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  Abstract   Acute activation of the sympathetic system and resultant  b -adrenergic 
receptor ( b -AR) signaling are required to maintain homeostasis, providing inotropic 
support in times of need, as in “ fi ght or  fl ight” or response to any stress, such as 
cardiac dysfunction and heart failure. For most of the twentieth century, it was rea-
soned that sympathetic stimulation of  b -ARs through administration of naturally 
occurring catecholamines or synthetic sympathomimetic amines could provide ino-
tropic support and should be used in heart failure therapy. However, in heart failure, 
sympathetic drive to the heart is excessively increased, and chronic sympathetic 
stimulation is deleterious, since it increases     

i

2MVO   , which cannot be met by appro-
priate increases in coronary blood  fl ow, thereby creating subendocardial ischemia 
and intensifying the cardiac dysfunction. Furthermore, continued stimulation of the 
 b -ARs also becomes problematic because it can activate multiple cellular processes 
including those involved in pathological remodeling seen in the development of 
cardiomyopathy. However, this reasoning took a diametrically opposite turn in the 
latter twentieth century when the adverse effects of chronic  b -AR stimulation 
became apparent from experimental studies in transgenic mice with cardiac-speci fi c 
overexpression of G 

s a 
  and  b -ARs and also from clinical studies with poor outcomes 

for patients on chronic sympathomimetic amine therapy. At this time it was also 
found that internal compensatory physiological processes countering continued 
 b -AR stimulation in the heart were cleverer than physicians. As a protective 
response,  b -AR desensitize, which reduces the effectiveness of  b -AR stimulation 
and the consequent increases in myocardial oxygen demands. Taken together, these 
factors were fundamental to the change in course from  b -AR stimulation to  b -AR 
blockade in the treatment of heart failure.  
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    1.1   Introduction 

  b -Adrenergic receptor ( b -AR) signaling is central to all aspects of the pathophysiol-
ogy of heart failure. The sympathetic nervous system including the neurohormones, 
epinephrine, and norepinephrine is rapidly called into action by any stress, such as 
cardiac dysfunction and heart failure. For most of the twentieth century, it was rea-
soned that sympathetic stimulation of  b -ARs through administration of naturally 
occurring catecholamines or synthetic sympathomimetic amines could provide ino-
tropic support and should be used in heart failure therapy. However, this reasoning 
took a diametrically opposite turn in the latter twentieth century when it was realized 
that patients with  b -AR blocker therapy fared signi fi cantly better. The goal of this 
chapter is to document the scienti fi c and clinical basis for the changing paradigm of 
the role of  b -AR signaling in heart failure. To do this, the chapter has the following 
sections: Sect.  1.2  (The Discovery of  b -ARs), Sect.  1.3  (Regulation of Cardiac 
Contractility by  b -ARs), Sect.  1.4  (Targeting  b -ARs in the Treatment of Heart Failure: 
Use of  b -AR Inotropic Agonists), Sect.  1.5  (Adverse Effects of Chronic  b -AR 
Stimulation in the Treatment of Heart Failure), Sect.  1.6  (Advent of  b -AR Blockade 
Therapy), Sect.  1.7  (Mechanisms Mediating Salutary Effects of  b -AR Blockade 
Therapy in Heart Failure), Sect.  1.8  (Future Directions), and Sect.  1.9  (Conclusions).  

    1.2   The Discovery of  b -ARs 

 Although the concept of  b -ARs mediating the signaling from the sympathetic ner-
vous system to regulate cardiac function is axiomatic today, this was not always the 
case. Throughout much of the twentieth century, it was erroneously believed that 
adrenergic signaling was primarily mediated by two classes of neurotransmitters, 
sympathin E (excitatory) and sympathin I (inhibitory), classi fi ed according to their 
physiological response  [  1,   2  ] . This was due, in part, to the use of natural adrenalin, 
which contained variable mixtures of epinephrine and norepinephrine with quite 
different agonistic activities, resulting in obscured conclusions that masked their 
distinct effects. In retrospect, the fallacy of their results is clear. Not only do 
 epinephrine and norepinephrine have different effects, e.g., norepinephrine has 
 a -vasoconstrictor activity as well as  b -vasodilator and inotropic activity, whereas 
epinephrine does not have much  a -activity, but both elicit re fl ex effects in vivo with 
the most prominent mediated by the arterial barore fl ex, which modulates the direct 
actions of the catecholamines on arterial pressure, heart rate, and peripheral  vascular 
resistance. 
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 In 1906, Dale  fi rst introduced the concept of receptors in connection with the 
sympathetic nervous system  [  3  ] . In his studies, he observed the actions of ergot 
alkaloid antagonists on the effects of epinephrine and proposed there are two 
distinct receptor types. One type, in which epinephrine mediated excitatory 
responses, was antagonized by ergot alkaloids, whereas in the second type, 
ergots had no effect on the inhibitory effects of epinephrine. Then in 1948, a 
major step was taken by Ahlquist, who challenged this idea of sympathins by 
characterizing two AR types,  a  and  b , based on the rank order of catecholamine 
potencies rather than the nature of their physiological response (contraction vs. 
relaxation)  [  2  ] . 

 However, the idea of ARs existing as physical entities received much skepticism 
 [  4,   5  ] . Even Ahlquist noted in his later paper that ARs are hypothetical structures 
that hold momentary value until the exact mechanism of adrenergic signaling is 
deciphered  [  6  ] . However, his seminal studies persevered and in 1967, Lands et al. 
extended his classi fi cation scheme by introducing two  b -AR subtypes,  b  

1
  and  b  

2
 , 

based on their af fi nities for epinephrine and norepinephrine  [  7  ] . Whereas  b  
1
 -ARs in 

cardiac and adipose tissue have approximately equal af fi nity for epinephrine and 
norepinephrine,  b  

2
 -ARs relax bronchial and vascular smooth muscle and have 

greater af fi nity for epinephrine than for norepinephrine. Then in 1972, Carlsson 
et al. provided pharmacological evidence that both  b  

1
 - and  b  

2
 -ARs are present and 

functional in the feline heart and that  b  
1
 -AR is the predominant subtype in both the 

atria and the ventricles  [  8  ] . 
 From these  fi ndings, Lefkowitz developed highly speci fi c radioligand-binding 

assays that allowed selective labeling of  b -ARs, which was responsible for the most 
signi fi cant progress in the  fi eld in the latter half of the twentieth century  [  9  ] . Using this 
method, he and his colleagues physically identi fi ed cardiac  b -ARs for the  fi rst time in 
the canine heart in 1975  [  9  ] . Moreover, the radioligand-binding technique made pos-
sible the quanti fi cation of the relative proportions of  b  

1
 - and  b  

2
 -ARs and in 1983, it 

was reported that human left ventricle (LV) consists of 86%  b  
1
 -AR and 14%  b  

2
 -AR 

 [  10  ] , thus con fi rming and extending the work of Carlsson. In addition, the interactions 
of  b -ARs with various agonists and antagonists were explored based on the concept 
that the radioligand competes for the binding site with an agonist. In 1980, it was dis-
covered that binding of an agonist and antagonist was affected by GTP  [  11  ] , and tak-
ing into account that adenylyl cyclase systems require GTP for activation  [  12  ] , the 
ternary complex model, consisting of the adrenergic receptor coupling to GTP-binding 
G protein to activate adenylyl cyclase (AC), was proposed  [  13  ] . 

