
Chapter 4
Convergence with Nonhomogeneous Boundary
Conditions

4.1 The Setting

In this chapter, we consider the continuous wave equation
⎧
⎨

⎩

∂tt y− ∂xxy = 0, (t,x) ∈ (0,T )× (0,1),
y(t,0) = 0, y(t,1) = v(t), t ∈ (0,T ),
(y(0, ·),∂t y(0, ·)) = (y0,y1),

(4.1)

with

(y0,y1) ∈ L2(0,1)×H−1(0,1), v ∈ L2(0,T ). (4.2)

Following [36] (see also [33, 35]), system (4.1) can be solved uniquely in the
sense of transposition and the solution y belongs to

C([0,T ];L2(0,1))×C1([0,T ];H−1(0,1)).

Let us briefly recall the main ingredients of this definition of solution in the sense
of transposition and this result.

The key idea is the following. Given smooth functions f , the solutions ϕ of
⎧
⎨

⎩

∂tt ϕ − ∂xxϕ = f , (t,x) ∈ (0,T )× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T ),
(ϕ(T, ·),∂tϕ(T, ·)) = (0,0),

(4.3)

which are smooth for smooth f , should satisfy

∫ T

0

∫ 1

0
y f dxdt = −

∫ T

0
v(t)∂xϕ(t,1)dt

−
∫ 1

0
y0(x)∂t ϕ(0,x)dx+ 〈y1,ϕ(0, ·)〉H−1,H1

0
. (4.4)
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80 4 Convergence with Nonhomogeneous Boundary Conditions

Thus one should first check that if f ∈ L1(0,T ;L2(0,1)), then the solution ϕ of
Eq. (4.3) belongs to the energy space C([0,T ];H1

0 (0,1))∩C1([0,T ];L2(0,1)) and is
such that ∂xϕ(t,1) ∈ L2(0,T ) with the following continuity estimate:

‖(ϕ ,∂tϕ)‖L∞(0,T ;H1
0 (0,1)×L2(0,1)) + ‖∂xϕ(t,1)‖L2(0,T ) ≤C‖ f‖L1(0,T ;L2(0,1)) . (4.5)

Of course, there, the first term can be estimated easily through the energy identity,
whereas the estimate on the normal derivative of ϕ at x = 1 is a hidden regularity
result that can be easily proved using multiplier techniques.

Assuming Eq. (4.5), the map

L ( f ) =−
∫ T

0
v(t)∂xϕ(t,1)dt −

∫ 1

0
y0(x)∂t ϕ(0,x)dx+ 〈y1,ϕ(0, ·)〉H−1,H1

0

is continuous on L1(0,T ;L2(0,1)) and thus there is a unique function y in the
space L∞(0,T ;L2(0,1)) that represents L , which is by definition the solution y of
Eq. (4.1) in the sense of transposition. The solution y actually belongs to the space
C([0,T ];L2(0,1)) since it can be approximated in L∞(0,T ;L2(0,1)) by smooth
functions by taking smooth approximations of v, y0, and y1.

A similar duality argument shows that ∂t y belongs to C([0,T ];H−1(0,1)).
Let us finally mention the following regularity result (see [34]): if (y0,y1) ∈

H1
0 (0,1)× L2(0,1) and v ∈ H1(0,T ) satisfies v(0) = 0, then the solution y of

Eq. (4.1) satisfies

y ∈C([0,T ];H1(0,1))∩C1([0,T ];L2(0,1)) and Δy ∈C([0,T ];H−1(0,1)). (4.6)

Now, the goal of this chapter is to study the convergence of the solutions of

⎧
⎪⎨

⎪⎩

∂tt y j,h − 1
h2 (y j+1,h − 2y j,h + y j−1,h) = 0, (t, j) ∈ (0,T )×{1, . . . ,N},

y0,h = 0, yN+1,h(t) = vh(t), t ∈ (0,T ),
(yh(0),∂t yh(0)) = (y0

h,y
1
h),

(4.7)

towards the solution y of Eq. (4.1), under suitable convergence assumptions on the
data (y0

h,y
1
h) and vh to (y0,y1) and v.

As in Chap. 3, yh will be identified with its Fourier extension Fh(yh). This will
allow us to identify the H−1(0,1)-norm of fh as

‖ fh‖H−1(0,1) = ‖zh‖H1
0 (0,1)

, where zh solves −∂xxzh = fh on (0,1), zh(0) = zh(1).

Note that, expanding these discrete functions on the Fourier basis, one can check
(see Proposition 4.1 below) that this norm is equivalent to ‖z̃h‖H1

0 (0,1)
, where z̃h

solves

− 1
h2

(
z̃ j+1,h + z̃ j−1,h − 2z̃ j,h

)
= f j,h, j ∈ {1, . . . ,N}, z̃0,h = z̃N+1,h = 0.
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The outline of this Chap. 4 is as follows. Since we are working with the H−1(0,1)-
norm, it will be convenient to present some further convergence results for the dis-
crete Laplace operator. In Sect. 4.3 we give some uniform bounds on the solutions
yh of Eq. (4.7). In Sect. 4.4 we derive explicit rates of convergence for smooth solu-
tions. In Sect. 4.5 we explain how these results yield various convergence results. In
Sect. 4.6, we illustrate our theoretical results by numerical experiments.

4.2 The Laplace Operator

In this section, we focus on the convergence of the discrete Laplace operator Δh,
defined for discrete functions zh = (z j,h) j∈{1,...,N} by

(Δhzh) j =
1
h2 (z j+1,h − 2z j,h + z j−1,h), j ∈ {1, . . . ,N}, with z0,h = zN+1,h = 0.

(4.8)
In particular, we give various results that will be used afterwards.

Let us first recall that the operator −Δh is self-adjoint positive definite on R
N

according to the analysis done in Sect. 2.2. Besides, its eigenvectors wk and eigen-
values λk(h) = μk(h)2 are explicit; the k-th eigenvector wk(x) =

√
2sin(kπx) is in-

dependent of h > 0 and μk(h) = 2sin(kπh/2)/h.

4.2.1 Natural Functional Spaces

In this section, we focus on the case of “natural” functional spaces, i.e., in our case
H1

0 (0,1), L2(0,1), and H−1(0,1).
As already mentioned, we have the following:

Proposition 4.1. If fh is a discrete function, then there exists a constant C indepen-
dent of h ∈ (0,1) such that

1
C
‖ fh‖H−1 ≤

∥
∥(−Δh)

−1 fh
∥
∥

H1
0
≤C‖ fh‖H−1 . (4.9)

To simplify notations, for f ∈ H−1(0,1), we shall often denote by (−∂xx)
−1 f the

solution z ∈ H1
0 (0,1) of

−∂xxz = f on (0,1), z(0) = z(1) = 0.

Proof. Since fh is a discrete function, it can be expanded in Fourier series as
follows:

fh =
N

∑
k=1

fkwk.
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Then the expansions of z = (−∂xx)
−1 fh and zh = (−Δh)

−1 fh are known:

z =
N

∑
k=1

fk

μ2
k

wk, zh =
N

∑
k=1

fk

μk(h)2 wk.

Hence

‖z‖2
H1

0
=

N

∑
k=1

| fk|2
μ2

k

, ‖zh‖2
H1

0
=

N

∑
k=1

| fk|2
μ2

k

μ4
k

μk(h)4 .

Since for all k ∈ {1, . . . ,N},

1 ≤ μ4
k

μk(h)4 ≤ π4

16
,

we easily get Proposition 4.1. 	

We now prove the following convergence result:

Theorem 4.1. Let f ∈ L2(0,1) and expand it in Fourier series as

f =
∞

∑
k=1

fkwk, (4.10)

and set

fh =
N

∑
k=1

fkwk. (4.11)

Let then z be the solution of

− ∂xxz = f , on (0,1), z(0) = z(1) = 0, (4.12)

and zh of

− (Δhzh) j = f j,h, j ∈ {1, . . . ,N}. (4.13)

Then

‖ f − fh‖H−1 + ‖z− zh‖H1
0
≤ Ch‖ f‖L2 (4.14)

‖z− zh‖L2 ≤ Ch2 ‖ f‖L2 . (4.15)

Remark 4.1. Of course, Theorem 4.1 is very classical and can be found for many
different discretization schemes and in particular for finite-element methods; see for
instance the textbook [46].

Proof. Our proof is of course based on the fact that the functions wk are eigenvectors
of both the continuous and discrete Laplace operators. Note that it is straightforward
to check that

‖ f − fh‖H−1 ≤Ch‖ f‖L2 .
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We thus focus on the comparison between z and zh. Again, we use the fact that
the expansions of z and zh in Fourier are explicit:

z =
∞

∑
k=1

fk

μ2
k

wk, zh =
N

∑
k=1

fk

μk(h)2 wk. (4.16)

Now, computing the H1
0 -norm of z− zh is easy:

‖z− zh‖2
H1

0
=

N

∑
k=1

| fk|2
μ2

k

(

1− μ2
k

μk(h)2

)2

+
∞

∑
k=N+1

| fk|2
μ2

k

≤ C
N

∑
k=1

| fk|2k2h4 +
1

N2

∞

∑
k=N+1

| fk|2,

where we have used that

1

μ2
k

(

1− μ2
k

μk(h)2

)2

≤Ck2h4, ∀k ∈ {1, . . . ,N}. (4.17)

Hence

‖z− zh‖2
H1

0
≤C

(

N2h4 +
1

N2

)

‖ f‖2
L2 .

Since N + 1 = 1/h, this concludes the proof of Eq. (4.14).
Similarly, one derives

‖z− zh‖2
L2 ≤C

(

h4 +
1

N4

)

‖ f‖2
L2 ,

which immediately implies Eq. (4.15). 	

From Proposition 4.1 and Theorem 4.1 we deduce:

Theorem 4.2. Let f ∈ H−1(0,1) and fh be a sequence of discrete functions such
that

lim
h→0

‖ f − fh‖H−1 = 0.

Then

lim
h→0

∥
∥(−∂xx)

−1 f − (−Δh)
−1 fh

∥
∥

H1
0
= 0. (4.18)

Besides, if f ∈ L2(0,1) and fh satisfies, for some θ > 0,

‖ f − fh‖H−1 ≤C0hθ ,

then
∥
∥(−∂xx)

−1 f − (−Δh)
−1 fh

∥
∥

H1
0
≤C

(
h‖ f‖L2 +C0hθ

)
. (4.19)
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Proof. The first part of Theorem 4.2 easily follows by the density of L2(0,1) func-
tions in H−1(0,1), the uniform stability result of Proposition 4.1 and the conver-
gence result of Theorem 4.1, similarly as in the proof of Proposition 3.5. The details
are left to the reader.

