
Chapter 3
Convergence of the Finite-Difference Method
for the 1−d Wave Equation with Homogeneous
Dirichlet Boundary Conditions

3.1 Objectives

This chapter of the book is devoted to the study of the convergence of the numerical
scheme

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt ϕ j,h − 1
h2

(
ϕ j+1,h − 2ϕ j,h+ϕ j−1,h

)
= 0,

(t, j) ∈ (0,T )×{1, . . . ,N},
ϕ0,h(t) = ϕN+1,h(t) = 0, t ∈ (0,T ),
(ϕh(0),∂tϕh(0)) = (ϕ0h,ϕ1h),

(3.1)

towards the continuous wave equation
⎧
⎨

⎩

∂ttϕ − ∂xxϕ = 0, (t,x) ∈ (0,T )× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T ),
(ϕ(0),∂tϕ(0)) = (ϕ0,ϕ1).

(3.2)

Of course, first of all, one needs to explain how discrete and continuous solutions
can be compared. This will be done in Sect. 3.2. In Sect. 3.3, we will present our
main convergence result. We shall then present some further convergence results in
Sect. 3.4 and illustrate them in Sect. 3.5.

3.2 Extension Operators

We first describe the extension operators we shall use. We will then explain how the
obtained results can be interpreted in terms of the more classical extension operators.
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60 3 Convergence for Homogeneous Boundary Conditions

3.2.1 The Fourier Extension

For h> 0, given a discrete function ah =(a j,h) j∈{1,...,N} (with N+1= 1/h), since the
sequence wk

h is an orthonormal basis for the h〈 ·, ·〉�2(RN )-norm due to Lemma 2.1,
there exist coefficients âk such that

ah =
N

∑
k=1

âkwk
h, [recall that wk

j,h =
√

2sin(kπ jh)] (3.3)

in the sense that, for all j ∈ {1, . . . ,N},

a j,h =
N

∑
k=1

âk

√
2sin(kπ jh). (3.4)

Of course, this yields a natural Fourier extension denoted by Fh for discrete func-
tions ah given by Eq. (3.3):

Fh(ah)(x) =
N

∑
k=1

âk

√
2sin(kπx), x ∈ (0,1). (3.5)

The advantage of this definition is that now Fh(ah) is a smooth function of x.
The energy of a solution ϕh of Eq. (3.1) at time t, given by Eq. (2.2), is then

equivalent, uniformly with respect to h > 0, to the H1
0 (0,1)× L2(0,1)-norm of

(Fh(ϕh),Fh(ϕ ′
h)). This issue will be discussed in Proposition 3.3 below.

Another interesting feature of this Fourier extension is that, due to the discrete
orthogonality properties of the eigenvectors wk proved in Lemma 2.1 and their usual
L2(0,1)-orthogonality, i.e.,

∫ 1
0 wk(x)w�(x)dx = δk,� for all k, � ∈ N, for all discrete

functions ah,bh, we have

h
N

∑
j=1

a j,hb j,h =

∫ 1

0
Fh(ah)Fh(bh)dx.

This fact will be used to simplify some expressions.

3.2.2 Other Extension Operators

When using finite-difference (or finite element) methods, the Fourier extension is
not the most natural one. Given a discrete function ah = (a j,h) j∈{1,...,N} (with N +
1 = 1/h), consider the classical extension operators Ph and Qh defined by

Ph(ah)(x) = a j,h +

(
a j+1,h − a j,h

h

)

(x− jh),

for x ∈ [ jh,( j+ 1)h), j ∈ {0, . . . ,N}, (3.6)
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Qh(ah)(x) =

{
a j,h for x ∈ [( j− 1/2)h,( j+ 1/2)h), j ∈ {1, . . . ,N},
0 for x ∈ [0,h/2)∪ [(N+ 1/2)h,1],

(3.7)

with the conventions a0,h = aN+1,h = 0.
The range of the extension operator Ph is the set of continuous, piecewise affine

functions with (C1) singularities in the points jh and vanishing on the boundary. This
corresponds to the most natural approximation leading to H1

0 (0,1) functions and to
the point of view of the P1 finite element method. By the contrary, Qh provides the
simplest piecewise constant extension of the discrete function which, obviously, lies
in L2(0,1) but not in H1

0 (0,1).
Note that the extensions Fh(ah) obtained using the Fourier representation (3.5)

and Ph(ah) do not coincide. However, they are closely related as follows:

Proposition 3.1. For each h = 1/(N+1)> 0, let ah be a sequence of discrete func-
tions.

Then, for s ∈ {0,1}, the sequence of Fourier extensions (Fh(ah))h>0 converges
strongly (respectively weakly) in Hs(0,1) if and only if the sequence (Ph(ah))h>0

converges strongly (respectively weakly) in Hs(0,1). Besides, if one of these se-
quences converge, then they have the same limit.

Moreover, there exists a constant C independent of h > 0 such that

1
C
‖Fh(ah)‖L2 ≤ ‖Ph(ah)‖L2 ≤ C‖Fh(ah)‖L2 , (3.8)

1
C
‖Fh(ah)‖H1

0
≤ ‖Ph(ah)‖H1

0
≤ C‖Fh(ah)‖H1

0
. (3.9)

Proof. Let us begin with the case s = 0.
Let us first compare the L2(0,1)-norms of the functions Fh(ah) and Ph(ah).

From the orthogonality properties of wk (see Lemma 2.1), we have

‖Fh(ah)‖2
L2(0,1) =

N

∑
k=1

|âk,h|2 = h
N

∑
j=1

|a j,h|2. (3.10)

Computing the L2(0,1)-norm of Ph(ah) is slightly more technical:

∫ 1

0
|Ph(ah)(x)|2 dx =

N

∑
j=0

∫ h

0

∣
∣
∣
∣a j,h + x

(
a j+1,h − a j,h

h

)∣
∣
∣
∣

2

dx

= h
N

∑
j=0

[

a2
j,h + a j,h(a j+1,h − a j,h)+

1
3
(a j+1,h − a j,h)

2
]

=
h
3

N

∑
j=0

(a2
j,h + a2

j+1,h+ a j,ha j+1,h)

=
h
6

N

∑
j=0

(a2
j,h + a2

j+1,h+ 2a j,ha j+1,h)+
h
6

N

∑
j=0

(a2
j,h + a2

j+1,h)

=
h
6

N

∑
j=0

(a j,h + a j+1,h)
2 +

h
3

N

∑
j=1

|a j,h|2. (3.11)
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It follows that the L2(0,1)-norms of Fh(ah) and Ph(ah) are equivalent, hence
implying Eq. (3.8), and then the boundedness properties for these sequences are
equivalent.

