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  Abstract   The origin and phenotype of stem cells in human prostate cancer remains 
a subject of much conjecture. In this scenario, CD133 has been successfully used as 
a stem cell marker in both normal prostate and prostate cancer. However, cancer 
stem cells have been identi fi ed without the use of this marker, opening up the pos-
sibility of a CD133 negative cancer stem cell. In this chapter, we review the current 
literature regarding prostate cancer stem cells, with speci fi c reference to the expres-
sion of CD133 as a stem cell marker to identify and purify stem cells in normal 
prostate epithelium and prostate cancer.  
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    11.1   Introduction 

 The prostate is a small extra peritoneal gland, which sits under the bladder and in 
front of the rectum. The major function of the prostate is to produce a slightly alka-
line  fl uid, which constitutes 20% of the ejaculate and contains polyamines and pro-
teins, such as prostatic acid phosphatase (PAP) and prostate-speci fi c antigen (PSA). 
It also functions as an endocrine gland, rapidly metabolizing testosterone to the 
more effective dihydrotestosterone  [  1  ] . 
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    11.1.1   Cellular Architecture of the Prostate Epithelium 

 Prostate tissue is organized as tubular-alveolar glands comprised of an epithelial 
parenchyma surrounded by  fi bromuscular stroma. The mature human prostate epi-
thelium is bilayered and is mainly composed of three kinds of cells: luminal cells, 
basal cells, and neuroendocrine cells. Terminally differentiated luminal cells, that 
is, the exocrine compartment of the prostate, are the most abundant cell type in 
normal and hyperplastic epithelium and secrete both PSA and PAP into the glandu-
lar lumen. These cells are dependent on androgens for their survival  [  2  ]  and conse-
quently express high levels of androgen receptor (AR)  [  3  ] . The relatively 
undifferentiated basal cells are in direct contact with the basement membrane, which 
separates the epithelial and the stromal compartments. They lack secretory activity, 
express low or undetectable levels of AR, and are not dependent on androgens for 
their survival  [  4  ] . Rare neuroendocrine cells (NE) are scattered throughout the basal 
layer. NE cells are terminally differentiated but androgen-insensitive  [  5  ] , and release 
neuroendocrine peptides, such as bombesin, calcitonin, and parathyroid hormone-
related peptide  [  6  ] , which support epithelial growth and viability.  

    11.1.2   Prostate Cancer 

 Prostate cancer (PCa) is the most commonly diagnosed cancer in men in the western 
world. It is generally regarded to be slow growing and originates from a pre-
neoplastic lesion termed prostate intraepithelial neoplasia (PIN)  [  7  ] . At the cellular 
level, PCa is characterized by a drastic reduction of the basal cell content (<1% of 
the cells) and a concomitant expansion of the AR +  luminal cell compartment  [  8  ] , 
which becomes highly proliferative  [  9  ] . This change in cellular composition is 
accompanied by a progressive degradation of the prostatic architecture, resulting in 
loss of the glandular structure and destruction of the basement membrane  [  10,   11  ] . 

 In the case of localized PCa, surgical removal of the prostate (radical prostatec-
tomy) is still the elected therapy and is curative in the majority of cases  [  12  ] , but is not 
without side effects. Patients with more advanced and metastatic PCa are usually 
treated with androgen ablation therapy, targeted toward the AR +  secretory luminal 
cancer cells that constitute the bulk of the tumor  [  13  ] . Although initially PCa responds 
to antiandrogens, around 25% of the cases relapse and develop castration-resistant 
prostate cancer (CRPC)  [  14  ]  with a median life expectancy of 2 years  [  15  ] .   

