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Preface

In 1939, I.M. Sheffer published seminal results regarding the characterizations
of polynomials via general degree-lowering operators and showed that every
polynomial sequence can be classified as belonging to exactly one Type. A large
portion of his work was dedicated to developing a wealth of aesthetic results
regarding the most basic type set, entitled B-Type 0 (or equivalently A-Type 0),
which included the development of several interesting characterizing theorems. In
particular, one of Sheffer’s most important results was his classification of which
B-Type 0 sets were also orthogonal, which are now known to be the very well-
studied and applicable Laguerre, Hermite, Charlier, Meixner, Meixner–Pollaczek,
and Krawtchouk polynomials, which are often called the Sheffer Sequences. As it
turned out, Sheffer proved that every B-Type 0 set {Pn(x)}∞

n=0 can be characterized
by the generating function:

A(t)exH(t) =
∞

∑
n=0

Pn(x)t
n,

where A(t) and H(t) are formal power series in t, with certain restrictions.
Furthermore, Sheffer also briefly described how this generating function can also
be extended to the case of arbitrary B-Type k as follows:

A(t)exp
[
xH1(t)+ · · ·+ xk+1Hk+1(t)

]
=

∞

∑
n=0

Pn(x)t
n,

with Hi(t) = hi,it
i + hi,i+1ti+1 + · · · , h1,1 �= 0, i = 1,2, . . . ,k+ 1.

Thus far, a very large amount of research has been completed regarding the theory
and applications of the B-Type 0 sets. Therefore, it is natural to attempt to determine
whether or not orthogonal sets can be extracted from the higher-order classes,
i.e., k ≥ 1 in the generating relation directly above. In fact, no results have been
published to date that specifically analyze the higher-order Sheffer classes. With
this in mind, we have constructed the novel results of this monograph (Chap. 3),
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viii Preface

wherein we present a preliminary analysis of a special case of the B-Type 1 class. We
conduct this analysis for the following reasons. One, most importantly, our method
functions as a template, which can be applied to other characterization problems
as well. In order to effectively apply this method, computer algebra was found to
be essential and Mathematica R© was determined to be the most efficient platform
for performing each of our manipulations. Therefore, our second motivation is the
fact that the novel analysis of Chap. 3 lends itself as a paradigm regarding how
computer algebra packages, like Mathematica R©, can play an important role in
developing rigorous mathematics. Lastly, we intend for this work to eventually lead
to a complete characterization of the general B-Type k orthogonal sets and foster
future research on other types of similar characterization problems as well.

We certainly wish to emphasize that Mathematica R© was utilized only for
managing many of the algebraic manipulations involved in establishing the original
results within. The relationships achieved with the aid of Mathematica R© were used
to rigorously construct the novel theorems of this work, which were proven via
algebraic techniques and rudimentary linear algebra, without the usage of computer
algebra.

Now, it is well known that symbolic computations are becoming utilized more
frequently in mathematical research and are also becoming increasingly more
accepted. Several journals include various results that are based on computer algebra
and some may even include, essentially, diminutive fragments of code, pseudo-code,
or computer algebra outputs. In Chap. 3 of this work, a wealth of the Mathematica R©

inputs and their respective outputs are displayed in a reader-friendly format and
written in a distinctive font class that is similar to the Mathematica R© notebook.
This amount of displayed code is certainly not typical in any of the current peer-
reviewed mathematical science journals and is a luxury we are afforded in this
monograph. Such uniquely detailed code displays are intended to increase the
reader’s understanding of our usage of Mathematica R©, assist in verifications, and
facilitate further experimentation.

It is also worth mentioning here that upon initially implementing the method of
Chap. 3, it was also evident that the preliminary results were void of the level of
elegance that mathematicians strive to achieve. Therefore, an approach was sought
that would simultaneously give insights into existence/nonexistence of the B-Type
1 orthogonal polynomial sequences and also yield a tractable problem that would
ultimately admit elegant results. These goals were accomplished using simplifying
assumptions that reduced the problem to a manageable format that was as similar in
structure as possible to the B-Type 0 class that Sheffer analyzed.

To enhance the novel results of this monograph, in Chap. 1 we additionally
include an overview of the research that motivated their establishment. We begin by
addressing Sheffer’s derivation of the B-Type 0 generating function defined above,
as well as the characterizations of the B-Type 0 orthogonal sets. Since, in 1934, J.
Meixner initially studied this generating function and determined which sets were
also orthogonal using a different approach than Sheffer, we also cover the central
details of Meixner’s method and results. We then briefly allude to W.A. Al–Salams’s
extension of Meixner’s analysis.
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Additionally, we discuss that there were actually three classifications that Sheffer
developed: A-Type, B-Type (our focus in Chap. 3), and C-Type. The discrepancies
between these types will also be addressed. We then present a summary of the σ -
Type classification developed by E.D. Rainville, which is an extension of the Sheffer
A-Type classification. Altogether, the Sheffer Sequences, the notion of Type, and the
relevant background material are elucidated in order to facilitate the transition into
the latter material.

To enhance this monograph even further, in Chap. 2 we discuss several of the
many applications that classical orthogonal polynomials satisfy, which include first-
and second-order differential equations quantum mechanics, difference equations
and numerical integration. We first develop each of our applications in a general
context and then show the specific roles played particular A-Type 0 orthogonal sets.
Through covering each of these applications, we also develop additional funda-
mental terminologies, definitions, lemmas, theorems, etc. that are very important
in the field of orthogonal polynomials and special functions in a broad context. In
essence, Chaps. 1 and 2 are intended to be used as (1) a concise, but informative,
reference for developing new results related to the A-Type 0 orthogonal sets and
classical orthogonal polynomials in general and (2) provide material for advanced
undergraduate courses, or graduate courses, in pure and applied analysis.

For the benefit of the reader, each chapter is self-contained. In addition, with
respect to space constraints, this entire monograph has been written with as much
detail, rigor, and supplementation via informative concrete examples as feasible.

This work represents the culmination of approximately three years of research
on the Sheffer Sequences and related structures, which was conducted at Penn State
Erie, The Behrend College.

Lastly, the author would like to thank Blair R. Tuttle for assisting in the
proofreading of the overview of the Schrödinger equation in Chapter 2 and Jennifer
K. Ulrich for assisting with the additional proofreading of the Brief.

Erie, PA, USA Daniel Joseph Galiffa
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Chapter 1
The Sheffer A-Type 0 Orthogonal Polynomial
Sequences and Related Results

In this chapter, we present a rigorous development of I. M. Sheffer’s characterization
of the A-Type 0 orthogonal polynomial sequences. We first develop the results
that led to the main theorem that characterizes the general A-Type 0 polynomial
sequences via a linear generating function. From there, we develop the additional
theory that Sheffer utilized in order to determine which A-Type 0 polynomial
sequences are also orthogonal. We then address Sheffer’s additional characteriza-
tions of B-Type and C-Type, as well as E.D. Rainville’s σ -Type classification. Lastly,
we cover J. Meixner’s approach to the same characterization problem studied by
Sheffer and then discuss an extension of Meixner’s analysis by W.A. Al-Salam.
Portions of the analysis addressed throughout this chapter are supplemented with
informative concrete examples.

1.1 Preliminaries

Throughout this chapter, we make use of each of the following definitions,
terminologies and notations.

Definition 1.1. We always assume that a set of polynomials {Pn(x)}∞
n=0 is such that

each Pn(x) has degree exactly n, which we write as deg(Pn(x)) = n.

Definition 1.2. A set of polynomials {Qn(x)}∞
n=0 is monic if Qn(x)−xn is of degree

at most n− 1 or equivalently if the leading coefficient of each Qn(x) is unitary.

Definition 1.3. We shall define a generating function for a polynomial sequence
{Pn(x)}∞

n=0 as follows:

∑
Λ

ζnPn(x)t
n = F(x, t),

with Λ ⊆ {0,1,2, . . .} and {ζn}∞
n=0 a sequence in n that is independent of x and t.

Moreover, we say that the function F(x, t) generates the set {Pn(x)}∞
n=0.

D.J. Galiffa, On the Higher-Order Sheffer Orthogonal Polynomial Sequences,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-5969-9 1,
© Daniel J. Galiffa 2013
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2 1 The Sheffer A-Type 0 Orthogonal Polynomial Sequences and Related Results

It is important to mention that a generating function need not converge, as in
general, several relationships can be derived when F(x, t) is divergent.

Definition 1.4. In this chapter, the term orthogonal polynomials refers to a set of
polynomials {Pn(x)}∞

n=0 that satisfies one of the two weighted inner products below:

Continuous : 〈Pm(x),Pn(x)〉=
∫

Ω1

Pm(x)Pn(x)w(x)dx = αnδm,n, (1.1)

Discrete : 〈Pm(x),Pn(x)〉= ∑
Ω2

Pm(x)Pn(x)w(x) = βnδm,n, (1.2)

where Ω1 ⊆ R, Ω2 ⊆W, δm,n denotes the Kronecker delta and w(x) > 0 is entitled
the weight function.

For example, the Laguerre, Hermite, and Meixner–Pollaczek polynomials satisfy
a continuous orthogonality relation of the form (1.1). On the other hand, the
Charlier, Meixner, and Krawtchouk polynomials satisfy a discrete orthogonality
relation of the form (1.2) (cf. [6]).

Now, it is well-known that a necessary and sufficient condition for a set of
polynomials {Pn(x)}∞

n=0 to be orthogonal is that it satisfies a three-term recurrence
relation (see [8]), which can be written in different (equivalent) forms. In particular,
we utilize the following two forms in this chapter and adhere to the nomenclature
used in [2].

Definition 1.5 (The Three-Term Recurrence Relations). It is a necessary and
sufficient condition that an orthogonal polynomial sequence {Pn(x)}∞

n=0 satisfies
an unrestricted three-term recurrence relation of the form

Pn+1(x) = (Anx+Bn)Pn(x)−CnPn−1(x), AnAn−1Cn > 0

where P−1(x) = 0 and P0(x) = 1. (1.3)

If Qn(x) represents the monic form of Pn(x), then it is a necessary and sufficient
condition that {Qn(x)}∞

n=0 satisfies the following monic three-term recurrence
relation:

Qn+1(x) = (x+ bn)Qn(x)− cnQn−1(x), cn > 0

where Q−1(x) = 0 and Q0(x) = 1. (1.4)

We entitle the conditions AnAn−1Cn > 0 and cn > 0 above positivity conditions.

Lastly, we mention that all of the power series in this chapter are formal power
series, i.e., they may or may not converge. In [9], Sheffer used the symbol ‘∼=’
to denote formal series. For simplicity, we will use the equal sign throughout our
present work and it will be tacitly assumed that each power series is nonetheless
formal.
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1.2 Sheffer’s Analysis of the Type 0 Polynomial Sequences

In this section, we discuss each of the theorems of I.M. Sheffer’s work [9] that were
necessary in characterizing all of the Type 0 orthogonal sets. With respect to space
constraints, we write each proof, and some examples as well, with as much detail
as possible. To begin, we consider the very well-studied Appell polynomial sets
{Pn(x)}∞

n=0, which are defined as

A(t)ext =
∞

∑
n=0

Pn(x)t
n, A(t) =

∞

∑
n=0

antn, a0 = 1. (1.5)

An example of an Appell set is {xn/n!}∞
n=0, which is clear since

ext =
∞

∑
n=0

xn

n!
tn.

Now, we differentiate (1.5) with respect to x. The left-hand side becomes

d
dx

[
A(t)ext]= tA(t)ext =

∞

∑
n=0

Pn(x)t
n+1 =

∞

∑
n=1

Pn−1(x)t
n

and the right-hand side becomes

∞

∑
n=1

P′
n(x)t

n.

Therefore, after comparing coefficients of tn in the results above, we achieve the
equivalent characterization of Appell sets

P′
n(x) = Pn−1(x), n = 0,1,2, . . . .

Next, we consider the set of Newton polynomials {Nn(x)}∞
n=0, which is not an

Appell set:

N0(x) := 1, Nn(x) :=
x(x− 1) · · ·(x− n+ 1)

n!
, n = 1,2, . . . .

For the difference operator defined by Δ f (x) := f (x+ 1)− f (x), it can be shown
that

ΔNn(x) = Nn(x+ 1)−Nn(x) = Nn−1(x)

and

(1+ t)x = ex ln(1+t) =
∞

∑
n=0

Nn(x)t
n.
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We observe that the operator Δ functions as d/dx does on the Appell polynomials
and that the generating function above is in a more general form than Eq. (1.5), i.e.,
the t in the exponent of Eq. (1.5) is replaced by H(t)= ln(t+1). Due to this analysis,
Sheffer was motivated to define a class of difference polynomial sets that satisfy

J [Pn (x)] = Pn−1 (x) , n = 0,1,2, . . .

with J a general degree-lowering operator.
Thus, we now continue with a result regarding such a general degree-lowering

operator J, which is an essential structure in all of the Type 0 analysis that follows.

Lemma 1.1. Assume that J is a linear operator that acts on the set of monomials
{xn}∞

n=0 such that deg(J[xn])≤ n. Then, J has the following structure:

J[y(x)] =
∞

∑
n=0

Ln(x)
dn

dxn y(x), (1.6)

which is valid for all polynomials y(x), with deg(Ln(x))≤ n.

Proof. We first note that since J is assumed to be a linear operator that acts on the
set of monomials {xn}∞

n=0, it can act on any polynomial. Therefore, if we show that
Eq. (1.6) holds for y(x) = xn, we have proven the theorem. Using the fact that

dk

dxk xn = n(n− 1)(n− 2) · · ·(n− k+ 1)xn−k

we can then recursively define Ln(x) by the following:

J[xn] =
n

∑
k=0

Lk(x)[n(n− 1)(n− 2) · · ·(n− k+ 1)xn−k], n = 0,1,2, . . . . (1.7)

Since for each n = 0,1,2, . . . we assumed that deg(J[xn])≤ n, we must require that
Lk(x)[n(n− 1)(n− 2) · · ·(n− k+ 1)xn−k] be of degree at most n for k = 0,1, . . . ,n.
This will occur if and only if deg(Lk(x)) ≤ k, since for any polynomials Pm(x) and
Qn(x), deg(Pm(x)Qn(x)) = deg(Pm(x))+ deg(Qn(x)). 
�

In Lemma 1.1, we determined the structure that J must adhere to in order
for deg(J[xn]) ≤ n. Next, we determine the form that J must have in order for
deg(J[xn]) = n− 1. As we shall see, this will amount to restrictions on Ln(x) in
Eq. (1.6). Also, in order to naturally generalize our degree-lowering operator J, we
additionally require that J [c] = 0 for all constants c, analogous to d

dx [c] = 0.

Lemma 1.2. Necessary and sufficient conditions for J as defined in Eq. (1.6) to
exist such that deg(J[xn]) = n− 1 are as follows:

L0(x) = 0, Ln(x) = ln,0 + ln,1x+ · · ·+ ln,n−1xn−1, n = 1,2, . . . (1.8)



1.2 Sheffer’s Analysis of the Type 0 Polynomial Sequences 5

and

λn := nl1,0 + n(n− 1)l2,1+ · · ·+ n!ln,n−1 �= 0, n = 1,2, . . . . (1.9)

Proof. (⇒) We initially assume that J[1] = 0 and deg(J[xn]) = n−1 for n = 1,2, . . .
and that Ln(x) takes on the form

Ln(x) = ln,0 + ln,1x+ · · ·+ ln,nxn,

from which we show that Eq. (1.8) and Eq. (1.9) necessarily follow. We begin by
finding the coefficients of xn and xn−1 in Eq. (1.7). Namely, we analyze the summand
in Eq. (1.7):

Lk(x)[n(n− 1)(n− 2) · · ·(n− k+ 1)xn−k] (1.10)

for k = 0,1,2, . . . ,n and determine the leading coefficient in each case and subse-
quently add the results, thus obtaining the coefficient of xn, which will be valid for
n = 0,1,2, . . .. We follow the same procedure for achieving the coefficient of xn−1.

For k = 0, we observe that Eq. (1.10) becomes L0(x)xn = l0,0xn, which clearly
has a leading coefficient of l0,0. For k = 1, we see that Eq. (1.10) turns out to be
L1(x)nxn−1 = (l1,0 + l1,1x)nxn−1 and therefore, the leading coefficient is nl1,1. With
k = 2, Eq. (1.10) becomes L2(x)n(n− 1)xn−2 = (l2,0 + l2,1x+ l2,2x2)n(n− 1)xn−2,
which yields n(n− 1)l2,2 as the leading coefficient. Continuing in this fashion, we
realize that for k = n the leading coefficient of Eq. (1.10) is n!ln,n. So, the coefficient
of xn is

l0,0 + nl1,1+ n(n− 1)l2,2+ · · ·+ n!ln,n, n = 0,1,2, . . . . (1.11)

We next successively compare (1.11) against J [xn] for n = 0,1,2, . . .. For n =
0, Eq. (1.11) becomes l0,0 and it must be that l0,0 = 0, since J[1] = 0, and thus
L0(x) = 0. With n = 1, Eq. (1.11) turns out to be l1,1, which must be equal to zero,
as J[x] = const. Continuing in this manner, it follows that l j, j = 0 for j = 0,1,2, . . .,
thus establishing (1.8).

Then, using the same logic that was used to determine the coefficient of xn, we
achieve the coefficient of xn−1 in Eq. (1.10), which we call λn, to be

λn := nl1,0 + n(n− 1)l2,1+ · · ·+ n!ln,n−1, n = 0,1,2, . . . .

Since we have already shown that the coefficient of xn is zero, in order to have
deg(J[xn]) = n− 1 we must also require that λn �= 0, thus proving the necessity of
the statement.
(⇐) From substituting Eq. (1.8) with the restriction (1.9) into Eq. (1.7), the suffi-
ciency of the statement is immediate.


�



6 1 The Sheffer A-Type 0 Orthogonal Polynomial Sequences and Related Results

Due to Lemma 1.2, we can now modify the structure of Eq. (1.6), since our
primary concern is when deg(J[xn]) = n− 1. We have

J[y(x)] =
∞

∑
n=1

[ln,0 + ln,1x+ · · ·+ ln,n−1xn−1]
dn

dxn y(x), λn �= 0, n = 1,2, . . . . (1.12)

The summation above starts at 1 via L0(x) = 0.
Next, given a set of polynomials S = {Pn(x)}∞

n=0, we want to determine how
many operators J exist, such that J transforms each polynomial Pk(x) ∈ S to the
polynomial immediately preceding it in the sequence, i.e., to Pk−1(x) ∈ S. As it
turns out, there is exactly one such operator.

Theorem 1.1. For a given polynomial set S = {Pn(x)}∞
n=0, there exists a unique

operator J such that

J[Pn(x)] = Pn−1(x), n = 1,2, . . . (1.13)

with J[P0(x)] := 0.

Proof. To show the existence and uniqueness of J, we substitute y(x) = Pn(x) ∈ S

into Eq. (1.12), which yields

J[Pn(x)] =
n

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk Pn(x).

Moreover, from Eq. (1.13), we require

n

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk Pn(x) = Pn−1(x). (1.14)

Therefore, upon successively comparing the coefficients of Eq. (1.14) for n =
1,2, . . . we see that the sequence

{
li, j
}

is uniquely determined, thus establishing
the uniqueness of J given S. 
�
We say that the set {Pn(x)}∞

n=0 corresponds to the operator J if Eq. (1.13) is satisfied.

Example 1.1. To concretely demonstrate how the sequence
{

li, j
}

is uniquely
constructed, we consider J as in Eq. (1.12) acting on the Appell set

S= {xn/n!}∞
n=0 .

First, for n = 0, we see that J[1] = 0 gives us no information. For n = 1, we require
J[x] = 1. Therefore,

J[x] =
1

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk [x] = l1,0 ·1,
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which implies that l1,0 = 1. Then, for n = 2, we must have J[x2/2!] = x and thus

J

[
x2

2!

]
=

2

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk

[
x2

2!

]

= l1,0 · x+(l2,0+ l2,1x) ·1
= l2,0 +(1+ l2,1)x.

Therefore, l2,0 = l2,1 = 0. Next, for n = 3, we see that J[x3/3!] = x2/2! must hold.
Hence,

J

[
x3

3!

]
=

3

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk

[
x3

3!

]

= l1,0 · x2

2!
+(l2,0 + l2,1x) · x+(l3,0+ l3,1x+ l3,2x2) ·1

= l3,0 + l3,1x+

(
1
2!

+ l3,2

)
x2.

Therefore, it must be that l3,0 = l3,1 = l3,2 = 0.
In fact, continuing in this fashion, the interested reader can readily show that

all of the l-values in this sequence will be uniquely determined to be zero, except
l1,0 = 1. This is certainly clear since

d
dx

[
xn

n!

]
=

xn−1

(n− 1)!
.

We next prove the converse of Theorem 1.1.

Theorem 1.2. Associated to each operator J are infinitely many sets {Pn(x)}∞
n=0

such that Eq. (1.13) holds. More specifically, exactly one of these sets {Bn(x)}∞
n=0,

entitled the basic set, is such that

B0(x) = 1 and Bn(0) = 0, n = 0,1,2, . . . .

Proof. Let Qm(x) be a polynomial such that deg(Qm) = m. Then, via Eq. (1.12),
we can construct a polynomial, say Pm+1(x), such that J[Pm+1(x)] = Qm(x), where
deg(Pm+1(x)) = m + 1. However, since J[const] = 0, the polynomial Pm+1(x) is
unique only up to an additive constant. This proves the infinitude of sets {Pn(x)}∞

n=0
that correspond to a given J.

By assigning B0(x) := 1 and assuming Bn(0) = 0 for n > 0, one can successively
and uniquely determine the set {Bn(x)}∞

n=0 such that J[Bn(x)] = Bn−1(x) and
deg(Bn(x)) = n.


�
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The next result states that for {Pn(x)}∞
n=0 to be a set corresponding to J, it must

be expressed as a linear combination of polynomials from the basic set. However,
the scalers in this linear combination appear in a special way and play a key role in
the later characterizations.

Theorem 1.3. A necessary and sufficient condition that {Pn(x)}∞
n=0 be a set

corresponding to J is that there exist a sequence of constants {ak} such that

Pn(x) = a0Bn(x)+ a1Bn−1(x)+ · · ·+ anB0(x), a0 �= 0. (1.15)

Proof. (⇒) Assume that {Pn(x)}∞
n=0 satisfies (1.15). Therefore, deg(Pn(x)) = n and

by the linearity of J we have

J[Pn(x)] = J

[
n

∑
i=0

aiBn−i(x)

]
=

n

∑
i=0

aiJ[Bn−i(x)] =
n−1

∑
i=0

aiBn−i−1(x) = Pn−1(x),

which follows since J[B0(x)] = 0 and J[Bn(x)] = Bn−1(x) for n> 0 via Theorem 1.2.
Thus J[Pn(x)] = Pn−1(x).
(⇐) We now assume that {Pn(x)}∞

n=0 corresponds to J. Since deg(Bn(x)) = n, given
Pn(x), there must exist constants

{
an,k
}n

k=0 such that

Pn(x) = an,0Bn(x)+ an,1Bn−1(x)+ · · ·+ an,nB0(x), an,0 �= 0.

We act on this relation with J and see that the left-hand side becomes

J[Pn(x)] = Pn−1(x) = an−1,0Bn−1(x)+ an−1,1Bn−2(x)+ · · ·+ an−1,n−1B0(x)

and since J[B0(x)] = 0, we see that the right-hand side turns into

an,0Bn−1(x)+ an,1Bn−2(x)+ · · ·+ an,n−1B0(x).

Therefore, from comparing coefficients of the results directly above, we infer that

an,k = an−1,k, k = 0,1, . . . ,n− 1.

Next, we momentarily fix k. Then, the relation immediately above implies that for
all n ≥ k each an,k is equal to an−1,k. Thus, the first index in the series

{
an,k
}

is superfluous and thus can be omitted. We conclude that {ak} exist such that
Eq. (1.15) is satisfied. 
�

It may at first appear counterintuitive that the elements of the sequence {ak}
appear as they do in Eq. (1.15). However, the proof of Theorem 1.3 shows why this
is the case. For emphasis, consider expressing a polynomial Pn(x) corresponding to
J as a linear combination of basic polynomials in the following “natural” way:
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Pn(x) = anBn(x)+ an−1Bn−1(x)+ · · ·+ a0B0(x).

Then,

J[Pn(x)] = J

[
n

∑
i=0

aiBi(x)

]
=

n

∑
i=0

aiJ[Bi(x)] =
n

∑
i=0

aiBi−1(x) �= Pn−1(x).

We next wish to determine what conditions are needed for a set {Qn(x)}∞
n=0 to

correspond to J, given that a set {Pn(x)}∞
n=0 corresponds to J. As it turns out, Qn(x)

must be written as a linear combination of {Pk(x)}n
k=0.

Corollary 1.1. Given that {Pn(x)}∞
n=0 is a set corresponding to J, a necessary and

sufficient condition that {Qn(x)}∞
n=0 also corresponds to J is that constants {bk}

exist such that

Qn(x) = b0Pn(x)+ b1Pn−1(x)+ · · ·+ bnP0(x), b0 �= 0.

Proof. The proof is similar to that of Theorem 1.3 and is left as an exercise for the
reader. 
�

In light of the preceding theorems, we now state the definition of Sheffer Type k.

Definition 1.6. Let the set S := {Pn(x)}∞
n=0 correspond to the unique operator J.

Then, S is of Sheffer Type k, or simply Type k, if the coefficients
{

Lj(x)
}∞

j=0
in Eq. (1.12) are such that deg(Lj(x)) ≤ k for all j and there exists at least one
Li(x) ∈

{
Lj(x)

}∞
j=0 such that deg(Li(x)) = k. If

{
Lj(x)

}∞
j=0 is unbounded, then S is

of Type ∞.

With this definition, we have the following result.

Theorem 1.4. There exist infinitely many sets for each Sheffer Type k (k finite or
infinite).

Proof. We know from Theorem 1.2 that associated to each operator J are infinitely
many sets {Pn(x)}∞

n=0 such that Eq. (1.13) holds. This result is entirely independent
of the degrees of the coefficients

{
Lj(x)

}∞
j=0 in Eq. (1.12) and therefore the Type.

Hence, Theorem 1.2 holds for all
{

Lj(x)
}∞

j=0, even if it is unbounded, so there are
infinitely many sets of every Type (finite or infinite). 
�

We now consider what effect replacing S := {Pn(x)}∞
n=0 with {cnPn(x)}∞

n=0 has
on the Type classification of S. Assuming that S corresponds to J, we immediately
observe that

J[cnPn(x)] = cnJ[Pn(x)] = cnPn−1(x) �= cn−1Pn−1(x).
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This simple manipulation tells us that the Type is not necessarily preserved since we
may need a new operator, say J̆, such that J̆[cnPn(x)] = cn−1Pn−1(x). We demonstrate
this concretely in the following examples.

Example 1.2. In Example 1.1, we analyzed the Appell set S := {xn/n!}∞
n=0 and

showed that l1,0 = 1 and that every other l-value was zero by utilizing (1.12).
Moreover, we actually showed that L1(x) = 1 and Lj(x) ≡ 0 for j = 2,3, . . . and
thus, that S is a Type 0 set, since k = 0 in Definition 1.6. We next consider the set
S̆ := {cnxn/n!}∞

n=0, where ci �= 0 and each ci is distinct.
For n = 1, we require J[c1x] = c0. Therefore,

J[c1x] =
1

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk [c1x] = l1,0 · c1,

which implies that l1,0 = c0/c1 and therefore L1(x) = c0/c1. Then, for n = 2, we
must have J[c2x2/2!] = c1x and thus

J

[
c2x2

2!

]
=

2

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk

[
c2x2

2!

]

= l1,0 · c2x+(l2,0 + l2,1x) · c2

= l2,0c2 +(c0c2/c1 + l2,1c2)x.

So, l2,0 = 0 and l2,1 = (c2
1 − c0c2)/(c1c2) giving L1(x) =

(c2
1−c0c2)
c1c2

x. Therefore, we

already see that S̆ is not a Type 0 set. In fact, the interested reader can show that S̆ is
actually Type ∞.

Example 1.3. We next consider a very important Type 0 set, the importance of
which will become most evident upon the completion of Sect. 1.3. This set is defined
as Hn(x) := 2−nHn(x)/n!, where

Hn(x) := 2nn!
�n/2�
∑
k=0

(−1)kxn−2k

22kk!(n− 2k)!

are the Hermite polynomials. For convenience, we write out the first four polynomi-
als from the set {Hn(x)}∞

n=0:

H0(x) = 1, H1(x) = x, H2(x) =
1
2

x2 − 1
4

and H3(x) =
1
6

x3 − 1
4

x.

