
Chapter 22
A Malliavin Calculus Approach to General
Stochastic Differential Games with Partial
Information
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Abstract In this article, we consider stochastic differential game where the state
process is governed by a controlled Itô–Lévy process and the information available
to the controllers is possibly less than the general information. All the system
coefficients and the objective performance functional are assumed to be random.
We use Malliavin calculus to derive a maximum principle for the optimal control
of such problem. The results are applied to solve a worst-case scenario portfolio
problem in finance.
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1 Introduction

Suppose the dynamics of a state process X.t/ D X.u0;u1/.t; !/; t � 0, ! 2 �, is a
controlled Itô–Lévy process in R of the form
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8
<

:

dX.t/ D b.t; X.t/; u0.t/; !/dt C �.t; X.t/; u0.t/; !/dB.t/
C R

R0
�.t; X.t�/; u0.t�/; u1.t�; z/; z; !/ QN.dt; dz/I

X.0/ D x 2 R;

(22.1)

where the coefficients b W Œ0; T � � R � U �� ! R, � W Œ0; T � � R � U �� ! R

and � W Œ0; T � � R �U �K � R0 �� are all continuously differentiable .C 1/ with
respect to x 2 R and u0 2 U , u1 2 K for each t 2 Œ0; T � and a.a. ! 2 �; U , K
are given open convex subsets of R2 and R � R0, respectively. Here R0 D R � f0g,
B.t/ D B.t; !/ and �.t/ D �.t; !/, given by

�.t/ D
Z t

0

Z

R0

z QN.ds; dz/I t � 0; ! 2 �; (22.2)

are a one-dimensional Brownian motion and an independent pure jump Lévy
martingale, respectively, on a given filtered probability space .�;F ; fFtgt�0; P /:
Thus

QN.dt; dz/ WD N.dt; dz/� �.dz/dt (22.3)

is the compensated Poisson jump measure of �.�/, where N.dt; dz/ is the Poisson
jump measure and �.dz/ is the Lévy measure of the pure jump Lévy process �.�/.
For simplicity, we assume that

Z

R0

z2�.dz/ < 1: (22.4)

The processes u0.t/ and u1.t; z/ are the control processes and have values in a given
open convex set U and K , respectively, for a.a. t 2 Œ0; T �, z 2 R0 for a given fixed
T > 0. Also, u0.�/ and u1.�/ are càdlàg and adapted to a given filtration fEt gt�0,
where

Et � Ft ; t 2 Œ0; T �:
fEtgt�0 represents the information available to the controller at time t . For example,
we could have

Et D F.t�ı/C I t 2 Œ0; T �; ı > 0 is a constant;

meaning that the controller gets a delayed information compared to Ft . We refer to
[15, 12] for more information about stochastic control of Itô diffusions and jump
diffusions, respectively, and to [2], [4], [8], [9], [14] for other papers dealing with
optimal control under partial information/observation.

Let f W Œ0; T � � R � U � K � � ! R and g W R � � ! R are given
continuously differentiable .C 1/ with respect to x 2 R and u0 2 U , u1 2 K .
Suppose there are two players in the stochastic differential game and the given
performance functionals for players are as follows:

Ji .u0; u1/ D Ex
�Z T

0

Z

R0

fi .t; X.t/; u0.t/; u1.t; z/; z; !/�.dz/dt C gi .X.T /; !/

�

;
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i D 1; 2;

where � is a measure on the given measurable space .�;F/ and Ex D ExP denotes
the expectation with respect to P given that X.0/ D x. Suppose that the controls
u0.t/ and u1.t; z/ have the form

u0.t/ D .	0.t/; 
0.t//I t 2 Œ0; T �I (22.5)

u1.t; z/ D .	1.t; z/; 
1.t; z//I .t; z/ 2 Œ0; T � � R0: (22.6)

Let A… and A‚ denote the given family of controls 	 D .	0; 	1/ and 
 D .
0; 
1/

such that they are contained in the set of càdlàg Et -adapted controls, Eq. (22.1) has
a unique strong solution up to time T and

Ex
�Z T

0

Z

R0

jfi.t; X.t/; 	0.t/; 	1.t; z/; 
0.t/; 
1.t; z/; z; !/j�.dz/dtCjgi .X.T /; !/j
�

< 1; i D 1; 2:

The partial information non-zero-sum stochastic differential game problem we
consider is the following:

Problem 1.1. Find .	�; 
�/ 2 A… � A‚ (if it exists) such that

(i) J1.	; 
�/ � J1.	
�; 
�/ for all 	 2 A…,

(ii) J2.	�; 
/ � J2.	
�; 
�/ for all 
 2 A‚.

Such a control .	�; 
�/ is called a Nash equilibrium (if it exists). The intuitive idea
is that there are two players, players I and II. While player I controls 	 , player II
controls 
 . Given that each player knows the equilibrium strategy chosen by the
other player, none of the players has anything to gain by changing only his or her
own strategy only (i.e., by changing unilaterally). Note that since we allow b, � ,
� , f and g to be stochastic processes and also because our controls are required to
be Et -adapted, this problem is not of Markovian type and hence cannot be solved
by dynamic programming. Our paper is related to the recent paper [1, 10], where a
maximum principle for stochastic differential games with partial information and a
mean-field maximum principle are dealt with, respectively. However, the approach
in [1] needs the solution of the backward stochastic differential equation (BSDE)
for the adjoint processes. This is often a difficult point, particularly in the partial
information case. In the current paper, we use Malliavin calculus techniques to
obtain a maximum principle for this general non-Markovian stochastic differential
game with partial information, without the use of BSDEs.
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2 The General Maximum Principle for the Stochastic
Differential Games

In this section we base on Malliavin calculus to solve Problem 1.1. We assume the
following:

(A1) For all s; r; t 2 .0; T /; t � r , and all bounded Et -measurable random
variables ˛ D ˛.!/, � D �.!/ the controls ˇ˛.s/ WD .0; ˇi˛.s// and
��.s/ WD .0; �i�/, i D 1; 2, with

ˇi˛.s/ D ˛i .!/�Œt;r�.s/ and �i� .s/ D �i .!/�Œt;r�.s/I s 2 Œ0; T �;

belong to A… and A‚, respectively. Also, we will denote the transposed of
the vectors ˇ and � by ˇ�, ��, respectively.

