such that (U, Q) occurs at the k-th step of w, (V, Q) occurs at 
the k-th step of w', w(l) = w'(l) for alii= 0, ... , k, and w(l) = w'(l + 2) for 
alii= k + 9, ... , N. In particular, w' E WN+2(i- l,j + 1). Counting the 
number of allowed pairs in two ways, we see that 

Number of pairs= iwN(i,j) = (j + l)wN+2(i -l,j + 1). 

u v 
u(O) v(O) 

Figure 7.4: The patterns U and V in the ( x1, x2)-plane. 
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Therefore 

( 0 ) "" (' . ) "" iwN(i,j) ( ) WN+22: ,2:1= LJ WN+2l-1,J+1= LJ . 1 7.3.6 
i>l '>O i>l '>O J + _,)_ _,J_ 

and 

"" . . "" i(i- 1)wN(i,j) 
WN+4(2:0,2:2)= LJ WNH(l-2,J+2)= LJ (" 1)(" 2) · 

i>2 '>O i>2 '>O J + J + _,}_ _,}_ 

(7.3.7) 
The Schwarz inequality tells us that 

( L iw:V(i,j)) 2 S 
i>l '>O J + 1 - ,} -

( "" (. ·)) ( "" i2wN( i, j)) . LJ WN l, J LJ . 2 ' 
i~ l,j~O i~ l,j~O (J + 1) 

(7.3.8) 
combining this with (7.3.6) implies that 

(7.3.9) 

For N 2: 1, define 

2,N = WN+4(2: 0, 2: 2) _ (WN+2(2: 0, 2: 1)) 2 

WN WN 
(7.3.10) 

and 
SN = ¢N¢N+2- (rPN )2 - SN. (7.3.11) 

The error term SN is easy to bound: 

ISNI < I WN+4- w::4(2: 0, 2: 2) I+ I w}.r+2 - (wN:t2: 0, 2: 1)]21 

< CNH(l, (V, Q)] 2WN+2CN+2[0, (V, Q)] 
_;..._:_--'-'---'----'""-= + 2 ' 

WN WN 

and hence Theorem 7.2.3 and Equation (7.3.5) imply that SN decays to 
0 exponentially fast. Therefore to prove the theorem it suffices to find a 
lower bound for '2N of the form -const.f N. By Theorem 7.2.3 and Equation 
(7.3.5), there exists an a > 0 such that 

I. 1 WN(> 0, > aN) l ( ) 
1/N 

tmsup - - - < . 
N-oo WN 

(7.3.12) 
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Using (7.3.7) and (7.3.9), 

( L i(i- l)wN(i,j) L i2wN(i,j)) _1 

i~O,j~O (j + l)(j + 2) i~O,j~O (j + 1)2 WN 

( L (-i2 -ij-i)wN(i,j)) _1 
i>O '>O (j + 1)2(j + 2) WN. 
- .J_ 

Since WN( i, j) = 0 if i > N or j > N, we can bound the factor -i2 - ij- i 
below by -3N2 • Splitting the sum over j into aN ::=; j ::=; N and 0 ::=; j < aN, 
we then obtain 

=.N > -3N2wN(~ 0, ~ aN) + ( _3N 2) (t _ WN(~ 0, ~ aN)) . 
- (aN)3WN WN 

By (7.3.12), the second term in the last line above decays to 0 exponentially 
fast, and the first term is asymptotic to -3/a3 N. Thus the theorem is 
proven. D 

Before we proceed with the proofs of the main ratio limit theorems, we 
prove a lemma that will be needed to prove assumption ( ii) of Lemma 7 .3.1 
in the fixed-endpoint case. 

Lemma 7.3.3 Let x be a nonzero point oJZd. Then CN+ 2(0, x) ~ CN(O, x) 
for all sufficiently large N having the same parity as llxlh. 

Proof. The idea is similar to the proof that CN+2 ~ CN as depicted 
in Figure 7.1, but now we must not touch the endpoints. Fix an integer 
A> llxlloo· Suppose N > (2A + 1)d, and let w be anN-step self-avoiding 
walk with w(O) = 0 and w(N) = x. Then at least one point of w must 
lie outside the cube {y E zd : I!YIIoo ::=; A}; notice that the endpoints of 
w lie inside this cube. Let M = max{llw(i)lloo : 0 ::=; i ~ N}. Observe 
that M > A. Then there exists j E {0, ... , N} and i E {1, ... , d} such 
that lw;(j)l = M. Choose j as small as possible; then, since w(j) is not 
an endpoint of w, we must have w;(j) = w;(j + 1). Let v be the vector 
whose coordinates are all 0 except the i-th, which is +1 if w;(j) = M and 
is -1 if w; (j) = - M. Thus, v is the unit outer normal vector to the cube 
{y : I!YIIoo ::=; M} at the point w(j). Define the new (N + 2)-step walk w* 

by 

{ 
w(k), k=O, ... ,j; 

*(k)- w(j)+v, k=j+1; 
w - w(j+1)+v, k=j+2; 

w(k-2), k=j+3, ... ,N+2. 
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(Thus we replace the step from w(i) to w(i + 1) by three steps.) Then w• 
is self-avoiding, and has the same endpoints as w. 

No two w's can give rise to the same w•, because the the two added 
points have larger norm II· lloo than any other points of w• and hence are 
unambiguously determined. This proves the lemma. o 

We are now ready to prove the main ratio limit theorem. 

Theorem 7.3.4 (a) limN-oo CN+2/cN = J.L2. 
{b) For every fixed nonzero x in zd, limN-oo CN+2(0, x)/cN(O, x) = J.L2 
(here, N is restricted to having the same parity as llxlh). 
(c) limN-oo q2N+2/q2N = J.L2. 
{d) limN-+oo bN+tfbN = J.l· 

Proof. Part (a) follows immediately from Lemma 7.3.1, Theorem 7.3.2(a), 
and (7.1.5) (which implies ¢N? 1). Similarly, part (b) follows from Lemma 
7.3.1, Corollary 3.2.6, Theorem 7.3.2(c), and Lemma 7.3.3. Part (c) is a 
direct consequence of part (b) and the basic relation (3.2.1 ). 

Part (d) requires some additional work. First we apply Lemma 7.3.1 
with aN = bN [the hypotheses of the lemma follow from Corollary 3.1.6, 
Theorem 7.3.2(b), and the inequality bN+2/bN? 1, which is a consequence 
of (1.2.15)] to obtain 

For every integer j, define 

L I .. fbN-i 
i = 1mm - 6-; N-+oo N 

(7.3.13) 

we want to show that L 1 = J.l-t and that the lim inf is in fact a limit. 
By (7.3.13), Li+2 = J.'- 2 Li for every j. Therefore 

Li = J.l-i for all even j, and Lj = J.ll-i L 1 for all odd j. 

From (4.2.2), we see that for every j and every N > j, 

Applying Fatou's Lemma to the above equation gives 

00 

Lj ? L >.,Li+•· (7.3.14) 
•=1 



7.4. END PATTERNS 

Define 

•~l,•odd 

By (4.2.4), Eo+ Ee = 1. Applying (7.3.14) with j = 0 yields 

1 ~ L11'Eo + Ee, 

which implies that L 11' :5 1. Next, applying (7.3.14) with j = 1 gives 

Lt ~ I'-1Eo + LtEe, 

which implies that L111. ~ 1. Therefore L1 = 1'-1 , i.e. 

I. bN+l 
1m sup -b- = I'· 
N-oo N 

Combining this with (7.3.13), we finally obtain 

I. . f bN+l I' . f bN+l bN-1 2£ 
1mm -b- = tmm -b--b- =1' 1 =Jl, 
N-oo N N-oo N-l N 

and so part (d) is proven. 

7.4 End patterns 

249 

0 

In this section, we shall prove Equations (7.1.8) and (7.1.9), as well as 
various extensions of these results. To begin, we extend the notion of front 
patterns from Definition 7.1.2 to the analogous notion of tail patterns. 

Definition 7.4.1 Let P = (p(O), ... ,p(n)) and R = (r(O), ... , r(m)) be 
patterns. Let TN[R] denote the subset of walks in SN for which R occurs 
at the (N- m)-th step. We say that R is a proper tail pattern ifTN[R] is 
non-empty for all sufficiently large N. Let SN[P, R] denote the intersection 
of FN[P] with TN[R]. For every x in zd, let SN[x; P, R] denote the set of 
all walks in SN(P, R] whose last point w(N) is x. 

Consideration of front patterns and tail patterns together leads to results 
such as (7.4.7), which is used to analyze the behaviour of the "slithering­
snake" Monte Carlo algorithm in Section 9.4.2, and Proposition 7.4.4, a 
lower bound for cN(O, x) which is stronger than the earlier bound (3.2.11 ). 

In Section 6. 7, we saw how the lace expansion is used to prove the 
existence of limN-co I.1'N[P]IfcN in high dimensions. (That section used 
the notation Pn,N(P) to denote .1'N(P]/cN where n = !Pl.) This limit is 
believed to exist in every dimension, but this remains unproven in 2, 3, 
or 4 dimensions, where the best results are Theorem 7.4.5 below and the 
following theorem. 
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Theorem 7.4.2 If P is a proper front pattern and R is a proper tail pat-
tern, then 

1. . f IFN[P]I 0 lmm > 
N-co CN 

(7.4.1) 

and 

I. . f ITN[R]I 0 1mm > . 
N-co CN 

(7.4.2) 

Proof. It suffices to prove (7 .4.1 ), since (7 .4.2) then follows by considering 
walks with reversed steps. Suppose P = (p(O), ... , p(n)). Since Pis a proper 
front pattern, there must be a cube Q and a self-avoiding walk wP of length 
n' with the following properties: wP is entirely contained in Q; wP(n') is 
a corner of Q; and P occurs at the 0-th step of wP (see Figure 7.5). By 

p 

0 

. ......•... 

..------0 

. 
• n' '-------.q 

Figure 7.5: Proof of Theorem 7.4.2: the proper front patterns P, wP, and 
wG. The dotted lines in the centre picture denote the boundary of Q. 

Lemma 7.2.4(a), there exists a self-avoiding walk wG whose last point equals 
wP ( n'), whose first point is another corner of Q, which is entirely contained 
in Q and visits every point of Q. Let q denote the number of steps in wG. 
Evidently, q ?: n'. 

Our first observation is that for every N ?: n1 

(7.4.3) 

The first inequality is obvious, since FN[wP] C .FN[P]. For the second, 
we can define a one-to-one transformation w ~--+- w* from .F N +q-n' [wG] to 
FN[wP] as follows: for each win FN+q-n'[wG], let w* be the (unique) N­
step walk that has wP occurring at its 0-th step and whose last N -n' steps 
are identical to those of w, and translated so that w* (0) = 0 (see Figure 
7.6). Then w* is self-avoiding, hence it must be in FN[wP]. Now, because 
of the observation (7.4.3), and because CN ~ CN+q-n' [by (7.1.6)], it suffices 
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.------0 

0 

w w* 

Figure 7.6: Proof of Theorem 7.4.2: the transformation of w in 
:F N +q-n' [wQ] to w* in :F N [wP]. 

to show that 
1. . f I:F M [wQ]I 0 
1mm > . 
M-oo CM 

(7 .4.4) 

[We remark that it is not necessary to invoke (7.1.6) here; we could instead 
use (7.1.5) and CN :5 2dcN-1 to conclude that CN ::;; 2dcN+q-n'• which 
suffices for (7.4.4).] 

Since wQ is a proper internal pattern (see Proposition 7.1.3), Theorem 
7.2.3 says that there exists an £ > 0 and an even integer k such that 

(7.4.5) 

For all integers I ;::: j ;::: 0, let 9z,j be the set of walks w in Sz such that wQ 

occurs at the j-th step of w, and let 1-lz,j = u{=09z,i. Thus 1-lz,j is the set of 
/-step self-avoiding walks starting at the origin on which wQ occurs at one 
of the first j steps. Then by (7.4.5), 

Therefore 

ISM+k \ 1-lM+k,ki < ck[O,wQ]cM 

< ti(l- £)kcM. 

CM+k- CMJlk(l- tl < 11fM+k,kl 
k 

::;; Li9M+k,il 
i=O 

k 

S I:Cii:FM[wQJh-i· 
i=O 
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(7.4.6) 

Since k is a fixed even number, Theorem 7.3.4(a) implies that CM+k/cM 
converges to JLk, and hence the left side of (7.4.6) has a strictly positive 
limit as M--+ oo. This proves (7.4.4) and the theorem. D 

An extension of the preceding proof allows one to prove the stronger 
statement 

I. . f ISN[P, R]l 0 
tmm > 
N-+oo CN 

(7.4.7) 

whenever P and R are proper front and tail patterns, respectively. For 
details, see Madras (1988). 

We shall now consider the occurrence of end patterns on walks with 
specified endpoints. 

Proposition 7 .4.3 Let e be a point in zd with lei = 1. Let P and R be 
patterns such that SN[e; P, R] is non-empty for all sufficiently large odd N. 
Then 

liminf ISN[e;P,R]I > 0 
N-+oo,Nodd CN(O, e) . 

Proof. Assume P = (p(O), ... ,p(n)) and R = (r(O), ... ,r(m)) with 
p(O) = 0 and r(m) =e. Let P' = (r(O), ... , r(m), p(O), ... , p(n)). Since the 
pattern P' can occur on arbitrarily large self-avoiding polygons, P' must 
be a proper internal pattern. Therefore, by Theorem 7.2.3 there exists an 
E > 0 such that 

limsup(cN[cN, P']) 1/N < p.. (7.4.8) 
N-oo 

Let SN(e) be the set of walks in SN having w(N) = e, and let S#(e) 
be the set of walks in SN(e) on which P' occurs at more than EN different 
steps. By (7.4.8) and Corollary 3.2.6, 

(7 .4.9) 

for all sufficiently large (odd) N. If w is in SN(e) and P' occurs at the j-th 
step of w, then (w(j +m+ 1), ... ,w(N),w(O), ... ,w(j +m)) is a translation 
of a self-avoiding walk t/J in SN[e; P, R]. Consider all pairs (w, t/J) such that 
w E S}v(e) and t/J can be obtained from w in this way. On the one hand, 
since each w gives rise to at least EN different 1/J's, the number of such 
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pairs is bounded below by t:NISfv(e)l. On the other hand, each t/J can be 
obtained from no more than N different w's, and so the number of pairs is 
bounded above by NISN[e; P, R]l. Therefore 

for all sufficiently large N [the second inequality is given by (7.4.9)]. The 
theorem follows. D 

One would like to prove the analogue of Proposition 7.4.3 when e is 
replaced by any given point x in zd (and N is restricted to having the 
same parity as llxllt). However, the best known result is the following. Let 
e be a nearest neighbour of the origin, and let x be a non-zero point in zd. 
Assume that SN[x; P, R] is non-empty for all sufficiently large N with the 
same parity as llxllt· Then for odd llxlh we have 

lim inf ISN[x; P, R]l > 0 
N -oo,N odd CN (0, e) ' 

(7.4.10) 

and for even llxllt {7.4.10) holds after we replace N by N + 1 in the numer­
ator. For the proof, see Madras (1988). lfwe knew that cN(O,e)/cN,(O,x) 
(where N' equals Nor N + 1, according to whether llxlh is odd or even) 
had a positive lower bound for sufficiently large N, then we could imme­
diately deduce the desired analogue of Proposition 7.4.3. Unfortunately, it 
remains an open problem to prove this lower bound, which is a particular 
case of Conjecture 1.4.1. We can however use Proposition 7.4.3 to prove a 
corresponding upper bound. This does not help to generalize Proposition 
7.4.3, but it does prove a special case of Conjecture 1.4.1. 

Proposition 7.4.4 Let e and x be non-zero points of zd, with llell2 = 1. 
Then there exists a positive constant A and an integer N A (both depending 
on x) such that 

CN(O,e) $ AcN(O,x) 

ifllxllt is odd, and 

CN(O, e) $ AcN+t (0, x) 

if llxlh is even. 

for all N ~ NA 

for all N ~ NA 

Proof. Let ( r(O), ... , r(m+ 1)) be a proper internal pattern having r(O) = 
x, r(m) = e, and r(m + 1) = 0. Then m has the opposite parity to 
llxlh· Let R = (r(O), ... , r(m)) and let P be the 0-step pattern (0). Then 
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Proposition 7.4.3 holds for this P and R, so there exists a K > 0 such 
that ISN[e; P, RJI ~ KCN(O, e) for all sufficiently large N. The first N- m 
steps of a walk in SN[e; P, R] is a self-avoiding walk from 0 to x, and so 
ISN[e; P, R]l $ CN-m(O, x). The proposition now follows from these two 
inequalities and Lemma 7 .3.3. 0 

We are now ready to prove ratio limit theorems for the number of walks 
with specified end patterns. The procedure is the same as in Section 7.3. 

Theorem 7.4.5 Let P be a proper front pattern and let R be a proper tail 
pattern. Then: 
(a) limN-co IFN+2[P]I/IFN[PJI = J.t 2 • 

{b) limN-co ISN+2[P, R]I/ISN[P, R]l = J.l 2 • 

(c) Suppose in addition that x is a fixed nonzero point of zd and that 
SN[x; P, R] is non-empty for all sufficiently large N having the same parity 
as llxlh· Then limN-co ISN+2[x;P,R]I/ISN[x;P,R]I = J.t 2 (where N is 
restricted to having the same parity as llx I h). 

Proof. We apply Lemma 7.3.1 in each case. Beginning with the most 
substantial hypothesis of the lemma, we observe that the analogue of The­
orem 7.3.2 holds in each of the three present cases. In fact, the same proof 
works, with the following modifications: 

1. Let WN be FN[P] in case (a), SN[P, R] in case (b), and SN[x; P, R] 
in case (c). 

2. In the definition of W N( i, j), count only those occurrences of (U, Q) 
and (V, Q) which do not touch the end patterns; i.e. only count 
occurrences after the IPI-th step, and no later than the (N -IRI- 9)­
th step for (U, Q) and the (N- IRI- 11)-th step for (V, Q). 

3. limN-oo w;/N = J.l by Theorem 7.4.2 for case (a), Equation (7.4.7) 
for case (b), and Equation (7.4.10) and Corollary 3.2.6 for case (c). 

Now we verify that the hypotheses of Lemma 7.3.1 all hold. The pre­
vious paragraph shows that assumption (iii) of Lemma 7 .3.1 holds in each 
of the present three cases. Also, assumption (i) holds in each case by point 
3 in the preceding paragraph. So it only remains to check the second as­
sumption of Lemma 7 .3.1 in each case. 

For case (a), Theorem 7.3.4(a) and Theorem 7.4.2 imply that 
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Case (b) is similar, using (7.4.7). For case (c), we use the inequality 
ISN+2[x; P, R]l ~ ISN[x; P, R]l for all sufficiently large N (the proof is ex­
actly as the same as for Lemma 7 .3.3, except that A must be taken large 
enough so that w(j) is not on either end pattern; A= max{IPI, llxlh + IRI} 
suffices). 0 

7.5 Notes 

Sections 7.2 and 7 ,3, The results of these sections are due to Kesten 
(1963). In that paper Kesten also proved the following bounds on the 
convergence rates in the ratio limit theorems: for all sufficiently large N, 

I c;;2 _ 1121 ::=;I< N-1/3, (7.5.1) 

- J{N-1/3 < CN+((O,))- /12 < J{N-1/4, (7.5.2) 
- CN O,x r -

where J( is a constant [and N has the same parity as llxlh in (7.5.2)]. 
We conjecture that the following strengthening of the Pattern Theorem 

is true: for every proper internal pattern P, there exists at = t(P) > 0 
such that for any (. > 0 only exponentially few N-step walks have fewer 
than (t- (.)Nor more than (t +(.)N occurrences of P. A more modest open 
problem is to prove that the expected number of occurrences of a proper 
internal pattern P on an N-step walk is asymptotic to tN as N - oo, 
for some t = t(P) > 0 (where expectation is with respect to the uniform 
probability measure on SN ). 

The proof of part (d) of Theorem 7 .3.4 is essentially a special case of a 
ratio limit theorem in renewal theory; see Proposition 1.2 in Chapter 3 of 
Orey {1971). 

Section 7.4. The results of this section are due to Madras (1988). That 
paper also showed that the convergence rate of (7 .5.1) holds in Theorem 
7.4.5(a,b), and the rate of (7.5.2) holds in Theorem 7.4.5(c). 
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Chapter 8 

Polygons, slabs, bridges 
and knots 

8.1 Bounds for the critical exponent asing 

In this section we shall discuss rigorous bounds for the critical exponent 
a~ing, which is defined by the scaling relation 

CN(O, x) ""const.pN Ncx,;,.,- 2 for fixed nonzero x. (8.1.1) 

(Here, N is assumed to have the same parity as llxlh, since otherwise 
CN(O, x) = 0.) It is believed that CX 1 ing is independent of :r: in (8.1.1) (recall 
in particular Conjecture 1.4.1). Since scaling behaviour of this form has 
not yet been proven, our bounds will actually be bounds on the behaviour 
of generating functions and the like. 

We begin by observing that a,;ng is intimately related to the scaling 
behaviour of self-avoiding polygons. Recall from Equation (3.2.1) that if e 
is a nearest neighbour of the origin, then for all even N ~ 4 the number of 
N -step polygons satisfies 

dCN-t(O, e) 
qN= N , (8.1.2) 

and therefore is expected to scale like 

(8.1.3) 

Recalling (3.2.5) (a consequence ofsubadditivity) and (3.2.9), we have 

(8.1.4) 

257 
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and consequently 

CN(O, e):::; ( d ~ l) NttN if lei = 1. (8.1.5) 

These two inequalities may be summarized by the statement that if Ot 1 ing 

exists, then 
Ot&ing :::; 3. (8.1.6) 

The main part of this section is devoted a proof of some better bounds, 
namely, that if (8.1.1) holds, then 

{ 
:::; ~ (d = 2) 

Ot&ing S 2 (d = 3) 
< 2 (d > 3). 

(8.1.7) 

Unfortunately, we cannot prove that the corresponding termwise upper 
bounds [e.g., QN = O(N- 112!-lN) in d = 2] hold. Rather, we only know 
(8.1.7) in certain weaker senses. For example, recall that if aN = O(NP) 
then EN aNsN = 0((1- s)-(l+P)) as s / 1 (for p > -1), but that the 
converse need not hold [cf. (1.3.9)-(1.3.11)]. With this in mind, consider 
the generating function Q(z) of polygons: 

00 

Q(z) = L QNZN. (8.1.8) 
N=1 

The bound (8.1.4) says that as z increases to Zc = tt- 1, Q(z) cannot diverge 
faster than O((zc- z)- 1). We will prove that there exists a constant C', 
depending on d, such that 

oo ( )N-1 Q(z):::; L C' N-(d-1)/2 _:_ 

N:1 Zc 

for all 0 :::; z :::; Zc. (8.1.9) 

Thus as z increases to Zc, Q(z) has at most a square root divergence in 
two dimensions, at most a logarithmic divergence in three dimensions, and 
is bounded above three dimensions. This is one interpretation of (8.1.7); 
more general interpretations will be proven below. 

Conjectured values for Ot8 ing are given by the hyperscaling relation 
Ot 8 ing = 2 - dv (see Section 2.1) in conjunction with the values of v given 
in (1.1.12), as follows: 

1 
2 
0.23 ... 

2-~ 
(8.1.10) 
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In particular, Gzc(O, z) = LN:O CN(O, x)p.-N is expected to be finite in all 
dimensions, and hence so is Q(zc)· Thus the bounds of (8.1.7) are probably 
far from optimal. However, ford> 4, it can in· fact be proven using quite 
different methods that Ot1 ing ~ 2- d/2 (see Theorem 6.1.3 and Corollary 
6.1.4). 

Before we proceed with the proof of (8.1.7), let us say a few words about 
lower bounds. We are not aware of any rigorous lower bound of the form 
qN ;::::: const.N-Pp.N. However, we do have a lower bound in terms of bridges 
from Theorem 3.2.4. If we assume that bridges have the scaling behaviour 

(8.1.11) 

then 0 ~"/Bridge~ 1 because "£.bN/JJN diverges (by Corollary 3.1.8) and 
because bN ~ p.N [by (1.2.17)]. Therefore, under this assumption Equation 
(3.2.6) implies that whenever e is a nearest neighbour of the origin, 

C2M+t(O, e);::::: Bp.2M M2"Ysr;4ge-d-4 

for some positive constant B. This gives 

for all M;::::: 1, 

Ot,ing 2::: 2"/Bridge - d- 2 2::: -d- 2 

(8.1.12) 

(8.1.13) 

if we assume that the scaling exponents exist. We remark that by Proposi­
tion 7.4.4, the assumption (8.1.11) also implies the following generalization 
of (8.1.12): for any nonzero x e zd, there exists a constant B (depending 
on x) such that 

for all sufficiently large N of the same parity as llxlh· 
The upper bounds (8.1.7) for Ot will be deduced from Propositions 8.1.2 

and 8.1.4 below. Proposition 8.1.2 is a geometrical result which shows that 
there are fewer self-avoiding polygons than there are bridges of a certain 
kind; thus it suffices to get upper bounds on the number of such bridges. 
Proposition 8.1.4 uses the renewal theory approach of Section 4.2, but ap­
plied to slightly different quantities. So before we continue, let us define 
these new quantities. 

Definition 8.1.1 For each point y in zd-t and each positive integer N, 
let bN(Y) (respectively, >w(Y)) denote the number of N -step bridges (re­
spectively, irreducible bridges) with w(O) = 0 and (w2(N), ... , wd(N)) = y. 
Recalling Definitions 4.1. 7 and 4.1!.3, we see that 

00 00 

bN(Y) = ~ bN,L(Y) and ~N(Y) = ~ ~N,L(y). 
L:O L:l 
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The following renewal-type equation may be deduced directly, or by 
summing over L in ( 4.2.8): 

N 

bN(Y) = L L Ak(v)bN-k(Y- v) (N ~ 1). (8.1.14) 

Now define the random vector (X, Y) such that X takes values in {1, 2, ... } 
and y takes values in zd-l' and 

Pr{(X, Y) = (k, y)} = A~~y) for k ~ 1, y E zd-t. (8.1.15) 

The marginal distributions of X and Y are then given by 

Pr{X = k} = AA:/J.t", k = 1,2, ... , (8.1.16) 

= ~ AA:(Y) 
L...J k ' 
k=l J.t 

Pr{Y = y} (8.1.17) 

Let {(Xn, Yn): n ~ 1} be a sequence of independent copies of(X, Y). Then 

bN~) = Pr{X1 + .. . +Xk =Nand Yt +· .. +Yk = y for some k}. (8.1.18) 
J.t 

To see this, observe that iteration of (8.1.14) gives 

where the inner sum is over all n1, ... , nk ~ 1 and all Vt, ••• , VA: in zd-t 
such that n1 + ... + nk = N and v1 + ... +VA: = y. See Section 8.3 for more 
about the probabilistic interpretation of these equations. 

The following result gives an upper bound for the number of polygons 
in terms of bridges. 

Proposition 8.1.2 Let w be a nearest neighbour of the origin in zd-t. 
Then 

qN =:; d(d- 1)bN(w) for all even N ~ 4. (8.1.19) 

Proof. There is a simple geometric picture behind this proposition (Fig­
ure 8.1): Cut the polygon at a site with minimal ~1 coordinate and at a 
site with maximal ~ 1 coordinate. Reflect one of the two pieces through 
the hyperplane of the maximal .v1 coordinate. If this is done properly, the 
result will be a bridge with certain properties. 
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Xt =M 

- t/J(N -1) 

1/J(O) 
. w(s) 

Figure 8.1: Proof of Proposition 8.1.2: Changing a polygon into a bridge 
by reflecting a piece through the hyperplane x1 = M (dotted line). 

We now give the details. Let e<1> = (1, 0, 0, ... , 0) E zd. For even 
N ;:;: 4, let Q'N denote the set of all N -step self-avoiding polygons whose 
lexicographically smallest point is the origin and which do not lie entirely in 
the hyperplane Xt = 0. (Observe that such a polygon lies in the half-space 
Xt ~ 0.) We claim that 

(8.1.20) 

To prove the claim, consider all pairs ('P, i), where 1 $ i $ d and 'Pis an N­
step polygon that does not lie entirely in a hyperplane Xi = constant. The 
number of such pairs (up to translation) is bounded below by 2qN, since 
every polygon has at least two coordinates in which it is not constant. Also, 
the number of pairs is bounded above by diQ'NI since for each i, IQ'NI is the 
number of N-step self-avoiding polygons (up to translation) that do not 
lie in a hyperplane x; = constant, by symmetry. Combining these bounds 
gives 2qN $ diQ#I, which proves (8.1.20). 

Now, given a polygon 'Pin Q#, let y be the lexicographically smallest 
point among all points x on 'P such that x and x + e(l) are joined by a bond 
of'P. Observe in particular that Y1 = 0. Let w = w['P] be the (N -1)-step 
self-avoiding walk which has w(O) = y, w(1) = y+e<1>, and whose remaining 
sites are given by traversing 'P; thus w is one of the 2N self-avoiding walks 
corresponding to the polygon 'Pin the sense of Definition 3.2.1. See Figure 
8.1. (We remark that the two-dimensional picture is deceptively simple; in 
particular, ford~ 3, the pointy need not be the lexicographically smallest 
point of 'P.) Let u = w(N- 1)- y. Then u is a unit vector, but u :/; e<1) 

[because w(N- 1) # w(1), sou# w(l)- y = e<1>] and u # -e<1> [because 
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w1(j) ~ 0 = Yl for every j). Therefore u is orthogonal to eCl), and so 

w1(N-1)=y1=0. (8.1.21) 

We shall write u = (0, u), where u E zd-l and lliillt = 1. 
Let 

M = max{w1(i): 0 $ i $ N- 1} 

and lets be the smallest i such that w1(i) = M. For each v in zd, let TM[v] 
denote the reflection of v in the hyperplane x1 = M: 

Define the sequence of points 

. { w(i) 
t/J(z) = TM[w(i)] 

if 0 $ i < s 
if s $ i $ N -1. 

Observe that t/J = (,P(O), ... , ,P(N - 1)) is a self-avoiding walk because 
t/J1 ( i) < M for all i < s and t/J1 ( i) ~ M for all i ~ s. Also observe that 
t/J1(0) = 0 $ t/J1(i) $2M= t/J1(N- 1) for all i = 1, . .. ,N- 2, by the 
definition of t/J and (8.1.21 ). Since the first inequality need not be strict, 
the walk t/J may not be bridge; however, if we concatenate it to the 1-
step walk 4> from 0 to e<1), then the result ( :: 4> o t/J is an N -step bridge. 
Moreover ((0) = 0 and ((N) is a nearest neighbour of a site on the x1-axis; 
in fact 

((N) = e(l) + ,P(N- 1)- t/J(O) = e<1> + TM[Y + (0, u)]- y =(2M+ 1, u). 
(8.1.22) 

It is not hard to see that ( uniquely determines the original polygon P in 
Q'rv. This discussion and symmetry show that 

IQ'rvl $ 

where w was defined in the statement of the proposition. 
(8.1.23) with (8.1.20) completes the proof. 

(8.1.23) 

Combining 
0 

The next lemma is central to the proof of Proposition 8.1.4. It gives 
a bound for the probability that an ordinary (but not necessarily nearest­
neighbour) random walk is at a given point x at the m-th step. It is in 
fact a special case of a general result about random walks, which we now 
describe. Suppose that Y1; ¥2, ... are independent, identically distributed 
ZP-valued random variables (p ? 1). If the Yi's have mean 0 and finite 
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second moment, then IY1 + · · · + Y m I grows like m112 and the local central 
limit theorem implies that 

Pr{Yt + · · · + Ym = z},.., const.m-P/2 for fixed z E ZP (8.1.24) 

[see for example Proposition 7.9 or 7.10 of Spitzer (1976)]1. If the }'i's have 
nonzero mean, or more seriously if El¥;12 = +oo, then (8.1.24) does not 
hold in general. However, in these cases !Yt + · · · + Ym I tends to grow faster 
than m112 , and so one expects the probability ofreturning to a given point 
to be smaller than the right-hand side of (8.1.24). In fact, the following is 
true for any random walk Y1 + · · · + Ym that is truly p-dimensional, in the 
sense that the set of possible values of Y1 is not contained in a hyperplane 
(including hyperplanes not passing through the origin): there exists a finite 
constant C (depending on the distribution of Yt) such that 

Pr{Y1 +. ·. + Ym = z} ~ Cm-P/2 for every m ~ 1, z E ZP. (8.1.25) 

In Theorem A.6 we shall prove that (8.1.25) holds under somewhat stronger 
assumptions on the distribution of Y1• This will be sufficient to prove the 
following special case, which is what we need in this section. 

Lemma 8.1.3 Let Y1 , Y2, ••• be independent zd-1-valued random variables 
each having the same distribution as Y given in {8.1.17}. Then there exists 
a finite constant C such that 

Pr{Yt + ... + Ym = z} ~ Cm-(d-t)/2 for every m ~ 1,z E zd- 1 • 

(8.1.26) 

Proof. This is an immediate consequence of Theorem A.6 with p = d -1. 
The hypotheses of Theorem A.6 are clearly satisfied because in the present 
case Pr{Y = y} is nonzero for every yin zd- 1• D 

With the bound (8.1.26) in hand, we are ready to prove the next propo­
sition. 

Proposition 8.1.4 Let ht, h2, ... be a nonincreasing sequence of nonneg­
ative real numbers. Fix w E zd-l with !lwlh = 1. Then there exists a 
constant C {depending only on the dimension d) such that 

(8.1.27) 

1 If the possible values of Yt all lie in an r-dimensional subspace with r < p, or if 
the random walk is periodic, then a routine modification of (8.1.24) holds. This will not 
concern us here. 
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Consequently, there exists a constant C' such that 

(8.1.28) 

Proof. Let h1 ~ h2 ~ ... ~ 0. Let I[A] denote the indicator function of 
the event A. Recall that the random variable X is always greater than or 
equal to 1, so if X1 + · · · + X~c = N for some k, then k must be less than 
or equal to N. Using this observation and (8.1.18), we obtain 

f hN (bN<:)) 
N:l JJ 

oo N 

= E(L: L: hNl[Xt + · · · + X.t =Nand Yt + · · · + Y.t = w]) 
N:l k:l 

00 00 

$ E(L: L: h.tl[Xt + · · ·+ X.t =Nand Yt + ···+ Y.t = w]) 
k:l N:k 

00 

= E(L h~cl[Yt + · · · + Y.t = w]) 
k:l 

00 

< L: Ch~ck-(d-t)/2 
k=l 

where the last inequality follows from Lemma 8.1.3. This proves (8.1.27). 
Combining this with Proposition 8.1.2 gives (8.1.28), with C' = Cd( d- 1 ). 

0 

The following corollary is immediate. 

Corollary 8.1.5 If h1, h2, ... is a nonincreasing nonnegative sequence for 
which the sum L~=l hN N-(d-l)/2 converges, then L:~=t hN(qN / JJN) also 
converges. 

We are now ready to prove Equation (8.1.9) as well as some more general 
interpretations of the bounds (8.1.7) for a&ing· 

Corollary 8.1.6 (a) IfO $ z $ Zc, then 

oo ( )N-1 Q(z) $ L C' N-(d-1)/2 !... 
N:l Zc 
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{b) As M-+ oo, 

L q~ = O(logM) (d = 3) 
M { O(M 112 ) (d· = 2) 

N=l I' 0(1) (d > 3). 

{c) Let d = 2. For 0 ~ z < Zc, 

f: qNNl/2 (.:.)N = 0 (-1 ) . 
N= 1 Zc Zc- Z 

Proof. Parts (a), (b), and (c) use (8.1.28) of Proposition 8.1.4, with the 
following choices for hN: 
(a) Set hN = (zlzc)N. 
(b) Given M, set hN = 1 if N ~ M and hN = 0 otherwise. 
(c) Fix z. Define f(a) = a112(z/zc)a for a> 0. The function f is maximized 
at ao = -[2log(z/zc)]-1 , and /'(a)< 0 for a> a0 • So if we put 

h _ { f(ao) 
N- f(N) 

if N ~ ao 
if N > ao 

then {hN} is a nonincreasing positive sequence. The result follo~s from an 
application of (8.1.28) and some routine estimates. D 

The above results are not strong enough to give a bound such as qN I 1-'N 
= O(N-(d-1)/2), although this would follow (at least for d ~ 3) from any 
one of several "mild" conditions on the sequence { qN I 1-'N}, such as mono­
tonicity [see for example the proof of Theorem 2.4.3 in Lawler {1991)]. 
Unfortunately, it is not easy to check the regularity conditions of this se­
quence. We do know that the N-th root of the N-th term approaches 1, 
but this is not enough to let us say much. For example, it is consistent with 
the above corollaries that limsupqNII'N is strictly positive; fortunately, it 
is not hard to rule out this possibility. 

Corollary 8.1.7 

Before proving this result, we require a simple lemma. 

Lemma 8.1.8 Let u, u' E zd- 1, and let j = llu'- ullt· Then 

bn(u) ~ bn+Ht(u') for every n ~ 0. 

(8.1.29) 

(8.1.30) 
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Proof. Consider a self-avoiding walk in zd that starts at the origin, takes 
one step in the +~1 direction, and then goes to (1, u'- u) in the minimum 
number of steps. This walk is a (j + 1 )-step irreducible bridge. This shows 
that Aj+t(u'- u);:::: 1. Using this fact and (8.1.14) shows that 

(8.1.31) 

which proves the lemma. 0 

Proof of Corollary 8.1.7. Fix wE zd-t with llwllt = 1. Lemma 8.1.8 
tells us that bN_2(w) ~ bN(O), and combining this with Proposition 8.1.2 
shows qN-2 ~ d(d- 1)bN(O). Therefore it suffices to prove the second 
equality in (8.1.29). 

Let BN(O) denote the set of N-step bridges w that have w(O) = 0 and 
w(N) on the ~1-axis. Let JN denote the number of bridges in BN(O) that 
cannot be expressed as the concatenation of a bridge from BM(O) with a 
bridge from BN-M(O) for some M (0 < M < N). Then the following 
renewal equation holds: 

N 

bN(O) = L Jr,,bN-k(O) (N;:::: 1) . (8.1.32) 
k=l 

Put fn = JnfJJ.n and Vn = bn(O)/JJ.n. Then we have Vo = 1 and VN = 
L:f=t fkVN-k for every N;:::: 1, so we can use the Renewal Theorem. Since 
Vn ~ 1 for every n, Theorem B.l(c) implies that }:~1 fk ~ 1. Therefore 
VN converges as N- oo, by Theorem B.l(a, b). 

