
Chapter 1
The Sheffer A-Type 0 Orthogonal Polynomial
Sequences and Related Results

In this chapter, we present a rigorous development of I. M. Sheffer’s characterization
of the A-Type 0 orthogonal polynomial sequences. We first develop the results
that led to the main theorem that characterizes the general A-Type 0 polynomial
sequences via a linear generating function. From there, we develop the additional
theory that Sheffer utilized in order to determine which A-Type 0 polynomial
sequences are also orthogonal. We then address Sheffer’s additional characteriza-
tions of B-Type and C-Type, as well as E.D. Rainville’s σ -Type classification. Lastly,
we cover J. Meixner’s approach to the same characterization problem studied by
Sheffer and then discuss an extension of Meixner’s analysis by W.A. Al-Salam.
Portions of the analysis addressed throughout this chapter are supplemented with
informative concrete examples.

1.1 Preliminaries

Throughout this chapter, we make use of each of the following definitions,
terminologies and notations.

Definition 1.1. We always assume that a set of polynomials {Pn(x)}∞
n=0 is such that

each Pn(x) has degree exactly n, which we write as deg(Pn(x)) = n.

Definition 1.2. A set of polynomials {Qn(x)}∞
n=0 is monic if Qn(x)−xn is of degree

at most n− 1 or equivalently if the leading coefficient of each Qn(x) is unitary.

Definition 1.3. We shall define a generating function for a polynomial sequence
{Pn(x)}∞

n=0 as follows:

∑
Λ

ζnPn(x)t
n = F(x, t),

with Λ ⊆ {0,1,2, . . .} and {ζn}∞
n=0 a sequence in n that is independent of x and t.

Moreover, we say that the function F(x, t) generates the set {Pn(x)}∞
n=0.
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2 1 The Sheffer A-Type 0 Orthogonal Polynomial Sequences and Related Results

It is important to mention that a generating function need not converge, as in
general, several relationships can be derived when F(x, t) is divergent.

Definition 1.4. In this chapter, the term orthogonal polynomials refers to a set of
polynomials {Pn(x)}∞

n=0 that satisfies one of the two weighted inner products below:

Continuous : 〈Pm(x),Pn(x)〉=
∫

Ω1

Pm(x)Pn(x)w(x)dx = αnδm,n, (1.1)

Discrete : 〈Pm(x),Pn(x)〉= ∑
Ω2

Pm(x)Pn(x)w(x) = βnδm,n, (1.2)

where Ω1 ⊆ R, Ω2 ⊆W, δm,n denotes the Kronecker delta and w(x) > 0 is entitled
the weight function.

For example, the Laguerre, Hermite, and Meixner–Pollaczek polynomials satisfy
a continuous orthogonality relation of the form (1.1). On the other hand, the
Charlier, Meixner, and Krawtchouk polynomials satisfy a discrete orthogonality
relation of the form (1.2) (cf. [6]).

Now, it is well-known that a necessary and sufficient condition for a set of
polynomials {Pn(x)}∞

n=0 to be orthogonal is that it satisfies a three-term recurrence
relation (see [8]), which can be written in different (equivalent) forms. In particular,
we utilize the following two forms in this chapter and adhere to the nomenclature
used in [2].

Definition 1.5 (The Three-Term Recurrence Relations). It is a necessary and
sufficient condition that an orthogonal polynomial sequence {Pn(x)}∞

n=0 satisfies
an unrestricted three-term recurrence relation of the form

Pn+1(x) = (Anx+Bn)Pn(x)−CnPn−1(x), AnAn−1Cn > 0

where P−1(x) = 0 and P0(x) = 1. (1.3)

If Qn(x) represents the monic form of Pn(x), then it is a necessary and sufficient
condition that {Qn(x)}∞

n=0 satisfies the following monic three-term recurrence
relation:

Qn+1(x) = (x+ bn)Qn(x)− cnQn−1(x), cn > 0

where Q−1(x) = 0 and Q0(x) = 1. (1.4)

We entitle the conditions AnAn−1Cn > 0 and cn > 0 above positivity conditions.

Lastly, we mention that all of the power series in this chapter are formal power
series, i.e., they may or may not converge. In [9], Sheffer used the symbol ‘∼=’
to denote formal series. For simplicity, we will use the equal sign throughout our
present work and it will be tacitly assumed that each power series is nonetheless
formal.
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1.2 Sheffer’s Analysis of the Type 0 Polynomial Sequences

In this section, we discuss each of the theorems of I.M. Sheffer’s work [9] that were
necessary in characterizing all of the Type 0 orthogonal sets. With respect to space
constraints, we write each proof, and some examples as well, with as much detail
as possible. To begin, we consider the very well-studied Appell polynomial sets
{Pn(x)}∞

n=0, which are defined as

A(t)ext =
∞

∑
n=0

Pn(x)t
n, A(t) =

∞

∑
n=0

antn, a0 = 1. (1.5)

An example of an Appell set is {xn/n!}∞
n=0, which is clear since

ext =
∞

∑
n=0

xn

n!
tn.

Now, we differentiate (1.5) with respect to x. The left-hand side becomes

d
dx

[
A(t)ext]= tA(t)ext =

∞

∑
n=0

Pn(x)t
n+1 =

∞

∑
n=1

Pn−1(x)t
n

and the right-hand side becomes

∞

∑
n=1

P′
n(x)t

n.

Therefore, after comparing coefficients of tn in the results above, we achieve the
equivalent characterization of Appell sets

P′
n(x) = Pn−1(x), n = 0,1,2, . . . .

Next, we consider the set of Newton polynomials {Nn(x)}∞
n=0, which is not an

Appell set:

N0(x) := 1, Nn(x) :=
x(x− 1) · · ·(x− n+ 1)

n!
, n = 1,2, . . . .

For the difference operator defined by Δ f (x) := f (x+ 1)− f (x), it can be shown
that

ΔNn(x) = Nn(x+ 1)−Nn(x) = Nn−1(x)

and

(1+ t)x = ex ln(1+t) =
∞

∑
n=0

Nn(x)t
n.
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We observe that the operator Δ functions as d/dx does on the Appell polynomials
and that the generating function above is in a more general form than Eq. (1.5), i.e.,
the t in the exponent of Eq. (1.5) is replaced by H(t)= ln(t+1). Due to this analysis,
Sheffer was motivated to define a class of difference polynomial sets that satisfy

J [Pn (x)] = Pn−1 (x) , n = 0,1,2, . . .

with J a general degree-lowering operator.
Thus, we now continue with a result regarding such a general degree-lowering

operator J, which is an essential structure in all of the Type 0 analysis that follows.

Lemma 1.1. Assume that J is a linear operator that acts on the set of monomials
{xn}∞

n=0 such that deg(J[xn])≤ n. Then, J has the following structure:

J[y(x)] =
∞

∑
n=0

Ln(x)
dn

dxn y(x), (1.6)

which is valid for all polynomials y(x), with deg(Ln(x))≤ n.

Proof. We first note that since J is assumed to be a linear operator that acts on the
set of monomials {xn}∞

n=0, it can act on any polynomial. Therefore, if we show that
Eq. (1.6) holds for y(x) = xn, we have proven the theorem. Using the fact that

dk

dxk xn = n(n− 1)(n− 2) · · ·(n− k+ 1)xn−k

we can then recursively define Ln(x) by the following:

J[xn] =
n

∑
k=0

Lk(x)[n(n− 1)(n− 2) · · ·(n− k+ 1)xn−k], n = 0,1,2, . . . . (1.7)

Since for each n = 0,1,2, . . . we assumed that deg(J[xn])≤ n, we must require that
Lk(x)[n(n− 1)(n− 2) · · ·(n− k+ 1)xn−k] be of degree at most n for k = 0,1, . . . ,n.
This will occur if and only if deg(Lk(x)) ≤ k, since for any polynomials Pm(x) and
Qn(x), deg(Pm(x)Qn(x)) = deg(Pm(x))+ deg(Qn(x)). �	

In Lemma 1.1, we determined the structure that J must adhere to in order
for deg(J[xn]) ≤ n. Next, we determine the form that J must have in order for
deg(J[xn]) = n− 1. As we shall see, this will amount to restrictions on Ln(x) in
Eq. (1.6). Also, in order to naturally generalize our degree-lowering operator J, we
additionally require that J [c] = 0 for all constants c, analogous to d

dx [c] = 0.

