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    Abstract     Angiogenesis refers to the growth of new capillaries from a pre-existing 
capillary bed which can occur during normal physiological and pathological condi-
tions by sprouting and non-sprouting processes, which are activated by different 
stimuli. Various studies have demonstrated that exercise increases the expression of 
several growth factors for both sprouting and non-sprouting angiogenesis, including 
vascular endothelial growth factor and other cytokines in skeletal and cardiac mus-
cle, which are associated with an increase in the number of capillaries in the heart 
and skeletal muscle. Exercise is known to stimulate the release of several pro- and 
anti-angiogenic proteins and transcription factors and it appears that hypoxia and/or 
ischemia play a major role in the growth and expansion of new capillaries and has 
also been suggested that mechanical forces, such as shear stress or muscle overload, 
stimulate exercise-induced angiogenesis. More importantly, an in-depth under-
standing of the factors that infl uence exercise-induced angiogenesis may contribute 
to the development of potential therapeutic strategies for the treatment of different 
diseases including hypertension and ischemic heart disease.  
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11.1         Introduction 

 Blood vessels and capillaries play a vital role in supplying oxygen and nutrients 
to metabolic tissues as well as play a functional role in the endocrine and immune 
systems [ 1 ]. Much of the current understanding of the anatomy and physiology 
of capillaries stems from the early work of Krogh [ 2 – 5 ], who examined the dis-
tribution and number of capillaries in organs and tissues, the structure of the 
capillary wall, and the exchange of substances through the capillary wall [ 5 ]. 
His work has also eluded to the fact that blood vessels have the capacity to grow 
(i.e., arteriogenesis) as well as to form new blood vessels from a pre-existing 
capillary bed, which is known as angiogenesis. The term angiogenesis was fi rst 
used to describe the formation of new blood vessels during placental growth [ 6 ] 
and was fi rst observed by implanting a transparent chamber into the ear of a rab-
bit [ 7 ]. Angiogenesis is important for normal physiological growth, such as in 
the female reproductive tract [ 8 ], wound healing, and muscle remodeling [ 9 ]. 
Deviations from normal vessel growth and maintenance can lead to several 
chronic diseases and angiogenesis plays an important role in the healing process 
after conditions such as stroke [ 10 ], myocardial infarction [ 11 ], ulcers [ 12 ], and 
neurodegeneration [ 13 ]. On the other hand, abnormal blood vessel growth or 
remodeling is associated with cancer [ 14 ], infl ammatory disorders [ 15 ], pulmo-
nary hypertension [ 16 ], and in eye diseases [ 17 ]. 

 Physical activity has been shown to be a powerful stimulus of cardiac and 
skeletal muscle adaptation and physiological remodeling. For example, exercise 
training plays a major role in the remodeling process to increase capillary den-
sity of muscle [ 18 ] and mitochondrial enzyme activity after a single bout of 
exercise [ 19 ] as well as after exercise training [ 20 ]. These changes may occur 
because skeletal and cardiac muscle are metabolically active tissues that can 
increase their metabolic requirements during exercise 30–50-fold compared to 
basal conditions [ 21 ]. Therefore, adequate circulation to supply oxygen and 
nutrients to these tissues and to remove “metabolic waste” from these tissues is 
essential for their optimal performance and health. Since its discovery, angio-
genesis has been studied extensively and several investigators have attempted to 
elucidate the mechanisms to explain how exercise stimulates angiogenesis. 
Hudlicka et al. [ 22 ] have provided data on some of the possible stimuli for exer-
cise-induced angiogenesis, including increases in blood fl ow (hyperemia), shear 
stress, and muscle stretch. Other suggested stimuli include hypoxia and meta-
bolic disturbance [ 23 ] (   Fig.  11.1 ).

   Angiogenesis is a highly regulated process and is controlled by several pro- 
and anti-angiogenic factors which can be turned on when needed and com-
pletely shut down [ 22 ,  24 ]. Over 30 years ago, Dvorak et al. [ 25 ] discovered a 
new  molecule involved in tumor growth they termed  vascular permeability fac-
tor , which was later renamed as  vascular endothelial growth factor  (VEGF) 
[ 26 ]. VEGF is thought to be the key mediator in the angiogenic process and 
there is a growing body of evidence indicating that exercise increases the tran-

D.S. Kehler et al.



183

scription and proteins of VEGF in cardiac and skeletal muscle [ 27 – 34 ].    Two 
other pro-angiogenic factors that increase with exercise are  matrix metallopro-
teinase s (MMPs) and  angiopoietins  (Ang-1, Ang-2). The three most investigated 
anti-angiogenic factors that are upregulated with exercise include endostatin, 
 thrombospondin-1  (TSP-1), and  tissue inhibitors of matrix metalloproteinases  
(TIMPs). Accordingly, evidence for the role of acute and chronic exercise train-
ing for upregulating these factors will be reviewed in this article. We will dis-
cuss a few other pro- and anti-angiogenic factors to determine if these proteins 
change in response to acute exercise or chronic exercise training. Since  endo-
thelial progenitor cells  (EPCs) as well as microRNAs (miRNAs) also increase 
with acute exercise and chronic exercise training, their role in angiogenesis will 
be reviewed.  

Exercise

↑ Hypoxia ↑ Shear
stress

↑ Muscle
activity

↑ Metabolic
disturbance

↑Pro-angiogenic growth factors:
Eg. VEGF; MMPs; Ang-2; EPCs; miRNAs

↑Anti-angiogenic growth factors:
Eg. Endostatin; TSP-1; TIMPs; miRNAs

Angiogenesis

  Fig. 11.1    Simplifi ed 
pathway of exercise 
angiogenesis and the 
suggested mechanisms that 
exercise affects, including 
hypoxia, shear stress, muscle 
activity/stretch, and 
metabolic disturbance.  VEGF  
vascular endothelial growth 
factor;  MMPs  matrix 
metalloproteinases;  Ang  
angiopoietin;  EPCs  
endothelial progenitor cells; 
 miRNAs  microRNAs;  TSP-1  
thrombospondin-1;  TIMPs  
tissue inhibitors of matrix 
metalloproteinases       
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11.2     Sprouting and Non-sprouting Angiogenesis Pathways 

