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  Abstract   Mobile is poised to become the predominant platform over which people 
access the World Wide Web. Recent developments in speech recognition and 
understanding, backed by high bandwidth coverage and high quality speech signal 
acquisition on smartphones and tablets are presenting the users with the choice of 
speaking their web search queries instead of typing them. A critical component of a 
speech recognition system targeting web search is the language model. The chapter 
presents an empirical exploration of the google.com query stream with the end goal 
of high quality statistical language modeling for mobile voice search. Our experi-
ments show that after text normalization the query stream is not as “wild” as it 
seems at  fi rst sight. One can achieve out-of-vocabulary rates below 1% using a 1 
million word vocabulary, and excellent  n -gram hit ratios of 77/88% even at high 
orders such as     5 / 4n =   , respectively. A more careful analysis shows that a 
signi fi cantly larger vocabulary (approx. 10 million words) may be required to guar-
antee at most 1% out-of-vocabulary rate for a large percentage (95%) of users. 
Using large scale, distributed language models can improve performance 
signi fi cantly—up to 10% relative reductions in word-error-rate over conventional 
models used in speech recognition. We also  fi nd that the query stream is non-sta-
tionary, which means that adding more past training data beyond a certain point 
provides diminishing returns, and may even degrade performance slightly. Perhaps 
less surprisingly, we have shown that locale matters signi fi cantly for English query 
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data across USA, Great Britain and Australia. In an attempt to leverage the speech 
data in voice search logs, we successfully build large-scale discriminative N-gram 
language models and derive small but signi fi cant gains in recognition 
performance.      

   Introduction 

 Mobile web search is a rapidly growing area of interest. Internet-enabled smart-
phones account for an increasing share of mobile devices sold throughout the world, 
and most models offer a web browsing experience that rivals desktop computers 
in display quality. Users are increasingly turning to their mobile devices when 
searching the web, driving efforts to enhance the usability of web search on these 
devices. 

 Although mobile device usability has improved, typing search queries can still 
be cumbersome, error-prone, and even dangerous in some usage scenarios. To 
address these problems, Google introduced voice search in November 2008. The 
goal of Google voice search is to recognize any spoken search query, and be capable 
of handling anything that Google search can handle. 

 We present an empirical exploration of  google.com  query stream language 
modeling for voice search. We describe the normalization of the typed query stream 
resulting in out-of-vocabulary (OOV) rates below 1% for a 1 million word vocabu-
lary. We present a comprehensive set of experiments that guided the design deci-
sions for a voice search service. In the process we re-discovered a less known 
interaction between Kneser-Ney smoothing and entropy pruning, and found empiri-
cal evidence that hints at non-stationarity of the query stream, as well as strong 
dependence on various English locales—USA, Britain and Australia. 

 In an attempt to leverage the large amount of speech data made available by the 
voice search service, we present a distributed framework for large-scale discrimina-
tive language models that can be integrated within a large vocabulary continuous 
speech recognition (LVCSR) system using lattice rescoring. We intentionally use a 
weakened acoustic model in a baseline LVCSR system to generate candidate 
hypotheses for voice search data; this allows us to utilize large amounts of unsuper-
vised data to train our models. We propose an ef fi cient and scalable MapReduce 
framework that uses a perceptron-style distributed training strategy to handle these 
large amounts of data. We report small but signi fi cant improvements in recognition 
accuracies on a standard voice search data set using our discriminative reranking 
model. We also provide an analysis of the various parameters of our models includ-
ing model size, types of features, size of partitions in the MapReduce framework 
with the help of supporting experiments. 

 We will begin by de fi ning the language modeling problem and typical metrics 
for comparing language models. We will then describe a series of experiments 
which explore the dimensions along which Voice Search language models may be 
re fi ned.  
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   Language Modeling Basics 

 A statistical language model estimates the prior probability values  P ( W ) for strings 
of words  W  in a vocabulary     V    whose size is usually in the tens or hundreds of 
thousands. Typically the string  W  is broken into sentences, or other segments such 
as utterances in automatic speech recognition, which are assumed to be condition-
ally independent. For the rest of this chapter, we will assume that  W  is such a seg-
ment, or sentence. With  W  =  w  
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 Research in language modeling consists of  fi nding appropriate equivalence 
classi fi ers  F  and methods to estimate  P ( w  

 k 
  |  F ( W  

 k  − 1
 )). 

 The most successful paradigm in language modeling uses the  (n − 1)-gram  
equivalence classi fi cation, that is, de fi nes

     − − + − + −Φ …�1 1 2 1( ) , , ,k k n k n kW w w w    

Once the form  F ( W  
 k  − 1

 ) is speci fi ed, only the problem of estimating  P ( w  
 k 
  |  F ( W  
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 )) 

from training data remains. In most practical cases,  n  = 3 which leads to a  trigram  
language model. 

   Perplexity as a Measure of Language Model Quality 

 A  statistical language model  can be evaluated by how well it predicts a string of 
symbols  W  

 t 
 —commonly referred to as  test data —generated by the source to be 

modeled. 
 Assume we compare two models  M  

1
  and  M  

2
  using the same vocabulary 1      V  . 

They assign probability     
1
( )M tP W    and     

2
( )M tP W   , respectively, to the sample test 

string  W  
 t 
 . The test string has neither been used nor seen at the estimation step 

   1   Language models estimated on different vocabularies cannot be directly compared using perplex-
ity, since they model completely different probability distributions.  
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of either model and it was generated by the same source that we are  trying 
to model. “Naturally”, we consider  M  

1
  to be a better model than  M  

2
  if 

    
1 2
( ) ( )M t M tP W P W>   . 

 A commonly used quality measure for a given model  M  is related to the entropy 
of the underlying source and was introduced under the name of  perplexity  
(PPL) (Jelinek  1997  ) : 

     −
=

= − ∑ 1
1
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( ) ( ln[ ( | )])

N

M k k
k

PPL M exp P w W
N    (8.3)  

To give intuitive meaning to perplexity, it represents the number of guesses the 
model needs to make in order to ascertain the identity of the next word, when run-
ning over the test word string from left to right. It can be easily shown that the per-
plexity of a language model that uses the uniform probability distribution over 
words in the vocabulary     V    equals the size of the vocabulary; a good language 
model should of course have lower perplexity, and thus the vocabulary size is an 
upper bound on the perplexity of a given language model. 

 Very likely, not all words in the test string  W  
 t 
  are part of the language model 

vocabulary. It is common practice to map all words that are out-of-vocabulary to a 
distinguished  unknown word  symbol, and report the out-of-vocabulary (OOV) rate 
on test data—the rate at which one encounters OOV words in the test string  W  

 t 
 —as 

yet another language model performance metric besides perplexity. Usually the 
unknown word is assumed to be part of the language model vocabulary— open 
vocabulary  language models—and its occurrences are counted in the language 
model perplexity calculation, Eq. ( 8.3 ). A situation far less common in practice is 
that of  closed vocabulary  language models where all words in the test data will 
always be part of the vocabulary     V   .  