(A2) For all 	; ˇ 2 A…; 
; � 2 A‚ with ˇ and � are bounded, there exists ı > 0

such that the controls 	.t/ C yˇ.t/ and 
.t/ C �.t/, t 2 Œ0; T �, belong to
A… and A‚, respectively, for all  2 .�ı; ı/, and such that the families

n@f1

@x
.t; X.	Cyˇ;
/.t/; 	 C yˇ; 
; z/

d

dy
X.	Cyˇ;
/.t/

C r	f1.t; X
.	Cyˇ;
/.t/; 	 C yˇ; 
; z/ˇ�.t/

o

y2.�ı;ı/;

n@f2

@x
.t; X.	;
C�/.t/; 	; 
 C �; z/

d

dy
X.	;
C�/.t/

C r
f2.t; X
.	;
C�/.t/; 	.t/; 
 C �; z/��.t/

o

2.�ı;ı/

are � � � � P -uniformly integrable and the families

n
g0
1.X

	Cyˇ.T //
d

dy
X.	Cyˇ;
/.T /

o

y2.�ı;ı/;

n
g0
2.X

	;
C�.T //
d

dy
X.	;
C�/.T /

o

2.�ı;ı/

are P -uniformly integrable.

In the following,DtF denotes the Malliavin derivative with respect to B.�/ (at t) of
a given (Malliavin differentiable) random variable F D F.!/; ! 2 �. Similarly,
Dt;zF denotes the Malliavin derivative with respect to eN.�; �/ (at t; z) of F . We
let D1;2 denote the set of all random variables which are Malliavin differentiable
with respect to both B.�/ and N.�; �/. We will use the following duality formula for
Malliavin derivatives:
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E

�

F

Z T

0

'.t/dB.t/

�

D E

�Z T

0

'.t/DtF dt

�

; (22.7)

E

�

F

Z T

0

Z

R0

 .t; z/ QN.dt; dz/

�

D E

�Z T

0

Z

R0

 .t; z/Dt;zF �.dz/dt

�

(22.8)

valid for all Malliavin differentiable F - and all Ft -predictable processes ' and  
such that the integrals on the right converge absolutely. We also need the following
basic properties of Malliavin derivatives:

If F 2 D1;2 is Fs-measurable, then

DtF D Dt;zF D 0; for all t > s: (22.9)

(Fundamental theorem)

Dt

�Z T

0

'.s/ıB.s/

�

D
Z T

0

Dt'.s/ıB.s/C '.t/ for a.a. .t; !/; (22.10)

where
R T
0

u.s/ıB.s/ denotes Skorohod integral of u with respect to B.�/. (See [11],
p. 35–38 for a definition of Skorohod integrals and for more details.)

Dt;z

� Z T

0

Z

R

 .s; y/ QN .ds; dy/
�

D
Z T

0

Z

R

Dt;z .s; y/ QN .ds; dy/C  .t; z/;

(22.11)

provided that all terms involved are well defined. We refer to [3], [5], [6], [7], [10]
and [11] for more information about the Malliavin calculus for Lévy processes and
its applications.

(A3) For all .	; 
/ 2 A… � A‚, we assume the following processes, i D 1; 2:

Ki.t/ D g0
i .X.T //C

Z T

t

Z

R0

@fi

@x
.s; X.s/; 	; 
; z1/�.dz1/ds; (22.12)

H0
i .s; x; 	; 
/ DKi.s/b.s; x; 	0; 
0/CDsKi.s/�.s; x; 	0; 
0/

C
Z

R0

Ds;zKi.s/�.s; x; 	; 
; z/�.dz/; (22.13)

G.t; s/ WD exp

�Z s

t

n@b

@x
.r;X.r/; 	0.r/; 
0.r//

� 1

2

�@�

@x

�2
.r; X.r/; 	0.r/; 
0.r//

o
dr
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C
Z s

t

@�

@x
.r;X.r/; 	0.r/; 
0.r//dB.r/

C
Z s

t

Z

R0

ln

�

1C @�

@x
.r;X.r�/; 	.r�; z/; 
.r�; z/; z/

�

QN.dr; dz/

C
Z s

t

Z

R0

n
ln

�
1C @�

@x
.r;X.r/; 	; 
; z/

�

� @�

@x
.r;X.r/; 	; 
; z/

o
�.dz/dr

�
; (22.14)

Fi .t; s/ WD @H0
i

@x
.s/G.t; s/; (22.15)

pi.t/ D Ki.t/C
Z T

t

@H0
i

@x
.s; X.s/; 	0.s/; 	1.s; z/; 
0.s/; 
1.s; z//G.t; s/ds;

(22.16)

qi.t/ D Dtpi .t/; (22.17)

ri .t; z/ D Dt;zpi .t/; (22.18)

all exist for 0 � t � s, z 2 R0.

