


SpringerBriefs in Mathematics

Series Editors

Krishnaswami Alladi
Nicola Bellomo
Michele Benzi
Tatsien Li
Matthias Neufang
Otmar Scherzer
Dierk Schleicher
Benjamin Steinberg
Vladas Sidoravicius
Yuri Tschinkel
Loring W. Tu

Ping Zhang

SpringerBriefs in Mathematics showcases expositions in all areas of
mathematics and applied mathematics. Manuscripts presenting new
results or a single new result in a classical field, new field, or an emerging
topic, applications, or bridges between new results and already published
works, are encouraged. The series is intended for mathematicians and
applied mathematicians.

For further volumes:
http://www.springer.com/series/10030

G. George Yin

http://www.springer.com/series/10030


BCAM SpringerBriefs

Editorial Board

Enrique Zuazua
BCAM - Basque Center for Applied Mathematics
& Ikerbasque
Bilbao, Basque Country, Spain

Irene Fonseca
Center for Nonlinear Analysis
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, USA

Juan J. Manfredi
Department of Mathematics
University of Pittsburgh
Pittsburgh, USA

Emmanuel Trélat
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Preface

In this book, we fully develop and compare two approaches for the numerical
approximation of exact controls for wave propagation phenomena: the continuous
one, based on a thorough analysis of the continuous model, and the discrete one,
which relies upon the analysis of the discrete models under consideration. We do it
in the abstract functional setting of conservative semigroups.

The main results of this book end up unifying, to a large extent, these two ap-
proaches yielding similar algorithms and convergence rates. The discrete approach,
however, has the added advantage of yielding not only efficient numerical approxi-
mations of the continuous controls but also ensuring the partial controllability of the
finite-dimensional approximated dynamics, i.e., the fact that a substantial projection
of the approximate dynamics is controlled. It also leads to iterative approximation
processes that converge without a limiting threshold in the number of iterations.
Such a threshold has to be taken into account, necessarily, for methods derived by
the continuous approach, and it is hard to compute and estimate in practice. This
is a drawback of the methods emanating from the continuous approach that exhibit
divergence phenomena when the number of iterations in the algorithms aimed to
yield accurate approximations of the control goes beyond this threshold.

We shall also briefly explain how these ideas can be applied for data assimilation
problems.

Though our results apply in a wide functional setting, our approach requires a
fine analysis in the case of unbounded control operators, e.g., in the case of boundary
controls. We will therefore show how this can be done in a simple case, namely the
1− d wave equation approximated by finite-difference methods. In particular, we
present several new results on the rates of convergence for the solution of the wave
equation with nonhomogeneous Dirichlet boundary data.

Toulouse, France Sylvain Ervedoza
Bilbao, Basque Country, Spain Enrique Zuazua
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Introduction

Motivation

Let Ω be a smooth bounded domain of Rn and consider an open subset ω ⊂ Ω .
We consider the controlled wave equation in Ω :

⎧
⎨

⎩

∂tt y−Δy = vχω , (t,x) ∈ R+×Ω ,
y = 0, (t,x) ∈ R+× ∂Ω ,
(y(0,x),∂t y(0,x)) = (y0(x),y1(x)), x ∈ Ω .

(1)

Here, y, the state of the system, may represent various wave propagation phenom-
ena as, for instance, the displacement for elastic strings and membranes or acoustic
waves. The control function is represented by v which is localized in the control
subdomain ω through χω , the characteristic function of ω in Ω .

This work is devoted to discuss, analyze, and compare two approaches for the
numerical approximation of exact controls, the continuous and discrete ones.

System (1) is said to be exactly controllable in time T if, for all (y0,y1) ∈
H1

0 (Ω)× L2(Ω) and (yT
0 ,y

T
1 ) ∈ H1

0 (Ω)× L2(Ω), there exists a control function
v ∈ L2((0,T )×ω) such that the solution y of Eq. (1) satisfies

(y(T ),∂t y(T )) = (yT
0 ,y

T
1 ). (2)

Such property is by now well known to hold under suitable geometric conditions
on the set ω in which the control is active, the domain Ω in which the equation is
posed, and the time T during which the control acts.

In the seminal work of Lions [36], in which the Hilbert uniqueness method
(HUM) was introduced, the problem was reduced to that of the observability of
the adjoint system and multiplier methods were derived for the latter to be proved
under suitable geometric restrictions (see also [27, 31] for other types of multipli-
ers). Later, in [3, 5] it was shown that system (1) is exactly controllable in time
T > 0 if and only if (ω ,Ω ,T ) satisfies the so-called geometric control condition
(GCC). Roughly speaking, this condition states that all rays of geometric optics—

xiii



xiv Introduction

which in the present case are straight lines bouncing on the boundary ∂Ω according
to Descartes law—should enter into the control subset ω in a time less than T .

All along this work we shall assume that (ω ,Ω ,T ) fulfills the GCC. In that case,
for all (y0,y1), (yT

0 ,y
T
1 ) in H1

0 (Ω)×L2(Ω), the existence of a control function v ∈
L2((0,T )×ω) such that the corresponding solution of Eq. (1) satisfies Eq. (2) is
guaranteed.

The question we address is that of building efficient numerical algorithms to
compute such a control.

Control and Numerics

Of course, this problem is not new, and many articles have been devoted to it.
In the pioneering works [21–23] (see also the more recent book [24]) it was

shown that high-frequency spurious solutions generated by the discretization pro-
cess could make the discrete controls diverge when the mesh size goes to zero.
These results have later received a thorough theoretical study (see, for instance, [28]
in which the finite-difference and finite element methods in 1−d on uniform meshes
were addressed and the more recent survey articles [16, 52]).

The analysis developed in these articles leads to the necessity of distinguishing
two different approaches, the continuous and the discrete ones. In the continuous
one, after characterizing the exact controls of the continuous wave equations, the
emphasis is placed on building efficient numerical methods to approximate them. In
the discrete one, by the contrary, one analyzes the controllability of discrete mod-
els obtained after discretizing the wave equation by suitable numerical methods and
their possible convergence towards the controls of the continuous models under con-
sideration when the mesh-size parameters tend to zero.

In other words, to compute approximations of controls for continuous models,
there are mainly two alternative paths:

first CONTROL and then NUMERICS

or
first NUMERICS and then CONTROL.

In this book we first focus on the continuous approach, the key point being to
build an iterative process in an infinite-dimensional setting yielding the control of
the continuous wave equation, to later approximate it numerically. To be more pre-
cise, we approximate numerically each step of this iterative process. Of course, this
generates error terms in each iteration that add together and eventually may produce
divergence phenomena, when the number of iterations goes beyond a threshold.

One of the most natural manners to derive such an iterative algorithm is in fact
the implementation of the HUM method that characterizes the control of minimal
norm, by minimizing a suitable quadratic functional defined for the solutions of the
adjoint system. The minimizer can then be approximated by gradient descent algo-
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rithms. This leads naturally to an iterative algorithm to compute the control of the
continuous model that later can be approximated by standard numerical approxima-
tion methods, such as finite differences and elements.

Recently, a variant of this continuous approach has been developed in [9] fol-
lowing Russell’s technique [47] to construct the control out of stabilization results.
According to Russell’s approach, the control can be built as the fixed point of a con-
tractive map, whose contractivity is ensured by the stabilizability of the system. This
leads then naturally to an iterative method for approximating a continuous control.
Note, however, that the control obtained in this manner is not the one of minimal
norm (the one given by HUM) but rather that obtained through Russell’s stabiliza-
tion implies control principle. A similar method has been numerically implemented
successfully in [1] in the context of data assimilation problems for some nonlinear
models as well.

As we shall see, once the iterative algorithm that the continuous approach yields
is projected into the finite-dimensional numerical approximation models, we end
up with a method that is very similar, in form and computational cost, to the one
obtained by means of the discrete approach. The latter consists of building discrete
approximation models whose controls converge to the one of the continuous dy-
namics usually after filtering the spurious numerical components.

The first main advantage of the discrete approach is that it yields approximate
controls that control, at least partially, the approximated numerical dynamics. But
this is done to the price of carefully analyzing the control properties of the finite-
dimensional dynamics, an extra and often complicated task that is not required when
developing continuous methods. As we shall explain, developing the discrete ap-
proach is also computationally relevant since it allows to use much faster iterative
algorithms. The continuous approach is conceptually simpler, however. Indeed, it
superposes the continuous control theory to build an iterative algorithm in the con-
tinuous setting and classical numerical analysis to approximate it effectively, with-
out getting involved into fine controllability properties of the discrete dynamics.

The results we shall present below apply in the much more general setting of
conservative semigroups, for which the wave equation (1) is the most paradigmatic
example. Most of the presentation will then be done in this abstract unifying frame.

Our main results on the comparison of both approaches in the abstract setting are
presented in Chap. 1.

On the Convergence of the Numerical Schemes

Though the results of Chap. 1 apply in a very general setting, one of our main
applications is the boundary control 1− d wave equation discretized using finite-
difference (or finite element) methods; see Sect. 1.7. In such case, the unbounded-
ness of the control operator makes it hard to check the convergence assumptions of
Chap. 1.
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We therefore provide a fine analysis of the convergence properties of finite-
difference methods that do not seem to be available in the existing literature. Thus
in Chaps. 3 and 4 we develop some new technical results on the convergence of the
finite-difference approximation methods for the wave equation and, in particular, on
nonhomogeneous boundary value problems that are necessary for a complete analy-
sis of the convergence of numerical controls towards continuous ones. These results
are of interest independently of their control theoretical implications.

The main difficulty to obtain convergence rates for numerical approximations is
that solutions of the (even in 1−d) wave equation with nonhomogeneous boundary
data are defined in the sense of transposition.

To be more precise, following [36] (see also [33, 35]), if v belongs to L2(0,T ),
the solution y of

⎧
⎨

⎩

∂tt y− ∂xxy = 0, (t,x) ∈ R+× (0,1),
y(t,0) = 0, y(t,1) = v(t), t ∈ R+,
(y(0,x),∂t y(0,x)) = (0,0), x ∈ (0,1),

(3)

in the sense of transposition lies in C([0,T ];L2(0,1))∩C1([0,T ];H−1(0,1)).
The proof of this fact is based on a hidden regularity (or admissibility) result for

the solutions ϕ of the adjoint system
⎧
⎨

⎩

∂ttϕ − ∂xxϕ = f , (t,x) ∈ (0,T )× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T ),
(ϕ(T,x),∂tϕ(T,x)) = (0,0), x ∈ (0,1),

(4)

with source term f ∈ L1(0,T ;L2(0,1)) (and for f = ∂t g with g∈ L1(0,T ;H1
0 (0,1))),

which should satisfy
∂xϕ(t,1) ∈ L2(0,T ). (5)

Note that, with these regularity assumptions on the initial data and the source term,
solutions ϕ of Eq. (4) belong to the space C([0,T ];H1

0 (0,1))∩C1([0,T ];L2(0,1)),
but this well-known finite energy property does not guarantee Eq. (5) to hold by
classical trace inequalities. In fact, Eq. (5) is a consequence of a fine property of
hidden regularity of solutions of the wave equation with Dirichlet boundary con-
ditions, both in the 1− d and in the multidimensional case. Thus, for the analysis
of the convergence of the numerical approximation methods these hidden regularity
properties have to be proved uniformly with respect to the mesh-size parameters.

Hence the sharp analysis of the convergence of the finite-difference approxima-
tions of the solutions of Eq. (3) will be achieved in two main steps:

• In Chap. 2 we study the behavior of the finite-difference approximation schemes
of Eq. (4) from the point of view of admissibility. In particular, we prove a uni-
form admissibility result (already obtained in [28]) that will be needed for the
convergence results. Our proof relies on a discrete multiplier technique. We also
explain how this can be used to obtain sharp quantitative estimates for a uniform
observability result within classes of filtered data.
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• In Chap. 3 we present the convergence of the 1 − d finite-difference approxi-
mation schemes with homogeneous Dirichlet boundary data and establish sharp
results about convergence rates. Most of these results are rather classical, except
for the convergence of the normal derivatives.

• In Chap. 4 we derive convergence results for the finite-difference approximation
on the 1− d wave equation (3) with nonhomogeneous boundary data, based on
suitable duality arguments.

Further Comments

In Chap. 5, we conclude our study with some further comments and open problems.
In particular, we comment on the consequences of our analysis at the level of optimal
control problems or the extension of our results to the fully discrete context.



Chapter 1
Numerical Approximation of Exact Controls
for Waves

1.1 Introduction

We present an abstract framework in which our methods and approach apply, the
wave equation being a particular instance that we present in Sect. 1.7.

1.1.1 An Abstract Functional Setting

Let X be an Hilbert space endowed with the norm ‖·‖X and let T = (Tt)t∈R be
a linear strongly continuous group on X , with skew-adjoint generator A : D(A) ⊂
X → X , satisfying A∗ =−A. We shall also assume that A has compact resolvent and
that the domain of A is dense in X .

For convenience, we also assume that 0 is not in the spectrum of A, so that
for s ∈ N, we can define the Hilbert spaces Xs = D(As) of elements of X such
that ‖Asx‖X < ∞ endowed with the norm ‖·‖s := ‖As·‖X . Note that this does not
restrict the generality of our analysis. Indeed, if 0 is in the spectrum of A, choosing
a point β ∈ iR which is not in the spectrum of A and replacing A by A−β I, our
analysis applies.

For s ≥ 0, we also define the Hilbert spaces Xs obtained by interpolation between
D(A	s
) and D(A�s�), which we endow with the norm ‖·‖s. For s ≤ 0, we then
define Xs as the dual of X−s with respect to the pivot space X and we endow it with
its natural dual norm.

We are then interested in the following equation:

y′ = Ay+Bv, t ≥ 0, y(0) = y0 ∈ X . (1.1)

Here, B is an operator in L(U,X−1), where U an Hilbert space. This operator deter-
mines the action of the control function v ∈ L2

loc([0,∞);U) into the system.
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The well-posedness of Eq. (1.1) can be guaranteed assuming that the operator B
is admissible in the sense of [49, Definition 4.2.1]:

Definition 1.1. The operator B ∈ L(U,X−1) is said to be an admissible control
operator for T if for some τ > 0, the operator Rτ defined on L2(0,T ;U) by

Rτ v =
∫ τ

0
Tτ−sBv(s)ds

satisfies RanRτ ⊂ X , where RanRτ denotes the range of the map Rτ .
When B is an admissible control operator for T, system (1.1) is said to be

admissible.

Of course, if B is bounded, i.e., if B ∈ L(U,X), then B is admissible for T. But
such assumption may also hold when the operator B is not bounded, for instance
when considering the wave equation controlled from its Dirichlet boundary condi-
tions. There, the admissibility property follows from a suitable hidden regularity
result for the adjoint equation of (1.1), see [36].

To be more precise, B is an admissible control operator for T if and only if there
exist a time T > 0 and a constant Cad,T such that any solution of the adjoint equation

ϕ ′ = Aϕ , t ∈ (0,T ), ϕ(0) = ϕ0 (1.2)

with data ϕ0 ∈ D(A) (and then in X by density) satisfies

∫ T

0
‖B∗ϕ(t)‖2

U dt ≤C2
ad,T ‖ϕ0‖2

X . (1.3)

Note that the semigroup property immediately implies that if the inequality (1.3)
holds for some time T ∗, it also holds for all T > 0.

In this work, we will always assume that B is an admissible control operator
for T. As explained in [49, Proposition 4.2.5], this implies that for every y0 ∈ X
and v ∈ L2

loc([0,∞);U), the solution of Eq. (1.1) has a unique mild solution y which
belongs to C([0,∞);X).

Let us now focus on the exact controllability property of system (1.1) in time
T ∗ > 0. To be more precise, we say that system (1.1) is exactly controllable in time
T ∗ if for all y0 and y f in X , there exists a control function v ∈ L2(0,T ∗;U) such that
the solution y of Eq. (1.1) satisfies y(T ∗) = y f .

Since we assumed that A is the generator of a strongly continuous group, us-
ing the linearity and the reversibility of Eq. (1.1), one easily checks that the ex-
act controllability property of Eq. (1.1) in time T ∗ is equivalent to the a priori
weaker one, the so-called null-controllability in time T ∗: system (1.1) is said to
be null-controllable in time T ∗ if for all y0 ∈ X , there exists a control function
v ∈ L2(0,T ∗;U) such that the solution y of Eq. (1.1) satisfies y(T ∗) = 0.

In the following, we will focus on the null-controllability property, i.e., y f ≡ 0,
and we shall refer to it simply as controllability.

In the sequel we assume that system (1.1) is controllable in some time T ∗ and
we focus on the controllability property in time T > T ∗. To be more precise, we
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are looking for control functions v such that the corresponding solution of Eq. (1.1)
satisfies

y(T ) = 0. (1.4)

According to the so-called Hilbert Uniqueness Method introduced by Lions
[36, 37], the controllability property is equivalent, by duality, to an observability
inequality for the adjoint system (1.2) which consists in the existence of a constant
Cobs,T ∗ such that for all ϕ0 ∈ X , the solution ϕ of the adjoint equation (1.2) with
initial data ϕ0 satisfies

‖ϕ0‖2
X ≤C2

obs,T ∗
∫ T ∗

0
‖B∗ϕ(t)‖2

U dt. (1.5)

Now, let T > T ∗ and introduce δ so that 2δ = T − T ∗ and a smooth function
η = η(t) such that

η smooth, η : R→ [0,1], η(t) =
{

1 on [δ ,T − δ ],
0 on R\ (0,T). (1.6)

Of course, using Eqs. (1.3), (1.5), and the fact that A is skew-adjoint, one easily
checks the existence of some positive constants Cad > 0 and Cobs > 0 such that for
all initial data ϕ0 ∈ X , the solution ϕ of Eq. (1.2) with initial data ϕ0 satisfies

∫ T

0
η(t)‖B∗ϕ(t)‖2

U dt ≤C2
ad ‖ϕ0‖2

X , (1.7)

‖ϕ0‖2
X ≤C2

obs

∫ T

0
η(t)‖B∗ϕ(t)‖2

U dt. (1.8)

Based on these inequalities the Hilbert Uniqueness Method yields the control of
minimal norm (in L2((0,T ),dt/η ;U)) by minimizing the functional

J(ϕ0) =
1
2

∫ T

0
η(t)‖B∗ϕ(t)‖2

U dt + 〈y0,ϕ0〉X , (1.9)

for ϕ0 ∈ X , where ϕ denotes the solution of the adjoint equation (1.2) with data ϕ0.
Indeed, according to the inequalities (1.7) and (1.8), this functional J is well

defined, strictly convex, and coercive on X . Therefore, it has a unique minimizer
Φ0 ∈ X . Then, if Φ denotes the corresponding solution of Eq. (1.2) with data Φ0,
the function V (t) = η(t)B∗Φ(t) is a control function for Eq. (1.1). Besides, V is the
control of minimal L2(0,T ;dt/η ;U)-norm among all possible controls for Eq. (1.1)
(i.e., so that the controlled system (1.1) fulfills the controllability requirement (1.4)).

In the sequel, we will focus on the computation of the minimizer Φ0 of J
in Eq. (1.9), which immediately gives the control function according to the formula

V (t) = η(t)B∗Φ(t). (1.10)
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1.1.2 Contents of Chap. 1

Based on this characterization of Φ0 as the minimizer of the functional J in Eq. (1.9),
one can build an “algorithm” to approximate the minimizer in this infinite-
dimensional setting. For, it suffices to apply a steepest descent or conjugate gradient
iterative algorithm, for instance.

Of course, this procedure can be applied in the context of the example above
in which the wave equation (1) in a bounded domain Ω with Dirichlet boundary
conditions is controlled in the energy space H1

0 (Ω)×L2(Ω) by means of L2 controls
localized in an open subset ω . This will be explained further in Sect. 1.7.

Once this iterative algorithm is built at the infinite-dimensional level one can
mimic it for suitable numerical approximation schemes. In this way, combining
the classical convergence properties of numerical schemes and the convergence
properties of the iterative algorithm for the search of the minimizer of J in the
functional setting above, one can get quantitative convergence results towards
the control. Roughly speaking, this is the continuous approach to the numerical
approximation of controls.

Recently, as mentioned above, a variant of this method has been developed and
applied in [9] in the particular case of the wave equation. Rather than considering
the HUM controls of minimal norm, characterized as the minimizers of a func-
tional of the form J, the authors consider the control given by the classical Russell’s
principle, obtained as limit of an iterative process based on a stabilization property.
This iterative procedure, based on the contractivity of the semigroup for exponen-
tially decaying stabilized wave problems, applied into a numerical approximation
scheme, leads to convergence rates, similar to those that the iterative methods for
minimizing the functionals J as above do. Thus, the method implemented in [9] can
be viewed as a particular instance of the continuous approach, see also Sect. 5.2.

The first goal of this paper is to fully develop the continuous approach in a general
context of numerical approximation semigroups of the abstract evolution Eq. (1.1)
based on iterative algorithms for the minimization of the functional J. Explicit
convergence rates will be obtained. These results are of general application for nu-
merous examples, including the wave equation mentioned above, see Sect. 1.7. As
we shall see, these general results are similar to those stated in Theorem 1.3 obtained
in [9] in the specific context of Russell’s principle for the wave equation. However,
the continuous approach we propose, based on the minimization of the functional J,
has several advantages, and in particular the one of being applicable to non-bounded
(but still admissible) control operators B and in particular in the case of boundary
control for the wave equation.

The second goal of this paper is to compare these results with those one can get
by means of the discrete approach which consists in controlling a finite-dimensional
numerical approximation scheme of the original semigroup, in the spirit of the
survey article [52] and the references therein.

To be more precise, let us consider a semi-discrete approximation of the Eq. (1.2).
For all h > 0, we introduce the equations
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ϕ ′
h = Ahϕh, t ∈ (0,T ), ϕh(0) = ϕ0h, (1.11)

where Ah is a skew-adjoint approximation of the operator A in a finite-dimensional
Hilbert space Vh embedded into X . In practice one can think of finite-difference or
finite-element approximations of the PDE under consideration, for instance, h being
the characteristic length of the numerical mesh.

We shall also introduce B∗
h, an approximation of the operator B∗, defined on Vh

with values in some Hilbert spaces Uh.
Here, we do not give yet a precise meaning to the sense in which the sequence

of operators (Ah,Bh) approximate (A,B) and converge to it as h → 0. We will come
back to that issue later on when stating our main results in Sect. 1.2.

