
197A. Neustein and J.A. Markowitz (eds.), Mobile Speech and Advanced
Natural Language Solutions, DOI 10.1007/978-1-4614-6018-3_8,
© Springer Science+Business Media New York 2013

 Abstract Mobile is poised to become the predominant platform over which people
access the World Wide Web. Recent developments in speech recognition and
understanding, backed by high bandwidth coverage and high quality speech signal
acquisition on smartphones and tablets are presenting the users with the choice of
speaking their web search queries instead of typing them. A critical component of a
speech recognition system targeting web search is the language model. The chapter
presents an empirical exploration of the google.com query stream with the end goal
of high quality statistical language modeling for mobile voice search. Our experi-
ments show that after text normalization the query stream is not as “wild” as it
seems at fi rst sight. One can achieve out-of-vocabulary rates below 1% using a 1
million word vocabulary, and excellent n -gram hit ratios of 77/88% even at high
orders such as 5 / 4n = , respectively. A more careful analysis shows that a
signi fi cantly larger vocabulary (approx. 10 million words) may be required to guar-
antee at most 1% out-of-vocabulary rate for a large percentage (95%) of users.
Using large scale, distributed language models can improve performance
signi fi cantly—up to 10% relative reductions in word-error-rate over conventional
models used in speech recognition. We also fi nd that the query stream is non-sta-
tionary, which means that adding more past training data beyond a certain point
provides diminishing returns, and may even degrade performance slightly. Perhaps
less surprisingly, we have shown that locale matters signi fi cantly for English query

 C. Chelba , Ph.D. (*)
 Staff Research Scientist, Google, Inc. ,
 1600 Amphiteatre Parkway , Mountain View , CA 94043 , USA
e-mail: ciprianchelba@google.com

 J. Schalkwyk , M.Sc .
 Principal Staff Engineer, Google, Inc. , 76 Ninth Avenue, 4th Floor , New York ,
 NY 10011 , USA

 Chapter 8
 Empirical Exploration of Language Modeling
for the google.com Query Stream as Applied
to Mobile Voice Search

 Ciprian Chelba and Johan Schalkwyk

198 C. Chelba and J. Schalkwyk

data across USA, Great Britain and Australia. In an attempt to leverage the speech
data in voice search logs, we successfully build large-scale discriminative N-gram
language models and derive small but signi fi cant gains in recognition
performance.

 Introduction

 Mobile web search is a rapidly growing area of interest. Internet-enabled smart-
phones account for an increasing share of mobile devices sold throughout the world,
and most models offer a web browsing experience that rivals desktop computers
in display quality. Users are increasingly turning to their mobile devices when
searching the web, driving efforts to enhance the usability of web search on these
devices.

 Although mobile device usability has improved, typing search queries can still
be cumbersome, error-prone, and even dangerous in some usage scenarios. To
address these problems, Google introduced voice search in November 2008. The
goal of Google voice search is to recognize any spoken search query, and be capable
of handling anything that Google search can handle.

 We present an empirical exploration of google.com query stream language
modeling for voice search. We describe the normalization of the typed query stream
resulting in out-of-vocabulary (OOV) rates below 1% for a 1 million word vocabu-
lary. We present a comprehensive set of experiments that guided the design deci-
sions for a voice search service. In the process we re-discovered a less known
interaction between Kneser-Ney smoothing and entropy pruning, and found empiri-
cal evidence that hints at non-stationarity of the query stream, as well as strong
dependence on various English locales—USA, Britain and Australia.

 In an attempt to leverage the large amount of speech data made available by the
voice search service, we present a distributed framework for large-scale discrimina-
tive language models that can be integrated within a large vocabulary continuous
speech recognition (LVCSR) system using lattice rescoring. We intentionally use a
weakened acoustic model in a baseline LVCSR system to generate candidate
hypotheses for voice search data; this allows us to utilize large amounts of unsuper-
vised data to train our models. We propose an ef fi cient and scalable MapReduce
framework that uses a perceptron-style distributed training strategy to handle these
large amounts of data. We report small but signi fi cant improvements in recognition
accuracies on a standard voice search data set using our discriminative reranking
model. We also provide an analysis of the various parameters of our models includ-
ing model size, types of features, size of partitions in the MapReduce framework
with the help of supporting experiments.

 We will begin by de fi ning the language modeling problem and typical metrics
for comparing language models. We will then describe a series of experiments
which explore the dimensions along which Voice Search language models may be
re fi ned.

1998 Empirical Exploration of Language Modeling for the google.com…

 Language Modeling Basics

 A statistical language model estimates the prior probability values P (W) for strings
of words W in a vocabulary V whose size is usually in the tens or hundreds of
thousands. Typically the string W is broken into sentences, or other segments such
as utterances in automatic speech recognition, which are assumed to be condition-
ally independent. For the rest of this chapter, we will assume that W is such a seg-
ment, or sentence. With W = w

1
 , w

2
 , … , w

 n
 we get:

 −
=

= …∏ 1 2 1
1

() (| , , ,)
n

i i
i

P W P w w w w (8.1)

 Since the parameter space of P (w
 k
 | w

1
 , w

2
 , … , w

 k − 1
) is too large, the language

model is forced to put the context 1 1 2 1, , ,k kW w w w− −= … into an equivalence class
determined by a function F (W

 k − 1
). As a result,

 −
=

≅ Φ∏ 1
1

() (| ())
n

k k
k

P W P w W (8.2)

 Research in language modeling consists of fi nding appropriate equivalence
classi fi ers F and methods to estimate P (w

 k
 | F (W

 k − 1
)).

 The most successful paradigm in language modeling uses the (n − 1)-gram
equivalence classi fi cation, that is, de fi nes

 − − + − + −Φ …�1 1 2 1() , , ,k k n k n kW w w w

Once the form F (W
 k − 1

) is speci fi ed, only the problem of estimating P (w
 k
 | F (W

 k − 1
))

from training data remains. In most practical cases, n = 3 which leads to a trigram
language model.

 Perplexity as a Measure of Language Model Quality

 A statistical language model can be evaluated by how well it predicts a string of
symbols W

 t
 —commonly referred to as test data —generated by the source to be

modeled.
 Assume we compare two models M

1
 and M

2
 using the same vocabulary 1 V .

They assign probability
1
()M tP W and

2
()M tP W , respectively, to the sample test

string W
 t
 . The test string has neither been used nor seen at the estimation step

 1 Language models estimated on different vocabularies cannot be directly compared using perplex-
ity, since they model completely different probability distributions.

200 C. Chelba and J. Schalkwyk

of either model and it was generated by the same source that we are trying
to model. “Naturally”, we consider M

1
 to be a better model than M

2
 if

1 2
() ()M t M tP W P W> .

 A commonly used quality measure for a given model M is related to the entropy
of the underlying source and was introduced under the name of perplexity
(PPL) (Jelinek 1997) :

 −
=

= − ∑ 1
1

1
() (ln[(|)])

N

M k k
k

PPL M exp P w W
N (8.3)

To give intuitive meaning to perplexity, it represents the number of guesses the
model needs to make in order to ascertain the identity of the next word, when run-
ning over the test word string from left to right. It can be easily shown that the per-
plexity of a language model that uses the uniform probability distribution over
words in the vocabulary V equals the size of the vocabulary; a good language
model should of course have lower perplexity, and thus the vocabulary size is an
upper bound on the perplexity of a given language model.

 Very likely, not all words in the test string W
 t
 are part of the language model

vocabulary. It is common practice to map all words that are out-of-vocabulary to a
distinguished unknown word symbol, and report the out-of-vocabulary (OOV) rate
on test data—the rate at which one encounters OOV words in the test string W

 t
 —as

yet another language model performance metric besides perplexity. Usually the
unknown word is assumed to be part of the language model vocabulary— open
vocabulary language models—and its occurrences are counted in the language
model perplexity calculation, Eq. (8.3). A situation far less common in practice is
that of closed vocabulary language models where all words in the test data will
always be part of the vocabulary V .

 Smoothing

 Since the language model is meant to assign non-zero probability to unseen strings
of words (or equivalently, ensure that the cross-entropy of the model over an arbi-
trary test string is not in fi nite), a desirable property is that:

 − −Φ > > ∀1 1(| ()) 0, , ,k k k kP w W w Wε (8.4)

also known as the smoothing requirement.
 A large body of work has accumulated over the years on various smoothing

methods for n -gram language models that ensure this to be true. The two most wide-
spread smoothing techniques are probably Kneser-Ney (1995) and Katz (1987) ;
Goodman (2001) provides an excellent overview that is highly recommended to any
practitioner of language modeling.

