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Abstract The Ras/Raf/MEK/ERK and PI3K/Akt/mTOR cascades are often  activated 
by genetic alterations, either by mutations in upstream signaling molecules or by muta-
tions in intrinsic pathway components. Upstream mutations in one signaling pathway 
or even in downstream components of the same pathway can alter the sensitivity of the 
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cells to certain small molecule inhibitors. These pathways have profound effects on 
proliferative, apoptotic, and differentiation pathways. Dysregulation of components of 
these pathways can contribute to: malignant transformation, resistance to other pathway 
inhibitors, and chemotherapeutic drug resistance. This chapter will first briefly describe 
these pathways and then evaluate potential uses of Raf, MEK, PI3K, Akt, and mTOR 
inhibitors that have been investigated in preclinical and clinical investigations.

13.1  Introduction

Since the discovery of the RAS, RAF, MEK1, PIK3CA, and AKT oncogenes and neu-
rofibromin 1 (NF1), PTEN, TSC1, and TSC2 tumor suppressor genes, the Ras/Raf/
MEK/ERK, and Ras/PI3K/PTEN/Akt/mTOR signaling cascades have been extensively 
investigated with the ultimate goal of determining how these genes become activated/
inactivated and whether it is possible to suppress their activity in human cancer and 
other diseases [1]. Furthermore, these pathways are also implicated in the resistance and 
sometimes sensitivity to therapy [2]. There have been breakthroughs in the discovery of 
complex interacting pathway components, and their genetic and epigenetic regulation. 
Furthermore, elucidation of the mechanisms by which mutations of components of the 
pathways can lead to aberrant signaling, uncontrolled proliferation, and in some cases 
confer sensitivity to targeted therapy has greatly advanced the field. This chapter will 
review some of the current inhibitors, their targets, and how they are being used to treat 
cancer and overcome therapeutic resistance.

Usually signaling commences upon ligation of a growth factor/cytokine/interleu-
kin/mitogen (ligand) to its cognate receptor at the cell surface. This event can result 
in the activation of many downstream signaling cascades including the Ras/Raf/
MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways. These pathways can fur-
ther transmit their signals to different subcellular components, namely to the nucleus 
to control gene expression, to the translational apparatus to enhance the translation of 
“weak” mRNAs, to the apoptotic machinery to regulate apoptosis, or to other events 
involved in the regulation of cellular proliferation (e.g., interactions with the p53 path-
way to regulate cell cycle progression). Regulation of the Ras/Raf/MEK/ERK and Ras/
PI3K/PTEN/Akt/mTOR pathways is mediated by a series of kinases, phosphatases, 
GTP:GDP exchange, and scaffolding proteins. There are also many tumor suppressor 
proteins which interact with these cascades which frequently serve to fine tune or limit 
activity (e.g., NF1, PTEN, RKIP, PP2A, TSC1, and TSC2). Mutations occur in many of 
the genes in these pathways leading to uncontrolled regulation and aberrant signaling.

13.2  The Ras/Raf/MEK/ERK Pathway

An overview of the Ras/Raf/MEK/ERK pathway and the sites where small mol-
ecule inhibitors act is presented in Fig. 13.1. This figure serves to illustrate the flow 
of information through this pathway from a growth factor to a specific  receptor 
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to phosphorylation of appropriate transcription factors as well as affect proteins 
involved in translation and apoptosis. Following the stimulation of a receptor with 
a growth factor/cytokine/mitogen, a Src homology 2 domain-containing protein 
(Shc) adaptor protein becomes associated with the C-terminus of the activated 

Fig. 13.1  Overview of the Ras/Raf/MEK/ERK cascade and small molecule inhibitors used for 
targeting this pathway. Activation of this pathway can occur by mutations in upstream Growth 
factor receptors (GFR) or by stimulation by the appropriate growth factors (GF). In addition, 
mutations can occur in intrinsic members of the pathway (RAS, RAF, MEK1, or the tumor sup-
pressor Neurofibromin (NF1)). Sites where NF1, protein phosphatase 2A (PP2A), Raf kinase 
inhibitory protein (RKIP), kinase suppressor of Ras (KSR) interact with this pathway are on the 
right hand side of the Ras/Raf/MEK/ERK pathway. NF1, PP2A, and RKIP are depicted in black 
rectangles as they normally serve to dampen the activity of this pathway. Sites where various 
small molecule inhibitors function are in black octagons on the left hand side of the pathway. 
Representative inhibitors are listed in boxes next to the octagons

13 New Agents and Approaches for Targeting
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growth factor receptor (GFR), for example, epidermal growth factor receptor 
(EGFR), insulin-like growth factor-1 receptor (IGF-1R), vascular endothelial 
growth factor receptor (VEGFR) and many others [1, 2]. Shc recruits the growth 
factor receptor–bound protein 2 (Grb2) protein and the son of sevenless (SOS) 
homolog protein [a guanine nucleotide exchange factor (GEF)], resulting in the 
loading of the membrane-bound GDP:GTP exchange protein (GTPase). GEFs 
promote Ras activation by displacing GDP from Ras which leads to GTP binding. 
Ras activation is suppressed by the GTPase-activating proteins (GAPs) that stimu-
late the GTPase activity of Ras. There are two prominent GAP proteins, p120GAP 
and NF1. Ras can also be activated by growth factor receptor tyrosine kinases 
(GFRTK), such as insulin receptor (IR), via intermediates like insulin receptor sub-
strate (IRS) proteins that bind Grb2 [3]. Ras:GTP then recruits the serine/threonine 
(S/T) kinase Raf to the membrane where it becomes activated [1, 2].

Both RAS and RAF are members of multi-gene families, and there are three 
RAS members (KRAS, NRAS, and HRAS) and three RAF members (BRAF, RAF1 
(a.k.a c-Raf), and ARAF) [1, 2]. Raf-1 and A-Raf are activated, in part, by a Src-
family kinase, while B-Raf does not require the Src-family kinase for activation. 
Raf-1 can be regulated by dephosphorylation by the protein serine/threonine phos-
phatase 2A (PP2A). PP2A has been reported to positively and negatively regulate 
Raf-1 [4, 5].

Raf is responsible for S/T phosphorylation of mitogen-activated protein kinase 
kinase-1 (MEK1) (a dual specificity kinase (T/Y) [1, 2]. Other proteins such as 
kinase suppressor of Ras (KSR) have recently been shown to phosphorylate 
MEK1 [6]. KSR has scaffolding properties and interacts with Raf, MEK, and 
ERK which regulates ERK activation. KSR can form dimers with various Raf pro-
teins which alter the effects of Raf inhibitors. KSR competes with Raf-1 for Raf 
inhibitor–induced binding to B-Raf which decreases the normal ERK activation 
observed after Raf-inhibitor treatment [7].

MEK1 phosphorylates extracellular signal-regulated kinases 1/2 (ERK1 and 2) 
at specific T and Y residues [1, 2]. MEK1 was originally not thought to be mutated 
frequently in human cancer. However, recent large-scale mutation screening stud-
ies and studies aimed at determining mechanisms of resistance to small molecule 
inhibitors have observed that MEK1 is mutated in certain human cancers and also 
is mutated in certain inhibitor-resistant cells [8].

Activated ERK1 and ERK2 serine S/T kinases phosphorylate and activate a 
variety of substrates, including p90 ribosomal six kinase-1 (p90Rsk1) [2]. ERK 
also phosphorylates MAPK signal-integrating kinases (Mnk1/2) which can in turn 
phosphorylate eukaryotic translation initiation factor 4E (eIF4E), a key protein 
involved in the translation of difficult mRNAs [9].

p90Rsk1 can activate the cAMP-response element-binding protein (CREB) tran-
scription factor as well as proteins involved in regulation of protein translation 
(e.g., Mnk-1, p70 ribosomal S6 kinase (p70S6K), eukaryotic translation initiation 
factor 4B, (eIF4B), and ribosomal protein S6 (rpS6) [10].

The number of ERK1/2 substrate/targets is easily in the hundreds. These 
substrates/targets include different types of molecules including other kinases, 
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transcription factors, or proteins involved in protein translation or apoptosis. 
Suppression of MEK and ERK can have profound effects on cell growth, inflam-
mation, and aging. Activated ERK can also phosphorylate “upstream” Raf-1 and 
MEK1 which alter their activity. Depending upon the site phosphorylated on Raf-
1, ERK phosphorylation can either enhance [11] or inhibit [12] Raf-1 activity. 
In contrast, some studies have indicated that when MEK1 are phosphorylated by 
ERK, their activity decreases [13]. Recent studies indicate that ERK does not neg-
atively feedback-inhibit B-Raf [14].

These phosphorylation events induced by ERK serve to alter the stability and/
or activities of the proteins. These examples of feedback loops become important 
in consideration of whether to just target MEK or to target both Raf and MEK in 
various cancers. It is important that the reader realize that certain phosphorylation 
events can either inhibit or repress the activity of the affected protein. This often 
depends on the particular residue on the protein phosphorylated which can confer 
a different configuration to the protein or target the protein to a different subcel-
lular localization that may result in proteasomal degradation or association with 
certain scaffolding proteins.

13.3  The Ras/PI3K/PTEN/Akt/mTOR Pathway

An introductory overview of the Ras/PI3K/PTEN/Akt/mTOR pathway is pre-
sented in Fig. 13.2. Also outlined in this diagram are common sites of intervention 
with signal transduction inhibitors. Many of these inhibitors have been evaluated 
in various clinical trials, and some are currently being used to treat patients with 
specific cancers. Extensive reviews of many inhibitors targeting these pathways 
have been recently published [1, 15, 16].

Phosphatidylinositol 3-kinase (PI3K) is a heterodimeric protein with an 85 kDa 
regulatory subunit and a 110 kDa catalytic subunit (PIK3CA) [1, 2, 66–69]. 
PIK3CA is frequently mutated in certain cancers such as breast, ovarian, colorec-
tal, endometrial, and lung [2, 17].