 The advances in molecular biology techniques that shortly followed led to the 
successful cloning of the  b  

2
 -AR, the very  fi rst G protein-coupled receptor to be 

cloned  [  14  ] . Then by the 1990s, six  a -AR subtypes ( a  
1A

 ,  a  
1B

 ,  a  
1C

  and  a  
2A

 ,  a  
2B

 ,  a  
2C

 ) 
 [  15,   16  ]  and three  b -AR subtypes ( b  

1
 ,  b  

2
 ,  b  

3
 )  [  17–  19  ]  were  fi rmly established. 

Moreover, insights on the physiological actions of various AR subtypes were made 
possible through generation of transgenic mice models with targeted disruption of 
ARs  [  20–  23  ] . Today, we now understand that  a -ARs have positive inotropic activity 
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(most prominent in rodents), but their primary role is  regulating peripheral  resistance 
 [  24  ] , whereas  b -ARs provide the strongest mechanism to regulate cardiac perfor-
mance  [  25–  28  ] .  

    1.3   Regulation of Cardiac Contractility by  b -ARs 

 In response to acute stress, the normal heart must be able to rapidly increase its 
output nearly  fi vefold to meet the higher metabolic demands  [  29  ] . This is primarily 
met by the sympathetic nervous system acting on the  b -ARs to mediate positive 
chronotropic and inotropic responses in the heart. While all three  b -ARs subtypes, 
namely  b  

1
 ,  b  

2
 , and  b  

3
 , are expressed on the cardiomyocyte  [  9,   30  ] ,  b  

1
 -AR is the most 

abundant form (70–80% of total  b -AR in the normal heart) and is one of the main 
regulators of cardiac performance, with  b  

2
 -AR being secondary, but also having 

powerful vasodilator properties in vessels  [  31  ] . The  b  
3
 -AR, however, is only mini-

mally expressed, and its role in the heart remains controversial. Initially, the  b  
3
 -ARs 

were implicated to have a role in fat metabolism  [  32  ] , but various studies suggest 
they have cardiac roles as well. For instance, in vivo stimulation of  b  

3
 -AR induces 

inotropic responses in rodents; however, no effect was observed in primates, sug-
gesting its physiological response may be species speci fi c  [  33  ] . In addition, these 
reports do not correspond to the  fi ndings of ex vivo studies, which showed negative 
inotropic effects of  b  

3
 -AR stimulation in the ventricular tissue of mice and humans 

potentially through the inhibitory G protein (G 
i
 )–nitric oxide synthase (NOS) path-

way  [  34,   35  ] . The apparent discrepancy between in vivo and ex vivo effects of 
 b  

3
 -AR signaling may depend on the type of agonist used as well as their differential 

effects under in vivo and ex vivo conditions. Interestingly, however, a recent study 
by Niu et al. demonstrated in vivo that  b  

3
 -AR has cardioprotective roles by inducing 

negative inotropic effects and maintaining NO and reactive oxygen species balance 
in the setting of catecholamine overstimulation in the failing heart  [  36  ] . Whether 
this effect is also observed in humans needs to be elucidated. 

  b  
1
 - and  b  

2
 -ARs are the principal stimulatory G protein (G 

s
 )-coupled receptors 

that drive heart rate and enhance myocardial contractility  [  25–  28  ] . Upon amine 
binding, both  b  

1
 - and  b  

2
 -ARs activate adenylyl cyclase (AC) to increase the level of 

cyclic AMP (cAMP) (Fig.  1.1 )  [  37  ] . The latter targets protein kinase A (PKA), 
which phosphorylates various proteins involved in excitation–contraction coupling. 
These include, but are not limited to L-type calcium channels (LTCC)  [  38  ] , ryano-
dine receptors (RyR2)  [  39  ] , phospholamban (PLB)  [  40,   41  ] , and troponin I (TnI) 
 [  41  ] , which together coordinate stronger contractions and hastened relaxation of the 
cardiac muscle. For instance, phosphorylation of LTCC increases the Ca 2+  in fl ux 
 [  42  ] , which stimulates RyR2 to release Ca 2+  from the sarcoplasmic reticulum (SR). 
The Ca 2+ -induced Ca 2+  release process is further enhanced by phosphorylation of 
RyR2  [  43  ] , thereby increasing its sensitivity to cytosolic [Ca 2+ ] and resulting in 
greater SR Ca 2+  unloading necessary for stronger pumping of the myocardium  [  44  ] . 
The following relaxation phase is also accelerated through phosphorylation of PLB 
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at Ser16 by PKA, which allows rapid sequestering of Ca 2+  by relieving its inhibition 
of the SR Ca-ATPase (SERCA2a) pump  [  40,   45,   46  ] , as well as phosphorylation of 
TnI, which decreases the sensitivity of myo fi laments to Ca 2+   [  47–  49  ] , resulting in 
muscle relaxation.  

 Interestingly, studies from animal models reported that  b  
2
 -AR also couple to G 

i
 , 

which could negate the effects of G 
s
 –AC–PKA signaling, resulting in attenuation 

of enhanced contractility and hastened relaxation  [  50,   51  ] . For instance, 
(−)- noradrenaline hastened relaxation through  b  

1
 -ARs, but not with (−)-adrenaline 

through  b  
2
 -ARs in the feline ventricle  [  52  ] , which was supported by the  fi nding that 

 b  
2
 -ARs have modest inotropic effects compared to  b  

1
 -AR independent of receptor 

density in the rat heart  [  53,   54  ] . However, whether  b  
2
 -ARs couple to G 

i
  in humans 

remains controversial. Kilts et al. demonstrated that  b  
2
 -ARs also couple to G 

i
  in the 

human atria  [  55  ] , whereas a later study by Molenaar et al. showed evidence that is 
inconsistent with the dual coupling feature of  b  

2
 -AR  [  56  ] .  
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  Fig. 1.1    Enhancement of cardiac contractility through  b -AR signaling. Upon agonist binding, 
 b  

