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    Abstract     Since 1940 chemotherapy has been one of the major therapies used to 
kill cancer cells. However, conventional standard cytotoxic agents have a low thera-
peutic index and often show toxicity in healthy cells. Over the past decade, progress 
in molecular biology and genomics has identifi ed signaling pathways and mutations 
driving different types of cancer. Genetic and epigenetic alterations that character-
ize tumor cells have been used in the development of targeted therapy, a very active 
area of cancer research. Moreover, identifi cation of synthetic lethal interactions 
between two altered genes in cancer cells shows much promise to target specifi cally 
tumor cells. For a long time, apoptosis was considered the principal mechanism by 
which cells die from chemotherapeutic agents. Autophagy, necroptosis (a pro-
grammed cell death mechanism of necrosis), and lysosomal-mediated cell death 
signifi cantly improve our understanding of how malignancy can be targeted by anti-
cancer treatments. Autophagy is a highly regulated process by which misfolded 
proteins and organelles reach lysosomes for their degradation. Alterations in this 
cellular process have been observed in several pathological conditions, including 
cancer. The role of autophagy in cancer raised a paradox wherein it can act as a 
tumor suppressor at early stage of tumor development but can also be used by can-
cer cells as cytoprotection to promote survival in established tumors. It is interesting 
that autophagy can be targeted by anticancer agents to provoke cancer cell death. 
This review focuses on the role of autophagy in cancer cells and its potential to 
therapeutically kill cancer cells.  
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8.1         Overview of the Autophagy Machinery 

 Autophagy is a self-digestive process. From the Greek  auto , meaning “oneself,” and 
 phagy , meaning “eating,” this process is highly conserved in organisms from yeast 
to mammals and acts to remove misfolded proteins, aggregates, lipids, and damaged 
organelles. To maintain cellular homeostasis, cytoplasmic cargoes are sequestered 
into vesicles that reach lysosomes, where the material is degraded (Yang and 
Klionsky  2010 ). There are different types of autophagy, ranging from nonselective 
macroautophagy to selective autophagy such as chaperone-mediated autophagy, 
microautophagy, and the type based on the origin of the sequestered cargo, includ-
ing mitophagy for mitochondria. Chaperone-mediated autophagy targets specifi c 
proteins containing the KFERQ sequence across the lysosome membrane, whereas 
microautophagy involves the direct engulfment of cytoplasm at the lysosome sur-
face by invagination of the lysosome membrane (Reggiori et al.  2012 ). In contrast, 
macroautophagy (referred to hereafter as autophagy) is mediated by the special 
organelle autophagosome that engulfs proteins, lipids, and damaged organelles into 
double-membraned vesicles. Then the autophagosome fuses with an endosome/
lysosome, a single- membrane vesicle, where the cargo is degraded through lyso-
somal activity (Fig.  8.1 ) (Klionsky and Emr  2000 ). Autophagy is activated under 
physiological and pathological conditions, such as nutrient starvation, hypoxia, 
metabolic stress, and in response to drugs and radiation. This dynamic process gen-
erates cellular energy resources that allow a cell to adapt its metabolism to energy 
demand. Defects during any step of the autophagy process result in the accumula-
tion of damaged proteins and/or genomic damage that can stimulate the develop-
ment of many human diseases, including neurodegeneration, infectious disease, 
heart disease, and cancer (Levine and Kroemer  2008 ; Turcotte and Giaccia  2010 ).

8.1.1       Autophagosome Formation 

 The unique structure of the autophagosome was fi rst observed more than 50 years 
ago using electronic microscopy, and successive studies have demonstrated that 
autophagy is regulated through activation of autophagy-related genes (Atg) (Yang 
and Klionsky  2010 ). These genes were fi rst identifi ed in yeast, and many of them 
are found as homologs in murine and human cells (Takeshige et al.  1992 ). More 
than 15 mammalian Atg proteins have been identifi ed and regulate the formation of 
autophagosomes (Table  8.1 ) (Mizushima et al.  2011 ). The initiation stage of this 
process engages the formation of a phagophore, followed by its elongation and clo-
sure to form an autophagosome. The origin of the phagophore is still controversial, 
but the endoplasmic reticulum membrane (Axe et al.  2008 ; Hayashi-Nishino et al. 
 2009 ; Yla-Anttila et al.  2009 ), mitochondrial outer membrane (Hailey et al.  2010 ), 
and plasma membrane (Ravikumar et al.  2010 ) have been suggested to contribute to 
autophagosome formation.
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   The activity of the autophagic machinery is regulated by different complexes: the 
ULK1/2 kinase complex, the vacuolar sorting protein (Vps) 34/Beclin-1 complex, 
the shuttling of the Atg9 protein (the only transmembrane Atg) between organelles 
including endosomes, and the two ubiquitin-conjugation systems, the Atg5-Atg12- 
Atg16 and Atg8/LC3 complexes (Fig.  8.2 ) (Orsi et al.  2012 ; Lamb et al.  2013 ; 
Rubinsztein et al.  2012 ).  ULK1     and  ULK2 , two Atg1 homologs, are associated with 
Atg13 and FIP200 in a large complex that integrates stress signals from the mam-
malian target of rapamycin (mTOR) complex 1 (mTORC1) (Jung et al.  2009 ; 
Mizushima  2010 ). Many signals, including growth factors, amino acids, glucose, 
and energy status, regulate mTORC1. Upon inhibition of mTORC1 induced by star-
vation or chemotherapeutic agents targeting mTOR,  ULK1  and  ULK2  are phos-
phorylated and activated, initiating the autophagy cascade. Other complexes 
essential to autophagosome formation is Beclin-1, the Atg6 homolog, and Vps34, a 
class III phosphoinositide 3-kinase (PI3K), which recruit autophagy proteins such 

