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    Abstract     Hypoxia is an important component of the tumor microenvironment and 
has been the target of drug discovery efforts for almost half a century. These efforts 
have evolved from offsetting the impact of hypoxia on radiotherapy with oxygen- 
mimetic radiosensitizers to using hypoxia as a means to selectively target tumors. 
The more recent description of hypoxia-inducible factors and their role in the 
hypoxia response network has revealed a host of new drug targets to selectively 
target tumors. We are developing hypoxia-directed drugs in each of the following 
areas: novel radiosensitizers for hypofractionated radiotherapy, a second-generation 
benzotriazine di-N-oxide hypoxia-activated prodrug, and a hypoxia-inducible 
 factor- 1–dependent cytotoxin that targets glucose transport. These projects are 
 discussed in the context of hypoxia-directed drug discovery.  

  Keywords     Hypoxia   •   Drug discovery   •   Nitroimidazole   •   Radiosensitizer   •   Hypoxia- 
activated prodrug   •   Biomarker   •   Tirapazamine   •   SN30000   •   HIF-1α   •   Glucose 
transport  

6.1         Introduction 

6.1.1     Hypoxia as a Therapeutic Target 

 Hypoxia initially arises as a consequence of oxygen consumption in small tumors or 
metastases. The cellular response to this hypoxia plays a signifi cant role in the devel-
opment of the tumor microenvironment and infl uences the expansion of tumor 
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vasculature, resulting in a disorganized, ineffi cient tumor microvascular network that 
has irregular blood fl ow (Jain  2005 ; Pries et al.  2009 ). In turn, this exacerbates exist-
ing hypoxia and leads to considerable heterogeneity in oxygen concentrations that 
may fl uctuate spatially and temporally (Dewhirst et al.  2008 ) (Fig.  6.1 ). The charac-
terization of hypoxia accordingly depends on the techniques used to measure it. 
Whereas fi ne-needle oxygen electrode measurements provide a direct gauge of oxy-
gen tension and have demonstrated a wide range of oxygen concentrations in human 
tumors (Vaupel et al.  2007 ), the use of exogenous molecular probes such as 2-nitro-
imidazoles or endogenous markers such as downstream products of genes regulated 
by hypoxia-inducible factors (HIFs) report different levels of hypoxia (Fig.  6.2 ). 
Nitroimidazole probes are typically activated at levels of less than 1 μM of oxygen, 
whereas HIF-1 is stabilized at higher oxygen concentrations (Tuttle et al.  2007 ).

    The majority of clinical studies have shown that hypoxia results in compromised 
outcomes across a wide range of diseases and treatment modalities (Horsman et al. 
 2012 ; Nordsmark et al.  2005 ; Vaupel    and Mayer  2007 ). Both chronic hypoxia (Gray 
et al.  1953 ; Thomlinson and Gray  1955    ) and intermittent, or cycling, hypoxia within 
solid tumors can limit radiotherapy (Brown  1979 ). Poor perfusion and signifi cant 
diffusion gradients exist within tumors (Dewhirst et al.  2008 ) that, along with high 
interstitial pressures (Heldin et al.  2004 ), can limit the diffusion of chemotherapeu-
tic agents into hypoxic regions (Minchinton and Tannock  2006    ). This, when com-
bined with a slowing of proliferation in these areas, can cause resistance to 
commonly used antiproliferative agents. Identifi cation of the role of HIF-1 in the 
hypoxia response network (Semenza  2003 ) has revealed how hypoxia infl uences 
survival processes such as increased angiogenesis (Gnarra et al.  1996 ) and 

  Fig. 6.1    Detection of hypoxic cells in a human colon cancer xenograft HCT116 grown subcutane-
ously in nude mice.  Yellow box  shows diffusion-limited hypoxia.  White oval  shows perfusion- 
limited hypoxia. Hypoxic marker EF5 (60 mg/kg) was administrated intraperitoneally 1.5 h and 
blood vessel perfusion marker Hochest33342 (40 mg/kg) was administered intravenously 2 min 
before the mice were killed. The tumor was removed immediately and frozen in octanol. Frozen 
sections (8 μm) were immunostained for the hypoxic marker (EF5,  red ), blood vessels (CD1, 
 green ), and perfused blood vessels (Hochest33342,  blue ). (Jingli Wang, unpublished data)       
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vasculogenesis (Kioi et al.  2010 ), resistance to cell death (Graeber et al.  1996 ), 
aerobic glycolysis (Semenza  2010 ), and genomic instability (Bindra et al.  2007 ; 
Huang et al.  2007 ). Furthermore, the contribution of tumor hypoxia to invasiveness 
and metastasis (Chang et al.  2011 ; Hill et al.  2009 ) potentially compromises a third 
treatment modality: surgery. The pre   valence of tumor hypoxia, combined with its 
effect on tumor survival, progression, and resistance to therapy, marks hypoxia as a 
compelling target for current drug discovery efforts.  

6.1.2     Drug Development 

 In tandem with the growing understanding of the effect of hypoxia, an evolving 
series of drug discovery efforts have sought to overcome or leverage the effects of 
hypoxia for therapeutic gain (Denny  2010 ; Semenza  2007 ; Wilson and Hay  2011    ). 
The major drug discovery effort was centered on chemical radiosensitizers and 
spanned several decades (Wardman  2007 ), but minimal clinical success resulted in 
dwindling efforts in this fi eld (Overgaard  2007 ). 

 A paradigm shift in hypoxia targeting occurred in the mid-1980s. Rather than 
minimizing the impact of hypoxia on radiotherapy, a new strategy sought to use 
hypoxia as a physiological target that could promote activation of prodrugs to kill 
tumor cells. Hypoxia-activated prodrugs (HAPs) have been extensively explored 
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  Fig. 6.2    Illustration of oxygen dependence for cellular response. Radiation sensitivity of clono-
genic cell killing increases with increasing oxygen concentration, reaching half-maximal at 
approximately 4–5 μM (Wouters and Brown  1997 ), whereas it decreases for hypoxia-activated 
prodrugs PR-104 (Hicks et al.  2007 ) and tirapazamine/SN30000 (Hicks et al.  2004 ,  2010 ). For 
nitroimidazoles, oxygen dependence of intracellular binding of EF5 (Tuttle et al.  2007 ) is similar 
to the oxygen dependence of the sensitizer    enhancement ratio of misonidazole (Carlson et al. 
 2011 ). Stabilization of the hypoxia-inducible factor generally occurs under more moderate hypoxic 
conditions (Tuttle et al.  2007 )       
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over several decades (Brown and Wilson  2004    ; Chen and Hu  2009    ; McKeown et al. 
 2007 ; Rockwell et al.  2009 ; Wilson and Hay  2011 ). 

 Identifi cation of the HIF as the “master regulator” of hypoxic response and a key 
drug target (Giaccia et al.  2003 ; Semenza  2003 ) resulted in the discovery of a pleth-
ora of small molecules that could be potential HIF inhibitors (Xia et al.  2012 ). 
However, much of this work has had limited application. Many agents identifi ed as 
HIF-1α inhibitors actually target upstream or downstream components in the HIF 
response network or have pleiotropic effects. In addition, these agents are not neces-
sarily cytostatic or cytotoxic, nor are they necessarily selective for hypoxic cells. 

 Overall, few agents developed to target hypoxia have been registered. Tumor 
hypoxia has been a niche area, predominantly the preserve of academic groups, and 
only with the elaboration of the hypoxia response network has hypoxia received 
mainstream attention as a validated target for drug development.  

