Chapter 4 Convergence with Nonhomogeneous Boundary Conditions

4.1 The Setting

In this chapter, we consider the continuous wave equation

$$
\begin{cases}\n\partial_{tt}y - \partial_{xx}y = 0, & (t, x) \in (0, T) \times (0, 1), \\
y(t, 0) = 0, & y(t, 1) = v(t), \ t \in (0, T), \\
(y(0, \cdot), \partial_t y(0, \cdot)) = (y^0, y^1),\n\end{cases}
$$
\n(4.1)

with

$$
(y0, y1) \in L2(0, 1) \times H-1(0, 1), \qquad v \in L2(0, T).
$$
 (4.2)

Following [36] (see also [33, 35]), system [\(4.1\)](#page-0-0) can be solved uniquely in the sense of transposition and the solution *y* belongs to

$$
C([0,T];L^2(0,1)) \times C^1([0,T];H^{-1}(0,1)).
$$

Let us briefly recall the main ingredients of this definition of solution in the sense of transposition and this result.

The key idea is the following. Given smooth functions f , the solutions φ of

$$
\begin{cases} \n\partial_{tt} \varphi - \partial_{xx} \varphi = f, & (t, x) \in (0, T) \times (0, 1), \\ \n\varphi(t, 0) = \varphi(t, 1) = 0, & t \in (0, T), \\ \n(\varphi(T, \cdot), \partial_t \varphi(T, \cdot)) = (0, 0), \n\end{cases}
$$
\n(4.3)

which are smooth for smooth f , should satisfy

$$
\int_0^T \int_0^1 y f \, dx \, dt = -\int_0^T v(t) \partial_x \varphi(t,1) \, dt
$$

$$
- \int_0^1 y^0(x) \partial_t \varphi(0,x) \, dx + \langle y^1, \varphi(0, \cdot) \rangle_{H^{-1},H_0^1}.\tag{4.4}
$$

Thus one should first check that if $f \in L^1(0,T;L^2(0,1))$, then the solution φ of Eq. [\(4.3\)](#page-0-1) belongs to the energy space $C([0, T]; H_0^1(0, 1)) \cap C^1([0, T]; L^2(0, 1))$ and is such that $\partial_x \varphi(t,1) \in L^2(0,T)$ with the following continuity estimate:

$$
\|(\varphi,\partial_t\varphi)\|_{L^\infty(0,T;H_0^1(0,1)\times L^2(0,1))} + \|\partial_x\varphi(t,1)\|_{L^2(0,T)} \le C \|f\|_{L^1(0,T;L^2(0,1))}. \tag{4.5}
$$

Of course, there, the first term can be estimated easily through the energy identity, whereas the estimate on the normal derivative of φ at $x = 1$ is a hidden regularity result that can be easily proved using multiplier techniques.

Assuming Eq. (4.5) , the map

$$
\mathscr{L}(f) = -\int_0^T v(t)\partial_x \varphi(t,1) dt - \int_0^1 y^0(x)\partial_t \varphi(0,x) dx + \langle y^1, \varphi(0,\cdot) \rangle_{H^{-1},H_0^1}
$$

is continuous on $L^1(0,T;L^2(0,1))$ and thus there is a unique function *y* in the space $L^{\infty}(0,T;L^2(0,1))$ that represents \mathscr{L} , which is by definition the solution *y* of Eq. [\(4.1\)](#page-0-0) in the sense of transposition. The solution *y* actually belongs to the space $C([0,T]; L^2(0,1))$ since it can be approximated in $L^{\infty}(0,T; L^2(0,1))$ by smooth functions by taking smooth approximations of v , $y⁰$, and $y¹$.

A similar duality argument shows that $\partial_t y$ belongs to $C([0,T]; H^{-1}(0,1))$.

Let us finally mention the following regularity result (see [34]): if $(y^0, y^1) \in$ $H_0^1(0,1) \times L^2(0,1)$ and $\nu \in H^1(0,T)$ satisfies $\nu(0) = 0$, then the solution *y* of Eq. (4.1) satisfies

$$
y \in C([0, T]; H^1(0, 1)) \cap C^1([0, T]; L^2(0, 1))
$$
 and $\Delta y \in C([0, T]; H^{-1}(0, 1))$. (4.6)

Now, the goal of this chapter is to study the convergence of the solutions of

$$
\begin{cases}\n\partial_{tt}y_{j,h} - \frac{1}{h^2}(y_{j+1,h} - 2y_{j,h} + y_{j-1,h}) = 0, (t,j) \in (0,T) \times \{1,\ldots,N\},\\
y_{0,h} = 0, \quad y_{N+1,h}(t) = v_h(t), \quad t \in (0,T),\\
(y_h(0), \partial_t y_h(0)) = (y_h^0, y_h^1),\n\end{cases}
$$
\n(4.7)

towards the solution *y* of Eq. [\(4.1\)](#page-0-0), under suitable convergence assumptions on the data (y_h^0, y_h^1) and v_h to (y^0, y^1) and v .

As in Chap. 3, y_h will be identified with its Fourier extension $\mathbb{F}_h(y_h)$. This will allow us to identify the $H^{-1}(0,1)$ -norm of f_h as

$$
||f_h||_{H^{-1}(0,1)} = ||z_h||_{H_0^1(0,1)}, \text{ where } z_h \text{ solves } -\partial_{xx} z_h = f_h \text{ on } (0,1), \quad z_h(0) = z_h(1).
$$

Note that, expanding these discrete functions on the Fourier basis, one can check (see Proposition [4.1](#page-2-0) below) that this norm is equivalent to $\|\tilde{z}_h\|_{H_0^1(0,1)}$, where \tilde{z}_h solves

$$
-\frac{1}{h^2}(\tilde{z}_{j+1,h}+\tilde{z}_{j-1,h}-2\tilde{z}_{j,h})=f_{j,h}, \quad j\in\{1,\ldots,N\}, \quad \tilde{z}_{0,h}=\tilde{z}_{N+1,h}=0.
$$

4.2 The Laplace Operator 81

The outline of this Chap. [4](#page-0-2) is as follows. Since we are working with the $H^{-1}(0,1)$ norm, it will be convenient to present some further convergence results for the discrete Laplace operator. In Sect. [4.3](#page-10-0) we give some uniform bounds on the solutions y_b of Eq. [\(4.7\)](#page-1-1). In Sect. [4.4](#page-19-0) we derive explicit rates of convergence for smooth solutions. In Sect. [4.5](#page-31-0) we explain how these results yield various convergence results. In Sect. [4.6,](#page-32-0) we illustrate our theoretical results by numerical experiments.

4.2 The Laplace Operator

In this section, we focus on the convergence of the discrete Laplace operator Δ_h , defined for discrete functions $z_h = (z_{j,h})_{j \in \{1,...,N\}}$ by

$$
(\Delta_h z_h)_j = \frac{1}{h^2} (z_{j+1,h} - 2z_{j,h} + z_{j-1,h}), \quad j \in \{1, \dots, N\}, \text{ with } z_{0,h} = z_{N+1,h} = 0.
$$
\n
$$
(4.8)
$$

In particular, we give various results that will be used afterwards.

Let us first recall that the operator $-\Delta_h$ is self-adjoint positive definite on \mathbb{R}^N according to the analysis done in Sect. 2.2. Besides, its eigenvectors w^k and eigenvalues $\lambda_k(h) = \mu_k(h)^2$ are explicit; the *k*-th eigenvector $w^k(x) = \sqrt{2} \sin(k\pi x)$ is independent of $h > 0$ and $\mu_k(h) = 2\sin(k\pi h/2)/h$.

4.2.1 Natural Functional Spaces

In this section, we focus on the case of "natural" functional spaces, i.e., in our case $H_0^1(0,1)$, $L^2(0,1)$, and $H^{-1}(0,1)$.

As already mentioned, we have the following:

Proposition 4.1. *If fh is a discrete function, then there exists a constant C independent of* $h \in (0,1)$ *such that*

$$
\frac{1}{C} \|f_h\|_{H^{-1}} \le \|(-\Delta_h)^{-1} f_h\|_{H_0^1} \le C \|f_h\|_{H^{-1}}.
$$
\n(4.9)

To simplify notations, for $f \in H^{-1}(0,1)$, we shall often denote by $(-\partial_{xx})^{-1}f$ the solution $z \in H_0^1(0,1)$ of

$$
-\partial_{xx}z = f \quad \text{on } (0,1), \quad z(0) = z(1) = 0.
$$

Proof. Since f_h is a discrete function, it can be expanded in Fourier series as follows:

$$
f_h = \sum_{k=1}^N f_k w^k.
$$

Then the expansions of $z = (-\partial_{xx})^{-1} f_h$ and $z_h = (-\Delta_h)^{-1} f_h$ are known:

$$
z = \sum_{k=1}^{N} \frac{f_k}{\mu_k^2} w^k, \qquad z_h = \sum_{k=1}^{N} \frac{f_k}{\mu_k(h)^2} w^k.
$$

Hence

$$
||z||_{H_0^1}^2 = \sum_{k=1}^N \frac{|f_k|^2}{\mu_k^2}, \qquad ||z_h||_{H_0^1}^2 = \sum_{k=1}^N \frac{|f_k|^2}{\mu_k^2} \frac{\mu_k^4}{\mu_k(h)^4}.
$$

Since for all $k \in \{1, \ldots, N\}$,

$$
1\leq \frac{\mu_k^4}{\mu_k(h)^4}\leq \frac{\pi^4}{16},
$$

we easily get Proposition [4.1.](#page-2-0)

We now prove the following convergence result:

Theorem 4.1. *Let* $f \in L^2(0,1)$ *and expand it in Fourier series as*

$$
f = \sum_{k=1}^{\infty} f_k w^k,
$$
\n(4.10)

and set

$$
f_h = \sum_{k=1}^{N} f_k w^k.
$$
 (4.11)

Let then z be the solution of

$$
-\partial_{xx}z = f, \text{ on } (0,1), \qquad z(0) = z(1) = 0, \tag{4.12}
$$

and zh of

$$
-(\Delta_h z_h)_j = f_{j,h}, \quad j \in \{1, \dots, N\}.
$$
 (4.13)

Then

$$
||f - f_h||_{H^{-1}} + ||z - z_h||_{H_0^1} \le Ch ||f||_{L^2}
$$
\n(4.14)

$$
||z - z_h||_{L^2} \le Ch^2 ||f||_{L^2}.
$$
\n(4.15)

Remark [4.1](#page-3-0). Of course, Theorem 4.1 is very classical and can be found for many different discretization schemes and in particular for finite-element methods; see for instance the textbook [46].

Proof. Our proof is of course based on the fact that the functions w^k are eigenvectors of both the continuous and discrete Laplace operators. Note that it is straightforward to check that

$$
||f - f_h||_{H^{-1}} \le Ch ||f||_{L^2}.
$$

4.2 The Laplace Operator 83

We thus focus on the comparison between z and z_h . Again, we use the fact that the expansions of z and z_h in Fourier are explicit:

$$
z = \sum_{k=1}^{\infty} \frac{f_k}{\mu_k^2} w^k, \qquad z_h = \sum_{k=1}^N \frac{f_k}{\mu_k(h)^2} w^k.
$$
 (4.16)

Now, computing the H_0^1 -norm of $z - z_h$ is easy:

$$
||z - z_h||_{H_0^1}^2 = \sum_{k=1}^N \frac{|f_k|^2}{\mu_k^2} \left(1 - \frac{\mu_k^2}{\mu_k(h)^2}\right)^2 + \sum_{k=N+1}^\infty \frac{|f_k|^2}{\mu_k^2}
$$

$$
\leq C \sum_{k=1}^N |f_k|^2 k^2 h^4 + \frac{1}{N^2} \sum_{k=N+1}^\infty |f_k|^2,
$$

where we have used that

$$
\frac{1}{\mu_k^2} \left(1 - \frac{\mu_k^2}{\mu_k(h)^2} \right)^2 \le Ck^2 h^4, \quad \forall k \in \{1, \dots, N\}.
$$
 (4.17)

Hence

$$
||z-z_h||_{H_0^1}^2 \leq C\left(N^2h^4+\frac{1}{N^2}\right)||f||_{L^2}^2.
$$

Since $N + 1 = 1/h$, this concludes the proof of Eq. [\(4.14\)](#page-3-1).

Similarly, one derives

$$
||z-z_h||_{L^2}^2 \leq C\left(h^4 + \frac{1}{N^4}\right) ||f||_{L^2}^2,
$$

which immediately implies Eq. (4.15) .

From Proposition [4.1](#page-2-0) and Theorem [4.1](#page-3-0) we deduce:

Theorem 4.2. *Let* $f \in H^{-1}(0,1)$ *and* f_h *be a sequence of discrete functions such that*

$$
\lim_{h \to 0} \|f - f_h\|_{H^{-1}} = 0.
$$

Then

$$
\lim_{h \to 0} \left\| (-\partial_{xx})^{-1} f - (-\Delta_h)^{-1} f_h \right\|_{H_0^1} = 0.
$$
\n(4.18)

Besides, if $f \in L^2(0,1)$ *and* f_h *satisfies, for some* $\theta > 0$ *,*

$$
||f - f_h||_{H^{-1}} \leq C_0 h^{\theta},
$$

then

$$
\left\|(-\partial_{xx})^{-1}f - (-\Delta_h)^{-1}f_h\right\|_{H_0^1} \le C\left(h\left\|f\right\|_{L^2} + C_0h^{\theta}\right). \tag{4.19}
$$

 \Box

Proof. The first part of Theorem [4.2](#page-4-0) easily follows by the density of $L^2(0,1)$ functions in $H^{-1}(0,1)$, the uniform stability result of Proposition [4.1](#page-2-0) and the convergence result of Theorem [4.1,](#page-3-0) similarly as in the proof of Proposition 3.5. The details are left to the reader.