  Fig. 8.1    Principal steps regulating the autophagy process. Autophagy involves the formation of 
double-membrane autophagosomes that fuse with lysosomes to form autolysosomes for the degra-
dation of intracellular proteins and organelles. Under conditions of nutrient deprivation or micro-
environmental stress, initiation gives rise to a phagophore, which elongates while being regulated 
by a series of autophagy-related genes. The phagophore closes into an autophagosome. This 
autophagosome then fuses with a lysosome to become an amphisome, which will mature and give 
rise to an autolysosome, where the encapsulated material is degraded via lysosomal activity       
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as  UVRAG  (ultraviolet irradiation resistance-associated gene),  Ambra-1 ,  Bif-1 , and 
 Barkor  (Kroemer et al.  2010 ). Furthermore, Beclin-1 binds to anti-apoptotic pro-
teins of the BCL-2 family, such as BCL-X L,  through a BCL-2 homology 3 domains 
and inhibits autophagy (Pattingre et al.  2005 ; Erlich et al.  2007 ). In response to 
starvation, phosphorylation on Bcl-2 by Jun kinase 1 dissociates the binding 
between Bcl-2 and Beclin-1 and allow Beclin-1 to induce autophagy (Wei et al. 
 2008 ; Pattingre et al.  2009 ). BCL-2 homology 3 mimics can also disrupt Bcl-2 and 
Beclin-1 binding. Finally, there are two ubiquitin conjugation systems that have 
been associated with autophagosome formation: Atg12-Atg5-Atg16 and Atg8/LC3. 
Atg5 and Atg12 were the fi rst Atgs identifi ed in mammals by Mizushima et al. 
( 1998 ), who reported that the Atg5-Atg12-Atg16 conjugation system was con-
served. The other ubiquitin conjugation system is MAP1LC3 (also called LC3), the 
mammalian Atg8 homolog (Kabeya    et al.  2000 ). In unstressed cells, LC3 is present 
in cytoplasm in an unprocessed form, LC3I, which is converted into a phosphatidyl-
ethanolamine-conjugated form, LC3II, associated with completed autophagosomes. 
LC3II remains associated with the double-membraned vesicle until fusion with 
lysosomes. The identifi cation of LC3 is an important fi nding that is routinely used 
to monitor autophagy in eukaryote cells. Moreover, LC3 binds the p62/sequestome1 
(SQSMT1) protein via its LC3-interactin region domain and prevents its accumula-
tion (Pankiv et al.  2007 ). p62 Is an adaptor protein involved in protein traffi cking to 

   Table 8.1    Autophagy-related genes involved in autophagosome formation   

 Yeast 
name  Human orthologs  Functions 

 Atg1  ULK1/2  Serine protein kinase 
 Component of complex ULK1-FIP200-Atg13 

 Atg2  Atg2a  Autophagosome closure 
 Atg2b  Component of complex Atg9-Atg2-Atg18 

 Atg3  Atg3  E2-like enzyme required for LC3 lipidation 
 Atg4  Atg4A, 4B, 4C, 4D  Cysteine protease involved in LC3 lipidation 
 Atg5  Atg5  Atg5-Atg12 ubiquitin conjugation complex 
 Atg6  Beclin-1  Component of the PI3K-Vps34-Beclin complex 
 Atg7  Atg7  E1-like enzyme activates LC3 and Atg12 
 Atg8  LC3A, LC3B, LC3C  Autophagosome marker, ubiquitin-like protein 

conjugated to phosphatidylethanolamine  GABARAP, GABARAPL1, GABARAPL2 
 Atg9  Atg9a  Transmembrane protein 

 Atg9b  Component of Atg9-Atg2-Atg18 complex 
 Atg10  Atg10  E2-like enzyme conjugates Atg12 to Atg5 
 Atg12  Atg12  Ubiquitin-like protein conjugated to Atg5 
 Atg13  Atg13  Response to mTOR signaling 

 Component of complex ULK1-Atg13-FIP200 
 Atg14  Atg14  Component of the PI3K-Vps34-Beclin complex 
 Atg16  Atg16L1  Component of Atg5-Atg12-Atg16 complex 
 Atg17  FIP200  Component of ULK1-Atg13-FIP200 complex 
 Atg18  WIP1/2  Component of Atg9-Atg2-Atg18 complex 

   mTOR  mammalian target of rapamycin;  PI3K  phosphoinositide 3-kinase;  Vps  vacuolar sorting protein  
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the proteasome and facilitates autophagic degradation of ubiquitinated protein 
aggregates. It is known to activate the nuclear factor erythroid 2-related factor 2 
(NRF2) (Inami et al.  2011 ). This transcription factor turns on the antioxidant gene 
transcription that allows cells to protect themselves from oxidative stress.