2018 Empirical Exploration of Language Modeling for the google.com…

 Query Language Modeling for Voice Search

 A typical voice search language model used in our system for the US English query
stream is trained as follows:

 Vocabulary size: 1M words, OOV rate 0.57% •
 Training data: 230B words, a random sample of anonymized queries from •
google.com that did not trigger spelling correction

 The resulting size, as well as its performance on unseen query data (10k queries)
when using Katz smoothing is shown in Table 8.1 . We note a few key aspects:

 The fi rst pass LM (15 million • n -grams) requires very aggressive pruning—to
about 0.1% of its unpruned size—in order to make it usable in static FST-based
(Finite State Transducer-based) ASR decoders (Automatic Speech Recognition
decoders)
 The perplexity hit taken by pruning the LM is signi fi cant, 50% relative; similarly, •
the 3-g hit ratio is halved
 The impact on WER due to pruning is signi fi cant, yet lower in relative terms—•
10% relative, as we show in section “Effect of Language Model Size on Speech
Recognition Accuracy”
 The unpruned model has excellent • n -gram hit ratios on unseen test data: 77% for
 n = 5, and 97% for n = 3
 The choice of • n = 5 is because using higher n -gram orders yields diminishing
returns: a 7-g LM is 4 times larger than the 5-g LM trained from the same data
and using the same vocabulary, at no gain in perplexity.

 For estimating language models at this scale we have used the distributed lan-
guage modeling tools built for statistical machine translation (Brants and
Xu 2009 ; Brants et al. 2007) based on the MapReduce infrastructure described in
section “Language Modeling Basics”. Pruned language models used in the fi rst pass
of the ASR decoder are converted to ARPA (Paul and Baker 1992) and/or
FST (Allauzen et al. 2007) format using an additional MapReduce pass with a sin-
gle reducer, which can optionally apply the language model compression techniques
described in Harb et al. (2009) .

 The next section describes the text normalization that allows us to use a 1 million
word vocabulary and obtain out-of-vocabulary (OOV) rates lower than 1%, as well
as the excellent n -gram hit ratios presented in Table 8.1 .

 We then present experiments that show the temporal and spatial dependence
of the English language models. Somewhat unexpectedly, using more training
data does not result in an improved language model despite the fact that it is
extremely well matched to the unseen test data. Additionally, the English lan-
guage models built from training data originating in three locales (USA, Britain,
and Australia) exhibit strong locale-speci fi c behavior, both in terms of perplexity
and OOV rate.

 We will then present speech recognition experiments on a voice search test set.

202 C. Chelba and J. Schalkwyk

 Privacy Considerations

 Before delving into the technical aspects of our work, we wish to clarify the privacy
aspects of our work with respect to handling user data.

 All of the query data used for training, and testing models is strictly anonymous;
the queries bear no user-identifying information. The only data saved after training
are vocabularies, or n-gram counts. When working with session data, such as the
experiments reported in section “Optimal Size, Freshness and Time-Frame for Voice
Search Vocabulary”, we are even stricter: the evaluation on test data is done by
counting on streamed fi ltered query logs, without saving any data.

 Text Normalization

 In order to build a language model for spoken query recognition we boot-strap from
written queries to google.com . Written queries provide a data-rich environment
for modeling of queries. This requires robustly transforming written text into spo-
ken form.

 Table 8.2 lists a couple of example queries and their corresponding spoken
equivalents. Written queries contain a fair number of cases which require special
attention to convert to spoken form. Analyzing the top million vocabulary items
before text normalization we see approximately 20% URLs and 20 +% numeric
items in the query stream. Without careful attention to text normalization the vocab-
ulary of the system will grow substantially.

 We adopt a fi nite state approach to text normalization. Let T (written) be an accep-
tor that represents the written query. Conceptually the spoken form is computed as
follows

 = �() bestpath(() ())T spoken T written N spoken

where N (spoken) represents the transduction from written to spoken form. Note that
composition with N (spoken) might introduce multiple alternate spoken representa-
tions of the input text. For the purpose of computing n -grams for spoken language
modeling of queries we use the bestpath operation to select a single most likely
interpretation.

 Table 8.1 Typical voice search LM, Katz smoothing: the LM is trained on 230 billion words
using a vocabulary of 1 million words, achieving out-of-vocabulary rate of 0.57% on test data

 Order No. n-grams Pruning PPL n-gram hit-ratios

 3 15M Entropy (Stolcke) 190 47/93/100
 3 7.7B None 132 97/99/100
 5 12.7B Cut-off (1-1-2-2-2) 108 77/88/97/99/100

2038 Empirical Exploration of Language Modeling for the google.com…

 The text normalization is run in multiple phases. Figure 8.1 depicts the text nor-
malization process. In the fi rst step we annotate the data. In this phase we categorize
parts (sub strings) of queries into a set of known categories (e.g. time, date, url,
location).

 Since the query is annotated, it is possible to perform context-aware normaliza-
tion on the substrings. Each category has a corresponding text normalization trans-
ducer N

 cat
 (spoken) that is used to normalize the substring. Depending on the category

we either use rule based approaches or a statistical approach to construct the text
normalization transducer. For numeric categories like date, time and numbers it is
easy enough to describe N (spoken) using context dependent rewrite rules. For the
URL normalizer N

 url
 (spoken) we train a statistical word decompounder that

segments the string into its word constituents. For example, one reads the URL
 cancercentersofamerica.com as “cancer centers of america dot com”. The URL
decompounding transducer (decompounder) is built from the annotated data. Let Q

$20 books
on

amazon.com

Time, Date,
Number

Normalizer

Location
Normalizer

URL
Normalizer

Normalizers

twenty dollar books
on amazon dot com

Annotator

 Fig. 8.1 Block diagram for context aware text normalization

 Table 8.2 Example written queries and their corresponding
spoken form

 Written query Spoken query

 weather scarsdale, ny weather scarsdale new york
 weather in scarsdale new york

 bankofamerica.com bank of america dot com
 81 walker rd eighty one walker road
 10:30am ten thirty A M
 at&t A T and T
 espn E S P N

http://cancercentersofamerica.com

204 C. Chelba and J. Schalkwyk

be the set of queries in this Table, and let U be the set of substrings of these queries
that are labeled URLs.

 For a string s of length k let I (s) be the transducer that maps each character in s
to itself; i.e., the i -th transition in I (s) has input and output label s (i). I (s) represents
the word segmented into characters. Further, let T (s) be the transducer that maps the
sequence of characters in s to s ; i.e., the fi rst transition in T (s) has input s (1) and
output s , and the i -th transition, where i ¹ 1, has input s (i) and output e . T (s) repre-
sents the transduction of the spelled form of the word to the word itself. For a set of
strings S , we de fi ne

() ()

s S
T S T s

∈
= ⊕

where ⊕ is the union operation on transducers. T (S) therefore represents the trans-
duction of the spelling of the word to the word itself for the whole vocabulary.
Figure 8.2 illustrates the operation of T (⋅).

 The queries in Q and their frequencies are used to train an LM L
BASE

 . Let V
BASE

be its vocabulary. We build the decompounder as follows:

 1. For each u ∈ U , de fi ne N (u) as,

 = � �BASE BASE() bestpath (())* ()N u I u T V L (8.5)

 where ‘ ∗ ’ is the Kleene Closure, and ‘ ° ’ is the composition operator.
 2. = ⊕() ()

u U
N U N u

ε
 is the URL decompounder.

 The transducer I (u) ° T * (V
BASE

) in (8.5) represents the lattice of all possible seg-
mentations of u using the words in V

BASE
 , where each path from the start state to a

 fi nal state in the transducer is a valid segmentation. The composition with the LM
 L

BASE
 scores every path. Finally, N (u) is the path with the highest probability; i.e. the

most likely segmentation.
 As an example, Fig. 8.3 depicts I (u) ° T * (V

BASE
) for u = myspacelayouts . Each

path in this lattice is a valid decomposition, and in Table 8.3 we list a sample of

0

1m:myspace

8
m:my

9s:space

13

l:layouts

19
l:lay

21

o:outs

2
y:eps

7

y:eps

10
p:eps

14
a:eps

20
a:eps

22
u:eps

3
s:eps 4p:eps

5
a:eps

6
c:eps

e:eps

11a:eps
12c:eps e:eps

15
y:eps

16
o:eps

17u:eps 18
t:eps

s:eps

y:eps

23
t:eps s:eps

 Fig. 8.2 T (S) for the set of words S = { my , space , myspace , lay , outs , layouts } where ‘{ eps}’
denotes e

2058 Empirical Exploration of Language Modeling for the google.com…

these paths. After scoring all the paths via the composition with L
BASE

 , we choose
the best path to represent the spoken form of the URL.