1
 - and  b  

2
 -ARs activate the stimulatory G protein (G 

s
 )-adenylyl cyclase (AC)-protein kinase A 

(PKA) pathway to phosphorylate multiple calcium handling and myo fi lament proteins, including 
L-Type calcium channel (LTCC), ryanodine receptor (RyR2), phospholamban (PLB), and troponin 
I (TnI). Activation of these proteins by  b -ARs enhances their function, resulting in stronger con-
tractions as well as hastened relaxation. For instance, the Ca 2+ -induced Ca 2+  release process is 
further enhanced by phosphorylation of RyR2 by PKA, resulting in greater sarcoplasmic reticulum 
(SR) Ca 2+  unloading during systole. The relaxation phase is also hastened by phosphorylation of 
PLB and TnI, resulting in faster reuptake of Ca 2+  by the SR and faster relaxation of the myo fi laments 
by preventing actin–myosin interaction. Interestingly, the  b  

2
 -AR also couples to inhibitory G pro-

tein (G 
i
 ), which could negate the effects of G 

s
 –AC–PKA signaling, resulting in only modest ino-

tropic response compared to  b  
1
 -AR       
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    1.4   Targeting  b -ARs in the Treatment of Heart Failure: 
Use of  b -AR Inotropic Agonists 

 While  b -AR blockers are currently widely employed in the treatment of heart failure, 
much of the therapeutic approaches in the twentieth century were based on the con-
cept of increasing myocardial contractility through inotropic agents. The reasoning 
was simple: (1) The failing heart has poor contractility, (2) catecholamines are the 
most potent stimulators of myocardial contractility, and (3) catecholamines would 
be useful to increase contractility in patients with heart failure (quod erat demon-
strandum). What was not known was either the concept of desensitization of  b -AR 
 [  57–  59  ]  or the fact that there is an oxygen cost of increasing heart rate, LV wall 
stress, and myocardial contractility, i.e., the major determinants of     

i

2MVO   , which, 
in turn, increase the requirement for coronary blood  fl ow. The increased demand is 
easily met in normal hearts and coronary circulation, but not so in the setting of 
either hypertrophy or heart disease characterized by limited subendocardial coro-
nary reserve  [  60,   61  ] . Under these conditions, the imbalance between coronary 
blood  fl ow supply and myocardial oxygen demands results in myocardial ischemia, 
which exacerbates cardiac dysfunction. 

 Not recognizing these concepts, catecholamines and synthetic sympathomimetic 
amines were routinely administered to patients with heart failure; at  fi rst, norepineph-
rine or epinephrine was given  [  62  ] , and then in the 1960s, isoproterenol (ISO), a 
nonselective  b  

1
 - and  b  

2
 -AR agonist with potent inotropic and chronotropic proper-

ties, was used in the treatment of heart failure  [  63  ] . Many patients who received this 
treatment developed fatal arrhythmias  [  63  ] , and those with coronary artery disease 
had increased myocardial ischemia  [  64  ] . In an experimental correlate of the clinical 
situation, Hittinger et al. showed that isoproterenol infusion in conscious dogs with 
LV hypertrophy and failure further impaired both systolic and diastolic function  [  65  ] . 
The increased stress of inotropy as well as chronotropy under limited coronary  fl ow 
reserve resulted in subendocardial hypoperfusion, which exacerbated the myocar-
dial dysfunction. 

 In an effort to  fi nd a selective agent that could augment the inotropic state of the 
myocardium without affecting the chronotropic state, dopamine, a naturally occur-
ring, nonselective  a - and  b -AR agonist, was used. While dopamine had less chro-
notropic effect compared to isoproterenol, the increase in cardiac index was still 
associated with elevated heart rate, resulting in ventricular tachyarrhythmias  [  66, 
  67  ] . Furthermore, the inotropic effect of dopamine was mediated in part by the 
release of endogenous noradrenaline  [  68–  70  ] . In severe heart failure, where endog-
enous noradrenaline levels are low, the degree to which dopamine could increase 
cardiac output was often minimal and unpredictable  [  71,   72  ] . Moreover, infusion at 
high doses leads to stimulation of both  a - and  b -ARs with a predominant  a -AR 
effect, resulting in excessive vasoconstriction  [  73,   74  ] . To minimize the effects on 
peripheral vasculature and heart rate, while retaining positive inotropic effects, 
dobutamine, a synthetic derivative of dopamine, was developed. Vatner et al. inves-
tigated the actions of dobutamine in healthy conscious dogs and found that it 
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exerted potent inotropic effects with insigni fi cant changes in heart rate  [  75  ] . 
However, the lack of increase in heart rate and effects on peripheral vascular resis-
tance was due to mixed  a - and  b -adrenergic stimulating properties of the drug, 
coupled with counteracting in fl uences induced by activation of autonomic re fl exes. 
Accordingly, when autonomic re fl exes were blocked or when one arm of the AR 
system (either  a  or  b ) was blocked, effects on heart rate and peripheral vascular 
resistance were identi fi ed. Furthermore, considering that many inotropic agents 
also have vasodilating effects, administration of nitroprusside, a vasodilating agent, 
was also explored. In the 1970s, there were various reports showing the promising 
effects of nitroprusside in improving heart function in the setting of heart failure 
 [  76–  78  ] . A later study compared the effects of chronic infusion of dobutamine with 
those of nitroprusside in end-stage heart failure patients and showed that patients 
with nitroprusside treatment had signi fi cantly higher event-free survival rate than 
patients with dobutamine treatment  [  79  ] . From these  fi ndings, it was proposed that 
peripheral vasodilator therapy with nitroprusside was superior to dobutamine. 
However, the combined effects of vasodilators and inotropes resulted in a higher 
mortality rate than vasodilator therapy alone  [  80  ] . In the early 1980s, moderate 
success was observed with the  b  

1
 -AR selective inotropic agent, prenalterol. 

Although in an acute setting, it improved hemodynamics  [  81,   82  ] , chronic admin-
istration showed detrimental effects  [  83  ] . Then in the 1990s, clinical trials with 
 b  

2
 -AR agonist, dopexamine, initially showed some clinical bene fi t over the placebo 

 [  84,   85  ] . However, the bene fi cial effects were due to the vasodilatory and cardiac 
unloading effects of this agonist. 

 In an attempt to improve cardiac function,  b -AR downstream targets were also 
explored. Milrinone, a phosphodiesterase (PDE) inhibitor, was  fi rst approved for 
intravenous use in the late 1980s due to its effects on increasing cAMP half-life and 
subsequently increasing intracellular Ca 2+  concentration and improving cardiac 
contractility. In addition, because increased cAMP levels also results in arterial and 
venous dilation, it may lead to hypotension. In clinical trials, milrinone had no clear 
bene fi t over placebo  [  86  ] . Then in 1986, enoximone, another PDE inhibitor, was 
studied. A year later, it was found to be superior to both dobutamine and nitroprus-
side in the management of heart failure  [  87  ] . However, in 1994, it was found that 
enoximone administration in patients with end-stage heart failure resulted in 
increased mortality  [  88  ] . Then in a larger phase III trial in 2009, ESSENTIAL-I and 
ESSENTIAL-II, enoximone treatment did not show any bene fi t over the placebo, 
which led to the termination of enoximone development  [  89  ] .  

