Chapter 22

A Malliavin Calculus Approach to General
Stochastic Differential Games with Partial
Information

An Ta Thi Kieu, Bernt @ksendal, and Yeliz Yolcu Okur

Abstract In this article, we consider stochastic differential game where the state
process is governed by a controlled [t6—Lévy process and the information available
to the controllers is possibly less than the general information. All the system
coefficients and the objective performance functional are assumed to be random.
We use Malliavin calculus to derive a maximum principle for the optimal control
of such problem. The results are applied to solve a worst-case scenario portfolio
problem in finance.
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1 Introduction

Suppose the dynamics of a state process X (¢) = X(”""‘l)(t, w);t>0,w e Q,isa
controlled It6—Lévy process in R of the form
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dX(t) = b(t, X(1), uo(1), w)dr + o (t, X(¢), uo (), w)dB(7)
+ fp, V(& X)), u0(t7), 1 (17, 2), 2, @) N (dr, dz); (22.1)
X(0) =x€eR,

where the coefficients  : [0, T] X RxU xQ > R, 0 : [0, T[] xRxU xQ2 - R
andy : [0, T] x R x U x K x Ry x  are all continuously differentiable (C'') with
respectto x € Rand uy € U, u; € K foreacht € [0,T] anda.a. w € Q; U, K
are given open convex subsets of R? and R x Ry, respectively. Here Ry = R — {0},
B(t) = B(t,w) and n(t) = n(t, w), given by

t
n(r) =/ / ZN(ds,dz); t > 0, w € Q, (22.2)
0 JRg

are a one-dimensional Brownian motion and an independent pure jump Lévy
martingale, respectively, on a given filtered probability space (2, F, {F;}i>0, P).
Thus

N (dr,dz) := N(dt, dz) — v(dz)dr (22.3)

is the compensated Poisson jump measure of 1(-), where N(dt, dz) is the Poisson
Jjump measure and v(dz) is the Lévy measure of the pure jump Lévy process n(-).
For simplicity, we assume that

/ Zv(dz) < oo. (22.4)
Ro

The processes u(¢) and u (¢, z) are the control processes and have values in a given
open convex set U and K, respectively, for a.a. t € [0, T], z € Ry for a given fixed
T > 0. Also, up(-) and u; () are cadlag and adapted to a given filtration {&;};>0,
where

gtg-}—fs ZE[O,T]-

{&: }1>0 represents the information available to the controller at time ¢. For example,
we could have

& = ]."(I_S)Jr; t €[0,T], § > 0is a constant,

meaning that the controller gets a delayed information compared to F;. We refer to
[15, 12] for more information about stochastic control of It6 diffusions and jump
diffusions, respectively, and to [2], [4], [8], [9], [14] for other papers dealing with
optimal control under partial information/observation.

Let f : [0,T]xRxUXxKxQ — Rand g : Rx Q — R are given
continuously differentiable (C') with respect to x € R and uy € U, u; € K.
Suppose there are two players in the stochastic differential game and the given
performance functionals for players are as follows:

T
Ji(uo, uy) = E* [/ fi(t, X(t), up(t), ui(t, z), z, w)u(dz)dt + g; (X(T),a)):| ,
0 Ro
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i=1,2,

where ( is a measure on the given measurable space (€2, F) and E* = £}, denotes
the expectation with respect to P given that X(0) = x. Suppose that the controls
up(t) and u; (¢, z) have the form

uo(r) = (mo(1), 6o (1)); 1 €[0,T]; (22.5)

ui(t,z) = (m(t,2),01(t,2); (t,2) €[0,T] x Ry. (22.6)

Let @71 and g denote the given family of controls & = (7o, 1) and 0 = (6, 0;)
such that they are contained in the set of cadlag &;-adapted controls, Eq. (22.1) has
a unique strong solution up to time 7" and

T
EU / |f,-<r,X(t),no(t),m(t,z),eoa),el(t,z),z,w)|u<dz)dt+|gi<X<T),w)|}
0 Jro

<oo, =12

The partial information non-zero-sum stochastic differential game problem we
consider is the following:

Problem 1.1. Find (7%, 0*) € @1 x o (if it exists) such that

1) Ji(m, 0*) < Ji(x*,0%) forall 7 € o,
Gi) Jo(*,6) < Jo(x*,6%) forall 6 € .