We now define the Hamiltonians for this general problem as follows:

Definition 2.1 (The General Stochastic Hamiltonian). The general stochastic
Hamiltonians for the stochastic differential game in Problem 1.1 are the functions

Hi.t; x; 	; 
; !/ W Œ0; T � � R � U �K �� ! R; i D 1; 2;

defined by

Hi.t; x; 	; 
; !/

D
Z

R0

fi .t; x; 	; 
; z; !/�.dz/Cpi .t/b.t; x; 	0; 
0; !/Cqi .t/�.t; x; 	0; 
0; !/

C
Z

R0

ri .t; z/�.t; x; 	; 
; z; !/�.dz/; i D 1; 2; (22.19)

where 	 D .	0; 	1/ and 
 D .
0; 
1/.

Remark 2.1. In the classical case, the HamiltonianH�
i W Œ0; T ��R�U �K �R�

R � R ! R is defined by
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H�
i .t; x; 	; 
; p; q; r/ D

Z

R0

fi .t; x; 	; 
/�.dz/Cpi b.t; x; 	0; 
0/Cqi �.t; x; 	0; 
0/

C
Z

R0

ri .t; z/�.t; x; 	; 
; z/�.dz/; (22.20)

where R is the set of functions ri W R � R0 ! R; i D 1; 2; see [12]. Thus the
relation between H�

i andHi is that

Hi.t; x; 	; 
; !/ D H�
i .t; x; 	; 
; p.t/; q.t/; r.t; �//; i D 1; 2; (22.21)

where p.�/; q.�/ and r.�; �/ are given by Eqs. (22.16)–(22.18).

Theorem 2.1 (Maximum principle for non-zero-sum games).

(i) Let . O	; O
/ 2 A… �A‚ be a Nash equilibrium with corresponding state process
OX.t/ D X. O	; O
/.t/, i.e.,

J1.	; O
/ � J1. O	; O
/; for all 	 2 A…;

J2. O	; 
/ � J2. O	; O
/; for all 
 2 A‚:

Assume that the random variables @fi
@x

and Fi .t; s/, i D 1; 2, belong to D1;2.
Then

ExŒr	
OH1.t; X

.	; O
/.t/; 	; O
; !/j	D O	 jEt � D 0; (22.22)

ExŒr

OH2.t; X

. O	;
/.t/; O	; 
; !/j

D O
 jEt � D 0; (22.23)

for a.a. t; !.
(ii) Conversely, suppose that there exists . O	; O
/ 2 A… � A‚ such that Eqs. (22.22)

and (22.23) hold. Then

@

@y
J1. O	 C yˇ; O
/

ˇ
ˇ
ˇ
yD0 D 0 for all ˇ;

@

@
J2. O	; O
 C �/

ˇ
ˇ
ˇ
D0 D 0 for all �:

In particular, if

	 ! J1.	; O
/ and 
 ! J2. O	; 
/; (22.24)

are concave, then . O	; O
/ is a Nash equilibrium.

Proof. (i) Suppose . O	; O
/ 2 A… � A‚ is a Nash equilibrium. Since (i) and (ii)
hold for all 	 and 
 , . O	; O
/ is a directional critical point for Ji .	; 
/, i D 1; 2,
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in the sense that for all bounded ˇ 2 A… and � 2 A‚, there exists ı > 0 such
that O	 C yˇ 2 A…, O
 C � 2 A‚ for all y;  2 .�ı; ı/. Then we have

D @

@y
J1

�
O	 C yˇ; O


� ˇ
ˇ
ˇ
yD0

D Ex

"Z T

0

Z

R0

�
@f1

@x
.t; OX.t/; O	0.t/; O	1.t; z/; O
0.t/; O
1.t; z/; z/ d

dy
X. O	Cyˇ; O
/.t/

ˇ
ˇ
ˇ
yD0

Cr	f1.t; X.	; O
/.t/; 	0.t/; 	1.t; z/; O
0.t/; O
1.t; z/; z/
ˇ
ˇ
ˇ
	D O	ˇ

�.t/
o
�.dz/dt

Cg0
1.

OX.T // d

dy
X. O	Cyˇ; O
/.T /

ˇ
ˇ
ˇ
yD0

i

D Ex
h Z T

0

Z

R0

n@f1

@x
.t; OX.t/; O	0.t/; O	1.t; z/; O
0.t/; O
1.t; z/; z/Y.t/

Cr	f1.t; X.	; O
/.t/; 	0.t/; 	1.t; z/; O
0.t/; O
1.t; z/; z/
ˇ
ˇ
ˇ
	D O	ˇ

�.t/
o

��.dz/dtCg0
1.

OX.T //Y.T /
i
; (22.25)

where

Y.t/ DY .ˇ/.t/ D d

dy
X. O	Cyˇ; O
/.t/jyD0

D
Z t

0

n@b

@x
.s; OX.s/; O	0.s/; O
0.s//Y.s/

C r	b.s; X
.	; O
/.s/; 	0.s/; O
0.s//

ˇ
ˇ
ˇ
	D O	ˇ

�.s/
o
ds

C
Z t

0

n@�

@x
.s; OX.s/; O	0.s/; O
0.s//Y.s/

C r	�.s; X
.	; O
/.s/; 	0.s/; O
0.s//

ˇ
ˇ
ˇ
	D O	ˇ

�.s/
o
dB.s/

C
Z t

0

Z

R0

n@�

@x
.s; OX.s�/; O	.s�/; O
.s�/; z/Y.s/

C r	�.s; X
.	; O
/.s�/; 	.s�/; O
.s�/; z/

ˇ
ˇ
ˇ
	D O	ˇ

�.s/
o QN.ds; dz/: (22.26)