This also implies that the sequence (Fh(ah))h>0 is a Cauchy sequence in L2(0,1)
if and only if the sequence (Ph(ah)) is a Cauchy sequence in L2(0,1), and then one
of these sequences converges strongly if and only if the other one does.

To guarantee that these sequences have the same limit when they converge, we
have to check that their difference, if uniformly bounded, weakly converges to zero
when h → 0.

Let ψ denote a smooth test function. On one hand, we have

∫ 1

0
Fh(ah)(x)ψ(x)dx =

N

∑
k=1

âk,h

∫ 1

0
wk(x)ψ(x)dx.

On the other one, we have

∫ 1

0
Ph(ah)(x)ψ(x)dx =

N

∑
j=1

∫ ( j+1)h

jh

(

a j,h +
a j+1,h − a j,h

h
(x− jh)

)

ψ(x)dx

= h
N

∑
j=1

a j,hψ̃ j,h,

with

ψ̃ j,h =
1
h

∫ jh

( j−1)h
ψ(x)

(
x− ( j− 1)h

h

)

dx+
1
h

∫ ( j+1)h

jh
ψ(x)

(

1− x− jh
h

)

dx

=
1
h

∫ ( j+1)h

( j−1)h
ψ(x)

(

1− |x− jh|
h

)

dx.

Using Eq. (3.4), we obtain

∫ 1

0
Ph(ah)(x)ψ(x)dx =

N

∑
k=1

âk,h

(

h
N

∑
j=1

wk
j ψ̃ j,h

)

. (3.12)

Therefore,

∫ 1

0
(Ph(ah)(x)−Fh(ah)(x)) ψ(x)dx

=
N

∑
k=1

âk,h

(

h
N

∑
j=1

wk
j ψ̃ j,h −

∫ 1

0
wk(x)ψ(x)dx

)

. (3.13)

Now, fix �∈N, and choose ψ(x) =w�(x) =
√

2sin(�πx). In this case, using Taylor’s
formula, we easily check that
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sup
j∈{1,...,N}

|ψ̃ j,h −ψ( jh)| ≤ �hπ .

Since, for �≤ N, see Lemma 2.1,

∫ 1

0
wk(x)w�(x)dx = h

N

∑
j=1

wk
jw

�( jh) = δ �
k ,

we then obtain from Eq. (3.13) that for all � ∈ N,

∫ 1

0
(Ph(ah)(x)−Fh(ah)(x)) w�(x)dx −→

h→0
0.

Since the set {w�}l∈N spans the whole space L2(0,1), if one of the sequences
(Fh(ah)) or (Ph(ah)) converges weakly in L2(0,1), then the other one also con-
verges weakly in L2(0,1) and has the same limit.

This completes the proof in the case s = 0.

We now deal with the case s = 1. First remark that

∫ 1

0
|∂xFh(ah)|2dx =

N

∑
k=1

|âk,h|2k2π2 (3.14)

from the Fourier orthogonality properties, and, using Lemma 2.1,

∫ 1

0
|∂xPh(ah)(x)|2dx = h

N

∑
j=0

(
a j+1,h − a j,h

h

)2

=
N

∑
k=1

λk(h)|âk,h|2. (3.15)

Since c1k2 ≤ λk(h)≤ c2k2, these two norms are equivalent, hence implying Eq. (3.9),
and therefore the H1

0 (0,1)-boundedness properties of the sequences (Fh(ah)) and
(Ph(ah)) are equivalent.

If one of these sequences weakly converges in H1
0 (0,1), then the other one is

bounded in H1
0 (0,1) and weakly converges in L2(0,1) to the same limit from the

previous result and then also weakly converges in H1
0 (0,1).

Besides, if one of these sequences strongly converges in H1
0 (0,1), it is a Cauchy

sequence in H1
0 (0,1), and then the other one also is a Cauchy sequence in H1

0 (0,1)
and therefore also strongly converges. ��

Similarly, one can prove the following:

Proposition 3.2. For each h = 1/(N + 1) > 0, let ah be a sequence of discrete
functions.

Then the sequence of Fourier extensions (Fh(ah))h>0 converges strongly (respec-
tively weakly) in L2(0,1) if and only if the sequence (Qh(ah))h>0 converges strongly
(respectively weakly) in L2(0,1). Besides, when they converge, they have the same
limit.
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Moreover, there exists a constant C independent of h > 0 such that

1
C
‖Fh(ah)‖L2 ≤ ‖Qh(ah)‖L2 ≤C‖Fh(ah)‖L2 . (3.16)

The proof is very similar to the previous one and is left to the reader.

The above propositions show that the Fourier extension plays the same role as
the classical extensions by continuous piecewise affine functions or by piecewise
constant functions when considering convergence issues. We make the choice of
considering this Fourier extension, rather than the usual ones, since it has the ad-
vantage of being smooth.

The following result is also relevant:

Proposition 3.3. There exists a constant C independent of h > 0 such that for all
solutions ϕh of Eq. (3.1):

1
C
‖(Fh(ϕh),Fh(∂tϕh)‖H1

0×L2 ≤ Eh[ϕh]≤C‖(Fh(ϕh),Fh(∂tϕh)‖H1
0×L2 (3.17)

Proof. The discrete energy of a solution ϕh of Eq. (3.1) at time t exactly coincides
with the H1

0 (0,1)×L2(0,1)-norm of (Ph(ϕh),Qh(∂tϕh)) at time t. Using the equiv-
alences (3.9) and (3.16), we immediately obtain Eq. (3.17). ��

In the following, we will often omit the operator Fh from explicit notations
and directly identify the discrete function ah = (a j,h) j∈{1,...,N} with its continuous
Fourier extension Fh(ah).