Once the finite-dimensional approximation (1.11) of Eq. (1.2) has been set, one
then introduces the discrete functional

Jh(ϕ0h) =
1
2

∫ T

0
η(t)‖B∗

hϕh(t)‖2
Uh

dt + 〈y0h,ϕ0h〉Vh , (1.12)

where ϕh is the solution of Eq. (1.11) corresponding to data ϕ0h ∈ Vh and y0h is an
approximation in Vh of y0 ∈ X .

Of course, the functional Jh is a natural approximation of the continuous
functional J defined by Eq. (1.9). One could then expect the minima of Jh to yield
convergent approximations of the minima of the continuous functional J. It turns
out that, in general, this is not the case. Even worse, it may even happen that, for
some data y0 to be controlled, the minimizers of these discrete functionals are not
even bounded, and actually diverge exponentially as h → 0, see [16, 17, 24, 52].
This is an evidence of the lack of Γ -convergence of the functionals Jh towards J.

This instability is due to spurious high-frequency numerical components that
make the discrete versions of the observability inequalities to blow up as h → 0,
see, e.g., [38, 48, 50].

However, once we have understood that these instabilities arise at high
frequencies, one can develop filtering techniques which consist, essentially, in re-
stricting the functionals Jh to subspaces of Vh in which they are uniformly coercive
and so that these subspaces, as h → 0, cover the whole space X , thus ensuring the
Γ -convergence of the restricted functionals. These subspaces can be chosen in var-
ious manners: we refer to [12, 28, 41, 51] for Fourier filtering techniques, [42] for
bi-grid methods, [43] for wavelet approximations, and [6, 7, 10, 13] for other dis-
cretization methods designed to attenuate these high-frequency pathologies. In this
way one can obtain the convergence of discrete controls towards the continuous one
and even convergence rates, based on the results in [15], see [16, 17].

But, it is important to note that the minimizers obtained by minimizing the
functionals Jh on strict subspaces of Vh do not yield exact controls of the finite-
dimensional dynamics but rather partial controls, in which the controllability
requirement at time t = T is relaxed so that a suitable projection of the solution
is controlled. In other words, relaxing the minimization process to a subspace of the
whole space Vh yields a relaxation of the control requirement as well.
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This discrete analysis is based on a deep understanding of the finite-dimensional
dynamics of Eq. (1.11) in contrast with the continuous approach that uses simply the
control results for the continuous system and the classical results on the convergence
of finite-dimensional approximations.

The third and last goal of this chapter is to compare the convergence results
obtained by the continuous approach with those one gets applying the discrete one.
As we shall see, finally, the filtering methods developed in the discrete setting can
also be understood in the continuous context, as an efficient projection of the nu-
merical approximation of the gradient-like iteration procedures developed in the
continuous frame.

Our main results end up unifying, to a large extent, both the continuous and the
discrete approaches.

1.2 Main Results

1.2.1 An “Algorithm” in an Infinite-Dimensional Setting

In the abstract setting of the previous section, let us introduce the so-called Gramian
operator ΛT defined on X by

∀(ϕ0,ψ0) ∈ X2, 〈ΛT ϕ0,ψ0〉X =

∫ T

0
η(t)〈B∗ϕ(t),B∗ψ(t)〉U dt, (1.13)

where ϕ(t),ψ(t) are the corresponding solutions of Eq. (1.2).
Obviously, this Gramian operator is nothing but the gradient of the quadratic

term entering in the functional J and therefore plays a key role when identifying the
Euler–Lagrange equations associated to the minimization of J and when building
gradient-like iterative algorithms. In particular, Φ0 ∈ X is a critical point of J (hence
automatically a minimum since J is strictly convex) if and only if

ΛT Φ0 + y0 = 0. (1.14)

Note that this Gramian operator can be written, at least formally, as

ΛT =

∫ T

0
η(t)e−tABB∗etA dt.

Under this form, one immediately sees that ΛT is a self-adjoint nonnegative operator,
and that it is bounded and positive definite when Eqs. (1.7) and (1.8) hold.

Of course, estimates (1.7) and (1.8), which guarantee that J is well defined, coer-
cive, and strictly convex, and hence the uniqueness of the minimizer to J, also imply
the existence and uniqueness of a solution Φ0 ∈ X of Eq. (1.14).
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Before going further, let us explain that, when assuming Eqs. (1.7) and (1.8), if
s ≥ 0, for y0 ∈ Xs the solution Φ0 of Eq. (1.14) also belongs to Xs and there exists a
constant Cs such that

‖Φ0‖s ≤Cs ‖y0‖s . (1.15)

This is a consequence of the regularity results derived in [15] obtained for abstract
conservative systems in which the fact of having introduced the time cutoff function
η in Eq. (1.6) within the definition of the Gramian ΛT plays a critical role. Other-
wise, if η ≡ 1 our analysis would have to be restricted to bounded control operators
such that BB∗ maps Xp to Xp for each p ∈ [0,�s�], see [15].

Note that the results in [15] can also be seen as an abstract counterpart of the
results in [11], which state that, in the case of the wave equation with distributed con-
trols (hence corresponding to the case of bounded control operators), the Gramian
with this cutoff function η = η(t) in time and a control operator BB∗ ∈ ∩p>0L(Xp)
maps Xs to Xs for all s ≥ 0. The results in [11] are even more precise when work-
ing on a compact manifold without boundary, in which case it is proved that the
inverse of the Gramian is a pseudo-differential operator that preserves the regularity
of the data.

To fully develop the continuous approach to the numerical approximation of
the controls, we implement the steepest descent algorithm for the minimization of
the functional J in Eq. (1.9). But for doing that it is more convenient to have an
alternate representation of the Gramian.

Let ϕ0 ∈ X and ϕ be the corresponding solution of Eq. (1.2). Then solve

ψ ′ = Aψ −ηBB∗ϕ , t ∈ (0,T ), ψ(T ) = 0. (1.16)

Then, as it can be easily seen,

ΛT ϕ0 = ψ(0),

where ψ solves Eq. (1.16) and ϕ is the solution of Eq. (1.2).
The steepest descent algorithm then reads as follows:

• Initialization: Define

ϕ0
0 = 0. (1.17)

• Iteration: For ϕk
0 ∈ X , define ϕk+1

0 by

ϕk+1
0 = ϕk

0 −ρ(ΛT ϕk
0 + y0), (1.18)

where ρ > 0 is a fixed parameter, whose (small enough) value will be specified
later on.

We shall then show the following results:

Theorem 1.1. Let s ≥ 0. Assume that the estimates (1.7) and (1.8) hold true.
Let y0 ∈ Xs and Φ0 ∈ X be the solution of Eq. (1.14).
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Then setting ρ0 > 0 as

ρ0 =
2

C4
adC2

obs

, (1.19)

for all ρ ∈ (0,ρ0), the sequence ϕk
0 defined by Eqs. (1.17) and (1.18) satisfies, for

some constant δ ∈ (0,1) given by

δ (ρ) :=

√

1− 2
ρ

C2
obs

+ρ2C4
ad, (1.20)

that for all k ∈N,
∥
∥
∥ϕk

0 −Φ0

∥
∥
∥

X
≤Cδ k ‖y0‖X . (1.21)

Besides, Φ0 ∈ Xs and for all k ∈N, the sequence ϕk
0 belongs to Xs. The sequence

ϕk
0 also strongly converges to Φ0 in Xs and satisfies, for some constant Cs indepen-

dent of Φ0 ∈ Xs and k ∈N:
∥
∥
∥ϕk

0 −Φ0

∥
∥
∥

s
≤Cs(1+ ks)δ k ‖y0‖s , k ∈ N. (1.22)

The first statement (1.21) in Theorem 1.1 is nothing but the application of the
well-known results on the convergence rate for the steepest descent method when
minimizing quadratic coercive and continuous functionals in Hilbert spaces [8].
However, the result (1.22) is new and relies in an essential manner on the fact that
the Gramian operator preserves the regularity properties of the data to be controlled,
a fact that was proved in [15] and for which the weight function η = η(t) plays a
key role.

Also note that the results in Theorem 1.1 are written in terms of the norms of y0,
but we will rather prove the following stronger results (according to Eq. (1.15)):

∥
∥
∥ϕk

0 −Φ0

∥
∥
∥

X
≤ δ k ‖Φ0‖X , (1.23)

and, if y0 ∈ Xs,
∥
∥
∥ϕk

0 −Φ0

∥
∥
∥

s
≤Cs(1+ ks)δ k ‖Φ0‖s , k ∈N. (1.24)

Of course, these convergence results also imply that the sequence vk = ηB∗ϕk,
where ϕk is the solution of Eq. (1.2) with initial data ϕk

0 , converge to the control V
given by Eq. (1.10):

∥
∥
∥vk −V

∥
∥
∥

L2(0,T ;dt/η;U)
≤Cδ k ‖y0‖X . (1.25)

Note that, in general, Eq. (1.22) also gives estimates on the convergence of vk to-
wards V in stronger norms when the data y0 to be controlled lies in Xs for some
s ≥ 0.
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1.2.2 The Continuous Approach

Following the “algorithm” developed in Theorem 1.1, we now approximate the
sequence ϕk

0 constructed in Eqs. (1.17) and (1.18). A way of doing that is to in-
troduce operators Ah and Bh as above and to define the discrete operator

ΛT h =
∫ T

0
η(t)e−tAhBhB∗

hetAh dt.

To be more precise, we shall assume that we have an extension map Eh : Vh → X
that induces an Hilbert structure on Vh endowed by the norm ‖·‖h = ‖Eh ·‖X . We
further assume that, for each h > 0, Ah is skew-adjoint with respect to that scalar
product, so that ΛT h is self-adjoint in Vh.

Classically, for the numerical method to be consistent, it is assumed that for
smooth initial data ϕ ∈ ∩s>0Xs, (EhRh − Id)ϕ strongly converge to zero in X as
h → 0, where Rh is a restriction operator from X to Vh. But for our purpose, we need
a slightly different version of it (though of course they are related), see Assumption 2
in Eq. (1.29) below.

Here, we shall rather assume the two following conditions:

Assumption 1. There exist s > 0, θ > 0 and C > 0 so that for all h > 0

‖EhRhϕ0‖X ≤ C‖ϕ0‖X , ϕ ∈ X , (1.26)

‖(EhRh − IdX)ϕ0‖X ≤ Chθ ‖ϕ0‖s , ϕ ∈ Xs, (1.27)

‖EhΛT hRhϕ0‖X ≤ C‖ϕ0‖X , ϕ ∈ X , (1.28)

‖(EhΛT hRh −EhRhΛT )ϕ0‖X ≤ Chθ ‖ϕ0‖s , ϕ ∈ Xs. (1.29)

Assumption 2. The norms of the operators ΛTh in L(Vh) are uniformly bounded
with respect to h > 0:

C 2
ad := sup

h≥0
‖ΛT h‖L(Vh)

< ∞, (1.30)

where, when h = 0, we use the notation V0 = X and ΛT 0 =ΛT .

Before going further, let us emphasize that Assumption 2, though straightforward
when the observation operators are uniformly bounded with respect to the L(Xh,Uh)
norms, is not obvious when dealing with boundary controls, for instance. Indeed, in
that case, one should be careful and prove a uniform admissibility result (here and in
the following, “uniform” always refers to the dependence on the discretization pa-
rameter(s)). Also note that Assumption 2 together with Eq. (1.26) implies Eq. (1.28).

We now have the following result:

Theorem 1.2. Assume that Assumptions 1 and 2 hold. Define ρ1 by

ρ1 = min{ρ0,2/C
2
ad}, (1.31)

where ρ0 is given by Theorem 1.1.
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Let ρ ∈ (0,ρ1). Let y0 ∈ Xs and (y0h)h>0 be a sequence of functions such that for
all h > 0, y0h ∈Vh.

For each h > 0, define the sequence ϕk
0h by induction, inspired in the statement

of Theorem 1.1, as follows:

ϕ0
0h = 0, ∀k ∈ N, ϕk+1

0h = ϕk
0h −ρ

(
ΛThϕk

0h + y0h

)
. (1.32)

Then consider the sequence ϕk
0 defined by induction by Eqs. (1.17) and (1.18)

with this same parameter ρ .
Then there exists a constant C > 0 independent of h > 0 such that for all k ∈N,

∥
∥
∥Ehϕk

0h −ϕk
0

∥
∥
∥

X
≤ kρ ‖Ehy0h − y0‖X +Ckhθ ‖y0‖s . (1.33)

Then, using Theorems 1.1 and 1.2 together, we get the following convergence
theorem.

Theorem 1.3. Assume that Assumptions 1 and 2 hold.
Let y0 ∈ Xs and ρ ∈ (0,ρ1), ρ1 given by Eq. (1.31). Let (y0h)h>0 be a sequence

such that for all h > 0,

‖Ehy0h − y0‖X ≤Chθ ‖y0‖s . (1.34)

Then, for all h > 0, setting

Kc
h =

⌊

θ
log(h)
log(δ )

⌋

, (1.35)

where δ is given by Eq. (1.20), we have, for some constant C independent of h,
∥
∥
∥EhϕKc

h
0h −Φ0

∥
∥
∥

X
≤C| log(h)|max{1,s}hθ ‖y0‖s , (1.36)

where ϕKc
h

0h is the Kc
h-iterate of the sequence ϕk

0h defined by Eq. (1.32).

This is the so-called continuous approach for building numerical approximations
of the controls.

At this level it is convenient to underline a number of issues:

• The approximate controls we obtain in this way do not control the discrete
dynamics or some of its projections. They are simply obtained as approxima-
tions of the continuous control by mimicking at the discrete level the iterative
algorithm of Theorem 1.1.

• The result above holds provided the number of iterations is limited by the
threshold given by Eq. (1.35). Indeed, in case the iterative algorithm would be
continued after this step, the error estimate would deteriorate as the numerical
experiments show; see Sect. 1.7.
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As mentioned above, the algorithm above and the error estimates we obtain are
similar to those in [9] where the iterative process proposed by Russell to obtain con-
trollability out of stabilization results is mimicked at the discrete level. The number
of iterations in [9] is of the order of 	θ | log(h)|m
, where m is a constant that en-
ters in the continuous stabilization property of the dissipative operator A−BB∗, and
the error obtained that way is hθ | log(h)|2. But the results in [9] apply only in the
context of bounded control operators and they do not yield the control of minimal
L2-norm, whereas our approach applies under the weaker admissibility assumption
on the control operator and yields effective approximations of the minimal norm
controls (suitably weighted in time).

Note that estimates (1.36) also imply that the sequence vk
h = ηB∗

hϕk
h , defined for

k ≥ 0 with ϕk
h(t) = exp(tAh)ϕk

0h satisfies that v
Kc

h
h is close to V in Eq. (1.10) with

some bounds (usually the same) on the error term. We do not state precisely the
corresponding results since it would require to introduce further assumptions on the
way the spaces Uh approximate U .

1.2.3 The Discrete Approach

As we have mentioned above, the discrete approach is based on the analysis and
use of the controllability properties of the approximated discrete dynamics to build
efficient numerical approximations of the controls.

The main difference when implementing it is that it requires the following
uniform coercivity assumption on the Gramian operator:

Assumption 3. There exists a constant C such that for all h ≥ 0 and ϕ0h ∈Vh,

‖ϕ0h‖2
h ≤ C 2〈ΛT hϕ0h,ϕ0h〉h, (1.37)

where, for h = 0, we use the notation V0 = X and ΛT 0 =ΛT .

Note that Assumption 3 states the uniform coercivity of the operators ΛT h, or
equivalently, the uniform observability for the approximated semigroups. This as-
sumption often fails and is only guaranteed to hold in suitable subspaces of Vh,
after applying suitable filtering mechanisms (see [16, 23, 24]). Indeed, the classi-
cal numerical methods employed to approximate ΛT by ΛT h that are usually based
on replacing the wave equation by a numerical approximation counterpart usually
provide discrete operators ΛT h that violate this uniform observability assumption.
Hence providing a subspace Vh satisfying Eq. (1.37) requires a careful analysis of
the observability properties of the discrete dynamics, a fact that is not necessary
when developing the continuous approach.
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In any case, under Assumption 3, we can prove the following stronger version of
Theorem 1.2:

Theorem 1.4. Assume that Assumptions 1, 2, and 3 hold. Define

ρ2 =
2

C 4
adC

2
(1.38)

and consider ρ ∈ (0,ρ2). Let y0 ∈ D(As) and (y0h)h>0 be a sequence of functions
such that for all h > 0, y0h ∈Vh.

For each h > 0, define the sequence ϕk
0h by induction as in Eq. (1.32). Then con-

sider the sequence ϕk defined by induction by Eqs. (1.17) and (1.18) with this same
parameter ρ .

Then there exists a constant C > 0 independent of h > 0 such that for all k ∈N,
∥
∥
∥Ehϕk

0h −ϕk
0

∥
∥
∥

X
≤C

(
‖Ehy0h − y0‖X + hθ ‖y0‖s

)
. (1.39)

Then, using Theorems 1.1 and 1.4 together, we get the following counterpart of
Theorem 1.3:

Theorem 1.5. Let us suppose that Assumptions 1, 2, and 3 hold.
Let y0 ∈ Xs and ρ ∈ (0,ρ2), ρ2 given by Eq. (1.38).
Let (y0h)h>0 be a sequence such that Eq. (1.34) holds.
Then, for all h > 0, setting

Kd
h =

⌊

θ
log(h)
log(δ )

− (s+ 1)
log(| log(h)|)

log(δ )

⌋

, (1.40)

where δ is given by Eq. (1.20), we have, for some constant C independent of h and k,
∥
∥
∥Ehϕk

0h −Φ0

∥
∥
∥

X
≤Chθ ‖y0‖s , k ≥ Kd

h , (1.41)

where ϕk
0h is the k-iterate of the sequence ϕk

0h defined by Eq. (1.32).

Note that, under Assumptions 1, 2, and 3, for all y0h ∈Vh, the equation

ΛT hΦ0h + y0h = 0 (1.42)

has a unique solution Φ0h, on which we have a uniform bound:

‖Φ0h‖h ≤ C 2 ‖y0h‖h , (1.43)

where C is the constant in Assumption 3.
Now, since k can be made arbitrarily large in Theorem 1.5, if y0 ∈ Xs and y0h

denotes an approximation of y0 that satisfies Eq. (1.34), setting Φ0h the solution
of Eq. (1.42), we have

‖EhΦ0h −Φ0‖X ≤Chθ ‖y0‖s , (1.44)
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where Φ0 is the solution of Eq. (1.14). Indeed, in that case, it is very easy to check
that at h > 0 fixed, as k → ∞, the sequence φ k

0h converges to Φ0,h given by Eq. (1.42)
in Vh, see, e.g., Theorem 1.6.

This is the convergence result obtained in [16], using another proof, directly
based on the smoothness of the trajectory of the minimizer Φ0 when y0 ∈ Xs. We re-
fer to [16] for numerical evidences on the fact that the convergence rates (1.44) are
close to sharp. We will also illustrate this fact in Sect. 1.7.

1.2.4 Outline of Chap. 1

Chapter 1 is organized as follows. In Sect. 1.3 we prove Theorem 1.1. In Sect. 1.4
we give the proofs of Theorems 1.2 and 1.3. In Sect. 1.5 we prove Theorems 1.4
and 1.5. We shall then compare the two approaches in Sect. 1.6. In Sect. 1.7 we
present some applications of these abstract results, in particular to the wave equa-
tion. In Sect. 1.8 we show that some data assimilation problems can be treated by
the methods developed in this book.

1.3 Proof of the Main Result on the Continuous Setting

This section is devoted to the proof of Theorem 1.1. We shall then fix T > 0 so that
estimates (1.7) and (1.8) hold. Given y0 ∈ Xs, Φ0 ∈ X is chosen to be the unique
solution of Eq. (1.14).

Let then ϕk
0 be sequence defined by the induction formulae (1.17) and (1.18).

1.3.1 Classical Convergence Results

First we prove Eq. (1.23) which is classical and corresponds to the usual proof of
convergence of the steepest descent algorithm for quadratic convex functionals. We
provide it only for completeness and later use.

Proof (Proof of estimate (1.23)). Using Eq. (1.18), and subtracting to it Φ0, we get

ϕk+1
0 −Φ0 = ϕk

0 −Φ0 −ρ(ΛT ϕk
0 + y0) = ϕk

0 −Φ0 −ρΛT (ϕk
0 −Φ0), (1.45)

where the last identity follows from the definition of Φ0 in Eq. (1.14).
But, for any ψ ∈ X ,

‖(I−ρΛT )ψ‖2
X = ‖ψ‖2

X − 2ρ〈ΛT ψ ,ψ〉X +ρ2‖ΛT ψ‖2
X .
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Hence, using that Eqs. (1.7) and (1.8) can be rewritten as

1

C2
obs

‖ψ‖2
X ≤

∥
∥
∥Λ 1/2

T ψ
∥
∥
∥

2

X
≤C2

ad ‖ψ‖2
X ,

we get that

‖(I−ρΛT )ψ‖2
X ≤

(

1− 2
ρ

C2
obs

+ρ2C4
ad

)

‖ψ‖2
X . (1.46)

Note that, according to Eqs. (1.7) and (1.8), C2
obsC

2
ad ≥ 1 and thus for all ρ > 0, the

quadratic form 1− 2ρ/C2
obs+ρ2C4

ad is nonnegative.
Thus, for any ρ > 0 such that ρ ∈ (0,ρ0) with ρ0 as in Eq. (1.19), and setting

δ (ρ) as in Eq. (1.20), δ (ρ) belongs to (0,1) and

‖(I −ρΛT )‖L(X) ≤ δ (ρ). (1.47)

From Eq. (1.45), we obtain
∥
∥
∥ϕk+1

0 −Φ0

∥
∥
∥

X
≤ δ

∥
∥
∥ϕk

0 −Φ0

∥
∥
∥

X
. (1.48)

Of course, Eq. (1.48) immediately implies Eq. (1.23). ��

1.3.2 Convergence Rates in Xs

Here, our goal is to show the convergence of the sequence ϕk
0 constructed in

Eqs. (1.17) and (1.18) in the space Xs.

Proof (Proof of the convergence in Xs). When s ∈ R+, the convergence esti-
mate (1.24) is deduced by interpolation between the results obtained for 	s
 and �s�.
Hence, in the following, we focus on the proof of Eq. (1.24) for integers s ∈ N.
Besides, the case s = 0 is already done in Eq. (1.23) so we will be interested in the
case s ∈ N and s ≥ 1.