If we use the shorthand notation

@f1

@x
.t; OX.t/; O	; O
; z/D@f1

@x
.t; z/; r	f1.t; X

.	; O
/.t/; 	; O
; z/j	D O	Dr	f1.t; z/;
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and similarly for @b
@x

, r	b, @�
@x

, r	� , @�
@x

and r	� , we can write

8

<̂

:̂

dY.t/ D . @b
@x
.t/Y.t/Cr	b.t/ˇ

�.t//dtC. @�
@x
.t/Y.t/C r	�.t/ˇ

�.t//dB.t/
C R

R0
.
@�

@x
.t/Y.t/C r	�.t; z/ˇ�.t// QN.dt; dz/I

Y.0/ D 0:

(22.27)
By the duality formulas (22.7) and (22.8) and the Fubini theorem, we get

Ex
�Z T

0

Z

R0

@f1

@x
.t; z/Y.t/�.dz/dt

�

D Ex
� Z T

0

Z

R0

n Z t

0

�@f1

@x
.t; z/

h @b

@x
.s/Y.s/C r	b.s/ˇ

�.s/
i

CDs

@f1

@x
.t; z/

h@�

@x
.s/Y.s/C r	�.s/ˇ

�.s/
i

C
Z

R0

Ds;z1
@f1

@x
.t; z/

h@�

@x
.s; z1/Y.s/

C r	�.s; z1/ˇ
�.s/

i
�.dz1/

�
ds

o
�.dz/dt

�

D Ex
� Z T

0

n� Z T

s

Z

R0

@f1

@x
.t; z/�.dz/dt

�h@b

@x
Y.s/C r	b.s/ˇ

�.s/
i

C
� Z T

s

Z

R0

Ds

@f1

@x
.t; z/�.dz/dt

�h@�

@x
Y.s/C r	�ˇ

�.s/
i

C
Z

R0

� Z T

s

Z

R0

Ds;z1
@f1

@x
.t; z/�.dz/dt

�

�
h@�

@x
Y.s/C r	�ˇ

�.s/
i
�.dz1/

o
ds

�

: (22.28)

Changing notation s ! t and z1 ! z this becomes

Ex
� Z T

0

Z

R0

@f1

@x
.t; z/Y.t/�.dz/dt

�

D Ex
� Z T

0

n� Z T

t

Z

R0

@f1

@x
.s; z1/�.dz1/ds

�h@b

@x
.t/Y.t/C r	b.t/ˇ

�.t/
i

C
� Z T

t

Z

R0

Dt

@f1

@x
.s; z1/�.dz1/ds

�h@�

@x
.t/Y.t/C r	�.t/ˇ

�.t/
i
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C
Z

R0

� Z T

t

Z

R0

Dt;z
@f1

@x
.s; z1/�.dz1/ds

�

�
h@�

@x
.t; z/Y.t/C r	�.t; z/ˇ

�.t/
i
�.dz/

o
dt

�

: (22.29)

On the other hand, by the duality formulas (22.7) and (22.8), we get

Ex
h
g0
1.

OX.T //Y.T /
i

D Ex
h
g0
1.

OX.T //
� R T

0

˚
@b
@x
.t/Y.t/C r	b.t/ˇ

�.t/
	

dt

C R T
0

˚
@�
@x
.t/Y.t/C r	�.t/ˇ

�.t/
	

dB.t/

C R T
0

R

R0

n
@�

@x
.t; z/Y.t/C r	�.t; z/ˇ.t/

o QN.dt; dz/
�i

D Ex
h R T

0

n
g0
1.

OX.T // @b
@x
.t/Y.t/C g0

1.
OX.T //r	b.t/ˇ

�.t/

CDt.g
0
1.

OX.T /// @�
@x
.t/Y.t/CDt.g

0
1.

OX.T ///r	�.t/ˇ
�.t/

C R

R0
ŒDt;z.g

0
1.

OX.T /// @�
@x
.t; z/Y.t/

CDt;z.g
0
1.

OX.T ///r	�.t; z/ˇ�.t/��.dz/
o

dt
i
:

We recall that

OK1.t/ WD g0
1.

OX.T //C
Z T

t

Z

R0

@f1

@x
.s; z1/�.dz1/ ds;

and combining Eqs. (22.27)–(22.29), we get

Ex
h Z T

0

n OK1.t/
� @b

@x
.t/Y.t/C r	b.t/ˇ

�.t/
�

CDt
OK1.t/

�@�

@x
.t/Y.t/C r	�.t/ˇ

�.t/
�

C
Z

R0

Dt;z OK1.t/
�@�

@x
.t; z/Y.t/C r	�.t; z/ˇ

�.t/
�
�.dz/

C
Z

R0

r	f1.t; z/ˇ
�.t/�.dz/

o
dt

i
D 0: (22.30)

Now apply this to ˇ D ˇ˛ 2 A… of the form ˇ˛.s/ D ˛�Œt;tCh�.s/; for some
t; h 2 .0; T /, tCh � T , where ˛ D ˛.!/ is bounded and Et -measurable. Then
Y .ˇ˛/.s/ D 0 for 0 � s � t . Hence Eq. (22.30) becomes

A1 C A2 D 0; (22.31)

where



22 A Malliavin Calculus Approach to General Stochastic Differential Games . . . 499

A1 D Ex
h Z T

t

n OK1.s/
@b

@x
.s/CDs

OK1.s/
@�

@x
.s/

C
Z

R0

Ds;z OK1.s/
@�

@x
.s/�.dz/

o
Y .ˇ˛/.s/ds

i
;