Finally, suppose that VN converges to a strictly positive limit. Then by 
Lemma 8.1.8 it follows that lim infbN(w)fllN > 0. Now setting hN = N-1 
in (8.1.27) results in a divergent sum being dominated by a convergent 
sum. This contradiction shows that VN must converge to 0, which proves 
the corollary. 0 

Remark. Another way to prove Corollary 8.1.7 is to use (8.1.18), which 
says that bN(Y)/ llN is the probability that the random walk in zd with 
jumps (X;, Y;) (started from the origin) ever hits the point (N, y). Since 
this random walk is clearly transient, this probability must converge to 0 
as I(N, y)l- oo, by Proposition 25.3 of Spitzer (1976). This in fact proves 
the stronger result that 

I. bN;(Yi) O 
1m--= 

i-oo llN; 

whenever { N;} is a sequence of positive integers and {y;} is a sequence of 
points in zd-t such that lim;-oo(IMI + lvd) = +oo. 
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8.2 Walks with geometrical constraints 

In this section we shall consider self-avoiding walks that are restricted to lie 
in certain subsets of zd. The emphasis will be on the connective constants 
associated with different subsets. 

We begin by defining one class of subsets of zd. For integers k E 
{1, ... , d- 1} and T ~ 0, let 'R:: 'R[k, T] be the subset 

n[k, TJ = z~: x {o, 1, ... , T}d-1: 
= {~ E zd: 0 :5 ~i :5 T, i = k + 1, ... , d}. (8.2.1) 

The set n is often called a tube if k = 1 or a slab if k = d - 1. We can 
visualize 'R[k, T] as a k-dimensional subspace that has been thickened up in 
the directions orthogonal to the subspace. We shall say that a translation 
by the vector v is horizontal if and only if v E zA: x {O}d-A:. The horizontal 
translations are precisely those translations with respect to which n is 
invariant. 

For such a subset 'R = 'R[k, TJ and each integer N ;::: 0, we denote by 
SN ('R) the set of all N -step self avoiding walks w whose sites lie entirely in 'R 
and such that w,(O) = 0 for i = 1, ... , k. Thus every N-step self-avoiding 
walk that lies in 'R is the horizontal translation of a unique member of 
SN('R). We also let cN('R) = ISN('R)I, which is the number of equivalence 
classes of self-avoiding walks in n up to horizontal translations. 

For any finite T, one expects self-avoiding walks in 'R[k, TJ to behave 
qualitatively like self-avoiding walks in zk j in particular' they should have 
the same critical exponents, on the grounds of universality. As we mention 
in the Notes, this has to a large extent been proven rigorously for the case 
k = 1 [Klein (1980), Aim and Janson (1990)]. 

We shall now discuss the connective constant J..t('R} for a region 'R = 
'R[k, TJ for fixed k and T. For every walk win SN+M('R.}, both the first N 
steps and the last M steps of w are also self-avoiding walks in 'R, and so 

(8.2.2) 

Therefore we see from Lemma 1.2.2 that 

(8.2.3) 

Next, for each N we define bN('R} to be the number of bridges in SN('R}. 
We cannot assert bN+M('R} ;::: bN('R}bM('R} because the concatenation of 
two bridges lying in 'R may not lie in 'R. However, suppose that v and 71 are 
bridges in SN('R} and SM('R} respectively. Let i'j be the translation of TJ by 
the vector (vt(N) + 1, v2(N), ... , v~:(N), 0, ... , 0). Let p be a self-avoiding 
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walk that takes one step from v(N) to v(N) + (1, 0, ... , 0) and then goes 
to ~(0) in the minimal number of steps. Then pis a bridge of span 1 whose 
length satisfies 

d 

IPI = 1 + L lv;(N)- 7];(0)1 ~A= (d- k)T + 1. 
i=k+l 

Let w be the walk that begins with v, followed by p, followed by 7], followed 
by A-IPI steps in the +x1 direction. Then w is a bridge oflength N +M +A 
that lies in n. This argument shows that 

(8.2.4) 

It follows from this and Lemma 1.2.2 that there exists a J.lBridge (n) such 
that 

(8.2.5) 

and 
bN(n) ~ J.lBridge(n)N+(d-k)T+l for all N ~ 1. (8.2.6) 

In detail: define 

{ 1 if 1 < n <A 
an= bn-A{n) ifn; A; 

then an+m ~ an am for all n, m ~ 1 by (8.2.4) and the fact that bN{n) is 
non decreasing in N. Now apply Lemma 1.2.2. 

Next we wish to show that 

J.lBridge (R.} ::: J.t('R.). (8.2.7) 

We shall do this by following the Hammersley-Welsh argument of Section 
3.1. For each N, let hN (n) denote the number of half-space walks in 
SN(n). Recall that Pv(N) is the number of partitions of N into distinct 
integers. Then for every N ~ 1, 

(8.2.8) 

which is proven exactly as in Proposition 3.1.5 (the same argument works 
because n is invariant under reflection through a hyperplane Xt ::: con­
stant). We can now imitate the proof of Theorem 3.1.1, using 

N 

cN{n) ~ 2: hN-m{'R)hm+t{n) (8.2.9) 
m:O 
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(which is proven in exactly the same way as the first inequality of (3.1.7)] 
as well as (8.2.8) and (8.2.6) to reach the analogue of (3.1.8) 

(8.2.10) 

This proves that J.t('R.} $ I'Bridge('R.). The reverse inequality is immediate 
since CN('R.} ~ bN('R.}, so (8.2.7) follows. 

The next theorem says that for any k, J.t('R.[k, T]) is strictly increasing in 
T and converges to J.t as T - oo. First we remark that the strict inequality 

J.t('R.[k, T]} < J.t (8.2.11) 

is an immediate consequence of the Pattern Theorem (Theorem 7.2.3). In 
detail: if P is the walk consisting of T + 1 steps in the +.:cd direction, 
then P is a proper internal pattern that never occurs on a walk that lies 
in n[k, T], and so (7.1.7) implies (8.2.11). Based on this argument, one 
would also expect that J.t('R.[k, T]} < J.t('R.[k, T + 1]} for every T; however, 
the Pattern Theorem as we have stated it is not applicable in this context. 
An appropriate extension of the Pattern Theorem has been described by 
Soteros and Whittington (1989), but we shall instead give a different proof 
of this inequality below. 

Theorem 8.2.1 Suppose 1 :5 k :5 d- 1. Then 

lim J.t('R.{k, T]} = J.t 
T-oo 

(8.2.12) 

and 
J.t('R.[Ic, T)) < p.('R.[k, T + 1]} for every T. (8.2.13) 

Proof. We prove (8.2.12) first. Recall from Definition 8.1.1 that bN(O) 
denotes the number of N-step bridges in zd that begin at the origin and 
end on the .:c1 axis. By Lemma 8.1.8 and Proposition 8.1.2 we see that qN $ 
d(d- l)bN+2(0); combining this with Corollary 3.2.5 and the elementary 
bound bN(O) $ CN, we see that limN-oo bN(0)11N exists and equals p.. 
Therefore for any£> 0 there exists an integer s ~ 1 such that b,(0)11' > 
J.t- L Let n. = 'R.[k, 2s]. Since every s-step bridge win zd having w;(O) = s 
for i = k + 1, ... , d must lie entirely in n., we see that 

(8.2.14) 

for every integer j '2: 1. Hence J.t('R.{k, 2s]} '2: J.t-£. Equation (8.2.12) follows 
from this and (8.2.11), since£ is arbitrary and J.t('R.[Ic, T]} is nondecreasing 
in T. 
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The proof of (8.2.13) consists of some direct extensions of results from 
Sections 4.2 and 3.1. For each N ~ 0, let BN(T) denote the set of N­
step bridges w lying in 'R.[k, T] such that w(O) = 0 and wi(N) = 0 for 
i = k + 1, ... , d, and let f3N(T) = IBN(T)I. Let .>.N(T) denote the number 
of bridges in BN(T) which cannot be expressed as the concatenation of a 
bridge in BM(T) to a bridge in BN-M (T) for some M E {1, ... , N- 1}. 
We thus obtain the following analogue of (4.2.2): 

N 

f3N(T) = L .>.,(T)f3N- 1 {T) + 6N,O· (8.2.15) 
•=1 

Now consider the generating functions 

00 00 

Bz(T) = L f3N(T)zN and Az{T) = L .>.N(T)zN, 
N:O N:1 

and let z(T) = (J.L('R.[k,T]))-1. We claim that Bz(T} diverges at z = z(T), 
analogously to Corollary 3.1.8. 

To prove this claim, we first observe that for any bridge w in .S N {'R.) there 
exist two (T(d- k) + 1)-step bridges tjJ and t/J such that the concatenation 
t/J ow o 1/J is in BN+2T(d-k)+2{T). Therefore bN{'R.) ~ f3N+2T(d-k)+2(T} 
for every N. Hence it suffices to show that L~=O bN('R.)zN diverges at 
z = z(T}. But this can be proven by the same argument that was used to 
prove Corollary 3.1.8. Therefore the claim is true. 

Since Bz(T} diverges at z(T}, we can copy the argument leading from 
(4.2.2) to (4.2.4) to show that Az(T){T) = 1 for every T. Since .>.N(T) ~ 
.>.N (T + 1) for every N with strict inequality for at least one N, we see that 
Az (T + 1) > Az {T) for every z > 0, and in particular that 

(8.2.16) 

Hence the unique positive solution of Az (T + 1) = 1 is strictly less than 
z{T), i.e. z(T+ 1) < z(T). This proves (8.2.13). 0 

We have seen that in regions 'R. = 'R.[k, T], the connective constants 
J.L('R} and J.lBridge ('R.} are equal. On the basis of the fact that J.L equals 
J.lPolygon in zd [Corollary 3.2.5], one might also expect the analogous con­
nective constant for polygons inn to equal J.L('R.) as well. However, as the 
next theorem shows, this is not always the case. 

Theorem 8.2.2 Let qN{T} denote the number of N -step self-avoiding poly­
gons in 'R. = n[k' 11 up to horizontal translation. 
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{a) The limit limN-oo qN('R}1/N {taken through even values of N only) 
exists. Denote the limit by fl. Polygon ('R}. 
{b) If k = 1, then f..lPolygon ('R} < f..l('R}. 
{c) If k > 1, then f..lPolygon ('R} = f..l('R}. 

Proof. We limit ourselves to an outline of the proof. Part (a) can be 
proven by a concatenation argument as in Theorem 3.2.3, with a modifica­
tion similar to what was needed for (8.2.4). The idea behind part (b) is the 
Pattern Theorem, as extended in Lemma 4.1 of Soteros and Whittington 
(1989). Let P be a self-avoiding walk contained in {z E 'R[1, T1: z 1 = 0} 
that visits every point of this set. [Such a walk exists by Lemma 7.2.4(a).] 
Then P can occur many times on a long self-avoiding walk that lies in 'R, 
but it cannot occur more than twice on a self-avoiding polygon that lies in 
n. So the number of polygons should be exponentially smaller than the 
number of walks in 'R[l, T]. 

Finally, part (c) follows from a result similar to Theorem 3.2.4, with the 
following changes in the proof. First, the vector v that is orthogonal to the 
line containing 0 and .x should also be parallel to the ( Zt. z2)-coordinate 
plane (observe that n is infinite in the Xt and X2 directions). Secondly, 
when we form w, we allow for a few extra steps between (w(i), ... ,w(M)) 
and (w(O), ... ,w(i)) when we concatenate them, as in (8.2.4), so that w 
stays insideR; we do the same for u, and the same again when we join w 
and U to obtain e. D 

Next we look at a different class of subsets of za. Let f; (i = 2, ... , d) 
be given functions from {0, 1, ... ,} to {0, 1, ... , oo }. Let n, denote the 
region 

n1 = {z E za: x1 ~ o, o ~ x; ~ f;(xt), i = 2, ... , d}, 

which is often called a "wedge". Let CN {'R f} be the number of self-avoiding 
walks in n, that begin at the origin. 

Theorem 8.2.3 (a) Suppose limsup.,_. 00 /;(z) < oo for at least one i. 
Then limsupN .... oo cN(n,) 11N < f-l· 
(b) Suppose lim., .... 00 /;(z) = +oo for every i. Then limN .... oo cN(R,} 1/N 
exists and equals f-l· 

Proof. Part (a) is an immediate consequence of the Pattern Theorem [as 
with (8.2.11)]. For part (b), it suffices by Theorem 8.2.1(a) to show that 

(8.2.17) 

for every T. By assumption, for every T there exists an a = a(T) > 0 
such that /;(x) ~ T for every x ~ a and every i = 2, ... , d. Thus {x E 
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'R(1,T]: X1 ~a} is a subset of'Rj. It follows that ifw is a bridge in 
SN {'R[1, T]) and u ~ a, then the translation of w by the vector ( u, 0, ... , 0) 
is a bridge that lies entirely inn,. Let p be a walk oflength llw(O)IIt from 
the origin to w(O). Observe that IPI :5 (d- 1)T. Then the walk consisting 
of a+ ( d- 1 )T -IPI steps in the +x1 direction, followed by p, followed by w, 
is an [ N + a + ( d- 1 )T]-step self-avoiding walk that lies in n I· Therefore 

(8.2.18) 

for every M ~ a + ( d - 1 )T. Taking M -th roots of both sides of this 
inequality and letting M __. oo, we conclude from (8.2.5) and (8.2.7) that 
(8.2.17) holds. The theorem follows. D 

8.3 The infinite bridge 

In this section we shall prove that there exists a measure on "infinite 
bridges" which may be defined in a natural manner analogous to the defini­
tion of the measure on infinite self-avoiding walks in five or more dimensions, 
as discussed in Section 6.7. Although the results are analogous, the proofs 
are completely different. The results of the present section are valid in any 
dimension. 

The basic idea is the following. Suppose that you wish to know the 
probability that a long bridge (uniformly chosen from among all n-step 
bridges) begins with a particular (finite) sequence of steps, say four steps 
in the +x1 direction followed by three in the -x2 direction. The answer 
should not depend much on the length n of the bridge. In fact, we shall 
prove that the probability converges as n __. oo. We can think of the limit as 
the probability that an infinitely long bridge begins with the given sequence 
of steps. 

The basis for the results of this section is the renewal theory framework 
of Section 4.2. The first result also relies on the ratio limit theorem for 
bridges (Theorem 7 .3.4( d)], which says that 

l • bn+l 
Jm -b- =J-t· 

n-+oo n 
(8.3.1) 

A more constructive method of defining a measure on infinite bridges is 
discussed in the second half of the section. We shall see that the the two 
definitions are equivalent. 

The following part of our discussion parallels the beginning of Section 
6.7. Let Bn denote the set of all n-step bridges that begin at 0. Given 
n ~ m and an m-step self-avoiding walk w, we let Pg,n(w) denote the 
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fraction of n-step bridges that extend w; in the terminology of Definition 
7.1.1, 

(8.3.2) 

Observe that P!,m(w) can be nonzero only if w is a half-space walk (recall 
Definition 3.1.2). Next we define 

(8.3.3) 

if the limit exists. We shall prove below that the limit always exists, which 
implies that the probability measures P~ on m-step walks are consistent 
in the sense of (6.7.2). 

The existence of the consistent measures P;! allows us to define a 
measure P/l, on the set of all infinite self-avoiding walks ( that satisfy 
( 1 (0) = 0 < ( 1 ( i) for every i ~ 1, as follows. Using the notation ([0, m] = 
(((0), ((1), ... , ((m)) form~ 0, the measures P~ provide the values of P/l, 
on cylinder sets of the form {([0, m] = w} via 

P,!{([O, m] = w} = P!(w) for every m-step self-avoiding walk w. 
(8.3.4) 

This is sufficient to guarantee the existence and uniqueness of the proba­
bility measure P/l, on "infinite bridges" (. 

We now prove that the measures P~ are indeed well-defined. 

Theorem 8.3.1 Let w be an m-step self-avoiding walk. Then the limit 
( 8. 3. 3) exists. 

Proof. First, we shall introduce some notation and use it to write an 
explicit expression for the limit. If {3 is an n-step bridge that extends w, 
then let M(/3, w) denote the smallest value of i with the following properties: 
i ~ m; f3t (j) 5 f3t (i) for every j = 0, 1, ... , i; and f3t ( i) < f3t (l) for every 
1 = i + 1, ... , n. Thus we see that M(f],w) equals the smallest i ~ m such 
that f3t ( i) is a break point of j3 (recall Definition 4.3.4) if such an i exists, 
and equals n otherwise. Next, for each k ;::: m, let Ek(w) denote the set of 
bridges j3 in Bk that extend w and satisfy M(/3, w) = k. The point of this 
definition is that if j3 is an n-step bridge that extends w, then there is a 
unique value ofi (m 5 i 5 n), namely i = M(/3, w), with the property that 
(/3(0), ... , /3( i)) is in £;(w) and (/3( i), ... , /3( n )) is an ( n - i)-step bridge. 
Therefore 

n 

IFn(w) n Bn I= L IE;(w)lbn-i· (8.3.5) 
i=m 
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We shall prove that the limit (8.3.3} exists and satisfies 

00 

P:(w) = L l&.~:(w)ltrk. (8.3.6} 
k:m 

The first step towards proving this is to divide (8.3.5} by bn and let n -+ oo; 
then (8.3.2}, (8.3.1} and Fatou's lemma imply that 

00 

liminfP!n(w) ~ ""l&.~:(w)IJ.t-k. 
n-+oo ' L..J 

(8.3.7) 
k=m 

Thus it suffices to prove the reverse inequality for the lim sup. 
Suppose k ~ m, and consider an arbitrary j3 in &.~:(w). If (J is an ir­

reducible bridge then let I = 0, and otherwise let I be the largest value 
of i such that fJ1 ( i) is a break point of (J. Then I ~ m [since (J is in 
&,~:(w)), ((J(O), ... ,(J(I))=(w(O), ... ,w(I)), and ((J(I), ... ,(J(k)) is an irre­
ducible bridge, so we deduce that 

m 

)&.~:(w)l ~ 2: -'.~:-; (8.3.8) 
i:O 

for every k ~ m. 
Next consider an arbitrary J ~ m. For any n > J, we use (8.3.5), 

(8.3.8), and finally ( 4.2.2) to obtain 

J 

IFn(w) n Bn 1- L l&.~:(w)lbn-k < 
k=m 

Now divide (8.3.9) by bn and let n --+ oo. By (8.3.2) and (8.3.1), we see 
that 

J 

limsupP!,n(w)- L l&.~:(w)ll'-k < 
n-oo k:m 

~ (1'-i _ t. ArJ.t-i-r) 

< ~ 1'-i ( 1-t. Arl'-r) . (8.3.10) 
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By ( 4.2.4), the right side of (8.3.10) tends to 0 as J -+ oo, and so 

00 

limsupP:,n(w) :5 I: I&A:(w)IJrA:. 
n-oo k:m 

(8.3.11) 

Together with (8.3.7), this proves the theorem. 0 

We now give an alternate construction of a random infinite bridge in 
terms of a process that builds it up randomly one piece at a. time. Consider 
the probability distribution on the set of all irreducible bridges (starting at 
the origin) that assigns probability J.l-m to each m-step irreducible bridge. 
This is indeed a probability distribution because E:=1 AmJ.I-m = 1 (by 
Equation (4.2.4)). Next consider a. random sequence of "pieces" '7[11, '7[21, ... 
chosen independently from this distribution, and let p = q£11 o q£21 o · · · be 
the "infinite bridge" obtained by concatenating the pieces in order. Let Q8 

be the probability measure governing q£11, q£21, ... and hence p. Then the 
following result is true: 

Theorem 8.3.2 For every m ~ 1 and for every m-step self-avoiding walk 
w, 

QB{p[O, m] = w} = P!{([O, m) = w}. (8.3.12) 

This theorem implies that Q8 and P! yield the same probability law for 
the infinite bridge. 

Before proving Theorem 8.3.2, we make some observations that relate 
the construction of p to the renewal theory framework of Section 8.1. Let 
X; = l77[i]l be the number of steps in the i-th piece, and let Y; be the vector 
in zd-1 consisting of the second through d-th coordinates of the last point 
ofthe i-th piece. Then the joint distribution of(X;, Y;) is given by (8.1.15). 
Also, Equation (8.1.18) shows that bN(Y)/ J.IN is the probability that Pt (i) :5 
Pt (N) < Pt(i) for all i < Nand all j > N and that (p2(N), ... , P2(N)) = y. 

Proof of Theorem 8.3.2. We shall use the random variables X;= 1'7[i]l 
(i ~ 1), as defined in the preceding paragraph. For every k ~ 1, let Ak be 
the event that P1(k) is a break point of the infinite bridge p, i.e. 

Ak = {Pt(r):5Pt(k) foreveryr=O, ... ,kand 

Pt(s) > Pt(k) for every s > k} 

= {X 1 + · · · + X; = k for some i ~ 1}. 

We claim that for every k ~ 1 

Q8 ( {p[O, k] = ,13} () AA:) = J.l-k for every bridge j3 E BA:. (8.3.13) 
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To prove this, suppose that f3 E 81:. Then for some j ;::: 1 we can write 
f3 = ¢[11 o ... o ¢Ul, where each ¢!iJ is an irreducible bridge (in fact, j- 1 
equals the number of break points in {3). Then 

Q8 ( {p[O, k] = {3} n A~:) = Q8 {rPl = ¢111, ..• , 71UJ = ¢Ul} 
= "_,,,~,, "_,,,2,1 ••• "_1,uJ1• 

This proves the claim because 1¢1111 + · · · + 1¢Ull = 1/31 = k. 
Next fix m ;::: 1, and fix an m-step self-avoiding walk w. Define the 

random variable 

T = min{i: X1 +···+X;;::: m}. 

Recalling the definition of t'~:(w) fork ;::: m from the proof of Theorem 8.3.1, 
we observe that the two events {p[O, k) E t'~:(w)} and A,. both occur if and 
only if {p[O, m) = w} and {X 1 + · · · + XT = k} both occur. Therefore 

00 

Q8 {p[O, m] = w} = L Pr{p[O, m] = w and Xt + · · · + XT = k} 
l::m 

00 

= L Pr({p[O,k]et',.(w)}nA,.) 
l:=m 

00 

= L lt'~:(w)IJ.t-"', 
l:=m 

where the last equality is a consequence of (8.3.13). Finally, we combine 
the above equation with (8.3.6) to complete the proof. 0 

8.4 Knots in self-avoiding polygons 

Recall that every self-avoiding polygon corresponds'to a simple closed curve 
that is determined by the set of bonds of the polygon. Through this cor­
respondence, it makes sense to say whether or not a given self-avoiding 
polygon in Z3 is knotted. Furthermore, we can ask about the probabil­
ity that a randomly chosen N-step polygon is unknotted. As we shall see 
below, this probability tends to 0 exponentially fast as N-+ oo. 

The issue of knots arises in certain areas of polymer physics. For ex­
ample, knots in polymers can give rise to defects during crystallization. 
Also, knots can occur on dosed circular molecules of DNA, and they are 
believed to be relevant to understanding the actions of certain enzymes on 
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these molecules. For further discussion and references, see Sumners and 
Whittington (1988) and Soteros, Sumners and Whittington (1992). 

Let Q(N] denote the set of N-step self-avoi4ing polygons in Z3 whose 
lexicographically smallest point is the origin, and let R[N) denote the subset 
ofunknotted polygons in Q[N]. The following theorem is due independently 
to Sumners and Whittington (1988) and Pippenger (1989). 

Theorem 8.4.1 There exists a J.Lo strictly less than JL such that 

lim IRNI 1/N = J.Lo. (8.4.14) 
N-ooo 

(As usual, this limit is taken through even values of N, since R[N] is empty 
if N is odd.) 

We shall only present an outline of the proof of this theorem. For the re­
maining details, which are mostly topological in nature, see Sumners and 
Whittington (1988), Pippenger (1989), or Soteros, Sumners and Whit-ting­
ton (1992). 

First, the existence of the limit in (8.4.14) follows from an application 
of the concatenation arguments of Theorem 3.2.3, together with the fact 
that the concatenation of two unknotted polygons yields another unknotted 
polygon. So J.Lo is well-defined by (8.4.14), and it remains to explain why 
p,o < p,. The key to this is the Pattern Theorem 7.2.3. Let P be the pattern 
and let C be the cube that are depicted in Figure 8.2. In particular, Pis 
entirely contained in C, and the two endpoints of Pare corners of C. If 

• 

o ... ·_ ............ . 
Figure 8.2: The knot-like pattern P (solid lines) and its associated cube C 
(dotted lines) from the proof of Theorem 8.4.1. The length of each side of 
Cis 3. 

U is a polygon and if the part of U that lies inside the cube C is precisely 
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the single subwalk P, then U must be a knotted polygon. This topological 
property may be rephrased in terms of Definition 7.2.2 as follows. Suppose 
that U E Q[N] and that U corresponds (in the sense of Definition 3.2.1) to 
a self-avoiding walk win SN-t(e) with llelh = 1. If (P,C) occurs on w, 
then U must be knotted. This implies that 

IR[N]I ~ CN-dO, (P, C)]. (8.4.15) 

Combining this inequality with CN-t[O, (P, C)]~ CN-t[a(N -1), (P, C)] and 
applying Theorem 7.2.3(a), we conclude that limsupN-oo IR[NJI 11N < J.l. 
Therefore J.lo < J.l· This completes our discussion of the proof of Theorem 
8.4.1. 

It is apparent from the above argument that in fact all but exponentially 
few N-step polygons contain aN occurrences of(P, C) for some a> 0, and 
that we can use other kinds of knot-like patterns in place of P (perhaps in 
larger cubes C). Therefore most large polygons are in fact rather complex 
knots. These ideas are explored further in Soteros et al. (1992). 

We remark that Theorem 8.4.1 can also be proven using part (b) of the 
Pattern Theorem 7.2.3 instead of the stronger part (a). To do this, one 
uses the fact that the pattern Pis a "tight knot", i.e. there is no room for 
another part of the polygon on which P occurs to pass back through P and 
"untie" the knot. 

8.5 Notes 

Section 8.1. The results of this section are due to Madras (1991b ). 

Section 8.2. Walks in restricted geometries serve as a model of polymers 
in the presence of physical barriers; for example, we may wish to know how 
much entropy is lost when a polymer is confined to a pore or capillary. 
Surveys and references are given in Whittington (1982) and Whittington 
and Soteros (1991). 

Whittington (1983) proved that J.L('R.} and J.lBridge ('R} exist and are 
equal. Hammersley and Whittington (1985) proved (8.2.11) as well as The­
orems 8.2.1 and 8.2.3. Theorem 8.2.2(b) is due to Soteros and Whittington 
(1988) and independently to Aim and Janson (1990). Percolation and Ising 
models on sets 'R.J have been studied as well; see references in Hammersley 
and Whittington (1985) as well as Chayes and Chayes (1986c). 

Klein (1980) used "transfer matrices" to analyze self-avoiding walks in 
'R[1, T] as well as in more general "one-dimensional" lattice subsets. In 
addition to proving that cN('R) "" const.J.l('R.)N (i.e. I('R) = 1), he also 
argued that (lw(N)I2) ,...., const.N (i.e. v('R.) = 1). Aim and Janson (1990) 
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used similar methods to perform a more detailed rigorous analysis in general 
"one-dimensional" lattices. They also proved that r('R) = 1 and v('R} = 1, 
and that the "infinite self-avoiding walk" exists in the sense of Section 6.7. 

Section 8.3. The results of this section are new. 
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Chapter 9 

Analysis of Monte Carlo 
methods 

9.1 Fundamentals and basic examples 

Monte Carlo methods are useful for getting statistical estimates on the 
values of the connective constant, critical exponents, and other quantities 
related to self-avoiding walks. Essentially, a Monte Carlo simulation is a 
computer experiment which observes random versions of a particular sys­
tem. After we obtain enough data, we can use statistical techniques to get 
estimates and confidence intervals for the desired quantities. 

For definiteness, consider the exponent 11 [defined in (1.1.5)], which mea­
sures the length scale of self-avoiding walks. There are several unresolved 
questions about v, such as: Are the conjectured values (1.1.12) and (1.1.14) 
correct in 2, 3, and 4 dimensions? In particular, is the Flory exponent 3/5 
too large in three dimensions? Do the hyperscaling relations (1.4.14) and 
(1.4.24) hold? In two dimensions, does the average area enclosed by an N­
step self-avoiding polygon scale like N 2v? Good numerical estimates can 
give evidence in support of (or against) these and other conjectures. As we 
saw in Section 2.3, such evidence can also be relevant for analogous con­
jectures in other models; for example, if hyperscaling fails for self-avoiding 
walks in three dimensions, then it is likely to fail for other N-vector models 
as well. 

To get a taste of some of the numerical values that various researchers 
have obtained, let us focus on the value of 11 in three dimensions. An 
early study by Rosenbluth and Rosenbluth (1955) used biased sampling 
(see Section 9.3.1) to generate walks of up to 64 steps, obtaining an esti-

281 
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mate of 0.61 for v. Stellman and Gans (1972) generated walks of up to 
298 steps using a continuum version of the pivot algorithm (see Sectiqn 
9.4.3) to obtain an estimate of 0.610 ± 0.008 for v (this and the following 
are 95% confidence intervals for v; see Section 9.2.1). Grishman (1973) 
generated walks of length 500 using a combination of the dimerization and 
enrichment algorithms (see Sections 9.3.2 and 9.3.3), producing an esti­
mate of 0.602 ± 0.009. However, these early results, which used relatively 
short walks, are biased by significant systematic errors due to unincluded 
correction-to-scaling terms (see Section 9.2.1). Rapaport (1985) generated 
walks of length up to 2400 using a combination of dimerization and enrich­
ment, and estimated 0.592±0.004. Madras and Sokal (1988) used the pivot 
algorithm to generate walks of up to 3000 steps, and obtained 0.592±0.003. 
A very recent study (Li and Sokal, private communication), which uses the 
pivot algorithm to generate walks of up to 80,000 steps, indicates that the 
true value of v is even lower: the preliminary estimate is 0.5883 ± 0.0013, 
which is in remarkable agreement with the field theoretic renormalization 
group prediction of0.5880±0.0015obtained by Le Guillou and Zinn-Justin 
(1989). This brief history illustrates that correction-to-scaling terms are a 
serious danger, and that exponent estimates based on short walks must be 
interpreted with caution. 

There are good reasons why Monte Carlo is "easier" for self-avoiding 
walks than for spin systems. First, there is only one limit to worry about, 
namely the length of the walk going to infinity. In a spin system, one has 
to take a limit going to a critical temperature as well as a thermodynamic 
limit of a finite lattice increasing to zd. The latter is absent for self-avoiding 
walks, which can be simulated without any errors arising from the finite 
volume of the lattice. Secondly, spin system simulations typically exhibit 
"critical slowing-down": as the correlation length e diverges, you must look 
at finite lattices of at least ed sites to learn anything, and you must look at 
each site before you get a new data point. This is not an inherent restriction 
for self-avoiding walks, since you only have to look at sites occupied by the 
walk. This suggests the possibility of more efficient algorithms in which 
critical slowing-down is much less severe. 

Another frequently used numerical method is exact enumeration and 
extrapolation. This approach computes exact values of certain quantities 
for small values of N and then tries to infer an asymptotic behaviour from 
these numbers. We will not discuss this method in this book; the interested 
reader is referred to Guttmann (1989a). 

To conduct a Monte Carlo experiment for the estimation of v, one can 
for example proceed as follows. 

(a) Select several values of N, say Nt, ... , Nm. 
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(b) For each N;, generate many N;-step self-avoiding walks at 
random. Use these to get an estimate Y; of (lw(N;)I2}, along 
with an estimate of the uncertainty in Y;. 

(c) Fit a curve of the form Y = AN28 through the points 
(Ni, 'Y,-). The "best'' value of B will be the estimate of v. 
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Of course, each step raises many questions about how to proceed. In (a), 
how many and which values of N should be chosen? In (b), how many 
is "many"? What is the most efficient way to generate walks at random? 
How can the uncertainty best be estimated, and how does this uncertainty 
vary with N? In (c), how do we use the estimated uncertainties to fit 
data to a curve that is only believed to be asymptotically correct? These 
are the kinds of question that will be addressed in this chapter. We shall 
concentrate, however, on what one can say rigorously about the properties 
of these methods. The reader who wishes to pursue other aspects of Monte 
Carlo in more depth should consult the references listed in the Notes at the 
end of this chapter. 

The remainder of this section will discuss some basic examples of Monte 
Carlo methods for generating self-avoiding walks, and will use them to il­
lustrate various themes that appear throughout the chapter. Section 9.2 fo­
cuses on some statistical aspects-both practical and theoretical-of Monte 
Carlo methods. Sections 9.3 through 9.6 will treat various methods in de­
tail. The longer proofs and calculations are deferred to Section 9.7. 

We use our usual notation that SN is the set of all N-step self-avoiding 
walks that begin at the origin. We shall restrict our attention to walks that 
begin at the origin, unless explicitly stated otherwise. 

We begin with the basic question: How can we choose an N-step self­
avoiding walk at random? (In this context, "at random" means that all 
walks in SN are equally likely. For now, N is a given integer.) One simple 
method is the following: 

Elementary Simple Sampling (ESS). This algorithm generates 
ordinary simple random walks until it obtains an N-step 
walk that is self-avoiding. 

1. Let w(O) be the origin and set i = 0. 
2. Increase i by one. Choose one of the 2d neighbours of w( i -1) 

at random, and let w(i) be that point. 
3. If w(i) = w(j) for some j = 0, 1, ... , i- 1, then go back to 

Step 1. Otherwise, go to Step 2 if i < N, and stop if i = N. 

When this algorithm terminates, the walk W = (w(O), ... , w(N)) is self­
avoiding. Moreover, we claim that for any wE SN we have Pr{W = w} = 
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1feN. To see this, letS~ be the set of all N-step (ordinary) simple walks. 
If we keep choosing members of S~ uniformly at random until one of them 
is in SN, then the final result is evidently uniformly distributed on SN. But 
this is essentially what the above algorithm does; Step 3 is just a short-cut 
to avoid generating the last N - i steps of a walk that we already know 
intersects itself by the i-th step. Thus the ESS algorithm indeed generates a 
self-avoiding walk at random. However, it can be very slow when N is even 
moderately large: the probability that an N-step simple random walk is 
self-avoiding is eN f(2d)N, so the expected number of attempts (i.e. returns 
to Step 1) is (2d)N feN. Therefore, using the notation Tx to represent the 
expected amount of computer time required for algorithm X to generate a 
single N -step self-avoiding walk, we have 

( 2d)N+o(N) 
TEss= -

Jl. 
(9.1.1) 

We can improve on the efficiency of ESS by only generating simple random 
walks with no immediate reversals, as follows: 

Non-Reversed Simple Sampling {NRSS). This algorithm gener­
ates simple random walks with no immediate reversals until 
it obtains an N-step walk that is self-avoiding. 

1. Let w(O) be the origin. Choose one of the 2d neighbours of 
the origin at random, and let w(1) be that point. Set i = 1. 

2. Increase i by one. Of the 2d- 1 neighbours of w(i- 1) that 
are different from w(i- 2), choose one at random, and let 
w(i) be that point. 

3. If w(i) = w(i) for some j = 0, 1, ... , i- 1, then go back to 
Step 1. Otherwise, go to Step 2 if i < N, and stop ifi = N. 

Arguing as for the ESS algorithm, we see that the NRSS algorithm gen­
erates a self-avoiding walk uniformly from SN, and it takes an average of 
2d(2d- 1)N-l feN attempts to do so. Therefore 

(
2d- 1) N+o(N) 

TNRss= -- , 
I' 

(9.1.2) 

which is better than (9.1.1), but still not very good. 
Before continuing, we should mention the following "obvious" algorithm, 

which (perhaps surprisingly at first sight) does not work: 

Myopic Self-Avoiding Walk (MSAW). Execute a random walk, 
at each step choosing only from those sites that have not yet 
been visited. 
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1. Let w(O) be the origin, and set i = 0. 
2. Increase i by one. Of the neighbours of w(i -1) that are not 

in the set { w(O), ... , w( i- 2)}, choose one at random, and 
let w( i) be that point. (If all of the neighbours of w( i - 1) 
are in this set, then the walk is trapped, so return to Step 
1.) 

3. Repeat Step 2 if i < N, and stop if i = N. 
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This algorithm produces a walk in SN, but with the wrong distribution. To 
see where the problem is, consider four-step walks on Z2 : the probability 
of obtaining the walk NEEE on a given attempt is ~ x ~ x ~ x ~~ but 
the probability of obtaining the walk NESE is ~ x ~ x ~ x !· Thus, the 
probabilities are not uniform on SN. In fact, the probabilities become very 
far from uniform for large N. The algorithm MSAW actually defines a 
different model, which is essentially the same as the "true self-avoiding 
walk" of Section 10.4. 

Other algorithms for generating independent self-avoiding walks are de­
scribed in Section 9.3. To varying degrees, they all suffer from the problem 
that they are inefficient for large walks. In fact we have the following 

Open Problem: Is there an algorithm A which generates a 
single N-step self-avoiding walk, with distribution that is ex-
actly uniform on SN, such that the average time TA is bounded 
by a polynomial in N? 

Actually, the problem is only open in low dimensions: for d ~ 5, the av­
erage time of the dimerization algorithm of Section 9.3.2 is known to be 
bounded by a polynomial. Dimerization is also the most efficient known 
algorithm for generating a single walk exactly uniformly in any dimension, 
with an expected running time of N°(logN) (if the usual scaling assump­
tions are true; see Section 9.3.2). However, there do exist more efficient 
algorithms that generate self-avoiding walks with a distribution that is ar­
bitrarily close to uniform. These algorithms do not attempt to generate a 
sequence of independent self-avoiding walks, but rather they use a Markov 

chain to generate a sequence of self-avoiding walks that is not indepen­
dent. Such methods are known as dynamic1 , as opposed to static, Monte 
Carlo methods. Roughly speaking, dynamic methods generate new walks 
by modifying (or "updating") walks that have been previously generated, 
while static methods build up walks from scratch. Static methods yield in­
dependent walks (or independent groups of walks), while dynamic methods 
yield correlated sequences of walks. 

1This usage is distinct from the term "polymer dynamics", which refers to the (real) 
motion of polymers. 
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The basic idea of the dynamic approach is the following. Suppose that 
1r is a probability distribution on some set S (i.e., for each i E S, 1r(i) is the 
probability of i, and Lies 11'( i) = 1 ), and that we wish to generate a random 
object with the distribution 71'. If we can find a Markov chain with state 
space S whose unique equilibrium distribution is 71', then the fundamental 
theory of Markov chains tells us that running this chain for a long time 
will produce observations whose distribution approaches 11'. In our case, we 
may takeS= SN and 1r(w) = 1/cN for every self-avoiding walk w in SN. 
We begin with a walk w£01 in SN and apply some (randomized) procedure 
that changes w£01 to get another self-avoiding walk w£11; then we apply the 
same procedure to w£11 to get another walk w£21, and so on. In this way we 
generate a sequence of walks {wlnl : n ~ 0} such that (for sufficiently large 
n) the distribution of w[n] is arbitrarily close to 11'. This sequence of walks 
will be correlated, of course, but one hopes that the relevant correlations 
will decay quickly. 