Step 1. The Gramian operator maps D(As) to D(As). For ψ0 ∈ X , introduce the
function Ψ0 ∈ D(A) defined by AΨ0 = ψ0. Then the solutions Ψ and ψ of Eq. (1.2)
with corresponding initial data Ψ0 and ψ0 satisfy, for all t ∈ (0,T ), Ψ ′(t) = AΨ(t) =
ψ(t).

Hence, if ϕ0 ∈ D(A) and ψ0 ∈ X , denoting by ϕ the solution of Eq. (1.2) with
data ϕ0,

〈ΛT ϕ0,ψ0〉X =

∫ T

0
η(t)〈B∗ϕ(t),B∗Ψ ′(t)〉U dt

= −
∫ T

0
η(t)〈B∗ϕ ′(t),B∗Ψ (t)〉U dt −

∫ T

0
η ′(t)〈B∗ϕ(t),B∗Ψ(t)〉U dt.

Of course, using Eqs. (1.7) and (1.3), this implies that
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|〈ΛT ϕ0,ψ0〉X | ≤C2
ad ‖Aϕ0‖X ‖Ψ0‖X +

∥
∥η ′∥∥

L∞ C2
ad,T ‖ϕ0‖X ‖Ψ0‖X

≤ ‖Aϕ0‖X

∥
∥A−1ψ0

∥
∥

X

(
C2

ad +C2
ad,T

∥
∥η ′∥∥

L∞

∥
∥A−1

∥
∥
L(X)

)
.

Therefore, ΛT maps D(A) to itself.
Of course, the case of an integer s ∈ N strictly larger than 1 can be treated sim-

ilarly and is left to the reader. Then, by interpolation, this also implies that for all
s ≥ 0, ΛT maps Xs to Xs.

This step already indicates that for each k ∈ N, ϕk
0 constructed by the induction

formulae (1.17) and (1.18) belongs to Xs provided that y0 ∈ Xs.
Step 2. First estimate on the commutator [ΛT ,A]. Take ϕ0 and ψ0 in D(A). From

the previous step, we know that [ΛT ,A]ϕ0 ∈ X , and we can then take its scalar prod-
uct with ψ0 ∈ D(A):

〈[ΛT ,A]ϕ0,ψ0〉X = 〈ΛT Aϕ0,ψ0〉X −〈AΛT ϕ0,ψ0〉X

= 〈ΛT Aϕ0,ψ0〉X + 〈ΛT ϕ0,Aψ0〉X

=

∫ T

0
η(t)〈B∗ϕ ′(t),B∗ψ(t)〉U dt +

∫ T

0
η〈B∗ϕ(t),B∗ψ ′(t)〉U dt

= −
∫ T

0
η ′(t)〈B∗ϕ(t),B∗ψ(t)〉U dt,

where ϕ and ψ are the solutions of Eq. (1.2) with data ϕ0 and ψ0, respectively.
Hence, using Eq. (1.3), we obtain

|〈[ΛT ,A]ϕ0,ψ0〉X | ≤C2
ad,T

∥
∥η ′∥∥

L∞ ‖ϕ0‖X ‖ψ0‖X , (1.49)

and the operator [ΛT ,A] can be extended as a continuous operator from X to X and

‖[ΛT ,A]‖L(X) ≤C2
ad,T

∥
∥η ′∥∥

L∞ . (1.50)

Step 3. Convergence in D(A). Apply A in the identity (1.45):

A
(

ϕk+1
0 −Φ0

)
= A

(
ϕk

0 −Φ0

)
−ρAΛT (ϕk

0 −Φ0)

= A
(

ϕk
0 −Φ0

)
−ρΛT A(ϕk

0 −Φ0)+ρ [ΛT ,A](ϕk
0 −Φ0). (1.51)

Then, using Eqs. (1.47) and (1.50), we obtain
∥
∥
∥A
(

ϕk+1
0 −Φ0

)∥
∥
∥

X
≤ δ

∥
∥
∥A
(

ϕk
0 −Φ0

)∥
∥
∥

X
+ρ ‖[ΛT ,A]‖L(X)

∥
∥
∥

(
ϕk

0 −Φ0

)∥
∥
∥

X
,

(1.52)

and, using Eq. (1.23),
∥
∥
∥A
(

ϕk+1
0 −Φ0

)∥
∥
∥

X
≤ δ

∥
∥
∥A
(

ϕk
0 −Φ0

)∥
∥
∥

X
+ρδ k ‖[ΛT ,A]‖L(X) ‖Φ0‖X .
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Therefore,

1
δ k+1

∥
∥
∥A
(

ϕk+1
0 −Φ0

)∥
∥
∥

X
− 1

δ k

∥
∥
∥A
(

ϕk
0 −Φ0

)∥
∥
∥

X
≤ ρ

δ
‖[ΛT ,A]‖L(X) ‖Φ0‖X .

Summing up these inequalities, we obtain, for all k ∈N,

∥
∥
∥A
(

ϕk
0 −Φ0

)∥
∥
∥

X
≤ δ k

(

‖AΦ0‖X +
ρk
δ

‖[ΛT ,A]‖L(X) ‖Φ0‖X

)

. (1.53)

Step 4. Higher-order estimates (1.24). They are left to the reader as they are very
similar to those obtained in Eq. (1.53). They are obtained by induction for s ∈ N.

The idea is to write

As
(

ϕk+1
0 −Φ0

)
= (I −ρΛT )A

s
(

ϕk
0 −Φ0

)
+ρ [ΛT ,A

s]
(

ϕk
0 −Φ0

)
,

and use the fact that [ΛT ,As] is bounded as an operator from D(As−1) to X , which
can be proved similarly as in Step 2. Then one easily gets that

∥
∥
∥As

(
ϕk+1

0 −Φ0

)∥
∥
∥

X
≤ δ

∥
∥
∥As

(
ϕk

0 −Φ0

)∥
∥
∥

X

+ρ ‖[ΛT ,A
s]‖L(D(As−1),X)

∥
∥
∥As−1

(
ϕk+1

0 −Φ0

)∥
∥
∥

X
.

An easy induction argument then yields Eq. (1.24) for all s ∈N.
To conclude Eq. (1.24) for s ≥ 0, we interpolate Eq. (1.24) between the two con-

secutive integers 	s
 and �s�. ��
Remark 1.1. Note that, actually, the smoothness η ∈ C∞(R) is not really needed to
get Theorem 1.1. The assumption η ∈C�s�(R) would be enough.

Also note that, when BB∗ maps D(Ap) to D(Ap) for all p ∈ N, one can even
choose η as being the step function η(t) = 1 on (0,T ∗) (where T ∗ is such that the
observability estimate (1.5) holds) and vanishing outside (0,T ∗).

These remarks are of course related to the fact that in these two cases, the needed
integrations by parts run smoothly, similarly as in [15].

1.4 The Continuous Approach

In this section, we suppose that Assumptions 1 and 2 hold.
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1.4.1 Proof of Theorem 1.2

Proof (Theorem 1.2). In the following, we use the notations introduced in Theo-
rem 1.2. All the constants that will appear in the proof below, denoted by a generic
C that may change from line to line, are independent of h > 0 and k ∈ N.

Subtracting Eq. (1.18) to Eq. (1.32), we obtain

ϕk+1
0h −Rhϕk+1

0 = ϕk
0h−Rhϕk

0−ρ(y0h−Rhy0)−ρ
(

ΛT hϕk
0h−RhΛT ϕk

0

)

= (I−ρΛT h)
(

ϕk
0h−Rhϕk

0

)
−ρ(y0h−Rhy0)+ρ (RhΛT −ΛThRh)ϕk

0 .

Hence,

∥
∥
∥ϕk+1

0h −Rhϕk+1
0

∥
∥
∥

h
≤
∥
∥
∥(I −ρΛTh)

(
ϕk

0h −Rhϕk
0

)∥
∥
∥

h

+ρ ‖y0h −Rhy0‖h +ρ
∥
∥
∥(RhΛT −ΛThRh)ϕk

0

∥
∥
∥

h
. (1.54)

But, for ϕh ∈Vh,

‖(I−ρΛTh)ϕh‖2
h = ‖ϕh‖2

h − 2ρ
∥
∥
∥Λ 1/2

T h ϕh

∥
∥
∥

2

h
+ρ2‖ΛT hϕh‖2

h

= ‖ϕh‖2
h − 2ρ

∥
∥
∥Λ 1/2

T h ϕh

∥
∥
∥

2

h
+ρ2‖ΛT hϕh‖2

h

≤ ‖ϕh‖2
X − 2ρ

∥
∥
∥Λ 1/2

Th ϕh

∥
∥
∥

2

h
+ρ2

∥
∥
∥Λ 1/2

T h

∥
∥
∥

2

L(Vh)

∥
∥
∥Λ 1/2

Th ϕh

∥
∥
∥

2

h
.

Hence, if we impose ρ ∈ (0,ρ1), where ρ1 = min{ρ0,2/C 2
ad} as in Eq. (1.31)

(with Cad given by Assumption 2),

−2+ρ
∥
∥
∥Λ 1/2

Th

∥
∥
∥

2

L(Vh)
≤−2+ρC 2

ad ≤ 0,

and then for all ϕh ∈Vh,

‖(I −ρΛTh)ϕh‖2
h ≤ ‖ϕh‖2

h . (1.55)

Accordingly, for ρ ∈ (0,ρ1),
∥
∥
∥(I−ρΛTh)

(
ϕk

0h −Rhϕk
0

)∥
∥
∥

h
≤
∥
∥
∥

(
ϕk

0h −Rhϕk
0

)∥
∥
∥

h
. (1.56)

Equation (1.29) in Assumption 1 also yields
∥
∥
∥(RhΛT −ΛThRh)ϕk

0

∥
∥
∥

h
≤Chθ

∥
∥
∥ϕk

0

∥
∥
∥

s
. (1.57)
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Using the fact that, according to estimates (1.15), (1.24), there is a constant C
independent of k and h > 0 such that for all k ∈ N,

∥
∥
∥ϕk

0

∥
∥
∥

s
≤C‖y0‖s , (1.58)

we derive
∥
∥
∥(RhΛT −ΛThRh)ϕk

0

∥
∥
∥

h
≤Chθ ‖y0‖s . (1.59)

Thus, using Eqs. (1.54), (1.56), and (1.59), we obtain
∥
∥
∥ϕk+1

0h −Rhϕk+1
0

∥
∥
∥

h
≤
∥
∥
∥ϕk

0h −Rhϕk
0

∥
∥
∥

h
+ρ ‖y0h −Rhy0‖h +Cρhθ ‖y0‖s , (1.60)

where C is a constant independent of k and h > 0.
Summing up Eq. (1.60), we obtain
∥
∥
∥Ehϕk

0h −EhRhϕk
0

∥
∥
∥

X
=
∥
∥
∥ϕk

0h −Rhϕk
0

∥
∥
∥

h
≤ kρ ‖y0h −Rhy0‖h +Ckρhθ ‖y0‖s .

Finally, according to Eq. (1.58), estimate (1.27) yields
∥
∥
∥(EhRh − IdX)ϕk

0

∥
∥
∥

X
≤Chθ ‖y0‖s , (1.61)

and thus Eq. (1.33) follows immediately. ��

1.4.2 Proof of Theorem 1.3

Proof (Theorem 1.3). Using Theorems 1.1 and 1.2 and the estimate (1.34), we
obtain that, for some constant C > 0 independent of h,

∥
∥
∥Ehϕk

0h −Φ0

∥
∥
∥

X
≤C‖y0‖s

(
(1+ ks)δ k + kρhθ

)
. (1.62)

We then optimize the right-hand side of this estimate in k, thus yielding approxi-
mately Kc

h as in Eq. (1.35). Estimate (1.36) immediately follows from the definition
of Kc

h . ��

1.5 Improved Convergence Rates: The Discrete Approach

In this section, we assume that Assumptions 1 and 2 hold, but also Assumption 3.
Let us recall that Assumption 3, that states a uniform coercivity result for the

discrete Gramians ΛT h, is not a consequence of classical convergence results for
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numerical methods. It rather consists in a very precise result on the dynamics of the
discrete equations (1.11) which is the key of the discrete approach.

1.5.1 Proof of Theorem 1.4

Proof (Theorem 1.4). It closely follows the proof of Theorem 1.2, except that now,
following the proof of Eq. (1.47), based on Assumption 3, we can prove that, for
ρ ∈ (0,ρ2) and

δd(ρ) =
√

1− 2
ρ
C 2 +ρ2C 4

ad , (1.63)

we have that

‖(I −ρΛTh)ϕh‖h ≤ δd ‖ϕh‖h . (1.64)

instead of Eq. (1.55).
Consequently, estimate (1.60) can be replaced by

∥
∥
∥ϕk+1

0h −Rhϕk+1
0

∥
∥
∥

h
≤ δd

∥
∥
∥ϕk

0h −Rhϕk
0

∥
∥
∥

h

+ρ ‖y0h −Rhy0‖h +Cρhθ ‖y0‖s , k ∈ N, (1.65)

where C is a constant independent of k and h > 0.
Of course, this can be rewritten as

1

δ k+1
d

∥
∥
∥ϕk+1

0h −Rhϕk+1
0

∥
∥
∥

h
− 1

δ k
d

∥
∥
∥ϕk

0h −Rhϕk
0

∥
∥
∥

h

≤ 1

δ k+1
d

(
ρ ‖y0h −Rhy0‖h +Cρhθ ‖y0‖s

)
, (1.66)

so

1

δ k
d

∥
∥
∥ϕk

0h −Rhϕk
0

∥
∥
∥

h
≤
(

k

∑
j=1

1

δ j
d

)
(

ρ ‖y0h −Rhy0‖h +Cρhθ ‖y0‖s

)
.

Of course, since δd ∈ (0,1), by construction, this implies that for all k ∈ N,

∥
∥
∥ϕk

0h −Rhϕk
0

∥
∥
∥

h
≤ 1

1− δd

(
ρ ‖y0h −Rhy0‖h +Cρhθ ‖y0‖s

)
.

Using then Eq. (1.61), estimate (1.39) immediately follows, similarly as in the proof
of Theorem 1.2. ��
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1.5.2 Proof of Theorem 1.5

Proof (Theorem 1.5). Using Eq. (1.39), one only needs to find k such that
∥
∥
∥ϕk

0 −Φ0

∥
∥
∥

X
≤Chθ ‖y0‖s .

Thus, we only have to check that this estimate holds for any k ≥ Kd
h , Kd

h given
by Eq. (1.40). But this is an immediate consequence of Theorem 1.1. This concludes
the proof of Theorem 1.5. ��

1.6 Advantages of the Discrete Approach

When comparing the results in Theorems 1.3 and 1.5, one may think that the con-
tinuous approach, which applies with a lot of generality, yields essentially the same
convergence estimates as the discrete one, more intricate, making the latter irrele-
vant. This is not the case, and we list below an important number of facts that may
be used to compare the two techniques.

1.6.1 The Number of Iterations

A first look on the number of iterations Kc
h ,K

d
h in Eqs. (1.35) and (1.40) indicates

that they do not depend significantly but only in a logarithmic manner, on the mesh
size h. They rather depend essentially on δ given by Eq. (1.20), which is close to 1.

To be more precise, formula (1.35) requires to have an estimate on δ (ρ),
which depends on the observability and admissibility constants in an intricate way,
see Eq. (1.20). However, these two constants are not easy to compute in general
situations and, usually, one can only get some bounds on them.

Assume that Cobs is bounded by Cobs,est and Cad by Cad,est (here and below, the
index “est” stands for estimated). Then, taking ρ < 2/(C4

ad,estC
2
obs,est), Theorem 1.3

applies, and δ (ρ)≤ δest, where δest is defined by

δest =

√

1− 2ρ
C2

obs,est

+ρ2C4
ad,est,

and therefore
1

| log(δ )| ≤
1

| log(δest)| ,

which means that Kc
h in Eq. (1.35) can only be estimated from above



1.6 Advantages of the Discrete Approach 21

Kc
h ≤ Kc

est,h := 	θ
log(h)

log(δest)

.

Of course, this Kc
est,h can be much larger than Kc

h , but according to Eq. (1.62),
estimate Eq. (1.36) also holds with that stopping time Kc

est,h instead of Kc
h .

Similarly, when applying Theorem 1.5, that is when Assumption 3 holds, one
can bound Kd

h in Eq. (1.40) by

Kd
est,h := 	θ

log(h)
log(δest)

− (s+ 1)
log(| log(h)|)

log(δest)

.

But here, the final iteration time can be any number k larger than Kd
est,h, and in

particular it can be chosen to be k � ∞. Hence, in the discrete approach, we do not
really care about the estimates we have on Kd

h . This is in contrast with the behavior
of the continuous approach in which, taking the number of iterations beyond the
optimal threshold, can deteriorate the error estimate and actually makes the method
diverge, see Sect. 1.7.

Actually, in the discrete approach, we prove a Γ -convergence result for the
minimizers of the functionals Jh in Eq. (1.12) towards that of J in Eq. (1.9). Thus,
one can use more sophisticated and rapid algorithms to compute the minimum of Jh

as, for instance, conjugate gradient methods; see Sect. 1.6.3. The convergence will
then be faster and the number of iterations smaller.

1.6.2 Controlling Non-smooth Data

Here, we are interested in the case in which y0 ∈ X and we have some discrete initial
data y0h ∈Vh such that Ehy0h converge to y0 strongly in X . Then, neither Theorem 1.3
nor Theorem 1.5 applies.

However, in the discrete approach, that is when supposing Assumption 3, simi-
larly as in Theorem 1.1, we have the following:

Theorem 1.6. Suppose that Assumptions 1, 2, and 3 are satisfied. Let h> 0, y0h ∈Vh

and Φ0h be the solution of Eq. (1.42).
For any ρ ∈ (0,2/C 4

adC
2), and δ (ρ) as in Eq. (1.63), the sequence ϕk

0h defined
by Eq. (1.32) satisfies.

∥
∥
∥ϕk

0h −Φ0h

∥
∥
∥

h
≤ δ k ‖Φ0h‖h , k ∈N. (1.67)

Of course, the proof of Theorem 1.6 closely follows the one of Theorem 1.1 and
is therefore omitted.

Note that, since Φ0h is the solution of Eq. (1.42), it coincides with the unique
(because of Assumption 3) minimizer of Jh defined in Eq. (1.12), and the iterates
ϕk

0h defined by Eq. (1.32) simply are those of the steepest descent algorithm for Jh.
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But, using Theorem 1.6, we can prove that, if y0 ∈ X and Ehy0h converge to y0 in
X , the sequence of EhΦ0h converges in X to Φ0:

Theorem 1.7. Suppose that Assumptions 1, 2, and 3 are satisfied. Let y0 ∈ X and
Φ0 ∈ X be the solution of Eq. (1.14). Let y0h ∈ Vh and Φ0h ∈ Vh be the solution
of Eq. (1.42).

If Ehy0h weakly (respectively, strongly) converges to y0 in X as h → 0, EhΦ0h

weakly (respectively, strongly) converges to Φ0 in X.

Theorem 1.7 is actually well known and is usually deduced by suitable conver-
gence results, similarly as in [16].

Proof. Since Ehy0h weakly converges to y0 in X , it is bounded in X . Therefore,
using Eq. (1.43), EhΦ0h is bounded in X . Hence it weakly converges to some φ̃0

in X .
Using that Φ0 and Φ0h solve, respectively Eqs. (1.14) and (1.42), for all ψ0 and

ψ0h, we have

〈ΛT Φ0,ψ0〉X + 〈ψ0,y0〉X = 0, 〈ΛT hΦ0h,ψ0h〉h + 〈ψ0h,y0h〉h = 0. (1.68)

In particular, using that ΛT and ΛT h are self-adjoint in V and Vh, respectively,

〈Φ0,ΛT ψ0〉X + 〈ψ0,y0〉X = 0, 〈Φ0h,ΛT hψ0h〉h + 〈ψ0h,y0h〉h = 0. (1.69)

Let us then fix ψ0 ∈ Xs and ψ0h = Rhψ0. According to Assumption 1,

Ehψ0h −→
h→0

ψ0 in X , EhΛT hψ0h −→
h→0

ΛT ψ0 in X .

In particular,

〈φ̃0,ΛT ψ0〉X = lim
h→0

〈Φ0h,ΛT hψ0h〉h =− lim〈ψ0h,y0h〉h

=−〈ψ0,y0〉X = 〈Φ0,ΛT ψ0〉X .

Using that ΛT is an isomorphism on Xs and the fact that Xs is dense in X , we thus
deduce that φ̃0 = Φ0, i.e., EhΦ0h weakly converges to Φ0 in X .

Let us now assume that Ehy0h strongly converges to y0 in X . Set Φ0h = Λ−1
T h y0h,

Φ0 =Λ−1
T y0. Let ε > 0. Set ỹ0 ∈ D(As) such that ‖y0 − ỹ0‖X ≤ ε . The observability

of the continuous model then implies that, setting Φ̃0 =Λ−1
T ỹ0,

∥
∥Φ̃0 −Φ0

∥
∥

X ≤Cε .
Besides, applying Theorem 1.5 to ỹ0, there exists a sequence ỹ0h such that

‖Ehỹ0h − ỹ0‖X ≤Chθ ,
∥
∥EhΦ̃0h − Φ̃0

∥
∥

X ≤Chθ ,

where Φ̃0h = Λ−1
T h ỹ0h.

Finally, since Λ−1
T h is uniformly bounded by Assumption 3,
∥
∥EhΦ̃0h −EhΦ0h

∥
∥

X ≤C‖Ehỹ0h −Ehy0h‖X .
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But

‖Ehỹ0h −Ehy0h‖X ≤ ‖Ehỹ0h − ỹ0‖X + ‖ỹ0 − y0‖X + ‖y0 −Ehy0h‖X

≤ Chθ + ε + ‖y0 −Ehy0h‖X ,

and thus

‖Φ0 −EhΦ0h‖X ≤ ∥
∥Φ0 − Φ̃0

∥
∥

X +
∥
∥Φ̃0 −EhΦ̃0h

∥
∥

X +
∥
∥EhΦ̃0h −EhΦ0h

∥
∥

X

≤ Chθ +Cε +C‖y0 −Ehy0h‖X .

This last estimate proves that for all ε > 0,

limsup
h→0

‖Φ0 −EhΦ0h‖X ≤Cε.