 Language Model Re fi nement

 Query Stream Non-stationarity

 Our fi rst attempt at improving the language model was to use more training data: we
used a signi fi cantly larger amount of training data (BIG) vs. the most recent 230 bil-
lion (230B) prior to September 2008. The 230B corpus is the most recent subset of
 BIG . As test data we used a random sample consisting of 10k queries from Sept to
Dec 2008.

 The fi rst somewhat surprising fi nding was that this had very little impact in OOV
rate for 1M word vocabulary: 0.77% (230B vocabulary) vs. 0.73% (BIG vocabu-
lary). Perhaps even more surprising however is the fact that the signi fi cantly larger
training set did not yield a better language model, despite the training data being
clearly well matched, as illustrated in Table 8.4 . In fact, we observed a signi fi cant
reduction in PPL (10%) when using the more recent 230B data. Pruning masks this
effect, and the differences in PPL and WER become insigni fi cant after reducing the
language model size to approximately 10 million 3-g.

 Since the vocabulary, and training data set change between the two rows, the PPL
differences need to be analyzed in a more careful experimental setup.

 Table 8.3 Sample segmentations from Fig. 8.3 .
The one in bold represents the highest probability
path as determined by the composition with L

BASE

 Possible segmentations

 myspace layouts
 my space layouts
 my space lay outs
 my space l a y outs

0

1my

m,y 2myspace

space

s,p,a,c,e

3lay

l,a,y 4layouts

outs

o,u,t,s

 Fig. 8.3 The lattice I (u) ° T * (V
BASE

) of all possible segmentations for u = myspacelayouts using
words in V

BASE

206 C. Chelba and J. Schalkwyk

 A super fi cial interpretation of the results seems to contradict the “there’s no data
like more data” dictum, recently reiterated in a somewhat stronger form in Banko
and Brill (2001) , Och (2005) and Halevy et al. (2009) .

 Our experience has been that supply of “more data” needs to be matched with
increased demand on the modeling side, usually by increasing the model capacity—
typically achieved by estimating more parameters. Experiments reported in sec-
tion “Effect of Language Model Size on Speech Recognition Accuracy” improve
performance by keeping the amount of training data constant (albeit very large),
and increasing the n-gram model size by adding more n -grams at fi xed n , as well as
increasing the model order n . As such, it may well be the case that the increase in
PPL for the BIG model is in fact due to limited capacity in the 3-g model.

 More investigation is needed to disentangle the effects of query stream non-sta-
tionarity from possible mismatched model capacity issues. A complete set of exper-
iments needs to:

 Let the • n -gram order grow as large as the data allows;
 Build a sequence of models trained on exactly the same amount of data obtained •
by sliding a time-window of varying length over the query stream, and control
for the ensuing vocabulary mismatches.

 Effect of Language Model Size on Speech Recognition Accuracy

 The work described in Harb et al. (2009) and Allauzen et al. (2009) enables us to
evaluate relatively large query language models in the 1st pass of our ASR decoder
by representing the language model in the OpenFst (Allauzen et al. 2007) frame-
work. Figures 8.4 and 8.5 show the PPL and word error rate (WER) for two language
models (3- and 5-g, respectively) built on the 230B training data, after entropy prun-
ing to various sizes in the range 15 million–1.5 billion n-grams. Perplexity is evalu-
ated on the test set described in section “Query Stream Non-stationarity”; word error
rate is measured on another test set representative for the voice search task.

 As can be seen, perplexity is very well correlated with WER, and the size of the
language model has a signi fi cant impact on speech recognition accuracy: increasing
the model size by two orders of magnitude reduces the WER by 10% relative.

 Table 8.4 Pruned and unpruned 3-g language
model perplexity when trained on the most recent
230 billion words, and a much larger amount of
training data prior to test data, respectively

 Training set Test Set PPL

 Unpruned Pruned

 230B 121 205
 BIG 132 209

2078 Empirical Exploration of Language Modeling for the google.com…

120

140

160

180

200

220

240

260

LM size: # n−grams(B, log scale)

Perplexity (left) and Word Error Rate (right) as a function of LM size

17

17.5

18

18.5

19

19.5

20

20.5

10−3 10−2 10−1 100 101

 Fig. 8.4 Three-gram language model perplexity and word error rate as a function of language
model size; lower curve is PPL

100

120

140

160

180

200

LM size: # 5−grams(B)

Perplexity (left) and WER (right) as a function of 5−gram LM size

10−2 10−1 100 101
16.5

17

17.5

18

18.5

19

 Fig. 8.5 Five-gram language model perplexity and word error rate as a function of language
model size; lower curve is PPL

208 C. Chelba and J. Schalkwyk

 We have also implemented lattice rescoring using the distributed language model
architecture described in Brants et al. (2007) , see the results presented in Table 8.5 .
This enables us to validate empirically the hypothesis that rescoring lattices gener-
ated with a relatively small fi rst pass language model (in this case 15 million 3-g,
denoted 15M 3-g in Table 8.5) yields the same results as 1st pass decoding with a
large language model. A secondary bene fi t of the lattice rescoring setup is that one
can evaluate the ASR performance of much larger language models.

 Locale Matters

 We also built locale speci fi c English language models using training data prior to
September 2008 across 3 English locales: USA (USA), Britain (GBR , about a quarter
of the USA amount) and Australia (AUS , about a quarter of the GBR amount). The
test data consisted of 10k queries for each locale, sampled randomly from Sept to
Dec 2008.

 Tables 8.6 – 8.8 show the results. The dependence on locale is surprisingly strong:
using an LM on out-of-locale test data doubles the OOV rate and perplexity, either
pruned or unpruned.

 We have also built a combined model by pooling data across locales, with the
results shown on the last row of Table 8.8 . Combining the data negatively impacts all
locales, in particular the ones with less data. The farther the locale from USA (as seen
on the fi rst line, GBR is closer to USA than AUS), the more negative the impact of
lumping all the data together, relative to using only the data from that given locale.

 Table 8.5 Speech recognition language model perfor-
mance when used in the 1st pass or in the 2nd pass—
lattice rescoring

 Pass Language model PPL WER

 1st 15M 3-g 191 18.7
 1st 1.6B 5-g 112 16.9
 2nd 15M 3-g 191 18.8
 2nd 1.6B 5-g 112 16.9
 2nd 12.7B 5-g 108 16.8

 Table 8.6 Out of vocabulary rate: locale speci fi c
vocabulary halves the OOV rate

 Training Test Locale

 locale USA GBR AUS

 USA 0.7 1.3 1.6
 GBR 1.3 0.7 1.3
 AUS 1.3 1.1 0.7

2098 Empirical Exploration of Language Modeling for the google.com…

 The Case for Discriminative Language Modeling

 The language model is a critical component of an automatic speech recognition
(ASR) system that assigns probabilities or scores to word sequences. It is typically
derived from a large corpus of text via maximum likelihood estimation in conjunc-
tion with some smoothing constraints. N-gram models have become the most domi-
nant form of LMs in most ASR systems. Although these models are robust, scalable
and easy to build, we illustrate a limitation with the following example from voice
search. We expect a low probability for an ungrammatical or implausible word
sequence. However, for a trigram like “a navigate to”, a backoff trigram LM gives
a fairly large LM log probability of − 0. 266 because both “a” and “navigate to” are
popular words in voice search! Discriminative language models (DLMs) attempt to
directly optimize error rate by rewarding features that appear in low error hypothe-
ses and penalizing features in misrecognized hypotheses. In such a model, the
trigram “a navigate to” receives a negative weight of − 6. 5 thus decreasing its
chances of appearing as an ASR output. There have been numerous approaches
towards estimating DLMs for large vocabulary continuous speech recognition
(LVCSR) (Gao et al. 2005 ; Roark et al. 2007 ; Zhou et al. 2006) .