Such a control (*, %) is called a Nash equilibrium (if it exists). The intuitive idea
is that there are two players, players I and II. While player I controls 7, player IT
controls 6. Given that each player knows the equilibrium strategy chosen by the
other player, none of the players has anything to gain by changing only his or her
own strategy only (i.e., by changing unilaterally). Note that since we allow b, o,
y, f and g to be stochastic processes and also because our controls are required to
be &;-adapted, this problem is not of Markovian type and hence cannot be solved
by dynamic programming. Our paper is related to the recent paper [1, 10], where a
maximum principle for stochastic differential games with partial information and a
mean-field maximum principle are dealt with, respectively. However, the approach
in [1] needs the solution of the backward stochastic differential equation (BSDE)
for the adjoint processes. This is often a difficult point, particularly in the partial
information case. In the current paper, we use Malliavin calculus techniques to
obtain a maximum principle for this general non-Markovian stochastic differential
game with partial information, without the use of BSDEs.
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2 The General Maximum Principle for the Stochastic
Differential Games

In this section we base on Malliavin calculus to solve Problem 1.1. We assume the
following:

(Al) For all s,r,t € (0,T),t < r, and all bounded &;-measurable random
variables « = a(w), £ = &(w) the controls By (s) := (0,8 (s)) and
ne(s) = (0, n’é),i = 1,2, with

Bi(s) = &' (@) xi1.n(s) and n(s) = & (@) (s); s €[0,T],

belong to 271 and <7y, respectively. Also, we will denote the transposed of
the vectors B and n by 8%, n*, respectively.

(A2) For all m, B € o1; 0,1 € oo with B and n are bounded, there exists § > 0
such that the controls 7(¢) + yB(¢) and 0(¢) 4+ vn(t), t € [0, T], belong to
/i1 and g, respectively, for all v € (=4, §), and such that the families

{afl (Z X(ﬂ-l—yﬂ 9)(1) n—}-y,B 6 Z) X(”‘i’}ﬂ 9)(1)
+ Ve il XTI 4 98,008 (0
yE(—6.0)

{af2 (l X(n0+vn)(t) . 0 + v, Z) (ﬂ,@-l—vn)(t)

Vol X0, 0.6+ vn9nt O

are A X v X P-uniformly integrable and the families

{gixm ) - X“’ﬂﬂ T
ye(—o,

’ XJT,0+U7] T _X(JT,0+U7]) T
{g( (Mg, TS

are P-uniformly integrable.

In the following, D; F denotes the Malliavin derivative with respect to B(-) (at t) of
a given (Malliavin differentiable) random variable F = F(w); @ € Q. Similarly,
D, . F denotes the Malliavin derivative with respect to N( ) (at t,z) of F. We
let D, denote the set of all random variables which are Malliavin differentiable
with respect to both B(-) and N(-, ). We will use the following duality formula for
Malliavin derivatives:



22 A Malliavin Calculus Approach to General Stochastic Differential Games . . . 493
T T
E [F / <p(t)dB(t)} =E [ / o(t)D, th} , (22.7)
0 0

T . T
E[F / W(IsZ)N(dt,dz)} :E[ / w(z,z)D,,sz(dz)dt} (22.8)
0 Ro 0 Ry

valid for all Malliavin differentiable F- and all F;-predictable processes ¢ and ¥
such that the integrals on the right converge absolutely. We also need the following
basic properties of Malliavin derivatives:

If F € D), is Fs-measurable, then

D,F =D, F =0, forallt > s. (22.9)

(Fundamental theorem)

T T
D, (/ qo(s)SB(s)) = / D;(s)3B(s) + (1) fora.a. (t,w), (22.10)
0 0

where fOT u(s)8B(s) denotes Skorohod integral of u with respect to B(-). (See [11],
p. 35-38 for a definition of Skorohod integrals and for more details.)

Dol [ [weniasan)= [ [ prvin¥as.an + v,
22.11)

provided that all terms involved are well defined. We refer to [3], [5], [6], [7], [10]
and [11] for more information about the Malliavin calculus for Lévy processes and
its applications.