The second part of Theorem [4.2](#page-4-0) consists of taking \tilde{f}_h as in Eq. [\(4.11\)](#page-3-2), for which we have

$$
||f - \tilde{f}_h||_{H^{-1}} \le Ch ||f||_{L^2}
$$
 and $||(-\Delta_h)^{-1}\tilde{f}_h - (-\partial_{xx})^{-1}f||_{H_0^1} \le Ch ||f||_{L^2}$.

Then Proposition [4.1](#page-2-0) implies that

$$
\left\|(-\Delta_h)^{-1}f_h - (-\Delta_h)^{-1}\tilde{f}_h\right\|_{H_0^1} \leq C\left\|f_h - \tilde{f}_h\right\|_{H^{-1}}.
$$

Of course, these three last estimates imply Eq. [\(4.19\)](#page-4-1).

Finally, we mention this last result:

Theorem 4.3. *Let* $f \in L^2(0,1)$ *and* $z = (-\partial_{xx})^{-1}f$ *. Then there exists C such that*

$$
|\partial_x z(1)|^2 \le C \|f\|_{L^2} \|f\|_{H^{-1}}.
$$
\n(4.20)

Similarly, there exists $C > 0$ *such that for all* $h \in (0,1)$ *, if* f_h *is a discrete function and* $z_h = (-\Delta_h)^{-1} f_h$, we have

$$
\left|\frac{z_{N,h}}{h}\right|^2 \le C \left\|f_h\right\|_{L^2} \left\|f_h\right\|_{H^{-1}}.
$$
\n(4.21)

Besides, taking fh as in Eq.[\(4.11\)](#page-3-2)*, we have*

$$
\left|\partial_x z(1) + \frac{z_{N,h}}{h}\right| \le C\sqrt{h} \|f\|_{L^2}.
$$
\n(4.22)

Proof. We prove this result using the multiplier technique. Since $-\partial_{xx}z = f$, multiplying the equation by *x*∂*xz*, easy integrations by parts show

$$
|\partial_x z(1)|^2 = -2\int_0^1 fx \partial_x z + \int_0^1 |\partial_x z|^2.
$$

Of course, this implies Eq. [\(4.20\)](#page-5-0) from the fact that $||z||_{H_0^1} = ||f||_{H^{-1}}$.

In order to prove estimate [\(4.21\)](#page-5-1), we develop a similar multiplier argument. Namely, we multiply the equation

$$
-(\Delta_h z_h)_j=f_{j,h},\quad j\in\{1,\ldots,N\},\
$$

by $j(z_{i+1,h} - z_{i-1,h})$. We thus obtain

$$
\left|\frac{z_{N,h}}{h}\right|^2 = -2h\sum_{j=1}^N jh\left(\frac{z_{j+1,h} - z_{j-1,h}}{h}\right)f_{j,h} + h\sum_{j=0}^N\left(\frac{z_{j+1,h} - z_{j,h}}{h}\right)^2.
$$

$$
\Box
$$

4.2 The Laplace Operator 85

Hence

$$
\left|\frac{z_{N,h}}{h}\right|^2 \leq C\left\|f_h\right\|_{L^2} \left\|z_h\right\|_{H_0^1} + C\left\|z_h\right\|_{H_0^1}^2 \leq C\left\|f_h\right\|_{L^2} \left\|f_h\right\|_{H^{-1}} + C\left\|f_h\right\|_{H^{-1}}^2,
$$

which yields estimate [\(4.21\)](#page-5-1).

We now aim at proving Eq. (4.22) . First remark that z_h also solves

$$
-\partial_{xx}z_h = \tilde{f}_h, \text{ on } (0,1), \quad z_h(0) = z_h(1) = 0,
$$

where

$$
\tilde{f}_h = \sum_{j=1}^N f_k \left(\frac{\mu_k}{\mu_k(h)} \right)^2 w^k.
$$
\n(4.23)

But one easily has

$$
\|\tilde{f}_h\|_{L^2} \le C \|f\|_{L^2}, \quad \|\tilde{f}_h - f\|_{H^{-1}} \le Ch \|f\|_{L^2}.
$$
 (4.24)

Indeed, from Eq. [\(4.17\)](#page-4-2),

$$
\left\|\tilde{f}_h - f_h\right\|_{H^{-1}}^2 = \sum_{k=1}^N \frac{|f_k|^2}{\mu_k^2} \left(1 - \left(\frac{\mu_k}{\mu_k(h)}\right)^2\right)^2 \leq Ch^2 \|f\|_{L^2}^2,
$$

and thus Eq. [\(4.14\)](#page-3-1) yields Eq. [\(4.24\)](#page-6-0).

Therefore, using Eq. [\(4.21\)](#page-5-1),

$$
|\partial_x z(1) - \partial_x z_h(1)| \le C \left(\left\| f - \tilde{f}_h \right\|_{L^2} \left\| f - \tilde{f}_h \right\|_{H^{-1}} \right)^{1/2} \le C \sqrt{h} \left\| f \right\|_{L^2}.
$$
 (4.25)

Besides,

$$
\partial_x z_h(1) + \frac{z_{N,h}}{h} = \sum_{k=1}^N \frac{f_k}{\mu_k(h)^2} (-1)^k \left(1 - \frac{\sin(k\pi h)}{k\pi h}\right) k\pi.
$$

Note that this last expression coincides with the continuous normal derivative $\partial_x z(1)$ of the solution ˜*z* of the continuous problem

$$
\begin{cases}\n-\partial_{xx}\tilde{z} = \tilde{g}_h, \text{ on } (0,1), \text{ where } \tilde{g}_h = \sum_{k=1}^N f_k \frac{\mu_k^2}{\mu_k(h)^2} \left(1 - \frac{\sin(k\pi h)}{k\pi h}\right) w^k, \\
\tilde{z}(0) = \tilde{z}(1) = 0.\n\end{cases} (4.26)
$$

Using that for some constant *C* independent of *h* and $k \in \{1, ..., N\}$,

$$
\left|\frac{\mu_k^2}{\mu_k(h)^2}\right| \leq C, \qquad \left|1 - \frac{\sin(k\pi h)}{k\pi h}\right| \leq Ck^2h^2,
$$

we easily compute

$$
\|\tilde{g}_h\|_{L^2} \le C \|f\|_{L^2}, \qquad \|\tilde{g}_h\|_{H^{-1}} \le Ch \|f\|_{L^2}.
$$
 (4.27)

Hence, from Eq. [\(4.20\)](#page-5-0),

$$
\left|\partial_x z_h(1) + \frac{z_{N,h}}{h}\right| = \left|\partial_x \tilde{z}(1)\right| \le C\sqrt{h} \left\|f\right\|_{L^2}.
$$

Together with Eq. [\(4.25\)](#page-6-1), this concludes the proof of Theorem [4.3.](#page-5-3)

4.2.2 Stronger Norms

Recalling the definition of the functional spaces $H_{(0)}^{\ell}(0,1)$ in Eq. (3.34), we prove the counterparts of the above theorem within these spaces.

First, Proposition [4.1](#page-2-0) can be modified into:

Proposition 4.2. Let $\ell \in \mathbb{R}$. If f_h is a discrete function, then there exists a constant $C = C(\ell)$ independent of $h \in (0,1)$ such that

$$
\frac{1}{C} \|f_h\|_{H^{\ell}_{(0)}} \le \|(-\Delta_h)^{-1} f_h\|_{H^{\ell-2}_{(0)}} \le C \|f_h\|_{H^{\ell}_{(0)}}.
$$
\n(4.28)

The proof of Proposition [4.2](#page-7-0) follows line to line the one of Proposition [4.1](#page-2-0) and is left to the reader.

The convergence results of Theorem [4.1](#page-3-0) can be extended as follows:

Theorem 4.4. Let $\ell \in \mathbb{R}$ and $f \in H^{\ell}_{(0)}(0,1)$ and $z = (-\partial_{xx})^{-1}f$ be the corresponding *solution of the Laplace equation* [\(4.12\)](#page-3-3)*. With the notations of Theorem [4.1,](#page-3-0) setting f_h as in Eq.*[\(4.11\)](#page-3-2) *and* $z_h = (-\Delta_h)^{-1} f_h$, we have

$$
||f - f_h||_{H_{(0)}^{\ell-1}} + ||z - z_h||_{H_{(0)}^{\ell+1}} \le Ch ||f||_{H_{(0)}^{\ell}},
$$
\n(4.29)

$$
||z - z_h||_{H^{\ell}_{(0)}} \leq Ch^2 ||f||_{H^{\ell}_{(0)}}.
$$
 (4.30)

Here again, the proof of Theorem [4.4](#page-7-1) is very similar to the one of Theorem [4.1](#page-3-0) and is left to the reader.

We now focus on the convergence of the normal derivatives:

Theorem 4.5. Let $\ell \geq 0$ and $f \in H^{\ell}_{(0)}(0,1)$ and $z = (-\partial_{xx})^{-1}f$ be the corresponding *solution of the Laplace equation* [\(4.12\)](#page-3-3)*. With the notations of Theorem [4.1,](#page-3-0) setting fh as in Eq.*[\(4.11\)](#page-3-2) *and* $z_h = (-\Delta_h)^{-1} f_h$, we have

$$
\left| \partial_x z(1) + \frac{z_{N,h}}{h} \right| \le Ch^{\min\{\ell + 1/2, \ell/2 + 1, 2\}} \|f\|_{H^{\ell}_{(0)}}.
$$
 (4.31)

Proof. The proof of Eq. [\(4.31\)](#page-7-2) follows the one of Eq. [\(4.22\)](#page-5-2), except for the estimates [\(4.24\)](#page-6-0) on ˜*fh* in Eqs. [\(4.23\)](#page-6-2) and [\(4.27\)](#page-7-3) on ˜*gh* defined in Eq. [\(4.26\)](#page-6-3).

Using that for all $h > 0$ and $k \in \{1, \ldots, N\}$,

$$
\left(1-\left(\frac{\mu_k}{\mu_k(h)}\right)^2\right)^2 \leq Ck^4h^4,
$$

we easily derive that

$$
\left\|f-\tilde{f}_h\right\|_{L^2}^2 \le C\left(\frac{1}{N^{2\ell}} + Ch^4 \max\{1,N^{4-2\ell}\}\right) \left\|f\right\|_{H^{\ell}_{(0)}}^2.
$$

In particular, if $\ell \in (0,2]$, $||f - \tilde{f}_h||_{L^2} \leq Ch^{\ell} ||f||_{H^{\ell}_{(0)}}$ and if $\ell \geq 2$, $||f - \tilde{f}_h||_{L^2} \leq$ $Ch^2\|f\|_{H_{(0)}^\ell}$, thus yielding

$$
\left\|f-\tilde{f}_h\right\|_{L^2} \leq Ch^{\min\{\ell,2\}}\left\|f\right\|_{H^{\ell}_{(0)}}.
$$

Similarly,

$$
\left\|f-\tilde{f}_h\right\|_{H^{-1}} \leq Ch^{\min\{\ell+1,2\}}\left\|f\right\|_{H^{\ell}_{(0)}}.
$$

We thus obtain, instead of Eq. (4.25) ,

$$
|\partial_x z(1) - \partial_x z_h(1)| \leq Ch^{\min\{\ell+1/2,\ell/2+1,2\}} \|f\|_{H^{\ell}_{(0)}}.
$$

Estimates on $\partial_x z_h(1) + z_{N,h}/h$ can be deduced similarly from estimates on \tilde{g}_h (defined in Eq. (4.26)) and are left to the reader.

Remark 4.2. Very likely, estimate (4.31) can be improved for $\ell > -1/2$ into

$$
\left| \partial_{x} z(1) + \frac{z_{N,h}}{h} \right| \leq Ch^{\min\{\ell + 1/2,2\}} \left\| f \right\|_{H^{\ell}_{(0)}}. \tag{4.32}
$$

For instance, using that, if $f = \sum_k f_k w^k$, the solution *z* of Eq. [\(4.12\)](#page-3-3) can be expanded as $z = \sum_k f_k / \mu_k^2 w^k$ and we get

$$
\partial_x z(1) = \sum_k f_k \frac{\partial_x w^k(1)}{\mu_k^2},
$$

provided the sum converges. Since for all $k \in \mathbb{N}$,

$$
\left|\frac{\partial_x w^k(1)}{\mu_k^2}\right| \leq \frac{C}{\mu_k},
$$

by Cauchy–Schwarz, for any $\ell_0 > -1/2$, we obtain

$$
|\partial_x z(1)| \le C_{\ell_0} \|f\|_{H_{(0)}^{\ell_0}}
$$

instead of Eq. [\(4.20\)](#page-5-0).

Of course, we can get similar estimates for the discrete solutions $z_h = (-\Delta_h)^{-1} f_h$ and obtain, for all $\ell_{(0)} > -1/2$, a constant C_{ℓ_0} independent of $h > 0$ such that for all discrete function f_h and $z_h = (-\Delta_h)^{-1} f_h$,

$$
\left|\frac{z_{N,h}}{h}\right|\leq C_{\ell_0}\left\|f_h\right\|_{H_{(0)}^{\ell_0}}.
$$

instead of Eq. [\(4.21\)](#page-5-1).

Using these two estimates instead of Eqs. (4.20) and (4.21) and following the proof of Theorem [4.5,](#page-7-4) we can obtain the following result: for all $\ell > -1/2$ and $\varepsilon > 0$, there exists a constant $C_{\ell, \varepsilon} = C(\ell, \varepsilon)$ such that $f \in H^{\ell}_{(0)},$

$$
\left|\partial_x z(1) + \frac{z_{N,h}}{h}\right| \le C_{\ell,\varepsilon} h^{\min\{\ell+1/2-\varepsilon,2\}} \left\|f\right\|_{H^{\ell}_{(0)}}.
$$
\n(4.33)

This last estimate is better than Eq. [\(4.31\)](#page-7-2) when $\ell \in (-1/2,0)$ and when $\ell \in (1,2)$.