    11.2   Prostate Stem Cells and the Epithelial Hierarchy 

 Similar to many other epithelia in the human body, there is strong evidence that 
homeostasis of the prostate epithelium is governed by a hierarchy of cells with dif-
ferent proliferative potentials  [  16  ] . In the model originally proposed by Isaacs and 
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Coffey  [  17  ] , undifferentiated stem cells reside in the basal compartment of the prostate 
epithelium and give rise to terminally differentiated luminal cells through an ampli-
fying progeny. Observations supporting this hypothesis go back to the mid-1980s, 
where experiments of prostate regression/regeneration in castrated rats showed the 
existence of long-lived, androgen-independent cells which had the ability to recon-
stitute a fully differentiated epithelium upon androgen reintroduction  [  18,   19  ] . 
Evidence linking basal to luminal cells in the same hierarchy comes also from 
histological studies showing the presence of intermediate cells which express basal 
and luminal markers  [  20–  22  ] , suggesting that prostate epithelial cells are in a con-
tinuum of differentiation stages within a hierarchical system. In situ lineage-tracing 
studies of human prostate tissues show that all the prostate epithelial cell types have 
a common clonal origin  [  23  ]  and con fi rm a basal stem cell phenotype  [  24  ] . In the 
last decade, a solid body of evidence, using both in vitro and in vivo models, 
con fi rmed that prostate stem cells have a basal phenotype  [  25,   26  ] , possess a high 
proliferative potential  [  27  ] , can differentiate to luminal cells  [  28,   29  ] , and can recon-
stitute prostatic-like acinar structure in vivo  [  27,   30  ] . Notably, Leong and colleagues 
were able to reconstitute functional prostatic structures from a single Lin − Sca-1 + /
CD133 + /CD44 + /CD117 +  cell  [  31  ] . 

 Two independent reports however seem to contradict this hypothesis, showing 
the presence of a luminal progenitor in the mouse prostate. Castration-resistant 
Nkx3.1-expressing cells (CARNs) are rare luminal cells which (after castration) can 
self-renew in vivo and reconstitute prostatic ducts in a single cell transplantation 
experiment  [  32  ] . Moreover, lineage-tracing experiments recently showed that the 
basal and luminal compartments of the mouse prostate have independent stem cells, 
which regenerate only the compartment of origin during two consecutive rounds of 
castration/regeneration  [  33  ] . Both studies show evidence for an androgen-independent 
luminal progenitor cell that is responsible for regenerating androgen-dependent 
luminal cells, in contrast to the basal cell phenotype seen in humans (and in the 
original mouse experiment from Leong and colleagues  [  31  ] ). Although of great 
importance, these results could re fl ect a difference in the prostate biology between 
mice and humans, as all the evidence points to a single lineage for basal, luminal, 
and neuroendocrine cells in the human prostate. In fact, mouse and human prostate 
show differences at the anatomical and cellular levels: the mouse prostate is com-
posed of four distinct lobes, not recognizable in the human prostate, which is subdi-
vided into zones  [  34  ] . Moreover, the mouse prostate epithelium lacks a complete 
basal layer, with scattered basal cells intercalated by luminal cells in direct contact 
with the basement membrane  [  35  ] . 

    11.2.1   Epithelial Hierarchy in Prostate Cancer and Cancer 
Stem Cell Hypothesis 

 As discussed previously, prostate cancer is characterized by an expansion of the 
luminal cell compartment which has acquired the ability to proliferate  [  9  ] . However, 
several independent reports support the idea that a small subpopulation of aberrant 
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basal cells persist within PCa  [  36–  38  ] . As normal prostate stem cells reside within 
the basal layer, the idea emerged that rare undifferentiated basal cells within PCa 
could contain stem-like cancer cells which are able to self-renew and generate aber-
rantly differentiated cancer cells. There is now a wealth of evidence that tumors are 
hierarchically arranged, a pattern shared between leukemias  [  39,   40  ] , breast  [  41  ] , 
brain  [  42  ] , colon  [  43  ] , pancreas  [  44  ] , liver  [  45  ] , lung  [  46  ] , and endometrium  [  47  ] , 
where cancer stem cells (CSCs) have been successfully selected using the same 
markers that identify the correspondent normal stem cells. In the last few years, the 
identi fi cation of CSCs has been one of the key research topics in prostate cancer; 
however, the  fi eld is still debating the precise phenotype and origin of prostate 
CSCs. In fact, depending on the markers, the models and the kind of assay used to 
test for “stemness,” several groups have identi fi ed stem-like cells with both a basal 
and luminal origin. 

