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9.1 Introduction

Two very useful continuous distributions, the normal and lognormal distributions,

were discussed in Chap. 7. Because many random variables have distributions that

are not normal, in this chapter, we explore five other important continuous

distributions and their applications. These five distributions are the uniform distri-

bution, Student’s t distribution, the chi-square distribution, the F distribution, and

the exponential distribution. All are directly or indirectly used in analyzing business

and economic data. The relationship between moments and distributions is also

discussed in this chapter. Finally, we explore business applications of statistical

distributions in terms of the first four moments for stock rates of return.

9.2 The Uniform Distribution

The simplest continuous probability distribution is called the uniform distribution.
This probability distribution provides a model for continuous random variables that

are evenly (or randomly) distributed over a certain interval. To picture this distri-

bution, assume that the random variable X can take on any value in the range from,

for example, 5 to 15, as indicated in Fig. 9.1. In a uniform distribution, the

probability that the variable will assume a value within a given interval is propor-

tional to the length of the interval. For example, the probability that X will assume a

value in the range from 6 to 8 is the same as the probability that it will assume a

value in the range from 9 to 11, because these two intervals are equal in length.

The uniform distribution has the following probability density function:

f ðXÞ ¼
1

b�a if a � X � b
0 elsewhere

�
(9.1)

If the foregoing condition holds, then X is uniformly distributed, and the shape

under the density function forms a rectangle, as shown in Fig. 9.1. The rectangle’s

area is equal to 1, which means that X is sure to take on some value between a ¼ 5

and b ¼ 15. Mathematically, we can express this as P(5 � X � 15) ¼ 1.

Figure 9.1 shows a density function for a set of values between a and b. Each
density is a horizontal line segment with constant height 1/(b � a) over the interval
from a to b. Outside the interval, f(X) ¼ 0. This means that for a uniformly

distributed random variable X, values below a and values above b are impossible.

Substituting b ¼ 15 and a ¼ 5 into Eq. 9.1, we obtain 1/(b � a) ¼ 1/(15 � 5) ¼ . 1,

as indicated in Fig. 9.1.

From Chaps. 5 and 7, we know that the probability that X will fall below a point

is provided by the area under the density curve and to the left of that point. In other

words, the cumulative probability distribution function, P(X � x) ¼ (x � a)/
(b � a), is represented by this area. The cumulative function for values of X
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between a and b is the area of the rectangle, which, again, is found by multiplying

the height, 1/(b � a), times the base, x � a. To the left of a, the cumulative

probabilities must be zero, whereas the probability that X lies “below points beyond

b” must be 1.

The cumulative probabilities for a uniform distribution are

PðX � xÞ ¼
0 if x< a

x�a
b�a if a � x � b
1 if x>b

8<
: (9.2)

Figure 9.2 shows the cumulative distribution function in terms of data indicated

in Fig. 9.1. It presents the cumulative probabilities for X ¼ 5, X ¼ 10, X ¼ 15, and

X ¼ 20 at points A, B, C, and D, respectively. Cumulative probabilities for these

three points can be calculated as follows:

At point A: PðX � 5Þ ¼ 5� 5

15� 5
¼ 0

At point B: PðX � 10Þ ¼ 10� 5

15� 5
¼ 1

2

At point C: PðX � 15Þ ¼ 15� 5

15� 5
¼ 1

At point D: P X � 20ð Þ ¼ P X � 15ð Þ þ P 15 � X � 20ð Þ ¼ 1þ 0 ¼ 1

The mean and standard deviation of a uniform distribution (see Appendix 1) can

be shown as

m ¼EðXÞ ¼ aþ b

2

sX ¼ b� affiffiffiffiffi
12

p ð9:3Þ

Fig. 9.1 The uniform probability distribution
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Example 9.1 An Application of the Uniform Distribution in Quality Control. A

quality control inspector for Gonsalves Company, which manufactures aluminum

water pipes, believes that the product has varying lengths. Suppose the pipes turned

out by one of the production lines of Gonsalves Company can be modeled by a

uniform probability distribution over the interval 29.50–30.05 ft. The mean and

standard deviation of X, the length of the aluminum water pipe, can be calculated as

follows. Substituting b ¼ 30.05 ft and a ¼ 29.50 ft in Eq. 9.3, we obtain

m ¼ 30:05þ 29:50

2
¼ 29:775 ft

and

sX ¼ 30:05� 29:50ffiffiffiffiffi
12

p ¼ :1588 ft

This information can be used to create a control chart to determine whether the

quality of the water pipes is acceptable. The control chart and its use in statistical

quality control will be discussed in Chap. 10.

Computer simulation is an application of statistics that frequently relies on the

uniform distribution. In fact, the uniform distribution is the underlying mechanism

for this often-complex procedure. Thus, although not so many “real-world”

populations resemble this distribution as resemble the normal, the uniform

Fig. 9.2 Cumulative distribution function for the data of Fig. 9.1
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distribution is important in applied statistics. For example, managers may use the

uniform distribution in a simulation model to help them decide whether the

company should undertake production of a new product.1 Basic concepts of invest-

ment decision making can be found in Sect. 21.8.

9.3 Student’s t Distribution

Student’s t distribution was first derived by W. S. Gosset in 1908. Because Gosset

wrote under the pseudonym “A Student,” this distribution became known as

Student’s t distribution.

If the sampled population is normally distributed with mean m and variance s2X,
the sample size n is equal to or larger than 30, and s2X is known, then from the last

chapter, we know that the Z score for sample mean �X defined as

Z ¼
�X � m
sX

ffiffiffi
n

p
=

(8.7)

which we met as Eq. 8.7, has a normal distribution with mean 0 and variance 1.

Under most circumstances, however, the population variance is not known. In order

for us to conduct various types of statistical analysis, we need to know what happens

to Eq. 8.7 when we replace the population standard deviation sX by the sample

standard deviation sX. We then have the following equation for the t statistic:

t ¼
�X � m
sX

ffiffiffi
n

p
=

(9.4)

Thus, the Z of Eq. 8.7 has only one source of variation: each sample has a

different �X. Equation 9.4, however, has two sources of variation: both the sample

mean �X and the sample standard deviation sX change from sample to sample. Thus,

the term on the right-hand side of Eq. 9.4 follows a sampling distribution different

from the normal distribution, which is the distribution followed by the term on the

right-hand side of Eq. 8.7. Equation 9.4 is used only when the population from

which the n sample items are drawn is normally distributed and the sample size (n)
is smaller than 30.

The t distribution forms a family of distributions that are dependent on a

parameter known as the degrees of freedom. For the t variable in Eq. 9.4, the

degrees of freedom (v) are (n � 1), where n is the sample size. In general, the

degrees of freedom for a t statistic are the degrees of freedom associated with

the sum of squares used to obtain an estimate of the variance. The variance estimate

1 See Lee C.F.: Financial Analysis and Planning: Theory and Application, pp. 358–363. Reading,

Addison-Wesley (1985)
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depends not only on the size of sample but also on how many parameters must be

estimated with the sample. The more data we have, the more confidence we can

have in our results; the more parameters we have to estimate, the less confidence we

have. Statisticians keep track of these two factors by calculating the degrees of

freedom as follows:

Degrees of

freedom
¼ number of

observations
� number of parameters that must

be estimated beforehand

Here we calculate sX by using n observations and estimating one parameter (the

mean). Thus, there are (n � 1) degrees of freedom.

The t distribution is a symmetric distribution with mean 0. Its graph is similar to

that of the standard normal distribution, as Fig. 9.3 shows. However, the tail areas

are greater for the t distribution, and the standard normal distribution is higher in the

middle. The larger the number of degrees of freedom, the more closely the

t distribution resembles the standard normal distribution. As the number of degrees

of freedom increases without limit, the t distribution approaches the standard

normal distribution. In fact, the standard normal distribution is a t distribution
with an infinite number of degrees of freedom.

To determine whether the normal distribution or the Student’s t distribution is

more suitable for describing stocks’ rates of return, Blattberg and Gonedes (1975,

Journal of Business, pp. 244–280) used both daily and weekly stock rates of return

for Dow Jones 30 companies to estimate the degrees of freedom for these two kinds

of rates of return. They found, for example, that the degrees of freedom for Allied

Chemical are 5.04 when daily data is used and 89.98 when weekly data is used. This

indicates that the student’s t distribution is more suitable for daily data for Allied

Chemical, whereas the normal distribution better describes weekly data for Allied

Chemical.

In addition, they found that the average degree of freedom for daily rates of

return for these 30 companies is 4.79. The average degree of freedom in terms of

Fig. 9.3 The t distribution and the standard normal distribution
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weekly rate of return for these 30 companies is 11.22. They concluded that

Student’s t distribution is more suitable for describing daily stock rate of return

distribution, and normal distribution is more suitable for weekly rate of return

distribution. Hence, t distribution is an important distribution for describing daily

stock rate of return.