This concludes the proof of the strong convergence of EhΦ0h to Φ0 as h → 0. ��
Of course, one can go even further and analyze if Assumption 3 is really needed

to get convergences of the discrete minima Φ0h of Jh towards the continuous one Φ0

of J. It turns out that Assumption 3 is indeed needed as numerical evidences show;
see Sect. 1.7 and [20, 21, 23] and [16, Theorem 8] for a theoretical proof.

To sum up, the discrete approach ensures the convergence of discrete controls
even when the initial data to be controlled are only in X , whereas the continuous
approach does not work under these low regularity assumptions.

1.6.3 Other Minimization Algorithms

So far we have chosen to use the steepest descent algorithm for the minimization
of J in Eq. (1.9). Of course, many other choices yield better convergence results, in
particular the conjugate gradient algorithm, when dealing with quadratic coercive
functionals.

However, if one uses the conjugate gradient algorithm to minimize the functional
J in Eq. (1.9), we do not know if, similarly as in Theorem 1.1, the iterations con-
verge in Xs when the initial data to be controlled are in Xs. To our knowledge, this
is an open problem. This is related to the fact that the conjugate gradient algorithm
strongly uses orthogonality properties in the natural space X endowed with its nat-
ural scalar product 〈·, ·〉X and with the scalar product adapted to the minimization
problem 〈ΛT ·, ·〉X .

This prevents us from using the conjugate gradient algorithm when following the
continuous approach.

However, when considering the discrete approach, since we proved (Theorem
1.5) that the minimizers Φ0h of Jh in Eq. (1.12) converge to the minimizer Φ0 of J
when Ehy0h converge in X , there is full flexibility in the choice of the algorithm to



24 1 Numerical Approximation of Exact Controls for Waves

effectively compute the minimizer of Jh. In particular, we can then use the conjugate
gradient algorithm, for which we know that the minimum of Jh is attained in at most
dim(Vh) iterations and in general much faster than that.

As shown in the applications below, this makes the discrete approach more effi-
cient for numerics.

1.7 Application to the Wave Equation

Below, we focus on the emblematic example of the wave equation controlled from
the boundary or from an open subset.

In particular, we will focus on the case of the 1−d wave equation controlled from
the boundary, in which case we can easily illustrate our results with some numerical
simulations since the control function will simply be a function of time.

We then explain how our approach works in the context of distributed controls
so to compare it briefly with the results in [9].

1.7.1 Boundary Control

1.7.1.1 The Continuous Case

Let us consider the 1− d wave equation controlled from x = 1:
⎧
⎨

⎩

∂tt y− ∂xxy = 0, (t,x) ∈ R+× (0,1),
y(t,0) = 0, y(t,1) = v(t) (t,x) ∈ R+,
(y(0,x),∂t y(0,x)) = (y0(x),y1(x)), x ∈ (0,1).

(1.70)

Then, set X = L2(0,1)×H−1(0,1), A the operator defined by

A =

(
0 I

∂ D
xx 0

)

, D(A) = H1
0 (0,1)×L2(0,1),

where ∂ D
xx is the Laplace operator defined on H−1(0,1) with domain D(∂ D

xx) =
H1

0 (0,1) (in other words, ∂ D
xx is the Laplacian with Dirichlet boundary conditions)

and B the operator defined by

Bv =

(
0

−∂ D
xxỹ

)

, with ỹ solving

{−∂xxỹ = 0, x ∈ (0,1),
ỹ(0) = 0, ỹ(1) = v.

Here, endowing L2(0,1) with its usual L2-norm and the space H−1(0,1) with
the norm

∥
∥(−∂ D

xx)
−1/2 ·∥∥L2 , A is skew-adjoint on L2(0,1)×H−1(0,1) and B is an

admissible control operator. We refer to [49, Sect. 9.3] (see also [33, 35]) for the
proof of these facts.
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We can then consider the adjoint equation
⎧
⎨

⎩

∂tt ϕ − ∂xxϕ = 0, (t,x) ∈ R+× (0,1),
ϕ(t,0) = 0 = ϕ(t,1), (t,x) ∈ R+,
(ϕ(0,x),∂t ϕ(0,x)) = (ϕ0(x),ϕ1(x)), x ∈ (0,1),

(1.71)

with (ϕ0,ϕ1) ∈ L2(0,1)×H−1(0,1). The corresponding admissibility and observ-
ability properties (1.3) and (1.5) we need read as follows (see [49, Proposition 9.3.3]
for the computation of B∗):

1
C
‖(ϕ0,ϕ1)‖2

L2×H−1 ≤
∫ T

0
|∂x[(−∂ D

xx)
−1∂tϕ ](t,1)|2 dt ≤C‖(ϕ0,ϕ1)‖2

L2×H−1 .

Of course, when considering these estimates, one easily understands that rather
than considering trajectories ϕ of Eq. (1.71) for initial data (ϕ0,ϕ1) ∈ L2(0,1)×
H−1(0,1), it is easier to directly work on the set of trajectories (−∂ D

xx)
−1∂tϕ . But

this set coincides with the set of trajectories ϕ of Eq. (1.71) with initial conditions
(ϕ0,ϕ1) ∈ H1

0 (0,1)×L2(0,1).
Therefore, in the following, we shall only consider solutions ϕ of Eq. (1.71) with

initial data in H1
0 (0,1)×L2(0,1).

Also note that this space is the natural one when identifying L2(0,1) with its dual
since the control system (1.70) takes place in X = L2(0,1)×H−1(0,1), and there-
fore X∗ = H1

0 (0,1)×L2(0,1). This is the usual duality setting in Lions [36], but the
above argument ensures that all the results of this article, which have been obtained
within the setting of abstract conservative systems on Hilbert spaces identified with
their duals, can also be applied in the context of the usual duality pairing between
X = L2(0,1)×H−1(0,1) and X∗ = H1

0 (0,1)×L2(0,1).
Also note that the duality then reads as follows:

〈(y0,y1),(ϕ0,ϕ1)〉(L2×H−1),(H1
0×L2) =−

∫ 1

0
y0ϕ1 +

∫ 1

0
∂x(−∂ D

xx)
−1y1∂xϕ0.

In that context, the relevant counterparts of Eqs. (1.3) and (1.5) are then given by

1
C
‖(ϕ0,ϕ1)‖2

H1
0×L2 ≤

∫ T

0
|∂xϕ(t,1)|2 dt ≤C‖(ϕ0,ϕ1)‖2

H1
0×L2 . (1.72)

Such a result is well known to hold if and only if T ≥ 2; see [36]. This can
actually be proved very easily solving the wave equation (1.71) using Fourier series
and Parseval’s identity.

Therefore, in the sequel, we take T > 2 and η as in Eq. (1.6) with T ∗ = 2. To be
more precise, η will be chosen such that η is C1([0,T ]) and satisfies η(0) = η(T ) =
η ′(0) = η ′(T ) = 0.

The corresponding functional Eq. (1.9) is then defined on H1
0 (0,1)×L2(0,1) as

follows:

J(ϕ0,ϕ1) =
1
2

∫ T

0
η(t)|∂xϕ(t,1)|2 dt + 〈(y0,y1),(ϕ0,ϕ1)〉(L2×H−1),(H1

0 ×L2). (1.73)
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The corresponding Gramian operator ΛT is then given as follows: For (ϕ0,ϕ1) ∈
H1

0 (0,1)×L2(0,1), solve

⎧
⎨

⎩

∂ttϕ − ∂xxϕ = 0, (t,x) ∈ (0,T )× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T ),
(ϕ(0, ·),∂tϕ(0, ·)) = (ϕ0,ϕ1), x ∈ (0,1).

(1.74)

Then solve
⎧
⎨

⎩

∂tt ψ − ∂xxψ = 0, (t,x) ∈ (0,T )× (0,1),
ψ(t,0) = 0, ψ(t,1) =−η(t)∂xϕ(t,1), t ∈ (0,T ),
(ψ(T, ·),∂tψ(T, ·)) = (0,0), x ∈ (0,1).

(1.75)

Then

ΛT (ϕ0,ϕ1) = ((−∂ D
xx)

−1∂tψ(0, ·),−ψ(0, ·)). (1.76)

Note that the solution ψ of Eq. (1.75) is a solution by transposition and belongs
to the space C0([0,T ];L2(0,1))∩C1([0,T ];H−1(0,1)) since its boundary data only
belongs to L2(0,T ). Therefore, when computing ΛT , we have to identify L2(0,1)×
H−1(0,1) as the dual of H1

0 (0,1)×L2(0,1) as explained in the previous paragraph,
i. e., using the map

L2(0,1)×H−1(0,1)→ H1
0 (0,1)×L2(0,1) : (ψ0,ψ1) �→ ((−∂ D

xx)
−1ψ1,−ψ0).

The Continuous Setting

We are then in position to write the algorithm of Theorem 1.1 in the continuous
setting:

Step 0: Set (ϕ0
0 ,ϕ

0
1 ) = (0,0).

The induction formula k → k+ 1: For k ≥ 0, set (ϕk+1
0 ,ϕk+1

1 ) as

(ϕk+1
0 ,ϕk+1

1 ) = (I−ρΛT )(ϕk
0 ,ϕ

k
1)−ρ((−∂ D

xx)
−1y1,−y0). (1.77)

Note that the control function is then approximated by the sequence

vk(t) = η(t)∂xϕk(t,1), t ∈ (0,T ), (1.78)

where ϕk is the solution of Eq. (1.74) with initial data (ϕk
0 ,ϕ

k
1). Indeed, formula

(1.10) then reads as follows: if (Φ0,Φ1) denotes the minimum of J in Eq. (1.73),
then the control function V that controls Eq. (1.70) and that minimizes the
L2(0,T ;dt/η)-norm among all admissible controls is given by
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V (t) = η(t)∂xΦ(t,1), t ∈ (0,T ), (1.79)

where Φ is the solution of Eq. (1.74) with initial data (Φ0,Φ1).

1.7.1.2 The Continuous Approach

Theoretical Setting

Here, we discretize the wave equations (1.74) and (1.75) using the finite-difference
approximation of the Laplace operator on a uniform mesh of size h > 0, h =
1/(N + 1) with N ∈ N. Below, ϕ j,h,ψ j,h are, respectively, the approximations of
ϕ ,ψ solutions of Eq. (1.74)–(1.75) at the point jh. We shall also make use of the
notation ϕh,ψh to denote, respectively, the N-component vectors with coordinates
ϕ j,h,ψ j,h.

We shall thus introduce the following discrete version of the Gramian operator.
Given (ϕ0h,ϕ1h), compute the solution ϕh of the following system:

⎧
⎪⎨

⎪⎩

∂tt ϕ j,h − 1
h2

(
ϕ j+1,h − 2ϕ j,h +ϕ j−1,h

)
= 0, (t, j) ∈ (0,T )×{1, · · · ,N},

ϕ0,h(t) = ϕN+1,h(t) = 0, t ∈ (0,T ),
(ϕh(0),∂tϕh(0)) = (ϕ0h,ϕ1h).

(1.80)

Then compute the solution ψh of the following approximation of Eq. (1.75):

⎧
⎪⎨

⎪⎩

∂tt ψ j,h − 1
h2

(
ψ j+1,h − 2ψ j,h +ψ j−1,h

)
= 0, (t, j) ∈ (0,T )×{1, · · · ,N},

ψ0,h(t) = 0, ψN+1,h(t) = η(t)ϕN,h
h , t ∈ (0,T ),

(ψh(T ),∂tψh(T )) = (0,0).
(1.81)

Finally, set ΛT h as

ΛT h(ϕ0h,ϕ1h) = ((−Δh)
−1∂tψh(0),−ψ(0)), (1.82)

where uh = (−Δh)
−1 fh is the unique solution of the discrete elliptic problem

{

− 1
h2

(
u j+1,h − 2u j,h+ u j−1,h

)
= f j,h, j ∈ {1, · · · ,N},

u0,h = uN+1,h = 0.

The continuous approach then reads as follows:

Step 0: Set (ϕ0,c
0h ,ϕ

0,c
1h ) = (0,0).

The induction formula k → k+ 1: For k ≥ 0, set (ϕk+1,c
0h ,ϕk+1,c

1h ) as

(ϕk+1,c
0h ,ϕk+1,c

1h ) = (I −ρΛTh)(ϕk,c
0h ,ϕ

k,c
1h )−ρ((−Δh)

−1y1h,−y0h). (1.83)
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The superscript c is here to emphasize that this is the sequence computed by the
continuous approach.

Let us check that this scheme fits the abstract setting of Theorem 1.3. In particu-
lar, to use Theorem 1.3, Vh, Eh, and Rh need to be defined and Assumptions 1 and 2
verified:

• Vh = R
N ×R

N , where the first N components correspond to the approximation
of the displacement and the last N ones to the velocity.

• To a discrete vector ϕh ∈ R
N , there exists a unique family of Fourier coefficients

(âk[ϕh])k∈N such that

ϕ j,h =
√

2
N

∑
k=1

âk[ϕh]sin(kπ jh), j ∈ {1, · · · ,N}.

This is due to the fact that the family of vectors

wk
h = (

√
2sin(kπ jh)) j∈{1,··· ,N}

forms a basis of RN endowed with the scalar product h〈·, ·〉
RN ; see Chap. 2, Sect. 2.2.

Then we introduce the following continuous extension:

ehϕh(x) =
√

2
N

∑
k=1

âk[ϕh]sin(kπx), x ∈ (0,1)

and set Eh = diag(eh,eh). This extension will be extensively studied in Sect. 3.2,
where it is denoted by Fh.

The corresponding norm on Vh is given by
∥
∥
∥
∥

(
ϕ0h

ϕ1h

)∥
∥
∥
∥

2

h
=

N

∑
k=1

(
k2π2|âk[ϕ0h]|2 + |âk[ϕ1h]|2

)
, (1.84)

which is equivalent (see Chap. 3, Sect. 3.2) to the classical discrete energy of
Eq. (1.80), given by

Eh[ϕh] = h
N

∑
j=0

(
ϕ j+1,0h −ϕ j,0h

h

)2

+ h
N

∑
j=1

|ϕ j,1h|2. (1.85)

The operator Ah defined by

Ah =

(
0 Id

RN

Δh 0

)

,

where Δh denotes the N ×N matrix taking value −2/h2 on the diagonal and 1/h2

on the upper and lower diagonals, is skew-adjoint with respect to the scalar product
of Vh. Of course, this operator Ah is the one corresponding to system (1.80) in the
sense that ϕh solves Eq. (1.80) if and only if
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∂t

(
ϕh

∂tϕh

)

= Ah

(
ϕh

∂tϕh

)

, t ∈ (0,T ).

Also note that the fact that Ah is skew-adjoint implies that solutions ϕh of
Eq. (1.80) have constant (with respect to time) Vh norms. This quantity is usually
called the discrete energy of the solutions of Eq. (1.80).

The operator BhB∗
h is now simply given by

BhB∗
h

(
ϕ0h

ϕ1h

)

=

(
0
fh

)

,

where fh ∈ R
N is such that its N − 1 first components vanish and whose N-th com-

ponent is −ϕN,0h/h3.
The operator Rh on X = H1

0 (0,1)× L2(0,1) has a diagonal form diag(rh,rh),
where rh : H−1(0,1)−→R

N is defined as follows: for ϕ ∈ H−1(0,1), expand it into
its Fourier series

ϕ(x) =
√

2
∞

∑
k=1

âk sin(kπx), x ∈ (0,1),

and then set rhϕ ∈R
N as

(rhϕ) j =
√

2
N

∑
k=1

âk sin(kπ jh), j ∈ {1, · · · ,N}.

Let us now check Assumptions 1 and 2.

Assumption 1. Estimates (1.26)–(1.27) are very classical with s = 1 and θ = 1 (see,
e.g., [4]): There exists a constant C such that for all (ϕ0,ϕ1) ∈ H2 ∩ H1

0 (0,1)×
H1

0 (0,1),

‖(EhRh − Id)(ϕ0,ϕ1)‖H1
0×L2 ≤Ch‖(ϕ0,ϕ1)‖H2∩H1

0 ×H1
0
. (1.86)

As already mentioned, estimate (1.28) is a consequence of Assumption 2 with
Eq. (1.26).

To show Eq. (1.29) we take the initial data (ϕ0,ϕ1) ∈ H2 ∩H1
0 (0,1)×H1(0,1)

and denote by ϕ the corresponding solution of Eq. (1.74). Then, taking (ϕ0h,ϕ1h) =
Rh(ϕ0,ϕ1) and ϕh the corresponding solution of Eq. (1.80), from Proposition 3.7 in
Chap. 3, we get

∥
∥
∥∂xϕ(t,1)+

ϕN,h

h

∥
∥
∥

L2(0,T )
≤Ch2/3‖(ϕ0,ϕ1)‖H2∩H1

0 ×H1
0
. (1.87)

Thus, according to the convergence results of the numerical scheme (1.81) to
Eq. (1.75) in Proposition 4.8 in Chap. 4, setting ψh the solution of Eq. (1.81) with
boundary data ηϕN,h/h and ψ the solution of Eq. (1.75) with boundary data −η∂x

ϕ(1, t), we obtain

‖(eh(ψh(0)),eh(∂tψh(0)))− (ψ(0),∂tψ(0))‖L2×H−1 ≤Ch2/3‖(ϕ0,ϕ1)‖H2∩H1
0 ×H1

0
.
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Then, since (ψ(0),∂tψ(0)) ∈ H1
0 (0,1)×L2(0,1) because of the fact that (ϕ0,ϕ1) ∈

H2 ∩H1
0 (0,1)×H1

0 (0,1), see Sect. 4.2 in Chap. 4,

∥
∥(eh(∂tψh(0)),eh((−Δh)

−1ψh(0)))− (∂tψ(0),(−∂ D
xx)

−1∂tψ(0))
∥
∥

H1
0 ×L2

≤Ch2/3‖(ϕ0,ϕ1)‖H2∩H1
0×H1

0
,

which proves

‖(EhΛThRh −ΛT ) (ϕ0,ϕ1)‖H1
0 ×L2 ≤Ch2/3‖(ϕ0,ϕ1)‖H2∩H1

0×H1
0
,

and then Eq. (1.29) with θ = 2/3 and s = 1 since ΛT (ϕ0,ϕ1) ∈ H2 ∩H1
0 ×H1

0 and
then Eq. (1.86) applies.

Assumption 2. The uniform admissibility result is ensured by the fact that the map
(ϕ0h,ϕ1h) ∈ Vh �→ −ϕN,h/h ∈ L2(0,T ), where ϕh is the solution of Eq. (1.80), is
bounded, uniformly with respect to h > 0. This is a simple consequence of the mul-
tiplier identity given in Lemma 2.2 in [28], see also Chap. 2, Theorem 2.1.

Besides, for bh ∈ L2(0,T ), the solution ψh of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt ψ j,h − 1
h2

(
ψ j+1,h − 2ψ j,h +ψ j−1,h

)
= 0,

(t, j) ∈ (0,T )×{1, · · · ,N},
ψ0,h(t) = 0, ψN+1,h(t) = bh, t ∈ (0,T ),
(ψh(T ),∂tψh(T )) = (0,0),

is such that the L2(0,1)×H−1(0,1)-norm of (eh(ψh(0)),eh(∂tψh(0))) is bounded,
uniformly with respect to h > 0, by the L2(0,T )-norm of its boundary term bh, see
Chap. 4, Theorem 4.6.

Finally, one easily checks that, for some constants C independent of h > 0, see
Chap. 4, Sect. 4.2,

∥
∥(eh(−Δh)

−1ψ1h,ehψ0h)
∥
∥

H1
0 ×L2 ≤C‖(eh(ψ0h),eh(ψ1h))‖L2×H−1 .

Assumption 3. Note that, in that setting, Assumption 3 does not hold. Indeed, the
numerical scheme under consideration generates spurious high-frequency waves
that travel at arbitrarily small velocity (see [16, 21, 28, 48, 52]) that cannot be ob-
served. Therefore, the discrete systems (1.80) are not uniformly observable, what-
ever T > 0 is.

We are thus in a situation in which Theorem 1.3 applies with s = 1 and θ = 2/3.
We now illustrate these results by some numerical experiments.

Remark 1.2. Using Propositions 3.7 and 4.9 and Theorem 4.4, one can prove that
Assumption 1 actually holds for any s ∈ (0,3] with θ = 2s/3 and thus Theorem 1.3
applies for any s ∈ (0,3].
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Numerical Simulations

To apply our numerical method, we need estimates on Cobs and Cad. In this 1−d
context, it is rather easy to get good approximations, since for any solution ϕ
of Eq. (1.74), using Fourier series and Parseval’s identity, we get

∫ 2

0
|∂xϕ(t,1)|2 dt = 2‖(ϕ0,ϕ1)‖2

H1
0×L2 .

Therefore, we can take T ∗ = 2, and we choose T = 4. We then have the estimates
C2

obs = 1/2 and C2
ad = 4. With ρ = 1/8, we have δ (ρ) =

√
3/2 � 0.86.

But ρ should also be smaller than 2/C 2
ad, where C 2

ad is the uniform constant of
admissibility in Assumption 2. Using the multiplier method on the discrete equa-
tions (1.80) (see Chap. 2, Theorem 2.1) we have C 2

ad ≤ 6 (actually C 2
ad(T )≤ T +2).

Since 1/8≤ 2/6, ρ1 in Eq. (1.31) is greater than 1/8 and then ρ = 1/8 is admissible.
In order to test our numerical method, we fix the initial data to be controlled as

y0 = 0 and y1 as follows:

y1(x) =

⎧
⎨

⎩

−1 on (0,1/4),
1 on (1/4,1/2),
2(x− 1) on (1/2,1),

(1.88)

so that we obviously have (y0,y1) ∈ H1
0 (0,1)× L2(0,1). In Fig. 1.1, we plot the

graph of the initial velocity y1.
In the numerical simulations below, we represent the functions vk,c

h given, for
k ∈N, by

vk,c
h (t) =−η

ϕk,c
N,h(t)

h
, t ∈ (0,4),

where ϕk,c
h is the solution of Eq. (1.80) with initial data (ϕk,c

0h ,ϕ
k,c
1h ), the k-th iterate

of the algorithm in the continuous approach.
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Fig. 1.1 The initial velocity y1 to be controlled.

For h= 1/100, the number of iterations predicted by our method is 21. In Fig. 1.2
(left), we show the control this yields.
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To compare the obtained result with the one that the discrete approach yields, we
have computed a reference control vref, using the discrete approach (see Fig. 1.10
for further details) for a much smaller h = 1/300. The obtained reference control is
plotted in Fig. 1.2 (right).