 The evidence that cancer stem cells reside in the luminal compartment comes 
from studies in transgenic mice, where luminal cells targeted with oncogenic trans-
genes were able ef fi ciently to generate tumors in mice. For example, the selective 
deletion of PTEN (frequently mutated in human cancers) and in cells expressing 
PSA  [  48  ] , cytokeratin 8  [  33  ] , or in CARNs  [  32  ] , resulted in tumor formation. 
   Moreover, Germann and colleagues identi fi ed, in an androgen-dependent human 
xenograft, a castration-resistant, partially differentiated, luminal cell type, express-
ing ALDH1A1 and NANOG and the luminal markers NKX3-1 and CK18, and low 
levels of AR  [  49  ] . These cells survived castration in a quiescent state and started 
proliferating and differentiating after androgen replacement, regenerating the 
tumor mass  [  49  ] . 

 In contrast, several independent studies using various model systems support a 
basal/undifferentiated cell origin for prostate CSCs. Normal prostate stem cells are 
long-lived, facilitating the accumulation of genetic and epigenetic mutations over 
the lifetime of an individual, while there is less opportunity for mutations to accu-
mulate in post mitotic luminal cells. In this scenario, mutated stem cells give rise to 
aberrantly differentiated luminal cells with the ability to proliferate. It is indeed pos-
sible that a continuous activation of the stem cells due to chronic in fl ammation 
signals  [  50  ]  could favor epigenetic and genetic instability,  fi rst resulting in prolif-
erative in fl ammatory atrophy (PIA), followed by PIN, and consecutively PCa. 

 From a histological point of view, metastases and high grade cancers often 
include rare cells expressing basal cell markers, such as high-molecular-weight 
cytokeratins  [  37  ] . Moreover, it has been proposed that the castrate-resistant state 
results from clonal expansion of androgen-independent cells that are present at a 
frequency of 1 per 10 5 –10 6  androgen-responsive cells  [  51  ] . 

 Con fi rmation of a putative basal cancer stem cell came from our laboratory: 
where cells selected from human PCa biopsies with a CD44 + / a  

2
  b  

1
 integrin hi /CD133 +  

phenotype were able to self-renew in vitro and differentiate to an AR + /PAP + /CK18 +  
luminal phenotype  [  52  ] . Findings from other laboratories support this idea: the 
CD44 +  population from tumor xenografts and cell lines (AR – , OCT-4 + , and BMI-1 + ) 
has enhanced proliferative potential and tumor-initiating ability in vivo compared to 
CD44 –  cells  [  53  ] . The side population, determined using Hoechst 33342 dye ef fl ux 
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and selected from primary PCa tissues, exhibits a basal phenotype and has sphere-
forming features  [  54  ] . Goldstein et al. (2010) reported that basal epithelial cells (but 
not luminal) from both mouse and human prostate were able to initiate tumors in 
immunode fi cient mice when infected with AKT, ERG, and AR overexpressing vec-
tor and recombined with fetal urogenital sinus mesenchyme  [  55,   56  ] . In a condi-
tional PTEN knockout mouse model for prostate cancer, an expansion of a basal 
stem/progenitor cell phenotype was observed after induction of PTEN deletion, with 
consequent tumor initiation  [  57  ] . More recently, it was shown that basal Lin − /Sca-
1 high /CD49f high  cells have the capacity to form tumor-like spheroids in vitro and are 
tumorigenic in vivo  [  58  ] . In this model, the stromal component (cancer-associated 
 fi broblasts) also played a crucial role in modulating the CSCs and stimulating tumor 
formation. Moreover, TRA-1-60 + /CD151 + /CD166 +  cells, isolated from human pros-
tate xenografts, expressed basal cell markers and exhibited stem-like cell character-
istics, recapitulating the cellular hierarchy of the original tumor in serial 
transplantation experiments  [  59  ] . The latter phenotype is shared with stem cells 
selected on the basis of CD133 expression from primary human tissues  [  52,   60  ] . 