    1.5   Adverse Effects of Chronic  b -AR Stimulation 
in the Treatment of Heart Failure 

 Acute activation of the sympathetic system is required to maintain homeostasis, 
providing inotropic support in times of need, such as in “ fi ght or  fl ight” situations. 
However, in heart failure, sympathetic drive to the heart is excessively increased, 
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and as discussed in the last section, the chronic sympathetic stimulation is deleterious, 
since it increases     

i

2MVO   , which cannot be met by appropriate increases in coronary 
blood  fl ow. This results in subendocardial ischemia, which intensi fi es the cardiac 
dysfunction. Furthermore, continued stimulation of the  b -ARs also becomes prob-
lematic because it can activate multiple cellular processes including those involved 
in pathological remodeling seen in the development of cardiomyopathy. Therefore, 
continued  b -AR stimulation as occurs in heart failure induces  b -AR desensitization 
 [  57–  59  ] , which is protective since it reduces the effectiveness of  b -AR stimulation 
and the consequent increases in myocardial oxygen demands. The realization of 
these concepts was fundamental to the paradigm shift from  b -AR stimulation to 
 b -AR blockade in the treatment of heart failure. The background documenting this 
concept follows in both experimental and clinical settings. 

    1.5.1   Experimental Evidence 

 It was a considerable time before the adverse outcomes of chronic  b -AR stimulation 
were demonstrated both in vitro and in vivo in numerous animal studies. Initially, it 
was thought that  b -AR overexpression could be a novel therapy for heart failure. 
This concept was supported by studies that showed enhanced myocardial function 
in transgenic mice with up to 60-fold overexpression of  b  

2
 -ARs  [  90  ]  without evi-

dence of cardiac pathology  [  91  ] . Furthermore, transgene therapy with adenovirus 
coding the  b  

2
 -AR transgene signi fi cantly improved cardiac function in the failing 

rabbit hearts  [  92  ] . 
 However, the error of this concept was realized when the chronic effects of  b -AR 

stimulation were observed. The novel feature of the following studies was the con-
tinued monitoring of the mice as they aged. Iwase et al. reported that transgenic 
mice with cardiac-speci fi c overexpression of G 

s a 
  (G 

s a 
  TG) have increased respon-

siveness to  b -AR stimulation by ISO compared to WT mice as young adults, as 
evident by signi fi cantly higher left ventricular ejection fraction (LVEF) (Fig.  1.2a ) 
 [  93  ] . However, upon aging, their function deteriorates, resulting in LV dilation, 
higher incidence of arrhythmias, and depression of LVEF (Fig.  1.2a )  [  93–  95  ] . 
Furthermore, histological examination of these hearts revealed a picture of cardio-
myopathy, including marked increase in hypertrophy, myocyte necrosis, and  fi brosis 
(Fig.  1.2b )  [  93  ] . Con fi rming these  fi ndings, Engelhardt et al. showed that transgenic 
mice with cardiac-speci fi c overexpression of  b  

1
 -AR ( b  

1
 -AR TG) have hyperfunc-

tion at a young age, but their function progressively worsens as the mice age  [  96  ] , 
which was also further con fi rmed by the work of Peter et al. (Fig.  1.3a )  [  97  ] . 
Furthermore, premature mortality by 12 months of age was signi fi cantly higher in 
 b  

1
 -AR TG mice compared to WT mice (Fig.  1.3b )  [  98  ] . In support of these  fi ndings, 

in vitro studies in rat ventricular myocytes showed signi fi cant increases in apoptosis 
upon  b  

1
 -AR stimulation  [  100  ] , and hypertrophy from ISO administration was abol-

ished by a  b  
1
 -AR antagonist  [  101  ] . Furthermore, the concept of the bene fi cial effects 

of chronic  b  
2
 -AR overexpression was  fi nally put to rest when Du et al. showed that 
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 b  
2
 -AR TG mice also develop progressive cardiomyopathy with increasing age, as 

re fl ected by deterioration of myocardial function  [  99  ] , which was also con fi rmed by 
studies of Peter et al. (Fig.  1.3a )  [  97  ] . Similar to  b  

1
 -AR TG mice,  b  

2
 -AR TG mice 

also have signi fi cantly higher mortality by 12 months of age compared to the WT 
mice (Fig.  1.3b )  [  99  ] .   
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  in the heart induces cardiomyopathy. ( a ) G 
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  TG mice have higher 
responsiveness to isoproterenol (ISO) compared to WT mice as young adults, but experience pro-
gressive deterioration of left ventricular ejection fraction (LVEF) with age (* p  < 0.05)  [  93,   94  ] . ( b ) 
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  TG mice stained with tolui-
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  TG mice have marked cellular hypertrophy and  fi brosis compared to WT mice. 
Bar = 25  m m  [  93  ] . Figures adapted with permission from Lippincott Williams & Wilkins and 
Journal of Clinical Investigation       
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  Fig. 1.3    Cardiac overexpression of  b  
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2
 -AR TG animals have enhanced left ventricular ejection fraction 

(LVEF) as young adults, but their cardiac function signi fi cantly worsens as the animals age com-
pared to the age-matched WT mice. (* p  < 0.05 vs. WT)  [  97  ] . ( b ) The mortality rate of  b  
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vs. WT)  [  98,   99  ] . Figures adapted with permission from Journal of Clinical Investigation, 
Lippincott Williams & Wilkins, and Oxford University Press       
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 Chronic stimulation of the  b -AR pharmacologically with high doses of ISO also 
results in the rapid development of cardiomyopathy. Similar to transgenic mice 
models of cardiomyopathy, several studies in rodent models have reported marked 
increases in cellular necrosis and  fi brosis  [  102–  105  ]  and impaired LV function  [  106, 
  107  ]  upon administration of high doses of ISO, resulting in heart failure and 
increased mortality. In support of this, the effects of chronic catecholamine stress 
are exacerbated in mice with transgenic overexpression of components in the  b -AR 
signaling pathway, such as AC5, one of the two major AC isoforms in the heart. It 
was shown that mice with cardiac-speci fi c overexpression of AC5 (AC5 TG) have 
higher mortality, depressed LVEF, as well as increased  fi brosis and apoptosis com-
pared to the WT mice under chronic catecholamine stress  [  108  ] . 