  Fig. 8.2    Overview of the complexes involved in autophagosome formation. At least four impor-
tant functional groups of autophagy-related gene proteins are required for autophagy: ULK1 
protein- kinase complex and vacuolar sorting protein 34–Beclin 1 class III phosphoinositide 
3-kinase (PI3K) complex regulate autophagy initiation; the Atg9-Atg2-Atg18 complex regulates 
the expansion of the phagophore assembly site; and the Atg5-Atg12-Atg16 and LC3 conjugation 
systems regulate the elongation of autophagosome membranes. Phosphatidylethanolamine ( PE )-
conjugated LC3 (called  LC3-II ) remains on the isolation membranes and autophagosome mem-
branes, whereas the Atg12-Atg5-Atg16 complex transiently associates with the isolation 
membranes and dissociates from the autophagosome membranes. Pharmacological inhibitors of 
the autophagy process are 3-methyladenine, which inhibits PI3K, and autophagosome formation, 
while chloroquine ( CQ ) and hydroxychloroquine ( HCQ ) block autophagosome maturation by 
increasing the pH of the lysosomes       
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8.1.2        Maturation of the Autophagosome Through 
the Endocytic Pathway 

 Autophagosomes are subsequently transformed to an amphisome after fusion with 
an endosome/lysosome. During this step, endocytosis and autophagy share machin-
ery for the maturation of the autophagosome. A functional endocytic pathway from 
the early endosomes to the late endosomes and including multivesicular bodies is 
essential to maintaining an effi cient autophagic fl ux. Several proteins, including 
members of the Rab GTPase family, Vps, and endosomal    sorting complexes 
required for transport, have been identifi ed as regulating each step of this process 
and are described in recent reviews (Lamb et al.  2013 ). Rab7 is an important ele-
ment that controls endosomal maturation and lysosome traffi c, and its activity is 
regulated in part by its GTPase-activating proteins and by the PI3K complex formed 
by Rubicon-UVRAG-Rab7 (Liang et al.  2008 ; Sun et al.  2010 ). Rab7 activity is 
inhibited by its binding with Rubicon and UVRAG (Liang et al.  2008 ). However, 
when the level of Rab7 increases until a threshold point, binding with Rubicon is 
lost and UVRAG can activate the HOPS (homotypic fusion and Vps) complex, 
which further increases Rab7 activity, promoting fusion with lysosomes (Zlatic 
et al.  2011 ; Peralta et al.  2010 ).  

8.1.3     The End of the Road Through the Lysosome 

 Lysosomes have emerged as an important platform of mTORC1 signaling and regu-
lation. It has been shown that lysosomal genes are regulated by the transcription 
factor EB (TFEB), which also controls the major steps of the autophagy pathway 
(autophagosome formation, autophagosome fusion with lysosomes, and degrada-
tion of cargo) linking autophagy to lysosomal biogenesis (Sardiello et al.  2009 ; 
Settembre et al.  2011 ). Under stress or aberrant lysosomal storage conditions, TFEB 
translocates from the cytoplasm to the nucleus and induces lysosomal biogenesis 
(Settembre et al.  2012 ). Other groups demonstrated that the lysosomal reformation 
that occurs during autophagy is regulated by mTORC1 and that TFEB phosphoryla-
tion and nuclear translocation are coordinately regulated by mTORC1 (Yu et al. 
 2010 ; Pena-Llopis et al.  2011 ). At the peak of autophagy, lysosomes are consumed 
by their fusion with autophagosomes, but after a prolonged period of autophagy, 
mTORC1 is reactivated (inhibits autophagy) and induces lysosomal biogenesis 
through TFEB activation (Yu et al.  2010 ). 

 The mTORC1 pathway that regulates cell growth in response to numerous cues, 
including amino acids, has been found on the lysosomal surface   , its site of activa-
tion (Pena-Llopis et al.  2011 ; Korolchuk et al.  2011 ). Although the mechanism that 
elucidates every step of this process is not completely understood, elegant studies 
indicate that Rag GTPases (a heterodimeric complex of RagA/B and RagC/D 
GTPases), also located on the lysosomes, and vacuolar-type H+-ATPase (V-ATPase)    
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form a signaling system that is necessary for amino acid sensing by mTORC1 (Bar-
Peled et al.  2012 ; Zoncu et al.  2011 ; Settembre et al.  2012 ; Sancak et al.  2010 ). 
Under nutrient-rich conditions, mTOR is located on peripheral lysosomes, where it 
becomes activated and promotes cell growth and inhibits autophagy, whereas mTOR 
and lysosomes are clustered in the perinuclear area during starvation, leading to 
induction of autophagy. This location facilitates the fusion of autophagosomes with 
lysosomes and autophagosome synthesis (by inhibiting mTOR activity) (Korolchuk 
and Rubinsztein  2011 ). The lysosome distribution depends, in part, on their being 
transported along microtubules, a process mediated by Arl8 (a small GTPase) and 
KIF2 (a kinesis family member) (Korolchuk et al.  2011 ). pHi has been shown to 
affect lysosome positioning, where acidifi cation redistributes lysosomes from their 
predominantly perinuclear location toward the cell periphery and correlates with 
increased mTOR activity and inhibition of autophagy (Korolchuk et al.  2011 ; 
Heuser  1989 ).   