6.1.3     Defi ning the Hypoxic “Target” 

 Defi nition of the “target” depends on the approach directed against the hypoxic 
cells. For oxygen-mimetic radiosensitizers the target is a DNA radical generated by 
ionizing radiation (Fig.  6.3a ), and selectivity results from competition between oxy-
gen and the electron-affi nic nitroimidazole group for this radical. Since oxygen is 
vastly more effi cient at scavenging these radicals, nitroimidazoles effectively 
 sensitize only hypoxic cells.

   A more complex situation exists for HAPs (Fig.  6.3b ). The prodrug is reduced by 
a one-electron reductase to form a radical anion. This radical anion may be “scav-
enged” by oxygen to reproduce the prodrug with production of superoxide. In the 

  Fig. 6.3    ( a ) Mechanism of oxygen-mimetic radiosensitization by electron-affi nic nitroaryl radio-
sensitizers. ( b ) Mechanism of hypoxia-activated prodrugs       
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absence of oxygen the radical anion may undergo a variety of transformations, 
depending on chemical class, leading to the activated drug. Reduction of the prodrug 
by two-electron reductases removes the potential for back-oxidation of the radical 
anion, leading to a loss of hypoxic selectivity. As a consequence, the target is the 
intersection of three elements: hypoxia, enzymes to activate the prodrug, and intrin-
sic sensitivity to the activated drug. The initial concept invoked tumor hypoxia as 
unique to tumor tissue and, essentially, a binary switch, suggesting it is an ideal drug 
target for HAPs (Denny et al.  1996 ). However, hypoxia exists in normal tissues, and 
tumor cells    at intermediate oxygen tension are important for tumor progression 
(Wouters and Brown  1997    ), making hypoxia a more complex target. The second 
component requires the location of appropriate enzymes to activate the prodrug 
within the tumor. NADPH:cytochrome P450 oxidoreductase has been identifi ed as a 
key one-electron reductase responsible for the activation of many HAPs (Guise et al. 
 2007 ; Meng et al.  2012 ; Patterson et al.  1998 ; Wang et al.  2012b ), but contributions 
from other one-electron reductases (e.g., aldehyde oxidase, xanthine oxidase, nitric 
oxide synthases, thioredoxin reductase, NADH-dependent cytochrome b5 reductase, 
methionine synthase reductase, and NADPH-dependent difl avin oxidoreductase) 
also have been reported (Adams and Rickert  1995    ; Ask et al.  2003 ; Cenas et al. 
 2006 ; Chandor et al.  2008 ; Guise et al.  2012 ; Papadopoulou et al.  2003 ; Patterson 
et al.  1998 ; Tatsumi et al.  1986 ; Ueda et al.  2003 ). The expression of these enzymes 
and their relative contributions to HAP activity across human tumors is incompletely 
understood; however, signifi cant variations between cell lines (Guise et al.  2012 ; 
Wang et al.  2012b ) and individual human tumors (Evans et al.  2000 ; Patterson et al. 
 1997 ) has been demonstrated. The electron affi nity of the prodrug seems to be the 
key determinant of activation (Wardman  2001 ), indicating little substrate specifi city 
for most of the one-electron reductases. The third constituent of the HAP target is the 
intrinsic sensitivity of the target cells to the activated drug. Strategies using prodrugs 
that release cytotoxins that cross-link DNA will be dependent on DNA repair status 
and may cause normal tissue toxicity if activated inappropriately. Prodrugs deliver-
ing inhibitors of specifi c molecular targets, such as the human epidermal growth 
factor receptor, have been reported more recently (Patterson et al.  2009 ). For these 
agents, the relative expression of the molecular target in hypoxic and normal tissues 
contributes to the overall target. In the case of HIF inhibitors, the molecular targets 
are structurally diverse, and hypoxic selectivity is provided by the level of overex-
pression under hypoxic conditions relative to the levels of the target in normal tissue 
and the specifi city of the inhibitor for the particular molecular target.     

6.2     Radiosensitizers 

6.2.1     Introduction 

    Attempts to offset the negative effects of hypoxia on radiation therapy initially 
focused on manipulation of tumor oxygen status (e.g., fractionated radiation sched-
ules to allow reoxygenation between fractions [Kallman and Dorie  1986    ]; hyperbaric 

6 Hypoxia-Directed Drug Strategies to Target the Tumor Microenvironment



116

oxygen treatment [Bennett et al.  2012 ; Overgaard and Horsman  1996    ], and nicotin-
amide in combination carbogen breathing with accelerated radiotherapy [ARCON] 
[Janssens et al.  2012 ; Kaanders et al.  2002 ]). Drug discovery efforts have been cen-
tered on the development of chemical radiosensitizers and, in particular, oxygen-
mimetic sensitizers.  

6.2.2     Nitroimidazole Oxygen Mimetics 

 The concept of an electron-affi nic nitroaryl molecule as a radiosensitizer in hypoxic 
tumor tissue has a long history (Dische  1985 ,  1991 ; Wardman  2007 ). The 
5- nitroimidazole antibiotic metronidazole (Fig.  6.4 ) was identifi ed as an effective 
radiosensitizer (Asquith et al.  1974 ) and displayed clinical benefi t (Urtasun et al. 
 1976 ). More electron-affi nic 2-nitroimidazoles were explored, and misonidazole 
was identifi ed and advanced to clinical trials (Adams et al.  1976 ). Misonidazole 
underwent extensively trials with fractionated radiotherapy; despite indications of 
clinical benefi t (Overgaard  1994 ), delayed peripheral neuropathy limited treatment 
(Grigsby et al.  1999 ; Saunders and Dische  1996    ). The electron affi nity of the nitro-
imidazole group is the key parameter for radiosensitization and toxicity (Adams 
et al.  1979a ,  b ). Thus, 5-nitroimidazoles with lower electron affi nity had lower 
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  Fig. 6.4    ( a ) Clinically investigated nitroimidazoles. ( b ) Representative novel 2- and 
5- nitromidazole sulfonamides. ( c ) Clonogenic survival curves of HCT116 colorectal carcinoma 
cells after increasing dose of radiation in oxia ( blue ) and anoxia ( black ) in the presence of equi-
toxic doses of etanidazole (1 mM) and SN35265 (0.7 mmol)       
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toxicity and larger doses could be used to offset their weaker radiosensitization. 
This led to the identifi cation of nimorazole as a radiosensitizer (Overgaard et al. 
 1982 ,  1983 ) that is well tolerated (Overgaard et al.  1998 ; Timothy et al.  1984 ) and 
used clinically, but only in Denmark. Nimorazole is currently undergoing a phase 
III clinical trial with accelerated radiotherapy (Overgaard  2012 ).

   Attempts to design more polar analogs with reduced lipophilicity and increased 
systemic clearance to minimize the neurotoxicity observed with misonidazole led to 
the development of etanidazole (Brown et al.  1981 ) and doranidazole (Murata et al. 
 2008 ; Oya et al.  1995 ). This approach was only partially successful: Etanidazole 
had reduced neurotoxicity compared to misonidazole (Coleman et al.  1990 ) but 
failed to provide benefi t in head and neck cancer (Eschwege et al.  1997 ; Lee et al. 
 1995 ). Doranidazole is currently under investigation for pancreatic cancer (Karasawa 
et al.  2008 ) and non-small-cell lung carcinoma (Nishimura et al.  2007 ). 