PI3K serves to phosphorylate a series of membrane phospholipids including 
phosphatidylinositol 4-phosphate (PtdIns(4)P) and phosphatidylinositol 4,5-bis-
phosphate (PtdIns(4,5)P2), catalyzing the transfer of ATP-derived phosphate 
to the D-3 position of the inositol ring of membrane phosphoinositides, thereby 
forming the second messenger lipids phosphatidylinositol 3,4-bisphosphate 
(PtdIns(3,4)P2) and phosphatidylinositol 3,4,5-trisPhosphate (PtdIns(3,4,5)P3) 
[2, 15]. Most often, PI3K is activated via the binding of a ligand to its cognate 
receptor, whereby p85 associates with phosphorylated tyrosine residues on the 
receptor via a Src homology 2 (SH2) domain. After association with the receptor, 
the p110 catalytic subunit then transfers phosphate groups to the aforementioned 
membrane phospholipids [15]. It is these lipids, specifically PtdIns [3–5] P3, that 
attract a series of kinases to the plasma membrane, thereby initiating the signaling 
cascade.

13 New Agents and Approaches for Targeting
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Downstream of PI3K is the primary effector molecule of the PI3K signaling 
cascade, Akt/protein kinase B (PKB) which is a 57 kDa S/T kinase that phospho-
rylates many targets on RxRxxS/T (R = Arginine) consensus motifs [18]. Akt was 
discovered originally as the cellular homolog of the transforming retrovirus AKT8 
and as a kinase with properties similar to protein kinases A and C [19]. Akt con-
tains an amino-terminal pleckstrin homology (PH) domain that serves to target the 
protein to the membrane for activation [15]. Within its central region, Akt has a 
large kinase domain and is flanked on the carboxyl-terminus by hydrophobic and 
proline-rich regions [15]. Akt-1 is activated via phosphorylation of two residues: 
T308 and S473. Akt-2 and Akt-3 are highly related molecules and have similar 
modes of activation. Akt-1 and Akt-2 are ubiquitously expressed, while Akt-3 
exhibits a more restricted tissue distribution and is found abundantly in nervous 
tissue [20].

Fig. 13.2  Overview of the PI3 K/Akt/mTOR cascade and small molecule inhibitors used for 
targeting this pathway. Activation of this pathway can occur by mutations in upstream growth 
factor receptors (GFR) or by stimulation by the appropriate GF. In addition, mutations can occur 
in intrinsic members of the pathway (RAS, PIK3CA, AKT, or the tumor suppressors (NF1, PTEN, 
TSC1, TSC2). Sites where NF1, PTEN, TSC1, TSC2 are depicted in black rectangles as they nor-
mally serve to dampen the activity of this pathway. Sites where various small molecule inhibitors 
function are in black octagons. Representative inhibitors are listed in boxes next to the octagons
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The phosphatidylinositol-dependent kinases (PDKs) are responsible for the 
activation of Akt. PDK1 is the kinase responsible for phosphorylation of Akt-1 
at T308 [18]. Akt-1 is also phosphorylated at S473 by the mammalian target of 
rapamycin (mTOR) complex referred to as (Rapamycin-insensitive companion 
of mTOR/mLST8 complex) mTORC2 [15]. Therefore, phosphorylation of Akt is 
complicated as it is phosphorylated by a complex that lies downstream of activated 
Akt itself [15]. Thus, as with the Ras/Raf/MEK/ERK pathway, there are feedback 
loops that serve to regulate the activity of the Ras/PI3K/PTEN/Akt/mTOR path-
way. Once activated, Akt leaves the cell membrane to phosphorylate intracellular 
substrates.

After activation, Akt is able to translocate to the nucleus [15] where it affects 
the activity of a number of transcriptional regulators. Some examples of molecules 
which regulate gene transcription that are phosphorylated by Akt include CREB 
[21], E2F [22], nuclear factor kappa from B cells (NF-κB) via inhibitor kappa B 
protein kinase (Iκ-K) [23], and the forkhead transcription factors [24]. These are 
all either direct or indirect substrates of Akt and each can regulate cellular prolif-
eration, survival, and other important biologic processes. Besides transcription fac-
tors, Akt targets a number of other molecules to affect the survival state of the cell 
including the proapoptotic molecule Bcl-2-Associated Death promoter (BAD) [25] 
and glycogen synthase kinase-3β (GSK-3β) [26].

Negative regulation of the PI3K pathway is primarily accomplished through 
the action of the phosphatase and TENsin homolog deleted on chromosome 10 
(PTEN) tumor suppressor protein. PTEN encodes a lipid and protein phosphatase 
whose primary lipid substrate is PtdIns(3,4,5)P3 [27]. The purported protein 
substrate(s) of PTEN are more varied, including focal adhesion kinase (FAK), the 
Shc exchange protein, the transcriptional regulators E-twenty six-2 (ETS-2) [28] 
and Sp1 and the platelet-derived growth factor receptor (PDGF-R) [29].

Next, we discuss some of the key targets of Akt that can also contribute to 
abnormal cellular growth by the regulation of protein translation. Akt-mediated 
regulation of mTOR activity is a complex multi-step phenomenon. Akt inhibits 
tuberous sclerosis 2 (TSC2 or tuberin) function through direct phosphorylation 
[30]. TSC2 is a GTPase-Activating protein (GAP) that functions in association 
with the putative tuberous sclerosis 1 (TSC1 or hamartin) to inactivate the small 
G protein Ras homolog enriched in brain (Rheb) [31]. TSC2 phosphorylation by 
Akt represses GAP activity of the TSC1/TSC2 complex, allowing Rheb to accu-
mulate in a GTP-bound state. Rheb-GTP then activates, through a mechanism not 
yet fully elucidated, the protein kinase activity of mTOR which complexes with 
Raptor (Regulatory-associated protein of mTOR) adaptor protein, DEP domain-
containing mTOR-interacting protein (DEPTOR) and mLST8, a member of the 
Lethal-with-Sec-Thirteen gene family, first identified in yeast, FK506-binding 
protein 38 (FKBP38) and proline-rich Akt Substrate 40 kDa protein (PRAS40). 
mTORC1 is sensitive to rapamycin and, importantly, inhibits Akt via a negative 
feedback loop which involves, at least in part, p70S6K [31]. This is due to the neg-
ative effects that p70S6K has on IRS1. DEPTOR may be a tumor suppressor gene 
as decreased expression of DEPTOR results in increased mTORC1 activity [32].

13 New Agents and Approaches for Targeting
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The mechanism by which Rheb-GTP activates mTORC1 has not been fully 
elucidated yet; however, it requires Rheb farnesylation and can be blocked by 
Farnesyl transferase (FT) inhibitors. It has been proposed that Rheb-GTP would 
relieve the inhibitory function of FKBP38 on mTOR, thus leading to mTORC1 
activation [33].

As stated previously, TSC1 and TSC2 have important roles in the regulation of 
mTORC1. Two additional molecules important in this regulation are liver kinase B 
(LKB1 also known as STK11). LKB1 is an upstream activator of 5′AMP-activated 
protein kinase (AMPK) which activates TSC2 that negatively regulates mTORC1 
[34]. LKB1 mediates the effects of the diabetes drug metformin [35]. Metformin 
has also been shown to be effective in suppressing the developments of certain 
cancers [36–38].

Akt also phosphorylates PRAS40, an inhibitor of mTORC1, and by doing 
so, it prevents the ability of PRAS40 to suppress mTORC1 signaling (recently 
reviewed in [15]). Thus, this could be yet another mechanism by which Akt acti-
vates mTORC1. Moreover, PRAS40 is a substrate of mTORC1 itself, and it has 
been demonstrated that mTORC1-mediated phosphorylation of PRAS40 prevents 
the inhibition of additional mTORC1 signaling [31].

Ras/Raf/MEK/ERK signaling positively impinges on mTORC1. Both p90Rsk−1 
and ERK 1/2 phosphorylate TSC2, thus suppressing its inhibitory function [31]. 
Moreover, mTORC1 inhibition resulted in ERK 1/2 activation, through p70S6K/
PI3K/Ras/Raf/MEK [39].

The relationship between Akt and mTOR is further complicated by the exist-
ence of the mTOR/Rictor complex (mTORC2), which, in some cell types, displays 
rapamycin-insensitive activity. mTORC2 is comprised of rapamycin-insensitive 
companion of mTOR (Rictor), mTOR, DEPTOR, mLST8, stress-activated pro-
tein kinase interacting protein 1 (SIN1), and protein observed with Rictor (Protor). 
mTORC2 phosphorylates Akt on S473 in vitro which facilitates T308 phospho-
rylation [15]. Thus, mTORC2 can function as the elusive PDK-2 which phos-
phorylates Akt-1 on S473 in response to growth factor stimulation [40]. Akt 
and mTOR are linked to each other via positive and negative regulatory circuits, 
which restrain their simultaneous hyperactivation through mechanisms involving 
p70S6K and PI3K [15, 31]. Assuming that equilibrium exists between these two 
complexes, when the mTORC1 complex is formed, it could antagonize the forma-
tion of the mTORC2 complex and reduce Akt activity. Thus, at least in principle, 
inhibition of the mTORC1 complex could result in Akt hyperactivation. This is 
one problem associated with therapeutic approaches using rapamycin or modified 
rapamycins (rapalogs) that block some actions of mTOR but not all.

mTOR is a 289 kDa S/T kinase. mTOR was the first identified member of 
the phosphatidylinositol 3-kinase-related kinase (PIKK) family [15]. mTOR has 
been referred to as the gatekeeper of autophagy [41]. mTOR regulates transla-
tion in response to nutrients and growth factors by phosphorylating components 
of the protein synthesis machinery, including p70S6K and eukaryotic initiation 
factor (eIF)-4E binding protein-1 (4EBP-1), the latter resulting in the release of 
the eukaryotic initiation factor-4E (eIF-4E) allowing eIF-4E to participate in the 
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assembly of a translational initiation complex [2]. p70S6K phosphorylates the 40S 
rpS6, leading to translation of “weak” mRNAs. Integration of a variety of signals 
(mitogens, growth factors, hormones) by mTOR assures cell cycle entry only if 
nutrients and energy are sufficient for cell duplication [15].