We initially see that J[H1(x)] =H0(x) implies

J[H1(x)] =
1

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk [H1(x)] = l1,0 = 1
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and therefore, L1(x) = 1. Then, J[H2(x)] =H1(x) yields

J[H2(x)] =
2

∑
k=1

[lk,0 + lk,1x+ · · ·+ lk,k−1xk−1]
dk

dxk [H2(x)]

= l2,0 +(1+ l2,1x)x = x

and it must be that l2,0 = l2,1 = 0, i.e., L2(x) = 0. Continuing, one concludes that
L1(x) = 1 and Lj(x) = 0 for j = 2,3, . . . and thus {Hn(x)}∞

n=0 is a Type 0 set.
Moreover, writing (1.12) in the operator form

J =
∞

∑
k=1

Lk(x)
dk

dxk , (1.16)

we find the unique operator J for our current set to be J = d/dx.

Example 1.4. Now consider the set Hn(x) := Hn(x)/(n!)2, where {Hn(x)}∞
n=0 are

the Hermite polynomials as defined in the last example. The first four polynomials
from the set {Hn(x)}∞

n=0 are

H0(x) = 1, H1(x) = 2x, H2(x) = x2 − 1
2

and H3(x) =
2
9

x3 − 1
3

x.

Using the same procedure as in Examples 1.2 and 1.3, one can show that L1(x) =
1/2, L2(x) =

1
2 x, L3(x) =−1/4, and Lj(x) = 0 for j = 4,5, . . .. Thus, {Hn(x)}∞

n=0 is
a Type 1 set and Eq. (1.16) becomes

J =
1
2

d
dx

+
1
2

x
d2

dx2 − 1
4

d3

dx3 .

Next, we notice that if {Pn(x)}∞
n=0 is a Type 0 set, then each Ln(x) must be a

constant and we can therefore restate Definition 1.6 specifically for Type 0 sets as
follows.

Definition 1.7. {Pn(x)}∞
n=0 is a Type 0 set if Eq. (1.13) holds with J defined by

J[y(x)] :=
∞

∑
n=1

cny(n)(x), c1 �= 0. (1.17)

We emphasize that as we have seen in Examples 1.2–1.4, Eq. (1.17) may or may
not terminate, i.e., it may be finite Type k or Type ∞. We also have the following
definition.

Definition 1.8. Let J(t) be the formal power series

J(t) :=
∞

∑
n=1

cntn, c1 �= 0,
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which we entitle the generating function for J, with J as in Eq. (1.17).

Now, let the formal power series inverse of J(t) be

H(t) :=
∞

∑
n=1

sntn, s1 = c−1
1 �= 0. (1.18)

This is a valid definition because if J(t) is formally substituted for t in (1.18) and
the coefficients are collected to form a single power series in t, then the coefficient
of each tn is a polynomial in c1,c2, . . . ,cn,s1,s2, . . . ,sn. Therefore, we can choose
each sn recursively and uniquely as a function of c1,c2, . . . ,cn,s1,s2, . . . ,sn−1 so the
series has a single term t, i.e.,

J(H(t)) = H(J(t)) = t.

In considering exp(xH(t)), we see that each coefficient of tn in the formal power
series expansion only comprises s1,s2, . . . ,sn. Upon multiplying exp(xH(t)) by

A(t) :=
∞

∑
n=0

antn, a0 �= 0,

we achieve a series in t where the coefficient of each tn involves elements of
the sequences a1,a2, . . . ,an and s1,s2, . . . ,sn, such that each coefficient of tn is a
polynomial in x of degree exactly n, adhering to Definition 1.1. This leads to the
main result of this section.

Theorem 1.5. The set {Pn(x)}∞
n=0 corresponds to the operator J and is of Sheffer

Type 0 if and only if the sequence {an}∞
n=0 exists such that

A(t)exH(t) =
∞

∑
n=0

Pn(x)t
n, (1.19)

where

A(t) :=
∞

∑
n=0

antn, a0 = 1 and H(t) :=
∞

∑
n=1

sntn, s1 = 1. (1.20)

Proof. We show that both necessity and sufficiency will follow if we prove that the
basic set {Bn(x)}∞

n=0 corresponding to J in Eq. (1.13) has the following generating
function:

exH(t) =
∞

∑
n=0

Bn(x)t
n. (1.21)

Since exp [xH(t)] = ∑∞
n=0 [H

n(t)xn/n!], we let this expansion have the form
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exH(t) =
∞

∑
n=0

Cn(x)t
n. (1.22)

Then, {Cn(x)}∞
n=0 must be such that deg(Cn(x)) = n. We show that {Cn(x)}∞

n=0 is
the basic set.

Upon setting x = 0 in Eq. (1.22) and comparing coefficients, we see imme-
diately that C0(0) = 1, and therefore C0(x) = 1, and that Cn(0) = 0 for n > 0.
Thus, {Cn(x)}∞

n=0 satisfies the initial conditions of the basic set. We clearly have
J[C0(x)] = 0 and next show that J[Cn(x)] =Cn−1(x) for n = 1,2,3, . . . . We apply J
to Eq. (1.22):

J

[
∞

∑
n=0

Cn(x)t
n

]
=

∞

∑
n=0

J[Cn(x)]t
n = J

[
exH(t)

]
=

∞

∑
n=0

cn
dn

dxn

[
exH(t)

]

= c1
d
dx

[
exH(t)

]
+ c2

d2

dx2

[
exH(t)

]
+ c3

d3

dx3

[
exH(t)

]
+ · · ·

=
(
c1H(t)+ c2H2(t)+ c3H3(t)+ · · ·)exH(t)

= J(H(t))exH(t) = texH(t) =
∞

∑
n=0

Cn(x)t
n+1 =

∞

∑
n=0

Cn−1(x)t
n

(with C−1(x) := 0), which follows since H(t) and J(t) are formal inverses of one
another. By comparing coefficients of tn in the relation directly above, we achieve
J[Cn(x)] = Cn−1(x) for n = 1,2,3, . . . and hence, Cn(x) ≡ Bn(x) and Eq. (1.21) is
established. Lastly, we now multiply Eq. (1.21) by A(t) as in Eq. (1.20), which yields

A(t)exH(t) =
∞

∑
n=0

antn
∞

∑
n=0

Bn(x)t
n =

∞

∑
n=0

n

∑
k=0

akBn−k(x)t
n =

∞

∑
n=0

Pn(x)t
n, (1.23)

as a result of Theorem 1.3. 
�
We also have the following.

Theorem 1.6. The sequence of ak-terms in Eq. (1.19) is exactly the same as those
in Eq. (1.15).

Proof. This statement follows immediately from the proof of Theorem 1.5, i.e.,
Eq. (1.23). 
�

The next result plays an integral part in determining all of the Sheffer Type 0
orthogonal polynomials in the next section. This characterization is also interesting
unto itself, as it is expressed entirely in terms of elements of the generating function
(1.19).

Corollary 1.2. {Pn(x)}∞
n=0 is of Type 0 if and only if sequences

{
qk,0
}

and
{

qk,1
}

exist such that
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∞

∑
k=1

(qk,0 + qk,1x)Pn−k(x) = nPn(x), n = 1,2, . . . , (1.24)

where
∑∞

k=0 qk+1,0tk = A′(t)/A(t)
∑∞

k=0 qk+1,1tk = H ′(t)

}
(1.25)

with A(t) and H(t) as defined in Eq. (1.20).

Proof. We assume that {Pn(x)}∞
n=0 is a Type 0 set. We first consider the right-hand

side of Eq. (1.24) and multiply it by tn and sum for n = 0,1,2, . . .. This yields

∞

∑
n=0

nPn(x)t
n = t

∞

∑
n=0

nPn(x)t
n−1 = t

d
dt

(
A(t)exH(t)

)
= texH(t) (xA(t)H ′(t)+A′(t)

)
.

(1.26)

Since Jk[Pn(x)] = Pn−k(x), we see that

∞

∑
n=0

Jk[Pn(x)]t
n = tk

∞

∑
n=k

Pn−k(x)t
n−k = tk

∞

∑
m=0

Pm(x)t
m = tkA(t)exH(t).

Therefore, we now multiply the left-hand side of Eq. (1.24) by tn, sum for n =
0,1,2, . . ., and utilize (1.20) to obtain

∞

∑
n=0

∞

∑
k=1

(qk,0 + qk,1x)Pn−k(x)t
n =

∞

∑
n=0

∞

∑
k=1

(qk,0 + qk,1x)Jk[Pn(x)]t
n

=
∞

∑
k=1

(qk,0 + qk,1x)
∞

∑
n=0

Jk[Pn(x)]t
n =

∞

∑
k=1

(qk,0 + qk,1x)tkA(t)exH(t)

=

(
t

∞

∑
k=0

qk+1,0tk + tx
∞

∑
k=0

qk+1,1tk

)
A(t)exH(t) = texH(t) (xA(t)H ′(t)+A′(t)

)
.

(1.27)

Hence, we see that both Eqs. (1.26) and (1.27) are formally equal and from
comparing coefficients of tn we obtain Eq. (1.24). 
�

1.3 The Type 0 Orthogonal Polynomials

We now determine which Sheffer Type 0 sets are also orthogonal. We first assume
that {Qn(x)}∞

n=0 is an orthogonal set that satisfies the monic three-term relation of
the form Eq. (1.4), which we write using the notation in [9]:
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Qn(x) = (x+λn)Qn−1(x)+ μnQn−2(x), μn �= 0, n = 1,2, . . . . (1.28)

In our first theorem of this section, we determine a necessary and sufficient form that
the recursion coefficients λn and μn in Eq. (1.28) must have in order to characterize
a Type 0 orthogonal set. First, we note that since {Qn(x)}∞

n=0 is an orthogonal set,
then so is {cnQn(x)}∞

n=0. Now, we want to determine for which sets {Qn(x)}∞
n=0

satisfying (1.28) do there exist a sequence of constants {cn}∞
n=0 such that

Pn(x) = cnQn(x), n = 0,1,2, . . . (1.29)

is a Type 0 set. To accomplish this, we simultaneously use Eqs. (1.24) and (1.28),
i.e., a characterization of a Type 0 set and a characterization of an orthogonal set.

Theorem 1.7. A necessary and sufficient condition that an orthogonal polynomial
set {Qn(x)}∞

n=0 satisfying (1.28) be such that Pn(x) = cnQn(x) is of Type 0 for some
cn �= 0 is that λn and μn have the form

λn = α + bn and μn = (n− 1)(c+ dn) (1.30)

with c+ dn �= 0 for n > 1.

Proof. (⇒) We assume that Eq. (1.29) holds and show that λn and μn are as in
Eq. (1.30). To begin, replace n with n− k + 1 in Eq. (1.28) and rewrite it in the
following way:

xQn−k(x) = Qn−k+1(x)−λn−k+1Qn−k(x)− μn−k+1Qn−k−1(x). (1.31)

Then, substituting the right-hand side of Eq. (1.29) into Eq. (1.24) and using
Eq. (1.31), we see that

ncnQn(x) =
∞

∑
k=1

qk,0cn−kQn−k(x)+
∞

∑
k=1

qk,1cn−k[xQn−k(x)]

=
∞

∑
k=1

qk,0cn−kQn−k(x)+
∞

∑
k=1

qk,1cn−kQn−k+1(x)

−
∞

∑
k=1

qk,1cn−kλn−k+1Qn−k(x)−
∞

∑
k=1

qk,1cn−kμn−k+1Qn−k−1(x). (1.32)

We next compare coefficients of Q j(x) for j = n,n− 1,n− 2 using Eq. (1.32)
to obtain relationships involving the q’s and in turn develop expressions for the
recursion coefficients λn and μn. First, by comparing the coefficients of Qn(x) we
see that ncn = cn−1q1,1 and iterating this relationship, we obtain

cn = c0qn
1,1/n!. (1.33)
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After comparing the coefficients of Qn−1(x), we realize that

0 = q1,0cn−1 + q2,1cn−2 − q1,1cn−1λn.

Dividing both sides of this equation by cn−2 and using Eq. (1.33) yield

λn = (q1,0q1,1 + q2,1(n− 1))/q2
1,1. (1.34)

Lastly, upon comparing the coefficients of Qn−2(x), we achieve

0 = q2,0cn−2 + q3,1cn−3 − q2,1cn−2λn−1 − q1,1cn−1μn.

We also divide both sides of this equation by cn−2, use Eq. (1.33), and also call upon
Eq. (1.34) to obtain

μn = (n− 1)
(
q2,0q2

1,1 − q1,0q1,1q2,1 − (q2
1,1 − q1,1q3,1)(n− 2)

)
/q4

1,1. (1.35)

Thus, we see that λn is at most linear in n and that μn is at most quadratic in n with
a factor of (n− 1), i.e., λn and μn satisfy (1.30).
(⇐) We assume that λn and μn agree with Eq. (1.30). We show that Eq. (1.29) is
of Type 0. Now, if in Eq. (1.28) we replace Qn(x) with cndnQn(x) = dnPn(x) where
cn := αn/n! (α �= 0) and dn := c−1

n then our three-term recurrence relation (1.28),
with λn and μn as in Eq. (1.30), remains unaltered and we can therefore write

dnPn(x) = (x+α + bn)dn−1Pn−1(x)+ (n− 1)(c+ dn)dn−2Pn−2(x).

Dividing both sides of this relation by dn defined above gives a relation of the form

nPn(x) = (αx+β + γn)Pn−1(x)+ (δ + εn)Pn−2(x),

where α �= 0, δ +εn �= 0 for n> 1 and with β =α2, γ = bα , δ = cα2, and ε = dα2.
This, of course, can be written in the form

xPn−1(x) = α−1nPn(x)−α−1(β + γn)Pn−1(x)−α−1(δ + εn)Pn−2(x).

That is, we have expressed xPn−1(x) as a linear combination of Pn(x), Pn−1(x), and
Pn−2(x). Therefore, sequences

{
qk,0
}

and
{

qk,1
}

exist such that

Tn := (q1,0 + q1,1x)Pn−1(x)+ (q2,0 + q2,1x)Pn−2(x)+ · · ·= nPn(x).

Furthermore, it can be shown that these q’s are related in the following way:

qk+2,1 = γqk+1,1 + εqk,1; q1,1 = α, q2,1 = αγ, (1.36)
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qk+1,0 =
1
α
(
qk,1(δ − (k− 1)ε)+ qk+1,1(β − γk)+ qk+2,1(k+ 1)

)
. (1.37)

Thus, we have shown that {Pn(x)}∞
n=0 satisfies Corollary 1.2 and is therefore a Type

0 set. 
�
As it turns out, we need the relations (1.36) and (1.37) to determine all of the Type

0 orthogonal sets. Now, if Eq. (1.36) is known, then Eq. (1.37) can be determined.
Therefore, we solve (1.36) by considering the characteristic equation

u2 − γu− ε = 0, (1.38)

which has the solution
u1,2 =

(
γ ±
√

γ2 + 4ε
)
/2.

We analyze the different cases of the discriminant γ2+4ε and determine the value of
qk,1, and therefore qk+1,0, in each case. Thus, in each case, this leads to expressions
for A(t) and H(t) in Eq. (1.20) and therefore the generating function (1.19), which
yields the corresponding orthogonal set. For the repeated root cases (γ2 + 4ε = 0)
we use the general solution structure qk,1 = Auk

1 + Bkuk
1 and for the distinct root

cases (γ2 + 4ε �= 0), we use the general solution structure qk,1 = Auk
1 +Buk

2, where
u1 and u2 are the roots listed above. There are a total of four cases, which we label
as Ia, Ib, IIa and IIb. We work out the rigorous details of Case Ia and summarize the
remaining cases.

Case Ia. γ2 + 4ε = 0 and γ �= 0
In this case, we see that Eq. (1.38) yields u1 = u2 = γ/2 as a solution, which implies

qk,1 = A(γ/2)k +Bk(γ/2)k.

Using our initial conditions in Eq. (1.36), we have the following system:

q1,1 =
1
2

Aγ +
1
2

Bγ = α,

q2,1 =
1
4

Aγ2 +
1
4

Bγ2 = αγ,

which has the solutions A = 0 and B = 2α/γ and thus,

qk,1 = kα(γ/2)k−1. (1.39)

By substituting the right-hand side of Eq. (1.36) into Eq. (1.37) and then using
Eq. (1.39) accordingly, after some algebraic manipulations, we obtain the following:

qk+1,0 =
( γ

2

)k−1
(

1
2
(β γ + 2δ )k+

1
2
(β + γ)γ +

1
2
(γ2 + 4ε)k

)
.



18 1 The Sheffer A-Type 0 Orthogonal Polynomial Sequences and Related Results

Then, recalling that the discriminant is zero in this case, we obtain

qk+1,0 =
( γ

2

)k−1
(

1
2
(β γ + 2δ )k+

1
2
(β + γ)γ

)
. (1.40)

For this case, we can now determine the series H(t) and A(t) as in Eq. (1.20) using
Eq. (1.25). We first substitute (1.39) into our H ′(t) expression of Eq. (1.25) and then
integrate, which leads to the geometric series

H(t) = αt
∞

∑
k=0

( γt
2

)k
=

2αt
2− γt

.

It is also worth mentioning that the formal inverse of H(t) above is therefore readily
determined to be

J(t) =
2t

2α + γt
.

For A(t), we first notice that we have the following first-order differential equation:

A′(t)−
∞

∑
k=0

qk+1,0tkA(t) = 0,

which, via integrating factor, has the solution

A(t) = μ exp

[∫ ∞

∑
k=0

qk+1,0tkdt

]
.

We then substitute (1.40) into the result directly above, evaluate the sum and
integrate, which eventually yields

A(t) = μ
(

2− γt
2

)−2δ (γ−2)/γ2

exp

(
2t(β γ + 2δ )

γ(2− γt)

)
,

with (−2δ (γ −2)/γ2) not equal to a nonnegative integer, so that μn �= 0 is satisfied.

Case Ib. γ2 + 4ε = 0 and γ = 0
In this case, we also have ε = 0. This gives

q1,1 = α, qk,1 = 0 (k > 1), q1,0 = β , q2,0 = δ and qk,0 = 0 (k > 2)

and thus,

H(t) = αt, J(t) = t/α and A(t) = μ exp

(
β t +

1
2

δ t2
)
,
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with δ �= 0, so that μn �= 0 holds.

For Cases IIa and IIb that follow (γ2 + 4ε �= 0), we first derive the general qk,1

and qk+1,0 terms. We have

qk,1 =
α(uk

1 − uk
2)√

γ2 + 4ε
and qk+1,0 =

λ uk
1 −σuk

2√
γ2 + 4ε

(1.41)

with

λ := δ + 2ε +(β + γ)u1 and σ := δ + 2ε +(β + γ)u2.

Case IIa. γ2 + 4ε �= 0 and ε = 0
In this case, we consequently have γ �= 0. Via Eq. (1.41), we observe that

H(t) = α
∫ t

0

dτ
1− γτ

=−α
γ

ln(1− γt), J(t) =
1
γ

(
1− exp

(
− γt

α

))
,

A(t) = μ(1− γt)−(β γ+γ2+δ )/γ2
exp

(
−δ t

γ

)
,

with δ �= 0 so that μn �= 0.

Case IIb. γ2 + 4ε �= 0 and ε �= 0
Here, from Eq. (1.41), one can achieve

H(t) = α
∫ t

0

dτ
1− γτ − ετ2 = α

ln((u2t − 1)/(u1t − 1))√
γ2 + 4ε

,

J(t) =
exp
(

t
α

√
γ2 + 4ε

)
− 1

u1 exp
(

t
α

√
γ2 + 4ε

)
− u2

, A(t) = μ
(1− u2t)h2

(1− u1t)h1
,

with

hi =
ui(β + γ)+ (δ + 2ε)

ui

√
γ2 + 4ε

, i = 1,2.

We next state the main result of this section and for simplicity, we redefine the
parameters involved in each of our H(t) and A(t) expressions in the same manner as
Sheffer. This result displays the general forms of each of the generating functions
for the orthogonal Type 0 sets.

Theorem 1.8. A polynomial set {Pn(x)}∞
n=0 is Type 0 and orthogonal if and only if

A(t)exH(t) is of one of the following forms:
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A(t)exH(t) = μ(1− bt)c exp

(
dt + atx
1− bt

)
, abcμ �= 0, (1.42)

A(t)exH(t) = μ exp
(
t(b+ ax)+ ct2) , acμ �= 0, (1.43)

A(t)exH(t) = μect(1− bt)d+ax, abcμ �= 0, (1.44)

A(t)exH(t) = μ(1− t/c)d1+x/a(1− t/b)d2−x/a, abcμ �= 0, b �= c. (1.45)

Proof. This statement follows from the above analysis. 
�
By judiciously choosing each of the parameters in Eqs. (1.42)–(1.45) we can
achieve all of the Sheffer Type 0 orthogonal polynomials previously discussed. For
emphasis, we write each of these parameter selections below and then display the
corresponding generating function as it appears in contemporary literature.

The Laguerre Polynomials In Eq. (1.42), we select the parameters as μ = 1, a =
−1, b = 1, c =−(α + 1), and d = 0 to obtain

∞

∑
n=0

L(α)
n (x)tn = (1− t)−(α+1)exp

(
xt

t − 1

)
.

The Hermite Polynomials With the assignments μ = 1, a = 2, b = 0, and c =−1
in Eq. (1.43), we have

∞

∑
n=0

Hn(x)tn

n!
= exp(2xt − t2).

The Charlier Polynomials If in Eq. (1.44) we choose μ = 1, a= 1, b= 1/a, c= 1,
and d = 0, then we achieve

∞

∑
n=0

Cn(x;a)tn

n!
= et

(
1− t

a

)x
.

The Meixner Polynomials In Eq. (1.45), we select μ = 1, a = 1, b = 1, c =
arbitrary constant, d1 = 0, and d2 =−β leading to

∞

∑
n=0

(β )n

n!
M(x;β ,c)tn =

(
1− t

c

)x
(1− t)−(x+β ).

The Meixner–Pollaczek Polynomials Taking μ = 1, a = −i, b = eiφ , c = e−iφ ,
and d1 = d2 =−λ in Eq. (1.45) leads to

∞

∑
n=0

P(λ )
n (x;φ)tn = (1− eiφ t)−λ+ix(1− e−iφ t)−λ−ix.
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The Krawtchouk Polynomials Lastly, selecting μ = 1, a= 1, b =−1, c= p/(1−
p), d1 = 0, and d2 = N in Eq. (1.45) yields

N

∑
n=0

C(N,n)Kn(x; p,N)tn =

(
1− 1− p

p
t

)x

(1+ t)N−x,

for x = 0,1,2, . . . ,N, where C(N,n) denotes the binomial coefficient.
Refer to [6] and the references therein for definitions and characterizations of

each of these A-Type 0 sets. For additional analyses regarding these orthogonal sets,
also consider [3–5, 8, 10].

1.4 An Overview of the Classification of Type

We now discuss the essential details of the three kinds of characterizations that
Sheffer developed in [9], which are entitled A-Type, B-Type and C-Type. The
definition of Type is dependent on which characterization of Type 0 that is to
be generalized. That is, each of the Sheffer Types generalizes a certain Type 0
characterizing structure.

1.4.1 The Sheffer A-Type Classification

We deem all of the characterizations up to this juncture as A-Type k and therefore
restate Definition 1.6 accordingly.

Definition 1.9. Let the set S := {Pn(x)}∞
n=0 correspond to the unique operator J.

Then, S is of A-Type k if the coefficients
{

Lj(x)
}∞

j=0, as defined in Eq. (1.12), are

such that deg(Lj(x)) ≤ k for all i and there exists at least one Li(x) ∈
{

Lj(x)
}∞

j=0

such that deg(Li(x)) = k. If
{

Lj(x)
}∞

j=0 is unbounded, then S is of A-Type ∞.

We also will make use of the following result.

Theorem 1.9. The set {Pn(x)}∞
n=0 is of A-Type 0 if and only if a sequence of

constants {sn} exist such that

P′
n(x) = s1Pn−1(x)+ s2Pn−2(x)+ · · ·+ snP0(x), n = 1,2,3, . . . , (1.46)

where the elements of the sequence {sn} are the same as those in Eq. (1.18).

Proof. We differentiate (1.19) with respect to x and see that

∞

∑
n=0

P′
n(x)t

n = H(t)A(t)exH(t) =
∞

∑
n=0

Pn(x)H(t)tn.
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Then, from comparing coefficients of tn in

∞

∑
n=0

P′
n(x)t

n =
∞

∑
n=0

Pn(x)[s1t + s2t2 + s3t3 + · · · ]tn,

we obtain our result. It is readily seen that this argument is both necessary and
sufficient. 
�

1.4.2 The Sheffer B-Type Classification

To begin, we state that Theorem 1.9 can be extended in a natural way. Consider the
structure

T0(x)Pn−1(x)+T1(x)Pn−2(x)+ · · ·+Tn−1(x)P0(x), n = 1,2,3, . . . .

Then, by successively setting n = 1,2, . . ., we observe that given a set {Pn(x)}∞
n=0, a

unique sequence of polynomials {Tn(x)} exists such that

P′
n(x) = T0(x)Pn−1(x)+T1(x)Pn−2(x)+ · · ·+Tn−1(x)P0(x), n = 1,2, . . . (1.47)

with T0(x) �= 0. However, deg(Tn(x)) ≤ n since, e.g., Eq. (1.47) readily reduces
to Eq. (1.46) if {Pn(x)}∞

n=0 is of A-Type 0. The following statement immediately
follows.

Theorem 1.10. For every set {Pn(x)}∞
n=0 there exist a unique sequence of polyno-

mials {Tn(x)}, with deg(Tn(x))≤ n, such that Eq. (1.47) holds.

The converse of this theorem does not hold, as we have the following result.

Theorem 1.11. Given a sequence of polynomials {Tn(x)}, with deg(Tn(x)) ≤ n,
there exist infinitely many sets {Pn(x)}∞

n=0 such that Eq. (1.47) is satisfied.

Proof. This result is immediate, since the constant term of Pn(x) in Eq. (1.47) can
be made arbitrary. 
�

Based on the above results, we have the following definition.

Definition 1.10. A set {Pn(x)}∞
n=0 is of B-Type k if the maximum degree of the

polynomials {Tn(x)} in Eq. (1.47) is k. Otherwise, {Pn(x)}∞
n=0 is classified as B-

Type ∞.

We can now establish the following statement.

Theorem 1.12. A set {Pn(x)}∞
n=0 is of B-Type 0 if and only if it is of A-Type 0.



1.4 An Overview of the Classification of Type 23

Proof. (⇒) If {Pn(x)}∞
n=0 is of B-Type 0, then {Tn(x)} in Eq. (1.47) must be

a sequence of constants. Moreover, Eq. (1.47) is reduced to Eq. (1.46) and thus
{Pn(x)}∞

n=0 is an A-Type 0 set.
(⇐) If {Pn(x)}∞

n=0 is of A-Type 0, then Eq. (1.46) holds, which is Eq. (1.47) with
constant coefficients. Thus, {Pn(x)}∞

n=0 is of B-Type 0. 
�
We also have the classification of B-Type k sets below.

Theorem 1.13. The characterization (1.47) is equivalent to the relation

H(x, t) = A(t)exp

[
t
∫ x

0
T (ξ , t)dξ

]
, (1.48)

with A(t) as in Eq. (1.20).

Proof. (⇒) First, we define

H := H(x, t) =
∞

∑
k=0

Pk(x)t
k, (1.49)

T := T (x, t) =
∞

∑
k=0

Tk(x)t
k. (1.50)

We now consider

tHT = t
∞

∑
k=0

Pk(x)t
k

∞

∑
k=0

Tk(x)t
k. (1.51)

We can find the coefficient of tn in the right-hand side of Eq. (1.51) by considering
the following structure, which is t multiplied by the general term in each of the sums
of Eq. (1.51):

tPk0tk0Tk1 tk1

and finding all nonnegative integer solutions to the equation 1+ k0 + k1 = n, i.e.,
the sum of the t-exponents. For the solution k0 = n − 1 and k1 = 0, we obtain
T0(x)Pn−1(x) and for the solution k0 = n− 2 and k1 = 1, we achieve T1(x)Pn−2(x).
Continuing in this fashion, we see that the coefficient of tn turns out to be

T0(x)Pn−1(x)+T1(x)Pn−2(x)+ · · ·+Tn−1(x)P0(x) = P′
n(x)

via Eq. (1.47). Thus, the right-hand side of Eq. (1.51) is ∑∞
n=0 P′

n(x)t
n = ∂H(x, t)/∂x

and we have constructed the following first-order differential equation, as Eq. (1.51)
becomes

∂
∂x

H − tTH = 0; H(0, t) =
∞

∑
n=0

Pn(0)tn = A(t), (1.52)
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with A(t) as in Eq. (1.20). Furthermore, we have shown that this relation is
equivalent to Eq. (1.47). The general solution to Eq. (1.52) can be determined via
the integrating factor exp [−∫ x

0 tT (ξ , t)dξ ] to be

H(x, t) = A(t)exp

[
t
∫ x

0
T (ξ , t)dξ

]
,

where A(t) is an arbitrary power series with a nonzero constant term. However,
in considering the initial condition of Eq. (1.52), we see that A(t) must be as in
Eq. (1.20). This argument is certainly both necessary and sufficient. 
�

Next, we note that if we write T (x, t) in Eq. (1.50) as a power series in x, as
opposed to t, the coefficients of each of the xn-terms are power series in t. To
facilitate this, momentarily let Tn(x) = cn,nxn + cn,n−1xn−1 + · · ·+ cn,0, and then we
have

T (x, t) = (c0,0 + c1,0t + c2,0t2 + · · ·)+ (c1,1t + c2,1t2 + c3,1t3 + · · ·)x
+(c2,2t2 + c3,2t3 + c4,2t4 + · · ·)x2 + · · · .