A2 D Ex
hn Z tCh

t

� OK1.s/r	b.s/CDs
OK1.s/r	�.s/

C
Z

R0

Ds;z OK1.s/r	�.s; z/�.dz/

C
Z

R0

r	f1.s; z/�.dz/
�

ds
o
˛

i
:

Note that, by Eq. (22.26), with Y.s/ D Y .ˇ˛/.s/ and s � t C h,

dY.s/ D Y.s�/
n@b

@x
.s/ds C @�

@x
.s/dB.s/C

Z

R0

@�

@x
.s�; z/ QN.ds; dz/

o
;

for s � t C h. Hence, by the Itô formula,

Y.s/ D Y.t C h/G.t C h; s/I s � t C h; (22.32)

where, in general, for s � t ,

G.t; s/ D exp
� Z s

t

n@b

@x
.r/ � 1

2

�@�

@x

�2
.r/

o
dr C

Z s

t

@�

@x
.r/dB.r/

C
Z s

t

Z

R0

ln
�
1C @�

@x
.r�; z/

� QN.dr; dz/

C
Z s

t

Z

R0

n
ln

�
1C @�

@x
.r; z/

�
� @�

@x
.r; z/

o
�.dz/dr

�
: (22.33)

Note that G.t; s/ does not depend on h. Put

H0
1 .s; x; 	; 
/ DK1.s/b.s; x; 	0; 
0/CDsK1.s/�.s; x; 	0; 
0/

C
Z

R0

Ds;zK1.s/�.s; x; 	; 
; z/�.dz/; (22.34)

and OH0
1 .s/ D H0

1 .s;
OX.s/; O	; O
/. Then

A1 D Ex
h Z T

t

@ OH0
1

@x
.s/Y.s/ds

i
:
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Differentiating with respect to h at h D 0 we get

d

dh
A1

ˇ
ˇ
hD0 D d

dh
Ex

h Z tCh

t

@ OH0
1

@x
.s/Y.s/ds

i

hD0

C d

dh
Ex

h Z T

tCh
@ OH0

1

@x
.s/Y.s/ds

i

hD0: (22.35)

Since Y.t/ D 0 we see that

d

dh
Ex

h Z tCh

t

@ OH0
1

@x
.s/Y.s/ds

i

hD0 D 0: (22.36)

Therefore, by Eq. (22.31),

d

dh
A1

ˇ
ˇ
hD0 D d

dh
Ex

h Z T

tCh
@ OH0

1

@x
.s/Y.t C h/G.t C h; s/ds

i

hD0

D
Z T

t

d

dh
Ex

h@ OH0
1

@x
.s/Y.t C h/G.t C h; s/

i

hD0ds

D
Z T

t

d

dh
Ex

h@ OH0
1

@x
.s/G.t; s/Y.t C h/

i

hD0ds: (22.37)

On the other hand, Eq. (22.26) gives

Y.t C h/ D˛
Z tCh

t

n
r	b.r/dr C r	�dB.r/C

Z

R0

r	�.r
�; z/ QN.dr; dz/

o

C
Z tCh

t

Y.r�/
n@b

@x
.r/dr C @�

@x
.r/dB.r/C

Z

R0

@�

@x
.r�; z/ QN.dr; dz/

o
:

(22.38)

Combining this with Eqs. (22.36) and (22.37), we have

d

dh
A1

ˇ
ˇ
hD0 D ƒ1 Cƒ2; (22.39)

where

ƒ1 D
Z T

t

d

dh
Ex

h@ OH0
1

@x
.s/G.t; s/˛

Z tCh

t

n
r	b.r/dr C r	�.r/dB.r/

C
Z

R0

r	�.r
�; z/ QN.dr; dz/

oi

hD0ds (22.40)
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and

ƒ2 D
Z T

t

d

dh
Ex

h@ OH0
1

@x
.s/G.t; s/

Z tCh

t

Y.r�/
n@b

@x
.r/dr C @�

@x
.r/dB.r/

C
Z

R0

@�

@x
.r�; z/ QN.dr; dz/

oi

hD0ds: (22.41)

By the duality formulae (22.7) and (22.8), we have

ƒ1 D
Z T

t

d

dh
Ex

h
˛

Z tCh

t

n
r	b.r/F1.t; s/C r	�.r/DrF1.t; s/

C
Z

R0

r	�.r; z/Dr;zF1.t; s/�.dz/
o
dr

i

hD0ds

D
Z T

t

Ex
h
˛

n
r	b.t/F1.t; s/C r	�.t/DtF1.t; s/

C
Z

R0

r	�.t; z/Dt;zF1.t; s/�.dz/
oi

ds: (22.42)

Since Y.t/ D 0 we see that

ƒ2 D 0: (22.43)

We conclude that

d

dh
A1

ˇ
ˇ
ˇ
hD0 Dƒ1

D
Z T

t

Ex
h
˛

n
F1.t; s/r	b.t/CDtF1.t; s/r	�.t/

C
Z

R0

Dt;zF1.t; s/r	�.t; z/�.dz/
oi

ds: (22.44)

Moreover, we see directly that

d

dh
A2

ˇ
ˇ
ˇ
hD0 DEx

h
˛

n OK1.t/r	b.t/CDt
OK1.t/r	�.t/

C
Z

R0

fDt;z OK1.t/r	�.t; z/C r	f1.t; z/g�.dz/
oi
: (22.45)

Therefore, differentiating Eq. (22.30) with respect to h at h D 0 gives the
equation