   Smoothing 

 Since the language model is meant to assign non-zero probability to unseen strings 
of words (or equivalently, ensure that the cross-entropy of the model over an arbi-
trary test string is not in fi nite), a desirable property is that: 

     − −Φ > > ∀1 1( | ( )) 0, , ,k k k kP w W w Wε    (8.4)  

also known as the  smoothing  requirement. 
 A large body of work has accumulated over the years on various smoothing 

methods for  n -gram language models that ensure this to be true. The two most wide-
spread smoothing techniques are probably Kneser-Ney  (  1995  )  and Katz  (  1987  ) ; 
Goodman  (  2001  )  provides an excellent overview that is highly recommended to any 
practitioner of language modeling.   
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   Query Language Modeling for Voice Search 

 A typical voice search language model used in our system for the US English query 
stream is trained as follows: 

   Vocabulary size: 1M words, OOV rate 0.57%  • 
  Training data: 230B words, a random sample of anonymized queries from • 
google.com that did not trigger spelling correction    

 The resulting size, as well as its performance on unseen query data (10k queries) 
when using Katz smoothing is shown in Table  8.1 . We note a few key aspects: 

   The  fi rst pass LM (15 million  • n -grams) requires very aggressive pruning—to 
about 0.1% of its unpruned size—in order to make it usable in static FST-based 
(Finite State Transducer-based) ASR decoders (Automatic Speech Recognition 
decoders)  
  The perplexity hit taken by pruning the LM is signi fi cant, 50% relative; similarly, • 
the 3-g hit ratio is halved  
  The impact on WER due to pruning is signi fi cant, yet lower in relative terms—• 
10% relative, as we show in section “Effect of Language Model Size on Speech 
Recognition Accuracy”  
  The unpruned model has excellent  • n -gram hit ratios on unseen test data: 77% for 
 n  = 5, and 97% for  n  = 3  
  The choice of  • n  = 5 is because using higher  n -gram orders yields diminishing 
returns: a 7-g LM is 4 times larger than the 5-g LM trained from the same data 
and using the same vocabulary, at no gain in perplexity.     

 For estimating language models at this scale we have used the distributed lan-
guage modeling tools built for statistical machine translation (Brants and 
Xu  2009 ; Brants et al.  2007  )  based on the MapReduce infrastructure described in 
section “Language Modeling Basics”. Pruned language models used in the  fi rst pass 
of the ASR decoder are converted to ARPA (Paul and Baker  1992  )  and/or 
FST (Allauzen et al.  2007  )  format using an additional MapReduce pass with a sin-
gle reducer, which can optionally apply the language model compression techniques 
described in Harb et al.  (  2009  ) . 

 The next section describes the text normalization that allows us to use a 1 million 
word vocabulary and obtain out-of-vocabulary (OOV) rates lower than 1%, as well 
as the excellent  n -gram hit ratios presented in Table  8.1 . 

 We then present experiments that show the temporal and spatial dependence 
of the English language models. Somewhat unexpectedly, using more training 
data does not result in an improved language model despite the fact that it is 
extremely well matched to the unseen test data. Additionally, the English lan-
guage models built from training data originating in three locales (USA, Britain, 
and Australia) exhibit strong locale-speci fi c behavior, both in terms of perplexity 
and OOV rate. 

 We will then present speech recognition experiments on a voice search test set. 
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   Privacy Considerations 

 Before delving into the technical aspects of our work, we wish to clarify the privacy 
aspects of our work with respect to handling user data. 

 All of the query data used for training, and testing models is strictly anonymous; 
the queries bear no user-identifying information. The only data saved after training 
are vocabularies, or n-gram counts. When working with session data, such as the 
experiments reported in section “Optimal Size, Freshness and Time-Frame for Voice 
Search Vocabulary”, we are even stricter: the evaluation on test data is done by 
counting on streamed  fi ltered query logs, without saving any data.   

   Text Normalization 

 In order to build a language model for spoken query recognition we boot-strap from 
written queries to  google.com . Written queries provide a data-rich environment 
for modeling of queries. This requires robustly transforming written text into spo-
ken form. 

 Table  8.2  lists a couple of example queries and their corresponding spoken 
equivalents. Written queries contain a fair number of cases which require special 
attention to convert to spoken form. Analyzing the top million vocabulary items 
before text normalization we see approximately 20% URLs and 20 +% numeric 
items in the query stream. Without careful attention to text normalization the vocab-
ulary of the system will grow substantially.  

 We adopt a  fi nite state approach to text normalization. Let  T ( written ) be an accep-
tor that represents the written query. Conceptually the spoken form is computed as 
follows 

     = �( ) bestpath( ( ) ( ))T spoken T written N spoken    

where  N ( spoken ) represents the transduction from written to spoken form. Note that 
composition with  N ( spoken ) might introduce multiple alternate spoken representa-
tions of the input text. For the purpose of computing  n -grams for spoken language 
modeling of queries we use the bestpath operation to select a single most likely 
interpretation. 

   Table 8.1    Typical voice search LM, Katz smoothing: the LM is trained on 230 billion words 
using a vocabulary of 1 million words, achieving out-of-vocabulary rate of 0.57% on test data   

 Order  No. n-grams  Pruning  PPL  n-gram hit-ratios 

 3  15M  Entropy (Stolcke)  190  47/93/100 
 3  7.7B  None  132  97/99/100 
 5  12.7B  Cut-off (1-1-2-2-2)  108  77/88/97/99/100 
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 The text normalization is run in multiple phases. Figure  8.1  depicts the text nor-
malization process. In the  fi rst step we annotate the data. In this phase we categorize 
parts (sub strings) of queries into a set of known categories (e.g. time, date, url, 
location).  

 Since the query is annotated, it is possible to perform context-aware normaliza-
tion on the substrings. Each category has a corresponding text normalization trans-
ducer  N  

 cat 
 ( spoken ) that is used to normalize the substring. Depending on the category 

we either use rule based approaches or a statistical approach to construct the text 
normalization transducer. For numeric categories like date, time and numbers it is 
easy enough to describe  N ( spoken ) using context dependent rewrite rules. For the 
URL normalizer  N  

 url 
 ( spoken ) we train a statistical word decompounder that 

segments the string into its word constituents. For example, one reads the URL 
  cancercentersofamerica.com     as “cancer centers of america dot com”. The URL 
decompounding transducer (decompounder) is built from the annotated data. Let  Q  

$20 books 
on 

amazon.com

Time, Date, 
Number

Normalizer

Location
Normalizer

URL
Normalizer

Normalizers

twenty dollar books 
on amazon dot com

Annotator

  Fig. 8.1    Block diagram for context aware text normalization       

   Table 8.2    Example written queries and their corresponding 
spoken form   

 Written query  Spoken query 

 weather scarsdale, ny  weather scarsdale new york 
 weather in scarsdale new york 

 bankofamerica.com  bank of america dot com 
 81 walker rd  eighty one walker road 
 10:30am  ten thirty A M 
 at&t  A T and T 
 espn  E S P N 

 

http://cancercentersofamerica.com
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be the set of queries in this Table, and let  U  be the set of substrings of these queries 
that are labeled URLs. 

 For a string  s  of length  k  let  I ( s ) be the transducer that maps each character in  s  
to itself; i.e., the  i -th transition in  I ( s ) has input and output label  s ( i ).  I ( s ) represents 
the word segmented into characters. Further, let  T ( s ) be the transducer that maps the 
sequence of characters in  s  to  s ; i.e., the  fi rst transition in  T ( s ) has input  s (1) and 
output  s , and the  i -th transition, where  i  ¹ 1, has input  s ( i ) and output  e .  T ( s ) repre-
sents the transduction of the spelled form of the word to the word itself. For a set of 
strings  S , we de fi ne 

     
( ) ( )

s S
T S T s

∈
= ⊕

   

where ⊕ is the union operation on transducers.  T ( S ) therefore represents the trans-
duction of the spelling of the word to the word itself for the whole vocabulary. 
Figure  8.2  illustrates the operation of  T (⋅).  