Letting x = ξ above, integrating this result with respect to ξ from 0 to x and
multiplying by t, we see that

t
∫ x

0
T (ξ , t)dξ = xH1(t)+ x2H2(t)+ x3H3(t)+ · · · ,

where each Hi(t) is a power series in t that starts with the ti-term (or higher if the
coefficient of the ti-term is zero), i.e., Hi(t) = hi,it i + hi,i+1ti+1 + hi,i+2ti+2 + · · · .
However, H1(t) must begin with a linear term in t, since by Eq. (1.47) T0(x) �= 0 and
h1,1 = T0(x) by construction. Thus, we can write (1.48) in the following way:

H(x, t) = A(t)exp
[
xH1(t)+ x2H2(t)+ x3H3(t)+ · · ·] , h1,1 �= 0. (1.53)

Now, for {Pn(x)}∞
n=0 to be of B-Type k, it is necessary and sufficient that T (x, t)

is a polynomial in x of degree k. This restriction is equivalent to terminating the
sum

[
xH1(t)+ x2H2(t)+ x3H3(t)+ · · ·] in Eq. (1.53) at k + 1 via the presence of

the integral in Eq. (1.48). Thus, we obtain (1.54) in Theorem 1.14 below, which is
the culmination of the above analysis.

Theorem 1.14. A set is of B-Type k if and only if

H(x, t) = A(t)exp
[
xH1(t)+ · · ·+ xk+1Hk+1(t)

]
,

with Hi(t) = hi,it i + hi,i+1ti+1 + · · · , h1,1 �= 0, i = 1,2, . . . ,k+ 1. (1.54)
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1.4.3 The Sheffer C-Type Classification

The last classification that Sheffer developed is entitled C-Type. As was done in the
previous section, we establish all of the theorems necessary for understanding this
classification, beginning with the following.

Theorem 1.15. For each set {Pn(x)}∞
n=0, there exist a unique sequence of polyno-

mials {Un(x)}∞
n=0, with deg(Un(x))≤ n, such that

nPn(x) =U1(x)Pn−1(x)+U2(x)Pn−2(x)+ · · ·+Un(x)P0(x), n = 1,2, . . . . (1.55)

Proof. Analogous to establishing (1.47) in Theorem 1.10, we set n = 1,2, . . .
in Eq. (1.55) and then successively and uniquely determine the set {Un(x)}∞

n=0.
Through this process, it becomes clear that no polynomial Un(x) can exceed the
degree of its subscript. The result therefore follows. 
�

This leads us to the following definition.

Definition 1.11. A set {Pn(x)}∞
n=0 is classified as C-Type k if the maximum degree

of the polynomials {Un(x)} in Eq. (1.55) is k+ 1. Else, {Pn(x)}∞
n=0 is classified as

C-Type ∞.

We note that we use k + 1 in the above definition, as opposed to k as in our
previous Type definitions, since otherwise, Eq. (1.55) would not be satisfied. As an
example, consider the case when each Ui(x) is constant.

Now, we define

U :=U(x, t) =
∞

∑
n=0

Un+1(x)t
n.

Then, calling upon Eq. (1.55) and using the same methodology that was used
to construct (1.52) in the previous section, we derive the following first-order
differential equation:

∂
∂ t

H −UH = 0; H(x,0) = P0(x) = a0

with H := H(x, t) as in Eq. (1.49). This can easily be solved using the integrating
factor exp

[−∫ t
0 U(x,τ)dτ

]
, yielding the solution

H(x, t) = a0 exp

[∫ t

0
U(x,τ)dτ

]
, (1.56)

after incorporating our initial condition. Then, from comparing (1.56) with
Eq. (1.48), we have

a0 exp

[∫ t

0
U(x,τ)dτ

]
= A(t)exp

[
t
∫ x

0
T (ξ , t)dξ

]
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and taking the natural logarithm of both sides of this relation leads to

lna0 +
∫ t

0
U(x,τ)dτ = lnA(t)+ t

∫ x

0
T (ξ , t)dξ . (1.57)

Next, differentiate (1.57) with respect to t in order to obtain

U(x, t) =
A′(t)
A(t)

+

∫ x

0

∂
∂ t

(tT (ξ , t))dξ (1.58)

and also differentiate (1.57) with respect to x, which leads to

tT (x, t) =
∫ t

0

∂
∂x

U(x,τ)dτ . (1.59)

We now substitute (1.59) into Eq. (1.58) and then put this new expression for U(x, t)
into Eq. (1.56), which leads to

H(x, t) = A(t)exp

[∫ t

0

∫ x

0

∂
∂ξ

U(ξ ,τ)ξ dτ
]
. (1.60)

We see that the exponent in Eq. (1.60) is a polynomial in x of degree k+ 1 if and
only if the polynomial of maximal degree in {Un(x)}∞

n=1 is of degree k+ 1, i.e., if
and only if the set {Pn(x)}∞

n=0 for which the sequence {Un(x)}∞
n=1 corresponds to

is of C-Type k. Under this assumption, the exponent in Eq. (1.60) has the following
structure:

Ũ1(x)t +Ũ2(x)t
2 + · · ·+Ũk+1(x)t

k+1,

which is the same form as the exponent in Eq. (1.48) when it corresponds to a B-
Type 0 set. Thus, Eq. (1.60) can therefore be reduced to Eq. (1.54) using the same
type of manipulation that was used in the previous section. Hence, we have proven
the following theorem.

Theorem 1.16. A set {Pn(x)}∞
n=0 is of C-Type k if and only if it is of B-Type k.

1.4.4 A Summary of the Rainville σ -Type Classification

To complete our summary of Type, we conclude with a natural extension of
Sheffer’s classification, entitled σ -Type, which was constructed by E.D. Rainville
and originally appeared in [8]. Now, we have seen that various results were
ascertained from the generating function (1.19), which we now know characterizes
A-Type 0 sets. Moreover, we know that for y = exp [xH(t)] with D := d/dx we have

Dy = H(t)y.
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We intend to then modify the operator D so that it behaves in a similar fashion and
also obtain a generating relation for the most basic type of sets classified by this
modified operator. That is, if we replace D above by another differential operator,
say σ , and the exponential function exp(z) by another function, e.g., F(z), then we
want to find σ such that

σF(z) = F(z).

From there, we can construct an analogue of Eq. (1.19) in Theorem 1.5. This leads
to the following definition of our differential operator σ (using the same notation as
in [8]).

Definition 1.12. We define the differential operator σ as follows:

σ := D
q

∏
i=1

(θ + bi − 1), D :=
d
dx

and θ := xD,

with bi �= 0 and bi not equal to a negative integer.

In fact, this operator is a degree-lowering operator. To facilitate its application
on polynomials and its degree-lowering nature, consider acting on a monomial, like
x2, with q = 1 and b1 = 1. The function of the q and bi-terms will become more
transparent in Theorem 1.17 at the end of this section.

We now define σ -Type.

Definition 1.13. Let {Pn(x)}∞
n=0 be a set such that

Jσ [Pn(x)] =
∞

∑
k=0

Tk(x)σ k+1Pn(x) = Pn−1(x),

with deg(Tj(x)) ≤ k. If the polynomial of maximal degree in the set of coefficients{
Tj(x)

}∞
j=0 is of degree k, then we classify {Pn(x)}∞

n=0 as σ -Type k. If the

coefficients
{

Tj(x)
}∞

j=0 are unbounded, then {Pn(x)}∞
n=0 is σ -Type ∞.

Based on this definition, we see that polynomials of σ -Type 0 satisfy the
following form:

Jσ [Pn(x)] =
∞

∑
k=0

ckσ k+1Pn(x) = Pn−1(x),

where each ck is a constant and c0 �= 0. Since each of the ck’s is a constant, analogous
to our A-Type 0 analysis, there exists a generating function for Jσ , which we call
Jσ (t), and a corresponding inverse Hσ (t) such that Jσ (Hσ (t)) = Hσ (Jσ (t)) = t:

Jσ (t) =
∞

∑
n=0

cntn+1, c0 �= 0 and Hσ (t) =
∞

∑
n=0

hntn+1, h0 �= 0.

This leads us to the main characterization theorem for σ -Type 0 sets.
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Theorem 1.17. A set is of σ -Type 0, with σ as defined in Definition 1.12, if and
only if {Pn(x)}∞

n=0 satisfies the generating function

A(t)0Fq(−;b1,b2, · · · ,bq;xH(t)) =
∞

∑
n=0

Pn(x)t
n

with H(t) as defined above and A(t) as in Eq. (1.20).

In Theorem 1.17, we wrote the generating function in the generalized hypergeo-
metric form, which is defined as

rFs

(
a1, . . . ,ar

b1, . . . ,bs
x

)
=

∞

∑
k=0

(a1, . . . ,ar)k

(b1, . . . ,bs)k

xk

k!
, (1.61)

where the Pochhammer symbol (a)k is

(a)k := a(a+ 1)(a+ 2)· · · (a+ k− 1), (a)0 := 1, (1.62)

and
(a1, . . . ,a j)k := (a1)k . . . (a j)k.

We now see that the selection of q is dependent on the number of denominator
parameters (the bi’s) in the generating function of Theorem 1.17. For a proof of
Theorem 1.17, the interested reader can refer to [8].

1.5 A Brief Discussion of Meixner’s Analysis

In 1934, J. Meixner published [7] (written in German) in which he considered the
generating relation (1.19) (with the same assumptions on the A(t) and H(t) as in
Sheffer’s work [9]) to be the definition of a certain class of polynomials. From there,
he determined all sets that satisfy this relation that were also orthogonal and reached
the same conclusions as Sheffer did in [9]. In other words, Meixner determined all
orthogonal sets {Pn(x)}∞

n=0 that satisfy

f (t)exu(t) =
∞

∑
n=0

Pn(x)
n!

tn; f (0) = 1, u(0) = 0,
d
dt

u(0) = 1, (1.63)

which we have written using Meixner’s notation, which we essentially adhere to
throughout this section.

In a similar manner as Sheffer, Meixner defined a general degree-lowering, linear,
differential operator of infinite order, which we call J as opposed to his “t” to avoid
confusion with t-parameters, which satisfies a certain commutation relation with the
differential operator D. Moreover, J(t) is a formal power series without a constant
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term and with a unitary linear coefficient. The formal power series inverse of J(t)
was defined to be u(t), i.e., u(J(t)) = J(u(t)) = t.

Throughout his work, Meixner considered {Pn(x)}∞
n=0 to be a set of monic

polynomials. With this convention, he utilized the following monic three-term
recurrence relation:

Pn+1(x) = (x+ ln+1)Pn(x)+ kn+1Pn−1(x), n = 0,1,2, . . . (1.64)

with ln+1 ∈ R and kn+1 ∈ R
− and demonstrated that

J(D)Pn(x) = nPn−1(x). (1.65)

Now, we act on Eq. (1.64) with J(D) as in Eq. (1.65) and obtain

(n+ 1)Pn(x) = (x+ ln+1)nPn−1(x)+ J′(D)Pn(x)+ kn+1(n− 1)Pn−2(x), (1.66)

where J′(D) is of course the derivative of the formal power series J(D). Then, we
replace n with n− 1 in Eq. (1.64) and multiply both sides by n to obtain

nPn(x) = (x+ ln)nPn−1(x)+ knnPn−2(x). (1.67)

Next, we subtract (1.67) from Eq. (1.66) which yields

(
1− J′(D)

)
Pn(x) = (ln+1 − ln)nPn−1(x)+

(
kn+1

n
− kn

n− 1

)
n(n− 1)Pn−2(x).

We then replace n with n+ 1 in the recursion coefficients above leading to

(
1− J′(D)

)
Pn(x) = (ln+2 − ln+1)nPn−1(x)+

(
kn+2

n+ 1
− kn+1

n

)
n(n− 1)Pn−2(x).

We assign

λ := ln+1 − ln, n = 1,2, . . . , (1.68)

κ :=
kn+1

n
− kn

n− 1
, n = 2,3, . . . (1.69)

giving

(
1− J′(D)

)
Pn(x) = λ nPn−1(x)+κn(n− 1)Pn−2(x), n = 0,1,2, . . .

and via Eq. (1.65) we see that this recurrence can be written as

(
1− J′(D)

)
Pn(x) = λ J(D)Pn(x)+κJ2(D)Pn(x), n = 0,1,2, . . . (1.70)
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From rewriting Eqs. (1.68) and (1.69) as

ln+1 = ln +λ and kn+1 = n

(
kn

n− 1
+κ
)

and iterating, we see that ln+1 = l1 + nλ and kn+1 = k2 + (n − 1)κ . We then
substitute these recursion coefficients into Eq. (1.64) to obtain the following three-
term recurrence relation:

Pn+1(x) = (x+ l1 + nλ )Pn(x)+ n(k2 +(n− 1)κ)Pn−1(x), n = 0,1,2, . . . (1.71)

with k2 < 0 and κ ≤ 0 from the original restrictions imposed upon Eq. (1.64).
Now, from Eq. (1.70), it follows that

J′(u(t)) = 1−λ t−κt2.

Differentiating both sides of the relation J(u(t)) = t tells us that J′(u(t)) = 1/u′(t).
Thus, our relation directly above becomes

J′(u(t)) = 1−λ t−κt2 =
1

u′(t)
. (1.72)

By setting x = 0, we note that the generating function (1.63) turns into

f (t) =
∞

∑
n=0

Pn(0)tn

n!
.

Thus, multiplying both sides of Eq. (1.71) by tn/n!, setting x = 0 and summing for
n = 0,1,2, . . . lead to the differential equation

f ′(t)
f (t)

=
k2t

1−λ t−κt2 .

Factoring 1−λ t−κt2 as (1−αt)(1−β t) gives

f ′(t)
f (t)

=
k2t

(1−αt)(1−β t)
, α,β ∈ C. (1.73)

We can now exhaust every possible combination of α and β (and incorporate λ
and κ as well), substitute each of them into Eqs. (1.72) and (1.73), and solve the
resulting differential equations. In each case, the solution to Eq. (1.72) will yield
an expression for u(t) and the solution to Eq. (1.73) will yield an expression for
f (t). In substituting these into Eq. (1.63), we achieve a generating function for each
orthogonal set.
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Below, we write the results for each of these aforementioned cases. In each case,
part (i) denotes the solutions to Eqs. (1.72) and (1.73), which respectively yield our
expressions for u(t) and f (t). In part (ii), we write each of the resulting generating
functions in their rescaled form, so they appear as they do in the contemporary
literature.

Case I. The Hermite Polynomials: α = β = 0 (λ = κ = 0)

(i) u(t) = t and f (t) = exp
(
k2t2/2

)

(ii) exp
(
2xt − t2)=

∞

∑
n=0

H(x)
n!

tn

Case II. The Laguerre Polynomials: α = β �= 0

(i) u(t) =
t

1−αt
and f (t) = (1−αt)k2/α2

exp

(
t

1−αt
k2

α

)

(ii) (1− t)−(α+1)exp

(
xt

t − 1

)
=

∞

∑
n=0

L(α)
n (x)tn

Case III. The Charlier Polynomials: α �= 0 and β = 0 (κ = 0)

(i) u(t) =− 1
α

ln(1−αt) and f (t) = (1−αt)−k2/α2
e−k2t/α

(ii) et
(

1− t
α

)x
=

∞

∑
n=0

Cn(x;α)

n!
tn

Case IV. Meixner determined two orthogonal sets that stem from this case. The
general u(t) and f (t) are as follows:

u(t) =
1

α −β
ln

(
1−β t
1−αt

)
and f (t) =

(
(1−β t)1/β

(1−αt)1/α

)k2/(α−β )

.

(a) The Meixner Polynomials: α �= β and α,β ∈ R (κ �= 0)

(
1− t

c

)x
(1− t)−(x+β ) =

∞

∑
n=0

(β )n

n!
M(x;β ,c)tn.

(b) The Meixner–Pollaczek Polynomials: α �= β , α and β complex conjugates
(κ �= 0)
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(1− eiφ t)−λ+ix(1− e−iφ t)−λ−ix =
∞

∑
n=0

P(λ )
n (x;φ)tn.

Remark 1.1. The Krawtchouk polynomials are the third orthogonal set that comes
from Case IV above. These polynomials were not included in either Meixner’s or
Sheffer’s work.

Example 1.5. As a simple example of the scaling process, we see that in Case I
above, u(t) = t and f (t) = exp

(
k2t2/2

)
, so that

f (t)exu(t) = exp

(
xt +

1
2

k2t2
)
.

Thus, we can obtain the generating relation in Case I by simply choosing k2 =−1/2
and rescaling t via t → 2t.

1.5.1 Al-Salam’s Extension of Meixner’s Characterization

To briefly supplement our discussion of Meixner’s analysis, we state that W. A.
Al-Salam extended the results of Meixner, and therefore Sheffer, in [1]. Namely,
he showed that the left-hand side of Eq. (1.63) can be replaced with exp(Q(x, t)),
where Q(x, t) is a polynomial in x with coefficients that are functions of t, as seen
below:

exp(Q(x, t)) =
∞

∑
n=0

Pn(x)
tn

n!
,

Q(x, t) =
k

∑
j=0

x ja( j)(t), k ≥ 1, a( j)(t) =
∞

∑
r=0

a( j)
r tr, j = 0,1,2, . . . ,k

and that the resulting orthogonal polynomials {Pn(x)}∞
n=0 will be the same as those

achieved by Meixner and Sheffer. This showed that the conditions on the generating
function (1.63) can be weakened without yielding new orthogonal sets.
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Chapter 2
Some Applications of the Sheffer A-Type 0
Orthogonal Polynomial Sequences

In this chapter, we address several of the many applications of the classical
orthogonal polynomial sequences. These applications include first-order differential
equations that characterize linear generating functions, additional first-order differ-
ential equations, second-order differential equations (with applications to quantum
mechanics), difference equations and numerical integration (Gaussian Quadrature).
We first develop each of these applications in a general context and then cover
examples using specific Sheffer Sequences, i.e. the Laguerre, Hermite, Charlier,
Meixner, Meixner–Pollaczek, and Krawtchouk polynomials.

2.1 Preliminaries

Throughout this chapter, we make use of each of the following definitions,
terminologies and notations.

Definition 2.1. We always assume that a set of polynomials {Pn(x)}∞
n=0 is such that

each Pn(x) has degree exactly n, which we write as deg(Pn(x)) = n.

Definition 2.2. A set of polynomials {Qn(x)}∞
n=0 is monic if Qn(x)−xn is of degree

at most n− 1 or equivalently if the leading coefficient of each Qn(x) is unitary.

Definition 2.3. The set of polynomials {Pn(x)}∞
n=0 is orthogonal if it satisfies one

of the two weighted inner products below:

Continuous : 〈Pm(x),Pn(x)〉=
∫

Ω1

Pm(x)Pn(x)w(x)dx = αnδm,n, (2.1)

Discrete : 〈Pm(x),Pn(x)〉= ∑
Ω2

Pm(x)Pn(x)w(x) = βnδm,n, (2.2)

where δm,n denotes the Kronecker delta

D.J. Galiffa, On the Higher-Order Sheffer Orthogonal Polynomial Sequences,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-5969-9 2,
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δm,n :=

{
1 if m = n
0 if m �= n,

with Ω1 ⊆ R, Ω2 ⊆ {0,1,2, . . .}, and w(x) > 0 is entitled the weight function. We
also always assume the following normalizations:

∫

Ω1

w(x)dx = 1 and ∑
Ω2

w(x) = 1.

Definition 2.4 (The Three-Term Recurrence Relations). It is a necessary and
sufficient condition that an orthogonal polynomial sequence {Pn(x)}∞

n=0 satisfies
an unrestricted three-term recurrence relation of the form

Pn+1(x) = (Anx+Bn)Pn(x)−CnPn−1(x), AnAn−1Cn > 0,

where P−1(x) = 0 and P0(x) = 1. (2.3)

If Qn(x) represents the monic form of Pn(x), then it is a necessary and sufficient
condition that {Qn(x)}∞

n=0 satisfies the following monic three-term recurrence
relation

Qn+1(x) = (x− bn)Qn(x)− cnQn−1(x), cn > 0,

where Q−1(x) = 0 and Q0(x) = 1. (2.4)

We entitle the conditions AnAn−1Cn > 0 and cn > 0 above positivity conditions.

Definition 2.5. We shall define a generating function for a polynomial sequence
{Pn(x)}∞

n=0 as follows:

∑
Λ

ζnPn(x)t
n = F(x, t),

with Λ ⊆ {0,1,2, . . .} and {ζn}∞
n=0 a sequence in n that is independent of x and t.

Moreover, we say that the function F(x, t) generates the set {Pn(x)}∞
n=0.

Before we give our next definition, we discuss that in 1939 Sheffer [22] devel-
oped a characterization theorem that gave necessary and sufficient conditions for a
polynomial sequence to be A-Type 0 via a linear generating function. Originally,
in 1934, J. Meixner published [15], wherein he essentially determined which
orthogonal sets satisfy the aforementioned A-Type 0 generating function using a
different approach than Sheffer. Meixner basically used the A-Type 0 generating
function as the definition of the A-Type 0 class. In this chapter, we follow Meixner’s
convention. We mention that the interested reader can also refer to [1] for a concise
overview of Meixner’s analysis.

Definition 2.6. A polynomial set {Pn(x)}∞
n=0 is classified as A-Type 0 if

{
a j
}∞

j=0

and
{

h j
}∞

j=1 exist such that
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A(t)exH(t) =
∞

∑
n=0

Pn(x)t
n,

A(t) :=
∞

∑
n=0

antn, a0 = 1 and H(t) :=
∞

∑
n=1

hntn, h1 = 1.

The orthogonal sets that satisfy Definition 2.6, which are often simply called
the Sheffer Sequences, are listed below as defined by their A-Type 0 generating
function.

The Laguerre Polynomials {L(α)
n (x)}∞

n=0

∞

∑
n=0

L(α)
n (x)tn = (1− t)−(α+1)exp

(
xt

t − 1

)
.

The Hermite Polynomials {Hn(x)}∞
n=0

∞

∑
n=0

1
n!

Hn(x)t
n = exp(2xt − t2).

The Charlier Polynomials {Cn(x;a)}∞
n=0

∞

∑
n=0

1
n!

Cn(x;a)tn = et
(

1− t
a

)x
.

The Meixner Polynomials {M(x;β ,c)}∞
n=0

∞

∑
n=0

(β )n

n!
M(x;β ,c)tn =

(
1− t

c

)x
(1− t)−(x+β ).

The Meixner–Pollaczek Polynomials {P(λ )
n (x;φ)}∞

n=0

∞

∑
n=0

P(λ )
n (x;φ)tn = (1− eiφ t)−λ+ix(1− e−iφ t)−λ−ix.

The Krawtchouk Polynomials {Kn(x; p,N)}∞
n=0

N

∑
n=0

C(N,n)Kn(x; p,N)tn =

(
1− 1− p

p
t

)x

(1+ t)N−x,

for x = 0,1,2, . . . ,N, where C(N,n) denotes the binomial coefficient.

Example 2.1. We see that we can write the generating function for the Krawtchouk
polynomials as
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∞

∑
n=0

1
n!

Kn(x; p,N)tn = (1+ t)N exp

(
x ln

(
(p− 1)t+ p

p(1+ t)

))

from which A(t) and H(t) can be readily identified. Similar trivial manipulations
can be made to the generating functions of the remaining five orthogonal sets to
obtain the form A(t)exp(xH(t)).

Now that both orthogonality and the Sheffer Sequences have been defined, we
address the fact that the Laguerre, Hermite, and Meixner–Pollaczek polynomials
satisfy a continuous orthogonality relation of the form (2.1), and the Charlier,
Meixner, and Krawtchouk polynomials satisfy a discrete orthogonality relation of
the form (2.2). For more information refer to [11] and the references therein.

Definition 2.7. We can express each of our polynomials in the generalized hyper-
geometric form (rFs) as seen below:

rFs

(
a1, . . . ,ar

b1, . . . ,bs
z

)
=

∞

∑
k=0

(a1, . . . ,ar)k

(b1, . . . ,bs)k

zk

k!
, (2.5)

where the Pochhammer symbol (a)k is defined as

(a)k := a(a+ 1)(a+ 2)· · ·(a+ k− 1), (a)0 := 1 (2.6)

and
(a1, . . . ,a j)k := (a1)k · · · (a j)k.

The sum (2.5) terminates if one of the numerator parameters is a negative integer,
e.g., if one such parameter is −n, then (2.5) is a finite sum on 0 ≤ k ≤ n.

2.2 Differential Equations Part I: The “Inverse Method”

In this section, we demonstrate how each of the A-Type 0 generating functions
satisfy a first-order differential equation. We entitle our approach for deriving these
differential equations “the inverse method” because of the connection our approach
has to inverse problems. That is, in the study of orthogonal polynomials, the term
inverse problem refers to the problem of obtaining the weight function of an
orthogonal set by using only the corresponding recursion coefficients. For inverse
problems, the generating function that is obtained via a differential equation can
be viewed as a by-product. For additional examples of inverse problems, consider
Chap. 5 of [12] and the references therein.

To begin, we assume that {Pn(x)}∞
n=0 is a polynomial set that satisfies an

unrestricted three-term recurrence relation of the form (2.3). We first multiply
this relation by cntn, where cn is a function in n that is independent of x and t,
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and sum for n = 0,1,2, . . . Then, from the assignment F(t;x) := ∑∞
n=0 cnPn(x)tn,

we obtain a first-order differential equation in t with x regarded as a parameter.
The initial condition for this equation is F(0;x) = 1 via the initial condition
P0(x) = 1 in (2.3). The existence and uniqueness of the solution to this differential
equation is ensured and the solution F(t;x) will be a generating function for the
set {Pn(x)}∞

n=0. To demonstrate the procedure, we work out all of the details for the
Charlier and Laguerre polynomials and sketch the details for the Miexner–Pollaczek
polynomials.

Example 2.2. To begin, we note that from examining the generating function of
the Charlier polynomials, cn as described above must be 1/n!. The three-term
recurrence relation for the Charlier polynomials can be written as

−xCn(x;a) = aCn+1(x;a)− (n+ a)Cn(x;a)+ nCn−1(x;a).

Thus, we multiply both sides of this relation by tn/n! and sum the result for n =
0,1,2, . . .:

−x
∞

∑
n=0

Cn(x;a)
n!

tn =a
∞

∑
n=0

Cn+1(x;a)
n!

tn −
∞

∑
n=1

Cn(x;a)
(n− 1)!

tn

− a
∞

∑
n=0

Cn(x;a)
n!

tn +
∞

∑
n=1

Cn−1(x;a)
(n− 1)!

tn.

Next, we define F := F(t;x,a) := ∑∞
n=0

Cn(x;a)
n! tn and it therefore follows that

Ḟ :=
∂
∂ t

F(t;x,a) =
∞

∑
n=1

Cn(x;a)
(n− 1)!

tn−1.

Then, we see that our relation becomes

Ḟ −
(

1+
x

t − a

)
F = 0,

which is a first-order differential equation with initial condition F(0;x,a) = 1. A
general solution is

F(t;x,a) = c(x;a)et(a− t)x,

where c(x;a) is an arbitrary function of x. From the initial condition, it is immediate
that c(x;a) = a−x and thus, the unique solution turns out to be

F(t;x,a) =
∞

∑
n=0

Cn(x;a)
n!

tn = et
(

1− t
a

)x
,

which is the Sheffer A-Type 0 generating function for the Charlier polynomials.
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Example 2.3. We next consider the Laguerre polynomials, which have the follow-
ing unrestricted three-term recurrence relation:

(n+ 1)L(α)
n+1(x)− (2n+α + 1− x)L(α)

n (x)+ (n+α)L(α)
n−1(x) = 0.