 It is now recognized that the development of cardiomyopathy from chronic  b -AR 
stimulation is mediated by several signaling pathways (Fig.  1.4 ). One of these is the 
Ca 2+  handling pathway. In animal models as well as heart failure patients, prolonged 
Ca 2+  transients have been described  [  109,   110  ] , and in humans, it was shown that this 
effect was due, in part, to the impairment of reuptake of Ca 2+  into the SR during dias-
tole  [  111,   112  ] . In fact, it was shown that in the failing heart, PLB is hypophosphory-
lated by PKA  [  113  ] , resulting in delayed sequestering of Ca 2+  by the SR and increased 
cytosolic Ca 2+  during diastole, which is further exacerbated by enhanced activity of 
LTCC  [  114  ] . Engelhardt et al. showed that adverse effects of cardiac-speci fi c overex-
pression of  b  

1
 -AR could be rescued by ablation of PLB  [  98  ] . The  b  

1
 -AR TG x PLB −/−  

bigenic mice had signi fi cantly lower diastolic calcium levels and upregulation of 
SERCA compared to  b  

1
 -AR TG mice. Moreover, the bigenic mice had signi fi cant 

improvement in mortality and cardiac function as well as reduction in hypertrophy 
and  fi brosis. The cardiotoxic effects of increased intracellular Ca 2+  could be attributed 
to activation of calcineurin  [  115  ]  and Ca2+/calmodulin-dependent protein kinase II 
(CaMKII) pathway  [  116  ] , which could induce hypertrophy. However, it may also be 
due to the activation of the necrosis pathway. While Ca 2+  is not the main regulator of 
the necrosis pathway, previous studies have suggested that increases in intracellular 
Ca 2+  induced by  b -AR stimulation by ISO could induce necrosis  [  117,   118  ] .  

 Other distal signaling pathways that have been implicated involve several kinases, 
which mediate hypertrophy and cardiomyopathy. For example, inhibition of proto-
oncogene serine/threonine-protein kinase (Raf-1), which activates MAPK/ERK 
kinase (MEK) and subsequently extracellular signal-regulated kinase (ERK), may 
contribute to the development of cardiomyopathy. Yan et al. showed that mice with 
AC5 disruption (AC5KO) were protected against aging cardiomyopathy, and the 
mechanism behind this protection was proposed to be enhanced pro-survival Raf-1/
MEK/ERK signaling  [  119  ] . This is also supported by the  fi nding that ERK activa-
tion could prevent myocardial necrosis and apoptosis  [  120–  122  ]  and ERK inhibi-
tion under ischemic insult results in increased size of myocardial infarction in vivo 
 [  120  ]  as well as increased apoptosis in vitro  [  123  ] . Therefore, it may be possible 
that inhibition of this pro-survival pathway may contribute to the development of 
cardiomyopathy. Another pathway that contributes to the development of cardio-
myopathy involves activation of proapoptotic protein p38 a  mitogen-activated pro-
tein kinase (p38 a  MAPK), which was shown to be elevated in G 

s a 
     TG cardiomyopathy 
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model  [  124  ] . Peter et al. reported that inhibition of p38 a  MAPK rescues the cardio-
myopathy induced by  b  

2
 -AR  [  97  ] . While p38 a  MAPK disruption did not prevent 

 b  
1
 -AR-induced cardiomyopathy, there was upregulation of another proapoptotic 

protein, mammalian sterile 20-like kinase 1 (Mst-1) in the hearts of  b  
1
 -AR TG mice 

 [  97  ] , suggesting that Mst-1 may play a role in the development of cardiomyopathy 
that is more associated with the  b  

1
 -AR. The last pathway, which involves phosphati-

dylinositol 3-kinase (PI3K)–protein kinase B (Akt) signaling, is a matter of debate. 
Various studies have shown that Akt mediates hypertrophy  [  125–  127  ] , but could also 
enhance cardiac contractility  [  128,   129  ] , suggesting it has bene fi cial roles in the heart. 
Kim et al. showed that mice with cardiac-speci fi c overexpression of active Akt had 
increased L-type Ca 2+  density, as well as increased expression of SERCA2a protein, 
which resulted in enhanced myocardial contractility  [  128  ] . Furthermore, it has been 
well documented that Akt can protect the heart from apoptosis in vitro  [  130,   131  ]  
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  Fig. 1.4     b -AR signaling pathways involved in the development of cardiomyopathy. Chronic stim-
ulation of  b  

1
 - and  b  

2
 -ARs drives cAMP levels via G 

s
 -AC signaling to activate protein kinase A 

(PKA) and Epac. PKA induces enhanced activity of Ca 2+  handling proteins, such as LTCC and 
RyR2, resulting in signi fi cant increases in cytosolic Ca 2+  levels, which contributes to necrosis and 
subsequent development of cardiomyopathy. PKA could also inhibit the pro-survival proto-onco-
gene serine/threonine-protein kinase (Raf-1), mitogen-activated protein kinase/extracellular sig-
nal-regulated kinase (MEK), and extracellular signal-regulated kinase (ERK) pathway, thereby 
relieving this protective mechanism. Similarly, Epac activates p38 a  mitogen-activated protein 
kinase (p38 a  MAPK) to induce cardiomyopathy. The  b  

2
 -AR also couples to G 

i
  to activate the 

phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) pathway. While acute stimulation of 
Akt may be bene fi cial, chronic stimulation of this protein may have adverse effects. As a protective 
measure,  b -arrestins are recruited to decouple the receptor from downstream signaling, thereby 
desensitizing the  b -AR       
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and in vivo  [  132  ] . Okumura et al. reported that mice with AC5 disruption (AC5KO) 
had signi fi cantly lower apoptosis compared to WT mice after ISO administration, 
which was associated with marked increase in active Akt  [  133  ] . However, other 
studies have highlighted the deleterious effects of Akt signaling.    Matsui et al. reported 
that chronic Akt expression in mice results in a vast array of phenotypes, including 
moderate cardiac hypertrophy with preserved function to signi fi cant cardiac dilation as 
well as sudden death  [  134  ] . In a later study, Nagoshi et al. reported that transgenic mice 
with cardiac-speci fi c Akt expression had signi fi cantly larger infarcts without any res-
toration of function under ischemia/reperfusion injury  [  135  ] . Furthermore, it was 
shown that activation of Akt results in a negative feedback mechanism to inhibit PI3K, 
concluding that in the heart, PI3K-dependent but Akt-independent pathways are 
required for full cardioprotection. Given these  fi ndings, the possibility of Akt contrib-
uting to the development of cardiomyopathy cannot be fully dismissed. 