4.2.3 Numerical Results

This section aims at giving numerical simulations and evidences of the convergence results Eq. [\(4.31\)](#page-7-2) for the normal derivatives of solutions of the discrete Laplace equation. We do not present a systematic study of the convergence of the solution in $L^2(0,1)$ nor in $H_0^1(0,1)$ since these results are classical and can be found in many textbooks of numerical analysis; see, e.g., [4, 46].

In order to do that, we choose continuous functions *f* and *z* solving Eq. [\(4.12\)](#page-3-3).

For $N \in \mathbb{N}$, we then discretize the source term f into f_h simply by taking $f_h(j)$ *f*(*jh*) for *j* ∈ {1,...,*N*} and compute *z_h* the solution of − $\Delta_h z_h = f_h$ with $z_{0,h} =$ $z_{N+1,h} = 0$. We then compute $\partial_x z(1) + z_{N,h}/h$.

Our first test function is

$$
f(x) = -\sin(2\pi x) + 3\sin(\pi x), \text{ for } z(x) = \frac{\sin(2\pi x)}{4\pi^2} - \frac{3\sin(\pi x)}{\pi}.
$$
 (4.34)

The plot of $|\partial_x z(1) + z_{N,h}/h|$ versus *N* is represented in logarithmic scales in Fig. [4.1,](#page-10-1) left. Here, we have chosen $N \in [100, 300]$. The slope of the linear regression is −1.99 and completely corresponds to the result of Theorem [4.5.](#page-7-4)

Fig. 4.1 Plot of $\left|\frac{\partial_x z}{\partial x}\right| + \frac{z_N}{h}/h$ versus *N* in logarithmic scales. *Left*, for *f* as in Eq. [\(4.34\)](#page-9-0), the slope is −1.99. *Right*, for *f* as in Eq. [\(4.35\)](#page-10-2), the slope is −1.00.

We then test

$$
f(x) = \frac{1}{(x+1)^3}
$$
, corresponding to $z(x) = -\frac{1}{2(x+1)} + \frac{1}{2} - \frac{x}{4}$. (4.35)

Numerical simulations are represented in Fig. [4.1,](#page-10-1) right.

This function *f* is smooth, but it does not satisfy $f(0) = f(1) = 0$. Thus it is only in $\bigcap_{\varepsilon>0} H_{(0)}^{1/2-\varepsilon}(0,1)$ and the slope predicted by Theorem [4.5](#page-7-4) is -1^- and completely agrees with the slope observed in Fig. [4.1](#page-10-1) right.

These two examples indicate that the rates of convergence of the normal derivatives obtained in Theorem [4.5](#page-7-4) are accurate.

4.3 Uniform Bounds on *yh*

The goal of this section is to obtain uniform bounds on y_h in the natural space for the wave equation with nonhomogeneous Dirichlet control, that is $C([0,T];L^2(0,1))\cap$ $C^1([0,T];H^{-1}(0,1))$:

Theorem 4.6. *There exists a constant C independent of* $h > 0$ *such that any solution y_h of Eq.*[\(4.7\)](#page-1-1) *with initial data* (y_h^0, y_h^1) *and source term* $v_h \in L^2(0,T)$ *satisfies*

$$
\sup_{t \in [0,T]} \|(y_h(t), \partial_t y_h(t))\|_{L^2(0,1) \times H^{-1}(0,1)} \n\leq C \left(\|(y_h^0, y_h^1)\|_{L^2(0,1) \times H^{-1}(0,1)} + \|\nu_h\|_{L^2(0,T)} \right).
$$
\n(4.36)

The proof of Theorem [4.6](#page-10-3) is done in two steps: one focusing on the estimate on *y_h* and the other one on $∂_t y_h$, respectively, corresponding to Propositions [4.3](#page-11-0) and [4.4.](#page-14-0)

As we will see, each one of these propositions is based on a suitable duality argument for solutions of the adjoint system.

4.3.1 Estimates in $C([0,T]; L^2(0,1))$

We have the following:

Proposition 4.3. *There exists a constant C independent of h* > 0 *such that any solution yh of Eq.*[\(4.7\)](#page-1-1) *satisfies*

$$
||y_h||_{L^{\infty}(0,T;L^2(0,1))} \leq C \left(||y_h^0||_{L^2(0,1)} + ||y_h^1||_{H^{-1}(0,1)} + ||y_h||_{L^2(0,T)} \right).
$$
 (4.37)

We postpone the proof to the end of the section. As in the continuous case, Proposition [4.3](#page-11-0) will be a consequence of a suitable duality argument.

Namely, let $f_h \in L^1(0,T; L^2(0,1))$ and define ϕ_h as being the solution of

$$
\begin{cases}\n\partial_{tt}\phi_{j,h} - \frac{1}{h^2} \left[\phi_{j+1,h} + \phi_{j-1,h} - 2\phi_{j,h} \right] = f_{j,h}, & (t,j) \in (0,T) \times \{1,\ldots,N\}, \\
\phi_{0,h}(t) = \phi_{N+1,h}(t) = 0, & t \in (0,T), \\
\phi_{j,h}(T) = 0, & \partial_t \phi_{j,h}(T) = 0, & j = 1,\ldots,N.\n\end{cases}
$$
\n(4.38)

Then, multiplying Eq. [\(4.7\)](#page-1-1) by ϕ_h solution of Eq. [\(4.38\)](#page-11-1), we obtain

$$
0 = h \sum_{j=1}^{N} \int_{0}^{T} \partial_{tt} y_{j,h} \phi_{j,h} dt - h \sum_{j=1}^{N} \int_{0}^{T} \frac{1}{h^{2}} [y_{j+1,h} + y_{j-1,h} - 2y_{j,h}] \phi_{j,h} dt
$$

\n
$$
= h \sum_{j=1}^{N} \int_{0}^{T} y_{j,h} \partial_{tt} \phi_{j,h} dt - h \sum_{j=1}^{N} \int_{0}^{T} \frac{1}{h^{2}} y_{j,h} [\phi_{j+1,h} + \phi_{j-1,h} - 2\phi_{j,h}] dt
$$

\n
$$
+ h \sum_{j=1}^{N} (\partial_{t} y_{j,h} \phi_{j,h} - y_{j,h} \partial_{t} \phi_{j,h}) \Big|_{0}^{T} - \int_{0}^{T} y_{N+1,h} \frac{\phi_{N,h}}{h} dt
$$

\n
$$
= h \sum_{j=1}^{N} \int_{0}^{T} y_{j,h} f_{j,h} dt + h \sum_{j=1}^{N} (y_{j,h}^{0} \partial_{t} \phi_{j,h} (0) - y_{j,h}^{1} \phi_{j,h} (0))
$$

\n
$$
- \int_{0}^{T} v_{h}(t) \frac{\phi_{N,h}(t)}{h} dt.
$$
 (4.39)

Note that identity [\(4.39\)](#page-11-2) is a discrete counterpart of the continuous identity [\(4.4\)](#page-0-3). Remark that this can be used as a definition of solutions of Eq. [\(4.7\)](#page-1-1) by transposition, even if in that case, solutions of Eq. (4.7) obviously exist due to the finite dimensional nature of system [\(4.7\)](#page-1-1).

Formulation [\(4.39\)](#page-11-2) will be used to derive estimates on solutions *yh* by duality. But we shall first prove the following lemma:

Lemma 4.1. *For* φ*^h solution of Eq.*[\(4.38\)](#page-11-1)*, there exists a constant C independent of* $h > 0$ *such that*

$$
\|\phi_h\|_{L^{\infty}(0,T;H_0^1(0,1))} + \|\partial_t \phi_h\|_{L^{\infty}(0,T;L^2(0,1))} \le C \|f_h\|_{L^1(0,T;L^2(0,1))}
$$
(4.40)

4.3 Uniform Bounds on y_h 91

and

$$
\left\| \frac{\phi_{N,h}}{h} \right\|_{L^2(0,T)} \le C \left\| f_h \right\|_{L^1(0,T;L^2(0,1))} . \tag{4.41}
$$

Proof. The first inequality [\(4.40\)](#page-11-3) is an energy estimate, whereas Eq. [\(4.41\)](#page-12-0) is a hidden regularity property.

Multiplying Eq. [\(4.38\)](#page-11-1) by $\partial_t \phi_{j,h}$ and summing over *j*, we obtain

$$
h \sum_{j=1}^{N} \partial_{tt} \phi_{j,h} \partial_t \phi_{j,h} - h \sum_{j=1}^{N} \frac{1}{h^2} \left[\phi_{j+1,h} + \phi_{j-1,h} - 2\phi_{j,h} \right] \partial_t \phi_{j,h}
$$

= $h \sum_{j=1}^{N} f_{j,h} \partial_t \phi_{j,h}.$ (4.42)

The left-hand side of Eq. [\(4.42\)](#page-12-1) is the derivative of the energy

$$
\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{h}{2}\sum_{j=1}^N|\partial_t\phi_{j,h}|^2+\frac{h}{2}\sum_{j=1}^N\left(\frac{\phi_{j+1,h}-\phi_{j,h}}{h}\right)^2\right)=\frac{1}{2}\frac{\mathrm{d}E_h[\phi_h]}{\mathrm{d}t},
$$

whereas the right-hand side satisfies

$$
\left| h \sum_{j=1}^{N} f_{j,h} \partial_t \phi_{j,h} \right| \leq \left(h \sum_{j=1}^{N} |f_{j,h}|^2 \right)^{1/2} \left(h \sum_{j=1}^{N} |\partial_t \phi_{j,h}|^2 \right)^{1/2}
$$

$$
\leq \left(h \sum_{j=1}^{N} |f_{j,h}|^2 \right)^{1/2} \sqrt{E_h[\phi_h](t)}.
$$

Equation [\(4.42\)](#page-12-1) then implies

$$
\left|\frac{\mathrm{d}\sqrt{E_h}}{\mathrm{d}t}(t)\right| \le \left(h\sum_{j=1}^N |f_{j,h}(t)|^2\right)^{1/2}.\tag{4.43}
$$

Integrating in time, we obtain that for all $t \in [0, T]$,

$$
\sqrt{E_h(t)} \leq \int_0^T \left(h \sum_{j=1}^N |f_{j,h}(t)|^2 \right)^{1/2} dt.
$$

Finally, recalling the properties of the Fourier extension operator in Sect. 3.2, we obtain Eq. [\(4.40\)](#page-11-3).

Estimate [\(4.41\)](#page-12-0) can be deduced from the multiplier approach developed in the proof of Theorem 2.2 by multiplying Eq. [\(4.38\)](#page-11-1) by $j(\phi_{j+1,h} - \phi_{j-1,h})$:

$$
h \sum_{j=1}^{N} \int_{0}^{T} f_{j,h} jh\left(\frac{\phi_{j+1,h} - \phi_{j-1,h}}{h}\right) dt
$$

= $h \sum_{j=1}^{N} \int_{0}^{T} \partial_{tt} \phi_{j,h} jh\left(\frac{\phi_{j+1,h} - \phi_{j-1,h}}{h}\right) dt$
- $h \sum_{j=1}^{N} \int_{0}^{T} \left[\frac{\phi_{j+1,h} + \phi_{j-1,h} - 2\phi_{j,h}}{h^2}\right] jh\left(\frac{\phi_{j+1,h} - \phi_{j-1,h}}{h}\right) dt.$ (4.44)

The right-hand side of Eq. [\(4.44\)](#page-13-0) has already been dealt with in the proof of Theorem 2.2 and yields

$$
h \sum_{j=1}^{N} \int_{0}^{T} \partial_{tt} \phi_{j,h} jh\left(\frac{\phi_{j+1,h} - \phi_{j-1,h}}{h}\right) dt
$$

\n
$$
-h \sum_{j=1}^{N} \int_{0}^{T} \left[\frac{\phi_{j+1,h} + \phi_{j-1,h} - 2\phi_{j,h}}{h^2} \right] jh\left(\frac{\phi_{j+1,h} - \phi_{j-1,h}}{h}\right)
$$

\n
$$
= \int_{0}^{T} \left| \frac{\phi_{N,h}(t)}{h} \right|^{2} dt + \frac{h^3}{2} \sum_{j=0}^{N} \int_{0}^{T} \left| \frac{\partial_{t} \phi_{j+1,h} - \partial_{t} \phi_{j,h}}{h} \right|^{2} dt
$$

\n
$$
- \int_{0}^{T} E_{h}(t) dt - X_{h}(t) \Big|_{0}^{T},
$$

where, similarly as in Eq. (2.14) , $X_h(t)$ is given by

$$
X_h(t) = 2h\sum_{j=1}^N jh\left(\frac{\phi_{j+1,h} - \phi_{j-1,h}}{2h}\right)\partial_t\phi_{j,h}.
$$

From the conditions $\phi_h(T) = \partial_t \phi_h(T) = 0$ in Eq. [\(4.38\)](#page-11-1), $X_h(T) = 0$. Besides, as in Eq. (2.15), one has $|X_h(0)| \le E_h(0)$.

On the other hand,

$$
\left| h \sum_{j=1}^N \int_0^T f_{j,h} jh\left(\frac{\phi_{j+1,h} - \phi_{j-1,h}}{h}\right) dt \right|
$$

\n
$$
\leq \int_0^T \left(h \sum_{j=1}^N |f_{j,h}|^2 \right)^{1/2} \sqrt{E_h(t)} dt
$$

\n
$$
\leq \sup_{t \in [0,T]} \left\{ \sqrt{E_h(t)} \right\} \int_0^T \left(h \sum_{j=1}^N |f_{j,h}|^2 \right)^{1/2} dt.
$$

Therefore, from Eq. [\(4.40\)](#page-11-3), there exists a constant independent of *h* such that

$$
\int_0^T \left| \frac{\phi_{N,h}(t)}{h} \right|^2 dt + \frac{h^3}{2} \sum_{j=0}^N \int_0^T \left| \frac{\partial_t \phi_{j+1,h} - \partial_t \phi_{j,h}}{h} \right|^2 dt
$$

$$
\leq C \left(\int_0^T \left(h \sum_{j=1}^N |f_{j,h}|^2 \right)^{1/2} dt \right)^2,
$$

which implies Eq. (4.41) .