3.3 Orders of Convergence for Smooth Initial Data

In this section, we consider a solution ϕ of Eq. (3.2) with initial data (ϕ0,ϕ1) ∈
H2 ∩H1

0 (0,1)×H1
0 (0,1). The solution ϕ of Eq. (3.2) then belongs to the space

ϕ ∈C([0,T ];H2 ∩H1
0 (0,1))∩C1([0,T ];H1

0 (0,1))∩C2([0,T ];L2(0,1)).

In order to prove it, one can remark that the energy

E[ϕ ](t) =
∫ 1

0

(|∂tϕ(t,x)|2 + |∂xϕ(t,x)|2) dx

is constant in time for solutions of Eq. (3.2) with initial data in H1
0 (0,1)×L2(0,1).

We then apply it to ∂tϕ , which is a solution of Eq. (3.2) with initial data (ϕ1,∂xxϕ0)∈
H1

0 (0,1)×L2(0,1).
The goal of this section is to prove the following result:

Proposition 3.4. Let (ϕ0,ϕ1) ∈ H2 ∩H1
0 (0,1)×H1

0 (0,1). Then there exist a con-
stant C =C(T ) independent of (ϕ0,ϕ1) and a sequence (ϕ0

h ,ϕ
1
h ) of discrete initial

data such that for all h > 0,
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∥
∥(ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 ≤Ch2/3

∥
∥(ϕ0,ϕ1)

∥
∥

H2∩H1
0×H1

0
(3.18)

and the solutions ϕ of Eq. (3.2) with initial data (ϕ0,ϕ1) and ϕh of Eq. (3.1) with
initial data (ϕ0

h ,ϕ
1
h ) satisfy, for all h > 0 and t ∈ [0,T ],

‖(ϕh(t),∂tϕh(t))− (ϕ(t),∂tϕ(t))‖H1
0 ×L2 ≤Ch2/3

∥
∥(ϕ0,ϕ1)

∥
∥

H2∩H1
0 ×H1

0
, (3.19)

and
∥
∥
∥
∥

ϕN,h(·)
h

+ ∂xϕ(·,1)
∥
∥
∥
∥

L2(0,T )
≤Ch2/3

∥
∥(ϕ0,ϕ1)

∥
∥

H2∩H1
0 ×H1

0
. (3.20)

Remark 3.1. The result in Eq. (3.18) may appear somewhat surprising since when
approximating (ϕ0,ϕ1) ∈ H2 ∩ H1

0 (0,1)× H1
0 (0,1) by the classical continuous

piecewise affine approximations or truncated Fourier series, the approximations
(ϕ0

h ,ϕ
1
h ) satisfy

∥
∥(ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 ≤Ch

∥
∥(ϕ0,ϕ1)

∥
∥

H2∩H1
0×H1

0
(3.21)

instead of Eq. (3.18).
However, the result in [45] indicates that, even if the convergence of the initial

data is as in Eq. (3.21), one cannot obtain a better result than Eq. (3.19). This is due
to the distance between the continuous and space semi-discrete semigroups gener-
ated by Eqs. (3.2) and (3.1), respectively, and their purely conservative nature. To
be more precise, when looking at the dispersion diagram, the eigenvalues of the
semi-discrete wave equation (3.1) are of the form

√
λk(h) =

2
h

sin

(
kπh

2

)

,

whereas the ones of the continuous equation (3.2) are
√

λk = kπ . In particular, for
any ε > 0,

sup
k≤h−2/3+ε

{∣
∣
∣
√

λk(h)− kπ
∣
∣
∣

}
= 0, while sup

k≥h−2/3−ε

{∣
∣
∣
√

λk(h)− kπ
∣
∣
∣

}
= ∞.

Remark 3.2. The main issue in Proposition 3.4 is the estimate (3.20). Estimates
(3.19) are rather classical in the context of finite element methods; see, e.g., [2]
and the references therein.

Proof. Let (ϕ0,ϕ1) ∈ H2 ∩H1
0 (0,1)×H1

0 (0,1). Expanding these initial data on the
Fourier basis (recall that wk(x) =

√
2sin(kπx)), we have

ϕ0 =
∞

∑
k=1

âkwk, ϕ1 =
∞

∑
k=1

b̂kwk.
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The solution ϕ of Eq. (3.2) can then be computed explicitly in Fourier:

ϕ(t,x) =
∞

∑
|k|=1

ϕ̂k exp(iμkt)w|k|, μk = kπ , ϕ̂k =
1
2

(

â|k|+
ib̂|k|
μk

)

.

And the condition (ϕ0,ϕ1) ∈ H2 ∩H1
0 (0,1)×H1

0 (0,1) can be written as

∞

∑
k=1

(
k4
∣
∣ϕ̂0

k

∣
∣2 + k2

∣
∣ϕ̂1

k

∣
∣2
)
< ∞ or, equivalently,

∞

∑
|k|=1

k4|ϕ̂k|2 < ∞, (3.22)

and both these quantities are equivalent to the H2 ∩H1
0 (0,1)×H1

0 (0,1)-norm of the
initial data (ϕ0,ϕ1).