 It is salutary to note that although nitroimidazole radiosensitizers have been 
extensively investigated clinically and that hypoxic modifi cation was shown to be 
effective in a meta-analysis (Overgaard  2011 ), only nimorazole is in clinical use. 
Two main factors have contributed to the limited clinical success of radiosensitizers. 
Their use with fractionated radiotherapy – where fractionation of the radiation dose 
is designed to allow tumor reoxygenation between radiation fractions – reduces the 
potential for radiosensitization (Hill  1986 ; Kallman  1972 ). Fractionated radiother-
apy ideally requires a dose of radiosensitizer with each fraction of radiation, a 
schedule that was unachievable with early 2-nitroimidazoles because of cumulative 
peripheral neurotoxicity. Perhaps most signifi cant is that many of the trials were 
small and were conducted without prospectively identifying patients with hypoxic 
tumors, despite considerable heterogeneity in the level and extent of tumor hypoxia 
among patients (Hoogsteen et al.  2009 ). 

 However, the development of stereotactic body radiotherapy (SBRT) may offer a 
new opportunity for this class. SBRT uses hypofractionated (one to fi ve doses), 
high-dose (25–60 Gy in total dose) radiation to treat primary tumors and oligome-
tastases. Initial clinical results of using SBRT to treat a variety of primary tumors 
suggest locoregional control and toxicity profi les that compare to or improve on 
those of fractionated radiotherapy (Lo et al.  2010 ). Prospective, randomized trials to 
confi rm these results compared to standard care will drive increasing use of SBRT. 
In addition, reduced treatment time and fewer patient visits, combined with emerg-
ing potential to replace surgery in patients for whom an outpatient procedure pres-
ents risk, indicates potential economic health advantages for SBRT. However, SBRT 
may accentuate the role of hypoxia in radioresistance because of the reduced oppor-
tunity for tumor reoxygenation during therapy (Brown et al.  2010 ; Carlson et al. 
 2011 ). This would offer the possibility of a renaissance for nitroimidazole radiosen-
sitizers in conjunction with SBRT. A recent small, phase III trial of doranidazole in 
conjunction with intraoperative radiotherapy (25 Gy) for pancreatic tumors demon-
strated a survival advantage (Nishimura et al.  2007 ). 

 Nevertheless, several barriers exist in the development of radiosensitizers for use 
with SBRT. Limited (doranidazole) or expired (misonidazole, etanidazole, nimora-
zole) patent protection for clinically evaluated nitroimidazoles will limit their 
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application, while the wide range of analogs prepared across the fi eld restricts dis-
covery of novel, patentable nitroimidazoles. The other challenge for future develop-
ment of such radiosensitizers is the use of a biomarker to prospectively identify 
hypoxia in patients (See Sect.  6.5 ). 

 In addressing these challenges, we have recently identifi ed a new class of nitro-
imidazole with a sulfonamide side chain, providing chemical novelty (Bonnet et al. 
 2012 ). A series of 2- and 5-nitroimidazole analogs have been designed and synthe-
sized, and preliminary results show that representative compounds (Fig.  6.4b ) pro-
duce comparable in vitro radiosensitization to etanidazole at nontoxic concentrations 
in hypoxic HCT-116 human colorectal carcinoma cells (Fig.  6.4c ). The electron 
affi nity of these compounds, as measured by one-electron reduction potential, is 
higher than corresponding 2- and 5-nitroimidazoles because of the infl uence of the 
strong electron-withdrawing side chain and results in increased radiosensitization. 
Metabolism is also increased in the more electron-affi nic examples, resulting in 
hypoxia-selective cytotoxicity. This novel series provides the opportunity to lever-
age 30 years of drug development around the class and develop a third-generation 
radiosensitizer while including extravascular transport (EVT) (See Sect.  6.3.5 ) and 
hypoxia biomarker studies (See Sect.  6.5 ) early in the drug design process.  

6.2.3     Molecular Targets in DNA Repair as Radiosensitizers 

 The targeting of DNA repair for radiosensitization using antimetabolites (Brown 
et al.  1971 ) is well established, although these agents work through multiple 
mechanisms (Shewach and Lawrence  2007    ). A range of histone deacetylation 
inhibitors also radiosensitize tumor cells through modulation of the DNA damage 
response (Camphausen and Tofi lon  2007    ). Specifi c    DNA repair proteins such as 
poly(ADP- ribose) polymerase (PARP) (Chalmers et al.  2010 ), ataxia telangiecta-
sia mutated (ATM) pharmacokinetics (Sarkaria and Eshleman  2001    ), ATM- and 
Rad3-related (ATR) pharmacokinetics (Wang et al.  2004 ), and DNA-dependent 
pharmacokinetics (Blunt et al.  1995 ) are potential targets for radiosensitization 
(Helleday et al.  2008 ; Begg et al.  2011 ). PARP inhibitors can radiosensitize tumors 
(Albert et al.  2007 ; Calabrese et al.  2004 ), although some of their activity may be 
due to a vascular effect that results in reduced intermittent hypoxia (Senra et al. 
 2011 ). A range of PARP inhibitors are in clinical development and offer potential 
as radiosensitizers. Novel ATM inhibitors (KU55933 [Hickson et al.  2004 ] and 
KU60019 [Golding et al.  2009 ]) and ATR inhibitors (NU6027 [Peasland et al. 
 2011 ] and VE821 [Charrier et al.  2011 ; Reaper et al.  2011 ]) display radiosensiti-
zation in vitro (Pires et al.  2012 ). The selective DNA pharmacokinetics inhibitor 
NU7441 can radiosensitize tumor cells in vitro and in vivo (Zhao et al.  2006 ), 
whereas IC87361 (Kashishian et al.  2003 ) was reported to enhance radiation-
induced delay in the growth of Lewis    lung carcinomas (Shinohara et al.  2005 ). 
One concern about this approach is the potential for these agents to radiosensitize 
normal tissue within the radiation fi eld. Although particular diseases may be 

M.P. Hay et al.



119

identifi ed to provide synthetically lethal combinations (e.g., BRCA1 loss of func-
tion in combination with PARP inhibitors), another approach is to selectively tar-
get these agents to hypoxic tissues using a prodrug approach (Parveen et al.  1999 ; 
Cazares-Korner et al  2013 ).   

6.3     Hypoxia-Activated Prodrugs 

6.3.1     Introduction 

    HAPs (also called bioreductive prodrugs or hypoxia-selective cytotoxins) can be 
grouped into six classes based on their activation chemistry (Fig.  6.5 ). Quinone 
prodrugs such as EO9, based on the reductive activation of mitomycin C, were the 
fi rst class to be explored (Lin et al.  1972 ; Phillips et al.  2013 ). The observation that 
redox cycling could provide a basis for hypoxia-selective cytotoxicity of nitroaryl 
compounds (Mason and Holtzman  1975    ) was followed by observations that some 
nitroimidazole radiosensitizers were also selectively toxic to hypoxic tumor cells in 
culture (Hall and Roizin-Towle  1975    ; Mohindra and Rauth  1976    ). This led to exten-
sive studies of nitroheterocycles as hypoxia-activated prodrugs (Jenkins et al.  1990 ; 
Naylor et al.  1990 ; Threadgill et al.  1991 ), culminating in the bifunctional prodrug 
RB-6145 (Naylor et al.  1993 ), in which an alkylating bromoethylamine side chain 
increased cytotoxic potency (Hill et al.  1986 ). Clinical development of RB-6145 and 
its R-enantiomer (CI-1010) (Cole et al.  1992 ) was halted because of retinal toxicity 

  Fig. 6.5    ( a ) Main chemical classes used for hypoxia-activated prodrugs (HAPs). ( b ) Examples of 
HAPs       
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in preclinical models, providing early evidence that hypoxia in normal tissues could 
result in dose-limiting toxicities (Breider et al.  1998 ; Lee and Wilson  2000    ).