 There are two central issues that we discuss regarding DLMs. Firstly, DLM train-
ing requires large amounts of parallel data (in the form of correct transcripts and
candidate hypotheses output by an ASR system) to be able to effectively compete

 Table 8.8 Perplexity of pruned LM: locale speci fi c LM
halves the PPL of the unpruned LM. Pooling all data is
suboptimal

 Training Test Locale

 Locale USA GBR AUS

 USA 210 369 412
 GBR 442 150 342
 AUS 422 293 171
 combined 227 210 271

 Table 8.7 Perplexity of unpruned LM: locale speci fi c
LM halves the PPL of the unpruned LM

 Training Test Locale

 Locale USA GBR AUS

 USA 132 234 251
 GBR 260 110 224
 AUS 276 210 124

210 C. Chelba and J. Schalkwyk

with n-gram LMs trained on large amounts of text. This data could be simulated
using voice search logs from a baseline ASR system that are fi ltered by con fi dence
score to obtain reference transcripts. However, this data is perfectly discriminated
by fi rst pass features such as the acoustic and language model scores, and leaves
little room for learning. We propose a novel training strategy using lattices gener-
ated with a weaker acoustic model (henceforth referred to as weakAM) than the one
used to generate reference transcripts for the unsupervised parallel data (referred to
as the strongAM). This provides us with enough errors to derive large numbers of
potentially useful word features; it is akin to using a weak LM in discriminative
acoustic modeling to give more room for diversity in the word lattices resulting in
better generalization (Schlüter et al. 1999) . We conduct experiments to verify
whether weakAM -trained models provide performance gains on rescoring lattices
from a standard test set generated using strongAM (discussed in section “Evaluating
ASR Performance on v-search-test Using DLM Rescoring”).

 The second issue is that discriminative estimation of LMs is computationally
more intensive than regular N-gram LM estimation. The advent of distributed learn-
ing algorithms (Hall et al. 2010 ; Mann et al. 2009 ; McDonald et al. 2010) and sup-
porting parallel computing infrastructure like MapReduce (Ghemawat and
Dean 2004) has made it feasible to use large amounts of parallel data for training
DLMs. We implement a distributed training strategy for the perceptron algorithm
introduced by McDonald et al. (2010) using the MapReduce framework. Our design
choices for the MapReduce implementation are speci fi ed in section “MapReduce
Implementation Details” along with its modular nature thus enabling us to experi-
ment with different variants of the distributed structured perceptron algorithm.
Some of the descriptions in this paper have been adapted from previous work Jyothi
et al. (2012) .

 The Distributed DLM Framework: Training
and Implementation Details

 Learning Algorithm

 We aim to allow the estimation of large scale distributed models, similar in size to
the ones in Brants et al. (2007) . To this end, we make use of a distributed training
strategy for the structured perceptron to train our DLMs (McDonald et al. 2010) .
Our model consists of a high-dimensional feature vector function F that maps an
(utterance, hypothesis) pair (x , y) to a vector in R d , and a vector of model parameters,
 w ∈ R d . Our goal is to fi nd model parameters such that given x , and a set of candidate
hypotheses Y (typically, as a word lattice or an N-best list that is obtained from a
 fi rst pass recognizer), argmax · (,)y x y∈ ΦwY would be the y ∈Y that minimizes the
error rate between y and the correct hypothesis for x . For our experiments, the fea-
ture vector F (x , y) consists of AM and LM costs for y from the lattice Y for x , as

2118 Empirical Exploration of Language Modeling for the google.com…

well as “word level n-gram features” which count the number of times different
N-grams (of order up to 5 in our experiments) occur in y .

 In principle, such a model can be trained using the conventional structured per-
ceptron algorithm (Collins 2002) . This is an online learning algorithm which con-
tinually updates w as it processes the training instances one at a time, over multiple
training epochs. Given a training utterance { x

 i
 , y

 i
 } (i iy ∈Y has the lowest error rate

with respect to the reference transcription for x
 i
 , among all hypotheses in the lattice

 iY for x
 i
), if * : argmax · (,)

ii y iy x y∈= Φw� Y is not y
 i
 , then w is updated to increase the

weights corresponding to features in y
 i
 and decrease the weights of features in �*iy .

During evaluation, we use parameters averaged over all utterances and over all
training epochs. This was shown to give substantial improvements in previous work
Collins (2002) and Roark et al. (2007) .

 Unfortunately, the conventional perceptron algorithm takes impractically long
for the amount of training examples we have. We make use of a distributed training
strategy for the structured perceptron that was fi rst introduced in McDonald
et al. (2010) . The iterative parameter mixing strategy used in this paradigm can be
explained as follows: the training data 1{ , }i i ix y == NT is suitably partitioned into C
 disjoint sets 1, ,… CT T . Then, a structured perceptron model is trained on each data
set in parallel. After one training epoch, the parameters in the C sets are mixed
together (using a “mixture coef fi cient” m

 i
 for each set iT) and returned to each per-

ceptron model for the next training epoch where the parameter vector is initialized
with these new mixed weights. This is formally described in Algorithm 1; we call it
“Distributed Perceptron”. We also experiment with two other variants of distributed
perceptron training, “Naive Distributed Perceptron” and “Averaged Distributed
Perceptron”. These models easily lend themselves to implementations using the
distributed infrastructure provided by the MapReduce framework. The following
section describes this infrastructure in greater detail.

 MapReduce Implementation Details

 We propose a distributed infrastructure using MapReduce (Ghemawat and
Dean 2004) to train our large-scale DLMs on terabytes of data. The
MapReduce (Ghemawat and Dean 2004) paradigm, adapted from a specialized
functional programming construct, is specialized for use over clusters with a large
number of nodes. Chu et al. (2007) have demonstrated that many standard machine
learning algorithms can be phrased as MapReduce tasks, thus illuminating the ver-
satility of this framework. In relation to language models, Brants et al. (2007)
recently proposed a distributed MapReduce infrastructure to build Ngram language
models having up to 300 billion n -grams. We take inspiration from this and use the
MapReduce infrastructure for our DLMs. Also, the MapReduce paradigm allows us
to easily fi t different variants of our learning algorithm in a modular fashion by only
making small changes to the MapReduce functions.

212 C. Chelba and J. Schalkwyk

 In the MapReduce framework, any computation is expressed as two user-de fi ned
functions: Map and Reduce . The Map function takes as input a key/value pair and
processes it using user-de fi ned functions to generate a set of intermediate key/value
pairs. The Reduce function receives all intermediate pairs that are associated with
the same key value.

 The distributed nature of this framework comes from the ability to invoke the
 Map function on different parts of the input data simultaneously. Since the frame-
work assures that all the values corresponding to a given key will be accummu-
lated at the end of all the Map invocations on the input data, different machines
can simultaneously execute the Reduce to operate on different parts of the inter-
mediate data.

 Any MapReduce application typically implements Mapper / Reducer interfaces
to provide the desired Map / Reduce functionalities. For our models, we use two dif-
ferent Mappers (as illustrated in Fig. 8.6) to compute feature weights for one train-
ing epoch. The Rerank-Mapper receives as input a set of training utterances and
has the capacity to request feature weights computed in the previous training epoch.
 Rerank-Mapper then computes feature updates for the given training data (the sub-
set of the training data received by a single Rerank-Mapper instance will be hence-
forth referred to as a “Map chunk”). We also have a second Identity-Mapper that
receives feature weights from the previous training epoch and directly maps the
inputs to outputs which are provided to the Reducer . The Reducer combines the
outputs from both Rerank-Mapper and Identity-Mapper and outputs the feature
weights for the current training epoch. These output feature weights are persisted on
disk in the form of SSTables that are an ef fi cient abstraction to store large numbers
of key-value pairs.

2138 Empirical Exploration of Language Modeling for the google.com…

 The features corresponding to a Map chunk at the end of training epoch need to
be made available to Rerank-Mapper in the subsequent training epoch. Instead of
accessing the features on demand from the SSTables that store these feature weights,
every Rerank-Mapper stores the features needed for the current Map chunk in a
cache. Though the number of features stored in the SSTables are determined by the
total number of training utterances, the number of features that are accessed by a
 Rerank-Mapper instance are only proportional to the chunk size and can be cached
locally. This is an important implementation choice because it allows us to estimate
very large distributed models: the bottleneck is no longer the total model size but
rather the cache size that is in turn controlled by the Map chunk size.
Section “Evaluating Our DLM Rescoring Framework on weakAM-dev/test ” dis-
cusses in more detail about different model sizes and the effects of varying Map
chunk size on recognition performance.