The second part of Theorem 4.2 consists of taking f̃h as in Eq. (4.11), for which
we have

∥
∥ f − f̃h

∥
∥

H−1 ≤Ch‖ f‖L2 and
∥
∥(−Δh)

−1 f̃h − (−∂xx)
−1 f

∥
∥

H1
0
≤Ch‖ f‖L2 .

Then Proposition 4.1 implies that
∥
∥(−Δh)

−1 fh − (−Δh)
−1 f̃h

∥
∥

H1
0
≤C

∥
∥ fh − f̃h

∥
∥

H−1 .

Of course, these three last estimates imply Eq. (4.19). 	

Finally, we mention this last result:

Theorem 4.3. Let f ∈ L2(0,1) and z = (−∂xx)
−1 f . Then there exists C such that

|∂xz(1)|2 ≤C‖ f‖L2 ‖ f‖H−1 . (4.20)

Similarly, there exists C > 0 such that for all h ∈ (0,1), if fh is a discrete function
and zh = (−Δh)

−1 fh, we have

∣
∣
∣
zN,h

h

∣
∣
∣
2 ≤C‖ fh‖L2 ‖ fh‖H−1 . (4.21)

Besides, taking fh as in Eq. (4.11), we have
∣
∣
∣∂xz(1)+

zN,h

h

∣
∣
∣≤C

√
h‖ f‖L2 . (4.22)

Proof. We prove this result using the multiplier technique. Since −∂xxz = f , multi-
plying the equation by x∂xz, easy integrations by parts show

|∂xz(1)|2 =−2
∫ 1

0
f x∂xz+

∫ 1

0
|∂xz|2.

Of course, this implies Eq. (4.20) from the fact that ‖z‖H1
0
= ‖ f‖H−1 .

In order to prove estimate (4.21), we develop a similar multiplier argument.
Namely, we multiply the equation

−(Δhzh) j = f j,h, j ∈ {1, . . . ,N},

by j(z j+1,h − z j−1,h). We thus obtain

∣
∣
∣
zN,h

h

∣
∣
∣
2
=−2h

N

∑
j=1

jh

(
z j+1,h − z j−1,h

h

)

f j,h + h
N

∑
j=0

(
z j+1,h − z j,h

h

)2

.
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Hence
∣
∣
∣
zN,h

h

∣
∣
∣
2 ≤C‖ fh‖L2 ‖zh‖H1

0
+C‖zh‖2

H1
0
≤C‖ fh‖L2 ‖ fh‖H−1 +C‖ fh‖2

H−1 ,

which yields estimate (4.21).
We now aim at proving Eq. (4.22). First remark that zh also solves

−∂xxzh = f̃h, on (0,1), zh(0) = zh(1) = 0,

where

f̃h =
N

∑
j=1

fk

(
μk

μk(h)

)2

wk. (4.23)

But one easily has
∥
∥ f̃h

∥
∥

L2 ≤C‖ f‖L2 ,
∥
∥ f̃h − f

∥
∥

H−1 ≤Ch‖ f‖L2 . (4.24)

Indeed, from Eq. (4.17),

∥
∥ f̃h − fh

∥
∥2

H−1 =
N

∑
k=1

| fk|2
μ2

k

(

1−
(

μk

μk(h)

)2
)2

≤Ch2‖ f‖2
L2 ,

and thus Eq. (4.14) yields Eq. (4.24).
Therefore, using Eq. (4.21),

|∂xz(1)− ∂xzh(1)| ≤C
(∥
∥ f − f̃h

∥
∥

L2

∥
∥ f − f̃h

∥
∥

H−1

)1/2 ≤C
√

h‖ f‖L2 . (4.25)

Besides,

∂xzh(1)+
zN,h

h
=

N

∑
k=1

fk

μk(h)2 (−1)k
(

1− sin(kπh)
kπh

)

kπ .

Note that this last expression coincides with the continuous normal derivative ∂xz̃(1)
of the solution z̃ of the continuous problem

⎧
⎪⎨

⎪⎩

−∂xxz̃ = g̃h, on (0,1), where g̃h =
N

∑
k=1

fk
μ2

k

μk(h)2

(

1− sin(kπh)
kπh

)

wk,

z̃(0) = z̃(1) = 0.

(4.26)

Using that for some constant C independent of h and k ∈ {1, . . . ,N},

∣
∣
∣
∣

μ2
k

μk(h)2

∣
∣
∣
∣≤C,

∣
∣
∣
∣1−

sin(kπh)
kπh

∣
∣
∣
∣≤Ck2h2,
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we easily compute

‖g̃h‖L2 ≤C‖ f‖L2 , ‖g̃h‖H−1 ≤Ch‖ f‖L2 . (4.27)

Hence, from Eq. (4.20),
∣
∣
∣∂xzh(1)+

zN,h

h

∣
∣
∣= |∂xz̃(1)| ≤C

√
h‖ f‖L2 .

Together with Eq. (4.25), this concludes the proof of Theorem 4.3. 	


4.2.2 Stronger Norms

Recalling the definition of the functional spaces H�
(0)(0,1) in Eq. (3.34), we prove

the counterparts of the above theorem within these spaces.
First, Proposition 4.1 can be modified into:

Proposition 4.2. Let � ∈ R. If fh is a discrete function, then there exists a constant
C =C(�) independent of h ∈ (0,1) such that

1
C
‖ fh‖H�

(0)
≤ ∥

∥(−Δh)
−1 fh

∥
∥

H�−2
(0)

≤C‖ fh‖H�
(0)
. (4.28)

The proof of Proposition 4.2 follows line to line the one of Proposition 4.1 and
is left to the reader.

The convergence results of Theorem 4.1 can be extended as follows:

Theorem 4.4. Let �∈R and f ∈H�
(0)(0,1) and z= (−∂xx)

−1 f be the corresponding
solution of the Laplace equation (4.12). With the notations of Theorem 4.1, setting
fh as in Eq. (4.11) and zh = (−Δh)

−1 fh, we have

‖ f − fh‖H�−1
(0)

+ ‖z− zh‖H�+1
(0)

≤ Ch‖ f‖H�
(0)
, (4.29)

‖z− zh‖H�
(0)

≤ Ch2‖ f‖H�
(0)
. (4.30)

Here again, the proof of Theorem 4.4 is very similar to the one of Theorem 4.1
and is left to the reader.

We now focus on the convergence of the normal derivatives:

Theorem 4.5. Let �≥ 0 and f ∈ H�
(0)(0,1) and z = (−∂xx)

−1 f be the corresponding
solution of the Laplace equation (4.12). With the notations of Theorem 4.1, setting
fh as in Eq. (4.11) and zh = (−Δh)

−1 fh, we have
∣
∣
∣∂xz(1)+

zN,h

h

∣
∣
∣≤Chmin{�+1/2,�/2+1,2}‖ f‖H�

(0)
. (4.31)
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Proof. The proof of Eq. (4.31) follows the one of Eq. (4.22), except for the esti-
mates (4.24) on f̃h in Eqs. (4.23) and (4.27) on g̃h defined in Eq. (4.26).

Using that for all h > 0 and k ∈ {1, . . . ,N},

(

1−
(

μk

μk(h)

)2
)2

≤Ck4h4,

we easily derive that

∥
∥ f − f̃h

∥
∥2

L2 ≤C

(
1

N2� +Ch4 max{1,N4−2�}
)

‖ f‖2
H�
(0)
.

In particular, if � ∈ (0,2],
∥
∥ f − f̃h

∥
∥

L2 ≤ Ch� ‖ f‖H�
(0)

and if � ≥ 2,
∥
∥ f − f̃h

∥
∥

L2 ≤
Ch2‖ f‖H�

(0)
, thus yielding

∥
∥ f − f̃h

∥
∥

L2 ≤Chmin{�,2} ‖ f‖H�
(0)
.

Similarly,
∥
∥ f − f̃h

∥
∥

H−1 ≤Chmin{�+1,2} ‖ f‖H�
(0)
.

We thus obtain, instead of Eq. (4.25),

|∂xz(1)− ∂xzh(1)| ≤Chmin{�+1/2,�/2+1,2}‖ f‖H�
(0)
.

Estimates on ∂xzh(1) + zN,h/h can be deduced similarly from estimates on g̃h

(defined in Eq. (4.26)) and are left to the reader. 	

Remark 4.2. Very likely, estimate (4.31) can be improved for � >−1/2 into

∣
∣
∣∂xz(1)+

zN,h

h

∣
∣
∣≤Chmin{�+1/2,2} ‖ f‖H�

(0)
. (4.32)

For instance, using that, if f = ∑k fkwk, the solution z of Eq. (4.12) can be ex-
panded as z = ∑k fk/μ2

k wk and we get

∂xz(1) = ∑
k

fk
∂xwk(1)

μ2
k

,

provided the sum converges. Since for all k ∈ N,

∣
∣
∣
∣
∂xwk(1)

μ2
k

∣
∣
∣
∣≤

C
μk

,
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by Cauchy–Schwarz, for any �0 >−1/2, we obtain

|∂xz(1)| ≤C�0 ‖ f‖
H
�0
(0)

instead of Eq. (4.20).
Of course, we can get similar estimates for the discrete solutions zh = (−Δh)

−1 fh

and obtain, for all �(0) >−1/2, a constant C�0 independent of h > 0 such that for all
discrete function fh and zh = (−Δh)

−1 fh,
∣
∣
∣
zN,h

h

∣
∣
∣≤C�0 ‖ fh‖H

�0
(0)

.

instead of Eq. (4.21).
Using these two estimates instead of Eqs. (4.20) and (4.21) and following the

proof of Theorem 4.5, we can obtain the following result: for all � > −1/2 and
ε > 0, there exists a constant C�,ε =C(�,ε) such that f ∈ H�

(0),

∣
∣
∣∂xz(1)+

zN,h

h

∣
∣
∣≤C�,ε hmin{�+1/2−ε,2} ‖ f‖H�

(0)
. (4.33)

This last estimate is better than Eq. (4.31) when � ∈ (−1/2,0) and when � ∈ (1,2).