 An easy argument to resolve this discrepancy between basal and luminal stem 
cell phenotype could be that different cell types can exhibit CSC properties (e.g. 
regenerative potential and fate) depending on the environment (stem cell niche), the 
model used, and the type of experiment conducted. In agreement with this hypoth-
esis is a recent paper from the Blanpain group on mouse breast stem cells, showing 
two separate lineages for myoepithelial and luminal cells in intact mammary tissue 
 [  61  ] . However, basal/myoepithelial stem cells were able to regenerate both basal 
and luminal cells, showing a greater potency and plasticity than luminal cells. 

 These observations are in accordance with a hierarchical model where a propor-
tion of the regeneration potential is maintained in partially differentiated progenitor 
cells. Under physiological conditions, these progenitor cells (transit amplifying) are 
able to proliferate and differentiate to generate luminal cells, maintaining the epi-
thelial turnover, while the stem cells remain in a quiescent state and do not need to 
be activated. The undifferentiated basal stem cells however seem to have more 
potential and are able to regenerate complete prostatic structures from even a single 
cell  [  31  ] . This hypothesis could explain also the current discrepancy observed in the 
prostate CSC  fi eld. It is possible that the genomic and phenotypic aberrancies accu-
mulate in cancer progenitor cells conferring them with partial stem cell properties, 
such as self-renewal and regeneration, while the stem cells remain dormant and 
potentially reactivate only in response to treatment  [  62  ] .   

    11.3   Prominin-1 Expression in the Prostate 

 The pentaspan membrane glycoprotein prominin-1 (CD133) is encoded (in humans) 
by the gene  PROM1  located on chromosome 4  [  63  ] . Antibodies directed against the 
glycosylated form of this protein (AC133) have been used to select cells with stem 
cell proprieties from numerous tissues and tumors (reviewed in  [  64  ] ). Using this 
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marker, Richardson and colleagues were able to enrich for cells with stem cell char-
acteristics from the  a  

2
  b  

1
 integrin hi  fraction of basal prostate epithelial cells derived 

from primary tissues  [  27  ] . These cells possessed a high in vitro proliferative poten-
tial and were able to reconstitute prostatic acini in immunocompromised mice. 
Since this key publication, numerous other groups have used CD133 to select cells 
with stem cell features from many prostate model systems. 

    11.3.1   CD133 Expression in Human and Mouse Prostate Tissues 

 In 2004, Richardson and colleagues showed for the  fi rst time that a rare subpopulation 
of CD133 +  cells was present in the basal layer of the human prostate  [  27  ] . These 
cells are randomly scattered throughout the acinus and are either found alone or 
clustered at budding regions or branching points. More recently, Missol-Kolka and 
colleagues analyzed CD133 expression in the mouse prostate,  fi nding it widely 
expressed on the luminal side of the epithelium  [  65  ] . This apparent inconsistency 
poses critical questions on the biology of CD133 in mouse and human prostate and 
on the use of antibodies speci fi c for different protein epitopes. It is important to 
remember that the most used antibodies for marking and selecting stem cells from 
many different human adult tissues are directed against the AC133 or the 293C3/
AC141 epitopes of the CD133 molecule  [  64  ] . These epitopes are located in a glyco-
sylated portion of CD133 in the second extracellular loop  [  66  ]  and seem to be par-
ticularly dependent on protein folding and glycosylation  [  67–  69  ] . Other 
human-speci fi c antibodies against the CD133 polypeptide have been developed, but 
these show a less restricted expression of CD133  [  70,   71  ] , suggesting that the cor-
rected glycosylation and protein folding of CD133 is necessary for a precise mark-
ing of the stem cells, while throughout the body, CD133 seems to be expressed in 
many cell types in addition to the adult stem cells. To clarify this discrepancy, the 
Corbeil group compared the expression of CD133 in the human prostate using two 
different antibodies: AC133 and 80B258 (against the polypeptide chain)  [  65  ] . 
Interestingly, they revealed that in the basal layer of the prostate epithelium, only a 
small subpopulation of cells was marked by the 80B258 antibody and that this pop-
ulation seemed to coincide with the stem cell population stained by the AC133 
antibody. However, the 80B258 antibody also showed positivity in a proportion of 
the luminal cells, typically with an apical membrane staining. These results mir-
rored the expression in the mouse prostate, clearly stating that CD133 expression in 
the prostate is indeed not restricted to the rare basal epithelial cells with stem cell 
features but that its expression is reacquired by terminally differentiated luminal 
cells but with a different conformation/glycosylation pattern. Understanding pre-
cisely how CD133 expression and posttranslational modi fi cations are regulated 
throughout the prostate epithelial hierarchy (discussed in Sect.  11.4 ) and, more gen-
erally, how the AC133 epitope is regulated/masked are still unanswered questions 
in this  fi eld.  
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    11.3.2   Histological Expression of CD133 in Prostate 
Cancer Tissues 