Lemma 1.2. Necessary and sufficient conditions for J as defined in Eq. (1.6) to
exist such that deg(J[xn]) = n− 1 are as follows:

L0(x) = 0, Ln(x) = ln,0 + ln,1x+ · · ·+ ln,n−1xn−1, n = 1,2, . . . (1.8)
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and

λn := nl1,0 + n(n− 1)l2,1+ · · ·+ n!ln,n−1 
= 0, n = 1,2, . . . . (1.9)

Proof. (⇒) We initially assume that J[1] = 0 and deg(J[xn]) = n−1 for n = 1,2, . . .
and that Ln(x) takes on the form

Ln(x) = ln,0 + ln,1x+ · · ·+ ln,nxn,

from which we show that Eq. (1.8) and Eq. (1.9) necessarily follow. We begin by
finding the coefficients of xn and xn−1 in Eq. (1.7). Namely, we analyze the summand
in Eq. (1.7):

Lk(x)[n(n− 1)(n− 2) · · ·(n− k+ 1)xn−k] (1.10)

for k = 0,1,2, . . . ,n and determine the leading coefficient in each case and subse-
quently add the results, thus obtaining the coefficient of xn, which will be valid for
n = 0,1,2, . . .. We follow the same procedure for achieving the coefficient of xn−1.

For k = 0, we observe that Eq. (1.10) becomes L0(x)xn = l0,0xn, which clearly
has a leading coefficient of l0,0. For k = 1, we see that Eq. (1.10) turns out to be
L1(x)nxn−1 = (l1,0 + l1,1x)nxn−1 and therefore, the leading coefficient is nl1,1. With
k = 2, Eq. (1.10) becomes L2(x)n(n− 1)xn−2 = (l2,0 + l2,1x+ l2,2x2)n(n− 1)xn−2,
which yields n(n− 1)l2,2 as the leading coefficient. Continuing in this fashion, we
realize that for k = n the leading coefficient of Eq. (1.10) is n!ln,n. So, the coefficient
of xn is

l0,0 + nl1,1+ n(n− 1)l2,2+ · · ·+ n!ln,n, n = 0,1,2, . . . . (1.11)

We next successively compare (1.11) against J [xn] for n = 0,1,2, . . .. For n =
0, Eq. (1.11) becomes l0,0 and it must be that l0,0 = 0, since J[1] = 0, and thus
L0(x) = 0. With n = 1, Eq. (1.11) turns out to be l1,1, which must be equal to zero,
as J[x] = const. Continuing in this manner, it follows that l j, j = 0 for j = 0,1,2, . . .,
thus establishing (1.8).

Then, using the same logic that was used to determine the coefficient of xn, we
achieve the coefficient of xn−1 in Eq. (1.10), which we call λn, to be

λn := nl1,0 + n(n− 1)l2,1+ · · ·+ n!ln,n−1, n = 0,1,2, . . . .

Since we have already shown that the coefficient of xn is zero, in order to have
deg(J[xn]) = n− 1 we must also require that λn 
= 0, thus proving the necessity of
the statement.
(⇐) From substituting Eq. (1.8) with the restriction (1.9) into Eq. (1.7), the suffi-
ciency of the statement is immediate.

�	
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Due to Lemma 1.2, we can now modify the structure of Eq. (1.6), since our
primary concern is when deg(J[xn]) = n− 1. We have

J[y(x)] =
∞

∑
n=1

[ln,0 + ln,1x+ · · ·+ ln,n−1xn−1]
dn

dxn y(x), λn 
= 0, n = 1,2, . . . . (1.12)

The summation above starts at 1 via L0(x) = 0.
Next, given a set of polynomials S = {Pn(x)}∞

n=0, we want to determine how
many operators J exist, such that J transforms each polynomial Pk(x) ∈ S to the
polynomial immediately preceding it in the sequence, i.e., to Pk−1(x) ∈ S. As it
turns out, there is exactly one such operator.

Theorem 1.1. For a given polynomial set S = {Pn(x)}∞
n=0, there exists a unique

operator J such that

J[Pn(x)] = Pn−1(x), n = 1,2, . . . (1.13)

with J[P0(x)] := 0.

Proof. To show the existence and uniqueness of J, we substitute y(x) = Pn(x) ∈ S

into Eq. (1.12), which yields

J[Pn(x)] =
n

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk Pn(x).

Moreover, from Eq. (1.13), we require

n

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk Pn(x) = Pn−1(x). (1.14)

Therefore, upon successively comparing the coefficients of Eq. (1.14) for n =
1,2, . . . we see that the sequence

{
li, j

}
is uniquely determined, thus establishing

the uniqueness of J given S. �	
We say that the set {Pn(x)}∞

n=0 corresponds to the operator J if Eq. (1.13) is satisfied.

Example 1.1. To concretely demonstrate how the sequence
{

li, j
}

is uniquely
constructed, we consider J as in Eq. (1.12) acting on the Appell set

S= {xn/n!}∞
n=0 .

First, for n = 0, we see that J[1] = 0 gives us no information. For n = 1, we require
J[x] = 1. Therefore,

J[x] =
1

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk [x] = l1,0 ·1,
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which implies that l1,0 = 1. Then, for n = 2, we must have J[x2/2!] = x and thus

J

[
x2

2!

]
=

2

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk

[
x2

2!

]

= l1,0 · x+(l2,0+ l2,1x) ·1
= l2,0 +(1+ l2,1)x.

Therefore, l2,0 = l2,1 = 0. Next, for n = 3, we see that J[x3/3!] = x2/2! must hold.
Hence,

J

[
x3

3!

]
=

3

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk

[
x3

3!

]

= l1,0 · x2

2!
+(l2,0 + l2,1x) · x+(l3,0+ l3,1x+ l3,2x2) ·1

= l3,0 + l3,1x+

(
1
2!

+ l3,2

)
x2.

Therefore, it must be that l3,0 = l3,1 = l3,2 = 0.
In fact, continuing in this fashion, the interested reader can readily show that

all of the l-values in this sequence will be uniquely determined to be zero, except
l1,0 = 1. This is certainly clear since

d
dx

[
xn

n!

]
=

xn−1

(n− 1)!
.

We next prove the converse of Theorem 1.1.

Theorem 1.2. Associated to each operator J are infinitely many sets {Pn(x)}∞
n=0

such that Eq. (1.13) holds. More specifically, exactly one of these sets {Bn(x)}∞
n=0,

entitled the basic set, is such that

B0(x) = 1 and Bn(0) = 0, n = 0,1,2, . . . .

Proof. Let Qm(x) be a polynomial such that deg(Qm) = m. Then, via Eq. (1.12),
we can construct a polynomial, say Pm+1(x), such that J[Pm+1(x)] = Qm(x), where
deg(Pm+1(x)) = m + 1. However, since J[const] = 0, the polynomial Pm+1(x) is
unique only up to an additive constant. This proves the infinitude of sets {Pn(x)}∞

n=0
that correspond to a given J.

By assigning B0(x) := 1 and assuming Bn(0) = 0 for n > 0, one can successively
and uniquely determine the set {Bn(x)}∞

n=0 such that J[Bn(x)] = Bn−1(x) and
deg(Bn(x)) = n.

�	
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The next result states that for {Pn(x)}∞
n=0 to be a set corresponding to J, it must

be expressed as a linear combination of polynomials from the basic set. However,
the scalers in this linear combination appear in a special way and play a key role in
the later characterizations.

Theorem 1.3. A necessary and sufficient condition that {Pn(x)}∞
n=0 be a set

corresponding to J is that there exist a sequence of constants {ak} such that

Pn(x) = a0Bn(x)+ a1Bn−1(x)+ · · ·+ anB0(x), a0 
= 0. (1.15)

Proof. (⇒) Assume that {Pn(x)}∞
n=0 satisfies (1.15). Therefore, deg(Pn(x)) = n and

by the linearity of J we have

J[Pn(x)] = J

[
n

∑
i=0

aiBn−i(x)

]
=

n

∑
i=0

aiJ[Bn−i(x)] =
n−1

∑
i=0

aiBn−i−1(x) = Pn−1(x),

which follows since J[B0(x)] = 0 and J[Bn(x)] = Bn−1(x) for n> 0 via Theorem 1.2.
Thus J[Pn(x)] = Pn−1(x).
(⇐) We now assume that {Pn(x)}∞

n=0 corresponds to J. Since deg(Bn(x)) = n, given
Pn(x), there must exist constants

{
an,k

}n
k=0 such that

Pn(x) = an,0Bn(x)+ an,1Bn−1(x)+ · · ·+ an,nB0(x), an,0 
= 0.

We act on this relation with J and see that the left-hand side becomes

J[Pn(x)] = Pn−1(x) = an−1,0Bn−1(x)+ an−1,1Bn−2(x)+ · · ·+ an−1,n−1B0(x)

and since J[B0(x)] = 0, we see that the right-hand side turns into

an,0Bn−1(x)+ an,1Bn−2(x)+ · · ·+ an,n−1B0(x).

Therefore, from comparing coefficients of the results directly above, we infer that

an,k = an−1,k, k = 0,1, . . . ,n− 1.