 Animal studies have revealed at least two forms of angiogenesis to occur, at least in 
skeletal muscle: sprouting angiogenesis and non-sprouting angiogenesis [ 35 ]. 
Irrespective of the cause of angiogenesis, it is assumed that there is a common 
sequence of events; the activation of endothelial cells followed by the degradation 
of the basement membrane and the extracellular matrix allowing endothelial cells to 
migrate to sites where capillaries are needed. Sprouting angiogenesis forms new 
capillaries via stalk cells and tip cells, whereas non-sprouting angiogenesis occurs 
when capillaries split into two via intussusception. Non-sprouting angiogenesis is 
suggested to be a more effi cient form of angiogenesis as it permits a more rapid 
expansion of capillaries and does not require an initial proliferation of endothelial 
cells [ 36 ]. Several reviews have described the details for both sprouting [ 1 ,  9 ,  21 ,  22 , 
 24 ,  37 – 44 ] and non-sprouting angiogenesis [ 21 ,  35 ,  45 – 49 ]. 

 Sprouting angiogenesis is considered to be the major type of angiogenic growth 
induced by exercise [ 21 ] and may be induced by stimuli such as hypoxia, metabolic 
disturbance, and muscle stretch [ 35 ]. It involves the activation of normally quiescent 
endothelial cells [ 50 ], which branch out from an existing capillary and extend through a 
surrounding matrix to form a cord-like structure. Initiation of sprouting angiogenesis 
requires the proteolytic degradation of the basement membrane [ 51 ], formed by inactive 
endothelial cells and pericytes. Normally quiescent blood vessels are built with angio-
genic sensors, and following the angiogenic signal, pericytes detach from the vessel wall 
[ 52 ] and are removed from the basement membrane [ 53 ]. Endothelial cells begin to 
loosen their junctions from the vessel and the vessel begins to dilate [ 54 ]. Permeability 
of the endothelial cells’ layer forces plasma proteins to enter the extracellular matrix and 
stored angiogenic molecules begin to remodel the extracellular matrix [ 54 ]. An endothe-
lial “tip cell” leads the migration of endothelial cells and neighboring stalk cells have 
fi lopodia to guide their elongation [ 55 ]. In order for the abluminal sprouting capillary to 
become functional, it must fuse with a neighboring blood vessel and become mature 
[ 54 ]. Endothelial cells return to their inactive state. A myeloid bridge aids the elongation 
of the stalk as well as the fusion with another blood vessel and allows the initiation of 
blood fl ow [ 54 ]. Pericytes cover the newly formed capillary and protease inhibitors 
deposit a basement membrane. Junctions are re-established to ensure optimal blood 
fl ow. Regression occurs in the absence of angiogenic stimuli [ 56 ,  57 ]. 

 New capillaries can also form by non-sprouting angiogenesis by intussusception 
and this was fi rst observed in the rat lung [ 58 ]. Opposing capillary walls protrude 
towards the vessel lumen, and once contact has been established between the capil-
lary walls, the inter-endothelial cell junctions are reorganized and the endothelial 
bilayer of the capillary becomes centrally perforated [ 58 ]. An interstitial pillar-like 
structure is formed, which is invaded by pericytes and myofi broblasts and these lay 
down collagen fi brils [ 59 ]. The fi nal phase of intussusception is when the pillars 
increase in girth without any other change in structure [ 58 ]. When comparing 
sprouting vs. non-sprouting angiogenesis, it would appear that non-sprouting angio-
genesis is a more effi cient way of expanding the capillary network as there is much 
less endothelial cell proliferation and capillary maturation involved [ 60 ].  
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11.3     Factors That Stimulate Angiogenesis in Response 
to Exercise 

 Angiogenesis is a complex, multi-step process and is thought to involve multiple 
signaling pathways which are coordinated by pro- and anti-angiogenic mediators to 
generate effective angiogenesis. The following are various pro-angiogenic factors 
which are considered to be the key mediators in the angiogenic process specifi cally 
relevant to exercise-induced angiogenesis. 

11.3.1     Vascular Endothelial Growth Factor in Acute Exercise 
and Chronic Exercise Training 

 VEGF has been shown to play a crucial role in exercise-induced angiogenesis 
[ 61 – 63 ]. VEGF is a 35–45 kDa peptide growth factor and includes a number of 
isoforms (VEGF-A to VEGF-D), with the most relevant to exercise-induced 
angiogenesis being VEGF-A (commonly known as just VEGF). Sources of VEGF 
include skeletal muscle fi bers, endothelial cells, fi broblasts, macrophages, peri-
cytes, as well as mast cells and smooth muscle cells [ 33 ,  63 ]. VEGF plays a major 
role in endothelial cell stimulation, survival and differentiation, vascular smooth 
muscle proliferation and migration, and induces capillary permeability and dila-
tion of arterioles [ 21 ]. An increase in VEGF transcription is thought to be regu-
lated by several factors. One of these factors includes  hypoxia - inducible factor - α  
(HIF-1α) during hypoxia [ 64 ]. VEGF contains a hypoxic-response element [ 65 ] 
and binds to HIF-1α during hypoxic states. This results in an increase in VEGF 
transcription when there is reduced oxygen availability and it would seem that 
HIF-1α would also regulate VEGF protein during exercise. For example, in 
response to moderate to heavy exercise (knee extension exercise at 75–100 % 
maximum work rate), intracellular  P O 

2
  decreases from 30 mm Hg at rest [ 66 ] to 

approximately 3–4 mmHg during exercise in human quadriceps muscle [ 67 ]. 
However, the exercise-induced increase in VEGF is more complex than by activa-
tion of HIF-1α alone. It is pointed out that VEGF expression was still observed in 
HIF-1α knockout mice following exercise training [ 68 ]. Moreover, there is a 
reduced VEGF transcription response with restricted blood fl ow; however, there 
was still a similar activation in HIF-1α between the restricted and non-restricted 
exercising skeletal muscle [ 69 ]. Therefore, VEGF must be regulated by some fac-
tors other than HIF-1α. 