We multiply both sides of this relation by tn (cn ≡ 1) and sum for n = 0,1,2, . . .,
which yields

∞

∑
n=0

(n+ 1)L(α)
n+1(x)t

n − 2
∞

∑
n=1

nL(α)
n (x)tn − (α + 1− x)

∞

∑
n=0

L(α)
n (x)tn

+
∞

∑
n=1

nL(α)
n−1(x)t

n +α
∞

∑
n=0

L(α)
n−1(x)t

n = 0.

We next assign G := G(t;x) := ∑∞
n=0 L(α)

n (x)tn and recall that L(α)
−1 (x) = 0, which

gives

Ġ− 2tĠ− (α + 1− x)G+
∞

∑
n=2

nL(α)
n−1(x)t

n +αtG = 0.

We also observe that

∞

∑
n=1

nL(α)
n−1(x)t

n =
∞

∑
n=2

(n− 1)L(α)
n−1(x)t

n +
∞

∑
n=1

L(α)
n−1(x)t

n = t2Ġ+ tG.

Using all of this, we can put our relation into standard form:

Ġ+

[
x+(α + 1)(t − 1)

1− 2t+ t2

]
G = 0; G(0;x) = 1.

The integrating factor in this equation turns out to be μ = exp
[∫ x+(α+1)(t−1)

1−2t+t2 dt
]

and through partial fraction decomposition, we obtain the general solution

G(t;x) = c(x,α)(t − 1)−(α+1) exp

(
x

t − 1

)
.

Therefore, from using our initial condition to determine c(x,α), we establish the
solution

G(t;x) =
∞

∑
n=0

L(α)
n (x)tn = (t − 1)−(α+1) exp

(
xt

t − 1

)
,

which is the Sheffer A-Type 0 generating function for the Laguerre polynomials.
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Example 2.4. For a more detailed example, we now consider the
Meixner–Pollaczek polynomials. These polynomials have the unrestricted
three-term recurrence relation

(n+1)P(λ )
n+1(x;φ)−2 [xsinφ +(n+λ )cosφ ]P(λ )

n (x;φ)+(n+2λ −1)P(λ )
n−1(x;φ)= 0.

We then multiply this relation by tn, take cn ≡ 1 and sum for n = 0,1,2, . . .. From

letting H := H(t;x,λ ,φ) := ∑∞
n=0 P(λ )

n (x;φ)tn we achieve the differential equation

Ḣ + 2

(
λ (t − cosφ)− xsinφ

1− 2cosφt + t2

)
H = 0; H(0;x,λ ,φ) = 1.

The solution to this equation can be obtained by partial fraction decomposition, and
several manipulations, to be

H(t;x,λ ,φ) =
∞

∑
n=0

P(λ )
n (x;φ)tn = (1− eiφ t)−λ+ix(1− e−iφ t)−λ−ix.

2.3 Differential Equations Part II

We now discuss some additional characterizations of classical orthogonal sets via
differential equations. These results lead to a way to solve the time-independent
Schrödinger equation. Through our development of each characterization, addi-
tional results, definitions and concepts are addressed, which are important unto
themselves. We also supplement our characterizations by covering specific details
for the Laguerre polynomials and discuss how similar results can be achieved for
other A-Type 0 sets. This section is based on much of the analysis conducted in
[3–5, 7, 9, 16, 21, 23]. We begin with an important fundamental condition.

Lemma 2.1. An Equivalent Orthogonality Condition: The set {Pn(x)}∞
n=0 is

orthogonal with respect to the weight function w(x)> 0 on Ω1 if and only if

∫

Ω1

x jPn(x)w(x)dx = 0, ∀ j = 0,1,2, . . . ,n− 1. (2.7)

Proof. (⇒) Assume (2.7) holds. It is clear that there exist constants
{

ηm, j
}

such
that

Pm(x) =
m

∑
j=0

ηm, jx
j.

We first assume that m < n, in which case we have
∫

Ω1

Pm(x)Pn(x)w(x)dx =
m

∑
j=0

ηm, j

∫

Ω1

x jPn(x)w(x)dx = 0,
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because j ≤ m < n. If m > n, we can simply interchange m with n in the logic used
above. Hence, we have shown that given (2.7) it necessarily follows that

∫

Ω1

Pm(x)Pn(x)w(x)dx = 0, for m �= n,

and therefore {Pn(x)}∞
n=0 is an orthogonal set with respect to the weight function

w(x)> 0 on Ωi.
(⇐) Assume the orthogonality relation directly above is true. Then, there exist
constants

{
η̃m, j
}

such that

x j =
j

∑
m=0

η̃m, jPm(x).

Therefore, for every j ∈ {0,1, . . . ,n− 1}, we know that

∫

Ω1

x jPn(x)w(x)dx =
j

∑
m=0

η̃m, j

∫

Ω1

Pm(x)Pn(x)w(x)dx = 0,

because m ≤ j < n, i.e., since m �= n. 
�
We will also need the following result.

Lemma 2.2. With αn as in (2.1) and cn as in (2.4), we have

αn =
n

∏
k=1

ck.

Proof. We first multiply both sides of (2.4) by Pn−1(x)w(x) and integrate over Ω1,
leading to

∫

Ω1

Pn+1(x)Pn−1(x)w(x)dx =
∫

Ω1

xPn(x)Pn−1(x)w(x)dx

− bn

∫

Ω1

Pn(x)Pn−1(x)w(x)dx

− cn

∫

Ω1

Pn−1(x)Pn−1(x)w(x)dx.

From the orthogonality relation (2.1), we observe that our relation directly above
becomes

cnαn−1 =
∫

Ω1

xPn(x)Pn−1(x)w(x)dx.

Since our polynomial sequence {Pn(x)}∞
n=0 is monic, we have
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cnαn−1 =

∫

Ω1

Pn(x)
(
Pn(x)+O

(
xn−1))w(x)dx

=

∫

Ω1

P2
n (x)w(x)dx

= αn,

which follows from Lemma 2.1 and (2.1). Thus, by iterating cnαn−1 = αn, with
α0 = 1 via the normalization in Definition 2.3, we obtain our result. 
�
Theorem 2.1 (The Christoffel–Darboux Identity). For N > 0 we have

N−1

∑
k=0

1
αk

Pk(x)Pk(y) =
PN(x)PN−1(y)−PN(y)PN−1(x)

αN−1(x− y)
. (2.8)

Proof. After replacing Qn(x) with Pn(x) in (2.4), we multiply both sides of the
resulting relation by Pn(y), leading to

Pn+1(x)Pn(y) = xPn(x)Pn(y)− bnPn(x)Pn(y)− cnPn−1(x)Pn(y). (2.9)

We then exchange x with y in (2.9) and subtract this result from (2.9), which gives

Pn+1(x)Pn(y)−Pn+1(y)Pn(x)

= (x− y)Pn(x)Pn(y)+ cn (Pn(x)Pn−1(y)−Pn(y)Pn−1(x)) . (2.10)

We then define the following operator:

Δ x,y
k := Pk(x)Pk−1(y)−Pk(y)Pk−1(x)

and we see that (2.10) becomes

(x− y)Pn(x)Pn(y) = Δ x,y
n+1 − cnΔ x,y

n .

Lastly, we divide both sides of the equation above by αn and utilize Lemma 2.2,
which yields

1
αn

Pn(x)Pn(y) =
1

x− y

[
1

αn
Δ x,y

n+1 −
1

αn−1
Δ x,y

n

]
.

Summing both sides of this identity from 0 to N −1, we see that the right-hand side
becomes a telescoping series that converges to the right-hand side of (2.8). 
�

The limiting case y → x of (2.8) is readily achieved via L’Hôpital’s Rule to be

N−1

∑
k=0

1
αk

P2
k (x) =

P′
N(x)PN−1(x)−PN(x)P′

N−1(x)

αN−1
. (2.11)
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The Christoffel–Darboux Identity has many general usages and will be needed
throughout this chapter.

We next write w(x) as in (2.1) as

w(x) = exp(−v(x)), (2.12)

where v = v(x) is a twice continuously differentiable function on Ω1. For this
section, we also use the orthonormal form {pn(x)}∞

n=0 of {Pn(x)}∞
n=0. This definition

is as follows.

Definition 2.8 (Orthonormality). It is a necessary and sufficient condition that an
orthogonal polynomial sequence {pn(x)}∞

n=0 satisfies an orthonormal three-term
recurrence relation of the form

xpn(x) = an+1pn+1(x)+ bn pn(x)+ an pn−1(x),

where p−1(x) = 0 and p0(x) = 1. (2.13)

For cn as in (2.4) we have (see [9]):

an =
√

cn. (2.14)

Therefore, we can of course equivalently write (2.13) as

xpn(x) =
√

cn+1 pn+1(x)+ bn pn(x)+
√

cn pn−1(x).

The orthonormal form pn(x) can be expressed in terms of Pn(x) by

pn(x) =
1√
αn

Pn(x). (2.15)

This leads to the (continuous) orthonormal relation

〈pm(x), pn(x)〉=
∫

Ω1

pm(x)pn(x)w(x)dx = δm,n.

Remark 2.1. We do not call upon a discrete orthonormal relation in this section.

We now have the following.

Theorem 2.2. If v(x) is as defined in (2.12) and {pn(x)}∞
n=0 is an orthonormal set

as defined by Definition 2.8, then pn(x) satisfies the differential equation

p′n(x) =−Bn(x)pn(x)+An(x)pn−1(x), (2.16)

with An(x) and Bn(x) as defined as
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An(x) = an

(
p2

n(y)w(y)
y− x

∣∣∣∣
Ω1

+

∫

Ω1

v′(x)− v′(y)
x− y

p2
n(y)w(y)dy

)
, (2.17)

Bn(x) = an

(
pn(y)pn−1(y)w(y)

y− x

∣∣∣∣
Ω1

+

∫

Ω1

v′(x)− v′(y)
x− y

pn(y)pn−1(y)w(y)dy

)
,

(2.18)

when the above integrals and boundary terms exist.

Proof. Since deg(p′n(x)) = n− 1, there exist constants
{

cn,k
}

such that

p′n(x) =
n−1

∑
k=0

cn,k pk(x). (2.19)

We then multiply both sides of (2.19) by pm(x)w(x) and integrate over Ω1:

∫

Ω1

p′n(x)pm(x)w(x)dx =
n−1

∑
k=0

cn,k

∫

Ω1

pk(x)pm(x)w(x)dx.

We then observe that the right-hand side is nonzero if and only if m = k, in which
case we have

cn,k =

∫

Ω1

p′n(y)pk(y)w(y)dy

after changing our integration variable to y. Then, using integration by parts (with
the substitution u = pk(y)w(y)), we obtain

cn,k =

∫

Ω1

p′n(y)pk(y)w(y)dy = pn(y)pk(y)w(y)|Ω1

−
∫

Ω1

pn(y)
(

pk(y)w
′(y)+ p′k(y)w(y)

)
dy.

Via (2.12) we have w′(y) =−v′(y)w(y) and therefore

cn,k = pn(y)pk(y)w(y)|Ω1
−
∫

Ω1

pn(y)
(

p′k(y)− pk(y)v
′(y)
)

w(y)dy.

From Lemma 2.1, the integral with the p′k(y)-term is zero. This finally gives us

cn,k = pn(y)pk(y)w(y)|Ω1
+

∫

Ω1

pn(y)pk(y)v
′(y)w(y)dy.

From substituting this into (2.19) we have
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p′n(x) = w(y)pn(y)
n−1

∑
k=0

pk(x)pk(y)

∣∣∣∣∣
Ω1

+

∫

Ω1

pn(y)

(
n−1

∑
k=0

pk(x)pk(y)

)
v′(y)w(y)dy.

Now notice, via Lemma 2.1, that the integral directly above is zero if v′(y) is
replaced by v′(x). Thus, we can replace v′(y) with v′(y)− v′(x), in which case we
see that

p′n(x) = w(y)pn(y)
n−1

∑
k=0

pk(x)pk(y)

∣∣∣∣∣
Ω1

+
∫

Ω1

pn(y)

(
n−1

∑
k=0

pk(x)pk(y)

)
(
v′(y)− v′(x)

)
w(y)dy.

Next, via (2.15), we take Pn(x) =
√

αn pn(x) and use the Christoffel–Darboux
Identity (Theorem 2.1) to evaluate each of the sums in the above equation. With
some manipulations, we obtain (2.16). 
�

Our next result relates A(x) and B(x) as in Theorem 2.2 and also plays a key role
in our application to quantum mechanics.

Lemma 2.3. The coefficients An(x) and Bn(x), as respectively defined in (2.17) and
(2.18), satisfy the relation

Bn(x)+Bn+1(x) =
x− bn

an
An(x)− v′(x),

with w(x) as defined in (2.12) and w(x) vanishing at the boundary points of Ω1.

Proof. Assuming that w(x) vanishes at the boundary points of Ω1, from (2.18) we
have

Bn(x)+Bn+1(x) = an

∫

Ω1

v′(x)− v′(y)
x− y

pn(y)pn−1(y)w(y)dy

+ an+1

∫

Ω1

v′(x)− v′(y)
x− y

pn+1(y)pn(y)w(y)dy, (2.20)

which can be written as

Bn(x)+Bn+1(x) =
∫

Ω1

pn(y)
v′(x)− v′(y)

x− y
(an+1 pn+1(y)+ an pn−1(y))w(y)dy.

(2.21)

From (2.13), it follows that an+1 pn+1(y) + an pn−1(y) = (y − bn)pn(y) and we
therefore obtain
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Bn(x)+Bn+1(x) =
∫

Ω1

v′(x)− v′(y)
x− y

(y− bn) p2
n(y)w(y)dy. (2.22)

We then take y− bn = (y− x)+ (x− bn) and see that the above integral becomes

(x− bn)

∫

Ω1

v′(x)− v′(y)
x− y

p2
n(y)w(y)dy−

∫

Ω1

(v′(x)− v′(y))p2
n(y)w(y)dy

= (x− bn)
An(x)

an
+

∫

Ω1

v′(y)p2
n(y)w(y)dy− v′(x)

∫

Ω1

p2
n(y)w(y)dy

=
x− bn

an
An(x)+

∫

Ω1

v′(y)p2
n(y)w(y)dy− v′(x),

where we have used (2.17) and the orthonormality of {pn(x)}∞
n=0. From using

integration by parts (with the substitution u = v′(x)) and orthonormality, we see
that ∫

Ω1

v′(y)p2
n(y)w(y)dy = v′(x)

∣∣
Ω1

−
∫

Ω1

v′′(y)dy = 0.

Hence, we have

Bn(x)+Bn+1(x) =
x− bn

an
An(x)− v′(x). 
�

Theorem 2.3. If w(x) is as defined in (2.12) and {pn(x)}∞
n=0 is an orthonormal set

as defined by Definition 2.8, then {pn(x)}∞
n=0 satisfies the (factored) second-order

differential equation

L2,n
x

(
L1,n

x pn(x)
An(x)

)
=

an

an−1
An−1(x)pn(x), (2.23)

with the differential operators L1,n
x and L2,n

x defined as

L1,n
x :=

d
dx

+Bn(x) (2.24)

L2,n
x :=− d

dx
+Bn(x)+ v′(x). (2.25)

Proof. In light of (2.24), we can write (2.16) as

L1,n
x pn(x) = An(x)pn−1(x). (2.26)

Next, we define the weighted inner product

〈pm(x), pn(x)〉w :=
∫

Ω1

pm(x)pn(x)w(x)dx
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and utilize the Hilbert Space where the 〈pn, pn〉w is finite and pn(x)
√

w(x) is zero

at the end points of Ω1 (finite or infinite). Thus, L2,n
x =

(
L1,n

x

)∗
.

Using (2.16) and (2.13) leads to the adjoint equation

(
− d

dx
+Bn(x)+ v′(x)

)
pn−1(x) =

an

an−1
An−1(x)pn(x). (2.27)

Thus, we can use (2.26) to readily obtain

L1,n
x pn(x)
An(x)

= pn−1(x)

and with (2.25) we can rewrite (2.27) as

L2,n
x

(
L1,n

x pn(x)
An(x)

)
=

an

an−1
An−1(x)pn(x)

and the theorem is established. 
�
We additionally have an equivalent form for (2.23), which also emphasizes the

fact that it is a second-order equation.

Corollary 2.1. The differential equation (2.23) can equivalently be expressed as

p′′n(x)+Cn(x)p′n(x)+Dn(x)pn(x) = 0, (2.28)

where

Cn(x) :=−v′(x)− A′
n(x)

An(x)
, (2.29)

Dn(x) := An(x)
d
dx

(
Bn(x)
An(x)

)
−Bn(x)

(
v′(x)+Bn(x)

)
+

an

an−1
An(x)An−1(x). (2.30)

Proof. By expanding the left-hand side of (2.23) and using some manipulations, we
achieve (2.28). 
�
Remark 2.2. We see that (2.24) is in fact a degree-lowering operator analogous
to the ones used in Sheffer’s analysis [22]. In contrast, we also note that (2.25)
is a degree-raising operator or equivalently, a ladder operator. What has been
shown through Corollary 2.1 is that every classical orthogonal polynomial sequence
(written in orthonormal form) is a solution to a second-order linear differential
equation or equivalently possesses a degree-raising operator.

In addition, classical orthogonal polynomials have an important connection to
quantum mechanics via Theorem 2.3 (and Corollary 2.1). Namely, we can now show
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that the solution to the time-independent Schrödinger equation can be expressed in
terms of {pn(x)}∞

n=0 if (2.23), or equivalently (2.28), is satisfied.

Theorem 2.4. The second-order linear differential equation (2.23), or equivalently
(2.28), can be written in the Schrödinger form:

Ψ ′′
n (x)+V(x;n)Ψn(x) = 0, (2.31)

where

Ψn(x) :=
exp(−v(x)/2)√

An(x)
pn(x) (2.32)

and

V (x;n) = An(x)
d
dx

(
Bn(x)
An(x)

)
−Bn(x)

(
v′(x)+Bn(x)

)
+

an

an−1
An(x)An−1(x)

+
1
2

v′′(x)+
1
2

d
dx

(
A′

n(x)
An(x)

)
− 1

4

(
v′(x)+

A′
n(x)

An(x)

)2

. (2.33)

Proof. Substituting Ψn(x) and V (x;n) into the left-hand side of (2.31) and using
manipulations, we see that the resulting expression vanishes. 
�

In light of Theorem 2.4, we have the following discussion. For a particle confined
to one dimension, the time-independent Schrödinger equation is written in the form

ψ ′′(x)+
2m

h̄2 (E −U(x))ψ(x) = 0, (2.34)

where ψ(x) represents the wave function, m the mass of a particle, h̄ := h/(2π),
where h is Plank’s constant, E the total energy (constant), and U(x) the potential
energy. This equation is attributed to Erwin Schrödinger, who formulated it in late
1925 and published it in 1926, e.g., [18, 19]. We discuss this equation further.

To begin, the wave function ψ(x) itself is not directly related to any actual
physical phenomena. In addition, ψ(x) may be a real- or complex-valued function.
However, the square of its modulus (absolute magnitude) |ψ(x)|2 when evaluated
at a certain location in space is directly proportional to the probability of locating a
particle in the same location. The quantity |ψ(x)|2 is referred to as the probability
density. In fact, from knowing ψ(x) explicitly, the linear momentum, the energy,
and other physical quantities of a particle can be inferred. We also mention that the
entire field of quantum mechanics can basically be summarized as determining ψ(x)
for a given particle when its range of motion is restricted by potential fields.

The wave function ψ(x) must adhere to certain physical restraints. One, since
|ψ(x)|2 is directly proportional to the probability, say P, of locating a particle
modeled by ψ(x), it follows that the following must hold:

∫ ∞

−∞
|ψ(x)|2dx =

∫ ∞

−∞
Pdx = 1.
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Intuitively, this means that if the particle exists, it must be somewhere in space. The
above relation is a normalization. The probability that the particle will be discovered
in a certain region of space, say [a,b]⊆ R, is then given by

P[a,b] :=
∫ b

a
|ψ(x)|2dx ∈ [0,1].

Now that the wave function ψ(x) is better understood, we can discuss our
equation at hand. By letting V (x) := E −U(x) we can of course equivalently write
(2.34) as

ψ ′′(x)+
2m
h̄

V (x)ψ(x) = 0.

From this relation, it is clear why (2.31) is named as such. Moreover, in essence, the
time-independent Schrödinger equation describes how the wave function evolves
over space. Our relation (2.34), and therefore (2.31), is useful in many physical
situations when the potential energy of a particle does not depend upon time.

To complete our discussion, it is noteworthy to mention that the time-dependent
Schrödinger equation can be written as

ih̄
∂
∂ t

ψ(x, t) =− h̄2

2m
∂ 2

∂x2 ψ(x, t)+U(x)ψ(x, t).

Furthermore, Schrödinger basically established his equation(s) based on thought
experiments. In regard to his development, Richard Feynman said:

Where did we get that equation from? Nowhere. It is not possible to derive it from anything
you know. It came out of the mind of Schrödinger.

For more details related to the Schrödinger equations and quantum mechanics, refer
to [6, 20].

Next, we have another relationship between An(x) and Bn(x), which we use
specifically in Example 2.1.

Theorem 2.5. The coefficients An(x) and Bn(x) as respectively in (2.17) and (2.18)
satisfy

Bn+1(x)−Bn(x) =
an+1An+1(x)

x− bn
− a2

nAn−1(x)
an−1(x− bn)

− 1
x− bn

. (2.35)

Proof. Refer to [14]. 
�
We note that (2.35) is referred to as the string equation.

We use the following fundamental special function in what follows.

Definition 2.9. The gamma function, Γ (z), is defined as

Γ (z) :=
∫ ∞

0
τz−1e−τ dτ, Re(z)> 0.
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Also, Γ (z) satisfies the functional equation

Γ (z+ 1) = zΓ (z), (2.36)

which in fact extends Γ (z) to a meromorphic function with poles at all of the non-
positive integers. See Chap. 2 of [17] for an extensive development of the gamma
function.

From (2.36) and (2.6), we see that

(c)n =
Γ (c+ n)

Γ (c)
. (2.37)

Example 2.5. We now discuss the details of how a particular Sheffer A-Type
0 orthogonal set solves the Schrödinger Form (2.31). We first note that each
classical orthogonal set yields a unique set of functions {An(x),Bn(x)}, which are
of course dependent on the polynomials themselves, the corresponding interval of
orthogonality Ω1, the weight function w(x) [and therefore v(x) as in (2.12)] as
well as the recursion coefficient an. Therefore, each of the three Sheffer A-Type
0 sets with continuous orthogonality relations (Hermite, Laguerre and Meixner–
Pollaczek) has a unique wave function Ψn(x) and consequently a unique kinetic
energy function V (x;n).

In general, we must first write our orthogonal set in orthonormal form. Then we
must find an, v(x), An(x), and Bn(x). For our particular example, we use the Laguerre
polynomials, which are defined as

L(α)
n (x) :=

(α + 1)n

n!

n

∑
k=0

(−n)k

(α + 1)k

xk

k!
, α >−1 (2.38)

and have the following (continuous) orthogonality relation

∫ ∞

0
L(α)

m (x)L(α)
n (x)xα e−xdx =

Γ (α + 1+ n)
n!

δm,n.

The restriction on α is essential, as {L(α)
n (x)}∞

n=0 is undefined for all α ≤ −1. It is
worth noting that taking into account that (α +1)n/(α +1)k = (α +k+1)n−k leads
to the equivalent form

L(α)
n (x) =

1
n!

n

∑
k=0

(−n)k

k!
(α + k+ 1)n−kx

k.

Moreover, using this relationship, we can define the Laguerre polynomials for all
α ∈R.

For this application, we first assume α > 0. We begin by putting our orthogonal-
ity relation in orthonormal form using (2.37) on Γ (α + 1+ n):
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∫ ∞

0
L(α)

m (x)L(α)
n (x)

n!
(α + 1)n

xα e−x

Γ (α + 1)
dx = δm,n. (2.39)

This enables us to define

pn(x) = (−1)n

√
n!

(α + 1)n
L(α)

n (x) (2.40)

and

w(x) =
xα e−x

Γ (α + 1)
. (2.41)

We first determine An(x) as in (2.17) and begin by evaluating the boundary
conditions, noting that the interval of orthogonality for the Laguerre polynomials
is Ω1 = [0,∞). We readily obtain

lim
b→∞

p2
n(y)w(y)

y− x

∣∣∣∣
y=b

y=0
=

n!
Γ (α + 1)(α + 1)n

lim
b→∞

bα
[
[L(α)

n (b)
]2

eb(b− x)
− 0 = 0.

Next, we see from (2.41) that

w(x) = exp

(
− ln

(
exΓ (α + 1)

xα

))

and therefore

v(x) = ln

(
exΓ (α + 1)

xα

)
(2.42)

⇒ v′(x) =
x−α

x
.

Moreover,

v′(x)− v′(y)
x− y

=
α
xy

.

Putting all of this together, we thus far have

An(x) = α
an

x

∫ ∞

0
p2

n(y)
yα−1e−y

Γ (α + 1)
dy.

We evaluate the above integral using integration by parts (with the substitution u =
p2

n(y)e
−y), which leads to
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An(x) =
an

x

(
lim
b→∞

p2
n(y)y

α

ey

∣∣∣∣
b

0
+

∫ ∞

0
p2

n(y)
yαe−y

Γ (α + 1)
dy

− 2
∫ ∞

0
pn(y)p′n(y)

yα e−y

Γ (α + 1)
dy

)
.

In the result directly above, it is clear that the boundary conditions equal zero. The
middle integral is equal to 1 via the orthonormality relation in Definition 2.8. Using
the fact that deg(p′n(y)) = n− 1 and Lemma 2.1, it follows that the last integral is
equal to zero. This results in

An(x) =
an

x
. (2.43)

We derive Bn(x) in a similar fashion. In this case, it is also immediate that the
boundary conditions for (2.18) are zero as well. Therefore, we have the following

Bn(x) = α
an

x

∫ ∞

0
pn(y)pn−1(y)

yα−1e−y

Γ (α + 1)
dy.

We use integration by parts on the above integral (with the substitution u =
pn(y)pn−1(y)e−y) and again call upon Lemma 2.1 to achieve

Bn(x) =−an

x

∫ ∞

0
pn−1(y)p′n(y)

yα e−y

Γ (α + 1)
dy. (2.44)

In order to fully evaluate (2.44), we momentarily digress. We assume that
{Qn(x)}∞

n=0 defines a generic orthogonal set, with Qn(x) = qn,nxn +O(xn−1). Then,
using Lemma 2.1, we know that
∫

Ω
Q2

n(y)w(y)dy =
∫

Ω
Qn(y)[qn,nyn +O(yn−1)]w(y)dx = qn,n

∫

Ω
Qn(y)y

nw(y)dy.

Also, from directly evaluating (2.13), it is clear that the coefficient of yn in
pn(y) is (a1 · · ·an)

−1. Thus, using this fact, our simple relation directly above and
orthonormality, we have

an

∫ ∞

0
pn−1(y)p′n(y)

yα e−y

Γ (α + 1)
dy = an

∫ ∞

0
pn−1(y)

[
nyn−1

a1 · · ·an

]
yα e−y

Γ (α + 1)
dy

= n
∫ ∞

0
pn−1(y)

[
yn−1

a1 · · ·an−1

]
yα e−y

Γ (α + 1)
dy

= n
∫ ∞

0
p2

n−1(y)
yα e−y

Γ (α + 1)
dy

= n
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and we conclude that

Bn(x) =
−n
x
. (2.45)

To get a complete expression for An(x), we must determine the recursion coefficient
an, which of course can be done by using (2.14) and taking into account that the
monic three-term recurrence relation for the Laguerre polynomials is

xQn(x) = Qn+1(x)+ (2n+α+ 1)Qn(x)+ n(n+α)Qn−1(x),

Qn(x) := (−1)nn!L(α)
n (x).

As it turns out, from our analysis above, we can also obtain an. We first substitute
our relations (2.43) and (2.45) into the string equation (2.35), which yields

a2
n+1 − a2

n = bn. (2.46)

Using Lemma 2.3 in the same way, we get

bn = α + 2n+ 1. (2.47)

Hence, (2.46) and (2.47) imply that

an =
√

n(n+α), (2.48)

which follows since n(n+α) is nonnegative. Therefore, we have

An(x) =

√
n(n+α)

x
. (2.49)

Furthermore, we can disregard the restriction α > 0, as the above relation is clearly
valid for α >−1.

To evaluate the wave function Ψn(x) in (2.32), we first note that

exp(−v(x)/2) =
xα/2

ex/2(Γ (α + 1))1/2
.