Ex
h
˛

n� OK1.t/C
Z T

t

F1.t; s/ds
�
r	b.t/CDt

� OK1.t/C
Z T

t

F1.t; s/ds
�
r	�.t/

C
Z

R0

Dt;z

� OK1.t/C
Z T

t

F1.t; s/ds
�
r	�.t; z/C r	f1.t; z/�.dz/

oi
D 0:

(22.46)
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We can reformulate this as follows: If we define, as in Eq. (22.16),

Op1.t/ D OK1.t/C
Z T

t

F1.t; s/ds D OK1.t/C
Z T

t

@ OH0
1

@x
.s/G.t; s/ds; (22.47)

then Eq. (22.44) can be written:

Ex
h
r	

n Z

R0

f1.t; OX.t/; 	; O
; z/�.dz/C Op1.t/b.t; OX.t/; 	0; O
0/

CDt Op1.t/�.t; OX.t/; 	0; O
0/

C
Z

R0

Dt;z Op1.t/�.t; OX.t/; 	; O
; z/�.dz/
o

	D.	0.t/;	1.t;z//
˛

i
D 0:

Since this holds for all bounded Et -measurable random variable ˛, we conclude
that

Ex
h
r	

OH1.t; X
.	; O
/.t/; 	; O
/ j	D O	.t/j Et

i
D 0:

Similarly, we have

0 D @

@
J2. O	; O
 C �/

ˇ
ˇ
ˇ
D0

DEx
h Z T

0

Z

R0

n@f2

@x
.t; X. O	;
/.t/; O	.t; z/; O
.t; z/; z/D.t/

Cr
f2.t; X
. O	;
/.t/; O	.t; z/; 
.t; z/; z/

ˇ
ˇ
ˇ

D O
�.t/

o
�.dz/dtCg0

2.
OX.T //D.T /

i
;

(22.48)

where

D.t/ DD.�/.t/ D d

d
X. O	; O
C�/.t/

ˇ
ˇ
ˇ
D0

D
Z t

0

n@b

@x
.s; OX.s/; O	0.s/; O
0.s//D.s/

C r
b.s; X
. O	0;
0/.s/; O	0.s/; 
0.s//

ˇ
ˇ
ˇ

D O
�

�.s/
o
ds

C
Z t

0

n@�

@x
.s; OX.s/; O	0.s/; O
0.s//Y.s/

C r
�.s; X
. O	;
/.s/; O	0.s/; 
0.s//

ˇ
ˇ
ˇ

D O
�

�.s/
o
dB.s/

C
Z t

0

Z

R0

n@�

@x
.s; OX.s�/; O	.s�; z/; O
.s�/; z/D.s/

C r
�.s; X
. O	;
/.s�/; O	.s�; z/; 
.s�; z/; z/

ˇ
ˇ
ˇ

D O
�

�.s/
o QN.ds; dz/:

(22.49)
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Define
D.s/ D D.t C h/G.t C h; s/I s � t C h;

whereG.t; s/ is defined as in Eq. (22.32). By using similar arguments as above,
we get

Ex
h
r


OH2.t; X
. O	;
/.t/; O	; 
/ j


D O
.t/j Et
i

D 0:

This completes the proof of (i).
(ii) Conversely, suppose that there exists . O	; O
/ 2 A… � A‚ such that Eqs. (22.22)

and (22.23) hold. Then by reversing the above arguments, we obtain that
Eq. (22.31) holds for all ˇ˛.s; !/ D ˛.!/�.t;tCh�.s/ 2 A…, where

A1 DEx
h Z T

t

n OK1.s/
@b

@x
.s/CDs

OK1.s/
@�

@x
.s/

C
Z

R0

Ds;z OK1.s/
@�

@x
.s/�.dz/

o
Y .ˇ˛/.s/ds

i
;

A2 DEx
hn Z tCh

t

� OK1.s/r	b.s/CDs
OK1.s/r	�.s/

C
Z

R0

Ds;z OK1.s/r	�.s; z/�.dz/C
Z

R0

r	f1.s; z/�.dz/
�

ds
o
˛

i
;

for some t; h 2 Œ0; T � with t C h � T and some bounded Et -measurable ˛.
Similarly,

A3 C A4 D 0 (22.50)

for all ��.s; !/ D �.!/�.t;tCh�.s/ 2 A‚, where

A3 DEx
h Z T

t

n OK2.s/
@b

@x
.s/CDs

OK2.s/
@�

@x
.s/

C
Z

R0

Ds;z OK2.s/
@�

@x
.s/�.dz/

o
Y .�� /.s/ds

i
;

A4 DEx
hn Z tCh

t

� OK2.s/r
b.s/CDs
OK2.s/r
 �.s/

C
Z

R0

Ds;z OK2.s/r
�.s; z/�.dz/C
Z

R0

r
f2.s; z/�.dz/
�

ds
o
˛

i
;

for some t; h 2 Œ0; T � with t C h � T and some bounded Et -measurable �.
Hence, these equalities hold for all linear combinations of ˇ˛ and �� . Since all
bounded ˇ 2 A… and � 2 A‚ can be approximated pointwise boundary in
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.t; !/ by such linear combinations, it follows that Eqs. (22.31) and (22.50) hold
for all bounded .ˇ; �/ 2 A… � A‚. Hence, by reversing the remaining part of
the proof above, we conclude that

@

@y
J1. O	 C yˇ; O
/

ˇ
ˇ
ˇ
yD0 D 0;

@

@
J2. O	; O
 C �/

ˇ
ˇ
ˇ
D0 D 0;

for all ˇ and �.
ut

3 Zero-Sum Games

Suppose that the given performance functional of player I is the negative of the
player II, i.e.,