 More recently, metabolic activity has been highlighted as playing a role in VEGF 
regulation [ 70 ]. For example,  AMP - activated protein kinase  (AMPK) has been sug-
gested to play a role in exercise-induced angiogenesis. AMPK is involved in the 
regulation of the stress response as well as metabolic homeostasis and is associated 
with increased glucose uptake in muscle [ 71 ]. It also leads to the promotion of 
angiogenesis by increasing the expression of VEGF in skeletal muscle cell culture 
(i.e., C2C12 cell line) through activation of the AMPK-p38 MAPK-dependant 
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 pathway [ 72 ]. Skeletal muscle cell culture has also indicated that adenosine enhances 
mRNA expression of VEGF and this may be mediated by the A 

2B
  receptor [ 73 ]. 

Several studies in animal models have revealed that  peroxisome - proliferator acti-
vated receptor γ co-activator - 1α  (PGC-1α) through the activation of  estrogen- 
related receptor α  (ERR-α) serves as a principal regulator of increased expression 
of VEGF through exercise [ 72 – 74 ]. 

 There is a growing body of evidence that VEGF and its receptors VEGFR1, 
VEGFR2, and  neuropilin 1  (NRP-1), which is also a receptor of VEGF, increase in 
response to a single bout of exercise [ 27 – 34 ]. Moreover, an acute bout of exercise 
in untrained subjects releases higher amounts of VEGF mRNA and protein response 
compared with trained subjects [ 75 ]. Several studies have shown that an acute bout 
of single-leg knee extension exercise lasting for 45 min at approximately 25% max-
imum workload increases mRNA expression of VEGF by at least twofold and 
VEGF protein expression ~1.5-fold [ 27 – 29 ]. Splice variants VEGF 

121
  and VEGF 

165
  

increase initially after an acute bout of exercise by 3- and 3.5-fold, respectively, 
after 45 min of one-leg knee extension exercise at 25% of maximum workload, fol-
lowed by a 3.5-fold increase in VEGF 

189
  [ 33 ]. The relative change in expression 

after exercise may be represented by endothelial activation with VEGF 
121

  and 
VEGF 

165
  as they are diffusible [ 76 ], whereas VEGF 

189
  contains a domain encoded 

by exon 6 and is bound to cell-surface heparin sulfate proteoglycans which repre-
sent a later chemoattractant and differentiation role in the VEGF system [ 76 ]. 

 Prolonged moderate intensity exercise training is known to upregulate VEGF 
mRNA expression and protein content. For example, 60 min of cycling at 50% 
of maximal aerobic capacity (i.e.,  V O 

2max
 ) increases VEGF mRNA expression by 

approximately 4.5-fold [ 30 ], whereas a 60 min bout of cycling at approximately 
60% of  V O 

2max
  increased the concentration of interstitial VEGF by >6-fold com-

pared to resting levels [ 77 ]. These data are also supported by Rullman et al. 
[ 78 ] who demonstrated a 1.5-fold increase in VEGF protein content in subjects who 
exercised for 65 min at ~65  V O 

2max
 . The type and intensity of acute endurance exer-

cise may also infl uence the VEGF response to exercise. In fact, high intensity sprint 
interval exercise has recently been investigated and appears to be at least as effective as 
prolonged moderate intensity exercise training for inducing a VEGF response [ 79 ]. 
Specifi cally, a greater increase in VEGF protein was observed when subjects par-
ticipated in four 30 s “all out” exercise bouts which were each followed by 5 min of 
passive rest when compared to subjects who completed 1 h of cycling at 50% of 
their peak power output. With the high intensity protocol, there was a 90 pg/mL 
increase in VEGF 4 h after exercise, whereas there was only a 35 pg/mL increase 
after moderate intensity exercise. Notably, this physiological difference in VEGF 
content occurred even though the absolute amount of time spent exercising was 
97% lower in the high intensity sprint interval group compared to the low intensity 
group (i.e., 2 min vs. 60 min) [ 79 ]. 

 There is also some evidence to suggest that acute resistance exercise induces a 
VEGF response. In this regard, three sets of ten repetitions at 60–80% of one- repetition 
maximum (1RM) induce a threefold increase in skeletal muscle VEGF mRNA and 
1.5-fold increase in VEGF protein 4 h post-exercise compared to rest [ 80 ]. 
However, this response may be dependent on the type of resistance training 
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(i.e., isotonic, isometric, or isokinetic). Specifi cally, three repetitions of either 40% 
of 1RM or maximal isokinetic knee extension did not increase serum VEGF [ 81 ]. 
High volume resistance training of 3 × 30 repetitions in combination with a 30% 
muscle blood fl ow restriction also induces a VEGF response [ 82 ]. Notably, the 
VEGF response is attenuated 30 min after exercise when muscle blood fl ow is nor-
mal following exercise training (i.e., a 1.5-fold increase), as compared to the same 
exercise condition when muscle blood fl ow is restricted (i.e., a 2.5-fold increase). 
This observation suggests that intermittent hypoxia or ischemia may be a key factor 
in regulating exercise-induced angiogenesis. 

 There appears to be an attenuated VEGF response to an acute bout of exercise 
following chronic exercise training. For example, the arterial and venous plasma 
levels of VEGF in response to an acute bout of exercise decreased by 12% and 15%, 
respectively, after seven exercise training sessions over a 10-day period consisting 
of 45-min of knee extension exercise at 60–70% maximum work rate, as compared 
to baseline [ 29 ]. However, basal VEGF mRNA and protein expression increased 
twofold after the 7-day training period. The VEGF response after acute exercise 
appears to be further attenuated after a longer training period. Particularly, 8 weeks 
of single-leg knee extension exercise three times per week for 60 min at 50% maxi-
mum work rate showed an attenuated VEGF response compared to the untrained 
muscle. This could be explained by the 18% increase in capillary to fi ber ratio of the 
quadriceps and therefore a further angiogenic response may not be required for the 
given training stimulus [ 75 ]. 

