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  Abstract   Ischemic heart disease as a consequence of the blockade of coronary 
 fl ow is associated with dramatic changes in cardiac function, metabolism, and ultra-
structure. A wide variety of subcellular defects have been observed in ischemic and 
ischemia–reperfusion (I/R) hearts. There is evidence that various subcellular organ-
elles become remodeled during the development of I/R injury and oxidative stress 
may be intimately involved in producing these abnormalities. In view of the direct 
participation of the sarcoplasmic reticulum (SR) and myo fi brils in heart function, it 
appears that cardiac contraction and relaxation abnormalities in ischemic heart dis-
ease are due to remodeling of the SR and myo fi brils, whereas remodeling of the 
sarcolemma membrane may determine the extent of intracellular Ca 2+  overload, 
subsequent proteolysis, and irreversible injury to the heart. Furthermore, the acute 
effects of I/R injury on cardiac function are thought to be due to changes in the 
activities of subcellular organelles as a consequence of functional group modi fi cation, 
whereas the chronic effects of I/R yielding delayed recovery of cardiac function 
may be the consequence of changes in cardiac gene expression and subcellular 
remodeling. Although female hearts are less susceptible to I/R injury, in comparison 
to males, the basis for this gender difference in cardiac ischemic injury and protec-
tion needs to be de fi ned. As females lose their resistance to different cardiovascular 
diseases after menopause, it appears that gender differences in cardiac susceptibility 
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to I/R injury may be mediated through the participation of ovarian hormones. On 
the other hand, it is possible that the male sex hormone, testosterone, exacerbates 
I/R-induced cardiac dysfunction in adult males. Notably, in comparison to males, 
there is very little information in the literature on subcellular remodeling or on the 
mechanisms which regulate cardiac function during the development of I/R injury 
in female hearts.  

  Keywords   Ischemia–reperfusion injury  •  Subcellular remodeling  •  Oxidative 
stress  •  Intracellular Ca 2+  overload  •  Proteases • Gender differences      

    16.1   Introduction 

 Ischemic heart disease as a consequence of the blockade of coronary  fl ow is associ-
ated with dramatic changes in cardiac function, metabolism, and ultrastructure  [  1,   2  ] ; 
however, the exact cellular and molecular events leading to contractile dysfunction 
and derangement of cardiac structure are not fully understood. Although restitution 
of coronary  fl ow to the ischemic heart is essential for the recovery of cardiac pump 
function, reperfusion after a certain period of ischemia has been shown to further 
aggravate the myocardial abnormalities  [  2–  5  ] . As cardiac contractile defects due to 
I/R are almost invariably associated with situations such as angioplasty, throm-
bolytic therapy, cardiac surgery, and cardiac transplantation, studies on I/R injury 
are highly relevant for understanding the pathophysiology of an important clinical 
problem, namely, myocardial stunning. Both myocardial ischemia and I/R have 
been shown to generate different oxyradicals and oxidants such as H 

2
 O 

2
 , peroxyni-

trite, and HOCl, and these are suggested to be responsible for the occurrence of 
intracellular Ca 2+  overload due to I/R injury  [  5–  9  ] . Various active oxygen species 
such as superoxide radicals, hydroxyl radicals, and H 

2
 O 

2
 , which are formed during 

the development of I/R injury, produce electrical abnormalities  [  10–  12  ] , ultrastruc-
tural damage  [  13  ] , intracellular Ca 2+  overload  [  14  ] , and cardiac dysfunction  [  15  ] . 
Both H 