4.2.3 Numerical Results

This section aims at giving numerical simulations and evidences of the convergence
results Eq. (4.31) for the normal derivatives of solutions of the discrete Laplace
equation. We do not present a systematic study of the convergence of the solution
in L2(0,1) nor in H1

0 (0,1) since these results are classical and can be found in many
textbooks of numerical analysis; see, e.g., [4, 46].

In order to do that, we choose continuous functions f and z solving Eq. (4.12).
For N ∈N, we then discretize the source term f into fh simply by taking fh( j) =

f ( jh) for j ∈ {1, . . . ,N} and compute zh the solution of −Δhzh = fh with z0,h =
zN+1,h = 0. We then compute ∂xz(1)+ zN,h/h.

Our first test function is

f (x) =−sin(2πx)+ 3sin(πx), for z(x) =
sin(2πx)

4π2 − 3sin(πx)
π

. (4.34)

The plot of
∣
∣∂xz(1)+ zN,h/h

∣
∣ versus N is represented in logarithmic scales in

Fig. 4.1, left. Here, we have chosen N ∈ [100,300]. The slope of the linear regression
is −1.99 and completely corresponds to the result of Theorem 4.5.
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Fig. 4.1 Plot of
∣
∣∂xz(1)+ zN,h/h

∣
∣ versus N in logarithmic scales. Left, for f as in Eq. (4.34), the

slope is −1.99. Right, for f as in Eq. (4.35), the slope is −1.00.

We then test

f (x) =
1

(x+ 1)3 , corresponding to z(x) =− 1
2(x+ 1)

+
1
2
− x

4
. (4.35)

Numerical simulations are represented in Fig. 4.1, right.
This function f is smooth, but it does not satisfy f (0) = f (1) = 0. Thus it is only

in ∩ε>0H1/2−ε
(0) (0,1) and the slope predicted by Theorem 4.5 is −1− and completely

agrees with the slope observed in Fig. 4.1 right.
These two examples indicate that the rates of convergence of the normal deriva-

tives obtained in Theorem 4.5 are accurate.

4.3 Uniform Bounds on yhyhyh

The goal of this section is to obtain uniform bounds on yh in the natural space for the
wave equation with nonhomogeneous Dirichlet control, that is C([0,T ];L2(0,1))∩
C1([0,T ];H−1(0,1)):

Theorem 4.6. There exists a constant C independent of h > 0 such that any solution
yh of Eq. (4.7) with initial data (y0

h,y
1
h) and source term vh ∈ L2(0,T ) satisfies

sup
t∈[0,T ]

‖(yh(t),∂t yh(t))‖L2(0,1)×H−1(0,1)

≤C
(∥
∥(y0

h,y
1
h)
∥
∥

L2(0,1)×H−1(0,1) + ‖vh‖L2(0,T)

)
. (4.36)

The proof of Theorem 4.6 is done in two steps: one focusing on the estimate on
yh and the other one on ∂t yh, respectively, corresponding to Propositions 4.3 and 4.4.

As we will see, each one of these propositions is based on a suitable duality
argument for solutions of the adjoint system.



90 4 Convergence with Nonhomogeneous Boundary Conditions

4.3.1 Estimates in C([0,T]; L2(0,1))L2(0,1))L2(0,1))

We have the following:

Proposition 4.3. There exists a constant C independent of h > 0 such that any solu-
tion yh of Eq. (4.7) satisfies

‖yh‖L∞(0,T ;L2(0,1)) ≤C
(∥
∥y0

h

∥
∥

L2(0,1) +
∥
∥y1

h

∥
∥

H−1(0,1) + ‖vh‖L2(0,T)

)
. (4.37)

We postpone the proof to the end of the section. As in the continuous case, Propo-
sition 4.3 will be a consequence of a suitable duality argument.

Namely, let fh ∈ L1(0,T ;L2(0,1)) and define φh as being the solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt φ j,h − 1
h2

[
φ j+1,h +φ j−1,h − 2φ j,h

]
= f j,h,

(t, j) ∈ (0,T )×{1, . . . ,N},
φ0,h(t) = φN+1,h(t) = 0, t ∈ (0,T ),
φ j,h(T ) = 0, ∂tφ j,h(T ) = 0, j = 1, . . . ,N.

(4.38)

Then, multiplying Eq. (4.7) by φh solution of Eq. (4.38), we obtain

0 = h
N

∑
j=1

∫ T

0
∂tt y j,hφ j,h dt − h

N

∑
j=1

∫ T

0

1
h2 [y j+1,h + y j−1,h− 2y j,h]φ j,h dt

= h
N

∑
j=1

∫ T

0
y j,h∂tt φ j,h dt − h

N

∑
j=1

∫ T

0

1
h2 y j,h[φ j+1,h +φ j−1,h − 2φ j,h]dt

+h
N

∑
j=1

(∂t y j,hφ j,h − y j,h∂tφ j,h)
∣
∣
∣
T

0
−

∫ T

0
yN+1,h

φN,h

h
dt

= h
N

∑
j=1

∫ T

0
y j,h f j,h dt + h

N

∑
j=1

(y0
j,h∂tφ j,h(0)− y1

j,hφ j,h(0)) (4.39)

−
∫ T

0
vh(t)

φN,h(t)

h
dt.

Note that identity (4.39) is a discrete counterpart of the continuous identity (4.4).
Remark that this can be used as a definition of solutions of Eq. (4.7) by transpo-
sition, even if in that case, solutions of Eq. (4.7) obviously exist due to the finite
dimensional nature of system (4.7).

Formulation (4.39) will be used to derive estimates on solutions yh by duality.
But we shall first prove the following lemma:

Lemma 4.1. For φh solution of Eq. (4.38), there exists a constant C independent of
h > 0 such that

‖φh‖L∞(0,T ;H1
0 (0,1))

+ ‖∂tφh‖L∞(0,T ;L2(0,1)) ≤C‖ fh‖L1(0,T ;L2(0,1)) (4.40)
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and
∥
∥
∥
∥

φN,h

h

∥
∥
∥
∥

L2(0,T)
≤C‖ fh‖L1(0,T ;L2(0,1)) . (4.41)

Proof. The first inequality (4.40) is an energy estimate, whereas Eq. (4.41) is a hid-
den regularity property.

Multiplying Eq. (4.38) by ∂tφ j,h and summing over j, we obtain

h
N

∑
j=1

∂tt φ j,h∂tφ j,h − h
N

∑
j=1

1
h2

[
φ j+1,h +φ j−1,h − 2φ j,h

]
∂tφ j,h

= h
N

∑
j=1

f j,h∂tφ j,h. (4.42)

The left-hand side of Eq. (4.42) is the derivative of the energy

d
dt

(
h
2

N

∑
j=1

|∂tφ j,h|2 + h
2

N

∑
j=1

(
φ j+1,h −φ j,h

h

)2
)

=
1
2

dEh[φh]

dt
,

whereas the right-hand side satisfies

∣
∣
∣
∣
∣
h

N

∑
j=1

f j,h∂tφ j,h

∣
∣
∣
∣
∣
≤

(

h
N

∑
j=1

| f j,h|2
)1/2(

h
N

∑
j=1

|∂tφ j,h|2
)1/2

≤
(

h
N

∑
j=1

| f j,h|2
)1/2

√
Eh[φh](t).

Equation (4.42) then implies

∣
∣
∣
∣
d
√

Eh

dt
(t)

∣
∣
∣
∣≤

(

h
N

∑
j=1

| f j,h(t)|2
)1/2

. (4.43)

Integrating in time, we obtain that for all t ∈ [0,T ],

√
Eh(t)≤

∫ T

0

(

h
N

∑
j=1

| f j,h(t)|2
)1/2

dt.

Finally, recalling the properties of the Fourier extension operator in Sect. 3.2, we
obtain Eq. (4.40).
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Estimate (4.41) can be deduced from the multiplier approach developed in the
proof of Theorem 2.2 by multiplying Eq. (4.38) by j(φ j+1,h −φ j−1,h):

h
N

∑
j=1

∫ T

0
f j,h jh

(
φ j+1,h −φ j−1,h

h

)

dt

= h
N

∑
j=1

∫ T

0
∂tt φ j,h jh

(
φ j+1,h −φ j−1,h

h

)

dt

−h
N

∑
j=1

∫ T

0

[
φ j+1,h +φ j−1,h − 2φ j,h

h2

]

jh

(
φ j+1,h −φ j−1,h

h

)

dt. (4.44)

The right-hand side of Eq. (4.44) has already been dealt with in the proof of Theo-
rem 2.2 and yields

h
N

∑
j=1

∫ T

0
∂ttφ j,h jh

(
φ j+1,h −φ j−1,h

h

)

dt

−h
N

∑
j=1

∫ T

0

[
φ j+1,h +φ j−1,h − 2φ j,h

h2

]

jh

(
φ j+1,h −φ j−1,h

h

)

=

∫ T

0

∣
∣
∣
∣
φN,h(t)

h

∣
∣
∣
∣

2

dt +
h3

2

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tφ j+1,h − ∂tφ j,h

h

∣
∣
∣
∣

2

dt

−
∫ T

0
Eh(t)dt −Xh(t)

∣
∣
∣
T

0
,

where, similarly as in Eq. (2.14), Xh(t) is given by

Xh(t) = 2h
N

∑
j=1

jh

(
φ j+1,h −φ j−1,h

2h

)

∂tφ j,h.

From the conditions φh(T ) = ∂tφh(T ) = 0 in Eq. (4.38), Xh(T ) = 0. Besides, as in
Eq. (2.15), one has |Xh(0)| ≤ Eh(0).

On the other hand,
∣
∣
∣
∣
∣
h

N

∑
j=1

∫ T

0
f j,h jh

(
φ j+1,h −φ j−1,h

h

)

dt

∣
∣
∣
∣
∣

≤
∫ T

0

(

h
N

∑
j=1

| f j,h|2
)1/2

√
Eh(t)dt

≤ sup
t∈[0,T ]

{√
Eh(t)

}∫ T

0

(

h
N

∑
j=1

| f j,h|2
)1/2

dt.

Therefore, from Eq. (4.40), there exists a constant independent of h such that
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∫ T

0

∣
∣
∣
∣
φN,h(t)

h

∣
∣
∣
∣

2

dt +
h3

2

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tφ j+1,h − ∂tφ j,h

h

∣
∣
∣
∣

2

dt

≤C

⎛

⎝
∫ T

0

(

h
N

∑
j=1

| f j,h|2
)1/2

dt

⎞

⎠

2

,

which implies Eq. (4.41). 	