 Receptors VEGFR1, VEGFR2, and NRP-1 are known to increase after a single 
bout of exercise [ 30 ,  33 ,  34 ,  83 ], but respond differently after chronic exercise train-
ing, which is characterized by a selective increase in NRP-1 and VEGFR2 [ 34 ,  83 ]. 
Intermittent hypoxia or ischemia may also infl uence the regulation of VEGF 
 receptors. For example, resting VEGF protein and VEGFR2 protein content 
increased threefold under restricted blood fl ow conditions and remained unchanged 
under the non-restricted blood fl ow conditions in response to 5 weeks of knee exten-
sion exercise training for 45 min per day, four times per week under 20% restricted 
blood fl ow on one leg and non-restricted blood fl ow to the other leg [ 34 ]. This is an 
interesting fi nding because VEGFR2 is essential for a majority of the angiogenic 
actions of VEGF [ 76 ,  84 ]. Moreover, subjects who were “high responders” (i.e., an 
improvement of +0.71 ± 0.1 L/min of O 

2
  improvement) after 6 weeks of cycling 

exercise at 75% of their peak  V O 
2
  for 45 min four times per week had an eightfold 

increase in NRP-1and a threefold increase in VEGFR-2, while “non-responders” 
(i.e., +0.17 ± 0.1 L/min of O 

2
  improvement) had no change [ 83 ].  

11.3.2     Matrix Metalloproteinases in Acute Exercise 
and Chronic Exercise Training 

 It is now well known that MMPs play an important role in the formation, remodel-
ing, and degradation of the extracellular matrix [ 85 ]. They are members of the pro-
tease family and 25 enzymes of the MMP family have been identifi ed and are 
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expressed in most tissues [ 86 – 88 ], including skeletal muscle. Specifi cally, MMP-2 
and MMP-9 have been shown to be upregulated in response to exercise [ 77 ,  78 , 
 89 – 93 ]. They are both collagenases which degrade collagen type IV, which is the 
most prevalent protein in skeletal muscle basal lamina [ 89 ]. It has been suggested 
that MMP-2 plays a role in the cleavage of the basal lamina and extracellular matrix 
during angiogenesis, making a path for the migration of endothelial sprouts and the 
formation of new capillaries [ 88 ,  94 ]. The promoter region of MMP-9 contains a 
variety of response elements sensitive to a variety of growth factors and cytokines 
[ 95 ] and may also be a regulator of growth factor bioavailability via proteolytic 
release. There is also evidence indicating that MMP-1, -3, and -14 also increase in 
response to chronic exercise training [ 78 ,  89 ,  93 ]. 

 Evidence indicates that the MMP system is activated during an acute bout of 
exercise as well as following exercise in skeletal muscle [ 77 ,  78 ]. The same exercise 
protocol used by Hoier et al. [ 77 ] discussed in the VEGF section increased MMP-9 
mRNA by three and fourfold at 1 and 3 h post-exercise, respectively. However, there 
were no changes in MMP-2 mRNA. Furthermore, 65 min of cycle ergometer exer-
cise, consisting of 20 min at 50% of  V O 

2max
 , 40 min at 65% of  V O 

2max
 , and 5 min at 

the subject’s maximal tolerable work rate elevated vastus lateralis MMP-9 protein 
content by ~2.5-fold during exercise and MMP-9 mRNA was elevated ~2.5-fold 2 h 
after the exercise bout [ 78 ]. These data indicate that MMP activity occurs before 
any measurable changes in MMP-9 transcription, suggesting a post-transcriptional 
mechanism. As observed with VEGF, the intensity of exercise may infl uence the 
MMP response to an acute bout of exercise. Moreover, it has been hypothesized that 
shear stress is increased during body vibration (as reviewed by Mester et al. [ 96 ]) 
and has been hypothesized that the utilization of vibration training in conjunction 
with hypoxia and cycling exercise will induce an angiogenic response [ 92 ]. 
Specifi cally, subjects performed 90 min of cycling; 10 min warm up at 50%  V O 

2max
  

followed by ten intervals of 3 min at a workload of 85%  V O 
2max

  and 5 min recovery 
at 60%  V O 

2max
 . This protocol was carried under four different conditions: normal 

conditions without vibration; normal conditions with vibration; hypoxic conditions 
without vibration; and hypoxic conditions with vibration. With the exception of 
normal conditions with vibration, circulating MMP-2 was increased by approxi-
mately 10% immediately after an acute bout of exercise. On the other hand, circu-
lating MMP-9 was shown to increase by approximately twofold in all training 
conditions 4 h post-exercise, therefore indicating a different activating mechanism 
for these proteins. 

 MMP-2 and MMP-9 mRNA and protein levels are known to be regulated by 
chronic exercise training. For example, 10 days of single-leg exercise training 
(which consisted of 45 min at the subjects’ maximum tolerable workload four times 
per week) increased MMP-2 mRNA and protein content by 3.5- and 5.5-fold, 
respectively [ 89 ]. However, partial leg ischemia (i.e., 20%) did not exert an addi-
tional effect above that of exercise training alone [ 89 ]. Even so, basal MMP-2 levels 
remained elevated after 5 weeks of training in both exercise training protocols. 
Rullman et al. [ 89 ] also found a ~3–7-fold increase in MMP-9 in the normal and 
restricted blood fl ow conditions, respectively, after an acute bout of exercise, but the 
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group changes were not different. Moreover, basal MMP-9 mRNA after 10 days of 
training increased ~5- and ~13-fold after 5 weeks of training in both groups, with no 
change in protein. Interestingly, basal MMP-14, which activates MMP-2 [ 94 ], 
mRNA, was increased ~5-fold after 10 days of training in both groups and was 
maintained after 5 weeks. 

 Chronic exercise training consisting of aerobic and sprint training in conjunction 
with either calisthenic or resistance training has been shown to increase circulating 
MMPs [ 93 ]. Calisthenic exercises consist of body weight exercises such as push- 
ups and pull-ups and squats and lunges. Both the calisthenic and resistance exercise 
groups exercised 5 days per week for 8 weeks. Exercises were performed until 
exhaustion in the calisthenic group; whereas the resistance exercise group per-
formed three sets of eight repetitions at 80% of the subject’s 1RM followed by 30 s 
of rest between sets. Immediately after an acute resistance exercise test, MMP-1 
concentration increased ~1.2-fold and MMP-2 remained unchanged in both groups 
compared to baseline. Interestingly, MMP-3 concentration decreased ~1.5-fold and 
MMP-9 concentration increased ~4-fold in response to an acute resistance exercise 
test after exercise training in the calisthenic exercise group, but no changes were 
observed in the resistance training group. However, the resistance training group 
increased basal MMP-1 ~1.2-fold and MMP-2 increased twofold after chronic exer-
cise training, whereas the calisthenic exercise-trained group demonstrated a ~1.4- 
fold decrease in basal MMP-2, a 1.4-fold decrease in basal MMP-3, and a 1.3-fold 
increase in MMP-9. These data suggest that the mode of exercise elicits a specifi c 
training adaptation of MMPs following chronic exercise training.  