2
 O 

2
  and peroxynitrite have also been reported to activate some proteases and 

induce cardiac dysfunction  [  16–  19  ] . Likewise, the intracellular Ca 2+  overload may 
induce cardiac dysfunction and cell damage by activating different proteases and 
phospholipases  [  20,   21  ]  and thus may modify the activities of various subcellular 
organelles such as sarcolemma (SL), sarcoplasmic reticulum (SR), myo fi brils, and 
mitochondria. While both intracellular Ca 2+  overload and oxidative stress have been 
shown to be involved in producing changes in cardiac gene expression as well as 
remodeling of subcellular organelles  [  20–  22  ] , oxidative stress seems to play a criti-
cal role in the genesis of intracellular Ca 2+  overload and thus may induce cardiac 
dysfunction by remodeling of subcellular organelles during the development of I/R 
injury. A schematic representation of the events involving oxidative stress and intra-
cellular Ca 2+  overload due to I/R injury is given in Fig.  16.1 . This view does not 
exclude the role of either lipid metabolites or oxidative stress/intracellular Ca 2+  
overload in apoptosis and necrosis commonly seen in ischemic and I/R hearts.   
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    16.2   Subcellular Remodeling and Molecular Abnormalities 
in I/R Hearts 

 Over the past 30 years, a wide variety of membrane defects have been observed in 
both ischemic and I/R hearts  [  5,   20–  24  ] . It is now clear that the SR Ca 2+  pump and 
associated regulatory mechanisms become defective due to changes in the molecu-
lar composition of the SR membrane as a consequence of I/R injury  [  25–  35  ] . Several 
investigators have reported a reduction in the density of SR Ca 2+ -release channels 
during I/R  [  36–  39  ] . Various oxidants as well as hydroxyl radicals were also observed 
to depress the SR Ca 2+ -pump activity  [  40,   41  ] . Although the ef fi ciency of mitochon-
drial ATP production is impaired at the late stages of I/R injury, depression in both 
electron transport chain activity and Ca 2+  transport in mitochondria also occurs at 
moderate degree of I/R injury  [  42,   43  ] . The biochemical activities of several SL 
membrane proteins including the Na + –Ca 2+  exchanger, Ca 2+ -stimulated ATPase, 
Na + –K +  ATPase, and phosphoinositol turnover are markedly altered during myocar-
dial I/R as well as during hypoxia–reoxygenation phases  [  44–  55  ] . I/R, as well as 
reactive oxygen species and oxidants, have also been shown to reduce the sensitivity 
of myo fi laments to Ca 2+  by causing proteolysis of myo fi brils  [  56–  62  ] . These obser-
vations provide evidence that various subcellular organelles become remodeled or 
altered in I/R heart and that oxidative stress may be intimately involved in produc-
ing these abnormalities. In view of the direct participation of the SR and myo fi brils 
in heart function, it appears that cardiac contraction and relaxation abnormalities in 
ischemic heart disease are due to remodeling of SR and myo fi brils, whereas remod-
eling of the SL membrane may determine the extent of intracellular Ca 2+  overload, 
subsequent proteolysis, and irreversible injury in the myocardium. It should also be 
noted that both I/R and oxidative stress have been shown to produce dramatic effects 
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on cardiac gene expression. We have demonstrated that mRNA levels for the SR 
Ca 2+  pump, Ca 2+  channels, phospholamban, and calsequestrin proteins were 
depressed in I/R hearts  [  25  ] . As H 

2
 O 

2
  and I/R were observed to produce similar 

changes in SR gene expression, we suggested that these effects of I/R may be due to 
oxidative stress  [  25  ] . We have also observed that I/R produced differential changes 
in gene expression for SL Na + –K +  ATPase isoforms, and these alterations were sim-
ulated by perfusing the hearts with an oxyradical-generating system or H 

2
 O 

2
   [  63  ] . 

mRNA levels for the SL Na + –Ca +  exchanger were also depressed by I/R  [  55  ] . 
Although intracellular Ca 2+  overload was demonstrated to occur in I/R hearts 
 [  64,    65  ] , it is not known whether alterations in cardiac gene expression are affected 
by both intracellular Ca 2+  overload and oxidative stress. Nonetheless, the acute 
effects of I/R injury on cardiac function are considered to be due to changes in the 
activities of subcellular organelles and proteins as a consequence of functional 
group modi fi cation, whereas the chronic effects of I/R including delayed recovery 
of cardiac function may be the consequence of changes in cardiac gene expression 
and subcellular remodeling.  