8.2     Role of Autophagy in Cancer 

 Cells with defects in autophagy accumulate misfolded proteins, ubiquitinated aggre-
gates, lipid droplets, and damaged organelles (mostly mitochondria, peroxisomes, 
and endoplasmic reticulum) that could lead to accumulation of reactive oxygen spe-
cies (ROS), metabolic stress, and toxicity. Disruption of autophagy has been associ-
ated with cancer. The consequences of autophagy defects in cancer are complex, 
and new advances indicate that it could be linked to the tumor stages (White  2012 ; 
Mah and Ryan  2012 ; Janku et al.  2011 ). Autophagy can suppress tumors by prevent-
ing accumulation of toxic waste and tumor initiation, but it can also help cancer cells 
survive under metabolic stress and promote tumors once the tumor is established. 
Understanding the role of autophagy in cancer is critical because inhibition or acti-
vation of autophagy can be therapeutically    applicable to killing cancer cells. 

8.2.1     Autophagy in Tumor Suppression and Tumor Initiation 

 Genetic deletion of Beclin-1 is among the fi rst evidence that autophagy can prevent 
tumor formation: mice with allelic loss of Beclin-1 are partially defective for 
autophagy and have increased spontaneous malignancies (Qu et al.  2003 ; Yue et al. 
 2003 ). Similarly, humans with Beclin-1 deletion have a higher frequency of leuke-
mia, lymphomas, and tumors of the liver, lung, breast, ovarian, and prostate (Liang 
et al.  1999 ; Aita et al.  1999 ). Further studies of knockout mice demonstrated that 
basal autophagy is essential for viability because deletion of both Beclin-1 alleles 
induces embryonic lethality. In addition, the activation of Beclin-1 inhibits cell pro-
liferation in vitro and tumor growth. Moreover, mice defi cient in Atg4C develop 
fi brosarcomas (Marino et al.  2007 ), whereas a loss of Atg5 and Atg7 improve the 
risk of benign liver tumors (Takamura et al.  2011 ). 
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 It has been shown that autophagy activation can prevent necrotic cell death in 
apoptosis-defi cient cells, a process that may cause local infl ammation and promote 
tumor growth (White et al.  2010 ). One explanation for the role of autophagy in 
tumor suppression has been linked to its ability to removed toxic waste during the 
initiation stage of tumorigenesis. Cells with deregulation in autophagy cause 
impaired mitochondria and accumulation of ROS, which promote genotoxic stress 
through DNA damage (Mathew et al.  2007 ; Degenhardt et al.  2006 ). This could lead 
to the loss of mitochondrial potential membrane, activation of phosphatase and ten-
sin homolog–induced putative linase-1 ( PINK1 ) and induction of  PARK2 , an E3 
ubiquitin ligase involved in mitophagy (Arena et al.  2013 ).  PARK2  is a tumor sup-
pressor gene, and mutations of it have been observed in glioblastomas and colon 
and lung cancers (Veeriah et al.  2010 ; Poulogiannis et al.  2010 ). 

 Another possibility by which autophagy may prevent cancer is through p62 
(Mathew et al.  2009 ). In unstressed cells, NRF2 activity is inhibited by its binding 
to kelch-like ECH-associated protein 1 ( KEAP1 ), which inactivates the antioxidant 
defense genes and stimulates proteasomal degradation (Copple et al.  2010 ; Lau 
et al.  2010 ). In autophagy-defective cells or in the presence of oxidative stress, 
 KEAP1  is modifi ed and its binding with NRF2 is lost (Lau et al.  2010 ). Then,  p62  
can bind and sequester  KEAP1 , promoting NRF2 activation, antioxidant defense, 
and survival. Therefore, autophagy is necessary to prevent p62 accumulation and 
NRF2 activation that could promote tumorigenesis.  

8.2.2     Autophagy in Tumor Progression 

 Autophagy is induced as an alternative source of energy and metabolites to maintain 
cell survival during nutrient starvation or metabolic or other stress such as hypoxia, 
ischemia, and proteasome inhibition. Almost all of these conditions are observed in 
established tumors. Under stress conditions, autophagy protects dormant cells from 
damage (White  2012 ). When the conditions are more favorable or return to normal, 
these cells can recover and grow. Then, autophagy can provide a survival advantage 
to tumor cells, allowing them to adapt to metabolic stress found in the tumor micro-
environment; a variety of mechanisms have been proposed to support this. It has 
been shown that the Bcl-2/adenovirus E1B interacting protein ( BNIP3 ), a down-
stream target of hypoxia-inducible factor (HIF)-1α, can induce autophagy by dis-
rupting the Beclin-1–Bcl-2 complex to release Beclin-1 in response to a hypoxic 
microenvironment (Bellot et al.  2009 ). Amino acid and glucose deprivation found in 
the tumor microenvironment have been correlated with a higher level of autophago-
somes and deletion of essential Atgs, which induces tumor cell death associated 
with the hypoxic regions. Recent studies indicate that human cancer tissues with a 
low level of Beclin-1 have been associated with worse prognosis in esophageal 
(Chen et al.  2009 ), colon (Li et al.  2009 ), and pancreatic cancer (Kim et al.  2011 ). 
In addition, tumors from Beclin-1-defi cient mice are more aggressive under 
hypoxic conditions, a mechanism that could be regulated through the HIF-2α 

J. Reyjal et al.



175

(Lee et al.  2011 ). Other studies reported that autophagy is triggered to protect  cancer 
cells from nutrient deprivation by activation of AMP-activated protein kinase 
(AMPK), a sensor of energy status. AMPK activation limits translation initiation 
and protein synthesis through the inhibition of elongation factor 2 (EF2) and the 
inhibition of mTOR, leading to the induction of autophagy (Horbinski et al.  2010 ). 