The t table, as presented in Table A4 at the end of the book, gives the value, ta,
such that the probability of the t value larger than ta is equal to a. The percentage
cutoff point ta is defined as that point at which

P t> tað Þ ¼ a (9.5)

Because the distribution is symmetric around 0, only positive t values (upper-tail
areas) are tabulated. The lower a cutoff point is �ta, because

P t<� tað Þ ¼ P t> tað Þ ¼ a (9.6)

In general, we denote a cutoff point for t by ta,v where a is the probability level

and v is the degrees of freedom. The number of degrees of freedom determines the

shape of the t distribution. Figure 9.4 shows t distributions of varying degrees of

freedom.

Example 9.2 Using the tDistribution to Analyze Audit Sampling Information. Let’s

borrow information presented in Sect. 8.7 to see how the t distribution can be used

to do audit sampling analysis.

Fig. 9.4 t distributions of three different degrees of freedom
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The sample mean and the sample variance for 30 trade accounts receivable

balances are

�X ¼ $202:10 and s2X ¼ $719:164

From Table A4, we know that the t statistics with 30 � 1 ¼ 29� of freedom and

a ¼ .05 is 1.6991. Substituting related information into Eq. 9.4, we obtain

1:699 ¼ $202:10� mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
719:164=30

p ¼ $202:10� m
4:896

This implies that there is a 5 % chance that the average population account

receivable value will be smaller than $202.10 � $(11.699)(4.896) ¼ $193.78. By

symmetry, there is also a 5 % chance that the average population account receivable

value will be larger than $202.10 þ $(1.699)(4.896) ¼ $210.42.

Other applications of the t distribution appear in Chaps. 10 and 11, and we will

encounter more when we discuss regression analysis in Chaps. 13, 14, 15, and 16.

9.4 The Chi-Square Distribution and the Distribution of Sample

Variance

In this section, we first show how a chi-square distribution can be derived from a

standard normal distribution and then derive the distribution of a sample variance.

9.4.1 The Chi-Square Distribution

The chi-square distribution (w2) is a continuous distribution ordinarily derived as

the sampling distribution of a sum of squares of independent standard normal

variables. For instance, let X1, X2, . . ., Xn denote a random sample of size n from

a normal distribution with mean m and variance s2X. Because these variables are not
standardized, we can standardize them as

Zi ¼ Xi � m
sX

where Zi is normally distributed with mean 0 and variance 1.

Now, if we define a new variable Y such that

Y ¼ Z2
1 þ Z2

2 þ � � � þ Z2
n ¼

Xn
i¼1

Xi � m
sX

� �2

(9.7)
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it can be shown that this new variable is distributed as w2 with n degrees of

freedom.2

Equation 9.6 can be rewritten as3

Xn
i¼1

Xi � mð Þ2
s2X

¼ n �X � mð Þ2
s2X

þ ðn� 1Þs2X
s2X

(9.8)

where

s2X ¼
Pn
i¼1

Xi � �Xð Þ2

n� 1
;
Xn
i¼1

Xi � mð Þ2
s2X

has an x2 distribution with n degrees of freedom, as discussed in Eq. 9.6. In addition,

from the last chapter, we know that �X is normally distributed with mean m and

variance s2X n= , so
ffiffiffi
n

p �X � mð Þ sX= is normally distributed with mean 0 and variance

1. It can be shown that n �X � mð Þ2 s2X
�

has an x2 distribution with 1� of freedom.

From this information, it can be proved that

ðn� 1Þs2X
s2X

defined in Eq. 9.8, has a w2 distribution with (n � 1) degrees of freedom.4

2 First, it can be proved that Xi � mð Þ2 s2X
�

is a w2 distribution with I degree of freedom. Then, by

using the additive property of x2 distribution, we can prove that
Pn
i¼1

Xi�m
sX

� �2
is also a w2 distribution

with n degrees of freedom.
3 Since

Xn
i¼1

Xi � mð Þ2 ¼
Xn
i¼1

Xi � �X þ �X � mð Þ2

¼
Xn
i¼1

Xi � �Xð Þ2 þ 2 �X � mð Þ
Xn
i¼1

Xi � mð Þ þ
Xn
i¼1

�X � mð Þ2

¼
Xn
i¼1

Xi � �Xð Þ2 þ n �X � mð Þ2

because

2 �X � mð Þ
Xn
i¼1

Xi � �Xð Þ ¼ 0 (9.A)

by dividing Eq. 9.A by s2X, we obtain Eq. 9.8.
4 In addition to the condition described here, it is also necessary to assume that �X is independent

of s2X .
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ðn� 1Þs2X
s2X

can be redefined as expressed in Eq. 9.9:

ðn� 1Þs2X
s2X

¼
Xn
i¼1

Xi � �X

sX

� �2
(9.9)

where s2X ands
2
X are sample variance and population variance, respectively. The left-

hand side of Eq. 9.9 implies that the ratio of sample variance to population variance,

multiplied by (n � 1), has a w2 distribution with (n � 1) degrees of freedom. The

w2 distribution defined in Eq. 9.9 can be used to describe the distribution of s2X ,
which will be discussed later in this section.

The w2 distribution is a skewed distribution, and only nonnegative values of the

variable w2 are possible. It depends on a single parameter, the degrees of freedom

v ¼ n � 1. The w2 distributions for degrees of freedom 5, 10, and 30 are graphed in

Fig. 9.5. The figure shows that the skewness decreases as the degrees of freedom

increase. In fact, as the degrees of freedom increase to infinity, the w2 distribution
approaches a normal distribution.5

Critical values of the w2 distributions are given in Table A5 in Appendix A.6

They are defined by

P w2 � w2a;n
� �

¼ a (9.10)

where is that value for the w2 distribution with v degrees of freedom such that the

area to the right (the probability of a larger value) is equal to a. For example, the

upper 5 % point for w2 with 10 degree of freedom, w2:05;10, is 18.307 (see Fig. 9.6 and
Table A5). In other words, P(w2 > 18.307) ¼ .05. In addition, P(w2 < 18.307) ¼
1 � .05 ¼ .95.

The mean and variance of this distribution are equal to the number of degrees of

freedom and twice the number of degrees of freedom. That is,

5 Johnson, W. L., Katz S.: In Continuous Univariate Distribution I, pp. 170–181. HoughtonMifflin,

Boston, 1970, show that a normalized x2 distribution approaches a standard normal distribution

when the number of degrees of freedom approaches infinity. The normalized statistic is defined as

w2n � n
	 
 ffiffiffiffiffi

2n
p�

.
6We can approximate x2a by the formula

w2a ¼ n 1� 2

9n
þ za

ffiffiffiffiffi
2

9n

r !3

where v ¼ degrees of freedom and za ¼ standard normal value (from Table A.3).
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E w2n
	 
 ¼ n; and Var w2n

	 
 ¼ 2n (9.11)

where n is the degree of freedom of a w2 distribution.

Fig. 9.5 The w 2 distributions with three different degrees of freedom

Fig. 9.6 The w2 distribution with 10� of freedom
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9.4.2 The Distribution of Sample Variance

The properties of the w2 distribution can be used to find the mean and variance of the

sampling distribution of the sample variance (s2X).

9.4.2.1 The Mean of s2X

From the definition of the mean for a w2 distribution, we obtain

E
ðn� 1Þs2X

s2X

� �
¼ n� 1

Because E a � Xð Þ ¼ a � EðXÞ, we have
ðn� 1Þ
s2X

E s2X
	 
 ¼ n� 1

Thus,7

E s2X
	 
 ¼ s2X (9.12)

Equation 9.12 implies that the mean of the sample variance is equal to the

population variance.

9.4.2.2 The Variance of s2X

On the basis of the definition of the variance for a w2 distribution, we have

Var
ðn� 1ÞS2X

s2X

� �
¼ 2ðn� 1Þ

Because Var aXð Þ ¼ a2 � VarðXÞ, we have

n� 1ð Þ2
s4X

Var s2X
	 
 ¼ 2ðn� 1Þ

so

Var s2X
	 
 ¼ 2s4X

n� 1
(9.13)

7 This result suggests why
Pn
i¼1

Xi � �Xð Þ2 n� 1= instead of
Pn
i¼1

Xi � �Xð Þ2 n= is an unbiased estimator

for the population variance, s2X. Unbiased estimators will be discussed in Chap. 10.
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This is the variance of the sample variance. In sum, if X is normally distributed,

then the mean and variance of s2X are s2X and 2s4X ðn� 1Þ= , respectively. We will

explore applications of the w2 distribution and the distribution of sample variance in

Chaps. 10 and 11 when we discuss confidence intervals and hypothesis testing for

population variances.