(A3) For all (7, 0) € o1 X @, we assume the following processes, i = 1,2:
, "o
Ki(t) = g;(X(T)) + / / a(s, X(s), 7,0, z)pu(dzy)ds,  (22.12)
t Ro

Hio(s,x, 7,0) =K;(s)b(s, x, mg, 00) + DsK;(s)o (s, x, 7o, 6p)

+ [ D5 Ki(s)y(s,x,m, 0,2)v(dz), (22.13)
Ro

N ab
G(t,s) :=exp (/ {50, X(r), mo(r), 6o(r))

2 (52) ¢ x). 7000, far
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S do
+ / 2 X, 7o), G (r)AB(r)
t

s 3)/ B ) ) ]
+/t /Roln (1+$(r,X(r ), w(r=,z),0(r ,z),z)) N (dr,dz)

+/,A {1n(1+g—z(r,X(r),,,,9,Z))

_ 6 Xy, e,z)}u(dz)dr), (22.14)
ox

0
Fi(t,s) = ai(s)G(t,s), (22.15)

dax

ToH?
pi(t) = Ki(l)-i-/ a—x’(s, X(s), mo(s), m1(s,2), 0o(s), 01(s,2))G(z, 5)ds,
t

(22.16)
qi(t) = D, pi (1), (22.17)
ri(t,2) = Do pi(1), (22.18)

allexist for0 < ¢ < s,z € Ry.
We now define the Hamiltonians for this general problem as follows:

Definition 2.1 (The General Stochastic Hamiltonian). The general stochastic
Hamiltonians for the stochastic differential game in Problem 1.1 are the functions

Hi(t,x,7,0,0) :[0,T]xRxUxKxQ—>R, i=1,2,
defined by

H;(t,x,m, 0,w)

= | fi(t,x,7,0,z,0)u(d2)+pi(1)b(t, x, 70, 60, @) +qi ()0 (1, x, 70, b, @)
Ry

+/ ri(t,2)y(t,x,m,0,z,w)v(dz), i=1,2, (22.19)
Ro

where m = (7, 1) and 6 = (6, 0,).

Remark 2.1. In the classical case, the Hamiltonian H* : [0, T] x Rx U x K x R x
R xR — R is defined by
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HX(t,x,7,0,p,q,1r) = /ﬁ(t,x,:r, 0)u(dz)+p; b(t, x, mo, 6p)+q; o (¢, x, 70, 6p)
Ry

+/ ri(t,z)y(t,x, m, 6,2)v(dz), (22.20)
Ro

where R is the set of functions r; : R x Ry — R;i = 1,2; see [12]. Thus the
relation between H* and H; is that

Hi(t,x,7,0,0) = H*(t,x, 7,0, p@t),q@),r(,-), i=12, (22.21)

where p(-),q(-) and r(-,-) are given by Eqgs. (22.16)-(22.18).
Theorem 2.1 (Maximum principle for non-zero-sum games).
(i) Let (7, é) € ,{A/H X g be a Nash equilibrium with corresponding state process
X@) = X0, ie.,
Ji(m, é) < Jl(ft,é), forall m € @,
L(#.0) < L(#7.0),  forall§ € .

Assume that the random variables % and Fi(t,s), i = 1,2, belong to D ,.
Then

B[V By (1, XD (1), 7,6, 0)|=5 |6] =0, (22.22)
EX[Vo B (t, XT9(1), 7,0,)|,_5 16] = 0, (22.23)

fora.a.t,w. .
(ii) Conversely, suppose that there exists (7,0) € /i X o such that Egs. (22.22)
and (22.23) hold. Then

iJl(fT + yB, é)‘ =0 forallB,
8y y=0

d . A
L6+ vn)‘ —0 foralln.
ov v=0
In particular, if

m— J(r.0) and 6 — Jr(#.0), (22.24)

are concave, then (7, 0) is a Nash equilibrium.

Proof. (i) Suppose (7, é) € @/ X g is a Nash equilibrium. Since (i) and (ii)
hold for all 7 and 6, (7, #) is a directional critical point for J; (, 0),i = 1,2,
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in the sense that for all bounded § € @71 and n € g, there exists § > 0 such
that 7 + yB € o1, 0 + vn € o forall y,v € (—4§,6). Then we have

- %Jl (n +y/3,é) ‘

y=0
e B N £ . 0 i)
=FE |:/O/RO{W(I,X(t),ﬂo(t),m(t,z),00(1‘),Gl(t,z),z)ax y (t)‘y=0

+Vr fi(t, X(n,é)(t), mo(t). m1(t.2). 6o (1), 6, (t’z)’Z)‘ﬂ=ﬁﬂ*(1)}u(dz)dt

1y Ly G+8)
e (X(T) X (T)‘yzo]
! A ~

= EXI:/(‘) A‘QO {%(t’X(t)’ﬁo(t)’ﬁl(t’z),GO(I),el(l,Z),z)Y([)