Proof (Proposition [4.3\)](#page-11-0). Lemma [4.1](#page-11-4) and identity [\(4.39\)](#page-11-2) allow us to deduce bounds on *yh*. Indeed,

$$
||y_h||_{L^{\infty}(0,T;L^2(0,1))} = \sup_{\substack{f \in L^1(0,T;L^2(0,1)) \\ ||f||_{L^1((0,T);L^2(0,1))}}} \int_0^1 y_h(x)f(x) dx.
$$

But there y_h is the Fourier extension $\mathbb{F}_h(y_h)$ (recall Sect. 3.2); hence it involves only Fourier modes smaller than *N*. We thus only have to consider the projection of *f* onto the first *N* Fourier modes. But this exactly corresponds to discrete functions *fh*. Therefore,

$$
||y_h||_{L^{\infty}(0,T;L^2(0,1))} = \sup_{\substack{f_h \in L^1(0,T;L^2(0,1))\\ ||f_h||_{L^1((0,T);L^2(0,1))} \leq 1}} \left\{ h \sum_{j=1}^N \int_0^T y_{j,h} f_{j,h} dt \right\}.
$$

But, introducing ϕ_h , the solution of Eq. [\(4.38\)](#page-11-1) with source term f_h , using Lemma [4.1,](#page-11-4) we obtain:

$$
h\sum_{j=1}^{N}\int_{0}^{T}y_{j,h}f_{j,h}dt = -h\sum_{j=1}^{N}(y_{j,h}^{0}\partial_{t}\phi_{j,h}(0)-y_{j,h}^{1}\phi_{j,h}(0)) + \int_{0}^{T}v_{h}(t)\frac{\phi_{N,h}(t)}{h}dt
$$

\n
$$
\leq C\|y_{h}^{0}\|_{L^{2}(0,1)}\|\partial_{t}\phi_{h}(0)\|_{L^{2}(0,1)} + C\|y_{h}^{1}\|_{H^{-1}(0,1)}\|\phi_{h}(0)\|_{H_{0}^{1}(0,1)}
$$

\n
$$
+\|v_{h}\|_{L^{2}(0,T)}\left\|\frac{\phi_{N,h}}{h}\right\|_{L^{2}(0,T)}
$$

\n
$$
\leq C\left(\|y_{h}^{0}\|_{L^{2}(0,1)} + \|y_{h}^{1}\|_{H^{-1}(0,1)} + \|v_{h}\|_{L^{2}(0,T)}\right)\|f_{h}\|_{L^{1}(0,T;L^{2}(0,1))}.
$$

This yields in particular Eq. (4.37) .

4.3.2 Estimates on $\partial_t y_h$

We now focus on getting estimates on ∂*tyh*.

Proposition 4.4. *There exists a constant C independent of h* > 0 *such that any solution yh of Eq.*[\(4.7\)](#page-1-1) *satisfies*

$$
\|\partial_t y_h\|_{L^\infty(0,T;H^{-1}(0,1))} \le C \left(\|y_h^0\|_{L^2(0,1)} + \|y_h^1\|_{H^{-1}(0,1)} + \|y_h\|_{L^2(0,T)} \right). \tag{4.45}
$$

Similarly as for Proposition [4.3,](#page-11-0) this result is obtained by duality, based on the following identity: if ϕ_h solves the adjoint wave equation [\(4.38\)](#page-11-1) with source term *f_h* = $\partial_t g_h$ with $g_h \in L^1(0, T; H_0^1(0, 1))$, we have:

$$
h\sum_{j=1}^{N} \int_{0}^{T} y_{j,h} \partial_{t} g_{j,h} dt = -h\sum_{j=1}^{N} (y_{j,h}^{0} \partial_{t} \phi_{j,h}(0) - y_{j,h}^{1} \phi_{j,h}(0)) + \int_{0}^{T} v_{h}(t) \frac{\phi_{N,h}(t)}{h} dt.
$$
 (4.46)

The proof of Proposition [4.4](#page-14-0) is sketched at the end of the section, since it is very similar to the one of Proposition [4.3.](#page-11-0)

Hence, we focus on the following adjoint problem:

$$
\begin{cases}\n\partial_{tt}\phi_{j,h} - \frac{1}{h^2} \left[\phi_{j+1,h} + \phi_{j-1,h} - 2\phi_{j,h} \right] = \partial_t g_{j,h}, \\
(t,j) \in (0,T) \times \{1,\ldots,N\}, \\
\phi_{0,h}(t) = \phi_{N+1,h}(t) = 0, \\
\phi_{j,h}(T) = 0, \partial_t \phi_{j,0}(T) = 0, \qquad j = 1,\ldots,N.\n\end{cases} \tag{4.47}
$$

We shall thus prove the following:

Lemma 4.2. *For* φ*^h solution of Eq.*[\(4.47\)](#page-15-0)*, there exists a constant C independent of* $h > 0$ *such that*

$$
\|\phi_h\|_{L^{\infty}(0,T;H_0^1(0,1))} + \|\partial_t \phi_h(0)\|_{L^2(0,1)} \le C \|g_h\|_{L^1(0,T;H_0^1(0,1))}
$$
(4.48)

and

$$
\left\| \frac{\phi_{N,h}}{h} \right\|_{L^2(0,T)} \le C \left\| g_h \right\|_{L^1(0,T;H_0^1(0,1))}.
$$
\n(4.49)

Proof. To study solutions ϕ_h of Eq. [\(4.47\)](#page-15-0), it is convenient to first assume that g_h is compactly supported in time in $(0,T)$ and use the density of compactly supported functions in time in $L^1(0,T;H^1_0(0,1))$.

Let us introduce ψ_h satisfying $\partial_t \psi_h = \phi_h$, which satisfies

$$
\begin{cases}\n\partial_{tt} \psi_{j,h} - \frac{1}{h^2} \left[\psi_{j+1,h} + \psi_{j-1,h} - 2 \psi_{j,h} \right] = g_{j,h}, & (t,j) \in (0,T) \times \{1,\ldots,N\}, \\
\psi_{0,h}(t) = \psi_{N+1,h}(t) = 0, & t \in (0,T), \\
\psi_{j,h}(T) = 0, & \partial_t \psi_{j,h}(T) = 0, & j = 1,\ldots,N.\n\end{cases}
$$
\n(4.50)

Obviously, using Lemma [4.1,](#page-11-4) we immediately obtain

4.3 Uniform Bounds on *yh* 95

$$
\|\psi_h\|_{L^{\infty}(0,T;H_0^1(0,1))} + \|\partial_t \psi_h\|_{L^{\infty}(0,T;L^2(0,1))} + \left\|\frac{\psi_{N,h}}{h}\right\|_{L^2(0,T)} \leq C \|g_h\|_{L^1(0,T;L^2(0,1))}
$$

\$\leq C \|g_h\|_{L^1(0,T;H_0^1(0,1))}.

To derive more precise estimates on ϕ_h , we multiply Eq. [\(4.50\)](#page-15-1) by $-(\partial_t \psi_{i+1,h} +$ $\frac{\partial_t \psi_{i-1,h} - 2\partial_t \psi_{i,h}}{h^2}$

$$
\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{h}{2} \sum_{j=0}^{N} \left(\frac{\partial_t \psi_{j+1,h} - \partial_t \psi_{j,h}}{h} \right)^2 + \frac{h}{2} \sum_{j=1}^{N} \left(\frac{\psi_{j+1,h} + \psi_{j-1,h} - 2\psi_{j,h}}{h^2} \right)^2 \right) \n= h \sum_{j=1}^{N} \left(\frac{g_{j+1,h} - g_{j,h}}{h} \right) \left(\frac{\partial_t \psi_{j+1,h} - \partial_t \psi_{j,h}}{h} \right).
$$

Arguing as in Eq. [\(4.43\)](#page-12-2), this allows to conclude that

$$
\sup_{t \in [0,T]} \left\{ \frac{h}{2} \sum_{j=0}^{N} \left(\frac{\partial_t \psi_{j+1,h} - \partial_t \psi_{j,h}}{h} \right)^2 + \frac{h}{2} \sum_{j=1}^{N} \left(\frac{\psi_{j+1,h} + \psi_{j-1,h} - 2\psi_{j,h}}{h^2} \right)^2 \right\}
$$

$$
\leq C \left(\int_0^T \left(h \sum_{j=0}^{N} \left(\frac{g_{j+1,h} - g_{j,h}}{h} \right)^2 \right)^{1/2} dt \right)^2.
$$
 (4.51)

Using Eq. [\(4.38\)](#page-11-1) and $\partial_t \psi_h = \phi_h$ and again the equivalences proven in Sect. 3.2, we deduce

$$
\|\phi_h\|_{L^{\infty}(0,T;\,H_0^1(0,1))}+\|\partial_{tt}\psi_h+g_h\|_{L^{\infty}((0,T);L^2(0,1))}\leq C\|g_h\|_{L^1(0,T;H_0^1(0,1))},
$$

where we use the equation of ψ_h . In order to get Eq. [\(4.48\)](#page-15-2), we only use the fact that $g_h(0) = 0.$

To deduce Eq. [\(4.49\)](#page-15-3), we need to apply a multiplier technique on the Eq. [\(4.47\)](#page-15-0) directly.

Multiplying Eq. [\(4.47\)](#page-15-0) by $j(\phi_{i+1,h}-\phi_{i-1,h})$, we obtain, similarly as in Eq. (2.13),

$$
\int_0^T \left| \frac{\phi_{N,h}(t)}{h} \right|^2 dt + \frac{h^3}{2} \sum_{j=0}^N \int_0^T \left| \frac{\partial_t \phi_{j+1,h} - \partial_t \phi_{j,h}}{h} \right|^2 dt
$$

=
$$
\int_0^T E_h(t) dt - X_h(0) - h \int_0^T \sum_{j=1}^N jh \left(\frac{\phi_{j+1,h} - \phi_{j-1,h}}{h} \right) \partial_t g_{j,h} dt, \quad (4.52)
$$

where X_h is as in Eq. (2.14). To derive Eq. [\(4.49\)](#page-15-3), it is then sufficient to bound each term in the right-hand side of this identity.

First remark that

$$
\int_{0}^{T} E_{h}(t) dt = h \int_{0}^{T} \sum_{j=0}^{N} \left(\frac{\phi_{j+1,h} - \phi_{j,h}}{h} \right)^{2} dt + h \int_{0}^{T} \sum_{j=0}^{N} |\partial_{t} \phi_{j,h}|^{2} dt
$$

\n
$$
= h \int_{0}^{T} \sum_{j=0}^{N} \left(\frac{\partial_{t} \psi_{j+1,h} - \partial_{t} \psi_{j,h}}{h} \right)^{2} dt + h \int_{0}^{T} \sum_{j=0}^{N} |\partial_{tt} \psi_{j,h}|^{2} dt
$$

\n
$$
= h \int_{0}^{T} \sum_{j=0}^{N} \left(\frac{\partial_{t} \psi_{j+1,h} - \partial_{t} \psi_{j,h}}{h} \right)^{2} dt + h \int_{0}^{T} \sum_{j=1}^{N} \left(\frac{\psi_{j+1,h} + \psi_{j-1,h} - 2\psi_{j,h}}{h^{2}} \right)^{2} dt
$$

\n
$$
+ h \int_{0}^{T} \sum_{j=0}^{N} g_{j,h}^{2} dt + 2h \int_{0}^{T} \sum_{j=1}^{N} \left(\frac{\psi_{j+1,h} + \psi_{j-1,h} - 2\psi_{j,h}}{h^{2}} \right) g_{j,h} dt.
$$

In particular, from Eq. (4.51) , we obtain

$$
\left| \int_0^T E_h(t) dt - h \int_0^T \sum_{j=0}^N g_{j,h}^2 dt \right| \leq C ||g||_{L^1(0,T;H_0^1(0,1))}^2.
$$

Let us then bound $X_h(0)$. Since $g_h(0) = 0$,

$$
X_h(0) = 2h \sum_{j=1}^{N} jh\left(\frac{\phi_{j+1,h}(0) - \phi_{j-1,h}(0)}{2h}\right) \partial_t \phi_j(0)
$$

=
$$
2h \sum_{j=1}^{N} jh\left(\frac{\phi_{j+1,h}(0) - \phi_{j-1,h}(0)}{2h}\right) \partial_{tt} \psi_j(0)
$$

=
$$
2h \sum_{j=1}^{N} jh\left(\frac{\phi_{j+1,h}(0) - \phi_{j-1,h}(0)}{2h}\right) \left(\frac{\psi_{j+1,h}(0) + \psi_{j-1,h}(0) - 2\psi_{j,h}(0)}{h^2}\right).
$$

It follows then from Eq. (4.51) that

$$
|X_h(0)| \leq C \|g_h\|_{L^1(0,T;H_0^1(0,1))}^2.
$$

We now deal with the last term in Eq. (4.52) :

$$
I := 2h \int_0^T \sum_{j=1}^N jh\left(\frac{\phi_{j+1,h} - \phi_{j-1,h}}{2h}\right) \partial_t g_{j,h} dt.
$$

Integrating by parts we get

$$
I = -h \int_0^T \sum_{j=1}^N \phi_{j,h} \left((j+1) \partial_t g_{j+1,h} - (j-1) \partial_t g_{j-1,h} \right) dt
$$

= $-h \int_0^T \sum_{j=1}^N \phi_{j,h} \left((\partial_t g_{j-1,h} + \partial_t g_{j+1,h}) + jh \left(\frac{\partial_t g_{j+1,h} - \partial_t g_{j-1,h}}{h} \right) \right) dt.$

Taking into account that, by assumption, $g_h(0) = g_h(T) = 0$,

$$
I = h \int_0^T \sum_{j=1}^N \partial_t \phi_{j,h} \left((g_{j-1,h} + g_{j+1,h}) + jh \left(\frac{g_{j+1,h} - g_{j-1,h}}{h} \right) \right) dt.
$$