Next, we momentarily fix k. Then, the relation immediately above implies that for
all n ≥ k each an,k is equal to an−1,k. Thus, the first index in the series

{
an,k

}
is superfluous and thus can be omitted. We conclude that {ak} exist such that
Eq. (1.15) is satisfied. �	

It may at first appear counterintuitive that the elements of the sequence {ak}
appear as they do in Eq. (1.15). However, the proof of Theorem 1.3 shows why this
is the case. For emphasis, consider expressing a polynomial Pn(x) corresponding to
J as a linear combination of basic polynomials in the following “natural” way:
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Pn(x) = anBn(x)+ an−1Bn−1(x)+ · · ·+ a0B0(x).

Then,

J[Pn(x)] = J

[
n

∑
i=0

aiBi(x)

]
=

n

∑
i=0

aiJ[Bi(x)] =
n

∑
i=0

aiBi−1(x) 
= Pn−1(x).

We next wish to determine what conditions are needed for a set {Qn(x)}∞
n=0 to

correspond to J, given that a set {Pn(x)}∞
n=0 corresponds to J. As it turns out, Qn(x)

must be written as a linear combination of {Pk(x)}n
k=0.

Corollary 1.1. Given that {Pn(x)}∞
n=0 is a set corresponding to J, a necessary and

sufficient condition that {Qn(x)}∞
n=0 also corresponds to J is that constants {bk}

exist such that

Qn(x) = b0Pn(x)+ b1Pn−1(x)+ · · ·+ bnP0(x), b0 
= 0.

Proof. The proof is similar to that of Theorem 1.3 and is left as an exercise for the
reader. �	

In light of the preceding theorems, we now state the definition of Sheffer Type k.

Definition 1.6. Let the set S := {Pn(x)}∞
n=0 correspond to the unique operator J.

Then, S is of Sheffer Type k, or simply Type k, if the coefficients
{

Lj(x)
}∞

j=0
in Eq. (1.12) are such that deg(Lj(x)) ≤ k for all j and there exists at least one
Li(x) ∈

{
Lj(x)

}∞
j=0 such that deg(Li(x)) = k. If

{
Lj(x)

}∞
j=0 is unbounded, then S is

of Type ∞.

With this definition, we have the following result.

Theorem 1.4. There exist infinitely many sets for each Sheffer Type k (k finite or
infinite).

Proof. We know from Theorem 1.2 that associated to each operator J are infinitely
many sets {Pn(x)}∞

n=0 such that Eq. (1.13) holds. This result is entirely independent
of the degrees of the coefficients

{
Lj(x)

}∞
j=0 in Eq. (1.12) and therefore the Type.

Hence, Theorem 1.2 holds for all
{

Lj(x)
}∞

j=0, even if it is unbounded, so there are
infinitely many sets of every Type (finite or infinite). �	

We now consider what effect replacing S := {Pn(x)}∞
n=0 with {cnPn(x)}∞

n=0 has
on the Type classification of S. Assuming that S corresponds to J, we immediately
observe that

J[cnPn(x)] = cnJ[Pn(x)] = cnPn−1(x) 
= cn−1Pn−1(x).
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This simple manipulation tells us that the Type is not necessarily preserved since we
may need a new operator, say J̆, such that J̆[cnPn(x)] = cn−1Pn−1(x). We demonstrate
this concretely in the following examples.

Example 1.2. In Example 1.1, we analyzed the Appell set S := {xn/n!}∞
n=0 and

showed that l1,0 = 1 and that every other l-value was zero by utilizing (1.12).
Moreover, we actually showed that L1(x) = 1 and Lj(x) ≡ 0 for j = 2,3, . . . and
thus, that S is a Type 0 set, since k = 0 in Definition 1.6. We next consider the set
S̆ := {cnxn/n!}∞

n=0, where ci 
= 0 and each ci is distinct.
For n = 1, we require J[c1x] = c0. Therefore,

J[c1x] =
1

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk [c1x] = l1,0 · c1,

which implies that l1,0 = c0/c1 and therefore L1(x) = c0/c1. Then, for n = 2, we
must have J[c2x2/2!] = c1x and thus

J

[
c2x2

2!

]
=

2

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk

[
c2x2

2!

]

= l1,0 · c2x+(l2,0 + l2,1x) · c2

= l2,0c2 +(c0c2/c1 + l2,1c2)x.

So, l2,0 = 0 and l2,1 = (c2
1 − c0c2)/(c1c2) giving L1(x) =

(c2
1−c0c2)
c1c2

x. Therefore, we

already see that S̆ is not a Type 0 set. In fact, the interested reader can show that S̆ is
actually Type ∞.

Example 1.3. We next consider a very important Type 0 set, the importance of
which will become most evident upon the completion of Sect. 1.3. This set is defined
as Hn(x) := 2−nHn(x)/n!, where

Hn(x) := 2nn!
�n/2�
∑
k=0

(−1)kxn−2k

22kk!(n− 2k)!

are the Hermite polynomials. For convenience, we write out the first four polynomi-
als from the set {Hn(x)}∞

n=0:

H0(x) = 1, H1(x) = x, H2(x) =
1
2

x2 − 1
4

and H3(x) =
1
6

x3 − 1
4

x.

We initially see that J[H1(x)] =H0(x) implies

J[H1(x)] =
1

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk [H1(x)] = l1,0 = 1



1.2 Sheffer’s Analysis of the Type 0 Polynomial Sequences 11

and therefore, L1(x) = 1. Then, J[H2(x)] =H1(x) yields

J[H2(x)] =
2

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk [H2(x)]

= l2,0 +(1+ l2,1x)x = x

and it must be that l2,0 = l2,1 = 0, i.e., L2(x) = 0. Continuing, one concludes that
L1(x) = 1 and Lj(x) = 0 for j = 2,3, . . . and thus {Hn(x)}∞

n=0 is a Type 0 set.
Moreover, writing (1.12) in the operator form

J =
∞

∑
k=1

Lk(x)
dk

dxk , (1.16)

we find the unique operator J for our current set to be J = d/dx.

Example 1.4. Now consider the set Hn(x) := Hn(x)/(n!)2, where {Hn(x)}∞
n=0 are

the Hermite polynomials as defined in the last example. The first four polynomials
from the set {Hn(x)}∞

n=0 are

H0(x) = 1, H1(x) = 2x, H2(x) = x2 − 1
2

and H3(x) =
2
9

x3 − 1
3

x.

Using the same procedure as in Examples 1.2 and 1.3, one can show that L1(x) =
1/2, L2(x) =

1
2 x, L3(x) =−1/4, and Lj(x) = 0 for j = 4,5, . . .. Thus, {Hn(x)}∞

n=0 is
a Type 1 set and Eq. (1.16) becomes

J =
1
2

d
dx

+
1
2

x
d2

dx2 − 1
4

d3

dx3 .

Next, we notice that if {Pn(x)}∞
n=0 is a Type 0 set, then each Ln(x) must be a

constant and we can therefore restate Definition 1.6 specifically for Type 0 sets as
follows.

Definition 1.7. {Pn(x)}∞
n=0 is a Type 0 set if Eq. (1.13) holds with J defined by

J[y(x)] :=
∞

∑
n=1

cny(n)(x), c1 
= 0. (1.17)

We emphasize that as we have seen in Examples 1.2–1.4, Eq. (1.17) may or may
not terminate, i.e., it may be finite Type k or Type ∞. We also have the following
definition.

Definition 1.8. Let J(t) be the formal power series

J(t) :=
∞

∑
n=1

cntn, c1 
= 0,
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which we entitle the generating function for J, with J as in Eq. (1.17).

Now, let the formal power series inverse of J(t) be

H(t) :=
∞

∑
n=1

sntn, s1 = c−1
1 
= 0. (1.18)

This is a valid definition because if J(t) is formally substituted for t in (1.18) and
the coefficients are collected to form a single power series in t, then the coefficient
of each tn is a polynomial in c1,c2, . . . ,cn,s1,s2, . . . ,sn. Therefore, we can choose
each sn recursively and uniquely as a function of c1,c2, . . . ,cn,s1,s2, . . . ,sn−1 so the
series has a single term t, i.e.,

J(H(t)) = H(J(t)) = t.

In considering exp(xH(t)), we see that each coefficient of tn in the formal power
series expansion only comprises s1,s2, . . . ,sn. Upon multiplying exp(xH(t)) by

A(t) :=
∞

∑
n=0

antn, a0 
= 0,

we achieve a series in t where the coefficient of each tn involves elements of
the sequences a1,a2, . . . ,an and s1,s2, . . . ,sn, such that each coefficient of tn is a
polynomial in x of degree exactly n, adhering to Definition 1.1. This leads to the
main result of this section.