   Description of the principles of bioreductive activation of nitroaryl prodrugs of 
nitrogen mustard (Denny and Wilson  1986    ) laid the groundwork for the eventual 
discovery of PR-104 as a HAP (Patterson et al.  2007 ). The hypoxic selectivity of 
aromatic N-oxides based on the 1,2,4-benzotriazine system led to the identifi cation 
of tirapazamine (TPZ) (Brown  1993 ). Aliphatic N-oxides were shown to compete 
with oxygen for reduction by two-electron reductases, providing a mechanism for 
masking the DNA binding of DNA intercalators (Patterson  1993 ; Wilson et al.  1992 ), 
such as AQ4N (banoxantrone). Stable transition metal complexes (e.g., Co[III] 
[Milbank et al.  2009 ; Ware et al.  1993 ; Yamamoto et al.  2012 ] and Cu[II] [Parker 
et al.  2004 ]) can undergo hypoxia-selective, one-electron reduction to relatively 
unstable complexes (e.g., Co[II] and Cu[I]), releasing a cytotoxic agent. A vast 
assortment of compounds from these classes has been explored in the laboratory but 
only a handful have been evaluated clinically. Several of these provide informative 
examples of the challenges facing HAP discovery and are briefl y discussed below.  

6.3.2     PR-104 

 PR-104 arose from the structural optimization of simple nitroaryl nitrogen mustards 
(Denny and Wilson  1986 ) to selectively activated, diffusible mustard cytotoxins 
(Denny and Wilson  1993    ) and involved several design challenges. Elevation of the 
electron affi nity of the 5-nitro group into a range suitable for bioreduction required 
additional electron-withdrawing substituents (e.g., a 3-NO 2  group) (Palmer et al. 
 1992 ). The relative arrangement of the four substituents provides the best combina-
tion of potency and hypoxic selectivity (Palmer et al.  1996 ). Addition of a carbox-
amide-linked solubilizing side chain (Palmer et al.  1994 ), combined with a phosphate 
prodrug approach, provides suffi cient aqueous solubility. 

 The phosphate group is readily cleaved in plasma (Patel et al.  2007 ), and the 
nitro group then undergoes one-electron reduction to a nitro radical anion (Guise 
et al.  2007 ) (Fig.  6.6a ), which is converted back to the prodrug in the presence of 
oxygen by redox cycling. Further reduction of the radical anion produces a nitroso-
benzene that may undergo subsequent reduction to electron-donating hydroxyl-
amine (PR-104H) and aminobenzene (PR-104M). These activated species cross-link 
DNA, forming cytotoxic lesions (Gu et al.  2009 ; Patterson et al.  2007 ; Singleton 
et al.  2009 ). PR-104 is activated under low oxygen concentrations (Hicks et al. 
 2007 ) (Fig.  6.2 ), but reduced species are suffi ciently lipophilic and stable to diffuse 
from the cell of activation to surrounding tumor cells, known as the “bystander 
effect” (Foehrenbacher et al.  2013 ; Patterson et al.  2007 ; Wilson et al.  2007 ).

   PR-104 displayed excellent in vitro hypoxic selectivity (6- to 160-fold), with 
single-agent activity and potentiation of radiation in SiHa, HT29, and H460 tumor 
xenografts (Patterson et al.  2007 ). PR-104 advanced to clinical trials (Jameson et al. 
 2010 ; McKeage et al.  2011 ), but normal tissue toxicity in humans prevented trials 
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from reaching an effi cacious dose (Patel et al.  2011 ). Activation of PR-104 by the 
oxygen-insensitive two-electron reductase aldo-ketoreductase AKR-1C3 (Guise 
et al.  2010 ), was subsequently suggested as a factor contributing to this toxicity. 
A new strategy to leverage the presence of both hypoxia and AKR-1C3 expression 
in particular tumor types, including advanced leukemia (Houghton et al.  2011 ; 
Benito et al.  2011 ), has led to subsequent clinical trials (  www.ClinicalTrials.gov     
identifi er NCT01037556).  
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  Fig. 6.6    Mechanism of activation of leading hypoxia-activated prodrugs. ( a ) PR-104. One- 
electron reduction of PR-104A to the nitro radical anion is reversed in the presence of oxygen. 
Under hypoxia, further reduction of the radical anion leads sequentially to the deactivated nitroso 
and the activated hydroxylamine (PR-104H) and amine PR-104M. Two-electron reduction of 
PR-104A bypasses the nitro radical anion and is not hypoxia selective. ( b ) TH-302. One-electron 
reduction under hypoxia leads to a radical anion. Radiolytic studies have demonstrated direct frag-
mentation of the radical anion to release the bromo-phosphoramidate mustard (Br 2 -IPM). An alter-
nate, stepwise two-electron reduction to the 2-hydroxylamine and subsequent fragmentation has 
been previously proposed. ( c ) Tirapazamine. One-electron reduction gives an  N -oxide radical that 
may be reoxidized by oxygen. Under hypoxia, protonation and then rearrangement produces a 
carbon-centered tirapazamine (TPZ) radical. This TPZ radical may then eliminate water to give a 
DNA-damaging benzotriazinyl nitrogen-centered radical or release a hydroxyl radical. Further 
reduction of the TPZ radical, or two-electron reduction of TPZ, leads to the relatively nontoxic 
1-oxide and nor-oxide. An analogous activation mechanism has been proposed for the related 
benzotriazine dioxide SN30000       
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6.3.3     TH-302 

 A versatile prodrug strategy based around the 2-nitroimidazole-5-methanol moiety 
was able to release enediynes (Hay et al.  1999 ), aspirin (Everett et al.  1999 ), and a 
PARP inhibitor (Parveen et al.  1999 ) in a hypoxia-selective manner; nitroheterocy-
clic prodrugs of phosphoramidate mustards were shown to release cytotoxins upon 
reduction (Borch et al.  2000 ,  2001 ). These studies were a precursor to the discovery 
of TH-302, a 2-nitroimidazole-5-methyl phosphoramidite, as a HAP with excellent 
hypoxic selectivity (Duan et al.  2008 ; Meng et al.  2012 ). Steady-state and pulse 
radiolysis methods showed that TH-302 undergoes one-electron reduction and frag-
mentation to release bromo-isophosphoramide mustard (Meng et al.  2012 ) but did 
not exclude the initially proposed stepwise reduction of 2-nitroimidazole prodrugs to 
hydroxylamine or amine and fragmentation via an iminomethide (Borch et al.  2001 ) 
(Fig.  6.6b ). The increased toxicity observed in cells that overexpress bacterial nitro-
reductase provides evidence of the potential for oxygen-insensitive, two- electron 
reduction and release of bromo-isophosphoramide mustard (Meng et al.  2012 ). The 
released mustard generates DNA cross-links that are responsible for hypoxic cyto-
toxicity (Meng et al.  2012 ). Extensive preclinical studies have shown the antitumor 
activity of TH-302 – either as a single agent (Sun et al.  2012 ) or in combination with 
commonly used chemotherapeutic drugs (Liu et al.  2012 ) and radiation (Lohse et al. 
 2012 ) – in many animal xenograft models. The anticancer effi cacy of TH-302 cor-
related well with the levels of xenograft tumor hypoxia, confi rming the hypoxic 
specifi city of drug action in vivo (Lohse et al.  2012 ; Sun et al.  2012 ). TH-302 is cur-
rently the most advanced HAP in clinical development. Promising outcomes from 
phase II clinical trials (Borad et al.  2012 ; Chawla et al.  2011 ) led to the commence-
ment of two randomized, placebo-controlled, phase III trials: one with TH-302 in 
combination with doxorubicin for advanced soft tissue sarcoma and the other in 
combination with gemcitabine for advanced pancreatic cancer.  