Proof (Proposition 4.3). Lemma 4.1 and identity (4.39) allow us to deduce bounds
on yh. Indeed,

‖yh‖L∞(0,T ;L2(0,1)) = sup
f∈L1(0,T ;L2(0,1))
‖ f‖L1((0,T );L2(0,1))

∫ 1

0
yh(x) f (x)dx.

But there yh is the Fourier extension Fh(yh) (recall Sect. 3.2); hence it involves only
Fourier modes smaller than N. We thus only have to consider the projection of f
onto the first N Fourier modes. But this exactly corresponds to discrete functions fh.
Therefore,

‖yh‖L∞(0,T ;L2(0,1)) = sup
fh∈L1(0,T ;L2(0,1))

‖ fh‖L1((0,T );L2(0,1))≤1

{

h
N

∑
j=1

∫ T

0
y j,h f j,h dt

}

.

But, introducing φh, the solution of Eq. (4.38) with source term fh, using Lemma 4.1,
we obtain:

h
N

∑
j=1

∫ T

0
y j,h f j,h dt = −h

N

∑
j=1

(y0
j,h∂tφ j,h(0)− y1

j,hφ j,h(0))+
∫ T

0
vh(t)

φN,h(t)

h
dt

≤ C
∥
∥y0

h

∥
∥

L2(0,1) ‖∂tφh(0)‖L2(0,1) +C
∥
∥y1

h

∥
∥

H−1(0,1) ‖φh(0)‖H1
0 (0,1)

+‖vh‖L2(0,T )

∥
∥
∥
∥

φN,h

h

∥
∥
∥
∥

L2(0,T )

≤ C
(∥
∥y0

h

∥
∥

L2(0,1) +
∥
∥y1

h

∥
∥

H−1(0,1) + ‖vh‖L2(0,T)

)
‖ fh‖L1(0,T ;L2(0,1)) .

This yields in particular Eq. (4.37). 	


4.3.2 Estimates on ∂∂∂ tyh

We now focus on getting estimates on ∂t yh.

Proposition 4.4. There exists a constant C independent of h > 0 such that any solu-
tion yh of Eq. (4.7) satisfies
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‖∂t yh‖L∞(0,T ;H−1(0,1)) ≤C
(∥
∥y0

h

∥
∥

L2(0,1) +
∥
∥y1

h

∥
∥

H−1(0,1) + ‖vh‖L2(0,T)

)
. (4.45)

Similarly as for Proposition 4.3, this result is obtained by duality, based on the
following identity: if φh solves the adjoint wave equation (4.38) with source term
fh = ∂t gh with gh ∈ L1(0,T ;H1

0 (0,1)), we have:

h
N

∑
j=1

∫ T

0
y j,h∂t g j,h dt = −h

N

∑
j=1

(y0
j,h∂tφ j,h(0)− y1

j,hφ j,h(0))

+

∫ T

0
vh(t)

φN,h(t)

h
dt. (4.46)

The proof of Proposition 4.4 is sketched at the end of the section, since it is very
similar to the one of Proposition 4.3.

Hence, we focus on the following adjoint problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt φ j,h − 1
h2

[
φ j+1,h +φ j−1,h − 2φ j,h

]
= ∂t g j,h,

(t, j) ∈ (0,T )×{1, . . . ,N},
φ0,h(t) = φN+1,h(t) = 0, t ∈ (0,T ),
φ j,h(T ) = 0, ∂tφ j,0(T ) = 0, j = 1, . . . ,N.

(4.47)

We shall thus prove the following:

Lemma 4.2. For φh solution of Eq. (4.47), there exists a constant C independent of
h > 0 such that

‖φh‖L∞(0,T ;H1
0 (0,1))

+ ‖∂tφh(0)‖L2(0,1) ≤C‖gh‖L1(0,T ;H1
0 (0,1))

(4.48)

and
∥
∥
∥
∥

φN,h

h

∥
∥
∥
∥

L2(0,T)
≤C‖gh‖L1(0,T ;H1

0 (0,1))
. (4.49)

Proof. To study solutions φh of Eq. (4.47), it is convenient to first assume that gh is
compactly supported in time in (0,T ) and use the density of compactly supported
functions in time in L1(0,T ;H1

0 (0,1)).
Let us introduce ψh satisfying ∂tψh = φh, which satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ttψ j,h − 1
h2

[
ψ j+1,h +ψ j−1,h − 2ψ j,h

]
= g j,h,

(t, j) ∈ (0,T )×{1, . . . ,N},
ψ0,h(t) = ψN+1,h(t) = 0, t ∈ (0,T ),
ψ j,h(T ) = 0, ∂tψ j,h(T ) = 0, j = 1, . . . ,N.

(4.50)

Obviously, using Lemma 4.1, we immediately obtain
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‖ψh‖L∞(0,T ;H1
0 (0,1))

+ ‖∂tψh‖L∞(0,T ;L2(0,1)) +
∥
∥
∥

ψN,h

h

∥
∥
∥

L2(0,T )
≤C‖gh‖L1(0,T ;L2(0,1))

≤C‖gh‖L1(0,T ;H1
0 (0,1))

.

To derive more precise estimates on φh, we multiply Eq. (4.50) by −(∂tψ j+1,h +
∂tψ j−1,h − 2∂tψ j,h)/h2:

d
dt

(
h
2

N

∑
j=0

(
∂tψ j+1,h − ∂tψ j,h

h

)2

+
h
2

N

∑
j=1

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)2
)

= h
N

∑
j=1

(
g j+1,h − g j,h

h

)(
∂tψ j+1,h − ∂tψ j,h

h

)

.

Arguing as in Eq. (4.43), this allows to conclude that

sup
t∈[0,T ]

{
h
2

N

∑
j=0

(
∂tψ j+1,h − ∂tψ j,h

h

)2

+
h
2

N

∑
j=1

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)2
}

≤C

⎛

⎝
∫ T

0

(

h
N

∑
j=0

(
g j+1,h − g j,h

h

)2
)1/2

dt

⎞

⎠

2

. (4.51)

Using Eq. (4.38) and ∂tψh = φh and again the equivalences proven in Sect. 3.2, we
deduce

‖φh‖L∞(0,T ; H1
0 (0,1))

+ ‖∂tt ψh + gh‖L∞((0,T);L2(0,1)) ≤C‖gh‖L1(0,T ;H1
0 (0,1))

,

where we use the equation of ψh. In order to get Eq. (4.48), we only use the fact that
gh(0) = 0.

To deduce Eq. (4.49), we need to apply a multiplier technique on the Eq. (4.47)
directly.

Multiplying Eq. (4.47) by j(φ j+1,h−φ j−1,h), we obtain, similarly as in Eq. (2.13),

∫ T

0

∣
∣
∣
∣
φN,h(t)

h

∣
∣
∣
∣

2

dt +
h3

2

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tφ j+1,h − ∂tφ j,h

h

∣
∣
∣
∣

2

dt

=
∫ T

0
Eh(t)dt −Xh(0)− h

∫ T

0

N

∑
j=1

jh

(
φ j+1,h −φ j−1,h

h

)

∂t g j,h dt, (4.52)

where Xh is as in Eq. (2.14). To derive Eq. (4.49), it is then sufficient to bound each
term in the right-hand side of this identity.
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First remark that

∫ T

0
Eh(t)dt = h

∫ T

0

N

∑
j=0

(
φ j+1,h −φ j,h

h

)2

dt + h
∫ T

0

N

∑
j=0

|∂tφ j,h|2 dt

= h
∫ T

0

N

∑
j=0

(
∂tψ j+1,h − ∂tψ j,h

h

)2

dt + h
∫ T

0

N

∑
j=0

|∂ttψ j,h|2 dt

= h
∫ T

0

N

∑
j=0

(
∂tψ j+1,h − ∂tψ j,h

h

)2

dt + h
∫ T

0

N

∑
j=1

(
ψ j+1,h +ψ j−1,h− 2ψ j,h

h2

)2

dt

+h
∫ T

0

N

∑
j=0

g2
j,h dt + 2h

∫ T

0

N

∑
j=1

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)

g j,h dt.

In particular, from Eq. (4.51), we obtain
∣
∣
∣
∣
∣

∫ T

0
Eh(t)dt − h

∫ T

0

N

∑
j=0

g2
j,h dt

∣
∣
∣
∣
∣
≤C‖g‖2

L1(0,T ;H1
0 (0,1))

.

Let us then bound Xh(0). Since gh(0) = 0,

Xh(0) = 2h
N

∑
j=1

jh

(
φ j+1,h(0)−φ j−1,h(0)

2h

)

∂tφ j(0)

= 2h
N

∑
j=1

jh

(
φ j+1,h(0)−φ j−1,h(0)

2h

)

∂ttψ j(0)

= 2h
N

∑
j=1

jh

(
φ j+1,h(0)−φ j−1,h(0)

2h

)(
ψ j+1,h(0)+ψ j−1,h(0)− 2ψ j,h(0)

h2

)

.

It follows then from Eq. (4.51) that

|Xh(0)| ≤C‖gh‖2
L1(0,T ;H1

0 (0,1))
.

We now deal with the last term in Eq. (4.52):

I := 2h
∫ T

0

N

∑
j=1

jh

(
φ j+1,h −φ j−1,h

2h

)

∂tg j,h dt.

Integrating by parts we get

I = −h
∫ T

0

N

∑
j=1

φ j,h
(
( j+ 1)∂tg j+1,h − ( j− 1)∂tg j−1,h

)
dt

= −h
∫ T

0

N

∑
j=1

φ j,h

(

(∂t g j−1,h + ∂tg j+1,h)+ jh

(
∂tg j+1,h − ∂tg j−1,h

h

))

dt.
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Taking into account that, by assumption, gh(0) = gh(T ) = 0,

I = h
∫ T

0

N

∑
j=1

∂tφ j,h

(

(g j−1,h + g j+1,h)+ jh

(
g j+1,h − g j−1,h

h

))

dt.

But ∂tφ j,h = ∂ttψ j,h, and then Eq. (4.50) yields:

I = h
∫ T

0

N

∑
j=1

g j,h

(

(g j−1,h + g j+1,h)+ jh

(
g j+1,h − g j−1,h

h

))

dt

+h
∫ T

0

N

∑
j=1

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)

(g j−1,h + g j+1,h)dt.

+h
∫ T

0

N

∑
j=1

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)

jh

(
g j+1,h − g j−1,h

h

)

dt.