 Figure 8.6 is a schematic diagram of our entire framework; Fig. 8.7 shows a
more detailed representation of a single Rerank-Mapper , an Identity-Mapper and a
 Reducer , with the pseudocode of these interfaces shown inside their respective
boxes. Identity-Mapper gets feature weights from the previous training epoch as input
(w t) and passes them to the output unchanged. Rerank-Mapper calls the function
 Rerank that takes an N-best list of a training utterance (utt.Nbest) and the current
feature weights (w

 curr
) as input and reranks the N-best list to obtain the best scoring

hypothesis. If this differs from the correct transcript for utt , FeatureDiff
computes the difference in feature vectors corresponding to the two hypotheses
(we call it d) and w

 curr
 is incremented with d . Emit is the output function of a

SSTable
Feature-
Weights:
Epoch t+1

SSTable
Feature-
Weights:
Epoch t

SSTable
Utterances

SSTableService

Rerank-Mappers

Identity-Mappers

Reducers

Cache
(per Map chunk)

 Fig. 8.6 MapReduce implementation of reranking using discriminative language models

214 C. Chelba and J. Schalkwyk

Mapper that outputs a processed key/value pair. For every feature Feat , both
 Identity-Mapper and Rerank-Mapper also output a secondary key (0 or 1, respec-
tively); this is denoted as Feat :0 and Feat :1. At the Reducer , its inputs arrive
sorted according to the secondary key; thus, the feature weight corresponding to
 Feat from the previous training epoch produced by Identity-Mapper will neces-
sarily arrive before Feat ’s current updates from the Rerank-Mapper . This ensures
that w t + 1 is updated correctly starting with w t . The functions Update , Aggregate
and Combine are explained in the context of three variants of the distributed per-
ceptron algorithm in Fig. 8.8 .

wt

Rerank-Mapper

Reducer

1 utt1
2 utt2

Nc uttNc

Feat1 wt1
Feat2 wt2

FeatM wtM

:

:

U

Cache of wt maintained by the Mapper

wcurr := wt, := 0
For each (key,utt) in U:
Map(key,utt) {

Rerank(utt.Nbest,wcurr)
 := FeatureDiff(utt)

wcurr:= wcurr +
 := Update(,)

}

wt+1

Reduce(Feat,V[0..n]) {
//V contains all pairs
//with primary key=Feat
//first key=Feat:0
wold := V[0]
//aggregate from rest
//of V (key=Feat:1)
* := Aggregate(V[1..n])

wt+1[Feat] :=
Combine(wold, *)

}

For each Feat in 1 to M:
Map(Feat,wt[Feat]) {

Emit(Feat:0,wt[Feat])
}

Identity-Mapper

For each Feat in 1 to M:
Emit(Feat:1, [Feat])

 Fig. 8.7 Details of the Mapper and Reducer

 Fig. 8.8 Update , Aggregate and Combine procedures for the three variants of the distrib-
uted perceptron algorithm

2158 Empirical Exploration of Language Modeling for the google.com…

 MapReduce Variants of the Distributed Perceptron Algorithm

 Our MapReduce setup described in the previous section allows for different vari-
ants of the distributed perceptron training algorithm to be implemented easily. We
experimented with three slightly differing variants of a distributed training strategy
for the structured perceptron, Naive Distributed Perceptron , Distributed Perceptron
and Averaged Distributed Perceptron ; these are de fi ned in terms of Update ,
 Aggregate and Combine in Fig. 8.8 where each variant can be implemented by
plugging in these de fi nitions from Fig. 8.8 into the pseudocode shown in Fig. 8.7 .
We brie fl y describe the functionalities of these three variants. The weights at the
end of a training epoch t for a single feature f are (w

 NP
 t , w

 DP
 t , w

 AV
 t) corresponding to

 Naive Distributed Perceptron , Distributed Perceptron and Averaged Distributed
Perceptron , respectively; j (⋅,⋅) correspond to feature f ’s value in F from
Algorithm 1. Below, δ = − �, , , , ,(,) (,)t t

c j c j c j c j c jx y x yf f and c =N number of utter-
ances in Map chunk cT .

 At the end of epoch t , the weight increments in that epoch from all map chunks
are added together and added to w

 NP
 t − 1 to obtain w

 NP
 t .

 Here, instead of adding increments from the map chunks, at the end of epoch t ,
they are averaged together using weights m

 c
 , c = 1 to C , and used to increment w

 DP
 t − 1

to w
 DP

 t .
 In this variant, fi rstly, all epochs are carried out as in the Distributed Perceptron

algorithm above. But at the end of t epochs, all the weights encountered during the
whole process, over all utterances and all chunks, are averaged together to obtain
the fi nal weight w

 AV
 t . Formally,

′

′= = =

= ∑∑∑ ,
1 1 1

1
,

·

ct
t t
AV c j

t c j

w w
t

NC

N

where w
 c , j

 t refers to the current weight for map chunk c , in the t th epoch after pro-
cessing j utterances and N is the total number of utterances. In our implementa-
tion, we maintain only the weight w

 DP
 t − 1 from the previous epoch, the cumulative

increment =
γ = δ∑, ,1

jt t
c j c kk

 so far in the current epoch, and a running average w
 AV

 t − 1 .
Note that, for all c , j , −= + γ1

, ,
t t t
c j DP c jw w , and hence

−

= =

− −

=

= − +

= − + + β

∑∑

∑

1
,

1 1

1 1

1

· (1)

(1)

c
t t t
AV AV c j

c j

t t t
AV DP c

c

t w t w w

t w w

NC

C

N N

N N

where
=

β = γ∑ ,1

t t
c c jj

N
 . Writing

=
β = β∑*

1

t
cc

C
 , we have − −−= + + β1 1 *1 1 1t t t

AV AV DP

t
w w w

t t tN
 .

216 C. Chelba and J. Schalkwyk

 Experiments and Results

 Our DLMs are evaluated in two ways: (1) we extract a development set (weakAM-
dev) and a test set (weakAM-test) from the speech data that is re-decoded with a
 weakAM , and (2) we use a standard voice search test set (v-search-test) (Strope
et al. 2011) to evaluate actual ASR performance on voice search. More details
regarding our experimental setup along with a discussion of our experiments and
results are described in the rest of the section.

 Experimental Setup

 We generate training lattices using speech data that is re-decoded with a weakAM
acoustic model and the baseline language model. We use maximum likelihood
trained single mixture Gaussians for our weakAM . And, we use a suf fi ciently small
baseline LM (~ 21 million n-grams) to allow for sub-real time lattice generation on
the training data with a small memory footprint, without compromising on its
strength. Chelba et al. (2010) demonstrate that it takes much larger LMs to get a
signi fi cant relative gain in WER. Our largest discriminative language models are
trained on 87,000 h of speech, or ~ 350 million words (weakAM-train) obtained by
 fi ltering voice search logs at 0.8 con fi dence, and re-decoding the speech data with a
 weakAM to generate N-best lists. We set aside a part of this weakAM-train data to
create weakAM-dev and weakAM-test : these data sets consist of 328,460/316,992
utterances, or 1,182,756/1,129,065 words, respectively.

 We use a manually-transcribed, standard voice search test set (v-search-test)
consisting of 27,273 utterances, or 87,360 words to evaluate actual ASR perfor-
mance using our weakAM -trained models. All voice search data used in the experi-
ments is anonymized.

 Figure 8.9 shows oracle error rates, both at the sentence and word level, using
N-best lists of utterances in weakAM-dev and v-search-test . These error rates are
obtained by choosing the best of the top N hypotheses that is either an exact match
(for sentence error rate) or closest in edit distance (for word error rate) to the correct
transcript. The N-best lists for weakAM-dev are generated using a weak AM and
N-best lists for v-search-test are generated using the baseline (strong) AM. Figure 8.9
shows these error rates plotted against a varying threshold N for the N-best lists.
Note there are suf fi cient word errors in the weakAM data to train DLMs; also, we
observe that the plot fl attens out after N = 100, thus informing us that N = 100 is a
reasonable threshold to use when training our DLMs.

 Experiments in section “Evaluating Our DLM Rescoring Framework on
 weakAM-dev/test ” involve evaluating our learning setup using weakAM-dev/test .
We then investigate whether improvements on weakAM-dev/test translate to
 v-search-test where N-best are generated using the strongAM , and scored against
 manual transcripts using fully fl edged text normalization instead of the string edit

2178 Empirical Exploration of Language Modeling for the google.com…

distance used in training the DLM. More details about the implications of this text
normalization on WER can be found in section “Evaluating ASR Performance on
 v-search-test Using DLM Rescoring”.

 Evaluating Our DLM Rescoring Framework on weakAM-dev/test

 Improvements on weakAM-dev Using Different Variants of Training
for theDLMs

 We evaluate the performance of all the variants of the distributed perceptron algo-
rithm described in section “MapReduce Implementation Details” over 10 training
epochs using a DLM trained on ~ 20,000 h of speech with trigram word features.
Figure 8.10 shows the drop in WER for all the three variants. We observe that the
 Naive Distributed Perceptron gives modest improvements in WER compared to the
baseline WER of 32.5%. However, averaging over the number of Map chunks as in
the Distributed Perceptron or over the total number of utterances and total number
of training epochs as in the Averaged Distributed Perceptron signi fi cantly improves
recognition performance; this is in line with the fi ndings reported in Collins (2002)
and McDonald et al. (2010) of averaging being an effective way of adding regular-
ization to the perceptron algorithm.