But $\partial_t \phi_{j,h} = \partial_{tt} \psi_{j,h}$, and then Eq. [\(4.50\)](#page-15-1) yields:

$$
I = h \int_0^T \sum_{j=1}^N g_{j,h} \left((g_{j-1,h} + g_{j+1,h}) + jh \left(\frac{g_{j+1,h} - g_{j-1,h}}{h} \right) \right) dt
$$

+
$$
h \int_0^T \sum_{j=1}^N \left(\frac{\psi_{j+1,h} + \psi_{j-1,h} - 2\psi_{j,h}}{h^2} \right) (g_{j-1,h} + g_{j+1,h}) dt.
$$

+
$$
h \int_0^T \sum_{j=1}^N \left(\frac{\psi_{j+1,h} + \psi_{j-1,h} - 2\psi_{j,h}}{h^2} \right) jh \left(\frac{g_{j+1,h} - g_{j-1,h}}{h} \right) dt.
$$

Since

$$
h \int_0^T \sum_{j=1}^N g_{j,h} \left((g_{j-1,h} + g_{j+1,h}) + jh \left(\frac{g_{j+1,h} - g_{j-1,h}}{h} \right) \right) dt
$$

= $h \int_0^T \sum_{j=1}^N g_{j,h} g_{j+1,h} dt$,

due to estimates [\(4.51\)](#page-16-0), we obtain

$$
\left| I - h \int_0^T \sum_{j=1}^N g_{j,h} g_{j+1,h} \, \mathrm{d}t \right| \leq C \left\| g \right\|_{L^1(0,T;H^1_0(0,1))}^2.
$$

These estimates, combined with Eq. [\(4.52\)](#page-16-1), finally give

$$
\left| \int_0^T \left| \frac{\phi_{N,h}(t)}{h} \right|^2 dt + \frac{h^3}{2} \sum_{j=0}^N \int_0^T \left| \frac{\partial_t \phi_{j+1,h} - \partial_t \phi_{j,h}}{h} \right|^2 dt \right|
$$

-h
$$
\left| \int_0^T \sum_{j=1}^N \left(|g_{j,h}|^2 - g_{j,h}g_{j+1,h} \right) dt \right| \le C ||g||^2_{L^1(0,T;H^1_0(0,1))},
$$

or, equivalently,

$$
\left| \int_0^T \left| \frac{\phi_{N,h}(t)}{h} \right|^2 dt + \frac{h}{2} \sum_{j=0}^N \int_0^T \left| \partial_t \phi_{j+1,h} - \partial_t \phi_{j,h} \right|^2 dt \right|
$$

$$
- \frac{h}{2} \int_0^T \sum_{j=0}^N |g_{j+1,h} - g_{j,h}|^2 dt \right| \le C ||g||_{L^1(0,T;H_0^1(0,1))}^2.
$$
 (4.53)

Remark then that

$$
h \sum_{j=0}^{N} \int_{0}^{T} |\partial_{t} \phi_{j+1,h} - \partial_{t} \phi_{j,h}|^{2} dt - h \int_{0}^{T} \sum_{j=0}^{N} |g_{j+1,h} - g_{j,h}|^{2} dt
$$

\n
$$
= h \sum_{j=0}^{N} \int_{0}^{T} |\partial_{tt} \psi_{j+1,h} - \partial_{tt} \psi_{j,h}|^{2} dt - h \int_{0}^{T} \sum_{j=0}^{N} |g_{j+1,h} - g_{j,h}|^{2} dt
$$

\n
$$
= h \sum_{j=0}^{N} \int_{0}^{T} \left(\frac{\psi_{j+2,h} + \psi_{j,h} - 2\psi_{j+1,h}}{h^{2}} - \frac{\psi_{j+1,h} + \psi_{j-1,h} - 2\psi_{j,h}}{h^{2}} \right)^{2} dt
$$

\n
$$
+ 2h \sum_{j=0}^{N} \int_{0}^{T} \left(\frac{\psi_{j+2,h} + \psi_{j,h} - 2\psi_{j+1,h}}{h^{2}} \right) (g_{j+1,h} - g_{j,h}) dt,
$$

\n
$$
- 2h \sum_{j=0}^{N} \int_{0}^{T} \left(\frac{\psi_{j+1,h} + \psi_{j-1,h} - 2\psi_{j,h}}{h^{2}} \right) (g_{j+1,h} - g_{j,h}) dt,
$$

with the notation $\psi_{-1,h} = -\psi_{1,h}$ and $\psi_{N+2,h} = -\psi_{N,h}$. In view of Eq. (4.51) , we have

$$
\left| h \sum_{j=0}^{N} \int_{0}^{T} \left| \partial_{t} \phi_{j+1,h} - \partial_{t} \phi_{j,h} \right|^{2} dt - h \int_{0}^{T} \sum_{j=0}^{N} |g_{j+1,h} - g_{j,h}|^{2} dt \right|
$$

$$
\leq C \left| |g| \right|_{L^{1}(0,T;H_{0}^{1}(0,1))}^{2}.
$$

Estimate [\(4.49\)](#page-15-3) then follows directly from Eq. [\(4.53\)](#page-18-0).

Proof (Proposition [4.4\)](#page-14-0). Since *yh* is a smooth function of time and space (recall that y_h has been identified with its Fourier extension; see Sect. 3.2),

$$
\|\partial_t y_h\|_{L^\infty((0,T);H^{-1}(0,1))} = \sup_{\substack{g \in L^1((0,T);H^1_0(0,1))\\ \|g\|_{L^1((0,T);H^1_0(0,1))} \le 1}} \int_0^T \partial_t y_h g.
$$

As in the proof of Proposition [4.3,](#page-11-0) we can take the supremum of the functions $g \in L^1(0,T;H_0^1(0,1))$ that are Fourier extensions of discrete functions. Therefore, using Lemma [4.2](#page-15-4) together with the duality identity [\(4.46\)](#page-15-5), we immediately obtain Proposition [4.4.](#page-14-0)

4.4 Convergence Rates for Smooth Data

4.4.1 Main Convergence Result

Our goal is to show the following result:

$$
\Box
$$

Theorem 4.7. *Let* $(y^0, y^1) \in H_0^1(0,1) \times L^2(0,1)$ *and* $v \in H^1(0,T)$ *be such that* $v(0) = 0$ *and v* the corresponding solution of Eq. [\(4.1\)](#page-0-0) with initial data (v^0, v^1) and *boundary condition v.*

Then there exists a discrete sequence of initial data (y_h^0, y_h^1) *such that the solution* y_h *of Eq.*[\(4.7\)](#page-1-1) with initial data (y_h^0, y_h^1) and boundary data v satisfies the following *convergence rates:*

• *Convergence of yh: the following convergence estimates hold:*

$$
\sup_{t\in[0,T]}\|y_h(t)-y(t)\|_{L^2}\leq C\left(h^{2/3}\left\|(y^0,y^1)\right\|_{H_0^1\times L^2}+h^{1/2}\|v\|_{H^1}\right). \tag{4.54}
$$

If we furthermore assume that $v(T) = 0$ *,*

$$
||y_h(T) - y(T)||_{L^2} \le Ch^{2/3} \left(||(y^0, y^1)||_{H_0^1 \times L^2} + ||v||_{H^1} \right).
$$
 (4.55)

• *Convergence of* ∂*tyh: the following convergence estimates hold:*

$$
\sup_{t\in[0,T]}\|\partial_t y_h(t) - \partial_t y(t)\|_{H^{-1}} \leq Ch^{2/3}\left(\left\|(y^0, y^1)\right\|_{H_0^1 \times L^2} + \left\|v\right\|_{H^1}\right). \tag{4.56}
$$

Remark 4.3. The above convergences [\(4.54\)](#page-20-0) and [\(4.56\)](#page-20-1) may appear surprising since the rates of convergence of the displacement and of the velocity are not the same except when $v(T) = 0$. We refer to Sect. [4.4.2](#page-21-0) for the details of the proof.

More curiously, the rates of convergence for the displacement are not the same depending on the fact that $v(T) = 0$ or not. This definitely is a surprise. In the proof below, we will see that this is due to the rate Eq. [\(4.22\)](#page-5-2) of convergence of the normal derivative for solutions of the Laplace operator.

The proof is divided in two main steps, namely one focusing on the convergence of *y_h* towards *y* and the other one on the convergence of $\partial_t y_h$ to $\partial_t y$, these two estimates being the object of the next sections.

Also, recall that under the assumptions of Theorem [4.7,](#page-19-1) the solution *y* of Eq. [\(4.1\)](#page-0-0) lies in $C([0,T];H^1(0,1))$, its time derivative $\partial_t y$ belongs to $C([0,T];L^2(0,1))$ and Δy to $C([0,T];H^{-1}(0,1)).$

As in the case of homogeneous Dirichlet boundary conditions, we will write down

$$
y^{0} = \sum_{k=1}^{\infty} \hat{y}_{k}^{0} w^{k}, \quad y^{1} = \sum_{k=1}^{\infty} \hat{y}_{k}^{1} w^{k}, \tag{4.57}
$$

whose $H_0^1(0,1) \times L^2(0,1)$ -norm coincides with

$$
\left\| (y^0, y^1) \right\|_{H_0^1 \times L^2}^2 = \sum_{k=1}^{\infty} k^2 \pi^2 |\hat{y}_k^0|^2 + \sum_{k=1}^{\infty} |\hat{y}_k^1|^2 < \infty.
$$

We will then choose the initial data (y_h^0, y_h^1) of the form

$$
y_h^0 = \sum_{k=1}^N \hat{y}_k^0 w^k, \quad y_h^1 = \sum_{k=1}^N \hat{y}_k^1 w^k.
$$
 (4.58)

4.4.2 Convergence of yh

Proposition 4.5. *Under the assumptions of Theorem [4.7,](#page-19-1) taking* (y_h^0, y_h^1) *as in Eq.*[\(4.58\)](#page-21-1)*, we have the convergences* [\(4.54\)](#page-20-0) *and Eq.*[\(4.55\)](#page-20-2)*.*

Proof. To estimate the convergence of y_h to y at time T , we write

$$
||y_h(T) - y(T)||_{L^2} = \sup_{\substack{\phi_T \in L^2(0,1) \\ ||\phi_T||_{L^2(0,1)} \le 1}} \left\{ \int_0^1 (y_h(T) - y(T)) \phi_T \right\}.
$$
 (4.59)

We thus fix $\phi_T \in L^2(0,1)$ and compute

$$
\int_0^1 (y_h(T) - y(T)) \phi_T.
$$
 (4.60)

We expand ϕ_T on its Fourier basis:

$$
\phi_T = \sum_{k=1}^{\infty} \hat{\phi}_k w^k, \quad \sum_{k=1}^{\infty} |\hat{\phi}_k|^2 < \infty. \tag{4.61}
$$

4.4.2.1 Computation of $\int_0^1 y(T) \phi_T$

Let us now compute $\int_0^1 y(T) \phi_T$. In order to do that, we introduce φ solution of

$$
\begin{cases} \n\partial_{tt} \varphi - \partial_{xx} \varphi = 0, & (t, x) \in (0, T) \times (0, 1), \\ \n\varphi(t, 0) = \varphi(t, 1) = 0, & t \in (0, T), \\ \n\varphi(T) = 0, & \partial_t \varphi(T) = \varphi_T. \n\end{cases} \tag{4.62}
$$

Then, multiplying Eq. (4.1) by φ , we easily obtain

$$
\int_0^1 y(T)\phi_T = \int_0^T v(t)\partial_x\varphi(t,1) dt + \int_0^1 y^0 \partial_t\varphi(0) - \int_0^1 y^1 \varphi(0).
$$
 (4.63)

But $v(t) = \int_0^t \partial_t v(s) ds$, thus yielding

$$
\int_0^T v(t)\partial_x\varphi(t,1) dt = \int_0^T \partial_t v(t) \left(\int_t^T \partial_x\varphi(s,1) ds\right) dt.
$$

We therefore introduce $\Phi(t) = \int_t^T \phi(s) ds$. One then easily checks that

$$
\int_0^1 y(T)\phi_T = \int_0^T \partial_t v(t)\partial_x \Phi(t,1) dt - \int_0^1 y^0 \partial_{tt} \Phi(0) + \int_0^1 y^1 \partial_t \Phi(0), \qquad (4.64)
$$

where Φ solves

$$
\begin{cases} \partial_{tt} \Phi - \partial_{xx} \Phi = -\phi_T, & (t, x) \in (0, T) \times (0, 1), \\ \Phi(t, 0) = \Phi(t, 1) = 0, & t \in (0, T), \\ \Phi(T) = 0, & \partial_t \Phi(T) = 0. \end{cases}
$$
(4.65)

We also introduce z_T the solution of

$$
-\partial_{xx}z_T = \phi_T, \quad \text{on } (0,1), \qquad z_T(0) = z_T(1) = 0,\tag{4.66}
$$

so that

$$
\Psi = \Phi - z_T \tag{4.67}
$$

satisfies

$$
\begin{cases} \partial_{tt} \Psi - \partial_{xx} \Psi = 0, & (t, x) \in (0, T) \times (0, 1) \\ \Psi(t, 0) = \Psi(t, 1) = 0, & t \in (0, T), \\ \Psi(T) = z_T, & \partial_t \Psi(T) = 0. \end{cases}
$$
(4.68)

and

$$
\int_0^1 y(T)\phi_T = \int_0^T \partial_t v(t)\partial_x \Psi(t,1) dt - \int_0^1 y^0 \partial_{tt} \Psi(0) + \int_0^1 y^1 \partial_t \Psi(0) + \int_0^T y^1 \partial_t \Psi(0) + \int_0^T \partial_t v(t)\partial_x z_T(1) dt,
$$

and, using that z_T is independent of time,

$$
\int_0^1 y(T)\phi_T = \int_0^T \partial_t v(t)\partial_x \Psi(t,1) dt - \int_0^1 y^0 \partial_{tt} \Psi(0) + \int_0^1 y^1 \partial_t \Psi(0) + v(T)\partial_x z_T(1).
$$
\n(4.69)