 One of the key series of studies instrumental in changing the concept of  b -AR 
stimulation to  b -AR blockade in heart failure therapy involved the mouse models 
with cardiac-speci fi c overexpression of either G 

s a 
  or  b -AR. As noted earlier, these 

mice responded to increased sympathetic stimulation with enhanced levels of heart 
rate and contractility (Fig.  1.2a )  [  93  ] . This was not a transient process, as occurs 
with intravenous administration of catecholamines, but was a permanent  fi xture of 
their cardiac function through constant overexpression. The G 

s a 
  mice tolerated the 

chronically enhanced cardiac function when they were young, but developed car-
diomyopathy as they aged, as re fl ected by cardiac dysfunction and heart failure, 
myocyte necrosis and apoptosis and cardiac  fi brosis, as well as premature mortality 
from the cardiomyopathy. When these mice were put on continuous  b -AR blockade 
therapy, they were protected from cardiomyopathy and showed improvement in 
LVEF as well as improvement in survival (Fig.  1.5a )  [  94  ] . These  fi ndings were not 
only novel at the time, but also played a signi fi cant role in the paradigm shift from 
 b -AR agonist to  b -AR blockade in the treatment of heart failure.   

    1.5.2   Clinical Evidence 

 A major deterrent to  b -AR stimulation therapy was that patients who received inotro-
pic agonists often experienced side effects, including elevated heart rate, arrhyth-
mias, and peripheral vasoconstriction, which overshadowed any initial inotropic 
bene fi ts gained. Moreover, patients with treatment experienced worsening of their 
condition and signi fi cantly higher mortality rates than the placebo group. For instance, 
ISO induced fatal arrhythmias and intensi fi ed myocardial ischemia in patients with 
coronary artery disease. Patients with dopamine treatment developed ventricular 
tachyarrhythmias. Moreover, prenalterol signi fi cantly increased mortality. In addi-
tion, while dobutamine had bene fi cial effects in the acute setting, chronic administra-
tion had adverse effects. In fact, the 1999 Flolan International Randomized Survival 
Trial proved dobutamine to increase mortality  [  137  ] . These  fi ndings were critical in 
the shift from beta agonists to  b -AR blockers in the treatment of heart failure. 
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 The other major clinical contribution was the concept of  b -AR desensitization in 
patients with heart failure introduced by Bristow and his colleagues  [  57  ] . As an adap-
tive response to increased catecholamine levels,  b -ARs desensitize through down-
regulation of the receptors and attenuation of downstream signaling. Bristow et al. 
demonstrated that isoproterenol (ISO) stimulation in failing human hearts resulted in 
50–56% reduction in  b -AR density, decreased AC activity, and decreased muscle 
contraction compared to normal hearts  [  57  ] , and the half-equivalent dose of ISO was 
 fi vefold higher in the failing tissue compared to the normal tissue  [  138  ] . Dose–
response study with dobutamine showed progressively lower inotropic response (dP/
dt) in patients with severe heart failure compared to those with moderate heart failure 
 [  139  ] . The observed  b -AR desensitization is mediated by two mechanisms. First,  b -
AR mRNA is downregulated  [  140,   141  ]  potentially through degradation by A + U-rich 
element RNA-binding/degradation factor (AUF1)  [  142  ] . It was found that AUF1 
expression is signi fi cantly elevated in individuals with heart failure, and its abun-
dance was regulated by  b -AR stimulation. In addition, AUF1 was able to interact 
with  b -AR mRNA suggesting it may be responsible for its  stability. Second,  b -ARs 
are decoupled from downstream signaling  [  143–  145  ] .    G protein-coupled receptor 
kinase 2 (GRK2), a member of the GRK family commonly known as  b -AR kinase 1 
( b ARK1), phosphorylates agonist occupied  b -AR  [  146  ]  and subsequently recruits 
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  Fig. 1.5     b -AR blockade treatment increases survival rate. ( a ) Approximately 9-month-old WT 
and G 

s a 
  TG mice were followed for mean duration of 6.5 months with or without propranolol treat-

ment. In the untreated group, G 
s a 

  TG mice have premature mortality, which was abolished by 
propranolol treatment. (* p  < 0.05 by log-rank test)  [  94  ] . ( b ) By 300 days of therapy,  b -AR blocker, 
carvedilol, was shown to be superior in prolonging the lifespan of heart failure patients compared 
to both  b -AR agonist (dobutamine) and vasodilator agent (nitroprusside)  [  79,   136  ]  Figures moad-
apted with permission from Journal of Clinical Investigation and Oxford University Press       

 



16 G.J.A. Lee et al.

 b -arrestin, which inhibits G protein-mediated signaling (Fig.  1.4 )  [  147  ] . Studies in 
the left ventricles of patients with dilated or ischemic cardiomyopathy showed 
 elevated expression and activity of GRK2  [  141  ] . 

 Therefore, in the setting where  b -ARs are already desensitized,  b -AR agonist 
treatment will not provide much inotropic response. In fact, it will exacerbate the 
condition, as seen in the clinical trials of  b -AR agonists. For these reasons, the con-
cept of  b -AR desensitization was important in understanding the rationale for  b -AR 
blockers in heart failure therapy.   

    1.6   Advent of  b -AR Blockade Therapy 

  b -AR blockade therapy began with the seminal studies of Sir James Black, who was 
awarded the Nobel Prize in 1988  [  148  ]  for developing  b -AR blockers in the treat-
ment of cardiac disease. He began his studies with the goal of reducing myocardial 
oxygen demands  [  149  ] , and by 1962, he and Stephenson introduced a nonselective 
 b -AR blocker, pronethalol  [  150  ] . It was reported that pronethalol had strong antiar-
rhythmic effects in guinea pigs and dogs  [  151–  154  ]  and was effective in managing 
angina pectoris in patients  [  155  ] . Shortly after, Black developed another nonselec-
tive  b -AR blocker, propranolol, in 1965  [  156  ] . He compared the effects of pronethalol 
with propranolol and showed that propranolol was superior in reducing heart rate 
and blocking ISO-induced hypotension without any fall in blood pressure in dogs 
 [  156  ] . 

 Furthermore, unlike inotropic agonists, propranolol treatment in mice did not 
induce myocardial damage  [  157  ] . In fact, it was shown to be effective in reduc-
ing mortality rates and ventricular  fi brillation in experimental studies of coro-
nary artery occlusion  [  158,   159  ] . Similar effects were seen in the clinical setting, 
and it was reported that propranolol was effective in improving myocardial oxy-
genation  [  160  ]  and reducing mortality in patients with myocardial infarction 
 [  161  ] . Furthermore, it had strong antiarrhythmic effects as well as having 
bene fi cial effects in controlling angina pectoris in heart failure patients  [  162–
  164  ] . The success of propranolol also led to the development of  b  

1
 -AR selective 

 b -AR blockers including practolol, atenolol, and metoprolol. While practolol 
had less  b -AR blocking potency than propranolol, animals studies demonstrated 
that practolol was effective in preventing arrhythmias and other alterations in 
cardiac function  [  165  ] . Furthermore, administration of atenolol or metoprolol in 
mice was able to prevent myocardial injury induced by epinephrine, including 
in fl ammatory cell in fi ltration,  fi brosis, and atrophy and necrosis  [  166  ] . Then in 
1975, the bene fi cial effects of practolol and alprenolol were illustrated clini-
cally  [  167  ] . Six patients were treated with oral  b  