 By studying the role of autophagy in cancer, several groups have noticed that can-
cer cells have a high level of basal autophagy, even in unstressed conditions. White 
and colleagues    showed that activated cells expressing Ras are dependent on autoph-
agy to survive starvation, and biallelic deletion of Atg5 or Atg7 decrease tumor 
growth of RAS-transformed epithelial cells in the kidneys of nude mice (Guo et al. 
 2011 ). This study indicated that autophagy is required to maintain functional mito-
chondrial and oxidative metabolism necessary to Ras-expressing tumor growth. 
Autophagy can also promote metastasis and cell survival in response to microenvi-
ronmental stresses (Kenifi c et al.  2010 ). High expression of  LC3  and  Beclin-1  are 
correlated with poor survival and a shorter disease-free period in pancreatic and naso-
pharyngeal carcinomas, respectively (Fujii et al.  2008 ; Wan et al.  2010 ). It is interest-
ing to note that γ-aminobutyric acid type A receptor-associated protein ( GABARAP ), 
a member of the  LC3  family, is a new prognostic marker for colorectal carcinoma 
because its overexpression is associated with reduced survival (Miao et al.  2010 ).   

8.3     Autophagy and Cell Death as Targets 
for Anticancer Therapy 

 There are a number of molecules targeting various proteins of the apoptosis path-
way. Some groups of these molecules – such as ABT-263 (www.clinicaltrials.gov 
identifi er NCT00743028   ), AT-101 (NCT00275431), and GX15-070MS or 
Obatoclax (NCT00600964) – affect the activation or balance of the Bcl-2 protein 
family, tipping the scale toward apoptosis, while others block the inhibitor apoptosis 
proteins, including AT-406 (NCT01078649), ENZ-3042 (NCT01186328), HGS- 
1029 (NCT00708006), and LCL-161 (NCT01098838), thus inducing the apoptosis 
pathway. On the other hand, elucidation of the molecular mechanisms involved in 
autophagy indicates crosstalk between the apoptotic and autophagic pathways 
(Amelio et al.  2011 ; Ouyang et al.  2012 ). For example, inhibition of apoptosis can 
induce autophagy, whereas inhibition of autophagy can stimulate apoptosis (Maiuri 
et al.  2007 ). In addition, both pathways can be activated through similar proteins, 
among them, the complex formed by Beclin-1 and Bcl-2 (Kang et al.  2011 ). 
Depending on the anticancer agents and the cell type, drugs can have a lethal effect 
in response to autophagy induction through the infl uence of the anti-apoptotic effect 
of Bcl-2 or the phosphorylation of Jun kinase (Wei et al.  2008 ). Among other pro-
teins that could be involved in the crosstalk between apoptosis and autophagy are 
the activation of  p53 , which transcriptionally increases the signaling of AMPK; 
death-associated protein kinase (DAPK1); tuberous sclerosis protein 2 (TSC2); and 
ULK1/2 (Feng  2010 ). Autophagy may also protect against tumorigenesis by 
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limiting necrosis and chronic infl ammation in response to metabolic stress, which is 
associated with the release of the proinfl ammatory HMGB1 (Degenhardt et al. 
 2006 ). A hypoxic tumor microenvironment, nutrient or amino acid levels, as well as 
the signaling pathway can infl uence the fi nal outcome between cell death and sur-
vival when autophagy is induced. Whether cells can die from autophagy (autopha-
gic cell death) or as a consequence of autophagy induction needs to be addressed. 

8.3.1     Autophagy to Induce Cell Death 

 Various chemotherapeutic agents have been shown to induce autophagy and partici-
pate in the induction of cell death. Therefore, inhibition of autophagy using small 
interfering RNA targeting Atg5, Atg7, or Beclin-1 reduces death, suggesting that 
autophagy can eliminate tumor cells (Amaravadi et al.  2011 ; Janku et al.  2011 ). 
Table  8.2  summarize agents that have been reported to have anticancer effects as 
monotherapies. One of the most targeted approaches to killing cancer cells in 
response to autophagy is through the mTOR pathway. This process regulates cell 
proliferation and protein translation, and its inhibition induces autophagy as well as 
cell cycle arrest and apoptosis. The strong induction of autophagy in vivo in response 
to everolimus, a chemotherapeutic agent targeting mTOR, reduces the growth of 
advanced pancreatic tumors (Yao et al.  2010 ) and leukemia (Crazzolara et al.  2009 ). 

      Table 8.2    Clinical trials of monotherapeutic agents that induce autophagy   

 Agents  Target  Condition  Clinical trial 

 Autophagosome formation 
 Imatinimb  Bcr-Abl  Leukemia  NCT00079313 
 Temsirolimus  mTOR  Renal cell carcinoma  NCT00494091 
 Everolimus  mTOR  Renal cell carcinoma  NCT00422344 
 Amiodarone  mTOR  Atrial fi brillation  NCT00845780 
 Sunitinib  VEGFR  Renal cell carcinoma  NCT01441661 
 AZD8055  mTOR  Solid tumors  NCT00973076 
 Sorafenib  VEGFR  Renal cell carcinoma  NCT00478114 
 Arsenic trioxide  BNIP3  Liver  NCT00582400 
 Perifosine  Akt  Prostate cancer  NCT00058214 
 Metformin  AMPK  Ovarian cancer  NCT01208740 