To better illustrate how the iterative process evolves, we have run it during 50,000
iterations and drawn the graph of the relative error

∥
∥
∥vk,c

h − vref

∥
∥
∥

L2
/‖vref‖L2 .

This is represented in Fig. 1.3. As we see, the error does not reach zero but rather
stays bounded from below.

When looking more closely at the evolution of the error, we see that it first decays
and then increases.

The smallest error (among the first thousand iterations) is achieved when k = 13,
which is close to the predicted one. The control obtained for k = 13 is plotted in
Fig. 1.4, the corresponding error being 6.18%, to be compared with the error at our
predicted iteration number (k = 21), which is 6.24%.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

t
0 0.5 1 1.5 2 2.5 3 3.5 4

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

t

Fig. 1.2 Left, the control obtained by the continuous approach at the predicted number of itera-
tions, 21, for h = 1/100, ρ = 1/8. Right, the reference control vref computed through the discrete

approach with h = 1/300. The relative error
∥
∥
∥vk=21,c

h − vref

∥
∥
∥

L2
/‖vref‖L2 is 6.24%.
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Fig. 1.3 The relative error
∥
∥
∥vk,c

h − vref

∥
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∥

L2
/‖vref‖L2 for the continuous approach at each iteration

for h = 1/100, ρ = 1/8. Left: iterations from 0 to 50,000. Right: zoom on the iterations between
0 and 50.
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The algorithm produces similar results for different values of ρ . For instance,
taking ρ = 0.01, the predicted iteration number is k = 156, and the best iteration
turns out to be k = 180, yielding a control that looks very much as the one before,
the relative error being 6.19%. This confirms, in particular, that the smaller ρ is, the
larger is the number of iterations.

It is important to underline that the limit of the iterative process as the number
of iterations tends to infinity, k → ∞, converges to the control of the semi-discrete
dynamics, minimizer of the corresponding functional Jh, defined by

Jh(ϕ0h,ϕ1h) =
1
2

∫ T

0
η
∣
∣
∣
ϕN,h

h

∣
∣
∣
2

dt − h
N

∑
j=1

y j,0hϕ j,1h + h
N

∑
j=1

y j,1hϕ j,1h,

where ϕh is the solution of Eq. (1.80) with initial data (ϕ0h,ϕ1h).

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

t

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

t

Fig. 1.4 Left: the best control obtained by iterating the algorithm of the continuous ap-
proach with h = 1/100, ρ = 1/8 and k = 13. Right: the reference control. Relative error:∥
∥
∥vk=13,c

h − vref

∥
∥
∥

L2
/‖vref‖L2 = 6.18%.

The exact control of the semi-discrete dynamics is given by the minimizer
(Φc

0h,Φ
c
1h) of the functional Jh above through the formula

vc
∗,h =−η

Φc
N,h

h
, t ∈ (0,4),

where Φc
h is the solution of Eq. (1.80) with initial data (Φc

0h,Φ
c
1h).

Note that the Gramians ΛTh, defined by

〈ΛT h(ϕ0h,ϕ1h),(ϕ0h,ϕ1h)〉h =

∫ T

0
η
∣
∣
∣
ϕN,h

h

∣
∣
∣
2

dt,

are not uniformly coercive with respect to h > 0 and their conditioning number de-
generates as exp(c/h) (c> 0) as h→ 0 (see [39]) and thus the functionals Jh are very
ill-conditioned. Therefore, the conjugate gradient algorithm for the minimization of
Jh ends up diverging when h is too small.
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We take N = 20 so that the conjugate gradient algorithm converges. This might
seem ridiculously small, but as we said, the conditioning number of the discrete
Gramian blows up as exp(c/h), and numerical experiments show that the conjugate
gradient algorithm completely diverges for N ≥ 30.

For N = 20, we can compute the minimizer of the functional Jh using the con-
jugate gradient algorithm. The corresponding discrete exact control vc

∗,h = ηΦc
N,h/h

is plotted in Fig. 1.5 (right). As one sees, this exact control vc
∗,h has a strong spu-

rious oscillating behavior, see for instance the reference control in Fig. 1.4 (right).
The relative errors between the iterated controls vk

h and this limit oscillating control
vc
∗,h is plotted in Fig. 1.5 (left), exhibiting a slow convergence rate due to the bad

conditioning of the Gramian matrix.
These facts constitute a serious warning about the continuous algorithm. In par-

ticular, if the algorithm is employed for a too large number of iterations k, something
that can easily happen since the threshold in the number of iterations may be hard
to establish in practice, the corresponding control may be very far away from the
actual continuous one.
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Fig. 1.5 Left, the relative error
∥
∥
∥vk,c

h − vc
∗,h
∥
∥
∥/
∥
∥
∥vc

∗,h
∥
∥
∥ for the continuous approach at each iteration k

from k = 0 to k = 50,000 for h = 1/20, ρ = 1/8. Right, the discrete exact control vc
∗,h for h = 1/20.

We conclude illustrating the convergence of the continuous algorithm as h → 0.

In Fig. 1.6, we plot log
(∥
∥
∥v

Kc
h ,c

h − vref

∥
∥
∥

)
versus | log(h)|. By linear regression we get

the slope −1.01, which is better than the predicted one, −0.66. This is due to the
fact that y1 is in H−1+s(0,1) for all s < 3/2; hence the convergence is expected to
be better than h2s/3 for all s < 1/2 see Remark 1.2.

1.7.1.3 The Discrete Approach

The Theoretical Setting

To build numerical schemes satisfying Assumption 3, one should better understand
the dynamics of the solutions of the discrete numerical methods. As observed in
[28] and in the numerical tests above, Assumption 3 does not hold when simply
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Fig. 1.6 Convergence of the continuous approach as h → 0: log
(∥
∥
∥v

Kc
h ,c

h − vref

∥
∥
∥

)
versus | log(h)|,

with vref as in Fig. 1.10 (right). The plot is done for h ∈ (1/100,1/30), the slope being −1.01.

discretizing the wave equation using a finite difference space semi-discretization.
As one sees in Fig. 1.5, the discrete exact control vc

∗,h is very far away from the
control of the continuous wave equation, for which a good approximation is given
by vref, see Fig. 1.4 (right).

This phenomenon is due to spurious high-frequency numerical waves. To avoid
these spurious oscillations one needs to work on filtered subspaces of Vh =R

N ×R
N .

For instance, for γ ∈ (0,1), consider the filtered space

Vh(γ/h) =

{

(ϕ0h,ϕ1h), s.t. ϕ0h,ϕ1h ∈ Span
kh≤γ

{
(sin(kπ jh)) j∈{1,··· ,N}

}
}

.

Of course, Vh(γ/h) is a subspace of Vh. Since the functions (wk)k (defined by wk
j =√

2sin(kπ jh))) are eigenfunctions of the discrete Laplace operator (see Sect. 2.2),
we can introduce the orthogonal projection Pγ

h of Vh onto Vh(γ/h) (with respect to
the scalar product of Vh introduced in Eq. (1.84)) and the Gramian operator

Λ γ
Th = Pγ

h ΛT hPγ
h . (1.89)

The filtering operator Pγ
h simply consists of doing a discrete Fourier transform

and then removing the coefficients corresponding to frequency numbers k larger
than γ/h.

Assumptions 1 and 2 then hold for any γ ∈ (0,1), with proofs similar to those in
the continuous approach. Furthermore, using the results of [28], it can be shown that
Assumption 3 also holds when the time T is greater than Tγ := 2/cos(πγ/2). Note
that this is not a consequence of the convergence of the numerical schemes, and this
requires a thorough study of the discrete dynamics. The proof of [28] uses a spectral
decomposition of the solutions of the discrete wave equation (1.80) and the Ingham
inequality for nonharmonic Fourier series. We shall revisit and slightly improve
these results in Chap. 2, Theorem 2.1 to get better estimates on the observability
constant.
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The algorithm that the discrete method yields can then be developed as follows:

Step 0: Set (ϕ0,d
0h ,ϕ0,d

1h ) = (0,0).

The induction formula k → k+ 1: For k ≥ 0, set (ϕk+1
0h ,ϕk+1

1h ) as

(ϕk+1,d
0h ,ϕk+1,d

1h ) = (I−ρΛ γ
Th)(ϕ

k,d
0h ,ϕk,d

1h )−ρPγ
h ((−Δh)

−1y1h,−y0h). (1.90)

The new algorithm is very similar to the one that the continuous approach yields.
The only essential difference is that, now, we have introduced a filtered Gramian
matrix Λ γ

T h instead of the operator ΛT h used in the continuous approach, in which
no filtering appears. However, as we shall see below, this new algorithm is much
better behaved.

From now on, we set the filtering parameter γ = 1/3 and T = 4, which is larger
than the minimal required time 2/cos(πγ/2) = 2/cos(π/6) = 4/

√
3 to control the

semi-discrete dynamics. The controls that the discrete iterative algorithm yields are

vk,d
h (t) =−η(t)

ϕk,d
N,h(t)

h
, t ∈ (0,4). (1.91)

Numerical Simulations

We first need an estimate on the constant of uniform observability. The most explicit
one we are aware of is the one given by the multiplier method, given hereafter in
Chap. 2, Theorem 2.1, which yields

C 2
obs,T ∗ =

(

T cos2
( γπ

2

)
− 2cos

(πγ
2

)
− h0

2

)−1

, (1.92)

where h0 is the largest mesh size under consideration, and thus, since the function
η(t) equals to 1 on an interval of length close to 4, one can take the approximation:

C 2(T = 4)� 1√
3(
√

3− 1)
.

Of course, Cad can still be approximated as before by C 2
ad ≤ 6.

Therefore, ρ2 in Eq. (1.38) is greater than (2/62)×√
3(
√

3−1)� 0.035. Observe
that this is much smaller than the value of ρ = 1/8 = 0.125 we employed in the
continuous approach.

We run the discrete algorithm with the initial data (y0h,y1h) given by the natural
approximations of y0 = 0 and y1 as in Eq. (1.88).

Our first simulations are done with the choice ρ = 0.035 for h = 1/100. There,
the estimated optimal number of iterations is 95 (see Eq. (1.40)), which is much
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larger than in the continuous approach (where it was 21) due to the fact that ρ is
much smaller. In Fig. 1.7 (left), we represent the control vk=95,d

h . When compared
with the reference control computed for h = 1/300 by the discrete method (repre-

sented in Fig. 1.10), the relative error
∥
∥
∥vk=95,d

h − vref

∥
∥
∥

L2
/‖vref‖L2 is 5.82%.

In Fig. 1.8, we represent the relative error
∥
∥
∥vk,d

h − vref

∥
∥
∥

L2
/‖vref‖L2 for k between

1 and 50,000. The best iterate is the 54-th one, which corresponds to a relative error
of 5.80%. It is represented in Fig. 1.7 (right).

It might seem surprising that the sequence vk,d
h does not converge to vref as k →∞.

This is actually due to the fact that vref corresponds to the control computed for
h = 1/300. Indeed, setting v∞,d

h the limit of vk,d
h as k goes to infinity, we represent

the relative error
∥
∥
∥vk,d

h − v∞,d
h

∥
∥
∥

L2
/
∥
∥
∥v∞,d

h

∥
∥
∥

L2
in Fig. 1.9. We shall later explain how

to compute v∞,d
h , represented in Fig. 1.10 (left).
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Fig. 1.7 Left, the control vk=95,d
h obtained by the discrete approach at the predicted iteration num-

ber 95 for h = 1/100, ρ = 0.035. Right, the control vk=54,d
h corresponding to the iterate k = 54 that

approximates vref at best.
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Fig. 1.8 The relative error
∥
∥
∥vk,d

h − vref

∥
∥
∥

L2
/‖vref‖L2 for the discrete approach at each iteration for

h= 1/100, ρ = 0.035. Left, for iterations from 0 to 50,000. Right, a zoom on the iterations between
0 and 150.
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Note that the previous computations are done for ρ = 0.035, but as we said, this
is only an estimate on the parameter ρ we can choose. In particular, one could also
try to take ρ = 1/8, which is admissible for the continuous wave equation, though
it is a priori out of the valid range of ρ for the semi-discrete equation according
to our estimates. For h = 100, the estimated iteration is then 42. The corresponding

control vk=42,d
h is such that the relative error

∥
∥
∥vk=42,d

h − vref

∥
∥
∥

L2
/‖vref‖L2 is of 5.83%.

The best iterate is the 14-th one, for which the relative error
∥
∥
∥vk=14,d

h − vref

∥
∥
∥

L2
/‖vref‖L2

is of 5.81%. The corresponding plots are very similar to those of the case ρ = 0.035.

We only plot the relative error
∥
∥
∥vk,d

h − vref

∥
∥
∥

L2
/‖vref‖L2 versus the number of itera-

tions in Fig. 1.11.
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Fig. 1.9 The relative error
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h − v∞,d
h
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L2
/
∥
∥
∥v∞,d

h

∥
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∥

L2
for the discrete approach at each iteration for

h = 1/100, ρ = 0.035 and for k from 0 to 150. The relative error is of order 2.10−4 at the estimated
iteration k = 95.
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Fig. 1.10 The relative error
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∥vk,d
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L2
/‖vref‖L2 for the discrete approach at each iteration for

h = 1/100, ρ = 0.125 for k from 0 to 50.
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The Discrete Approach: The Conjugate Gradient Method

In previous paragraphs we underlined the difficulty of estimating the parameters
entering into the algorithm. But, as we have explained, in the discrete approach, we
also have Eq. (1.44), ensuring the convergence of the minimizer of the functional Jγ

h
over Vh(γ/h):

Jγ
h(ϕ0h,ϕ1h) =

1
2

∫ T

0
η
∣
∣
∣
ϕN,h

h

∣
∣
∣
2

dt − h
N

∑
j=1

y j,0hϕ j,1h + h
N

∑
j=1

y j,1hϕ j,1h, (1.93)

where ϕh is the solution of Eq. (1.80) with initial data (ϕ0h,ϕ1h) ∈ Vh(γ/h). In other
words, the discrete approach consists in looking for the minimizer of Jγ

h over
Vh(γ/h).

Since the functional Jγ
h is quadratic and well conditioned according to Assump-

tion 3, one can use the conjugate gradient algorithm to compute the minimum
(Φd

0h,Φ
d
1h) of Jγ

h over Vh(γ/h). Doing this, we do not need any estimate on the
admissibility and observability constants to run the algorithms. Besides, this algo-
rithm is well known to be much faster than the classical steepest descent one, but
with exactly the same complexity.

We therefore run the algorithms for h = 1/100 and h = 1/300, γ = 1/3, and the
initial data (y0,y1) with y0 = 0 and y1 as in Eq. (1.88). The algorithm converges
very fast and it requires only 10 and 9 iterations for h = 1/100 and h = 1/300,
respectively.
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Fig. 1.11 The controls v∞,d
h for h = 1/100 (left) and h = 1/300 (right). We have set vref = v∞,d

h for
h = 1/300.

In Fig. 1.11, the control vk=∞,d
h has been computed using the conjugate gra-

dient method as indicated above. The reference control is the one computed for
h = 1/300.

In Fig. 1.12 we finally represent the rate of convergence of the discrete controls
(to be compared with Fig. 1.6). Here again, the slope is −0.97, i.e., much less than
−0.67, the slope predicted by our theoretical results in Theorem 1.5. This is
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again due to the fact that y1 is more regular than simply L2(0,1), almost lying in
H1/2(0,1); see Remark 1.2.

In higher dimension, there are a few results which prove uniform observability
estimates for the wave equation: we refer to [51] for the 2-D case on a uniform mesh,
which yields a sharp result. We refer to [41] for the n-dimensional case under general
approximation conditions. To our knowledge, the result in [41] is the best one when
considering general meshes in any dimension. Still, a precise time estimate for the
uniform observability result is missing and whether the filtering scales obtained in
[41] are sharp is an open problem.

1.7.2 Distributed Control

System (1) fits in the abstract setting of Eq. (1.1) with X = H1
0 (Ω)×L2(Ω),

A =

(
0 I
Δ 0

)

, D(A) = H2 ∩H1
0 (Ω)×H1

0 (Ω)

and

B =

(
0

χω

)

, U = L2(Ω).

Indeed, A is skew-adjoint with respect to the scalar product of X = H1
0 (Ω)×L2(Ω)
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Fig. 1.12 Convergence of the discrete approach:
∥
∥
∥v∞,d

h − vref

∥
∥
∥ versus h in logarithmic scales. Here,

vref is v∞,d
h for h = 1/300. The plot is done for h ∈ (1/120,1/30), the slope being −0.97.

and system (1) is of course admissible since B is bounded from L2(Ω) into L2(Ω).
Using the scalar product of X , B∗ simply reads as B∗ = (0 , χω).
Besides, it is well known that when the GCC (see [3, 5] and the introduction)

is satisfied for (ω ,Ω ,T ∗), then the wave equation is observable in time T ∗. To be
more precise, there exists a constant Cobs > 0 such that for all ϕ solution of
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⎧
⎨

⎩

∂tt ϕ −Δϕ = 0, (t,x) ∈ (0,T )×Ω ,
ϕ = 0, (t,x) ∈ (0,T )× ∂Ω ,
(ϕ(0,x),∂tϕ(0,x)) = (ϕ0(x),ϕ1(x)), x ∈ Ω ,

(1.94)

we have

‖(ϕ0,ϕ1)‖2
H1

0 (Ω)×L2(Ω) ≤C2
obs

∫ T ∗

0

∫

Ω
χ2

ω |∂tϕ |2. (1.95)

This is the so-called observability inequality, corresponding to Eq. (1.5) in the ab-
stract setting.

In the following, we assume that Eq. (1.95) holds (or, equivalently, that the
Geometric Control Condition holds), and we choose T > T ∗ and introduce η as
in Eq. (1.6).

Note that we made the choice of identifying H1
0 (Ω)×L2(Ω) with its dual. Doing

this, we are thus precisely in the abstract setting of Theorems 1.1, 1.2, and 1.3. How-
ever, in applications, one usually identifies L2(Ω) with its dual, thus making impos-
sible the identification of H1

0 (Ω)× L2(Ω) as a reflexive Hilbert space. We shall
comment this later on in Remark 1.3.

We are then in position to develop the algorithm in Eqs. (1.17) and (1.18).

1.7.2.1 The Continuous Setting

We divide it in several steps:

Step 0: Set (ϕ0
0 ,ϕ

0
1 ) = (0,0).

The induction formula: Compute ϕk, the solution of
⎧
⎨

⎩

∂tt ϕk −Δϕk = 0, (t,x) ∈ (0,T )×Ω ,
ϕk = 0, (t,x) ∈ (0,T )× ∂Ω ,
(ϕk(0,x),∂tϕk(0,x)) = (ϕk

0(x),ϕ
k
1(x)), x ∈ Ω .

(1.96)

Then compute ψk solution of
⎧
⎨

⎩

∂tt ψk −Δψk =−η(t)χ2
ω∂tϕk, (t,x) ∈ (0,T )×Ω ,

ψk = 0, (t,x) ∈ (0,T )× ∂Ω ,
(ψk(T,x),∂tψk(T,x)) = (0,0), x ∈ Ω .

(1.97)

Finally, set

(ϕk+1
0 ,ϕk+1

1 ) = (ϕk
0 ,ϕ

k
1)−ρ

(
(ψk(0),∂tψk(0))+ (y0,y1)

)
. (1.98)

Note that the map (ϕk
0 ,ϕ

k
1) �→ (ψk(0),∂tψk(0)) defined above is precisely the

map ΛT in Eq. (1.13).



42 1 Numerical Approximation of Exact Controls for Waves

Remark 1.3. As we have said, here, we identified X =H1
0 (Ω)×L2(Ω) with its dual.

This allows us to work precisely in the abstract setting of Sect. 1.2.
But our approach also works when identifying L2(Ω) with its dual. In that case,

we should introduce X∗ = L2(Ω)×H−1(Ω) and, though A is still skew-adjoint
with respect to the X-scalar product, we shall introduce A∗ the operator defined on
X∗ = L2(Ω)×H−1(Ω) by

A∗ =
(

0 I
Δ 0

)

, D(A∗) = H1
0 (Ω)×L2(Ω).

The duality product between X and X∗ is then
〈(

y0

y1

)

,

(
ϕ0

ϕ1

)〉

X×X∗
=

∫

Ω
y1ϕ0 −

∫

Ω
∇y0 ·∇(−Δ)−1ϕ1.

Also, the operator B∗ now reads as

B∗ = (χω , 0).

The corresponding algorithm then is as follows:

Step 0: Set (ϕ̃0
0 , ϕ̃

0
1 ) = (0,0).

The induction formula: Compute ϕ̃k, the solution of
⎧
⎨

⎩

∂tt ϕ̃k −Δϕ̃k = 0, (t,x) ∈ (0,T )×Ω ,
ϕ̃k = 0, (t,x) ∈ (0,T )× ∂Ω ,
(ϕ̃k(0,x),∂t ϕ̃k(0,x)) = (ϕ̃k

0(x), ϕ̃
k
1(x)), x ∈ Ω .

(1.99)

Then compute ψk solution of
⎧
⎨

⎩

∂tt ψ̃k −Δψ̃k =−η(t)χ2
ωϕ̃k, (t,x) ∈ (0,T )×Ω ,

ψ̃k = 0, (t,x) ∈ (0,T )× ∂Ω ,
(ψ̃k(T,x),∂t ψ̃k(T,x)) = (0,0), x ∈ Ω .

(1.100)

Finally set

(ϕ̃k+1
0 , ϕ̃k+1

1 ) = (ϕ̃k
0 , ϕ̃

k
1)−ρ

(
∂t ψ̃k(0)+ y1,Δ(ψ̃k(0)+ y0)

)
. (1.101)

Of course, the two algorithms (1.96)–(1.98) and Eqs. (1.99)–(1.101) correspond
one to another. Indeed, for all k ∈ N,

ϕ̃k = ∂tϕk, ψ̃k = ψk,

and so for all k ∈N, (ϕ̃k
0 , ϕ̃

k
1) = (ϕk

1 ,Δϕk
0). Hence, of course, the convergence prop-

erties of the sequence (ϕk
0 ,ϕ

k
1) proved in Theorem 1.1 have their counterpart for the

sequence (ϕ̃k
0 , ϕ̃

k
1) (they are basically the same except for a shift in the regularity

spaces).
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1.7.2.2 The Continuous Approach

Here we introduce the finite-element discretization of the wave equation. The setting
we present below is very close to the one in [9] in order to help the readers to see
the similarities between the work [9] and our results.