 In 2005, our laboratory published the  fi rst identi fi cation of stem-like cells in prostate 
cancer  [  52  ] . We reported that CD44 + / a  

2
  b  

1
 integrin hi /CD133 +  cells from primary 

prostate cancers had the ability to self-renew and differentiate in vitro. Although the 
 fi nal con fi rmation that these cells have tumor-initiating capacity in vivo was not 
presented at the time, this publication indeed generated a wide interest in the role of 
CD133 expression in prostate cancer. Several publications showed that CD133 
(AC133) positive cells exist within prostate cancer  [  54,   72,   73  ] ; however, the per-
centage of positive cells varied considerably between publications. Eaton and col-
leagues showed that CD133 was expressed (at low frequency, <1%) in half of the 
primary cancers tested, and its expression was increased in matched metastasis  [  73  ] . 
Miki and colleagues reported that CD133 +  cells within prostate cancer tissues lacked 
nuclear AR expression, suggesting an undifferentiated phenotype  [  72  ] . In contrast 
with these reports, Missol-Kolka and colleagues reported no CD133 expression in 
18 prostate cancer samples. This was a surprising result as, in this study, they used 
antibodies against the CD133 polypeptide chain, which has already been shown to 
be widely expressed in normal tissues  [  65  ] .   

    11.4   Regulation of CD133 Expression in the Prostate 

 The histological expression pattern of CD133 in the normal prostate suggests that 
the gene is expressed speci fi cally in basal stem cells (AC133 epitope) and, in a dif-
ferent isoform, in terminally differentiated luminal cells, while the vast majority of 
the basal and intermediate cells remain CD133 negative. This implies a very dynamic 
and tight control for CD133 expression throughout the prostate epithelial hierarchy 
(Fig.  11.1 ).  

 CD133 expression can be controlled at multiple steps including transcriptional 
regulation, alternative transcription initiation sites, alternative splicing, and post-
translational modi fi cations  [  74,   75  ] . 

 In the prostate, transcriptional regulation, together with posttranslational and 
conformational changes, seems to be essential for the correct expression pattern of 
CD133. Within basal prostate cells, CD133 mRNA is expressed at high levels only 
in rare AC133-positive cells  [  76,   77  ] , while the majority of the cells do not express 
this gene. CD133 is then reexpressed in luminal cells but in a non-AC133 reactive 
form. This dynamic transcriptional regulation  fi ts with a model of changes in the 
activation of transcription factors and chromatin remodeling around the  fi ve inde-
pendent promoters which regulate CD133 expression in a tissue-speci fi c manner, 
producing transcripts containing an alternative  fi rst exon  [  78  ] . 

 In prostate, expression is initiated by promoter P1, generating a transcript that 
includes exon 1A  [  78  ] . We have con fi rmed this result in prostate epithelial cell lines 
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(Fig.  11.2 ) by speci fi c ampli fi cation of each alternative  fi rst exon by RT-PCR. The 
transcription factors which speci fi cally regulate this promoter in prostate are still 
uncertain; however, insights can be drawn from studies conducted in other tissues. 
A strict relationship has been shown between hypoxia, hypoxia-inducible factor 
(HIF)1 a  and HIF2 a  transcription factors, and CD133 expression, although some-
times with opposite effects depending on the tissues studied  [  66,   79–  81  ] . The over-
all consensus is however that hypoxic conditions stimulate CD133 expression and 
promote the expansion of CD133-expressing cells. This is accompanied by the 
upregulation of many other stem cell features in both prostate  [  82  ]  and other tissues 
 [  80,   83–  86  ] . Iida and colleagues showed that hypoxia induces CD133 expression in 
lung cancer cells. This induction is mediated by OCT4 and SOX2, both of which are 
induced by HIF1 a  and HIF2 a , via their direct interaction with the P1 promoter 
 [  80  ] . Other studies reported the involvement of several other pathways and tran-
scription factors in regulating CD133, such as the Ras/ERK pathway  [  87  ] , the 
mTOR pathway  [  81  ] , the TGF- b  pathway (through DNA methylation)  [  88  ] , and 
AF4 transcription factor  [  89  ] . However, CD133 transcriptional activation seems to 
be extremely tissue-speci fi c, and more detailed studies on prostate and prostate can-
cer are still required.  