J1.u0; u1/ D Ex
h Z T

0

Z

R0

f .t; X.t/; u0.t/; u1.t; z/; z; !/�.dz/dt C g.X.T /; !/
i

D �J2.u0; u1/; (22.51)

where Ex D ExP denotes the expectation with respect to P given that X.0/ D x.
Suppose that the controls u0.t/ and u1.t; z/ have the form as in Eqs. (22.5) and
(22.6). Let A… and A‚ denote the given family of controls 	 D .	0; 	1/ and

 D .
0; 
1/ such that they are contained in the set of càdlàg Et -adapted controls,
Eq. (22.1) has a unique strong solution up to time T and

Ex
h Z T

0

Z

R0

jf .t; X.t/; 	0.t/; 	1.t; z/; 
0.t/; 
1.t; z/; z; !/j�.dz/dt

Cjg.X.T /; !/j
i
< 1: (22.52)

Then the partial information zero-sum stochastic differential game problem is the
following:

Problem 3.1. Find ˆE 2 R, 	� 2 A… and 
� 2 A‚ (if it exists) such that

ˆE D inf

2A‚

. sup
	2A…

J.	; 
// D J.	�; 
�/ D sup
	2A…

. inf

2A‚

J.	; 
//: (22.53)

Such a control .	�; 
�/ is called an optimal control (if it exists). The intuitive idea
is that while player I controls 	 , player II controls 
 . The actions of the players are
antagonistic, which means that between players I and II, there is a payoff J.	; 
/
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which is a reward for player I and a cost for Player II. Note that since we allow
b, � , � , f and g to be stochastic processes and also because our controls are Et -
adapted, this problem is not of Markovian type and hence cannot be solved by
dynamic programming.

Theorem 3.1 (Maximum principle for zero-sum games).

(i) Suppose . O	; O
/ 2 A… � A‚ is a directional critical point for J.	; 
/ in the
sense that for all bounded ˇ 2 A… and � 2 A‚, there exists ı > 0 such that
O	 C yˇ 2 A…, O
 C � 2 A‚ for all y;  2 .�ı; ı/ and

c.y; / WD J. O	 C yˇ; O
 C �/; y;  2 .�ı; ı/

has a critical point at 0, i.e.,

@c

@y
.0; 0/ D @c

@
.0; 0/ D 0: (22.54)

Then
ExŒr	

OH.t;X.	; O
/.t/; 	; O
; !/jEt �	D O	 D 0; (22.55)

ExŒr

OH.t;X. O	;
/.t/; O	; 
; !/jEt �
D O
 D 0 for a.a. t, !, (22.56)

where

OX.t/ D X. O	; O
/.t/;

OH.t; OX.t/; 	; 
/ D
Z

R0

f .t; OX.t/; 	; 
; z/�.dz/C Op.t/b.t; OX.t/; 	0; 
0/

COq.t/�.t; OX.t/; 	0; 
0/C
Z

R0

Or.t; z/�.t; OX.t�/; 	; 
; z/�.dz/;

(22.57)

with

Op.t/ D OK.t/C
Z T

t

@ OH0

@x
.s; OX.s/; O	.s/; O
.s// OG.t; s/ds; (22.58)

OK.t/ D K. O	; O
/.t/ D g0. OX.T //C
Z T

t

Z

R0

@f

@x
.s; OX.s/; O	.s; z/; O
.s; z/; z/�.dz/ds;

(22.59)

OH0.s; OX; O	; O
/ D OK.s/b.s; OX; O	0; O
0/CDs
OK.s/�.s; OX; O	0; O
0/

C
Z

R0

Ds;z OK.s/�.s; OX; O	; O
; z/�.dz/; (22.60)
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OG.t; s/ WD exp
� Z s

t

n@b

@x
.r; OX.r/; O	0.r/; O
0.r//

� 1

2

�@�

@x

�2
.r; OX.r/; O	0.r/; O
0.r//

o
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C
Z s
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@�

@x
.r; OX.r/; O	0.r/; O
0.r//dB.r/
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Z s

t

Z
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ln
�
1C @�

@x
.r; OX.r�/; O	.r�; z/; O
.r�; z/; z/

� QN.dr; dz/

C
Z s

t

Z

R0

n
ln

�
1C @�

@x
.r; OX.r/; O	; O
; z/

�

� @�

@x
.r; OX.r/; O	; O
; z/

o
�.dz/dr

�
I

Oq.t/ WD Dt Op.t/;
and

Or.t; z/ WD Dt;z Op.t/: (22.61)

(ii) Conversely, suppose that there exists . O	; O
/ 2 A… � A‚ such that Eqs. (22.55)
and (22.56) hold. Furthermore, suppose that g is an affine function, H is
concave in 	 and convex in 
 . Then . O	; O
/ satisfies Eq. (22.54).

4 Application: Worst-Case Scenario Optimal Portfolio
Under Partial Information

We illustrate the results in the previous section by looking at an application to robust
portfolio choice in finance:

Consider a financial market with the following two investment possibilities:

1. A risk free asset, where the unit price S0.t/ at time t is

dS0.t/ D r.t/S0.t/dt I S0.0/ D 1I 0 � t � T;

where T > 0 is a given constant.
2. A risky asset, where the unit price S1.t/ at time t is given by

(
dS1.t/ D S1.t

�/Œ
.t/dt C �0.t/dB.t/C R

R0
�0.t; z/ QN.dt; dz/�;

S1.0/ > 0;
(22.62)

where r , 
 , �0 and �0 are predictable processes such that
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Z T

0

fj 
.s/ j C�20 .s/C
Z

R0

�20 .s; z/�.dz/gds < 1 a:s:

We assume that 
 is adapted to a given subfiltration Et and that

�0.t; z; !/ � �1C ı for all t; z; ! 2 Œ0; T � � R0 ��;
for some constant ı > 0.