 Autophagosome maturation 
 STF-62247  Unknown  Renal cell carcinoma 
 CQ  Lysosomotropic agent  Small-cell lung cancer  NCT01575782 

 Ductal carcinoma  NCT01023477 
 HCQ  Lysosomotropic agent  Renal cell carcinoma  NCT01144169 

  Data are taken from   www.ClinicalTrials.gov    .  Akt  protein kinase B;  AMPK  AMP-activated protein 
kinase;  BNIP3  BCL2/adenovirus E1B 19-kDa interacting protein 3;  CQ  chloroquine;  HCQ  
hydroxychloroquine,  mTOR  mammalian target of rapamycin;  VEGFR  vascular endothelial growth 
factor receptor  
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Furthermore, temsirolimus and everolimus have been approved for the treatment of 
renal cell carcinoma (RCC). In addition, radiation as well as many chemotherapeutic 
agents inducing DNA damage and  p53  activation have demonstrated a synergic 
effect in combination with everolimus to kill cancer cells (O’Reilly et al.  2011 ). 
Other drugs inhibiting Bcl-2 and activating Beclin-1 in apoptosis-defective cells 
show a potential effect on cell killing by the formation of autophagosomes. Obatoclax 
is a Bcl-2 inhibitor that induces cell death. However, when apoptosis is functional, 
Obatoclax could promote both autophagy and apoptosis to kill acute lymphoblastic 
leukemia and non-small-lung cancer (Heidari et al.  2010 ; McCoy et al.  2010 ).

8.3.2        Inhibition of Autophagy to Improve Anticancer 
Treatments 

 As an alternative, autophagy could be associated with chemoresistance by protect-
ing the survival of cancer cells. Thus, inhibition of the autophagic fl ux synergized 
the killing effect of chemotherapeutic agents in many tumor types. The mechanism 
by which autophagy inhibition increases cell death could be associated with a 
switch toward other types of cell death, such as apoptosis, necrosis, or necroptosis. 
Chloroquine (CQ) and its analog hydroxychloroquine (HCQ) are antimalarial 
agents that increase the pH of the lysosome and then inhibit the fusion between 
autophagosome and lysosome (Amaravadi et al.  2011 ) (Table  8.3 ). For example, 
administration of the Akt inhibitor MK2206 in combination with HCQ is in clinical 

   Table 8.3    Clinical trials of combined agents modulating autophagy   

 Molecule name  Condition 
 Clinical 
stage 

 Clinical 
trials identifi er 

 HCQ-docetaxel  Prostate cancer  Phase II  NCT00786682 
 HCQ-gemcitabine  Pancreatic cancer  Phase I  NCT01506973 
 HCQ-MK2206  Advanced solid tumors and prostate 

and kidney cancers 
 Phase I  NCT01480154 

 HCQ-everolimus  Renal cell carcinoma  Phase I  NCT01510119 
 HCQ-rapamycin  Relapsed or refractory myeloma  Phase I  NCT01689987 
 HCQ-erlotinib  Lung cancer  Phase II  NCT01026844 
 HCQ-sirolimus or 

vorinostat 
 Advanced solid cancers  Phase I  NCT01266057 

 NCT01023737 
 HCQ-temozolomide  Advanced solid tumors  Phase I 
 HCQ-sunitinib  Advanced solid tumors  Phase I  NCT00813423 
 HCQ-bortezomib     Multiple myeloma  Phase I/II  NCT00568880 
 Rapamycin-sunitinib  Advanced non-small-cell lung cancer  Phase I  NCT00555256 
 Everolimus-BEZ235  Advanced solid tumors, metastatic breast 

cancer, and metastatic renal cell carcinoma 
 Phase I  NCT01482156 

 Rapamycin- trastuzumab   Metastatic breast cancer  Phase II  NCT00411788 

  Data are taken from (  www.ClinicalTrials.gov    )  
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trials of pancreatic, kidney, and many advanced tumors. HCQ with everolimus is in 
a phase I clinical trial of RCC. The combination of HCQ, radiation, and temozolo-
mide are in clinical trials of patients with glioblastomas (www.ClinicalTrials.gov 
identifi er NCT00486603). In chronic    myelogenous leukemia, cell death is observed 
by the combined treatment with CQ and the histone deacetylase inhibitor suberoyl-
anilide hydroxamic acid (Carew et al.  2007 ). Finally, HCQ has been shown to 
potentiate the anticancer effect of 5-fl uorouracil in colon cancer (Sasaki et al.  2010 ). 
Two other autophagy inhibitors have recently been identifi ed in preclinical trials. 
The fi rst inhibitor is lucanthone, or Myricil D, an existing drug that is used for the 
treatment of schistosomal parasites (Clarkson and Erasmus  1984 ). While earlier 
investigations have shown that lucanthone inhibits topoisomerase 2 activity, a more 
recent study defi ned a novel mechanism of action for lucanthone that includes the 
disruption of lysosomal function, inhibition of autophagy, and induction of apopto-
sis (Carew et al.  2011 ). In breast carcinoma cell lines, lucanthone is tenfold more 
potent that CQ and shows a better safety profi le than CQ or HCQ. The second 
autophagy inhibitor is Lys05. This new drug accumulates more easily within the 
lysosome, increasing pH more effectively compared to HCQ (McAfee et al.  2012 ). 
Similar to lucanthone, Lys05 displayed signifi cantly higher anticancer activity than 
CQ or HCQ in preclinical models, without inducing signifi cant observable toxicity. 
These two new autophagy inhibitors need to be further investigated as potential 
therapeutic anticancer agents.