We now look for a solution ϕh of Eq. (3.1) on the Fourier basis. Using that
the functions wk correspond to eigensolutions of the discrete Laplace operator
for k ≤ N, one easily checks that any solution of Eq. (3.1) can be written as
∑N
|k|=1 akw|k| exp(iμk(h)t) with μk(h) = 2sin(kπh/2)/h. Keeping this in mind, we

take

ϕh(t) =
n(h)

∑
|k|=1

ϕ̂k exp(iμk(h)t)w
|k|, (3.23)

where n(h) is an integer smaller than N that will be fixed later on.
We now compute how this solution approximates ϕ :

‖ϕh(t)−ϕ(t)‖2
H1

0

=
∞

∑
|k|=n(h)+1

k2π2 |ϕ̂k|2 +
n(h)

∑
|k|=1

k2π2 |ϕ̂k|2 4sin2
(
(μk(h)− μk)t

2

)

≤ C
n(h)2

∞

∑
|k|=n(h)+1

k4π4 |ϕ̂k|2 +C
n(h)

∑
|k|=1

(k4h4)k4π4 |ϕ̂k|2

≤C

(

n(h)4h4 +
1

n(h)2

)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0×H1

0
, (3.24)

where we have used that for some constant C independent of h > 0 and k ∈
{1, . . . ,N},

|μk(h)− μk|=
∣
∣
∣
∣
2
h

sin

(
kπh

2

)

− kπ
∣
∣
∣
∣≤Ck3h2,

and
∣
∣
∣
∣sin

(
(μk(h)− μk)t

2

)∣
∣
∣
∣≤CT |μk(h)− μk|.
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The same can be done for ∂tϕh:

‖∂tϕh(t)− ∂tϕ(t)‖2
L2

=
∞

∑
|k|=n(h)+1

k2π2 |ϕ̂k|2 +
n(h)

∑
|k|=1

|ϕ̂k|2
∣
∣
∣μk(h)e

iμk(h)t − μkeiμkt
∣
∣
∣
2

≤C

(

n(h)4h4 +
1

n(h)2

)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0×H1

0
, (3.25)

where we used that

∣
∣
∣μk(h)e

iμk(h)t − μkeiμkt
∣
∣
∣≤
∣
∣
∣
∣2kπ sin

(
(μk(h)− μk)t

2

)∣
∣
∣
∣+ |μk(h)− μk| ≤Ck4h2.

Estimates (3.24) and (3.25) then imply Eqs. (3.18) and (3.19) when choosing n(h)�
h−2/3, a choice that, as we will see below, also optimizes the convergence of the
normal derivatives.

We shall now prove Eq. (3.20). This will be done in two main steps, computing
separately the integrals

I1 =

∫ T

0

∣
∣
∣
∣∂xϕh(t,1)+

ϕN,h(t)

h

∣
∣
∣
∣

2

dt, and I2 =

∫ T

0
|∂xϕ(t,1)− ∂xϕh(t,1)|2 dt.

(3.26)

Estimates on I1. We shall first write the admissibility inequality proved in Theo-
rem 2.1 in terms of Fourier series.

Consider a solution φh of Eq. (3.1) and write it as

φh(t) =
N

∑
|k|=1

φ̂k,heiμk(h)tw |k|,

where

φ̂k,h =
1
2

(

φ̂0
k,h +

φ̂1
k,h

iμk(h)

)

.

The energy of the solution is then given by

Eh = 2
N

∑
|k|=1

λ|k|(h)
∣
∣φ̂k,h

∣
∣2 .

Hence the admissibility result in Theorem 2.1 reads as follows: for any sequence
(φ̂k,h),

∫ T

0

∣
∣
∣
∣
∣

N

∑
|k|=1

φ̂k,heiμk(h)t
w|k|

N

h

∣
∣
∣
∣
∣

2

dt ≤C
N

∑
|k|=1

λ|k|(h)
∣
∣φ̂k,h

∣
∣2 . (3.27)
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But the difference ∂xϕh(t,1)+ϕN,h/h reads as

∂xϕh(t,1)+
ϕN,h

h
(t) =

n(h)

∑
|k|=1

ϕ̂keiμk(h)t

(

∂xw|k|(1)+
w|k|

N

h

)

=
n(h)

∑
|k|=1

ϕ̂k

(

1+
h∂xw|k|(1)

w|k|
N

)

eiμk(h)t
w|k|

N

h
.

Thus, applying Eq. (3.27), we get

∫ T

0

∣
∣
∣
∣∂xϕh(t,1)+

ϕN,h(t)

h

∣
∣
∣
∣

2

dt ≤C
n(h)

∑
|k|=1

λ|k|(h) |ϕ̂k|2
(

1+
h∂xw|k|(1)

w|k|
N

)2

. (3.28)

But for all k ∈ {1, . . . ,N},

h∂xwk(1)

wk
N

=− kπhcos(kπ)
sin(kπh)cos(kπ)

=− kπh
sin(kπh)

,

and we thus have, for some explicit constant C independent of h and k, that for all
h > 0 and k ∈ {1, . . . ,N},

∣
∣
∣
∣1+

h∂xwk(1)

wk
N

∣
∣
∣
∣≤C(kπh)2.

Plugging this last estimate into Eq. (3.28) and using λk(h)≤Ck2, we obtain

I1 =
∫ T

0

∣
∣
∣
∣∂xϕh(t,1)+

ϕN,h(t)

h

∣
∣
∣
∣

2

dt ≤ C
n(h)

∑
|k|=1

|ϕ̂k|2 k6h4

≤ Cn(h)2h4
n(h)

∑
|k|=1

k4 |ϕ̂k|2

≤ Cn(h)2h4
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0 ×H1

0
. (3.29)

Estimates on I2. The idea now is to see ϕh as a solution of Eq. (3.1) up to a per-
turbation. Note that this is a classical technique in numerical analysis and more
particularly in a posteriori error analysis.

Indeed, recall that

ϕh =
n(h)

∑
|k|=1

ϕ̂keiμk(h)tw|k|(x).

This implies that

∂tt ϕh − ∂xxϕh = fh, (t,x) ∈ R× (0,1)
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with

fh(x, t) =
n(h)

∑
|k|=1

ϕ̂keiμk(h)tw|k|(x)
(−λ|k|(h)+ k2π2) .