Theorem 1.5. The set {Pn(x)}∞
n=0 corresponds to the operator J and is of Sheffer

Type 0 if and only if the sequence {an}∞
n=0 exists such that

A(t)exH(t) =
∞

∑
n=0

Pn(x)t
n, (1.19)

where

A(t) :=
∞

∑
n=0

antn, a0 = 1 and H(t) :=
∞

∑
n=1

sntn, s1 = 1. (1.20)

Proof. We show that both necessity and sufficiency will follow if we prove that the
basic set {Bn(x)}∞

n=0 corresponding to J in Eq. (1.13) has the following generating
function:

exH(t) =
∞

∑
n=0

Bn(x)t
n. (1.21)

Since exp [xH(t)] = ∑∞
n=0 [H

n(t)xn/n!], we let this expansion have the form
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exH(t) =
∞

∑
n=0

Cn(x)t
n. (1.22)

Then, {Cn(x)}∞
n=0 must be such that deg(Cn(x)) = n. We show that {Cn(x)}∞

n=0 is
the basic set.

Upon setting x = 0 in Eq. (1.22) and comparing coefficients, we see imme-
diately that C0(0) = 1, and therefore C0(x) = 1, and that Cn(0) = 0 for n > 0.
Thus, {Cn(x)}∞

n=0 satisfies the initial conditions of the basic set. We clearly have
J[C0(x)] = 0 and next show that J[Cn(x)] =Cn−1(x) for n = 1,2,3, . . . . We apply J
to Eq. (1.22):

J

[
∞

∑
n=0

Cn(x)t
n

]
=

∞

∑
n=0

J[Cn(x)]t
n = J

[
exH(t)

]
=

∞

∑
n=0

cn
dn

dxn

[
exH(t)

]

= c1
d
dx

[
exH(t)

]
+ c2

d2

dx2

[
exH(t)

]
+ c3

d3

dx3

[
exH(t)

]
+ · · ·

=
(
c1H(t)+ c2H2(t)+ c3H3(t)+ · · ·)exH(t)

= J(H(t))exH(t) = texH(t) =
∞

∑
n=0

Cn(x)t
n+1 =

∞

∑
n=0

Cn−1(x)t
n

(with C−1(x) := 0), which follows since H(t) and J(t) are formal inverses of one
another. By comparing coefficients of tn in the relation directly above, we achieve
J[Cn(x)] = Cn−1(x) for n = 1,2,3, . . . and hence, Cn(x) ≡ Bn(x) and Eq. (1.21) is
established. Lastly, we now multiply Eq. (1.21) by A(t) as in Eq. (1.20), which yields

A(t)exH(t) =
∞

∑
n=0

antn
∞

∑
n=0

Bn(x)t
n =

∞

∑
n=0

n

∑
k=0

akBn−k(x)t
n =

∞

∑
n=0

Pn(x)t
n, (1.23)

as a result of Theorem 1.3. �	
We also have the following.

Theorem 1.6. The sequence of ak-terms in Eq. (1.19) is exactly the same as those
in Eq. (1.15).

Proof. This statement follows immediately from the proof of Theorem 1.5, i.e.,
Eq. (1.23). �	

The next result plays an integral part in determining all of the Sheffer Type 0
orthogonal polynomials in the next section. This characterization is also interesting
unto itself, as it is expressed entirely in terms of elements of the generating function
(1.19).

Corollary 1.2. {Pn(x)}∞
n=0 is of Type 0 if and only if sequences

{
qk,0

}
and

{
qk,1

}
exist such that
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∞

∑
k=1

(qk,0 + qk,1x)Pn−k(x) = nPn(x), n = 1,2, . . . , (1.24)

where
∑∞

k=0 qk+1,0tk = A′(t)/A(t)
∑∞

k=0 qk+1,1tk = H ′(t)

}
(1.25)

with A(t) and H(t) as defined in Eq. (1.20).

Proof. We assume that {Pn(x)}∞
n=0 is a Type 0 set. We first consider the right-hand

side of Eq. (1.24) and multiply it by tn and sum for n = 0,1,2, . . .. This yields

∞

∑
n=0

nPn(x)t
n = t

∞

∑
n=0

nPn(x)t
n−1 = t

d
dt

(
A(t)exH(t)

)
= texH(t) (xA(t)H ′(t)+A′(t)

)
.

(1.26)

Since Jk[Pn(x)] = Pn−k(x), we see that

∞

∑
n=0

Jk[Pn(x)]t
n = tk

∞

∑
n=k

Pn−k(x)t
n−k = tk

∞

∑
m=0

Pm(x)t
m = tkA(t)exH(t).

Therefore, we now multiply the left-hand side of Eq. (1.24) by tn, sum for n =
0,1,2, . . ., and utilize (1.20) to obtain

∞

∑
n=0

∞

∑
k=1

(qk,0 + qk,1x)Pn−k(x)t
n =

∞

∑
n=0

∞

∑
k=1

(qk,0 + qk,1x)Jk[Pn(x)]t
n

=
∞

∑
k=1

(qk,0 + qk,1x)
∞

∑
n=0

Jk[Pn(x)]t
n =

∞

∑
k=1

(qk,0 + qk,1x)tkA(t)exH(t)

=

(
t

∞

∑
k=0

qk+1,0tk + tx
∞

∑
k=0

qk+1,1tk

)
A(t)exH(t) = texH(t) (xA(t)H ′(t)+A′(t)

)
.

(1.27)

Hence, we see that both Eqs. (1.26) and (1.27) are formally equal and from
comparing coefficients of tn we obtain Eq. (1.24). �	

1.3 The Type 0 Orthogonal Polynomials

We now determine which Sheffer Type 0 sets are also orthogonal. We first assume
that {Qn(x)}∞

n=0 is an orthogonal set that satisfies the monic three-term relation of
the form Eq. (1.4), which we write using the notation in [9]:
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Qn(x) = (x+λn)Qn−1(x)+ μnQn−2(x), μn 
= 0, n = 1,2, . . . . (1.28)

In our first theorem of this section, we determine a necessary and sufficient form that
the recursion coefficients λn and μn in Eq. (1.28) must have in order to characterize
a Type 0 orthogonal set. First, we note that since {Qn(x)}∞

n=0 is an orthogonal set,
then so is {cnQn(x)}∞

n=0. Now, we want to determine for which sets {Qn(x)}∞
n=0

satisfying (1.28) do there exist a sequence of constants {cn}∞
n=0 such that

Pn(x) = cnQn(x), n = 0,1,2, . . . (1.29)

is a Type 0 set. To accomplish this, we simultaneously use Eqs. (1.24) and (1.28),
i.e., a characterization of a Type 0 set and a characterization of an orthogonal set.

Theorem 1.7. A necessary and sufficient condition that an orthogonal polynomial
set {Qn(x)}∞

n=0 satisfying (1.28) be such that Pn(x) = cnQn(x) is of Type 0 for some
cn 
= 0 is that λn and μn have the form

λn = α + bn and μn = (n− 1)(c+ dn) (1.30)

with c+ dn 
= 0 for n > 1.

Proof. (⇒) We assume that Eq. (1.29) holds and show that λn and μn are as in
Eq. (1.30). To begin, replace n with n− k + 1 in Eq. (1.28) and rewrite it in the
following way:

xQn−k(x) = Qn−k+1(x)−λn−k+1Qn−k(x)− μn−k+1Qn−k−1(x). (1.31)

Then, substituting the right-hand side of Eq. (1.29) into Eq. (1.24) and using
Eq. (1.31), we see that

ncnQn(x) =
∞

∑
k=1

qk,0cn−kQn−k(x)+
∞

∑
k=1

qk,1cn−k[xQn−k(x)]

=
∞

∑
k=1

qk,0cn−kQn−k(x)+
∞

∑
k=1

qk,1cn−kQn−k+1(x)

−
∞

∑
k=1

qk,1cn−kλn−k+1Qn−k(x)−
∞

∑
k=1

qk,1cn−kμn−k+1Qn−k−1(x). (1.32)

We next compare coefficients of Q j(x) for j = n,n− 1,n− 2 using Eq. (1.32)
to obtain relationships involving the q’s and in turn develop expressions for the
recursion coefficients λn and μn. First, by comparing the coefficients of Qn(x) we
see that ncn = cn−1q1,1 and iterating this relationship, we obtain

cn = c0qn
1,1/n!. (1.33)
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After comparing the coefficients of Qn−1(x), we realize that

0 = q1,0cn−1 + q2,1cn−2 − q1,1cn−1λn.

Dividing both sides of this equation by cn−2 and using Eq. (1.33) yield

λn = (q1,0q1,1 + q2,1(n− 1))/q2
1,1. (1.34)

Lastly, upon comparing the coefficients of Qn−2(x), we achieve

0 = q2,0cn−2 + q3,1cn−3 − q2,1cn−2λn−1 − q1,1cn−1μn.