Using this relation and (2.49) we have

Ψn(x) =
x

α+1
2 e−x/2 pn(x)

n1/4(n+α)1/4(Γ (α + 1))1/2
. (2.50)

Now, we substitute (2.49), (2.45), (2.48) and (2.42) into (2.33) and use manipula-
tions to obtain the kinetic energy function
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Fig. 2.1 Ψ2(x) for α = 0

V (x;n) =
−x2 + 2(α + 2n+ 1)x+ 1−α2

4x2 . (2.51)

Lastly, as a concrete example we take α = 0 and n= 2, which gives the following
wave and kinetic energy functions:

Ψ2(x) =
1
2

√
xe−x

2
p2(x) and V (x;2) =

−x2 + 10x+ 1
4x2 .

The graph of Ψ2(x) is displayed in Fig. 2.1.
We also display the graph of the kinetic energy function V (x;2) in Fig. 2.2.

For both of these plots we used Mathematica R©.

Example 2.6. The motivated reader can show that for the Hermite polynomials,
v(x) = x2, An(x) =

√
2n and Bn(x) = 0 and determineΨn(x) and V (x;n) accordingly.

Next, we show how (2.16) of Theorem 2.2 and (2.28) of Corollary 2.1 can be
applied to a specific Sheffer A-Type 0 set.

Example 2.7. Now that we have An(x) and Bn(x) for the Laguerre polynomials via
Example 2.5, we can utilize these results in determining the specific differential
equations (2.16) and (2.23) [and therefore (2.28)] that are satisfied by this particular
A-Type 0 orthogonal set. Using pn(x) in (2.40), as well as (2.17) and (2.18) for An(x)
and Bn(x), respectively, we see that (2.16) becomes
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Fig. 2.2 V (x; 2) for α = 0

d
dx

L(α)
n (x) =

n
x

L(α)
n (x)− α + n

x
L(α)

n−1(x),

since (α + 1)n/(α + 1)n−1 = α + n. Similarly, (2.23) and (2.28) take on the form

x
d2

dx2 L(α)
n (x)+ (1+α + x)

d
dx

L(α)
n (x)+ nL(α)

n (x) = 0.

2.4 Difference Equations

In Sects. 2.2 and 2.3, we gave examples of how continuous orthogonal polynomials
are important in differential equations. Here, we show how discrete orthogonal
polynomials play an important role in difference equations. In particular, what
follows is a discrete analogue of the characterizations of Sect. 2.3 and is essentially
based on [13].

To begin, we assume that {pn(x)}∞
n=0 satisfies a discrete orthogonality relation

as in (2.2). We expand on this assumption for this section by assuming the discrete
weight function w(x) is supported on the set {s,s+ 1, . . . , t} ⊂ R, where s is a finite
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number, but t may be either finite or infinite. We then write the orthogonality relation
(2.2) as

t

∑
j=s

pm( j)pn( j)w( j) = βnδm,n, w(s− 1) = w(t + 1) = 0. (2.52)

In order to develop our analogues, we must find a discrete version of v(x) as in
(2.12). We call this analogue u(x), which is defined as

u(x) :=
w(x− 1)−w(x)

w(x)
. (2.53)

The discrete analogue of the Christoffel–Darboux Identity (Theorem 2.1) is

n−1

∑
k=0

pk(x)pk(y)
βn

=
γn−1

γnβn

(
pn(x)pn−1(y)− pn(y)pn−1(x)

x− y

)
, (2.54)

where γn denotes the leading coefficient of pn(x)—we use this notation throughout
this entire section.

We now state the analogue of Theorem 2.2.

Theorem 2.6. Let {pn(x)}∞
n=0 satisfy (2.52). Then, we have

Δ pn(x) =−Bn(x)pn(x)+An(x)pn−1(x), (2.55)

where the linear difference operator Δ is defined as

Δ f (x) := f (x+ 1)− f (x),

with

An(x) =
γn−1

γnβn−1

(
pn(t + 1)pn(t)

t − x
w(t)+

t

∑
j=s

pn( j)pn( j− 1)
u(x+ 1)− u( j)

x+ 1− j
w( j)

)

(2.56)

and

Bn(x) =
γn−1

γnβn−1

(
pn(t + 1)pn−1(t)

t − x
w(t)

+
t

∑
j=s

pn( j)pn−1( j− 1)
u(x+ 1)− u( j)

x+ 1− j
w( j)

)
. (2.57)

The s and t-values are as in (2.52).
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Proof. The proof is similar to that of Theorem 2.2 and is left to the reader as an
exercise. 
�

Notice that in Theorem 2.6, {pn(x)}∞
n=0 was only assumed to be an orthogonal

set with respect to the discrete weight function w(x). If it is further assumed that
{pn(x)}∞

n=0 is an orthonormal set, i.e., βn ≡ 1, then it satisfies (2.13). Consequently,
γn−1/γn = an, and An(x) and Bn(x) as respectively in (2.56) and (2.57) take on the
form

An(x) = an

(
pn(t + 1)pn(t)

t − x
w(t)+

t

∑
j=s

pn( j)pn( j− 1)
u(x+ 1)− u( j)

x+ 1− j
w( j)

)
(2.58)

and

Bn(x) = an

(
pn(t + 1)pn−1(t)

t − x
w(t)+

t

∑
j=s

pn( j)pn−1( j− 1)
u(x+ 1)− u( j)

x+ 1− j
w( j)

)
.

(2.59)

To demonstrate the applicability of (2.55) to the discrete Sheffer A-Type 0 orthog-
onal sets, we consider the Meixner polynomials in our next example. To complete
this example, we need the very useful Chu-Vandermonde Sum, which is

2F1

(−n,b
c

1

)
=

(c− b)n

(c)n
.

It is worthwhile to note that the Chu-Vandermonde Sum can be obtained as the
terminating version of the Gauss Sum:

2F1

(
a,b
c

1

)
=

Γ (c)Γ (c− a− b)
Γ (c− a)Γ (c− b)

, Re(c− a− b)> 0.

Namely, if in the Gauss Sum we replace a with −n, we are left with the
Chu-Vandermonde Sum. Refer to Chap. 4 of [17] and Chap. 1 of [25] for more
information on these and other similar sums.

Example 2.8. Here, we sketch the details of deriving the coefficients An(x) and
Bn(x) in (2.55) for the Meixner polynomials. These polynomials can be defined
as

Mn(x;β ,c) := 2F1

(−n,−x
β

1− 1
c

)
, (2.60)

where x = 0,1,2, . . .. The weight function for the Meixner polynomials is

w(x) =
(β )xcx

x!
, x = 0,1,2, . . . (2.61)
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via the discrete orthogonality relation

∞

∑
x=0

Mm(x;β ;c)Mn(x;β ;c)
(β )xcx

x!
=

n!(1− c)−β

cn(β )n
δm,n. (2.62)

Then, it follows from (2.53) that

u(x) =
x

(β + x− 1)c
− 1.

Next, we consider q(x) such that deg(q(x))≤ n and take c to be an arbitrary constant.
Then, from our discrete analogue of the Christoffel–Darboux Identity (2.54), we
observe that

t

∑
j=s

pn( j)q( j)
j− c

w( j) = q(c)
t

∑
j=s

pn( j)
j− c

w( j), (2.63)

which follows from (2.52). Using (2.63), as well as An(x) in (2.56) and the Meixner
weight function (2.61), it can be shown after several manipulations that

An(x) =
γn−1

γnβn−1

pn(−β )
(β + x)c

∞

∑
k=0

(β − 1)kck

k!
pn(k).

Using the definition of the Meixner polynomials (2.60), it can also be shown further
that

An(x) =
γn−1

γnβn−1

pn(−β )
(β + x)c

n

∑
j=0

(−n) j

j!(β ) j

(
1− 1

c

) j

(−1) j
∞

∑
k= j

(β − 1)kck

(k− j)!
.

For the next step, we call upon the binomial theorem, which we write using the
Pochhammer symbol:

∞

∑
n=0

(a)n

n!
zn = (1− z)−a,

where, in general, we must require |z| < 1 if a is not a negative integer. We apply
the binomial theorem to the right most sum in our last manipulation for An(x) and
also utilize the Chu-Vandermonde Sum to obtain

An(x) =
γn−1

γnβn−1

pn(−β )(1− c)1−β n!
c(β + x)(β )n

.

The binomial theorem and (2.60) lead to

pn(−β ) = 1F0

(−n
− 1− 1

c

)
=

1
cn . (2.64)
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Then, from (2.60) and (2.62), we obtain

γn =
1

(β )n

(
1− 1

c

)n

and βn =
n!

cn(1− c)β (β )n
.

By using (2.64) and the expressions for γn and βn above to find γn−1/γn and βn−1,
we eventually have

An(x) =
−n

c(β + x)
.

To derive the expression for Bn(x), we use (2.61), (2.56), (2.57), (2.63) and (2.64)
to arrive at

Bn(x) =
pn−1(−β )
pn(−β )

An(x) =
−n

β + x
.

Collecting all of this analysis, we establish the following theorem.

Theorem 2.7. With respect to the operator Δ as defined in Theorem 2.6, the
Meixner polynomials satisfy the first-order difference equation

ΔMn(x;β ,c) =
(

n
β + x

)
Mn(x;β ,c)−

(
n

c(β + x)

)
Mn−1(x;β ,c).

Proof. See all of the above analysis. 
�

2.5 Gaussian Quadrature

Informally, the idea behind Gaussian Quadrature is to approximate the integral of a
given function, say f (x), multiplied by a weight function, with a linear combination
of f (x) at known x-values. That is given f (x), we want to obtain

∫

R

f (x)w(x)dx ≈ c1 f (x1)+ c2 f (x2)+ · · ·+ cN f (xN).

Of course, one would need to develop a method to accomplish this, i.e., how to
specifically determine the ci-terms, the N-value, and the set {xk}N

k=1. The essence of
such a method was essentially devised by Carl F. Gauss.

As we have mentioned, this introduction is of course very informal, but should
give a clear idea of our motivation. In this section, we show how Gaussian
Quadrature is connected to classical orthogonal polynomial sequences and give a
specific example using the Hermite A-Type 0 polynomials. To begin, we must first
discuss two important ideas that are necessary in the construction and proof of the
main theorem of this section: the Lagrange Interpolation Polynomial and the nature
of the zeros of classical monic orthogonal polynomials.
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Definition 2.10. For a set of distinct points {x1, . . . ,xn}, called nodes, the La-
grange Fundamental Polynomial, which we denote lk(x), is

lk(x) :=
n

∏
j=1, j �=k

(x− x j)

(xk − x j)
=

Sn(x)
S′n(xk)(x− xk)

, k ∈ {1, . . . ,n} ,

with

Sn(x) =
n

∏
j=1

(x− x j).

As an immediate consequence, the Lagrange Interpolation Polynomial of a
function f (x) at the nodes {x1, . . . ,xn} is the unique polynomial L(x) such that
deg(L(x)) = n− 1 and f (x j) = L(x j) is satisfied. In addition, it is also immediate
that L(x) can be written as

L(x) =
n

∑
k=1

lk(x) f (xk) =
n

∑
k=1

f (xk)
Sn(x)

S′n(xk)(x− xk)
. (2.65)

We emphasize that Lagrange Interpolation Polynomials do not form an orthogonal
set and are not of any Sheffer Type. Nonetheless, as we discussed, they are necessary
in the construction of the main result of this section. The interested reader can
however refer to [24] for a more in-depth coverage of Lagrange Interpolation,
including convergence properties.

We next state an important result about the zeros of classical monic orthogonal
polynomials that will be needed in our main theorem. Moreover, for establishing
this theorem, we call upon the Christoffel–Darboux Identity and its limiting case,
which makes for a quite simple proof. For the remainder of this section we assume
that {Pn(x)}∞

n=0 is a monic sequence of orthogonal polynomials that satisfy (2.4).

Theorem 2.8. If S := {Pn(x)}∞
n=0 satisfies the monic three-term recurrence relation

(2.4), then the zeros of each Pk(x) ∈ S are both real and simple (distinct).

Proof. Assume that Pk(x) has a complex zero, say z. Then, since complex zeros
of polynomials with real coefficients come in conjugate pairs, we know that z̄ is
also a zero of Pk(x). Now let x = z and y = z̄ and substitute these into (2.8). By
the properties of the complex conjugate, we know that Pk(z̄) = Pk(z) and therefore
the right-hand side of (2.8) is zero. However, the left-hand side is nonzero. This
contradiction implies that the zeros of each Pk(x) ∈ S are all real.

Next, assume that Pk(x) has a zero of multiplicity 2, say x0. Then, the right-hand
side of (2.11) is clearly zero since Pk(x0) = P′

k(x0) = 0, while the left-hand side is
nonzero (positive). Therefore, we know that the zeros of each Pk(x) ∈ S are simple.


�
We now can prove the following.

Theorem 2.9 (Gauss–Jacobi Mechanical Quadrature). Let {Pn(x)}∞
n=0 satisfy

the monic three-term recurrence relation (2.4), with real and simple zeros ordered as
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xN,1 > xN,2 > · · ·> xN,N .

Then, given a positive integer N, there exist a unique sequence of positive numbers
{λk}N

k=1 such that

∫

R

p(x)w(x)dx =
N

∑
k=1

λk p(xN,k), (2.66)

which is valid for all polynomials p(x) such that deg(p(x))≤ 2N − 1. Moreover, the
λk-values, called the Christoffel Numbers, are not dependent on the polynomial
p(x) and can be computed via

λk =

∫

R

PN(x)w(x)dx
P′

N(xN,k)(x− xN,k)
. (2.67)

Proof. Let L(x) be the Lagrange Interpolation Polynomial in (2.65) of p(x) at the
nodes {xN,k}N

k=1, which we assign to be the zeros of {Pn(x)}∞
n=0. These choices are

permissible, as each of the zeros {Pn(x)}∞
n=0 is real and simple via Theorem 2.8 and

can be ordered as in the statement of this theorem. Therefore,

L(x) = p(x) at x = xN,k, ∀k ∈ {1,2, . . . ,N} .

Thus, there exists a polynomial q(x) with deg(q(x))≤ N − 1 such that

p(x)−L(x) = PN(x)q(x).

Multiplying the result directly above by w(x) and integrating gives

∫

R

p(x)w(x)dx =
∫

R

L(x)w(x)dx+
∫

R

PN(x)q(x)w(x)dx.

From Lemma 2.1, the rightmost integral is zero. By (2.65) with S(x) replaced by
PN(x) we see that our relation above becomes

∫

R

p(x)w(x)dx =
N

∑
k=1

(∫
R

PN(x)w(x)dx
P′

N(xN,k)(x− xN,k)

)
p(xN,k)

and (2.66) and (2.67) are both satisfied. Since we have proven (2.66), we can now
apply it to p(x) = P2

N(x)/(x− xN,k)
2, from which it follows that

λk =
∫

R

(
PN(x)

P′
N(xN,k)(x− xN,k)

)2

w(x)dx.

This implies that {λk}N
k=1 is a unique sequence of positive numbers. 
�
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We now demonstrate Theorem 2.9 concretely.

Example 2.9. We apply Theorem 2.9 to the polynomial p(x) := 3x3 − 2x2 using
the Hermite polynomials, in which case Ω1 = R. Since the weight function for the
Hermite polynomials is w(x) = e−x2

, we wish to evaluate

∫

R

(
3x3 − 2x2)e−x2

dx

via the right-hand side of (2.66). The Hermite polynomials are defined as

Hn(x) := n!2n
�n/2�
∑
k=0

(−1)kxn−2k

22kk!(n− 2k)!
,

where �n/2� is the floor function. Through some manipulation, we can write these
polynomials in the following hypergeometric form as in (2.5):

Hn(x) := (2x)n
2F0

(−n/2,(1− n)/2
− − 1

x2

)

from which it is clear that the leading coefficient of Hn(x) is 2n. So, the monic form
of the Hermite polynomials is Pn(x) = 2−nHn(x). We next take N = 3 and thus

P3(x) =
1
8

H3(x) = x3 − 3
2

x ⇒ P′
3(x) = 3x2 − 3

2
.

The zeros of P3(x) give us the nodes

x3,1 =
√

3/2,

x3,2 = 0,

x3,3 =−
√

3/2.

Also, we evaluate P and P′ at each of these nodes to respectively obtain

P(x3,1) =
3
4

(
3
√

6− 4
)

P(x3,2) = 0

P(x3,3) =−3
4

(
3
√

6− 4
)

and

P′(x3,1) = 3,
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P′(x3,2) =−3/2,

P′(x3,3) = 3.

We next compute the λk-values using

λk =

∫

R

P3(x)e−x2
dx

P′
3(x3,k)(x− x3,k)

, k = 1,2,3.

Specifically, this gives

λ1 =
√

π/6,

λ2 = 2
√

π/3,

λ3 =
√

π/6.

Putting all of this together, after some calculations we obtain

3

∑
k=1

(∫
R

P3(x)e−x2
dx

P′
3(x3,k)(x− x3,k)

)
p(x3,k) =−√

π

and of course

∫

R

(
3x3 − 2x2)e−x2

dx =−2
∫

R

x2e−x2
dx =−2

(√
π

2

)
=−√

π

via the gamma function in Definition 2.9.
Also, the interested reader can consider instead using the Meixner–Pollaczek or

the Laguerre polynomials for this example.

To summarize, we have established a numerical estimate of an integral by picking
optimal abscissas (the x-values) at which to evaluate the function. The Gauss–Jacobi
Mechanical Quadrature Theorem (Theorem 2.9) states that these values are exactly
the roots of the orthogonal polynomial for the same interval and weight function
as the integral being approximated. Gaussian Quadrature is optimal since it fits all
polynomials up to degree 2N − 1.

The natural question is of course how Gaussian Quadrature applies when f (x)
is a function more general than a polynomial of degree at most 2N − 1. A detailed
analysis of such a development and related results is quite detailed and a discussion
of this nature is not germane to the work at hand. Nonetheless, it is certainly
worthwhile to cover one such fundamental result and we refer the interested reader
to [24] for a thorough treatment.

The result below essentially states that for large N, the quadrature of Theorem 2.9
becomes very close to the actual value of the integral

∫ b
a f (x)dx, for which the

integral exists.
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Theorem 2.10. Let w(x) > 0 be a weight function defined on an arbitrary interval
[a,b] and QN( f (x)) :=∑N

k=1 λk p(xN,k) the corresponding Gauss–Jacobi Mechanical
Quadrature as in Theorem 2.9, where the λk-values are the Christoffel Numbers
(2.67). Then the quadrature convergence

lim
N→∞

QN( f (x))−
∫ b

a
f (x)dx = 0

holds for an arbitrary function f (x) for which the above integral exists.

Proof. Refer to Chap. 15 of [24]. 
�
We conclude this section by briefly addressing two additional types of similar

quadrature formulas. The first is Radau Quadrature [10], which is also a Gaussian
Quadrature-like formula. In essence, Radau Quadrature requires N + 1 points
and fits all polynomials up to degree 2N and hence yields exact results for all
polynomials of degree 2N −1. This procedure requires the use of a weight function
W (x) in which the endpoint −1 in the interval [−1,1] is included in a total of N
abscissas, leading to N − 1 free variables.

Also, Laguerre-Gauss Quadrature (often also called Gauss-Laguerre Quadra-
ture) [2, 8] is additionally a Gaussian-like quadrature over the interval [0,∞) with

the Laguerre (L(0)
n (x)) weight function W (x) = e−x2

. This procedure also fits all
polynomials up to degree 2N − 1.

2.6 Problems

We finalize this section by stating some interesting problems that naturally arise
from the analysis we have covered.

Problem 1. Supply the rigorous details of Meixner–Pollaczek case of Example 2.4
and also consider applying the inverse method to the remaining three A-Type 0 sets.
For the Hermite polynomials cn := 1/n!, for the Meixner polynomials cn :=(β )n/n!,
and for the Krawtchouk polynomials cn :=C(N,n).

Problem 2. Develop an analogue of Example 2.5 for the Meixner–Pollaczek
polynomials.

Problem 3. Construct an analogue of Example 2.8 for the other Sheffer Sequences
that satisfy a discrete orthogonality, i.e., the Charlier and Krawtchouk polynomials.

Problem 4. Establish a discrete analogue of Theorem 2.4 and apply it to the
Meixner, Charlier and Krawtchouk polynomials.
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Basel-Boston, Mass., (1981).

4. W.C. Bauldry, Estimates of asymmetric Freud polynomials on the real line, J. Approx. Theory,
63(1990), 225–237.

5. W.C. Bauldry, Orthogonal Polynomials Associated With Exponential Weights (Christoffel
Functions, Recurrence Relations), Ph.D. thesis, The Ohio State University, ProQuest LLC,
149 pp., 1985.

6. A. Beiser, Modern Physics, 6 ed., McGraw-Hill, New York, 2003.
7. S.S. Bonan and D.S. Clark, Estimates of the Hermite and the Freud polynomials, J. Approx.

Theory, 63(1990), 210–224.
8. S. Chandrasekhar, Radiative Transfer, Dover, New York, pp. 61 and 64–65, 1960.
9. Y. Chen and M.E.H Ismail, Ladder operators and differential equations for orthogonal

polynomials, J. Phys. A, 30(1997), 7817–7829.
10. F.B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, pp. 338–343,

1956.
11. R. Koekoek and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials

and its q-analogue, Reports of the Faculty of Technical Mathematics and Information, No. 98–
17, Delft University of Technology, (1998). http://aw.twi.tudelft.nl/∼koekoek/askey/index.html

12. M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclope-
dia of Mathematics and its Applications 98, Cambridge University Press, Cambridge, 2005.

13. M.E.H. Ismail, I. Nikolova and P. Simeonov, Difference equations and discriminants for
discrete orthogonal polynomials, Ramanujan J., 8(2004), 475–502.

14. M.E.H. Ismail and J. Wimp, On differential equations for orthogonal polynomials, Methods
Appl. Anal., 5(1998), 439–452.

15. J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden
Funktion, J. London Math. Soc., 9(1934), 6–13.

16. H.N. Mhaskar, Bounds for certain Freud-type orthogonal polynomials, J. Approx. Theory,
63(1990), 238–254.

17. E.D. Rainville, Special Functions, Macmillan, New York, 1960.
18. E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev.,

28(1926), 1049–1070.
19. E. Schrödinger, Quantisierung als eigenwertproblem, Annalen der Physik, (1926), 361–377.
20. R. Shankar, Principles of Quantum Mechanics, 2nd ed., Plenum Publishers, 1994.
21. R.-C. Sheen, Plancherel-Rotach-type asymptotics for orthogonal polynomials associated with

exp(−x6/6), J. Approx. Theory, 50(1987), 232–293.
22. I.M. Sheffer, Some properties of polynomial sets of type zero, Duke Math J., 5(1939), 590–622.
23. J. Shohat, A differential equation for orthogonal polynomials, Duke Math. J., 5(1939), 401–

417.
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Chapter 3
A Method for Analyzing a Special Case
of the Sheffer B-Type 1 Polynomial Sequences

In 1939, I.M. Sheffer proved that every polynomial sequence belongs to one and
only one Type. He also extensively developed properties of the most basic Type set,
entitled B-Type 0 or equivalently A-Type 0 (k = 0 below)

A(t)exp
[
xH1(t)+ · · ·+ xk+1Hk+1(t)

]
=

∞

∑
n=0

Pn(x)t
n,

with Hi(t) = hi,it
i + hi,i+1ti+1 + · · · , h1,1 �= 0, i = 1,2, . . . ,k+ 1

and then determined which of these sets are also orthogonal. He subsequently
generalized his classification by letting k be arbitrary in the relation above, i.e., he
defined the B-Type k class.

Thus far, no research has been published that specifically analyzes the higher-
order Sheffer classes (k ≥ 1 above). Therefore, we present a preliminary analysis
of a special case of the B-Type 1 (k = 1) class, in order to determine which sets, if
any, are also orthogonal. Moreover, the method utilized herein is quite useful, as it
can be applied to other types of characterization problems as well. This chapter also
demonstrates how computer algebra packages, like Mathematica R©, can aid in the
development of rigorous results in orthogonal polynomials and special functions.
We conclude this chapter by discussing some future research problems that can be
solved by using the techniques of this chapter.

3.1 Preliminaries

Throughout this chapter, we make use of each of the following definitions,
terminologies and notations.

Definition 3.1. We always assume that a set of polynomials {Pn(x)}∞
n=0 is such that

each Pn(x) has degree exactly n, which we write as deg(Pn(x)) = n.

D.J. Galiffa, On the Higher-Order Sheffer Orthogonal Polynomial Sequences,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-5969-9 3,
© Daniel J. Galiffa 2013
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Definition 3.2. The set of polynomials {Pn(x)}∞
n=0 is orthogonal if it satisfies one

of the two weighted inner products below:

Continuous : 〈Pm(x),Pn(x)〉=
∫

Ω1

Pm(x)Pn(x)w(x)dx = αnδm,n,

Discrete : 〈Pm(x),Pn(x)〉= ∑
Ω2

Pm(x)Pn(x)w(x) = βnδm,n,

where δm,n denotes the Kronecker delta

δm,n :=

{
1 if m = n
0 if m �= n,

with Ω1 ⊆ R, Ω2 ⊆ {0,1,2, . . .} and w(x)> 0 is entitled the weight function.

Definition 3.3. It is a necessary and sufficient condition that an orthogonal polyno-
mial sequence {Pn(x)}∞

n=0 satisfies an unrestricted three-term recurrence relation
of the form

Pn+1(x) = (Anx+Bn)Pn(x)−CnPn−1(x), AnAn−1Cn > 0

where P−1(x) = 0 and P0(x) = 1. (3.1)

We entitle AnAn−1Cn > 0 the positivity condition.

Definition 3.4. We shall define a generating function for a polynomial sequence
{Pn(x)}∞

n=0 as follows:

∑
Λ

ζnPn(x)t
n = F(x, t),

with Λ ⊆ {0,1,2, . . .} and {ζn}∞
n=0 a sequence in n that is independent of x and t.

Moreover, we say that the function F(x, t) generates the set {Pn(x)}∞
n=0.

3.2 The Formulation of Our Main Problem

In 1939, I.M. Sheffer published his seminal work [4], in which he basically showed
that every polynomial sequence can be classified as belonging to exactly one Type.
The majority of this paper was dedicated to developing a wealth of aesthetic results
and interesting characterizing theorems regarding the most basic Type set, entitled
B-Type 0 or equivalently A-Type 0. Sheffer proved that a necessary and sufficient
condition for a set {Sn(x)}∞

n=0 to be of B-Type 0 is that it satisfies the generating
function:

A(t)exH(t) =
∞

∑
n=0

Sn(x)t
n, (3.2)



3.2 The Formulation of Our Main Problem 69

where A(t) and H(t) are formal power series in t with A(0) = 1, H(0) = 0, and
H ′(0) = 1.

Moreover, one of Sheffer’s most important results was his classification of the B-
Type 0 orthogonal sets, which are often simply called the Sheffer Sequences. These
sets are now known to be the very well-studied and applicable Laguerre, Hermite,
Charlier, Meixner, Meixner–Pollaczek and Krawtchouk polynomials—refer to [3]
for details regarding these polynomials and the references therein for additional
theory and applications. Sheffer also subsequently generalized his classification to
the case of arbitrary B-Type k by constructing the generalized generating function

A(t)exp
[
xH1(t)+ · · ·+ xk+1Hk+1(t)

]
=

∞

∑
n=0

Pn(x)t
n,

with Hi(t) = hi,it
i + hi,i+1ti+1 + · · · , h1,1 �= 0, i = 1,2, . . . ,k+ 1. (3.3)

It is clear that (3.2) is a special case of (3.3).
In this chapter, we present an analysis of the B-Type 1 polynomials, k = 1 in

(3.3):

A(t)exp
[
xH1(t)+ x2H2(t)

]
=

∞

∑
n=0

Pn(x)t
n,

with Hi(t) = hi,it
i + hi,i+1ti+1 + · · · , h1,1 �= 0, i = 1,2. (3.4)

in order to determine which, if any, of these sets are also orthogonal. This analysis is
important for three primary reasons. One, the method that we utilize to analyze this
problem can be applied to various other types of characterization problems. Two,
for our method to be successful, computer algebra packages, like Mathematica R©,
are imperative. Therefore, we also demonstrate how such tools can be used to
develop rigorous results in orthogonal polynomials and special functions. Three,
no analysis has been published to date that specifically addresses the higher-order
Sheffer classes.

To begin, since (3.1) is a necessary and sufficient condition for orthogonality,
determining all sets {Pn(x)}∞

n=0 that arise from (3.4) and are also orthogonal is of
course tantamount to finding all polynomial sequences that stem from (3.4) and
also satisfy (3.1). Thus, in this section we develop a method for determining if
conditions exist that guarantee that {Pn(x)}∞

n=0 simultaneously satisfies (3.4) and
(3.1)—additional assumptions are made in Sect. 3.6. We now discuss the main
elements of each of the sections that follow.