To make the preceding discussion more precise, we make the following 
definitions, which are fairly standard in probability textbooks: 

Definition 9.1.1 Let {X[t] : t = 0, 1, ... } be a Markov chain on a finite or 
countably infinite state space S. Let 

P(i,j) = Pr{X[t+t) = jjX£tJ = i} (t ~ O,i,j E S) 

be the one-step transition probabilities of the chain, and for every nonneg­
ative integer n let 

P"(i,j) = Pr{X[I+n) = iiX[tJ = i} (t~O,i,jeS) 

be the n-step transition probabilities. (We only consider chains that are 
time-homogeneous, i.e. whose transition probabilities are independent oft.) 
The chain is said to be irreducible if for every i and j in S there exists an 
n > 0 such that P"( i, j) > 0 (i.e. every state can be reached from every 
state). An irreducible chain is said to have period p if p is the greatest 
common divisor of {n : P"(i, i) > 0} for every state i (or equivalently for 
at least one i). A chain which has period 1 is said to be aperiodic. 

We remark that pn is simply the n-th matrix power of P. Notice that if 
an irreducible chain has P(i, i) > 0 for some i, then it is aperiodic. 

The standard theory of Markov chains (see references in Notes) tells 
us the following about the long-term behaviour of an aperiodic irreducible 
chain X[t]. First, the limit 

lim pn(i,j) 
n-+oo 
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exists for every i and j in S, and this limit is independent of i; call it 11'(j). 
Next, if S is finite, then 

L:11'u> = 1 (9.1.3) 
jES 

and 
L 11'(i)P(i,j) = 11'(j) for every j inS; (9.1.4) 
iES 

and moreover 71' is the only nonnegative solution of (9.1.3) and (9.1.4). 
Finally, if S is countably infinite, then there are two possibilities: either 
11'(j) = 0 for every j, in which case (9.1.3) and (9.1.4) have no nonnegative 
solution; or else 71' is the unique solution of (9.1.3) and (9.1.4). 

An important special case is the following: we say that a chain is re­
versible with respect to 71' if 

11'(i)P(i,j) = 11'(j)P(j,i) for every i and j inS. (9.1.5) 

(In alternate terminology, (9.1.5) is called the detailed balance condition.) 
Note that if 71' is the uniform distribution, then reversibility is equivalent to 
symmetry of P. If a chain is reversible with respect to 71' 1 then (9.1.4) holds 
(to see this, sum (9.1.5) over i). In practice, almost all dynamic Monte Carlo 
procedures use reversible chains (or are a combination of several reversible 
chains, as in Section 9.5.2). 

If (9.1.3) and (9.1.4) hold for an irreducible chain and some 71' 1 then 
the chain is said to be positive recurrent, and 71' is called its equilibrium, 
or stationary, distribution. In general, 11'(j) is the fraction of time that the 
chain spends in state j, in the long run (irrespective of the initial state). 
Thus, if our chain X(t] is positive recurrent, and if we observe it for a 
sufficiently long time, then the data should be pretty representative of the 
distribution 71'. For example, this tells us that if the state space is SN 
and we observe end-to-end distance of the walks X(t) for a sufficiently long 
time, then we will obtain a good estimate of the mean square displacement 
(lw(N)I2} computed according to 71'. This is essentially a consequence of 
the ergodic theorem, which tells us that for a real-valued function f on the 
state space of a positive recurrent chain, 

lim _!_ ~ f(Xltl) = ""f(i)11'(i) 
m-oo m LJ LJ 

1=1 iES 

with probability one (assuming that the right hand side, which is just the 
expectation of/(·) with respect to 71' 1 is absolutely convergent). 

Let us now look at a particular example: an algorithm due to Verdier 
and Stockmayer (1962) which turns one self-avoiding walk into another by 
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Figure 9.1: An example of the Verdier-Stockmayer algorithm in action. The 
circled site of w[t] corresponds to the randomly chosen I of Step 2. Observe 
that w[2] = w[l] because the w resulting from w[1] is not self-avoiding. Also 
observe that thew resulting from w[31 in fact equals w[31. 

moving one or two bonds of the walk. Briefly, it picks a site at random and 
tries to "flip" the two incident bonds if they form a right angle (or tries to 
wiggle the end bond if the chosen site is an endpoint of the walk). Here is a 
precise statement of the algorithm; a verbal description follows, and Figure 
9.1 gives an iilustration. 

Verdier-Stockmayer {V-S) Algorithm. This algorithm generates 
a Markov chain {w[t] : t = 0, 1, ... } on the state space SN 
which is reversible with respect to the uniform distribution 
on SN. 

1. Let w[o) be any self-avoiding walk in SN. Set t = 0. 
2. Choose an integer I uniformly at random from {0, 1, ... , N}. 
3. Define a new walk w = (w(O), ... ,w(N)), which is not neces­

sarily self-avoiding, as follows. First set w(l) = w['l(/) for all 
l #I. Then: 

(a) if 0 < I < N, then set w(I) = wl1l(I- 1) + 
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(wl'l(I + 1)- wl1l(I)); 
(b) if I = N, then set w( N) equal to any neighbour 

ofwl1l(N-1) except forwl1l(N'-2) andwi11(N), 
chosen at random; 

(c) if I= 0, then set w(O) equal to any neighbour 
of wl11(1) except for wi11(0) and wl11(2), chosen 
at random. Then translate w so that it begins 
at the origin. 

4. If w is self-avoiding, then set wlt+t) = w; otherwise, set 
wlt+t) = wl'l. 

5. Increase t by one and go to Step 2. 

289 

To visualize this algorithm, think of the N bonds of a walk w as a sequence 
of N unit vectors Aw(i) = w(i)- w(i- 1) (i = 1, ... , N). Step 2 chooses 
a site w(I) at random. Then Step 3 either interchanges the I-th bond 
with the (I+ 1)-th bond (if 0 < I < N) or else randomly changes the 
first or last bond (if I is 0 or N). [Observe that in Step 3(a) we obtain 
Aw(I) = Aw(I + 1) and Aw(I + 1) = Aw{I).] Step 4 rejects the proposed 
walk w if it is not self-avoiding. 

To show that a certain probability distribution 1r is the equilibrium dis­
tribution of a Markov chain, we check both reversibility and irreducibility. 
First we shall show that the V-S algorithm is reversible (with respect to 
the uniform measure on SN ). To do this, it suffices to check that P is 
symmetric, i.e. 

P(w,w') = P(w',w) whenever w ::f:. w'. (9.1.6) 

So suppose that w and w' are distinct walks in SN. If P(w,w') = 0 and 
P(w',w) = 0, then (9.1.6) holds, so assume without loss of generality that 
P(w, w') > 0. That is, if we start with w, then there is a choice of I 
such that the walk w obtained in Step 3 equals w'. In this case, w and w' 
differ by either one or two bonds, and so there is a unique choice of I that 
transforms w into w'; denote this unique number by i[w, w']. Thus, since 
Pr{I = i[w,w']} = 1/{N + 1), we have 

P(w,w') = { Nh 1 if 0 < i[w,w'] < N 
(N+1)(2a_ 2) if i[w,w'] is 0 or N 

(the second line follows since there are 2d - 2 ways to choose the new 
first or last bond). Now, if w can be transformed into w', then w' can be 
transformed intow; in particular, we have i[w',w] = i[w,w']. Thus P(w',w) 
is given by the right hand side of the above equation, and so (9.1.6) holds. 
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There is a subtlety in the algorithm that makes reversibility so easy to 
prove. Consider a variation of the V-S algorithm in which we wait until a 
successful move occurs before recording the next observation: specifically, 
suppose that Steps 4 and 5 are replaced by 

4'. If w is not self-avoiding, then go to Step 2. If w is self­
avoiding, then set w[t+l] = w, increase t by one, and go to 
Step 2. 

Now there is no guarantee that (9.1.6) holds; the proof fails because in the 
new chain the one-step transition probability from w tow' is P(w, w')/(1-
P(w,w)) (here Prefers to the probabilities in the original chain; observe 
that 1- P(w, w) is the probability that a single attempt turns w into some­
thing different). So we cannot have symmetry in the new chain unless 
P(w,w) is the same for every win the original chain. This does not happen 
for the V-S algorithm, nor for any other interesting algorithm that we know 
of. Thus we see that in order to guarantee that we get the correct equilib­
rium distribution, it is vital to record the current walk after every attempt, 
whether the attempt results in a walk that is self-avoiding (a "success") or 
not (a "rejection"). 

We have seen that the original V-S algorithm is reversible, but unfor­
tunately it is not irreducible. For example, there exist self-avoiding walks 
which are "frozen", i.e. they can never be changed by the V-S algorithm 
{see Figure 9.2). But the irreducibility difficulties are worse than just 

Figure 9.2: A 17-step self-avoiding walk in Z2 which is "frozen" with respect 
to the Verdier-Stockmayer algorithm. 

having a few frozen walks. An ergodicity class of a Markov chain is defined 
to be a maximal subset A of the state space such that for every i and j in 
A, there exists an> 0 such that pn(i,j) > 0. Thus SN is partitioned into 
many ergodicity classes, some of which contain a single walk. If w[o] is in a 
given ergodicity class, then we can view the V-S algorithm as producing a 
Markov chain whose equilibrium distribution is uniform on that ergodicity 
class, not on all of S N. As we shall see, this is a serious concern in principle, 
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because the largest of the ergodicity classes is an exponentially small part 
of SN as N __.. oo (Theorem 9.4.2). 

We conclude this introductory section with some remarks on the fol­
lowing problem, which is relevant to any computer program that works 
with self-avoiding walks: how fast can we check that a given walk is self­
avoiding? To be precise, suppose that you are given a finite sequence of 
lattice sites w(O),w(1), ... ,w(N) such that lw(i)- w(i- 1)1 = 1 for every 
i = 1, ... , N. What is the most efficient way to check whether these N + 1 
sites are all distinct? 

The most obvious algorithm is to look at every pair i and j such that 
0 $ i < j $Nand check whether w(i) equals w(j). There are N(N + 1)/2 
such pairs, so the running time of this algorithm is O(N2). A different 
algorithm achieves a running time of O(N) by using a "bit map". The 
idea behind this method is to simply draw a picture of the walk. For 
example, suppose we are working with N-step walks starting at the origin 
in Z2 . The simplest bit map is a (2N + 1) x (2N + 1) array, indexed by 
(i,j), -N $ i,j :5 +N, with all entries initially 0. Then every site of Z2 

that can be reached by an N-step walk corresponds to an entry. For each 
i = 0, 1, ... , N in turn, check the entry corresponding to the site w(i): if 
the entry is 0 then change it to 1, but if the entry is already 1 then the 
walk is not self-avoiding. Afterward, go through the list of sites again to 
reset the entries to 0. The running time of this algorithm is clearly O(N). 

The disadvantage of a bit map is that it requires a lot of space: in zd, it 
requires O(Nd) words of computer memory. An alternative approach uses 
a data structure known as a "hash table". A set of N sites can be stored 
in a hash table of size 0( N) in such a way that we can check whether 
a given site is in the set in average time 0(1) - i.e. independent of N. 
Thus a hash table allows one to check self-avoidance in average time O(N) 
using only 0( N) words of memory. Thus we have the satisfactory property 
that the amount of time and space needed to check self-avoidance are both 
proportional to what is required just to write down the walk. References 
about hash tables and their implementation for self-avoiding walk problems 
can be found in the Notes for this chapter. 

9.2 Statistical considerations 

In this section we shall survey some of the statistical problems associated 
with Monte Carlo methods. In particular, this will lead us to the important 
concept of autocorrelation times for dynamic methods. 
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9.2.1 Curve-fitting and linear regression 

First we shall recall some elementary statistics. If a random variable Y is 
normally distributed with (unknown) mean m and (known) variance <T2 , 

then the probability that m lies in the (random) interval [Y - 1.96<T, Y + 
1.96<T) is about 0.95. Thus we say Y ± 1.96<T is a 95% confidence interval 
for m. Often the variance is also unknown, and we have to compute an 
estimate &2 of <T2 • In this case, Y ± 1.96& is only an approximate 95% 
confidence interval; for the usual estimates of the variance, the 1.96 should 
be replaced by a suitable number from a table of the Student's t distribution 
(for more details, consult the statistics references in the Notes). 

Now let us consider the scenario described at the beginning of this chap­
ter, in which we attempt to estimate v from several data points (N;, Y;) 
(i = 1, ... , m), where N; is chosen in advance by the experimenter and 
Y; is an estimate of (lw(N; )12} obtained by generating a large number of 
random N;-step self-avoiding walks. Let <Tf be the variance of Y;; since the 
variance is generally not known, we will in practice need to compute an 
estimate u[ of <Tf (we shall discuss how to do this below). 

To estimate v, we begin with the scaling relation 

(9.2.1) 

We can write this asymptotic relation as an equality with (infinitely many) 
"correction-to-scaling" terms: 

(9.2.2) 

The exponents of the correction terms are strictly positive, and A is the 
smallest of them, i.e. BN- 11 is the dominant correction term. (Like v, these 
exponents are believed to depend only on the dimension. Other forms of 
corrections, such as logarithms, are also possible.) Our job is to fit a curve 
Y = f( N) to the data; to do this in a meaningful way, we must only 
allow a small number of parameters in the family of curves. The obvious 
choices are either to eliminate all of the correction-to-scaling terms, giving 
the two-parameter family of curves 

Y = AN2", (9.2.3) 

or else to eliminate all but the dominant correction term, giving the four­
parameter family 

(9.2.4) 

The form (9.2.3) is appropriate if the N; 's are all large enough so that the 
actual corrections to scaling are smaller than the statistical errors in the 



9.2. STATISTICAL CONSIDERATIONS 293 

data (i.e. smaller than O'i)· In general, however, we cannot expect this a 
priori. If we choose to work with {9.2.4), there is no guarantee that the 
best curve of this form will reflect the true value of d, since we do not know 
the size of the omitted correction terms {when N is small, these terms can 
be large, making it hard to see d from data corresponding to small N;; 
but when N is large and the omitted terms are small, then the included 
term BN-~ is also small). The combination of all of the correction terms 
may very well show up in the data as a single "effective exponent" deJ 1, 
which has no real relation to {9.2.2). Thus it is a very delicate business to 
try to estimate the true value of d. Rather, we may view the role of the 
parameter ~ in (9.2.4) as an aid to the extrapolation of a finite amount 
of data into the N -+ oo asymptotic regime. {This represents a relatively 
cautious viewpoint which is definitely not universally accepted within the 
physics community.) 

The standard statistical tool for fitting curves of the above forms to data 
is the method of least squares. Functions of the form {9.2.3) and (9.2.4) 
are examples of regression functions. Linear regression functions are the 
easiest to work with, so we begin by taking logarithms of the above two 
equations, obtaining 

logY = log A + 2v log N (9.2.5) 

and 
logY= logA + 2vlogN + BN-~, (9.2.6) 

where the last term of (9.2.6) was obtained by the approximation log(l + 
x) ~ x for x near 0. (If the reader accepts the viewpoint of the preceding 
paragraph that the parameter ~ should be regarded merely as an aid to 
extrapolation, then this approximation should cause no worries.) 

Let us first focus on {9.2.5). Ordinary least squares estimation would 
tell us to estimate A and v by the values that minimize the sum of squares 

m 

L)log 'fi ~ log A - 2v log N; )2. 
i=l 

This is not appropriate for us because an underlying assumption of this 
method is that the variance of log 'fi is the same for every i. Instead, we 
should use weighted least squares estimation, weighting each term according 
to the inverse of its (estimated) variance, so that the }i's in which we 
have more confidence will have more say in determining the best fit. The 
general procedure is the following. Suppose that we observe independent 
random variables U1, •.• , Um where each U; is normally distributed with 
mean a+ bM; (where we know M; and we want to estimate a and b) and 
variance v?, (Our case corresponds to b = v, a= logA, U; = log'fi and 
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M; = 2log N;.) Then the weighted least squares estimates a and b are the 
values of a and b that minimize the weighted sum of squares 

m 

SS(a, b)= E w;(U;- a- bM;)2, (9.2. 7) 
i=l 

where w; is a positive "weight" (typically 1/v?, but not necessarily). The 
minimizing values are 

b _ Ew; Ew;M;U;- Ew;M; Ew;U; 
- Ew; Ew;Ml- (l:w;M;)2 

(9.2.8) 

and 

(9.2.9) 

These are unbiased estimators of b and a (i.e. E(b) = b and E(a) = a). 
Also, b and a are normally distributed with variances 

and 

V (") _ L:w;M? 
ar a - "' "' ( . L..J w; L..J w; M? - L: w; M; )2 

The variances can be used to give statistical confidence intervals for a and 
b in the usual way. We can also formulate a test for the "goodness of 
fit" of our model: If the model is correct, and if the weights are given by 
w; = l/v?, then the "residual sum of squares" SS(ii, b) has a x2 distribution 
with m - 2 degrees of freedom. 

When applying this theory in our Monte Carlo setting, we must first 
decide whether the estimates ¥; are normally distributed. Typically, ¥; is 
the average of a large number of observations 

In the case of a static method such as NRSS, the Xt 's all come from different 
N;-step walks, so they are i.i.d. (independent and identically distributed). 
The central limit theorem t~lls us that their average is normally distributed 
if Tis large enough. (For an objective statistical test of normality, one can 
use the test of Shapiro and Wilk (1965); see Appendix A of Bratley, Fox, 
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and Schrage (1987).) Moreover, in the i.i.d. case, the variance of Y; is 
Var(Xl)/T, so we can estimate r7f, the variance of¥;, by 

A2 1 0 A 2 
r7; = T2 L..,..(Xt - Y;) . 

1=1 

The case of dynamic methods will be discussed in Section 9.2.2. 
Suppose now that we believe that Y; is approximately normally dis­

tributed, say with mean Y; and variance r7?, What can we say about 

U; = Jog Y;? Assume that r7; is much smaller than Y;, i.e. the uncertainty 
is relatively small compared to the magnitude of the quantity being esti­
mated, as should be true in any good Monte Carlo experiment which tries 
to estimate something that can only be positive. Then U; is approximately 
normally distributed with mean logY; and variance r7f /¥?. To see this, we 

write Y; = Y; + Zr7;, where Z is approximately normally distributed with 
mean 0 and variance 1; then 

[ ( Zr7· )] ( Zr7·) Zr7· 
U; = log Y; 1 + Y; 1 = logY; + log 1 + Y; 1 ~ logY; + Y; 1 

, 

and the assertion follows. Thus iT[ j}i2 is an estimate of the variance of 
U;. Therefore, in the weighted least squares procedure described above, 
the appropriate choices of weights are w; = ¥;2 / o-[. 

For completeness, we shall briefly describe weighted least squares es­
timation for more than two parameters. The framework of general linear 
regression is best expressed in matrix notation. Put the observed random 
variables (Yi, ... , Y m in our case) into an m x 1 column matrix Y. Let 
{3 be a p x 1 column vector containing the unknown parameters, and let 
X be a known m x p matrix; the model assumes that E(Y) = X{3. (For 
example, in the model (9.2.6)2: p is 3; the entries of (3 are Jog A, 2v, and 
B; and the i-th row of X consists of the entries 1, log N;, and N;-t>.) Also 
let V be a known m x m positive definite matrix, which we assume to be 
the covariance matrix of Y (i.e. V = E[(Y - X(J)(Y - X(J)T], where the 

T denotes transpose). The weighted least squares estimator is the vector~ 
which minimizes 

SS((3) = (Y- X{3)TV- 1(Y- X{3); 

it is given by 

2 0bserve that in the context of linear regression, we must assume a fixed value for 
A in this model. The most common choice is A = 1; sometimes renormalization group 
calculations suggest other values, such as A = 1/2. 
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Then /3 has a multidimensional normal distribution whose mean vector is 
the true f3 and whose covariance matrix is (XTV-1X)-1• If the model is 
correct, then SS(/3) has a x2 distribution with m- p degrees of freedom. 

9.2.2 Autocorrelation times: statistical theory 

When a dynamic Monte Carlo experiment is performed, the observations do 
not form an independent sequence, and so elementary statistical methods 
are often not applicable. In this section we shall address the problem of how 
to estimate the variance of the average of a large number of observations 
from a dynamic Monte Carlo experiment. Once we know how to perform 
such estimates, we can apply the regression theory outlined in Section 9.2.1. 

To be specific, suppose that {wltl : t = 1, 2, ... } is a stationary Markov 
chain. (A stochastic process is said to be stationary if, for every k ~ 0, 
the joint distribution of (w[tl, ... ,w[t+kl) is the same for every t.) For a 
stationary Markov chain, the distribution of w[t] for any fixed timet must 
be the equilibrium distribution. Every positive recurrent Markov chain is 
asymptotically stationary; in practice, we can assume that a Markov chain 
is stationary if we discard enough initial observations so that the chain has 
had enough time to forget any influence of its initial state and has "reached 
equilibrium". 

Let g be a real-valued function on the state space (e.g. g(w) = lw(N)I2 

if the state space is SN ). Such a function is often called an "observable" 
in the physics literature. Let 0 denote expected value with respect to the 
equilibrium distribution of the chain. Then we would like to estimate (g) 
by the estimator 

• • 1 [1) [T) Y = Y[T) = T[g(w ) + · .. + g(w )]. 

Since the distribution of w[t) is the stationary distribution, it is easy to 
see that Y is an unbiased estimator of Y. But what is its variance? This 
question is addressed in the following lemma. 

Lemma 9.2.1 Suppose {X[1l} is a real-valued stationary process with finite 
second moment. Let 

Y[T] = ~(X[1l + ... + x[Tl). 

For each integer k, let Cx(k) denote the covariance of X[t] and X[t+k] 

(observe that this is independent oft by stationarity; we are implicitly re-
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stricting consideration to t 2: 1 and t + k 2: 1}. Let 

00 

v = I: Cx(k), 
l:=-oo 

and assume that this sum converges absolutely. Then 

lim TVar(Y[T]) = v. 
T-oo 

Proof. We have 

T T-1 

Var(Y[T]) = ; 2 I: Cov(x£•l,x£tl) = ; 2 I: (T -lki)Cx(k). 
•,t:l A::-(T-1) 

The result now follows from the dominated convergence theorem. D 

In the notation of the above lemma, Cx(O) is the variance of X£11, and 
Cx(k)/Cx(O) is called the autocorrelation function. The ratio v/[2Cx(O)] 
is called the integrated autocorrelation time, and is denoted Tint,X· When 
the X(t) are independent, Tint,X = 1/2. 

Returning to our dynamic Monte Carlo algorithm, we shall take X£11 = 
g(w£11) in the above lemma. We now write C9 (k) for the covariance of g(wl1l) 
and g(wlt+l:l), and the integrated autocorrelation time is 

00 C9 (k) 1 oo C9 (k) 
Tint,g = I: 2C {0) = 2 +I: C (0)' 

l::-oo g k=l g 

(9.2.10) 

The lemma tells us that 

Var(Y[T])""' ~Tint,g Var(g(wl11)) as T-oo. {9.2.11) 

This asymptotic relation has a very useful intuitive interpretation. If the 
w[tJ•s (and hence the x£t1•s) were independent, then the variance of the 
average Y[T] would be given by (9.2.11) with 2Tint,g replaced by 1. This 
means that if we are using a dynamic Monte Carlo method and we want 
to get an estimator with the same variance as one that samples T indepen­
dent observations, then we need 21'int,gT consecutive observations from the 
Markov chain. In other words, 211nt,g is the number of observations from 
the chain that we need to get one "effectively independent" data point. 

So far we have neglected the question of whether or not the series defin­
ing v in Lemma 9.2.1 converges absolutely. Fortunately, the answer is that 
it usually does; in fact, the terms Cx(k) frequently decay exponentially. 
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The inverse of this decay rate is known as the eJ:ponential autocorrelation 
time. Specifically, given a real-valued function g on the state space of our 
stationary Markov chain {w£'1}, we define its exponential autocorrelation 
time to be 

(9.2.12) 

thus, the covariances C1 (k) decay roughly like exp(-k/re:ep,1 ). We also 
define the exponential autocorrelation time of the Markov chain to be 

ru:p = sup re:ep,g, 
g 

(9.2.13) 

where the sup is over all g such that E(g(wftl)2) is finite. This means 
that re:ep is the relaxation time of the slowest mode in the system. As we 
shall see in Section 9.2.3, re:ep plays an important role in measuring the 
rate of convergence to equilibrium from an arbitrary initial distribution. 
The exponential autocorrelation time could be infinite (as in the BFACF 
algorithm of Section 9.6.1), but this is typically not the case. In particular, 
as we shall see in Section 9.2.3, rezp is finite whenever the state space is 
finite. 

Given this theoretical description of the situation, we still need to find 
good statistical techniques for estimating the variance of Y[T], or, equiva­
lently, for estimating C1 (0)rint,g· This kind of problem has been the focus 
of much research in the field of time series, and we sh~lllimit ourselves here 
to a very brief discussion; the Notes at the end of the chapter give some 
references for additional information. 

One of the simplest procedures is the method of batched means. Given a 
long sequence of observations X£11, ... , X[T] of a stationary process, divide 
them into some relatively small number n of equal length subsequences, or 
"batches". Let b = T/n be the number of observations in each batch, and 
let Yi be the average of the i-th batch: 

ib 

Yi = L: xuJ /b. 
j:(i-1)&+1 

If we assume that b is much larger than rezp 1 then the Yi's are approxi­
mately independent and approximately normal, each with mean E(Xl1l) 
and variance ~ vfb where v is defined as in Lemma 9.2.1 [see for example 
Theorem 20.1 of Billingsley (1968) or Corollary 1.5 of Kipnis and Varadhan 
(1986)). Thus the overall average Y[T) is the average of the Yi's, and we 
can estimate its variance using the sample variance of the Yi 's. For a "quick 
and dirty" method, this one is not bad. One serious drawback of course is 
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the assumption that b >> Terp: in particular, the results of the procedure 
cannot be used as a check on the assumption after the fact. 

A more developed approach is the spectral analysis of time series. Briefly, 
this tries to estimate the infinite sum v ( = 2C9(0)Tint ,x) by estimating each 
term in the infinite series. By analogy with the usual estimator for covari­
ance, we define the following estimator of Cx(k): 

T-k 
Cx(k) = - 1- I)x!iJ- Y(T1)(x!iHJ- Y(T1) 

T- k i=l 

fork= 0, 1, ... , T-1. This is a biased estimator of Cx(k), but it converges 
to Cx(k) with probability one as T--+ oo by the ergodic theorem. We next 
define the estimators of v 

m 

Vr,m = Cx(O) + 2 2: Cx(k) 
l::l 

(the number m is chosen by the user). We don't insist on taking m = 
T- 1 because we believe that Cx(k) is close to 0 when k is large, and 
so Cx(k) is mostly noise when k is large. (Heuristically: Var(Cx(k)) = 
0(1/T), so Var(Vr,r-t) = 0(1)- i.e. the uncertainty does not disappear 
as T--+ oo!) How should m be chosen? One reasonable way is the following 
"automatic windowing" procedure: Let m be the smallest integer such that 
m ;::: 10Vr,m· The factor 10 here is somewhat arbitrary, but the idea is that 
we want to make sure that we include contributions from terms that are 
up to several Tint's apart. 

There is one more statistical issue that we must mention here, and that 
is the problem of initialization bias. In this section we have assumed that 
our observations come from a stationary process. Although Markov chains 
are asymptotically stationary, a simulation typically starts from a state 
which is not chosen according the equilibrium distribution. For example, in 
the case of self-avoiding walks, one might wish to start with a walk that is 
a straight line segment (for programming convenience). Thus, a simulation 
typically begins with an initial period which is "far from equilibrium", 
and it eventually "approaches equilibrium". The initial period must be 
removed from the data lest it introduce a bias to our estimates. Thus 
the experimenter must decide when the process has "reached equilibrium". 
The simplest procedure is to watch some observables over time until they 
all appear to have stabilized. There are also various statistical procedures 
that have been developed for removing initialization bias; see Bratley, Fox, 
and Schrage (1987) for a survey and references. 

For concreteness, let us briefly consider the specific problem of choosing 
an initial state for a simulation of a Markov chain on the state space SN 
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of N-step self-avoiding walks. We could generate an initial walk using a 
static algorithm such as NRSS; although this would be slow, it has the the­
oretical advantage that we would then be starting the chain in equilibrium 
(exactly!), and so we would not have to worry about initialization bias at 
all. However, even for N around 200, it would be much faster to start with 
a straight walk and run until equilibrium is reached than it would be to 

generate a single walk by NRSS. But there are better static methods than 
NRSS; in particular, it is feasible to use dimerization (Section 9.3.2) to 
generate a single self-avoiding walk of two or three thousand steps in two 
dimensions (and even longer in three dimensions) to use as an initial state. 
(We remark that self-avoiding walks are one of the few interesting systems 
where there exists a feasible procedure for generating an initial state from 
the exact equilibrium distribution; nothing comparable is known for Ising­
type models.) 

9.2.3 Autocorrelation times: spectral theory and 
rigorous bounds 

Consider an irreducible Markov chain with state space S, transition proba­
bilities P, and equilibrium distribution 71'. Define the inner product of two 
complex-valued functions f and g on S to be 

u,g) = :LJ(i)g(i)7r(i); (9.2.14) 
iES 

the associated norm is 

( ) 
1/2 

11/112 = (!, !)112 = L if(iW7r(i) 
iES 

(9.2.15) 

Let !2( 7r) denote the Hilbert space of the complex-valued functions f with 
II/I b finite. As usual, the norm of an operator T on 12 ( 7r) is given by 

IITII = sup{IIT/112: f E 12(11'), 11/lb $ 1}. 

We view P as an operator on 12( 7r) by defining 

(P f)(i) = L P(i,j)J(j). 
jES 

The operator Pis a contraction on !2( 7r), i.e. liP II $ 1. To prove this, we 
observe that [(Pf)(i)]2 $ (P(j2))(i) for every i by the Schwarz inequality, 
and therefore 

IIPJm $ 2:<PU2)(i))7r(i) =111m (9.2.16) 
iES 
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[using (9.1.4) to get the equality]. 
Since IIPII $ 1, all of the eigenvalues of P lie on or inside the unit circle. 

Moreover, using Perron-Frobenius theory one can show the following [Sidak 
(1964)]: since the chain is irreducible, 1 is a simple eigenvalue of P, with 
the constant function 1 as an eigenfunction; and 1 is the only eigenvalue of 
P on the unit circle if and only if the chain is aperiodic. 

Define the operator II which maps l 2(1r) to the constant functions as 
follows: 

(II/)( i) = L.: 1r(j)/(j) for every i; 
jES 

thus (IT/)(i) equals the expectation of f with respect to 11'. The basic 
convergence theory of Markov chains tells us that P"' converges to IT in 
a sense that will be made precise below. Observe that II2 = II and II is 
self-adjoint [i.e. (/, Ilg) = (II/, g)], so II is the orthogonal projection onto 
the space of constant functions. Also, liP= II= PII [by (9.1.4)], and so 

(I -II)P = P- II= P(I -11). (9.2.17) 

We shall focus on the operator P-11, which is 0 on the subspace of constant 
functions and equals P on the orthogonal complement of that subspace. 

For the rest of this section, we shall also assume that the Markov chain 
is reversible with respect to 11'1 i.e. that (9.1.5) holds. This implies that P 
is self-adjoint on 12( 1r): 

(!, Pg) = L I( i) L P(i, j)g(j)11'( i) 
j 

= LLf(i)g(i)P(i, i)11'(j) = (P/,g). 
j 

Since a self-adjoint operator must have real spectrum, it follows from the 
fact that IIPII :51 that the spectrum of Pis a subset of the interval (-1, 1]. 

We shall now state a few facts from functional analysis. Let T be a 
bounded operator on a Hilbert space, and let O'(T) be the spectrum ofT. 
The spectral radius ofT, denoted r(T), is defined to be 

r(T) ::sup{ I-XI :.X e O'(T)}; 

it satisfies the well known "spectral radius formula" 

r(T) = lim IITn Win = inf urn Win. 
n-oo n~l 

Suppose now that T is also self-adjoint, so that O'(T) is real. Then we in 
fact have 

r(T) = IITII = urnwtn for every n ~ 1. (9.2.18) 
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The first equality is well-known [e.g. Theorem VI.6 of Reed and Simon 
(1972)]; the second equality follows from r(T) :$ !IT'll Pin (from the spectral 
radius formula), the inequality IITnll ~ IITIIn, and the first equality. We 
also know 

inf o-(T) = inf { (/, T f) : ll/ll2 ~ 1} and 

sup o-(T) = sup{(/, T f) : ll/ll2 ~ 1} (9.2.19) 

(Yosida (1980), p.320); in particular, this implies the "Rayleigh-Ritz prin­
ciple" 

r(T) = sup{j(/, T/)1: ll/!12 :$ 1}. (9.2.20) 

Finally, we have the relation 

r(T) = sup lim sup 1(1, rn J)llln 
J n-oo 

(9.2.21) 

which we shall prove in Section 9.7.1. 
Now let us return to our Markov chain. Using the notation of Section 

9.2.2, we find for the stationary Markov chain {wl1l} that 

C9(k) = E[(g(wl1l)- (g))(g(wltHl)- (g))] 

= ~ r( i)[(g - llg )( o)] [ ~ P'( i, j)(g - llg )(j) l 
= ((I- II)g, Pk(I- II)g) 

= { (g,(P- II)kg) fork~ 1 
(g, (I- II)g) for k = 0, (9·2·22) 

where we have used I - II = (I - II)2 and (9.2.17) in the last step. By 
definition, limsup,~:_.00 IC9(k)PI"' = exp(-1/ru:p,g) and Tu:p = sup9 Te:rp,g 1 

so (9.2.22) and (9.2.21) imply that exp(-1/re:rp) = r(P- II); equivalently, 

1 
Te:rp = -logr(P- II)· (9.2.23) 

Since P - II is self-adjoint, 

r(P- II)= liP- III I= II(P -ll)"'W'"' =liP"'- IIW1"'. (9.2.24) 

This implies that re:rp also measures the exponential rate of convergence to 
equilibrium when the Markov chain is not started in equilibrium. In detail, 
consider the metric for probability measures on S defined by 

p(ifJ,t/J) = sup{ILf(j)ifJ(j)- Lf(j)t/J(j)l: ll/ll2:::; 1} 
j j 
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[recall that 11·112 is the i2(1r) norm of (9.2.15)]. If a Markov chain begins 
with the initial probability distribution ¢ at time 0, then at time k its 
distribution is given by the measure {¢Pk)(j):;: Li ¢{i)Pk(i,j). For any 
f in P( 1r), we have 

j j 

i,j 

and hence 

(9.2.25) 

Equation (9.2.25) has the following practical interpretation: it tells us 
that if we begin from an initial distribution which is different from 1r and 
run the Markov chain for 10Tezp iterations, say, then the deviation from 
equilibrium (with respect to the metric p) is at most e- 10 (about 0.00004) 
times the initial deviation. On the one hand, it is usually very difficult to 
get information about the size of Tezp (either rigorously or numerically), 
so this is rarely a practical criterion for ensuring that the simulation has 
"reached equilibrium". On the other hand, the convergence to equilibrium 
could in fact be much faster than the upper bound of (9.2.25) indicates, so 
not knowing Tezp may not be a real disadvantage. Ultimately, one has to 
analyze the data to determine empirically when the process is sufficiently 
close to equilibrium (see the discussion at the end of Section 9.2.2). 

We remark that when the state space S is finite, then the spectrum of 
P- II is a finite subset of (-1, 1) (assuming aperiodicity), and in particular 
Terp must be finite. 

Up to now, we have been talking about the spectral radius of P- II, but 
in Monte Carlo work one is usually just interested in the spectrum near +1 
rather than near -1. An eigenvalue at -1 causes Tezp to be infinite, but 
for a trivial reason: it happens if and only if the Markov chain is periodic 
with an even period, and so p(tj>Pk, 1r) typically does not even converge to 0 
because the chain always remembers which part of the state space it started 
in. But this does not prevent the averages Y[T] from converging rapidly to 
the correct values. So let us define the modified autocorrelation time 

1 
r' - --::---..,=---~-~ 

ezp - -log[ sup u( P - II)]" 
(9.2.26) 
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Then it will be shown in Section 9.7.1 that for every gin l2(1r) 

1 (1 +exp[-1/~zp]) 1 ( ~ ] 
Tint,g ~ 2 1 _ exp[-1/r:zp] = Tezp 1 + 0(1/ ezp) (9.2.27) 

for ~rp bounded away from 0. 
The following result will be proven in Section 9.7.1. Its corollary below 

will be used a number of times in this chapter (see Sections 9.4.1, 9.5.1, and 
9.6.1). We remind the reader that the covariances C9 (k) and the various 
autocorrelation times are always defined in terms of the stationary Markov 
chain corresponding to P and 1r. 

Proposition 9,2,2 Suppose that P is reversible with respect to 1r. Then 
for any nonconstant g in /2 ( 1r), 

where 

. >! (l+p,{l))- 1 _! 
Tznt,g_ 2 1-p9 {1) -1-p9 (1) 2' 

09 (1) 
Pg(1) = c,(o)' 

Corollary 9.2.3 Suppose that P is reversible with respect to 1r, and let g 
be a function in /2(1r). Assume that there is a finite constant A such that 
lu( i)- g(j)l < A whenever P( i, j) > 0 (i.e. the value of g can never change 
by more than A during a single step of the Markov chain). Then 

209{0) 1 
Tintg > ----. 

I - A2 2 

Proof. First we list the following identities, which may be verified by 
direct calculation: 

C9 (0)(1- p9 (1)) = C9(0)- 0 9 (1) 
= (g, (I- P)g) 

= ~~7r(i)P(i,j)lg(i)-g(i)!2 • (9.2.28) 
a,J 

From (9.2.28), we see that 0 9{0)(1- p9 (1)) :5 A2 /2. The result now follows 
immediately from Proposition 9.2.2. D 

As a further application· of the identities (9.2.28), we have the following 
result: 
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Proposition 9.2.4 Suppose that P1 and P2 are transition probabilities of 
two Markov chains which are reversible with respect to the same 1r, and as­
sume that P1 ( i, j) -;:: P2( i, j) whenever i f:. j. Then their respective modified 
autocorrelation times satisfy r;:rp(Pl)-:::; T~xp(P2)· 

Proof. Fork= 1, 2, we see from (9.2.19) that 

sup u(Pk- TI) =sup{(!, (I- TI)/)- (!,(I- Pk)f) : 11/112 $ 1}. 

In view of (9.2.28), this implies that sup u(P1 - TI) $sup u(P2 - TI). The 
proposition then follows from (9.2.26). D 

Remark. Caracciolo, Pelissetto, and Sokal (1990) prove several gener­
alizations of Proposition 9.2.4, including the result due to Peskun (1973) 
that the same hypotheses imply that Tint.J(Pt) -:::; Tint.J(P2) for every f. 
The intuition behind these results is clear: since P1 makes more transitions 
than P2, it approaches equilibrium faster. 

9.3 Static methods 

In this section we shall discuss a number of static Monte Carlo algorithms. 
These algorithms generate either a sequence of independent self-avoiding 
walks or a sequence of independent batches of self-avoiding walks (the walks 
within each batch possibly being highly correlated). 