 The queries in  Q  and their frequencies are used to train an LM  L  
BASE

 . Let  V  
BASE

  
be its vocabulary. We build the decompounder as follows:

    1.    For each  u  ∈  U , de fi ne  N ( u ) as, 

     = � �BASE BASE( ) bestpath ( ( ) )* ( )N u I u T V L    (8.5)  

  where ‘  ∗  ’ is the Kleene Closure, and ‘ ° ’ is the composition operator.  
    2.        = ⊕( ) ( )

u U
N U N u

ε
   is the URL decompounder.     

 The transducer  I ( u ) °  T   *  ( V  
BASE

 ) in ( 8.5 ) represents the lattice of all possible seg-
mentations of  u  using the words in  V  

BASE
 , where each path from the start state to a 

 fi nal state in the transducer is a valid segmentation. The composition with the LM 
 L  

BASE
  scores every path. Finally,  N ( u ) is the path with the highest probability; i.e. the 

most likely segmentation. 
 As an example, Fig.  8.3  depicts  I ( u ) °  T   *  ( V  

BASE
 ) for  u  =  myspacelayouts . Each 

path in this lattice is a valid decomposition, and in Table  8.3  we list a sample of 

0

1m:myspace

8
m:my

9s:space

13

l:layouts

19
l:lay

21

o:outs

2
y:eps

7

y:eps

10
p:eps

14
a:eps

20
a:eps

22
u:eps

3
s:eps 4p:eps

5
a:eps

6
c:eps

e:eps

11a:eps
12c:eps e:eps

15
y:eps

16
o:eps

17u:eps 18
t:eps

s:eps

y:eps

23
t:eps s:eps

  Fig. 8.2     T ( S ) for the set of words  S  = { my ,  space ,  myspace ,  lay ,  outs ,  layouts } where ‘{ eps}’ 
denotes  e        
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these paths. After scoring all the paths via the composition with  L  
BASE

 , we choose 
the best path to represent the spoken form of the URL.    

   Language Model Re fi nement 

   Query Stream Non-stationarity 

 Our  fi rst attempt at improving the language model was to use more training data: we 
used a signi fi cantly larger amount of training data ( BIG ) vs. the most recent 230 bil-
lion ( 230B ) prior to September 2008. The  230B  corpus is the most recent subset of 
 BIG . As test data we used a random sample consisting of 10k queries from Sept to 
Dec 2008. 

 The  fi rst somewhat surprising  fi nding was that this had very little impact in OOV 
rate for 1M word vocabulary: 0.77% ( 230B  vocabulary) vs. 0.73% ( BIG  vocabu-
lary). Perhaps even more surprising however is the fact that the signi fi cantly larger 
training set did not yield a better language model, despite the training data being 
clearly well matched, as illustrated in Table  8.4 . In fact, we observed a signi fi cant 
reduction in PPL (10%) when using the more recent  230B  data. Pruning masks this 
effect, and the differences in PPL and WER become insigni fi cant after reducing the 
language model size to approximately 10 million 3-g.  

 Since the vocabulary, and training data set change between the two rows, the PPL 
differences need to be analyzed in a more careful experimental setup. 

   Table 8.3    Sample segmentations from Fig.  8.3 . 
The one in bold represents the highest probability 
path as determined by the composition with  L  

BASE
    

 Possible segmentations 

  myspace layouts  
 my space layouts 
 my space lay outs 
 my space l a y outs 

0

1my

m,y 2myspace

space

s,p,a,c,e

3lay

l,a,y 4layouts

outs

o,u,t,s

  Fig. 8.3    The lattice  I ( u ) °  T   *  ( V  
BASE

 ) of all possible segmentations for  u  =  myspacelayouts  using 
words in  V  

BASE
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 A super fi cial interpretation of the results seems to contradict the “there’s no data 
like more data” dictum, recently reiterated in a somewhat stronger form in Banko 
and Brill  (  2001  ) , Och  (  2005  )  and Halevy et al.  (  2009  ) . 

 Our experience has been that supply of “more data” needs to be matched with 
increased demand on the modeling side, usually by increasing the model capacity—
typically achieved by estimating more parameters. Experiments reported in sec-
tion “Effect of Language Model Size on Speech Recognition Accuracy” improve 
performance by  keeping the amount of training data constant  (albeit very large), 
and  increasing the n-gram model size  by adding more  n -grams at  fi xed  n , as well as 
increasing the model order  n . As such, it may well be the case that the increase in 
PPL for the  BIG  model is in fact due to limited capacity in the 3-g model. 

 More investigation is needed to disentangle the effects of query stream non-sta-
tionarity from possible mismatched model capacity issues. A complete set of exper-
iments needs to: 

   Let the  • n -gram order grow as large as the data allows;  
  Build a sequence of models trained on exactly the same amount of data obtained • 
by sliding a time-window of varying length over the query stream, and control 
for the ensuing vocabulary mismatches.     

   Effect of Language Model Size on Speech Recognition Accuracy 

 The work described in Harb et al.  (  2009  )  and Allauzen et al.  (  2009  )  enables us to 
evaluate relatively large query language models in the 1st pass of our ASR decoder 
by representing the language model in the OpenFst (Allauzen et al.  2007  )  frame-
work. Figures  8.4  and  8.5  show the PPL and word error rate (WER) for two language 
models (3- and 5-g, respectively) built on the 230B training data, after entropy prun-
ing to various sizes in the range 15 million–1.5 billion n-grams. Perplexity is evalu-
ated on the test set described in section “Query Stream Non-stationarity”; word error 
rate is measured on another test set representative for the voice search task.   

 As can be seen, perplexity is very well correlated with WER, and the size of the 
language model has a signi fi cant impact on speech recognition accuracy: increasing 
the model size by two orders of magnitude reduces the WER by 10% relative. 

   Table 8.4    Pruned and unpruned 3-g language 
model perplexity when trained on the most recent 
230 billion words, and a much larger amount of 
training data prior to test data, respectively   

 Training set  Test  Set PPL 

 Unpruned  Pruned 

  230B   121  205 
  BIG   132  209 
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  Fig. 8.4    Three-gram language model perplexity and word error rate as a function of language 
model size;  lower curve  is PPL       
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  Fig. 8.5    Five-gram language model perplexity and word error rate as a function of language 
model size;  lower curve  is PPL       
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 We have also implemented lattice rescoring using the distributed language model 
architecture described in Brants et al.  (  2007  ) , see the results presented in Table  8.5 . 
This enables us to validate empirically the hypothesis that rescoring lattices gener-
ated with a relatively small  fi rst pass language model (in this case 15 million 3-g, 
denoted 15M 3-g in Table  8.5 ) yields the same results as 1st pass decoding with a 
large language model. A secondary bene fi t of the lattice rescoring setup is that one 
can evaluate the ASR performance of much larger language models.   

   Locale Matters 

 We also built locale speci fi c English language models using training data prior to 
September 2008 across 3 English locales: USA ( USA ), Britain ( GBR , about a quarter 
of the  USA  amount) and Australia ( AUS , about a quarter of the  GBR  amount). The 
test data consisted of 10k queries for each locale, sampled randomly from Sept to 
Dec 2008. 

 Tables  8.6 – 8.8  show the results. The dependence on locale is surprisingly strong: 
using an LM on out-of-locale test data doubles the OOV rate and perplexity, either 
pruned or unpruned.  

 We have also built a  combined  model by pooling data across locales, with the 
results shown on the last row of Table  8.8 . Combining the data negatively impacts all 
locales, in particular the ones with less data. The farther the locale from  USA  (as seen 
on the  fi rst line,  GBR  is closer to  USA  than  AUS ), the more negative the impact of 
lumping all the data together, relative to using only the data from that given locale.     