Drawing on the concepts of the w2 distribution and the normal distribution, we

can interpret the t distribution by rewriting Eq. 9.40 as

t ¼
�X � mð Þ sX

ffiffiffi
n

p
=ð Þ=

sX sX=
(9.40Þ

In Eq. 9.40, �X � mð Þ sX
ffiffiffi
n

p
=ð Þ= is normally distributed with mean 0 and variance

1; it is a standard normal distribution. Sx sx= is a square root of a w2-distributed
variable with (n � 1) degrees of freedom divided by n ¼ n � 1. Hence, a t distri-
bution with v degrees of freedom is the ratio between a standard normal variable

and a transformed w2 variable:

tn ¼ Zffiffiffiffiffiffiffiffiffiffi
w2n n=

p (9.14)

9.5 The F Distribution

Some problems revolve around the value of a single population variance, but often

it is a comparison of the variances of two populations that is of interest. This will be

discussed in Chaps. 13, 14, and 15. In addition, we may want to know whether the

means of three or more populations are equal. This will be discussed in Chap. 12.

The F distribution is used to make inferences about these kinds of issues.

Assume two populations, each having a normal distribution. We draw two

independent random samples with sample sizes nX and nY and population variances

s2X ands
2
Y. From each sample, we can compute sample variancesS2X andS

2
Y. Then, the

random variable of Eq. 9.15 follows a distribution known as the F distribution:

F ¼ S2X s2X
�

S2Y s2Y
� (9.15)

Equation 9.15 can be rewritten as

F ¼ w2n1ðXÞ n
X
� 1

	 
�
w2n2ðYÞ nY � 1

	 
� (9.140Þ

where w2n1ðXÞ ¼ ðnX � 1ÞS2X s2X
�

and w2n2ðYÞ ¼ ðnY � 1ÞS2Y s2Y
�

; n1 ¼ nx – 1;

n2 ¼ ny – 1.
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In other words, a random variable formed by the ratio of two independent chi-

square variables, each divided by its degrees of freedom, is called an F variable.
The F distribution has an asymmetric probability density function defined only

for nonnegative values. It should be observed that the F distribution is completely

determined by two parameters, v1 and v2, which are degrees of freedom. These

density functions with different sets of degrees of freedom are illustrated in Fig. 9.7.

The cutoff points Fn1;n2;a, for a equal to .05, .025, .01, and .005, are provided in

Table A6 at the end of this book. For example, in the case of 10 numerator degrees

of freedom and six denominator degrees of freedom,

F10;6;:05 ¼4:06 F10;6;:025 ¼ 5:46

F10;6;:01 ¼7:87 F10;6;:005 ¼ 10:25

MINITAB output for F10, 6 is presented in Fig. 9.8. Hence,

P F10:6>4:06ð Þ ¼ :05 P F10:6>5:46ð Þ ¼ :025

P F10:6>7:87ð Þ ¼ :01 P F10:6>10:25ð Þ ¼ :005

These probabilities also can be calculated by using MINITAB as shown here.

MTB > SET C1
DATA> 4.06 5.46 7.87 10.25
DATA> END
MTB > CDF C1;
SUB > F 10 6.
Cumulative Distribution Function
F distribution with 10 DF in numerator and 6 DF in

denominator
x P( X <¼ x)
4.0600 0.9500
5.4600 0.9750
7.8700 0.9900
10.2500 0.9950
By subtracting 1 from .95, we obtain .05; by subtracting 1 from .975, we obtain

.025; by subtracting 1 from .99, we obtain .01; finally, by subtracting 1 from .9950,

we obtain .005. In practice, we usually place the larger sample variance in the

numerator. The four significance levels listed here are the cutoff points that are

often used to test the hypothesis of equality of population variances, which will be

discussed in Chaps. 11 and 12. When the population variances are equal, Eq. 9.15

becomes

F ¼ S2X
S2Y

(9.16)
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The right-hand side of Eq. 9.16 is the ratio of two sample variances.

Applications of the F distribution will be discussed in Chaps. 11 and 12 and in

the chapters related to regression analysis.

Fig. 9.8 MINITAB output for F10, 6

Fig. 9.7 F distributions with three different sets of degrees of freedom
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9.6 The Exponential Distribution (Optional)

The exponential distribution is related to the Poisson distribution, which, as we

noted in Chap. 6, is often applied to occurrences of an event over time. The Poisson

distribution is the distribution of the number of occurrences of an event in a given

time interval of length t. The single parameter of the Poisson distribution is l, the
intensity of the process. Think of the number as the average occurrence of the event

being counted. For example, say, the average arrival rate of customers at the

Brownell Bank is 5 per 100 s. Suppose that instead of the number of occurrences

in a given time period, we are interested in the amount of time until the first

customer arrives at the bank. This is a problem to be solved by the exponential

distribution instead of the Poisson distribution. As another example, if the number

of traffic accidents in an interval of time follows the Poisson distribution, the length

of time from one accident to another follows the exponential distribution. The

exponential distribution can also be applied to (1) the length of time that must pass

before the first incoming telephone call and (2) the length of time someone must

wait for a cab in a given location, such as Penn Station in New York City.

Denoting the mean rate at which events occur over time by l and denoting the

time until the first event occurs by t, we can use the Poisson probability density

function to derive the exponential probability density function (PDF).8 It is

f ðtÞ ¼ le�lt; t � 0

¼ 0; t<0 ð9:17Þ

where l > 0 is the only parameter.

From Eq. 9.38 we know that the cumulative probability function is given by

FðtÞ ¼ PðT � tÞ ¼1� e�lt; t � 0

¼0; t<0 ð9:18Þ

where T is a random variable representing time and t is a specific value.

Figure 9.9 represents four exponential functions for which l equals 3, 2, 1, and 1
2
.

From Appendix 2, we know that

EðTÞ ¼ 1

l
(9.19)

VarðTÞ ¼ 1

l2
(9.20)

8 See Appendix 2 for the derivation.
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Example 9.3 “No More Than 8 Items in This Line, Please!”. Under fairly plausible

assumptions about the behavior of clerks at supermarket check-out counters, it is

possible to show that the time T (in minutes) a customer spends at a check-out

counter is a random variable with the exponential distribution described by

Eq. 9.17.

Suppose a supermarket check-out counter has a mean number of customers per

minute ¼ 1
3
; that is, l ¼ 1

3
. Our task is to find the probability that the length of time

between a pair of customer arrivals is less than 6 min.

Substituting l ¼ 1
3
and t ¼ 6 into Eq. 9.18, we obtain F(T � 6) ¼ 1 � e�6/3.

And referring to Table A7 of Appendix A (or to a hand calculator), we find

P(T < 6) ¼ 1 � .1353 ¼ .8647. Thus, the probability that the service time avail-

able between two customer arrivals at the check-out counter will be less than 6 min

is approximately .86. Alternatively, the probability .8647 can be obtained by

MINITAB as shown here:

MTB > CDF 6;
SUBC> EXPONENTIAL 3.
Cumulative Distribution Function
Exponential with mean ¼ 3.00000
x P(X <¼ x)
6.0000 0.8647

Fig. 9.9 Four exponential density functions specified by four alternative values of l
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9.7 Moments and Distributions (Optional)

The properties of a distribution can be described in many ways, but the most

popular approach is by means of a set of measurements called moments. Moments
describe the central tendency, degree of dispersion, asymmetry, peakedness, and

many other aspects of a distribution. This section discusses only the first four

moments of a distribution; they are the most important statistical characteristics.

The first k moments can be defined either as

m0k ¼ E Xk
	 


(9.21)

or

mk ¼ E X � mð Þk
h i

(9.22)

Equation 9.21 defines the k moments about the origin, and Eq. 9.22 defines the

moments about the population mean m. (The relationship between m0k and m0k is

discussed in Appendix 3.) The population mean is the first moment about the origin.

We obtain the first moment of a distribution about the origin by letting k ¼ 1 in

Eq. 9.21. It is defined as follows:

m01 ¼ EðXÞ ¼ m

This is the population mean of X. Following Eq. 4.1, we can define m for a

discrete variable as

m ¼
XN
i¼1

Xi N= (4.2)

where N is the total number of observations in the population. The sample mean �X
associated with m can be defined as

�X ¼
Pn
i¼1

Xi

n
(4.1)

where n is the sample size.