11.3.3     Angiopoietins in Acute Exercise and Chronic 
Exercise Training 

 The angiopoietin family (Ang-1 and Ang-2) has been suggested to play a role in the 
angiogenic process. Angiopoietins are vascular endothelial-specifi c factors that are 
activated via RTK pathways and modulate vessel development and remodeling [ 97 ]. 
Ang-1 is expressed in many tissues including the myocardium and perivascular 
cells and plays a role in the maturation of new blood vessels and vascular stabiliza-
tion [ 97 ]. Ang-2 promotes vascular remodeling by either facilitating growth factor 
actions or vascular regression when no growth signal is present [ 98 ] and is thought 
to lead to vessel degradation in the absence of VEGF. Ang-1 and Ang-2 compete for 
the tyrosine kinase receptor Tie2, where Ang-1 acts as an agonist for Tie2 [ 99 ] and 
Ang-2 acts as an antagonist [ 98 ]. An increase in the Ang-2/Ang-1 ratio is suggested 
to have a permissive effect on angiogenesis [ 100 ]. 

 Evidence indicates that an acute aerobic exercise bout induces a higher Ang-2/
Ang-1 ratio in skeletal muscle [ 77 ]. The protocol utilized by Hoier et al. [ 77 ] found 
that Ang-2 mRNA was increased ~2-fold 3 h post-exercise while Ang-1 remained 
unchanged. As a result, the Ang-2/Ang-1 ratio was increased by ~3.5-fold. 
Moreover, Tie-2 mRNA was increased ~2-fold 3 h post-exercise. However, these 
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data contradict previous fi ndings by Gustafsson et al. [ 34 ], who reported no changes 
in Ang-1 or Ang-2 mRNA following exercise. These different observations could be 
explained by differences in exercise mode and intensity utilized in each of the two 
studies (i.e., cycling at 60%  V O 

2max
  utilized by Hoier et al. [ 77 ] vs. one-legged knee 

extension at the highest tolerable workload utilized by Gustafsson et al. [ 34 ]). 
 Endurance-trained athletes may have a different angiopoietin response to an 

acute bout of exercise. Moreover, the response to a lower-intensity, longer duration 
(e.g., marathon running) vs. a high-intensity, short bout (e.g., 1,500 m sprint) may 
induce different Ang-1 and Ang-2 responses. Specifi cally, circulating Ang-1 
increased ~2.2-fold immediately after a marathon and remained unchanged after a 
1,500 m fi eld test [ 101 ]. However, immediately after the marathon and 1,500 m fi eld 
test, Ang-2 increased 2- and 1.3-fold, respectively. Even so, the Ang-2/Ang-1 ratio 
remained unchanged after both events. Receptor Tie2 expression may also be altered 
by resistance exercise. The protocol utilized by Gavin et al. [ 80 ] found that vastus 
lateralis Tie2 mRNA increased twofold 4 h after the acute resistance exercise test. 
However, Ang-1, Ang-2, and the Ang-2/Ang-1 ratio remained unchanged. 

 Chronic exercise training appears to alter the response of Ang-1 and Ang-2 to an 
acute exercise bout and elicits a change in resting levels. Forty-fi ve minutes of 
cycling four times per week for 6 weeks at 75%  V O 

2max
  increased vastus lateralis 

Ang-1 mRNA approximately 2.5-fold in subjects identifi ed as “high responders” by 
Timmons et al. [ 83 ], while “low responders” had no change. In contrast, Ang-2 
remained unchanged in both groups and therefore indicating a reversal in the Ang-2/
Ang-1 ratio after an acute exercise bout prior to exercise training. However, Hoier 
et al. [ 77 ] demonstrated that Ang-2 mRNA after 4 weeks of aerobic training 
increased ~1.8-fold 3 h after an acute bout of exercise compared to rest. These data 
suggest that angiopoietins Ang-1 and Ang-2 tend to change in a time-dependent 
manner in response to an acute bout of exercise after chronic exercise training. It 
should also be pointed out that single-leg knee extension under non-restricted and 
restricted blood fl ow conditions for 45 min four times per week for 5 weeks did not 
alter vastus lateralis Ang-1, Ang-2 mRNA, or the Ang-2/Ang-1 ratio, while basal 
vastus lateralis Ang-1 mRNA was reduced 10 days after training and returned to 
baseline after 5 weeks [ 34 ]. Moreover, basal Ang-2 mRNA and protein increased 
~1.5-fold after 10 days of training. Although Ang-2 mRNA remained elevated, 
Ang-2 protein returned to baseline levels after 5 weeks of training. Even so, basal 
Ang-2/Ang-1 ratio was elevated ~1.5-fold after 10 days of training and remained 
elevated after 5 weeks of training.  

11.3.4     Other Factors That Stimulate Angiogenesis 

 Endothelial cells and mural cells produce and activate  transforming growth 
factor-β  (TGF-β) which plays a critical role in the maturation of blood vessels by 
covering the vessel with mural cells (see review by Jain [ 40 ]). Mice lacking the 
TGF-β gene die from defects of the vasculature in utero, suggesting an important 
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role in angiogenesis prior to birth [ 102 ]. One hour of one-leg kicking exercise at 
67% maximum workload increased TGF-β in the connective tissue of the vastus 
lateralis approximately twofold [ 103 ]. A maximal graded exercise test has also 
shown to increase serum TGF-β 2.7-fold immediately after exercise and 1.9-fold 
2 h after exercise compared to baseline [ 104 ]. To our knowledge, TGF-β in 
response to chronic exercise training has not been investigated. Although  basic 
fi broblast growth factor  (bFGF or FGF-2), a 18–23 kDa cationic mitogen, has been 
shown to upregulate VEGF [ 105 ] as well as NO production [ 106 ], some studies 
have failed to demonstrate its upregulation in response to acute or chronic exercise 
training in humans [ 32 ,  79 ,  107 ].   