In particular, for all t ∈ R,

‖ fh(t)‖2
L2(0,1) ≤

n(h)

∑
|k|=1

k4π4 |ϕ̂k|2
(

1− 4
k2π2h2 sin2

(
kπh

2

))2

≤ C
n(h)

∑
|k|=1

k4π4 |ϕ̂k|2 (kπh)4

≤ Cn(h)4h4
n(h)

∑
|k|=1

k4π4 |ϕ̂k|2

≤ Cn(h)4h4
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0×H1

0
,

where the constant C is independent of h > 0.
Now, consider zh = ϕh −ϕ . Then zh satisfies the following system of equations:

⎧
⎨

⎩

∂tt zh − ∂xxzh = fh, t ∈R,x ∈ (0,1)
zh(t,0) = zh(t,1) = 0, t ∈R,
zh(0,x) = z0

h(x), ∂t zh(0,x) = z1(x), 0 < x < 1,
(3.30)

with (z0
h,z

1
h) = (ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1), which satisfies, according to Eqs. (3.24) and

(3.25) for t = 0,

∥
∥(z0

h,z
1
h)
∥
∥2

H1
0×L2 ≤C

(
1

n(h)2 + n(h)4h4
)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0 ×H1

0
.

But this is now the continuous wave equation and one can easily check that the
normal derivative of zh then satisfies the following admissibility result: for some
constant C independent of h > 0,

∫ T

0
|∂xzh(t,1)|2 dt ≤C

(
‖ fh‖2

L1(0,T ;L2(0,1)) +
∥
∥(z0

h,z
1
h)
∥
∥2

H1
0 ×L2

)
.

For a proof of that fact we refer to the book of Lions [36] and the article [34].
This gives

I2 =

∫ T

0
|∂xϕ(t,1)− ∂xϕh(t,1)|2 dt

≤C

(
1

n(h)2 + n(h)4h4
)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0×H1

0
. (3.31)
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Combining the estimates (3.29) and (3.31), we obtain

∫ T

0

∣
∣
∣
∣∂xϕ(t,1)+

ϕN,h(t)

h

∣
∣
∣
∣

2

dt ≤C

(
1

n(h)2 + n(h)4h4
)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0 ×H1

0
.

The choice n(h)� h−2/3 optimizes this estimate and yields Eq. (3.20). This choice
also optimizes estimates (3.24) and (3.25) and implies Eqs. (3.18) and (3.19) and
thus completes the proof. ��

3.4 Further Convergence Results

3.4.1 Strongly Convergent Initial Data

As a corollary to Proposition 3.4, we can give convergence results for any sequence
of discrete initial data (ϕ0

h ,ϕ
1
h ) satisfying

lim
h→0

∥
∥(ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 = 0. (3.32)

Proposition 3.5. Let (ϕ0,ϕ1) ∈ H1
0 (0,1)×L2(0,1) and consider a sequence of dis-

crete initial data (ϕ0
h ,ϕ

1
h ) satisfying Eq. (3.32). Then the solutions ϕh of Eq. (3.1)

with initial data (ϕ0
h ,ϕ

1
h ) converge strongly in C([0,T ];H1

0 (0,1))∩C1([0,T ];L2(0,1))
towards the solution ϕ of Eq. (3.2) with initial data (ϕ0,ϕ1) as h → 0. Moreover,
we have

lim
h→0

∫ T

0

∣
∣
∣∂xϕ(t,1)+

ϕN,h

h

∣
∣
∣
2

dt = 0. (3.33)

Proof. Let (ϕ0,ϕ1) ∈ H1
0 (0,1)×L2(0,1) and, given ε > 0, choose (ψ0,ψ1) ∈ H2∩

H1
0 (0,1)×H1

0 (0,1) so that

∥
∥(ϕ0,ϕ1)− (ψ0,ψ1)

∥
∥

H1
0 ×L2 ≤ ε.

We now use the discrete initial data (ψ0
h ,ψ

1
h ) provided by Proposition 3.4. The

solutions ψh of Eq. (3.1) with initial data (ψ0
h ,ψ

1
h ) thus converge to the solution

ψ of Eq. (3.2) with initial data (ψ0,ψ1) in the sense of Eqs. (3.19)–(3.20).
We now denote by ϕh the solutions of Eq. (3.1) with initial data (ϕ0

h ,ϕ
1
h ) and ϕ

the solution of Eq. (3.2) with initial data (ϕ0,ϕ1).
Since ϕh −ψh is a solution of Eq. (3.1), the conservation of the energy and the

uniform admissibility property (2.12) yield
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sup
t∈[0,T ]

‖(ϕh,∂tϕh)(t)− (ψh,∂tψh)(t)‖H1
0 ×L2 +

∥
∥
∥
∥

ϕN,h −ψN,h

h

∥
∥
∥
∥

L2(0,T)

≤ C
∥
∥(ϕ0

h ,ϕ
1
h )− (ψ0

h ,ψ
1
h )
∥
∥

H1
0 ×L2

≤ C(
∥
∥(ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 +

∥
∥(ϕ0,ϕ1)− (ψ0,ψ1)

∥
∥

H1
0×L2

+
∥
∥(ψ0,ψ1)− (ψ0

h ,ψ
1
h )
∥
∥

H1
0 ×L2)

≤ C(
∥
∥(ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 + ε +Cε h2/3

∥
∥(ψ0,ψ1)

∥
∥

H2∩H1
0×H1

0
).

Besides, recalling that ψh converge to ψ in the sense of Eqs. (3.19)–(3.20), we have

lim
h→0

sup
t∈[0,T ]

‖(ψh,∂tψh)(t)− (ψ ,∂tψ)(t)‖H1
0 ×L2 +

∥
∥
∥∂xψ(t,1)+

ψN,h

h

∥
∥
∥

L2(0,T)
= 0.

We also use that the energy of the continuous wave equation (3.2) is constant in time
and the admissibility result of the continuous wave equation and apply it to ϕ −ψ :

sup
t∈[0,T ]

‖(ϕ ,∂tϕ)(t)− (ψ ,∂tψ)(t)‖H1
0 ×L2 + ‖∂xϕ(t,1)− ∂xψ(t,1)‖L2(0,T ) ≤Cε.