6.3.4     Tirapazamine 

 TPZ (tirazone) is the prototypic example of a heterocyclic N-oxide HAP and domi-
nated the fi eld for almost two decades (Brown  1993 ,  2010 ; Denny and Wilson  2000    ). 
TPZ shows highly selective killing in cell culture under hypoxic compared to aero-
bic conditions (Zeman et al.  1986 ) as a result of rapid bioreductive metabolism 
(Baker et al.  1988 ; Hicks et al.  2003 ; Siim et al.  1996 ). One-electron reduction by, 
for example, NADPH:cytochrome P450 oxidoreductase (Fitzsimmons et al.  1994 ; 
Patterson et al.  1997 ,  1998 ), inducible nitric oxide synthase (Chinje et al.  2003 ), or 
nuclear localized reductases (Evans et al.  1998 ) produces a N-centered radical 
(Baker et al.  1988 ; Laderoute et al.  1988 ) that is effi ciently back-oxidized to TPZ by 
oxygen (Fig.  6.6c ). In the absence of oxygen, protonation and rearrangement leads 
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to an oxidizing radical (Anderson et al.  2003 ; Shinde et al.  2009 ,  2010 ; Yin et al. 
 2012 ) or hydroxyl radical (Chowdhury et al.  2007 ; Daniels and Gates  1996    ), both of 
which have been proposed as the species that damages cytotoxic DNA. DNA dam-
age measured by comet assay (Olive et al.  1996 ; Siim et al.  1996 ) or induction of 
γH2AX (Olive et al.  2004 ; Wang et al.  2012b ) correlates with the rates of bioreduc-
tion and reductase expression (Wang et al.  2012b ) and is repaired by multiple mech-
anisms, including homologous recombination repair of double-strand breaks (Evans 
et al.  2008 ; Hunter et al.  2012 ). The radical species are short-lived and do not con-
tribute to the killing of surrounding cells. Despite the lack of the bystander effect, 
TPZ is able to kill cells at intermediate oxygen concentrations because of activation 
at relatively high oxygen concentrations, with K-values (oxygen concentration for 
half-maximal hypoxic potency) in the range 1–3 μM (Hicks et al.  2004 ,  2007 ; Koch 
 1993 ), resulting in good complementarity with radiation (Hicks et al.  2004 ,  2007 ; 
Koch  1993 ; Wouters and Brown  1997 ), (Fig.  6.2 ). In contrast to PR-104 and TH-302, 
the two- and four-electron reduction products are markedly less cytotoxic than the 
parent drug (Baker et al.  1988 ), but this unproductive metabolism reduces potency. 

 Xenograft studies demonstrated cell killing complementing that of single-dose 
(Zeman et al.  1988 ) and fractionated radiation (Brown and Lemmon  1990    ,  1991 ). 
TPZ also demonstrated synergy with cisplatin in preclinical tumor models (Dorie 
and Brown  1993    ,  1994 ), resulting from hypoxia-dependent inhibition of cisplatin 
DNA cross-link repair (Kovacs et al.  1999 ). 

 TPZ has been intensively studied in clinical trials in combination with radiation 
and chemotherapy in head and neck (Rischin et al.  2005 ,  2010b ), non-small-cell 
lung (Sandler et al.  2000 ; Shepherd et al.  2000 ; von Pawel et al.  2000 ; Williamson 
et al.  2005 ) and cervical carcinomas (Aghajanian et al.  1997 ; Covens et al.  2006 ; 
Craighead et al.  2000 ; DiSilvestro et al.  2012 ; Maluf et al.  2006 ; Rischin et al. 
 2010a ) and has been extensively reviewed (Ghatage and Sabagh  2012    ; McKeown 
et al.  2007 ; Reddy and Williamson  2009    ). TPZ was well tolerated in early phase 
trials at doses resulting in plasma drug concentrations in the therapeutic range 
(Johnson et al.  1997 ; Senan et al.  1997 ). Early trials produced signs of activity with 
the initial phase III trial of TPZ/cisplatin in advanced non-small-cell lung cancer, 
demonstrating increased overall survival relative to cisplatin and radiation alone 
(von Pawel et al.  2000 ). This indication of activity was not confi rmed in larger, ran-
domized phase III trials in head and neck (Rischin et al.  2010b ) and cervical carci-
nomas (DiSilvestro et al.  2012 ), and further development of TPZ has been halted. 

 Several issues were identifi ed as affecting the effi cacy of TPZ as a HAP. TPZ 
demonstrated signifi cant toxicities that limited the therapeutic ratio (Ghatage and 
Sabagh  2012 ; McKeown et al.  2007 ; Reddy and Williamson  2009 ). TPZ also has 
low solubility, which required long infusion times (Graham et al.  1997 ; Senan et al. 
 1997 ). In addition, preclinical studies demonstrated that TPZ is substantially less 
selective for hypoxic cells in three-dimensional (3D) culture (Durand and Olive 
 1992    ) or xenografts (Durand and Olive  1997 ) than in monolayer cell culture, a con-
sequence of limited EVT (Hicks et al.  1998 ).  
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6.3.5      Discovery of a Second-Generation Benzotriazine 
Dioxide (SN30000) 

 With these issues in mind we embarked on the discovery of a second-generation 
benzotriazine dioxide (BTO) as a HAP. Our aim was to identify TPZ analogs with 
superior activity against hypoxic cells in tumors by improving the solubility-potency 
product, hypoxia selectivity, and EVT using the end point of improved therapeutic 
activity in preclinical xenograft models at equivalent toxicity. It also was necessary 
to identify chemically novel compounds to secure an intellectual property position 
to support development. 

 A limited number of TPZ analogs had been prepared and evaluated (Kelson et al. 
 1998 ; Minchinton et al.  1992 ; Zeman et al.  1989 ), and little information on structure- 
activity relationships (SARs) existed. We prepared an initial toolset of 42 com-
pounds with a range of substituents to explore SARs and we confi rmed the positive 
relationship between the one-electron reduction potential, E(1), and anoxic potency 
in both clonogenic and growth inhibition (IC 50    ) assays (Hay et al.  2003 ). 

 EVT was investigated using multicellular layers (MCLs), a model of the tumor 
extravascular compartment in which cells are grown on porous support membranes 
in culture inserts submerged in culture medium (Cowan et al.  1996 ; Minchinton 
et al.  1997 ) and form diffusion-limited structures with central hypoxia (Hicks et al. 
 1998 ). Anoxia reduced TPZ transport in MCLs (Hicks et al.  1998 ,  2003 ; Kyle and 
Minchinton  1999    ), and reaction diffusion modeling using measured TPZ diffusion 
coeffi cients and rate constants for anoxic metabolism predicted steep gradients of 
TPZ in hypoxic tumor tissue, resulting in reduced cell killing. A spatially resolved 
pharmacokinetic/pharmacodynamic model for HT29 MCLs incorporating cytotoxic 
potency measured in anoxic cell cultures predicted increased resistance to TPZ in 
anoxic MCLs compared to stirred suspensions (Hicks et al.  2003 ). This confi rmed 
that multicellular resistance to TPZ in anoxic 3D culture was primarily a result of 
limited transport and was responsible for the reduced effi cacy of TPZ in 3D models 
(Durand and Olive  1992 ,  1997 ). This model was extended to tumors by incorporat-
ing the measured oxygen dependence (K-curve) of TPZ metabolism (Hicks et al. 
 2004 ) and measured TPZ plasma pharmacokinetics    to simulate TPZ transport in a 
mapped microvascular network (Hicks et al.  2006 ). The model predicted that cell 
killing by TPZ in the hypoxic region is reduced relative to that achievable with no 
EVT limitation. In addition, the model successfully predicted activity of TPZ and 15 
analogs from the SAR toolset in HT29 xenografts using measured plasma pharma-
cokinetics, transport parameters, and anoxic cytotoxicity (Hicks et al.  2006 ). 