 Our best-performing Distributed Perceptron model gives a 4. 7 % absolute
(~ 15% relative) improvement over the baseline WER of 1-best hypotheses in
 weakAM-dev . This, however, could be attributed to a combination of factors: the use
of large amounts of additional training data for the DLMs or the discriminative

0 50 100 150 200

10

20

30

40

50

N

E
rr

or
 R

at
e

weakAM−dev SER

weakAM−dev WER
v−search−test SER

v−search−test WER

 Fig. 8.9 Oracle error rates
at word/sentence level for
 weakAM-dev with the
weak AM and v-search-
test with the baseline AM

218 C. Chelba and J. Schalkwyk

nature of the model. In order to isolate the improvements brought upon mainly by
the second factor, we build an ML trained backoff trigram LM (ML-3 g) using the
reference transcripts of all the utterances used to train the DLMs. The N-best lists in
 weakAM-dev are reranked using ML-3 g probabilities linearly interpolated with the
LM probabilities from the lattices. We also experiment with a log-linear interpola-
tion of the models; this performs slightly worse than rescoring with linear
interpolation.

 Impact of Varying Orders of N-gram Features

 Table 8.9 shows that our best performing model (DLM-3 g) gives a signi fi cant ~ 2%
absolute (~ 6% relative) improvement over ML-3 g. We also observe that most of
the improvements come from the unigram and bigram features. We do not expect
higher order N-gram features to signi fi cantly help recognition performance; we fur-
ther con fi rm this by building DLM-4 g and DLM-5 g that use up to 4- and 5-g word
features, respectively. Table 8.10 gives the progression of WERs for 6 epochs using
DLM-3 g, DLM-4 g and DLM-5 g showing minute improvements as we increase the
order of Ngram features from 3 to 5.

 Impact of Model Size on WER

 We experiment with varying amounts of training data to build our DLMs and assess
the impact of model size on WER. These are evaluated on the test set derived from
the weakAM data (weakAM-test). Table 8.11 shows each model along with its size

2 4 6 8 10

20

25

30

35

Training epochs

W
or

d
E

rr
or

 R
at

e(
W

E
R

)
Naive Distributed-Perceptron
Distributed-Perceptron
Averaged Distributed-Perceptron

 Fig. 8.10 Word error rates
on weakAM-dev using
 Perceptron , Distributed
Perceptron and
 AveragedPerceptron
models

2198 Empirical Exploration of Language Modeling for the google.com…

(measured in total number of word features), coverage on weakAM-test in percent
of tokens (number of word features in weakAM-test that are in the model) and WER
on weakAM-test . As expected, coverage increases with increasing model size with
a corresponding tiny drop in WER as the model size increases. “Larger models”,
built by increasing the number of training utterances used to train the DLMs, do not
yield signi fi cant gains in accuracy. We need to fi nd a good way of adjusting the
model capacity with increasing amounts of data.

 Impact of Varying Map Chunk Sizes

 We also experiment with varying Map chunk size to determine its effect on WER.
Figure 8.11 shows WERs on weakAM-dev using our best Distributed Perceptron
model with different Map chunk sizes (64 MB, 512 MB, 2 GB). For clarity, we
examine two limit cases: (a) using a single Map chunk for the entire training data is
equivalent to the conventional structured perceptron and (b) using a single training
instance per Map chunk is equivalent to batch training. We observe that moving
from 64 MB to 512 MB signi fi cantly improves WER and the rate of improvement in
WER decreases when we increase the Map chunk size further to 2 GB. We attribute

 Table 8.11 WERs on weakAM-test using DLMs of varying sizes

 Model Size (in millions) Coverage (%) WER (%)

 Baseline 21 – 39.08
 Model 1 65 74.8 34.18
 Model 2 135 76.9 33.83
 Model 3 194 77.8 33.74
 Model 4 253 78.4 33.68

 Table 8.10 WERs on weakAM-dev using DLM-3 g, DLM-4 g and DLM-5 g
of 6 training epochs

 Iteration DLM-3 g (%) DLM-4 g (%) DLM-5 g (%)

 1 32.53 32.53 32.53
 2 29.52 29.47 29.46
 3 29.26 29.23 29.22
 4 29.11 29.08 29.06
 5 29.01 28.98 28.96
 6 28.95 28.90 28.87

 Table 8.9 WERs on weakAM-dev using the baseline 1-best system, ML-3 g and DLM-1/2/3 g

 Data set Baseline (%) ML-3 g (%) DLM-1 g (%) DLM-2 g (%) DLM-3 g (%)

 weakAM-dev 32.5 29.8 29.5 28.3 27.8

220 C. Chelba and J. Schalkwyk

these reductions in WER with increasing Map chunk size to on-line parameter
updates being done on increasing amounts of training samples in each Map chunk.
The larger number of training samples per Map chunk accounts for greater stability
in the parameters learned by each Map chunk in our DLM.

 Evaluating ASR Performance on v-search-test Using DLM
Rescoring

 We evaluate our best Distributed Perceptron DLM model on v-search-test lattices
that are generated using a strong AM. We hope that the large relative gains on
 weakAM-dev/test translate to similar gains on this standard voice search data set as
well. Table 8.12 shows the WERs on both weakAM-test and v-search-test using
Model 1 (from Table 8.11). 2 We observe a small but statistically signi fi cant (p < 0. 05)
reduction (~ 2% relative) in WER on v-search-test over reranking with a linearly
interpolated ML-3 g. This is encouraging because we attain this improvement using
training lattices that were generated using a considerably weaker AM.

 It is instructive to analyze why the relative gains in performance on weakAM-
dev/test do not translate to v-search-test . Our DLMs are built using N-best outputs
from the recognizer that live in the “spoken domain” (SD) and the manually tran-
scribed v-search-data transcripts live in the “written domain” (WD). The normal-
ization of training data from WD to SD is as described in Chelba et al. (2010) ;

1 2 3 4 5 6

20

25

30

35

Training epochs

W
or

d
E

rr
or

 R
at

e(
W

E
R

)
Map chunk size 64MB
Map chunk size 512MB
Map chunk size 2GB

 Fig. 8.11 Word error rates
on weakAM-dev using
varying Map chunk sizes
of 64 MB, 512 MB and
2 GB

 2 We also experimented with the larger Model 4 and saw similar improvements on v-search-test as
with Model 1.

2218 Empirical Exploration of Language Modeling for the google.com…

inverse text normalization (ITN) undoes most of that when moving text from SD to
WD, and it is done in a heuristic way. There is ~ 2% absolute reduction in WER
when we move the N-best from SD to WD via ITN; this is how WER on v-search-
test is computed by the voice search evaluation code. Contrary to this, in DLM
training we compute WERs using string edit distance between test data transcripts
and the N-best hypotheses and thus we ignore the mismatch between domains WD
and SD. It is quite likely that part of what the DLM learns is to pick N-best hypoth-
eses that come closer to WD, but may not truly result in WER gains after ITN. This
would explain part of the mismatch between the large relative gains on weakAM-
dev/test compared to the smaller gains on v-search-test . We could correct for this by
applying ITN to the N-best lists from SD to move to WD before computing the
oracle best in the list. An even more desirable solution is to build the LM directly on
WD text; text normalization would be employed for pronunciation generation, but
ITN is not needed anymore (the LM picks the most likely WD word string for
homophone queries at recognition).

 Optimal Size, Freshness and Time-Frame
for Voice Search Vocabulary

 In this section, we investigate how to optimize the vocabulary for a voice search
language model. The metric we optimize over is the out-of-vocabulary (OOV) rate
since it is a strong indicator of user experience; the higher the OOV rate, the more
likely the user is to have a poor experience. Clearly, each OOV word will result in
at least one error at the word level, 3 and in exactly one error at the whole query/
sentencelevel. In ASR practice, OOV rates below 0.01 (1%) are deemed acceptable
since typical WER values are well above 10%.

 As shown in Chelba et al. (2010) , a typical vocabulary for a US English voice
search language model (LM) is trained on the US English query stream, contains
about 1 million words, and achieves out-of-vocabulary (OOV) rate of 0.57% on
unseen text query data, after query normalization.

 In a departure from typical vocabulary estimation methodology, (Jelinek 1990 ;
Venkataraman and Wang 2003) , the web search query stream not only provides us

 Table 8.12 WERs on weakAM-test and v-search-test

 Data set Baseline (%) ML-3 g (%) DLM-3 g (%)

 weakAM-test 39.1 36.7 34.2
 v-search-test 14.9 14.6 14.3

 3 The approximate rule of thumb is 1.5 errors for every OOV word, so an OOV rate of 1% would
lead to about 1.5% absolute loss in word error rate (WER).