4.4.2.2 Computation of $\int_0^1 y_h(T) \phi_T$

Expanding $y_h(T)$ in discrete Fourier series, we get

$$
\int_0^1 y_h(T) \phi_T = \int_0^1 y_h(T) \phi_{T,h} = h \sum_{j=1}^N y_{j,h}(T) \phi_{j,T,h},
$$

where

$$
\phi_{j,T,h} = \sum_{k=1}^{N} \hat{\phi}_k w_j^k, \quad j \in \{1, \dots, N\}.
$$
\n(4.70)

Then, similarly as in Eq. [\(4.64\)](#page-22-0), we can prove

$$
\int_0^1 y_h(T)\phi_T = -\int_0^T \partial_t v(t) \frac{\Phi_{N,h}}{h} dt - h \sum_{j=1}^N y_{j,h}^0 \partial_{tt} \Phi_{j,h}(0) + h \sum_{j=1}^N y_{j,h}^1 \partial_t \Phi_{j,h}(0),
$$
\n(4.71)

where Φ_h is the solution of

$$
\begin{cases}\n\partial_{tt}\Phi_{j,h} - \frac{1}{h^2} \left(\Phi_{j+1,h} - 2\Phi_{j,h} + \Phi_{j-1,h} \right) = -\phi_{j,T,h}, \\
(t,j) \in (0,T) \times \{1,\ldots,N\}, \\
\Phi_{0,h}(t) = \Phi_{N+1,h}(t) = 0, \\
\Phi_h(T) = 0, \ \partial_t \Phi_h(T) = 0.\n\end{cases} \tag{4.72}
$$

Note that, due to the orthogonality properties of the Fourier basis, we can write

$$
-h\sum_{j=1}^{N} y_{j,h}^{0} \partial_{tt} \Phi_{j,h}(0) + h\sum_{j=1}^{N} y_{j,h}^{1} \partial_{t} \Phi_{j,h}(0) = -\int_{0}^{1} y_{h}^{0} \partial_{tt} \Phi_{h}(0) + \int_{0}^{1} y_{h}^{1} \partial_{t} \Phi_{h}(0)
$$

$$
= -\int_{0}^{1} y^{0} \partial_{tt} \Phi_{h}(0) + \int_{0}^{1} y^{1} \partial_{t} \Phi_{h}(0),
$$

and thus Eq. [\(4.71\)](#page-23-0) can be rewritten as

$$
\int_0^1 y_h(T) \phi_T = -\int_0^T \partial_t v(t) \frac{\Phi_{N,h}}{h} dt - \int_0^1 y^0 \partial_{tt} \Phi_h(0) + \int_0^1 y^1 \partial_t \Phi_h(0). \tag{4.73}
$$

Then setting

$$
z_{T,h} = (-\Delta_h)^{-1} \phi_{T,h},
$$
\n(4.74)

we obtain

$$
\int_0^1 y_h(T)\phi_T = -\int_0^T \partial_t v(t) \frac{\Psi_{N,h}}{h} dt - \int_0^1 y^0 \partial_{tt} \Psi_h(0) + \int_0^1 y^1 \partial_t \Psi_h(0) \quad (4.75)
$$

$$
-v(T) \frac{z_{N,T,h}}{h},
$$

where Ψ_h is the solution of

$$
\begin{cases}\n\partial_{tt} \Psi_{j,h} - \frac{1}{h^2} \left(\Psi_{j+1,h} - 2\Psi_{j,h} + \Psi_{j-1,h} \right) = 0, \\
(t,j) \in (0,T) \times \{1,\ldots,N\}, \\
\Psi_{0,h}(t) = \Psi_{N+1,h}(t) = 0, \\
\Psi_h(T) = z_{T,h}, \ \partial_t \Psi_h(T) = 0.\n\end{cases} \tag{4.76}
$$

4.4.2.3 Estimating the Difference $\int_0^1 y(T) \phi_T - \int_0^1 y_h(T) \phi_T$

First, since z_T solves the Laplace equation [\(4.66\)](#page-22-1), $z_T \in H^2 \cap H_0^1(0,1)$ and

$$
||z_T||_{H^2 \cap H_0^1} \simeq ||\phi_T||_{L^2}.
$$

Since $\phi_T \in L^2(0,1)$, using Theorems [4.1](#page-3-0) and [4.3,](#page-5-3)

$$
||z_{T,h} - z_T||_{H_0^1} \le Ch ||\phi_T||_{L^2},
$$
\n(4.77)

$$
\left|\partial_x z_T(1) + \frac{z_{N,T,h}}{h}\right| \le C\sqrt{h} \left\|\phi_T\right\|_{L^2}.
$$
\n(4.78)

Hence using Proposition 3.8, we obtain

$$
\sup_{t\in[0,T]} \left\| \left(\Psi_h, \partial_t \Psi_h, \partial_{tt} \Psi_h \right) - \left(\Psi, \partial_t \Psi, \partial_{tt} \Psi \right) \right\|_{H_0^1 \times L^2 \times H^{-1}} + \left\| \partial_x \Psi(t,1) + \frac{\Psi_{N,h}}{h}(t) \right\|_{L^2(0,T)} \leq Ch^{2/3} \left\| \phi_T \right\|_{L^2}.
$$
\n(4.79)

We thus deduce that

$$
\left| \int_0^T \partial_t v(t) \left(\frac{\Psi_{N,h}}{h} + \partial_x \Psi(t,1) \right) dt + \int_0^1 y^0 (\partial_{tt} \Psi_h(0) - \partial_{tt} \Psi(0)) - \int_0^1 y^1 (\partial_t \Psi_h(0) - \partial_t \Psi(0)) \right| \leq Ch^{2/3} \|\phi_T\|_{L^2} \left(\left\| (y^0, y^1) \right\|_{H_0^1 \times L^2} + \|\nu\|_{H^1} \right).
$$

According to Eqs. (4.69) , (4.75) , and the bound Eq. (4.78) , this implies

$$
\left| \int_0^1 (y_h(T) - y(T)) \phi_T \right|
$$

\n
$$
\leq C \left(\sqrt{h} |v(T)| + h^{2/3} (||(y^0, y^1)||_{H_0^1 \times L^2} + ||v||_{H^1}) \right) ||\phi_T||_{L^2}.
$$

Using now identity [\(4.59\)](#page-21-2), we obtain the following result:

$$
\|y_h(T)-y(T)\|_{L^2}\leq C\left(\sqrt{h}|v(T)|+h^{2/3}(\left\|(y^0,y^1)\right\|_{H_0^1\times L^2}+\|v\|_{H^1})\right),
$$

which implies that, if $v(T) = 0$,

$$
||y_h(T) - y(T)||_{L^2} \leq Ch^{2/3} \left(||(y^0, y^1)||_{H_0^1 \times L^2} + ||v||_{H^1} \right),
$$

whereas otherwise

$$
||y_h(T)-y(T)||_{L^2}\leq C\left(h^{2/3}||(y^0,y^1)||_{H_0^1\times L^2}+\sqrt{h}||v||_{H^1}\right).
$$

4.4.2.4 Conclusion

Note that all the above estimates hold uniformly for *T* in bounded intervals of time. This concludes the proof of Proposition [4.5.](#page-21-3) \Box

4.4.3 Convergence of ∂*tyh*

Proposition 4.6. *Under the assumptions of Theorem [4.7,](#page-19-1) taking* (y_h^0, y_h^1) *as in Eq.*[\(4.58\)](#page-21-1)*, we have the convergence* [\(4.56\)](#page-20-1)*.*

Proof. The proof of Proposition [4.6](#page-25-0) closely follows the one of Proposition [4.5](#page-21-3) and actually it is easier. We first begin by the following remark:

$$
\|\partial_t y_h(T) - \partial_t y(T)\|_{H^{-1}} = \sup_{\substack{\phi_T \in H_0^1 \\ \|\phi_T\|_{H_0^1} \le 1}} \left\{ \int_0^1 \partial_t y_h(T) \phi_T - \int_0^1 \partial_t y(T) \phi_T \right\}.
$$

Hence we fix $\phi_T \in H_0^1(0,1)$. We expand it in Fourier series:

$$
\phi_T = \sum_{k=1}^{\infty} \hat{\phi}_k w^k, \quad \text{with } \|\phi_T\|_{H_0^1}^2 = \sum_{k=1}^{\infty} k^2 \pi^2 |\hat{\phi}_k|^2. \tag{4.80}
$$

We thus introduce

$$
\phi_{T,h} = \sum_{k=1}^N \hat{\phi}_k w^k.
$$

Using the fact that ∂*tyh* belongs to the span of the *N*-first Fourier modes,

$$
\int_0^1 \partial_t y_h(T) \phi_T = \int_0^1 \partial_t y_h(T) \phi_{T,h}.
$$
\n(4.81)

Hence we are reduced to show

$$
\left| \int_0^1 \partial_t y(T) \phi_T - \int_0^1 \partial_t y_h(T) \phi_{T,h} \right|
$$

$$
\leq Ch^{2/3} \left(\| (y^0, y^1) \|_{H_0^1 \times L^2} + \| v \|_{H^1} \right) \| \phi_T \|_{H_0^1}.
$$
 (4.82)

Again, we will express each of these quantities by an adjoint formulation and then relate the proof of Eq. [\(4.82\)](#page-25-1) to convergence results for the adjoint system. Indeed,

$$
\int_0^1 \partial_t y(T) \phi_T = \int_0^T v(t) \partial_x \phi(t,1) dt - \int_0^1 y^0 \partial_t \phi(0) + \int_0^1 y^1 \phi(0), \tag{4.83}
$$

4.4 Convergence Rates for Smooth Data 105

where φ solves

$$
\begin{cases} \n\partial_{tt} \varphi - \partial_{xx} \varphi = 0, & (t, x) \in (0, T) \times (0, 1), \\ \n\varphi(t, 0) = \varphi(t, 1) = 0, & t \in (0, T), \\ \n(\varphi(T), \partial_t \varphi(T)) = (\varphi_T, 0). \n\end{cases} \tag{4.84}
$$

Then, introducing $\Phi(t) = \int_t^T \varphi(s) ds$, we easily check that Φ solves

$$
\begin{cases} \n\partial_{tt} \Phi - \partial_{xx} \Phi = 0, & (t, x) \in (0, T) \times (0, 1), \\
\Phi(t, 0) = \Phi(t, 1) = 0, & t \in (0, T), \\
(\Phi(T), \partial_t \Phi(T)) = (0, -\phi_T). & (4.85)\n\end{cases}
$$

Besides, identity [\(4.83\)](#page-25-2) then becomes

$$
\int_0^1 \partial_t y(T) \phi_T = \int_0^T \partial_t v(t) \partial_x \Phi(t,1) dt + \int_0^1 y^0 \partial_{tt} \Phi(0) - \int_0^1 y^1 \partial_t \Phi(0). \tag{4.86}
$$

Similarly, we have

$$
\int_0^1 \partial_t y_h(T) \phi_{T,h} = -\int_0^T \partial_t v(t) \frac{\Phi_{N,h}}{h}(t) dt + \int_0^1 y_h^0 \partial_{tt} \Phi_h(0) - \int_0^1 y_h^1 \partial_t \Phi_h(0), \tag{4.87}
$$

where ^Φ*^h* solves

$$
\begin{cases}\n\partial_{tt}\Phi_{j,h} - \frac{1}{h^2} \left(\Phi_{j+1,h} + \Phi_{j-1,h} - 2\Phi_{j,h} \right) = 0, \\
(t,j) \in (0,T) \times \{1,\ldots,N\}, \\
\Phi_{0,h}(t) = \Phi_{N+1,h}(t) = 0, \\
(\Phi_h(T), \partial_t \Phi_h(T)) = (0, -\phi_{T,h}).\n\end{cases} \tag{4.88}
$$

Also remark that, since $\phi_{T,h}$ is formed by Fourier modes smaller than *N*, Φ_h has this same structure. Due to the orthogonality properties of the Fourier basis and the choice of the initial data in Eq. (4.58) , we have

$$
\int_0^1 \partial_t y_h(T) \phi_{T,h} = -\int_0^T \partial_t v(t) \frac{\Phi_{N,h}}{h}(t) dt + \int_0^1 y^0 \partial_{tt} \Phi_h(0) - \int_0^1 y^1 \partial_t \Phi_h(0). \tag{4.89}
$$

We are thus in the setting of Proposition 3.8 since $\phi_T \in H_0^1$ and one easily checks

$$
\left\|\phi_T-\phi_{T,h}\right\|_{L^2}\leq Ch\left\|\phi_T\right\|_{H_0^1}.
$$

We thus obtain

$$
\sup_{t\in[0,T]}\|(\partial_t\Phi_h, \partial_{tt}\Phi_h) - (\partial_t\Phi, \partial_{tt}\Phi)\|_{L^2\times H^{-1}} + \left\|\partial_x\Phi(t,1) + \frac{\Phi_{N,h}}{h}(t)\right\|_{L^2(0,T)} < Ch^{2/3} \|\phi_T\|_{H_0^1}.
$$
\n(4.90)

Then, using the identities (4.86) and (4.89) , we get

$$
\left| \int_0^1 \partial_t y(T) \phi_T - \int_0^T \partial_t y_h(T) \phi_{T,h} \right|
$$

\n
$$
\leq Ch^{2/3} \left\| \phi_T \right\|_{H_0^1} \left(\left\| (y^0, y^1) \right\|_{H_0^1 \times L^2} + \left\| v \right\|_{H^1} \right). \tag{4.91}
$$

Combined with Eq. (4.81) , this easily yields Eq. (4.82) .