9.7.1 The Second Moment and the Coefficient of Variation

The second moment about the mean, the variance, is a measure of the dispersion of

the random variable around the mean. The larger the variance, the more dispersed

the distribution. Letting k ¼ 2 in Eq. 9.22, we obtain
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m2 ¼ s2X ¼ E X � EðXÞ½ �2

This is the population variance of X. Following Eq. 4.5, we can define the

population variance for a discrete variable as

s2X ¼
XN
i¼1

Xi � mð Þ2 N= (4.5)

The sample variance (s2X) associated with X can be defined as

s2X ¼
Xn
i¼1

Xi � �Xð Þ2 ðn� 1Þ= (4.7)

Following Eq. 4.12, we can define the sample coefficient of variation (CV) as

CV ¼ sX
�X

(4.12)

9.7.2 The Third Moment and the Coefficient of Skewness

The third moment about the mean – skewness, which characterizes the asymmetry

of the distribution – is given by

m3 ¼ E X � EðXÞ½ �3

Following Eq. 4.15, we can define the population skewness for a discrete

variable as

m3 ¼
XN
i¼1

Xi � mð Þ3 N= (4.15)

Following Eq. 4.16, we can define the coefficient of skewness (CS), which is a

relative measure of asymmetry, as

CS ¼ m3
s3

(4.16)

Following Eq. 4.16a, we can define the sample coefficient of skewness (SCS) as

SCS ¼
Pn
i¼1

Xi � �Xð Þ3 n� 1ð Þ=

s3X
(4.16a)
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where

s2X ¼
Xn
i¼1

Xi � �Xð Þ2 n� 1ð Þ=

Figures 9.10a, b, and c present graphs of distributions with differing degrees of

symmetry. Figure 9.10a shows a symmetrical distribution – that is, a distribution

with zero skewness. Note that the symmetrical distribution’s measures of central

tendency (the mean, median, and mode) all coincide. We can also see that the half

of the distribution above the mode is a mirror image of the half of the distribution

below the mode.

Figure 9.10b presents a distribution that is said to be positively skewed because

the distribution tapers off more slowly to the right of the mode than to the left. It is

clear that the mean, median, and mode do not coincide. Here, the mode is smaller

than the median and the mean.

Figure 9.10c presents a distribution that is said to be negatively skewed because

the distribution tapers off more slowly to the left of the mode than to the right. Once

again, the mean, median, and mode do not coincide. Here the median and mean lie

to the left of the mode.

Fig. 9.10 (a) Zero skewness, (b) Positive skewness, and (c) negative skewness
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9.7.3 Kurtosis and the Coefficient of Kurtosis

The fourth moment about the mean – kurtosis, which characterizes the degree of

peakedness – is defined by

m4 ¼ E X � EðXÞ½ �4

For discrete variables, the population kurtosis can be defined as

m4 ¼
XN
i¼1

Xi � mð Þ4 N= (9.23)

and can be estimated in terms of sample data as follows:

Sample kurtosis ¼
Xn
i¼1

Xi � �Xð Þ4 n=

The relative peakedness of a distribution is expressed by the ratio of the fourth

moment to the square of the second moment. It is called coefficient of kurtosis (CK):

CK ¼ m4 m22
�

(9.24)

This ratio measures the degree of peakedness relative to the level of dispersion.

Using sample information, we can estimate the coefficient of kurtosis by

SCK ¼
Pn
i¼1

Xi � �Xð Þ4 n� 1ð Þ=

s4X
(9.25)

Of two distributions having the same dispersion, the one with the larger kurtosis

ratio has more observations concentrated near the mean and also at the tails of the

distribution (at the expense of the intermediate area).

9.7.4 Skewness and Kurtosis for Normal and Lognormal
Distributions

The bell-shaped normal curve is characterized by the mesokurtic shape: a value of 3
for the coefficient of kurtosis as defined in Eq. 9.25. Distributions with values of the

kurtosis ratio greater than 3 are leptokurtic. These distributions are more peaked

than the standard mesokurtic (normal curve) shape. Distributions with values of the
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coefficient of kurtosis less than 3 are platykurtic – flatter in shape than the standard

normal distribution. Each of these types of coefficients of kurtosis is illustrated in

Fig. 9.11. Sometimes, the sample coefficient of kurtosis (SCK) can be redefined as

SCK0 ¼
Pn
i¼1

Xi � �Xð Þ4

S Xi � �Xð Þ2
h i2 � 3 (9.26)

The value for the redefined CK for a normal distribution is 0 instead of 3.

If X is lognormally distributed, then from Sect. 7.6, the mean and variance of X
can be defined as

m01 ¼ mX ¼ emþ1=2s2 (7.6)

m2 ¼ s2X ¼ e2mþs2 es
2 � 1

� �
(7.7)

where m ¼ E log Xð Þ and s2 ¼ Var log Xð Þ.
From Eqs. 7.6 and 7.7, the coefficient of variation (�) for X can be defined as

� ¼ es
2 � 1

� �1=2
(9.27)

The third and fourth moments about the mean for lognormal distributions are

m3ðskewness of XÞ ¼ mXð Þ3 �6 þ 3�4
	 


(9.28)

Fig. 9.11 Three types of

kurtosis

402 9 Other Continuous Distributions and Moments for Distributions

http://dx.doi.org/10.1007/978-1-4614-5897-5_7


m3ðkurtosis of XÞ ¼ mXð Þ4 �12 þ 6�10 þ 15�8 þ 16�6 þ 3�4
	 


(9.29)

where �2 ¼ es
2 � 1. (See Appendix 4 for the derivation of Eqs. 9.28 and 9.29.)

Substituting m1, m3, and m4 into Eqs. 4.16 and 9.24, we obtain the following

equations for the coefficient of skewness (CS) and the coefficient of kurtosis (CK):

CS ¼ �3 þ 3� (9.30)

CK ¼ �8 þ 6�6 þ 15�4 þ 16�6 (9.31)

where �2 ¼ es
2 � 1.

From Eqs. 9.28, 9.29, 9.30, and 9.31, we know that the coefficient of variation is

the key variable in determining the magnitude of both skewness and kurtosis for a

lognormal distribution.

In the next section, we will see how Eqs. 4.1, 4.7, 4.12, 4.16a, and 9.26 are

applied with data on stock rates of return.

9.8 Analyzing the First Four Moments of Rates of Return

of the 30 DJl Firms

In Table 9.1, we have listed the first four moments of the monthly returns of the 30

companies included in the Dow Jones Industrial (DJI) Average. These moments

describe the central tendency, variability, asymmetry, and peakedness of the

monthly return distributions between January 1990 and December 2009, inclusive.

The mean column gives us a measure of central tendency. The average mean of

these 30 companies is .0013. The highest monthly return mean was from

McDonald’s, followed by Disney, Verizon Inc., and United Technologies Corp.

The lowest performances were for Bank of America and Alcoa, which had returns

of �.037 and �.02, respectively.

The measure of variability is given by the standard deviation. The average

standard deviation was .0813. The two companies that showed the highest

variability were Bank of America and Alcoa. The lowest variability was achieved

by Johnson & Johnson, followed by McDonald’s.

In fact, we usually observe that higher rates of return are associated with higher

levels of risk. Note that these companies that generated high rates of return tend to

have high variability. The principle is simple: the higher the return you seek, the

more risk you have to take. There is a trade-off between risk and return, which will

be discussed in Chap. 21 in some detail.

The skewness can be used to evaluate the stock’s upside potential and downside

risk. Positive skewness indicates the upside potential for a stock, because such a

stock has a greater probability of very large payoffs. On the other hand, negative
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skewness is associated with downside risk; it indicates that the stock has a greater

probability of very small payoffs.9 There are 28 companies in Table 9.1 exhibit the

downside risk associated with negative skewness. The others, American Express

and Microsoft, exhibit the upside potential associated with positive skewness.

Table 9.1 Statistical estimates for the Dow Jones 30 industrial firms (January 1990–December

2009)