9.3.1 Early methods: strides and biased sampling 

Two methods of generating independent sequences were discussed in Sec­
tion 9.1, namely Elementary Simple Sampling and Non-Reversed Simple 
Sampling; both were seen to require an exponentially large amount of com­
puter time for each self-avoiding walk generated. A natural generalization 
of these methods uses "strides" to .build walks instead of single steps. An m­
step stride is a self-avoiding walk of length m. For the following algorithm, 
let m be a fixed nonnegative integer. 

m-Step Stride Method {SM{m)). This algorithm generates a 
self-avoiding walk of length km (k an integer). It requires a 
list t/1[1], ... , t/J[cm] of all m-step self-avoiding walks. 

1. Set W to be the 0-step walk consisting of the single site at 
the origin. Set i = 0. 

2. Increase i by one. Choose an integer J uniformly at random 
from {1, ... , em}. Redefine W to be W o .,P[J], the concate­
nation of .,P[J) to the current W. 
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3. If W is not self-avoiding, then go back to Step 1. Otherwise, 
go to Step 2 if i < k, and stop if i = k. 

The average amount of computer time required to generate one N-step 
self-avoiding walk using this algorithm is 

(cm)N/m (c:Jm)N+o(N) 
TsM(m) = = --CN JJ 

This still grows exponentially in N, but at a slow rate if m is large. Of 
course, the larger m is, the more overhead must be invested in preparing 
and storing the list of all m-step walks. 

One easy way to improve the Stride Method (for a given m) is in Step 2 
to choose tJI[J] from among only those walks whose first bond is not in the 
direction opposite to the last bond of the current W. A more sophisticated 
approach, requiring additional work in advance, is the following. For each 
i = 1, ... , Cm, make a list Li containing all values of j such that 1f1[i] o 
1f1(j], the concatenation of 1f1(j] to 1f1[i], is self-avoiding. Then in Step 2 
only choose the next J from the list LJ corresponding to the current J. 
Unfortunately, since the lists do not all have the same length, this will not 
generate walks with uniform distribution on S~tm unless we exercise some 
caution. Specifically, we could let L = maxi ILd (where ILd denotes the 
length of the list Li), and replace Steps 1 and 2 above as follows. 

11• Choose J(l) uniformly at random from {1, ... , em}. Set 
W = 1f1[J(l)] and set i = 1. 

2'. Increase i by one. Choose J(i) uniformly at random from 
{1, ... , L}. If J(i) > ILJ(i-1)1, then go back to Step 1' and 
start over; otherwise, redefine W to be the concatenation of 
the J(i)-th walk on the list LJ(i-1) to the current W. 

Again we see the usefulness of a "rejection" step (occurring here when 
J(i) > ILJ(i- 1)1) in producing the desired distribution. Without this, our 
method would suffer from the same flaw as the MSAW algorithm of Sec­
tion 9.1. Having sounded these warnings, let us now say that all is not 
necessarily lost if we generate self-avoiding walks with a nonuniform distri­
bution, for we can still estimate interesting quantities by reweighting our 
observations, as we shall now explain. 

Suppose that w[11, ... , w[m] is an i.i.d. sample from SN with a common 
known probability distribution 

q(v) = Pr{w[11 = v} 
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which is not uniform but is strictly positive for every v (for example they 
could be generated by the MSAW algorithm). Suppose that we wish to 
estimate some quantity (f(w))N, where f is a real-valued function on SN 
and ( ·} N denotes the expectation with respect to the uniform distribution 
of w on S N. If we define the reweigh ted average 

I - 1 m /(w!il) 
Ym =-E-( [i])' m i=l q w 

then the expectation of Y ,;{ is CN (f(w )) N (that is, Y ,;{/ CN is an unbiased 
estimator of (f(w))N ). This is because 

( /(w!il)) (!(v)) ( 1 ) 
E q(w!il) = Ls q(v) q(v) = CN CN Ls f(v) . 

VE N VE N 

(9.3.1) 

In particular, if we take f identically 1, then Y~ is an unbiased estimator 
of CN. Since the w[il•s are i.i.d., the strong Jaw of large numbers guaran­
tees that Y~ converges to CN(/(w)}N as m ___. oo, with probability one. 
Therefore, if we define the ratio 

Rfn: Y,/JY~, 

then Rfn converges to (f(w))N as m ___. oo, with probability 1. 
This theory can be applied to the case of walks generated by the MSAW 

algorithm, once we compute the function q. This was done for two examples 
offour-step walks in the paragraph following the statement of the algorithm 
in Section 9.1. In general, suppose that v = (v(O), ... , v(N)) is a self­
avoiding walk. For each i = 0, ... , N -1, lett; be the number of neighbours 
of v( i) that are not in the set { v(O), ... , v( i- 1)}. Then q( v) is the product 
of the reciprocals of to, ... , tN -1· 

This method is often referred to as "inversely restricted sampling" or 
"biased sampling"; it is closely related to "importance sampling" [see for 
example Hammersley and Handscomb (1964) or Bratley, Fox and Schrage 
(1987)]. It was originally used by Rosenbluth and Rosenbluth (1955) for 
the function f(w) = lw(N)l2• Earlier, Hammersley and Morton (1954) had 
used a slight variant of Y~ to estimate CN. 

Biased sampling has some apparent drawbacks: 

• Long walks will eventually become "trapped"; this could lead to many 
attempts being necessary to generate a single walk, unless we had 
a mechanism of avoiding steps that would lead into a trap. (We 
remark that a Monte Carlo study by Hemmer and Hemmer (1984) 
concluded that walks in Z2 survive for 71 steps before being trapped, 
on average.) 



308 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS 

• The estimator Rfn is not unbiased in general. However, McCrackin 
(1972) showed that E(Rfn)- (f(w))N is of order m-1, and hence 
for large m the difference is negligible compared with the ubiquitous 
m-1/2 statistical error inherent in i.i.d. sampling schemes. 

• The weights 1/q vary considerably, and a typical experiment is likely 
to end up with most of the overall weight coming from a very small 
fraction of the observations [Hammersley and Handscomb (1964), Ba­
toulis and Kremer (1988)]. That is, the variance of the estimator Rfn 
is likely to be uncomfortably large for any practical value of m. One 
might try to improve this situation by a variant of importance sam­
pling, in which the possibilities in Step 2 of the MSAW algorithm 
are weighted so that the walk is encouraged to spread out faster (the 
original MSAW produces walks that tend to be more compact than 
typical self-avoiding walks). However, any such reweighting method 
where the distribution being sampled is substantially different from 
the desired (uniform) distribution could quite easily encounter the 
same problems, and the situation is rather delicate. Some work in 
this direction is surveyed in Kremer and Binder (1988, Sec. 2.1.2). 

9.3.2 Dimerization 

A different method of generating self-avoiding walks uniformly on SN is 
dimerization, which is essentially a recursive procedure. The idea is that 
if we wish to generate an N-step self-avoiding walk, then we generate two 
independent ( N /2)-step self-avoiding walks ( "dimers") and try to concate­
nate them. If the result is self-avoiding, we are done; otherwise, we discard 
both dimers and start again. To generate each of the ( N /2)-step walks, 
we generate two (N/4)-step walks and try to concatenate them, and so 
on. The recursion can stop at the k-th level if there is a fast way to gen­
erate self-avoiding walks of length N f21c. For example, 10-step walks are 
easy to generate by Non-Reversed Simple Sampling, so only three levels are 
needed to create an SO-step walk by dimerization. We can express this as 
the following recursive procedure. 

DIM(N ). This procedure generates one N -step self-avoiding 
walk w uniformly from SN. Here No is a fixed small integer 
(e.g. No = 10). 

1. If N $ No, then generate an N-step walk w by NRSS and 
then stop. 

2. (N >No) Set N1 = LN/2J and N2 = N- N1. 
3. Recursively perform DIM(N1) and DIM(N2), yielding the 

self-avoiding walks w1 and w2 respectively. 
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4. Set w = w1 o w2 , the concatenation of w2 to w1• If w is self­
avoiding, then stop; otherwise, return to Step 2 and start 
over. 

309 

We remark that NRSS in Step 1 could be replaced by any other method 
that generates self-avoiding walks uniformly. 

We shall use the following lemma to see that the end product w is in fact 
uniformly distributed, as well as to investigate the efficiency of dimerization. 

Lemma 9.3.1 Let M and N be positive integers. Let v1, v2 , ••• be inde­
pendent self-avoiding walks uniformly distributed on SM, and let <p1 , <p2 , .•. 

be independent self-avoiding walks uniformly distributed on SN. For each 
i ;::: 1, let t/i denote the concatenation of <p; to vi. Let r be the smallest i 
such that t/J; is self-avoiding. Then t/J" is uniformly distributed on SM +N, 

and 
E(r) = CMCN. 

CN+M 

Proof. For any fixed i we have 

Pr{ t/Ji is self-avoiding} = CM +N ; 
CMCN 

call this quantity p. Then r has a geometric distribution, i.e. 

Pr{ r = i} = (1 - p)i-lp (i ~ 1) 

(9.3.2) 

so E(r) = 1/p, which proves (9.3.2). Now let w be any fixed (M + N)-step 
self-avoiding walk, and let w' and w" be the unique M-step and N-step 
walks whose concatenation w' ow" is w. Then 

00 

Pr{tP" = w} = L Pr{r = i and t/Ji = w} 
i:l 
00 

= :l:(l- p)i-t Pr{v; = w' and <p; = w"} 
i:l 

= f:(l- p)i-1_1 ~ 
i:l CM CN 

1 = 
which proves the lemma. 0 

This lemma shows that in the procedure DIM(N), the final walk w is uni­
formly distributed provided that the walks w1 and w2 are uniformly dis­
tributed. We know that this will be true if Nt and N2 are small enough 
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(since Step 1 is completely reliable), and so the uniformity of w follows by 
induction on the number of levels in the recursion. 

We now shall discuss the efficiency of dimerization, under the scaling 
assumption (1.1.4), i.e. 

CN """ ApN N'Y-l, 

For simplicity, we assume N = 2k N0 , where k is the number of levels 
of recursion. Let TDrM(N) denote the expected amount of time for the 
procedure DIM(N) to produce a walk. By (9.3.2), the average number 
of pairs of ( N /2)-step walks that must be generated before we get a pair 
whose concatenation is self-avoiding is ( CN/2 ) 2 f CN, which is asymptotic to 
A(Nf4)'Y- 1 by the above scaling assumption. This gives us the recursive 
relation 

TDIM(N) ""BN'Y-1(2TDIM(N/2)) 

(where B = A/4-r-t ). (We have omitted the amount of time required to 
check whether the two dimers intersect each other, but since this time is 
O(N), it will be seen to be negligible compared with 2TDIM(N/2), the time 
required to generate the two dimers.) Iterating this relation k times (and 
assuming the approximate validity of our scaling assumption all the way 
down to No) yields 

T ""' (2B N-r-1 )k 71 - d Ndtiog:~ N +d:~ 
DIM(N)"' 2(-y-l)k(k-l)/ 2 DIM(No)- 0 ' 

where the di are independent of N: 

r-1 
dt = -2-, 

r-1 5-3r 
d2 = - 2- + log2(2B) = - 2- + log2 A, 

(9.3.3) 

and do depends on No. We thus conclude that the growth of TDrM(N) is 
slower than exponential in N. We also notice that the anticipated values 
for d1 are small: according to (1.1.11), we expect dt to be 11/64 in two 
dimensions, 0.081 ... in three, and 0 in four or more dimensions. In par­
ticular, since it is known rigorously that r = 1 in five or more dimensions 
(see Theorem 6.1.1), the above argument can be made into a rigorous proof 
that TvJM(N) grows polynomially in five or more dimensions. We also note 
that d2 is small in high dimensions: in d = 5 we have the rigorous bound 
d2 = 1 + log2 A :$ 1 + log2 1.493 $ 1.58, and it is even smaller for d ~ 6 
(see Remark following Theorem 6.1.1). 

It is tempting to try to squeeze more data out of dimerization than just 
the information contained in the final N -step walk. For example, to esti­
mate v as described at the beginning of Section 9.1, one might try to use all 
the generated subwalks to get estimates of (lw(N/2i)l2 1} N/ 2' fori= 0, ... , k. 
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This will give an unbiased estimate for each i, but the k+l estimates will be 
mutually correlated; this makes it difficult to find a confidence interval for v 
using classical linear regression theory (Section 9.2.1). Things look better if 
we are trying to estimate 'Y· For n = N, N/2, ... , N/211:-1, let rnli] denote 
the number of attempts needed to produce the j-th n-step self-avoiding 
walk (i.e. the number of pairs of (n/2)-step walks that are concatenated 
after the (j- 1)-th success until the j-th success). As discussed above, 

E(rnUD- 4:-.1 n'Y-t, 

so one could try using linear regression here. If we think of repeating 
DIM(N) indefinitely to produce an infinite sequence of N-step self-avoiding 
walks, then one can easily see that all of the random variables rn[.i] (n = 
N, N/2, ... , N/211:-t, j ~ 1) are independent. (This is essentially because 
the number of attempts needed to generate an n-step walk is independent 
of the walk itself.) 

Suppose that we wish to generate m N -step walks by dimerization and 
use the rn[.i] data. to estimate 'Y· At the top level, we get m indepen­
dent observations of rN[l]. At the next level, we get a random number 
of independent copies of rN/2[·]: in fact, this random number is exactly 
2(rN[l]+· .. +rN[m]). Thus there is some dependence between the data at 
different levels, but one can argue that it is negligible when m is large. A 
more serious difficulty with this scheme is its efficiency. It produces much 
more data for small n than for large n (in fact, more than twice as much 
data for N /2i+l than for N /2i), but this is where we have the least confi­
dence in our scaling assumption. So it is not clear how useful this method 
can be for estimating 'Y· 

9.3.3 Enrichment 

The enrichment method attempts to overcome the high attrition rate of 
simple sampling by reusing intermediate-length walks many times. This 
method was originally used by Wall and Erpenbeck (1959). The basic 
procedure requires two integer parameters, s and t. We first attempt to 
generate s-step self-avoiding walks by NRSS (or a similar method). Each 
time that we get an s-step walk, we make t (identical) copies of it and we at­
tempt to extend each copy independently by NRSS to length 2s. Similarly, 
each time that we get a self-avoiding walk of length 2s, 3s, ... , we make t 
copies of that walk, each of which then evolves independently. The result 
will be a collection of self-avoiding walks of various lengths (all multiples of 
s). There will be a great deal of correlation between some of these walks, 
because they will have exactly the same first s (or 2s, or 3s, ... ) steps; 
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but any two walks which are not extensions of copies of the same initial 
s-step walk will be statistically independent. Thus the enrichment method 
produces several independent groups of self-avoiding walks, but the walks 
within each group are highly correlated. Finding the correct statistical 
approach to handling these correlations remains an open problem. 

Let M~.:~ denote the number of ks-step walks that are produced while 
performing this method. Then M, is the number of independent groups; 
this number in practice is likely to be fixed in advance by the experimenter 
(of course, M~.:~ is random for k ~ 2). In the subsequent analysis, we shall 
assume for convenience that M, = 1. The probability that a single attempt 
to extend a ks-step walk to a (k + 1)s-step walk succeeds is 

We can think of M,, M2,, •.• as a branching process in which M~.:~ represents 
the number of "individuals" alive in the k-th generation, and each individual 
reproduces independently, the number of offspring of an individual being 
a binomial random variable with parameters t and p ~ (f.l-/(2d- 1))'. No 
individual survives more than one generation. We can also think of every 
individual having t offspring, but each offspring only having probability p 
of reaching maturity. For more about branching processes, see for example 
Feller {1968) or Karlin and Taylor (1975). Strictly speaking, pis different 
for each generation, so we really have a time-inhomogeneous branching 
process. However we are not going to prove anything rigorously here, and 
it will be convenient to ignore this fact.. 

Given the number of js-step walks, the expected number of (j + 1 )s-step 
walks produced is 

E(M(i+t)•!Mi,) = tpMi•• 

and by induction we conclude that E(M~.:~) = (tp )k. If tp < 1, then E( Mkl) 
decays exponentially: i.e. the branching process dies out exponentially fast. 
In this case, we do not expect to observe many long walks, and this method 
should not be much of an improvement over ordinary NRSS. If tp > 1, then 
there is a positive probability of a population explosion: that is, of M~.:~ 
increasing exponentially forever. This will lead to an enormous group of 
highly correlated walks. If tp = 1, then the branching process is "criti­
cal": it will die out eventually, but the expected time until this happens is 
infinite. This should produce some large walks, but there can be no pop­
ulation explosion of a single group. The preceding intuitive arguments are 
supported by the theory of branching processes. (This three-way classifi­
cation is a hallmark of critical phenomena; in fact, the above branching 
process is essentially the same as percolation on an infinite tree in which 
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every site hast+ 1 neighbours.) From this discussion, we conclude that the 
best choice of parameters is to take t equal to 1/p, i.e. 

( 2d- 1 ). 
t~ --

Jl. 

One can improve the enrichment method by combining it with the 
dimerization approach, as follows. Suppose that a self-avoiding walk w 
of length ks has just been generated. Make t copies of this walk. For 
each copy, generate an s-step self-avoiding walk (by NRSS or some other 
method) completely independently of w, and then try to concatenate it with 
w. If the result has no intersections, then we have successfully produced 
a (k + l)s-step self-avoiding walk, which we can now copy t times, and so 
on; otherwise, the attempt fails, and this copy of w is no longer used. The 
probability of a success for such an attempt is 

(by the usual scaling assumption ( 1.1.4 )]. The above discussion then sug­
gests taking t to be the inverse of this probability. (Note that allowing t to 
vary with k does not bias our results, whereas allowing t to depend upon 
the generated walks could easily introduce significant biases.) This method 
appears to be significantly more efficient than ordinary enrichment, but of 
course it still has the problem that walks within groups are highly corre­
lated. Variants of this method have been used by Grishman (1973) and 
Rapaport (1985). 

A closely related method has been proposed by Redner and Reynolds 
(1981). Its philosophy is a bit different, in that it estimates the suscep­
tibility and other generating functions directly. A simple version of their 
method may be stated as follows. 

Redner-Reynolds Algorithm. This algorithm generates random 
sets of self-avoiding walks A; C S; ( i ;:::: 0). It requires a 
parameter z between 0 and 1. We denote the 2d (positive 
and negative) unit vectors of zd by e1, •.. , e2d. 

1. Let A0 be the set consisting of the 0-step walk at the origin. 
Set i = 0. (Initially, Ak is empty for every k ;:::: 1.) 

2. Independently, for each walk w in A;, and for each j = 
1, ... , 2d: With probability 1- z, do nothing; otherwise (i.e. 
with probability z) try to add a step ei tow, and if the result 
is self-avoiding, then put it in Ai+l· 

3. Increase i by one and go back to Step 2. 
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The algorithm stops when some Ai is empty. This algorithm is essentially 
a direct exact enumeration procedure in which each possibility is only pur­
sued with probability z. Any given N-step self-avoiding walk is generated 
with probability zN and so the expected cardinality of AN is CN zN. Thus 
the total number of generated walks is an unbiased estimator for the sus­
ceptibility: 

In particular, for the interesting case z < Zc = p-1 , the Redner-Reynolds 
algorithm terminates in finite time with probability one. One can just as 
easily get estimates of other quantities: for example, the sum of the squares 
of the end-to-end distances of all of the generated walks is an unbiased 
estimator of x(z)6(z)2 , where 6(z) is the correlation length of order two 
defined in (1.3.18). 

9.4 Length-conserving dynamic methods 

In this section we shall look at dynamic Monte Carlo methods that gen­
erate walks having a fixed number of steps N. Each method of this type 
corresponds to a Markov chain that takes a self-avoiding walk and tries to 
change it in a random way to get another self-avoiding walk of the same 
length. The Verdier-Stockmayer algorithm, described in Section 9.1, is an 
example of such a method. 

The algorithms that we shall consider in this section are of the following 
form. 

Generic Fixed-Length Dynamic Algorithm. Generates a Markov 
chain {wit) : t = 0, 1, ... } on the state space SN which is 
reversible with respect to the uniform distribution on SN. 

1. Let w[o) be any self-avoiding walk in SN. Set t = 0. 
2. Use a certain randomized procedure to define a new walk 

w = (w(O), ... ,w(N)), which is not necessarily self-avoiding. 
3. If w is self-avoiding, then set wlt+l] = w; otherwise, set 

wlt+t) = wit]. 
4. Increase t by one and go to Step 2. 

Usually, it will be fairly routine to check reversibility, but questions about 
irreducibility (ergodicity) may require some work. 

Before going on, we first make some remarks about conventions for this 
section. We shall always use N to denote the length of the walks being 
generated; N is an arbitrary integer which has been fixed (by the person 
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running the experiment). The state space of the corresponding Markov 
chain is SN. If the algorithm changes the first part of the current walk, 
then its initial point may no longer be the origin (as in Step 3(c) of the 
V-S algorithm); in such a case, we will always implicitly assume that the 
resulting walk is translated so that its initial step is the origin, thereby 
staying in the set SN. (Alternatively, we can think of SN as the set of 
equivalence classes of all N-step self-avoiding walks modulo translation; 
then the starting point of a generated walk is irrelevant, so there is no need 
to worry about translating back to the origin.) The transition probabilities 
will always be written P(·, ·). 

9.4.1 Local algorithms 

A local algorithm operates on walks by attempting to change only a few 
contiguous sites (and bonds) of the current walk at a time. The Verdier­
Stockmayer algorithm is the prototype of this class of methods. Typically, a 
local algorithm chooses a small subwalk of the current walk at random, and 
attempts to replace it with a different (self-avoiding) subwalk having the 
same length and the same endpoints (unless the chosen subwalk includes 
an endpoint of the entire walk, in which case that endpoint may move). We 
keep the new walk if it is self-avoiding and reject it otherwise. The sub walk 
that we delete may uniquely determine the subwalk that replaces it (as in 
Step 3(a) of the V-S algorithm); alternatively, each possible subwalk may 
have a corresponding list of possible replacements, from which one must be 
chosen at random (as in Steps 3(b) and 3(c) of the V-S algorithm). Some 
examples are given in Figure 9.3. 

The main theoretical result about these algorithms is that none of them 
is irreducible: in fact, for any given initial self-avoiding walk, the number 
of different walks that can be obtained from this walk by such an algorithm 
is exponentially smaller than CN (for large N). Before we prove this, we 
shall first make our terms more precise. 

Let k ~ 1 be a fixed integer, and let w and w' be N-step walks. J'hen 
we say that w can be transformed into w' by a k-site move if there exists an 
i (0::; i::; N- k + 1) such that w(j) = w'(j) for every j == 0, 1, ... , i -1, i + 
k, ... , N-that is, if wand w' are the same except for at most k contiguous 
sites. (Observe that the initial points of w and w' may be different if i = 0; 
similarly for their last points if i = N- k + 1.) We say that an algorithm 
is a k-site algorithm if the following holds: P(w, w') > 0 only if w can be 
transformed into w' by a k-site move. Thus the V-S algorithm is a 1-site 
algorithm. Finally, a length-conserving algorithm is said to be local if it is 
a k-site algorithm for some finite k. (Here, k must be independent of N; 
the term "algorithm" technically refers to a collection of algorithms, one 
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..... _j - ..... 1 ..... 1 -
(a) (b) 

- ··· .. ~ 

(c) (d) 

Figure 9.3: Some local length-conserving transformations. The transforma­
tion of (b) depicts the movement of an endpoint. The Verdier-Stockmayer 
algorithm uses (a) and (b), which are "one-site moves". Transformations 
(c) and (d) are "two-site moves" ((d) is shown in three dimensions]. 

for each N, but they are really all defined by exactly the same rules, so we 
use the word algorithm in the singular.) 

We can define the "most general" k-site algorithm according to the 
recipe for the Generic Fixed-Length Dynamic Algorithm, where Step 2 is 
designed to allow transitions to any w into which w[t) can be transformed by 
a k-site move. It is not hard to guarantee reversibility (Equation (9.1.6)]; 
for example, we can use the following rule. 

2. Choose I uniformly at random from {0, 1, ... , N- k + 1}. 
Set w(l) = w[11(1) for every I < I and every I ~ I+ k. If 
0 < I < N- k + 1, then randomly choose a ( k + 1 )-step self­
avoiding walk w• from among those walks in Sk+1 satisfying 
w*(k + 1)- w*(O) = w[1l(I + k)- w[1l(I- 1). If I is 0 or 
N- k + 1, then randomly choose a k-step walk w• from S~c. 
Then w( I), ... , w( I+ k - 1) are obtained by translating w• 
so that it begins at w[1l(J- 1) (or, if I= 0, so that it ends 
at w[1l(k)). 

Then for any two distinct N -step self-avoiding walks w and w', 

P ( w, w') = "" F.· ( w w') ---,---:-:----:-.---:;-;----:-;-:-
1 [N -k 1 

N-k+2 {;;t ' ' ck+ 1(w(i-l),w(i+k)) 
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+(Fo(w,w') + FN-k+t(w,w'))_!_] 
Ck 

= P(w',w), 
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where F;(w,w') is 1 if w(l) = w'(l) for every I < i and every I ~ i + k, 
and it is 0 otherwise. Thus we see that P is symmetric, and moreover that 
P(w,w') > 0 if and only if w can be transformed into w' by a k-site move. 
We shall call this algorithm the Maximal k-Site Algorithm (MAX(k)). 

Observe that two N -step walks w and v are in the same ergodicity class 
of MAX(k) if and only if there exists a finite sequence of N-step walks 
w:: w(0),w(1), •.• ,w(m) = v such that w(i) can be transformed into w(i+l) 

by a k-site move for every i = 0, ... , m - 1. In particular, any ergodicity 
class of any other k-site algorithm is contained in an ergodicity class of 
MAX(k). 

It is not hard to see that the Verdier-Stockmayer algorithm is not ir­
reducible in general. In Z2 , the 17-step walk ENW2S2E5N2W2SE (Figure 
9.2 in Section 9.1) cannot be transformed into any other self-avoiding walk 
by a 1-site move. We say that this walk is frozen (with respect to 1-site al­
gorithms). In Z3 , the V-S algorithm is not irreducible because of knot-like 
configurations: Figure 9.4 shows a 20-step walk which is in a different er­
godicity class from, say, the straight walk for any 1-site or 2-site algorithm. 

Figure 9.4: A knot-like walk in Z3 which cannot be transformed into a 
straight walk using 1-site or 2-site moves. 

The observation that 1-site algorithms have frozen configurations in Z2 

is generalized in the next theorem. 
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Theorem 9.4.1 Let d = 2. For any integer k ;::: 1 and any r ;::: k, there 
exists a (6r + 11)-step self-avoiding walk which cannot be transformed into 
any other (6r + 11)-step walk by k-site moves. 

The idea of the proof is the following construction. Let !/J(r) be the {6r+ 17)­
step walk 

NrEsr+tvv2Nr+2Essr+2VV2Nr+lESr 

(see Figure 9.5). If r ;::: k, then !/J(r) is frozen under k-step moves. The 
details of the proof are given in Section 9. 7 .2. VVe remark that the conclu-

............. _ 

r 

Figure 9.5: The walk !/J(r) from the proof of Theorem 9.4.1. 

sions of this theorem are not restricted to lengths of the form N = 6r + 17. 
In fact, for every k it is true that for all sufficiently large N there exists an 
N -step self-avoiding walk which is frozen with respect to k-site algorithms 
(Madras and Sokal (1987)]. 

The next theorem discusses the cardinality of the largest ergodicity class 
(or CLEC for short) of local algorithms. It proves that for d = 2 or 3 the 
CLEC is exponentially smaller than the cardinality of the entire state space. 
Thus, even if we ran a Monte Carlo experiment for an infinitely long time 
using a local algorithm, we would only observe a small fraction of all N -step 
self-avoiding walks. 
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Theorem 9.4.2 Let d = 2 or 3, and let k be a positive integer. Let 
CLECk,N be the cardinality of the largest ergodicity class of MAX(k) (for 
N -step walks). Then 

limsup(CLECk,N) 11N < J.l. 
N->oo 

The proof of this theorem relies on Kesten's Pattern Theorem. The idea is 
that there are certain patterns that cannot be changed by k-site moves, and 
these patterns can occur many times on a self-avoiding walk. (Of course, 
the pattern depends on k.) A walk on which many such patterns occur must 
be in a small ergodicity class, since only some parts of the walk are able to 
change. But such patterns must occur many times on all but exponentially 
few walks, so those walks which are most able to change are necessarily 
in a small ergodicity class. The full proof is given in Section 9.7.2 for two 
dimensions. The proof will work in any dimension, as long as the existence 
of these special patterns is proven. This has been done in three dimensions 
by Madras and Sokal (1987), but it has not been done in four or more 
dimensions. 

The practical implications of the nonergodicity (i.e. lack of irreducibil­
ity) of local algorithms are somewhat controversial. On the one hand, if 
your sole wish is to study "static" properties of a single self-avoiding walk 
(or a linear polymer), then the nonergodicity of local algorithms together 
with their long autocorrelation times (see below) should convince you to 
look at other algorithms. On the other hand, if you are interested in the 
dynamic properties of real polymers, then local moves are a better model 
for how real polymers move than are, say, the pivots of Section 9.4.3. Also, 
in more complicated systems (e.g. many polymers, or strong attractive in­
teractions between monomers) other methods may be infeasible, and so one 
has little choice but to use local moves and hope that the systematic bias 
due to nonergodicity is negligible. 

To conclude our discussion of local algorithms, we shall briefly discuss 
their autocorrelation times. Technically, they should be infinite, since non­
ergodicity prevents us from ever reaching the desired equilibrium distribu­
tion; so instead our discussion will apply either to the Markov chain whose 
state space is the ergodicity class of the straight walk, or to a Markov chain 
which allows self-intersecting walks (perhaps with reduced probability). 

For each N-step walk w, let g(w) denote the mean distance between 
pairs of sites on w: 

g(w) = N(N1 l) 2: lw(i)- w(j)l. 
+ i~j 
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Then under the usual scaling assumption that the distributionofg(w) scales 
likeN", 

> t N 2+2v Tint,g _ cons . . (9.4.1) 

This follows from Corollary 9.2.3, since the variance C9 (0) of g(w) scales like 
N 2", and since lg(w) - g(w')l = 0(1/ N) whenever w can be transformed 
into w' by a local move. The same lower bound also holds for ~"P' by 
(9.2.27). It is generally believed that r~,P and Terp are in fact proportional 
to N2+2" for local algorithms that allow a wide enough class of moves [see 
Kremer and Binder (1988) for a discussion; note that their definition of 
r differs from ours by a factor of N]. In the "mean-field" case of the VS 
algorithm applied to ordinary random walks (with v = 1/2), one can show 
that r;xp scales like N 3 = N2+2" [see Appendix 4.1 of Doi and Edwards 
(1986)). 

9.4.2 The "slithering snake" algorithm 

A different kind of length-conserving dynamic algorithm was devised by 
Kron (1965) and by Wall and Mandel (1975) [see also Kron et a/. (1967) 
and Mandel (1979)]. The basic move of the algorithm is to remove a bond 
from one end of the current walk while simultaneously trying to add a 
bond to the other end (rejecting the result if it is not self-avoiding). For an 
explicit description, use the following procedure as Step 2 in the Generic 
Fixed-Length Dynamic Algorithm. 

2. Generate a random variable X which equals 0 with probabil­
ity 1/2 and equals N with probability 1/2. If X = 0, then let 
Y be one of the 2d nearest neighbours of w!1l(O) (chosen uni­
formly at random), and set w = (Y,w!1l(O), ... ,wl1l(N -1)). 
If X = N, then let Y be one of the 2d nearest neighbours of 
wl1l(N), and set w = (w!1l(l), ... ,w!1l(N), Y). 

The nature of these moves has earned this algorithm and its variants the 
names "slithering snake" and ((reptation" (the latter term is also used in 
polymer dynamics to describe similar motions of real polymers). This algo­
rithm is reversible, but it is not irreducible: for example the walk of Figure 
9.2 in Section 9.1 is frozen with respect to the slithering-snake algorithm 
in Z2 • In fact, for sufficiently large N, it turns out that a positive fraction 
of all N-step walks are frozen, because there is a positive probability that 
both ends of the walk are ((trapped" and cannot be extended by a single 
step in any direction. To be more precise, let ~N denote the set of all walks 
in SN which are frozen with respect to the slithering-snake algorithm (that 
is, w is in ~ N if and only if the ergodicity class containing w has cardinality 
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one). Using the terminology of Definitions 7.1.2 and 7.4.1, let P be a proper 
front pattern with the property that the 2d nearest neighbours of the first 
site of P are all sites of P. Let R be the walk whose sites are the sites of P 
in reverse order (see Figure 9.6; note that R is a proper tail pattern). Then 
any self-avoiding walk that begins with the pattern P and ends with the 
pattern R must be frozen; i.e. SN(P,R) C <PN. Therefore (7.4.7) implies 
that 

liminf I<PNI > 0. 
N-oo CN 

(9.4.2) 

p(O) r(8) 

p(S) r(O) 

p R 

Figure 9.6: The proper front pattern P = (p(O), ... , p(8)) and the proper 
tail pattern R = (r(O), ... , r(S)). Any two-dimensional self-avoiding walk 
beginning with P and ending with R is frozen with respect to the slithering­
snake algorithm. 

Observe that although the intuitive description of the slithering-snake 
algorithm only involves moving one bond at a time, it is not a local al­
gorithm by the definition of Section 9.4.1, because every site changes its 
position on the walk at every successful attempt [that is, w[1l(i) corresponds 
to w[t+ll(i ± 1)]. To emphasize the difference, we note that the analogue of 
(9.4.2) is false for local algorithms (since Kesten's Pattern Theorem 7.2.3 
implies that most long walks contain many places where at least a single 
1-site move can be made), and also that the analogue of Theorem 9.4.2 
is false for the slithering-snake algorithm (since for example all N-step 
bridges are in the same ergodicity class as t.he straight self-avoiding walk, 
and limN(bN / CN )11 N = 1.) A better lower bound for the size of the largest 
ergodicity class is the following: 



322 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS 

Proposition 9.4.3 In the slithering-snake algorithm, denote by EN the 
ergodicity class containing the N -step walk from the origin to (N, 0, ... , 0). 

Then IENI ~ c~~· 

Remark. This bound is indeed better than IENI ~ bN because c~{.; ;:=: 
J.lN;::: bN [by (1.2.10) and {1.2.17)). 

Proof. Let e;., denote the set of all N-step walks in SN which can be 
extended (possibly from both ends) to a 2N-step self-avoiding walk; that 
is, w is in t'j:; if and only if there is a walk u E S·m such that w occurs at 
some step of(!. Since every 2N-step self-avoiding walk is the concatenation 
of two walks in £;.,,we see that c2N ~ 1£;.,12• Thus the proposition will be 
proved if we can show that t'N is contained in t'N. 

To complete the proof, let wEt;.,, and let e E S2N such that w occurs 
at some step of (!. Let e(i) be the lexicographically largest site of (! [so 
f1 lies in the half-space x1 ~ u1 (j)]. Now let v be the self-avoiding walk 
(u(j), ... , u(j + N)) if j ~ N, or (u(j- N), ... , e(i)) if j > N (so vis anN­
step subwalk of e and has e(i) as an endpoint). Observe that wand v are in 
the same ergodicity class, since w can be transformed into v by "slithering" 
along the path (]. Since v lies in the half-space x1 :S U1 (j) and has one 
endpoint at w(j) on the boundary of this half-space, it can be transformed 
into the straight walk whose endpoints are w(j) and w(j) + (N, 0, ... , 0). 
Therefore vis in t:N, and hence so is w. This completes the proof. D 

Proposition 9.4.3 and (9.4.2) imply that for sufficiently large N, the 
cardinality of the largest ergodicity class of the slithering-snake algorithm 
on SN, CLECss,N, satisfies 

aN-('Y- 1)/ 2 < CLECss,N < 1 _ £ 

- CN -

for some positive constants a and £. Of course, the lower bound is only 
rigorous if we can prove the expected scaling behaviour CN "" AJ.lN N"'~- 1 • 
We do know that 1 exists and equals 1 in five or more dimensions (see 
Section 6.1), so there CLECss,N/CN stays bounded away from both 0 and 
1; it is not known whether this ratio goes to 0 in 2, 3, or 4 dimensions. 

9.4.3 The pivot algorithm 

The preceding dynamic algorithms only attempt to move a few bonds at 
a time. In contrast, the pivot algorithm attempts to move large pieces of 
the walk at every iteration. These big moves are more likely to be rejected 
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than are local moves, but a success is typically rewarded by a large change 
in global observables such as end-to-end distance. 

The pivot algorithm picks a "pivot site" at random on the current walk, 
breaks the walk into two pieces at that site, and then applies a randomly 
chosen symmetry operation of zd to one piece, using the pivot site as the 
origin. As usual, the result is accepted if and only if it is self-avoiding. This 
algorithm was originally used by Lal (1969), and has subsequently been re­
discovered by several authors (see the Notes at the end of this chapter). As 
we shall see, the pivot algorithm is remarkably efficient for the investiga­
tion of global observables: it requires about 0( N log N) computer time to 
generate an "effectively independent" observation. (This is about as good 
as one has the right to expect, since it takes time O(N) just to write down 
an N-step walk!) 

. To give a formal description of the pivot algorithm, let us first consider 
the symmetry group of zd. To be precise, let gd be the set of orthogo­
nal linear transformations of Rd which leave the lattice zd invariant. In 
two dimensions, g2 has eight members: two axis reflections, two diagonal 
reflections, rotations by ±rr/2 and rr, and the identity. For general d, a 
transformation g in gd is completely determined by its action on the d pos­
itive unit vectors e1, ... , ed of zd. Since each g( e;) must be a unit vector 
of zd, g can be uniquely specified by a permutation rr of { 1, ... , d} and 
numbers !t, ... , !d = ±1 via the relations 

(9.4.3) 

Thus gd has 2dd! members. Next, observe that each g in gd leaves the 
origin fixed (since g is a linear transformation). For every g in gd and x 
in zd, define Uz to be the corresponding affine transformation that leaves 
x fixed, i.e. 

gz(Y) = g(y- x) +X for every y E zd. 

We can now describe the basic version of the pivot algorithm by using 
the following Step 2 in the Generic Fixed-Length Dynamic Algorithm. 

2. Choose an integer I uniformly at random from {0, 1, ... , N-
1}. Set x =wl1l(I) (the "pivot site"). Choose aGuniformly 
at random from gd· Set w(l) = wl11(1) for every I $ I and 
w(l) = G:r(wl11(1)) for every I > I. 

As we shall see, this procedure is reversible and irreducible. We can get 
variants of this algorithm if we choose I or G from some nonuniform dis­
tribution. We shall also discuss irreducibility and reversibility of these 
variants below. As a different kind of variant, we could always pivot the 
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shorter part of the walk, leaving the longer part fixed. This should improve 
the efficiency of the algorithm without changing the Markov chain in any 
important way. 

It is not hard to check reversibility with respect to the uniform distri­
bution on SN. Suppose that w and w' are distinct self-avoiding walks such 
that P(w,w') > 0. There could be several ways to get from w tow': specif­
ically, suppose that there are m possible pairs {i(j), gU>) (I ~ j ~ m) such 
that applying the operation g(j) tow with pivot site w(iU)) will produce 
w'. Then 

m 

P(w,w') = L Pr{I = i(j)} Pr{G = gU>}. 
i=1 

Observe that applying the operation (gU>)- 1 tow' with pivot site w'(i(j)) 
will produce w. Therefore, we see from the above equation that P(w, w') = 
P(w', w) in the original algorithm, as well as in any variant that satisfies 

Pr{G = g} = Pr{G = g- 1} for every g in (}d. 