We thus assume that there exists a family (Ṽh)h>0 of finite-dimensional subspaces
of H1

0 (Ω) with the property that there exist θ > 0 and C > 0 so that

‖(πhϕ −ϕ)‖H1
0 (Ω) ≤Chθ ‖ϕ‖H2∩H1

0 (Ω) , ∀ϕ ∈ H2 ∩H1
0 (Ω),

‖(πhϕ −ϕ)‖L2(Ω) ≤Chθ ‖ϕ‖H1
0 (Ω) , ∀ϕ ∈ H1

0 (Ω),
(1.102)

where πh is the orthogonal projector from H1
0 (Ω) onto Ṽh.

Note that, on a quasi uniform triangulation Th, see, e.g., [4], one can take θ = 1
in Eq. (1.102).

We then endow Ṽh with the L2(Ω) scalar product.
We then define the discrete Laplace operator Δh as follows:

∀(ϕh,ψh) ∈V 2
h , 〈−Δhϕh,ψh〉L2(Ω) = 〈ϕh,ψh〉H1

0 (Ω).

The operator −Δh is then symmetric and positive definite.
We then set B0 the operator corresponding to the multiplication by the character-

istic function χω and set Uh = B∗
0Ṽh, which is of course a subset of U = L2(Ω). We

then define the operators B0h by B0hu = π̃hB0u, where π̃h is the orthogonal projector
of L2(Ω) onto Ṽh.

The adjoint of B0h is then given by B∗
0hϕ = B∗

0π̃hϕ for ϕ ∈ L2(Ω), which easily
implies that the operator norms

∥
∥B0hB∗

0h

∥
∥
L(L2(Ω))

are uniformly bounded.
To fit into our setting, we thus introduce

Ah =

(
0 Id

Δh 0

)

, Bh =

(
0

B0h

)

, Vh = (Ṽh)
2,

with Eh = Id and

Rh =

(
πh 0
0 πh

)

.

Assumption 2 immediately follows from the stability of the scheme and the fact
that the norms

∥
∥B0hB∗

0h

∥
∥
L(L2(Ω))

are uniformly bounded.
Then, to prove Assumption 1, we refer to [2, 9]: Assumption 2 holds with θ as

in Eq. (1.102) and s = 2. Remark that this corresponds to a choice of initial data
in H3

(0)(Ω)×H2 ∩H1
0 (Ω), where H3

(0)(Ω) is the set of the functions ϕ of H3(Ω)

satisfying ϕ = 0 and Δϕ = 0 on the boundary ∂Ω .
Theorem 1.3 then applies and yields the same convergence results as the one in

[9, Theorem 1.1].
To develop the continuous method we need to compute the iteration number Kc

h
in Eq. (1.35), and this turns out to be a delicate issue. As explained in Sect. 1.6.1,
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this requires the knowledge of an approximation of the observability and admissi-
bility constants. Here, the admissibility constant can be taken to be simply T . But
evaluating the observability one is a difficult problem.

Very likely, when (ω ,Ω ,T ) satisfies the multiplier condition (requiring that ω is
a neighborhood of a part of the boundary Γ of Ω such that {x ∈ ∂Ω , (x− x0) ·n >
0} ⊂ Γ and T > 2supΩ{|x− x0|} for some x0), one can get a reasonable bound on
the observability constant. Note however that, even in that case, the observability
constant is not explicit since the arguments use a multiplier technique and then a
compactness argument, see [31, 36]. Otherwise, if only the GCC is satisfied (see
[3]), such bounds on the observability constant are so far unknown.

Let us also emphasize that Assumption 3 does not hold in general, see [16]. This
is even the case in 1−d on uniform meshes. However, by suitably filtering the class
of initial data, variants of Assumption 3 can be proved. We refer the interested reader
to [12, 41, 44, 51] for some nontrivial geometric settings in which Assumption 3 is
proved. We shall not develop this point extensively here.

1.8 A Data Assimilation Problem

In this section, we discuss a data assimilation problem that can be treated by the
techniques developed in this paper.

1.8.1 The Setting

Under the same notations as before, we consider a system driven by the equation

Φ ′ = AΦ, t ≥ 0, Φ(0) = Φ0, m(t) = B∗Φ(t). (1.103)

We assume that Φ0 is not known a priori but, instead, we have partial measure-
ments on the solution through the measurement m(t) = B∗Φ(t). The question then
is the following: given m ∈ L2(0,T ;U), can we reconstruct Φ0?

This problem is of course very much related to the study of the observation map:

O :

{
X −→ L2(0,T ;U)
ϕ0 �→ B∗ϕ , (1.104)

where ϕ is the solution of Eq. (1.2) with initial data ϕ0.
Note that this map O is well defined in these spaces under the condition (1.3).

Also note that the observability inequality (1.5) for (1.2) is completely equivalent to
the fact that the map O has continuous inverse from L2(0,T ;U)∩Ran(O) to X .

Therefore, in the following, we will assume the admissibility and observability
estimates (1.3)–(1.5) so to guarantee that O is well defined and invertible on its
range.
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Of course, this is not enough to obtain an efficient reconstruction algorithm,
which is an efficient way to compute the map O−1.

In order to do this, the most natural idea is to introduce the functional

J̃(ϕ0) =
1
2

∫ T

0
η ‖B∗ϕ −m‖2

U dt, (1.105)

where η is as in Eq. (1.6), or, what is equivalent at the minimization level, since m
is assumed to be known,

J̃(ϕ0) =
1
2

∫ T

0
η ‖B∗ϕ −m‖2

U dt − 1
2

∫ T

0
η ‖m‖2

U dt, (1.106)

where ϕ is the solution of Eq. (1.2) with initial data ϕ0.
Then J̃ can be rewritten as

J̃(ϕ0) =
1
2

∫ T

0
η ‖B∗ϕ‖2

U dt −
∫ T

0
η〈B∗ϕ ,m〉U dt (1.107)

=
1
2

∫ T

0
η ‖B∗ϕ‖2

U dt + 〈ϕ0,y(0)〉X , (1.108)

where y(0) is given by

y′ = Ay+ηBm, t ∈ (0,T ), y(T ) = 0. (1.109)

Under the form (1.108), the functional J̃ appears as a particular case of the functional
J in Eq. (1.9), and therefore, Theorem 1.1 applies.

In order to write our results in a satisfactory way, we only have to check that the
degree of smoothness of y0 = y(0), m, and Φ0 are all the same.

Indeed, if ϕ0 ∈ D(A), applying Eq. (1.3) and Eq. (1.5) to Aϕ0, we obtain

∫ T ∗

0

∥
∥B∗ϕ ′(t)

∥
∥2

U dt ≤C2
ad,T ∗ ‖Aϕ0‖2

X ,

‖Aϕ0‖2
X ≤C2

obs,T ∗
∫ T ∗

0

∥
∥B∗ϕ ′(t)

∥
∥2

U dt.

Therefore, repeating this argument for ϕ0 ∈ D(Ak) and interpolating for s ≥ 0, we
obtain

‖B∗ϕ‖Hs(0,T∗;U) ≤Cad,T ∗ ‖ϕ0‖s , ϕ0 ∈ Xs, (1.110)

‖ϕ0‖s ≤Cobs,T ∗ ‖B∗ϕ‖Hs(0,T∗;U) , ϕ0 ∈ Xs. (1.111)

These estimates indicate the following fact: for all s ≥ 0, the map O maps Xs in
Ran(O)∩Hs(0,T ∗;U) and has a continuous inverse within these spaces. Equiva-
lently, for all s ≥ 0, there exists a constant Cs > 0 such that

1
Cs

‖ϕ0‖s ≤ ‖B∗ϕ‖Hs(0,T∗;U) ≤Cs ‖ϕ0‖s , ϕ0 ∈ Xs.
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Of course, this in particular implies that, if m ∈ Hs(0,T ;U),

‖Φ0‖s ≤Cs ‖m‖Hs(0,T ;U) . (1.112)

Let us now explain the fact that, when m ∈ Hs(0,T ;U), y(0) belongs to Xs. If
m ∈ H1(0,T ;U), we differentiate in time the Eq. (1.109) of y:

(y′)′ = A(y′)+ηBm′+η ′Bm, t ∈ (0,T ), y′(T ) = 0.

Therefore, since B is admissible and ηm′ + η ′m ∈ L2(0,T ;U), y′ belongs to the
space C([0,T ];X). Thus, from the Eq. (1.109) of y and the fact that η vanishes at t =
0, Ay(0) = y′(0) ∈ X and then y(0) ∈ D(A). This argument can easily be extended
to any s ∈ N by induction and then to any s ≥ 0 by interpolation.

We have thus obtained that for all s ≥ 0, there exists a constant Cs > 0 such that

‖y(0)‖s ≤Cs ‖m‖Hs(0,T ;U) . (1.113)

According to this, Theorem 1.1 implies the following:

Theorem 1.8. Let s ≥ 0 and m ∈ Hs(0,T ;U). Let y0 = y(0), where y denotes the
solution of Eq. (1.109) and the sequence ϕk

0 be defined by Eqs. (1.17) and (1.18).
Denote by Φ0 the minimizer of J̃ in Eq. (1.106). Then Φ0 ∈ Xs.
Besides, for all ρ ∈ (0,ρ0), where ρ0 is as in Eq. (1.19), the sequence ϕk

0 con-
verges to Φ0 in X and in Xs with the convergence rates (1.23)–(1.24), where δ is
given by Eq. (1.20).

Of course, using Eqs. (1.113) and (1.24) implies
∥
∥
∥ϕk

0 −Φ0

∥
∥
∥

s
≤Cδ k(1+ |k|s)‖m‖Hs(0,T ;U) , k ∈ N. (1.114)

We can then apply the same ideas as the ones used for computing discrete con-
trols.

1.8.2 Numerical Approximation Methods

Let mh ∈ L2(0,T ;Uh) and introduce a function y0h = yh(0), where yh is the solu-
tion of

y′h = Ahyh +ηBhmh, t ∈ (0,T ), yh(T ) = 0. (1.115)

Then the functionals J̃h defined by

J̃h(ϕ0h) =
1
2

∫ T

0
η ‖B∗

hϕh −mh‖2
Uh

dt − 1
2

∫ T

0
η ‖mh‖2

Uh
dt, (1.116)

where ϕh is the solution of Eq. (1.11) with initial data ϕ0h, can be rewritten as fol-
lows:
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J̃h(ϕ0h) =
1
2

∫ T

0
η ‖B∗

hϕh‖2
Uh

dt + 〈ϕ0h,y0h〉h. (1.117)

1.8.2.1 The Continuous Approach

Here, we only suppose that Assumptions 1 and 2 are fulfilled.
Under Assumptions 1 and 2, using Eq. (1.113), Theorem 1.2 applies and yields

the following version of Eq. (1.33): for all k ∈N,
∥
∥
∥Ehϕk

0h −ϕk
0

∥
∥
∥

X
≤Ck‖Ehy0h − y0‖X +Ckhθ ‖m‖Hs(0,T ;U) . (1.118)

Therefore, using Eqs. (1.114) and (1.118) and optimizing in k, setting Kc
h as

in Eq. (1.35), we obtain, for some constant independent of h,
∥
∥
∥EhϕKc

h
0h −Φ0

∥
∥
∥

X
≤ C| logh|max{1,s}hθ ‖m‖Hs(0,T ;U)

+C| logh|‖Ehy0h − y0‖X . (1.119)

In particular, if ‖Ehy0h − y0‖X tends to zero as h → 0 faster than 1/| log(h)|,
we have a convergence estimate for this data assimilation problem. Of course, a
discrete sequence y0h such that Ehy0h converges to y0 in X can be built by assum-
ing suitable convergence assumptions of mh towards m and the convergence of the
numerical scheme (1.115) towards the continuous equation (1.109).

Note that it can be necessary to consider the regularity of the measurement m =
B∗Φ in the space variable. Let us give a precise example corresponding to the case
of distributed observation, see Sect. 1.7.2, corresponding to

B∗ =
(

0 0
0 χω

)

on X = H1
0 (Ω)× L2(Ω). There, B = B∗ and U can be taken to coincide with X .

If furthermore the function χω that localizes the effect of the control in ω is smooth,
B (and thus B∗) maps Xs to itself for any s ≥ 0 (these assumptions are very close
to the ones in [9, 25] on the control/observation operator). Therefore, in that case,
if Φ0 ∈ Xk (k ∈N), m = B∗Φ belongs to Ck([0,T ];X)∩C0([0,T ];Xk). Note that the
Hk(0,T ;X)-norm of m is then equivalent to its Ck([0,T ];X)∩C0([0,T ];Xk)-norm
by Eq. (1.112) together with classical energy estimates for solutions of Eq. (1.103).
Therefore, a natural space for the measurement m would rather be Cs([0,T ];X)∩
C0([0,T ];Xs) and one could therefore simply take the approximate measurement
mh = Rhm.

The obtained algorithm is actually very close to the one derived in [25] from
the continuous “algorithm” in [29] and suffers from the same disadvantages and in
particular from the difficulty of computing the stopping time.
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1.8.2.2 The Discrete Approach

In this paragraph, we suppose that Assumptions 1, 2, and 3 hold.
Using Theorem 1.4 and Eq. (1.113), one can obtain the following version of

Eq. (1.39): for all k ∈ N,
∥
∥
∥Ehϕk

0h −ϕk
0

∥
∥
∥

X
≤ kρ

(
‖Ehy0h − y0‖X +Chθ ‖m‖Hs(0,T ;U)

)
. (1.120)

In particular, based on this estimate and Eq. (1.114), we obtain that for some
constant C independent of k and h, for all k ≥ Kd

h [given by Eq. (1.40)],

∥
∥
∥Ehϕk

0h −Φ0

∥
∥
∥

X
≤Chθ ‖m‖Hs(0,T ;U) +C‖Ehy0h − y0‖X . (1.121)

In particular, similarly as in Eq. (1.44),

‖EhΦ0h −Φ0‖X ≤Chθ ‖m‖Hs(0,T ;U) +C‖Ehy0h − y0‖X , (1.122)

where Φ0h is the minimizer of J̃h in Eq. (1.116).
Remark also that, similarly as in Sect. 1.6.2, if one can guarantee that y0 given

by Eq. (1.109) and y0h given by Eq. (1.115) are such that Ehy0h strongly converge
in X to y0, one can guarantee that EhΦ0h strongly converge to Φ0. Such conver-
gences for the sequence Ehy0h are very natural for sequences of observations mh

that strongly converge to m in L2(0,T ;U) (this statement has to be made more pre-
cise by explaining how mh ∈ L2(0,T ;Uh) is identified as an element of L2(0,T ;U)).

Of course, this implies that, similarly as in Sect. 1.6.3, J̃h can be minimized us-
ing faster algorithms than the steepest descent one and in particular the conjugate
gradient method.



Chapter 2
Observability for the 1−d Finite-Difference
Wave Equation

2.1 Objectives

In this chapter, we discuss the observability properties for the 1−d finite-difference
wave equation.

For the convenience of the reader, let us recall the equations, already introduced
in Eq. (1.80).

Let N ∈ N, h = 1/(N + 1). Given (ϕ0h,ϕ1h), compute the solution ϕh of the
following system:

⎧
⎪⎨

⎪⎩

∂ttϕ j,h − 1
h2

(
ϕ j+1,h − 2ϕ j,h +ϕ j−1,h

)
= 0, (t, j) ∈ (0,T )×{1, · · · ,N},

ϕ0,h(t) = ϕN+1,h(t) = 0, t ∈ (0,T ),
(ϕh(0),∂tϕh(0)) = (ϕ0h,ϕ1h).

(2.1)

Here, we will not be interested in any convergence process, but rather try to prove
some estimates uniformly with respect to h > 0, and in particular uniform admis-
sibility and observability results. Before going further, let us also emphasize that
this uniform admissibility result will be an important step in the proof of the con-
vergence of the discrete waves towards the continuous ones when working with
boundary data in L2(0,T ).

Note that the discrete equation (2.1), as its continuous counterpart, is conserva-
tive in the sense that its energy

Eh[ϕh](t) = h
N

∑
j=1

|∂tϕ j(t)|2 + h
N

∑
j=0

(
ϕ j+1(t)−ϕ j(t)

h

)2

, (2.2)

sometimes simply denoted by Eh(t) when no confusion may occur, is constant in
time:

∀t ≥ 0, Eh(t) = Eh(0). (2.3)

S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves,
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2.2 Spectral Decomposition of the Discrete Laplacian

In this section, we briefly recall the spectral decomposition of the discrete Laplacian.
To be more precise, we consider the eigenvalue problem associated with the

3-point finite-difference scheme for the 1− d Laplacian:

{

−wj+1 +wj−1 − 2wj

h2 = λ wj, j = 0, · · · ,N + 1,

w0 = wN+1 = 0.
(2.4)

A simple iteration process shows that if w1 = 0 and w solves (2.4), then wj = 0
for all j ∈ {0, · · · ,N + 1}. Hence all the eigenvalues are simple.

Furthermore the spectrum of the discrete Laplacian is given by the sequence of
eigenvalues

0 < λ1(h)< λ2(h)< · · ·< λN(h),

which can be computed explicitly

λk(h) =
4
h2 sin2

(
πkh

2

)

, k = 1, · · · ,N. (2.5)

The eigenvector wk =
(
wk

1, · · · ,wk
N

)
associated to the eigenvalue λk(h) can also be

computed explicitly:

wk
j =

√
2sin(πk jh) , j = 1, · · · ,N. (2.6)

Observe in particular that the eigenvectors of the discrete system do not depend
on h > 0 and coincide with the restriction of the continuous eigenfunctions wk(x) =√

2sin(kπx) of the Laplace operator on (0,1) to the discrete mesh.
Let us now compare the eigenvalues of the discrete Laplace operator Δh and the

continuous one ∂xx:

• For fixed k, limh→0 λk(h) = π2k2, which is the k-th eigenvalue of the continuous
Laplace operator −∂xx on (0,1).

• We have the following bounds:

4
π2 k2π2 ≤ λk(h)≤ k2π2 for all 0 < h < 1, 1 ≤ k ≤ N. (2.7)

• The discrete eigenvalues
√

λk(h) uniformly converge to the corresponding con-
tinuous ones kπ when k = o(1/h2/3) since, at first order,

∣
∣
∣
√

λk(h)− kπ
∣
∣
∣∼Ck3h2. (2.8)

Let us now recall some orthogonality properties of the eigenvectors that can be
found, e.g., in [28]:
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Lemma 2.1. For any eigenvector w with eigenvalue λ of Eq. (2.4) the following
identity holds:

h
N

∑
j=0

∣
∣
∣
∣
wj+1 −wj

h

∣
∣
∣
∣

2

= λ h
N

∑
j=1

|wj |2. (2.9)

The eigenvectors (wk)k∈{1,··· ,N} in (2.6) satisfy:

h
N

∑
j=1

wk
jw

�
j = δk�, (2.10)

and

h
N

∑
j=0

(
wk

j+1 −wk
j

h

)(
w�

j+1 −w�
j

h

)

= λkδk�, (2.11)

where δk� is the Kronecker symbol.

2.3 Uniform Admissibility of Discrete Waves

For convenience and later use, we begin by stating a uniform admissibility result,
which can also be found in [28] and will be useful for studying the convergence of
the discrete normal derivatives of the solutions of Eq. (2.1) towards the continuous
ones.

Theorem 2.1. For all time T > 0 there exists a finite positive constant C(T ) > 0
such that

∫ T

0

∣
∣
∣
∣
ϕN(t)

h

∣
∣
∣
∣

2

dt ≤C(T )Eh(0), (2.12)

for all solution ϕh of the adjoint equation (2.1) and for all h > 0. Besides, we can
take C(T ) = T + 2.

The proof of Theorem 2.1 is briefly given in Sect. 2.3.2. It is based on a multiplier
identity given in the next section.

2.3.1 The Multiplier Identity

Our results are based on the following multiplier identity that can be found in [28]:

Theorem 2.2. For all h > 0 and T > 0 any solution ϕh of Eq. (2.1) satisfies

TEh(0)+Xh(t)
∣
∣
∣
T

0
=

∫ T

0

∣
∣
∣
∣
ϕN(t)

h

∣
∣
∣
∣

2

dt +
h3

2

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tϕ j+1 − ∂tϕ j

h

∣
∣
∣
∣

2

dt, (2.13)
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with

Xh(t) = 2h
N

∑
j=1

jh

(
ϕ j+1 −ϕ j−1

2h

)

∂tϕ j. (2.14)

The proof of Theorem 2.2 uses the multiplier j(ϕ j+1 −ϕ j−1), which is the dis-
crete counterpart of x∂xϕ . Integrating by parts in space (in a discrete manner) and
time, we obtain (2.13). We refer to [28] for the details of the computations. We only
sketch it below since it will be useful later on in Chap. 4.

Proof (Sketch). Multiplying the Eq. (2.1) by jh(ϕ j+1 −ϕ j−1)/h, we have

h
N

∑
j=1

∫ T

0
∂tt ϕ j jh

(
ϕ j+1 −ϕ j−1

h

)

dt

= h
N

∑
j=1

∫ T

0

1
h2

(
ϕ j+1 − 2ϕ j +ϕ j−1

)
jh

(
ϕ j+1 −ϕ j−1

h

)

dt.

After tedious computations, one shows (cf. [28])

h
N

∑
j=1

∫ T

0
∂ttϕ j jh

(
ϕ j+1 −ϕ j−1

h

)

dt = Xh(t)
∣
∣
∣
T

0
+ h

N

∑
j=1

∫ T

0
|∂tϕ j|2 dt

−h3

2

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tϕ j+1 − ∂tϕ j

h

∣
∣
∣
∣

2

dt

and

h
N

∑
j=1

∫ T

0

1
h2

(
ϕ j+1 − 2ϕ j +ϕ j−1

)
jh

(
ϕ j+1 −ϕ j−1

h

)

dt

=

∫ T

0

∣
∣
∣
∣
ϕN(t)

h

∣
∣
∣
∣

2

dt − h
N

∑
j=0

∫ T

0

(
ϕ j+1 −ϕ j

h

)2

dt.