Unphosphorylated 4E-BP1 interacts with the cap-binding protein eIF4E and 
prevents the formation of the 4F translational initiation complex (eIF4F) by com-
peting for the binding of eukaryotic initiation factor 4G (eIF4G) to eIF4E. 4E-BP1 
phosphorylation by mTORC1 results in the release of the eIF4E, which then asso-
ciates with eIF4G to stimulate translation initiation [15].

eIF4E is a key component for translation of 5′ capped mRNAs, which include 
transcripts mainly encoding for proliferation and survival promoting proteins, such 
as c-Myc, cyclin D1, cyclin-dependent kinase-2 (CDK-2), signal activator and 
transducer of transcription-3 (STAT-3), ornithine decarboxylase, surviving, B-cell 
lymphoma 2 (Bcl-2), Bcl-xL, myeloid cell leukemia-1 (Mcl-1) [2].

13.4  Overview of Pathway Inhibitors

Sites of intervention with signal transduction inhibitors in the Ras/Raf/MEK/
ERK are presented in Fig. 13.1. Some of the inhibitors are currently being used 
to treat patients with specific cancers, and others have been or are being evaluated 
in numerous clinical trials with many different types of cancer patients. Effective 
inhibitors, specific for many of the key components of the Ras/Raf/MEK/ERK and 
Ras/PI3K/PTEN/mTOR pathways, have been developed [1, 15]. In many cases, 
these inhibitors have been examined in clinical trials. Furthermore, inhibitors that 
target the mutant protein more than the wild-type (WT) protein of various genes 
(e.g., BRAF and PIK3CA) either have been or are being characterized.

13.4.1  Raf Inhibitors

Raf inhibitors have been developed, and some are being used for therapy while 
others are being evaluated in clinical trials. Raf inhibitors have, in general, exhib-
ited greater response rates in clinical trials than MEK inhibitors which may be 
related to the broader therapeutic index of Raf inhibitors that suppress ERK activ-
ity in a mutant-allele-specific fashion as opposed to MEK inhibitors which sup-
press MEK activity in tumor and normal cells [42].

13.4.1.1 Sorafenib

Sorafenib (Bayer) was initially thought to specifically inhibit Raf but has been 
subsequently shown to have multiple targets (e.g., VEGF-R, Flt-3, PDGF-R) [43]. 
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However, that does not preclude its usefulness in cancer therapy. Sorafenib is 
approved for the treatment for certain cancers (e.g., renal cell Carcinoma (RCC) 
and patients with unresectable HCC and was further evaluated in the Sorafenib 
Hepatocellular carcinoma Assessment Randomized Protocol (SHARP) trial, which 
demonstrated that the drug was effective in prolonging median survival and time 
to progression in patients with advanced HCC [44, 45]. Sorafenib is generally well 
tolerated in HCC patients with a manageable adverse events profile [44]. While 
sorafenib is not considered effective for the treatment for most melanomas with 
BRAF V600E mutations, it may be effective in the treatment for a minority of mela-
nomas with G469E and D594G mutations which express constitutive ERK1/2 but 
low levels of MEK. These melanomas are sensitive to sorafenib, potentially because 
they signal through Raf-1. Raf-1 also exerts anti- apoptotic effects at the mitochon-
drion in association with Bcl-2 family members [46].

13.4.1.2 Vemurafenib

Vemurafenib (Zelboraf, PLX-4032, Plexxikon/Roche) is a B-Raf inhibitor that 
has and is being evaluated in many clinical trials [47–49]. Vemurafenib has been 
approved by the US Food and Drug Administration (FDA) for the treatment of 
patients with unresectable or metastatic melanoma carrying the BRAF(V600E) 
mutation. For vemurafenib to be clinically effective, it needs to suppress down-
stream ERK activation essentially completely [47].

13.4.1.3 Dabrafenib

Dabrafenib (GSK2118436) is an ATP-competitive inhibitor of mutant B-Raf, WT 
B-Raf, and WT Raf-1 developed by GlaxoSmithKlein (GSK) [50]. Dabrafenib is 
in clinical trials [51, 52].

13.4.1.4 CCT239065

CCT239065 is a mutant B-Raf inhibitor developed at the Institute of Cancer 
Research in London, UK. It inhibits mutant BRAF V600E signaling and prolifera-
tion more than those cells containing WT BRAF [53]. Its effects are more selective 
for cells containing mutant BRAF than WT BRAF. CCT239065 is well tolerated 
in mice and had good oral bioavailability. It suppressed tumors containing BRAF-
mutant gene but not WT BRAF tumors in mice tumor xenograft studies.

13.4.1.5 GDC-0879

GDC-0879 is a BRAF-mutant allele-selective inhibitor developed by Genentech 
[54]. The efficacy GDC-0879 is related to the BRAF V600E mutational status in 
the cancer cells and inhibition of downstream MEK and ERK activity.
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13.4.1.6 AZ628

AZ628 is a selective Raf inhibitor developed by Astra Zeneca. It has been shown 
that when BRAF-mutant melanoma cells, which are normally very sensitive to 
AZ628, are grown for prolonged periods of time, they become resistant to AZ628 
by upregulating the expression of Raf-1 [55].

13.4.1.7 XL281

XL281 is an oral active wild-type and mutant RAF kinase-selective inhibitor 
developed by Exelixis and Bristol-Myers Squibb. It has been examined in clinical 
trials primarily with patients having BRAF mutations (colorectal cancers (CRC), 
melanoma, papillary thyroid cancers (PTC), and NSCLC) [56].

13.4.1.8 PLX5568

PLX5568 is a selective Raf kinase inhibitor developed by Plexxicon. It is being 
examined for the treatment for polycystic kidney disease (PKD). In the kidney, 
Raf-1 is localized to the tubular cells where it is linked with many physiologically 
important functions. PLX5568 suppressed cyst enlargement in a rat model of PKD 
but did not improve kidney function as fibrosis was not suppressed [57].

13.4.1.9 Raf-265

Raf-265 is an ATP-competitive pan-Raf inhibitor developed by Novartis. 
Treatment for bronchus carcinoid NCI-H727 and CM-insulinoma cells with Raf-
265 enhanced sensitivity to TRAIL-induced apoptosis. These cells were normally 
resistant to PI3K/mTOR inhibitors when combined with TRAIL. Raf-265 was 
shown to decrease Bcl-2 levels which correlated with their sensitivity to TRAIL-
mediated apoptosis. This approach may be effective in the therapy of neuroendo-
crine tumors [58].

13.4.1.10 Regorafenib

Regorafenib (BAY 73-4506) is an oral multi-kinase inhibitor of angiogenic, 
stromal, and oncogenic RTKs developed by Bayer. Regorafenib inhibits RTKs 
such as VEGF-R2, VEGF-R1/3, PDGF-Rβ, fibroblast growth factor receptor-1 
as well as mutant Kit, RET, and B-Raf. The effects of regorafenib on tumor 
growth have been evaluated in human xenograft models in mice, and tumor 
shrinkages were observed in breast MDA-MB-231 and renal 786-O carcinoma 
models [59].

13 New Agents and Approaches for Targeting
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13.4.2  MEK Inhibitors

Most MEK inhibitors differ from most other kinase inhibitors as they do not 
 compete with ATP binding (non-ATP competitive), which confers a high specific-
ity [60–62]. Most MEK inhibitors are specific and do not inhibit many different 
protein kinases [62] although as will be discussed below, certain MEK inhibitors 
are more specific than others.

Molecular modeling studies indicate that many MEK bind to an allosteric bind-
ing site on MEK1/MEK2. The binding sites on MEK1/MEK2 are relatively unique 
to these kinases and may explain the high specificity of MEK inhibitors. This 
binding may lock MEK1/2 in an inactivate conformation that enables binding of 
ATP and substrate, but prevents the molecular interactions required for catalysis 
and access to the ERK activation loop [61].

A distinct advantage of inhibiting MEK is that it can be targeted without 
knowledge of the precise genetic mutation that results in its aberrant activation. 
This is not true with targeting Raf as certain Raf inhibitors will activate Raf and 
also certain B-Raf-specific inhibitors will not be effective in the presence of RAS 
mutations.

An advantage of targeting MEK is that the Ras/Raf/MEK/ERK pathway is a 
convergence point where a number of upstream signaling pathways can be blocked 
with the inhibition of MEK. For example, MEK inhibitors, such as Selumetinib 
(AZD6244), are also being investigated for the treatment for pancreatic cancers, 
breast cancers, and other cancers such as hematopoietic malignancies, including 
multiple myeloma [1, 63].

13.4.2.1 Selumetinib

Selumetinib inhibits MEK1 in vitro with an IC50 value of 14.1 ± 0.79 nM [64–67]. 
It is specific for MEK1 as it did not appear to inhibit any of the approximately 
40 other kinases in the panel tested. Selumetinib is not competitive with ATP. 
Selumetinib inhibited downstream ERK1/ERK2 activation in in vitro cell line 
assays with stimulated and unstimulated cells and also inhibited activation in tumor 
transplant models. Selumetinib did not prevent the activation of the related ERK5 
that occurs with some older MEK1 inhibitors, which are not being pursued in clini-
cal trials. Inhibition of ERK1/2 suppresses their ability to phosphorylate and modu-
late the activity of Raf-1, B-Raf, and MEK1 but not MEK2 as MEK2 lacks the 
ERK1/ERK2 phosphorylation site. In essence, by inhibiting ERK1/2 the negative 
loop of Raf-1, B-Raf, and MEK phosphorylation is suppressed, and hence, there 
will be an accumulation of activated Raf-1, B-Raf, and MEK [67]. This biochem-
ical feedback loop may provide a rationale for combining Raf and MEK inhibi-
tors in certain therapeutic situations. Selumetinib has also been shown to suppress 
cetuximab-resistant CRCs which had KRAS mutations both in vitro and in vivo 
models [68].
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13.4.2.2 PD-0325901

The PD-0325901 MEK inhibitor is an orally active, potent, specific, non-ATP-
competitive inhibitor of MEK. PD-0325901 demonstrated improved pharma-
cological and pharmaceutical properties compared with PD-184352, including a 
greater potency for inhibition of MEK and higher bioavailability and increased 
metabolic stability. PD-0325901 has a Ki value of 1 nM against MEK1 and MEK2 
in in vitro kinase assays. PD-0325901 inhibits the growth of cell lines that prolif-
erate in response to elevated signaling of the Raf/MEK/ERK pathways [62]. PD-
0325901 has undergone phase I clinical trials [62, 69–71]. Although the initial trial 
results were not encouraging, it was determined that some tumors which prolifer-
ate in response to the Raf/MEK/ERK pathways may be sensitive to PD0325901 
[72]. Although the clinical trials with PD-0325901 were initially suspended, there 
are now some clinical trials with PD-0325901 in combination with other pathway 
inhibitors.