Monthly statistical estimates

Company name n Mean
Standard
deviation Skewness Kurtosis

Coefficient of
variation

1 3M Co. 120 0.0019 0.0665 �0.4896 0.549 35.762

2 Alcoa Inc. 120 �0.0211 0.1765 �3.0010 13.522 �8.373

3 American Express 120 �0.0094 0.1230 0.1616 4.211 �13.032

4 AT&T 120 0.0055 0.0616 �1.0458 0.834 11.191

5 Bank of America 120 �0.0370 0.2225 �2.5486 10.608 �6.021

6 Boeing 120 �0.0036 0.0965 �1.0373 1.596 �26.544

7 Caterpillar Inc 120 0.0029 0.1279 �1.9207 6.756 43.496

8 Chevron 120 0.0087 0.0624 �0.7818 0.619 7.168

9 Cisco 120 �0.0010 0.0892 �0.6297 0.612 �86.495

10 Coca-Cola 120 0.0093 0.0510 �0.9161 3.869 5.483

11 E.I. du Pont de Nemours 120 0.0024 0.0872 �0.7714 1.938 36.005

12 Exxon 120 0.0048 0.0520 �0.4104 �0.067 10.810

13 General Electric 120 �0.0135 0.1126 �1.0687 2.134 �8.322

14 Hewlett-Packard 120 0.0044 0.0752 �1.0900 1.269 17.139

15 Home Depot 120 �0.0028 0.0768 �0.3816 0.091 �27.759

16 Intel 120 �0.0041 0.0855 �0.9769 0.878 �20.822

17 IBM 120 0.0093 0.0603 �1.6744 5.742 6.494

18 Johnson & Johnson 120 0.0019 0.0443 �0.9569 1.848 22.763

19 JPMorgan and Chase 120 �0.0016 0.0991 �0.6226 0.947 �61.561

20 Kraft Foods 120 0.0030 0.0623 �1.2024 2.413 20.474

21 McDonald’s 120 0.0173 0.0461 �0.2755 �0.159 2.667

22 Merck 120 0.0086 0.0778 �0.2400 0.473 9.049

23 Microsoft 120 0.0058 0.0802 0.0533 0.482 13.939

24 Pfizer 120 0.0012 0.0638 �0.1491 0.028 51.410

25 Procter and Gamble 120 0.0051 0.0489 �0.3265 0.172 9.660

26 Traveler’s Companies Inc. 120 0.0072 0.0537 �0.1024 1.817 7.451

27 United Technologies

Group

120 0.0094 0.0616 �0.4312 �0.035 6.564

28 Verizon 120 0.0095 0.0571 �0.0976 �0.544 5.986

29 Walmart 120 0.0051 0.0473 �0.3584 1.539 9.333

30 Walt Disney 120 0.0109 0.0700 �0.3271 0.961 6.431

Mean 0.0013 0.0813 �0.7873 2.170 2.678

9 This is so because a positively skewed distribution has more observations above the mode and a

negatively skewed distribution more observations below.
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The kurtosis column shows that 26 companies here have a leptokurtic distribu-

tion (kurtosis ratio > 0)10; these companies have more monthly returns

concentrated near the mean. Only four companies have a distribution close to

platykurtic (kurtosis ratio < 0): Exxon with SCK0 ¼ �.067, McDonald’s with

SCK0 ¼ �.159, United Technologies Corp with SCK0 ¼ �.035, and Verizon

with SCK0 ¼ �.544.

The last column, showing the coefficient of variation, enables us to compare

monthly returns for the different companies.Remember that the coefficientof variation

is a unitless figure that expresses the standard deviation as a percentage of the mean.

High coefficients of variation showvolatile monthly returns. The companies that show

high volatility are Pfizer, 3M,Caterpillar, and E.I du Pont deNemours. The companies

with the lowest volatility are Cisco, JPMorgan Chase, Home Depot, and Boeing.

9.9 Summary

In this chapter, we discussed five continuous distributions. Four of these – Student’s

t distribution and the exponential, F, and w2 distributions – are closely related to the
normal distribution discussed in Chap. 7. These five distributions, along with

the normal and lognormal distributions, are the primary distributions we will use

throughout the rest of the text for conducting statistical analyses such as determi-

nation of confidence intervals, hypothesis testing, and goodness-of-fit tests.

In Chaps. 11, 12, 13, 14, and 15, we will begin to apply these distributions in

alternative statistical analyses.

Questions and Problems

1. Briefly discuss the cumulative distribution function of the uniform distribution

presented in Fig. 9.2.

2. Briefly discuss the relationship between the Poisson distribution and the expo-

nential distribution.

3. X is normally distributed, and the sample variance s2 ¼ 20 is calculated from

20 observations. Calculate E(s2) and Var(s2).
4. W is a normally distributed random variable with mean 0 and variance 1, and V

is a w2-distributed random variable with degrees of freedom (n � 1). How can

both t and F distributions be defined in terms of the variables W and V?
5. Briefly discuss how F statistics can be used to test the difference between two

sample variances.

6. Briefly discuss how mean, variance, skewness, kurtosis, and the coefficient of

variation can be used to analyze stock rates of return.

10We use Eq. 9.26 to calculate the coefficient of kurtosis.
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7. Suppose a random variable X can take on only values in the range from 2 to 10

and that the probability that the variable will assume any value within any

interval in this range is the same as the probability that X will assume another

value in another interval of similar width in the range. What is the distribution

of X? Draw the probability density function for X.
8. Use the information given in question 7 to find P(3 � X � 7).

9. Use the information given in question 7 to find P(X � 8).

10. Use the information given in question 7 to find P(X < 2 or X > 10).

11. Draw the cumulative distribution function for the distribution given in

question 7.

12. Suppose a random variable X is best described by a uniform distribution with

a ¼ 8 and b ¼ 20.

(a) Find f(x).
(b) Find F(x).
(c) Find the mean and variance of X.

13. Suppose a random variable Y is best described by a uniform distribution with

a ¼ 3 and b ¼ 32.

(a) Find f(y).
(b) Find F(y).
(c) Find the mean and variance of Y.

14. A very observant art thief (who should probably be teaching statistics instead)

notices that the frequency of security guards passing by a museum is uniformly

distributed between 15 and 60 min. Therefore, if X denotes the time (in

minutes) before the guard passes by, the probability density function of X is

fxðxÞ ¼ 1=ð60� 15Þ for 15<x<60

0 for all other values of x

�

(a) Draw the probability density function.

(b) Find and draw the cumulative distribution function.

15. Use the information given in question 14.

(a) Find the probability that the guard passes by within 35 min of the thief’s

arrival.

(b) Find the probability that the guard does not pass by within 30 min.

(c) Find the probability that the guard passes by between 30 and 45 min after

the thief’s arrival.

16. An art dealer at an auction believes that the bid on a certain painting will be a

uniformly distributed random variable between $500 and $2,000.

(a) What is the probability density function for this random variable?

(b) Find the probability that the painting will sell for less than $675.

(c) Find the probability that the painting will sell for more than $1,000.
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17. Suppose X has an exponential distribution with l ¼ 5. Find the following

probabilities:

(a) P(X > 4)

(b) P(X > .7)

(c) P(X > .50)

18. Suppose X has an exponential distribution with l ¼ 4. Find the following

probabilities:

(a) P(X � .3)

(b) P(X � .5)

(c) P(X � 1.6)

19. Suppose X has an exponential distribution with l ¼ 1
3
. Find the following

probabilities:

(a) P(3 � X � 5)

(b) P(5 � X � 10)

(c) P(2 � X � 1)

20. Suppose the random variable X is best approximated by an exponential distri-

bution with l ¼ 8. Find the mean and the variance of X.
21. Suppose the random variable Y is best approximated by an exponential distri-

bution with l ¼ 3. Find the mean and the variance of Y.
22. Briefly compare the normal distribution discussed in Chap. 7 with the t distri-

bution discussed in this chapter.

23. Find ta for the following:

(a) a ¼ .05 and v ¼ 10

(b) a ¼ .025 and v ¼ 4

(c) a ¼ .10 and v ¼ 7

24. Find the value t0 such that

(a) P(t � t0) ¼ .025, where v ¼ 6

(b) P(t � t0) ¼ .05, where v ¼ 12

(c) P(t � t0) ¼ .10, where v ¼ 9

25. Find the value t0 such that

(a) P(t � t0) ¼ .10, where v ¼ 25

(b) P(t � t0) ¼ .025, where v ¼ 14

(c) P(t � t0) ¼ .01, where v ¼ 17

26. Find the following probabilities for the t distributions.

(a) P(t > 3.078) if v ¼ 1

(b) P(t < 1.943) if v ¼ 6

(c) P(t > 2.492) if v ¼ 24
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27. Find the following probabilities for the t distributions.

(a) P(t > 1.734) if v ¼ 18

(b) P(t > 1.943) if v ¼ 6

(c) P(t < 1.645) if v ¼ 1
28. Find the following w2a;n values.

(a) a ¼ .05 and v ¼ 25

(b) a ¼ .025 and v ¼ 5

(c) a ¼ .10 and v ¼ 50

(d) a ¼ .01 and v ¼ 60

29. Find the following w2a;n values.

(a) a ¼ .025 and v ¼ 30

(b) a ¼ .0l and v ¼ 70

(c) a ¼ .10 and v ¼ 10

(d) a ¼ .01 and v ¼ 20

30. Find the following probabilities.

(a) P(w2 > 10.8564) when v ¼ 24

(b) P(w2 < 10.8564) when v ¼ 24

(c) P(w2 < 48.7576) when v ¼ 70

(d) P(w2 > 59.1963) when v ¼ 90

31. Find the following probabilities.

(a) P(w2 � 3.84146) when v ¼ 1

(b) P(w2 � 15.9871) when v ¼ 10

(c) P(w2 < 140.169) when v ¼ 100

(d) P(w2 > 1.61031) when v ¼ 5

32. Find the following Fn1;n2;a values.

(a) v1 ¼ 8, v2 ¼ 10, and a ¼ .01

(b) v1 ¼ 3, v2 ¼ 11, and a ¼ .005

(c) v1 ¼ 12, v2 ¼ 9, and a ¼ .05

(d) v1 ¼ 24, v2 ¼ 19, and a ¼ .025

33. Find the following Fn1;n2;a values.

(a) v1 ¼ 10, v2 ¼ 10, and a ¼ .05

(b) v1 ¼ 15, v2 ¼ 3, and a ¼ .01

(c) v1 ¼ 12, v2 ¼ 15, and a ¼ .025

(d) v1 ¼ 20, v2 ¼ 10, and a ¼ .005

34. Find the probabilities, given v1 and v2 as shown.

(a) v1 ¼ l and v2 ¼ 3; P(F > 17.44)