 We also used the molecular toolset to investigate the SAR for transport, demon-
strating that diffusion coeffi cients in HT29 MCLs increased with increasing logP 7.4  
and decreased with molecular weight, number of hydrogen bond donors, and accep-
tors (Pruijn et al.  2005 ,  2008 ). 

 After developing the tools to effi ciently evaluate novel BTO analogs, we used the 
screening method guided by the pharmacokinetic/pharmacodynamic model (Fig.  6.7a ) 
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to specifi cally consider EVT at an early stage in the drug design process and to predict 
in vivo hypoxia selectivity resulting from changes in EVT. Increased bioreduction 
produces competing effects of increasing potency and decreasing EVT; thus design-
ing improved analogs requires optimizing potency and EVT rather than simply 
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•Plasma protein binding
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  Fig. 6.7    ( a ) A pharmacokinetic/pharmacodynamic (PKPD)-guided screening algorithm that 
incorporates drug penetration. After initial screening for physicochemical properties and hypoxia 
selectivity, parameters governing drug penetration (diffusion coeffi cient and rate of bioreductive 
metabolism) were measured in vitro or calculated and used in a spatially resolved PKPD model to 
calculate the drug exposure (AUC) required for 1 log of cell killing in addition to radiation alone. 
Compounds that demonstrated in vivo hypoxia selectivity at achievable AUC ( Prediction A ) were 
advanced to in vivo screening ( MTD ,  plasma PK ). The model was then run with measured plasma 
pharmacokinetics as input, and compounds predicted to add >0.3 log cell killing in addition to 
radiation alone ( Prediction B ) were advanced to in vivo clonogenic assay screens. ( b ) General 
structure of tricyclic benzotriazine dioxides, indicating drug design considerations       
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maximizing any individual parameter. A range of structural variations were explored 
in an effort to optimize these parameters (Fig.  6.7b ) (Hay et al.  2007a ,  b ,  2008 ). The 
confi dence gained using the spatially resolved pharmacokinetic/pharmacodynamic 
validation allowed us to screen a large number of analogs in vitro and base our SAR 
on predicted in vivo hypoxic cell killing rather than conduct extensive in vivo testing. 
Diffusion coeffi cients and rates of reductive metabolism in the analog series varied 
by more than 100-fold (Hicks et al.  2010 ), and a high correlation between predicted 
and observed activity was found in initial HT29 xenograft screening. The addition of 
a third saturated ring to the benzotriazine core provided reduced hypoxic metabolism 
and increased lipophilicity, which increased EVT and created chemical novelty to 
substantiate an intellectual property position. The addition of a basic amine side chain 
increased aqueous solubility but reduced lipophilicity and affected hypoxic metabo-
lism, reducing EVT. While the optimization of two SARs for EVT and metabolism 
provided analogs with superior in vivo hypoxic selectivity, their in vivo activity was 
infl uenced by a third SAR for host toxicity. This is exemplifi ed by the variation in 
maximum tolerated doses, and consequently AUC   , as a function of lipophilicity and 
amine pKa (Fig.  6.8 ). Whereas SN29143 was predicted to have substantially improved 
activity compared to TPZ, poor plasma AUC precluded in vivo activity. Attempts to 
improve the pharmacokinetics by modulating lipophilicity and amine pKa led to a 
high AUC and improved EVT but very low hypoxic potency, which compromises the 
activity of SN29434. Increasing both lipophilicity and pKa increased host toxicity and 
lowered AUC (SN29467). Replacing the strongly  electron-donating 3-amino substitu-
ent with a weaker 3-alkyl substituent led to increased EVT from increased lipophilic-
ity and increased hypoxic potency from higher rates of metabolism (SN30000). 
Substituents resulting in higher lipophilicity (SN30124) and higher pKa (SN30080, 
SN30081) resulted in a similar trend of increasing toxicity and poorer plasma AUC, 
as described above. SN30000 was predicted to be substantially more active than TPZ 
and SN29434 as a result of low toxicity and good plasma AUC, and this was demon-
strated in the HT29 xenograft model.

    SN30000 emerged as the lead tricyclic BTO from this program, with broadly 
improved activity relative to TPZ. Aqueous solubility is improved by almost an 
order of magnitude (Hicks et al.  2010 ). SN30000 demonstrates higher potency and 
hypoxic selectivity than TPZ in IC 50  assays across a panel of cell lines and in clono-
genic assay in HT29 cells (Hicks et al.  2010 ). It is important to note that the mea-
sured K-value of SN30000 is not signifi cantly different (1.14 ± 0.24 μM oxygen) 
from TPZ (1.21 ± 0.09 μM oxygen), indicating retention of the desirable property of 
activation at intermediate oxygen concentrations. Improved EVT for SN30000 was 
confi rmed experimentally, with a threefold higher diffusion coeffi cient than TPZ in 
HT29 and SiHa MCLs (Hicks et al.  2010 ). SN30000 shows increased activity rela-
tive to TPZ against hypoxic cells in combination with single-dose or fractionated 
radiation in several tumor xenografts (HT29, SiHa, H460) by in vivo clonogenic 
assay and superior activity in SiHa xenografts with fractionated radiation by a delay 
in tumor regrowth (Hicks et al.  2010 ). SN30000 is currently in preclinical develop-
ment with Cancer Research UK.   
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6.4     Targeting the Hypoxia Response Pathway 

6.4.1     Introduction 

    The HIF family of transcription factors is well established as the key mediator of the 
adaptive response to hypoxia, and their role in cancer has been extensively described 
(Poon et al.  2009 ; Semenza  2003 ,  2010 ). These transcription factors are the primary 
oxygen sensors and use oxygen and 2-ketoglutarate as substrates for the hydroxyl-
ation of specifi c proline residues on HIF-1α or HIF-2α by prolyl hydroxylase 
domain enzymes. This allows binding by the von Hippel-Lindau (VHL) factor and 
recruitment of an ubiquitin ligase complex that initiates ubiquitination and protea-
somal degradation. In the absence of oxygen, HIF-1α is able to bind the constitu-
tively expressed HIF-1β and coactivation partners, bind to hypoxia response 
elements (HREs), and activate transcription of a variety of genes involved in 

MTD

29
43

4

29
14

3

29
46

7

30
00

0

30
12

4

30
08

0

30
08

1
0

200

400

600

800

1000

1200
AUC Activity

29
43

4

29
14

3

29
46

7

30
00

0

30
12

4

30
08

0

30
08

1
0

20

40

60

80

100

120

140

160

M
T

D
 (

mm
o

l/k
g

)

P
la

sm
a 

A
U

C
 (

mM
.h

r)

TPZ
29

43
4

30
00

0

L
o

g
 c

el
l k

ill
 in

 a
d

d
it

io
n

to
 r

ad
ia

ti
o

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

*

**P < 0.01 vs radiation alone

**
*P < 0.05 vs radiation alone

**

b

a

Me
Me

Me

Me

MeN

O-

O-
N+ N

H
N
H

N
H

N
N+

O-

O-
N+

N
N+

N N

NN

O

N
O
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angiogenesis, metabolic adaption, cell survival, and metastasis. However, HIF-1α 
activation may also be induced by other stimuli, including genetic changes to tumor 
suppressors (e.g., VHL [Kaelin  2008 ]) or tumor activators (e.g., Ras [Mazure et al. 
 1996 ]), growth factor stimulation (e.g., IGF-R [Ren et al.  2010 ]), and depletion of 
ascorbate (Kuiper et al.  2010 ). In addition, the differential expression and roles of 
HIF-1α and HIF-2α need to be considered (Carroll and Ashcroft  2006    ). 