We also divide both sides of this equation by cn−2, use Eq. (1.33), and also call upon
Eq. (1.34) to obtain

μn = (n− 1)
(
q2,0q2

1,1 − q1,0q1,1q2,1 − (q2
1,1 − q1,1q3,1)(n− 2)

)
/q4

1,1. (1.35)

Thus, we see that λn is at most linear in n and that μn is at most quadratic in n with
a factor of (n− 1), i.e., λn and μn satisfy (1.30).
(⇐) We assume that λn and μn agree with Eq. (1.30). We show that Eq. (1.29) is
of Type 0. Now, if in Eq. (1.28) we replace Qn(x) with cndnQn(x) = dnPn(x) where
cn := αn/n! (α 
= 0) and dn := c−1

n then our three-term recurrence relation (1.28),
with λn and μn as in Eq. (1.30), remains unaltered and we can therefore write

dnPn(x) = (x+α + bn)dn−1Pn−1(x)+ (n− 1)(c+ dn)dn−2Pn−2(x).

Dividing both sides of this relation by dn defined above gives a relation of the form

nPn(x) = (αx+β + γn)Pn−1(x)+ (δ + εn)Pn−2(x),

where α 
= 0, δ +εn 
= 0 for n> 1 and with β =α2, γ = bα , δ = cα2, and ε = dα2.
This, of course, can be written in the form

xPn−1(x) = α−1nPn(x)−α−1(β + γn)Pn−1(x)−α−1(δ + εn)Pn−2(x).

That is, we have expressed xPn−1(x) as a linear combination of Pn(x), Pn−1(x), and
Pn−2(x). Therefore, sequences

{
qk,0

}
and

{
qk,1

}
exist such that

Tn := (q1,0 + q1,1x)Pn−1(x)+ (q2,0 + q2,1x)Pn−2(x)+ · · ·= nPn(x).

Furthermore, it can be shown that these q’s are related in the following way:

qk+2,1 = γqk+1,1 + εqk,1; q1,1 = α, q2,1 = αγ, (1.36)
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qk+1,0 =
1
α
(
qk,1(δ − (k− 1)ε)+ qk+1,1(β − γk)+ qk+2,1(k+ 1)

)
. (1.37)

Thus, we have shown that {Pn(x)}∞
n=0 satisfies Corollary 1.2 and is therefore a Type

0 set. �	
As it turns out, we need the relations (1.36) and (1.37) to determine all of the Type

0 orthogonal sets. Now, if Eq. (1.36) is known, then Eq. (1.37) can be determined.
Therefore, we solve (1.36) by considering the characteristic equation

u2 − γu− ε = 0, (1.38)

which has the solution
u1,2 =

(
γ ±

√
γ2 + 4ε

)
/2.

We analyze the different cases of the discriminant γ2+4ε and determine the value of
qk,1, and therefore qk+1,0, in each case. Thus, in each case, this leads to expressions
for A(t) and H(t) in Eq. (1.20) and therefore the generating function (1.19), which
yields the corresponding orthogonal set. For the repeated root cases (γ2 + 4ε = 0)
we use the general solution structure qk,1 = Auk

1 + Bkuk
1 and for the distinct root

cases (γ2 + 4ε 
= 0), we use the general solution structure qk,1 = Auk
1 +Buk

2, where
u1 and u2 are the roots listed above. There are a total of four cases, which we label
as Ia, Ib, IIa and IIb. We work out the rigorous details of Case Ia and summarize the
remaining cases.

Case Ia. γ2 + 4ε = 0 and γ 
= 0
In this case, we see that Eq. (1.38) yields u1 = u2 = γ/2 as a solution, which implies

qk,1 = A(γ/2)k +Bk(γ/2)k.

Using our initial conditions in Eq. (1.36), we have the following system:

q1,1 =
1
2

Aγ +
1
2

Bγ = α,

q2,1 =
1
4

Aγ2 +
1
4

Bγ2 = αγ,

which has the solutions A = 0 and B = 2α/γ and thus,

qk,1 = kα(γ/2)k−1. (1.39)

By substituting the right-hand side of Eq. (1.36) into Eq. (1.37) and then using
Eq. (1.39) accordingly, after some algebraic manipulations, we obtain the following:

qk+1,0 =
( γ

2

)k−1
(

1
2
(β γ + 2δ )k+

1
2
(β + γ)γ +

1
2
(γ2 + 4ε)k

)
.
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Then, recalling that the discriminant is zero in this case, we obtain

qk+1,0 =
( γ

2

)k−1
(

1
2
(β γ + 2δ )k+

1
2
(β + γ)γ

)
. (1.40)

For this case, we can now determine the series H(t) and A(t) as in Eq. (1.20) using
Eq. (1.25). We first substitute (1.39) into our H ′(t) expression of Eq. (1.25) and then
integrate, which leads to the geometric series

H(t) = αt
∞

∑
k=0

( γt
2

)k
=

2αt
2− γt

.

It is also worth mentioning that the formal inverse of H(t) above is therefore readily
determined to be

J(t) =
2t

2α + γt
.

For A(t), we first notice that we have the following first-order differential equation:

A′(t)−
∞

∑
k=0

qk+1,0tkA(t) = 0,

which, via integrating factor, has the solution

A(t) = μ exp

[∫ ∞

∑
k=0

qk+1,0tkdt

]
.

We then substitute (1.40) into the result directly above, evaluate the sum and
integrate, which eventually yields

A(t) = μ
(

2− γt
2

)−2δ (γ−2)/γ2

exp

(
2t(β γ + 2δ )

γ(2− γt)

)
,

with (−2δ (γ −2)/γ2) not equal to a nonnegative integer, so that μn 
= 0 is satisfied.

Case Ib. γ2 + 4ε = 0 and γ = 0
In this case, we also have ε = 0. This gives

q1,1 = α, qk,1 = 0 (k > 1), q1,0 = β , q2,0 = δ and qk,0 = 0 (k > 2)

and thus,

H(t) = αt, J(t) = t/α and A(t) = μ exp

(
β t +

1
2

δ t2
)
,
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with δ 
= 0, so that μn 
= 0 holds.

For Cases IIa and IIb that follow (γ2 + 4ε 
= 0), we first derive the general qk,1

and qk+1,0 terms. We have

qk,1 =
α(uk

1 − uk
2)√

γ2 + 4ε
and qk+1,0 =

λ uk
1 −σuk

2√
γ2 + 4ε

(1.41)

with

λ := δ + 2ε +(β + γ)u1 and σ := δ + 2ε +(β + γ)u2.

Case IIa. γ2 + 4ε 
= 0 and ε = 0
In this case, we consequently have γ 
= 0. Via Eq. (1.41), we observe that

H(t) = α
∫ t

0

dτ
1− γτ

=−α
γ

ln(1− γt), J(t) =
1
γ

(
1− exp

(
− γt

α

))
,

A(t) = μ(1− γt)−(β γ+γ2+δ )/γ2
exp

(
−δ t

γ

)
,

with δ 
= 0 so that μn 
= 0.

Case IIb. γ2 + 4ε 
= 0 and ε 
= 0
Here, from Eq. (1.41), one can achieve

H(t) = α
∫ t

0

dτ
1− γτ − ετ2 = α

ln((u2t − 1)/(u1t − 1))√
γ2 + 4ε

,

J(t) =
exp

(
t
α

√
γ2 + 4ε

)
− 1

u1 exp
(

t
α

√
γ2 + 4ε

)
− u2

, A(t) = μ
(1− u2t)h2

(1− u1t)h1
,

with

hi =
ui(β + γ)+ (δ + 2ε)

ui

√
γ2 + 4ε

, i = 1,2.

We next state the main result of this section and for simplicity, we redefine the
parameters involved in each of our H(t) and A(t) expressions in the same manner as
Sheffer. This result displays the general forms of each of the generating functions
for the orthogonal Type 0 sets.

Theorem 1.8. A polynomial set {Pn(x)}∞
n=0 is Type 0 and orthogonal if and only if

A(t)exH(t) is of one of the following forms:
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A(t)exH(t) = μ(1− bt)c exp

(
dt + atx
1− bt

)
, abcμ 
= 0, (1.42)

A(t)exH(t) = μ exp
(
t(b+ ax)+ ct2) , acμ 
= 0, (1.43)

A(t)exH(t) = μect(1− bt)d+ax, abcμ 
= 0, (1.44)

A(t)exH(t) = μ(1− t/c)d1+x/a(1− t/b)d2−x/a, abcμ 
= 0, b 
= c. (1.45)

Proof. This statement follows from the above analysis. �	
By judiciously choosing each of the parameters in Eqs. (1.42)–(1.45) we can
achieve all of the Sheffer Type 0 orthogonal polynomials previously discussed. For
emphasis, we write each of these parameter selections below and then display the
corresponding generating function as it appears in contemporary literature.

The Laguerre Polynomials In Eq. (1.42), we select the parameters as μ = 1, a =
−1, b = 1, c =−(α + 1), and d = 0 to obtain

∞

∑
n=0

L(α)
n (x)tn = (1− t)−(α+1)exp

(
xt

t − 1

)
.