13.4.2.3 Refametinib

Refametinib (RDEA119) is a more recently described MEK inhibitor developed 
by Ardea Biosciences [73]. It is a highly selective MEK inhibitor that displays a 
>100-fold selectivity in kinase inhibition in a panel of 205 kinases. In contrast, 
in the same kinase specificity analysis, other recently developed MEK inhibitors 
(e.g., PD0325901) also inhibited the Src and RON kinases.

13.4.2.4 Trametinib

Trametinib (GSK1120212) is an allosteric MEK inhibitor developed by GSK. It 
has been shown to be effective when combined with dabrafenib in certain dab-
rafenib-resistant BRAF V600 melanoma lines that also had mutations at NRAS 
or MEK1 [52]. The combination of trametinib and the PI3K/mTOR dual inhibi-
tor GSK2126458 also enhanced cell growth inhibition in these B-Raf inhibitor- 
resistant BRAF-mutant melanoma lines.

13.4.2.5 GDC-0973

GDC-0973 (XL518) is a potent and selective MEK inhibitor developed by 
Genentech [74]. The effects of combining GDC-0973 and the PI3K inhibitor 
GDC-0941 on the proliferation of BRAF and KRAS mutant cancer cells indicated 
the combination efficacy both in vitro and in vivo.
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13.4.2.6 AS703026

AS703026 (MSC1936369B) is a MEK inhibitor developed by EMD Serono. 
AS703026 suppressed cetuximab-resistant CRCs which had KRAS mutations both 
in vitro and in vivo models [68]. AS703026 inhibited growth and survival of mul-
tiple myeloma (MM) cells and cytokine-induced differentiation more potently 
than selumetinib, and importantly, AS703026 was cytotoxic, where as most MEK 
inhibitors are cytostatic [75]. AS703026 sensitized MM cells to a variety of con-
ventional (dexamethasone, melphalan) and novel (lenalidomide, perifosine, bort-
ezomib, rapamycin) drugs used to treat MM.

13.4.2.7 RO4987655

RO4987655 (CH4987655) is an allosteric, orally available MEK inhibitor devel-
oped by Roche/Chiron. It has been tested in humans and determined to inhibit 
active ERK levels. At the levels of RO4987655 administered, it was determined to 
be safe in healthy volunteers [76].

13.4.2.8 TAK-733

TAK-733 is a potent and selective, allosteric MEK inhibitor developed by Takeda 
San Diego [77]. TAK-733 is being investigated in clinical trials.

13.4.2.9 MEK162

MEK162 (ARRY-162) is a MEK inhibitor developed by Novartis. It is in clinical 
trials.

13.4.2.10 SL327

SL337 is a MEK inhibitor that has been used in many neurological and drug 
addiction studies [78].

13.4.2.11 Other MEK Inhibitors

Other MEK inhibitors are being developed. RG422 is one such inhibitor.

13.4.3  Combining Raf and MEK Inhibitors

The possibility of treating certain patients with Raf and MEK inhibitors is a con-
cept which is gaining more acceptance as it may be a therapeutic possibility to 
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overcome resistance [42]. Raf inhibitors induce Raf activity in cells with WT RAF 
if Ras is active [79]. The addition of a MEK inhibitor would suppress the acti-
vation of MEK and ERK in the normal cells of the cancer patient. Thus, B-Raf 
would be suppressed by the B-Raf-selective inhibitor in the cancer patient, while 
the consequences of Raf activation in the normal cells would be suppressed by the 
MEK inhibitor. These concepts are being examined in clinical trials.

13.4.4  Combining MEK and Bcl-2 Inhibitors

The effects of combining MEK and Bcl-2/Bcl-XL inhibitors have been examined 
in preclinical studies with AML cell lines and patient samples [80]. The Bcl-2 
inhibitor, ABT-737, was observed to induce ERK activation and Mcl-1 expres-
sion. However, when the ABT-737 inhibitor was combined with the MEK inhibi-
tor PD0325901, a synergistic response was observed in terms of the induction of 
cell death both on AML cell lines and on primary tumor cells with the properties 
of leukemia stem cells. Furthermore, these studies were also extended into tumor 
transplant models with the MOLT-13 cell line, and synergy between ABT-737 and 
PD0325901 were also observed in vivo.

13.4.5  ERK Inhibitors

There are at least two ERK molecules regulated by the Raf/MEK/ERK cascade, 
ERK1 and ERK2. Little is known about the differential in vivo targets of ERK1 
and ERK2. The development of specific ERK1 and ERK2 inhibitors is ongoing 
and may be useful in the treatment for certain diseases such as those leukemias 
where elevated ERK activation is associated with a poor prognosis (e.g., AML, 
ALL) [81]. ERK inhibitors have been described [82].

13.4.5.1 AEZS-131

AEZS-131 has been reported on the Internet to be a highly selective ERK 1/2 
inhibitor developed by Aeterna Zentaris and has been examined on human breast 
cancer cells.

13.4.5.2 Pyrimidylpyrrole ERK Inhibitors

A novel series of pyrimidylpyrrole ERK inhibitors has been developed at Vertex 
Pharmaceuticals [82]. A lead compound, ERKi, has been evaluated for its abil-
ity to overcome MEK inhibitor resistance [83]. These studies performed in breast 
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and CRCs demonstrated that dual inhibition of MEK and ERK by small molecule 
inhibitors was synergistic. Furthermore, inhibition of both MEK and ERK acted 
to suppress the emergence of resistance and overcome the acquired resistance to 
MEK inhibitors in these breast and CRC cell line models.

13.4.5.3 SCH772984

SCH772984 is reported to be an ERK inhibitor.

13.4.6  PI3K/Akt/mTOR Inhibitors

Numerous PI3K, Akt, mTOR, and dual PI3K/mTOR inhibitors have been devel-
oped and evaluated. The PI3K and mTOR inhibitors have been used in basic sci-
ence studies for years and have provided much information about the role of the 
PI3K/Akt/mTOR pathway in many biologic and diseases processes. We will focus 
on the newer inhibitors of this pathway and how they are now being used in clini-
cal trials.

13.4.6.1 PX-866

The modified wortmannin PX-866 has been evaluated as a PI3K inhibitor [84]. It 
is being evaluated in phase II clinical trials for patients with advanced metastatic 
prostate cancer by Oncothyreon.

13.4.6.2 GDC-0941

GDC-0941 is a PI3K inhibitor developed by Genentech. GDC-0941 inhibited 
the metastatic characteristics of thyroid carcinomas by targeting both PI3K and 
hypoxia-inducible factor 1α (HIF-1α) pathways [85]. GDC-0941 synergized with 
the MEK inhibitor UO126 in inhibiting the growth of NSCLC [86]. It is being 
evaluated in a clinical trial for advanced cancers or metastatic breast cancers 
which are resistant to aromatase inhibitor therapy.

13.4.6.3 IC87114

IC87114 is a selective p110δ PI3K inhibitor. It decreased cell proliferation and 
survival in AML cells and increased sensitivity to etoposide [87–90].

13.4.6.4 CAL-101

CAL-101(GS-1101) is a derivative of IC87114 [91–93]. CAL-101 is an oral p110δ 
PI3K inhibitor developed by Calistoga Pharmaceuticals and Gilead Sciences. 
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CAL-101 is currently undergoing clinical evaluation in patients with various 
hematopoietic malignancies including relapsed or refractory indolent B-cell NHL, 
mantle cell lymphoma or CLL. An additional clinical trial will examine the effects 
of combining CAL-101 with chemotherapeutic drugs and the αCD20 monoclonal 
Ab (MoAb).

13.4.6.5 XL-147 (SAR245408)

XL-147 (SAR245408) is a PI3K inhibitor developed by Exelixis/Sanofi-Aventis 
[94]. It is in clinical trials, either as a single agent or in combination with erlotinib, 
hormonal therapy, chemotherapy, or MoAb therapy for various cancers including 
lymphoma, breast, endometrial, glioblastoma, astrocytoma, or other solid cancers.

13.4.6.6 Novartis PI3K Inhibitors

NVP-BKM120 is an orally available pan-class I PI3-kinase inhibitor developed by 
Novartis [95]. It is in many clinical trials, either as a single agent or in combi-
nation with other drugs or signal transduction inhibitors [96]. NVP-BKM120 is 
clinical trial with patients having advanced cancers such as CRC, NSCLC, breast, 
prostate, endometrial, squamous cell carcinoma of the head and neck, GIST, RCC, 
melanoma, and advanced leukemias.

NVP-BYL719 (BYL719) is a PI3Kα-selective inhibitor developed by Novartis. 
It is in clinical trials for patients with advanced solid tumors, some containing 
mutations at PIK3CA. It is also being examined in a clinical trial in combination 
with the MEK-162 inhibitor for patients with advanced CRC, esophageal, pancre-
atic, NSCLC, or other advanced solid tumors containing RAS or BRAF mutations.