Combining these three estimates and taking the limsup as h→ 0, for all ε > 0, we get

limsup
h→0

(

sup
t∈[0,T ]

‖(ϕh,∂tϕh)(t)− (ϕ ,∂tϕ)(t)‖H1
0 ×L2

+

∥
∥
∥
∥

ϕN,h(t)

h
+ ∂xϕ(t,1)

∥
∥
∥
∥

L2(0,T)

)

≤Cε.

This concludes the proof of Proposition 3.5 since ε > 0 was arbitrary. ��

3.4.2 Smooth Initial Data

In this section, we derive higher convergence rates when the initial data are smoother.
In order to do that, we introduce, for � ∈R, the functional space H�

(0) defined by

H�
(0)(0,1) =

{

ϕ =
∞

∑
k=1

ϕ̂kwk, with
∞

∑
k=1

k2�|ϕ̂k|2 < ∞

}

endowed with the norm ‖ϕ‖2
H�
(0)

=
∞

∑
k=1

k2�|ϕ̂k|2. (3.34)
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These functional spaces correspond to the domains D((−Δd)
�/2) of the fractional

powers of the Dirichlet Laplace operator −Δd . In particular, we have H0
(0)(0,1) =

L2(0,1), H1
(0)(0,1) = H1

0 (0,1) and H−1
(0) (0,1) = H−1(0,1).

As an extension of Proposition 3.4, we obtain:

Proposition 3.6. Let � ∈ (0,3] and (ϕ0,ϕ1) ∈ H�+1
(0) (0,1)×H�

(0)(0,1). Denote by ϕ
the solution of Eq. (3.2) with initial data (ϕ0,ϕ1). Then there exists a constant C =
C(T, �) independent of (ϕ0,ϕ1) such that the sequence ϕh of solutions of Eq. (3.1)
with initial data (ϕ0

h ,ϕ
1
h ) constructed in Proposition 3.4 satisfies, for all h > 0,

sup
t∈[0,T ]

‖(ϕh(t),∂tϕh(t))− (ϕ(t),∂tϕ(t))‖H1
0 ×L2

≤Ch2�/3
∥
∥(ϕ0,ϕ1)

∥
∥

H�+1
(0) ×H�

(0)
, (3.35)

and
∥
∥
∥
∥

ϕN,h(·)
h

+ ∂xϕ(·,1)
∥
∥
∥
∥

L2(0,T)
≤Ch2�/3

∥
∥(ϕ0,ϕ1)

∥
∥

H�+1
(0) ×H�

(0)
. (3.36)

In particular, for � = 3, this result reads as follows: if (ϕ0,ϕ1) ∈ H4
(0)(0,1)×

H3
(0)(0,1), the sequence ϕh constructed in Proposition 3.4 satisfies the following

convergence results:

sup
t∈[0,T ]

‖(ϕh(t),∂tϕh(t))− (ϕ(t),∂tϕ(t))‖H1
0 ×L2 ≤Ch2

∥
∥(ϕ0,ϕ1)

∥
∥

H4
(0)×H3

(0)
, (3.37)

and
∥
∥
∥
∥

ϕN,h(·)
h

+ ∂xϕ(·,1)
∥
∥
∥
∥

L2(0,T)
≤Ch2

∥
∥(ϕ0,ϕ1)

∥
∥

H4
(0)×H3

(0)
. (3.38)

Note that we cannot expect to go beyond the rate h2 since the method is consistent
of order 2.

Proof (Sketch). The proof of these convergence results follows line to line the one
of Proposition 3.4.

Let us for instance explain how it has to be modified to get Eq. (3.37). First
remark that Eq. (3.22) now reads

∞

∑
|k|=1

k2�+2|ϕ̂k|2 �
∥
∥(ϕ0,ϕ1)

∥
∥2

H�+1
(0) ×H�

(0)
.

Estimates (3.24)–(3.25) can then be modified into

‖ϕh(t)−ϕ(t)‖2
H1

0
+ ‖∂tϕh(t)− ∂tϕ(t)‖2

L2

≤C

(

h4n(h)6−2�+
1

n(h)2�

)
∥
∥(ϕ0,ϕ1)

∥
∥2

H�+1
(0) ×H�

(0)
,

thus implying Eq. (3.35) immediately when taking n(h)� h−2/3.
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The proof of the strong convergence (3.36) also relies upon the estimate

I1 + I2 ≤C

(

h4n(h)6−2�+
1

n(h)2�

)
∥
∥(ϕ0,ϕ1)

∥
∥2

H�+1
(0) ×H�

(0)
,

where I1 and I2 are, respectively, given as above by Eq. (3.26). Details are left to the
reader. ��

3.4.3 General Initial Data

In Propositions 3.4 and 3.6, the discrete initial data are very special ones constructed
during the proof. In this section, we explain how this yields convergence rates even
for other initial data.

Proposition 3.7. Let � ∈ (0,3] and (ϕ0,ϕ1) ∈ H�+1
(0) (0,1)×H�

(0)(0,1) and consider

a sequence (φ0
h ,φ

1
h ) satisfying, for some constants C0 > 0 and θ > 0 independent

of h > 0,
∥
∥(φ0

h ,φ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 ≤C0hθ . (3.39)

Denote by φh (respectively ϕ) the solution of Eq. (3.1) (resp. Eq. (3.2)) with initial
data (φ0

h ,φ
1
h ) (resp. (ϕ0,ϕ1)).

Then the following estimates hold:

sup
t∈[0,T ]

‖(φh(t),∂tφh(t))− (ϕ(t),∂tϕ(t))‖H1
0 ×L2

≤C

(

h2�/3
∥
∥(ϕ0,ϕ1)

∥
∥

H�+1
(0) ×H�

(0)
+C0hθ

)

, (3.40)

and
∥
∥
∥
∥

φN,h(·)
h

+ϕx(·,1)
∥
∥
∥
∥

L2(0,T )
≤C

(

h2�/3
∥
∥(ϕ0,ϕ1)

∥
∥

H�+1
(0) ×H�

(0)
+C0hθ

)

. (3.41)

Proof. The proof easily follows from Proposition 3.6 since it simply consists in
comparing ϕh, the solution of Eq. (3.1) given by Proposition 3.4, and φh, the solution
of Eq. (3.1) with initial data (φ0

h ,φ
1
h ). But ϕh−φh solves Eq. (3.1) with an initial data

of H1
0 (0,1)×L2(0,1)-norm less than Ch2�/3‖(ϕ0,ϕ1)‖H�+1

(0) ×H�
(0)

+CC0hθ .