1
 -AR selective blocker prac-

tolol, and one patient received the nonselective  b -AR blocker, alprenolol, for 
2–12 months. After treatment, all seven patients showed improvement in ven-
tricular function and reduction in heart size. The long-term effect of  b  

1
 -AR 
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selective blocker, metoprolol, was also evaluated in an international  multicenter 
study, the metoprolol in dilated cardiomyopathy (MDC) trial  [  168  ] . Beginning 
from 1985, 383 patients were followed for at least 12 months. Although the 
bene fi cial effects of metoprolol were modest during the  fi rst year of treatment, 
the requirement for heart transplantation was dramatically decreased in the 
treatment group. In addition, metoprolol was well tolerated in the long term, 
indicated by the low withdrawal rate. In 1994, the trial on the  b  

1
 -AR selective 

blocker bisoprolol in the cardiac insuf fi ciency bisoprolol study (CIBIS) was 
published  [  169  ]  and was soon followed by the US Carvedilol (nonselective 
 b / a  

1
 -AR blocker) Study in 1996  [  136  ] . Patients with carvedilol treatment had 

signi fi cant improvement in mortality, and the survival bene fi t compared to  b -
AR agonist, dobutamine, as well as to vasodilator agent, nitroprusside, is clear 
(Fig.  1.5b ). The  fi rst large randomized clinical trial was the Cardiac Insuf fi ciency 
Bisoprolol Study II (CIBIS-II), released in 1999, in which 2,647 heart failure 
patients were followed for a mean duration of 1.3 years  [  170–  173  ] . The study 
was terminated early due to the clear bene fi t of bisoprolol in decreasing mortal-
ity rate (11.8% vs. 17.3% bisoprolol vs. placebo). In 2000, similar results were 
seen in the Metoprolol CR/XL Randomized Intervention Trial in congestive 
heart failure (MERIT-heart failure)  [  174  ] .  

    1.7   Mechanisms Mediating Salutary Effects of  b -AR 
Blockade Therapy in Heart Failure 

 While  b -AR blockers improve cardiac function as well as hemodynamic response, 
the concept that  b -AR blockade would be useful therapy in heart failure is counter-
intuitive, with the inverse reasoning of why  b -AR stimulation would be useful in 
heart failure, alluded to earlier. In addition,  b -AR blockade has already been initi-
ated by failing heart through desensitization and reduced  b -AR density and regula-
tion, also noted earlier. To put it simply the failing heart has an internal brain telling 
the physician how to design its therapy, i.e., if  b -AR blockade is already initiated 
physiologically, then it follows that more of the same might be indicated. The coun-
ter argument is based on knowing that  b -AR blockers have a profound cardiac 
depressant effect, which could not be tolerated in a heart already failing with marked 
cardiac depression. Indeed, early attempts at  b -AR blockade often failed because of 
this. It was not until physicians recognized that by gradually and incrementally 
instituting  b -AR blockade was it possible to achieve therapeutic levels without com-
pounding the cardiac depression. This is combined with the fact that some of the 
current  b -AR blockers used clinically, e.g., carvedilol, have actions other than sim-
ple  b -AR blockade, such as vasodilating effects, and are as not as potent  b -AR 
blockers as propranolol. 

 Empirically noting the above does not mean that all the mechanisms mediating 
the salutary action of  b -AR blockade in heart failure are known. In fact, it remains 
unclear how  b -AR blockers lower the risk of cardiac complications. However, it is 
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apparent that  b -blockers offer far more than simply blocking the receptor. First of 
all, again with inverse reasoning to why  b -AR stimulation therapy failed clinically, 
 b -AR blockers reduce heart rate, arguably the most important regulator of     

i

2MVO   . 
As noted above, the imbalance between myocardial oxygen supply and demand is 
an important mechanism resulting in myocardial dysfunction through invocation of 
subendocardial ischemia. Since the most important regulator of myocardial oxygen 
demand is heart rate followed by LV wall stress, a drug which diminishes heart rate 
and prevents subendocardial ischemia will then reduce LV wall stress. These hemo-
dynamic factors alone will eventually act to prevent a further decline in cardiac 
function followed by gradual recovery. This also results in a “resensitizing” effect. 
These include upregulating  b -AR density, decreasing GRK2 activity, correcting the 
impairment of Ca 2+  handling proteins, and reversing downstream signaling. 

    1.7.1   Upregulation of  b -AR Density 

 Reduced contractility in chronic heart failure through desensitization mechanisms 
is protective, as it reduces myocardial oxygen demand, and more importantly, the 
sudden increases that occur with stress. As noted earlier, Bristow et al. initially 
reported that  b -AR density is reduced by 50% in failing human ventricles, and later 
studies have con fi rmed this  fi nding. Therefore, it is conceivable that increases in 
cardiac performance with  b -blockade result, in part, from quantitative restoration of 
 b -AR. In the normal rat heart, chronic infusion of nonselective  b -AR blocker, pro-
pranolol, was associated with signi fi cant increases in both  b  

1
 - and  b  

2
 -AR density 

 [  175  ] . In addition, heart failure patients with  b  
1
 -AR blocker treatment, metoprolol, 

also showed upregulations of cardiac  b -ARs  [  176,   177  ] . The mechanism behind this 
action is uncertain. However, the synthesis and degradation of  b -ARs seem to be 
regulated on the RNA level. As mentioned earlier, AUF1 is signi fi cantly increased 
in heart failure and was shown to degrade  b -ARs and thereby reducing its density 
 [  142  ] . In addition, the increase of  b -ARs following of  b -AR blockade was seen on 
the protein level as well as on the mRNA level  [  140  ] . Interestingly, however, carve-
dilol and bucindolol, nonselective  b -AR blockers with vasodilating properties 
through  a  

1
- AR inhibition, did not exert  b -AR upregulating effects in heart failure 

patients, despite being as effective in improving cardiac function  [  176,   178  ] . It may 
be possible that these classes of  b -AR blockers have other mechanisms mediating 
their bene fi cial effects.  

    1.7.2   Decreasing GRK2 Activity 

 The increase in inotropy seen in patients with  b -AR blockade may indicate that 
there is an enhancement of  b -AR signaling from its depressed state. GRK2 is a G 
protein-coupled receptor kinase responsible for phosphorylating the  b -ARs and 



191  β-Receptors in Heart Failure

decoupling the receptor from downstream signaling via recruitment of  b -arrestin. 
Patients with heart failure have elevated GRK2, consistent with the  b -AR 
 desensitization concept. In addition, studies in transgenic mice have shown that 
increase in GRK2 has negative inotropic response, which could be ameliorated by 
GRK2 inhibition  [  179  ] . Given this  fi nding, it may be possible that improvement in 
contractile response seen in patients with  b -AR blockade may be partly due to 
decreased GRK2 activity. In fact, studies in mice  [  180  ]  and pigs  [  181  ]  have shown 
that treatment with bisoprolol, atenolol, and carvedilol downregulate GRK. This 
effect was also seen in heart failure patients. Treatment with metoprolol or biso-
prolol decreased GRK2 activity in the right atrium compared to patients who did not 
receive  b -AR blockers  [  182,   183  ] . Therefore, downregulation of GRK2 may be an 
important mechanism by which  b -AR blockers confer bene fi cial effects.  