4.4.4 More Regular Data

In this section, our goal is to explain what happens for smoother initial data (y^0, y^1) and *v*, for instance, for $(y^0, y^1) \in H^2 \cap H_0^1(0,1) \times H_0^1(0,1)$ and $v \in H^2(0,T)$ with $v(0) = \partial_t v(0) = 0$. More precisely, we are going to prove the following:

Theorem 4.8. *Let* $\ell_0 \in \{1,2\}$ *and fix* $(y^0, y^1) \in H_{(0)}^{\ell_0+1}(0,1) \times H_{(0)}^{\ell_0}(0,1)$ *and* $v \in$ $H^{\ell_0+1}(0,T)$ *satisfying* $v(0) = \partial_t v(0) = 0$ *if* $\ell_0 = 1$ *, or* $v(0) = \partial_t v(0) = \partial_t v(0) = 0$ *if* $\ell_0 = 2$. Let (y_h^0, y_h^1) be as in Eq. [\(4.58\)](#page-21-1) and y_h the corresponding solution of Eq. [\(4.7\)](#page-1-1) *with Dirichlet boundary conditions* $v_h = v$.

Then there exists a constant $C > 0$ *independent of* $h > 0$ *and* $t \in [0, T]$ *such that:* • For the displacement y_h , for all $t \in [0, T]$,

$$
||y_h(t) - y(t)||_{L^2} \le Ch^{2(\ell_0 + 1)/3} \left(||(y^0, y^1)||_{H_{(0)}^{\ell_0 + 1} \times H_{(0)}^{\ell_0}} + ||v||_{H^{\ell_0 + 1}(0,T)} \right)
$$

+ $Ch^{1/2}|v(t)|$. (4.92)

• *For the velocity* $\partial_t y_h$ *, for all t* ∈ [0,*T*]*,*

$$
\|\partial_t y_h(t) - \partial_t y(t)\|_{H^{-1}} \le C h^{2(\ell_0 + 1)/3} \left(\left\| (y^0, y^1) \right\|_{H_{(0)}^{\ell_0 + 1} \times H_{(0)}^{\ell_0}} + \|\nu\|_{H^{\ell_0 + 1}(0,T)} \right) + Ch^{3/2} |\partial_t v(t)|. \tag{4.93}
$$

Proof. The proof follows the one of Theorem [4.7.](#page-19-1)

Let us then focus on the convergence of the displacement and follow the proof of Proposition [4.5.](#page-21-3) We introduce $\phi_T \in L^2(0,1)$, z_T as in Eq. [\(4.66\)](#page-22-1), Ψ the solution of the homogeneous wave equation [\(4.68\)](#page-22-3) with initial data (z_T , 0) and, similarly, $\phi_{T,h}$ as in Eq. [\(4.70\)](#page-23-2), $z_{T,h}$ as in Eq. [\(4.74\)](#page-23-3), and Ψ_h the solution of the discrete homogeneous wave equation [\(4.76\)](#page-23-4) with initial data ($z_{T,h}$,0). Since $z_T \in H^2_{(0)}(0,1)$ and $||z_T||_{H^2_{(0)}} \simeq$ $\|\phi_T\|_{L^2}$, applying [\(4.15\)](#page-3-1), we get

$$
\|z_{T,h} - z_T\|_{L^2} \le Ch^2 \|\phi_T\|_{L^2}.
$$
\n(4.94)

Proposition 3.8 then applies and yields

4.4 Convergence Rates for Smooth Data 107

$$
\|(\partial_t \Psi_h, \partial_{tt} \Psi_h) - (\partial_t \Psi, \partial_{tt} \Psi)\|_{H^{-\ell_0} \times H^{-\ell_0 - 1}} \leq Ch^{2(\ell_0 + 1)/3} \|\phi_T\|_{L^2}.
$$

In particular,

$$
\left| \int_0^1 y^0 (\partial_{tt} \Psi_h(0) - \partial_{tt} \Psi(0)) - \int_0^1 y^1 (\partial_t \Psi_h(0) - \partial_t \Psi(0)) \right|
$$

\n
$$
\leq Ch^{2(\ell_0 + 1)/3} \|\phi_T\|_{L^2} \left\| (y^0, y^1) \right\|_{H_{(0)}^{\ell_0 + 1} \times H_{(0)}^{\ell_0}}.
$$
\n(4.95)

According to identities [\(4.69\)](#page-22-2) and [\(4.75\)](#page-23-1), we shall then derive a convergence estimate on

$$
\int_0^T \partial_t v \left(\partial_x \Psi(t,1) + \frac{\Psi_{N,h}(t)}{h} \right) dt.
$$

In order to do that, we write $\partial_t v = \int_0^t \partial_{tt} v$ and introduce

$$
\xi(t) = \int_t^T \Psi(s) \, \mathrm{d} s, \quad \xi_h(t) = \int_t^T \Psi_h(s) \, \mathrm{d} s,
$$

so that

$$
\int_0^T \partial_t v \left(\partial_x \Psi(t,1) + \frac{\Psi_{N,h}(t)}{h} \right) dt = \int_0^T \partial_{tt} v \left(\partial_x \xi(t,1) + \frac{\xi_{N,h}(t)}{h} \right) dt.
$$

Of course, ξ and ξ*^h* can be interpreted as solutions of continuous and discrete wave equations: ξ solves

$$
\begin{cases} \n\partial_{tt}\xi - \partial_{xx}\xi = 0, & (t,x) \in (0,T) \times (0,1) \\
\xi(t,0) = \xi(t,1) = 0, & t \in (0,T), \\
\xi(T) = 0, & \partial_t \xi(T) = -z_T, \n\end{cases} \tag{4.96}
$$

whereas ξ*^h* solves

$$
\begin{cases}\n\partial_{tt}\xi_{j,h} - \frac{1}{h^2} \left(\xi_{j+1,h} - 2\xi_{j,h} + \xi_{j-1,h} \right) = 0, \\
(t,j) \in (0,T) \times \{1, ..., N\}, \\
\xi_{0,h}(t) = \xi_{N+1,h}(t) = 0, \\
\xi_h(T) = 0, \ \partial_t \xi_h(T) = -z_{T,h}.\n\end{cases} \tag{4.97}
$$

Then, due to Eq. [\(4.94\)](#page-27-0), the convergence results in Proposition 3.7 yield

$$
\left\|\partial_x \xi(t,1) + \frac{\xi_{N,h}(t)}{h}\right\|_{L^2(0,T)} \leq Ch^{4/3} \left\|\phi_T\right\|_{L^2}.
$$

This implies in particular that

$$
\left| \int_0^T \partial_t v \left(\partial_x \Psi(t,1) + \frac{\Psi_{N,h}(t)}{h} \right) dt \right| \leq Ch^{4/3} \left\| \phi_T \right\|_{L^2} \left\| \partial_{tt} v \right\|_{L^2(0,T)}.
$$
 (4.98)

Hence, if $\ell_0 = 1$, i.e., $(y^0, y^1) \in H^2_{(0)}(0, 1) \times H^1_{(0)}(0, 1)$ and $v \in H^2(0, T)$ with $v(0) = \partial_t v(0) = 0$, combining Eqs. [\(4.95\)](#page-28-0) and [\(4.98\)](#page-29-0) in identities [\(4.69\)](#page-22-2) and [\(4.75\)](#page-23-1), we get

$$
||y_h(T) - y(T)||_{L^2(0,1)} \le Ch^{4/3} \left(||(y^0, y^1)||_{H^2(0)} \times H^1_{(0)} + ||v||_{H^2(0,T)} \right) + Ch^{1/2} |v(T)|.
$$
\n(4.99)

The Case $\ell_0 = 2$. In this case, $v \in H^3(0,T)$, we introduce $\zeta = \int_t^T \xi$ and $\zeta_h =$ $\int_t^T \xi_h$, so that

$$
\int_0^T \partial_t v \left(\partial_x \Psi(t,1) + \frac{\Psi_{N,h}(t)}{h} \right) dt = \int_0^T \partial_{ttt} v \left(\partial_x \zeta(t,1) + \frac{\zeta_{N,h}(t)}{h} \right) dt. \quad (4.100)
$$

Obviously, the function ζ can be characterized as the solution of a wave equation, namely,

$$
\begin{cases} \n\partial_{tt}\zeta - \partial_{xx}\zeta = z_T, & (t, x) \in (0, T) \times (0, 1) \\ \n\zeta(t, 0) = \zeta(t, 1) = 0, & t \in (0, T), \\ \n\zeta(T) = 0, & \partial_t\zeta(T) = 0. \n\end{cases} \tag{4.101}
$$

We thus introduce w_T solution of

$$
\partial_{xx}w_T = z_T
$$
, on (0,1), $w_T(0) = w_T(1) = 0$, (4.102)

so that

$$
\tilde{\zeta}=\zeta-w_T
$$

solves

$$
\begin{cases}\n\frac{\partial_{tt}\tilde{\zeta} - \partial_{xx}\tilde{\zeta} = 0, & (t, x) \in (0, T) \times (0, 1) \\
\tilde{\zeta}(t, 0) = \tilde{\zeta}(t, 1) = 0, & t \in (0, T), \\
\tilde{\zeta}(T) = w_T, & \partial_t \tilde{\zeta}(T) = 0.\n\end{cases}
$$
\n(4.103)

Doing that

$$
\int_0^T \partial_{ttt} v \partial_x \zeta(t,1) dt = \int_0^T \partial_{ttt} v \partial_x \tilde{\zeta}(t,1) dt - \partial_x w_T(1) \partial_{tt} v(T).
$$
 (4.104)

Similar computations can be done for ζ_h . We thus obtain that

$$
\int_0^T \partial_{ttt} v \frac{\zeta_{N,h}(t)}{h} dt = \int_0^T \partial_{ttt} v \frac{\tilde{\zeta}_{N,h}(t)}{h} dt - \frac{w_{N,T,h}}{h} \partial_{tt} v(T), \tag{4.105}
$$

where $w_{T,h} = (\Delta_h)^{-1} z_{T,h}$ and $\tilde{\zeta}_h$ solves

$$
\begin{cases}\n\partial_{tt} \tilde{\xi}_{j,h} - \frac{1}{h^2} \left(\tilde{\xi}_{j+1,h} - 2 \tilde{\xi}_{j,h} + \tilde{\xi}_{j-1,h} \right) = 0, \\
(t, j) \in (0, T) \times \{1, ..., N\}, \\
\tilde{\xi}_{0,h}(t) = \tilde{\xi}_{N+1,h}(t) = 0, \\
\tilde{\xi}_{h}(T) = w_{T,h}, \ \partial_t \tilde{\xi}_h(T) = 0.\n\end{cases} \tag{4.106}
$$

We now derive convergence estimates. Recall first that $z_T \in H^2_{(0)}(0,1)$ and the con-vergences [\(4.94\)](#page-27-0). Since $z_T \in H^2_{(0)}$, setting $\tilde{z}_{T,h}$ its projection on the *N*-first Fourier modes, we have

$$
\left\|\tilde{z}_{T,h} - z_T\right\|_{L^2} \le Ch^2 \left\|z_T\right\|_{H^2_{(0)}} \le Ch^2 \left\|\phi_T\right\|_{L^2}.
$$
 (4.107)

Setting $\tilde{w}_{T,h} = (\Delta_h)^{-1} \tilde{z}_{T,h}$, Theorems [4.4](#page-7-1) and [4.5](#page-7-4) yield

$$
\left\|w_T - \tilde{w}_{T,h}\right\|_{H_0^1} \leq C h^2 \left\|z_T\right\|_{H_{(0)}^2} \leq C h^2 \left\|\phi_T\right\|_{L^2},
$$
\n
$$
\left|\partial_x w_T(1) + \frac{\tilde{w}_{N,T,h}}{h}\right| \leq C h^2 \left\|z_T\right\|_{H_{(0)}^2} \leq C h^2 \left\|\phi_T\right\|_{L^2}.
$$
\n(4.108)

According to the estimate [\(4.94\)](#page-27-0), we thus have

$$
\left\|\tilde{z}_{T,h} - z_{T,h}\right\|_{L^2} \le Ch^2 \left\|z_T\right\|_{H^2_{(0)}} \le Ch^2 \left\|\phi_T\right\|_{L^2}.
$$

Using then estimate [\(4.21\)](#page-5-1),

$$
\left|\frac{\tilde{w}_{N,T,h}}{h} - \frac{w_{N,T,h}}{h}\right| \le Ch^2 \left\|\phi_T\right\|_{L^2},
$$

and thus

$$
\left| \partial_x w_T(1) + \frac{w_{N,T,h}}{h} \right| \le Ch^2 \left\| \phi_T \right\|_{L^2}.
$$
 (4.109)

Besides, due to Eqs. [\(4.94\)](#page-27-0) and [\(4.107\)](#page-30-0),

$$
\left\|z_{T,h}-\tilde{z}_{T,h}\right\|_{L^2}\leq Ch^2\left\|\phi_T\right\|_{L^2},
$$

which readily implies

$$
\left\|w_{T,h}-\tilde{w}_{T,h}\right\|_{H_0^1}\leq Ch^2\left\|\phi_T\right\|_{L^2},
$$

and thus, by Eq. [\(4.108\)](#page-30-1),

$$
\|w_{T,h} - w_T\|_{H_0^1} \leq Ch^2 \|\phi_T\|_{L^2}.
$$

Using then Proposition 3.6,

$$
\left\| \partial_x \zeta(\cdot, 1) + \frac{\zeta_{N,h}}{h}(\cdot) \right\|_{L^2(0,T)} \le C h^2 \left\| \phi_T \right\|_{L^2}.
$$
 (4.110)

Combined with the convergences (4.109) and (4.110) , identities (4.100) , (4.104) , and [\(4.105\)](#page-29-3) then imply

$$
\left| \int_0^T \partial_t v \left(\partial_x \Psi(t,1) + \frac{\Psi_{N,h}(t)}{h} \right) dt \right|
$$

$$
\leq Ch^2 \left\| \phi_T \right\|_{L^2} \left\| \partial_{ttt} v \right\|_{L^2} + Ch^2 \left\| \phi_T \right\|_{L^2} \left| \partial_{tt} v(T) \right| \leq Ch^2 \left\| \phi_T \right\|_{L^2} \left\| v \right\|_{H^3}.
$$
 (4.111)

Combining Eqs. (4.95) and (4.111) in identities (4.69) and (4.75) , we get Eq. [\(4.92\)](#page-27-1) when $\ell_0 = 2$.