Since

h
∫ T

0

N

∑
j=1

g j,h

(

(g j−1,h + g j+1,h)+ jh

(
g j+1,h − g j−1,h

h

))

dt

= h
∫ T

0

N

∑
j=1

g j,hg j+1,h dt,

due to estimates (4.51), we obtain
∣
∣
∣
∣
∣
I − h

∫ T

0

N

∑
j=1

g j,hg j+1,h dt

∣
∣
∣
∣
∣
≤C‖g‖2

L1(0,T ;H1
0 (0,1))

.

These estimates, combined with Eq. (4.52), finally give
∣
∣
∣
∣
∣

∫ T

0

∣
∣
∣
∣
φN,h(t)

h

∣
∣
∣
∣

2

dt +
h3

2

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tφ j+1,h − ∂tφ j,h

h

∣
∣
∣
∣

2

dt

−h
∫ T

0

N

∑
j=1

(|g j,h|2 − g j,hg j+1,h
)

dt

∣
∣
∣
∣
∣
≤C‖g‖2

L1(0,T ;H1
0 (0,1))

,

or, equivalently,
∣
∣
∣
∣
∣

∫ T

0

∣
∣
∣
∣
φN,h(t)

h

∣
∣
∣
∣

2

dt +
h
2

N

∑
j=0

∫ T

0

∣
∣∂tφ j+1,h − ∂tφ j,h

∣
∣2 dt

−h
2

∫ T

0

N

∑
j=0

|g j+1,h − g j,h|2 dt

∣
∣
∣
∣
∣
≤C‖g‖2

L1(0,T ;H1
0 (0,1))

. (4.53)
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Remark then that

h
N

∑
j=0

∫ T

0

∣
∣∂tφ j+1,h − ∂tφ j,h

∣
∣2 dt − h

∫ T

0

N

∑
j=0

|g j+1,h − g j,h|2 dt

= h
N

∑
j=0

∫ T

0

∣
∣∂tt ψ j+1,h − ∂ttψ j,h

∣
∣2 dt − h

∫ T

0

N

∑
j=0

|g j+1,h − g j,h|2 dt

= h
N

∑
j=0

∫ T

0

(
ψ j+2,h +ψ j,h − 2ψ j+1,h

h2 − ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)2

dt

+2h
N

∑
j=0

∫ T

0

(
ψ j+2,h +ψ j,h − 2ψ j+1,h

h2

)

(g j+1,h − g j,h)dt,

−2h
N

∑
j=0

∫ T

0

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)

(g j+1,h − g j,h)dt,

with the notation ψ−1,h =−ψ1,h and ψN+2,h =−ψN,h.
In view of Eq. (4.51), we have

∣
∣
∣
∣
∣
h

N

∑
j=0

∫ T

0

∣
∣∂tφ j+1,h − ∂tφ j,h

∣
∣2 dt − h

∫ T

0

N

∑
j=0

|g j+1,h − g j,h|2 dt

∣
∣
∣
∣
∣

≤C‖g‖2
L1(0,T ;H1

0 (0,1))
.

Estimate (4.49) then follows directly from Eq. (4.53). 	

Proof (Proposition 4.4). Since yh is a smooth function of time and space (recall that
yh has been identified with its Fourier extension; see Sect. 3.2),

‖∂t yh‖L∞((0,T);H−1(0,1)) = sup
g∈L1((0,T);H1

0 (0,1))
‖g‖

L1((0,T );H1
0 (0,1))

≤1

∫ T

0
∂tyhg.

As in the proof of Proposition 4.3, we can take the supremum of the functions
g ∈ L1(0,T ;H1

0 (0,1)) that are Fourier extensions of discrete functions. Therefore,
using Lemma 4.2 together with the duality identity (4.46), we immediately obtain
Proposition 4.4. 	


4.4 Convergence Rates for Smooth Data

4.4.1 Main Convergence Result

Our goal is to show the following result:
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Theorem 4.7. Let (y0,y1) ∈ H1
0 (0,1)× L2(0,1) and v ∈ H1(0,T ) be such that

v(0) = 0 and y the corresponding solution of Eq. (4.1) with initial data (y0,y1) and
boundary condition v.

Then there exists a discrete sequence of initial data (y0
h,y

1
h) such that the solution

yh of Eq. (4.7) with initial data (y0
h,y

1
h) and boundary data v satisfies the following

convergence rates:

• Convergence of yh: the following convergence estimates hold:

sup
t∈[0,T ]

‖yh(t)− y(t)‖L2 ≤C
(

h2/3
∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + h1/2‖v‖H1

)
. (4.54)

If we furthermore assume that v(T ) = 0,

‖yh(T )− y(T )‖L2 ≤Ch2/3
(∥
∥(y0,y1)

∥
∥

H1
0×L2 + ‖v‖H1

)
. (4.55)

• Convergence of ∂t yh: the following convergence estimates hold:

sup
t∈[0,T ]

‖∂t yh(t)− ∂ty(t)‖H−1 ≤Ch2/3
(∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1

)
. (4.56)

Remark 4.3. The above convergences (4.54) and (4.56) may appear surprising since
the rates of convergence of the displacement and of the velocity are not the same
except when v(T ) = 0. We refer to Sect. 4.4.2 for the details of the proof.

More curiously, the rates of convergence for the displacement are not the same
depending on the fact that v(T ) = 0 or not. This definitely is a surprise. In the proof
below, we will see that this is due to the rate Eq. (4.22) of convergence of the normal
derivative for solutions of the Laplace operator.

The proof is divided in two main steps, namely one focusing on the convergence
of yh towards y and the other one on the convergence of ∂t yh to ∂t y, these two
estimates being the object of the next sections.

Also, recall that under the assumptions of Theorem 4.7, the solution y of Eq. (4.1)
lies in C([0,T ];H1(0,1)), its time derivative ∂t y belongs to C([0,T ];L2(0,1)) and Δy
to C([0,T ];H−1(0,1)).

As in the case of homogeneous Dirichlet boundary conditions, we will write
down

y0 =
∞

∑
k=1

ŷ0
kwk, y1 =

∞

∑
k=1

ŷ1
kwk, (4.57)

whose H1
0 (0,1)×L2(0,1)-norm coincides with

∥
∥(y0,y1)

∥
∥2

H1
0 ×L2 =

∞

∑
k=1

k2π2|ŷ0
k |2 +

∞

∑
k=1

|ŷ1
k |2 < ∞.
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We will then choose the initial data (y0
h,y

1
h) of the form

y0
h =

N

∑
k=1

ŷ0
kwk, y1

h =
N

∑
k=1

ŷ1
kwk. (4.58)

4.4.2 Convergence of yhyhyh

Proposition 4.5. Under the assumptions of Theorem 4.7, taking (y0
h,y

1
h) as in

Eq. (4.58), we have the convergences (4.54) and Eq. (4.55).

Proof. To estimate the convergence of yh to y at time T , we write

‖yh(T )− y(T )‖L2 = sup
φT∈L2(0,1)

‖φT ‖L2(0,1)≤1

{∫ 1

0
(yh(T )− y(T))φT

}

. (4.59)

We thus fix φT ∈ L2(0,1) and compute

∫ 1

0
(yh(T )− y(T ))φT . (4.60)

We expand φT on its Fourier basis:

φT =
∞

∑
k=1

φ̂kwk,
∞

∑
k=1

|φ̂k|2 < ∞. (4.61)

4.4.2.1 Computation of
∫ 1

0 y(T )φT
∫ 1

0 y(T )φT
∫ 1

0 y(T )φT

Let us now compute
∫ 1

0 y(T )φT . In order to do that, we introduce ϕ solution of

⎧
⎨

⎩

∂ttϕ − ∂xxϕ = 0, (t,x) ∈ (0,T )× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T ),
ϕ(T ) = 0, ∂tϕ(T ) = φT .

(4.62)

Then, multiplying Eq. (4.1) by ϕ , we easily obtain

∫ 1

0
y(T )φT =

∫ T

0
v(t)∂xϕ(t,1)dt +

∫ 1

0
y0∂tϕ(0)−

∫ 1

0
y1ϕ(0). (4.63)

But v(t) =
∫ t

0 ∂t v(s)ds, thus yielding

∫ T

0
v(t)∂xϕ(t,1)dt =

∫ T

0
∂t v(t)

(∫ T

t
∂xϕ(s,1)ds

)

dt.
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We therefore introduce Φ(t) =
∫ T

t ϕ(s)ds. One then easily checks that

∫ 1

0
y(T )φT =

∫ T

0
∂t v(t)∂xΦ(t,1)dt −

∫ 1

0
y0∂tt Φ(0)+

∫ 1

0
y1∂tΦ(0), (4.64)

where Φ solves
⎧
⎨

⎩

∂ttΦ − ∂xxΦ =−φT , (t,x) ∈ (0,T )× (0,1),
Φ(t,0) = Φ(t,1) = 0, t ∈ (0,T ),
Φ(T ) = 0, ∂tΦ(T ) = 0.

(4.65)

We also introduce zT the solution of

− ∂xxzT = φT , on(0,1), zT (0) = zT (1) = 0, (4.66)

so that

Ψ = Φ − zT (4.67)

satisfies
⎧
⎨

⎩

∂ttΨ − ∂xxΨ = 0, (t,x) ∈ (0,T )× (0,1)
Ψ (t,0) =Ψ(t,1) = 0, t ∈ (0,T ),
Ψ (T ) = zT , ∂tΨ (T ) = 0.

(4.68)

and
∫ 1

0
y(T )φT =

∫ T

0
∂tv(t)∂xΨ(t,1)dt −

∫ 1

0
y0∂ttΨ(0)+

∫ 1

0
y1∂tΨ(0)

+
∫ T

0
∂t v(t)∂xzT (1)dt,

and, using that zT is independent of time,

∫ 1

0
y(T )φT =

∫ T

0
∂t v(t)∂xΨ(t,1)dt −

∫ 1

0
y0∂ttΨ(0)+

∫ 1

0
y1∂tΨ(0)

+v(T )∂xzT (1). (4.69)

4.4.2.2 Computation of
∫ 1

0 yh(T )φT
∫ 1

0 yh(T )φT
∫ 1

0 yh(T )φT

Expanding yh(T ) in discrete Fourier series, we get

∫ 1

0
yh(T )φT =

∫ 1

0
yh(T )φT,h = h

N

∑
j=1

y j,h(T )φ j,T,h,
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where

φ j,T,h =
N

∑
k=1

φ̂kwk
j , j ∈ {1, . . . ,N}. (4.70)

Then, similarly as in Eq. (4.64), we can prove

∫ 1

0
yh(T )φT =−

∫ T

0
∂t v(t)

ΦN,h

h
dt − h

N

∑
j=1

y0
j,h∂tt Φ j,h(0)+ h

N

∑
j=1

y1
j,h∂tΦ j,h(0),

(4.71)
where Φh is the solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt Φ j,h − 1
h2

(
Φ j+1,h − 2Φ j,h +Φ j−1,h

)
=−φ j,T,h,

(t, j) ∈ (0,T )×{1, . . . ,N},
Φ0,h(t) = ΦN+1,h(t) = 0, t ∈ (0,T ),
Φh(T ) = 0, ∂tΦh(T ) = 0.