+Vz filt, X(n,é)(t), mo(t). m1(t,2), 6o (1), 6 (t’z)’z)‘,,=;,'3*(t)}

xu(dz)dt+g§()2(T))Y(T)], 22.25)

where

d R ~
Y1) =YP () = @X(ﬂ+yﬂ’9)(f)|y=o

= [ {50626 0000 b)Y
0 X
+ Vab(s. XD (5).m(s). Bo())| __B* ()]s
t a R R
+ [ {56 20700 )Y e)
+ Voo (5. XD (). m0(s). (s)| ()} dBs)
+/0 /RO {g—Z(s,X(s—),fr(s—),é(s—),z)Y(s)
+Vny(s,X(”'é)(s_),n(s_),HA(S_),Z)) :A,B*(s)}N(ds,dz). (22.26)
If we use the shorthand notation
dfi /i

A oA 0 - ~
g(t,X(Z),N,Q,Z):a(LZ), Vﬂfl(tsX( '8)(1‘)7”7972)|n=ﬁzvﬂfl(tvz)v
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and similarly for 77 ab , Vb, 3" , Va0, 3V and V,y, we can write

dy(r) = (3 (Z)Y(Z)JrV b(1)B*(1))di+(52(1)Y (1) + Vo (1)B*(1))dB(1)
+fR0(ax(t)Y(t) + Vay(t.2)p* (t))N(dt dz);
Y(0) =0.
(22.27)
By the duality formulas (22.7) and (22.8) and the Fubini theorem, we get

[/ /Ro o=, Z)Y(f),u(dz)dz}
[/ /RO / 8f1(t z) (s)Y()_|_v b(s)B* (S)]

A [ Y 6) + Vo8 0)]

+/ . gﬁ (t. )[—Z(s,m)Y(S)

+ Vay(s, Zl)ﬂ*(s)]U(dm))ds},u(dz)dt:|

e[ [ [ L aneon)[52r6+ vabp o]

+( [ [ b, T (@) 227 (5) + Vo (5]

ox
/I;o / AO “13 (t Z)H(dz)dt)
x [%Y(s) + Vny,B*(s):IV(dZ1)}dSi|. (22.28)

Changing notation s — ¢ and z; — z this becomes

]Ex[/o s a—j;l(t z)Y(t)u(dz)dt:|

_ ]Ex[ / / /}; e @S [ (Y () + Veb )0

+ [ /RO Dta—;(s,m)ll(dzl)ds) [g—Z(t)Y(t) + Vﬂa(t)ﬂ*(t)]
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- /R ( / ) A; 0 D s et as)
x [g—Z(z,z)Y(t) + Vﬂy(t,z)ﬂ*(t)]v(dz)}dt}. (22.29)

On the other hand, by the duality formulas (22.7) and (22.8), we get
E*[¢f (R (YD) = B¢l RO (g {EOYO) + Vo) ()} i
+ [y B OY(@) + Voo ()B* (1)} dB(1)
Iy e BV + Vay (. 2B} N (drdo)) |
= B[ i {el RO LOYO) + g{(R(T)VabO*0)
+ Dy (gl (X (T Y () + Di(g] (X (T)) Vo (1)B* (1)
+ S, [De (g (X (T)) (1. 2)Y (1)
+ D8l (X (D)) Vay (. B* ()]v(do) | .
‘We recall that
> ! (v T afl
R =gty + [ [ Psama o,
t Ry 90X

and combining Egs. (22.27)-(22.29), we get
T 0b
[ [ R0 (5070 + V05 0)
F DRSOV 0) + Va0 1)
X
- /R 0 DR (LY ) + Va0 vide)

+ /RO Vﬂfl(t,z)ﬂ*(t)u(dz)}dt] — 0. (22.30)

Now apply this to 8 = B € o711 of the form B, (s) = )} +#(s), for some
t,he(0,T),t+h <T,where ¢ = a(w) is bounded and &;-measurable. Then
Y Ba)(s) = 0 for 0 < s < . Hence Eq. (22.30) becomes

A1+ A, =0, (22.31)

where
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T, b N
A= B[ [ K050+ DR

= [ DRi©FE vy ma)