 Another widely reported mechanism, which regulates CD133 transcription, is 
the hypermethylation of its promoter. The CpG island present around promoters P1, 
P2, and P3 of CD133 is frequently hypermethylated in a number of normal tissues 
and tumors, inhibiting CD133 transcription  [  90–  93  ] . Although the same mechanism 
is present in some prostate cell lines  [  76  ] , this seems to be a result of culture adaptation 
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  Fig. 11.1    Schematic representation of the proposed tight regulation of CD133 throughout the 
normal prostate epithelial hierarchy       
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of these cells. In both prostate primary cultures and prostate tissues, CD133 regulation 
is independent of DNA methylation, and CD133 is almost always hypomethylated. 
The results in Fig.  11.3  clearly show that promoter-speci fi c hypermethylation of 
CD133 to be the result of cellular adaptation to serial passaging (in this case, of a 
xenografted primary tumor) (Fig.  11.3 ) and that this process is not restricted to 
CD133. We have recently demonstrated that a more dynamic regulation involving 
chromatin condensation and a switch in histone marks seems to play the major role 
in regulating CD133 transcription in the prostate. The presence of active or inactive 
chromatin marks correlated perfectly with CD133 expression in prostate cell lines, 
while treatment with histone deacetylase inhibitors induced CD133 expression both 
in prostate cell lines and primary epithelial cultures with no involvement of DNA 
methylation  [  76  ] . Interestingly, our results also indicate that the tissue-speci fi c 
choice of CD133  fi rst exon is not under the control of DNA methylation in cell 
lines. Treatment of prostate cell lines with the demethylating agent 5-Aza-2’-
deoxycytidine induced a marked reexpression of CD133 mRNA and AC133 protein 
 [  76  ] . Figure  11.2  shows that DU145 cells treated with 1  m M 5-Aza-2’-deoxycytidine 
for 96 h speci fi cally reexpressed a CD133 isoform-containing exon 1A (Fig.  11.2 ), 

  Fig. 11.2    ( a ) CD133 5’ gene structure ( top panel ) (A,B,C,D1-3, E1-4 = alternative  fi rst exons; 
P1-P5 = promoters; Ex2 = Exon 2; ORF = open reading frame) and RT-PCR strategy for speci fi c 
ampli fi cation of the alternative  fi rst exons ( bottom panel ). ( b ) Ampli fi cation of CD133 alternative 
 fi rst exons by RT-PCR in RC-165 N/hTERT and DU145 cell lines treated with 1  m M 5-Aza-2’-
deoxycytidine for 96 h. s1 = RC-165 N/hTERT DMSO; s2 = RC-165 N/hTERT 5-Aza-2’-
deoxycytidine; s3 = DU145 DMSO; s4 = DU145 5-Aza-2’-deoxycytidine       
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  Fig. 11.3    Schematic representation of the pyrosequencing methylation analysis work fl ow ( a ). In 
brief: genomic DNA is bisulphite converted and the genomic region of interest is ampli fi ed by 
PCR; the PCR product is then sequenced by pyrosequencing  [  108  ]  and a pyrogram is generated. 
DNA methylation percentages from each CpG site in the region are summarized in a bar plot with 
a horizontal line representing the average. Pyrosequencing methylation analysis of CD133 
( b ), LXN ( c ), and RARRES1 ( d ) performed in prostate primary xenografts throughout several 
passages spanning 1.5 years of culture (from passage 3 to passage 15) (bars = single CpG sites; 
 n  = 3 technical replicas; mean ± SD; line = average of all the CpG sites, 0% Meth = 0% methylation 
control, 100% Meth = 100% methylation control)       
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while the cell line RC-165 N/hTERT (which lack a hypermethylated  CD133  
promoter) was used as a control.  