    16.3   Oxidative Stress and Development of Intracellular 
Ca 2+  Overload in I/R Hearts 

 Some investigators have demonstrated the generation of oxygen free radicals in I/R 
hearts by employing electron paramagnetic resonance spectroscopy  [  66–  68  ] . 
Oxidative stress has been shown to result in the development of intracellular Ca 2+  
overload due to I/R injury  [  69–  73  ]  because the activities of both SL Na + –Ca 2+  
exchanger and SL Ca 2+  pump were depressed following hypoxia or I/R as well as 
upon exposure of heart membranes to oxyradicals  [  74–  78  ] . Oxyradicals were also 
reported to alter other SL activities such as Na + –K +  ATPase, Na + –Ca 2+  exchanger, 
phospholipid methyltransferase  [  46,   47,   78–  82  ] , Ca 2+ /Mg 2+  ecto-ATPase, super fi cial 
store of Ca 2+   [  83  ] , and ATP receptors  [  84  ] , which are considered to affect Ca 2+  
movements in the cell. The SL changes in different cation currents have also been 
observed upon exposure to oxyradicals and oxidants  [  85–  87  ] . Several other defects 
such as changes in membrane permeability, loss of dystrophin, and alterations in 
phospholipases due to I/R injury have also been found in the SL membrane  [  88–  92  ] . 
Oxidative stress has also been shown to produce marked alterations in myo fi brils, 
mitochondria, and SR as well as induce autophagy during the development of I/R 
injury  [  62,   93,   94  ] . Thus, the increased formation of oxyradicals and oxidants in I/R 
hearts may induce a complex set of subcellular alterations with respect to their bio-
chemical composition and functional activities related to Ca 2+  movements, and these 
on balance may result in the development of intracellular Ca 2+  overload and subcel-
lular remodeling. 

 Oxidative stress seems to alter the subcellular activities by oxidizing different 
functional groups of subcellular organelles/proteins, and these changes seem to 
explain the development of intracellular Ca 2+  overload and cardiac dysfunction due 
to I/R injury  [  3,   5,   21  ] . The effects of oxidative stress favoring the development of 
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intracellular Ca 2+  overload are shown to be mediated through the activation of 
protein kinase C (PKC), mitogen-activated protein kinase (MAPK), and/or stress-
activated protein kinase  [  95–  97  ] , as well as translocation of PKC in ischemic heart 
 [  98,   99  ] . It is also noteworthy that besides the production of oxygen-derived free 
radicals, changes in nitric oxide (NO) metabolism have been observed in I/R hearts 
 [  67  ] . Although NO is known to regulate various events, its action becomes toxic by 
reaction with superoxide anion forming a potent oxidant, peroxynitrite, which has 
also been demonstrated to impair cardiac function  [  100,   101  ] . Thus, it appears that 
oxidative stress generated by different sources in the I/R heart plays an important 
role in the genesis of subcellular remodeling and cardiac dysfunction. A general 
scheme involving changes in gene expression for inducing subcellular remodeling 
due to I/R is shown in Fig.  16.2 .   