Putting these identities together yields (2.13). ��

2.3.2 Proof of the Uniform Hidden Regularity Result

Proof (Theorem 2.1). This is an immediate consequence of Theorem 2.2. It suffices
to bound the time boundary terms Xh(T )−Xh(0) by the energy Eh to get the result:
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|Xh| ≤ 2

[

h
N

∑
j=1

∣
∣∂tϕ j

∣
∣2

]1/2[

h
N

∑
j=1

∣
∣
∣
∣ jh

(
ϕ j+1 −ϕ j−1

2h

)∣
∣
∣
∣

2
]1/2

≤ 2

[

h
N

∑
j=1

∣
∣∂tϕ j

∣
∣2

]1/2[

h
N

∑
j=1

(
ϕ j+1 −ϕ j−1

2h

)2
]1/2

≤ Eh. (2.15)

This concludes the proof of Theorem 2.1. ��

2.4 An Observability Result

The goal of this section is to show the following result:

Theorem 2.3. Assume that γ < 1. Then for all T such that

T > T (γ) = 2/cos(πγ/2), (2.16)

for every solution ϕh of Eq. (1.80) in the class

Vh(γ/h) = Span
{

wk, kh ≤ γ
}

uniformly as h → 0, we have
(

T cos2
( γπ

2

)
− 2cos

(πγ
2

)
− h

2

)

Eh(0)≤
∫ T

0

∣
∣
∣
ϕN

h

∣
∣
∣
2

dt, (2.17)

where Eh is the discrete energy of solutions of Eq. (2.1) defined in Eq. (2.2).

The proof of Theorem 2.3 is based on the discrete multiplier identity in Theo-
rem 2.2 (and developed in [28]). However, the estimates we explain below yield a
sharp result on the uniform time of observability for discrete waves with an explicit
uniform observability constant, thus improving the estimates in [28].

2.4.1 Equipartition of the Energy

We also recall the following proof of the so-called property of equipartition of the
energy for discrete waves:

Lemma 2.2 (Equipartition of the energy). For h > 0 and ϕh solution of Eq. (2.1),

− h
N

∑
j=1

∫ T

0
|∂tt ϕ j|2dt + h

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tϕ j+1 − ∂tϕ j

h

∣
∣
∣
∣

2

dt +Yh(t)
∣
∣
∣
T

0
= 0, (2.18)
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where

Yh(t) = h
N

∑
j=1

∂tt ϕ j∂tϕ j. (2.19)

Again, for the proof of Lemma 2.2, we refer to [28].

2.4.2 The Multiplier Identity Revisited

From now on, we do not follow anymore the proofs of [28] but rather try to optimize
them to improve the obtained estimates.

We introduce a modified energy Ẽh for solutions ϕh or Eq. (2.1). First, remark
that any ϕh solution of Eq. (2.1) can be developed on the basis of eigenfunctions of
−Δh as follows:

ϕh(t) = ∑
|k|≤N

ϕ̂keiμk(h)tw |k| (2.20)

with μk(h) =
√

λk(h) for k > 0 and μ−k(h) =−μk(h).
According to Lemma 2.1, its energy reads as

Eh[ϕh] = 2 ∑
|k|≤N

|ϕ̂k|2λk(h). (2.21)

Similarly, the energy of ∂tϕh, which is also a solution of Eq. (2.1), and that we shall
denote by Eh[∂tϕh] to avoid confusion, can be rewritten as

Eh[∂tϕh] = 2 ∑
|k|≤N

|ϕ̂k|2λk(h)
2.

Note that, of course, Eh[ϕh] and Eh[∂tϕh] are independent of time since ϕh and ∂tϕh

are solutions of Eq. (2.1).
We then introduce

Ẽh[ϕh] = Eh[ϕh]− h2

4
Eh[∂tϕh]. (2.22)

This modified energy is thus constant in time and satisfies

Ẽh[ϕh] = 2 ∑
|k|≤N

|ϕ̂k|2λ|k|(h)cos2
(

kπh
2

)

. (2.23)

We are now in position to state the following multiplier identity:

Theorem 2.4. For all h > 0 and T > 0, any solution ϕh of Eq. (2.1) satisfies

T Ẽh[ϕh]+Zh(t)
∣
∣
∣
T

0
=
∫ T

0

∣
∣
∣
∣
ϕN(t)

h

∣
∣
∣
∣

2

dt (2.24)



2.4 An Observability Result 55

with

Zh(t) = Xh(t)+
h2

4
Yh(t), with Yh(t) = h

N

∑
j=1

∂tϕ j∂tt ϕ j. (2.25)

Proof. To simplify the notations, we do not make explicit the dependence in h > 0,
which is assumed to be fixed along the computations.

According to Lemma 2.2, since ∂tϕh is a solution of Eq. (2.1), the following
identity holds:

h
N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tϕ j+1 − ∂tϕ j

h

∣
∣
∣
∣

2

dt =
h
2

N

∑
j=1

∫ T

0
|∂ttϕ j|2dt

+
h
2

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tϕ j+1 − ∂tϕ j

h

∣
∣
∣
∣

2

dt − Yh(t)
2

∣
∣
∣
T

0
, (2.26)

where Yh is as in Eq. (2.25).
Of course,

h
N

∑
j=1

∫ T

0
|∂tϕ j|2dt + h

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tϕ j+1 − ∂tϕ j

h

∣
∣
∣
∣

2

dt = T Eh[∂tϕh],

and then Eq. (2.24) follows from Eqs. (2.26) and (2.13). ��

2.4.3 Uniform Observability for Filtered Solutions

We now focus on the proof of Theorem 2.3. It mainly consists in estimating the
terms in Eq. (2.24) and in particular Zh(t).

2.4.3.1 Estimates on Yh(t)

Let us begin with the following bound on Yh:

Lemma 2.3. For all h > 0 and t ≥ 0, for any solution ϕh of Eq. (2.1),

h2|Yh(t)| ≤ hEh[ϕh]. (2.27)

Proof. Computing h2Yh we get

h2Yh(t) = h
N

∑
j=1

∂tϕ j(h
2∂ttϕ j)

= h
N

∑
j=1

∂tϕ j(ϕ j+1 − 2ϕ j +ϕ j−1)

= h2
N

∑
j=1

∂tϕ j

(
ϕ j+1 −ϕ j

h

)

− h2
N

∑
j=1

∂tϕ j

(
ϕ j −ϕ j−1

h

)

.
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But

2

∣
∣
∣
∣
∣
h

N

∑
j=1

∂tϕ j

(
ϕ j+1 −ϕ j

h

)∣∣
∣
∣
∣
≤ Eh(t),

and thus estimate (2.27) follows immediately. ��

2.4.3.2 Estimates on Xh(t)

This is the most technical step of our proof. The idea is to use the Fourier decompo-
sition of solutions ϕh of Eq. (2.1) to bound Xh conveniently.

Proposition 2.1. For all h > 0, t ≥ 0, and γ ∈ (0,1), any solution ϕh of Eq. (2.1)
with data in Vh(γ/h) satisfies

|Xh(t)| ≤ Ẽh[ϕh]

cos
(γπ

2

) . (2.28)

Proof. Let us begin by computing Ẽh[ϕh] at some time t, for instance, t = 0, in terms
of the Fourier coefficients of ϕh(t),∂tϕh(t). If

ϕ0
h =

N

∑
k=1

âkwk, ϕ1
h =

N

∑
�=1

b̂�w
�,

then Ẽh can be written as

Ẽh =
N

∑
k=1

|âk|2λk(h)cos2
(

kπh
2

)

+
N

∑
�=1

|b̂�|2 cos2
(
�πh

2

)

. (2.29)

Proposition 2.1 is then a direct consequence of the following lemma:

Lemma 2.4. Let ah and bh be two discrete functions which can be written as

ah =
N

∑
k=1

âkwk, bh =
N

∑
�=1

b̂�w
�.

Then, setting

Xh(ah,bh) = 2h
N

∑
j=1

jh

(
a j+1 − a j−1

2h

)

b j,

we have

|Xh(ah,bh)| ≤ 2

(
N

∑
k=1

|âk|2λk(h)cos2
(

kπh
2

))1/2( N

∑
�=1

|b̂�|2
)1/2

. (2.30)

In particular, if we assume that, for some γ ∈ (0,1),
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âk = b̂� = 0, ∀k, �≥ γ(N + 1), (2.31)

then

|Xh(ah,bh)| ≤ 1

cos
(γπ

2

)

[
N

∑
k=1

|âk|2λk(h)cos2
(

kπh
2

)

+
N

∑
�=1

|b̂�|2 cos2
(
�πh

2

)]

. (2.32)

Of course, Lemma 2.4 and in particular estimate (2.32), proved hereafter, imme-
diately yield (2.28). ��
Proof (Lemma 2.4). For all j ∈ {1, · · · ,N},

a j+1 − a j−1

2h
=
√

2
N

∑
k=1

âk cos(kπ jh)
sin(kπh)

h
.

Thus,

Xh(ah,bh) = 4h
N

∑
j=1

jh

(
N

∑
k=1

âk cos(kπ jh)
sin(kπh)

h

)(
N

∑
�=1

b̂� sin(�π jh)

)

.

Therefore, by orthogonality properties of the discrete cosine functions (the counter-
part of Lemma 2.1 with the cosine functions),

|Xh(ah,bh)|2

≤ 4

⎛

⎝2h
N

∑
j=1

(
N

∑
k=1

âk cos(kπ jh)
sin(kπh)

h

)2
⎞

⎠

⎛

⎝2h
N

∑
j=1

(
N

∑
�=1

b̂� sin(�π jh)

)2
⎞

⎠

≤ 4

(
N

∑
k=1

|âk|2
(

sin(kπh)
h

)2
)(

N

∑
�=1

|b̂�|2
)

,

where we used that, for all sequence (αk)1≤k≤N ,

2h
N

∑
j=1

(
N

∑
k=1

αk cos(kπ jh)

)2

=
N

∑
k=1

|αk|2.

Note then that
(

sin(kπh)
h

)2

=
4
h2 sin2

(
kπh

2

)

cos2
(

kπh
2

)

= λk(h)cos2
(

kπh
2

)

.

The bound (2.30) immediately follows.
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If we assume (2.31), then by Cauchy–Schwarz inequality, Eq. (2.30) implies

|Xh(ah,bh)| ≤ 1

cos
(γπ

2

)
N

∑
k=1

|âk|2λk(h)cos2
(

kπh
2

)

+ cos
(γπ

2

) N

∑
�=1

|b̂�|2,

and the last term satisfies:

cos
(γπ

2

) N

∑
�=1

|b̂�|2 ≤ 1

cos
(γπ

2

)
N

∑
�=1

|b̂�|2 cos2
(
�πh

2

)

,

and estimate (2.32) follows immediately. ��

2.4.4 Proof of Theorem 2.3

Proof (Theorem 2.3). Identity (2.24) and estimates (2.27) and (2.28) imply that any
solution ϕh of Eq. (2.1) in the class Vh(γ/h) satisfies

∣
∣
∣
∣T Ẽh[ϕh]−

∫ T

0

∣
∣
∣
ϕN

h

∣
∣
∣
2

dt

∣
∣
∣
∣≤

2

cos
(γπ

2

) Ẽh(ϕh)+
h
2

Eh(ϕh). (2.33)

Therefore,
⎛

⎝T − 2

cos
( γπ

2

)

⎞

⎠ Ẽh[ϕh]− h
2

Eh[ϕh]≤
∫ T

0

∣
∣
∣
ϕN

h

∣
∣
∣
2

dt.

But, since ϕh belongs to the class Vh(γ/h), the Fourier expressions of the energy
Eh[ϕh] in Eq. (2.21) and Ẽh[ϕh] in Eq. (2.23) yield

cos
( γπ

2

)2
Eh[ϕh]≤ Ẽh[ϕh], (2.34)

which concludes the proof of Theorem 2.3. ��



Chapter 3
Convergence of the Finite-Difference Method
for the 1−d Wave Equation with Homogeneous
Dirichlet Boundary Conditions

3.1 Objectives

This chapter of the book is devoted to the study of the convergence of the numerical
scheme

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt ϕ j,h − 1
h2

(
ϕ j+1,h − 2ϕ j,h+ϕ j−1,h

)
= 0,

(t, j) ∈ (0,T )×{1, . . . ,N},
ϕ0,h(t) = ϕN+1,h(t) = 0, t ∈ (0,T ),
(ϕh(0),∂tϕh(0)) = (ϕ0h,ϕ1h),

(3.1)

towards the continuous wave equation
⎧
⎨

⎩

∂ttϕ − ∂xxϕ = 0, (t,x) ∈ (0,T )× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T ),
(ϕ(0),∂tϕ(0)) = (ϕ0,ϕ1).

(3.2)

Of course, first of all, one needs to explain how discrete and continuous solutions
can be compared. This will be done in Sect. 3.2. In Sect. 3.3, we will present our
main convergence result. We shall then present some further convergence results in
Sect. 3.4 and illustrate them in Sect. 3.5.

3.2 Extension Operators

We first describe the extension operators we shall use. We will then explain how the
obtained results can be interpreted in terms of the more classical extension operators.

S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-5808-1 3,
© Sylvain Ervedoza and Enrique Zuazua 2013
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3.2.1 The Fourier Extension

For h> 0, given a discrete function ah =(a j,h) j∈{1,...,N} (with N+1= 1/h), since the
sequence wk

h is an orthonormal basis for the h〈 ·, ·〉�2(RN )-norm due to Lemma 2.1,
there exist coefficients âk such that

ah =
N

∑
k=1

âkwk
h, [recall that wk

j,h =
√

2sin(kπ jh)] (3.3)

in the sense that, for all j ∈ {1, . . . ,N},

a j,h =
N

∑
k=1

âk

√
2sin(kπ jh). (3.4)

Of course, this yields a natural Fourier extension denoted by Fh for discrete func-
tions ah given by Eq. (3.3):

Fh(ah)(x) =
N

∑
k=1

âk

√
2sin(kπx), x ∈ (0,1). (3.5)

The advantage of this definition is that now Fh(ah) is a smooth function of x.
The energy of a solution ϕh of Eq. (3.1) at time t, given by Eq. (2.2), is then

equivalent, uniformly with respect to h > 0, to the H1
0 (0,1)× L2(0,1)-norm of

(Fh(ϕh),Fh(ϕ ′
h)). This issue will be discussed in Proposition 3.3 below.

Another interesting feature of this Fourier extension is that, due to the discrete
orthogonality properties of the eigenvectors wk proved in Lemma 2.1 and their usual
L2(0,1)-orthogonality, i.e.,

∫ 1
0 wk(x)w�(x)dx = δk,� for all k, � ∈ N, for all discrete

functions ah,bh, we have

h
N

∑
j=1

a j,hb j,h =

∫ 1

0
Fh(ah)Fh(bh)dx.

This fact will be used to simplify some expressions.

3.2.2 Other Extension Operators

When using finite-difference (or finite element) methods, the Fourier extension is
not the most natural one. Given a discrete function ah = (a j,h) j∈{1,...,N} (with N +
1 = 1/h), consider the classical extension operators Ph and Qh defined by

Ph(ah)(x) = a j,h +

(
a j+1,h − a j,h

h

)

(x− jh),

for x ∈ [ jh,( j+ 1)h), j ∈ {0, . . . ,N}, (3.6)
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Qh(ah)(x) =

{
a j,h for x ∈ [( j− 1/2)h,( j+ 1/2)h), j ∈ {1, . . . ,N},
0 for x ∈ [0,h/2)∪ [(N+ 1/2)h,1],

(3.7)

with the conventions a0,h = aN+1,h = 0.
The range of the extension operator Ph is the set of continuous, piecewise affine

functions with (C1) singularities in the points jh and vanishing on the boundary. This
corresponds to the most natural approximation leading to H1

0 (0,1) functions and to
the point of view of the P1 finite element method. By the contrary, Qh provides the
simplest piecewise constant extension of the discrete function which, obviously, lies
in L2(0,1) but not in H1

0 (0,1).
Note that the extensions Fh(ah) obtained using the Fourier representation (3.5)

and Ph(ah) do not coincide. However, they are closely related as follows:

Proposition 3.1. For each h = 1/(N+1)> 0, let ah be a sequence of discrete func-
tions.

Then, for s ∈ {0,1}, the sequence of Fourier extensions (Fh(ah))h>0 converges
strongly (respectively weakly) in Hs(0,1) if and only if the sequence (Ph(ah))h>0

converges strongly (respectively weakly) in Hs(0,1). Besides, if one of these se-
quences converge, then they have the same limit.

Moreover, there exists a constant C independent of h > 0 such that

1
C
‖Fh(ah)‖L2 ≤ ‖Ph(ah)‖L2 ≤ C‖Fh(ah)‖L2 , (3.8)

1
C
‖Fh(ah)‖H1

0
≤ ‖Ph(ah)‖H1

0
≤ C‖Fh(ah)‖H1

0
. (3.9)

Proof. Let us begin with the case s = 0.
Let us first compare the L2(0,1)-norms of the functions Fh(ah) and Ph(ah).

From the orthogonality properties of wk (see Lemma 2.1), we have

‖Fh(ah)‖2
L2(0,1) =

N

∑
k=1

|âk,h|2 = h
N

∑
j=1

|a j,h|2. (3.10)

Computing the L2(0,1)-norm of Ph(ah) is slightly more technical:

∫ 1

0
|Ph(ah)(x)|2 dx =

N

∑
j=0

∫ h

0

∣
∣
∣
∣a j,h + x

(
a j+1,h − a j,h

h

)∣
∣
∣
∣

2

dx

= h
N

∑
j=0

[

a2
j,h + a j,h(a j+1,h − a j,h)+

1
3
(a j+1,h − a j,h)

2
]

=
h
3

N

∑
j=0

(a2
j,h + a2

j+1,h+ a j,ha j+1,h)

=
h
6

N

∑
j=0

(a2
j,h + a2

j+1,h+ 2a j,ha j+1,h)+
h
6

N

∑
j=0

(a2
j,h + a2

j+1,h)

=
h
6

N

∑
j=0

(a j,h + a j+1,h)
2 +

h
3

N

∑
j=1

|a j,h|2. (3.11)
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It follows that the L2(0,1)-norms of Fh(ah) and Ph(ah) are equivalent, hence
implying Eq. (3.8), and then the boundedness properties for these sequences are
equivalent.

This also implies that the sequence (Fh(ah))h>0 is a Cauchy sequence in L2(0,1)
if and only if the sequence (Ph(ah)) is a Cauchy sequence in L2(0,1), and then one
of these sequences converges strongly if and only if the other one does.

To guarantee that these sequences have the same limit when they converge, we
have to check that their difference, if uniformly bounded, weakly converges to zero
when h → 0.

Let ψ denote a smooth test function. On one hand, we have

∫ 1

0
Fh(ah)(x)ψ(x)dx =

N

∑
k=1

âk,h

∫ 1

0
wk(x)ψ(x)dx.

On the other one, we have

∫ 1

0
Ph(ah)(x)ψ(x)dx =

N

∑
j=1

∫ ( j+1)h

jh

(

a j,h +
a j+1,h − a j,h

h
(x− jh)

)

ψ(x)dx

= h
N

∑
j=1

a j,hψ̃ j,h,

with

ψ̃ j,h =
1
h

∫ jh

( j−1)h
ψ(x)

(
x− ( j− 1)h

h

)

dx+
1
h

∫ ( j+1)h

jh
ψ(x)

(

1− x− jh
h

)

dx

=
1
h

∫ ( j+1)h

( j−1)h
ψ(x)

(

1− |x− jh|
h

)

dx.

Using Eq. (3.4), we obtain

∫ 1

0
Ph(ah)(x)ψ(x)dx =

N

∑
k=1

âk,h

(

h
N

∑
j=1

wk
j ψ̃ j,h

)

. (3.12)

Therefore,

∫ 1

0
(Ph(ah)(x)−Fh(ah)(x)) ψ(x)dx

=
N

∑
k=1

âk,h

(

h
N

∑
j=1

wk
j ψ̃ j,h −

∫ 1

0
wk(x)ψ(x)dx

)

. (3.13)

Now, fix �∈N, and choose ψ(x) =w�(x) =
√

2sin(�πx). In this case, using Taylor’s
formula, we easily check that
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sup
j∈{1,...,N}

|ψ̃ j,h −ψ( jh)| ≤ �hπ .

Since, for �≤ N, see Lemma 2.1,

∫ 1

0
wk(x)w�(x)dx = h

N

∑
j=1

wk
jw

�( jh) = δ �
k ,

we then obtain from Eq. (3.13) that for all � ∈ N,

∫ 1

0
(Ph(ah)(x)−Fh(ah)(x)) w�(x)dx −→

h→0
0.

Since the set {w�}l∈N spans the whole space L2(0,1), if one of the sequences
(Fh(ah)) or (Ph(ah)) converges weakly in L2(0,1), then the other one also con-
verges weakly in L2(0,1) and has the same limit.

This completes the proof in the case s = 0.

We now deal with the case s = 1. First remark that

∫ 1

0
|∂xFh(ah)|2dx =

N

∑
k=1

|âk,h|2k2π2 (3.14)

from the Fourier orthogonality properties, and, using Lemma 2.1,

∫ 1

0
|∂xPh(ah)(x)|2dx = h

N

∑
j=0

(
a j+1,h − a j,h

h

)2

=
N

∑
k=1

λk(h)|âk,h|2. (3.15)

Since c1k2 ≤ λk(h)≤ c2k2, these two norms are equivalent, hence implying Eq. (3.9),
and therefore the H1

0 (0,1)-boundedness properties of the sequences (Fh(ah)) and
(Ph(ah)) are equivalent.

If one of these sequences weakly converges in H1
0 (0,1), then the other one is

bounded in H1
0 (0,1) and weakly converges in L2(0,1) to the same limit from the

previous result and then also weakly converges in H1
0 (0,1).

Besides, if one of these sequences strongly converges in H1
0 (0,1), it is a Cauchy

sequence in H1
0 (0,1), and then the other one also is a Cauchy sequence in H1

0 (0,1)
and therefore also strongly converges. ��

Similarly, one can prove the following:

Proposition 3.2. For each h = 1/(N + 1) > 0, let ah be a sequence of discrete
functions.

Then the sequence of Fourier extensions (Fh(ah))h>0 converges strongly (respec-
tively weakly) in L2(0,1) if and only if the sequence (Qh(ah))h>0 converges strongly
(respectively weakly) in L2(0,1). Besides, when they converge, they have the same
limit.
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Moreover, there exists a constant C independent of h > 0 such that

1
C
‖Fh(ah)‖L2 ≤ ‖Qh(ah)‖L2 ≤C‖Fh(ah)‖L2 . (3.16)

The proof is very similar to the previous one and is left to the reader.