8.4         Synthetic Lethality and Autophagy in Anticancer 
Drug Discovery 

8.4.1     Synthetic Lethality in the Context of Cancer 

 Advances in cell and molecular biology have improved our knowledge of the mech-
anism by which cells escape death to become cancerous. The expansion of “omics” 
technology, from genomic through metabolomic, have identifi ed specifi c mutations 
of genes or altered RNA and protein signaling that are responsible for different types 
of cancer. As discussed earlier, targeted therapy is an active area of research that has 
expanded the type and modality of treatments (alone or in combination). It is unfor-
tunate that few of them show clinical effi cacy, but the ones that received approval 
from the US Food and Drug Administration have improved survival of infl exible 
cancers, including RCC (Motzer et al.  2006 ,  2007 ,  2008 ; Gu et al.  2005 ; Hudes et al. 
 2007 ; Escudier et al.  2007a ,  b ), pancreatic cancers (Moore et al.  2007 ), and non-
small-cell lung cancers (Ansari et al.  2009 ; Shepherd et al.  2005 ). One promising 
approach to develop targeted therapy against tumor cells and spare normal tissue is 
based on synthetic lethality, which targets specifi c mutations in cancer genes that are 
not altered in normal cells (Chan and Giaccia  2011 ). Synthetic lethality is the genetic 
interaction of two genes, both of which are involved in essential processes (Hartman 
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et al.  2001 ). When either gene is mutated alone, the cell remains viable. However, 
the combination of these two mutations induces cell death (Hartman et al.  2001 ; 
Kaelin  2005 ; Hartwell et al.  1997 ). Chemical or RNA interference screens have 
made it possible to search for synthetic lethal interactions in mammalian cells 
(Farmer et al.  2005 ; Jiang et al.  2009 ). Thus, deregulation of an oncogene or inacti-
vation of a tumor suppressor gene can be specifi cally targeted through synthetic 
lethality to kill tumor cells. This approach could be advantageous and facilitate the 
development of treatment with a single agent because only cancer cells with the 
specifi c mutation will die. The normal cells will not be affected by the therapy, and 
side effects from chemotherapy will be reduced. Synthetic lethality could also be 
used in combination with drugs and/or radiation or in patients with relapsed cancer, 
providing the opportunity to use lower doses of cytotoxic drugs, improve the thera-
peutic index of cytotoxic drugs, and reduce off-target effects. Driving mutation in 
cancer cells can change at different stages of tumor development – from the primary 
tumor to metastases – and therefore synthetic lethality could be useful to target the 
epithelial-to-mesenchymal transition as well as metastatic disease for which there 
are few options of effective treatment. 

 The fi rst example of synthetic lethal interaction in cancer cells came from the 
mutation affecting the gene  BRCA1/2  and the enzyme poly (ADP ribose) poly-
merase (PARP). The tumor suppressor protein BRCA is an important player in the 
reparation of double-strand DNA breaks, and mutations affecting these genes have 
been reported in breast and ovarian cancers (Hall et al.  1992 ; Casey et al.  1993 ; 
Parikh and Advani  1996 ). In addition, PARP is an important protein that repairs 
single-stand DNA breaks (Petermann et al.  2005 ). By using pharmacological inhibi-
tors or small interfering/small hairpin RNA targeting PARP in  BRCA -mutated cells, 
studies indicate that these cells were not able to repair double-strand DNA breaks 
and recombination lesions and that they die by apoptosis (Bryant et al.  2005 ; Farmer 
et al.  2005 ). The identifi cation of the lethal interaction between  BRCA  mutations 
and PARP inhibitors has been investigated in cancer cells, and several PARP inhibi-
tors are currently in clinical trials (phase I/II/III) for the treatment of breast and 
ovarian cancer with the inactivated  BRCA1/2  gene (Tutt et al.  2010 ; Fong et al. 
 2009 ; Hutchinson  2010 ). These studies demonstrated proof of the concept that syn-
thetic lethality can be useful in (and are possible for) targeting cancer cells. Some 
   researchers and pharmaceutical companies are working to develop this killing 
approach in association with other oncogenes that are frequently disrupted in can-
cer, such as the oncogenes  Ras  and  Myc  (Chan and Giaccia  2011 ). New drugs (tri-
phenyltetrazolium and a sulphinylcytidine derivative) (Torrance et al.  2001 ), the 
inhibitor apoptosis protein survivin (Sarthy et al.  2007 ), and cyclin-dependent 
kinase 4 (Puyol et al.  2010 ) have been identifi ed by independent screening and dem-
onstrate some potential as  KRAS  inhibitors. Otherwise, other large screens per-
formed in  Ras -mutated cells and pathways governing the mitotic machinery or the 
proteasomes showed synthetic lethal interaction with  Ras  (Scholl et al.  2009 ; Luo 
et al.  2009 ). Among other examples of synthetic lethal interaction, inhibition of 
aurora kinase B or death receptor 5 agonists induced killing in cells overexpressing 
 Myc  (Wang et al.  2004 ; Yang et al.  2010 ).  
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8.4.2     Synthetic Lethality and Autophagy in RCC 

 RCC, the most common form of kidney cancer, is particularly challenging because 
it is resistant to standard cytotoxic therapies. The overall 5-year survival rate ranges 
from 85 % in patients with local tumors treated by partial or total nephrectomy to 
10 % in patients with advanced or metastatic RCC (Motzer et al.  1996 ). There is no 
curative treatment for RCC, and these patients are diagnosed at an advanced stage 
because no symptoms are associated with kidney tumors until they are quite large. 
Current targeted therapies used to treat RCC (e.g., bevacizumab, sunitinib) have 
focused on anti-angiogenic agents targeting vascular endothelial growth factor and 
its receptor and agents that inhibit mTOR (e.g., temsirolimus, everolimus). Although 
these agents demonstrate effi ciency in RCC, the clinical response to these therapies 
is generally short-lived, suggesting that tumor growth might be supported by alter-
native sources of nutrients, such as autophagy (Patel et al.  2006 ). 