(b) v1 ¼ 3 and v2 ¼ 1; P(F > 864.2)

408 9 Other Continuous Distributions and Moments for Distributions



(c) v1 ¼ 3 and v2 ¼ 1; P(F < 215.7)

(d) v1 ¼ 30 and v2 ¼ 12; P(F < 4.33)

35. Using the MINITAB program, find the probabilities, given v1 and v2 as shown.

(a) v1 ¼ 120 and v2 ¼ 120; P(F > 1.35)

(b) v1 ¼ 00 and v2 ¼ 1; P(F > 1.00)

(c) v1 ¼ 6 and v2 ¼ 17; P(F < 3.28)

(d) v1 ¼ 3 and v2 ¼ 23; P(F > 4.76)

36. Find the probability that an exponentially distributed random variable X with

mean 1/l ¼ 8 will take on the values:

(a) Between 2 and 7

(b) Less than 9

(c) Greater than 6

(d) Between 1 and 15

37. Suppose the lifetime of a television picture tube is distributed exponentially

with a standard deviation of 1,400 h. Find the probability that the tube will last:

(a) More than 3,000 h

(b) Less than 1,000 h

(c) Between 1,000 and 2,000 h

38. Suppose the time you wait at a bank is exponentially distributed with mean 1/

l ¼ 12 min. What is the probability that you will wait between 10 and 20 min?

39. Suppose the length of time people wait at a fast-food restaurant is distributed

exponentially with a mean of 1/7 min. Use MINITAB to answer the following

questions.

(a) What percentage of people will be served within 4 min?

(b) What percentage of people will be served between 3 and 8 min after they

arrive?

(c) What percentage of people will wait more than 9 min?

40. Suppose the length of time a student waits to register for courses is distributed

exponentially with a mean of 1/15 min.

(a) What percentage of students will register within 10 min?

(b) What percentage of students will register after waiting between 10 and 20 min?

(c) What percentage of students will wait more than 20 min to register?

41. Suppose a random variable is distributed as an x2 distribution with n degrees of
freedom. Consider the probability P(x2 � 9). Explain the relationship between

the probability and the degrees of freedom.

42. Suppose a random variable is distributed as Student’s t distribution with

(n � 1) degrees of freedom. Consider the probability P(t � .7). Explain the

relationship between the probability and the degrees of freedom.
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43. The incomes of families in a town are assumed to be uniformly distributed

between $15,000 and $85,000. What is the probability that a randomly selected

family will have an income above $40,000?

44. At an antiques auction, the winning bids were found to be uniformly distributed

between $500 and $2,500. What is the probability that a winning bid was less

than $1,000? What is the probability that a winning bid was between $750 and

$1,500?

45. The manager of a department store notices that the amount of time a customer

must wait before being helped is distributed uniformly between 1 and 4 min.

Find the mean and variance of the time a customer must wait to be helped.

46. A quality control expert for the Healthy Time Cereal Company notices that in a

16-oz package of cereal, the amount in the box is uniformly distributed between

15.3 and 17.1 oz. Find the mean and standard deviation for the weight of this

cereal in a package of cereal.

47. The shelf life of hearing aid batteries is found to be approximated by an

exponential distribution with a mean of 1/12 day. What fraction of the batteries

would be expected to have a shelf life greater than 9 days?

48. A computer programmer has decided to use the exponential distribution to

evaluate the reliability of a computer program. After 10 programming errors

were found, the time (measured in days) to find the next error was determined

to be exponentially distributed with a l ¼ .25.

(a) Graph this distribution.

(b) Find the mean time required to find the 11th error.

49. Use the information given in question 48 to find the probability that it will take

more than 5 days to find the 11th error. Find the probability that it will take

between 3 and 10 days to find the 11th error.

50. An advertising executive believes that the length of time a television viewer

can recall a commercial is distributed exponentially with a mean of .25 days.

Find how long it will take for 75 % of the viewing audience to forget the

commercial.

51. Use the information given in question 50 to find the proportion of viewers who

will be able to recall the commercial after 7 days.

52. An investment advisor believes that the rate of return for Horizon Company’s

stock is uniformly distributed between 3 % and 12 %. Find the probability that

the return will be greater than 5 %. Find the probability that the return will be

between 6 % and 8 %.

53. The mean life of a computer’s hard disk is found to be exponentially distributed

with a mean of 12,000 h. Find the proportion of hard disks that will have a life

greater than 20,000 h.

54. Suppose the life of a car battery is assumed to be uniformly distributed between

3.9 and 7.3 years. Find the mean and variance of the life of a car battery.

55. Use the information given in question 54 to find the probability that the life of

the car battery will be greater than 5 years. Find the probability that the life of

the battery will be between 4 and 6 years.
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56. The chief financial officer at Venture Corporation believes that an investment

in a new project will have a cash flow in year one that is uniformly distributed

between $1 million and $10 million. What is the probability that the cash flow

in year one will be greater than $1.7 million?

57. A hospital collects data on the number of emergency room patients in during a

certain period. It is estimated that in an hour, the average number of emergency

room patients to arrive is 1.2. If the time between two consecutive arrivals of

patients follows an exponential distribution, what is the probability that a

patient will show up in the next hour?

58. The campus bus at Haverford College is scheduled to arrive at the business

school at 8:00 a.m. Usually, the bus arrives at the bus stop during the interval

7:56–8:03. Assume that the arrival time follows a uniform distribution.

(a) What is the probability that the bus arrives at the business school before

8:00?

(b) What is the average arrival time?

(c) What is the standard deviation of arrival time?

59. A gas station’s owner found that about two cars come into the station every

minute. If the arrival time follows an exponential distribution, what is the

probability that the next car will arrive in 1.5 min?

60. A college professor gives a standardized test to her students every semester.

She finds that the students’ grades follow a uniform distribution with 100 points

as the maximum and 65 points as the minimum.

(a) Find the mean score.

(b) Compute the standard deviation of the score.

(c) If the passing grade is 70, what percentage of students will fail the course?

61. Suppose the weight of a football team is uniformly distributed with a minimum

weight of 175 lb and a maximum weight of 285 lb.

(a) Find the mean weight of the team.

(b) Compute the standard deviation of the weight.

(c) Find the percentage of players with a weight of less than 195 lb.

62. Briefly explain how the mean, standard deviation, coefficient of variation, and

skewness can be used to analyze the returns of IBM and Boeing in Table 9.1.

63. A bank manager finds that about six customers enter the bank every 5 min. If

the customer arrival time follows an exponential distribution, what is the

probability that the next customer will arrive in 2 min?

64. Suppose the life of a steel-belted radial tire is uniformly distributed between

30,000 and 45,000 miles.

(a) Find the mean tire life.

(b) Find the standard deviation of tire life.

(c) What percentage of these tires will have a life of more than 40,000 miles?

65. Briefly discuss the relationship among t, w2, and F distributions.
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66. Given v1 ¼ 5 and a ¼ .05, find v2 for the following F values.

(a) 5.05

(b) 3.33

(c) 2.53

67. In their study, Vardeman and Ray (Technometrics, May 1985, pp. 145–150)

found that the number of accidents per hour at an industrial plant is exponen-

tially distributed with a mean l ¼ .5. Use the formula f ðtÞ ¼ le�lt to determine

each of the following.

(a) f(1)
(b) f(4)
(c) E(t)

68. Suppose there is a sample of 30 items drawn from a normal population. Find the

probability that the sample variance exceeds 36.6869.

69. Suppose there are two independent normal populations with population

variances s2
1 ¼ 4.5 and s2

2 ¼ 2.5, respectively. Two random samples of

sizes s21 and s22, respectively, are drawn from the two normal populations

with sample variances s21 and s22, respectively.

(a) What is the probability that the ratio s21/s
2
2 is greater than 4.230?

(b) What is the probability that the ratio s21/s
2
2 is greater than 6.066?

(c) What is the probability that the ratio s21/s
2
2 is less than 0.5263?

70. A random sample of size 7 is drawn from a population with population variance

s2 ¼ 2.5.

(a) Determine the probability that the variance of the sample is greater than

7.008.

(b) Determine the probability that the population mean is less than 0.3634.

71. The following random sample is taken from a normal population.

94 72 43 69 28 63 93 54 77 58

(a) If the population man is m ¼ 60, what is t statistics for the sample?

(b) If the population man is m ¼ 55, what is t statistics for the sample?

(c) What is the degree of freedom of the t statistics in (a)?

Project II: Project for Probability and Important Distributions

1. Use rates of return data presented in Table 2.4 to do the following:

(a) Use either MINITAB or Microsoft Excel to calculate:

1. Mean

2. Standard deviation

(continued)
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Project II: (continued)

3. Coefficient of variation

4. Skewness

5. Kurtosis

(b) Analyze the statistical results of (a).