222 C. Chelba and J. Schalkwyk

with training data for the LM, but also with session level information based on
24-h cookies. Assuming that each cookie corresponds to the experience of a web
search user over exactly 1 day, we can compute per-one-day-user OOV rates, and
directly corelate them with the voice search LM vocabulary size (Kamvar and
Chelba 2012) .

 Since the vocabulary estimation algorithms are extremely simple, the work pre-
sented here is purely experimental. Our methodology is as follows:

 Select as training data • T a set of queries arriving at the google.com front-end
during time period T ;
 Text normalize the training data, see section “A Note on Query Normalization”; •
 Estimate a vocabulary • V by thresholding the 1-g count of words in T such that
it exceeds C , (,)T CV ;
 Select as test data • T a set of queries arriving at the google.com front-end during
time period E ; E is a single day that occurs after T , and the data is subjected to
the exact same text normalization used in training;
 We evaluate both • aggregate and per-cookie OOV rates, and report the aggregate
OOV rate across all words in T , as well as the percentage of cookies in T that
experience an OOV rate that is less or equal than 0.01 (1%).

 We aim to answer the following questions:

 How does the vocabulary size (controlled by the threshold • C) impact both aggre-
gate and per-cookie OOV rates?
 How does the vocabulary freshness (gap between • T and E) impact the OOV
rate?
 How does the time-frame (duration of • T) of the training data T used to estimate
the vocabulary (,)T CV impact the OOV rate?

 A Note on Query Normalization

 We build the vocabulary by considering all US English queries logged during T . We
break each query up into words, and discard words that have non-alphabetic char-
acters. We perform the same normalization for the test set. So for example if the
queries in T were: gawker.com, pizza san francisco, baby
food, 4chan status the resulting vocabulary would be pizza, san,
francisco, baby, food, status . The query gawker.com and the word
 4chan would not be included in the vocabulary because they contain non-alpha-
betic characters.

 We note that the above query normalization is extremely conservative in the
sense that it discards a lot of problematic cases, and keeps the vocabulary sizes and
OOV rates smaller than what would be required for building a vocabulary and lan-
guage model that would actually be used for voice search query transcription. As a

2238 Empirical Exploration of Language Modeling for the google.com…

result, the vocabulary sizes that we report to achieve certain OOV values are very
likely just lower bounds on the actual vocabulary sizes needed, were correct text
normalization (see Chelba et al. 2010 for an example text normalization pipeline) to
be performed.

 Experiments

 The various vocabularies used in our experiment are created from queries issued
during a 1-week–1-month period starting on 10/04/2011. The vocabulary is com-
prised of the words that were repeated C or more times in T . We chose seven val-
ues for C : 960, 480, 240, 120, 60, 30 and 15. As C decreases, the vocabulary size
increases; to preserve user privacy we do not use C values lower than 15. For each
training set T discussed in this paper, we will create seven different vocabularies
based on these thresholds.

 Each test set T is comprised of queries associated with a set of over 10 million
cookies during a 1-day period. We associate test queries by cookie-id in order to
compute user-based (per-cookie) OOV rate.

 All of our data is strictly anonymous; the queries bear no user-identifying infor-
mation. The only query data saved after training are the vocabularies. The evalua-
tion on test data is done by counting on streamed fi ltered query logs, without saving
any data.

 Vocabulary Size

 To understand the impact of vocabulary size on OOV rate, we created several vocab-
ularies from the queries issued in the week 10 / 4 / 2011 10 /10 / 2011T = − . The
size of the various vocabularies as a function of the count threshold is presented in
Table 8.13 ; Fig. 8.12 shows the relationship between the logarithm of the size of the
vocabulary and the aggregate OOV rate—a log-log plot of the same data points

 Table 8.13 Vocabulary size as a
function of count threshold

 Threshold Vocabulary size

 15 3,643,583
 30 2,277,696
 60 1,429,888

 120 901,213
 240 569,330
 480 361,776
 960 232,808

224 C. Chelba and J. Schalkwyk

would reveal a “quasi-linear” dependency. We have also measured the percentage of
cookies/users for a given OOV rate (0.01, or 1%), and the results are shown in
Fig. 8.13 . At a vocabulary size of 2.25 million words (C = 30, aggregate OOV = 0. 01),
over 90% of users will experience an OOV rate of 0.01.

 Vocabulary Freshness

 To understand the impact of the vocabulary freshness on the OOV rate, we take the
seven vocabularies described above (10 / 4 / 2011 10 /10 / 2011T = − and C = 960,
480, 240, 120, 60, 30, 15) and investigate the OOV rate change as the lag between the
training data T and the test data E increases: we used the 14 consecutive Tuesdays
between 2010/10/11 and 2011/01/20 as test data. We chose to keep the day of week
consistent (a Tuesday) across this set of E dates in order to mitigate any confound-
ing factors with regard to day-of-week.

 We found that within a 14-week time span, as the freshness of the vocabulary
decreases, there is no consistent increase in the aggregate OOV rate (Fig. 8.12) nor
any signi fi cant decrease in the percentage of users who experience less than 0.01
(1%) OOV rate (Fig. 8.13).

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

100000 1e+06 1e+07

vocabulary size

average oov rate across all users - logscale

Tue 1/10
Tue 1/03

Tue 12/27
Tue 12/20
Tue 12/13
Tue 12/06
Tue 11/29
Tue 11/22
Tue 11/15
Tue 11/8
Tue 11/1

Tue 10/25
Tue 10/18
Tue 10/11

 Fig. 8.12 Aggregate OOV rate as a function of vocabulary size (log-scale), evaluated on a range
of test sets collected every Tuesday between 2011/10/11 and 2012/01/03

2258 Empirical Exploration of Language Modeling for the google.com…

 Vocabulary Time Frame

 To understand how the duration of T (the time window over which the vocabulary is
estimated) impacts OOV rate, we created vocabularies over the following time
windows:

 1 week period between 10/25/2011 and 10/31/2011 •
 2 week period between 10/18/2011 and 10/31/2011 •
 3 week period between 10/11/2011 and 10/31/2011 •
 4 week period between 10/04/2011 and 10/31/2011 •

 We again created seven threshold based vocabularies for each T . We evaluate the
aggregate OOV rate on the date 11 /1 / 2011E = , see Fig. 8.14 , as well as the per-
centage of users with a per-cookie OOV rate below 0.01 (1%), see Fig. 8.15 . We see
that the shape of the graph is fairly consistent across T time windows, and a week of
training data is as good as a month.

 More interestingly, Fig. 8.15 shows that aiming at an operating point where 95%
the percentage of users experience OOV rates below 0.01 (1%) requires signi fi cantly
larger vocabularies, approx. 10 million words.

 75

 80

 85

 90

 95

 100000 1e+06 1e+07
vocabulary size

percent of users with oov rate <=.01 - logscale

Tue 1/10
Tue 1/03

Tue 12/27
Tue 12/20
Tue 12/13
Tue 12/06
Tue 11/29
Tue 11/22
Tue 11/15
Tue 11/8
Tue 11/1

Tue 10/25
Tue 10/18
Tue 10/11

 Fig. 8.13 Percentage of cookies/users with OOV rate less than 0.01 (1%) as a function of vocabu-
lary size (log-scale), evaluated on test sets collected every Tuesday between 2011/10/11 and
2012/01/03

226 C. Chelba and J. Schalkwyk

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 100000 1e+06 1e+07

vocabulary size

average oov rate across all users - logscale

4 weeks training data
3 weeks training data
2 weeks training data
1 week training data

 Fig. 8.14 Aggregate OOV rate on 11/1/2011 over vocabularies built from increasingly large train-
ing sets

 75

 80

 85

 90

 95

100000 1e+06 1e+07

vocabulary size

percent of users with oov rate <=.01 - logscale

4 weeks training data
3 weeks training data
2 weeks training data
1 week training data

 Fig. 8.15 Percentage of cookies/users with OOV rate less than 0.01 (1%) on 11/1/2011 over
vocabularies built from increasingly large training sets

2278 Empirical Exploration of Language Modeling for the google.com…

 Conclusions: Language Modeling for Voice Search

 Our experiments show that with careful text normalization the query stream is not as
“wild” as it seems at fi rst sight. One can achieve excellent OOV rates for a 1 million
word vocabulary, and n -gram hit ratios of 77/88% even at 5 / 4n = , respectively.

 Experimental evidence suggests that the query stream is non-stationary, and that
more data does not automatically imply better models even when the data is clearly
matched to the test data. More careful experiments are needed to adjust model
capacity and identify an optimal way of blending older and recent data—attempting
to separate the stationary/non-stationary components in the query stream. Less sur-
prisingly, we have shown that locale matters signi fi cantly for English query data
across USA, Great Britain and Australia.