11.4     Factors That Inhibit Angiogenesis in Response to Exercise 

 In addition to several pro-angiogenic molecules, angiogenesis is also regulated by 
several key anti-angiogenic molecules; however, their response to acute exercise 
and chronic exercise has been investigated in less depth than the pro-angiogenic 
factors. Some of these anti-angiogenic factors are described below. 

11.4.1     Endostatin in Acute and Chronic Exercise Training 

 Endostatin, a 20-kDa fragment released from collagen XVIII C-terminal fragment, 
blocks angiogenesis by preventing the release of VEGF and VEGF receptor 
 signaling [ 108 ,  109 ] as well as MMP-2 activity [ 110 ]. It can thus be seen to restrict 
endothelial cell proliferation and migration. Endostatin also plays a role in relax-
ation of the vessel walls through  endothelial nitric oxide synthase  (eNOS) phos-
phorylation and prostacyclin release [ 111 ,  112 ]. A 65 min bout of cycling at 65% 
 V O 

2max
  utilized by Rullman et al. [ 78 ] increased plasma arterial endostatin ~1.7-fold 

17 min into the exercise protocol, which was higher than plasma venous endostatin, 
which increased ~1.6-fold but then returned to resting values at 57 min into exercise 
and remained at basal levels 120 min post-exercise. Interestingly, plasma venous 
endostatin continued to increase at 57 min by ~2-fold and was signifi cantly higher 
compared to plasma arterial endostatin, suggesting an uptake from the circulation 
into the muscle. Cycling under hypoxic conditions in conjunction with vibration 
training, utilized by Suhr et al. [ 92 ], increased circulating endostatin by 1.1–1.25-
fold immediately after exercise, with the greatest increase found under normal con-
ditions and the lowest increase under hypoxic conditions with vibration. Circulating 
endostatin remained elevated 30 and 60 min post-exercise only in the normal con-
ditions protocol. A maximal exercise test may induce a greater endostatin response. 
Specifi cally, plasma endostatin concentrations increased at 30, 120, and 360 min 
after exercise by 43%, 73%, and 33%, respectively, compared to rest [ 107 ]. These 
data indicate that endostatin increases to a greater extent following heavy intensity 
exercise, as compared to moderate intensity exercise. On the other hand, chronic 
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exercise training may reduce resting plasma endostatin, which would thereby pro-
mote angiogenesis. Participants who either ran for 60 min or cycled for 90 min three 
times per week at moderate intensity for 6 months reduced basal circulating end-
ostatin levels by 14% in both groups [ 113 ]. Furthermore, participants in both exer-
cise groups signifi cantly reduced basal endostatin levels when compared to a 
sedentary control group. Nonetheless, further research is needed to more clearly 
demonstrate the infl uence of chronic exercise training on the regulation of end-
ostatin mRNA and protein content in humans.  

11.4.2     Thrombospondin-1 in Acute and Chronic 
Exercise Training 

 Another endogenous inhibitor of angiogenesis is thrombospondin-1 (TSP-1), which 
is a large 450 kDa matrix glycoprotein produced by a number of cells, including 
platelet α-granules, smooth muscle cells, endothelial cells, fi broblasts, neutrophils, 
and macrophages and located in the extracellular compartment of several organs and 
tissues, including skeletal muscle, bone, skin, lung, and connective tissue [ 114 ,  115 ]. 
Its primary anti-angiogenic role is to inhibit cell migration and to induce apoptosis 
in endothelial cells [ 115 – 117 ]. Few data exist on the response of TSP-1 to acute 
exercise in humans. A 60 min bout of treadmill running at 20 m/min at 10 o  incline 
increased rat gastrocnemius TSP-1 mRNA 3.5-fold immediately after exercise and 
was further increased 6.2-fold 1 h after exercise, compared to resting levels [ 118 ]. 
More recently, 60 min of cycling at 60%  V O 

2max
  was shown to increase human vastus 

lateralis TSP-1 mRNA ~2.75-fold at 1 h after exercise and remained elevated for up 
to 3 h after exercise [ 77 ].    Exercise-trained rats, under both normoxic and hypoxic 
conditions for 60 min a day, 5 days per week for 8 weeks at 18 m/min and 10 o  incline, 
were shown to upregulate gastrocnemius TSP-1 mRNA 3.4 and 3.3- fold, respec-
tively [ 118 ]. However, this response was not altered by hypoxia. Humans who 
 completed 4 weeks of cycling for 60 min at 60%  V O 

2max
  also showed a ~2.5- fold 

increase in TSP-1 mRNA in the vastus lateralis when sampled 1 h after an acute bout 
of exercise; however, this acute effect was not different from the pre-training response, 
suggesting that TSP-1 may not be affected by chronic exercise training [ 77 ].  

11.4.3     Tissue Inhibitors of Matrix Metalloproteinases 
in Acute Exercise and Chronic Exercise Training 

 TIMPs are polypeptides containing 184–194 amino acids and are shown to regulate 
MMP activity by suppressing extracellular matrix turnover and activation of pro-
teins on the cell surface [ 119 ]. TIMPs also have other anti-angiogenic properties 
without inhibiting MMPs through TIMP-2 integrin-mediated binding to endothelial 
cells (see review by Stetler-Stevenson et al. [ 120 ]). Human studies indicate that 
TIMPs are not upregulated in the circulation [ 121 ,  122 ] or skeletal muscle [ 77 ,  78 ,  89 ] 
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in response to acute exercise. This is in contrast to the evidence from an animal study 
indicating that rat soleus TIMP-1 and -2 mRNA increased twofold 6 h after a bout of 
eccentric exercise consisting of 17 m/min for 130 min at 13.5 o  decline, which was 
sustained for 2 days after running and soleus TIMP-1 protein increased 1.5-fold [ 123 ]. 
The lack of research examining the infl uence of exercise on the regulation of TIMPs 
suggests that this area may be investigated more fully in the future. Chronic exercise 
training appears to increase TIMP concentration in human skeletal muscle. Rullman 
et al. [ 89 ] found that 10 days of single-leg knee extension training increased vastus 
lateralis TIMP-1 mRNA ~4- and 6-fold 24 h after an acute bout of exercise in the 
non-restricted and restricted blood fl ow conditions, respectively, compared to pre-
training levels. Moreover, Hoier et al. [ 77 ] found that 4 weeks of cycle ergometer 
training increased vastus lateralis TIMP-1 mRNA ~2-fold 1 and 3 h after an acute 
bout of exercise. These data indicate that chronic exercise training increases the 
expression of TIMP-1 mRNA after an acute bout of exercise compared to pre-training 
states, suggesting that the inhibition of extracellular remodeling is greater after 
training when there is suffi cient capillary growth, which was demonstrated by Hoier 
et al. [ 77 ].  