We shall now consider the irreducibility of the pivot algorithm and also 
of variants which choose I and G from possibly nonuniform distributions. 
First of all, since the angle between the i-th and ( i + 1 )-th step of the walk 
can only change when I = i, such a variant cannot be irreducible unless we 
require Pr{I = i} > 0 for every i = 1, ... , N- 1. Also, if Pr{I = 0} = 0, 
then irreducibility fails because the direction of the first step never changes. 
(Of course, if the observables being measured are invariant with respect to 
the symmetries of the lattice, then it cannot hurt to take Pr{l = 0} = 0.) 
Thus the interesting questions about irreducibility of the variants arise when 
some symmetries are allowed to have zero probability. The following result 
holds in every dimension d 2: 2. 

Theorem 9.4.4 The pivot algorithm is irreducible, as is any variant which 
gives nonzero probability to all d reflections through coordinate hyperplanes 
Xi = 0 and to all rotations by ±1rj2 (which leaved- 2 axes fixed). In fact, 
any walk in SN can be transformed into a straight walk by some sequence 
of at most 2N - 1 such pivots. 

The proof will be given in Section 9.7.3. The basic idea is that if we 
consider a snug box around a walk, then we can try to "unfold" the walk 
by performing a reflection through one of the faces of the box. 

The above theorem remains true if we replace ±1r /2 rotations by any 
set of symmetries that contains, for every distinct i and j in { 1, ... , d}, a 
symmetry that sends ei to ej and another that sends ei to -ei (for example, 
the set of all reflections through hyperplanes x; = Xj or Xi = -xi). The 
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proof is the same. It is clear that some such set of symmetries must be used; 
notice that if we only allowed reflections through coordinate hyperplanes, 
then we could never change the angle between consecutive steps, and so 
the total number of right-angle turns in the walk could never change (in 
particular, straight walks would be frozen). . 

Some additional results about irreducibility of variants in two dimen­
sions are known. If a variant gives nonzero probability to the three ro­
tations ±1r /2 and 1r, then it is irreducible [see Section 3.5 of Madras and 
Sokal (1988)]. A variant is not irreducible if we only allow rotations by 1r 

(since the number of right-angle turns cannot change) or if we only allow 
rotations by ±7r/2 [a counterexample for N = 223 is shown on p. 139 of 
Madras and Sokal (1988)]. Finally, if we only allow the two diagonal re­
flections, then we do have irreducibility-in fact, any walk in SN having 
exactly k right-angle turns can be transformed into a straight walk by some 
sequence of k diagonal reflections [Madras, Orlitsky, and Shepp (1990)]. As 
a consequence of this last result, we have 

Corollary 9.4.5 Let d = 2. For the transition probability P of the original 
pivot algorithm, P 2N- 1(w,w') > 0 for every w and w' in SN. 

This means that the "diameter" of the state space of the two-dimensional 
pivot algorithm is at most 2N -1 (N -1 pivots to straighten out w, 1 pivot 
at the origin, and then N- 1 to make w'). 

Now that we have seen that the pivot algorithm is a valid method (since 
it is reversible and irreducible), it is is time to discuss why it is a good 
algorithm. Only a limited part of this discussion will be based on rigorous 
proofs; the rest will consist of nonrigorous arguments (scaling theory, etc.) 
supported by numerical evidence from computer experiments. 

The intuitive picture, which we shall elaborate upon below, is the fol­
lowing. Firstly, since a pivot makes a large-scale change in a walk, it is 
reasonable to expect that we will obtain an "effectively independent" con­
figuration (at least with respect to global observables) after relatively few 
successful pivots. It will turn out that "relatively few" means about log N. 
Secondly, the probability of a particular pivot being accepted will tend to 0 
as N --> oo, but as some power law N-P. Since there are no frozen config­
urations, this probability cannot decay faster than N- 1 , and so 0 :=:; p :=:; 1. 
(Numerically, pis estimated to be about 0.19 in two dimensions and 0.11 in 
three.) Thus one expects a successful pivot in every NP attempts. Recalling 
the discussion following (9.2.11), we infer from these first two points that 
the integrated autocorrelation time for a global observable should be about 
NP log N. Finally, we also have to include the average amount of com­
puter time required per attempted pivot. The amount of work-checking 
for intersections, updating arrays, etc.-is at worst proportional to N; so 
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suppose that the amount of computer time per attempt is on the order of 
N'~. Therefore the amount of computer time required per successful at­
tempt is NP+'I, and the amount of computer time required per "effectively 
independent" observation of a global observable is NP+'I log N. We shall 
argue below that p + q = 1. 

In the remainder of the section we shall elaborate on the intuitive ar­
gument described above. As a guide for the first part, which says that 
relatively few successful pivots are needed to get an "effectively indepen­
dent" observation of a global observable, we can consider a simpler model: 
the pivot algorithm applied to ordinary random walk. That is, the state 
space is now S'N (the set of all (2d)N ordinary walks), and the pivot algo­
rithm now does not care about self-avoidance (so in Step 3 of the Generic 
Algorithm, we always set w!t+l] = w). For this model, we can do exact 
calculations to prove rigorously that the integrated autocorrelation time 
r;"nt,g for the global observable g(w) = lw(N)I 2 is asymptotic to 2logN 
as N-> oo (see Proposition 9.7.1 in Section 9.7.3). The same conclusion 
holds (except for a constant factor) for the global observables w;(N) and 
the squared radius of gyration [Madras and Sokal (1988)]. 

It is important to observe that the situation is quite different for the 
exponential autocorrelation times of the ordinary random walk: in particu­
lar, r:xp,g is asymptotically equal toN as N-> oo for the global observable 
g(w) = lw(N)I 2 (Proposition 9.7.1). In fact, the exponential autocorrela­
tion time for the entire chain, r:xp• is also asymptotically proportional to 
N [Madras and Sokal (1988)]. It is easy to understand the situation for 
local observables: consider for example the angle between the 15-th and 
16-th steps. The probability that this changes in a particular pivot is 1/ N 
times a constant, since the angle can only change when the pivot site is 
w(15), which happens with probability 1/N. So both the integrated and 
exponential autocorrelation times for this observable should behave like N. 

To summarize: global characteristics of walks tend to correspond to 
short modes of this system, while the long modes tend to be orthogonal 
to the quantities of interest. This emphasizes how the pivot algorithm is 
specially designed for looking at global quantities. It is reasonable to expect 
this to carry over to the self-avoiding case as well, and results of simulations 
seem to indicate that this is indeed what happens. However, proving such 
claims rigorously remains an open and apparently difficult problem. 

We now turn to the amount of computer time required per attempted 
pivot, and its behaviour as N increases. The main issue is how long it 
takes to discover whether or not the proposed walk w is self-avoiding. If 
we compute all of w and then check for intersections, then each attempted 
pivot requires time proportional to N. But we can do better by looking 
for self-intersections as we compute w, so that we can stop early if one is 
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found. We expect that w is most likely to intersect itself in the vicinity 
of the pivot site, so we first compute w at the pivot site, and then move 
outwards towards both ends of the walk simultaneously, computing w and 
checking for self-intersections as we go. We shall now make the description 
of this procedure more precise. In doing so, it will be convenient to use the 
following notation for integers a $ b satisfying a $ N and b ~ 0: 

w(a, b] = (w(max{a, O}),w(max{a, 0} + 1), ... ,w(min{b, N})). 

Consider the following procedure for a single attempt of the pivot algorithm 
(where w£tJ is the current walk). 

(a) Choose the pivot site I and the symmetry Gat random. Set 
x = wl11(I), j = 1, and w(I) = wl11(1). 

(b) Set w(I + j) = Gz(wl11(1 + j)) (if I+ j =::; N) and set 
w(I- j) = wt11(1- j) (if I- j ~ O). 

(c) If I+ j =::; N, then check to see if w(I + j) is in the set of 
sites w[I- j + 1, I+ j -1). If it is, then the current attempt 
fails, so stop; otherwise, continue. 

(d) If I- j ~ 0, then check to see if w( I- j) is in the set of sites 
w(J- j + 1, I+ j]. If it is, then the current attempt fails, so 
stop; otherwise, continue. 

(e) If j < max{N- I, I}, then increase j by one and go to Step 
(b). Otherwise, the current attempt has succeeded, so set 
w£1+11 = w and stop. 

Steps (a) and (b) can be performed in time 0(1) (i.e. independent of N). 
In addition, Steps (c) and (d) can also be performed in average time 0(1) 
with the use of a bit map or a hash table (see the discussion at the end 
of Section 9.1), as follows. We begin with an empty bit map (or hash 
table); at each step, it will contain the sites of w that have already been 
computed. As each new site of w is computed, we check to see whether its 
location is still vacant in the bit map; if so, then we add this site to the bit 
map, but otherwise we stop because we have found a self-intersection. In 
the case of a success, Step (e) requires time O(N) for recording wlt+t] and 
reinitializing the bit map. In summary, we see that the total amount of 
work is proportional to the number of times that Step (b) is performed (i.e. 
the number of times through the "loop"). Define the random variable H(w) 
to be the smallest value of j such that w[I - j, I+ j] is not self-avoiding 
(and set H(w) = N if w[O, N] is self-avoiding). Thus the amount of work 
per attempt is of order E(H(w)). Evidently this is at most O(N), but we 
can improve this bound by the following heuristic argument. First we have 

Pr{H(w) > k} = Pr{w[I- k, I+ k] is self-avoiding} 
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~ Pr{ a 2k-step self-avoiding walk pivoted at its 

midpoint is again self-avoiding} 
""' const.k-P 

where pis the exponent discussed above. We can now estimate the expec­
tation of H(w): 

N 

E(H(w)) = E Pr{H(w) > k} ~ N1-P. 

k=O 

Therefore the average amount of work per attempt is of order· N 1-P, and 
so p + q = 1 as anticipated. This heuristic argument does in fact agree with 
computational experience. 

This completes our discussion of why the integrated autocorrelation 
times for global observables are believed to be 0( N log N) for the pivot 
algorithm. 

9.5 Variable-length dynamic methods 

In this section we shall discuss two dynamic methods whose state spaces 
include self-avoiding walks of various lengths. The Berretti-Sokal algorithm 
is the conceptually simplest such method: its state space is the set of all self­
avoiding walks. The "join-and-cut" algorithm has as its state space the set 
of all pairs of self-avoiding walks whose lengths sum to some fixed number 
N. A third method, the BFACF algorithm, will be discussed in Section 
9.6.1: its state space is the set of all self-avoiding walks with specified 
endpoints 0 and x for some fixed point x in zd. 

When using variable-length methods, the statistical analysis of the data 
can be more complicated than our discussion in Section 9.2 indicated. In 
that section, we assumed that the estimates from different values of N were 
independent. While this is true for fixed-length methods, where different 
values of N correspond to different simulations, it will be false for the 
algorithms of the present section. Berretti and Sokal (1985) show how to 
use maximum-likelihood estimation for their variable-length algorithm; the 
techniques developed there can be adapted to other algorithms. 

9.5.1 The Berretti-Sokal algorithm 

The Berretti-Sokal algorithm is designed to sample from the set of all self­
avoiding walks of all possible lengths. It will be defined precisely below, 
but the basic idea is that at each step you either delete the last bond of 
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the walk or else you attempt to increase the length of the walk by adding 
a bond to the end (rejecting the attempt if the result is not self-avoiding). 
The state space is 

00 

S:: USN, 
N:O 

which is infinite, so we cannot ask for uniform probabilities on all walks. It 
is natural, however, to ask for uniform probabilities within each S N. The 
Berretti-Sokal algorithm simulates walks in the "canonical ensemble" (in 
contrast to the fixed-length "microcanonical ensemble"). This requires a 
parameter z > 0 (as in the Redner-Reynolds algorithm of Section 9.3.3). 
Each N -step self-avoiding walk is given a weight (i.e. a relative probability) 
of zN. The sum of all the weights of walks inS is just the susceptibility x(z). 
Using this weight to normalize the probabilities, we obtain the probability 
distribution 

(9.5.1) 

Of course, this only makes sense if x(z) is finite, so we shall henceforth 
assume that 

O<z<zc=J.l- 1 • 

(In physical terminology, z is the "fugacity per bond", and x(z) plays the 
role of a "partition function"; also, 1r is a "Gibbs distribution".) Observe 
that 1r is a genuine probability distribution on S. The mean square dis­
placement of a walk chosen at random from this distribution is 

L lw(lwl)l2?r(w) = L lw(lw1)12zlwl =6(z)2, 
wES wES X(z) 

which is the square of the correlation length of order 2. Thus we can obtain 
information about the critical exponent v2, which is believed to equal v. 
Moreover, the canonical ensemble is a natural setting for studying J.l and 
r, since the fraction of time that the Markov chain spends in SN (i.e. the 
fraction of time that an N-step self-avoiding walk is observed) is 

L:: ?r(w) = CNZN ""'A(J.Lz)N N'Y-1 

w:!w!:N x(z) x(z) 

We shall use (·}z to denote expectation with respect to ?Tz. For future 
reference, we note that the mean length of a walk is 

(9.5.2) 



330 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS 

[under the usual scaling assumptions, arguing as we did for (1.3.11)]. In 
particular, the mean length diverges as z increases to zc. 

We now state the algorithm of Berretti and Sokal (1985). 

Berretti-Soka/ {B-S) Algorithm. This algorithm generates a 
Markov chain {w!11} on the state spaceS which is reversible 
with respect to 1f'z. 

1. Let w!01 be any self-avoiding walk in S. Set t = 0. 
2. Let N = lwl1ll. Generate a random variable X which is 

+1 with probability 2dz/(1 + 2dz) and -1 with probability 
1/(1 + 2dz). If X= +1, then go to Step 3; if X= -1, then 
go to Step 4. 

3. Try to add a step to wft]: Choose one of the 2d nearest 
neighbours of w!'l(N) uniformly at random; call this point 
Y. If Y is not already a site of w!11, then set wft+t] = 
(w!1l(O), ... ,w!1l(N), Y); ifY is a site ofw[11, then set wft+l] = 
w!11. Increase t by one and go to Step 2. 

4. Delete the last step of w!11: If N > 0, then set wft+t] = 
(w!1l(O), ... ,wf1l(N- 1)); if N = 0, then set w!1+11 = wft] 
(the 0-step walk). Increase t by one and go to Step 2. 

It is easy to see that the Markov chain corresponding to the B-S algo­
rithm is irreducible: any N-step walk can be transformed into the 0-step 
walk in N iterations, and vice versa. Now let us check reversibility. Let w 
be anN-step self-avoiding walk, and let w' be an (N + 1)-step self-avoiding 
walk which can be obtained by adding a single step tow. Then 

1 zN ( 2dz 1 ) 
1r(w)P(w,w) = x(z) 1 + 2dz. 2d 

and 
zN+l 1 

1r(w')P(w',w) = x(z) 1 +2dz' 

which implies that 

1r(w)P(w,w') = 1r(w')P(w',w). 

For all other choices of distinct w and w', both sides of the above equation 
are 0. And of course the equation is trivial when w = w'. This proves 
reversibility with respect to lrz. 

We now turn our attention to the autocorrelation times of the Berretti­
Sokal algorithm. Before summarizing what is rigorously known, we shall 
give a heuristic argument which provides a pretty good intuition for what 
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is happening. The first claim is that the autocorrelation times should be 
of the same order as the average time required to reach the 0-step walk 
from a typical initial walk in the state space. This is because before the 
0-step walk is reached, the Markov chain still remembers the first steps of 
the initial walk, but the chain forgets everything once the 0-step walk is 
reached. Next, consider the process N(t) = lw(c)l, i.e. the length of the walk 
at timet. One expects this process to behave more or less like a random 
walk on the nonnegative integers having transition probabilities 

P(i,i+l) 
2dz 1 J.lZ = 2dz + 1 2d J.l = 2dz + 1 

P(i, i) = 
2dz- J.lZ 
2dz+ 1 

P(i,i-1) 
1 

= 
2dz+ 1 

for moderately large i (the factor J.l in the first line is an approximation 
of c;+l/c;, the number of ways in which an average i-step self-avoiding 
walk can be extended by a single step). This random walk has a drift of 
(J.tz-1)/(2dz+1), which is negative. Thus the expected time for the process 
to go from a state No to the state 0 is about N0 divided by the magnitude 
of the drift. Finally, suppose that the initial walk wl01 is drawn at random 
from the equilibrium distribution r; then the expected time to reach 0 is 
about 

(N(O)}z 2dz + 1; 
1-pz 

by (9.5.2), this is asymptotically proportional to {N}~ as z - Zc = J.l- 1• 

Thus we conclude from our heuristic argument that rezp should scale like 
{N)~ (i.e. like (zc- z)-2]. 

This argument does quite well in several respects. First, one can do 
exact calculations when the B-S algorithm is applied to ordinary random 
walks [for which the state space is UNS;.,, and we take 0 < z < Zc = (2d)- 1]. 

In this case, N(t) is exactly a random walk with drift, and the integrated 
autocorrelation time of this observable can be shown to scale like (N}~ [see 
Appendix A of Berretti and Sokal (1985)]. Secondly, the random-walk­
with-drift approximation is in fact a lower bound for the actual chain: an 
application of Corollary 9.2.3 (with g = N, A = 1, and the assumption 
that the probability distribution of N, in particular its standard deviation, 
scales like {N)z) shows that 

r;nc,N ~ const.(N}~; (9.5.3) 

by {9.2.27), this is also a lower bound for r:zp· Thirdly, Sokal and Thomas 
{1989) proved a rigorous upper bound, subject to the assumption that CN 
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scales like JJN N-r- 1, that 

r!zp :5 const.(N)!+-r .. (9.5.4) 

The exponent 1 +"'(is near 2 in all dimensions (and in fact equals 2 when 
d ~ 5; see Section 6.1), so the above two bounds place pretty narrow limits 
on the scaling behaviour of r~zp· The exact behaviour remains an open 
question. (We remark that the proof of Sokal and Thomas also works for 
the B-S algorithm applied to ordinary random walks, where"'(= 1.) 

Lastly, we mention a slightly weaker bound derived by Lawler and Sokal 
(1988), using very different methods: 

r;zp :5 const.(N}~'Y. (9.5.5) 

Their main tool is a general version of Cheeger's inequality, which in its 
original form was a lower bound on the second smallest eigenvalue of the 
Laplacian on a compact Riemannian manifold [Cheeger (1970)]. Cheeger's 
inequality has recently found a wide range of applications in problems in­
volving rates of convergence to equilibrium in Markov chains [see Diaconis 
and Stroock (1991) and references therein, as well as in Lawler and Sokal 
(1988)]. 

Finally, we note that one could implement a variant of the B-S algorithm 
in which one is allowed to add or delete steps from either end of the walk. 
We can regard this as a combination of the B-S and the "slithering snake" 
algorithm. The resulting algorithm should behave very much like the B-S 
algorithm. A form of this variant was used by Kron et al. (1967). 

9.5.2 The join-and-cut algorithm 

The join-and-cut algorithm was invented by Caracciolo, Pelissetto, and 
Sokal (1992) as an efficient method for estimating the exponent "Y· This 
algorithm works on a rather different state space: the set of all pairs of self­
avoiding walks whose combined length is fixed. To formalize the definition, 
let M be a fixed positive integer. We define 'TM to be the set of all pairs 
( f/J, !;') of self-avoiding walks such that 17/JI +liP I= M: 

M 

'TM := U Sm X SM-m• 
m=O 

We shall see that the equilibrium distribution of the algorithm is uniform 
on T M, and hence the distribution of the length of the first walk in the pair 
is 
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from which one can try to estimate 'Y· 
The algorithm is as follows. 

The Join-and-Cut Algorithm. This algorithm generates a Mar­
kov chain {Xl1l} = {(1/;[11, <p[1l)} on the state space TM which 
is reversible with respect to the uniform distribution on T M. 

1. Let X[0] = ( 1/;[01, <p[01) be any pair of self-avoiding walks in 
TM· Set t = 0. 

2. Apply one iteration of the pivot algorithm (see Section 9.4.3) 
to ,pltl, obtaining ~. Then apply one iteration of the pivot 
algorithm to <pl11, obtaining ljJ. (Alternatively, with the hope 
of reducing autocorrelation times, we could replace "one 
iteration" by "some fixed number npiv of iterations", and 
"pivot algorithm" by "some length-conserving ergodic algo­
rithm whose equilibrium distribution is uniform".) 

3. (Join) Let ( = ~ o ljJ be the concatenation of ljJ to~. 
4. (Cut) Choose J uniformly at random from {0, ... , M}. Set 

,P' = (((O), ... ,((J)) and <p1 = (((J), ... ,((M)). If both ,P' 
and <p' are self-avoiding, then set ,p£1+11 = ,P' and <p[t+t] = <p'; 
otherwise, set ,p[t+l) = ~ and <p(t+l) = t(J. 

5. Increase t by one and go to Step 2. 

333 

We emphasize that in Step 3 one does not need to check whether the walk 
( is self-avoiding. For purposes of comparison, however, let us consider 
also a variant of the join-and-cut algorithm in which we do perform this 
check. Specifically, this variant is obtained by replacing Steps 3 and 4 by 
the following: 

3'. (Join) Let ( = ~ o ljJ be the concatenation of ljJ to ~. If ( 
is self-avoiding, then go to Step 4; otherwise, set 1/J(c+t] = ~ 
and <p[e+t] = tjJ and go to Step 5. 

4'. (Cut) Choose J uniformly at random from {0, ... , M}. Set 
,p[t+IJ = (({0), ... , ({J)) and <p[t+t) = (((J), ... , ((M)). 

(Observe that whenever Step 4' is performed, the resulting 1/J[I+l] and cp[t+t] 

are necessarily self-avoiding.) 
The transition probability matrix P of the join-and-cut algorithm can 

be expressed as the product of two transition matrices Pa and Pb, which 
correspond respectively to Step 2 and to Steps 3 and 4 of the algorithm. 
To describe Pa and Pb more precisely, let Q be the transition matrix of 
the ergodic length-conserving algorithm used in Step 2 for single walks, 
defined with respect to the state spaceS of all self-avoiding walks (thus the 
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ergodic classes of Q are precisely the sets SN, and Q(w,w') = 0 whenever 
lwl :/: lw'l). Then 

Pa(( tPt, 'Pt), ( tP2t 'P2)) = Q( tPlt tP2)Q(cpt, 'P2) 

(for ( tPi, 'Pi) in 'T M, i = 1, 2). If the length-conserving algorithm is reversible 
(i.e. if Q is symmetric), then so is Pa; more generally, if the restriction of Q 
to each SN has the uniform distribution as a stationary distribution, then 
the same is true for the restriction of Pa to each SN, x SN2 • To describe 
Pb, suppose that ( tPlt 'Pt) and ( tb2, 'P2) are distinct members of 'TM whose 
concatenations tbt o 'Pt and tb2 o 'P2 are the same; then 

All other entries of Pa are 0, except for those on the main diagonal (which 
represent either a rejection in Step 4 or else the choice J = lfb[tll). Clearly 
Pb is symmetric. 

Unfortunately, the product of two symmetric matrices is not in general 
symmetric; therefore, even if Pa is symmetric (as it is when we use the 
pivot algorithm in Step 2), the product PaP& cannot be expected to be 
symmetric. Thus the join-and-cut algorithm is not reversible in general. 
However its equilibrium distribution is nevertheless uniform on TM, because 
both Pa and P& have the constant vector as a left eigenvector, and hence 
so does their product. The failure of reversibility is due to the fact that a 
single iteration of the algorithm consists of two stages whose order matters: 
doing the pivoting followed by the join-and-cut steps. We remark that the 
variant of the join-and-cut algorithm corresponding to the transition matrix 
P = ! Pa + ! Pb would be reversible (in this variant, at each iteration one 
randomly decides either to do Step 2 or else to do Steps 3 and 4). 

It is easy enough to prove that the join-and-cut algorithm is irreducible, 
as follows. For any length N, let PN be the N-step walk with PN(i) = 
(i, 0, ... , 0) for every i. Given any tb in Sm and any cp in SM-m 1 there 
exists aT such that QT(fb,pm) > 0 and QT(IP,PM-m) > 0 (assuming that 
the restriction of Q to Sm is aperiodic, as it is in the case of the pivot 
algorithm). Since it is possible to pick J = m on T consecutive iterations, 
we see that pT((tJI,~.p),(Pm 1 PM-m)) and PT((Pm 1 PM-m),(?JI,~.p)) are both 
nonzero. The concatenation of Pm and PM -m is PM, which may be cut 
successfully at any point, so the irreducibility of the algorithm follows. 

It is possible to get some insight into the efficiency of the join-and-cut 
algorithm by a combination of rigorous analysis, scaling arguments and 
numerical work. We shall-only give a brief description of some of these 
results. The reader is referred to Caracciolo et al. (1992) for more details. 
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First, let us estimate W, the amount of computer work that is required 
for a typical attempt to join and cut (that is, for Steps 3 and 4). For a 
given ,P, lj>, and J (as produced by Step 2 and-subsequently by Step 4), 
let n = ltPI and let L = IJ - nl. Then the attempt to join and cut may 
be described as an attempt to transfer the last L steps of ,P to the front 
of if> if J < n (or vice versa if J > n). Roughly speaking this is like an 
attempt to concatenate two independent self-avoiding walks of lengths L 
and M- n (or L and n). Thus if we start looking for self-intersections at 
the joining point and work our way outwards, then the probability that we 
will not have found one before k steps of both walks have been checked 
is approximately the same as the probability that two independent k-step 
self-avoiding walks can be concatenated successfully: 

Pr{W > k} ~ c2; ""const.k-("Y-1). 
cl: 

(9.5.6) 

We have not included any n-dependence in (9.5.6) because we expect it to 
disappear when we average over n (since n, M- n, and L all typically have 
order of magnitude M). Therefore the average amountofwork required for 
Steps 3 and 4 should be 

M 

E(W) = EPr{W > k} ~ M2-"Y. 
l::O 

Recall from Section 9.4.3 that when applying the pivot algorithm to SN 
the average work per pivot should scale like N 1-P. This implies that the 
expected amount of work for one complete iteration of the join-and-cut 
algorithm, in which Step 2 consists of doing some fixed number npiv of 
pivots on each of ,pit) and cpl1l, is 

. Ml-p + M2--r npav • 

By all evidence, p < "'( - 1 in two and three dimensions, and so 1 - p > 
2 - 'Yi this implies that the most of the computer work in the join-and-cut 
algorithm is used in the pivoting step, even when n~iv = 1. 

Suppose for the moment that npiv is very large. Then the join-and-cut 
algorithm can be thought of as an "idealized algorithm", in which Step 
2 actually produces walks ,P and if> that are independent of ,pltJ and cpltl. 
This idealized algorithm is more amenable to rigorous analysis: Caracciolo 
et al. (1992) prove that the exponential autocorrelation time is at most 
M"Y- 1 (under the usual scaling assumption CN ""ApN N"Y- 1 ). This is done 
by showing that Tezp ~ M"Y- 1 for the variant that uses the idealized Step 
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2 in conjunction with Steps 3' and 4' described earlier, and then appeal­
ing to Proposition 9.2.4 (although some extra work is needed, since these 
algorithms are not reversible). 

Now consider the original join-and-cut algorithm with npiv = 1. Since 
the idealized algorithm should be more efficient than the actual algorithm 
with respect to the observable n = lt/>[tll, and more generally observables 
g(n) that depend only on n, we shall define the exponent h by 

"'M-y-t+h Tint,g(n) - · , 

and we can expect that h is positive and hope that it is small. Combining 
this with the discussion above, we conclude that the amount of computer 
time per effectively independent observation scales like M"Y-l+h M 1-P, i.e. 
like M~< where K = 1- p +h. Using the conjectured values of 1 and p 
from ( 1.1.11) and Section 9.4.3 respectively, the bound "'- ~ 1 - p becomes 
(approximately)"'-~ 1.15 in Z2 , "'- ~ 1.05 in Z3 , and"'-~ 1 in four or more 
dimensions. Caracciolo et al. (1992) argue that in fact K should equal 1 
in four or more dimensions, which would virtually make this an optimal 
algorithm there. They also report the results of Monte Carlo runs which 
lead them to estimate that "' is about 1.5 in two dimensions, which is 
significantly better than the Berretti-Sokal algorithm (compare (9.5.3)]. 

9.6 Fixed-endpoint methods 

This section will discuss some dynamic Monte Carlo methods that generate 
self-avoiding walks with endpoints that have been specified in advance. 

First we shall describe the relevant state spaces. For each x in zd 
(x ::/:- 0), we denote by SN(x) the set of all N-step self-avoiding walks w 
having w(O) = 0 and w( N) = x. In this section, we shall always assume 
that N and llxllt have the same parity, since SN(x) is empty otherwise. 
Also, we denote by S(x) = UNSN(x) the set of all self-avoiding walks 
having endpoints 0 and x. When generating walks with fixed length and 
fixed endpoints, then we want to sample from the uniform distribution on 

SN(x): 

1r(w):: 1r~(w) == (~ ) 
CN ,X 

for every w in SN(x). (9.6.1) 

When generating walks from the variable-length fixed endpoint ensemble, 
the situation is similar to that of Section 9.5.1. In addition to specifying 
the endpoint x, we also specify a parameter z (the "fugacity per bond") 
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between 0 and Zc = Jl-1. We sample from the Gibbs distribution 

1 
1r(w) = 7r,;(w) = ----lwlzlwl 

z .::.(z,z) for every w in S(x), (9.6.2) 

where 2(z, x) is the normalizing constant 

00 8 
S(z,z) = E NzNcN(O,z) = z11Gz(O,z). 

N:O uz 
(9.6.3) 

The variable-length ensemble is the natural choice for studying the critical 
exponent Ci 1 ing 1 defined in (1.4.13) by 

CN(O, x)"" BJlN Nor,;,.,- 2 

This is because the fraction of time that the observed walk has length n is 

(9.6.4) 

and so we can estimate a,ing by fitting a distribution of this form to the 
observed data (for fixed z near J.l- 1 and fixed x). 

We remark that the multiplicative factor lwl in (9.6.2) is not there for 
any deep reason, but only because this is what the algorithm of Section 
9.6.1 naturally gives. By modifying the algorithm, one could get a different 
71', but there does not appear to be a good reason to do so. 

Recall from Definition 3.2.1 that when llxlh = 1, we can associate each 
walk in SN(x) with an (N + 1)-step self-avoiding polygon. Thus any of 
the methods discussed in this section can be used to study self-avoiding 
polygons simply by fixing x to be a nearest neighbour of the origin. In this 
case, we say that we are working with the ensemble of "rooted" polygons: 
there is a particular bond (the one joining z to the origin) which must occur 
in every polygon of the state space. It is also possible to work with the 
ensemble of "unrooted" polygons, where each bond of the current polygon 
is allowed to change during the iteration of the algorithm. Then the state 
space is the set of all polygons on the lattice (or their equivalence classes 
up to translation). There is little difference between the two ensembles in 
practice, aside from a factor of N + 1 in their cardina:lities [recall (3.2.1 )] and 
the orientation of the rooted bond (which is irrelevant for most simulations). 
However, the Markov chains that are defined on the two ensembles are 
different in a non-trivial way; for example, a proof of irreducibility for the 
unrooted ensemble may not work for the rooted ensemble. 
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9.6.1 The BFACF algorithm 

We shall first discuss an algorithm due to Berg, Foerster, Aragao de Car­
valho, Caracciolo, and Frohlich (for references, see the Notes at the end of 
the chapter). This algorithm uses transitions of a local nature to gener­
ate walks in the variable-length fixed endpoint ensemble according to the 
distribution given by (9.6.2) and (9.6.3). 

The elementary transformations for this algorithm are depicted in Fig-
ure 9.7. Each transformation is determined by choosing a bond of the 

..... n -- 1 ..... -- L ..... 
Figure 9.7: The elementary transformations of the BFACF algorithm. 

current walk [say the bond from w( i) to w( i + 1 )] and one of the 2d- 2 lat­
tice directions perpendicular to the bond (let e be a unit vector in the chosen 
direction). Let x and y denote the lattice points w{i) + e and w(i + 1) + e 
respectively. The transformation then moves the chosen bond by unit dis­
tance in the direction e, so that its new endpoints are x and y. Then there 
are now three possibilities, as illustrated in Figure 9.8: 

(a) if the original w had w(i- 1) =f. x and w(i + 2) =f. y, then we 
add two bonds: the new walkisw = (w(O), ... ,w(i), x, y,w(i+ 
1), ... ,w(lwl)), and lwl = lwl + 2; 

(b) if the original w had w(i- 1) = x and w(i + 2) = y, then 
we remove two bonds: the new walk is w = (w(O), ... , w( i-
1),w(i + 2), ... ,w(lwl)), and lwl = lwl- 2; 

(c) if the original w had w(i- 1) =f. x and w(i + 2) = y [or, 
respectively, w(i-1) = x and w(i+2) =f. y], then the new walk 
is w = (w(O), ... ,w(i), x,w(i + 2), ... ,w(lwl)) [respectively, 
w = (w(O), ... ,w(i- 1), y, w(i + 1), ... ,w(lwl))]. Here, lwl = 
lwl. 

[If the chosen bond is the first bond of the walk, then i = 0 and we always 
have w(i- 1) =f. x. Similarly, w(lwl + 1) =f. y always.] We shall write AN 
to denote lwl-lwl, the change in the number of bonds of the walk for each 
possibility; we shall say that (a), (b), and (c) are AN = +2, -2, and 0 
transformations respectively. 
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(a) _j. - -J • • z y 
w(i) w(i + 1) 

• • n z y 
(b) -

1 e 
z y 

(e) ~ - L 
z y 

Figure 9.8: The three possibilities for a BFACF move, in detail. 

To complete the definition of the BFACF algorithm, we need three num­
bers p( +2), p( -2), and p(O) between 0 and 1 (they also must satisfy certain 
other conditions; see below). 

BFACF Algorithm. This algorithm generates a Markov chain 
{wl11} on the state space S(z). 

1. Let wl01 be any walk in S(z). Set t = 0. 
2. Choose an integer I uniformly at random from {0, 1, ... , jwltll-

1}. 
3. Consider the 2d-2 walks w that would be obtained by moving 

the I-th bond of w£t) in one of the directions perpendicular 
to the vector wl11( I + 1) - w!tJ (I). Choose one of these walks 
at random, with probabilities p(lwl-lw[tJI). (If these 2d- 2 
probabilities add up to q < 1, then also choose w = w£t] with 
probability 1- q.) 

4. If w is self-avoiding, then set w!t+tJ = w; otherwise, set 
wlt+t] = w!tJ. 

5. Increase t by one and go to Step 2. 
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The necessary constraints on p( +2), p( -2), and p(O) are given by the fol­
lowing lemma. 

Lemma 9.6.1 The BFACF algorithm is well-defined and is reversible with 
respect to ,.; if and only if the following constraints are satisfied: 

p( +2) = z 2p( -2), (9.6.5) 

z2 

p( + 2) 5 1 + (2d - 3)z2 ' 
(9.6.6) 

and 

2p(O) + (2d- 4)p( +2) ~ 1. (9.6.7) 

Proof. First we consider reversibility. Suppose that w and w are distinct 
walks in S(z) such that P(w,w) > 0. On the one hand, if lwl and lwl differ 
by 2, then 

P(w,w) = I~IP(Iwl-lwl); 
the condition (9.1.5) for reversibility in this case reduces to (9.6.5). On the 
other hand, if lwl = lwl, then 

P(w,w) = l~lp(O), 

since there are two possible choices of bond of w that can produce w (for 
example, in (c) of Figure 9.8, we get the same result by choosing the bond 
joining w(i + 1) to w(i + 2) = y and moving it in the direction z- y]; the 
reversibility condition imposes no additional constraint in this case. 

Next, we note that the algorithm is well-defined if and only if the sum 
of the 2d- 2 probabilities in Step 3 does not exceed 1. There are several 
possibilities to consider, depending upon the relative orientations of the 
I-th, (I- 1)-th and (I+ 1)-th bonds of wlt] (see Figure 9.9): 

(i) All 2d- 2 directions yield ~N = +2: This requires (2d-
2)p(+2) ~ 1. 

(ii) One direction yields ~N = 0, while the others yield ~N = 
+2: This requires p(O) + (2d- 3)p( +2) ~ 1. 

(iii) Two directions yield ~N = 0, while the others yield ~N = 
+2: This requires 2p(O) + (2d- 4)p( +2) ~ 1. 

(iv) One direction yields ~N = -2, while the others yield 
~N = +2: This requires p( -2) + (2d- 3)p( +2) ~ 1. 
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(i) (ii) 1 

(iii) ~ or (iv) n 
Figure 9.9: Proof of Lemma 9.6.1: relative orientations of three consecutive 
bonds. 

The inequality of (ii) is redundant, since it follows from those of (i) and 
(iii). Next, substituting (9.6.5) into the inequality of (iv) gives 

(z- 2 + (2d- 3))p(+2) $ 1, (9.6.8) 

which is stronger than the inequality of (i) since z $ Zc < 1. The inequality 
(9.6.8) is the same as (9.6.6), and the inequality of {iii) is the same as 
(9.6.7), so the lemma is proven. D 

Now that we have a continuum of possible parameter values for a valid 
BFACF algorithm, we want to find the "best" choices of p( +2), p( -2), 
and p(O) (for a given fixed z). Intuitively, we should prefer large values 
of these probabilities, so as to reduce the probability of "null transitions" 
(i.e. the quantity 1 - q described in Step 3 of the algorithm). Indeed, as 
we saw in Proposition 9.2.4 and the remark that follows it, increasing the 
off-diagonal elements of the transition matrix can only decrease the auto­
correlation times (or at worst leave them unchanged). In two dimensions, 
the situation is easy: the constraint (9.6. 7) simplifies to p(O) $ 1/2, so the 
three probabilities can be maximized simultaneously: 

p( +2) = z2 /(1 + z2), p( -2) = 1/(1 + z2), p(O) = 1/2. (9.6.9) 

In three or more dimensions, the constraint (9.6.7) forces a tradeoff be­
tween p(O) and p( +2). The standard choice is the point determined by the 
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intersection of the equalities corresponding to (9.6.6) and (9.6.7), which is 

z2 

p( +2) = 1 + (2d- 3)z2 ' 

1 
p(-2) = 1 + (2d- 3)z2 ' 

1 + z2 

p(O) = 2[1 + (2d- 3)z2) · (9.6.10) 

Observe that setting d = 2 in (9.6.10) gives the values of (9.6.9). Caracciolo, 
Pelissetto, and Sokal (1990) have proven rigorously that (9.6.10) is close to 
optimal in every dimension. 