13.4.7  Dual PI3K/mTOR Inhibitors

The catalytic sites of PI3K and mTOR share a high degree of sequence homol-
ogy. This feature has allowed the synthesis of ATP-competitive compounds that 
target the catalytic site of both PI3K and mTOR. Several dual PI3K/mTOR inhibi-
tors have also been developed. In preclinical settings, dual PI3K/mTOR inhibitors 
displayed a much stronger cytotoxicity against leukemic cells than either PI3K 
inhibitors or allosteric mTOR inhibitors, such as rapamycin and its derivatives 
(rapalogs). In contrast to rapamycin/rapalogs, dual PI3K/mTOR inhibitors tar-
geted both mTOR complex 1 and mTOR complex 2 and inhibited the rapamycin- 
resistant phosphorylation of eIF4B-1 and inhibited protein translation of many 
gene products associated with oncogenesis (enhanced proliferation) in leukemic 
cells. The dual inhibitors strongly reduced the proliferation rate and induced an 
important apoptotic response [16].
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The kinase selectivity profile of the dual PI3K/mTOR modulators is consist-
ent with the high sequence homology and identity in the ATP-catalytic cleft 
of these kinases. Dual PI3K/mTOR inhibitors have demonstrated significant, 
 concentration-dependent cell proliferation inhibition and induction of apopto-
sis in a broad panel of tumor cell lines, including those harboring PI3K p110α 
(PIK3CA) activating mutations [97].

Moreover, the in vitro activity of these ATP-competitive PI3K/mTOR modula-
tors has translated well in in vivo models of human cancer xenografted in mice. 
They were well tolerated and achieved disease stasis or even tumor regression 
when administered orally [98]. In spite of their high lipophilicity and limited water 
solubility, the pharmacological, biologic, and preclinical safety profiles of these 
dual PI3K/mTOR inhibitors supported their clinical development.

There may be some benefits to treating patients with an inhibitor that can tar-
get both PI3K and mTOR as opposed to treating patients with two inhibitors, that 
is, one targeting PI3K and another specifically mTOR. An obvious benefit could 
be lowered toxicities. Treatment with a single drug could have fewer side effects 
than treatment with two separate drugs. The effects of detrimental Akt activation 
by mTOR inhibition might be avoided upon treatment with a dual kinase inhibi-
tor. Furthermore, the negative side effects of mTOR inhibition on the activation 
of the Raf/MEK/ERK pathway might be eliminated with the PI3K inhibitor activ-
ity in the dual inhibitor. There remains, however, considerable uncertainty about 
potential toxicity of compounds that inhibit both PI3K and mTOR enzymes whose 
activities are fundamental to a broad range of physiological processes. Although 
it should be pointed out that there are some clinical trials in progress to determine 
whether it is beneficial to treat cancer patients with a PI3K/mTOR dual inhibitor 
and an mTORC1 blocker such as NVP-BEZ235 and RAD001, preclinical studies 
have documented the benefits of combining RAD001 with NVP-BEZ235 [99].

13.4.7.1 PI-103

PI-103 was the first reported ATP-competitive kinase inhibitor of mTOR which 
also blocked the enzymatic activity of PI3K p110 isoforms. It was developed at 
UCSF in 2006. PI-103 exhibits good selectivity over the rest of the human kinome 
in terms of non-selective inhibition of other kinases [100, 101]. PI-103 is a pan-
class I PI3K inhibitor with IC50 values in the 2 nm (p110α PI3K) to 15 nm range 
(p110γ PI3K) PI-103 inhibits both mTORC1 (IC50 = 0.02 μm) and mTORC2 
(IC50 = 0.083 μm).

13.4.7.2 Novartis Dual PI3K/mTOR Inhibitors

NVP-BEZ235 is a dual PI3 K/mTOR inhibitor developed by Novartis. Importantly 
and in contrast to rapamycin, NVP-BEZ235 inhibited the rapamycin-resistant 
phosphorylation of 4E-BP1, causing a marked inhibition of protein translation 
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in AML cells. This resulted in the reduced levels of the expression of c-Myc, 
 cyclin D1, and Bcl-xL known to be regulated at the translation initiation level 
[102]. NVP-BEZ235 suppressed proliferation and induced an important apoptotic 
response in AML cells without affecting healthy CD34+ cell survival. Importantly, 
it suppressed the clonogenic activity of leukemic, but not healthy, CD34+ cells 
[103]. NVP-BEZ235 targeted the side population (SP) of both T-ALL cell lines 
and patient lymphoblasts, which might correspond to Leukemia-Initiating Cells 
(LIC), and synergized with several chemotherapeutic agents (cyclophosphamide, 
cytarabine, dexamethasone) currently used for treating T-ALL patients [104]. 
Also, NVP-BEZ235 reduced chemoresistance to vincristine induced in Jurkat cells 
by co-culturing with MS-5 stromal cells, which mimic the bone marrow micro-
environment [105]. In this study, NVP-BEZ235 was cytotoxic to T-ALL patient 
lymphoblasts displaying pathway activation, where the drug dephosphorylated 
4E-BP1, in contrast to the results with obtained rapamycin. Taken together, these 
findings indicated that longitudinal inhibition at two nodes of the PI3K/Akt/mTOR 
network with NVP-BEZ235, either alone or in combination with chemothera-
peutic drugs, may be an effective therapy for of those T-ALLs that have aberrant 
upregulation of this signaling pathway.

NVP-BEZ235 has been evaluated also in a mouse model consisting of  
BA/F3 cells overexpressing either WT BCR-ABL or its imatinib-resistant BCR-
ABL mutants (E255K and T315I) [106]. NVP-BEZ235 inhibited proliferation of 
both cytokine-independent WT BCR-ABL and mutant BCR-ABL (E255K and 
T315I) overexpressing cells, whereas parental cytokine-dependent Ba/F3 cells 
were much less sensitive. The drug also induced apoptosis and inhibited both 
mTORC1 and mTORC2 signaling. Remarkably, the drug displayed cytotoxic 
activity in vivo against leukemic cells expressing the E255K and T315I BCRABL 
mutant forms. However, in this experimental model, NVP-BEZ235 induced an 
overactivation of MEK/ERK signaling, most likely due to the well-known com-
pensatory feedback mechanism that involves p70S6K [39]. NVP-BEZ235 has 
been intensively investigated and is in clinical trials for patients with advanced 
cancers [107]. In some trials, NVP-BEZ235 is being evaluated in combination 
with either paclitaxel or trastuzumab (herceptin). NVP-BTG226 is a recently 
developed PI3K/mTOR inhibitor [15].

13.4.7.3 Pfizer Dual PI3K/mTOR Inhibitors

PKI-587, also known as PF-05212384, inhibited class I PI3Ks, PI3Kα mutants, 
and mTOR. PKI-587-suppressed proliferation of approximately 50 diverse human 
tumor cell lines at IC50 values less than 100 nmol/L. PKI-587-induced apopto-
sis in cell lines with elevated PI3K/Akt/mTOR signaling. PKI-587 inhibited the 
tumor growth in various models including breast (MDA-MB-361, BT474), colon 
(HCT116), lung (H1975), and glioma (U87MG). The efficacy of PKI-587 was 
enhanced when administered in combination with the MEK inhibitor, PD0325901, 
the topoisomerase I inhibitor, irinotecan, or the HER2 inhibitor, neratinib [108].
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PF-04691502 is an ATP-competitive PI3K/Akt inhibitor which suppresses the 
activation of Akt. PF-04691502 suppressed the transformation of avian cells in 
response to either WT or mutant PIK3CA. PF-04691502 inhibited tumor growth in 
various xenograft models including U87 (PTEN null), SKOV3 (PIK3CA mutation) 
and gefitinib (EGFR inhibitor) and erlotinib-resistant NSCLC [109]. Both PKI-
587 and PF-04691502 are in clinical trials to treat endometrial cancers.

PKI-402 is a selective, reversible, ATP-competitive, PI3K and mTOR inhibitor. It 
suppress PI3Ks, PI3Kα mutant, and mTOR equally. PKI-402 inhibited the growth of 
many human tumor cell lines including breast, glioma, pancreatic, and NSCLC [110].

13.4.7.4 XL765

XL765 (SAR25409) is a dual PI3K/mTOR inhibitor developed by Exelixis/Sanofi-
Aventis. XL765 has been investigated in brain and pancreatic cancer models either 
as a single agent or in combination with temozolomide [111] or the autophagy 
inhibitor chloroquine [112]. XL765 downregulated the phosphorylation of Akt 
induced by PI3K/mTORC2 and reduced brain tumor growth [111]. Combining 
XL765 with chloroquine suppressed autophagy and induced apoptotic cell death in 
pancreatic tumor models [112]. Clinical trials are being performed with XL765 in 
combination with temozolomide to treat patients with glioblastoma or in combina-
tion with erlotinib to treat NSCLC patients.

13.4.7.5 Genentech Dual PI3K/mTOR Inhibitors

GNE-477 is a dual PI3K/mTOR inhibitor developed by Genentech [113]. GDC-0980 
is similar to GNE-477 and has been shown to have high activity in cancer models 
driven by PI3K pathway activation [114]. GDC-0980 is in a clinical trial for patients 
with advanced cancers or metastatic breast cancers which are resistant to aromatase 
inhibitor therapy.

13.4.7.6 GSK Dual PI3K/mTOR Inhibitors

GSK2126458 is a dual PI3K/mTOR inhibitor developed by GSK [52]. It is in at least 
two clinical trials with advanced cancer patients. In one trial, it is being combined with 
the MEK inhibitor GSK1120212. GSK1059615 is a dual PI3K/mTOR inhibitor devel-
oped by GSK. It was in a clinical trial with patients with solid tumors, metastatic breast 
cancer, endometrial cancers, and lymphomas which was terminated.

13.4.7.7 WJD008

WJD008 (Chinese Academy of Sciences, Shanghai) is a dual PI3K/mTOR [115]. 
WJD008 inhibited the increased activity of the PI3K pathway normally induced 
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by PIK3CA H1047R and suppressed proliferation and colony formation of 
 transformed RK3E cells containing PIK3CA H1047R.

13.4.8  PDK Inhibitors

Some compounds have been reported to be PDK inhibitors, including the osteo-
arthritis drug celecoxib [116], the modified celecoxib, OSU-03012 [76, 117], and 
2-O-BN-InsP(5) [118]. Celecoxib (Celebrex, Pfizer) obviously has other targets 
than PDK, such as cyclooxygenase-2 (Cox-2). Celecoxib is used to treat CRC 
patients to reduce the number of polyps in the colon. OSU-03012 is reported 
not to inhibit Cox-2 [117]. 2-O-BN-InsP(5) is based on the structure of inositol 
1,3,4,5,6-pentakisphosphate, it may inhibit both PDK and mTOR [118].