11.4.4     Other Factors That Inhibit Angiogenesis 

 Angiostatin was the fi rst discovered anti-angiogenic factor found to block tumor 
neovascularization and growth of metastases [ 124 ]. Angiostatin is a 38-kDa proteo-
lytic fragment derived from degradation of MMP. It is plausible that angiostatin is 
upregulated by exercise because MMP is known to increase in response to acute 
exercise and chronic exercise training, but this possibility remains to be investigated. 
Another factor, namely  vasohibin - 1  (VASH-1), is secreted by endothelial cells and 
contributes to vessel stabilization and maturation [ 125 ] and is more highly expressed 
in less vascularized muscle compared to more vascularized muscle [ 126 ]. Rats that 
completed a maximal running treadmill test that lasted 60–90 min increased VASH-1 
by ~1.5-fold immediately after exercise in the hindlimb but returned to baseline 4 h 
after exercise [ 126 ]. In contrast, myocardial VASH-1 did not increase immediately 
after exercise but increased 4 h after the acute exercise bout. The infl uence that 
chronic exercise training has on VASH-1 remains to be fully elucidated because this 
study indicated that 5 days of training for 60 min at 25–30 m/min at 12 o  incline did 
not increase VASH-1 levels in rat hindlimb or heart, as compared to baseline.   

11.5     Endothelial Progenitor Cells in Acute Exercise 
and Chronic Exercise Training 

 Bone marrow contains EPCs which have the ability to multiply and differentiate 
into endothelial cells (see review by Ribatti [ 127 ]) and were fi rst discovered in adult 
peripheral blood [ 128 ]. EPCs have also been shown to reside in interstitial tissue 
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surrounding distressed tissues and organs in need of vascular regeneration where 
the EPCs produce a variety of pro-angiogenic cytokines and growth factors, includ-
ing VEGF,  hepatic growth factor  (HGF), Ang-1,  stroma - derived growth factor  
(SDF)-1α,  insulin-like growth factor  (IGF)-1, and eNOS [ 129 ]. They have also been 
suggested to play an important role in the regulation of angiogenesis through the 
differentiation and maturation to endothelial cells and by coordination of paracrine 
signaling (see review by Carmeliet and Jain [ 37 ]). Moreover, endothelial progeni-
tors may play a role in exercise-induced angiogenesis; however, the mechanism of 
their migration from bone marrow is not fully understood. 

 Several markers of EPCs have been identifi ed to increase after an acute bout of 
exercise including CD34 + VEGFR-2 +  cells, CD34 + CD133 +  cells, CD133 + VE- cadherin  +  
cells, and monocyte/macrophage-derived angiogenic cells (CACs) in healthy subjects 
[ 101 ,  130 – 132 ] and appear to be associated with intensity of exercise. Specifi cally, 
immediately after a marathon run circulating CD34 + VEGFR-2 + , CD133 + VE-
cadherin + , and CAC cell count was found to increase ~1.8-, 3.5-, and 4-fold, respec-
tively, compared to rest, and returned to baseline 20 h after the race [ 101 ]. 
After completion of a 1,500 m fi eld test, CD34 + VEGFR-2 + , CD133 + VE- cadherin  + , 
and CAC increased ~2.25-, 5-, and 4-fold, respectively, compared to rest. Moreover, 
group differences were observed, where CD34 + VEGFR-2 +  was ~1.8-fold higher in 
the 1,500 m group compared to the marathon group and CAC cell count was ~2.3-
fold higher in the marathon group compared to the 1,500 m group [ 101 ]. After a 
maximal graded exercise test on a cycle ergometer, CD34 + VEGFR-2 +  increased by 
~1.7-fold, compared to rest [ 131 ]. Thirty minutes of running at anaerobic threshold 
and 80% of anaerobic threshold increased circulating endothelial progenitors by 
235% and 263%, respectively [ 133 ]. However, no changes in circulating EPCs were 
observed after 10 min of running at 80% of anaerobic threshold. Therefore, these 
data suggest that EPCs may be mobilized differently from the bone marrow in 
response to different intensities of exercise. Moreover, duration of exercise may 
play an important role in the release of endothelial progenitors from the bone mar-
row. To our knowledge, there is no data that exists to determine if chronic exercise 
training increases circulating EPCs in healthy subjects. However, several studies 
have demonstrated that endothelial progenitors increase after chronic exercise train-
ing in patients with cardiovascular disease [ 132 ,  134 – 136 ].  

11.6     miRNAs in Acute Exercise and Chronic Exercise Training 

 miRNAs are highly conserved 20–30 nucleotide RNAs that regulate the translation of 
proteins and enhance messenger RNA (mRNA) degradation (see review by Bartel [ 137 ]). 
miRNAs are formed by two major enzymes; Dicer and Drosha. Drosha regulates 
nuclear processing of the primary miRNAs into precursors, or pre miRNAs [ 138 ], 
and Dicer cleaves pre-miRNA into the mature miRNA [ 139 ]. A number of miRNAs 
have been identifi ed within cardiac and skeletal muscle which may be involved in 
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cardiogenesis during embryonic development [ 140 ] and skeletal muscle myogen-
esis [ 141 ] and remodeling [ 142 ]. Several miRNAs including miR-20a [ 143 ], miR-
210 [ 144 ], miR-221/miR-222 [ 145 ], and miR-328 [ 146 ] have also been identifi ed 
which have anti-angiogenic effects. Specifi cally, miR-20a expression is increased 
by VEGF but has an inhibitory effect on endothelial cell migration and overall 
capillary formation [ 147 ]. Increased miR-328 expression is found to reduce cell 
adhesion, aggregation, and migration and also regulates the formation of the cap-
illary structure [ 146 ]. miR-210 upregulation under normoxic conditions increases 
endothelial cell tubulogenesis and migration, but under hypoxic conditions, miR-
210 decreases capillary formation [ 144 ]. It has also been shown that supplementa-
tion of miR-210 to the myocardium to the pre-infarct zone induces angiogenesis 
in a mouse model [ 148 ]. miR-221/miR-222 mediate the angiogenic activity of 
 stem - cell factor  (SCF) [ 145 ]. These miRNAs have only more recently been inves-
tigated in response to an acute bout of exercise and chronic exercise training. The 
response of miRNAS to an acute bout of exercise has been investigated in com-
petitive rowers [ 149 ]. Specifi cally, it has been shown that circulating miR-221 and 
miR-222 are increased ~3.6- and 2.5-fold immediately after a maximal, incre-
mental cycling exercise test, respectively. Further investigations may be warranted 
to determine if acute exercise has similar effects on miRNA regulation in non- 
athlete populations. 