(c) Use both the standard deviation for JNJ and Merck calculated in (a)

and the following information to calculate the call option and put

option values for JNJ and Merck:

S ¼ $50 X ¼ 45 r ¼ 6% T ¼ :6

2. Use MINITAB and the statistical estimates for JNJ and Merck obtained in

(a) to calculate the mean and the variance of a portfolio with the following

weights:

1. w1 ¼ .4 and w2 ¼ .6

2. w1 ¼ .2 and w2 ¼ .8

3. w1 ¼ .3 and w2 ¼ .7

4. w1 ¼ .1 and w2 ¼ .9

3. Download monthly adjusted close price data of JNJ from Yahoo Finance

during the period from January 2005 to current month:

(a) Calculate monthly rates of return of JNJ.

(b) Redo 1a–c.

Appendix 1: Derivation of the Mean and Variance for a Uniform

Distribution

On the basis of the definitions of E(X) and E(X2) for a continuous variable given in

Appendix 1 of Chap. 7, we can derive the mean and the variance of a uniform

distribution as follows. First, substituting Eq. 9.1 into Eq. 7.22, we get

EðXÞ ¼
ðb
a

xf ðxÞdx ¼
ðb
a

x

b� a
dx

¼ 1

b� a
� x

2

2






b

a

¼ b2 � a2

2ðb� aÞ ¼
aþ b

2
ð9:32Þ

Then, substituting Eq. 9.1 into Eq. 7.25 yields
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E X2
	 
 ¼ ðb

a

x2f ðxÞdx ¼ 1

b� a

ðb
a

x2dx ¼ 1

b� a
� x

3

3






b

a

¼ b3 � a3

3ðb� aÞ ¼
b� að Þ b2 þ abþ a2ð Þ

3ðb� aÞ ¼ b2 þ abþ a2

3
ð9:33Þ

Finally, substituting Eqs. 9.32 and 9.33 into the definition of variance given in

Eq. 7.24, we obtain

s2X ¼E X2
	 
� EðXÞ½ �2 ¼ b2 þ abþ a2

3
� aþ b

2

� �2

¼ 4b2 þ 4abþ 4a2 � 3b2 � 6ab� 3a2

12
¼ b� að Þ2

12
ð9:34Þ

This implies that sX ¼ ðb� aÞ ffiffiffiffiffi
12

p�
.

The following example shows how the formulas for both the mean and the

variance of a continuous variable, as discussed in Appendix 1 of Chap. 7, can be

applied for a uniform distribution.

Example 9.4 Calculating the Mean and Variance of a Uniform Distribution. Let us

look at an example of a continuous random variable in terms of the uniform

distribution. Consider the density function of Eq. 9.35 as depicted in Fig. 9.12:

f ðxÞ ¼ 1:55� :06x if 20 � x � 25

0 otherwise

�
(9.35)

For every value of x between 20 and 25, we get f(x) > 0, and for every x value
outside of this range, we have f(x) ¼ 0. Therefore, for every x, we have f(x) � 0.

Furthermore, the area under the curve equals 1:

ð25
20

ð1:55� :06xÞdx ¼1:55x






25

20

� :06x2

2






25

20

¼ 1

This confirms that f(x) is a density function. Now, let us calculate the expected

value and variance of X:

EðXÞ ¼
ð25
20

xf ðxÞdx ¼
ð25
20

xð1:55� :06xÞdx

¼ 1:55x2

2






25

20

�:06x2

3






25

20

¼ 174:375� 152:5 ¼ 21:875
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Next, let us calculate E(X2):

E X2
	 
 ¼ ð25

20

x2ð1:55� :06xÞdx

¼ 1:55x3

3






25

20

� :06x4

4






25

20

¼ 3939:583� 3459:375 ¼ 480:208

From this result, we obtain

VðXÞ ¼ E X2
	 
� EXð Þ2 ¼ 480:208� 21:875ð Þ2 ¼ 1:692

To find the probability, such as P(22 � X � 24.5), we calculate

Pð22 � X � 24:5Þ ¼
ð24:5
22

f ðxÞdx ¼
ð24:5
22

ð1:55� :06xÞ

¼ 1:55x






24:5

22

� :06x2

2






24:5

22

¼ 3:875� 3:4875 ¼ :3875

Appendix 2: Derivation of the Exponential Density Function

The cumulative distribution function (CDF) for the first event to occur in time

interval t can be written as

PðT � tÞ ¼ Pðwait until next arrival � tÞ
¼ Pðat least one arrival in time tÞ
¼ 1� Pðnon-arrival in time tÞ ð9:36Þ

Fig. 9.12 The density

function f(x)
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where T is the random variable of which t is a specific value. P(non-arrival in time t)
can be obtained by letting x ¼ 0 in the Poisson function as defined in Eq. 6.16. We

obtain P(non-arrival in time interval [0, t]) as

f ð0Þ ¼ PðT � tÞ ¼ ltð Þ0e�lt

0!
¼e�lt for t � 0

¼0 for t<0 ð9:37Þ

where l denotes the mean rate at which events occur over time. Substituting

Eq. 9.37 into Eq. 9.36, we obtain the CDF as

FðtÞ ¼ PðT � tÞ ¼ 1� e�lt (9.38)

If we differentiate F(t) with respect to t, we obtain the PDF as11

f ðtÞ ¼le�lt; t � 0

¼0; t<0 ð9:39Þ

The probability that the waiting time lies between a and b is

PðaÞÞ ¼
ðb
a

le�lt (9.40)

From the definition of E(t) in Appendix 1 of Chap. 7, we obtain

EðTÞ ¼
ð1
�1

tf ðtÞdt ¼ l
ð1
0

te�ltdt

The integral can be evaluated by parts. Let U ¼ t and dn ¼ e�lt dt, so dU ¼ dt
and n ¼ �e� lt/l. Then

EðTÞ ¼l �te�lt=l
	 
1

0
þ 1

l

ð1
0

e�ltdt

� �

¼l ð�0þ 0Þ þ 1

l2
ð�0þ 1Þ

� �
¼ 1

l

11 This is because

dFðtÞ
dt

¼ d 1� e�lt
	 


dt
¼ 0� dð�ltÞ

dt

� �
e�lt ¼ le�lt
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Similarly, we can prove that

VarðTÞ ¼ 1

l2
(9.41)

This appendix shows how a mean value formula of a continuous variable, which

was discussed in Appendix 1 of Chap. 7, can be applied to an exponential

distribution.

Example 9.5 The Average Time Required to Find the Next Computer Program
Error. In finding and correcting errors in a computer program (debugging) and

determining the program’s reliability, Schick and others have noted the importance

of the distribution of the time until the next program error is found. The cumulative

exponential probability function of Eq. 9.37 is most useful in analyzing this

problem.

By using the computer debugging data supplied by the US Navy, Schick (1974,

Decision Sciences, Vol. 5, pp. 529–544) estimated the value of l. After 26 of 31

program errors were found, Schick estimated l to be .042. Accordingly, 1/l ¼ 23.8

days. This means that the average time it would take to find 1 of the remaining

errors (the 27th error) would be about 24 days. From this information, we can

estimate, for example, that the probability of taking 50 or more days to find the next

error is

PðT � 50Þ ¼ e�ð:042Þð50Þ ¼ e�2:1 ¼ :1125:

The second equality is obtained by using Table A7 in Appendix A.

Example 9.6 The Probability of Truck Arrivals. Rutgers Trucking Company had

15,600 trucks to unload at the receiving warehouse during the last calendar year.

The warehouse was open from 8 a.m. to 8 p.m. each weekday. There was no

noticeable pattern of truck arrivals each day. It is known that approximately five

trucks arrived to unload cargo each hour. What is the probability that on September

20, 1991, the first truck arrived between 8:15 and 8:30 a.m.?

To use exponential distribution to solve this problem, we first use a time interval

of 15 min (8:15–8:30) for which l ¼ (5/60)(15) ¼ 1.25.

Substituting l ¼ 1.25, a ¼ 1, and b ¼ 2 into Eq. 9.40,12 we obtain the proba-

bility that the first truck arrived between 8:15 and 8:30 a.m.:

Pð1<T<2Þ ¼
ð2
1

e�1:25tð1:25dtÞ ¼ �e�1:25t






2

1

¼ �e�2:5 þ e�1:25 ¼ :2

12We regard 15 min as 1 time unit that can be expressed as a time interval between a ¼ 1 and

b ¼ 2.
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Appendix 3: The Relationship Between the Moment About

the Origin and the Moment About the Mean

Let k ¼ 1 in Eq. 9.22. Then

m1 ¼ E X � m01ð Þ ¼ EðXÞ � m01 ¼ 0

This implies that the first moment about the population mean is zero.