 Inhibition of HIF-1α activity has been shown to slow angiogenesis and tumor 
growth in xenograft models (Maxwell et al.  1997 ), whereas inhibition of HIF-1α 
activity sensitizes hypoxic cells to conventional therapies (Moeller et al.  2004 ,  2005 ; 
Williams et al.  2005 ). The negative impact of HIF1α overexpression on treatment 
response and outcomes across a range of human tumors is also well described (Jubb 
et al.  2010 ; Semenza  2007 ). Multiple targets within the HIF-1α signaling pathway 
have been identifi ed as a candidate drug targets (Giaccia et al.  2003 ; Semenza  2007 ). 
As a consequence, there has been a plethora of HIF-1 inhibitors that have been 
extensively reviewed (Poon et al.  2009 ; Semenza  2007 ; Xia et al.  2012 ). These 
inhibitors may be characterized as direct (interference with HIF-1α synthesis, stabil-
ity, or binding to transcription partners and HREs) or indirect via the myriad of 
upstream or downstream participants in the hypoxia response network.  

6.4.2     Direct HIF-1α Inhibitors 

 Direct inhibition of HIF1α translation has been demonstrated by a wide range of 
agents through multiple mechanisms, with the topoisomerase-I inhibitor topotecan 
the best-described example. Topotecan was identifi ed as an inhibitor of HIF-1α 
translation (Rapisarda et al.  2002 ) by a topoisomerase-I-dependent mechanism, but 
at concentrations below those necessary for DNA damage–mediated cytotoxicity 
(Rapisarda et al.  2004a ). As well as inhibiting HIF1α protein expression and tumor 
growth in a glioma xenograft model (Rapisarda et al.  2004b ), combination of daily 
low-dose topotecan with bevacizumab provided signifi cantly increased tumor cell 
killing in U251-HRE xenografts compared to either agent alone (Rapisarda et al. 
 2009 ). Topotecan recently completed a phase I clinical trial exploring its effect on 
HIF-1α, and reduced HIF-1α expression was observed in some patients (Kummar 
et al.  2011 ). CPT-11 (EZN-2208), a more potent, soluble prodrug (Sapra et al.  2008 ), 
provides improved suppression of HIF-1α and downstream gene targets (Sapra et al. 
 2011 ) and is in a phase II trial as both a cytotoxin and an HIF-1α inhibitor in combi-
nation with bevacizumab (  www.ClinicalTrials.gov     identifi er NCT01251926). 

 Many of the compounds reported as HIF-1α inhibitors are not specifi c for HIF-1α 
or have multiple mechanism of action. Examples of this are seen with the HSP90 
inhibitors geldanamycin and 17AAG (Isaacs et al.  2002 ; Mabjeesh et al.  2002 ) and 
with inhibitors of thioredoxin-1, such as PX12, which inhibits assembly of the tran-
scription complex but has other effects (Welsh et al.  2003 ). PX12 has completed a 
phase I clinical trial in which stable disease was seen in patients with elevated levels 
of thioredoxin-1 (Ramanathan et al.  2007 ).  
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6.4.3     Indirect HIF Inhibitors 

 Indirect approaches take advantage of the network of upstream stimulating factors 
(e.g., the phosphoinositide 3-kinase/AKT/mammalian target of rapamycin pathway 
[Zhong et al.  2000 ] and the Ras/mitogen-activated pharmacokinetics pathway 
[Berra et al.  2000 ]) and downstream target genes (Semenza  2010 ) and may provide 
HIF-1α inhibition via multiple pathway interactions. The use of the multikinase 
inhibitor sorafenib in the treatment of advanced renal cell carcinoma (RCC) high-
lights this approach (Rini  2010 ). Advanced RCC is driven by HIF stabilization via 
the loss of functional VHL in a majority of cases and displays a highly angiogenic 
and invasive phenotype. Although sorafenib is primarily aimed at targeting down-
stream kinases involved directly in angiogenesis (vascular endothelial growth factor 
receptor-2 and -3 and platelet-derived growth factor receptor), its inhibition of 
upstream BRAF can also affect HIF-1 activity (Wilhelm et al.  2008 ).  

6.4.4     Targeting Glucose Metabolism 

 Many of these downstream HIF targets are associated with the cellular reprogram-
ming of metabolism from oxidative phosphorylation to aerobic glycolysis. This 
shift supports biosynthesis to maintain expansive tumor growth and presents a wide 
range of potential targets to disrupt tumor cell metabolism (Jones and Schulze 
 2012    ). Although regulated by other signaling factors such as p53 and Myc, HIF-1α 
plays an important role in the regulation of the glycolytic pathway (Cairns et al. 
 2011 ). Hypoxic cells are particularly vulnerable to reductions in the production of 
adenosine triphosphate, and so inhibition of glycolysis is potentially an effective 
strategy against hypoxic cells (Kurtoglu et al.  2007 ). This was fi rst demonstrated for 
2-deoxy-D-glucose (Song et al.  1976 ), which, after phosphorylation, inhibits hexo-
kinases and their association with mitochondria. Although tolerated by patients in 
phase I/II trials, there is a dearth of published information on the effi cacy of 2-deoxy- 
D-glucose in patients (Jones and Schulze  2012 ). 

 The glucose transporter GLUT-1 has been shown to be elevated in many tumor 
types and is a negative prognostic factor (Macheda et al.  2005 ). Although a variety 
of glucose transport inhibitors have been reported, many are not selective for 
GLUT-1 or have multiple mechanisms of action, making assessment of their value 
for targeting tumor metabolism diffi cult. For example, phloretin, a competitive 
inhibitor of GLUT-1, slows tumor growth (Kobori et al.  1997 ) and can sensitize 
tumor cells to chemotherapeutics under hypoxic conditions (Cao et al.  2007 ). 
However, it can also interact with the monocarboxylate lactate transporter MCT-4 
(Dimmer et al.  2000 ). 