   Table 8.5    Speech recognition language model perfor-
mance when used in the 1st pass or in the 2nd pass—
lattice rescoring   

 Pass  Language model  PPL  WER 

 1st  15M 3-g  191  18.7 
 1st  1.6B 5-g  112  16.9 
 2nd  15M 3-g  191  18.8 
 2nd  1.6B 5-g  112  16.9 
 2nd  12.7B 5-g  108  16.8 

   Table 8.6    Out of vocabulary rate: locale speci fi c 
vocabulary halves the OOV rate   

 Training  Test  Locale 

 locale   USA    GBR    AUS  

  USA    0.7   1.3  1.6 
  GBR   1.3   0.7   1.3 
  AUS   1.3  1.1   0.7  
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   The Case for Discriminative Language Modeling 

 The language model is a critical component of an automatic speech recognition 
(ASR) system that assigns probabilities or scores to word sequences. It is typically 
derived from a large corpus of text via maximum likelihood estimation in conjunc-
tion with some smoothing constraints. N-gram models have become the most domi-
nant form of LMs in most ASR systems. Although these models are robust, scalable 
and easy to build, we illustrate a limitation with the following example from voice 
search. We expect a low probability for an ungrammatical or implausible word 
sequence. However, for a trigram like “a navigate to”, a backoff trigram LM gives 
a fairly large LM log probability of − 0. 266 because both “a” and “navigate to” are 
popular words in voice search! Discriminative language models (DLMs) attempt to 
directly optimize error rate by rewarding features that appear in low error hypothe-
ses and penalizing features in misrecognized hypotheses. In such a model, the 
trigram “a navigate to” receives a negative weight of − 6. 5 thus decreasing its 
chances of appearing as an ASR output. There have been numerous approaches 
towards  estimating DLMs for large vocabulary continuous speech recognition 
(LVCSR) (Gao et al.  2005 ; Roark et al.  2007 ; Zhou et al.  2006  ) . 

 There are two central issues that we discuss regarding DLMs. Firstly, DLM train-
ing requires large amounts of parallel data (in the form of correct transcripts and 
candidate hypotheses output by an ASR system) to be able to effectively compete 

   Table 8.8    Perplexity of pruned LM: locale speci fi c LM 
halves the PPL of the unpruned LM. Pooling all data is 
suboptimal   

 Training  Test  Locale 

 Locale   USA    GBR    AUS  

  USA    210   369  412 
  GBR   442   150   342 
  AUS   422  293   171  
  combined   227  210  271 

   Table 8.7    Perplexity of unpruned LM: locale speci fi c 
LM halves the PPL of the unpruned LM   

 Training  Test  Locale 

 Locale   USA    GBR    AUS  

  USA    132   234  251 
  GBR   260   110   224 
  AUS   276  210   124  
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with n-gram LMs trained on large amounts of text. This data could be simulated 
using voice search logs from a baseline ASR system that are  fi ltered by con fi dence 
score to obtain reference transcripts. However, this data is perfectly discriminated 
by  fi rst pass features such as the acoustic and language model scores, and leaves 
little room for learning. We propose a novel training strategy using lattices gener-
ated with a weaker acoustic model (henceforth referred to as  weakAM ) than the one 
used to generate reference transcripts for the unsupervised parallel data (referred to 
as the  strongAM ). This provides us with enough errors to derive large numbers of 
potentially useful word features; it is akin to using a weak LM in discriminative 
acoustic modeling to give more room for diversity in the word lattices resulting in 
better generalization (Schlüter et al.  1999  ) . We conduct experiments to verify 
whether  weakAM -trained models provide performance gains on rescoring lattices 
from a standard test set generated using  strongAM  (discussed in section “Evaluating 
ASR Performance on  v-search-test  Using DLM Rescoring”). 

 The second issue is that discriminative estimation of LMs is computationally 
more intensive than regular N-gram LM estimation. The advent of distributed learn-
ing algorithms (Hall et al.  2010 ; Mann et al.  2009 ; McDonald et al.  2010  )  and sup-
porting parallel computing infrastructure like MapReduce (Ghemawat and 
Dean  2004  )  has made it feasible to use large amounts of parallel data for training 
DLMs. We implement a distributed training strategy for the perceptron  algorithm 
introduced by McDonald et al.  (  2010  )  using the MapReduce framework. Our design 
choices for the MapReduce implementation are speci fi ed in section “MapReduce 
Implementation Details” along with its modular nature thus enabling us to experi-
ment with different variants of the distributed structured perceptron algorithm. 
Some of the descriptions in this paper have been adapted from previous work Jyothi 
et al.  (  2012  ) .  

   The Distributed DLM Framework: Training 
and Implementation Details 

   Learning Algorithm 

 We aim to allow the estimation of large scale distributed models, similar in size to 
the ones in Brants et al.  (  2007  ) . To this end, we make use of a distributed training 
strategy for the structured perceptron to train our DLMs (McDonald et al.  2010  ) . 
Our model consists of a high-dimensional feature vector function  F  that maps an 
(utterance, hypothesis) pair ( x ,  y ) to a vector in  R   d  , and a vector of model parameters, 
 w  ∈  R   d  . Our goal is to  fi nd model parameters such that given  x , and a set of candidate 
hypotheses     Y    (typically, as a word lattice or an N-best list that is obtained from a 
 fi rst pass recognizer),     argmax · ( , )y x y∈ ΦwY    would be the     y ∈Y    that minimizes the 
error rate between  y  and the correct hypothesis for  x . For our experiments, the fea-
ture vector  F ( x ,  y ) consists of AM and LM costs for  y  from the lattice     Y    for  x , as 
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well as “word level n-gram features” which count the number of times different 
N-grams (of order up to 5 in our experiments) occur in  y . 

 In principle, such a model can be trained using the conventional structured per-
ceptron algorithm (Collins  2002  ) . This is an online learning algorithm which con-
tinually updates  w  as it processes the training instances one at a time, over multiple 
training epochs. Given a training utterance { x  

 i 
 ,  y  

 i 
 } (    i iy ∈Y    has the lowest error rate 

with respect to the reference transcription for  x  
 i 
 , among all hypotheses in the lattice 

    iY    for  x  
 i 
 ), if     * : argmax · ( , )

ii y iy x y∈= Φw� Y    is not  y  
 i 
 , then  w  is updated to increase the 

weights corresponding to features in  y  
 i 
  and decrease the weights of features in     �*iy   . 

During evaluation, we use parameters averaged over all utterances and over all 
training epochs. This was shown to give substantial improvements in previous work 
Collins  (  2002  )  and Roark et al.  (  2007  ) . 

 Unfortunately, the conventional perceptron algorithm takes impractically long 
for the amount of training examples we have. We make use of a distributed training 
strategy for the structured perceptron that was  fi rst introduced in McDonald 
et al.  (  2010  ) . The iterative parameter mixing strategy used in this paradigm can be 
explained as follows: the training data     1{ , }i i ix y == NT    is suitably partitioned into     C
  disjoint sets     1, ,… CT T   . Then, a structured perceptron model is trained on each data 
set in parallel. After one training epoch, the parameters in the     C    sets are mixed 
together (using a “mixture coef fi cient”  m  

 i 
  for each set     iT   ) and returned to each per-

ceptron model for the next training epoch where the parameter vector is initialized 
with these new mixed weights. This is formally described in Algorithm 1; we call it 
“Distributed Perceptron”. We also experiment with two other variants of distributed 
perceptron training, “Naive Distributed Perceptron” and “Averaged Distributed 
Perceptron”. These models easily lend themselves to implementations using the 
distributed infrastructure provided by the MapReduce framework. The following 
section describes this infrastructure in greater detail.        