In Sect. 3.3, we determine the Sheffer B-Type 1 recursion coefficients An,
Bn and Cn in (3.1) by analyzing (3.4). Section 3.4 amounts to determining the
lower-order Sheffer B-Type 1 polynomials that arise from the generating function
(3.4) and in Sect. 3.5, we establish the same polynomials from the three-term
recurrence relationship (3.1), which have coefficients of a different structure than
the ones achieved from the generating function (3.4). In Sect. 3.6, we first address
the ramifications of the complexity of the B-Type 1 class. Then, we also show
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how obtaining the aforementioned polynomials from Sects. 3.4 and 3.5 enables
comparisons between certain terms to be made, yielding a simultaneous system
of nonlinear algebraic equations, the solution(s) of which lead to conditions that
must be satisfied in order for the sequence as defined by (3.4) to be orthogonal.
In Sect. 3.7, we analyze each solution of the system obtained in Sect. 3.6 and 3.8
demonstrates how computer algebra can also be utilized to gain insights to the
solution(s) of the system developed in Sect. 3.6. Lastly, in Sect. 3.9 we discuss some
conclusions and future considerations.

It is also important to briefly discuss the role that symbolic computer algebra
packages, like Mathematica R© (refer to [5, 6]), play in this chapter and in the
study of orthogonal polynomials in general. In fact, much of the computational
aspects of this chapter were completed with Mathematica R© and we emphasize that
similar packages can of course also be used to complete the same computations. In
addition, many contemporary mathematicians have used such packages to conduct
research on orthogonal polynomials and special functions. For example, in [2]
Gasper demonstrates how to use symbolic computer algebra packages to derive
formulas involving orthogonal polynomials and other special functions; however,
he also alludes to the fact that these packages can be used in many other areas of
orthogonal polynomials as well. He says,

Now that several symbolic computer algebra systems such as [Mathematica R©] are available
for various computers, it is natural for persons having access to such a system to try to have
it perform the tedious manipulations needed to derive certain formulas involving orthogonal
polynomials and special functions.

In our present work, the utilization of computer algebra packages, such as
Mathematica R©, is not simply a convenience but essentially a necessity, as the com-
plexities involved in the computational aspects of this chapter are quite involved.

Herein, we clearly indicate when and how Mathematica R© was used. For
emphasis, we display the Mathematica R© calculations and their respective outputs
with a distinctive font class that is analogous to the style used in the Mathematica R©

notebook. In addition, we use the same conventions used in [2] for displaying a
given Mathematica R© input and its respective output. We demonstrate this notion
with an example from Gasper’s work.

Example 3.1. Gasper demonstrates a method for deriving a certain Laguerre poly-
nomial expansion formula using Mathematica R©. He displays his input and respec-
tive output in a similar manner as seen below:

In[5] : = p[b+ 1,n]p[−n, j]xj/(p[1,n]p[1, j]p[b+ 1, j]),

Out[5] : =
xjp[−n, j]p[1+ b,n]

p[1, j]p[1,n]p[1+ b, j]
.
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Of course, the point of emphasis in the above example is not the actual
computation but the fashion in which it is presented, as this type of display is
consistent for all of the Mathematica R© computations in this work.

3.3 The B-Type 1 Recursion Coefficients

We begin by constructing a method of effectively expanding the generating function
(3.4), in order to acquire the coefficients of xntn, xn−1tn and xn−2tn. We do this since
only these coefficients are needed to establish the recursion coefficients An, Bn and
Cn in (3.1), which will become clear by the end of this section. First, we define
H1(t) := H(t) and H2(t) := G(t) in (3.4) for ease of notation. Therefore, the Sheffer
B-Type 1 polynomial sequences are defined as all of the polynomials sequences
{Pn(x)}∞

n=0 that satisfy

A(t)exp
[
xH(t)+ x2G(t)

]
=

∞

∑
n=0

Pn(x)t
n. (3.5)

Clearly, the left-hand side of (3.5) involves a power series expansion of power
series expansions and can be written as

∞

∑
i=0

ait
i

∞

∑
j=0

1
j!

[
x

∞

∑
k=1

hktk + x2
∞

∑
l=2

glt
l

] j

=
∞

∑
n=0

Pn(x)t
n.

This is certainly not the most advantageous way to perceive (3.5), but it does
demonstrate its complexity. We ultimately expand (3.5) in a much more practical
way. However, we first note that the initial assumptions of (3.2) require a0 = 1 and
h1 = 1 and therefore, A(t) and H(t) respectively have the following structures:

A(t) = 1+ a1t + a2t2 + · · · and H(t) = t + h2t2 + h3t3 + · · · .

Now, we expand the left-hand side of (3.5) in the following practical manner:

(1+ a1t + a2t2 + · · ·)
[
exteh2xt2

eh3xt3 · · ·
][

eg2x2t2
eg3x2t3

eg4x2t4 · · ·
]
. (3.6)

Thus, expanding (3.6) in terms of the Maclaurin series of each product yields

∞

∑
m=0

amtm
∞

∏
i=1

[
∞

∑
j=0

h j
i x jti j

j!

]
∞

∏
k=2

[
∞

∑
l=0

gl
kx2ltkl

l!

]
. (3.7)

With this convention, we write out the general term in each of the products of (3.7) as
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ak0tk0
xk1 tk1

k1!
hk2

2 xk2t2k2

k2!

hk3
3 xk3 t3k3

k3!
· · ·

gk4
2 x2k4t2k4

k4!

gk5
3 x2k5t3k5

k5!
gk6

4 x2k6t4k6

k6!
· · · , (3.8)

where {k0,k1,k2, . . .} are all nonnegative integers. It is important to note that in the
expansion (3.8) we have only explicitly written the seven terms above since only
these terms are needed to find the coefficients of xntn, xn−1tn and xn−2tn, as we
explain below.

Notice, that the sums of the x-exponents and the t-exponents of (3.8), respec-
tively, take on the form of the following linear Diophantine equations:

k1 + k2 + k3 + 2k4 + 2k5 + 2k6+ · · ·= r (3.9)

and

k0 + k1 + 2k2 + 3k3+ 2k4 + 3k5 + 4k6 + · · ·= s. (3.10)

Explicitly writing out any additional terms in (3.9) or (3.10) is superfluous (as will
be evident by the completion of Case 3 below) since upon subtracting (3.9) from
(3.10) the additional terms will not contribute to finding the coefficients of xntn,
xn−1tn and xn−2tn because they will each be multiplied by a number greater than 2.
As a consequence, it should be noted that in the computations that follow, ki = 0 ∀i≥
7. In addition, by subtracting (3.9) from (3.10), we immediately see that each of the
coefficients in the polynomial Pn(x) defined by (3.5) is a finite sum. This logic will
be the basis of the analysis involved in obtaining the aforementioned coefficients
xntn, xn−1tn and xn−2tn, which we partition into three parts.

(1) The Coefficient of xntn

Upon subtracting (3.9) from (3.10) with r = s = n we see that every k-value must be
zero, except k1 and k4, which can take on any nonnegative integer values, i.e., are
free variables. Therefore, by studying (3.8) we realize that the only terms involved in
the coefficient of xntn are 1/k1! and gk4

2 /k4!. Hence, by combining these two pieces
of information, we observe that the coefficient of xntn must be a sum taken over all
nonnegative integers k1 and k4 such that k1 + 2k4 = n with argument gk4

2 /(k1!k4!),
as seen below:

∑
k1+2k4=n

gk4
2

k1!k4!
�= 0, (3.11)

which is required to be nonzero via Definition 3.1.
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(2) The Coefficient of xn−1tn

After subtracting (3.9) from (3.10) with r = n− 1 and s = n we obtain

k0 + k2 + 2k3 + k5 + 2k6 = 1. (3.12)

Therefore, we see that k3 = k6 = 0 with k1 and k4 free variables, so (3.12) becomes

k0 + k2 + k5 = 1,

yielding three cases.

Case 1: k0 = 1, k2 = 0, and k5 = 0
In this case, we see that (3.10) turns into

1+ k1+ 2k4 = n,

resulting in

∑
k1+2k4=n−1

a1gk4
2

k1!k4!
.

Case 2: k2 = 1, k0 = 0, and k5 = 0
Here we see that (3.10) is now

k1 + 2+ 2k4 = n,

yielding

∑
k1+2k4=n−2

h2gk4
2

k1!k4!
.

Case 3: k5 = 1, k0 = 0, and k2 = 0
Lastly, we see that for this case (3.10) becomes

k1 + 2k4 + 3 = n,

leading to

∑
k1+2k4=n−3

g3gk4
2

k1!k4!

and we now have exhausted all possibilities.

Therefore, the coefficient of xn−1tn is
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∑
k1+2k4=n−1

a1gk4
2

k1!k4!
+ ∑

k1+2k4=n−2

h2gk4
2

k1!k4!
+ ∑

k1+2k4=n−3

g3gk4
2

k1!k4!
. (3.13)

(3) The Coefficient of xn−2tn

Here, after subtracting (3.9) from (3.10) with r = n− 2 and s = n, we obtain

k0 + k2 + 2k3 + k5 + 2k6 = 2.

Analogous to the previous coefficient derivations, the cases involved in finding the
coefficient of xn−2tn are determined by all of the nonnegative integer solutions to
the equation directly above. In each case, the substitution of these solutions (the
k-values) into (3.10) with s = n is written as (i) and the resulting sum as (ii). We
have a total of eight cases.

Case 1: k3 = 1 and k0 = k2 = k5 = k6 = 0

(i) k1 + 3+ 2k4 = n (ii) ∑
k1+2k4=n−3

h3gk4
2

k1!k4!

Case 2: k6 = 1 and k0 = k2 = k3 = k5 = 0

(i) k1 + 2k4 + 4 = n (ii) ∑
k1+2k4=n−4

g4gk4
2

k1!k4!

Case 3: k0 = 2 and k2 = k3 = k5 = k6 = 0

(i) 2+ k1+ 2k4 = n (ii) ∑
k1+2k4=n−2

a2gk4
2

k1!k4!

Case 4: k2 = 2 and k0 = k3 = k5 = k6 = 0

(i) k1 + 4+ 2k4 = n (ii) ∑
k1+2k4=n−4

h2
2gk4

2

2!k1!k4!

Case 5: k5 = 2 and k0 = k2 = k3 = k6 = 0

(i) k1 + 2k4 + 6 = n (ii) ∑
k1+2k4=n−6

g2
3gk4

2

2!k1!k4!
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Case 6: k0 = k2 = 1 and k3 = k5 = k6 = 0

(i) 1+ k1+ 2+ 2k4 = n (ii) ∑
k1+2k4=n−3

a1h2gk4
2

k1!k4!

Case 7: k0 = k5 = 1 and k2 = k3 = k6 = 0

(i) 1+ k1+ 2k4 + 3 = n (ii) ∑
k1+2k4=n−4

a1g3gk4
2

k1!k4!

Case 8: k2 = k5 = 1 and k0 = k3 = k6 = 0

(i) k1 + 2+ 2k4+ 3 = n (ii) ∑
k1+2k4=n−5

h2g3gk4
2

k1!k4!

Hence, the coefficient of xn−2tn is

∑
k1+2k4=n−3

h3gk4
2

k1!k4!
+ ∑

k1+2k4=n−4

g4gk4
2

k1!k4!
+ ∑

k1+2k4=n−2

a2gk4
2

k1!k4!

+ ∑
k1+2k4=n−4

h2
2gk4

2

2!k1!k4!
+ ∑

k1+2k4=n−6

g2
3gk4

2

2!k1!k4!
+ ∑

k1+2k4=n−3

a1h2gk4
2

k1!k4!

+ ∑
k1+2k4=n−4

a1g3gk4
2

k1!k4!
+ ∑

k1+2k4=n−5

h2g3gk4
2

k1!k4!
. (3.14)

We can then establish the following result.

Theorem 3.1. The coefficients of xn, xn−1 and xn−2 of Pn(x) as defined by (3.5),
respectively have the following form:

cn,0 := φn �= 0, (3.15)

cn,1 := a1φn−1 + h2φn−2 + g3φn−3, (3.16)

cn,2 := a2φn−2 +(h3 + a1h2)φn−3 +
(
g4 + h2

2/2!+ a1g3
)

φn−4

+ h2g3φn−5 +(g2
3/2!)φn−6, (3.17)

where

φn(x) :=
�n/2�
∑
k=0

xk

(n− 2k)!k!

with φn(g2) := φn.
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Proof. It can readily be shown that

∑
k1+2k4=n

gk4
2

k1!k4!
=

�n/2�
∑
k=0

gk
2

(n− 2k)!k!
= φn.

Thus, upon manipulating the terms in (3.11), (3.13) and (3.14) accordingly we
achieve our result. 
�

We therefore conclude with the main result of this section.

Theorem 3.2. The Sheffer B-Type 1 recursion coefficients An, Bn and Cn that
satisfy (3.1) are given by

An =
cn+1,0

cn,0
, Bn =

cn+1,1cn,0 − cn+1,0cn,1

c2
n,0

,

Cn =
cn+1,0(cn,0cn,2 − c2

n,1)+ cn,0(cn+1,1cn,1 − cn+1,2cn,0)

cn−1,0c2
n,0

, (3.18)

with cn,0, cn,1 and cn,2, respectively, defined by (3.15), (3.16), and (3.17).

Proof. Based on Theorem 3.1, we see that Pn(x) as defined by (3.5) now becomes

Pn(x) = cn,0xn + cn,1xn−1 + cn,2xn−2 +O(xn−3)

and upon substituting Pn(x) above into the three-term recurrence relation (3.1) we
obtain

cn+1,0xn+1 + cn+1,1xn + cn+1,2xn−1 +O(xn−2)

= Ancn,0xn+1 +Ancn,1xn +Ancn,2xn−1 +O(xn−2)

+Bncn,0xn +Bncn,1xn−1 +Bncn,2xn−2 +O(xn−3)

−Cncn−1,0xn−1 −Cncn−1,1xn−2 −Cncn−1,2xn−3 +O(xn−4).

Thus, comparing the coefficients of xn+1, xn and xn−1 above results in the
following lower-triangular simultaneous system of linear equations:

⎡
⎣

cn,0 0 0
cn,1 cn,0 0
cn,2 cn,1 −cn−1,0

⎤
⎦
⎡
⎣

An

Bn

Cn

⎤
⎦=

⎡
⎣

cn+1,0

cn+1,1

cn+1,2

⎤
⎦ .

Since the diagonal terms cn,0 and cn−1,0 are nonzero, the solution to the above
system is unique and determined to be (3.18) via elementary methods. 
�
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Remark 3.1. If we consider {Qn(x)}∞
n=0 to be any orthogonal set satisfying (3.1),

with leading coefficients, say dn,0, dn,1 and dn,2, the corresponding recursion
coefficients will of course have the same structure as those in Theorem 3.2. That
is, the recursion coefficients will take on the forms below:

An =
dn+1,0

dn,0
, Bn =

dn+1,1dn,0 − dn+1,0dn,1

d2
n,0

Cn =
dn+1,0(dn,0dn,2 − d2

n,1)+ dn,0(dn+1,1dn,1 − dn+1,2dn,0)

dn−1,0d2
n,0

.

3.4 Lower-Order B-Type 1 Polynomials Obtained
via Generating Function

We can obtain any polynomial Pn(x) by directly expanding (3.5). In order to
determine Pn(x), we first compute the coefficient of tn on the left-hand side of (3.5)
since this coefficient must be a polynomial in x and of degree n, which is clear since
when writing (3.5) as

A(t)exp
[
xH(t)+ x2G(t)

]
= P0(x)+P1(x)t +P2(x)t

2 + · · ·+Pn(x)t
n + · · ·

it is readily seen that the coefficient of tn on the left-hand side of (3.5) must be Pn(x).
We now obtain the polynomials P0(x), . . . ,P5(x).

The constant and linear polynomials are easily obtained by computations anal-
ogous to those previously described in Sect. 3.3 for finding the coefficients of xntn,
xn−1tn and xn−2tn. For the constant polynomial P0(x), it is immediate that a0 = 1
is the coefficient of t0. Therefore, P0(x) = 1. For the linear polynomial P1(x), we
see again from direct computation that the coefficient of t1 is a1 + a0h1x and thus
P1(x) = a1 + x.

Of course, P2(x), P3(x) and the latter polynomials can be calculated in the
same fashion. However, as would be the case for any polynomial sequence,
the computations involved become increasingly more complicated as the degree
increases, which, as we will show, is certainly evident in the Sheffer B-Type 1 class.
Therefore, in order to determine the polynomials Pk(x) for k ≥ 2 we have created a
Mathematica R© file entitled GenPoly with details addressed below.

We first define h1 := 1. Then, we find the coefficient of t2 by expanding the
left-hand side of (3.5) via (3.7). Both the input and the respective output are seen
below.

In[1]:= Expand[Coefficient[
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(
1+

10

∑
m=1

amtm
)
∗

10

∏
j=1

(
10

∑
i=0

hi
jx

itij

i!

)
∗

10

∏
k=2

(
10

∑
l=0

gl
kx2ltkl

l!

)
, t2
]]

Out[1]=
x2

2
+ xa1 + a2 + x2g2 + xh2

Thus, we see that

P2(x) = a2 +(a1 + h2)x+

(
1
2!

+ g2

)
x2. (3.19)

For the coefficient of t3, we have the following computation and respective output:

In[2]:= Expand[Coefficient[

(
1+

10

∑
m=1

amtm
)
∗

10

∏
j=1

(
10

∑
i=0

hi
jx

itji

i!

)
∗

10

∏
k=2

(
10

∑
l=0

gl
kx2ltkl

l!

)
, t3
]]

Out[2]=
x3

6
+

x2a1

2
+ xa2 + a3 + x3g2 + x2a1g2 + x2g3 + x2h2 + xa1h2 + xh3

Therefore, we have

P3(x) = a3 +(a2 + a1h2 + h3)x+
(a1

2!
+ a1g2 + g3 + h2

)
x2 +

(
1
3!

+ g2

)
x3.

(3.20)

It is important to mention that for the higher-order polynomials, specifically
P6(x), P7(x) and P8(x), which will be computed in Sect. 3.6, the process is slightly
adjusted since the outputs are more complicated than the ones above. Therefore, in
order to more efficiently manage these polynomials, we first obtain the coefficient of
tn and then compute each x-coefficient individually. To demonstrate this procedure
we construct P4(x).

We first find the coefficient of t4:

In[3]:= Expand[Coefficient[

(
1+

10

∑
m=1

amtm
)
∗

10

∏
j=1

(
10

∑
i=0

hi
jx

itji

i!

)
∗

10

∏
k=2

(
10

∑
l=0

gl
kx2ltkl

l!

)
, t4
]]
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Out[3] =
x4

24
+

x3a1

6
+

x2a2

2
+ xa3 + a4 +

x4g2

2
+ x3a1g2 + x2a2g2 +

x4g2
2

2
+ x3g3

+x2a1g3 + x2g4 +
x3h2

2
+ x2a1h2 + xa2h2 + x3g2h2 +

x2h2
2

2
+ x2h3

+xa1h3 + xh4.

For simplicity, we define the above output as follows:

In[4] := FOURTH :=
x4

24
+

x3a1

6
+

x2a2

2
+ xa3 + a4 +

x4g2

2
+ x3a1g2 + x2a2g2

+
x4g2

2

2
+ x3g3 + x2a1g3 + x2g4 +

x3h2

2
+ x2a1h2 + xa2h2 + x3g2h2

+
x2h2

2

2
+ x2h3 + xa1h3 + xh4.

Then we compute each coefficient separately.
For the coefficient of x4 we have

In[5]:= Coefficient[FOURTH, x4]

Out[5]=
1

24
+

g2

2
+

g2
2

2

Then, for the coefficient of x3, we see that

In[6]:= Coefficient[FOURTH, x3]

Out[6]=
a1

6
+ a1g2 + g3 +

h2

2
+ g2h2

Next, the coefficient of x2 is computed as

In[7]:= Coefficient[FOURTH, x2]

Out[7]=
a2

2
+ a2g2 + a1g3 + g4 + a1h2 +

h2
2

2
+ h3.

For the coefficient of x we obtain

In[8]:= Coefficient[FOURTH, x]

Out[8]= a3 + a2 h2 + a1 h3 + h4
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and for the constant term we achieve

In[9]:= Coefficient[x*FOURTH, x]

Out[9]= a4.

Hence, putting these above pieces together we have

P4(x) = a4 +(a3 + a2h2 + a1h3 + h4)x

+

(
a2

2!
+ a2g2 + a1g3 + g4 + a1h2 +

h2
2

2!
+ h3

)
x2

+

(
a1

3!
+ a1g2 + g3 +

h2

2!
+ g2h2

)
x3 +

(
1
4!

+
g2

2!
+

g2
2

2!

)
x4. (3.21)

Using the same process as demonstrated above, we also obtain an expression for
P5(x).

P5(x) =a5 +(a4 + a3h2 + a2h3 + a1h4 + h5)x

+

(
a3

2!
+ a3g2 + a2g3 + a1g4 + g5 + a2h2 +

a1h2
2

2!
+ a1h3 + h2h3 + h4

)
x2

+

(
a2

3!
+ a2g2 + a1g3 + g4 +

a1h2

2!
+ a1g2h2 + g3h2 +

h2
2

2!
+

h3

2!
+ g2h3

)
x3

+

(
a1

4!
+

a1g2

2!
+

a1g2
2

2!
+

g3

2!
+ g2g3 +

h2

3!
+ g2h2

)
x4 +

(
1
5!

+
g2

3!
+

g2
2

2!

)
x5.

3.5 Lower-Order B-Type 1 Polynomials Obtained via
Three-Term Recurrence Relation

We next find the polynomials P0(x), . . . ,P5(x) from the three-term recurrence
relation (3.1) with An, Bn and Cn as defined in (3.18). To accomplish this, we have
created a Mathematica R© file entitled ThreeTerm, the results of which are utilized
throughout this section. We first define cn,0, cn,1 and cn,2, as, respectively, established
in (3.15), (3.16) and (3.17):

In [1]:= c0[n−] :=
Floor[n/2]

∑
k=0

gk
2

(n− 2k)!k!
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In[2]:= c1[n−] :=
Floor[(n−1)/2]

∑
k=0

a1 ∗ gk
2

(n− 1− 2k)!k!
+

Floor[(n−2)/2]

∑
k=0

h2 ∗ gk
2

(n− 2− 2k)!k!

+
Floor[(n−3)/2]

∑
k=0

g3 ∗ gk
2

(n− 3− 2k)!k!

In[3] := c2[n−] :=
Floor[(n−2)/2]

∑
k=0

a2 ∗ gk
2

(n− 2− 2k)!k!

+(h3 + a1 ∗ h2)∗
Floor[(n−3)/2]

∑
k=0

gk
2

(n− 3− 2k)!k!

+
(
g4 + h2

2/2!+ a1∗ g3
)∗

Floor[(n−4)/2]

∑
k=0

gk
2

(n− 4− 2k)!k!

+
Floor[(n−5)/2]

∑
k=0

h2 ∗ g3 ∗ gk
2

(n− 5− 2k)!k!
+

Floor[(n−6)/2]

∑
k=0

g2
3 ∗ gk

2

2!(n− 6− 2k)!k!

Then we define the An, Bn and Cn, as derived in (3.18).

In[4]:= A[n−] :=
c0[n+ 1]

c0[n]
,

In[5]:= B[n−] :=
c1[n+ 1]∗ c0[n]− c0[n+ 1]c1[n]

c0[n]
2 ,

In[6] :=C[n−] :=
1

c0[n− 1]∗ c0[n]
2

(
c0[n+ 1]∗

(
c0[n]∗ c2[n]− c1[n]

2
)

+c0[n]∗ (c1[n+ 1]∗ c1[n]− c2[n+ 1]∗ c0[n])) .

Lastly, in accordance with Sect. 3.4, we assign the constant and linear polynomials
as seen below:

P0 := 1 and P1 := a1 + x.

Thus, we can now produce any polynomial defined by (3.5) of degree greater than
one. As an example of the process, we achieve P2(x) by separately computing the
quadratic, linear and constant terms and then amalgamate the results, as seen below:

In[7]:= Coefficient[x ∗A[1]∗P1+B[1]∗P1−C[1]∗P0, x2]
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Out[7]=
1
2!

+ g2.

In[8]:= Together[Coefficient[x ∗A[1]∗P1+B[1]∗P1−C[1]∗P0, x]]

Out[8]= a1 + h2.

In[9]:= Together[Coefficient[x ∗ (x ∗A[1]∗P1+B[1]∗P1−C[1]∗P0), x]]

Out[9]= a2.

Therefore,

P2(x) = a2 +(a1 + h2)x+

(
1
2!

+ g2

)
x2,

which is equal to (3.19).

Continuing in the same manner, we determine that the cubic, quadratic and linear
terms of P3(x) as obtained in ThreeTerm coincide exactly with those in (3.20).
However, the constant term is quite different, as seen below:

In[10]:= Together[Coefficient[x ∗ (x∗A[2]∗P2+B[2]∗P2−C[2]∗P1),
x]]

Out[10]=
1

3(1+ 2g2)2

(−a3
1 + 3a1a2 + 4a1a2g2 − 12a3

1g2
2 + 12a1a2g2

2 − 6a2
1g3

+6a2g3 − 12a2
1g2g3 + 12a2g2g3 − 2a2

1h2 + 4a2h2 + 12a2
1g2h2 − 6a1g3h2

−12a1g2g3h2 − 4a1h2
2 + 3a1h3 + 12a1g2h3 + 12a1g2

2h3
)
.

Therefore, we have developed a relationship for the constant term a3, since for
{Pn(x)}∞

n=0 as defined by (3.5) to be orthogonal it must be that

a3 =
1

3(1+ 2g2)2

(−a3
1 + 3a1a2 + 4a1a2g2 − 12a3

1g2
2 + 12a1a2g2

2 − 6a2
1g3 + 6a2g3

− 12a2
1g2g3 + 12a2g2g3 − 2a2

1h2 + 4a2h2 + 12a2
1g2h2 − 6a1g3h2 − 12a1g2g3h2

−4a1h2
2 + 3a1h3 + 12a1g2h3 + 12a1g2

2h3
)
. (3.22)

For P4(x) we see that the fourth-degree term, the cubic term and the quadratic term
are identical to those in (3.21); however, the linear and constant terms are dissimilar.