Let us now turn to the problem of irreducibility. In two dimensions, 
the algorithm is irreducible for every x :f: 0 (see Theorem 9.7.2). In three 
dimensions, the algorithm is not irreducible if llxlloo = 1 (in particular, for 
the case of self-avoiding polygons). This is essentially because of knots: 
Consider the closed curve defined by the steps of the current walk of S(x) 
and by the line segment joining x to the origin. Each possible BFACF 
transformation may be viewed as the result of a continuous deformation of 
this closed curve during which it never crosses itself. In the terminology 
of topology, we say that the result of a BFACF transformation is ambient 
isotopic to the initial curve. Thus, for llxlloo = 1, the walks in any given 
ergodicity class of the BFACF algorithm must all correspond to the same 
knot type. The converse assertion, that the ergodicity classes correspond 
precisely to knot classes, has been proven by Janse van Rensburg and Whit­
tington (1991) for the special case of unrooted polygons by showing that 
"Reidemeister moves" on knots can be achieved using BFACF moves. When 
llxlloo ~ 2 in three dimensions, then the BFACF algorithm is irreducible 
(Janse van Rensburg (1992a)]. 

We conclude our discussion of the BFACF algorithm with a look at its 
autocorrelation times. These tend to be large, and it is not hard to identify 
one of the reasons: the "area" determined by a walk is a very slow mode. 
(The meaning of "area" is obvious in the cased= 2, llxlh = 1; in general, 
consider a fixed walk ( from 0 to x and let a(w) be the minimum area of 
a lattice surface whose boundary is the union of w and (.) The problem is 
that an N-step walk w can have a(w) of order N 2 ; since a single BFACF 
move can only change a by one unit, such a configuration can survive a 
very long time before being changed into something substantially different. 
In particular, we can apply Corollary 9.2.3 with A= 1 to obtain 

Tint,a ~ const.(N}411 (9.6.11) 

(under the usual assumption that the probability distribution of a, and 
in particular its standard deviation, scales like N 211 ). The slowness of a 
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to change for certain configurations was exploited further by Sokal and 
Thomas (1988), who proved the unsettling result that the exponential au­
tocorrelation time of the BFACF algorithm is infinite (see Theorem 9.7.4). 

9.6.2 Nonlocal methods 

In Section 9.6.1, we saw that the BFACF algorithm has rather long au­
tocorrelation times. Recalling that the pivot algorithm is more efficient 
than local algorithms in the free-endpoint ensemble (recall Section 9.4), it 
is clearly desirable to try to find large-scale transformations of self-avoiding 
walks that work in the fixed-endpoint ensemble. The transformations of 
the pivot algorithm of Section 9.4.3 do not leave both endpoints fixed, in 
general; however, other fixed-length transformations that use one or two 
"pivot sites" have been used with some success. 

Fixed-length transformations have been used in the ensemble SN(z) to 
study properties such as the radius of gyration or knottedness, particularly 
in the case of self-avoiding polygons (liz lit = 1). They have also been used 
in the variable-length ensemble S(.x) together with BFACF moves in the 
hope of obtaining a more efficient algorithm for this ensemble. 

We now describe fixed-length transformations which leave both end­
points fixed (see Figure 9.10). In these descriptions, w is always an N-step 
self-avoiding walk. 

1. Inversion: For integers k and I (0 $ k < I $ N), define the new walk w 
by 

w(i)={ w(~)+w(l)-w(k+l-i) ifk$~$1 
w( t) otherwise. 

Thus the subwalk (w(k), ... ,w(l)) is the inversion through the point (w(k)+ 
w(l))/2 of the points (w(l), ... ,w(k)). Another way to view inversion is 
by the sequence of bonds Aw(i) :: w(i) - w(i- 1). Then the bonds of 
w are Aw(l), Aw(2), ... , Aw(k), Aw(l), Aw(l- 1), ... , Aw(k + 2), Aw(k + 
1), A.w(l + 1), ... , Aw(N). 

2. Cyclic permutation: For an integer i (0 < i < N), define the new 
walk w by breaking w into two pieces at w( i) and then concatening the 
two pieces in the other order. Thus the bonds of w are Aw(i + 1), Aw(i + 
2) 1 ••• 1 Aw{N) 1 Aw(1) 1 Aw(2) 1 ••• 1 Aw(i). 

3. Lattice symmetries: Using the notation of Section 9.4.3, let g E gd be a 
lattice symmetry. Let k and I be integers (0 $ k <I$ N) and let .x = w(k). 
If U.z-(w(l)) = w(l), then we get a new walk w by applying this symmetry to 
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w(k) 
• 

[ ~ 1. 

w(l) 

w(N- i) 

L r p 2. -
w(i) 

·. w(k) 
• 

······ ... [ 3. -
w(l)·. 

w(k) 

4. ·_ ...• {[ 
w(l) 

Figure 9.10: Length-preserving fixed-endpoint transformations: 1. inver­
sion; 2. cyclic permutation; 3. reflection through line of slope -1; 4. revers­
ing reflection through line ·of slope +1, where y is the midpoint between 
w(k) and w(l). 
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the part of w between k and 1: 

-(') _ { Uz(w(i)) 
w t - w(i) 

ifk~.i~l 
otherwise. 

Observe that the two "pivot sites" w(k) and w(l) are both fixed by g21 • 
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4. Reversing lattice symmetries: Again, let g be a lattice symmetry and 
let k and I be integers (0 ~ k < I~ N). Now suppose that there exists a 
y such that gy(w(k)) = w(l) and gy(w(l)) = w(k). Then we can get a new 
walk w by applying this symmetry to the part of w between k and I, and 
reversing the order in which the sites appear in this part: 

w(i) = { gy(w(k + 1- i)) if k ~ ~ ~ I 
w(a) otherw1se. 

Dubins, Orlitsky, Reeds, and Shepp (1988) proposed (and proved the 
irreducibility of) an algorithm for unrooted polygons of fixed length in two 
dimensions. The DORS algorithm, as we shall call it, uses only inversion 
( 1 above) and reversing diagonal reflection ( 4 above). The latter move may 
be described in words as follows. Choose two sites on the polygon such 
that the line segment L joining them makes an angle of ±1r/4 with the 
coordinate directions. Break the polygon into two pieces by cutting it at 
the two chosen sites, and reflect one of the pieces through the line which is 
the perpendicular bisector of L. 

To prove that the DORS algorithm is irreducible, one shows first that 
inversions suffice to transform any polygon into a rectangle, and then that 
any rectangle may be transformed into any other rectangle by an inversion 
and a reversing reflection. The details of the proof are given in Section 9.7.4 
(Theorem 9.7.3). Notice that an inversion does not change the number of 
bonds parallel to the x1-axis, and so inversions alone do not suffice for 
ergodicity. 

For the general fixed-length fixed-endpoint ensemble SN(x) in two di­
mensions, the transformations of the DORS algorithm also provide an ir­
reducible algorithm, but the proof is more involved [Madras, Orlitsky, and 
Shepp {1990)]. In higher dimensions, these transformations are not enough 
because if the initial walk is contained in the hyperplane x1 = 0, say, then 
all of the resulting walks will lie in the same hyperplane. 

To ensure irreducibility in SN(x) in three or more dimensions, it suffices 
to use inversions (1 above), diagonal reflections (3 above), and reversing di­
agonal reflections (4 above). Here, a "diagonal reflection" is a reflection 
through a hyperplane which makes angles of ±1r/4 with two coordinate 
directions and angles of 0 with the remaining d- 2 directions. Irreducibil­
ity is proven by a lengthy argument that uses induction on the number of 
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dimensions. The proof in d dimensions, even for ll:cllt = 1, requires knowl­
edge of irreducibility of all fixed-length fixed-endpoint ensembles in d - 1 
dimensions. For details, see Madras et al. (1990). 

Caracciolo, Pelissetto, and Sokal (1990) introduced an algorithm for 
the variable-length fixed-endpoint ensemble S(:c), which uses inversion and 
cyclic permutation in addition to the usual BFACF transformations. This 
algorithm is irreducible in every dimension (Madras et al. (1990)). 

9.7 Proofs 

This section contains the longer proofs and calculations that have been 
deferred from the preceding sections of this chapter. The subsections may 
be read in any order. 

9. 7.1 Autocorrelation times 

In this section we shall provide several arguments which were postponed 
from our discussion of the spectral theory of autocorrelation times that was 
begun in Section 9.2.3. 

LetT be a self-adjoint contraction operator on l2(1r). Then the spectrum 
u(T) is a subset of the interval [-1, 1]. The Spectral Theorem (see for 
example Reed and Simon (1972)] tells us that there is a spectral measure E 
such that 

T = f .X dE( .X); 
1[-1,1] 

in fact, for every positive integer k we have 

T" = f .X" dE(.X). 
1[-1,1] 

Recall that for every Borel subset A of[-1, 1], E(A) is a projection operator; 
in particular, E(0) = 0 and E([-1, 1]) = I. Also, for every g in /2(1r) we 
define E9 by 

E9(A):: (g, E(A)g) = IIE(A)gll~ for Borel sets A C (-1, 1]. 

Then E9 is a positive measure and 

(g, T"g) = f .X" dE9 (.X) 
. 1[-1,1] 

(9.7.1) 

for every positive integer k. 
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We can use this representation to prove 

r(T) =sup lim sup 1(1, rn J)llln, 
J n-oo 

which is Equation (9.2.21). Let q(T) denote the right hand side of the 
above equation. Since r(T) = IITII, we clearly have r(T) ~ q(T). Thus it 
suffices to prove the reverse inequality. Choose t so that 0 < t < r(T) and 
let A[t] ={A: t < l..\1 ~ 1}. We claim that there is a gin /2(11') such that 
E9 (A[t]) > 0. If not, then for every g 

l(g, Tg)l ~ lltt ..\ dE9 (..\)I ~ tE9 ([-1, 1]) = tllull~, 
which contradicts t < r(T) = IITII, so the claim is true. For g as in the 
cl.aim, we have for any even n that 

(g, 'I"" g)~ f I..\ In dEg(..\) ~ tn Eg(A[t]), jA[tJ 
which implies that q(T) ~ t. Since this holds whenever 0 < t < r(T) we 
have q(T) ~ r(T), so Equation (9.2.21) is proven. 

We now return to our Markov chain, with T = P- II and E the corre­
sponding spectral measure. Let g be a function in 12 ( 11') and let h = (I- II)g 
be its projection onto the space of functions with mean 0. Since g and h 
differ by a constant, we know that C9 (k) = Ch(k) for every k ~ 0. By 
(9.2.22) and (9.7.1), 

C9(k) = Ch(k) = 1. >.kdEh(>.) for every k ~ 0 
[-1,1] 

(where we interpret 0° = 1). Using this in (9.2.10), along with the identity 

we obtain 
~ Ir- 1,11 (~) dEh(..\) 

Tint,g = Tint,h = f dE (..\) · 
J[-1,1] h 

(9.7.2) 

The support of Eh lies in [-1, 8], where 8 =sup u(P- II); together with 
(9.7.2) and the fact that (1 + ..\)/(1- ..\)is increasing for..\ in [-1, 1), this 
tells us that 

1 ( 1 + 8) 
Tjnt,g = Tint,h ~ 2 1 _ 8 · 
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By (9.2.26), this proves (9.2.27). 
We can now give a quick proof of Proposition 9.2.2 from Section 9.2.3, 

which says that Tint,g ~ ~(l+p9 (1))/(1-p9 (1)), where p9 (1) = C9 (1)/C9 (0). 

Proof of Proposition 9.2.2. Let g be a nonconstant function in 
l2('1r), and let h = (I - II)g. Then Eh is a finite measure that is not 
identically 0, and so Eh/ I dEh(>.) is a probability measure. The function 
).. ~--+ (1 + >.)/(1- >.) is convex, so Jensen's inequality implies that the right 
hand side of (9.7.2) is bounded below by H1 + Ph(1))/(1- Ph(1)), where 

(1) =I )..dEh(>.) = Ch(1) = Cg(l) 
Ph f dEh(>.) Ch(O) C9 (0). 

This proves the proposition. 0 

9.7.2 Local algorithms 

We shall begin by proving the two theorems about irreducibility of k-site 
algorithms from Section 9.4.1. Theorem 9.4.1 states that in two dimensions 
there are frozen (6r+ 17)-step walks for every r ~ k. Theorem 9.4.2 states 
that for d = 2 or 3 and for sufficiently large N, the cardinality of the largest 
ergodicity class of any k-site algorithm is less than e- 4 N CN for some a > 0. 
We give the proof only ford= 2, as discussed in Section 9.4.1. 

Proof of Theorem 9.4.1. Let d = 2. For each positive integer r, let 
tf;(r) be the (6r + 17)-step walk 

WESr+l W2W+2 E5Sr+2W2W+1 ESr 

(see Figure 9.5 in Section 9.4.1). We shall show that if r ~ k then tjJ(r) is 
frozen under k-step moves. 

Let N = 6r+ 17. Let B be the set of all sites of tj;(r), so that B consists of 
an (r + 2) x 6 rectangle of sites of Z2 • Consider removing any k contiguous 
sites tjJ(r)(I), ... , ,p(r)(J + k- 1) from ,p(r). We want to find k distinct sites 
at, ... , a~c such that: lai - ai+d = 1 for j = 1, ... , k- 1; each ai is in the 
set 

1) = (Z2 \B) U { tj;(r)(l), ... , tjJ(r)(I + k- 1)}; 

lat- tjJ(r)(I- 1)1 = 1 if I> 0; and la~c- tjJ(r)(I + k)l = 1 if I< N- k + 1. 
If the only choice for each a; is ,p(r)(J + j- 1), then we can conclude that 
,p(r) is indeed frozen. 

If I= 0, then the removed sites all lie on a vertical line (since r ~ k). 
Moreover, the only nearest neighbour of tj;(r)(k) that is in 1) is tj;(r)(k- 1), 
so we must take a1c to be this site. Similarly, the only choice for ai is 
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tj;(r)(j- 1) for each j, so no changes are possible when I= 0. Similarly, no 
changes are possible when I = N - k + 1. 

Suppose now that 0 < I < N - k + 1. The proof now is essentially 
by inspection. Look at all possibilities for tj;(r)(I- 1) and tj;(r)(I + k) (in 
particular, whether or not they are on the boundary of the box 8), and look 
at how to connect these points by a ( k + 1 )-step self-avoiding walk which 
only passes through points of V. On the one hand, if at least one of these 
two points are on the boundary of 8, then there is only one possible walk 
(in fact, k + 1 is the length of the shortest such walk that joins these points). 
On the other hand, if neither point is on the boundary of 8, then the only 
points of V that can be reached are precisely tf;(r)(I), ... , tj;(")(I + k- 1), 
and there is no choice but to take them in their correct order (since they lie 
on either one or two vertical lines, and since all k of them must be used). 

0 

Proof of Theorem 9.4.2. Let d = 2 and fix k. Let P be the (IOk +39)­
step pattern 

Nk+2W3Sk+lENkESk+lW3Nk+3E9Sk+3W3Nk+lESkENk+lW3Sk+2 

(see Figure 9.11), and let L = 10k + 39. An argument similar to the proof 
of Theorem 9.4.1 shows that if P occurs at the m-th step of a given self­
avoiding walk w, then P must occur at the m-th step of every walk that is 
in the same ergodicity class as w. 

. .. . . . .l 
k 

- ~ ..... J 
Figure 9.11: The pattern P from the proof of Theorem 9.4.2. 

For every integer t 2: 0, and for every sequence 0 ~ m 1 < m 2 < ... < 
m1 < N, let £N(mt, m2, ... , mt) denote the set of walks in SN such that P 



350 CHAPTER 9. ANALYSIS OF MONTE CARLO METHODS 

occurs at the m1-th step of w for every j = 1, ... , t and nowhere else in w. 
(Fort = 0, this is the set of walks on which P does not occur.) Notice that 
successive occurrences of P in w cannot overlap, and so we always have 
mi -mi-1 > L whenever £N(mt, m2, ... , mt) is nonempty. For each t;::: 0, 
let 

M(t, k, N) = max{I£N(m1, m2, ... , mt)l : 0 $ m1 < ... < m, < N}. 
(9.7.3) 

By the conclusion of the preceding paragraph, each ergodic class is con­
tained in some tN(mt, m2, ... , mt), and so 

CLECk N < maxM(t, k, N). 
' - t~O 

(9. 7 .4) 

Since P is a proper internal pattern, Kesten's Pattern Theorem 7.2.3 
tells us that there exists an a > 0 such that P must occur at least aN times 
on "almost all" N -step walks, i.e. 

limsup(cN[aN, P])11N < J.t· 
N-oo 

(9.7.5) 

Therefore 

[ ] 
1/N 

limsup max M(t,k,N) <J.t. 
N-oo 0$t$aN 

(9.7.6) 

Next, we claim that for any t ;::: 0 and any sequence 0 $ m1 < ... < 
m1 <N, 

(9.7.7) 

To see this, define the function I from £N(m1,m2, .. . ,mt) to SN-t(L-1) 

which removes each occurrence of P and replaces it by a single bond. Since 
I is one-to-one, the bound (9. 7. 7) follows. Therefore 

limsup [maxM(t,k,N)] 1
/N $ 

N-oo t?:_aN 
lim sup [max CN-t(L-1)] 

1
/N 

N-oo t?:.aN 

= 1-'1-a(L-1) < J.t. (9.7.8) 

The theorem now follows from (9.7.8) and (9.7.6). 0 

9.7.3 The pivot algorithm 

We begin with a proof of the irreducibility of the pivot algorithm and some 
of its variants, which is asserted in Theorem 9.4.4. More precisely, this 
theorem says that any walk in SN can be transformed into a straight walk 
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by a sequence of at most 2N - 1 pivots, each of which is either a reflection 
through a coordinate hyperplane or a rotation by ±71'/2. 
Proof of Theorem 9.4.4. We begin with some notation. For each 
N-step self-avoiding walk w and for each j = 1, ... , d, let 

m}(w) = min{wj(k): k = 0, 1, ... , N} (9.7.9) 

and 
mJ(w) = max{wj(k) : k = 0, 1, ... , N} (9.7.10) 

denote the minimum and maximum values of the j-th coordinate of the 
sites of w, and let 

Mj(w) = mJ(w)- mj(w) (9.7.11) 

denote the extension of win the j-th coordinate direction. Let B(w) denote 
the smallest rectangular box containing w, i.e. 

B(w) = {x E zd: mj (w) $X $ mJ(w) for all j = 1, ... 'd}, (9.7.12) 

and let 
D(w) = Mt(w) + · · · + Ma(w) (9.7.13) 

denote the /1 diameter of B(w). A face of B(w) is any set of the form 
{x E B(w) : Xj = m~(w)} for some i = 1, 2 and some j = 1, ... , d. Finally, 
let 

1 
A(w) = l{k: 0 < k <Nand w(k) = 2[w(k- 1) + w(k + 1)]}1 (9.7.14) 

denote the number of straight internal angles of w. 

The strategy of the proof is the following. Observe that for every N-step 
self-avoiding walk w, we have 0 $ D(w) $ Nand 0 $ A(w) $ N- 1, and 
moreover D(w)+A(w) = 2N -1 if and only ifw is a straight walk. It suffices 
to show that if w is not straight, then there exists another self-avoiding 
walk w such that D(w) + A(w) > D(w) + A(w) and w can be obtained 
from w by either a single reflection through a coordinate hyperplane or 
a single rotation by ±71'/2. Specifically, we shall show that if there is a 
face of B(w) which contains neither of the endpoints w(O) nor w(N), then 
a reflection through that face will increase D but not change A; and if no 
such face exists, then there exists a rotation that increases A by one without 
decreasing D. 

We now give the details. Consider an arbitrary N-step self-avoiding 
walk w that is not straight. We shall consider two cases separately. Since 
w is fixed, we shall write 8 for B(w) and m) for m)(w). 
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Case I. Suppose that there exists an i E {1, 2} and a j E {1, ... , d} such 
that neither w(O) nor w(N) lies in the face {z E 8 : z; = m} }. Let t be 
the smallest index such that w(t) lies in this face. Now let w be the walk 
obtained by reflecting w(t + 1), ... ,w(N) through the hyperplane z; = m}: 
that is, w(k) = w(k) for each k::;; t, while the coordinates of w(k) fork> t 
are given by 

N (k) _ { 2m} - w;(k) if I= j w, - w,(k) ifl #: j. (9.7.15) 

(See Figure 9.12.) It is not hard to see that w is self-avoiding, and that 

: w(t) 

Ll ~I --
w(O) w(O) 

: W(N) w(N): 

Figure 9.12: Case I of the proof of Theorem 9.4.4: reflection through the 
hyperplane denoted by the dotted line. 

A(w) = A(w) [notice that both wand w have right angles at w(t)]. Let us 
now show that D(w) > D(w). Writing M;(w[r, s]) to denote the extension 
of the subwalk (w(r), ... ,w(s)) in the j-th coordinate direction, we see that 

M;(w) = max{M;(w[O, t]), M;(w[t, N])} (9.7.16) 

and 
(9.7.17) 

Since w;(O) # m} and w;(N) # m}, both M;(w[O,t]) and M;(w[t,N]) are 
strictly positive, and so we conclude that M;(w) > M;(w). Since M,(w) = 
M,(w) whenever I # k, this proves that D(w) > D(w), and hence that 
D(w) + A(w) > D(w) + A(w). This completes the proof for Case I. 

Case II. Suppose that w is not covered by Case I; that is, suppose 
that every face of 8 contains at least one endpoint. This means that w(O) 
and w(N) are in diagonally opposite corners of the box 8. Since w is not 
straight, let q be the largest index such that w has a right angle at w(q): 

1 
q = max{k: 0 < k <Nand w(k) # 2[w(k- 1) +w(k + 1)]}. (9.7.18) 
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Since w(N) is in a corner of B, we will be able to perform a ±7r /2 rotation 
to straighten out the angle at w(q). To be precise: the sites w(q), ... ,w(N) 
lie on a straight line perpendicular to the line segment joining w(q- 1) to 
w(q). Let a be the coordinate such that wo:(q- 1) f:. wo:(q), and let {3 be 
the coordinate such that wp(q) f:. wp(N). Observe that a f:. {3. Now we 
can define a new walk w by choosing w(q) as a pivot site and performing 
a rotation in the (xo:, xp)-plane to get a straight angle at w(q) = w(q). 
(See Figure 9.13.) The resulting walk has w(q- 1),w(q), ... ,w(N) all 

w(N) 

-
w(q) 

w(q) w(N) 

Figure 9.13: Case II of the proofofTheorem 9.4.4: rotation by -Tr/2. Also 
shown are the coordinate directions Xo: and xp. 

on a straight line. Since w(O), ... , w( q - 1) are on the opposite side of the 
hyperplane Xo: = wo:(q) from w(q + 1), ... ,w(N), we see that w is self­
avoiding. We also see that 

Mo:(w) = Mo:(w) + N- q, (9.7.19) 

that 
(9.7.20) 

and that Mi(w) = Mj(w) for all j f:. a,/3. Therefore D(w);::: D(w). Also, 
we clearly have A(w) = A(w) + 1, and hence that D(w) + A(w) > D(w) + 
A(w). This completes the proof for Case II, and we are done. D 

Next we consider the pivot algorithm applied to the ordinary random 
walk, without ever checking for intersections. To be precise, the state space 
of the algorithm is the set S'Jv of all (2d)N ordinary N-step walks starting 
at the origin, and the Generic Fixed-Length Dynamic Algorithm (from the 
beginning of Section 9.4) is implemented using the usual Step 2 for the 
pivot algorithm as described in Section 9.4.3, but in Step 3 wlt+t] is always 
set equal tow. For a given real-valued function g on S'Jv, let r;rp,g and T/'nt,g 
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respectively denote the exponential and integrated autocorrelation times of 
g with respect to this algorithm [as defined in (9.2.12) and (9.2.10)]. 

Proposition 9.7.1 For each N, define the function r 2 = r~ on the set 
S~ by r~(w) = lw(N)I2, the squared end-to-end distance of wE S~. Then 
as N-+ oo 

(9.7.21) 

and 
T;~t,r2,.... 2logN. (9.7.22) 

Proof. Fix N. Using the notation dwl1l(i) = wl1l(i) -wl1l(i -1) to denote 

the i-th step of the walk wl'l, define A~~] to be the dot product of the i-th 
and j-th steps of wl11: 

for 1 ::5 i, j ::5 N. Then by expanding the square we have 

r2(wl11) = ji:,.N_-t dwl1l(i)l
2 

= N + 2 I: A~~~. 
ISi<iSN 

(9.7.23) 

In equilibrium, wltl is uniformly distributed on S~, and so the N steps of 
wltJ are independent and uniformly distributed on the set of the 2d (positive 
and negative) unit vectors of zd. By symmetry we have 

E(A~~J) = 0 whenever i #: j, (9.7.24) 

and also 

E[(A!~l)2] = Pr{IA~~~~ = 1} = ~- (9.7.25) 

We also have that if t ~ 0, i < j, and k <I, then 

E(A~~~A~}) = 0 unless i = k and j =I. (9.7.26) 

Consider the first iteration of the pivot algorithm with initial walk wl01. 
For a given k between 1 and N, a necessary condition for the direction of 
the k-th step to change is that the chosen pivot site I is less than k. In 
fact, if G is the chosen symmetry, then 

[t] · { dwl0l(k) 
dw (k) = G (dwM(k)) 

if I~ k 
if I< k. 

(9.7.27) 
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Therefore if I is not in the interval [i, j), then AW = A~~l. Also, since G is 
chosen uniformly at random from gd, the vector G (Awl0l(k)) is uniformly 
distributed on the set of unit vectors of zd; moreover, it is independent of 
the entire walk wl01. In particular, we see that if I is in the interval [i,j), 
then AW is independent of A!~l. 

Let Q :: Q;,j,t be the event that at least one of the pivot sites of the 
first t iterations is in the interval [i, j). Then as in the preceding paragraph 
we see that conditioned on the occurrence of Q the quantities Aljl and A~~] 
are independent; hence by (9.7.24), 

E(A~~~A~t)IQ) = 0 
1) I) ' 

(9.7.28) 

lfQ does not occur, then A~jl = A~~l, and hence by (9.7.25) 

(9.7.29) 

Since the probability of Qc is [1- (j- i)/ N]1, we see from (9.7.28), (9.7.29) 
and (9.7.24) that 

Cov(A(~l A(t)) = ~ (1 - j- i) 1 for i < j and t ;::: 0. 
'1' IJ d N (9.7.30) 

Using (9.7.23), (9.7.26) and (9.7.30), we see that for every t;::: 0 

Cr2(t):: Cov(r2 (wl01), r 2(wl11)) = 4 E Cov(A~~I, Aljl) 
l~i<j~N 

4 N-1 t 

= df.(N-m)(t-~) 
N-1 

= 4dN " (1- mN)t+l. L...J (9.7.31) 
m=l 

Them= 1 term in (9.7.31) is dominant; in fact, 

4N (1- .!_)t+t < C 2(t) < 4N(N -1) (1- .!_)t+t 
d N _r- d N' 

and so the definition of exponential autocorrelation time in (9.2.12) implies 
that 

-1 
r;:r:p,r2 = log (l _ -Jt) = N + 0(1), (9.7.32) 
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which proves (9.7.21). Next, (9.7.31) tells us that C,.2(0) = 2N(N- 1)/d, 
and putting this and (9.7.31) into the definition of integrated autocorrela­
tion time [recall (9.2.10)] yields 

1 d 00 4N N-l m t+l 

= 2 + 2N(N- 1) t;t d l-; ( l- N) 

1 2 N-1 (1- N) 
= 2+N-1E m 

m:l 1if 

= -+- NE--<N-1) 1 2 [ N-l 1 l 
2 N -1 m=l m 

= 2logN + 0(1), (9.7.33) 

which proves (9.7.22). 0 

9. 7.4 Fixed-endpoint methods 

In this section we shall prove three results. Theorems 9.7.2 and 9.7.3 prove 
the irreducibility of the BFACF and DORS algorithms, respectively, in two 
dimensions. Finally, Theorem 9.7.4 proves that the exponential autocorre­
lation time of the BFACF algorithm is infinite. 

We first establish some terminology that will be needed for the proofs of 
the first two theorems. Every self-avoiding polygon 1' in Z2 forms a simple 
closed curve, and hence has an inside and an outside (in the sense of the 
Jordan curve theorem). If vis a site of 1', then we say that vis convex, 
concave, or straight according as to whether the inside angle of 1' at v is 
90°, 270°, or 180°. 

Theorem 9. 7.2 For every nonzero endpoint :1: in Z2 , the BFA CF algo­
rithm is irreducible on S(:~:). 

Proof. We begin by looking at a special case in which the endpoint is 
on the :l:t·axis. For every integer L > 0, let p(L) denote the straight L­
step walk from (0, 0) to (L, 0). For N > L, let Sh((L, 0)) be the set of 
N -step self-avoiding walks beginning at (0, 0) and ending at ( L, 0) such 
that none of the sites (1, 0), (2, 0), ... , (L- 1, 0) is occupied by a site of w. 
We shall henceforth assume implicitly that N and L have the same parity, 
since otherwise Sf,((L, 0)) is empty. Observe that Sf,((L, 0)) C SN((L, 0)) 
whenever N > L > 0, with equality if L = 1. Every walk w in S'f.r((L, 0)) 
has an associated (N +L)-step self-avoiding polygon 1' = 'P(w) whose bonds 
are the N bonds of w together with the L bonds of p(L). 
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Our first goal is to prove the following: 

Claim A: Suppose that N > L > 0 and w is in S;.,((L, 0)). Then it is 
possible to transform w into the straight walk p(L) by BFACF moves in 
such a way that none of the intermediate walks obtained in this process has 
a site lying outside of (the original) 'P(w). 
Claim A implies irreducibility in the case ll.rlh = 1 (upon taking L = 1), 
and the approach that we take to prove it will also be used in the proof for 
general .r. 

To prove Claim A, we need some additional terminology. If w is in 
S,V((L, 0)), then we say that the subwalk w[i,j):: (w(i), ... ,w(j)) {0 :5 i < 
j :5 N) is a U-turn of w if j- i ~ 3, w[i + 1, j -1] lies on a straight line, and 
the sites w( i + 1) and w(j - 1) are both convex sites of 'P(w ). We say that 
w(k) is an obstruction of the U-turn w[i,j] if w(k) is on the line segment 
whose endpoints are w( i) and w(j), and k :f. i, j. We say that the U-turn 
w[i, j] is unobstructed if it has no obstructions. Observe that if w[i, j] is 

w(i) 

- - -
w(j) 

Figure 9.14: How the BFACF algorithm can use the presence of an unob­
structed U-turn to shorten the length of a walk by 2. 

an unobstructed U-turn of w, then w can be transformed into a walk w' of 
length N- 2 using j- i- 2 BFACF moves as in Figure 9.14. Moreover, if 
N- 2 = L then w' = p(L), while if N- 2 > L then w' E S,V_ 2((L,O)). So 
Claim A will be proven if we can prove the following: 

Claim B: For every N > L > 0, every walk in S;.,((L, 0)) contains an 
unobstructed U-turn. 

We now prove Claim B by induction on N. 
Let P(N) be the assertion that whenever L satisfies N > L > 0, every 

walk in Siv((L, 0)) contains an unobstructed U-turn. To start the induction, 
we note that P(3) and P( 4) are clearly true. Let N 2:: 5, and assume that 
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P(n) is true for every n < N. Let w be an arbitrary walk in S'f..r((L, 0)) 
for some L, with associated polygon P. It is not hard to see that w always 
contains aU-turn w[i, j). (First observe that for every self-avoiding polygon, 
the number of convex sites exceeds the number of concave sites by exactly 
4, because the sum of the signed inside angles must be exactly +360°. 
Therefore there must exist integers a and b with 0 < a < b < N such that 
w(a) and w(b) are both convex sites of P and such that if b > a+ 1 then 
the intervening sites w( a+ 1 ), ... , w(b- 1) are all straight sites of P. Then 
w[a - 1, b + 1] is a U-turn.) If it is unobstructed, then we are done, so 
assume that it has an obstruction w(k). Then there exists an 1 satisfying 
i + 1 < 1 < j- 1 such that llw(k)- w(l)llt = 1. Suppose that 0 ~ k < i (the 
same argument will work if j < k $ N). Let ( denote the subwalk w[k, 1); 
since ( has endpoints that are nearest neighbours, we can let Q denote its 
associated polygon. Observe that the bond (w(k),w(/)) lies inside P, since 
we know that w(i) and w(j) are convex sites of P. Therefore the inside 
of Q is a subset of the inside of P, and hence all the sites of w that are 
not part of ( must lie outside of Q. The inductive assumption tells us that 
( contains an unobstructed U-turn, and the observation of the preceding 
sentence guarantees that this must also be an unobstructed U-turn for w. 
Therefore P( N) is true. 

We have now proven Claims B and A. To complete the proof of the 
theorem, consider the case of a general site x. Now the terms ((inside" 
and "outside" are not meaningful, so we first need to find something to 
use in the place of U-turns. Let w be an arbitrary walk in S(x), and let 
N = lwl. We say that the subwalk w[i,j) (0 ~ i < j $ N) is a C-turn of 
w if j- i ~ 3, w[i + 1, j - 1) lies on a straight line that is perpendicular to 
the steps Aw(i + 1) and Aw(j), and Aw(i + 1) = -Aw(j). (Observe that 
in the case llxlh = 1, every U-turn is a C-turn.) We define obstruction for 
C-turns exactly as we did for U-turns. The walk w has no C-turns if and 
only if it has minimal length, i.e. N = l!x!lt, and it is easy to see that any 
minimal length walk can be transformed into any other by BFACF moves. 
So suppose N > llxllt; to prove the theorem, we need to show that it is 
always possible to reduce the length of w using BFACF moves. Analogously 
to the case llxllt = 1, it suffices to prove that w must have a C-turn with 
no obstructions. 

Let w[I, J) be a smallest C-turn of w (i.e., satisfying J - I ~ j - i 
for every other C-turn w[i, j]). If w[I, J) has no obstructions, then we 
are done, so assume w[I, J] has one or more obstructions. It is not hard 
to see that one of these obstructions must be an endpoint of w (because 
otherwise the obstructions would have to be part of a C-turn that is smaller 
than w[I, J], which contradicts our choice of I and J). Without loss of 
generality, assume that w(O) is an obstruction of w[I, J) [the same argument 



9.7. PROOFS 359 

will work for w(N)]. Let M be the (unique) integer such that I+ 1 < 
M < J- 1 and llw(O)- w(M)Ih = 1. Let ( denote the subwalk w[O, M]; 
since ( has endpoints that are nearest neighbours, we can let Q denote its 
associated polygon. There are two eases that could occur: either the sites 
w(M + 1), ... ,w(N) all lie outside Q, or else they all lie inside Q (there are 
no other possibilities because the subwalks w[O, M] and w[M + 1, N] cannot 
intersect). We shall consider these two eases in turn. 

Case I: The sites w(M + 1), ... ,w(N) all lie outside Q. By Claim B, 
we see that ( has an unobstructed U-turn; since the sites of w that are not 
part of ( all lie outside Q, this must be an unobstructed C-turn of w. 

Case II: The sites w(M + 1), ... ,w(N) all lie inside Q. Let u = 6.w(N) 
be the direction of the last step of w. Let 

L =min{!> 0: w(N) + lu is a site of w} 

(note that L < oo because w(N) lies inside Q). Let t be the integer such 
that w(t) = w(N)+Lu. Observe that the subwalk w[t, N] is (the translation 
and rotation/reflection of) a walk in SN--t((L,O)). Let 'R be the polygon 
consisting of the bonds of w[t, N] and the straight line segment joining w(N) 
to w(t). Then the inside of n is a subset of the insiae of Q. In particular, 
the sites w(O), ... , w(t - 1) all lie outside 'R. Now Claim B shows that the 
subwalk w[t, N] has an unobstructed U-turn, and since the rest of w lies 
outside n, this must also be an unobstructed C-turn of the entire walk w. 
This proves the theorem in Case II. D 

Recall that the state space of the DORS algorithm is the set of equiva­
lence classes of N-step self-avoiding polygons in Z2 (Definition 3.2.2). Re­
call also that these polygons are <~unrooted", as opposed to the set of poly­
gons associated with SN-I(e) (where llellt = 1) which are <~rooted" by the 
bond (0, e) which can never be moved. 

Theorem 9. 7.3 For every even N, the DORS algorithm is irreducible for 
unrooted N -step polygons in two dimensions. In fact, if Ql and Q2 are 
N -step polygons in Z2, then there is a sequence of at most 2N - 2 trans­
formations that transforms Ql into Q2. 

Proof. Let c(P) denote the total number of convex and concave sites on 
the polygon P. A rectangle is a polygon P that has c(P) = 4. The theorem 
is an immediate consequence of the following two facts. 

A. Any polygon P that is not a rectangle can be transformed 
into some other polygon Q having c( Q) = c(P) - 2 using at 
most two transformations. 

B. Any rectangle can be transformed into any other rectangle 
using one inversion and one reversing diagonal reflection. 
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.. . . . . .. 
-

Figure 9.15: Proof of Theorem 9.7.3: a polygon with a supporting chord 
that is not parallel to a coordinate axis (left). Using the chord's endpoints 
as pivot sites for an inversion decreases the number of right angles by 2 
(right). 

-

Figure 9.16: Proof of Theorem 9.7.3: a polygon whose two supporting 
chords are each parallel to a coordinate axis (left). Using one chord's end­
points as pivot sites for an inversion yields a polygon with a diagonal sup­
porting chord (right). 
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We shall prove A first. A line segment is said to be a supporting chord of 
1' if its endpoints are both on,'P, its interior points are all on the outside of 
1', and it is contained in the boundary of the convex hull of 1'. (See Figure 
9.15.) Observe that any polygon that is not a rectangle ha.s a. supporting 
chord. 

Suppose that a polygon 1' ha.s a. supporting chord that is not parallel 
to either coordinate axis. It is not hard to see that performing a.n inversion 
on 1' with pivot sites chosen to be the endpoints of this supporting chord 
will yield a self-avoiding polygon Q with c(Q) = c('P}- 2 (see Figure 9.15}. 
Next, suppose that 1' is not a rectangle but each of its supporting chords 
is parallel to a. coordinate axis (see Figure 9.16). Performing a.n inversion 
on 1' with pivot sites chosen to be the endpoints of some supporting chord 
will yield a self-avoiding polygon 1'' with c('P') = c('P), and it is not hard 
to see that this 1'' will have a supporting chord that is not parallel to either 
coordinate axis. Thus we have proven A. 

Finally we turn to fact B, whose proof is illustrated in Figure 9.17. Let 

(a, b) 
r--o---'-1 

-d--+ 

(c,d) 
__.... __.... 

I 
(0,0) (0, 0) 

Figure 9.17: The DORS algorithm transforming one rectangle into another, 
using an inversion followed by a reversing diagonal reflection. The pivot 
sites are denoted by circles. 