   MapReduce Implementation Details 

 We propose a distributed infrastructure using MapReduce (Ghemawat and 
Dean  2004  )  to train our large-scale DLMs on terabytes of data. The 
MapReduce (Ghemawat and Dean  2004  )  paradigm, adapted from a specialized 
functional programming construct, is specialized for use over clusters with a large 
number of nodes. Chu et al.  (  2007  )  have demonstrated that many standard machine 
learning algorithms can be phrased as MapReduce tasks, thus illuminating the ver-
satility of this framework. In relation to language models, Brants et al.  (  2007  )  
recently proposed a distributed MapReduce infrastructure to build Ngram language 
models having up to 300 billion  n -grams. We take inspiration from this and use the 
MapReduce infrastructure for our DLMs. Also, the MapReduce paradigm allows us 
to easily  fi t different variants of our learning algorithm in a modular fashion by only 
making small changes to the MapReduce functions. 
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 In the MapReduce framework, any computation is expressed as two user-de fi ned 
functions:  Map  and  Reduce . The  Map  function takes as input a key/value pair and 
processes it using user-de fi ned functions to generate a set of intermediate key/value 
pairs. The  Reduce  function receives all intermediate pairs that are associated with 
the same key value. 

 The distributed nature of this framework comes from the ability to invoke the 
 Map  function on different parts of the input data simultaneously. Since the frame-
work assures that all the values corresponding to a given key will be accummu-
lated at the end of all the  Map  invocations on the input data, different machines 
can simultaneously execute the  Reduce  to operate on different parts of the inter-
mediate data. 

 Any MapReduce application typically implements  Mapper / Reducer  interfaces 
to provide the desired  Map / Reduce  functionalities. For our models, we use two dif-
ferent Mappers (as illustrated in Fig.  8.6 ) to compute feature weights for one train-
ing epoch. The  Rerank-Mapper  receives as input a set of training utterances and 
has the capacity to request feature weights computed in the previous training epoch. 
 Rerank-Mapper  then computes feature updates for the given training data (the sub-
set of the training data received by a single  Rerank-Mapper  instance will be hence-
forth referred to as a “Map chunk”). We also have a second  Identity-Mapper  that 
receives feature weights from the previous training epoch and directly maps the 
inputs to outputs which are provided to the  Reducer . The  Reducer  combines the 
outputs from both  Rerank-Mapper  and  Identity-Mapper  and outputs the feature 
weights for the current training epoch. These output feature weights are persisted on 
disk in the form of SSTables that are an ef fi cient abstraction to store large numbers 
of key-value pairs.  
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 The features corresponding to a Map chunk at the end of training epoch need to 
be made available to  Rerank-Mapper  in the subsequent training epoch. Instead of 
accessing the features on demand from the SSTables that store these feature weights, 
every  Rerank-Mapper  stores the features needed for the current Map chunk in a 
cache. Though the number of features stored in the SSTables are determined by the 
total number of training utterances, the number of features that are accessed by a 
 Rerank-Mapper  instance are only proportional to the chunk size and can be cached 
locally. This is an important implementation choice because it allows us to estimate 
very large distributed models: the bottleneck is no longer the total model size but 
rather the cache size that is in turn controlled by the Map chunk size. 
Section “Evaluating Our DLM Rescoring Framework on  weakAM-dev/test ” dis-
cusses in more detail about different model sizes and the effects of varying Map 
chunk size on recognition performance. 

 Figure  8.6  is a schematic diagram of our entire framework; Fig.  8.7  shows a 
more detailed representation of a single  Rerank-Mapper , an  Identity-Mapper  and a 
 Reducer , with the pseudocode of these interfaces shown inside their respective 
boxes.  Identity-Mapper  gets feature weights from the previous training epoch as input 
( w   t  ) and passes them to the output unchanged.  Rerank-Mapper  calls the function 
 Rerank  that takes an N-best list of a training utterance ( utt.Nbest ) and the current 
feature weights ( w  

 curr 
 ) as input and reranks the N-best list to obtain the best scoring 

hypothesis. If this differs from the correct transcript for  utt ,  FeatureDiff  
computes the difference in feature vectors corresponding to the two hypotheses 
(we call it  d ) and  w  

 curr 
  is incremented with  d .  Emit  is the output function of a 

SSTable 
Feature-
Weights: 
Epoch t+1

SSTable 
Feature-
Weights: 
Epoch t

SSTable 
Utterances

SSTableService

Rerank-Mappers

Identity-Mappers

Reducers

Cache
(per Map chunk)

  Fig. 8.6    MapReduce implementation of reranking using discriminative language models       
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Mapper that outputs a processed key/value pair. For every feature  Feat , both 
  Identity-Mapper  and  Rerank-Mapper  also output a secondary key (0 or 1, respec-
tively); this is denoted as  Feat :0 and  Feat :1. At the  Reducer , its inputs arrive 
sorted according to the secondary key; thus, the feature weight corresponding to 
 Feat  from the previous training epoch produced by  Identity-Mapper  will neces-
sarily arrive before  Feat ’s current updates from the  Rerank-Mapper . This ensures 
that  w   t  + 1  is updated correctly starting with  w   t  . The functions  Update ,  Aggregate  
and  Combine  are explained in the context of three variants of the distributed per-
ceptron algorithm in Fig.  8.8 .   

wt

Rerank-Mapper

Reducer

1 utt1
2 utt2

Nc uttNc

Feat1 wt1
Feat2 wt2

FeatM wtM

:

:

U

Cache of wt maintained by the Mapper

wcurr := wt,  := 0
For each (key,utt) in U:
Map(key,utt) {

Rerank(utt.Nbest,wcurr)
 := FeatureDiff(utt)

wcurr:= wcurr + 
 := Update( , )

}

wt+1

Reduce(Feat,V[0..n]) {
//V contains all pairs 
//with primary key=Feat
//first key=Feat:0
wold := V[0]
//aggregate  from rest
//of V (key=Feat:1)
* := Aggregate(V[1..n])

wt+1[Feat] :=
Combine(wold, *)

}

For each Feat in 1 to M:
Map(Feat,wt[Feat]) {

Emit(Feat:0,wt[Feat])
}

Identity-Mapper

For each Feat in 1 to M:
Emit(Feat:1, [Feat])

  Fig. 8.7    Details of the Mapper and Reducer       

  Fig. 8.8     Update ,  Aggregate  and  Combine  procedures for the three variants of the distrib-
uted perceptron algorithm       
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   MapReduce Variants of the Distributed Perceptron Algorithm 

 Our MapReduce setup described in the previous section allows for different vari-
ants of the distributed perceptron training algorithm to be implemented easily. We 
experimented with three slightly differing variants of a distributed training strategy 
for the structured perceptron,  Naive Distributed Perceptron ,  Distributed Perceptron  
and  Averaged Distributed Perceptron ; these are de fi ned in terms of  Update , 
 Aggregate  and  Combine  in Fig.  8.8  where each variant can be implemented by 
plugging in these de fi nitions from Fig.  8.8  into the pseudocode shown in Fig.  8.7 . 
We brie fl y describe the functionalities of these three variants. The weights at the 
end of a training epoch  t  for a single feature  f  are ( w  

 NP 
   t  ,  w  

 DP 
   t  ,  w  

 AV 
   t  ) corresponding to 

 Naive Distributed Perceptron ,  Distributed Perceptron  and  Averaged Distributed 
Perceptron , respectively;  j  (⋅,⋅) correspond to feature  f ’s value in  F  from 
Algorithm 1. Below,     δ = − �, , , , ,( , ) ( , )t t

c j c j c j c j c jx y x yf f    and     c =N    number of utter-
ances in Map chunk     cT   . 