The first estimate (3.40) then follows immediately from the fact that the discrete
energy is constant for solutions of Eq. (3.1), whereas estimate (3.41) is based on the
uniform admissibility results proved in Theorem 2.1. ��
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3.4.4 Convergence Rates in Weaker Norms

For later use, we also give the following result:

Proposition 3.8. Let (ϕ0,ϕ1) ∈ H2
(0)(0,1)×H1

(0)(0,1). Denote by ϕ the solution

of Eq. (3.2) with initial data (ϕ0,ϕ1). Then for all � ∈ (0,3], there exists a con-
stant C = C(T, �) independent of (ϕ0,ϕ1) such that the sequence ϕh of solutions
of Eq. (3.1) with initial data (ϕ0

h ,ϕ
1
h ) constructed in Proposition 3.4 satisfies, for all

h > 0,

sup
t∈[0,T ]

‖(ϕh(t),∂tϕh(t),∂tt ϕh(t))− (ϕ(t),∂tϕ(t),∂tt ϕ(t))‖H2−�
(0) ×H1−�

(0) ×H−�
(0)

≤Ch2�/3
∥
∥(ϕ0,ϕ1)

∥
∥

H2
(0)×H1

(0)
. (3.42)

In particular, if (φ0
h ,φ

1
h ) are discrete functions such that for some �0 ∈ (0,3], C0

independent of h > 0 and θ > 0,
∥
∥(φ0

h ,φ
1
h )− (ϕ0,ϕ1)

∥
∥

H
2−�0
(0) ×H

1−�0
(0)

≤C0hθ , (3.43)

then denoting by φh the corresponding solution of Eq. (3.1), we have

sup
t∈[0,T ]

‖(φh(t),∂tφh(t),∂tt φh(t))− (ϕ(t),∂tϕ(t),∂tt ϕ(t))‖H
2−�0
(0) ×H

1−�0
(0) ×H

−�0
(0)

≤C

(

h2�0/3
∥
∥(ϕ0,ϕ1)

∥
∥

H2
(0)×H1

(0)
+C0hθ

)

. (3.44)

Proof. The proof of Eq. (3.42) again follows the one of Proposition 3.4. This time,
following Eqs. (3.24)–(3.25), we get

‖ϕh(t)−ϕ(t)‖2
H2−�
(0)

+ ‖∂tϕh(t)− ∂tϕ(t)‖2
H1−�
(0)

≤C

(

n(h)6−2�h4 +
1

n(h)2�

)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2
(0)×H1

(0)
.

The proof of the estimate

sup
t∈[0,T ]

‖∂ttϕh(t)− ∂ttϕ(t)‖H−�
(0)

≤Ch2�/3
∥
∥(ϕ0,ϕ1)

∥
∥

H2
(0)×H1

(0)

can be done by writing

∂ttϕh(t)− ∂ttϕ(t) =
n(h)

∑
|k|=1

ϕ̂kw|k|
(
−μk(h)

2eiμk(h)t + μ2
k eiμkt

)
+

∞

∑
n(h)+1

ϕ̂kw|k|μ2
k eiμkt

and by using the estimate
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∣
∣
∣−μk(h)

2eiμk(h)t + μ2
k eiμkt

∣
∣
∣≤Ck5h2.

The complete proof of Eq. (3.42) is left to the reader.
The proof of Eq. (3.44) for initial data satisfying Eq. (3.43) is very similar to the

one of Proposition 3.7 and is based on the following facts:

• For any ψh solution of the discrete wave equation (3.1), for all � ∈ Z, the
H2−�
(0) (0,1)× H1−�

(0) (0,1)-norm of (ψh(t),∂tψh(t)) is independent of the time
t ≥ 0, as one easily checks by writing the solutions under the form

ψh(t) =
N

∑
k=1

wk
(

ψ̂keiμk(h)t + ψ̂−ke−iμk(h)t
)
.

Applying this remark to (ψh,∂tψh) and to (∂tψh,∂tt ψh) for ψh = φh −ϕh, we get

sup
t∈[0,T ]

‖(φh(t),∂t φh(t),∂tt φh(t))− (ϕ(t),∂tϕ(t),∂tt ϕ(t))‖H
2−�0
(0) ×H

1−�0
(0) ×H

−�0
(0)

≤C

(

h2�0/3
∥
∥(ϕ0,ϕ1)

∥
∥

H2
(0)×H1

(0)

+
∥
∥(φ0

h ,φ
1
h ,Δhφ0

h )− (ϕ0
h ,ϕ

1
h ,Δhϕ0

h )
∥
∥

H
2−�0
(0) ×H

1−�0
(0) ×H

−�0
(0)

)

.

• By construction,
∥
∥Δhφ0

h −Δhϕ0
h

∥
∥

H
−�0
(0)

≤C
∥
∥φ0

h −ϕ0
h

∥
∥

H
2−�0
(0)

;

hence
∥
∥(φ0

h ,φ
1
h ,Δhφ0

h )− (ϕ0
h ,ϕ

1
h ,Δhϕ0

h )
∥
∥

H
2−�0
(0) ×H

1−�0
(0) ×H

−�0
(0)

≤C
∥
∥(φ0

h ,φ
1
h )− (ϕ0

h ,ϕ
1
h )
∥
∥

H
2−�0
(0) ×H

1−�0
(0)

.

• We finally conclude Eq. (3.44) by using Eq. (3.43) and the estimate (3.42) for
t = 0. ��

3.5 Numerics

In this section, we briefly illustrate the above convergence results on the normal
derivatives. The rate of convergence of the discrete trajectories towards the contin-
uous ones is well known and well illustrated in the literature.