The Hermite Polynomials With the assignments μ = 1, a = 2, b = 0, and c =−1
in Eq. (1.43), we have

∞

∑
n=0

Hn(x)tn

n!
= exp(2xt − t2).

The Charlier Polynomials If in Eq. (1.44) we choose μ = 1, a= 1, b= 1/a, c= 1,
and d = 0, then we achieve

∞

∑
n=0

Cn(x;a)tn

n!
= et

(
1− t

a

)x
.

The Meixner Polynomials In Eq. (1.45), we select μ = 1, a = 1, b = 1, c =
arbitrary constant, d1 = 0, and d2 =−β leading to

∞

∑
n=0

(β )n

n!
M(x;β ,c)tn =

(
1− t

c

)x
(1− t)−(x+β ).

The Meixner–Pollaczek Polynomials Taking μ = 1, a = −i, b = eiφ , c = e−iφ ,
and d1 = d2 =−λ in Eq. (1.45) leads to

∞

∑
n=0

P(λ )
n (x;φ)tn = (1− eiφ t)−λ+ix(1− e−iφ t)−λ−ix.
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The Krawtchouk Polynomials Lastly, selecting μ = 1, a= 1, b =−1, c= p/(1−
p), d1 = 0, and d2 = N in Eq. (1.45) yields

N

∑
n=0

C(N,n)Kn(x; p,N)tn =

(
1− 1− p

p
t

)x

(1+ t)N−x,

for x = 0,1,2, . . . ,N, where C(N,n) denotes the binomial coefficient.
Refer to [6] and the references therein for definitions and characterizations of

each of these A-Type 0 sets. For additional analyses regarding these orthogonal sets,
also consider [3–5, 8, 10].

1.4 An Overview of the Classification of Type

We now discuss the essential details of the three kinds of characterizations that
Sheffer developed in [9], which are entitled A-Type, B-Type and C-Type. The
definition of Type is dependent on which characterization of Type 0 that is to
be generalized. That is, each of the Sheffer Types generalizes a certain Type 0
characterizing structure.

1.4.1 The Sheffer A-Type Classification

We deem all of the characterizations up to this juncture as A-Type k and therefore
restate Definition 1.6 accordingly.

Definition 1.9. Let the set S := {Pn(x)}∞
n=0 correspond to the unique operator J.

Then, S is of A-Type k if the coefficients
{

Lj(x)
}∞

j=0, as defined in Eq. (1.12), are

such that deg(Lj(x)) ≤ k for all i and there exists at least one Li(x) ∈
{

Lj(x)
}∞

j=0

such that deg(Li(x)) = k. If
{

Lj(x)
}∞

j=0 is unbounded, then S is of A-Type ∞.

We also will make use of the following result.

Theorem 1.9. The set {Pn(x)}∞
n=0 is of A-Type 0 if and only if a sequence of

constants {sn} exist such that

P′
n(x) = s1Pn−1(x)+ s2Pn−2(x)+ · · ·+ snP0(x), n = 1,2,3, . . . , (1.46)

where the elements of the sequence {sn} are the same as those in Eq. (1.18).

Proof. We differentiate (1.19) with respect to x and see that

∞

∑
n=0

P′
n(x)t

n = H(t)A(t)exH(t) =
∞

∑
n=0

Pn(x)H(t)tn.
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Then, from comparing coefficients of tn in

∞

∑
n=0

P′
n(x)t

n =
∞

∑
n=0

Pn(x)[s1t + s2t2 + s3t3 + · · · ]tn,

we obtain our result. It is readily seen that this argument is both necessary and
sufficient. �	

1.4.2 The Sheffer B-Type Classification

To begin, we state that Theorem 1.9 can be extended in a natural way. Consider the
structure

T0(x)Pn−1(x)+T1(x)Pn−2(x)+ · · ·+Tn−1(x)P0(x), n = 1,2,3, . . . .

Then, by successively setting n = 1,2, . . ., we observe that given a set {Pn(x)}∞
n=0, a

unique sequence of polynomials {Tn(x)} exists such that

P′
n(x) = T0(x)Pn−1(x)+T1(x)Pn−2(x)+ · · ·+Tn−1(x)P0(x), n = 1,2, . . . (1.47)

with T0(x) 
= 0. However, deg(Tn(x)) ≤ n since, e.g., Eq. (1.47) readily reduces
to Eq. (1.46) if {Pn(x)}∞

n=0 is of A-Type 0. The following statement immediately
follows.

Theorem 1.10. For every set {Pn(x)}∞
n=0 there exist a unique sequence of polyno-

mials {Tn(x)}, with deg(Tn(x))≤ n, such that Eq. (1.47) holds.

The converse of this theorem does not hold, as we have the following result.

Theorem 1.11. Given a sequence of polynomials {Tn(x)}, with deg(Tn(x)) ≤ n,
there exist infinitely many sets {Pn(x)}∞

n=0 such that Eq. (1.47) is satisfied.

Proof. This result is immediate, since the constant term of Pn(x) in Eq. (1.47) can
be made arbitrary. �	

Based on the above results, we have the following definition.

Definition 1.10. A set {Pn(x)}∞
n=0 is of B-Type k if the maximum degree of the

polynomials {Tn(x)} in Eq. (1.47) is k. Otherwise, {Pn(x)}∞
n=0 is classified as B-

Type ∞.

We can now establish the following statement.

Theorem 1.12. A set {Pn(x)}∞
n=0 is of B-Type 0 if and only if it is of A-Type 0.



1.4 An Overview of the Classification of Type 23

Proof. (⇒) If {Pn(x)}∞
n=0 is of B-Type 0, then {Tn(x)} in Eq. (1.47) must be

a sequence of constants. Moreover, Eq. (1.47) is reduced to Eq. (1.46) and thus
{Pn(x)}∞

n=0 is an A-Type 0 set.
(⇐) If {Pn(x)}∞

n=0 is of A-Type 0, then Eq. (1.46) holds, which is Eq. (1.47) with
constant coefficients. Thus, {Pn(x)}∞

n=0 is of B-Type 0. �	
We also have the classification of B-Type k sets below.

Theorem 1.13. The characterization (1.47) is equivalent to the relation

H(x, t) = A(t)exp

[
t
∫ x

0
T (ξ , t)dξ

]
, (1.48)

with A(t) as in Eq. (1.20).

Proof. (⇒) First, we define

H := H(x, t) =
∞

∑
k=0

Pk(x)t
k, (1.49)

T := T (x, t) =
∞

∑
k=0

Tk(x)t
k. (1.50)

We now consider

tHT = t
∞

∑
k=0

Pk(x)t
k

∞

∑
k=0

Tk(x)t
k. (1.51)

We can find the coefficient of tn in the right-hand side of Eq. (1.51) by considering
the following structure, which is t multiplied by the general term in each of the sums
of Eq. (1.51):

tPk0tk0Tk1 tk1

and finding all nonnegative integer solutions to the equation 1+ k0 + k1 = n, i.e.,
the sum of the t-exponents. For the solution k0 = n − 1 and k1 = 0, we obtain
T0(x)Pn−1(x) and for the solution k0 = n− 2 and k1 = 1, we achieve T1(x)Pn−2(x).
Continuing in this fashion, we see that the coefficient of tn turns out to be

T0(x)Pn−1(x)+T1(x)Pn−2(x)+ · · ·+Tn−1(x)P0(x) = P′
n(x)

via Eq. (1.47). Thus, the right-hand side of Eq. (1.51) is ∑∞
n=0 P′

n(x)t
n = ∂H(x, t)/∂x

and we have constructed the following first-order differential equation, as Eq. (1.51)
becomes

∂
∂x

H − tTH = 0; H(0, t) =
∞

∑
n=0

Pn(0)tn = A(t), (1.52)
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with A(t) as in Eq. (1.20). Furthermore, we have shown that this relation is
equivalent to Eq. (1.47). The general solution to Eq. (1.52) can be determined via
the integrating factor exp [−∫ x

0 tT (ξ , t)dξ ] to be

H(x, t) = A(t)exp

[
t
∫ x

0
T (ξ , t)dξ

]
,

where A(t) is an arbitrary power series with a nonzero constant term. However,
in considering the initial condition of Eq. (1.52), we see that A(t) must be as in
Eq. (1.20). This argument is certainly both necessary and sufficient. �	

Next, we note that if we write T (x, t) in Eq. (1.50) as a power series in x, as
opposed to t, the coefficients of each of the xn-terms are power series in t. To
facilitate this, momentarily let Tn(x) = cn,nxn + cn,n−1xn−1 + · · ·+ cn,0, and then we
have

T (x, t) = (c0,0 + c1,0t + c2,0t2 + · · ·)+ (c1,1t + c2,1t2 + c3,1t3 + · · ·)x
+(c2,2t2 + c3,2t3 + c4,2t4 + · · ·)x2 + · · · .