13.4.9  Akt Inhibitors

Many attempts to develop Akt inhibitors have been performed over the years. In 
many of the earlier attempts, the various Akt inhibitors either lacked specificity or 
had deleterious side effects. Part of the deleterious side effects is probably related 
to the numerous critical functions that Akt plays in normal physiology. Namely, 
some Akt inhibitors will alter the downstream effects of insulin on Glut-4 translo-
cation and glucose transport.

13.4.9.1 Triciribine

Triciribine (API-2) is an Akt inhibitor that has been used in many studies: at least 
92 are listed on PubMed. Triciribine suppressed the phosphorylation of all three 
Akt isoforms in vitro and the growth of tumor cells overexpressing Akt in mouse 
xenograft models [119]. The mechanism(s) by which triciribine inhibits Akt activ-
ity are not clear. The drug has been evaluated in a phase I clinical trial in patients 
with advanced hematologic malignancies, including refractory/relapsed AML. In 
this trial, triciribine was administered on a weekly schedule. The drug was well 
tolerated, with preliminary evidence of pharmacodynamic activity as measured by 
decreased levels of activated Akt in primary blast cells [120]. Triciribine has also 
been examined in clinical trial with Akt+ metastatic cancers.

13.4.9.2 MK-2206

MK-2206 (Merck) is an allosteric Akt inhibitor which inhibits both T308 and 
S473 phosphorylation. It also inhibits the downstream effects of insulin on Glut-4 
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translocation and glucose transport [121]. MK-2206 decreased T-acute lympho-
cytic leukemia (T-ALL) cell viability by the cells in the G0/G1 phase of the cell 
cycle and inducing apoptosis. MK-2206 also induced autophagy in the T-ALL 
cells. MK-2206 induced a concentration-dependent dephosphorylation of Akt 
and its downstream targets, GSK-3α/β and FOXO3A. MK-2206 also was cyto-
toxic to primary T-ALL cells and induced apoptosis in a T-ALL patient cell subset 
(CD34+/CD4−/CD7−) which is enriched in LICs. [122]. MK-2206 is in at least 43 
clinical trials either as a single agent or in combination with other small molecule 
inhibitors or chemotherapeutic drugs with diverse types of cancer patients.

13.4.9.3 GSK Akt Inhibitors

GSK690693 is a pan-Akt inhibitor developed by GSK. GSK690693 is an ATP-
competitive inhibitor effective at the low nanomolar range. Daily administration of 
GSK690693 resulted in significant anti-tumor activity in mice bearing various human 
tumor models including SKOV-3 ovarian, LNCaP prostate and BT474 and HCC-1954 
breast carcinoma. The authors also noted that GSK690693 resulted in acute and tran-
sient increases in blood glucose level [123]. The effects of GSK690693 were also exam-
ined 112 cell lines representing different hematologic neoplasia. Over 50 % of the cell 
lines were sensitive to the Akt inhibitor with an EC50 of less than 1 μm. ALL, non-
Hodgkin lymphomas, and Burkitt lymphomas exhibited 89, 73, and 67 % sensitivity to 
GSK690693, respectively. Importantly, GSK690693 did not inhibit the proliferation of 
normal human CD4+ peripheral T lymphocytes as well as mouse thymocytes.

GSK2141795 is a GSK Akt inhibitor under development. It is reported by GSK 
to be an oral, pan-Akt inhibitor which shows activity in various cancer models, 
including blood cancer and solid tumor models. In addition, it is reported by GSK 
to delay tumor growth in solid tumor mouse xenograft models. It has been investi-
gated further in clinical trials.

13.4.9.4 KP372-1

KP372-1 inhibits PDK1, Akt, and Fms-like tyrosine kinase 3 (Flt-3) signaling and 
induces mitochondrial dysfunction and apoptosis in AML cells but not normal 
hematopoietic progenitor cells [124]. It also suppressed colony formation of pri-
mary AML patient sample cells but not normal hematopoietic progenitor cells. It 
has also been investigated in other cancer types, including squamous cell carcino-
mas of the head and neck, thyroid cancers, and glioblastomas.

13.4.9.5 Enzasturin

Enzasturin (LY317615) is a protein kinase C-β (PKC-β) and Akt inhibitor devel-
oped by Lilly. It has been investigated in clinical trials either by itself or in 
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combination with other agents in various types of cancer patients including brain 
[125] and NSC [126], CRC [127] as well as other cancer types. It is reported to be 
in approximately 48 clinical trials on the ClinicalTrials.gov website.

13.4.9.6 Perifosine

Perifosine (KRX-0401, Keryx/AOI Pharmaceuticals, Inc., and licensed to AEterna 
Zentaris) is an alkylphospholipid that can inhibit Akt [128]. The effects of perifosine 
have been examined on many different tumor types. Perifosine induces caspase-depend-
ent apoptosis and downregulates P-glycoprotein expression in multi-drug-resistant 
T-ALL cells by a JNK-dependent mechanism [104]. Perifosine is or has been in at 
least 43 clinical trials to treat various cancer patients, with either blood cancers or solid 
tumors, either by itself, or in combination with other agents. It has advanced to phase III 
clinical trials for CRC and MM. In the USA, it has orphan drug status for the treatment 
for MM and neuroblastoma.

13.4.9.7 Erucylphosphocholine and Erucylphosphohomocholine

Erucylphosphocholine (ErPC) and Erucylphosphohomocholine (ErPC3) have 
been shown to inhibit Akt and induce apoptosis in malignant glioma cell lines 
which are normally resistant to the induction of apoptosis. They are structurally 
related to perifosine [129]. ErPC enhanced radiation-induced cell death and clo-
nogenicity [130]. These effects on the induction of apoptosis were correlated with 
increased Bim levels and decreased Bad and Foxo-3 phosphorylation, potentially 
consequences of decreased Akt activity. ErPC3 is the first intravenously applicable 
alkylphosphocholine. ErPC3 was cytotoxic to AML cells through JNK2- and PP2-
dependent mechanisms [131].

13.4.9.8 PBI-05204

PBI-05204 (oleandrin) is an Akt inhibitor. PBI-05024 is a botanical drug candidate 
derived from Nerium oleander and developed by Phoenix Biotechnology. It also 
has other targets including FGF-2, NF-κB, and p70S6K. PBI-05204 is in clinical 
trials for cancer patients with advanced solid tumors [132]. Interestingly, PBI-
05204 also provides significant neuroprotection to tissues damaged by glucose and 
oxygen deprivation which occurs in ischemic stroke [133].

13.4.9.9 RX-0201

RX-0201 (Akt1AO, Rexahn Pharmaceuticals, Inc.) is an Akt-1 antisense oligo-
nucleotide molecule. RX-0201 downregulated Akt-1 expression at nanomolar 
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concentrations in multiple types of human cancer cells. RX-0201 also inhibited 
tumor growth in mice xenografted with U251 human glioblastoma and MIA 
human pancreatic cancer cells [134]. RX-021 is in a clinical trial in combination 
with gemcitabine for patients with metastatic pancreatic cancer [135].

13.4.9.10 XL-418

XL-418 is reported to be a dual Akt/p70S6K inhibitor by developed by 
Exelixis/GSK. It was in clinical trials for patients with advanced cancer; however, 
those trials were suspended.

13.4.10  mTORC1 Inhibitors

Rapamycin (Rapamune, Pfizer) was approved by the FDA in 1999 to prevent 
transplant rejection in organ transplant patients. Rapamycin/rapalogs act as allos-
teric mTORC1 inhibitors and do not directly affect the mTOR catalytic site [15]. 
They associate with the FK506-binding protein 12 (FKBP-12) and by so doing, 
they induce disassembly of mTORC1, resulting in the repression of its  activity 
[136, 137]. The rapalogs have been examined in clinical trials of various can-
cers including brain, breast, HCC, leukemia, lymphoma, MM, NSCLC, pancre-
atic, prostate, and RCC [138, 139]. The rapalogs Torisel (Pfizer) and Afinitor 
(Novartis) were approved in 2007 and 2009 (respectively) to treat RCC patients 
[140]. In 2008, Torisel was approved to treat Mantle cell lymphoma patients. In 
2010, Afinitor was approved to treat subependymal giant cell astrocytoma (SEGA) 
tumors in tuberous sclerosis (TS) patients. In 2011, Afinitor was approved to treat 
patients with pancreatic neuroendocrine tumors [141]. Ridaforolimus (also known 
as AP23573 and MK-8669; formerly known as deforolimus) is a rapalog devel-
oped by ARIAD and Merck. Ridaforolimus has been evaluated in clinical trials 
with patients having metastatic soft-tissue or bone sarcomas where it displays 
promising results in terms of the risk of progression or death [142]. Recently, the 
ability of rapamycin and rapalog to treat various viral infections including AIDS 
has been considered [143, 144]. Clearly, rapamycin has proven to be a very useful 
drug.

13.4.11  mTOR Inhibitors

Small molecules designed for inhibiting the catalytic site of mTOR have shown 
promising effects on the suppression of signaling downstream of mTOR. mTOR 
kinase inhibitor has been developed which directly inhibits mTORC1 and 
mTORC2. The mTOR kinase inhibitors have advantages over rapamycin and the 
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rapalogs as mTOR inhibitors will inhibit both mTORC1 and mTORC2, while 
rapamycin and the rapalogs only inhibit mTORC1. Also, the mTOR kinases inhib-
itors do not induce the feedback pathways which result in Akt activation. In vitro 
studies with purified mTOR and PI3K proteins have demonstrated that the mTOR 
inhibitors selectively bind mTOR more than PI3K.

13.4.11.1 OSI-027

OSI-027 is a pan-TOR inhibitor developed by OSI Pharmaceuticals/Astellas 
Pharma Inc. OSI-027 has been shown to be effective in inducing apoptosis in dif-
ferent types of cancer, including breast and leukemias [145, 146]. OSI-027 has 
been shown to inhibit the growth of imatinib-resistant CML cells which contain 
the BCR-ABL T315I mutation that are resistant to all BCR-ABL inhibitors [147]. 
OSI-027 has been evaluated in clinical trials with patients with advanced solid 
tumors and lymphoma [148].