 At the end of epoch  t , the weight increments in that epoch from all map chunks 
are added together and added to  w  

 NP 
   t  − 1  to obtain  w  

 NP 
   t  . 

 Here, instead of adding increments from the map chunks, at the end of epoch  t , 
they are averaged together using weights  m  

 c 
 ,  c  = 1 to     C   , and used to increment  w  

 DP 
   t  − 1  

to  w  
 DP 

   t  . 
 In this variant,  fi rstly, all epochs are carried out as in the Distributed Perceptron 

algorithm above. But at the end of  t  epochs, all the weights encountered during the 
whole process, over all utterances and all chunks, are averaged together to obtain 
the  fi nal weight  w  

 AV 
   t  . Formally, 

     

′

′= = =

= ∑∑∑ ,
1 1 1

1
,

·

ct
t t
AV c j

t c j

w w
t

NC

N
   

where  w  
 c ,  j 

   t   refers to the current weight for map chunk  c , in the  t th epoch after pro-
cessing  j  utterances and     N    is the total number of utterances. In our implementa-
tion, we maintain only the weight  w  

 DP 
   t  − 1  from the previous epoch, the cumulative 

increment     =
γ = δ∑, ,1

jt t
c j c kk

   so far in the current epoch, and a running average  w  
 AV 

   t  − 1 . 
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   Experiments and Results 

 Our DLMs are evaluated in two ways: (1) we extract a development set ( weakAM-
dev ) and a test set ( weakAM-test ) from the speech data that is re-decoded with a 
 weakAM , and (2) we use a standard voice search test set ( v-search-test ) (Strope 
et al.  2011  )  to evaluate actual ASR performance on voice search. More details 
regarding our experimental setup along with a discussion of our experiments and 
results are described in the rest of the section. 

   Experimental Setup 

 We generate training lattices using speech data that is re-decoded with a  weakAM  
acoustic model and the baseline language model. We use maximum likelihood 
trained single mixture Gaussians for our  weakAM . And, we use a suf fi ciently small 
baseline LM ( ~ 21 million n-grams) to allow for sub-real time lattice generation on 
the training data with a small memory footprint, without compromising on its 
strength. Chelba et al.  (  2010  )  demonstrate that it takes much larger LMs to get a 
signi fi cant relative gain in WER. Our largest discriminative language models are 
trained on 87,000 h of speech, or ~ 350 million words ( weakAM-train ) obtained by 
 fi ltering voice search logs at 0.8 con fi dence, and re-decoding the speech data with a 
 weakAM  to generate N-best lists. We set aside a part of this  weakAM-train  data to 
create  weakAM-dev  and  weakAM-test : these data sets consist of 328,460/316,992 
utterances, or 1,182,756/1,129,065 words, respectively. 

 We use a manually-transcribed, standard voice search test set ( v-search-test ) 
consisting of 27,273 utterances, or 87,360 words to evaluate actual ASR perfor-
mance using our  weakAM -trained models. All voice search data used in the experi-
ments is anonymized. 

 Figure  8.9  shows oracle error rates, both at the sentence and word level, using 
N-best lists of utterances in  weakAM-dev  and  v-search-test . These error rates are 
obtained by choosing the best of the top N hypotheses that is either an exact match 
(for sentence error rate) or closest in edit distance (for word error rate) to the correct 
transcript. The N-best lists for  weakAM-dev  are generated using a weak AM and 
N-best lists for  v-search-test  are generated using the baseline (strong) AM. Figure  8.9  
shows these error rates plotted against a varying threshold N for the N-best lists. 
Note there are suf fi cient word errors in the  weakAM  data to train DLMs; also, we 
observe that the plot  fl attens out after N = 100, thus informing us that N = 100 is a 
reasonable threshold to use when training our DLMs.  

 Experiments in section “Evaluating Our DLM Rescoring Framework on 
 weakAM-dev/test ” involve evaluating our learning setup using  weakAM-dev/test . 
We then investigate whether improvements on  weakAM-dev/test  translate to 
 v-search-test  where N-best are generated using the  strongAM , and scored against 
 manual  transcripts using fully  fl edged text normalization instead of the string edit 
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distance used in training the DLM. More details about the implications of this text 
normalization on WER can be found in section “Evaluating ASR Performance on 
 v-search-test  Using DLM Rescoring”.  

   Evaluating Our DLM Rescoring Framework on  weakAM-dev/test  

   Improvements on  weakAM-dev  Using Different Variants of Training 
for theDLMs 

 We evaluate the performance of all the variants of the distributed perceptron algo-
rithm described in section “MapReduce Implementation Details” over 10 training 
epochs using a DLM trained on ~ 20,000 h of speech with trigram word features. 
Figure  8.10  shows the drop in WER for all the three variants. We observe that the 
 Naive Distributed Perceptron  gives modest improvements in WER compared to the 
baseline WER of 32.5%. However, averaging over the number of Map chunks as in 
the  Distributed Perceptron  or over the total number of utterances and total number 
of training epochs as in the  Averaged Distributed Perceptron  signi fi cantly improves 
recognition performance; this is in line with the  fi ndings reported in Collins  (  2002  )  
and McDonald et al.  (  2010  )  of averaging being an effective way of adding regular-
ization to the perceptron algorithm.  

 Our best-performing  Distributed Perceptron  model gives a 4. 7  %  absolute 
( ~ 15% relative) improvement over the baseline WER of 1-best hypotheses in 
 weakAM-dev . This, however, could be attributed to a combination of factors: the use 
of large amounts of additional training data for the DLMs or the discriminative 
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nature of the model. In order to isolate the improvements brought upon mainly by 
the second factor, we build an ML trained backoff trigram LM (ML-3 g) using the 
reference transcripts of all the utterances used to train the DLMs. The N-best lists in 
 weakAM-dev  are reranked using ML-3 g probabilities linearly interpolated with the 
LM probabilities from the lattices. We also experiment with a log-linear interpola-
tion of the models; this performs slightly worse than rescoring with linear 
interpolation.  

   Impact of Varying Orders of N-gram Features 

 Table  8.9  shows that our best performing model (DLM-3 g) gives a signi fi cant ~ 2% 
absolute ( ~ 6% relative) improvement over ML-3 g. We also observe that most of 
the improvements come from the unigram and bigram features. We do not expect 
higher order N-gram features to signi fi cantly help recognition performance; we fur-
ther con fi rm this by building DLM-4 g and DLM-5 g that use up to 4- and 5-g word 
features, respectively. Table  8.10  gives the progression of WERs for 6 epochs using 
DLM-3 g, DLM-4 g and DLM-5 g showing minute improvements as we increase the 
order of Ngram features from 3 to 5.    

   Impact of Model Size on WER 

 We experiment with varying amounts of training data to build our DLMs and assess 
the impact of model size on WER. These are evaluated on the test set derived from 
the weakAM data ( weakAM-test ). Table  8.11  shows each model along with its size 
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(measured in total number of word features), coverage on  weakAM-test  in percent 
of tokens (number of word features in  weakAM-test  that are in the model) and WER 
on  weakAM-test . As expected, coverage increases with increasing model size with 
a corresponding tiny drop in WER as the model size increases. “Larger models”, 
built by increasing the number of training utterances used to train the DLMs, do not 
yield signi fi cant gains in accuracy. We need to  fi nd a good way of adjusting the 
model capacity with increasing amounts of data.   