 We generally see excellent correlation of WER with PPL under various pruning
regimes, as long as the training set and vocabulary stays constant.

 As for leveraging the speech logs data for better language modeling, we success-
fully build large-scale discriminative N-gram language models with lattices regen-
erated using a weak AM and derive small but signi fi cant gains in recognition
performance on a voice search task where the lattices are generated using a stronger
AM. We use a very simple weak AM and this suggests that there is room for
improvement if we use a slightly better “weak AM”. Also, we have a scalable and
ef fi cient MapReduce implementation that is amenable to adapting minor changes to
the training algorithm easily and allows for training large LMs. The latter function-
ality will be particularly useful if we generate the contrastive set by sampling from
text instead of re-decoding logs (Jyothi and Fosler-Lussier 2010) .

 A more careful analysis of vocabulary estimation for voice search shows that a
signi fi cantly larger vocabulary (approx. 10 million words) seems to be required to
guarantee a 0.01 (1%) OOV rate for 95% of the users.

 Studies on the www pages side (Brants) show that after just a few million words,
vocabulary growth is close to a straight line in the logarithmic scale; the vocabulary
grows by about 69% each time the size of the text is doubled even when using one
trillion words of training data. Since queries are used for fi nding such pages, the
growth in query stream vocabulary size is easier to understand.

 We also fi nd that 1 week is as good as 1 month of data for estimating the vocabu-
lary, and that there is very little drift in OOV rate as the test data (1 day) shifts during
the 3 months following the training data used for estimating the vocabulary.

 References

 Allauzen C, Riley M, Schalkwyk J, Skut W, Mohri M. (2007) OpenFst: a general and ef fi cient
weighted fi nite-state transducer library. In: Proceedings of the ninth international conference
on implementation and application of automata, (CIAA 2007). Lecture notes in computer sci-
ence, vol 4783. Springer, pp 11–23. http://www.openfst.org

 Allauzen C, Schalkwyk J, Riley M (2009) A generalized composition algorithm for weighted fi nite-
state transducers. In: Proceedings of Interspeech, Brighton, pp 1203–1206

http://www.openfst.org

228 C. Chelba and J. Schalkwyk

 Banko M, Brill E (2001) Mitigating the paucity-of-data problem: exploring the effect of training
corpus size on classi fi er performance for natural language processing. In: Proceedings of the
 fi rst international conference on human language technology research, HLT ‘01, San Diego.
Association for Computational Linguistics, Stroudsburg, pp 1–5

 Brants T Vocabulary growth. In: Kordoni V (ed) Festschrift for Hans Uszkoreit. CSLI Publications,
to appear, Stanford, CA 94305

 Brants T, Xu P (2009) Distributed language models. In: HLT-NAACL tutorial abstracts,
Boulder pp 3–4

 Brants T, Popat AC, Xu P, Och FJ, Dean J (2007) Large language models in machine translation.
In: Proceedings of the 2007 joint conference on empirical methods in natural language process-
ing and computational natural language learning (EMNLP-CoNLL), Prague, pp 858–867

 Chelba C, Schalkwyk J, Brants T, Ha V, Harb B, Neveitt W, Parada C, Xu P (2010) Query language
modeling for voice search In: Proceedings of SLT, Berkeley

 Chu CT, Kim SK, Lin YA, Yu YY, Bradski G, Ng AY, Olukotun K (2007) Map-reduce for machine
learning on multicore. Proc NIPS 19:281

 Collins M (2002) Discriminative training methods for hidden markov models: theory and experi-
ments with perceptron algorithms. In: Proceedings of EMNLP, Philadelphia

 Gao J, Yu H, Yuan W, Xu P (2005) Minimum sample risk methods for language modeling. In:
Proceedings of EMNLP, Vancouver

 Ghemawat S, Dean J (2004) Mapreduce: Simpli fi ed data processing on large clusters. In:
Proceedings of OSDI, San Francisco

 Goodman J (2001) A bit of progress in language modeling, extended version. Technical Report,
Microsoft Research

 Halevy A, Norvig P, Pereira F (2009) The unreasonable effectiveness of data. IEEE Intell Syst
24(2):8–12

 Hall KB, Gilpin S, Mann G (2010) MapReduce/Bigtable for distributed optimization. In: NIPS
LCCC Workshop, Whistler, BC

 Harb B, Chelba C, Dean J, Ghemawat S (2009) Back-off language model compression. In:
Proceedings of Interspeech, Brighton. ISCA, pp 325–355

 Jelinek F (1990) Self-organized language modeling for speech recognition. In: Waibel A, Lee K-F
(eds) Readings in speech recognition. Morgan Kaufmann Publishers, San Mateo, pp 450–506

 Jelinek F (1997) Information extraction from speech and text. MIT Press, Cambridge, MA, pp 141–
142. Chap. 8

 Jyothi P, Fosler-Lussier E (2010) Discriminative language modeling using simulated ASR errors.
In: Proceedings of Interspeech, Makuhari

 Jyothi P, Johnson L, Chelba C, Strope B (2012) Distributed discriminative language models for
Google voice-search. In: Proceedings of ICASSP, Kyoto

 Kamvar M, Chelba C (2012) Optimal size, freshness and time-frame for voice search vocabulary.
Google Tech Report

 Katz S (1987) Estimation of probabilities from sparse data for the language model component of a
speech recognizer. IEEE Trans Acoust Speech Signal Process 35:400–401

 Kneser R, Ney H (1995) Improved backing-off for m-gram language modeling. Proc IEEE Int
Conf Acoust Speech Signal Process 1:181–184

 Mann G, McDonald R, Mohri M, Silberman N, Walker D (2009) Ef fi cient large-scale distributed
training of conditional maximum entropy models. In: Proceedings of NIPS, Vancouver

 McDonald R, Hall K, Mann G (2010) Distributed training strategies for the structured perceptron.
In: Proceedings of NAACL, Los Angeles

 Och FJ (2005) Statistical machine translation: foundations and recent advances. In: Presentation at
MT-Summit. Phobet, Thailand

 Paul DB, Baker JM (1992) The design for the Wall Street Journal-based CSR corpus. In:
Proceedings of the workshop on speech and natural language, HLT ‘91, Harriman, New York.
Association for Computational Linguistics, Stroudsburg, pp 357–362

 Roark B, Saraçlar M, Collins M, Johnson M (2007) Discriminative n-gram language modeling.
Computer Speech and Language, 21(2): 373–392

2298 Empirical Exploration of Language Modeling for the google.com…

 Schlüter R, Müller B, Wessel F, Ney H (1999) Interdependence of language models and discrimi-
native training. In: Proceedings of ASRU, Keystone

 Strope B, Beeferman D, Gruenstein A, Lei X (2011) Unsupervised testing strategies for ASR. In:
Proceedings of Interspeech, Florence

 Venkataraman A, Wang W (2003) Techniques for effective vocabulary selection. Arxiv preprint
cs/0306022

 Zhou Z, Gao J, Soong FK, Meng H (2006) A comparative study of discriminative methods for
reranking LVCSR N-best hypotheses in domain adaptation and generalization. In Proceedings
of ICASSP, Toulouse

	Chapter 8: Empirical Exploration of Language Modeling for the google.com Query Stream as Applied to Mobile Voice Search
	Introduction
	Language Modeling Basics
	Perplexity as a Measure of Language Model Quality
	Smoothing

	Query Language Modeling for Voice Search
	Privacy Considerations

	Text Normalization
	Language Model Refinement
	Query Stream Non-stationarity
	Effect of Language Model Size on Speech Recognition Accuracy
	Locale Matters

	The Case for Discriminative Language Modeling
	The Distributed DLM Framework: Training and Implementation Details
	Learning Algorithm
	MapReduce Implementation Details
	MapReduce Variants of the Distributed Perceptron Algorithm

	Experiments and Results
	Experimental Setup
	Evaluating Our DLM Rescoring Framework on weakAM-dev/test
	Improvements on weakAM-dev Using Different Variants of Training for theDLMs
	Impact of Varying Orders of N-gram Features
	Impact of Model Size on WER
	Impact of Varying Map Chunk Sizes

	Evaluating ASR Performance on v-search-test Using DLM Rescoring

	Optimal Size, Freshness and Time-Frame for Voice Search Vocabulary
	A Note on Query Normalization
	Experiments
	Vocabulary Size
	Vocabulary Freshness
	Vocabulary Time Frame

	Conclusions: Language Modeling for Voice Search
	References