    16.4   Activation of Proteases and Subcellular Remodeling 
in I/R Hearts 

 Activation of different types of proteases including calpain I and calpain II as well 
as metalloproteases (MMP-2 and MMP-9) has been suggested to be intimately 
involved in the pathophysiology of several forms of cardiac diseases  [  6–  19,   102–  106  ] . 
These proteases are activated by Ca 2+ -dependent and Ca 2+ -independent mechanisms 
and have been shown to cleave subcellular proteins and depress or alter their activi-
ties. While calpain I and calpain II are activated by Ca 2+ , both MMP-2 and MMP-9 
are activated by oxidative stress as well as by proteolysis. Pretreatment of heart with 
calpain inhibitors, MDL-28170 and A-70523, was observed to attenuate I/R-induced 
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cardiac stunning and infarct size  [  24,   106,   107  ] . The activation of calpain as well as 
defects in the SR Ca 2+ -uptake and Ca 2+ -release activities due to I/R injury was also 
attenuated by perfusing the heart with calpain inhibitors, leupeptin and E64d, or 
exercise training  [  103,   108,   109  ] . Preventing the activation of calpain by nitrosyla-
tion upon perfusing the heart with  l -arginine was associated with improvements of 
SR function and cardiac performance in I/R hearts  [  51,   110  ] . Calpain-mediated 
depression in the activity of SL Na + –K +  ATPase and the loss of cytoskeleton protein 
 a -fodrin due to I/R injury were prevented by a calpain inhibitor, MDL-7943, as well 
as ischemic preconditioning  [  111–  114  ] . Likewise, the activation of MMP-2 
 [  115,    116  ] , changes in myosin light chain, and cardiac dysfunction due to I/R injury 
were prevented by doxycycline, an inhibitor of MMP-2  [  116  ] . The in fl uence of I/R 
injury on MMP-2 was observed to be mediated through the phosphoinositide 3 
kinase (PI3K)/protein kinase B (Akt kinase) pathway  [  117  ] . These results provide 
evidence that activation of both calpain and MMP-2 due to I/R injury may depress 
cardiac performance due to subcellular defects; however, it remains to be examined 
if the observed changes in the activation of metalloproteases due to I/R injury are 
mediated directly through oxidative stress and/or indirectly through intracellular 
Ca 2+  overload. It should be mentioned that both MMP-2 and MMP-9 are localized 
within cardiomyocytes  [  104,   105,   118  ]  and their endogenous inhibitors, TIMP-2 
and TIMP-1, are also found in these cells  [  104,   118  ] . Further, calpastatin serves as 
an endogenous inhibitor of both I and II isoforms of calpain in the heart  [  103  ] . Thus, 
the I/R-induced activation of MMP-2 and MMP-9 could also be due to a reduction 
in the TIMP-2 and TIMP-1 contents, whereas that of calpain I and II may be associ-
ated with the reduction of calpastatin content in cardiomyocytes. Nonetheless, the 
activation of different proteases under conditions of I/R injury would disrupt myo-
cardial structure, remodel different subcellular organelles with respect to their pro-
tein content, and produce irreversible cardiac dysfunction.  

    16.5   I/R-Induced Subcellular Remodeling 
and Gender Difference 

 To date, the majority of work done to describe I/R-induced development of oxidative 
stress, occurrence of intracellular Ca 2+  overload, activation of proteases, and defects 
in subcellular function has employed male animals, and little information is available 
for the female hearts. As female hearts are less susceptible to I/R injury, the basis for 
gender difference in cardiac ischemic injury and protection remains to de fi ned 
 [  119,   120  ] . Several epidemiological studies have revealed sex differences with 
respect to the incidence of coronary artery disease, atherosclerosis, apoptosis, hyper-
tension, and heart failure  [  120–  134  ] . Various experimental investigations have also 
reported gender differences in the development of cardiac hypertrophy and heart 
failure due to myocardial infarction, pressure overload, and volume overload 
 [  135–  146  ] . Gender difference in the properties of cardiac Na + –K +  ATPase due to 
hypertension  [  147  ] , SR Ca 2+  loading due to catecholamines  [  148  ] , and Na + –Ca 2+  
exchanger due to heart failure  [  149  ]  has also been observed. As females lose their 
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resistance to different cardiovascular diseases after menopause, it appears that the 
intrinsic  cardioprotection observed in females may be mediated through the partici-
pation of ovarian hormones  [  150  ] . Dramatic changes in Akt and NO synthase signal-
ing as well as protein kinase A-mediated changes in Ca 2+  handling involving SL Ca 2+  
channels, Na + –Ca 2+  exchanger, SR Ca 2+  uptake, and Ca 2+ -release channels have been 
observed upon ovariectomy  [  151–  154  ] . Furthermore, estrogen, a major ovarian hor-
mone, has been demonstrated to affect different Ca 2+ -handling proteins,  b -adreno-
ceptors, and Na + –H +  exchanger as a consequence of its action on various 
kinase-mediated signal pathways  [  155–  160  ] . However, a detailed study regarding the 
mechanisms of subcellular remodeling responsible for the resistance to ischemic insult 
in females, by employing ovariectomized animals with or without estrogen treatment, 
needs additional investigation before overarching conclusions can be made. 