(4.72)

Note that, due to the orthogonality properties of the Fourier basis, we can write

−h
N

∑
j=1

y0
j,h∂ttΦ j,h(0)+ h

N

∑
j=1

y1
j,h∂tΦ j,h(0) = −

∫ 1

0
y0

h∂tt Φh(0)+
∫ 1

0
y1

h∂tΦh(0)

= −
∫ 1

0
y0∂tt Φh(0)+

∫ 1

0
y1∂tΦh(0),

and thus Eq. (4.71) can be rewritten as

∫ 1

0
yh(T )φT =−

∫ T

0
∂t v(t)

ΦN,h

h
dt −

∫ 1

0
y0∂ttΦh(0)+

∫ 1

0
y1∂tΦh(0). (4.73)

Then setting

zT,h = (−Δh)
−1φT,h, (4.74)

we obtain
∫ 1

0
yh(T )φT = −

∫ T

0
∂t v(t)

ΨN,h

h
dt −

∫ 1

0
y0∂ttΨh(0)+

∫ 1

0
y1∂tΨh(0) (4.75)

−v(T )
zN,T,h

h
,

where Ψh is the solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ttΨj,h − 1
h2

(
Ψj+1,h − 2Ψj,h +Ψj−1,h

)
= 0,

(t, j) ∈ (0,T )×{1, . . . ,N},
Ψ0,h(t) =ΨN+1,h(t) = 0, t ∈ (0,T )
Ψh(T ) = zT,h, ∂tΨh(T ) = 0.

(4.76)
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4.4.2.3 Estimating the Difference
∫ 1

0 y(T )φT − ∫ 1
0 yh(T )φT

∫ 1
0 y(T )φT − ∫ 1

0 yh(T )φT
∫ 1

0 y(T )φT − ∫ 1
0 yh(T )φT

First, since zT solves the Laplace equation (4.66), zT ∈ H2 ∩H1
0 (0,1) and

‖zT ‖H2∩H1
0
� ‖φT‖L2 .

Since φT ∈ L2(0,1), using Theorems 4.1 and 4.3,
∥
∥zT,h − zT

∥
∥

H1
0
≤ Ch‖φT‖L2 , (4.77)

∣
∣
∣∂xzT (1)+

zN,T,h

h

∣
∣
∣ ≤ C

√
h‖φT ‖L2 . (4.78)

Hence using Proposition 3.8, we obtain

sup
t∈[0,T ]

‖(Ψh,∂tΨh,∂ttΨh)− (Ψ ,∂tΨ ,∂ttΨ )‖H1
0 ×L2×H−1

+

∥
∥
∥
∥∂xΨ(t,1)+

ΨN,h

h
(t)

∥
∥
∥
∥

L2(0,T )
≤Ch2/3‖φT‖L2 . (4.79)

We thus deduce that

∣
∣
∣
∣

∫ T

0
∂tv(t)

(
ΨN,h

h
+ ∂xΨ(t,1)

)

dt +
∫ 1

0
y0(∂ttΨh(0)− ∂ttΨ(0))

−
∫ 1

0
y1(∂tΨh(0)− ∂tΨ(0))

∣
∣
∣
∣≤Ch2/3‖φT‖L2

(∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1

)
.

According to Eqs. (4.69), (4.75), and the bound Eq. (4.78), this implies
∣
∣
∣
∣

∫ 1

0
(yh(T )− y(T))φT

∣
∣
∣
∣

≤C
(√

h|v(T )|+ h2/3(
∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1)

)
‖φT‖L2 .

Using now identity (4.59), we obtain the following result:

‖yh(T )− y(T )‖L2 ≤C
(√

h|v(T )|+ h2/3(
∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1)

)
,

which implies that, if v(T ) = 0,

‖yh(T )− y(T)‖L2 ≤Ch2/3
(∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1

)
,

whereas otherwise

‖yh(T )− y(T )‖L2 ≤C
(

h2/3
∥
∥(y0,y1)

∥
∥

H1
0 ×L2 +

√
h‖v‖H1

)
.
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4.4.2.4 Conclusion

Note that all the above estimates hold uniformly for T in bounded intervals of time.
This concludes the proof of Proposition 4.5. 	


4.4.3 Convergence of ∂t yh∂t yh∂tyh

Proposition 4.6. Under the assumptions of Theorem 4.7, taking (y0
h,y

1
h) as in

Eq. (4.58), we have the convergence (4.56).

Proof. The proof of Proposition 4.6 closely follows the one of Proposition 4.5 and
actually it is easier. We first begin by the following remark:

‖∂tyh(T )− ∂ty(T )‖H−1 = sup
φT∈H1

0
‖φT ‖H1

0
≤1

{∫ 1

0
∂t yh(T )φT −

∫ 1

0
∂t y(T )φT

}

.

Hence we fix φT ∈ H1
0 (0,1). We expand it in Fourier series:

φT =
∞

∑
k=1

φ̂kwk, with ‖φT ‖2
H1

0
=

∞

∑
k=1

k2π2|φ̂k|2. (4.80)

We thus introduce

φT,h =
N

∑
k=1

φ̂kwk.

Using the fact that ∂t yh belongs to the span of the N-first Fourier modes,

∫ 1

0
∂t yh(T )φT =

∫ 1

0
∂tyh(T )φT,h. (4.81)

Hence we are reduced to show
∣
∣
∣
∣

∫ 1

0
∂t y(T )φT −

∫ 1

0
∂t yh(T )φT,h

∣
∣
∣
∣

≤Ch2/3
(∥
∥(y0,y1)

∥
∥

H1
0×L2 + ‖v‖H1

)
‖φT ‖H1

0
. (4.82)

Again, we will express each of these quantities by an adjoint formulation and
then relate the proof of Eq. (4.82) to convergence results for the adjoint system.

Indeed,

∫ 1

0
∂t y(T )φT =

∫ T

0
v(t)∂xϕ(t,1)dt −

∫ 1

0
y0∂tϕ(0)+

∫ 1

0
y1ϕ(0), (4.83)
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where ϕ solves
⎧
⎨

⎩

∂tt ϕ − ∂xxϕ = 0, (t,x) ∈ (0,T )× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T ),
(ϕ(T ),∂tϕ(T )) = (φT ,0).

(4.84)

Then, introducing Φ(t) =
∫ T

t ϕ(s)ds, we easily check that Φ solves

⎧
⎨

⎩

∂tt Φ − ∂xxΦ = 0, (t,x) ∈ (0,T )× (0,1),
Φ(t,0) = Φ(t,1) = 0, t ∈ (0,T ),
(Φ(T ),∂tΦ(T )) = (0,−φT ).

(4.85)

Besides, identity (4.83) then becomes

∫ 1

0
∂t y(T )φT =

∫ T

0
∂t v(t)∂xΦ(t,1)dt +

∫ 1

0
y0∂tt Φ(0)−

∫ 1

0
y1∂tΦ(0). (4.86)

Similarly, we have

∫ 1

0
∂t yh(T )φT,h =−

∫ T

0
∂tv(t)

ΦN,h

h
(t)dt+

∫ 1

0
y0

h∂ttΦh(0)−
∫ 1

0
y1

h∂tΦh(0), (4.87)

where Φh solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt Φ j,h − 1
h2

(
Φ j+1,h +Φ j−1,h − 2Φ j,h

)
= 0,

(t, j) ∈ (0,T )×{1, . . . ,N},
Φ0,h(t) = ΦN+1,h(t) = 0, t ∈ (0,T ),
(Φh(T ),∂tΦh(T )) = (0,−φT,h).

(4.88)

Also remark that, since φT,h is formed by Fourier modes smaller than N, Φh has
this same structure. Due to the orthogonality properties of the Fourier basis and the
choice of the initial data in Eq. (4.58), we have

∫ 1

0
∂t yh(T )φT,h =−

∫ T

0
∂tv(t)

ΦN,h

h
(t)dt+

∫ 1

0
y0∂ttΦh(0)−

∫ 1

0
y1∂tΦh(0). (4.89)

We are thus in the setting of Proposition 3.8 since φT ∈ H1
0 and one easily checks

∥
∥φT −φT,h

∥
∥

L2 ≤Ch‖φT ‖H1
0
.

We thus obtain

sup
t∈[0,T ]

‖(∂tΦh,∂tt Φh)− (∂tΦ,∂tt Φ)‖L2×H−1 +

∥
∥
∥
∥∂xΦ(t,1)+

ΦN,h

h
(t)

∥
∥
∥
∥

L2(0,T)

≤Ch2/3‖φT ‖H1
0
. (4.90)
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Then, using the identities (4.86) and (4.89), we get
∣
∣
∣
∣

∫ 1

0
∂t y(T )φT −

∫ T

0
∂t yh(T )φT,h

∣
∣
∣
∣

≤Ch2/3‖φT ‖H1
0

(∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1

)
. (4.91)

Combined with Eq. (4.81), this easily yields Eq. (4.82). 	