 A new strategy to identify agents that are selectively cytotoxic to cells overex-
pressing HIF-1α used a synthetic lethality approach (Kaelin  2005 ) based on VHL- 
defi cient RCCs (Chan and Giaccia  2008    ; Sutphin et al.  2007 ). In this cell line, loss 
of functional VHL leads to constitutive expression of HIF-1α and mimics chronic 
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hypoxia. A high-throughput screen of small molecules with paired VHL-profi cient/-
defi cient cell lines was used to identify compounds that selectively kill VHL- 
defi cient cells (Sutphin et al.  2007 ). This approach furnished a series of compounds 
with diverse properties (Bonnet et al.  2011 ; Hay et al.  2010 ; Turcotte et al.  2008 ) 
(see Chap.   9    ). We conducted an SAR study around one class (3-pyridyl benzamido-
phenyl sulfonamides) and identifi ed analogs with submicromolar cytotoxic potency 
and selectivity for von Hippel-Lindau negative (VHL-ve) RCC cells in excess of 
100-fold in vitro (e.g., SN30408, also known as STF-31) (Sutphin et al.  2011 ). The 
presence of a 3-pyridyl carboxamide was key to this activity. Substituents on this 
ring or the central phenyl ring reduced activity. The methyl sulfonamide linker was 
required for activity, whereas a wide range of substituents were tolerated on the 
terminal ring. This SAR was used to design affi nity chromatography reagents that 
selectively bind to GLUT-1 (Chan et al.  2011 ). Molecular modeling studies using a 
homology model of GLUT-1 (Salas-Burgos et al.  2004 ) predicted that SN30408 and 
related molecules could bind within the central solute channel and interact with 
ARG126 and TRP412, both key residues for glucose transport (Brockmann et al. 
 2001 ). SN30408 seems to occupy a similar binding location to fasentin (Wood et al. 
 2008 ) and a series of recently described thiazolidinedione inhibitors that inhibited 
glucose transport in LNCaP prostate carcinoma cells (Wang et al.  2012a ). SN30408 
was shown to bind to GLUT-1 and selectively inhibit glucose uptake into VHL-ve 
RCC cells that overexpress GLUT-1, resulting in necrotic cell death (Chan et al. 
 2011 ). A key concern with targeting glucose transport is the effect on normal tis-
sues, such as in the case of GLUT-1, erythrocytes, and the blood-brain barrier. 
Although it reduced glucose uptake into erythrocytes, SN30408 did not cause 
hemolysis. This was further monitored in vivo, where  18 F-2-fl uorodeoxyglucose 
positron-emission tomography (PET) demonstrated that VHL-ve tumors had high 
uptake of glucose and that treatment with nontoxic doses of a more soluble analog 
(SN31154) consistently reduced this uptake while having a minimal effect on the 
use of glucose in the brain. Daily treatment with a nontoxic dose of SN31154 over 
14 days inhibited tumor growth in vivo (Chan et al.  2011 ).   

6.5       Identifying the Target in Patients 

 As targeted therapies move into the clinic, it becomes increasingly important to 
identify patients with susceptible tumor cell populations who may benefi t clinically 
(Basu  2010 ; Mok  2011 ). To fully exploit hypoxia with targeted therapy, the use of 
biomarkers to select suitable patients and assess response to treatment will greatly 
aid clinical development. 

 While polarographic electrodes have demonstrated a wide range of oxygen ten-
sions in solid tumors (Nordsmark et al.  2005 ) and hypoxia status has been related to 
outcome in a range of tumor types (Vaupel and Mayer  2007 ), this approach is lim-
ited to accessible tumors. Tumor oxygenation may also be evaluated using nuclear 

M.P. Hay et al.

http://dx.doi.org/10.1007/978-1-4614-5915-6_9


131

magnetic resonance techniques with exogenous fl uorocarbon markers for  19 F 
nuclear magnetic resonance or blood oxygen level–dependent magnetic resonance 
imaging (Tatum et al.  2006 ) (See Chap. 16   ). 

 Recent reports of hypoxic gene signatures in various cancer sites (Buffa et al. 
 2010 ; Chi et al.  2006 ; Jubb et al.  2010 ; Murat et al.  2009 ; Winter et al.  2007 ) have 
related clinical outcome following standard treatments. A signature of 15 hypoxic 
genes was developed, validated, and used to retrospectively analyze head and neck 
squamous cell carcinoma (HNSCC) samples from the DAHANCA5 trial (Toustrup 
et al.  2011 ). This analysis demonstrated that only patients with hypoxic tumors 
defi ned by the hypoxic gene signature benefi ted from nimorazole. 

 Exogenous nitroimidazole hypoxia probes such as pimonizadole or EF5, with 
immunostaining by antibodies to the reduced adducts (Evans et al.  2000 ; Raleigh 
et al.  1998 ), have been used clinically. In a substudy of the ARCON trial pimonida-
zole was used to measure tumor hypoxia in patients with laryngeal cancer. For 
patients with higher pimonidazole labeling, ARCON provided benefi t in terms of 
local control and 5 years of disease-free survival (Janssens et al.  2012 ). 

 More convenient approaches using circulating surrogate hypoxic markers in 
blood, such as osteopontin (Le et al.  2003 ), hepatocyte growth factor, and interleu-
kin- 8 (Le et al.  2012 ) have provided equivocal results. In the DAHANCA5 trial, 
patients with high levels of plasma osteopontin were shown to benefi t from the addi-
tion of nimorazole, while patients with intermediate or low osteopontin showed no 
benefi t (Overgaard et al.  2005 ). However, osteopontin failed to show any correlation 
with adverse outcome or benefi t from the addition of hypoxia-targeted therapy in 
the TROG 02.02 phase III trial, in which patients with stage III/IV HNSCC received 
chemoradiotherapy and TPZ (Lim et al.  2012 ). In the same trial, two other hypoxic 
markers – hepatocyte growth factor and interleukin-8 – gave some predictive 
 indication (Le et al.  2012 ). 

 PET using 2-nitroimidazole–based markers such as  18 F-misonidazole (Lee et al. 
 2009 ),  18 F-EF5 (Koch et al.  2010 ; Komar et al.  2008 ), and  18 F-HX4 (Dubois et al. 
 2011 ; van Loon et al.  2010 ) has been explored as a noninvasive method for measur-
ing hypoxia (Horsman et al.  2012 ). In a phase II trial of patients with HNSCC who 
were treated with chemoradiotherapy with or without TPZ, patients with hypoxic 
tumors identifi ed using  18 F-fl uoromisonidazole PET fared signifi cantly better when 
treated with TPZ compared to standard chemoradiotherapy (Rischin et al.  2006 ). 
Despite this, PET was not used for patient selection in the subsequent phase III trial, 
which failed to demonstrate a benefi t for the addition of TPZ to chemoradiotherapy 
(Ang  2010 ; Rischin et al.  2010b ). 

 The clinical development of HAPs would benefi t from biomarkers that interro-
gate multiple elements of their sensitivity. We recently demonstrated that the 
hypoxic activation of EF5 is highly correlated with activation of SN30000 (and 
TPZ) across a panel of human tumor cell lines (Wang et al.  2012b ). This study sug-
gests that PET imaging with [ 18 F]-EF5 will report on both hypoxia and the activity 
of the one-electron reductases for SN30000 in hypoxic regions of tumors, without 
having to identify all the contributors to activation.  

6 Hypoxia-Directed Drug Strategies to Target the Tumor Microenvironment



132

6.6     Conclusions 

 Although there is clear evidence that hypoxia limits the response to therapy, exten-
sive drug discovery efforts have delivered limited success in clinically targeting 
hypoxia. This failure may be attributed in part to diffi culties faced by academic 
groups and small biotechnology companies advancing novel agents to clinical trial. 
It is benefi cial to develop agents in combination with radiotherapy when hypoxia 
contributes greatly to resistance to therapy. An important issue is the failure to rec-
ognize hypoxia-directed drugs as targeted therapies, develop biomarkers to aid in 
the selection of patients for treatment, and monitor response. In each of three 
hypoxia-directed approaches under development in our laboratories, we are identi-
fying appropriate biomarkers, while the radiosensitizer and SN30000 will be devel-
oped in conjunction with radiotherapy.     
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