Let 	.t/ D 	.t; !/ be a portfolio, representing the amount invested in the risky
asset at time t . We require that 	 be càdlàg and Et -adapted and self–financing and
hence that the corresponding wealth X.t/ D X.	;
/.t/ at time t is given by

8
<

:

dX.t/ D ŒX.t/ � 	.t/�r.t/dt C 	.t�/Œ
.t/dt C �0.t/dB.t/
C R

R0
�0.t; z/ QN.dt; dz/�

X.0/ D x > 0:

(22.63)

Let us assume that the mean relative growth rate 
.t/ of the risky asset is not known
to the trader, but subject to uncertainty. We may regard 
 as a market scenario
or a stochastic control of the market, which is playing against the trader. Let A "

…

and A "
‚ denote the set of admissible controls 	; 
 , respectively. The worst-case

partial information scenario optimal problem for the trader is to find 	� 2 A "
… and


� 2 A "
‚ and ˆ 2 R such that

ˆ D inf

2A "

‚

. sup
	2A "

…

EŒU.X.	;
/.T //�/

D EŒU.X.	�;
�/.T //�; (22.64)

where U W Œ0;1/ ! R is a given utility function, assumed to be concave, strictly
increasing and C1 on .0;1/. We want to study this problem by using Theorem 3.1.
In this case we have

b.t; x; 	; 
/ D 	.
 � r.t//C xr.t/; K.t/ D U
0

.X.	;
/.T //; (22.65)

H0.t; x; 	; 
/ DU 0

.X.	;
/.T //Œ	.
 � r.t//C xr.t/�

CDt.U
0

.X.	;
/.T ///	�0.t/

C
Z

R0

Dt;z.U
0

.X.	;
/.T ///	�0.t; z/�.dz/; (22.66)

and

p.t/ D U
0

.X.	;
/.T //

�

1C
Z T

t

r.s/G.t; s/ds

�

;
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where

G.t; s/ D exp

�Z s

t

r.v/dv

�

:

Hence,

Z T

t

r.s/G.t; s/ds D
ˇ
ˇ
ˇ
T

t
exp

� Z s

t

r.v/dv
�

D exp
� Z T

t

r.v/dv
�

� 1

and

p.t/ D U
0

.X.	;
/.T // exp

�Z T

t

r.s/ds

�

: (22.67)

With this value for p.t/ we have

H.t;X.	;
/.t/; 	; 
/ Dp.t/Œ	.
 � r.t//C r.t/X.t/�

CDtp.t/	�0.t/C
Z

R0

Dt;zp.t/	�0.t; z/�.dz/: (22.68)

Hence Eq. (22.55) becomes

E

�
@H

@	
.t; OX.t/; 	; O
/

ˇ
ˇ
ˇEt

�

	D O	.t/
D E

h
p.t/. O
 � r.t//CDtp.t/�0.t/

C
Z

R0

Dt;zp.t/�0.t; z/�.dz/
ˇ
ˇ
ˇEt

i
D 0 (22.69)

and Eq. (22.56) becomes

E

�
@H

@

.t; OX.t/; O	; 
/

ˇ
ˇ
ˇEt

�


D O
.t/
D EŒp.t/ O	.t/ j Et � D EŒp.t/ j Et � O	.t/ D 0:

(22.70)

Since p.t/ > 0 we conclude that

O	.t/ D 0: (22.71)

This implies that

OX.t/ D x exp
� Z t

0

r.s/ds
�

(22.72)

and

Op.t/ D U
0

�

x exp
� Z T

0

r.s/ds
��

exp

�Z T

t

r.s/ds

�

I t 2 Œ0; T �: (22.73)
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Substituting this into Eq. (22.69), we get

O
.t/ D
E

h
Op.t/r.t/ �Dt Op.t/�0.t/ � R

R0
Dt;z Op.t/�0.t; z/�.dz/

ˇ
ˇ
ˇEt

i

EŒ Op.t/jEt � : (22.74)

We have proved the following theorem:

Theorem 4.1 (Worst-case scenario optimal portfolio under partial informa-
tion). Suppose there exists a solution .	�; 
�/ 2 .A "

…;A
"
‚/ of the stochastic

differential game Eq. (22.64). Then

	� D O	 D 0; (22.75)

and

� D O
 is given by .22.74/: (22.76)

In particular, if r.s/ is deterministic, then

	� D 0 and 
�.t/ D r.t/: (22.77)

Remark 4.1. (i) If r.s/ is deterministic, then Eq. (22.77) states that the worst-case
scenario is when O
.t/ D r.t/, for all t 2 Œ0; T �, i.e., when the normalized risky
asset price

e� R t
0 r.s/dsS1.t/

is a martingale. In such a situation the trader might as well put all her money in
the risk free asset, i.e., choose 	.t/ D O	.t/ D 0. This trading strategy remains
optimal if r.s/ is not deterministic, but now the worst-case scenario O
.t/ is
given by the more complicated expression (22.74).

(ii) This is a new approach to, and a partial extension of, Theorem 2.2 in [13] and
Theorem 4.1 in the subsequent paper [1]. Both of these papers consider the case
with deterministic r.t/ only. On the other hand, in these papers the scenario is
represented by a probability measure and not by the drift.
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