Ay = ]E[{ [ o (1&1 (5)Vib(s) + Dy K1 (s)V0(s5)

+ / Dy Ry (5)Vay (s, 2)v(d2)
Ro

+ / V. fils. Dpa(do) s o |

Ro

Note that, by Eq. (22.26), with Y(s) = Y #)(s) and s > 1 + h,
ab ad ad -
dY(s) = Y(s—){—(s)ds + 22 (5)dB(s) + / —y(s_,z)N(ds,dz)},
ox dax Ry 0X

for s >t + h. Hence, by the It6 formula,
Y(i)=Y(t+hG( + h,s); s>1t+h, (22.32)

where, in general, for s > 7,

G(t,s) =exp </, {%(r) - %(g—i)z(r)}dr + /t g—Z(r)dB(r)

+[ /RO In (1 +g—z(r_,z))]\7(dr,dz)

+ /IS/R {ln (1 + g—i(r, Z)) - g—z(r, z)}v(dz)dr), (22.33)

Note that G(¢, s) does not depend on /. Put

H{)(s,x, 7w, 0) =K (s)b(s, x, mo, 0p) + DK (s)a (s, x, g, 6p)

+/ D, . Ki(s)y(s,x, 7 0,2)v(dz), (22.34)
Ry

and HY(s) = HY(s, X (5), 7, 6). Then

A

0

A= E[ / Ll (s)Y(S)ds].

ox
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Differentiating with respect to & at 1 = 0 we get

d d . t+h 81:110
—Ay|,_,=—E [/t W(S)Y(S)ds:lh=0

dn dh
d_.r (T 9H
+E [ /t ¥ W(s)Y(s)ds]h=O. (22.35)
Since Y (#) = 0 we see that
d_.r (" oH
—E [ /t W(s)Y(s)ds]h:O - 0. (22.36)

Therefore, by Eq. (22.31),

A

d d_.r (" oH?
EAl‘h=0 = @E [/t+h W(S)Y(l +h)G(t + h,s)ds]h=0

Td_ rdH?
—[ @E [W(S)Y(l‘ + h)G(t + h, S):|h=0ds

Td_ 9l
- / SE[SLOGEYa+n] _ds @23

On the other hand, Eq. (22.26) gives
t+h ~
Y(t + h) =(x/ {vﬂb(r)dr 4 V,0dB(r) +/ Vay(r=, 2N (dr, dz)}
t Ro

Wy _ =~
ST DN dz)}.

Ro

t+h
+/, Y(r‘){%(r)dr+3—i(r)d3(r)+/

(22.38)
Combining this with Egs. (22.36) and (22.37), we have
d
o o = A1 + Az, (22.39)
where
T d BI:IO t+h
A = / —]Ex[—l(s)G(t, s)a/ {Vﬂb(r)dr + V.o (r)dB(r)
, dh ox /

n A 0 V.y(r—, )N (dr, dz)}]h=0ds (22.40)
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and

T d . BI:IO t+h B b Jo
A, :[ a]E [T;(S)G(t’s)/t Y(r ){a(r)dr + g(r)dB(r)

dy _ -
* /]Ro a(r ’ Z)N(dr’ dZ)}:Ihzod& (2241)

By the duality formulae (22.7) and (22.8), we have

Al =/f %E"[a /tt+h [92b () Fi(0.5) + Va0 () D, Fi(t.5)

+A Vny(r,z)D,,ZFl(t,s)v(dz)}dr]h_ods
_ / "p [ {V2b(OFi(1.5) + V20 0) D Fi(1.5)

+ / Vay(t.2) Dy . Fi (¢, s)v(dz)}]ds. (22.42)
Ry

Since Y () = 0 we see that
Ay, =0. (22.43)
We conclude that

d
dh

Ay =A4
h=0

T
:/ Ex[a{Fl(t,s)an(Z) + Dy Fi(t,5)V,0 (1)

+ / D,,ZFl(t,s)vﬂy(z,z)u(dz)}]ds. (22.44)
Ry
Moreover, we see directly that

d (s )
aAz‘hzo —E [a{Kl(t)Vﬂb(t) + D, Ri(1)Vro(t)

+ | {DR(0)Vay(t,2) + Vs fl(t,z)}v(dz)}]. (22.45)
Ry

Therefore, differentiating Eq. (22.30) with respect to & at & = 0 gives the
equation
R T R T
Efa{(Ri0+ [ Fieas) Vb0 + D(Ki + [ File.s)ds) Vao ()
t t