13.4.11.2 Intelllikine mTOR Inhibitors

PP-242 is a potent inhibitor of both mTORC1 and mTORC2. INK-128 is a deriva-
tive of PP-242 which has shown anti-tumoral effects on multiple cancer types 
including RCC, MM, NHL, and prostate [149, 150]. INK-128 is in phase I clinical 
trials for patients with relapsed or refractory multiple myeloma or Waldenstrom’s 
macroglobulinemia or patients with solid malignancies.

13.4.11.3 AstraZenica mTOR Inhibitors

AZD8055 and AZD2014 are pan-mTOR inhibitors with potent anti-tumor activity 
[151]. They are being evaluated in clinical trials patients with gliomas who have not 
responded to standard glioma therapies as well as patients with other types of cancer.

13.4.11.4 Palomid 529

Palomid 529 (Paloma Pharmaceuticals) is a pan-mTOR inhibitor which has potent 
anti-tumor affects and reduces tumor angiogenesis and vascular permeability 
[152]. Palomid 529 is undergoing phase I clinical trials for patients with macular 
degeneration.

13.4.11.5 Pfizer mTOR Inhibitors

WAY600, WYE353, WYE687, and WYE132 were developed by Wyeth (Pfizer). 
These inhibitors were derived from WAY001 which was more specific for PI3Kα 
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than either mTORC1 or mTORC2. These inhibitors were modified which resulted 
in WYE132 (WYE125132)/WYE132 has 5000-fold greater selectivity for mTOR 
over PI3K. It caused tumor regression in breast, glioma, lung, renal tumors [153].

13.4.11.6 Other mTOR Inhibitors

Many other TOR inhibitors have been described which include Ku0063794 
(KuDOS Pharmaceuticals) [154] and OXA-01 (OSI Pharmaceuticals) [155]. Torin2 
has been developed by optimizing from Torin1 [156]. TORKiCC223 is a pan-TOR 
inhibitor developed by Celgene. Other companies are developing mTOR inhibitors; 
clearly, this is a very competitive but important research and clinical area.

13.5  Increasing the Effectiveness of Targeting the Raf/
MEK/ERK and PI3K/PTEN/Akt/mTOR Pathways  
by Simultaneous Treatment with Two Pathway 
Inhibitors

In the following section, we discuss the potential of combining inhibitors that tar-
get two pathways to more effectively limit cancer growth. Treatment for inducible 
murine lung cancers containing KRAS and PIK3CA mutations with PI3K/mTOR 
(NVP-BEZ235) and MEK (selumetinib) inhibitors led to an enhanced response 
[157]. Synergistic responses between sorafenib and mTOR inhibitors were 
observed in xenograft studies with a highly metastatic human HCC tumor [158]. 
Some recent studies in thyroid cancer have documented the benefit of combining 
Raf and PI3K/mTOR inhibitors [159].

Intermittent dosing of MEK and PI3K inhibitors has been observed to suppress 
the growth of tumor xenografts in mice [74]. This study demonstrated that con-
tinuous administration of MEK and PI3K inhibitors is not required to suppress 
xenograft growth. These important results were obtained by performing washout 
studies in vitro and alternate dosing schedules in mice with MEK and PI3K inhibi-
tors with cancer cells having mutations at BRAF and KRAS.

The combined effects of inhibiting MEK with PD-0329501 and 
mTOR with rapamycin or its analog, the rapalog AP-23573 (ARIAD 
Pharmaceuticals/Merck) were examined in human NSCLC cell lines, as 
well as in animal models of human lung cancer. PD-0325901 and rapamy-
cin demonstrated synergistic inhibition of proliferation and protein translation. 
Suppression of both MEK and mTOR inhibited ribosomal biogenesis and was 
associated with a block in the initiation phase of translation [160]. The pan-
TOR inhibitor AZD-8055 has been examined as a single agent and in combina-
tion with the MEK inhibitor selumetinib in a NSCLC xenograft and increased 
cell death and tumor regression [151, 161]. These preclinical results support the 
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suppression of both the MEK and mTOR pathways in lung cancer therapy and 
indicate that both pathways converge to regulate the initiation of protein transla-
tion. ERK phosphorylates Mnk1/2 and p90Rsk, which regulate the activity of the 
eukaryotic translation initiation factor eIF4E. The phosphorylation of 4EBP1 is 
altered in cells containing BRAF mutations. It should also be pointed out that 
4EBP1 is also regulated by Akt, mTOR, and p70S6K. This may result in the effi-
cient translation of certain mRNAs in BRAF-mutant cells. This could explain 
how co-inhibition of MEK and PI3K/Akt/mTOR synergizes to inhibit protein 
translation and growth in certain lung cancer cells.

13.6  Clinical Trials Based on Inhibiting Both the Raf/MEK/
ERK and PI3K/PTEN/Akt/mTOR Pathways

Combinations of Raf and PI3K/Akt/mTOR or MEK and PI3 K/Akt/mTOR 
inhibitors are in clinical trials. The results of a phase 1 clinical trial on patients 
with advanced solid tumors indicate that the combined dosing appears to be well 
tolerated, at least as well as single agent dosing. Some anti-tumor effects were 
observed, and dose-escalation trials were performed [162]. Clinical trial com-
bining MEK and Akt inhibitors (GSK1120212 and GSK2141795, respectively) 
is in progress. A clinical trial for patients with advanced cancers combining the 
PI3K/mTOR inhibitors (PF-04691502 and PF-05212384) with the MEK inhibi-
tor (PD-0325901) or irinotecan is in progress. The study will include patients 
with metastatic CRC patients who have received previous therapy for their dis-
ease and whose cancers have a mutant KRAS gene. The dual PI3 K/mTOR inhib-
itor NVP-BEZ235 is in a combination clinical trial with RAD001 (everolimus) 
in patients with advanced solid cancers. A phase 1 clinical trial is in progress 
combining the MEK1/2 inhibitor MEK162 and the PI3K/mTOR dual inhibitor 
NVP-BEZ235. This combination will be evaluated in various cancer patients, 
for example, NSCLC with mutations at EGFR who have progressed after treat-
ment with EGFR inhibitors, triple-negative breast, CRC, melanoma, and pan-
creatic cancers. In addition, patients with other advanced solid tumors with 
KRAS, NRAS, and/or BRAF mutations will be included in the study. A trial is 
underway testing the effects of combining two experimental drugs, SD703026 
(MSC1936369B) (a MEK inhibitor) and XL755 SAR245409 (a PI3K/mTOR 
inhibitor) for the treatment for locally advanced or metastatic solid tumors. 
Patients with breast, NSCLC, melanoma, and colorectal cancers will be treated 
with this inhibitor combination. A clinical trial is examining the effects of com-
bining MK-2206 (an Akt inhibitor) with selumetinib (a MEK inhibitor) in cancer 
patients with advanced solid tumors. A combination clinical trial combining the 
MEK inhibitor selumetinib and the Akt inhibitor MK-2206 in patients with stage 
III or stage IV melanoma that previous failed after treatment with vemurafenib 
or dabrafenib is in progress.
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13.7  Trials Based on Combining Raf/MEK, 
PI3K/Akt/mTOR Inhibitors with Chemotherapy  
or MoAbs

Treatment of mice xenografted with vemurafenib-resistant BRAF-mutant CRCs 
with various combinations of vermurafenib and chemotherapeutic drugs (capecit-
abine, irinotecan), MoAbs [bevacizumab (avastin, targets VEGFα), cetuximab 
(erbitux, targets EGFR)], the Akt inhibitor MK-2206, or the EGFR inhibitor erlo-
tinib, increased survival [163]. Combination of the Akt inhibitor MK-2206 and 
either EGFR/HER2-targeted therapy [erlotinib or lapatinib (tykerb, a dual EGFR 
and HER2 inhibitor from GSK)] or chemotherpapeutic drugs doxorubicin, camp-
tothechin, gemcitabine, 5-flurouracil, docetaxel or carboplatin resulted in synergis-
tic responses in lung (NCI-H460) and ovarian (A2780) cancer cell lines. In some 
cases, the timing of drug addition was determined to be important as MK-2206 
suppressed the Akt activation induced by carboplatin and gemcitabine [164]. 
The effects of combining the dual PI3K/mTOR inhibitor NVP-BEZ235 and vari-
ous chemotherapeutic drugs as well as other targeted therapies are being exam-
ined (doxorubicin, melphalan, vincristine, bortezomib) [165, 166]. The anti-tumor 
effects of WYE132 (a mTOR inhibitor) could be enhanced upon combination with 
bevacizumab in lung and breast xenograft models [153]. A clinical trial with INK-
128 in combination with paclitaxel, either in the absence or in the presence of tras-
tuzumab, is in progress in patients with advanced solid malignancies.

Clinical trials are ongoing based on combining the dual PI3K/mTOR inhibi-
tor NVP-BEZ235 with PI3K and MEK inhibitors (BKM120, MEK162) and 
chemotherapeutic drugs (paclitaxel, trastuzumab) to treat advanced solid cancers 
and metastatic breast cancers which are difficult to treat (see below). BKM120 
is a pan-PI3 K inhibitor. It is being included in some clinical studies since NVP-
BEZ235 does not inhibit PI3Kβ [167]. Furthermore, NVP-BEZ235 is not effective 
in suppressing the growth of tumors which have the KRAS G12D mutation [157]. 
Thus, to achieve effective suppression of cancer growth in some situations, it may 
be important to combine PI3K/mTOR inhibitors with pan-PI3K inhibitors.

Palomid 529, a pan-mTOR inhibitor, is in some circumstances is effective as a 
single agent. However, when Palomid 529 was combined with either cisplatin or 
docetaxel, it had a better effect on hormone-refractory prostate cancers [168]. It 
also improved the effects of radiotherapy on prostate cancer cells [169].