R1 and 'R2 be two N-step rectangles. Assume that the corners of R1 are 
at (0, 0), (a, 0}, (a, b), and (0, b), while the corners of'R2 are at (0, 0), (c, 0}, 
( c, d), and (0, d), where a, b, c, and d are all positive and a + b = c + d. 
Without loss of generality, we can assume that c > a ~ d. Performing 
an inversion on 'R1 with pivot sites (0, d) and (a - d, b) gives a polygon 
u' which in turn can be transformed into n2 by performing a reversing 
diagonal reflection with pivot sites (a, 0) and (a-d, d). 0 

Theorem 9.7.4 The exponential autocorrelation time Terp for the BFACF 
algorithm is infinite {for every x and z ). 
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Proof. Fix x and z. Let ¢1 and 1/J be two points (walks) in the state space, 
and letT[¢, 1/1] be the smallest value of n such that pn( ¢1,1/1) > 0; i.e. T[<P, 1/1] 
is the smallest time in which it is possible to get from ¢1 to 1/1. Let I~ and 
I.p be the indicator functions of the singletons { ¢1} and { 1/1}. Consider any 
k < T[¢1, 1/J]. On the one hand, using the inner product defined in {9.2.14), 

(I~, (PI:- II)I.;.) = P"(¢1, tP)Tr(f/1) -Tr(f/J)Tr(t/J) = -Tr(f/J)Tr(t/J). 

On the other hand, using (9.2.23) and (9.2.24), we have 

1(1~, (P"- IT)I.p)l :$ III~II2IIPk- llll III.pll2 = (Tr(f/J)Tr(t/1))112 exp[-k/T<!zp]· 

Combining the above two observations, rearranging and taking k = T[¢1, t/o]-
1 gives 

2(T[¢, t/1]- 1) 
Tezp 2: - log( 7r( ¢1 )7r( tP)) . (9.7.34) 

This inequality says that if there are two states that are far apart, but not 
too unlikely, then Tezp must be large. 

To apply (9.7.34), consider N >> llxlh· Let ¢1 be a shortest walk from 
0 to x, and let 1/1 = .,pCNJ be a walk of length N which does not intersect ¢1 
and whose shape is approximately square; this means that the area of the 
smallest surface whose boundary is the union of ¢1 and .,p£NJ is approximately 
N 2 /16. Since the BFACF algorithm only modifies a walk by adding and 
removing bonds around a single lattice square, this surface area cannot 
change by more than 1 in a single iteration. Therefore T[¢, tJ~[N)] ~ N 2 • 

Also, 1r(,P) = llxlhzllzlhjE:(z,x) and 7r(.,PCN1) = NzN/E:(z,x), so the right 
side of (9.7.34) behaves like a constant times N as N - oo. Therefote, 
since N can be arbitrarily large, we must have Tezp = +oo. D 

9.8 Notes 

Section 9.1. One of the best general overviews of Monte Carlo methods is 
Hammersley and Handscomb (1964), whose age has done remarkably little 
to diminish its appeal. Bratley, Fox and Schrage (1987) is a more recent 
general reference to various theoretical and practical issues in simulation 
and Monte Carlo. Binder and Heermann {1988) is a useful step-by-step 
guide to the practical aspects of Monte Carlo experiments in statistical 
mechanics. Kremer and Binder (1988) is a detailed survey of Monte Carlo 
methods for polymers in general. Sokal (1991) is a review on the problem 
of critical slowing-down. 

General references for· the theory and applications of Markov chains 
include Feller (1968), Karlin and Taylor (1975), and Nummelin (1984). 
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These authors and others usually say that a Markov chain is ergodic if it is 
irreducible, positive recurrent, and aperiodic. Most chains arising in Monte 
Carlo are positive recurrent and aperiodic, and for these chains questions 
of ergodicity are equivalent to questions of irreducibility. Although the 
Monte Carlo literature tends to use the term "ergodicity" when discussing 
irreducibility, we prefer the term "irreducibility" in this book to emphasize 
the specific nature of these problems. 

The classic reference for hash tables is Knuth (1973), which is still highly 
recommended. Hashing is also treated in most computer science books on 
data structures. Early uses of hash tables for the self-avoiding walk problem 
are Gans (1965) and Jurs and Reissner (1971); a description is also given 
in Madras and Sakal (1988). 

Section 9.2. Two general references on statistics are Silvey (1970) and 
Cox and Hinkley (1974). References on time series analysis include Priest­
ley (1981) and Brockwell and Davis (1987). Bratley, Fox, and Schrage 
(1987) discuss time series analysis and other statistical issues in the specific 
context of simulation. Geyer (1992) and Gelman and Rubin (1992) present 
two contrasting views on problems of statistical inference for Markov chain 
simulations. 

Proposition 9.2.2, Corollary 9.2.3, and Proposition 9.2.4 are from Ap­
pendix A of Caracciolo, Pelissetto, and Sokal (1990). The proof of Equation 
(9.2.21) in Section 9.7.1 is from Sokal and Thomas (1989), who actually 
prove a stronger theorem. The proof of Equation (9.2.27) is from Sokal 
(1989). The exposition of Section 9.2.3 is largely based upon the preceding 
three papers. 

Section 9.3. Strides and biased sampling are reviewed in Hammersley 
and Handscomb (1964). Kremer and Binder (1988) includes a more recent 
review of biased sampling, with many references. The dimerization method 
is due to Suzuki (1968) and Alexandrowicz (1969). The derivation of (9.3.3) 
is from Madras and Sokal (1988). 

Section 9.4. Many local algorithms have appeared in the literature; see 
Madras and Sokal (1987) and Kremer and Binder {1988) for some refer­
ences. The failure of irreducibility for local algorithms was noticed early, 
by Heilmann (1968) (who observed that knots could cause problems) and 
by Verdier (1969) (who noted the existence of three-dimensional frozen con­
figurations analogous to Figure 9.2). Theorems 9.4.1 and 9.4.2, as well as 
Proposition 9.4.3, are due to Madras and Sokal (1987); as explained there, 
the methods also allow one to prove Theorem 9.4.1 in d = 3. The proof of 
(9.4.1) under the stated assumption is due to Caracciolo et al. (1990). 
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Wall and Mandel {1975) commented that the probability of frozen con­
figurations for the slithering snake algorithm did not tend to 0, but expected 
it to be negligibly small for practical purposes. The rigorous proof of the 
former assertion [Equation {9.4.2)] is due to Madras {1988). 

Reiter (1990) proved irreducibility for a fixed-length algorithm in the 
spirit of the slithering snake: in this algorithm, a single bond in the walk 
can be replaced by a 3-bond U while simultaneously removing two bonds 
from the ends (and of course the reverse of this move can also be done). 

The pivot algorithm has been independently rediscovered by many dif­
ferent authors since Lal {1969): Curro (1974), Olaj and Pelinka (1976), and 
MacDonald et al. (1985). Continuum analogues have been used by Stell­
man and Ga.ns (1972) and Freire and Horta (1976). Except 'where cited 
otherwise, the results and discussion of Section 9.4.3 are from Madras and 
Sokal (1988). 

Section 9.5. The rigorous proof of (9.5.3) appeared in Caracciolo et al. 
(1990). 

Section 9.6. The BFACF algorithm is due to Berg and Foerster (1981), 
Aragao de Carvalho, Caracciolo and Frohlich {1983), and Aragao de Car­
valho and Caracciolo {1983); some ambiguities in these papers about the 
details of the algorithm were clarified in Caracciolo et a/. (1990), whose 
presentation we follow here. The irreducibility of the BFACF algorithm 
in two dimensions (Theorem 9.7.2) is due to Madras (1986, unpublished). 
The bound (9.6.11) is due to Caracciolo et al. (1990). 

Janse van Rensburg, Whittington, and Madras (1990) described a non­
local fixed-length algorithm for polygons on the face-centred cubic lattice, 
and proved that it is irreducible. 
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Chapter 10 

Related topics 

10.1 Weak self-avoidance and the 
Edwards model 

The weakly self-avoiding walk, known also as the self-repellent walk and as 
the Domb-Joyce model [Domb and Joyce (1972)], is a. measure on ordinary 
random walks in which self-intersections are discouraged but not forbidden. 
The measure associates to an n-step simple random walk w the weight 

(10.1.1) 

where 0 < A :::; 1, Zn(A) is a normalization constant, the product is over 
pairs of integers s and t, and V1t(w) is 1 if w(s) = w(t) and otherwise is 
0. Taking A = 1 gives the uniform measure on n-step self-avoiding walks, 
while 0 < A < 1 gives a measure in which self-intersections diminish the 
probability of a walk. Setting A = 0 just gives simple random walk. An 
alternate parametrization of the interaction which appears frequently is to 
take 

Then in terms of {J, 

Q~(w) = ___ 1_ IT e-IJv,,(w), 

Zn(fJ) 0$1<t$n 

(10.1.2) 

(10.1.3) 

where Zn(fJ) is a normalization constant. Here it is {J = oo which corre­
sponds to the strictly self-avoiding walk. 

365 
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It is a (nonrigorous) prediction of the renormalization group method 
that the weakly self-avoiding walk, for any A > 0, is in the same universality 
class as the strictly self-avoiding walk. This is borne out in the existing 
rigorous results. Ford= 1 it was shown in Bolthausen (1990), using large 
deviation techniques, that there is a Ao > 0 such that for A E (0, Ao] there 
is a c > 0 such that 

(10.1.4) 

In fact the same conclusion was obtained in a more general setting than 
just the nearest-neighbour walk. This shows that if A is sufficiently small 
then the one-dimensional weakly self-avoiding walk behaves like the strictly 
self-avoiding walk, in the sense that v = 1. For d > 4, Brydges and Spencer 
(1985) used the lace expansion to show that for A sufficiently close to zero 
the mean-square displacement of the model defined by (10.1.1) is linear in 
the number of steps, and the scaling limit of the endpoint of the walk is 
Gaussian. This could be extended to cover all A < 1 ford~ 5, using the 
methods that handled the A = 1 case; see Chapter 6. So also above four 
dimensions the weakly self-avoiding walk has the same scaling behaviour 
as simple random walk. There are no rigorous results in two and three 
dimensions; four dimensions will be discussed below. 

The Edwards model is a continuous space and time analogue of the 
weakly self-avoiding walk, introduced in Edwards (1965). Its relation to 
the weakly self-avoiding walk is similar to that of Brownian motion to 
simple random walk. The strength of the self-avoidance interaction for the 
Edwards model is analogous to the parameter {J of (10.1.2). It could be 
hoped that as this interaction strength goes to infinity the Edwards model 
would approach a limit corresponding to a continuum limit of the self­
avoiding walk; however methods allowing for such a limit to he carried out 
rigorously remain to he found. 

The Edwards model is defined formally as a measure on d-dimensional 
continuous paths on an interval [0, 71, by multiplying the Wiener measure 
on such paths by a factor suppressing self-intersections. Specifically, if we 
denote the Wiener measure by dWT and a typical path by r(t), then the 
Edwards model is defined by the measure 

dJ.LT = -1-e-gJ dWT (10.1.5) 
ZT 

where ZT is a normalization factor, g is a positive parameter measuring the 
strength of the interaction, and J is a functional on paths defined by 

J = J(r) = 1T 1T c(r(s)- r(t))ds dt. (10.1.6) 
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The quantity J(r) can be interpreted as the amount of time spent by the 
path r at its double points, and serves in the measure JJ.T to suppress self­
intersections. 

Rigorous sense can be made of the measure JJ.T by first replacing the 
delta function in (10.1.6) by a regularized delta function 6,, yielding a well­
defined interaction J, and corresponding measure JJ.'f, and then taking the 
limit removing the regularization c This procedure can be carried out lit­
erally when d = 1, but for higher dimensions it is not so simple and a 
renormalization is required. In fact the situation is quite similar to the 
construction of the <p4 quantum field theory [see Glimm and Jaffe (1987)], 
and methods used to construct these theories in two and three dimensions 
provide a basis from which to approach the Edwards model. The required 
renormalization is simplest in two dimensions, and the Edwards model in 
d = 2 was first constructed in Varadhan (1969). In two dimensions the 
Edwards measure is absolutely continuous with respect to the Wiener mea­
sure. For d = 3 the construction was carried out in Westwater (1980,1982) 
for all T and g; here the measure is singular with respect to the Wiener 
measure, in a dramatic departure from the formal expression (10.1.5). For 
small g an alternate construction of the three-dimensional measure was 
given in Bolthausen (1991), which made use of some simplifications in the 
constructive field theory technology [Brydges, Frohlich and Spencer (1983), 
Bovier, Felder and Frohlich (1984)]. 

Although for both two and three dimensions the Edwards model has 
been constructed for all times T and all g ~ 0, there is insufficient con­
trol to compute the limiting behaviour of the expected value of r(T)2 as 
T -+ oo, and critical exponents such as v are not currently accessible. The 
construction of the Edwards model for any finite T can be considered a 
construction of a subcritical model, and to obtain control of critical expo­
nents a control of the critical T = oo model is required. However in one 
dimension a proof has been given that lr(T)I behaves like a multiple ofT 
as T-+ oo; see Westwater (1985). It is believed that the Edwards model is 
in the same universality class as the self-avoiding walk, i.e. that the critical 
exponents will be the same. 

An alternate regularization of the Edwards measure (10.1.5) is to con­
sider a version of the model in discrete time and space. In Bovier, Felder and 
Frohlich (1984), such a regularization was given, and the necessary renor­
malization was performed to construct the continuum limit of Green func­
tions such as the two-point function in two and three dimensions; the contin­
uum measure itself was however not constructed. A natural discretization 
of the Edwards model is to replace the delta function in the interaction by 
a discrete version. Specifically, we discretize r(t) to n-112w(lntJ), with w 
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a simple random walk, and define 

{ nd/2 if ll.xlloo $ in-1/2 
c5n ( .x) = 0 otherwise. {10.1.7) 

Then we replace J of (10.1.6) by 

1 n n 

n2 L L c5n(n-1/2[w(s)- w(t)]) 
&:Ot:O 

n 

= n(d-4)/2 L v.,(w). (10.1.8) 
s,t=O 

This gives the measure (10.1.3) on simple random walks, with interaction 
strength {3 = 2gn(d-4)/2• From this relation it is clear that in dimensions 
two and three the discrete Edwards model interaction is weaker than that of 
the weakly self-avoiding walk. In Stoll {1989) the two dimensional Edwards 
measure was constructed by taking the continuum limit of this discrete 
model; this has not yet been carried out in three dimensions. 

In four dimensions the discrete Edwards model and the weakly self­
avoiding walk are identical, apart from a factor of two in the coupling con­
stants. As this book is being written, rigorous results in four dimensions 
are beginning to appear. Brydges, Evans and Imbrie (1992) have consid­
ered a model of weakly self-avoiding walk on a four dimensional hierarchical 
lattice, and have proved that a quantity closely related to the critical two­
point function decays asymptotically as a multiple of l.xl- 2 if the interaction 
is sufficiently weak. This work uses an identity to write the two-point func­
tion of the model as the two-point function of a quantum field theory, and 
then performs a renormalization group analysis of the quantum field theory. 
Arnaudon, Iagolnitzer and Magnen (1991) have announced a proof that the 
critical two-point function of a continuum four-dimensional Edwards model 
with fixed ultraviolet cutoff (a regularization analogous to discretization) 
and sufficiently weak interaction behaves asymptotically like a multiple of 
l.xl-2, with log l.xl and log log l.xl corrections, using constructive field theory 
methods. 

10.2 Loop-erased random walk 

During the 1980s considerable progress was made in the study of the loop­
erased self-avoiding random walk, which is a model of self-avoiding walk 
different from the one studied in this book. In this section we give a brief 
definition of the loop-erased random walk, and state the principal rigorous 
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results which have been obtained for it. Most of the rigorous work is due 
to Lawler, and is described in his book [Lawler (1991)]. 

There are two equivalent formulations of the model. The first, from 
which the name is derived, can be described as follows. Consider the path 
of an infinite ordinary simple random walk, for the moment in at least 
three dimensions. We associate to this walk an infinite self-avoiding walk 
by erasing loops from the path chronologically. In more detail, we begin by 
looking for the first time that the walk intersects itself and then erase the 
portion of the walk (the loop) between the (first) two visits to the site where 
the intersection occurs. Then we erase the first loop from the resulting path, 
and continue inductively. This leads to an infinite self-avoiding walk. To 
define a measure on the set of all n-step self-avoiding walks, we assign to 
each n-step self-avoiding walk w a weight equal to the probability that the 
first n steps of the loop-erased walk agree with w. This family of measures 
is consistent, in the sense of (6.7.2). In particular, a walk which cannot be 
extended by a single step and remain self-avoiding is assigned weight zero 
in this measure, and hence the loop erased walk does not define the uniform 
measure on the set of n-step self-avoiding walks. 

The above procedure works in dimensions d ~ 3, where simple random 
walk is transient, but for the recurrent case d = 2 more care is needed. In 
two dimensions it is necessary to use a limiting process to define the model. 
Roughly speaking a measure is defined on n-step self-avoiding walks by first 
performing loop erasure as above on simple random walk paths which lie 
in a finite box of side length N ~ n, thereby obtaining an N-dependent 
measure, and then the limit is taken of this measure as N goes to infinity. 

A second (equivalent) formulation of the model, which goes by the 
name Laplacian self-avoiding walk, provides a description as a "kinetically­
growing" walk, i.e. as a stochastic process defined by transition probabil­
ities. To avoid the special difficulties associated with two dimensions, we 
consider here only d ~ 3. The Laplacian walk is defined to be the process 
whose transition probabilities are as follows. Given an n-step self-avoiding 
walk w, the probability that the next step is to a neighbour x of w(n) is 
proportional to the probability that simple random walk starting from x 
will never intersect w. To state this more precisely we introduce the fol­
lowing definition. Given a site X E zd and a set A c zd, we define QA(x) 
to be the probability that an infinite simple random walk beginning at x 
never enters the set A. The transition probabilities of the Laplacian walk 
are then given, for w = {w(O), ... w(n)} and x a neighbour of w{n), by 

Qw(x) 
P(w(n + 1) = xlw) = E Q ( ) {10.2.1) 

y:ly-w(n)l=l w Y 

A proof that this is equivalent to the loop-erased walk is given in Lawler 
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(1991). The name Laplacian self-avoiding walk derives from the fact that 
QA(x) is a harmonic function on the complement of A, with boundary 
conditions zero on A and one at infinity. 

It is now known that the loop-erased self-avoiding walk has upper critical 
dimension equal to four, and that if (1.1.12) and {1.1.14) accurately rep­
resent the behaviour of the mean-square displacement of the self-avoiding 
walk for dimensions three and four, then the loop-erased self-avoiding walk 
is in a different universality class (i.e. has different critical exponents) than 
the self-avoiding walk defined using the uniform measure. We end this 
section with a statement of the rigorous results, beginning with high di­
mensions, where the results are strongest. 

Theorem 10.2.1 (a) {Lawler {1980)} Let d:;::: 5 and let S(n) denote the 
loop-erased walk after n steps. There is a constant b, depending only on 
the dimension, such that the process Xn(t) = (bn)- 112S(LntJ]) converges 
in distribution to the Wiener process {normalized as in (6.6.9)}. Moreover, 
the mean-square displacement of the loop-erased walk is asymptotic to b 
times the number of steps. 
(p) {Lawler {1986)j_Let d = 4. There is a sequence bn such that the process 
Xn(t) = (bnn)-t/2s([nt]) converges in distribution to the Wiener process. 
The sequence bn satisfies 

1 . , logbn . logbn 1 
-3 < hm mf 1 1 < hm sup 1 1 < -2 - n-oo og ogn - n-oo og ogn -

and the mean-square displacement satisfies 

1 1. . f log[n-1 E(IS(n)l2)] < 1. log[n-1 E(IS(n)l2)] < 1 - < 1mm 1msup -. 
3 - n-oo log log n - n-oo log log n - 2 

It is conjectured in Lawler (1986) that in (b) of the above theorem 
limn-co logbn/loglogn = 1/3. This is different behaviour than the cor­
rection (log n)114 to the mean-square displacement that is predicted by the 
renormalization group for the self-avoiding walk. In two and three dimen­
sions Monte-Carlo results suggest a more dramatic discrepancy between 
the loop-erased walk and the self-avoiding walk, namely 11 = 4/5 in two di­
mensions and 11 ~ 0.616 in three dimensions [Guttman and Bursill (1990)]. 
The following theorem proves that in three dimensions the mean-square 
displacement of the loop-erased walk behaves differently than the nL18 be­
haviour expected for the self-avoiding walk. 

Theorem 10.2.2 {Lawler {1988)} For every f > 0 there is a positive con­
stant [( such that 
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and 
E(IS(n)j2)?: Kn615-£ ford= 3. 

These results for the loop-erased self-avoiding random walk are proved 
using probabilistic methods quite unlike the methods used in this book. 

10.3 Intersections of random walks 

The critical exponents r and a4 for the self-avoiding walk are closely related 
to intersection probabilities for self-avoiding walks. To be specific, assuming 
that en has the asymptotic behaviour specified in (1.1.11) and (1.1.13) [in 
fact we know (1.1.11) does hold ford?: 5), then the probability that two 
n-step self-avoiding walks beginning at the origin do not intersect is given 
by 

df;4 
d=4. (10.3.1) 

The critical exponent a 4 is relevant for intersection probabilities of self­
avoiding walks beginning at different sites. A measure of this is the renor­
malized coupling constant, defined in (1.4.22), which is believed to satisfy 

g(z) ""'const.(zc- z)dv-24•+"Y as z /' Zc 1 (10.3.2) 

with a4 obeying the hyperscaling relation dv- 2a4 + r = 0 in dimensions 
2, 3, 4 (with a logarithmic correction in four dimensions) and a4 = 3/2 for 
d ?: 5 (this is proved for d ?: 6; see Theorem 1.5.5 and the Remark below 
its statement). 

While the above conjectures remain unproven for the self-avoiding walk 
in low dimensions, it is natural to ask if corresponding statements for simple 
random walk can be proven. In the remainder of this section we give a brief 
summary of some of the results which have been obtained in this direction. 

To discuss the analogue of (10.3.1) for simple random walk, we denote 
by /(n) the probability that the paths of two n-step simple random walks 
beginning at the origin do not intersect (apart from the fact that they 
have a common initial point). For the statement of the next theorem we 
introduce the notation /(n) ~ g(n) to mean that logf(n) -logg(n). 

Theorem 10.3.1 Ford> 4, f(n) ""' const. as n-+ oo, for some constant 
strictly between 0 and 1 which depends only on the dimension. Ford= 4, 
f(n) ~ (logn)-112 • Ford = 2 or 3 there is an exponent ( such that 
/{n) ~ n-<, with 

!+ 8\.$(<~ d=2 

~:::; ( < ~ d= 3. 
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For d > 4 this was proved in Lawler (1980). Ford= 4 the proof is given 
in Lawler (1982,1985a,1991), and ford= 2, 3 the proof is given in Burdzy 
and Lawler (1990a,1990b). Nonrigorous conformal field theory arguments 
predict that in two dimensions ( = 5/8; see Duplantier and Kwon (1988). 
Monte-Carlo computations are consistent with this prediction, and also give 
a value near 0.29 for ( in three dimensions [Burdzy, Lawler and Polaski 
(1989), Duplantier and Kwon (1988), Li and Sokal (1990)]. Results for 
generating functions related to the above theorem are given in Park (1989). 

The logarithmic behaviour in four dimensions is the hallmark of the 
critical nature of four dimensions for random walk intersections. Heuris­
tically this can be seen from the fact that Brownian motion paths have 
Hausdorff dimension two, and hence four dimensions is marginal for the 
intersection of two Brownian paths. By the same argument three dimen­
sions is critical for triple points of three paths (two two-dimensional paths 
in three dimensions will typically intersect in a one dimensional set, and the 
intersection of this set with a third two-dimensional path will be marginal 
in three dimensions). Bounds on intersection probabilities of three random 
walks in three dimensions are obtained in Lawler (1985b,1991), and using 
rigorous renormalization group methods in Felder and Frohlich (1985). On 
a nonrigorous level, results of this type have been considerably generalized 
using renormalization methods; see Duplantier (1988). 

We denote the analogue for simple random walk of the renormalized 
coupling constant g(z) by go(z). For Yo(z) the following theorem gives 
~4 = 3/2 for d > 4, and hyperscaling for d :=:; 4 (with a logarithmic 
correction in four dimensions). 

Theorem 10.3.2 Lett = (2d)-1 - z. Then there are positive constants 
Ct, c2, ca, c~, c'2, c~ such that for z < (2d)- 1 

d<4 
d=4 
d> 4. 

Results for the probability of intersection of walks of fixed length n, one 
beginning at the origin and the other at x ~ Vii, are given in Lawler 
(1982,1991). These results effectively yield more detailed information than 
Theorem 10.3.2. In (and near) four dimensions the above result was proved 
in Felder and Frohlich (1985) using a rigorous renormalization group ar­
gument; see also Aizenman (1985) for related work on the intersection of 
Brownian paths. A proof of Theorem 10.3.2 using inclusion-exclusion meth­
ods is given in Park (1989). 
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10.4 The "myopic" or "true" 
self-avoiding walk 

The model of self-avoiding walk discussed in this book is not a random walk 
in the usual sense, being defined via a measure on paths rather than via 
transition probabilities as a stochastic process. One model of self-avoiding 
walk which is defined by transition probabilities is the so-called "true" self­
avoiding walk; this model is essentially described by the MSAW algorithm1 

of Section 9.1. The epithet "true" is a misnomer, as the paths of this model 
need not in general be self-avoiding, nor is it the model of self-avoiding 
walk which is most commonly studied. In Lawler (1991) this model is 
referred to as the "myopic" self-avoiding walk; this name emphasizes the 
short-sightedness of the walk in its effort to be self-avoiding. Although the 
myopic self-avoiding walk has played a relatively minor role in applications 
[see however Family and Daoud (1984) for an application to polymers under 
certain conditions), it is interesting to see how it compares to the usual self­
avoiding walk. 

The transition probabilities for the myopic self-avoiding walk are defined 
as follows. Consider a walker on the hypercubic lattice zd, beginning at 
the origin and taking nearest-neighbour steps. The first step is to a nearest 
neighbour of the origin, each neighbour being chosen with equal probability 
(2d)- 1 • In subsequent steps, if there are neighbours of the current position 
which have not yet been visited, the next site is chosen uniformly from 
the neighbours not yet visited. If all neighbours have already been visited 
(i.e. if the walk is trapped) then the next site is chosen uniformly from 
among those neighbours which have been visited least often in the past. 
This leads to paths with self-intersections - looking just one step ahead 
cannot prevent the walk from becoming trapped, and a step must always be 
taken to some neighbour. A simple example demonstrates the computation 
of weights assigned to paths by the myopic self-avoiding walk: the myopic 
self-avoiding walk assigns to the walk ENWN in two dimensions the weight 
! i i ~ = /2 ; for comparison the self-avoiding walk assigns to the same path 
c4 1 = 1 ~ 0 • It is worth noting that the weights associated to the myopic 
self-avoiding walk are not symmetric with respect to time-reversal: in two 
dimensions the walk ENWN has weight A whereas the time-reversed walk 
SESW has weight t!s. 

The above description defines a walk which is prohibited from stepping 
to neighbours which were visited most often in the past. A less restrictive 

1There is a slight difference between the MSAW algorithm and the model treated in 
this section, as the fonner assigns nonzero weight only to self-avoiding walks, unlike the 
latter. 
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self-avoidance constraint would merely discourage such steps. This leads us 
to consider a nearest-neighbour walk, starting at the origin, with transition 
probabilities 

e->.N,+• 
P(w(n + 1) = x + alw(n) = x) = E ->.N 

b:lbl=l e "H 
(10.4.1) 

where lal = 1, A ~ 0 represents the strength of the repulsion, and Nu 
denotes the number of visits to the site u up to time n. The case A = oo then 
corresponds to the prohibitive model introduced in the previous paragraph. 

There are as yet no rigorous results concerning the critical behaviour 
of the myopic self-avoiding walk. However the nonrigorous results indi­
cate that the myopic self-avoiding walk behaves quite differently from the 
self-avoiding walk. Both field theoretic methods [Amit, Parisi and Peliti 
(1983)] and calculations related to those leading to the Flory exponents 
for the self-avoiding walk (Pietronero (1983)] point to an upper critical di­
mension of two. The diffusive behaviour v = 1/2 is expected above two 
dimensions, logarithmic corrections to diffusive behaviour are obtained in 
two dimensions, and the exponent v = 2/3 is found in one dimension. The 
claim that 11 = 2/3 in one dimension clearly does not apply when >. = oo, 
for which the myopic walk behaves ballistically and 11 = 1. This indicates 
that the A = oo walk belongs to a different universality class than the fi­
nite A version; however the nonrigorous results appear to claim that the 
upper critical dimension is two for all >. $ oo. A survey, with references to 
numerical calculations, is given in Peliti and Pietronero (1987). 
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Appendix A 

Random walk 

This appendix contains a number of elementary facts about the usual ran­
dom walk with no self-avoidance constraint, which are used in the book. 
Further details on random walk can be found in Lawler (1991), Spitzer 
(1976), and Montroll and West {1979). 

We consider a random walk taking steps in a set n which does not 
contain the origin and which is invariant under the symmetries of the lattice 
zd. The two basic examples we have in mind here are n equal to the set 
of nearest neighbours of the origin, and n = {z E zd: 0 < llxlloo $ L}. As 
usual we denote the cardinality of n also by n. The two-point function is 
defined by 

C.,(x,y) = L zlwl, (A.1) 
w:~-!1 

where z is a complex parameter and the sum is over random walks of 
arbitrary length, taking steps in n, which begin at x and end at y. Clearly 
C, ( x, y) = C, (0, y - x ). If x = y then the two-point function includes a 
unit contribution from the zero-step walk. Since the total number of n-step 
random walks beginning at X is equal to nn, E~ IC.,(O, X )I $ r:::o(Oizl)n 
and hence the two-point function and its Fourier transform C.,(k) [defined 
in (1.4.10)] are both finite for lzl < n-1 . For z = n-1, (A.l) is the Green 
function 

00 

Ct;o(z, y) = L Pn(z, y), (A.2) 
n=O 

where Pn(:z:, y) is the probability that the walk starting at :z: is at y after n 
steps. We will show momentarily that (A.2) is finite for z = n-1 if d > 2. 

Fix z with lzl < n-1• Extracting from the two-point function the 
contribution due to the zero-step walk, and taking into account all possible 

375 
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locations of the walk after the first step, we obtain 

Cz(O,x)=6o,r+ z:::> I: zlwl. (A.3) 
yEO w:y-r 

This can be rewritten as the convolution equation 

Cz(O, x) = 6o,r + zO.D * C.,(x), (A.4) 

where 
D(x) = { n-1 , x En 

0, x¢0.. (A.5) 

Taking the Fourier transform of (A.4) gives 

A 1 d 
C.,(k) = A I k E [-11',11'] 

1- zO.D(k) 
(A.6) 

with 

D(k) =~I: eil:·y =~I: cosk · y. 
yEO yEO 

(A.7) 

Taking the inverse transform then gives 

1 e-ik·r ddk 
C.,(O,x) = A -( d' 

[-11',11']4 1- zO.D(k) 211') 
(A.8) 

Since 1 - D(k) behaves like k2 near k = 0, it follows from (A.S) and a 
limiting argument that C1to(x, y) is finite if d > 2. 

The critical exponents for random walk are much easier to determine 
than those for the self-avoiding walk. It follows immediately from the facts 
that there are n,n n-step random walks starting from the origin and that 
the mean-square displacement after n steps is proportional to n that r = 1 
and v = 1/2. Also, a 8 ;ng - 2 = -d/2 follows from the local central limit 
theorem, which states that the probability of ending at x after n steps (with 
n and llxlh of the same parity, x fixed, and n -+ oo) is asymptotically of 
order n-d/2. The value TJ = 0 can be seen in k-space from the fact that 
C\to{k)- 1 = const.P + O(k4 ). In x-space the analogous statement follows 
from the well-known lxl2-d behaviour of the Green function C1to(O, x). 
Unfortunately none of these provides a useful means of understanding the 
corresponding critical exponents for the self-avoiding walk. 

However, for the correlation length the proof of mean-field behaviour for 
the self-avoiding walk in high dimensions given in Section 6.5.1 is modelled 
on a corresponding argument for random walk (with considerable additional 
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input). Because this argument is not a standard one, we give it below 
to prove that the nearest-neighbour (or simple) random walk correlation 
length has critical exponent 1/2. This may serve to motivate the approach 
used in Section 6.5.1. One ingredient is the next lemma, which is of in­
dependent interest. The lemma states quite generally that if a two-point 
function satisfies a certain inequality, known as the Lieb-Simon inequality 
[Simon (1980), Lieb (1980)), then it decays exponentially if the susceptibil­
ity is finite. 

In the statement of the lemma, Bn is the set of all y E zd such that 
IIYIIoo $ R, and oBn is defined to be the set of sites y with IIYIIoo = R. 

Lemma A.l Suppose K(x, y) is nonnegative and translation invariant, 
and satisfies 

K(O, x) $ L K(O, y)K(y, x), (A.9) 
yE8Bn 

for all R ~ 1 and xfi.Bn. If Lx K(O, x) < oo, then there are constants 
C, m > 0 such that K(O, x) $ Ce-mlxl for all sites x. 

Proof. Fix any 0 with 0 < 0 < 1. Since Lx K(O, x) < oo, there is an Ro 
such that for R ~ Ro 

I: /((0, y) $ () < 1. 
yE8Bn 

Fix an x with llxlloo > Ro, and let n = Ulxlloo/ RoJ. Then n ~ 1. It follows 
from {A.9) that 

J<(O, x) $ OK(O, x- yt), (A.lO) 

where Yl is a site in fJBR which satisfies K(y1,x) = sup11 eBBno I<(y,x). 
Clearly llx- vdloo ~ llxlloo- Ro ~ {n -l)Ro. Now we iterate (A.lO) n- 2 
more times to obtain 

K(O, x) $ on-l I<(O, x- Yn-t), 

for some site Yn. Since n ~ lliJtoo - 1, this gives 

K(O, x) $ (oio) llxlloo o-2 sup K(O, y). 
!I 

The desired exponential decay now follows from the fact that the supre­
mum on the right side is finite by hypothesis, together with the inequality 
llxlloo ~ a-l/2ixl. 0 

We now apply this lemma to show that the random walk correlation 
length has critical exponent 1/2. For simplicity we consider only the simple 
random walk, and write e1 = (1, 0, ... , 0). 
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Theorem A.2 Let n consist of the 2d nearest neighbours of the origin in 
zd. 
(a) For 0 < z < (2d)- 1 the mass 

mo(z):::- lim n-1logCz(O,ne1) 
n-oo 

exists, is strictly positive and finite, and for all x 

(A.ll) 

(b) For 0 < z < (2d)-1, the simple random walk susceptibility xo(z) = 
):., Cz (0, x) satisfies 

xo(z)- 1 = 2z[cosh mo(z)- 1], 

and hence m0 (z)2 "' z-1(1- 2dz) as z / (2d)-1, i.e., 

( 1 ) 1/2 ( 1 ) 1/2 
eo(z) = mo(z)-1 "' 2d 1- 2dz 

(A.12) 

Proof. (a) Assuming the limit exists, the proof from Section 1.3 that 
m(z) is finite and nonzero applies also to mo(z) [see (1.3.14) and (1.3.16)). 
We now obtain a subadditivity inequality which will yield existence of the 
limit. Given three sites w, x, y, any simple random walk w from w to y 
which passes through x can be decomposed into two subwalks as follows. 
Let j be the last time that w(j) = x, and let w(1) be the initial j-step 
portion of w and w(2) be the remainder. Then w( 2) does not return to x. 
The generating function for walks from x to y which do not return to x is 
equal to Cz(x, xt 1Cz(x, y). Therefore 

(A.13) 

Using (A.13) and translation invariance, 

Cz(O, (n + m)et) > 
w:O-(n+m)e 1 

This implies that the sequence -log[Cz(O, net)/Cz(O, 0)] is subadditive, so 
by Lemma 1.2.2 the limit defining m0 exists and 

(A.15) 
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To prove (A.ll) we first interchange two components of x if necessary, 
and then change the sign of Xt if necessary, to ensure that Xt = llxlloo· 
This does not change the value of Cz(O, x). Then symmetry and (A.13) 
with w = 0 andy= 2llxllooe1 give 

The bound (A.ll) then follows from (A.15). 

(b) To prove the identity (A.12) we introduce the exponentially weighted 
susceptibility 

Inserting (A.3) into (A.16) and using translation invariance gives 

Xt(z) = 1 + E ze1Y' E et(x,-yt)Cz(Y, x) 
y:lyl=l "' 

1 + 2z [d- 1 +cosh t] Xt(z). 

Therefore 
1 

Xt(z) = 1- 2z[d- 1 +cosh t] · 

(A.16) 

(A.l7) 

(A.l8) 

By (A.18), x1(z) is an increasing function oft. By (A.ll), Xt(z) is finite 
if z < 1/2d and t < m0 (z). We now argue that for fixed z < 1/2d, 

lim Xt(z) = oo. 
t/m0 (z) 

To see this, suppose to the contrary that x1(z) is uniformly bounded for 
t < mo(z). Then by the monotone convergence theorem Xmo(z)(z) < oo. 
Let I<(O,x) = emo(z)"''Cz(O,x). This [{satisfies the Lieb-Simon inequality 
(A.9), as can be seen using the fact that a walk from 0 to x fl. Bn must hit 
a site in 8Bn. Hence by Lemma A.l emo(z)x, Cz(O, x) decays exponentially, 
which contradicts the definition of mo(z). 

By (A.18), 
Xo(z)- 1 - Xt(z)- 1 = 2z[cosh t- 1]. 

Taking the limit t / m0 (z) gives 

xo(z)- 1 = 2z[cosh mo(z)- 1]. 

This gives the desired result 

( ) 2 1- 2dz moz ....., __ _ 
z 

1 
as z / 2d' 
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and completes the proof. 0 

We now turn to two lemmas which are needed in Section 6.2 to prove 
convergence of the lace expansion. These lemmas give estimates for the 
two-point function for two particular choices of the step set 0. We begin 
with the nearest-neighbour walk, for which the set 0 consists of the 2d 
nearest neighbours of the origin. In this case 

d . . 1" 
D(k) = D0(k) = d LJ cosk11 • 

11=1 

(A.19) 

We will denote the two-point function for the nearest-neighbour model by 
ci0>(o, :z:). The next lemma gives estimates for D0 (k), and for d 0>(k) at the 
critical point z = o-1• Although for our purposes the dimension dis always 
a positive integer, bounds have been given in terms of (d -4)-1 rather than 
d- 1 to emphasize critical dimensionality. For a different approach to some 
bounds of this type, see Hara (1990). 

Lemma A.3 For all d ~ 1 and k E [-11', 1r]d, 

• 2 2 
1- Do{k) ~ .,2dk . (A.20) 

For all nonnegative integers n and all d ~ 1, 

( )
d/2 

lliJ~IIt :5 :~ (A.21) 

There is a constant K, independent of d, such that for z = (2d)-1 and for 
all d > 4 

(A.22) 

and 
{}~Do + 2 (8 .. Do)2 

,. ,. $ K(d-4)- 1• 

[1 - Do]2 1 [1 - Do)3 1 

(A.23) 

The above norms are LP norms on [-1r, 1r]d with measure (21r)-dddk. 