 Baggish et al. [ 149 ] investigated the effects of chronic exercise training in rowing 
athletes. After 90 days of training for an average 13.1 h per week, miR-221 and 
miR-222 increased ~5.8- and 2.4-fold compared to baseline resting levels, respec-
tively. After the chronic exercise training period, miR-20a was 3.1-fold higher after 
an acute bout of exercise compared to baseline resting levels. An additional increase 
in circulating miR-222 was found (fourfold increase) after an acute bout of exercise 
after training but not in miR-221. These data indicate a different pattern in regula-
tion between several miRNAs before and after chronic exercise training and further 
investigations are needed among different populations.  

11.7     Exercise-Induced Angiogenesis in Chronic Disease 

 From the foregoing discussion, it is evident that chronic exercise training in healthy 
individuals may promote angiogenesis by affecting the expression of several angio-
genic factors (Table  11.1 ). The role of chronic exercise training in the primary and 
secondary prevention of different diseases has also been investigated extensively. 
Interestingly, regular exercise may reduce the risk of developing over 25 chronic 
conditions [ 150 ] including coronary heart disease, stroke, hypertension, breast and 
colon cancer, type 2 diabetes, and osteoporosis. It is likely that research examining 
the biological mechanisms that regulate exercise-induced angiogenesis may guide 
the identifi cation of novel therapeutic targets for the treatment of chronic diseases. 
For example, patients with cardiovascular disease who exercise train to a level 
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suffi cient to stimulate angiogenesis and the formation of collateral vessels in 
ischemic areas of the heart and skeletal muscle are known to decrease the severity 
of ischemic events [ 151 – 153 ]. The potential of chronic exercise training to upregu-
late and  normalize circulating pro-angiogenic growth factors and EPCs in patients 
with cardiovascular disease has been documented previously [ 132 ,  135 ,  154 – 162 ]; 
it also has the potential to improve collateral fl ow in the heart [ 163 ] and increase 
capillary density in skeletal muscle [ 160 ]. Various studies examining the role of 
chronic exercise training and its ability to upregulate several pro- and anti-angio-
genic growth factors as well as EPCs are listed in Table  11.2 . Similar health benefi ts 
may also be attained by peripheral arterial disease patients, which is a population 
characterized with ischemia of the limbs that often leads to tissue necrosis requiring 
amputation [ 164 ]. Notably, chronic exercise training consisting of 50 min of walking 
exercise at an intensity below that which induces claudication symptoms twice a 
week for 6 months signifi cantly elevated EPCs and VEGF in patients diagnosed with 
peripheral artery disease [ 135 ]. Moreover, exercise-induced angiogenesis may have 
an important therapeutic role in heart failure. It may be noted that patients with heart 
failure often experience dyspnea and exercise intolerance, which is not only due to 
insuffi cient cardiac output and impaired lung function but also due to peripheral 
pathophysiological maladaptations such as endothelial dysfunction [ 165 ], abnormal 
skeletal morphology and metabolism [ 166 ] and ventilatory control [ 167 ]. Chronic 
exercise training consisting of 55 min of upright cycling three times a week for 8 
weeks at an intensity that elevated blood lactate to 2–2.5 mmol/L markedly increased 
circulating EPCs and pro-angiogenic factors, including VEGF amongst a cohort of 
heart failure patients. This benefi cial effect of exercise training washed out 8 weeks 
after the heart failure patients stopped exercise training [ 136 ].

    One goal of cancer therapy is to prevent the blood supply of a tumor using anti- 
angiogenic drugs [ 168 ]. Interestingly, even though chronic exercise training induces 
a positive angiogenic response in the heart and skeletal muscle, it may have an anti- 
angiogenic effect on tumors. To our knowledge there are currently no human mod-
els for investigating the effects of chronic exercise training and tumor blood vessel 
supply. Furthermore, the potential mechanisms to explain how exercise training 
exerts an anti-angiogenic effect on tumors still remain to be elucidated. Nonetheless, 
the effects of chronic exercise training have been examined using a Dalton’s lym-
phoma mouse model [ 169 ]. Data from that study [ 169 ] indicate that blood supply to 
the peritoneal cavity was signifi cantly reduced in mice that exercised 30 min per day 
three times per week at approximately 80%  V O 

2max
  [ 169 ]. Moreover, mice that exer-

cised 60 min a day had a further decrease in blood supply to the peritoneal cavity 
compared to the 30 min group. One of the potential mechanisms for the reduced 
blood supply was that VEGF was signifi cantly reduced in the exercise-trained mice 
vs. the sedentary controls. However, this may be specifi c to the type of cancer, as it 
was found that 44 days of voluntary wheel running did not reduce blood supply or 
tumor growth in a mouse model of human breast cancer [ 170 ]. Further studies 
should continue to examine the infl uence that chronic exercise training exerts on 
tumor growth and angiogenesis.  
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11.8     Conclusions 

 Angiogenesis is a process regulated by pro- and anti-angiogenic factors and plays an 
important role for normal growth and physiological function. Several disease states 
are also characterized by defi cient or dysregulated angiogenesis. In general, the litera-
ture indicates acute and chronic exercise training stimulates angiogenesis by upregu-
lating pro- and anti-angiogenic factors that ultimately increase capillary density in 
both heart and skeletal muscle. Chronic exercise training may also have an important 
therapeutic role    for regulating angiogenesis healthy as well as clinical populations.      
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