4.4.4 More Regular Data

In this section, our goal is to explain what happens for smoother initial data (y0,y1)
and v, for instance, for (y0,y1) ∈ H2 ∩H1

0 (0,1)×H1
0 (0,1) and v ∈ H2(0,T ) with

v(0) = ∂t v(0) = 0. More precisely, we are going to prove the following:

Theorem 4.8. Let �0 ∈ {1,2} and fix (y0,y1) ∈ H�0+1
(0) (0,1)×H�0

(0)(0,1) and v ∈
H�0+1(0,T ) satisfying v(0) = ∂t v(0) = 0 if �0 = 1, or v(0) = ∂t v(0) = ∂tt v(0) = 0 if
�0 = 2. Let (y0

h,y
1
h) be as in Eq. (4.58) and yh the corresponding solution of Eq. (4.7)

with Dirichlet boundary conditions vh = v.
Then there exists a constant C > 0 independent of h > 0 and t ∈ [0,T ] such that:
• For the displacement yh, for all t ∈ [0,T ],

‖yh(t)− y(t)‖L2 ≤ Ch2(�0+1)/3
(
∥
∥(y0,y1)

∥
∥

H
�0+1
(0) ×H

�0
(0)

+ ‖v‖H�0+1(0,T )

)

+Ch1/2|v(t)|. (4.92)

• For the velocity ∂t yh, for all t ∈ [0,T ],

‖∂t yh(t)− ∂ty(t)‖H−1 ≤ Ch2(�0+1)/3
(
∥
∥(y0,y1)

∥
∥

H
�0+1
(0) ×H

�0
(0)

+ ‖v‖H�0+1(0,T)

)

+Ch3/2|∂tv(t)|. (4.93)

Proof. The proof follows the one of Theorem 4.7.
Let us then focus on the convergence of the displacement and follow the proof of

Proposition 4.5. We introduce φT ∈ L2(0,1), zT as in Eq. (4.66), Ψ the solution of
the homogeneous wave equation (4.68) with initial data (zT ,0) and, similarly, φT,h as
in Eq. (4.70), zT,h as in Eq. (4.74), and Ψh the solution of the discrete homogeneous
wave equation (4.76) with initial data (zT,h,0). Since zT ∈ H2

(0)(0,1) and ‖zT‖H2
(0)

�
‖φT‖L2 , applying (4.15), we get

∥
∥zT,h − zT

∥
∥

L2 ≤Ch2 ‖φT ‖L2 . (4.94)

Proposition 3.8 then applies and yields
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‖(∂tΨh,∂ttΨh)− (∂tΨ ,∂ttΨ)‖H−�0×H−�0−1 ≤Ch2(�0+1)/3‖φT ‖L2 .

In particular,
∣
∣
∣
∣

∫ 1

0
y0(∂ttΨh(0)− ∂ttΨ(0))−

∫ 1

0
y1(∂tΨh(0)− ∂tΨ(0))

∣
∣
∣
∣

≤Ch2(�0+1)/3‖φT‖L2

∥
∥(y0,y1)

∥
∥

H
�0+1
(0) ×H

�0
(0)

. (4.95)

According to identities (4.69) and (4.75), we shall then derive a convergence
estimate on ∫ T

0
∂t v

(

∂xΨ (t,1)+
ΨN,h(t)

h

)

dt.

In order to do that, we write ∂t v =
∫ t

0 ∂tt v and introduce

ξ (t) =
∫ T

t
Ψ(s)ds, ξh(t) =

∫ T

t
Ψh(s)ds,

so that
∫ T

0
∂t v

(

∂xΨ(t,1)+
ΨN,h(t)

h

)

dt =
∫ T

0
∂tt v

(

∂xξ (t,1)+
ξN,h(t)

h

)

dt.

Of course, ξ and ξh can be interpreted as solutions of continuous and discrete wave
equations: ξ solves

⎧
⎨

⎩

∂ttξ − ∂xxξ = 0, (t,x) ∈ (0,T )× (0,1)
ξ (t,0) = ξ (t,1) = 0, t ∈ (0,T ),
ξ (T ) = 0, ∂tξ (T ) =−zT ,

(4.96)

whereas ξh solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt ξ j,h − 1
h2

(
ξ j+1,h − 2ξ j,h + ξ j−1,h

)
= 0,

(t, j) ∈ (0,T )×{1, . . . ,N},
ξ0,h(t) = ξN+1,h(t) = 0, t ∈ (0,T ),
ξh(T ) = 0, ∂tξh(T ) =−zT,h.

(4.97)

Then, due to Eq. (4.94), the convergence results in Proposition 3.7 yield
∥
∥
∥
∥∂xξ (t,1)+

ξN,h(t)

h

∥
∥
∥
∥

L2(0,T )
≤Ch4/3‖φT‖L2 .
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This implies in particular that
∣
∣
∣
∣

∫ T

0
∂t v

(

∂xΨ(t,1)+
ΨN,h(t)

h

)

dt

∣
∣
∣
∣≤Ch4/3‖φT‖L2 ‖∂tt v‖L2(0,T) . (4.98)

Hence, if �0 = 1, i.e., (y0,y1) ∈ H2
(0)(0,1)× H1

(0)(0,1) and v ∈ H2(0,T ) with
v(0) = ∂tv(0) = 0, combining Eqs. (4.95) and (4.98) in identities (4.69) and (4.75),
we get

‖yh(T )− y(T )‖L2(0,1) ≤ Ch4/3
(
∥
∥(y0,y1)

∥
∥

H2
(0)×H1

(0)
+ ‖v‖H2(0,T)

)

+Ch1/2|v(T )|.
(4.99)

The Case �0 = 2. In this case, v ∈ H3(0,T ), we introduce ζ =
∫ T

t ξ and ζh =
∫ T

t ξh, so that

∫ T

0
∂t v

(

∂xΨ(t,1)+
ΨN,h(t)

h

)

dt =
∫ T

0
∂ttt v

(

∂xζ (t,1)+
ζN,h(t)

h

)

dt. (4.100)

Obviously, the function ζ can be characterized as the solution of a wave equation,
namely,

⎧
⎨

⎩

∂tt ζ − ∂xxζ = zT , (t,x) ∈ (0,T )× (0,1)
ζ (t,0) = ζ (t,1) = 0, t ∈ (0,T ),
ζ (T ) = 0, ∂tζ (T ) = 0.

(4.101)

We thus introduce wT solution of

∂xxwT = zT , on (0,1), wT (0) = wT (1) = 0, (4.102)

so that

ζ̃ = ζ −wT

solves
⎧
⎨

⎩

∂tt ζ̃ − ∂xxζ̃ = 0, (t,x) ∈ (0,T )× (0,1)
ζ̃ (t,0) = ζ̃ (t,1) = 0, t ∈ (0,T ),
ζ̃ (T ) = wT , ∂t ζ̃ (T ) = 0.

(4.103)

Doing that

∫ T

0
∂ttt v∂xζ (t,1)dt =

∫ T

0
∂ttt v∂xζ̃ (t,1)dt − ∂xwT (1)∂tt v(T ). (4.104)

Similar computations can be done for ζh. We thus obtain that

∫ T

0
∂ttt v

ζN,h(t)

h
dt =

∫ T

0
∂ttt v

ζ̃N,h(t)

h
dt − wN,T,h

h
∂tt v(T ), (4.105)
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where wT,h = (Δh)
−1zT,h and ζ̃h solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt ζ̃ j,h − 1
h2

(
ζ̃ j+1,h − 2ζ̃ j,h+ ζ̃ j−1,h

)
= 0,

(t, j) ∈ (0,T )×{1, . . . ,N},
ζ̃0,h(t) = ζ̃N+1,h(t) = 0, t ∈ (0,T )
ζ̃h(T ) = wT,h, ∂t ζ̃h(T ) = 0.

(4.106)

We now derive convergence estimates. Recall first that zT ∈ H2
(0)(0,1) and the con-

vergences (4.94). Since zT ∈ H2
(0), setting z̃T,h its projection on the N-first Fourier

modes, we have
∥
∥z̃T,h − zT

∥
∥

L2 ≤Ch2 ‖zT ‖H2
(0)

≤Ch2 ‖φT‖L2 . (4.107)

Setting w̃T,h = (Δh)
−1z̃T,h, Theorems 4.4 and 4.5 yield
∥
∥wT − w̃T,h

∥
∥

H1
0
≤ Ch2‖zT‖H2

(0)
≤Ch2‖φT‖L2 ,

∣
∣
∣
∣∂xwT (1)+

w̃N,T,h

h

∣
∣
∣
∣≤ Ch2‖zT‖H2

(0)
≤Ch2‖φT‖L2 .

(4.108)

According to the estimate (4.94), we thus have
∥
∥z̃T,h − zT,h

∥
∥

L2 ≤Ch2 ‖zT ‖H2
(0)

≤Ch2 ‖φT ‖L2 .

Using then estimate (4.21),
∣
∣
∣
∣
w̃N,T,h

h
− wN,T,h

h

∣
∣
∣
∣≤Ch2‖φT‖L2 ,

and thus
∣
∣
∣∂xwT (1)+

wN,T,h

h

∣
∣
∣≤Ch2 ‖φT ‖L2 . (4.109)

Besides, due to Eqs. (4.94) and (4.107),
∥
∥zT,h − z̃T,h

∥
∥

L2 ≤Ch2 ‖φT ‖L2 ,

which readily implies
∥
∥wT,h − w̃T,h

∥
∥

H1
0
≤Ch2 ‖φT‖L2 ,

and thus, by Eq. (4.108),
∥
∥wT,h −wT

∥
∥

H1
0
≤Ch2 ‖φT‖L2 .

Using then Proposition 3.6,
∥
∥
∥
∥∂xζ (·,1)+ ζN,h

h
(·)

∥
∥
∥
∥

L2(0,T )
≤Ch2 ‖φT ‖L2 . (4.110)
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Combined with the convergences (4.109) and (4.110), identities (4.100), (4.104),
and (4.105) then imply

∣
∣
∣
∣

∫ T

0
∂tv

(

∂xΨ (t,1)+
ΨN,h(t)

h

)

dt

∣
∣
∣
∣

≤Ch2 ‖φT ‖L2 ‖∂ttt v‖L2 +Ch2‖φT‖L2 |∂tt v(T )| ≤Ch2 ‖φT‖L2 ‖v‖H3 . (4.111)

Combining Eqs. (4.95) and (4.111) in identities (4.69) and (4.75), we get
Eq. (4.92) when �0 = 2.

The proof of the estimate (4.93) on the rate of convergence for ∂t yh relies on very
similar estimates which are left to the reader. 	


4.5 Further Convergence Results

As a corollary to Theorems 4.6 and 4.7, we can give convergence results for any
sequence of discrete initial data (y0

h,y
1
h) and boundary data vh satisfying

lim
h→0

∥
∥(y0

h,y
1
h)− (y0,y1)

∥
∥

L2×H−1 = 0 and lim
h→0

‖vh − v‖L2(0,T) = 0. (4.112)

Proposition 4.7. Let (y0,y1) ∈ L2(0,1)× H−1(0,1) and v ∈ L2(0,T ). Then con-
sider sequences of discrete initial data (y0

h,y
1
h) and vh satisfying Eq. (4.112). Then

the solutions yh of Eq. (4.7) with initial data (y0
h,y

1
h) and boundary data vh con-

verge strongly in C([0,T ];L2(0,1))∩C1([0,T ];H−1(0,1)) towards the solution y of
Eq. (4.1) with initial data (y0,y1) and boundary data v as h → 0.