We thus choose an initial data (ϕ0,ϕ1) ∈ H1
0 (0,1)×L2(0,1).
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For N ∈ N, we set h = 1/(N + 1) and take (ϕ0
h ,ϕ

1
h ) defined by ϕ0

j,h = ϕ0( jh)

and ϕ1
j,h =

∫

(( j−1/2)h,( j+1/2)h)ϕ1( jh) for all j ∈ {1, . . . ,N}. We then compute ϕh

the corresponding solution of Eq. (3.1) and the corresponding discrete derivative at
x = 1, i.e., −ϕN,h(t)/h.

Note that, actually, this discrete solution should rather be denoted as ϕh,Δ t since
we also discretize in time using an explicit scheme. More precisely, if ϕk

h,Δ t denotes
the approximation of ϕh at time kΔ t, we solve

ϕk+1
h = 2ϕk

h −ϕk−1
h − (Δ t)2Δhϕk

h . (3.45)

The CFL condition is chosen such that Δ t/h = 0.2 so that the convergence of the
scheme (in what concurs solving the boundary–initial value problem) is ensured.

Since our goal is to estimate rates of convergence, we also need a reference data.
In order to do that, we expand the initial data (ϕ0,ϕ1) in Fourier:

ϕ0 =
∞

∑
k=1

âkwk, ϕ1 =
∞

∑
k=1

b̂kwk.

The corresponding solution ϕ of Eq. (3.2) is then explicitly given by

ϕ(t) =
∞

∑
k=1

(

âk cos(kπt)+ b̂k
sin(kπt)

kπ

)

wk,

so that

∂xϕ(t,1) =
∞

∑
k=1

(

âk cos(kπt)+ b̂k
sin(kπt)

kπ

)√
2(−1)kkπ . (3.46)

Of course, we cannot compute numerically these Fourier series for the continuous
solutions of Eq. (3.2) since they involve infinite sums. So we take a reference num-
ber Nref large enough and replace the infinite sum in formula (3.46) by a truncated
version up to Nref. Nref is taken to be large compared to N, the number of nodes in
the space discretization involved in the computations of ϕN,h(t)/h. We thus approx-
imate the normal derivative by

(∂xϕ(t,1))ref =

Nref
∑
k=1

(

âk cos(kπt)+ b̂k
sin(kπt)

kπ

)√
2(−1)kkπ .

In the computations below, we take Nref = 1,000 for N varying between 200
and 400.

In Fig. 3.1 (left), we have chosen (ϕ0,ϕ1) as follows:

ϕ0(x) = sin(πx), ϕ1(x) = 0. (3.47)

In this particular case, the continuous solution involves one single Fourier mode.
So, we could have taken Nref = 1. Figure 3.1 (left) represents the L2(0,T )-norm
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of (∂xϕ(t,1))ref +ϕN,h(t)/h for T = 1 versus N in logarithmic scales. The slope
of the linear regression is −1.99, thus very close to −2, the rate predicted by
Proposition 3.7.

We then test the initial data

ϕ0(x) = 0, ϕ1(x) =

{−x if x < 1/2,
−x+ 1 if x > 1/2,

(3.48)

and plot the error in Fig. 3.1 (middle). The initial data velocity only belongs to

∩ε>0H1/2−ε
(0) (0,1), so the predicted rate of convergence given by Proposition 3.7

is −(1/3)−. This is indeed very close to the slope −0.31 observed in Fig. 3.1 (right).
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Fig. 3.1 Plot of |(∂xϕ(t,1))ref +ϕN,h(t)/h|L2(0,T) versus log(N) for N ∈ {200, . . . ,400}, Nref =

1,000 and T = 1. Left: for the initial data (ϕ0,ϕ1) in Eq. (3.47), slope of the linear regression
= −1.99. Middle: for the initial data (ϕ0,ϕ1) in Eq. (3.48), slope = −0.31. Right: for the initial
data (ϕ0,ϕ1) in Eq. (3.49), with (∂xϕ(t,1))ref =−1+ t in this case, slope =−0.5.

These numerical experiments both confirm the accuracy of the rates of conver-
gence derived in Proposition 3.7.

We then test the initial data

ϕ0(x) = 0, ϕ1(x) = x. (3.49)

These data are smooth but ϕ1(1) �= 0. Hence ϕ1 only belongs to ∩ε>0H1/2−ε
(0) (0,1)

and we thus expect a convergence rate of order h1/3. Note that in this case, the
normal derivative of the solution at x = 1 can be computed explicitly using Fourier
series and ∂xϕ(t,1) = −1+ t (recall the formula (3.46)). Of course, we are thus
going to use this explicit expression to compute (∂xϕ(t,1))ref =−1+ t in this case.

Note that the numerical simulations yield the slope −0.5 for the linear regres-
sion (see Fig. 3.1 (right)). This error term mainly comes from the fact that the con-
tinuous solution ϕ of Eq. (3.2) does not satisfy ∂xϕ0(x) = −1 as the computation
(∂xϕ(t,1))ref = −1+ t would imply for t = 0. This creates a layer close to t = 0
that the numerical method has some difficulties to handle. In Fig. 3.2, we represent
the normal derivative computed numerically for N = 300 and compare it with the
continuous normal derivative ∂xϕ(t,1) =−1+t. As one can see, there is a boundary
layer close to t = 0.
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Fig. 3.2 Plot of −ϕN,h(t)/h computed for N = 300 (black solid line) and of (∂xϕ(t,1))ref =−1+t
(red dash dot line) for (ϕ0,ϕ1) in Eq. (3.49). Left: on the time interval (0,1). Right: a zoom on the
time interval (0,0.03).

This last example illustrates the fact that the boundary conditions play an impor-
tant role for the regularity properties of the trajectory of the continuous model (3.2)
and therefore also have an influence on the rates of convergence of the correspond-
ing approximations given by Eq. (3.1). The above example also confirms the good
accuracy of the rates of convergence given in Proposition 3.7 when the regularity
properties are limited by the boundary conditions.
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