Letting x = ξ above, integrating this result with respect to ξ from 0 to x and
multiplying by t, we see that

t
∫ x

0
T (ξ , t)dξ = xH1(t)+ x2H2(t)+ x3H3(t)+ · · · ,

where each Hi(t) is a power series in t that starts with the ti-term (or higher if the
coefficient of the ti-term is zero), i.e., Hi(t) = hi,it i + hi,i+1ti+1 + hi,i+2ti+2 + · · · .
However, H1(t) must begin with a linear term in t, since by Eq. (1.47) T0(x) 
= 0 and
h1,1 = T0(x) by construction. Thus, we can write (1.48) in the following way:

H(x, t) = A(t)exp
[
xH1(t)+ x2H2(t)+ x3H3(t)+ · · ·] , h1,1 
= 0. (1.53)

Now, for {Pn(x)}∞
n=0 to be of B-Type k, it is necessary and sufficient that T (x, t)

is a polynomial in x of degree k. This restriction is equivalent to terminating the
sum

[
xH1(t)+ x2H2(t)+ x3H3(t)+ · · ·] in Eq. (1.53) at k + 1 via the presence of

the integral in Eq. (1.48). Thus, we obtain (1.54) in Theorem 1.14 below, which is
the culmination of the above analysis.

Theorem 1.14. A set is of B-Type k if and only if

H(x, t) = A(t)exp
[
xH1(t)+ · · ·+ xk+1Hk+1(t)

]
,

with Hi(t) = hi,it i + hi,i+1ti+1 + · · · , h1,1 
= 0, i = 1,2, . . . ,k+ 1. (1.54)
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1.4.3 The Sheffer C-Type Classification

The last classification that Sheffer developed is entitled C-Type. As was done in the
previous section, we establish all of the theorems necessary for understanding this
classification, beginning with the following.

Theorem 1.15. For each set {Pn(x)}∞
n=0, there exist a unique sequence of polyno-

mials {Un(x)}∞
n=0, with deg(Un(x))≤ n, such that

nPn(x) =U1(x)Pn−1(x)+U2(x)Pn−2(x)+ · · ·+Un(x)P0(x), n = 1,2, . . . . (1.55)

Proof. Analogous to establishing (1.47) in Theorem 1.10, we set n = 1,2, . . .
in Eq. (1.55) and then successively and uniquely determine the set {Un(x)}∞

n=0.
Through this process, it becomes clear that no polynomial Un(x) can exceed the
degree of its subscript. The result therefore follows. �	

This leads us to the following definition.

Definition 1.11. A set {Pn(x)}∞
n=0 is classified as C-Type k if the maximum degree

of the polynomials {Un(x)} in Eq. (1.55) is k+ 1. Else, {Pn(x)}∞
n=0 is classified as

C-Type ∞.

We note that we use k + 1 in the above definition, as opposed to k as in our
previous Type definitions, since otherwise, Eq. (1.55) would not be satisfied. As an
example, consider the case when each Ui(x) is constant.

Now, we define

U :=U(x, t) =
∞

∑
n=0

Un+1(x)t
n.

Then, calling upon Eq. (1.55) and using the same methodology that was used
to construct (1.52) in the previous section, we derive the following first-order
differential equation:

∂
∂ t

H −UH = 0; H(x,0) = P0(x) = a0

with H := H(x, t) as in Eq. (1.49). This can easily be solved using the integrating
factor exp

[−∫ t
0 U(x,τ)dτ

]
, yielding the solution

H(x, t) = a0 exp

[∫ t

0
U(x,τ)dτ

]
, (1.56)

after incorporating our initial condition. Then, from comparing (1.56) with
Eq. (1.48), we have

a0 exp

[∫ t

0
U(x,τ)dτ

]
= A(t)exp

[
t
∫ x

0
T (ξ , t)dξ

]
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and taking the natural logarithm of both sides of this relation leads to

lna0 +
∫ t

0
U(x,τ)dτ = lnA(t)+ t

∫ x

0
T (ξ , t)dξ . (1.57)

Next, differentiate (1.57) with respect to t in order to obtain

U(x, t) =
A′(t)
A(t)

+

∫ x

0

∂
∂ t

(tT (ξ , t))dξ (1.58)

and also differentiate (1.57) with respect to x, which leads to

tT (x, t) =
∫ t

0

∂
∂x

U(x,τ)dτ . (1.59)

We now substitute (1.59) into Eq. (1.58) and then put this new expression for U(x, t)
into Eq. (1.56), which leads to

H(x, t) = A(t)exp

[∫ t

0

∫ x

0

∂
∂ξ

U(ξ ,τ)ξ dτ
]
. (1.60)

We see that the exponent in Eq. (1.60) is a polynomial in x of degree k+ 1 if and
only if the polynomial of maximal degree in {Un(x)}∞

n=1 is of degree k+ 1, i.e., if
and only if the set {Pn(x)}∞

n=0 for which the sequence {Un(x)}∞
n=1 corresponds to

is of C-Type k. Under this assumption, the exponent in Eq. (1.60) has the following
structure:

Ũ1(x)t +Ũ2(x)t
2 + · · ·+Ũk+1(x)t

k+1,

which is the same form as the exponent in Eq. (1.48) when it corresponds to a B-
Type 0 set. Thus, Eq. (1.60) can therefore be reduced to Eq. (1.54) using the same
type of manipulation that was used in the previous section. Hence, we have proven
the following theorem.

Theorem 1.16. A set {Pn(x)}∞
n=0 is of C-Type k if and only if it is of B-Type k.

1.4.4 A Summary of the Rainville σ -Type Classification

To complete our summary of Type, we conclude with a natural extension of
Sheffer’s classification, entitled σ -Type, which was constructed by E.D. Rainville
and originally appeared in [8]. Now, we have seen that various results were
ascertained from the generating function (1.19), which we now know characterizes
A-Type 0 sets. Moreover, we know that for y = exp [xH(t)] with D := d/dx we have

Dy = H(t)y.
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We intend to then modify the operator D so that it behaves in a similar fashion and
also obtain a generating relation for the most basic type of sets classified by this
modified operator. That is, if we replace D above by another differential operator,
say σ , and the exponential function exp(z) by another function, e.g., F(z), then we
want to find σ such that

σF(z) = F(z).

From there, we can construct an analogue of Eq. (1.19) in Theorem 1.5. This leads
to the following definition of our differential operator σ (using the same notation as
in [8]).

Definition 1.12. We define the differential operator σ as follows:

σ := D
q

∏
i=1

(θ + bi − 1), D :=
d
dx

and θ := xD,

with bi 
= 0 and bi not equal to a negative integer.

In fact, this operator is a degree-lowering operator. To facilitate its application
on polynomials and its degree-lowering nature, consider acting on a monomial, like
x2, with q = 1 and b1 = 1. The function of the q and bi-terms will become more
transparent in Theorem 1.17 at the end of this section.

We now define σ -Type.

Definition 1.13. Let {Pn(x)}∞
n=0 be a set such that

Jσ [Pn(x)] =
∞

∑
k=0

Tk(x)σ k+1Pn(x) = Pn−1(x),

with deg(Tj(x)) ≤ k. If the polynomial of maximal degree in the set of coefficients{
Tj(x)

}∞
j=0 is of degree k, then we classify {Pn(x)}∞

n=0 as σ -Type k. If the

coefficients
{

Tj(x)
}∞

j=0 are unbounded, then {Pn(x)}∞
n=0 is σ -Type ∞.

Based on this definition, we see that polynomials of σ -Type 0 satisfy the
following form:

Jσ [Pn(x)] =
∞

∑
k=0

ckσ k+1Pn(x) = Pn−1(x),

where each ck is a constant and c0 
= 0. Since each of the ck’s is a constant, analogous
to our A-Type 0 analysis, there exists a generating function for Jσ , which we call
Jσ (t), and a corresponding inverse Hσ (t) such that Jσ (Hσ (t)) = Hσ (Jσ (t)) = t:

Jσ (t) =
∞

∑
n=0

cntn+1, c0 
= 0 and Hσ (t) =
∞

∑
n=0

hntn+1, h0 
= 0.

This leads us to the main characterization theorem for σ -Type 0 sets.
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Theorem 1.17. A set is of σ -Type 0, with σ as defined in Definition 1.12, if and
only if {Pn(x)}∞

n=0 satisfies the generating function

A(t)0Fq(−;b1,b2, · · · ,bq;xH(t)) =
∞

∑
n=0

Pn(x)t
n

with H(t) as defined above and A(t) as in Eq. (1.20).

In Theorem 1.17, we wrote the generating function in the generalized hypergeo-
metric form, which is defined as

rFs

(
a1, . . . ,ar

b1, . . . ,bs
x

)
=

∞

∑
k=0

(a1, . . . ,ar)k

(b1, . . . ,bs)k

xk

k!
, (1.61)

where the Pochhammer symbol (a)k is

(a)k := a(a+ 1)(a+ 2)· · · (a+ k− 1), (a)0 := 1, (1.62)

and
(a1, . . . ,a j)k := (a1)k . . . (a j)k.