The linear term is as follows

In[11]:= Together[Coefficient[x ∗A[3]∗P3+B[3]∗P3−C[3]∗P2, x]]
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Out[11]=
1

4 (1+ 2g2) (1+ 6g2)
2

(−a3
1 + 3a1a2 + a3 − 8a3

1g2 + 28a1a2g2 + 20a3g2

−48a3
1g2

2 + 120a1a2g2
2 + 120a3g2

2 + 144a1a2g3
2 + 240a3g3

2 + 144a3
1g4

2

−144a1a2g4
2 + 144a3g4

2 − 2a2
1h2 + 8a2h2 + 12a2

1g2h2 + 56a2g2h2

−72a2
1g2

2h2 + 192a2g2
2h2 − 144a2

1g3
2h2 + 288a2g3

2h2 − 4a1h2
2

+48a1g2h2
2 + 48a1g2

2h2
2 − 8h3

2 + 7a1h3 + 68a1g2h3 + 168a1g2
2h3

−144a1g3
2h3 − 144a1g4

2h3 + 12h2h3 + 96g2h2h3 + 240g2
2h2h3 + 48g3h2

2

−12a2
1g3 + 18a2g3 − 24a2

1g2g3 + 108a2g2g3 + 144a2
1g2

2g3 + 72a2g2
2g3

+288a2
1g3

2g3 − 144a2g3
2g3 − 36a1g2

3 − 144a1g2g2
3 + 144a1g2

2g2
3 + 8a1g4

+96a1g2g4 + 288a1g2
2g4 − 42a1g3h2 − 108a1g2g3h2 + 216a1g2

2g3h2

+144a1g3
2g3h2 − 36g2

3h2 − 144g2g2
3h2 + 144g2

2g2
3h2 + 8g4h2 + 96g2g4h2

+288g2
2g4h2−192g2g3h2

2+18g3h3+108g2g3h3 + 72g2
2g3h3−144g3

2g3h3)

and the P4(x) constant-term computation turns out to be:

In[12]:= Together[Coefficient[x ∗ (x∗A[3]∗P3+B[3]∗P3−C[3]∗P2),
x]]

Out[12]=
1

4(1+ 2g2)(1+ 6g2)
2

(−a2
1a2 + 2a2

2 + a1a3 − 8a2
1a2g2 + 20a2

2g2

+8a1a3g2 − 48a2
1a2g2

2 + 72a2
2g2

2 + 48a1a3g2
2 + 144a2

2g3
2 + 144a2

1a2g4
2

−144a1a3g4
2 − 2a1a2h2 + 6a3h2 + 12a1a2g2h2 + 36a3g2h2 − 72a1a2g2

2h2

+120a3g2
2h2 − 144a1a2g3

2h2 + 144a3g3
2h2 − 8a2h2

2 + 6a2h3 + 60a2g2h3

+120a2g2
2h3 − 144a2g3

2h3 − 12a1a2g3 + 18a3g3 − 24a1a2g2g3

+108a3g2g3 + 144a1a2g2
2g3 + 72a3g2

2g3 + 288a1a2g3
2g3 − 144a3g3

2g3

−36a2g2
3 − 144a2g2g2

3 + 144a2g2
2g2

3 + 8a2g4 + 96a2g2g4

−48a2g3h2 − 192a2g2g3h2 + 288a2g2
2g4
)

Thus, appropriately equating the linear and constant terms above with the linear
and constant terms of (3.21), we see that the linear term comparison is

a3 + a2h2 + a1h3 + h4
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=
1

4(1+ 2g2)(1+ 6g2)
2

(−a3
1 + 3a1a2 + a3 − 8a3

1g2 + 28a1a2g2 + 20a3g2

−48a3
1g2

2 + 120a1a2g2
2 + 120a3g2

2 + 144a1a2g3
2 + 240a3g3

2 + 144a3
1g4

2

−144a1a2g4
2 + 144a3g4

2 − 2a2
1h2 + 8a2h2 + 12a2

1g2h2 + 56a2g2h2

−72a2
1g2

2h2 + 192a2g2
2h2 − 144a2

1g3
2h2 + 288a2g3

2h2 − 4a1h2
2

+48a1g2h2
2 + 48a1g2

2h2
2 − 8h3

2+ 7a1h3 + 68a1g2h3 + 168a1g2
2h3

−144a1g3
2h3 − 144a1g4

2h3 + 12h2h3 + 96g2h2h3 + 240g2
2h2h3 + 48g3h2

2

−12a2
1g3 + 18a2g3 − 24a2

1g2g3 + 108a2g2g3 + 144a2
1g2

2g3 + 72a2g2
2g3

+288a2
1g3

2g3 − 144a2g3
2g3 − 36a1g2

3 − 144a1g2g2
3 + 144a1g2

2g2
3 + 8a1g4

+96a1g2g4 + 288a1g2
2g4 − 42a1g3h2 − 108a1g2g3h2 + 216a1g2

2g3h2

+144a1g3
2g3h2 − 36g2

3h2 − 144g2g2
3h2 + 144g2

2g2
3h2 + 8g4h2 + 96g2g4h2

+288g2
2g4h2 − 192g2g3h2

2 + 18g3h3 + 108g2g3h3 + 72g2
2g3h3 − 144g3

2g3h3
)

(3.23)

and the constant-term comparison is

a4 =
1

4(1+ 2g2)(1+ 6g2)
2

(−a2
1a2 + 2a2

2+ a1a3 − 8a2
1a2g2 + 20a2

2g2

+8a1a3g2 − 48a2
1a2g2

2 + 72a2
2g2

2 + 48a1a3g2
2 + 144a2

2g3
2 + 144a2

1a2g4
2

−144a1a3g4
2 − 2a1a2h2 + 6a3h2 + 12a1a2g2h2 + 36a3g2h2 − 72a1a2g2

2h2

+120a3g2
2h2 − 144a1a2g3

2h2 + 144a3g3
2h2 − 8a2h2

2 + 6a2h3 + 60a2g2h3

+120a2g2
2h3 − 144a2g3

2h3 − 12a1a2g3 + 18a3g3 − 24a1a2g2g3 + 108a3g2g3

+144a1a2g2
2g3 + 72a3g2

2g3 + 288a1a2g3
2g3 − 144a3g3

2g3 − 36a2g2
3 − 144a2g2g2

3

+144a2g2
2g2

3 + 8a2g4 + 96a2g2g4 − 48a2g3h2 − 192a2g2g3h2 + 288a2g2
2g4
)
.

(3.24)

Now, continuing this process for P5(x), we obtain three additional relationships
for the P5(x) quadratic, linear and constant terms. These relationships are displayed
below. First, we have the P5(x) quadratic-term comparison:

a3

2!
+a3g2 +a2g3 +a1g4 +g5 +a2g2 +

a1h2
2

2!
+a1h3 +h2h3 +h4

=
(
−a3

1 +3a1a2 +2a3 −24a3
1g2 +76a1a2g2 +76a3g2 −260a3

1g2
2
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+788a1a2g2
2 +1008a3g2

2 −1152a3
1g3

2 +3744a1a2g3
2 +5664a3g3

2 −2160a3
1g4

2

+7056a1a2g4
2 +12960a3g4

2 −5760a3
1g5

2 +8640a1a2g5
2 +8640a3g5

2 −8640a3
1g6

2

+8640a1a2g6
2 −2a2

1h2 +14a2h2 −4a2
1g2h2 +332a2g2h2 −144a2

1g2
2h2

+3216a2g2
2h2 −288a2

1g3
2h2 +14112a2g3

2h2 +4320a2
1g4

2h2 +21600a2g4
2h2

+8640a2
1g5

2h2 +8640a2g5
2h2 +a1h2

2 +214a1g2h2
2 +1464a1g2

2h2
2 +4176a1g3

2h2
2

+6480a1g4
2h2

2 +4320a1g5
2h2

2 −16h3
2 +192g2

2h3
2 +13a1h3 +336a1g2h3 +3204a1g2

2h3

+13440a1g3
2h3 +28080a1g4

2h3 +34560a1g5
2h3 +8640a1g6

2h3 +34h2h3 +684g2h2h3

+4848g2
2h2h3 +12960g3

2h2h3 +12960g4
2h2h3 +8640g5

2h2h3 +2h4 +76g2h4

+1008g2
2h4 +5664g3

2h4 +12960g4
2h4 +8640g5

2h4 −78a1g3h2 +2880g3
2g3h2

2

−18a2
1g3 +40a2g3 −180a2

1g2g3 +744a2g2g3 −720a2
1g2

2g3

+4896a2g2
2g3 −3744a2

1g3
2g3 +14976a2g3

2g3 −18720a2
1g4

2g3 +23040a2g4
2g3

−25920a2
1g5

2g3 +17280a2g5
2g3 −180a1g2

3 −1728a1g2g2
3 −3744a1g2

2g2
3

−11520a1g3
2g2

3 −25920a1g4
2g2

3 −432g3
3 −4320g2g3

3 −8640g2
2g3

3

−17280g3
2g3

3 +26a1g4 +620a1g2g4 +4656a1g2
2g4 +10656a1g3

2g4

+7200a1g4
2g4 +8640a1g5

2g4 +120g3g4 +2208g2g3g4 +12096g2
2g3g4

+17280g3
2g3g4 +17280g4

2g3g4 −252a1g2g3h2 +2256a1g2
2g3h2 +7200a1g3

2g3h2

−4320a1g4
2g3h2 −8640a1g5

2g3h2 −684g2
3h2 −6624g2g2

3h2 −12960g2
2g2

3h2

−17280g3
2g2

3h2 −8640g4
2g2

3h2 +64g4h2 +1344g2g4h2 +8448g2
2g4h2

+11520g3
2g4h2 −240g3h2

2 −1872g2g3h2
2 −2304g2

2g3h2
2 +90g3h3

+1548g2g3h3 +8496g2
2g3h3 +18720g3

2g3h3 +30240g4
2g3h3 +8640g5

2g3h3

)

/

(
10(1+6g2)

(
1+12g2 +12g2

2

)2
)
. (3.25)

Next, we have the P5(x) linear-term comparison

a4 +a3h2 +a2h3 +a1h4 +h5

=
(
−a2

1a2 +2a2
2 +a1a3 +a4 −22a2

1a2g2 +48a2
2g2 +22a1a3g2 +38a4g2

−216a2
1a2g2

2 +432a2
2g2

2 +216a1a3g2
2 +504a4g2

2 −720a2
1a2g3

2

+1728a2
2g3

2 +720a1a3g3
2 +2832a4g3

2 −720a2
1a2g4

2 +1440a2
2g4

2

+720a1a3g4
2 +6480a4g4

2 −4320a2
1a2g5

2 +4320a1a3g5
2 +4320a4g5

2

−a3
1h2 +a1a2h2 +8a3h2 −22a3

1g2h2 +70a1a2g2h2
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+144a3g2h2 −216a3
1g2

2h2 +504a1a2g2
2h2 +1056a3g2

2h2 −720a3
1g3

2h2

+2448a1a2g3
2h2 +2880a3g3

2h2 −720a3
1g4

2h2 +6480a1a2g4
2h2 −4320a3

1g5
2h2

+4320a1a2g5
2h2 −2a2

1h2
2 −4a2h2

2 +72a2g2h2
2 −144a2

1g2
2h2

2 +624a2g2
2h2

2

+1440a2g3
2h2

2 +4320a2
1g4

2h2
2 −12a1h3

2 −72a1g2h3
2 −432a1g2

2h3
2

−1440a1g3
2h3

2 +11a2h3 +246a2g2h3 +1800a2g2
2h3 +5328a2g3

2h3

+7920a2g4
2h3 +4320a2g5

2h3 +15a1h2h3 +342a1g2h2h3 +2280a1g2
2h2h3

+6480a1g3
2h2h3 +10800a1g4

2h2h3 +4320a1g5
2h2h3 −12h2

2h3 −72g2h2
2h3

−432g2
2h2

2h3 −1440g3
2h2

2h3 +9h2
3 +198g2h2

3 +1368g2
2h2

3

+3600g3
2h2

3 +6480g4
2h2

3 +4320g5
2h2

3 +a1h4 +22a1g2h4 −126a1g3h2
2

+216a1g2
2h4 +720a1g3

2 h4 +720a1g4
2h4 +4320a1g5

2h4 +8h2h4

−18a1a2g3 +36a3g3 −144a1a2g2g3 +576a3g2g3 −432a1a2g2
2g3

+2880a3g2
2g3 −2880a1a2g3

2g3 +5760a3g3
2g3 −12960a1a2g4

2g3 +8640a3g4
2g3

−216a2g2
3 −2160a2g2g2

3 −4320a2g2
2g2

3 −8640a2g3
2g2

3 +24a2g4

+528a2g2g4 +3168a2g2
2g4 +2880a2g3

2g4 −18a2
1g3h2 −90a2g3h2

−144a2
1g2g3h2 −576a2g2g3h2 −432a2

1g2
2g3h2 +720a2g2

2g3h2 −2880a2
1g3

2g3h2

+5760a2g3
2g3h2 −4320g4

2g3h2h3 −12960a2
1g4

2g3h2 +4320a2g4
2g3h2 −216a1g2

3h2

−2160a1g2g2
3h2 −4320a1g2

2g2
3h2 −8640a1g3

2g2
3h2 +24a1g4h2 +528a1g2g4h2

+3168a1g2
2g4h2 +2880a1g3

2g4h2 −1152a1g2g3h2
2 −2160a1g2

2g3h2
2 −4320a1g4

2g3h2
2

+18a1g3h3 +432a1g2g3h3 +2448a1g2
2g3h3 +2880a1g3

2g3h3 −4320a1g4
2g3h3

−216g2
3h3 −2160g2g2

3h3 −4320g2
2g2

3h3 −8640g3
2g2

3h3 +24g4h3

+528g2g4h3 +3168g2
2g4h3 +2880g3

2g4h3 −126g3h2h3 −1152g2g3h2h3

−2160g2
2g3h2h3 +36g3h4 +576g2g3h4 +2880g2

2g3h4 +5760g3
2g3h4

+8640g4
2g3h4 +144g2h2h4 +1056g2

2h2h4

+2880g3
2h2h4

)
/

(
5(1+6g2)

(
1+12g2 +12g2

2

)2
)

(3.26)
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and finally, the P5(x) constant-term comparison is

a5 =
(−a2

1a3 + 2a2a3 + a1a4 − 22a2
1a3g2 + 48a2a3g2

+22a1a4g2 − 216a2
1a3g2

2 + 432a2a3g2
2 + 216a1a4g2

2 − 720a2
1a3g3

2

+1728a2a3g3
2 + 720a1a4g3

2 − 720a2
1a3g4

2 + 1440a2a3g4
2 + 720a1a4g4

2

−4320a2
1a3g5

2 + 4320a1a4g5
2 − 2a1a3h2 + 8a4h2 + 144a4g2h2

−144a1a3g2
2h2 + 1056a4g2

2h2 + 2880a4g3
2h2 + 4320a1a3g4

2h2 − 12a3h2
2

−72a3g2h2
2 − 432a3g2

2h2
2 − 1440a3g3

2h2
2 + 9a3h3 + 198a3g2h3

+1368a3g2
2h3 + 3600a3g3

2h3 + 6480a3g4
2h3 + 4320a3g5

2h3

−18a1a3g3 + 36a4g3 − 144a1a3g2g3 + 576a4g2g3 − 432a1a3g2
2g3

+2880a4g2
2g3 − 2880a1a3g3

2g3 + 5760a4g3
2g3 − 12960a1a3g4

2g3

+8640a4g4
2g3 − 216a3g2

3 − 2160a3g2g2
3 − 4320a3g2

2g2
3 − 8640a3g3

2g2
3

+24a3g4 + 528a3g2g4 + 3168a3g2
2g4 + 2880a3g3

2g4 − 126a3g3h2

−1152a3g2g3h2 − 2160a3g2
2g3h2 − 4320a3g4

2g3h2

+4320a3g5
2h3

)
/
(

5(1+ 6g2)
(
1+ 12g2+ 12g2

2

)2
)
. (3.27)

Notice that in each of the coefficient comparisons above, the xn, xn−1 and xn−2

comparisons were always identical and the remaining comparisons were different.
For example, for the P3(x) comparisons we observe that the x3, x2 and x-coefficients
from the polynomial P3(x) in (3.20), which was obtained from the generating
function (3.5), were the same as those that arose out of computing P3(x) from the
three-term recurrence relation (3.1); however, the constant terms were different. This
pattern continued for the P4(x) and P5(x) comparisons and will continue for all other
higher-order comparisons as well. This is apparent because the coefficients xn, xn−1

and xn−2 obtained via the three-term recurrence relation (3.1) are dependent on An,
Bn and Cn in (3.18), which were derived from the generating function (3.5), whereas
the lower-order coefficients xn−k for k = 3,4, . . . ,n− 1 and the constant terms are
not.

Now that these relations have been derived, it is necessary to analyze them in
order to make inferences on their nature so orthogonality conditions can be obtained.
However, we first examine the complexities involved in the above relations in order
to effectively determine additional assumptions that can simplify our calculations
and reduce our problem to a manageable format. These details are discussed next.
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3.6 Managing the Complexity of the Sheffer B-Type 1 Class

Here, we discuss the ramifications of the complexity of the B-Type 1 polynomials
P0(x), . . . ,P5(x), which were determined in Sects. 3.4 and 3.5 and the comparisons
obtained in Sect. 3.5. We emphasize that the coefficients, cn,0, cn,1 and cn,2, as
respectively defined in (3.15), (3.16) and (3.17), are sums involving the g2-term and
other multiplicative constants that grow arbitrary large as the polynomial degree
increases. In fact, it can readily be shown that all of the coefficients of a given
polynomial from the set {P1(x), . . . ,P5(x)}, and all higher-order polynomials as
well, are also sums that grow arbitrary large as the polynomial degree increases.
The notable exceptions to this are the constant terms, since for a given polynomial
Pk(x) the constant term is ak. This is in stark contrast to the B-Type 0 polynomials
and is a crucial observation because the B-Type 0 polynomials have coefficients that
have a fixed structure.

To elaborate on this notion, we take G(t)≡ 0 in (3.5) and obtain

A(t)exp[xH(t)] =
∞

∑
k=0

Pk(x)t
n,

which is the generating function for the Sheffer B-Type 0 polynomials as in (3.2).
Also, we can obtain the coefficients of xn, xn−1 and xn−2 for these polynomials by
evaluating (3.15), (3.16) and (3.17) for g2 = g3 = g4 = 0, since G(t)≡ 0, resulting
in

c̆n,0 :=
1
n!

(3.28)

c̆n,1 :=
a1

(n− 1)!
+

h2

(n− 2)!
(3.29)

c̆n,2 :=
a2

(n− 2)!
+

a1h2 + h3

(n− 3)!
+

h2
2

2!(n− 4)!
, (3.30)

where we have labeled these coefficients c̆n,0, c̆n,1 and c̆n,2 to distinguish them from
the B-Type 1 coefficients. It is now clear that for any n-value we have exactly
one term in (3.28), at most two terms in (3.29) and at most three terms in (3.30).
In contrast, (3.15) has exactly �n/2�+ 1 terms, (3.16) has exactly �(n− 1)/2�+
�(n− 2)/2�+ �(n− 3)/2�+ 3 terms and (3.17) has 0, 1 and 3 terms for n = 1,2,3,
respectively, and exactly �(n− 2)/2�+ 2(�(n− 3)/2�+ 1)+ 3(�(n− 4)/2�+ 1)+
�(n− 5)/2�+�(n− 6)/2�+3 terms for n ≥ 4. Therefore, we obtain expressions for
An, Bn, and Cn (which we label Ăn, B̆n and C̆n for consistency) in the three-term
recurrence relation (3.1) by substituting (3.28), (3.29) and (3.30) into (3.18):

Ăn :=
1

n+ 1
,



3.6 Managing the Complexity of the Sheffer B-Type 1 Class 89

B̆n :=
a1 + 2nh2

n+ 1
,

C̆n :=
1

n+ 1
(a2

1 − 2a2+ 2a1h2 − 4h2
2+ 3h3 +(4h2

2 − 3h3)n).

Without any computations, it is intuitively obvious that the An, Bn, and Cn in the
B-Type 1 class will not be as simple to work with. For example, the expression for
An was obtained using Mathematica R© 4.1 as follows:

Together[A[n]]

−4Gamma[1+ n]HypergeometricU[− 1
2 − n

2 ,
1
2 ,− 1

4g2
]g2

Gamma[2+ n]HypergeometricU[ 1
2 − n

2 ,
3
2 ,− 1

4g2
]

,

with

Gamma[z] := Γ (z) =
∫ ∞

0
tz−1e−t dt, Re(z)> 0

HypergeometricU[a,b,z] :=Ψ(a,b;z),

where Ψ denotes the Tricomi Ψ function, which is the second linearly independent
solution to Kummer’s differential equation: zy′′+(b− z)y′ −ay = 0. It is defined by

Ψ(a,b;z) :=
Γ (1− b)

Γ (a− b+ 1)1F1(a,b;z)+
Γ (b− 1)

Γ (a)
z1−b

1F1(a− b+ 1,2− b;z),

with 1F1(a,b;z) defined as

1F1(a,b, : z) :=
∞

∑
k=0

(a)k

(b)k

zk

k!
.

Remark 3.2. As we have mentioned, the expression for A[n] above was obtained
using Mathematica R© 4.1. Using Mathematica R© 8, the output will be different,
but nonetheless much more complicated than (3.28). Here, we displayed the
Mathematica R© 4.1. output since it was the most aesthetic.

Following a wealth of computing time, expressions were eventually obtained for
Bn and Cn as well. However, these expressions are too large to display. For example,
the actual size of the general expression for Cn exceeds two pages of Mathematica R©

output. Therefore, it is clear from simply studying the An term displayed above
that the B-Type 1 coefficients are significantly more difficult to work with than the
B-Type 0 coefficients.

We next address the very cumbersome expressions that arise when comparing
respective coefficients from both the generating function (3.5) and the three-term
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recurrence relation (3.1) of a given B-Type 1 polynomial as was done in Sect. 3.5.
In particular, we see a wealth of g3 and g4 terms in the comparisons developed
in Sect. 3.5—for a paradigm example, consider the P5(x) linear-term comparison
(3.26). Therefore, the P4(x) and P5(x) comparisons (and any subsequent compar-
isons for that matter) would be much more manageable if we additionally take
gi = 0,∀i ≥ 3. We also mention that we want all simplifying assumptions to be
restricted to alterations of only the G(t) terms, as varying the terms of H(t) or A(t)
would not reduce (3.5) to the B-Type 0 class when we take G(t)≡ 0.

Now, there are some very important structures embedded in the comparisons we
have obtained and we address these next. We first turn our attention to the P3(x)
constant-term comparison that was derived in (3.22), which we rewrite below with
gi = 0,∀i ≥ 3:

a3 =
1

3(1+ 2g2)2 (−a3
1 + 3a1a2 + 4a1a2g2 − 12a3

1g2
2 + 12a1a2g2

2

− 2a2
1h2 + 4a2h2 + 12a2

1g2h2 − 4a1h2
2 + 3a1h3 + 12a1g2h3 + 12a1g2

2h3).
(3.31)

As seen above, and in all of the comparisons we established, g2 is one of the
most abundant terms, which is intuitively obvious since g2 is in the argument
of each sum in (3.15), (3.16) and (3.17). Therefore, it is natural to consider a
simplifying assumption on g2 that will reduce the complexity of (3.31) and therefore
the remaining comparisons.

Now, several assumptions on the g2-term were attempted before an appropriate
choice was made. Below is an example of a particular choice for g2 that could not
be made but led to a beneficial result nonetheless. Notice that from setting (3.31)
equal to zero, we have

− a3
1 + 3a1a2 + 4a1a2g2 − 12a3

1g2
2 + 12a1a2g2

2 − 2a2
1h2 + 4a2h2

+ 12a2
1g2h2 − 4a1h2

2 + 3a1h3 + 12a1g2h3 + 12a1g2
2h3 − 3a3(1+ 2g2)

2 = 0.

Then, the choice of g2 =−1/2 would reduce the above to the following format:

−a3
1 + a1a2 − 2a2

1h2 + a2h2 − a1h2
2 = 0.

However, the choice of g2 =−1/2 results in (3.19) becoming

P2(x) = a2 +(a1 + h2)x

since g2 = −1/2 is a zero of (3.15) for n = 2. This is of course not permissible
as there would never be a polynomial of degree 2 in the sequence {Pn(x)}∞

n=0 as
defined by (3.5).
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Nonetheless, we now consider the choice of g2 = 1/2, which results in a modified
expression for a3 in (3.31) as seen below

a3 =
1
3
(−a3

1 + 2a1a2 + a2
1h2 + a2h2 − a1h2

2 + 3a1h3). (3.32)

Thus, in weighing (3.32) against (3.22), the discrepancies in the levels of complexity
are apparent.

Now that all of our simplifying assumptions have been finalized, we restate our
current problem. The generating function (3.5) now becomes

A(t)exp

[
xH(t)+

1
2

x2t2
]
=

∞

∑
n=0

Pn(x)t
n (3.33)

and (3.15), (3.16) and (3.17) now, respectively, have the form

cn,0 := φn(1/2),

cn,1 := a1φn−1(1/2)+ h2φn−2(1/2), (3.34)

cn,2 := a2φn−2(1/2)+ (h3+ a1h2)φn−3(1/2)+ (h2
2/2!)φn−4(1/2).

We next determine what the assumptions g2 = 1/2 and gi = 0,∀i ≥ 3 do to the
later comparisons developed in Sect. 3.5, starting with the constant- and linear-term
comparisons of P4(x) and continuing through the constant, linear and quadratic-term
comparisons of P5(x).

The P4(x) constant-term comparison (3.24) now becomes

a4 =
1

16
(−a2

1a2 + 6a2
2+ a1a3 − 4a1a2h2 + 9a3h2 − a2h2

2 + 6a2h3) (3.35)

and the P4(x) linear-term comparison (3.23) simplifies to

− a3
1 + 7a1a2 − 6a3− 4a2

1h2 − a2h2 + 4a1h2
2 − h3

2 − 9a1h3

+ 15h2h3 − 16h4 = 0. (3.36)

Then, for the P5(x) constant-term comparison, we see that (3.27) takes the form

a5 =
1

250
(−42a2

1a3 + 55a2a3 + 42a1a4 + 29a1a3h2 + 88a4h2

− 42a3h2
2 + 180a3h3), (3.37)

the P5(x) linear-term comparison (3.26) becomes



92 3 A Method for Analyzing a Special Case of the Sheffer B-Type 1 Polynomial Sequences

− 42a2
1a2 + 55a2

2+ 42a1a3 − 120a4− 42a3
1h2 + 126a1a2h2 − 162a3h2

+ 29a2
1h2

2 + 46a2h2
2 − 42a1h3

2 − 15a2h3 + 297a1h2h3 − 42h2
2h3 + 180h2

3

− 208a1h4 + 88h2h4 − 250h5 = 0 (3.38)

and the P5(x) quadratic-term comparison (3.25) is now

− 42a3
1+ 97a1a2 − 120a3+ 29a2

1h2 + 23a2h2 − 29a1h2
2 + 2h3

2

+ 102a1h3 + 18h2h3 − 120h4 = 0. (3.39)

In all of the comparisons above, the reduction in complexity is evident.
Now that the above comparisons have been established, we see some very impor-

tant potential patterns. First, we notice that the highest h-term in the expression for
a3 as defined by (3.32) is h3—this is also the case for the expressions for a4 in (3.35)
and a5 in (3.37). Second, we observe that the highest h-term in the P4(x) linear-term
comparison (3.36) is h4 and the highest h-term in the P5(x) linear-term comparison
(3.38) is h5. These observations are important because they provide information on
how to develop conditions that the terms a1, a2, a3 and h2 must satisfy in order for
{Pn(x)} in (3.33) to be orthogonal. We discuss this further.

Based on the above analysis, we first find an expression for h3 by utilizing the
relation for a3 in (3.32), which results in

h3 =
1

3a1
(a3

1 + 3a3− 2a1a2 − a2
1h2 − a2h2 + a1h2

2), a1 �= 0. (3.40)

Therefore, we have written h3 in terms of only a1, a2, a3 and h2. Now notice that
the P4(x) linear-term comparison (3.36) can be solved for h4 as follows

h4 =
1
16

(−a3
1 + 7a1a2 − 6a3 − 4a2

1h2 − a2h2 + 4a1h2
2 − h3

2 − 9a1h3 + 15h2h3
)
.

(3.41)

Moreover, we can then substitute (3.40) into (3.41) and after some algebra we obtain
an expression for h4 that involves only a1, a2, a3 and h2, as written below

h4 =− 1
16a1

(a1 − h2)
(
4a3

1 + 15a3− 5a2h2 + a1
(−13a2+ 4h2

2

))
. (3.42)

Lastly, upon substituting (3.40) and (3.42) into (3.39) and using some algebraic
manipulations we see that the P5(x) quadratic-term comparison becomes

1
a1

(a1 − h2)
(
44a3

1 − 14a2
1h2 − 63(−3a3 + a2h2)+ a1

(−137a2+ 44h2
2

))
= 0.

(3.43)
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Thus, we have obtained the algebraic equation (3.43) that relates all of the
terms a1, a2, a3, and h2. Therefore, since the comparisons of the coefficients of
the polynomials P6(x), P7(x) and P8(x) must behave in a similar fashion as the
comparisons of the coefficients of the polynomials P3(x), P4(x) and P5(x) (which
we will show), we can construct a system of four simultaneous nonlinear equations
with unknowns a1, a2, a3 and h2. Solving this system will yield the conditions that
{Pn(x)}∞

n=0 as defined by (3.33) must satisfy in order to be an orthogonal sequence.
Based on the analysis that led to (3.43), we now derive comparisons using the

generating function (3.33) and the three-term recurrence relation (3.1), with the
recursion coefficients as defined in (3.18) with the leading coefficients as in (3.34),
for the P6(x) cubic term, the P7(x) fourth-degree term and the P8(x) fifth-degree
term. We do this since from our previous analysis it appears that each of these
comparisons will contain the terms a1, a2 and a3 and the highest h-term will be
h4. Therefore, we can derive three more equations analogous to (3.43) by using the
same methodology that led to (3.43). These computations are as follows and each of
which was completed using the same procedure as in Sect. 3.4 for determining the
polynomials P2(x), . . . ,P5(x). For these results we initially keep h3 and h4 arbitrary.