   Impact of Varying Map Chunk Sizes 

 We also experiment with varying Map chunk size to determine its effect on WER. 
Figure  8.11  shows WERs on  weakAM-dev  using our best  Distributed Perceptron  
model with different Map chunk sizes (64 MB, 512 MB, 2 GB). For clarity, we 
examine two limit cases: (a) using a single Map chunk for the entire training data is 
equivalent to the conventional structured perceptron and (b) using a single training 
instance per Map chunk is equivalent to batch training. We observe that moving 
from 64 MB to 512 MB signi fi cantly improves WER and the rate of improvement in 
WER decreases when we increase the Map chunk size further to 2 GB. We attribute 

   Table 8.11    WERs on  weakAM-test  using DLMs of varying sizes   

 Model  Size (in millions)  Coverage (%)  WER (%) 

 Baseline   21  –  39.08 
 Model 1   65  74.8  34.18 
 Model 2  135  76.9  33.83 
 Model 3  194  77.8  33.74 
 Model 4  253  78.4  33.68 

   Table 8.10    WERs on  weakAM-dev  using DLM-3 g, DLM-4 g and DLM-5 g 
of 6 training epochs   

 Iteration  DLM-3 g (%)  DLM-4 g (%)  DLM-5 g (%) 

 1  32.53  32.53  32.53 
 2  29.52  29.47  29.46 
 3  29.26  29.23  29.22 
 4  29.11  29.08  29.06 
 5  29.01  28.98  28.96 
 6  28.95  28.90  28.87 

   Table 8.9    WERs on  weakAM-dev  using the baseline 1-best system, ML-3 g and DLM-1/2/3 g   

 Data set  Baseline (%)  ML-3 g (%)  DLM-1 g (%)  DLM-2 g (%)  DLM-3 g (%) 

  weakAM-dev   32.5  29.8  29.5  28.3  27.8 
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these reductions in WER with increasing Map chunk size to on-line parameter 
updates being done on increasing amounts of training samples in each Map chunk. 
The larger number of training samples per Map chunk accounts for greater stability 
in the parameters learned by each Map chunk in our DLM.    

   Evaluating ASR Performance on  v-search-test  Using DLM 
Rescoring 

 We evaluate our best  Distributed Perceptron  DLM model on  v-search-test  lattices 
that are generated using a strong AM. We hope that the large relative gains on 
 weakAM-dev/test  translate to similar gains on this standard voice search data set as 
well. Table  8.12  shows the WERs on both  weakAM-test  and  v-search-test  using 
Model 1 (from Table  8.11 ). 2  We observe a small but statistically signi fi cant ( p  < 0. 05) 
reduction ( ~ 2% relative) in WER on  v-search-test  over reranking with a linearly 
interpolated ML-3 g. This is encouraging because we attain this improvement using 
training lattices that were generated using a considerably weaker AM.  

 It is instructive to analyze why the relative gains in performance on  weakAM-
dev/test  do not translate to  v-search-test . Our DLMs are built using N-best outputs 
from the recognizer that live in the “spoken domain” (SD) and the manually tran-
scribed  v-search-data  transcripts live in the “written domain” (WD). The normal-
ization of training data from WD to SD is as described in Chelba et al.  (  2010  ) ; 
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   2   We also experimented with the larger Model 4 and saw similar improvements on  v-search-test  as 
with Model 1.  
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inverse text normalization (ITN) undoes most of that when moving text from SD to 
WD, and it is done in a heuristic way. There is ~ 2% absolute reduction in WER 
when we move the N-best from SD to WD via ITN; this is how WER on  v-search-
test  is computed by the voice search evaluation code. Contrary to this, in DLM 
training we compute WERs using string edit distance between test data transcripts 
and the N-best hypotheses and thus we ignore the mismatch between domains WD 
and SD. It is quite likely that part of what the DLM learns is to pick N-best hypoth-
eses that come closer to WD, but may not truly result in WER gains after ITN. This 
would explain part of the mismatch between the large relative gains on  weakAM-
dev/test  compared to the smaller gains on  v-search-test . We could correct for this by 
applying ITN to the N-best lists from SD to move to WD before computing the 
oracle best in the list. An even more desirable solution is to build the LM directly on 
WD text; text normalization would be employed for pronunciation generation, but 
ITN is not needed anymore (the LM picks the most likely WD word string for 
homophone queries at recognition).   

   Optimal Size, Freshness and Time-Frame 
for Voice Search Vocabulary 

 In this section, we investigate how to optimize the vocabulary for a voice search 
language model. The metric we optimize over is the out-of-vocabulary (OOV) rate 
since it is a strong indicator of user experience; the higher the OOV rate, the more 
likely the user is to have a poor experience. Clearly, each OOV word will result in 
at least one error at the word level, 3  and in exactly one error at the whole query/
sentencelevel. In ASR practice, OOV rates below 0.01 (1%) are deemed acceptable 
since typical WER values are well above 10%. 

 As shown in Chelba et al.  (  2010  ) , a typical vocabulary for a US English voice 
search language model (LM) is trained on the US English query stream, contains 
about 1 million words, and achieves out-of-vocabulary (OOV) rate of 0.57% on 
unseen text query data, after query normalization. 

 In a departure from typical vocabulary estimation methodology, (Jelinek  1990 ; 
Venkataraman and Wang  2003  ) , the web search query stream not only provides us 

   Table 8.12    WERs on  weakAM-test  and  v-search-test    

 Data set  Baseline (%)  ML-3 g (%)  DLM-3 g (%) 

  weakAM-test   39.1  36.7  34.2 
  v-search-test   14.9  14.6  14.3 

   3   The approximate rule of thumb is 1.5 errors for every OOV word, so an OOV rate of 1% would 
lead to about 1.5% absolute loss in word error rate (WER).  
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with training data for the LM, but also with session level information based on 
24-h cookies. Assuming that each cookie corresponds to the experience of a web 
search user over exactly 1 day, we can compute per-one-day-user OOV rates, and 
directly corelate them with the voice search LM vocabulary size (Kamvar and 
Chelba  2012  ) . 

 Since the vocabulary estimation algorithms are extremely simple, the work pre-
sented here is purely experimental. Our methodology is as follows: 

   Select as training data  •    T   a set of queries arriving at the  google.com  front-end 
during time period  T ;  
  Text normalize the training data, see section “A Note on Query Normalization”;  • 
  Estimate a vocabulary  •    V    by thresholding the 1-g count of words in     T    such that 
it exceeds  C ,     ( , )T CV   ;  
  Select as test data  •    T    a set of queries arriving at the  google.com  front-end during 
time period  E ;  E  is a single day that occurs after  T , and the data is subjected to 
the exact same text normalization used in training;  
  We evaluate both  • aggregate  and  per-cookie  OOV rates, and report the aggregate 
OOV rate across all words in     T   , as well as the percentage of cookies in     T    that 
experience an OOV rate that is less or equal than 0.01 (1%).    

 We aim to answer the following questions: 

   How does the vocabulary size (controlled by the threshold  • C ) impact both  aggre-
gate  and  per-cookie  OOV rates?  
  How does the vocabulary freshness (gap between  • T  and  E ) impact the OOV 
rate?  
  How does the time-frame (duration of  • T ) of the training data     T    used to estimate 
the vocabulary     ( , )T CV    impact the OOV rate?    