We now see that the selection of q is dependent on the number of denominator
parameters (the bi’s) in the generating function of Theorem 1.17. For a proof of
Theorem 1.17, the interested reader can refer to [8].

1.5 A Brief Discussion of Meixner’s Analysis

In 1934, J. Meixner published [7] (written in German) in which he considered the
generating relation (1.19) (with the same assumptions on the A(t) and H(t) as in
Sheffer’s work [9]) to be the definition of a certain class of polynomials. From there,
he determined all sets that satisfy this relation that were also orthogonal and reached
the same conclusions as Sheffer did in [9]. In other words, Meixner determined all
orthogonal sets {Pn(x)}∞

n=0 that satisfy

f (t)exu(t) =
∞

∑
n=0

Pn(x)
n!

tn; f (0) = 1, u(0) = 0,
d
dt

u(0) = 1, (1.63)

which we have written using Meixner’s notation, which we essentially adhere to
throughout this section.

In a similar manner as Sheffer, Meixner defined a general degree-lowering, linear,
differential operator of infinite order, which we call J as opposed to his “t” to avoid
confusion with t-parameters, which satisfies a certain commutation relation with the
differential operator D. Moreover, J(t) is a formal power series without a constant
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term and with a unitary linear coefficient. The formal power series inverse of J(t)
was defined to be u(t), i.e., u(J(t)) = J(u(t)) = t.

Throughout his work, Meixner considered {Pn(x)}∞
n=0 to be a set of monic

polynomials. With this convention, he utilized the following monic three-term
recurrence relation:

Pn+1(x) = (x+ ln+1)Pn(x)+ kn+1Pn−1(x), n = 0,1,2, . . . (1.64)

with ln+1 ∈ R and kn+1 ∈ R
− and demonstrated that

J(D)Pn(x) = nPn−1(x). (1.65)

Now, we act on Eq. (1.64) with J(D) as in Eq. (1.65) and obtain

(n+ 1)Pn(x) = (x+ ln+1)nPn−1(x)+ J′(D)Pn(x)+ kn+1(n− 1)Pn−2(x), (1.66)

where J′(D) is of course the derivative of the formal power series J(D). Then, we
replace n with n− 1 in Eq. (1.64) and multiply both sides by n to obtain

nPn(x) = (x+ ln)nPn−1(x)+ knnPn−2(x). (1.67)

Next, we subtract (1.67) from Eq. (1.66) which yields

(
1− J′(D)

)
Pn(x) = (ln+1 − ln)nPn−1(x)+

(
kn+1

n
− kn

n− 1

)
n(n− 1)Pn−2(x).

We then replace n with n+ 1 in the recursion coefficients above leading to

(
1− J′(D)

)
Pn(x) = (ln+2 − ln+1)nPn−1(x)+

(
kn+2

n+ 1
− kn+1

n

)
n(n− 1)Pn−2(x).

We assign

λ := ln+1 − ln, n = 1,2, . . . , (1.68)

κ :=
kn+1

n
− kn

n− 1
, n = 2,3, . . . (1.69)

giving

(
1− J′(D)

)
Pn(x) = λ nPn−1(x)+κn(n− 1)Pn−2(x), n = 0,1,2, . . .

and via Eq. (1.65) we see that this recurrence can be written as

(
1− J′(D)

)
Pn(x) = λ J(D)Pn(x)+κJ2(D)Pn(x), n = 0,1,2, . . . (1.70)
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From rewriting Eqs. (1.68) and (1.69) as

ln+1 = ln +λ and kn+1 = n

(
kn

n− 1
+κ

)

and iterating, we see that ln+1 = l1 + nλ and kn+1 = k2 + (n − 1)κ . We then
substitute these recursion coefficients into Eq. (1.64) to obtain the following three-
term recurrence relation:

Pn+1(x) = (x+ l1 + nλ )Pn(x)+ n(k2 +(n− 1)κ)Pn−1(x), n = 0,1,2, . . . (1.71)

with k2 < 0 and κ ≤ 0 from the original restrictions imposed upon Eq. (1.64).
Now, from Eq. (1.70), it follows that

J′(u(t)) = 1−λ t−κt2.

Differentiating both sides of the relation J(u(t)) = t tells us that J′(u(t)) = 1/u′(t).
Thus, our relation directly above becomes

J′(u(t)) = 1−λ t−κt2 =
1

u′(t)
. (1.72)

By setting x = 0, we note that the generating function (1.63) turns into

f (t) =
∞

∑
n=0

Pn(0)tn

n!
.

Thus, multiplying both sides of Eq. (1.71) by tn/n!, setting x = 0 and summing for
n = 0,1,2, . . . lead to the differential equation

f ′(t)
f (t)

=
k2t

1−λ t−κt2 .

Factoring 1−λ t−κt2 as (1−αt)(1−β t) gives

f ′(t)
f (t)

=
k2t

(1−αt)(1−β t)
, α,β ∈ C. (1.73)

We can now exhaust every possible combination of α and β (and incorporate λ
and κ as well), substitute each of them into Eqs. (1.72) and (1.73), and solve the
resulting differential equations. In each case, the solution to Eq. (1.72) will yield
an expression for u(t) and the solution to Eq. (1.73) will yield an expression for
f (t). In substituting these into Eq. (1.63), we achieve a generating function for each
orthogonal set.
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Below, we write the results for each of these aforementioned cases. In each case,
part (i) denotes the solutions to Eqs. (1.72) and (1.73), which respectively yield our
expressions for u(t) and f (t). In part (ii), we write each of the resulting generating
functions in their rescaled form, so they appear as they do in the contemporary
literature.

Case I. The Hermite Polynomials: α = β = 0 (λ = κ = 0)

(i) u(t) = t and f (t) = exp
(
k2t2/2

)

(ii) exp
(
2xt − t2)= ∞

∑
n=0

H(x)
n!

tn

Case II. The Laguerre Polynomials: α = β 
= 0

(i) u(t) =
t

1−αt
and f (t) = (1−αt)k2/α2

exp

(
t

1−αt
k2

α

)

(ii) (1− t)−(α+1)exp

(
xt

t − 1

)
=

∞

∑
n=0

L(α)
n (x)tn

Case III. The Charlier Polynomials: α 
= 0 and β = 0 (κ = 0)

(i) u(t) =− 1
α

ln(1−αt) and f (t) = (1−αt)−k2/α2
e−k2t/α

(ii) et
(

1− t
α

)x
=

∞

∑
n=0

Cn(x;α)

n!
tn

Case IV. Meixner determined two orthogonal sets that stem from this case. The
general u(t) and f (t) are as follows:

u(t) =
1

α −β
ln

(
1−β t
1−αt

)
and f (t) =

(
(1−β t)1/β

(1−αt)1/α

)k2/(α−β )

.

(a) The Meixner Polynomials: α 
= β and α,β ∈ R (κ 
= 0)

(
1− t

c

)x
(1− t)−(x+β ) =

∞

∑
n=0

(β )n

n!
M(x;β ,c)tn.

(b) The Meixner–Pollaczek Polynomials: α 
= β , α and β complex conjugates
(κ 
= 0)
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(1− eiφ t)−λ+ix(1− e−iφ t)−λ−ix =
∞

∑
n=0

P(λ )
n (x;φ)tn.

Remark 1.1. The Krawtchouk polynomials are the third orthogonal set that comes
from Case IV above. These polynomials were not included in either Meixner’s or
Sheffer’s work.

Example 1.5. As a simple example of the scaling process, we see that in Case I
above, u(t) = t and f (t) = exp

(
k2t2/2

)
, so that

f (t)exu(t) = exp

(
xt +

1
2

k2t2
)
.

Thus, we can obtain the generating relation in Case I by simply choosing k2 =−1/2
and rescaling t via t → 2t.

1.5.1 Al-Salam’s Extension of Meixner’s Characterization

To briefly supplement our discussion of Meixner’s analysis, we state that W. A.
Al-Salam extended the results of Meixner, and therefore Sheffer, in [1]. Namely,
he showed that the left-hand side of Eq. (1.63) can be replaced with exp(Q(x, t)),
where Q(x, t) is a polynomial in x with coefficients that are functions of t, as seen
below:

exp(Q(x, t)) =
∞

∑
n=0

Pn(x)
tn

n!
,

Q(x, t) =
k

∑
j=0

x ja( j)(t), k ≥ 1, a( j)(t) =
∞

∑
r=0

a( j)
r tr, j = 0,1,2, . . . ,k

and that the resulting orthogonal polynomials {Pn(x)}∞
n=0 will be the same as those

achieved by Meixner and Sheffer. This showed that the conditions on the generating
function (1.63) can be weakened without yielding new orthogonal sets.
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