 The switch between an AC133-positive CD133 isoform in prostate basal stem 
cells and an AC133-negative isoform in luminal cells is indeed another riddle in 
prominin-1 biology. What is the difference between these two isoforms and how are 
they regulated? Yu and colleagues proposed that alternative splicing could regulate 
this. They showed that CD133-2 isoform, which lacks a small exon of 27 nucle-
otides, was expressed in hematopoietic stem cells and recognized by the anti-AC133 
monoclonal antibodies  [  94  ] . On the other hand, Mak and colleagues showed that 
N-glycosylation processing was necessary for the correct recognition of the AC133 
epitope, indicating that changes in glycosylation patterns or conformation alone 
could lead to a AC133-negative form of CD133  [  69  ] .  

    11.5   CD133 as a Stem Cell Marker in Prostate 
and Prostate Cancer 

 As discussed above, our laboratory was able to select cells with stem cell character-
istics using the AC133 antibody from both benign and malignant prostate tissues 
 [  27,   52  ] .  a  

2
  b  

1
 integrin hi /CD133 +  cells from benign prostatic tissue display a basal 

phenotype and are quiescent (Ki67 − ), but have a much higher ability to form 
colonies and higher proliferative potential than  a  

2
  b  

1
 integrin hi /CD133 −  cells. When 

implanted subcutaneously in immunocompromised mice, CD133 +  cells were able 
to form acini-like structure that recapitulated the entire spectrum of prostate 
differentiation. 

 In cancer tissues, CD44 + / a  
2
  b  

1
 integrin hi /CD133 +  cells had a very similar pheno-

type to their benign counterpart, displaying basal cell markers such as cytokeratin 5 
and 14  [  52  ] . These cells also showed a high colony forming ability and a prolifera-
tive potential much higher than their benign counterpart and were able to differenti-
ate in vitro to luminal-like cancer cells. Indeed, cultures generated from these cells 
were more invasive in vitro compared to BPH cultures and displayed the frequent 
prostatic gene fusion TMPRSS2-ERG  [  36,   60  ] . Furthermore,  a  

2
  b  

1
 integrin hi /CD133 +  

prostate CSCs have a distinct gene expression pro fi le relative to both their normal 
and differentiated counterpart  [  60  ] , showing differential expression of genes associ-
ated with in fl ammation, cellular adhesion, and metastasis. 

 Since 2005, CD133 has been used by many other groups as a prostate (and PCa) 
stem cell marker in various models, sometimes however with inconsistent results. In 
hTERT immortalized prostate cell lines, AC133-positive cells displayed stem cell 
characteristics in vitro that mirrored cells from patient tissues  [  72  ] . However, 
another group showed that side population was a much better CSC marker in this 
model compared to CD133  [  95  ] . 

 Wei and colleagues also reported that CD44 + / a  
2
  b  

1
 integrin hi /CD133 +  cells are pres-

ent in the DU145 cell line and possess cancer stem cell features in vitro and in vivo 
 [  96  ] . This result was then con fi rmed by Dubrovska, showing also that prostate cancer 
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cell lines grown in sphere-forming conditions increased the number of CD44 + /
CD133 +  cells, in vitro and in vivo tumorigenic potential  [  97  ] . Moreover, the Shay 
group showed that CD133+ cells from DU145 have higher telomerase activity  [  98  ] . 
However, others failed to see the same stem cell characteristic in CD133 +  DU145 
cells  [  99  ] . This inconsistency in studies with the same, long established cell line may 
re fl ect heterogeneity and selection of dominant clones as seen in several other cellu-
lar models of cancer, rather than genuine changes in CD133 +  cell content  [  100  ] . 