Proof. We consider each inequality in turn. The first follows from the 
fact that 1- cos k 11 ~ 211'- 2k~, for lk,.l $ 11'. 

For the second inequality, we proceed as follows. By symmetry, 

(A.24) 
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= 11'-d t ( ! ) { dk1 ... dkm 
m=O J[o,.,/2)m . 

X { dkm+l ... dkd!Do(k)n!. Atr /2, •)•- m 

For k in the domain of integration on the right side, 

d 

IDo(k)l ~ d-1 Eicosk,l 
p=l 

4 [ m d l ~ 1- 1f'2d ~ k! + v!;.1 {'If'- kv)2 

381 

< exp (- 1r!d [f: k! + t (1r- kv?]). (A.25) 
p=l v=m+l 

Combining (A.24) and (A.25) and making a change of variables gives 

IID81h ~ (3.)d [ exp[-4nk21r-2d-1]ddk. (A.26) 
11' J[o,.,/2]• 

Extending the domain of integration, we obtain 

IIDolh $ 1r-d exp[-4nk21r-2d- 1]ddk = ~ 1 ( d)d/2 
R• 4n 

(A.27) 

For the bound on 116<0>11~- 1, we use a series expansion of C(0)(k)2 = 
[1- Do(k)]- 2 [which follows from (A.6)] to obtain 

"(0) 2 ~! . ddk IIC 11 2 = 1 + ~ (n + 1)Do (21r)d. (A.28) 

The integral here is over [-11", 1r]d. It suffices to show that there is a constant 
I< (independent of d) such that for d > 4, 

00 J . Jdk !;<n + 1) D0 (21r)d $ K(d- 4)-1. (A.29) 

For n odd the integral is zero, while for each even n the integral is positive. 
To prove (A.29), we divide the summation into two parts and use (A.27) 

to obtain 

00 I . Jdk d-1 I . Jdk 00 (11"d)d/2 
~(n + 1) D0 (21r)d $ ~(n + 1) D0 (21r)d + ~(n + 1) 4n 

(A.30) 
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Using the fact that for a > 1 

I:oo 1 1"" 1 (N- 1)-a+1 - < -dt = 1 

na - N-1 ta a- 1 
n=N 

it is not hard to see that the second sum on the right side of (A.30) is 
bounded by a dimension-independent multiple of (d- 4)- 1 . For the first 
sum on the right side, we use the fact that ID0 {k)l :5 1 to obtain 

~ J , n dd k J , 2 dd k J " 4 dd k 2 J " 6 dd k 
~(n + 1) D0 ( 211')d :53 D0 ( 211')d + 5 D0 ( 211')d + d Do (211')d • 

(A.31) 
The right side can be estimated by observing that the integrals on the right 
side are respectively the probabilities that simple random walk returns to 
the origin after two, four, or six steps. These probabilities are respectively 
of the order of d- 1 , d- 2 and d- 3 , which yields (A.29). 

For (A.23) we proceed as follows. We first observe that integration by 
parts gives 

II (81'bo)211 - 1 J a~bo ddk 
[1- b 0 ]3 1 - -2 [1- b 0)2 (211')d' 

(A.32) 

so it suffices to bound the first term on the left side of (A.23). But for this 
we simply observe that 

2 ' -1 8~'D0 (k) = -d cosk~', (A.33) 

which is bounded in absolute value by d-1, and then use (A.22). D 

The second model of ordinary random walk we consider is the "spread­
out" walk in zd with step set n = {x :f: 0: llxlloo :5 L}. The cardinality 
of this set is n = (2£ + 1)d- 1. In this case we will be interested in d > 4 
and large L. We write DL(k) in place of b(k) of (A.7) for this model. 
Also, we write C(L)(O,x) for the critical (z = n- 1) spread-out random 
walk two-point function. Before proving an analogue of Lemma A.3 for 
this spread-out random walk, we need the following result. 

Lemma A.4 For any S C {1, ... , d}, L ;:=: 1 and k E (-11',11']d, 

-1 

- n+1 II IDL(k)l :5 2{1 (2£+ l)sin(k~'/2) 
JJES 

(A.34) 



APPENDIX A. RANDOM WALK 383 

and 

io~DL(k)l $ n ~ 1 (2L + 1)2 1 IT (2L + 1) sin(kv/2)1-
1 

ves 
(A.35) 

Proof. In terms of the Dirichlet kernel 

M(t) = t eiit = sin[(2L + l)t/2], 
i=-L sin(t/2) 

(A.36) 

we have 

DL(k) =A [(n + 1)' ft ~(~; -1]. (A.37) 

Since IM(t)l is bounded above by both 2L + 1 and lsin(t/2)1- 1, 

d M(kJA) 1 g (2£ + 1) $ Ds (2L + l)sin(kJA/2) 
(A.38) 

This gives (A.34), once we observe that 

(A.39) 

For (A.35), we have 

82 b (k) = n + 1 o~M(k!A) IT M(kv) 
lA L n 2£ + 1 ... 2£ + 1 · v.,..JA 

(A.40) 

In view of the above bounds, it suffices to show that o~M(kJA) is bounded 
above by both (2L + 1? and (2L + 1)2 lsin(k!A/2)1- 1 • The first of these 
bounds follows from 

L 

£~2M(k ) - ~ x~eik,.x~~ 
VIA lA - - LJ ,. (A.41) 

x 11 :-L 

by taking absolute values inside the sum and using x~ $ £ 2 • For the second 
bound, we use the summation by parts formula 

B B 

L (bn+l- bn)an =- L bn (an -an-d+ bB+laB- bAaA-1, (A.42) 
n:A n:A 
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to obtain 

L 

L 

The desired bound then follows. 0 

The next lemma states several properties of the two-point function for 
the spread-out walk. 

Lemma A.5 For any d ~ 1 there is an Lo depending only on d such that 
for any k E [-11', 7r]d and L ~ Lo, 

• k2 
1- DL(k) ~ 271'2d' (A.44) 

For any d ~ 1 there are L0 and K depending only on d such that for all 
integers n ~ 2 and all L ~ Lo, 

• (log L)d/2 
IIDZih :5 I< Ldnd/ 2 · (A.45) 

Fix z = n-1• For any d > 4 and for all L, there is a I< depending only on 
d such that 

0 < IIC(L)II2 -1 < I<(logL)d/2 
- 2 - Ld (A.46) 

and 

o!DL + 2 (8JJDL)2 < I<(logL)d 
[1- DLP 1 [1- DL)3 1 - Ld-2 

(A.47) 

The above norms are LP norms on [-11', 7rJd with measure (211')-dddk. 

Proof. We shall begin by proving 

• k2 
1 -ID(k)l ~ 271'2d' (A.48) 

which in particular implies (A.44). By Lemma A.4 (with lSI = 1), there is 
a universal constant a such that 

(A.49) 
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For llklloo ~ 2a/ L, this together with the fact that k2:::; d1r2 gives 

- 1 k2 

1- IDL(k)i ~ 1- 2 ~ 271'2d' (A.50) 

For llklloo:::; 2afL, we will consider separately the two cases DL(k) ~ 0 
and bL(k) < 0. In either case, it follows from symmetry and the fact that 
1 -cost ~ 21r-2t2 for It I :::; 11' that 

1- DL(k) ~ 
1 L: 2 )2 n -(k·x 71'2 

zen:lk·zl:51f 

> 
2 

L: (k · x)2 
71'20 

zeO:II:r:llt:5,..L/2a 

= _2_k2 L: xr (A.51) 71'20 
zEO:II:r:llt:5,..L/2a 

The sum over x on the right side is bounded below by a (dimension­
dependent) multiple of £2+d, for L sufficiently large, and hence there is 
a positive constant c (depending only on d) such that for L ~ (271'2dc)- 112 
and llklloo ::S 2afL, 

(A.52) 

This gives (A.48) for llklloo :::; 2af L and DL(k) ~ 0. If on the other 
hand DL(k) < 0 and llklloo:::; 2a/L, then there are positive constants c,c' 
(depending only on the dimension) such that for large L 

1 -IDL(k)l = A L(l+cosk·x) 
:r:en 

> 1 
~ 1 n 

zen:IA:·zl:5,../2 

> 
1 

L: 1 n :r:EO:II:r:llt :5,.. L/4a 

> c' ~ cL2k2 • (A.53) 

Taking L ~ (27r2dc)- 112, it follows from (A.52) and (A.53) that for llklloo $ 
2a/L 

(A. 54) 
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With (A.50), this gives (A.48) and hence (A.44). 
Turning now to (A.45), it follows from (A.50) and (A.54) that if L is 

sufficiently large then 

(A.55) 

where K depends only on d. Fix b E {1, 2). Increasing K if necessary, for 
all n ~ dlogL/logb we have 

_!_< I< < I< 
2" - 2bnnd/2 - 2Ldnd/2 · 

(A.56) 

Hence for n ~ dlogL/logb, 

IID£111 :5 [( L -dn-d/2. (A.57) 

on the other hand, for any n ~ 2, IID£1h ~ IIDlllt = n- 1 , since IDL{k)l :5 
1 and IIDlllt is the probability of return to the origin after two steps. Hence 
for all n ~ dlogLflogb 

IID"II <.!. <.!. dlogL < K(logL)d/2£-dn-d/2. ( )
d/2 

L 1 - f2 - f2 n log b - (A.58) 

This completes the proof of (A.45). 
The proof of (A.46) now proceeds by writing the left side in terms of a 

sum of terms of order (n + 1) J iJn as in (A.28), and using (A.45). 
For (A.47), just as for the nearest-neighbour walk an integration by 

parts allows the second term on the left to be bounded by the first. The 
first term is equal to 

~ J 2 • • n-1 ddk 
~ n lo11 DL(k)!DL(k) (21r)d. (A.59) 

By (A.45) and the fact that !o~ih(k)! = 0(£2) it suffices to bound the 
first two terms in the sum, and for these it is sufficient to show that 

(A.60) 

To prove (A.60), we begin by dividing the domain of integration to obtain 

(A.61) 
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The first term on the right side is order £ 2-d, since the integrand is order 

£2 and the volume is order L -d. The domain of integration of the second 

term is the disjoint union over nonempty subsets S C {1, ... , d} of 

Rs = {k E Rd: 2a/L < kp ~ 1r for p. E S, !kvl ~ 2afL for v¢S}. (A.62) 

By (A.35), 

(A.63) 

The desired result then follows by summing overS. 0 

We conclude this appendix with a theorem about ordinary random walks 

with general step distribution that is needed in Section 8.1. As explained 

in that section, this theorem is true under weaker hypotheses than we state 

here. 

Theorem A.6 Let p be a positive integer. Let Y1 , Y2 , •.. be independent, 

identically distributed ZP -valued random variables with the property that 

f3 = min{Pr{Yt- Y2 = e}: llellt = 1} > 0. 

Then there exists a finite constant C (depending on the distribution of Y1) 

such that 

Pr{Yt + ... + Ym =X} ~ cm-P/2 for every m 2: 1, X E ZP. (A.64) 

Proof. Fork E (-1r, 1r]P, let <f>(k) = E(exp(ik · Yt)] denote the character­

istic function (Fourier transform) of Yt. Let e1, .•• , ep denote the positive 
unit vectors of ZP. Then by independence and symmetry, 

l¢>(k)l 2 = E[exp(ik · (Yt- Y2])] 

E[cos(k · (Yt - Y2])] 
p 

< 2 l::Pr{Yt- Y2 = e;} cosk; + Pr{IYt- Y2l # 1} 

i=l 
p 

= 22::Pr{Y1 - Y2 = e;}(cosk; -1) + 1 
i=l 

p 

< 2 l::f3(cos k;- 1) + 1. 
i=l 

(A.65) 
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Since coski -1 $ -2kJj1f2 for every ki E [-'If, 'If], we have 

(A.66) 

for every k E [-1r, 1r]P, where {J = 4/3j1f2 > 0. 
Next let n = l m/2J, so that m is either 2n or 2n + 1. Let x E zP. Then 

by Fourier inversion and (A.66) we obtain 

Pr{Yl+···+Ym=x} 

Since n = l m/2 J, this proves the theorem. 0 
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Appendix B 

Proof of the renewal 
theorem 

In this appendix we prove the version of the renewal theorem that is stated 
in Theorem 4.2.2, which is all that we need in this book. The probabilistic 
interpretation of this theorem is discussed briefly just before Theorem 4.2.2. 
The proof is essentially the standard one [as in for example Feller (1968) or 
Karlin and Taylor (1975)]. A very different proof using complex analysis 
appears in Kingman (1972), pp. 10-14. 

Theorem B.l Assume that Un : n ~ 1} and {gn : n ~ 0} are nonnegative 
sequences, and let 

00 

J=Efn 
n=l 

00 

and g = EYn 
n=O 

denote their sums. Assume that 0 < g < +oo. Also assume that It > 0. 
Define the new sequence v0 , v1 , ••• by 

vo = Yo 

Vn = Yn+ftvn-t+hvn-2+ .. ·+/nvo, foralln~l. (B.1) 

(a) If/ < 1, then limn .... oo Vn = 0 and :L~o Vn = gf(l - !). 
(b) Iff= 1, then 

I. g 
1m Vn = '\"'00 kf 

n-oo L...k=l k 
(B.2) 

(the limit is 0 if the sum in the denominator diverges). Also, Ln Vn di­
verges. 

{c) Ifl < /$ +oo, then limsupn-oo v~fn > 1. 
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Before proving the theorem, we record an elementary lemma. 

Lemma B.2 Let {am : m ~ 0} and {.8m,l: : m, k ~ 0} be nonnegative 
sequences. Assume that E::;'=0 am is finite and that there exists a finite 
constant B such that Pm,l: $ B for every m and k. Then 

00 00 

limsup L crm.8m,l: $ L crm(limsup,Bm,l:)· 
l:-oo m=O m=O l:-oo 

Proof. Since B- Pm,l: ~ 0, Fatou's lemma implies that 

00 00 

liminf E am(B- Pm,l:)?: E am(liminf(B- Pm,J:)). 
1:-oo l:-oo m=O m=O 

The result follows upon subtraction of B E:=o Om from both sides. 0 

Proof of Theorem B.l. Define the generating functions 

00 

F(s) = E fnsn, 
n=l 

00 

G{s) = E UnSn, 
n=O 

00 

V(s) = E VnSn. 

n=O 

These are well-defined (possibly infinite) for s?: 0. Observe that F(l) = f 
and G(l) =g. From the defining equation (B.l), we have 

V(s) = G(s) + F(s)V(s) (B.3) 

for all s ?: 0 (since all terms are nonnegative, the interchange of summation 
needed to deduce (B.3) is justified). 

Consider part (c) first. Assume 1 < f $ +oo and limsupn-oo v~fn $ 1. 
The latter implies that V(s) is finite whenever lsi< 1; but V(s) ~ F(s)V(s) 
whenever s ~ 0 by (B.3), and so F(s) $ 1 whenever 0 $ s < 1. Letting s 
increase to 1 and applying the monotone convergence theorem, we conclude 
that f = F(1) $ 1, which is a contradiction. This proves {c). 

It remains to prove (a) and (b), so we assume now that f $ 1. Observe 
that 0 $ Vn $ E?=o g; for every n ~ 0 (by induction), and so { Vn} is a 
bounded nonnegative sequence. From (B.3), we see that V(s) = G(s)/(1-
F(s)) whenever lsi < 1. Letting s increase to 1, we see that V(l) < oo if 
f < 1, and part (a) follows. It also follows that Ln Vn diverges iff= 1. 

It remains now to prove (B.2), so we assume f = 1. Summation of 
Equation (B.1) over n = 0, 1, ... , N gives 

N N N m 

Evn ~ Eun + E EJ;vN-m· (B.4) 
n=O n=O m=l i=l 
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If we now define 
n oo 

rn = 1 - L /; = L. /; 
i=l i=n+l 

for n 2: 0 (so ro = 1), then we can rewrite (B.4) as 

N N 

LTnVN-n = L9n· (B.S) 
n=O n=O 

Define 
00 00 

r= Lrn = Lkfk· 
n=O k=l 

Formally, letting N -+ oo in (B.S) gives the desired result limN-+oo VN = 
gfr. Most of the work in making this rigorous is in proving that the limit 
exists. 

Let u = lim supn-oo Vn, which is finite since Vn is bounded, and let Vn(i) 

be any subsequence which converges to u. We claim that 

,lim Vn(j)-k = u for every k 2: 1. 
J-+00 

(B.6) 

To prove the claim, let u. = lim inf; Vn(j)-1· Since Vn is bounded and f is 
finite, we can apply Lemma B.2 to 

to obtain 

n(j) 

Vn(i)- 11 Vn(j)-1 = 9n(j) + L /iVn(j)-i• 
i=2 

00 

u- 11 u. $ 0 + L f;u. 
n=2 

Since h > 0 and f = 1, this implies that u $ u., and hence u = u •. Thus 
the claim holds for k = 1, and by induction it holds for every positive k. 

If we now replace N by n(j) in (B.S) and apply Fatou's lemma, then 
using (B.6) we obtain 

00 

Lrnu $g. (B.7) 
n=O 

If r = +oo, then u must be 0 and we are done; so we suppose that r is 
finite. Let u' = lim infn Vn, and let VN(i) be a subsequence that converges 
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to u'. Replacing N by N(j) in (B.5) and applying Lemma B.2, and then 
using the fact that u ~ lim sup; VN(i)-n for every n ~ 1, we obtain 

00 

rou' + Lrnu ~g. 
n=l 

Combining this with (B.7) implies u' ~ u; therefore u' = u, i.e. Vn converges 
to u. Now we can apply the dominated convergence theorem to (B.5), which 
gives ru = g and completes the proof of the theorem. 0 
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Appendix C 

Tables of exact 
enumerations 

This appendix contains tables of exact enumerations, for the hypercubic lat­
tices in dimensions 2, 3, 4, 5, 6, of the number of n-step self-avoiding walks, 
the sum of squares of endpoints of all n-step self-avoiding walks (this only 
for d = 2, 3), and the number of n-step self-avoiding polygons. We have 
included all data known to us at the time of publication. The primary use 
of these tables is to provide partial sequences from which estimates can 
be made of critical exponents and the connective constant. Methods used 
are described in the references cited in the tables. An overview of series 
extrapolation methods is given in the survey Guttmann (1989a). 

It is worth noting that there are significant computational problems 
associated with the generation of these tables. Guttman and Wang (1991) 
quote a computation time of somewhat less than 700 hours on a Masscomp 
5700 computer for the generation of the number of self-avoiding walks and 
the sum of squares of end-to-end distances for the two values n = 28,29 on 
the square lattice ( d = 2). Masand et al (1992) report that the computation 
of en on the square lattice for 30 $ n $ 34 required approximately 100 hours 
on a Thinking Machine CM-2 massively parallel supercomputer. 
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n d=2 3 
0 1 1 
1 4 6 
2 12 30 
3 36 150 
4 100 726 
5 284 3534 
6 780 16926 
7 2172 81390 
8 5916 387966 
9 16268 1853886 

10 44100 8809878 
11 120292 41934150 
12 324932 198842 742 
13 881500 943974510 
14 2374444 4468911678 
15 6416596 21175146 054 
16 17245 332 100121875974 
17 46466676 473 730 252102 
18 124658 732 2 237 723 684 094 
19 335116620 10 576 033 219 614 
20 897697164 49 917 327 838 734 
21 2408806028 235 710 090 502158 
22 6444560484 
23 17 266 613 812 
24 46146397316 
25 123 481354 908 
26 329 712 786 220 
27 881317 491628 
28 2 351378 582 244 
29 6 279 396 229 332 
30 16 741957 935 348 
31 44 673 816 630 956 
32 119 034 997 913 020 
33 317 406 598 267 076 
34 845 279 07 4 648 708 

Table C.1: The number of self-avoiding walks for d = 2, 3, from Masand 
et al {1992), Guttmann and Wang {1991), Guttmann {1989b). Values for 
d = 2 are now known at least to n = 39 (Conway, Enting and Guttmann 
(private communication)). 
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n d=2 3 
1 4 6 
2 3~ 72 
3 124 582 
4 704 4032 
5 2716 25566 
6 9808 153528 
7 33788 886926 
8 112480 4983456 
9 364588 27 401502 

10 1157296 148157880 
11 3610884 790096950 
12 11108448 4166321184 
13 33 765276 21760624254 
14 101594000 112 743 796632 
15 302977204 580 052 260 230 
16 896627936 2966294589312 
17 2635423124 15 087 996161382 
18 7699729296 76 384144 381272 
19 22 37 4 323 436 385 066 5 79 325 550 
20 64 702 914 336 1 933 885 653 380 544 
21 186 289 216 332 9 679153 967 272 734 
22 534 227118 960 
23 1526 445 330 900 
24 4 34 7 038 392 480 
25 12 341626 847 324 
26 34 940 293 640 400 
27 98 660 244 502 668 
28 277 910 662 983 584 
29 781 060 493 709 204 

Table C.2: The sum of squares of lw(n)l over all n-step self-avoiding walks, 
for d = 2, 3, from Guttmann and Wang (1991), Guttmann (1989b) and 
Guttmann (1987). The mean-square displacement is obtained by dividing 
by Cn. 
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n d=2 3 
4 1 3 
6 2 22 
8 7 207 

10 28 2412 
12 124 31754 
14 588 452640 
16 2938 6840774 
18 15 268 108 088 232 
20 81826 1768 560 270 
22 449 572 
24 2 521270 
26 14 385 376 
28 83 290424 
30 488384528 
32 2 895432660 
34 17 332 874364 

36 104 653 427 012 
38 636 737 003 384 
40 3 900 770 002 646 
42 24 045 500 114 388 
44 149 059 814 328 236 
46 928 782 423 033 008 
48 5 814 401613 289 290 
50 36 556 766 640 745 936 
52 230757492737449636 
54 1461 972 662 850 874 916 
56 9293993428791901042 

Table C.3: The number of self-avoiding polygons ford= 2, 3. The values 
for d = 2 are taken from Guttmann and Enting (1988). Values for d = 3, 
n S 14 are from Fisher and Gaunt (1964). Values for d = 3, n ~ 16 are 
from Sykes et a/ (1972). Values are now known for d = 2 up to at least 70 
steps (Enting and Guttmann (private communication)]. 
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n d=4 5 6 
0 1 1 1 
1 8 10 12 
2 56 90 132 
3 392 810 1452 
4 2696 7210 15852 
5 18 584 64250 173172 
6 127160 570330 1887 492 
7 871256 5065530 20578452 
8 5946200 44906970 224138292 
9 40 613 816 398227 610 2441606532 

10 276750536 3527691690 26 583 605 772 
11 1886784200 31255491850 289 455 960 492 
12 12 843 449 288 
13 87 456 597 656 

Table C.4: The number of self-avoiding walks for d = 4, 5, 6. These values 
are taken from Fisher and Gaunt (1964), except ford= 4, n = 12, 13 which 
are from Guttmann (1978). 

n d=4 5 6 
4 6 10 15 
6 76 180 350 
8 1434 5170 13545 

10 32616 186856 679716 
12 844432 4060132 17761132 
14 23919864 

Table C.5: The number of self-avoiding polygons for d = 4, 5, 6. The values 
for n ~ 10 are from Fisher and Gaunt (1964), while those for n ~ 12 are 
due to Guttmann (private communication). 
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Notation 

llxllp = (2:!=1 lxl~)l/p 
lxl = llxll2 
llxlloo = max{lx,l: I'= 1, ... d} 

x. Y = E:=t x,y, 

f(k) = 2::~:ez4 f(:c)eik·:~: 
f(x) = (211')-d fr-~r,~r]• j(k)e-ik·:~:Jdk 

II/IlP = [E:~:ez•lf(x)IP]liP 
11/lloo = SUP:~:ez•lf(x)l 
llillp = [(2n')-d fr-~r,~r]• lf(k)IPddk)lfP 
f * g(x) = Eyez• f(x- y)g(y) 

z 
Re 
Res(f(z), zo) 
LxJ 
lSI 
f(x),... g(x) 
f(x) ~ g(x) 
f(x) ~ g(x) 

f(x) = O(g(x)) 
f(x) = o(g(x)) 

complex conjugate of z 
real part of a complex number 
residue of f(z) at zo 
greatest integer less than or equal to x 
cardinality of the set S 

limf(x)/g(x) = 1 
existence ofc1,c2 such that Ctg(x) :5 f(x) :5 c2g(:c) 
unproven belief that f(x) and g(x) have similar 

asymptotic behaviour 
existence of K such that 1/(x)l :5 Klg(x)l 
limf(x)/g(x) = 0 
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In the following list, the second column gives the section number where the 
notation is defined. 

0 1.2 w(1) o w<2) denotes concatenation of w<2) to w<1) 

{.) 2.3 expectation 
A 1.1 amplitude for c11 

a,;ng 1.3 critical exponent for en{O, z) 
bn 1.2 number of n-step bridges 
bn,L 3.1 number of n-step bridges with span L 
bn,L(Y) 4.1 number of n-step bridges ending at (L, y) 
bn(Y) 8.1 number of n-step bridges ending at (L, y) for some L 
B(z) 1.5 bubble diagram 
Bz 3.1 generating function for bridges 
Bz(L) 4.1 generating function for bridges of span L 
Bz(L, y) 4.1 generating function for bridges ending at (L, y) 
Br[a, b] 5.2 set of graphs on [a, b] with edges of length ~ r 
Cn 1.1 number of n-step self-avoiding walks 
Cn,r 1.2 number of n-step memory-r walks 
c11 (z, y) 1.2 number of n-step self-avoiding walks from z to y 
Cn,r(z, y) 1.2 number of n-step memory-r walks from z to y 

CN1 ,N2 1.3 number of pairs of intersecting self-avoiding walks 
cn(k, P] 7.1 number of n-step walks with at most k occurrences 

of the pattern P 
C11 [k, (P, Q)) 7.2 number of n-step walks with at most k occurrences 

of the pattern-cube pair (P, Q) 
Cz(z, y) 1.3 two-point function for simple random walk 
C(0)(z, y) 6.2.1 critical nearest-neighbour simple random walk two-

point function 
C(L)(x, y) 6.2.1 critical spread-out random walk two-point function 
C(x, y) 6.2.1 either C(0)(x, y) or C(L)(x, y) 
C'(U) 1.6 set of functions with s continuous derivatives on U 
Cd[O, I] 6.1 set of continuous functions from [0, 1] to Rd 
CN(Z, y) 5.1 set of N -step self-avoiding walks from z to y 
Cr(L) 5.2 edges of length ~ r compatible with L 
Cx(k) 9.2.2 covariance of X(t) and X(tHl 
CLECx 9.4.1 cardinality of largest ergodicity class of algorithm X 
x(z) 1.3 susceptibility 
xo(z) 1.3 susceptibility for simple random walk 
D 1.1 amplitude for mean-square displacement 
Dr(!) 6.8 {z: lzl $ Zr[l + fr- 1 logr]} 
D(x) 5.1 n-1 · times indicator function of n 
b(k) 5.1 Fourier transform of D(x); usually D0(k} or DL(k} 
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Do(k) 6.2.1 d-1 E~=l coskmu 
DL(k) 6.2.1 0 -1 E eilc·z zen 
{Jf z 6.3 fractional derivative 
[J-a z 6.3 fractional antiderivative 
0" •,J 2.3 Kronecker delta 
.1.4 1.3 critical exponent for CN1 ,N2 

.1.w( i) 9.1 w(i)- w(i- 1), the i-th step of w 
E 2.3 expectation 
Fz(k) 6.2.2 reciprocal of Gz(k) 
Fn[P] 7.1 set of n-step walks beginning with the pattern P 
g(z) 1.3 renormalized coupling constant 
Gz(x, y) 1.3 self-avoiding walk two-point function 
Gz(x, y; r) 5.2 two-point function for memory-r walks 
Gz(L) 4.1 generating function for walks ending on the hyper-

plane Xt = L 
Gz(k) 5.2 Fourier transform of Gz(x, y) 
Q,.[a, b] 5.2 connected graphs in B,.[a, b] 
gd 9.4.3 set of symmetries of zd 
'Y 1.1 critical exponent for Cn 
r 1.3 critical exponent for x(z) 
r 1.5 Gamma function 
r 5.2 graph on [a, b] 
hn 3.1 number of n-step half-space walks 
hn,L 3.1 number of n-step half-space walks of span L 
Hz(x, y) 5.4 G,(x, y)- Oz,IJ 

H.r(x, y; r) 6.8 E~=1 Cn,,.(O, X )z" 
TJ 1.4 critical exponent for Gzc(O, x) 
I 1.5 indicator function 
J,.[a, b] 5.2 self-avoidance interaction 
J,.,N[a, b] 5.2 N -loop self-avoidance interaction 
K,.[a, b] 5.2 self-avoidance interaction 
.Cr 5.2 lace associated with the graph r 
.C,.(a, b] 5.2 laces in 8,. (a, b] 
.Cr,N(a, b] 5.2 laces in B,.[a, b] with N edges 
An 4.2 number of n-step irreducible bridges 
,\n,L 4.2 number of n-step irreducible bridges with span L 
An,L(Y) 4.2 number of n-step irreducible bridges ending at (L, y) 
An(Y) 8.1 number of n-step irreducible bridges ending at (L, y) 

for some L 
Az 4.2 generating function for irreducible bridges 
Az(L) 4.2 generating function for irreducible bridges of span L 
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Az(L, y) 4.2 generating function for irreducible bridges ending 
at (L, y) 

m(z) 1.3 mass= rate of exponential decay of Gz(O, x) 
mo(z) A simple random walk mass 
M(z) 4.1 mass for bridges that end on the x1-axis 
M(z) 4.1 mass for bridges 
I' 1.1 connective constant 

l'r 1.2 connective constant for memory-r walks 
It Bridge 1.2 connective constant for bridges 
JtA(z) 4.2 mass for irreducible bridges 
v 1.1 critical exponent for mean-square displacement 
ii 1.3 critical exponent for e(z) 

Vp 1.3 critical exponent for ep(z) 

VF!ory 1.1 Flory values for v 

P>. 6.4.1 Zce 
->. 1/(1-•) 

Pm,n(w) 6.7 fraction of n-step self-avoiding walks which extend 
the m-step walk w 

P(i,j) 9.1 transition probability from i to j 
PD(A) 3.1 number of partitions of A into distinct integers 
11'(i) 9.1 equilibrium probability of the state i 
II 9.2.3 projection onto constants in /2( 1r) 
IIz(O, x) 5.2 irreducible two-point function in x-space 
rr~N)(o, x) 5.2 N-loop diagram in x-space 
II~N)(O, x; r) 5.2 memory-r version of II~N)(O, x) 

ITz(k) 5.2 irreducible two-point function in k-space 
fiz(k;r) 5.2 memory-r version of fiz ( k) 
qn 3.2 number of n-step self-avoiding polygons 
s 6.2.2 = 0 for nearest-neighbour model; 

= a small positive constant for spread-out model 
st 5.2 edge { s, t} 
s 9.1 state space of Markov chain 
s 9.5.1 set of all walks (self-avoiding, starting at the origin) 
SN 9.1 set of all N -step walks 
S(x) 9.6 set of all walks that end at x 
SN(x) 9.6 set of all N -step walks that end at x 
SN[P,R] 7.4 set of all N-step walks that begin with the pattern 

P and end with R 
Tx 9.1 average running time of the (static) algorithm X 
Terp 9.2.2 exponential autocorrelation time of Markov chain 
Terp,g 9.2.2 exponential autocorrelation time of observable g 

r;rp 9.2.3 modified autocorrelation time of Markov chain 
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Tint,g 9.2.2 integrated autocorrelation time of observable g 
u 6.2.2 = 3/2 for the nearest-neighbour model; 

= 5/2- 5s/2 - 2/d for the spread-out model 
Un 5.1 number of n-step self-avoiding loops 
Un 5.1 set of n-step self-avoiding loops 
u,,(w) 5.2 = -1 if w(s) = w(t); = 0 otherwise 
lwl 1.1 number of steps in w 
(lw(n)l2) 1.1 mean-square displacement 
n 5.1 symmetric set in zd, often {:z:: 0 < llxlloo :$ L}; 

cardinality of same 
e(z) 1.3 correlation length 
ep(z) 1.3 correlation length of order p 
z 1.3 activity 
Zc 1.3 self-avoiding walk critical point 
Zc(k;r) 5.2 radius of convergence of Fourier transform of 

Gz(O, x; r) 
Zr 6.8 abbreviation for zc(O; r) 
Zr(k) 6.8 abbreviation for zc(k; r) 
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Index 

activity 12 
autocorrelation time 319, 330, 342, 

346, 354 
exponential298,302,326,361 
integrated 297, 304, 305, 326 
modified 303, 305 

backbone 146, 150 
backtrack 100 

integer covered by 101 
bit map 291, 327 
break point 101, 111 
bridge 11, 81, 230, 259, 265, 272 

irreducible 90, 92, 110, 259 
Brownian motion 174, 206 
bubble condition 23, 28, 186 
bubble diagram 22ff, 77, 79, 171 

concatenation 8 
confidence interval 282, 292 
conformal invariance 8 
connective constant 5, 8ff 

bounds 12, 31 
estimates 12 
high dimensions 5 
restricted geometries 267ff 

correction-to-scaling terms 282, 292 
correlation length 15, 36 (see also 

critical exponent) 
simple random walk 378 

correlation length of order p 16 
(see also critical exponent) 

critical dimension 7, 8 

422 

critical exponent 
correlation length (v) 15, 37, 

173, 200 
correlation length of order p 

(v,) 16, 37, 172, 186 
critical two-point function ( 17) 

18, 19,32, 36 
fixed endpoint walks (a,;n9 ) 

19,21,52,173,217,257ff 
lattice trees 145 
mean-square displacement (v) 

5, 6, 7, 16, 19, 36, 37, 
172, 198 

number of walks (r) 5, 7, 13, 
19,30, 36,172,198,371 

percolation 156 
polygons, see fixed endpoint 

walks (a,ing) 
renormalized coupling constant 

(.6.4) 21, 28, 173, 371 
simple random walk 376, 377 
susceptibility (.:Y) 14, 25, 26, 

172, 186 
walk intersections 371, 372 

critical point 13 
critical slowing-down 282, 362 
cube 233 

detailed balance, see Markov chain, 
reversible 

diffusion constant 6, 172, 187 
Domb-Joyce model125, 365 
doubly-connected 150, 157 
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edge 2, 126 
compatible 127 

Edwards model 366 
excluded volume 40 

finite-dimensional distributions 130, 
207, 211 

first passage percolation 168 
Fisher's relation 36 
fixed endpoint walks 24 7, 253, 336 

(see also critical exponent) 
Flory exponents 8, 41ft', 54 
Fourier transform 18 
fractional derivative 188ft' 

graph 2, 126 
connected 126, 147 

half-space walk 58 
Hamiltonian 45 
hash table 291, 327, 363 
hyperscaling inequality 21, 217 
hyperscaling relation 20, 21, 38 

inclusion-exclusion 122, 130, 158 
infinite bridge 272 
infinite self-avoiding walk 131, 175, 

215, 272, 279 
infrared bound 19, 23, 25, 26, 174, 

205. 
Ising model44 (see also spin model) 

knots 276, 342, 363 

lace 126, 134, 138 
lattice trees 148 

lace expansion 124 
bounds 140ft' 
convergence 177ft' 
derivation 120ft', 124ft' 
lattice animals 150 
lattice trees 146 
percolation 158ft' 

423 

lattice animals 19, 145 
lattice subsets 267 
lattice tree 145 
lexicographic ordering 64 
Lieb-Simon inequality 202, 377 
logarithmic corrections 7, 14 
loop-erased walk 368ff 

Markov chain 285, 300 
aperiodic 286, 301 
equilibrium distribution 286, 

287, 296 
ergodic 363 
ergodicity class 290, 319, 322, 

342 
irreducible 286,301,315,324, 

334, 363 
positive recurrent 287 
reversible 287, 290, 301, 316, 

334, 340 
spectral analysis 301, 346 
stationary 296 
transition probabilities 286 

mass 15, 77ff, 87, 99 
at critical point 77, 81, 174 
bridge 82 
irreducible bridges 94, 100, 110 
simple random walk 378 

mean-field 8 
mean-field bound 14 
mean-square displacement 4 (see 

also critical exponent) 
enumerations 395 

memory 10, 125, 144, 217 
memory-two 133ft' 
memory-four 11 

Monte Carlo 281ff(see also Markov 
chain) 

algorithms 
Berretti-Sokal 330 
BFACF 339, 356, 361, 364 
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biased sampling 281, 307, 
363 

dimerization 282, 300, 308, 
363 

DORS 345, 359 
elementary simple sampling 

283 
enrichment 282, 311 
Generic Fixed-Length Dy-

namic 314 
join-and-cut 333 
k-site 315, 348 
myopic self-avoiding walk 

284 
non-reversed simple sampling 

284 
pivot 282, 322, 333, 350, 

364 
Redner-Reynolds 313 
slithering snake (reptation) 

320, 332 
strides 305 
Verdier-Stockmayer 288, 315 

dynamic 285, 296 
frozen walks 290, 317, 320, 

348, 363, 364 
initialization 299, 303 
rejection 290, 306 
static 285 
time series analysis 299 

myopic self-avoiding walk 284, 373 

number of walks 2 (see also criti­
cal exponent) 

enumerations 394, 397 
upper bounds 6, 57ff, 68ff 

observable 296 
oriented percolation 169 
Ornstein-Zernike decay 35, 89, 9~, 

112, 117 

partition function 45 

INDEX 

partitions, number of 58, 75 
pattern 231 

occurrence of 231, 233 
proper front 231, 321 
proper internal 231, 232 
proper tail 249, 321 

Pattern Theorem 233, 269, 271, 
277,319 

percolation 19, 116, 117, 155ff 
pivotal bond 150, 157 
polygon, self-avoiding 62ff, 76, 230, 

257ff,270, 276,359,364 
corresponding walks 62 
enumerations 396. 397 
equivalence 63 
rootedfunrooted 337 

polymer 39, 54, 276, 278 
branched 40 
linear 40 

radius of gyration 41, 146 
random walk 97, 98, 262, 266, 375ft' 

intersections 371 
ratio limit theorems 230, 248, 254, 

255 
high dimensions 172 

regression, linear 293 
Renewal Theorem 91, 389 
renewal theory 91, 95, 102, 120, 

259, 266, 275 
renormalized coupling constant 21 

(see also critical exponent) 

scaling limit 174, 206 
series extrapolation 393 
simple random walk 4 
slab 267 
span 58, 100 
specific heat 52 
spin model 8, 19, 44ft', 78, 117, 

282 
spiral walk 75 
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spread-out model 78, 171 
subadditivity 9, 81 
susceptibility 12 (see also critical 

exponent) 

Tauberian theorem 172, 192 
tightness 207, 214 
time series analysis 363 
triangle condition 168 
true self-avoiding walk 373 
tube 267 
two-point function 12, 77 (see also 

critical exponent) 
critical174 
exponential decay 15, 377 
irreducible 123 
scaling 36 
simple random walk 13, 378 

universality 7, 17, 41, 366 

van den Berg-Kesten inequality 
163, 166 

weakly self-avoiding walk 125, 365 
wedge 271 
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