+ A Df,z(lél(r) + [T F (I,S)ds)Vny(t,z) + Vﬂfl(t’z)v(dz)}] —0
(22.46)
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We can reformulate this as follows: If we define, as in Eq. (22.16),

T

. 5 r 5 IH?
5i0) = Rat) + / Fit,s)ds = Ki(0) + / 655, (2247
t t

then Eq. (22.44) can be written:
B[V [ A6 X0 70,90 + pi0)b(e. X (1), 70.60)
Ry
+ D, pr()o(t, X (1), o, Bo)

+ | Diepr@y. X(0). 7.6, v(da)

a] = 0.
Ro

w=(mo(r),71(1,2))

Since this holds for all bounded &;-measurable random variable «, we conclude
that

B[V 16, X0, 7.0) emio] &] = 0.

Similarly, we have

9 .
=% L0 ‘
0 30 Jo(w,0 + vn) o

:E"[/OT /R(, {%(t, XED(0). 71(1.2),0(1.2). 9 D)

£V ot X001, 6(0.2).9)||_n(0)fr(@2)de+g5 (£ D(T)].
(22.48)

where

d oA
D(t) =D (t) = d—X(”'““”)(t)
v

_ / {g_b(s,X(s),ﬁo(s),éo(s))D(s)
0 pe

v=0

+ V(s X500 (s). (). Bo(s))|_n"()}ds

+ [ {52660 Ao Y )

+ Vi (5, X0 (5). 0(5). 60(s))|_n*(5)}Bs)
[ e dea6m2.060.000

+ Voy(s. XED (7). (57,2, 6(57.2).2)|,_n*(5)| ¥ (ds. o).
(22.49)
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Define
D(s) =D(t+h)G(t+h,s); s>t+h,

where G (t, s) is defined as in Eq. (22.32). By using similar arguments as above,
we get

B Vo o, X590 (0), 7.0) |, | 6] = 0.

This completes the proof of (i).

(ii) Conversely, suppose that there exists (7, é) € 9/n X g such that Egs. (22.22)
and (22.23) hold. Then by reversing the above arguments, we obtain that
Eq. (22.31) holds for all B, (s, ®) = a(®) x (.1 +1(S) € </, Where

T
ar =] [R50 + DRG0

= [ DRioFE vy ma)

A, =] [ o (Ri(5)9b(s) + DeKi(5) 0 (5)

+ | Dy Ki(s)Vay (s, 2)v(dz) +/ V,,fl(s,z),u(dz))ds}a],
Ro Ry

for some ¢t,h € [0,T] with t + h < T and some bounded & -measurable «.
Similarly,
A3+ A4, =0 (22.50)

for all n¢ (s, w) = &(w) x.1+m(s) € o, where
T (T(s, b PN Lo}
A; =F [ {Kz(s)—(s) + D Kr(s)=—(s)
' ax ax

+ [ Dokt sy ]

A :E"[{ /, t+h(1€2(s)V9b(s) + DRy (s W0 (s)

+ | Dy Ka(s)Vay(s, 2)v(dz) +/ ngz(s,z)u(dz))ds}a],
R() R()

for some ¢t,h € [0,T] witht + h < T and some bounded & -measurable £.
Hence, these equalities hold for all linear combinations of B, and 7e. Since all
bounded f € @1 and n € <y can be approximated pointwise boundary in
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(t, w) by such linear combinations, it follows that Eqs. (22.31) and (22.50) hold
for all bounded (8, n) € @1 X 5. Hence, by reversing the remaining part of
the proof above, we conclude that

d R A
5y 1GHB 0| _,=o.

0 oA
5]2(%, 0+ vn))vzo =0,

for all B and 7.