The proof of the estimate [\(4.93\)](#page-27-2) on the rate of convergence for $\partial_t y_h$ relies on very similar estimates which are left to the reader.

4.5 Further Convergence Results

As a corollary to Theorems [4.6](#page-10-3) and [4.7,](#page-19-1) we can give convergence results for *any* sequence of discrete initial data (y_h^0, y_h^1) and boundary data v_h satisfying

$$
\lim_{h \to 0} \left\| (y_h^0, y_h^1) - (y^0, y^1) \right\|_{L^2 \times H^{-1}} = 0 \quad \text{and} \quad \lim_{h \to 0} \|v_h - v\|_{L^2(0, T)} = 0. \quad (4.112)
$$

Proposition 4.7. *Let* $(y^0, y^1) \in L^2(0,1) \times H^{-1}(0,1)$ *and* $v \in L^2(0,T)$ *. Then consider sequences of discrete initial data* (y_h^0, y_h^1) *and* v_h *satisfying Eq.* [\(4.112\)](#page-31-2)*. Then the solutions y_h of Eq.*[\(4.7\)](#page-1-1) *with initial data* (y_h^0, y_h^1) *and boundary data* v_h *converge strongly in* $C([0,T];L^2(0,1))\cap C^1([0,T];H^{-1}(0,1))$ *towards the solution y of Eq.*[\(4.1\)](#page-0-0) *with initial data* (y^0, y^1) *and boundary data v as h* \rightarrow 0*.*

Proof. Similarly as in the proof of Proposition 3.5, this result is obtained by using the density of $H_0^1(0,T)$ in $L^2(0,T)$ and of $H_0^1(0,1) \times L^2(0,1)$ in $L^2(0,1) \times$ $H^{-1}(0,1)$. We then use Theorem [4.7](#page-19-1) for smooth solutions and the uniform stability results in Theorem [4.6](#page-10-3) to obtain Proposition [4.7.](#page-31-3) Details of the proof are left to the reader.

Another important corollary of Theorem [4.7](#page-19-1) is the fact that, if the initial data (y^0, y^1) belong to $H_0^1(0,1) \times L^2(0,1)$ and the Dirichlet data *v* lies in $H_0^1(0,T)$, *any* sequence of discrete initial (y_h^0, y_h^1) and Dirichlet data v_h satisfying

$$
\left\| (y_h^0, y_h^1) - (y^0, y^1) \right\|_{L^2 \times H^{-1}} + \left\| v - v_h \right\|_{L^2(0, T)} \le C_0 h^{\theta},\tag{4.113}
$$

for some constant C_0 uniform in $h > 0$ and $\theta > 0$, yield solutions y_h of Eq. [\(4.7\)](#page-1-1) such that $y_h(T)$ approximates at a rate $h^{\min\{2/3,\theta\}}$ the state $y(T)$, where y is the continuous trajectory corresponding to initial data (y^0, y^1) and source term *v*.

Proposition 4.8. *Let* $(y^0, y^1) \in H_0^1(0,1) \times L^2(0,1)$ *and* $v \in H_0^1(0,T)$ *and consider sequences* (y_h^0, y_h^1) *and* v_h *satisfying Eq.* [\(4.113\)](#page-31-4)*.*

Denote by yh (respectively y) the solution of Eq.[\(4.7\)](#page-1-1) *(resp.* [\(4.1\)](#page-0-0)*) with initial* data (y^0_h, y^1_h) (resp. (y^0, y^1)) and Dirichlet boundary data v_h , (resp. v). *Then the following estimates hold:*

$$
\| (y_h(T), \partial_t y_h(T)) - (y(T), \partial_t y(T)) \|_{L^2 \times H^{-1}} \n\le Ch^{2/3} \left(\| (y^0, y^1) \|_{H_0^1 \times L^2} + \| v \|_{H_0^1(0,T)} \right) + CC_0 h^{\theta}.
$$
\n(4.114)

Remark 4.4. In the convergence result Eq. [\(4.114\)](#page-32-1), we keep explicitly the dependence in the constant C_0 coming into play in Eq. (4.113) . In many situations, this constant can be chosen proportional to $\|(y^0, y^1)\|_{H_0^1 \times L^2} + \|v\|_{H_0^1(0,T)}$. In particular, in the control theoretical setting of Chap. 1 and its application to the wave equation in Sect. 1.7, this dependence on C_0 is important to derive Assumption 1 and more specifically estimate (1.29) .

Proof. The proof follows the one of Proposition 3.7. The idea is to compare *y* with \tilde{y}_h , the solution of Eq. [\(4.7\)](#page-1-1) constructed in Theorem [4.7](#page-19-1) and then to compare \tilde{y}_h and y_h by using Propositions [4.3](#page-11-0) and [4.6.](#page-25-0)

Remark 4.5. Note that under the assumptions of Proposition [4.8,](#page-31-5) the trajectories *y_h* converge to *y* in the space $C([0,T];L^2(0,1)) \cap C^1([0,T];H^{-1}(0,1))$ with the rates (4.54) – (4.56) in addition to the error C_0h^{θ} .

Of course, Proposition [4.8](#page-31-5) is based on the convergence result obtained in Theorem [4.7.](#page-19-1) Similar results can be stated based on Theorem [4.8,](#page-27-3) for instance:

Proposition 4.9. Let $\ell_0 \in \{0, 1, 2\}$. Let $(y^0, y^1) \in H_{(0)}^{\ell_0+1}(0, 1) \times H_{(0)}^{\ell_0}(0, 1)$ and $v \in$ $H_0^{\ell_0+1}(0,T)$ *and consider sequences* (y_h^0, y_h^1) *and* v_h *satisfying Eq.* [\(4.113\)](#page-31-4)*.*

Let (y_h^0, y_h^1) *as in Eq.*[\(4.58\)](#page-21-1) *and* y_h *the corresponding solution of Eq.*[\(4.7\)](#page-1-1) *with Dirichlet boundary conditions vh.*

Denote by yh (respectively y) the solution of Eq.[\(4.7\)](#page-1-1) *(resp. Eq.*[\(4.1\)](#page-0-0)*) with initial* $data\ (y^0_h, y^1_h)$ (resp. (y^0, y^1)) and Dirichlet boundary data v_h (resp. v).

Then the following estimates hold:

$$
\| (y_h(T), \partial_t y_h(T)) - (y(T), \partial_t y(T)) \|_{L^2 \times H^{-1}} \n\le Ch^{2(\ell_0 + 1)/3} \left(\| (y^0, y^1) \|_{H_{(0)}^{\ell_0 + 1} \times H_{(0)}^{\ell_0}} + \| v \|_{H_0^{\ell_0 + 1}(0,T)} \right) + CC_0 h^{\theta}.
$$
\n(4.115)

Remark 4.6. Proposition [4.9](#page-32-2) can then be slightly generalized for $\ell_0 \in [0,2]$ by interpolation.

4.6 Numerical Results

In this section, we present numerical simulations and evidences of Proposition [4.9.](#page-32-2) Since our main interest is in the non-homogeneous boundary condition, we focus on the case $(y^0, y^1) = (0,0)$ and $(y_h^0, y_h^1) = (0,0)$.

We fix $T = 2$. This choice is done for convenience to explicitly compute the solution *y* of Eq. [\(4.1\)](#page-0-0) with initial data (0,0) and source term *v*. Indeed, for $T = 2$, multiplying the equation [\(4.1\)](#page-0-0) by φ solution of Eq. (3.2) with initial data (φ^0, φ^1) ∈ $H_0^1(0,1) \times L^2(0,1)$ and using the two-periodicity of the solutions of the wave equation (3.2), we obtain

$$
\int_0^1 y(2,x)\varphi^1(x) dx - \int_0^1 \partial_t y(2,x)\varphi^0(x) dx = \int_0^2 v(t)\partial_x \varphi(t,1) dt.
$$

Based on this formula, taking successively $(\varphi^0, \varphi^1) = (w^k, 0)$ and $(0, w^k)$ and solving explicitly the equation (3.2) satisfied by φ , we obtain

$$
y(2) = \sum_{k} \left(\sqrt{2}(-1)^k \int_0^2 v(t) \sin(k\pi t) dt\right) w^k,
$$

$$
\partial_t y(2) = \sum_{k} \left(\sqrt{2}(-1)^{k+1} k\pi \int_0^2 v(t) \cos(k\pi t) dt\right) w^k.
$$

We will numerically compute the reference solutions using these formulae by restricting the sums over $k \in \{1, ..., N_{ref}\}\$ for a large enough N_{ref} . We will choose $N_{\text{ref}} = 300$ for *N* varying between 50 and 200.

We then compute numerically the solution y_h of Eq. [\(4.7\)](#page-1-1) with initial data $(y_h^0, y_h^1) = (0, 0)$ and source term $v(t)$.

Of course, we also discretize the equation (4.7) in time. We do it in an explicit manner similarly as in Eq. (3.45). If y_h^k denotes the approximation of y_h solution of Eq. [\(4.7\)](#page-1-1) at time $k\Delta t$, we solve

$$
y_h^{k+1} = 2y_h^k - y_h^{k-1} - (\Delta t)^2 \Delta_h y_h^k - \left(\frac{\Delta t}{h}\right)^2 F^k, \quad F^k = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ v(k\Delta t) \end{pmatrix}.
$$

The time discretization parameter Δt is chosen such that the CFL condition is $\Delta t/h = 0.3$. With such low CFL condition, the effects of the time-discretization can be neglected.

We run the tests for several choices of *v* and for $N \in \{50, \ldots, 200\}$:

$$
v_1(t) = \sin(\pi t)^3, \quad t \in (0, 2), \qquad v_2(t) = \sin(\pi t)^2, \quad t \in (0, 2),
$$

\n
$$
v_3(t) = \sin(\pi t), \qquad t \in (0, 2), \qquad v_4(t) = t, \qquad t \in (0, 2),
$$

\n
$$
v_5(t) = t \sin(\pi t), \qquad t \in (0, 2).
$$

In each case, we plot the L^2 -norm of the error on the displacement and the H^{-1} -norm of the error on the velocity versus *N* in logarithmic scales: Fig. [4.2](#page-34-0) corresponds to the data v_1 . We then compute the slopes of the linear regression for the L^2 -error on the displacement and for the *H*[−]1-error on the velocity. We put all these data in Table [4.1.](#page-34-1)

Fig. 4.2 Plots of the errors versus *N* in logarithmic scales for v_1 . Left, the $L^2(0,1)$ -error $||y_h(T) - y(T)||_{L^2}$ for *T* = 2: the slope of the linear regression is −1.96. *Right*, the *H*^{−1}(0,1)-error $\|\partial_t y_h(T) - \partial_t y(T)\|_{H^{-1}}$ for $T = 2$: the slope of the linear regression is −1.98.

Table 4.1 Numerical investigation of the convergence rates.

Data	Computed L^2 slope	Computed H^{-1} slope	Exp. L^2 slope	Exp. H^{-1} slope
v ₁	-1.96	-1.98		
v_2	-1.87	-1.70		
v_3	-0.99	-0.95		
v_4	-0.97	-0.95		
v_5	-1.82	-1.47		

Columns 2 and 3 give the slopes observed numerically (respectively, for the L^2 -error on the displacement, for the *H*^{−1}-error on the velocity), whereas columns 4 and 5 provide the slopes (respectively, for the L^2 -error on the displacement, for the H^{-1} -error on the velocity) expected from our theoretical results

Table [4.1](#page-34-1) is composed of five columns. The first one is the data under consideration. The second and third ones, respectively, are the computed slopes of the linear regression of, respectively, the L^2 -error on the displacement and for the H^{-1} -error on the velocity. The fourth and fifth columns are the rates expected from the analysis of the data *v* and Proposition [4.9:](#page-32-2)

- *v*₁ \in *H*³₀(0,2): we thus expect from Eq. [\(4.115\)](#page-32-3) a convergence of the order of *h*². This is indeed what is observed numerically.
- v_2 is smooth but its boundary condition vanishes only up to order 1. Hence $v_2 \in H_0^{5/2-\epsilon}(0,2)$ for all $\varepsilon > 0$ due to the boundary conditions. Using Remark [4.6,](#page-32-4) the expected slopes are $-5/3^-$, which is not far from the slopes computed numerically.
- The same discussion applies for *v*₃, which belongs to $H_0^{3/2-\epsilon}(0,2)$ for all $\varepsilon > 0$. Hence the expected slopes are -1^- , which again are confirmed by the numerical experiments.
- *v*₄ almost belongs to $H_0^{3/2-\epsilon}(0,2)$ except for what concerns its nonzero value at $t = 2$. But the value of *v* is an impediment for the order of convergence only for the displacement; see Theorem [4.8.](#page-27-3) We therefore expect a convergence of the the displacement; see Theorem 4.8, we therefore expect a convergence of the L^2 -norm of the error on the displacement like \sqrt{h} , whereas the convergence of the H^{-1} -norm of the error on the velocity is expected to go much faster, as h^{1-} .

The numerical test indicates a good accuracy on the convergence of the *H*[−]1 norm on the velocity error. The convergence of the L^2 -norm of the displacement is better than expected.

• *v₅* is smooth and satisfies $v_5(0) = \partial_t v_5(0) = 0$ and $v_5(2) = 0$ but $\partial_t v_5(2) \neq 0$. According to Theorem [4.8,](#page-27-3) we thus expect that the *L*2-norm of the error on the displacement behaves as when *v*₅ belongs to $H_0^{5/2^-}(0,1)$, i.e., as $h^{5/3^-}$. However, the H^{-1} -norm of the error on the velocity should behave like $h^{3/2}$ according to Eq. [\(4.93\)](#page-27-2). This is completely consistent with the slopes observed numerically.

In each case, the numerical results indicate good accuracy of the theoretical results derived in Theorem [4.8](#page-27-3) and Proposition [4.9.](#page-32-2)