Alternatively, if we let k ¼ 2 in Eq. 9.22 and let m1 ¼ m1, we obtain

m2 ¼ EðX � m01

2 ¼ E X2 � 2Xm01 þ m01

	 

¼ E X2

	 
� 2m01EðXÞ þ m021 ¼ m02 � m021 ð9:42Þ

where m02 and m01 are second and first moments, respectively. Equation 9.42 is

identical to Eq. 7.24 in Appendix 1 of Chap. 7. It is a shortcut formula to calculate

variance.

Now, if we let k ¼ 3 in Eq. 9.23 and substitute m1 ¼ m01, we obtain

m3 ¼E X � m01
	 
3 ¼ E X3 � 3X2m01 þ 3Xm021 � m031

	 

¼EðX3Þ � 3m01EðX2Þ þ 3m021 EðXÞ � m031
¼m03 � 3m01m

0
2 þ 2m031

(9.43)

wherem01 andm02 are defined in Eq. 9.42 andm03 is the third moment about the origin.

Finally, letting k ¼ 4 in Eq. 9.22 and substituting m1 ¼ m1, we obtain

m4 ¼ E X � m01
	 
4

¼ E X4 � 4X3m01 þ 6X2m021 � 4EðXÞm031 þ m041
	 


¼ E X4
	 
� 4E X3

	 

m01 þ 6E X2

	 

m021 � 4EðXÞm031 þ m041

¼ m04 � 4m03m
0
1 þ 6m02m

02
1 � 3m041 ð9:44Þ

where m01, m02, and m03 have been defined in Eq. 9.43 and m04 is the fourth moment

about the origin.

In Appendix 4, Eqs. 9.42, 9.43, and 9.44 will be used to derive variance,

skewness, and kurtosis of the lognormal distribution.

Appendix 4: Derivations of Mean, Variance, Skewness,

and Kurtosis for the Lognormal Distribution

Following Aitchison and Brown (1963), we express the moments about the origin

for the lognormal distribution as

418 9 Other Continuous Distributions and Moments for Distributions

http://dx.doi.org/10.1007/978-1-4614-5897-5_7


m0k ¼ ekmþ1=2k2s2 ; k ¼ 1; 2; � � � (9.45)

In accordance with definitions given in Appendix 3, the mean, variance skew-

ness, and kurtosis of a lognormal distribution can be derived as follows.

Mean

Substituting k ¼ 1 into Eq. 9.45 yields

m01 ¼ emþ1=2s2

This is Eq. 7.6.

Variance

Substitutingm02 ¼ e2mþ2s2 andm01 ¼ emþ1=2s2 into Eq. 9.42 in Appendix 3, we obtain

e2mþ2s2 � e2mþs2 ¼ e2mþs2 es
2 � 1

� �

This is Eq. 7.7.

Skewness

Substituting m01, m02, and m03 ¼ e3mþ9=2s2 into Eq. 9.43 gives

m3 ¼ m01ð Þ3 e3s
2 � 3es

2 þ 2
h i

¼ m01ð Þ3 e3s
2 � 3e2s

2 þ 3es
2 � 1

� �
þ 3 e2s

2 � 2es
2 þ 1

� �h i
¼ m01ð Þ3 �6 þ 3�4

	 

where �2 ¼ es2 – 1. This is Eq. 9.28.
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Kurtosis

Substituting m01, m02, m03, and m04 ¼ e3mþ8s2 into Eq. 9.44, we get

m4 ¼ m01ð Þ4 e6s
2 � 4e3s

2 þ 6es
2 � 3

h i

By considerable mathematical rearrangement of terms, it can be shown that

m4 ¼ m01ð Þ4 �12 þ 6�10 þ 15�8 þ 16�6 þ 3�4
� �

where �2 ¼ es
2 � 1. This is Eq. 9.29.

Appendix 5: Noncentral x2 and the Option Pricing Model

From Eq. 9.6, we know that Y ¼Pn
i¼1

Xi�m
sx

� �2
is distributed as w2 with n degree of

freedom. This is a central w2 distribution. It can be shown that Y0 ¼Pn
i¼1

X2
i is

distributed as noncentral w2 with n degree of freedom and a noncentral parameter13

l ¼ 1

2

X
m2i �

If m ¼ 0, the distribution of Y0 reduces to the central w2 distribution.
The option pricing model defined in Appendix 2 of Chap. 7 assumed that the

variance of stock rate of return (s2) is constant. If the variance of stock rate of return
is a function of stock price per share, s2Sb�2, then the option pricing model defined

in Eq. 7.35 can be generalized as14

C ¼ S 1� w2 2n; 2þ 2

2� b
; 2m

� �� �
� Xe�rðT�tÞ w2 2m;

2

b� 2
; 2n

� �� �
ðb<2Þ (9.46)

13 See Robert V.H. Allen T.C.: Introduction to Mathematical Statistics 4th Edition, pp. 288–290.

Macmillan, New York, (1978)
14 The derivation of this formula can be found in Mark S.: Computing the constant elasticity of

variance option pricing formula. J. Finance. 44, 211–220 (1989)
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C ¼ S 1� w2 2m;
2

2� b
; 2n

� �� �
� Xe�rðT�tÞ w2 2n; 2þ 2

b� 2
; 2m

� �� �
ððb<2Þ (9.47)

where T ¼ time of expiration of option, t ¼ current time, and r ¼ risk-free rate.

w2 (W, V, l) is the cumulative noncentral chi-square distribution function withW, V,
and, l being the upper limit of the integral, degree of freedom, and noncentrality,

respectively. In addition m, n, and K can be defined as

m ¼ KS2�beð2�bÞmðT�tÞ

n ¼ KS2�b

K ¼ 2m
s2 2� bð Þ eð2�bÞmðT�tÞ � 1ð Þ (9.48)

Now, we discuss three possible special cases associated with Eqs. 9.46 and 9.47.

(a) If b ¼ 2, both m and n approach infinity. Then it can be shown that both

Eqs. 9.46 and 9.47 reduce to the well-known Black–Scholes formula as defined

in Appendices 2 and 3 of Chap. 7.

(b) If b ¼ 1, it can be shown that Eqs. 9.46 and 9.47 reduce to

C ¼ S� Xe�rðT�tÞ
� �

N y1ð Þ þ Sþ Xe�rðT�tÞ
� �

N y2ð Þ þ n n y1ð Þ � n y2ð Þ½ � (9.49)

where

n ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2rðT�tÞ

2r

r

y1 ¼ S� Xe�rðT�tÞ

n

y2 ¼�S� Xe�rðT�tÞ

n

N(y1) and N(y2) ¼ cumulative standardized normal distribution function in

terms of y1 and y2, respectively.
n(y1) and n(y2) ¼ standardized normal density function in terms of y1 and y2,
respectively.

(c) If b ¼ 0, it can be shown that Eqs. 9.46 and 9.47 reduce to

C ¼ SN qð4Þ½ � � Xe�rðT�tÞN qð0Þ½ � (9.50)
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where

qðwÞ¼
1þhðh�1Þ wþ2y

ðwþyÞ2
 !

�hðh�1Þð2�hð1�3hÞ ðwþ2yÞ2
2ðwþyÞ4
 !

� z

ðwþyÞ
� �h

2h2
wþ2y

ðwþyÞ2
 !

ð1�ð1�hÞð1�3hÞ wþ2y

ðwþyÞ2
 !( )1

2

hðwÞ ¼ 1� 2

3
wþ yð Þ wþ 3yð Þ wþ 2yð Þ�2

y ¼ 4rS

s2 1� e�rðT�tÞð Þ and z ¼ 4rX

s2 e�rðT�tÞ � 1ð Þ

The elasticity of variance (s2Sb�2) with respect to stock price per share S is

�s ¼
@ s2Sb�2
	 


@S

� �
S

s2Sb�2

� �
¼ b� 2ð Þs2Sb�2Þ

S

� �
S

s2Sb�2

� �
¼ b� 2 (9.51)

This implies that the option pricing model defined in Eqs. 9.46 and 9.47 is a

constant elasticity of variance (CEV) type of OPM.

The CEV type of option pricing model can be reduced to the following special

models15:

(a) b ¼ 2, Eqs. 9.46 and 9.47 reduce to the Black–Scholes model.

(b) b ¼ 1, Eqs. 9.46 and 9.47 reduce to the absolute model as defined in Eq. 9.49.

(c) b ¼ 0, Eqs. 9.46 and 9.47 reduce to the square root model as defined in

Eq. 9.50.

From Appendix 2 of Chap. 6, Appendices 2 and 3 of Chap. 7 and this appendix,

we can conclude that the binomial, normal, lognormal, and noncentral

w2 distributions are basic statistical distributions needed for understanding alterna-

tive option pricing models.

15 See Beckers S.: The constant elasticity of variance model and its implications for option pricing.

J. Finance. 35, 661–673 (1980)
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