   A Note on Query Normalization 

 We build the vocabulary by considering all US English queries logged during  T . We 
break each query up into words, and discard words that have non-alphabetic char-
acters. We perform the same normalization for the test set. So for example if the 
queries in     T    were:  gawker.com, pizza san francisco, baby 
food,  4chan status  the resulting vocabulary would be  pizza, san, 
francisco,  baby, food, status . The query  gawker.com  and the word 
 4chan  would not be included in the vocabulary because they contain non-alpha-
betic characters. 

 We note that the above query normalization is extremely conservative in the 
sense that it discards a lot of problematic cases, and keeps the vocabulary sizes and 
OOV rates smaller than what would be required for building a vocabulary and lan-
guage model that would actually be used for voice search query transcription. As a 
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result, the vocabulary sizes that we report to achieve certain OOV values are very 
likely just lower bounds on the actual vocabulary sizes needed, were correct text 
normalization (see Chelba et al.  2010  for an example text normalization pipeline) to 
be performed.  

   Experiments 

 The various vocabularies used in our experiment are created from queries issued 
during a 1-week–1-month period starting on 10/04/2011. The vocabulary is com-
prised of the words that were repeated  C  or more times in     T   . We chose seven val-
ues for  C : 960, 480, 240, 120, 60, 30 and 15. As  C  decreases, the vocabulary size 
increases; to preserve user privacy we do not use  C  values lower than 15. For each 
training set     T    discussed in this paper, we will create seven different vocabularies 
based on these thresholds. 

 Each test set     T    is comprised of queries associated with a set of over 10 million 
cookies during a 1-day period. We associate test queries by cookie-id in order to 
compute user-based (per-cookie) OOV rate. 

 All of our data is strictly anonymous; the queries bear no user-identifying infor-
mation. The only query data saved after training are the vocabularies. The evalua-
tion on test data is done by counting on streamed  fi ltered query logs, without saving 
any data. 

   Vocabulary Size 

 To understand the impact of vocabulary size on OOV rate, we created several vocab-
ularies from the queries issued in the week     10 / 4 / 2011 10 /10 / 2011T = −   . The 
size of the various vocabularies as a function of the count threshold is presented in 
Table  8.13 ; Fig.  8.12  shows the relationship between the logarithm of the size of the 
vocabulary and the aggregate OOV rate—a log-log plot of the same data points 

   Table 8.13    Vocabulary size as a 
function of count threshold   

 Threshold  Vocabulary size 

 15  3,643,583 
 30  2,277,696 
 60  1,429,888 

 120  901,213 
 240  569,330 
 480  361,776 
 960  232,808 



224 C. Chelba and J. Schalkwyk

would reveal a “quasi-linear” dependency. We have also measured the percentage of 
cookies/users for a given OOV rate (0.01, or 1%), and the results are shown in 
Fig.  8.13 . At a vocabulary size of 2.25 million words ( C  = 30, aggregate OOV = 0. 01), 
over 90% of users will experience an OOV rate of 0.01.     

   Vocabulary Freshness 

 To understand the impact of the vocabulary freshness on the OOV rate, we take the 
seven vocabularies described above (    10 / 4 / 2011 10 /10 / 2011T = −    and  C  = 960, 
480, 240, 120, 60, 30, 15) and investigate the OOV rate change as the lag between the 
training data  T  and the test data  E  increases: we used the 14 consecutive Tuesdays 
between 2010/10/11 and 2011/01/20 as test data. We chose to keep the day of week 
consistent (a Tuesday) across this set of  E  dates in order to mitigate any confound-
ing factors with regard to day-of-week. 

 We found that within a 14-week time span, as the  freshness  of the vocabulary 
decreases, there is no consistent increase in the aggregate OOV rate (Fig.  8.12 ) nor 
any signi fi cant decrease in the percentage of users who experience less than 0.01 
(1%) OOV rate (Fig.  8.13 ).  
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  Fig. 8.12    Aggregate OOV rate as a function of vocabulary size (log-scale), evaluated on a range 
of test sets collected every Tuesday between 2011/10/11 and 2012/01/03       
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   Vocabulary Time Frame 

 To understand how the duration of  T  (the time window over which the vocabulary is 
estimated) impacts OOV rate, we created vocabularies over the following time 
windows: 

   1 week period between 10/25/2011 and 10/31/2011  • 
  2 week period between 10/18/2011 and 10/31/2011  • 
  3 week period between 10/11/2011 and 10/31/2011  • 
  4 week period between 10/04/2011 and 10/31/2011    • 

 We again created seven threshold based vocabularies for each  T . We evaluate the 
aggregate OOV rate on the date     11 /1 / 2011E =   , see Fig.  8.14 , as well as the per-
centage of users with a per-cookie OOV rate below 0.01 (1%), see Fig.  8.15 . We see 
that the shape of the graph is fairly consistent across  T  time windows, and a week of 
training data is as good as a month.   

 More interestingly, Fig.  8.15  shows that aiming at an operating point where 95% 
the percentage of users experience OOV rates below 0.01 (1%) requires signi fi cantly 
larger vocabularies, approx. 10 million words.    
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  Fig. 8.13    Percentage of cookies/users with OOV rate less than 0.01 (1%) as a function of vocabu-
lary size (log-scale), evaluated on test sets collected every Tuesday between 2011/10/11 and 
2012/01/03       
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   Conclusions: Language Modeling for Voice Search 

 Our experiments show that with careful text normalization the query stream is not as 
“wild” as it seems at  fi rst sight. One can achieve excellent OOV rates for a 1 million 
word vocabulary, and  n -gram hit ratios of 77/88% even at     5 / 4n =   , respectively. 

 Experimental evidence suggests that the query stream is non-stationary, and that 
more data does not automatically imply better models even when the data is clearly 
matched to the test data. More careful experiments are needed to adjust model 
capacity and identify an optimal way of blending older and recent data—attempting 
to separate the stationary/non-stationary components in the query stream. Less sur-
prisingly, we have shown that locale matters signi fi cantly for English query data 
across USA, Great Britain and Australia. 

 We generally see excellent correlation of WER with PPL under various pruning 
regimes, as long as the training set and vocabulary stays constant. 

 As for leveraging the speech logs data for better language modeling, we success-
fully build large-scale discriminative N-gram language models with lattices regen-
erated using a weak AM and derive small but signi fi cant gains in recognition 
performance on a voice search task where the lattices are generated using a stronger 
AM. We use a very simple weak AM and this suggests that there is room for 
improvement if we use a slightly better “weak AM”. Also, we have a scalable and 
ef fi cient MapReduce implementation that is amenable to adapting minor changes to 
the training algorithm easily and allows for training large LMs. The latter function-
ality will be particularly useful if we generate the contrastive set by sampling from 
text instead of re-decoding logs (Jyothi and Fosler-Lussier  2010  ) . 

 A more careful analysis of vocabulary estimation for voice search shows that a 
signi fi cantly larger vocabulary (approx. 10 million words) seems to be required to 
guarantee a 0.01 (1%) OOV rate for 95% of the users. 

 Studies on the  www  pages side (Brants) show that after just a few million words, 
vocabulary growth is close to a straight line in the logarithmic scale; the vocabulary 
grows by about 69% each time the size of the text is doubled even when using one 
trillion words of training data. Since queries are used for  fi nding such pages, the 
growth in query stream vocabulary size is easier to understand. 

 We also  fi nd that 1 week is as good as 1 month of data for estimating the vocabu-
lary, and that there is very little drift in OOV rate as the test data (1 day) shifts during 
the 3 months following the training data used for estimating the vocabulary.      
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