The effects of inhibiting Akt in combination with other pathways, inhibitors, 
and chemotherapy are being evaluated in numerous phase I clinical trials. These 
trials highlight the importance of targeting multiple molecules to suppress the 
growth of cancer which are resistant to most therapies. Combination clinical tri-
als with the Akt inhibitor MK-2206 and the dual EGFR/HER2 inhibitor lapatinib 
are in progress with patients having advanced or metastatic solid tumors or breast 
cancer patients. The effects of combining MK-2206 and erlotinib, docetaxel, or 
carboplatin + paclitaxel are being examined in clinical trials in certain patients 
with advanced cancers. Clinical trials with NSCLC patients are underway to 
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examine the effects of combining MK-2206 with gefitinib (iressa, EGFR inhibitor 
AstraZenica). Clinical trials with postmenopausal metastatic breast cancer patients 
are in progress to examine the effects of combining anastrozole, letrozole, exemes-
tane (aromatase-inhibitors), or fulvestrant (an estrogen receptor antagonist). 
Clinical trials are also underway examining the effects of combining MK-2206 
with bendamustin (nitrogen mustard alkylating agent) and Rituximab (chimeric 
monoclonal antibody targeting CD20 from IDEC Pharmaceuticals/Genentech) 
on CLL cancer patients who have relapsed or on cancer patients with small 
lymphocytic lymphoma. Clinical trials combining MK-2206 and various other 
drugs including dalotuzumab (a MoAb which targets IGF-1R from Merck) and 
MK-0752 (a Y-secretase inhibitor which inhibits the NOTCH pathway from 
Merck) are in progress. The effects of MK-8669 (ridaforolimus an mTORC1 
inhibitor from Merck) and dalotuzumab are being examined in patients with 
advanced cancers. Clinical trials combining MK-2206 and paclitaxel in cancer 
patients with locally advanced, metastatic solid tumors, or metastatic breast can-
cers are in progress. The above mentioned clinical trials document the importance 
of targeting Akt and other signaling molecules as well as critical targets involved 
in cellular division. Furthermore, the clinical trials document how basic research 
on these pathways is being translated into clinical therapy for cancer and other 
types of patients.

13.8  Enhancing the Effectiveness of Raf/MEK  
and PI3K/mTOR Inhibitors with Radiotherapy

Radiotherapy is a common therapeutic approach for treatment for many diverse 
cancers. A side effect of radiotherapy in some cells is induction of the Ras/Raf/
MEK/ERK cascade [2]. Various signal transduction inhibitors have been evaluated 
as radiosensitizers. The effects of pre-treatment for lung, pancreatic, and prostate 
cancer cells with selumetinib were evaluated in vitro using human cell lines and 
in vivo employing xenografts [170]. The MEK inhibitor treatment radiosensitized 
the various cancer cell lines in vitro and in vivo. The MEK inhibitor treatment was 
correlated with decreased Chk1 phosphorylation 1–2 h after radiation. The authors 
noticed the effects of the MEK inhibitor on the G2 checkpoint activation after irra-
diation, as the MEK inhibitor suppressed G2 checkpoint activation. Since ERK1/
ERK2 activity is necessary for the carcinoma cells to arrest at the G2 checkpoint, 
suppression of phosphorylated Chk1 was speculated to lead to the abrogated G2 
checkpoint, increased mitotic catastrophe, and impaired activation of cell cycle 
checkpoints. Mitotic catastrophe was increased in cells receiving both the MEK 
inhibitor and radiation when compared to the solo-treated cells. It was also pos-
tulated in this study that the MEK inhibitor suppressed the autocrine cascade in 
DU145 prostate cancer cells that normally resulted from EGF secretion and EGFR 
activation. Suppression of this autocrine cascade by the MEK inhibitor may have 
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served as a radiosensitizer. The other two cancer cell lines examined in this study 
(A549 and MiaPaCa2) had KRAS mutations and both were radiosensitized by the 
MEK inhibitor. Although these studies document the ability of a MEK inhibitor to 
radiosensitize certain cells, clearly other cancer cell lines without activating muta-
tions in the Ras/Raf/MEK/ERK pathway or autocrine growth stimulation should 
be examined for radiosensitization by the MEK inhibitor as the KRAS mutation 
may also activate the PI3K pathway which could lead to therapy resistance.

PI3K/Akt/mTOR inhibitors will sensitize the tumor vasculature to radiation 
both in vitro in cell lines and in vivo in xenografts [171, 172]. mTOR and radia-
tion play critical roles in the regulation of autophagy [173, 174]. When mTOR is 
blocked by rapamycin, there is an increase in autophagy. This is important as apop-
totic cell death is a minor component to cell death in many solid tumors. These 
studies document the potential beneficial use of combining mTOR inhibitors and 
radiation to improve the induction of autophagy in the treatment for solid tumors.

13.9  Conclusions

Inhibitors to the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways. 
Initially, MEK inhibitors were demonstrated to have the most specificity. However, 
these inhibitors may have limited effectiveness in treating human cancers, unless 
the particular cancer proliferates directly in response to the Raf/MEK/ERK path-
way. Moreover, MEK inhibitors are often cytostatic as opposed to cytotoxic; thus, 
their ability to function as effective anticancer agents in a monotherapeutic setting 
is limited, and they may be more effective when combined with other small mol-
ecule inhibitors, MoAbs, chemo- or radiotherapy. Raf inhibitors have also been 
developed, and some are being used to treat various cancer patients (e.g., sorafenib 
and vemurafenib). This particular Raf inhibitor also inhibits other receptors and 
kinases which may be required for the growth of the particular cancer. This pro-
miscuous nature of sorafenib has contributed to the effectiveness of this particular 
Raf inhibitor for certain cancers. Raf inhibitors such as vemurafenib, dabrafenib, 
and GDC-0879 are promising for the treatment for melanoma, CRC, thyroid as 
well as other solid cancers, and leukemias/lymphomas/myelomas which have 
mutations at BRAF V600E. However, problems have been identified with certain 
Raf inhibitors as they will be ineffective if Ras is mutated/amplified, if an exon of 
BRAF is deleted, if BRAF is amplified, if there are mutations at MEK1 and various 
other genetic mechanisms that result in resistance [175]. Combination therapies 
with either a traditional drug/physical treatment or another inhibitor that targets a 
specific molecule in either the same or a different signal transduction pathway are 
also key approaches for improving the effectiveness and usefulness of MEK and 
Raf inhibitors.

Modified rapamycins (rapalogs) are being used to treat various cancer patients 
(e.g., patients with RCC and some other cancers). While rapalogs are effective 
and their toxicity profiles are well known, one inherent property is that they are 
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not very cytotoxic when it comes to killing tumor cells. This inherent property of 
rapamycins may also contribute to their low toxicity in humans.

Mutations at many of the upstream receptor genes or RAS can result in abnor-
mal Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathway activation. Hence, 
targeting these cascade components with small molecule inhibitors may inhibit 
cell growth. The usefulness of these inhibitors may depend on the mechanism of 
transformation of the particular cancer. If the tumor exhibits a dependency on the 
Ras/Raf/MEK/ERK pathway, then it may be sensitive to Raf and MEK inhibitors. 
In contrast, tumors that do not display enhanced expression of the Ras/Raf/MEK/
ERK pathway may not be sensitive to either Raf or MEK inhibitors, but if the Ras/
PI3K/Akt/mTOR pathway is activated, these cancers may be sensitive to specific 
inhibitors that target this pathway. Finally, it is likely that many of the inhibitors 
that we have discussed in this review will be more effective in inhibiting tumor 
growth in combination with MoAb, cytotoxic chemotherapeutic drugs, or radia-
tion. This is documented by the large number of clinical trials combining signal 
transduction inhibitors with these various therapeutic agents.

Some scientists and clinicians have considered that the simultaneous targeting 
of Raf and MEK by individual inhibitors may be more effective in cancer therapy 
than just targeting Raf or MEK by themselves. This is based in part on the fact 
that there are intricate feedback loops from ERK which can inhibit Raf and MEK. 
For example, when MEK1 is targeted, ERK1,2 is inhibited, and the negative feed-
back loop on MEK is broken and activated MEK accumulates. However, if Raf 
is also inhibited, it may be possible to completely shut down the pathway. This is 
a rationale for treatment with both MEK and Raf inhibitors. Likewise, targeting 
both PI3K and mTOR may be more effective than targeting either PI3K or mTOR 
by themselves. If it is a single inhibitor which targets both molecules, such as the 
new PI3K and mTOR dual inhibitors, this becomes a realistic therapeutic option. 
Although it should be pointed out that some studies are examining the effects of 
combining rapamycins and PI3K/mTOR inhibitors. Finally, an emerging concept 
is the dual targeting of two different signal transduction pathways, Raf/MEK/ERK 
and PI3K/PTEN/Akt/mTOR, for example. This has been explored in some preclin-
ical models as discussed in the text. The rationale for targeting of both pathways 
may be dependent on the presence of mutations in either/or both pathways or in 
upstream Ras in the particular cancer which can activate both pathways.

It is not always clear why a particular combination of a signal transduction 
inhibitor and chemotherapeutic drug works in one tumor type but not at all in a 
different tumor type. This has also been experienced with the development of indi-
vidual chemotherapeutic drugs, some work in some cells but not others. This may 
result from many different complex interacting events. Some of these events could 
include percentage of cells in different phases of the cell cycle, persistence of can-
cer stem cells, presence of multiple mutated activated oncogenes, or repressed 
tumor suppressor genes, epigenetic modifications and many other factors. Finally, 
chemotherapeutic drug therapy and other types of therapy (radiotherapy, antibody 
therapy) may induce certain signaling pathways (e.g., the reactive oxygen spe-
cies generated by chemotherapy and radiotherapy induce the Ras/Raf/MEK/ERK 
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pathway). The induction of these signaling pathways may counteract some of the 
effects of the signal transduction inhibitors. These effects could indicate that the 
timing of each therapy will be important for effective treatments.

In summary, targeted therapy has advanced from basic research studies to the 
treatment of cancer patients in less than 25 years. We have learned a lot regard-
ing how specific inhibitors exert their effects and how the Ras/Raf/MEK/ERK and 
PI3K/Akt/mTOR pathways function; we still need to discover more about resist-
ance mechanisms and how we can overcome therapeutic resistance and improve 
the effectiveness of targeted therapy.
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