3 Zero-Sum Games

Suppose that the given performance functional of player I is the negative of the
playerIl, i.e.,

T
Ji (MOs Lt]) = ]Ex[/(; A f(lv X(t)v MO(t)v Ml(ts Z)s <, G))H(dZ)dt + g(X(T)v a)):l
= —Jr(up, uy), (22.51)

where IE* = IE}, denotes the expectation with respect to P given that X(0) = x.
Suppose that the controls uo(#) and u;(¢,z) have the form as in Egs.(22.5) and
(22.6). Let @71 and o7 denote the given family of controls # = (7, ;) and
0 = (6o, 01) such that they are contained in the set of cadlag &;-adapted controls,
Eq. (22.1) has a unique strong solution up to time 7" and

T
B[ [ 10 X0 00.700.2.60.60.9.2 0)u@a
0 Jr,
+|g(X(T),w)I] < oo. (22.52)

Then the partial information zero-sum stochastic differential game problem is the
following:

Problem 3.1. Find ®s € R, n* € @7 and 6* € o7 (if it exists) such that

®e = inf (sup J(m,0)) = J(x*,0%) = sup ( 1nf J(m,0)). (22.53)

Hedo TEAN JTG,Q{H

Such a control (*, %) is called an optimal control (if it exists). The intuitive idea
is that while player I controls 7, player II controls 8. The actions of the players are
antagonistic, which means that between players I and II, there is a payoff J(, 8)
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which is a reward for player I and a cost for Player II. Note that since we allow
b, o, y, f and g to be stochastic processes and also because our controls are &;-
adapted, this problem is not of Markovian type and hence cannot be solved by
dynamic programming.

Theorem 3.1 (Maximum principle for zero-sum games).

(i) Suppose (7, é) € 9N X g is a directional critical point for J(m,0) in the
sense that for all bounded B € </i1 and n € o, there exists § > 0 such that
T+ yB € W, 0+ vn € A forall y,v € (—8,85) and

c(y,v) = JF@ + 8.0 +vn), y,ve (=50

has a critical point at 0, i.e.,

3 9
20,00 = Z(0,0) = 0. (22.54)
ady v
Then . . .
EX[V.H(t, X")(), 7,0,0)|&],-5 =0, (22.55)
EX[VoH (t, X7 (), 7,0,0)|6)y_; =0 foraa.1, o, (22.56)
where

X@) = X ),
ﬁ(z,i(r),n,e):/R £, X (1), 7.0, 2)pu(dz)+ p(1)b(t, X (t), 70, 6o)

+q(t)ol(t, )2(1), 70, 60)+ / F(t,2)y(, X)), 7, 0,2)v(dz),

Ro

(22.57)

with

T 70
) = Ié(z)+/ aaix(s,X(s),ﬁ(s),é(s))é(t,s)ds, (22.58)

~ I ~ T J N ~
K(1) = K%9(1) =g’(X(T))+/ /R %(S,X(s),fr(s,z),9(s,z),z),u(dz)ds,
! (22.59)

A, X, 7#,0) =K(s)b(s, X, 7, 6o) + D;K(s)o (s, X, o, 6)

+ / Dy R(s)y(s, X, 7.6, 2)v(d2), (22.60)
Ro
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~ S 0b o ~
G(t,s) ::exp</ {5(r,X(r),7Ato(r),90(”))

1,00

5 (52) X010, Gutrnfar

+ [ %ﬂ X (r), #20(r). Go(r))dB(r)

+[ /RO In (1 +g—z(r,)?(r_),fr(r_,z),é(r_,z),z))ﬁ(dr,dz)

[ [ {1+ Fotena.0.0)

_ g—i(r, X(r), %, é,z)}u(dz)dr);

q(t) :== D, p(2),
and

F(t,2) == D p(2). (22.61)

(ii) Conversely, suppose that there exists (7, é) € @/ X g such that Egs. (22.55)
and (22.56) hold. Furthermore, suppose that g is an affine function, H is
concave in 7t and convex in 0. Then (7, 0) satisfies Eq. (22.54).

4 Application: Worst-Case Scenario Optimal Portfolio
Under Partial Information

We illustrate the results in the previous section by looking at an application to robust
portfolio choice in finance:
Consider a financial market with the following two investment possibilities:

1. A risk free asset, where the unit price So(¢) at time ¢ is
dSo(t) = r(t)So(t)dt:  So(0) =1: 0=<t =T,

where T > 0 is a given constant.
2. A risky asset, where the unit price S;(¢) at time ¢ is given by

dSi(1) = S1@)[O(1)dt + 00(1)dB(t) + [p, vo(t, )N (dr, d)],

510> 0. (22.62)

where r, 6, 0y and y, are predictable processes such that
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T
[ 166 14030+ [ riavi@ds <oo as
0 Ro
We assume that 6 is adapted to a given subfiltration &; and that
yo(t,z,w) > —1+§ forall ¢,z,w € [0,T] x Ry x €2,

for some constant § > 0.