 Interestingly, Vander Griend and colleagues  [  101  ]  demonstrated that a small sub-
population of CD133 +  cells was present in several cancer cell lines, which possessed 
a higher clonogenic potential. However, this subpopulation expressed AR, which is 
in stark contrast to all other reports showing that CD133 +  cells from human normal 
and cancerous tissues and cell lines have a basal phenotype  [  27,   52,   72,   77,   97,   102  ] . 
Moreover, many other groups failed to  fi nd a CD133+ subpopulation in these cell 
lines  [  76,   99  ] , con fi rming that CD133 can be highly dysregulated after long-term 
culture in vitro and the marker should be used with caution in cell lines. 

 The ultimate evidence for CSCs is reconstitution of a tumor in a recipient animal, 
which is identical to the parental tumor and that can be serially xenotransplanted 
inde fi nitely. Preliminary data from our laboratory showed that CD133+ cells 
selected form primary PCa xenografts were indeed able to form tumors from as few 
as 10 cells  [  36  ] .  a  

2
  b  

1
 integrin hi /CD133 +  cells selected from the BPH-1 cell line were 

also able to form tumors in mice when recombined with cancer-associated  fi broblasts; 
however, they had a much lower tumor-initiating potential compared to  a  

2
  b  

1
 integrin hi /

CD133 −  cells  [  103  ] . Serial transplantation (not performed in the latter study) is 
important to distinguish between bona  fi de stem cells and highly proliferating pro-
genitor cells. Indeed, more work needs to be carried out in order to better assess the 
potential of CD133 as a bona  fi de stem cell marker in human prostate cancer; that 
is, identify whether it is a permanent marker or (more likely) one whose expression 
is condition and context dependent.  

    11.6   Conclusions 

 As discussed above, human prostate epithelial stem cells are quiescent and reside in 
the basal layer. Many groups were able to separate cells with prostate-regenerating 
capabilities from this compartment using several different markers. Indeed, basal 
cells expressing CD133 are quiescent stem cells able to regenerate differentiated 
luminal cells in vitro and in vivo  [  27,   28  ] , con fi rming the validity of CD133 as a 
prostate stem cell marker. 

 However, the prostate cancer  fi eld is still debating on the nature of CSCs. In 
human prostate cancer, a solid body of evidence indicates that cells with a basal or 
partially differentiated (intermediate) phenotype have cancer stem cell characteris-
tics and that their normal counterpart can function as a cell-of-origin for prostate 
cancer. In this scenario, the use of CD133 as a cancer stem cell marker is still some-
what uncertain: although several reports show that CD133 +  cells from various models 
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have cancer stem cell features, other groups were able to isolate prostate CSCs 
without the use of CD133 but with basal markers, such as CD44, ALDH, and 
 a  

2
  b  

1
 integrin. This could be partially explained by the tight regulation needed for the 

correct expression of CD133, which is indeed in fl uenced by niche and environmen-
tal conditions (especially after long-term culture in vitro and serial passaging 
in vivo), resulting in unstable expression of CD133 which is expressed only in the 
appropriate microenvironment. It is important to remember though that CD133 
expression remains at the moment only a stem cell marker and not a stem cell fea-
ture, as sometimes reported in the literature. CD133 function is largely unknown, 
especially in the prostate, where it is expressed as two distinct isoforms in basal and 
luminal cells. CD133 is localized to plasma membrane protrusions where it inter-
acts with membrane cholesterol  [  104  ] . These membrane microdomains could be 
enriched in components involved in maintaining stem cell properties, and their loss, 
perhaps through asymmetric cell division, might promote cell differentiation  [  105  ] . 
Interestingly, CD133 has been shown to segregate with the template DNA in asym-
metric cell division in lung cancer cells, while differentiation markers were expressed 
only in the daughter cell  [  106  ] . Interestingly, the frequency of asymmetric cell divi-
sion was enhanced by environmental factors such as cell-cell contact, serum, and 
hypoxia, all of which seem to play an important role in CD133 regulation. Moreover, 
a recent report showed that CD133 is a suppressor of differentiation in neuroblas-
toma  [  107  ] , giving a  fi rst insight into CD133 function and linking this marker func-
tionally to the maintenance of an undifferentiated (stem) phenotype. 

 It is likely that the de fi nition of CD133 function and regulation in relation to 
prostate stem cells and CSCs will be of primary importance and should provide 
novel insights into the nature of the tumor initiation process.      
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