Proof. Similarly as in the proof of Proposition 3.5, this result is obtained by us-
ing the density of H1

0 (0,T ) in L2(0,T ) and of H1
0 (0,1)× L2(0,1) in L2(0,1)×

H−1(0,1). We then use Theorem 4.7 for smooth solutions and the uniform stability
results in Theorem 4.6 to obtain Proposition 4.7. Details of the proof are left to the
reader. 	


Another important corollary of Theorem 4.7 is the fact that, if the initial data
(y0,y1) belong to H1

0 (0,1)×L2(0,1) and the Dirichlet data v lies in H1
0 (0,T ), any

sequence of discrete initial (y0
h,y

1
h) and Dirichlet data vh satisfying

∥
∥(y0

h,y
1
h)− (y0,y1)

∥
∥

L2×H−1 + ‖v− vh‖L2(0,T) ≤C0hθ , (4.113)

for some constant C0 uniform in h> 0 and θ > 0, yield solutions yh of Eq. (4.7) such
that yh(T ) approximates at a rate hmin{2/3,θ} the state y(T ), where y is the continuous
trajectory corresponding to initial data (y0,y1) and source term v.

Proposition 4.8. Let (y0,y1) ∈ H1
0 (0,1)×L2(0,1) and v ∈ H1

0 (0,T ) and consider
sequences (y0

h,y
1
h) and vh satisfying Eq. (4.113).
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Denote by yh (respectively y) the solution of Eq. (4.7) (resp. (4.1)) with initial
data (y0

h,y
1
h) (resp. (y0,y1)) and Dirichlet boundary data vh, (resp. v).

Then the following estimates hold:

‖(yh(T ),∂t yh(T ))− (y(T ),∂t y(T ))‖L2×H−1

≤Ch2/3
(∥
∥(y0,y1)

∥
∥

H1
0×L2 + ‖v‖H1

0 (0,T)

)
+CC0hθ . (4.114)

Remark 4.4. In the convergence result Eq. (4.114), we keep explicitly the depen-
dence in the constant C0 coming into play in Eq. (4.113). In many situations, this
constant can be chosen proportional to

∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1

0 (0,T)
. In particular,

in the control theoretical setting of Chap. 1 and its application to the wave equation
in Sect. 1.7, this dependence on C0 is important to derive Assumption 1 and more
specifically estimate (1.29).

Proof. The proof follows the one of Proposition 3.7. The idea is to compare y with
ỹh, the solution of Eq. (4.7) constructed in Theorem 4.7 and then to compare ỹh and
yh by using Propositions 4.3 and 4.6. 	

Remark 4.5. Note that under the assumptions of Proposition 4.8, the trajectories
yh converge to y in the space C([0,T ];L2(0,1)) ∩C1([0,T ];H−1(0,1)) with the
rates (4.54)–(4.56) in addition to the error C0hθ .

Of course, Proposition 4.8 is based on the convergence result obtained in Theo-
rem 4.7. Similar results can be stated based on Theorem 4.8, for instance:

Proposition 4.9. Let �0 ∈ {0,1,2}. Let (y0,y1) ∈ H�0+1
(0) (0,1)×H�0

(0)(0,1) and v ∈
H�0+1

0 (0,T ) and consider sequences (y0
h,y

1
h) and vh satisfying Eq. (4.113).

Let (y0
h,y

1
h) as in Eq. (4.58) and yh the corresponding solution of Eq. (4.7) with

Dirichlet boundary conditions vh.
Denote by yh (respectively y) the solution of Eq. (4.7) (resp. Eq. (4.1)) with initial

data (y0
h,y

1
h) (resp. (y0,y1)) and Dirichlet boundary data vh (resp. v).

Then the following estimates hold:

‖(yh(T ),∂t yh(T ))− (y(T ),∂t y(T ))‖L2×H−1

≤Ch2(�0+1)/3
(
∥
∥(y0,y1)

∥
∥

H
�0+1
(0) ×H

�0
(0)

+ ‖v‖
H
�0+1
0 (0,T )

)

+CC0hθ . (4.115)

Remark 4.6. Proposition 4.9 can then be slightly generalized for �0 ∈ [0,2] by inter-
polation.

4.6 Numerical Results

In this section, we present numerical simulations and evidences of Proposition 4.9.
Since our main interest is in the non-homogeneous boundary condition, we focus
on the case (y0,y1) = (0,0) and (y0

h,y
1
h) = (0,0).
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We fix T = 2. This choice is done for convenience to explicitly compute the
solution y of Eq. (4.1) with initial data (0,0) and source term v. Indeed, for T = 2,
multiplying the equation (4.1) by ϕ solution of Eq. (3.2) with initial data (ϕ0,ϕ1) ∈
H1

0 (0,1)×L2(0,1) and using the two-periodicity of the solutions of the wave equa-
tion (3.2), we obtain

∫ 1

0
y(2,x)ϕ1(x)dx−

∫ 1

0
∂t y(2,x)ϕ0(x)dx =

∫ 2

0
v(t)∂xϕ(t,1)dt.

Based on this formula, taking successively (ϕ0,ϕ1) = (wk,0) and (0,wk) and solv-
ing explicitly the equation (3.2) satisfied by ϕ , we obtain

y(2) = ∑
k

(√
2(−1)k

∫ 2

0
v(t)sin(kπt)dt

)

wk,

∂t y(2) = ∑
k

(√
2(−1)k+1kπ

∫ 2

0
v(t)cos(kπt)dt

)

wk.

We will numerically compute the reference solutions using these formulae by re-
stricting the sums over k ∈ {1, . . . ,Nref} for a large enough Nref. We will choose
Nref = 300 for N varying between 50 and 200.

We then compute numerically the solution yh of Eq. (4.7) with initial data
(y0

h,y
1
h) = (0,0) and source term v(t).

Of course, we also discretize the equation (4.7) in time. We do it in an explicit
manner similarly as in Eq. (3.45). If yk

h denotes the approximation of yh solution of
Eq. (4.7) at time kΔ t, we solve

yk+1
h = 2yk

h − yk−1
h − (Δ t)2Δhyk

h −
(

Δ t
h

)2

Fk, Fk =

⎛

⎜
⎜
⎜
⎝

0
...
0

v(kΔ t)

⎞

⎟
⎟
⎟
⎠
.

The time discretization parameter Δ t is chosen such that the CFL condition is
Δ t/h = 0.3. With such low CFL condition, the effects of the time-discretization
can be neglected.

We run the tests for several choices of v and for N ∈ {50, . . . ,200}:

v1(t) = sin(πt)3, t ∈ (0,2), v2(t) = sin(πt)2, t ∈ (0,2),

v3(t) = sin(πt), t ∈ (0,2), v4(t) = t, t ∈ (0,2),

v5(t) = t sin(πt), t ∈ (0,2).

In each case, we plot the L2-norm of the error on the displacement and the H−1-norm
of the error on the velocity versus N in logarithmic scales: Fig. 4.2 corresponds to
the data v1. We then compute the slopes of the linear regression for the L2-error
on the displacement and for the H−1-error on the velocity. We put all these data in
Table 4.1.
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Fig. 4.2 Plots of the errors versus N in logarithmic scales for v1. Left, the L2(0,1)-error
‖yh(T )− y(T )‖L2 for T = 2: the slope of the linear regression is −1.96. Right, the H−1(0,1)-error
‖∂t yh(T )−∂t y(T )‖H−1 for T = 2: the slope of the linear regression is −1.98.

Table 4.1 Numerical investigation of the convergence rates.

Data Computed L2 slope Computed H−1 slope Exp. L2 slope Exp. H−1 slope
v1 −1.96 −1.98 −2 −2
v2 −1.87 −1.70 −5/3− −5/3−
v3 −0.99 −0.95 −1− −1−
v4 −0.97 −0.95 −1/2 −1−
v5 −1.82 −1.47 −5/3− −3/2

Columns 2 and 3 give the slopes observed numerically (respectively, for the L2-error on the dis-
placement, for the H−1-error on the velocity), whereas columns 4 and 5 provide the slopes (re-
spectively, for the L2-error on the displacement, for the H−1-error on the velocity) expected from
our theoretical results

Table 4.1 is composed of five columns. The first one is the data under considera-
tion. The second and third ones, respectively, are the computed slopes of the linear
regression of, respectively, the L2-error on the displacement and for the H−1-error
on the velocity. The fourth and fifth columns are the rates expected from the analysis
of the data v and Proposition 4.9:

• v1 ∈ H3
0 (0,2): we thus expect from Eq. (4.115) a convergence of the order of h2.

This is indeed what is observed numerically.
• v2 is smooth but its boundary condition vanishes only up to order 1. Hence

v2 ∈H5/2−ε
0 (0,2) for all ε > 0 due to the boundary conditions. Using Remark 4.6,

the expected slopes are −5/3−, which is not far from the slopes computed
numerically.

• The same discussion applies for v3, which belongs to H3/2−ε
0 (0,2) for all ε > 0.

Hence the expected slopes are −1−, which again are confirmed by the numerical
experiments.

• v4 almost belongs to H3/2−ε
0 (0,2) except for what concerns its nonzero value at

t = 2. But the value of v is an impediment for the order of convergence only for
the displacement; see Theorem 4.8. We therefore expect a convergence of the
L2-norm of the error on the displacement like

√
h, whereas the convergence of

the H−1-norm of the error on the velocity is expected to go much faster, as h1− .
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The numerical test indicates a good accuracy on the convergence of the H−1-
norm on the velocity error. The convergence of the L2-norm of the displacement
is better than expected.

• v5 is smooth and satisfies v5(0) = ∂t v5(0) = 0 and v5(2) = 0 but ∂tv5(2) �= 0.
According to Theorem 4.8, we thus expect that the L2-norm of the error on the

displacement behaves as when v5 belongs to H5/2−
0 (0,1), i.e., as h5/3− . However,

the H−1-norm of the error on the velocity should behave like h3/2 according to
Eq. (4.93). This is completely consistent with the slopes observed numerically.

In each case, the numerical results indicate good accuracy of the theoretical
results derived in Theorem 4.8 and Proposition 4.9.
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