The P6(x) polynomial that results from expanding (3.33) accordingly is

P6(x) =a6 +(a5 + a4h2 + a3h3 + a2h4 + a1h5 + h6)x

+
1
2

(
2a4+2a3h2+a2h2

2+2a2h3 + 2a1h2h3 + h2
3+ 2a1h4 + 2h2h4 + 2h5

)
x2

+
1
6
(4a3 + 6a2h2 + 3a1h2

2 + h3
2 + 6a1h3 + 6h2h3 + 6h4)x

3

+
1

12
(5a2 + 8a1h2 + 6h2

2+ 8h3)x
4

+
1

60
(13a1 + 25h2)x

5 +
19
180

x6,

the P7(x) polynomial that comes from (3.33) is found to be

P7(x) =a7 +(a6 + a5h2 + a4h3 + a3h4 + a2h5 + a1h6 + h7)x

+
1
2

(
2a5 + 2a4h2 + a3h2

2 + 2a3h3 + 2a2h2h3 + a1h2
3 + 2a2h4

+2a1h2h4 + 2h3h4 + 2a1h5 + 2h2h5 + 2h6)x2

+
1
6

(
4a4 + 6a3h2 + 3a2h2

2 + a1h3
2 + 6a2h3 + 6a1h2h3 + 3h2

2h3

+ 3h2
3 + 6a1h4 + 6h2h4 + 6h5

)
x3

+
1

12

(
5a3 + 8a2h2 + 6a1h2

2 + 2h3
2 + 8a1h3 + 12h2h3 + 8h4

)
x4
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+
1

60

(
13a2 + 25a1h2 + 20h2

2+ 25h3
)

x5

+
1

180
(19a1 + 39h2)x6 +

29
630

x7

and for P8(x) we have the following:

P8(x) =a8 +(a7 + a6h2 + a5h3 + a4h4 + a3h5 + a2h6 + a1h7 + h8)x

+
1
2

(
2a6 + 2a5h2 + a4h2

2 + 2a4h3 + 2a3h2h3 + a2h2
3 + 2a3h4 + 2a2h2h4

+2a1h3h4 + h2
4 + 2a2h5 + 2a1h2h5 + 2h3h5 + 2a1h6 + 2h2h6 + 2h7

)
x2

+
1
6

(
4a5 + 6a4h2 + 3a3h2

2 + a2h3
2 + 6a3h3 + 6a2h2h3 + 3a1h2

2h3 + 3a1h2
3

+3h2h2
3 + 6a2h4 + 6a1h2h4 + 3h2

2h4 + 6h3h4 + 6a1h5 + 6h2h5 + 6h6
)

x3

+
1

24

(
10a4 + 16a3h2 + 12a2h2

2 + 4a1h3
2 + h4

2 + 16a2h3 + 24a1h2h3

+12h2
2h3 + 12h2

3+ 16a1h4 + 24h2h4 + 16h5
)

x4

+
1

60

(
13a3 + 25a2h2 + 20a1h2

2 + 10h3
2+ 25a1h3 + 40h2h3 + 25h4

)
x5

+
1

360

(
38a2 + 78a1h2 + 75h2

2+ 78h3
)

x6

+
1

1260
(58a1 + 133h2)x7 +

191
10080

x8.

By using the same method as conducted in Sect. 3.5, we now derive the P6(x)
cubic-term comparison, the P7(x) fourth-degree term comparison and the P8(x)
fifth-degree term comparison. We first state each respective comparison and then
substitute the expressions for h3 and h4, as respectively in (3.40) and (3.42),
using a wealth of algebraic manipulations in the process. The P6(x) cubic-term
comparison is

− 320a3
1+ 1438a1a2 − 1365a3− 478a2

1h2 − 73a2h2 + 478a1h2
2 − 135h3

2

− 1236a1h3 + 2601h2h3 − 3900h4 = 0. (3.44)

Upon substituting (3.40) and (3.42) into (3.44) we obtain

1
a1

(a1 − h2)
(
324a3

1+ 92a2
1h2 − 469(−3a3 + a2h2)+ a1

(−1209a2+ 324h2
2

))
= 0.

(3.45)
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The P7(x) fourth-degree term comparison becomes

− 17225a3
1+ 43730a1a2 − 49647a3+ 7945a2

1h2 + 5917a2h2 − 7945a1h2
2

+ 676h3
2+ 32139a1h3 + 17508h2h3 − 90896h4 = 0 (3.46)

and after substituting (3.40) and (3.42) into (3.46) we have

1
a1

(a1 − h2)
(
5404a3

1− 1148a2
1h2 − 7523(−3a3 + a2h2)

+a1
(−17183a2+ 5404h2

2

))
= 0. (3.47)

Lastly, the P8(x) fifth-degree term comparison is as follows:

−372723a3
1+ 1403441a1a2 − 1385214a3− 285272a2

1h2 − 18227a2h2

+ 285272a1h2
2 − 89015h3

2− 803811a1h3 + 2189025h2h3 − 4363920h4 = 0.
(3.48)

From substituting (3.40) and (3.42) into (3.48) we observe that

1
a1

(a1 − h2)
(
45032a3

1+ 7168a2
1h2 − 63405(−3a3 + a2h2)

+a1
(−160637a2+ 45032h2

2

))
= 0. (3.49)

Hence, (3.43), (3.45), (3.47) and (3.49) result in a simultaneous system of nonlinear
algebraic equations in the variables a1, a2, a3 and h2 as seen below:

1
a1
(a1 − h2)

(
44a3

1 − 14a2
1h2 − 63(−3a3 + a2h2)

+a1
(−137a2+ 44h2

2

))
= 0

1
a1
(a1 − h2)

(
324a3

1+ 92a2
1h2 − 469(−3a3 + a2h2)

+a1
(−1209a2+ 324h2

2

))
= 0

1
a1
(a1 − h2)

(
5404a3

1− 1148a2
1h2 − 7523(−3a3 + a2h2)

+a1
(−17183a2+ 5404h2

2

))
= 0

1
a1
(a1 − h2)

(
45032a3

1+ 7168a2
1h2 − 63405(−3a3 + a2h2)

+a1
(−160637a2+ 45032h2

2

))
= 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.50)

3.7 The Solutions of the Simultaneous, Nonlinear,
Algebraic System

If all of the solutions to (3.50) are found, exactly one of two situations will transpire.
One, at least one of the solutions will yield restrictions on any number of the terms
a1, a2, a3 and h2, satisfying both (3.33) and (3.1), i.e., (3.33) will produce at least
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one orthogonal polynomial sequence. Two, each of the solutions will lead to a
contradiction. In this case, it would be shown that {Pn(x)}∞

n=0 as defined by (3.33)
does not yield any orthogonal polynomial sequences. In the analysis that follows,
we illustrate that the latter case applies by showing that each solution set to (3.50)
contains the requirement a1 = h2, which leads to a contradiction. We begin with the
formal statement of this below.

Theorem 3.3. Each solution set to the simultaneous, nonlinear, algebraic system
defined by (3.50), which was established by respectively comparing the P5(x)
quadratic, P6(x) cubic, P7(x) quartic and P8(x) quintic coefficients from the three-
term recurrence relation (3.1) (for An, Bn and Cn as in (3.18) with the leading
coefficients as defined by (3.34)) with the P5(x) quadratic, P6(x) cubic, P7(x) quartic
and P8(x) quintic coefficients from the generating function (3.33), contains the
requirement a1 = h2.

Proof. Notice that each equation in (3.50) has the following structure:

d1a2
1δ + d2a1h2δ + d3(−3a3 + a2h2)δ/a1 + d4a2δ + d1h2

2δ = 0,

where δ = a1−h2. Therefore, we consider a linear change-of-variables by assigning
A = a2

1δ , B = a1h2δ , C = (−3a3 + a2h2)δ/a1, D = a2δ and E = h2
2δ . Then, (3.50)

can be written as

⎡
⎢⎢⎣

44 −14 −63 −137 44
324 92 −469 −1209 324

5404 −1148 −7523 −17183 5404
45032 7168 −63405 −160637 45032

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

A
B
C
D
E

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

Elementary row reductions to the above system lead to:

⎡
⎢⎢⎣

1 0 0 −2 1 0
0 1 0 −1 0 0
0 0 1 1 0 0
0 0 0 0 0 0

⎤
⎥⎥⎦ ,

which implies that C =−D, B = D and A = 2D−E .
Now, we clearly see that δ = 0 (a1 = h2) implies that A = B = C = D = E =

0, which satisfies the above requirements and trivially solves the above system.
Therefore, we next omit the δ -factor from each of the assignments A, . . . ,E above.
This yields −3a3 + a2h2 = −a1a2, a1h2 = a2 and a2

1 = 2a2 − h2
2, where the last

two equations lead to a2
1 = 2a1h2 − h2

2, which clearly has only the solution a1 = h2

(multiplicity 2). Hence, we see that every solution set of (3.50) that is additional to
δ = 0 has a1 = h2 as a requirement as well and the theorem is proven. 
�



3.7 The Solutions of the Simultaneous, Nonlinear, Algebraic System 97

We now show that the condition a1 = h2 leads to a contradiction by constructing
another simultaneous system. First, recall that the highest h-term in the P5(x) linear-
term comparison (3.38) is h5. In addition, the highest h-term in each of the P6(x)
quadratic-term comparison, the P7(x) cubic-term comparison and the P8(x) fourth-
degree term comparison is also h5. These comparisons are listed below, under the
assumption a1 = h2.

The P6(x) quadratic-term comparison is

− 86a2
2+ 200a4+ 10a3h2 − 38a2h2

2 + 34h4
2

− 54a2h3 − 156h2
2h3 + 27h2

3+ 400h2h4 + 200h5 = 0, (3.51)

the P7(x) cubic-term comparison turns out to be

− 1116a2
2+ 2392a4+ 2834a3h2 − 2994a2h2

2 + 1224h4
2

+ 156a2h3 − 5382h2
2h3 − 3105h2

3+ 7176h2h4 + 5850h5 = 0 (3.52)

and the P8(x) fourth-degree term comparison is

− 6835a2
2+ 15048a4+ 8835a3h2 − 10213a2h2

2 + 4888h4
2

− 2811a2h3 − 21072h2
2h3 + 954h2

3+ 60192h2h4 + 26980h5 = 0. (3.53)

Each of the above comparisons (3.51), (3.52) and (3.53) were all obtained using the
same method that has been utilized throughout this chapter.

Now, we note that under the restriction a1 = h2, (3.40) and (3.42), respectively,
take on the form

h3 =
1

3h2
(3a3 − 3a2h2 + h3

2), h2 �= 0 and h4 = 0. (3.54)

Also, we note that (3.51), (3.52) and (3.53) all have an a4 term and upon substituting
h3 as in (3.54) and incorporating the requirement a1 = h2, our a4 expression in (3.35)
now becomes

a4 =
1

8h2

(
3a2a3 + 5a3h2

2 − 2a2h3
2

)
. (3.55)

Therefore, we can substitute (3.54) and (3.55) into (3.38) and solve for h5 yielding

h5 =
1

25h2
2

(18a2
3 − 42a2a3h2 + 25a2

2h2
2 + 18a3h3

2 − 22a2h4
2 + 5h6

2). (3.56)

Thus, our expression for h5 involves only the variables a2, a3 and h2. Then,
substituting (3.54), (3.55) and (3.56) into (3.51), (3.52) and (3.53) and using some
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algebraic manipulations, we construct a simultaneous system in the variables a2, a3

and h2, as seen below:

(
171a2

3+ 195a2
2h2

2 − 144a2h4
2

+ 25h6
2+ a3

(−369a2h2 + 141h3
2

))
h−2

2 = 0(
369a2

3+ 491a2
2h2

2 − 412a2h4
2

+ 85h6
2+ a3

(−855a2h2 + 363h3
2

))
h−2

2 = 0(
16983a2

3+ 19925a2
2h2

2 − 15182a2h4
2

+ 2805h6
2+ a3

(−37002a2h2 + 14358h3
2

))
h−2

2 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (3.57)

To solve (3.57) we first note that each equation has the following structure:

η1a2
3h−2

2 +η2a2
2 +η3a2h2

2 +η4h4
2 +η5a2a3h−1

2 +η6a3h2 = 0.

Thus, we again use a linear change-of-variables by assigning A= a2
3h−2

2 ,B= a2
2,C =

a2h2
2,D = h4

2,E = a2a3h−1
2 and F = a3h2. This leads to the linear system

⎡
⎣

171 195 −144 25 −369 141
369 491 −412 85 −855 363

16983 19925 −15182 2805 −37002 14358

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A
B
C
D
E
F

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎣

0
0
0

⎤
⎦ ,

which has the following reduced echelon form:

⎡
⎣

1 0 0 4/9 0 −4/3 0
0 1 0 −1 −3 3 0
0 0 1 −1 −3/2 3/2 0

⎤
⎦ .

Therefore, we have 9A = 12F−4D, B = D+3(E−F) and 2C = B+D, which is of
course equivalent to

9a2
3h−2

2 = 12a3h2 − 4h4
2

a2
2 = h4

2 + 3a3(a2h−1
2 − h2)

2a2h2
2 = a2

2 + h4
2

⎫
⎬
⎭ . (3.58)

Then, from the bottom equation in (3.58), we see that a2 = h2
2, which clearly satisfies

the middle equation. Lastly, the top equation gives a3 = 2h3
2/3 (multiplicity 2)

and therefore,
{

a3 = 2h3
2/3, a2 = h2

2

}
solves (3.57). Upon extracting all possible

solutions to (3.58) we prove the following statement.

Theorem 3.4. The simultaneous nonlinear algebraic system defined by (3.57) has
only the solution sets
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{
a2 =

(
±3

2

)2/3

a2/3
3 , h2 =±

(
±3

2

)1/3

a1/3
3

}
,

{
a3 =

2
3

h3
2, a2 = h2

2

}
,

{
a2 =−(−1)1/3

(
3
2

)2/3

a2/3
3 , h2 = (−1)2/3

(
3
2

)1/3

a1/3
3

}
,

{
a3 =±2

3
a3/2

2 , h2 =±√
a2

}
.

Now consider A2A1C2, with a1 = h2. With some algebraic manipulations we have

A2A1C2 =
4a2

9
− 2a3

3h2
. (3.59)

With the restrictions a3 = 2h3
2/3 and a2 = h2

2 from the third solution set of
Theorem 3.4, we clearly see that (3.59) becomes A2A1C2 = 0, which violates the
positivity condition AnAn−1Cn > 0 in (3.1) for n = 2. It can be verified by simple
substitutions that all of the other solution sets also make (3.59) equal to zero, thus
violating the positivity condition in (3.1) for n = 2.

It is very important to discuss the fact that in order to construct the system (3.50)
we assumed a1 �= 0 via (3.40). Thus, to complete our investigation we need to
additionally consider the case when a1 = 0. Therefore, assuming a1 = 0, the P5(x)
quadratic-term comparison (3.39) is

−120a3+ 23a2h2 + 2h3
2+ 18h2h3 − 120h4 = 0, (3.60)

the P6(x) cubic-term comparison (3.44) becomes

−1365a3− 73a2h2 − 135h3
2+ 2601h2h3 − 3900h4 = 0 (3.61)

and the P7(x) fourth-degree term comparison (3.46) transforms into

− 49647a3+ 5917a2h2 + 676h3
2+ 17508h2h3 − 90896h4 = 0. (3.62)

In addition, our expression for a3 in (3.32) becomes

a3 =
1
3

a2h2 (3.63)

and h4 in (3.41) turns into
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h4 =
1

16
(−6a3 − a2h2 − h3

2 + 15h2h3).

Then, substituting (3.63) into the h4 expression above yields

h4 =
1

16
(−3a2h2 − h3

2 + 15h2h3). (3.64)

Next, upon substituting (3.63) and (3.64) into each of the equations (3.60), (3.61)
and (3.62) we achieve:

h2
(
11a2 + 19h2

2− 189h3
)
= 0

h2
(
271a2+ 145h2

2− 1407h3
)
= 0

h2
(
2137a2+ 2119h2

2− 22569h3
)
= 0

⎫
⎬
⎭ . (3.65)

It is not difficult to show that the only solution sets to (3.65) are {h2 = 0} and
{a2 = h2 = h3 = 0}. We first assume h2 = 0 and immediately see that under this
assumption, a3 = h4 = 0 via (3.63) and (3.64). Therefore, we take the restrictions
a1 = a3 = h2 = h4 = 0 and substitute them into the P6(x) quadratic-term comparison
(3.51) and our P7(x) cubic-term comparison (3.52), which respectively yields

−86a2
2+ 200a4− 54a2h3 + 27h2

3+ 200h5 = 0 (3.66)

and

−1116a2
2+ 2392a4+ 156a2h3 − 3105h2

3+ 5850h5 = 0. (3.67)

Substituting a1 = a3 = h2 = h4 = 0 into the a4 relation (3.35) and the P5(x) linear-
term comparison (3.38) and solving the latter for h5 we obtain

a4 =
3a2

8
(a2 + h3) and h5 =

1
50

(11a2
2 − 24a4− 3a2h3 + 36h2

3). (3.68)

Then substituting a4 above into h5 above leads to

h5 =
1

25

(
a2

2 − 6a2h3 + 18h2
3

)
. (3.69)

Therefore, substituting a4 in (3.68) and h5 in (3.69) into both (3.66) and (3.67) gives

a2
2 + 9a2h3 − 57h2

3 = 0
5a2

2 − 117a2h3 + 369h2
3 = 0

}
. (3.70)

It can readily be shown that the only solution to the system (3.70) is a2 = h3 = 0.
From here, it can easily be verified that the restriction a2 = h3 = 0 coupled with the
restrictions a1 = a3 = h2 = h4 = 0 again leads to a contradiction of the positivity
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condition AnAn−1Cn > 0 in (3.1) for n = 2. Lastly, it can be shown by direct
substitution of the constraints in the solution set {a2 = h2 = h3 = 0} of (3.65), along
with the requirement a1 = 0, that we once again have a contradiction of the positivity
condition AnAn−1Cn > 0 in (3.1) for n = 2.

To summarize, for the sequence {Pn(x)}∞
n=0 in (3.33) to be orthogonal, the system

defined by (3.50) must have at least one solution that does not lead to a contradiction.
As we have shown, every solution to the system leads to a violation of the positivity
condition of (3.1). Furthermore, since the system (3.50) was constructed under the
assumption a1 �= 0, we additionally considered the case when a1 = 0 and constructed
another simultaneous system, the only solutions of which each led to a contradiction
as well. Thus, we have now exhausted all possibilities and in turn have established
the following statement.

Theorem 3.5. There exists no sequences {ai}∞
i=0 and {hi}∞

i=1 such that
{Pn(x)}∞

n=0 ≡ {Qn(x)}∞
n=0, with {Pn(x)}∞

n=0 defined by

A(t)exp

[
xH(t)+

1
2

x2t2
]
=

∞

∑
n=0

Pn(x)t
n

with A(t) =
∞

∑
i=0

ait
i, a0 = 1 and H(t) =

∞

∑
i=1

hit
i, h1 = 1

and {Qn(x)}∞
n=0 defined by

Qn+1(x) = (Anx+Bn)Qn(x)−CnQn−1(x), AnAn−1Cn > 0,

where Q−1(x) = 0 and Q0(x) = 1.

Or simply, there exist no orthogonal polynomial sequences {Pn(x)}∞
n=0 that satisfy

(3.33).

3.8 On the Verification of Solutions via Computer Algebra

Herein, we give an overview on how two Mathematica R© commands (Solve
and Reduce), which have the ability to potentially solve simultaneous nonlinear
algebraic systems, aided in the development of Theorems 3.3 and 3.4. The first
Mathematica R© command is entitled Solve, which yields only generic solutions,
i.e., conditions on the variables that one explicitly solves for and not on any other
parameters in the system—refer to [5] for more details.

Now, even though the system (3.50) can be potentially solved by Mathematica R©

it is imperative to explain how this is accomplished, as there are some subtleties. In
fact, any combination of the terms a1, a2, a3 and h2 can be treated as variables and
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in addition, no variables can be specified, and then Mathematica R© can attempt to
find explicit solutions as well as implicit solutions. Therefore, to more accurately
determine the solutions to the system (3.50), we must exhaust all possible variable
selections and there are of course a total of ∑4

n=1 C(4,n) + 1 = 16 choices. All
possible variable selections were tested and each yielded a1 = h2 as a requirement
in each solution set. The procedure was carried out as follows.

We first assign the left-hand sides of the equations in (3.50) as E1,. . .,E4, set
each equal to zero and then have Mathematica R© search for all possible solutions
with respect to each selection of parameters. As an example, below we display five
of the 16 total outputs:

In[1]:=Solve[{E1==0, E2==0, E3==0, E4==0},{ a1 }]
Out[1]={{h2 → a1}}

In[2]:=Solve[{E1==0, E2==0, E3==0, E4==0},{ a2 }]
Out[2]={}

In[3]:=Solve[{E1==0, E2==0, E3==0, E4==0},{ a3 }]
Out[3]={}

In[4]:=Solve[{E1==0, E2==0, E3==0, E4==0},{ h2 }]
Out[4]={{h2 → a1}}

In[5]:=Solve[{E1==0, E2==0, E3==0, E4==0},{ a1,a2,a3,h2 }]
Solve::svars : Equations may not give solutions for all ‘‘solve’’

variables.

Out[5]=
{{

a3 → −2(48616a3
1−112021a1a2)

190215 ,h2 → a1

}
,

{
a3 → −2(4830a3

1−123531a1a2)
22569 ,h2 → a1

}
,

{
a3 → −2(370a3

1−8391a1a2)
1407 ,h2 → a1

}
,

{
a3 → −2(37a3

1−100a1a2)
189 ,h2 → a1

}
,

{
a3 → 2a3

1
3 ,a2 → a2

1,h2 → a1

}
,

{a1 → h2}}.

We first note that the solution
{

a3 → 2a3
1

3 ,a2 → a2
1,h2 → a1

}
in Output 5 is listed

12 times in the actual Mathematica R© file, because Mathematica R© calculates its
multiplicity to be 12. Also in Output 5, we note that all of the solutions contain
the assignment a1 = h2.

Altogether, each variable selection either yielded a null output, a solution that
required a1 = h2 or a solution set that can be algebraically manipulated to yield
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a1 = h2. For example, one of the solutions for the variable selection {a1,a3,h2} was
determined to be

{
a3 →−2a3/2

2 /3, h2 →−√
a2, a1 →−√

a2

}

from which it is readily seen that a1 = h2. This leads to the conjecture that each
solution set of (3.50) contains the requirement a1 = h2.

We additionally mention that in Output 5 we see that Mathematica R© displays
the preface; “Equations may not give solutions for all “solve” variables,” which
indicates that Mathematica R© did not necessarily solve the system, so the Solve
command cannot be interpreted as definitive. Therefore, as an additional veri-
fication, we repeat what has been done above using a different command—the
Reduce command. This command does not disregard restrictions on any other
parameters in the solutions, as opposed to the Solve command. Moreover, the
Reduce command also disregards multiplicities of solutions as it always displays
each solution set only once—refer to [5] for more details on this command.

To illustrate the differences between Solve and Reduce commands as
described above, we consider the following trivial example of finding the solution
to the general quadratic equation using both commands:

In[1]:=Solve[{ a∗ x2 + b ∗ x+ c== 0 },{ x }]
Out[1]=

{{
x → −b−

√
b2−4ac

2a

}
,

{
x → −b+

√
b2−4ac

2a

}}

In[2]:=Reduce[{ a∗ x2+ b ∗ x+ c== 0 },{ x }]
Out[2]=x = −b−

√
b2−4ac

2a && a �= 0 || x = −b+
√

b2−4ac
2a && a �= 0

a = 0 && b = 0 && c = 0 || a = 0 && x =−( c
b

)
&& b �= 0

We first note that && represents the “and” operator and || represents the “or”
operator as in C programming. Then observe that the Solve command solves the
equation with respect to x and disregards any restrictions on the other terms, e.g.,
a �= 0 and the Reduce command considers all possible scenarios, e.g., the linear
solution when a = 0.

In using the same procedure to solve (3.50) via the Reduce command as
outlined above for the Solve command, we again obtain the requirement a1 = h2

in each solution set. As an example, we display the following outputs:

In[1]:= Reduce[{E1==0, E2==0, E3==0, E4==0},{ a1,a2,a3,h2 }]
Out[1]=h2 == a1 && a1 �= 0

In[2]:= Reduce[{E1==0, E2==0, E3==0, E4==0},{ a2,a3,h2 }]
Out[2]=h2 == a1 && a1 �= 0

In[3]:= Reduce[{E1==0, E2==0, E3==0, E4==0},{ a1,a2,a3 }]
Out[3]=h2 == a1 && a1 �= 0
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We also mention that we additionally omitted the factor (a1 − h2) in each of the
equations in the system (3.50) and utilized Mathematica R© to carry out the same
procedure as outlined above using both commands. Once again, these experiments
led to the solution set {a1 = h2}. Lastly, the procedure described above was also
used to gain insights on the solutions to the other simultaneous systems in Sect. 3.7.

3.9 Conclusion and Future Considerations

To recap, the motivation for conducting this research was threefold. First of all,
what has been established herein functions as a template for potentially analyzing
other characterization problems. Furthermore, the method utilized in this chapter
is elementary as only knowledge of a generating function is needed to conduct
the analysis. The only potential shortcoming in this procedure is the prospective
complexity of the coefficient comparisons and the solvability of simultaneous
system(s) that evolve. However, with modern-day computer algebra systems, like
Mathematica R©, these spanners can be overcome, as we have shown here. Thus, our
secondary motivation was to show how computer algebra aids in the establishment
of rigorous results in orthogonal polynomials and special functions.

Third of all, in essence, we have analyzed a special case of the Sheffer B-Type
1 class and anticipate motivating future researchers to consider further studying
more general cases of this class, higher classes, and similar characterization
problems. Since the theoretical and practical importance of the B-Type 0 orthogonal
polynomial sequences discussed in [4] are so immense, it is quite natural to analyze
higher-order Sheffer sequences (and other sequences) in an attempt to determine
if novel orthogonal polynomials exist with the utility of the B-Type 0 classes—
Problem 3 at the end of this section states a conjecture related to this.

In order to discuss some future research problems that stem directly from the
analysis of this chapter, we point out the following. Given a polynomial sequence
{Pn(x)}∞

n=0 defined by a generating function of the form in Definition 3.4, one
can potentially apply the methodology outlined in Sect. 3.3 to obtain necessary
conditions on the respective recursion coefficients. Namely, one can develop
analogues of Theorems 3.1 and 3.2. From that point, one of two situations can
transpire. One, the recursion coefficients are of an unrecognizable form and a novel
analysis would have to be completed, possibly like the one outlined in Sects. 3.4–
3.7, that would determine the existence/nonexistence of orthogonal sets. Two, the
recursion coefficients are in fact recognizable, i.e., they can be manipulated and
parameters selected to match known orthogonal sets. In any case, once necessary
conditions for the recursion coefficients are established, one would need to show that
such conditions are also sufficient and thus, achieve a complete characterization.

In our present work, our method essentially “proves the negative,” that is, that
orthogonal sets do not exist. As we discussed above, this method can also be used to
“prove the positive” as well. Therefore, one can potentially apply our current method
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to various other polynomials sequences whose generating function is known. In
particular, perhaps the most immediate problem of this nature is listed below.

Problem 1. Apply the method of this chapter to the Sheffer B-Type 0 class:

A(t)exH(t) =
∞

∑
n=0

Sn(x)t
n

with

A(t) :=
∞

∑
n=0

antn, a0 = 1 and H(t) :=
∞

∑
n=1

hntn, h1 = 1

with rigorous details. That is, develop analogues of the results in Sect. 3.3 to
obtain necessary conditions for the B-Type 0 recursion coefficients (and then
show that these conditions are also sufficient), leading to the most basic complete
characterization of the B-Type 0 class.

This will yield the most basic characterization of the B-Type 0 class, since only the
generating function above (and a three-term recurrence relation) will be needed to
obtain the orthogonal sets.

We also have the following:

Problem 2. Apply the methodology of this chapter to the Sheffer B-Type 2 class:

A(t)exp
[
xH1(t)+ x2H2(t)+ x3H3(t)

]
=

∞

∑
n=0

Pn(x)t
n,

with Hi(t) = hi,it
i + hi,i+1ti+1 + · · · , h1,1 �= 0, i = 1,2,3.

This is a perfect supplementation of this chapter. Also, to achieve results regarding a
special case of this class, simplifying assumptions can be drawn that are analogous
to the ones presented in this chapter. Of course, we can also analyze even higher-
order B-Type classes using our current approach; however, Problem 2 will be the
next most tractable endeavor.

Lastly, we conclude with the following most general consideration.

Problem 3. Prove the following conjecture:

Conjecture 3.6. The Sheffer B-Type k generating function

A(t)exp
[
xH1(t)+ · · ·+ xk+1Hk+1(t)

]
=

∞

∑
n=0

Pn(x)t
n,

with Hi(t) = hi,it
i + hi,i+1ti+1 + · · · , h1,1 �= 0, i = 1,2, . . . ,k+ 1

yields orthogonal sets {Pn(x)}∞
n=0 if and only if k = 0.
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As was done in this chapter, one would first need to derive expressions for the
general Sheffer B-Type k recursion coefficients. This of course can be accomplished
by using the above generating function and a three-term recurrence relation. From
there, one would need to show that these general recursion coefficients must reduce
to the B-Type 0 recursion coefficients. To solve this problem, the analysis in [1] will
be beneficial.
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