Let n(t) = n (¢, w) be a portfolio, representing the amount invested in the risky
asset at time 7. We require that 7 be cadlag and &;-adapted and self-financing and
hence that the corresponding wealth X (1) = X 9 (¢) at time ¢ is given by

dX(@) = [X@) — =z (@)]r(@)dt + z(t7)[0(z)dt + oo(2)dB(t)
+ fp, vo(t.2)N (dr. d2)] (22.63)
X(0)= x>0.

Let us assume that the mean relative growth rate 8(¢) of the risky asset is not known
to the trader, but subject to uncertainty. We may regard 6 as a market scenario
or a stochastic control of the market, which is playing against the trader. Let .7
and 7§ denote the set of admissible controls 7, 0, respectively. The worst-case
partial information scenario optimal problem for the trader is to find 7* € 27 and
0* € @/ and ® € R such that

@ = inf (sup E[UX™(T))])

fess ey

= BUX ™M), (22.64)
where U : [0,00) — R is a given utility function, assumed to be concave, strictly
increasing and C' on (0, 00). We want to study this problem by using Theorem 3.1.

In this case we have

b(t.x,m.0) =70 —r@t)) + xr(t), K(t)=U (X")(T)), (22.65)

Ho(t, x, 7, 0) =U (X"(T)r( — r(1)) + xr ()]
+ DU (X ™O(T))) 70y (1)

+ | D (U (XTO(T)))ryo(t, 2)v(d2), (22.66)
Ro

and

, T
p(t) = U (X™9(T)) [1 +/ r(s)G(t,s)ds]
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G(t,s) =exp (/Sr(v)dv) .
/Tr(s)G(t,s)ds = )IT exp(/sr(v)dv) = exp (/Tr(v)dv) -1

where

Hence,

and
T
p@) = U/(X(nﬁ)(T)) exp (/ r(s)ds) . (22.67)

With this value for p(¢) we have

H(t, X"9(), 7,0) =p0)[n(8 —r(t) +r(0)X(1)]

+ D p(1)mwoo(t) + / D;.p(t)myo(t,z)v(dz). (22.68)

Ro

Hence Eq. (22.55) becomes

E [a—H(z, X (), 7. 0)
o

&) =E[p@=ro)+ Do)
r=n(t)

+/ D, . p(1)yo(t. 2)v(dz)
Ro

(f,] =0 (22.69)
and Eq. (22.56) becomes

oH .~
E [@(I,X(t),ﬂ,e)

@“} ~ =Ep0O#0) | & = Elp() | £170) = 0.
0=0(1)

(22.70)
Since p(t) > 0 we conclude that
a(t) =0. (22.71)
This implies that
f(t) = X exp (/Otr(s)ds) (22.72)

and

T T
p@) = U’ (x exp (/ r(s)ds)) exp (/ r(s)ds) ; tel0,T]. (22.73)
0 1
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Substituting this into Eq. (22.69), we get

. E [ﬁ(t)r(t) — Dy p(t)oo(t) — [g, DizP(0)yo(t, 2)v(d2) éi]
0(t) = EOIE] . (2274)

We have proved the following theorem:

Theorem 4.1 (Worst-case scenario optimal portfolio under partial informa-
tion). Suppose there exists a solution (n*,0%) e (4, 25) of the stochastic
differential game Eq. (22.64). Then

*

nt=7r =0, (22.75)

and .
0* = 0 is given by (22.74). (22.76)

In particular, if r (s) is deterministic, then

7*=0 and 0*(t)=r(). (22.77)

Remark 4.1. (i) If r(s) is deterministic, then Eq. (22.77) states that the worst-case
scenario is when 0(z) = r(¢), for all ¢ € [0, T], i.e., when the normalized risky
asset price

e~ fy r(s)ds Sl(l)

is a martingale. In such a situation the trader might as well put all her money in
the risk free asset, i.e., choose 7(¢) = 7 (¢t) = 0. This trading strategy remains
optimal if r(s) is not deterministic, but now the worst-case scenario é(t) is
given by the more complicated expression (22.74).

(i) This is a new approach to, and a partial extension of, Theorem 2.2 in [13] and
Theorem 4.1 in the subsequent paper [1]. Both of these papers consider the case
with deterministic 7 (¢) only. On the other hand, in these papers the scenario is
represented by a probability measure and not by the drift.
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