 Several investigators have attempted to investigate the mechanisms of gender 
difference in cardioprotection against I/R injury in adult hearts. The postischemic 
recovery of cardiac function was greater and infarct size was smaller in female 
hearts in comparison to males, and these changes were attributed to differences in 
the Akt and PKC signal transduction  [  161,   162  ] . The loss of ischemic precondition-
ing effect on contractile function, infarct size, and enzyme leakage in I/R hearts was 
associated with impaired PKC phosphorylation  [  163  ] . Gender differences with 
respect to improved cardiac function in female I/R hearts were shown to be due to 
alterations in the regulation of [Na + ] 

i
  by a NO synthase-dependent mechanism 

 [  164–  166  ] . Differences in the gender-dependent I/R-induced infarct size were asso-
ciated with increased expression of SL K 

ATP
  channels, and in fact, blockade of these 

channels was observed to abolish this difference  [  167,   168  ] . Conversely, gender dif-
ferences with respect to resistance of female heart to I/R injury have also been 
attributed to difference in mitochondrial Ca 2+  uptake  [  169  ]  and tumor necrosis fac-
tor receptor signaling  [  170,   171  ] . By using ovariectomized animals, estrogen was 
found to attenuate I/R-induced changes in cardiac function and reduce infarct size 
as a consequence of changes in calpain and p38 MAP kinase activities  [  172–  176  ] . 
Female mouse cardiomyocytes were protected against oxidative stress due to H 

2
 O 

2
  

as a consequence of Akt activation  [  177  ] . On the other hand, castration was found 
to decrease mRNA levels for L-type Ca 2+  channels and Na + –Ca 2+  exchanger, and 
these alterations were reversed by testosterone  [  178–  180  ] . Testosterone was also 
observed to modify I/R-induced changes in Akt signal transduction and apoptotic 
pathway  [  181–  183  ] . Overall, there is a paucity of information on gender differences 
in subcellular remodeling as well as changes in mechanisms, which regulate cardiac 
function during I/R injury.  

    16.6   Conclusions 

 It is now known that the SR Ca 2+  pump and associated regulatory mechanisms are 
defective due to changes in the molecular composition of SR membrane as a conse-
quence of I/R injury. Various oxidants as well as hydroxyl radicals are observed to 
depress the SR Ca 2+ -pump activity in I/R hearts. It should be noted that ischemic 
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insult produces oxidative stress due to the generation of oxyradicals generating in 
addition to accumulating protons in cardiomyocytes. The magnitude of oxidative 
stress is ampli fi ed upon reperfusion of the ischemic myocardium, whereas protons 
are exchanged for Na +  via the Na + –H +  exchanger. Furthermore, oxidative stress rap-
idly oxidizes the functional groups of Na + –K +  ATPase and augments the develop-
ment of intracellular Na +  overload. Intracellular Na +  is exchanged with Ca 2+  via the 
Na + –Ca 2+  exchanger and favors the occurrence of intracellular Ca 2+  overload in the 
I/R heart. Thus, it is emphasized that alterations in the activities of Na + -handling 
proteins (SL Na + –K +  ATPase and Na + –Ca 2+  exchanger) are critical for the net gain 
of Ca 2+  within the cardiomyocytes. Oxidative stress and subsequent intracellular 
Ca 2+  overload result in the activation of different proteases and induce dramatic 
changes in the composition of subcellular organelles/proteins in the I/R hearts. 
Accordingly, oxidative stress as well as changes in SL Na + -handling proteins and 
protease activation plays an important role in inducing cardiac dysfunction due to 
I/R injury. Various events involved in subcellular remodeling during the develop-
ment of cardiac dysfunction in ischemic heart disease are depicted in Fig.  16.3 . It is 
also evident that females are more resistant to I/R-induced injury than males and 
the recovery of cardiac function upon reperfusing the male ischemic hearts is less 
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than that of the female. Although I/R-induced cardiac dysfunction in male hearts 
has been shown to be associated with the occurrence of oxidative stress, increase in 
development of intracellular Ca 2+  overload, activation of proteases, cleavage of sub-
cellular proteins, and alterations in subcellular activities, very little information 
regarding these changes in female hearts is available.       
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