 Biallelic inactivation of the von Hippel-Lindau ( VHL ) tumor suppressor gene 
arises in up to 85 % of RCC cases. Mutation and/or hypermethylation, which inac-
tivate the  VHL  gene, are also responsible for the hereditary VHL cancer syndrome 
that affects 1 in 36,000 individuals (Maher  2004 ). These patients inherit a faulty 
allele of  VHL  and are predisposed to the development of renal cysts, RCC, retinal 
and central nervous system hemangioblastomas, and pheochromocytomas (Maher 
 2004 ; Kaelin  2008 ). Tumor development is caused by somatic inactivation of the 
remaining wild-type allele (Young et al.  2009 ; Nickerson et al.  2008 ; Patard et al. 
 2009 ). Because VHL is a common and early event in the development of RCC, 
targeting its inactivation represents a promising target for the development of new 
therapies. High-throughput screening using a small interfering RNA library or small 
molecules have been performed in  VHL -defi cient RCC in two independent studies. 
The fi rst approach used a library of small hairpin RNA against about 100 different 
kinases and distinguished CDK6, hepatocyte growth factor receptor (also known as 
MET), and mitogen-activated protein kinase 1 (MAP2K1), which have the ability to 
reduce growth of  VHL -inactivated cells (Bommi-Reddy et al.  2008 ). A recent study 
reported that microRNA-1826 reduced the expression of β-catenin and  MAP2K1  in 
RCC and inhibits the proliferation of  VHL -defi cient cells by inducing G 1  arrest and 
apoptosis (Hirata et al.  2012 ). 

 The second approach used a library of 64,000 small molecules to fi nd drugs that 
specifi cally kill RCC lacking  VHL  without affecting the viability of the cells with 
the functional  VHL  gene (Turcotte et al.  2008 ). This study identifi ed two classes of 
compounds: ST-31 inhibited the survival of  VHL -defi cient cells through GLUT1 
and HIF-1α (   Chan et al.  2011 ), whereas STF-62247 killed  VHL -mutated cells by 
inducing autophagy (Turcotte et al.  2008 ). Moreover, they showed that reducing 
levels of Atg5, Atg7, and Atg9 rescued the survival of  VHL -defi cient cells in 
response to STF-62247, indicating that autophagy induction is required for cell 
death. Turcotte et al. recently investigated the autophagy machinery and found that 
the in vitro and in vivo sensitivity of  VHL -defi cient RCC in response to STF-62247 
is associated with a default in the autophagic process involving lysosomal 
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degradation, which ultimately leads to cell death. In accordance with this, cells 
lacking  VHL  expression accumulate autophagic vacuoles that are not degraded by 
lysosomes, thus interfering with the clearance of damaged organelles and misfolded 
or aggregated proteins in response to STF-62247. Furthermore, lysosomes in these 
cells undergo labialization or lysosome permeabilization, which also contributes to 
cell death. Production of ROS that are not detoxifi ed by the cells, lysosomotropic 
agents, microtubule-stabilizing agents, protein kinase C, phospholipase A 2 , and lip-
ids are the mechanisms speculated to induce lysosome permeabilization (Kreuzaler 
and Watson  2012 ).   

8.5     Conclusion and Future Directions 

 The fi eld of cancer research has made signifi cant progress in recent years. New 
techniques have identifi ed genetic alterations associated with different types of can-
cer. In parallel, advances in drug screening using small interfering RNA libraries 
and/or small molecules have expanded drug design and the development of targeted 
therapies. Using these approaches, new anticancer agents or novel uses of existing 
drugs are in clinical trials or have been approved for treatment. Exciting drugs 
exploiting synthetic lethality have gained attention as a new type of anticancer ther-
apy. Searching for synthetic lethal interaction between two genes or drug-gene 
interactions represent a promising approach to kill tumor cells and leave normal 
cells healthy. Cancer cells evade programmed cell death to initiate tumor formation, 
and research has identifi ed nonapoptotic mechanisms for how cells survive or die in 
response to a drug. The role of autophagy in cancer is complex: it can help prevent 
tumor initiation, overcome resistance to anticancer therapy, promote cytoprotection 
in established tumors, and may help to eradicate malignant cells. Inhibitors of the 
autophagic fl ux, including CQ and HCQ, used alone or in combination with chemo-
therapeutic agents and/or radiation, are currently in clinical trials of several types of 
cancer. In addition, drugs that induce autophagy and provoke cell death show 
encouraging results. Overall, other screens using synthetic lethality and our knowl-
edge of cell death mechanisms could open a new fi eld of oncology, helping to design 
monotherapy agents or a combination of cytotoxic chemotherapy and radiation.     
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