    1.7.3   Correcting the Impairment of Ca 2+  Handling Proteins 

 The decreased  b -AR signaling also leads to subnormal phosphorylation of Ca 2+  
handling proteins. In fact, PLB and TnI have been shown to be hypophosphorylated 
in the failing hearts  [  113,   184,   185  ] . Decreased phosphorylation of PLB results in 
delayed SR Ca 2+  uptake, which in part explains the relaxation de fi cit in heart failure 
patients, as well as decreased SR unloading, resulting in weaker contractions. 
Interestingly, however, RyR2 have been reported to be hyperphosphorylated in 
heart failure  [  39  ] . The result is a “leaky RyR2” that leads to higher diastolic Ca 2+  
concentrations and a decreased Ca 2+  loading of the SR, which leads to higher pro-
pensity for arrhythmias. Given that  b -AR signaling is attenuated in heart failure, it 
may be possible that  b -AR blockade could correct these impairments through 
resensitizing the system, thereby restoring the phosphorylation of these proteins to 
normal levels. In fact, patients with carvedilol, metoprolol, or atenolol treatment 
had restoration of normal phosphorylation of RyR2 associated with improved car-
diac muscle function  [  186  ] .  

    1.7.4   Reversing Adverse Effects of Distal Signaling 

 It is also important to note that  b -AR blockers could reverse the maladaptive signal-
ing in distal mechanisms. For instance, the increase in levels of proteins involved in 
cellular growth and death, such as p38 a  MAPK, Jun N-terminal kinase (JNK), and 
Akt, seen in G 

s a 
  cardiomyopathy model was downregulated upon propranolol treat-

ment  [  124  ] . In parallel to this evidence, patients who responded to either metoprolol 
or carvedilol had restoration of adult  a -myosin heavy chain isoform and reduction 
of the fetal  b -isoform levels  [  187,   188  ] . This effect could be due to decreased circu-
lating catecholamine levels from  b -AR blockade because re-induction of fetal genes 
and shift in myosin heavy chain isoform occur in parallel to the elevated levels of 
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catecholamines seen in heart failure patients  [  189  ] . From these  fi ndings, it is clear 
that  b -AR blockade does not simply antagonize the receptor, but also affects mul-
tiple levels of the signaling pathway to salvage the heart.   

    1.8   Future Directions 

 The treatment of heart failure and the reduction in mortality and morbidity have all 
improved markedly over the past several decades; however, this disease remains a 
leading cause of mortality and morbidity. Accordingly, there is considerable room 
for improvement in therapy. Advances will occur in  fi nding new components of the 
 b -AR signaling pathway to inhibit that are distal to the  b -AR and have less adverse 
depressant effects on LV function. This could be at the level of inhibiting adenylyl 
cyclase  [  190  ]  or even more distal signaling mechanisms, e.g., Raf/MEK/ERK, p38 
MAPK, and other kinases yet to be de fi ned. It is interesting that inotropic therapy is 
not dead, and new agents are being devised to stimulate the failing heart, without the 
adverse consequences of increasing     

i

2MVO   . One example is the development of 
cardiac myosin activators, which improve the performance of the failing heart in 
chronically instrumented conscious dogs and patients with heart failure  [  191–  193  ] . 
In contrast to sympathomimetic amines, such as dobutamine or dopamine, the car-
diac myosin activators do not increase     

i

2MVO   (Fig.  1.6a ), most likely because they 
reduce heart rate and do not increase LV wall stress. The most unique aspect of their 
action is to increase stroke volume and cardiac output by increasing the duration of 
cardiac contraction, and not by increasing the rate of LV pressure development 
(LV dP/dt) (Fig.  1.6b, c ). These drugs along with those affecting Ca 2+  and particu-
larly at the level of the ryanodine receptor  [  39  ]  could be responsible for the next 
advances in heart failure therapy.   

    1.9   Conclusions 

 This chapter summarized the development of  b -AR stimulating agents for the treat-
ment of heart failure from the discovery of  b -ARs to how they regulate cardiac con-
tractility and their use for most of the twentieth century in cardiac therapy. There are 
very few therapeutic approaches that demonstrated a diametrically opposite turn as 
did the transition from  b -AR agonists to antagonists in the treatment of heart failure. 
The reasoning for treating heart failure with  b -AR agonists was simple: (1) the failing 
heart has poor contractility, (2) catecholamines were the most potent stimulators of 
myocardial contractility, and (3) catecholamines would be useful to increase contrac-
tility in patients with heart failure (quod erat demonstrandum).    What was not known 
was either the concept of desensitization of  b -AR or the fact that there is an oxygen 
cost of increasing heart rate, LV wall stress, and myocardial  contractility, i.e., the 
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major determinants of     
i

2MVO   , which, in turn, increase the  requirement for coronary 
blood  fl ow. The increased myocardial metabolic demand is easily met in normal 
hearts and coronary circulations, but not so in the setting of either hypertrophy or 
heart disease characterized by limited subendocardial coronary reserve. Under these 
conditions, the imbalance between coronary blood  fl ow supply and myocardial oxy-
gen demands results in myocardial ischemia, which exacerbates cardiac dysfunction. 
All of these factors were fundamental to the change in course from  b -AR stimulation 
to  b -AR blockade in the treatment of heart failure, reinforced by poor clinical out-
comes of patients on  b -AR stimulation therapy. This chapter elucidates the experi-
mental and clinical evidence delineating the mechanisms mediating increased cardiac 
function with  b -AR agonists and conversely the deleterious effects of chronic stimu-
lation, which can lead to heart failure, resulting in a transition for heart failure therapy 
from  b -AR stimulation to blockade.      
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  Fig. 1.6    Cardiac myosin activators improve cardiac function in hearts with systolic dysfunction. 
( a ) Unlike dobutamine, cardiac myosin activators do not increase myocardial O 

2
  consumption 

(* p  < 0.05 vs. baseline)  [  191  ] . ( b ) Compared to dobutamine, cardiac myosin activators do not 
increase LV pressure development (solid line: before treatment, dashed line: after treatment)  [  191  ] . 
( c ) 72-h infusion of cardiac myosin activator signi fi cantly increases LV systolic ejection time and 
cardiac output from the baseline (* p  < 0.05 vs. baseline)  [  191  ] . Figures adapted with permission 
from Lippincott Williams & Wilkins       
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