The above propositions show that the Fourier extension plays the same role as
the classical extensions by continuous piecewise affine functions or by piecewise
constant functions when considering convergence issues. We make the choice of
considering this Fourier extension, rather than the usual ones, since it has the ad-
vantage of being smooth.

The following result is also relevant:

Proposition 3.3. There exists a constant C independent of h > 0 such that for all
solutions ϕh of Eq. (3.1):

1
C
‖(Fh(ϕh),Fh(∂tϕh)‖H1

0×L2 ≤ Eh[ϕh]≤C‖(Fh(ϕh),Fh(∂tϕh)‖H1
0×L2 (3.17)

Proof. The discrete energy of a solution ϕh of Eq. (3.1) at time t exactly coincides
with the H1

0 (0,1)×L2(0,1)-norm of (Ph(ϕh),Qh(∂tϕh)) at time t. Using the equiv-
alences (3.9) and (3.16), we immediately obtain Eq. (3.17). ��

In the following, we will often omit the operator Fh from explicit notations
and directly identify the discrete function ah = (a j,h) j∈{1,...,N} with its continuous
Fourier extension Fh(ah).

3.3 Orders of Convergence for Smooth Initial Data

In this section, we consider a solution ϕ of Eq. (3.2) with initial data (ϕ0,ϕ1) ∈
H2 ∩H1

0 (0,1)×H1
0 (0,1). The solution ϕ of Eq. (3.2) then belongs to the space

ϕ ∈C([0,T ];H2 ∩H1
0 (0,1))∩C1([0,T ];H1

0 (0,1))∩C2([0,T ];L2(0,1)).

In order to prove it, one can remark that the energy

E[ϕ ](t) =
∫ 1

0

(|∂tϕ(t,x)|2 + |∂xϕ(t,x)|2) dx

is constant in time for solutions of Eq. (3.2) with initial data in H1
0 (0,1)×L2(0,1).

We then apply it to ∂tϕ , which is a solution of Eq. (3.2) with initial data (ϕ1,∂xxϕ0)∈
H1

0 (0,1)×L2(0,1).
The goal of this section is to prove the following result:

Proposition 3.4. Let (ϕ0,ϕ1) ∈ H2 ∩H1
0 (0,1)×H1

0 (0,1). Then there exist a con-
stant C =C(T ) independent of (ϕ0,ϕ1) and a sequence (ϕ0

h ,ϕ
1
h ) of discrete initial

data such that for all h > 0,
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∥
∥(ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 ≤Ch2/3

∥
∥(ϕ0,ϕ1)

∥
∥

H2∩H1
0×H1

0
(3.18)

and the solutions ϕ of Eq. (3.2) with initial data (ϕ0,ϕ1) and ϕh of Eq. (3.1) with
initial data (ϕ0

h ,ϕ
1
h ) satisfy, for all h > 0 and t ∈ [0,T ],

‖(ϕh(t),∂tϕh(t))− (ϕ(t),∂tϕ(t))‖H1
0 ×L2 ≤Ch2/3

∥
∥(ϕ0,ϕ1)

∥
∥

H2∩H1
0 ×H1

0
, (3.19)

and
∥
∥
∥
∥

ϕN,h(·)
h

+ ∂xϕ(·,1)
∥
∥
∥
∥

L2(0,T )
≤Ch2/3

∥
∥(ϕ0,ϕ1)

∥
∥

H2∩H1
0 ×H1

0
. (3.20)

Remark 3.1. The result in Eq. (3.18) may appear somewhat surprising since when
approximating (ϕ0,ϕ1) ∈ H2 ∩ H1

0 (0,1)× H1
0 (0,1) by the classical continuous

piecewise affine approximations or truncated Fourier series, the approximations
(ϕ0

h ,ϕ
1
h ) satisfy

∥
∥(ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 ≤Ch

∥
∥(ϕ0,ϕ1)

∥
∥

H2∩H1
0×H1

0
(3.21)

instead of Eq. (3.18).
However, the result in [45] indicates that, even if the convergence of the initial

data is as in Eq. (3.21), one cannot obtain a better result than Eq. (3.19). This is due
to the distance between the continuous and space semi-discrete semigroups gener-
ated by Eqs. (3.2) and (3.1), respectively, and their purely conservative nature. To
be more precise, when looking at the dispersion diagram, the eigenvalues of the
semi-discrete wave equation (3.1) are of the form

√
λk(h) =

2
h

sin

(
kπh

2

)

,

whereas the ones of the continuous equation (3.2) are
√

λk = kπ . In particular, for
any ε > 0,

sup
k≤h−2/3+ε

{∣
∣
∣
√

λk(h)− kπ
∣
∣
∣

}
= 0, while sup

k≥h−2/3−ε

{∣
∣
∣
√

λk(h)− kπ
∣
∣
∣

}
= ∞.

Remark 3.2. The main issue in Proposition 3.4 is the estimate (3.20). Estimates
(3.19) are rather classical in the context of finite element methods; see, e.g., [2]
and the references therein.

Proof. Let (ϕ0,ϕ1) ∈ H2 ∩H1
0 (0,1)×H1

0 (0,1). Expanding these initial data on the
Fourier basis (recall that wk(x) =

√
2sin(kπx)), we have

ϕ0 =
∞

∑
k=1

âkwk, ϕ1 =
∞

∑
k=1

b̂kwk.
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The solution ϕ of Eq. (3.2) can then be computed explicitly in Fourier:

ϕ(t,x) =
∞

∑
|k|=1

ϕ̂k exp(iμkt)w|k|, μk = kπ , ϕ̂k =
1
2

(

â|k|+
ib̂|k|
μk

)

.

And the condition (ϕ0,ϕ1) ∈ H2 ∩H1
0 (0,1)×H1

0 (0,1) can be written as

∞

∑
k=1

(
k4
∣
∣ϕ̂0

k

∣
∣2 + k2

∣
∣ϕ̂1

k

∣
∣2
)
< ∞ or, equivalently,

∞

∑
|k|=1

k4|ϕ̂k|2 < ∞, (3.22)

and both these quantities are equivalent to the H2 ∩H1
0 (0,1)×H1

0 (0,1)-norm of the
initial data (ϕ0,ϕ1).

We now look for a solution ϕh of Eq. (3.1) on the Fourier basis. Using that
the functions wk correspond to eigensolutions of the discrete Laplace operator
for k ≤ N, one easily checks that any solution of Eq. (3.1) can be written as
∑N
|k|=1 akw|k| exp(iμk(h)t) with μk(h) = 2sin(kπh/2)/h. Keeping this in mind, we

take

ϕh(t) =
n(h)

∑
|k|=1

ϕ̂k exp(iμk(h)t)w
|k|, (3.23)

where n(h) is an integer smaller than N that will be fixed later on.
We now compute how this solution approximates ϕ :

‖ϕh(t)−ϕ(t)‖2
H1

0

=
∞

∑
|k|=n(h)+1

k2π2 |ϕ̂k|2 +
n(h)

∑
|k|=1

k2π2 |ϕ̂k|2 4sin2
(
(μk(h)− μk)t

2

)

≤ C
n(h)2

∞

∑
|k|=n(h)+1

k4π4 |ϕ̂k|2 +C
n(h)

∑
|k|=1

(k4h4)k4π4 |ϕ̂k|2

≤C

(

n(h)4h4 +
1

n(h)2

)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0×H1

0
, (3.24)

where we have used that for some constant C independent of h > 0 and k ∈
{1, . . . ,N},

|μk(h)− μk|=
∣
∣
∣
∣
2
h

sin

(
kπh

2

)

− kπ
∣
∣
∣
∣≤Ck3h2,

and
∣
∣
∣
∣sin

(
(μk(h)− μk)t

2

)∣
∣
∣
∣≤CT |μk(h)− μk|.
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The same can be done for ∂tϕh:

‖∂tϕh(t)− ∂tϕ(t)‖2
L2

=
∞

∑
|k|=n(h)+1

k2π2 |ϕ̂k|2 +
n(h)

∑
|k|=1

|ϕ̂k|2
∣
∣
∣μk(h)e

iμk(h)t − μkeiμkt
∣
∣
∣
2

≤C

(

n(h)4h4 +
1

n(h)2

)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0×H1

0
, (3.25)

where we used that

∣
∣
∣μk(h)e

iμk(h)t − μkeiμkt
∣
∣
∣≤

∣
∣
∣
∣2kπ sin

(
(μk(h)− μk)t

2

)∣
∣
∣
∣+ |μk(h)− μk| ≤Ck4h2.

Estimates (3.24) and (3.25) then imply Eqs. (3.18) and (3.19) when choosing n(h)�
h−2/3, a choice that, as we will see below, also optimizes the convergence of the
normal derivatives.

We shall now prove Eq. (3.20). This will be done in two main steps, computing
separately the integrals

I1 =

∫ T

0

∣
∣
∣
∣∂xϕh(t,1)+

ϕN,h(t)

h

∣
∣
∣
∣

2

dt, and I2 =

∫ T

0
|∂xϕ(t,1)− ∂xϕh(t,1)|2 dt.

(3.26)

Estimates on I1. We shall first write the admissibility inequality proved in Theo-
rem 2.1 in terms of Fourier series.

Consider a solution φh of Eq. (3.1) and write it as

φh(t) =
N

∑
|k|=1

φ̂k,heiμk(h)tw |k|,

where

φ̂k,h =
1
2

(

φ̂0
k,h +

φ̂1
k,h

iμk(h)

)

.

The energy of the solution is then given by

Eh = 2
N

∑
|k|=1

λ|k|(h)
∣
∣φ̂k,h

∣
∣2 .

Hence the admissibility result in Theorem 2.1 reads as follows: for any sequence
(φ̂k,h),

∫ T

0

∣
∣
∣
∣
∣

N

∑
|k|=1

φ̂k,heiμk(h)t
w|k|

N

h

∣
∣
∣
∣
∣

2

dt ≤C
N

∑
|k|=1

λ|k|(h)
∣
∣φ̂k,h

∣
∣2 . (3.27)
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But the difference ∂xϕh(t,1)+ϕN,h/h reads as

∂xϕh(t,1)+
ϕN,h

h
(t) =

n(h)

∑
|k|=1

ϕ̂keiμk(h)t

(

∂xw|k|(1)+
w|k|

N

h

)

=
n(h)

∑
|k|=1

ϕ̂k

(

1+
h∂xw|k|(1)

w|k|
N

)

eiμk(h)t
w|k|

N

h
.

Thus, applying Eq. (3.27), we get

∫ T

0

∣
∣
∣
∣∂xϕh(t,1)+

ϕN,h(t)

h

∣
∣
∣
∣

2

dt ≤C
n(h)

∑
|k|=1

λ|k|(h) |ϕ̂k|2
(

1+
h∂xw|k|(1)

w|k|
N

)2

. (3.28)

But for all k ∈ {1, . . . ,N},

h∂xwk(1)

wk
N

=− kπhcos(kπ)
sin(kπh)cos(kπ)

=− kπh
sin(kπh)

,

and we thus have, for some explicit constant C independent of h and k, that for all
h > 0 and k ∈ {1, . . . ,N},

∣
∣
∣
∣1+

h∂xwk(1)

wk
N

∣
∣
∣
∣≤C(kπh)2.

Plugging this last estimate into Eq. (3.28) and using λk(h)≤Ck2, we obtain

I1 =
∫ T

0

∣
∣
∣
∣∂xϕh(t,1)+

ϕN,h(t)

h

∣
∣
∣
∣

2

dt ≤ C
n(h)

∑
|k|=1

|ϕ̂k|2 k6h4

≤ Cn(h)2h4
n(h)

∑
|k|=1

k4 |ϕ̂k|2

≤ Cn(h)2h4
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0 ×H1

0
. (3.29)

Estimates on I2. The idea now is to see ϕh as a solution of Eq. (3.1) up to a per-
turbation. Note that this is a classical technique in numerical analysis and more
particularly in a posteriori error analysis.

Indeed, recall that

ϕh =
n(h)

∑
|k|=1

ϕ̂keiμk(h)tw|k|(x).

This implies that

∂tt ϕh − ∂xxϕh = fh, (t,x) ∈ R× (0,1)
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with

fh(x, t) =
n(h)

∑
|k|=1

ϕ̂keiμk(h)tw|k|(x)
(−λ|k|(h)+ k2π2) .

In particular, for all t ∈ R,

‖ fh(t)‖2
L2(0,1) ≤

n(h)

∑
|k|=1

k4π4 |ϕ̂k|2
(

1− 4
k2π2h2 sin2

(
kπh

2

))2

≤ C
n(h)

∑
|k|=1

k4π4 |ϕ̂k|2 (kπh)4

≤ Cn(h)4h4
n(h)

∑
|k|=1

k4π4 |ϕ̂k|2

≤ Cn(h)4h4
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0×H1

0
,

where the constant C is independent of h > 0.
Now, consider zh = ϕh −ϕ . Then zh satisfies the following system of equations:

⎧
⎨

⎩

∂tt zh − ∂xxzh = fh, t ∈R,x ∈ (0,1)
zh(t,0) = zh(t,1) = 0, t ∈R,
zh(0,x) = z0

h(x), ∂t zh(0,x) = z1(x), 0 < x < 1,
(3.30)

with (z0
h,z

1
h) = (ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1), which satisfies, according to Eqs. (3.24) and

(3.25) for t = 0,

∥
∥(z0

h,z
1
h)
∥
∥2

H1
0×L2 ≤C

(
1

n(h)2 + n(h)4h4
)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0 ×H1

0
.

But this is now the continuous wave equation and one can easily check that the
normal derivative of zh then satisfies the following admissibility result: for some
constant C independent of h > 0,

∫ T

0
|∂xzh(t,1)|2 dt ≤C

(
‖ fh‖2

L1(0,T ;L2(0,1)) +
∥
∥(z0

h,z
1
h)
∥
∥2

H1
0 ×L2

)
.

For a proof of that fact we refer to the book of Lions [36] and the article [34].
This gives

I2 =

∫ T

0
|∂xϕ(t,1)− ∂xϕh(t,1)|2 dt

≤C

(
1

n(h)2 + n(h)4h4
)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0×H1

0
. (3.31)
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Combining the estimates (3.29) and (3.31), we obtain

∫ T

0

∣
∣
∣
∣∂xϕ(t,1)+

ϕN,h(t)

h

∣
∣
∣
∣

2

dt ≤C

(
1

n(h)2 + n(h)4h4
)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2∩H1
0 ×H1

0
.

The choice n(h)� h−2/3 optimizes this estimate and yields Eq. (3.20). This choice
also optimizes estimates (3.24) and (3.25) and implies Eqs. (3.18) and (3.19) and
thus completes the proof. ��

3.4 Further Convergence Results

3.4.1 Strongly Convergent Initial Data

As a corollary to Proposition 3.4, we can give convergence results for any sequence
of discrete initial data (ϕ0

h ,ϕ
1
h ) satisfying

lim
h→0

∥
∥(ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 = 0. (3.32)

Proposition 3.5. Let (ϕ0,ϕ1) ∈ H1
0 (0,1)×L2(0,1) and consider a sequence of dis-

crete initial data (ϕ0
h ,ϕ

1
h ) satisfying Eq. (3.32). Then the solutions ϕh of Eq. (3.1)

with initial data (ϕ0
h ,ϕ

1
h ) converge strongly in C([0,T ];H1

0 (0,1))∩C1([0,T ];L2(0,1))
towards the solution ϕ of Eq. (3.2) with initial data (ϕ0,ϕ1) as h → 0. Moreover,
we have

lim
h→0

∫ T

0

∣
∣
∣∂xϕ(t,1)+

ϕN,h

h

∣
∣
∣
2

dt = 0. (3.33)

Proof. Let (ϕ0,ϕ1) ∈ H1
0 (0,1)×L2(0,1) and, given ε > 0, choose (ψ0,ψ1) ∈ H2∩

H1
0 (0,1)×H1

0 (0,1) so that

∥
∥(ϕ0,ϕ1)− (ψ0,ψ1)

∥
∥

H1
0 ×L2 ≤ ε.

We now use the discrete initial data (ψ0
h ,ψ

1
h ) provided by Proposition 3.4. The

solutions ψh of Eq. (3.1) with initial data (ψ0
h ,ψ

1
h ) thus converge to the solution

ψ of Eq. (3.2) with initial data (ψ0,ψ1) in the sense of Eqs. (3.19)–(3.20).
We now denote by ϕh the solutions of Eq. (3.1) with initial data (ϕ0

h ,ϕ
1
h ) and ϕ

the solution of Eq. (3.2) with initial data (ϕ0,ϕ1).
Since ϕh −ψh is a solution of Eq. (3.1), the conservation of the energy and the

uniform admissibility property (2.12) yield
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sup
t∈[0,T ]

‖(ϕh,∂tϕh)(t)− (ψh,∂tψh)(t)‖H1
0 ×L2 +

∥
∥
∥
∥

ϕN,h −ψN,h

h

∥
∥
∥
∥

L2(0,T)

≤ C
∥
∥(ϕ0

h ,ϕ
1
h )− (ψ0

h ,ψ
1
h )
∥
∥

H1
0 ×L2

≤ C(
∥
∥(ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 +

∥
∥(ϕ0,ϕ1)− (ψ0,ψ1)

∥
∥

H1
0×L2

+
∥
∥(ψ0,ψ1)− (ψ0

h ,ψ
1
h )
∥
∥

H1
0 ×L2)

≤ C(
∥
∥(ϕ0

h ,ϕ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 + ε +Cε h2/3

∥
∥(ψ0,ψ1)

∥
∥

H2∩H1
0×H1

0
).

Besides, recalling that ψh converge to ψ in the sense of Eqs. (3.19)–(3.20), we have

lim
h→0

sup
t∈[0,T ]

‖(ψh,∂tψh)(t)− (ψ ,∂tψ)(t)‖H1
0 ×L2 +

∥
∥
∥∂xψ(t,1)+

ψN,h

h

∥
∥
∥

L2(0,T)
= 0.

We also use that the energy of the continuous wave equation (3.2) is constant in time
and the admissibility result of the continuous wave equation and apply it to ϕ −ψ :

sup
t∈[0,T ]

‖(ϕ ,∂tϕ)(t)− (ψ ,∂tψ)(t)‖H1
0 ×L2 + ‖∂xϕ(t,1)− ∂xψ(t,1)‖L2(0,T ) ≤Cε.

Combining these three estimates and taking the limsup as h→ 0, for all ε > 0, we get

limsup
h→0

(

sup
t∈[0,T ]

‖(ϕh,∂tϕh)(t)− (ϕ ,∂tϕ)(t)‖H1
0 ×L2

+

∥
∥
∥
∥

ϕN,h(t)

h
+ ∂xϕ(t,1)

∥
∥
∥
∥

L2(0,T)

)

≤Cε.

This concludes the proof of Proposition 3.5 since ε > 0 was arbitrary. ��

3.4.2 Smooth Initial Data

In this section, we derive higher convergence rates when the initial data are smoother.
In order to do that, we introduce, for � ∈R, the functional space H�

(0) defined by

H�
(0)(0,1) =

{

ϕ =
∞

∑
k=1

ϕ̂kwk, with
∞

∑
k=1

k2�|ϕ̂k|2 < ∞

}

endowed with the norm ‖ϕ‖2
H�
(0)

=
∞

∑
k=1

k2�|ϕ̂k|2. (3.34)
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These functional spaces correspond to the domains D((−Δd)
�/2) of the fractional

powers of the Dirichlet Laplace operator −Δd . In particular, we have H0
(0)(0,1) =

L2(0,1), H1
(0)(0,1) = H1

0 (0,1) and H−1
(0) (0,1) = H−1(0,1).

As an extension of Proposition 3.4, we obtain:

Proposition 3.6. Let � ∈ (0,3] and (ϕ0,ϕ1) ∈ H�+1
(0) (0,1)×H�

(0)(0,1). Denote by ϕ
the solution of Eq. (3.2) with initial data (ϕ0,ϕ1). Then there exists a constant C =
C(T, �) independent of (ϕ0,ϕ1) such that the sequence ϕh of solutions of Eq. (3.1)
with initial data (ϕ0

h ,ϕ
1
h ) constructed in Proposition 3.4 satisfies, for all h > 0,

sup
t∈[0,T ]

‖(ϕh(t),∂tϕh(t))− (ϕ(t),∂tϕ(t))‖H1
0 ×L2

≤Ch2�/3
∥
∥(ϕ0,ϕ1)

∥
∥

H�+1
(0) ×H�

(0)
, (3.35)

and
∥
∥
∥
∥

ϕN,h(·)
h

+ ∂xϕ(·,1)
∥
∥
∥
∥

L2(0,T)
≤Ch2�/3

∥
∥(ϕ0,ϕ1)

∥
∥

H�+1
(0) ×H�

(0)
. (3.36)

In particular, for � = 3, this result reads as follows: if (ϕ0,ϕ1) ∈ H4
(0)(0,1)×

H3
(0)(0,1), the sequence ϕh constructed in Proposition 3.4 satisfies the following

convergence results:

sup
t∈[0,T ]

‖(ϕh(t),∂tϕh(t))− (ϕ(t),∂tϕ(t))‖H1
0 ×L2 ≤Ch2

∥
∥(ϕ0,ϕ1)

∥
∥

H4
(0)×H3

(0)
, (3.37)

and
∥
∥
∥
∥

ϕN,h(·)
h

+ ∂xϕ(·,1)
∥
∥
∥
∥

L2(0,T)
≤Ch2

∥
∥(ϕ0,ϕ1)

∥
∥

H4
(0)×H3

(0)
. (3.38)

Note that we cannot expect to go beyond the rate h2 since the method is consistent
of order 2.

Proof (Sketch). The proof of these convergence results follows line to line the one
of Proposition 3.4.

Let us for instance explain how it has to be modified to get Eq. (3.37). First
remark that Eq. (3.22) now reads

∞

∑
|k|=1

k2�+2|ϕ̂k|2 �
∥
∥(ϕ0,ϕ1)

∥
∥2

H�+1
(0) ×H�

(0)
.

Estimates (3.24)–(3.25) can then be modified into

‖ϕh(t)−ϕ(t)‖2
H1

0
+ ‖∂tϕh(t)− ∂tϕ(t)‖2

L2

≤C

(

h4n(h)6−2�+
1

n(h)2�

)
∥
∥(ϕ0,ϕ1)

∥
∥2

H�+1
(0) ×H�

(0)
,

thus implying Eq. (3.35) immediately when taking n(h)� h−2/3.
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The proof of the strong convergence (3.36) also relies upon the estimate

I1 + I2 ≤C

(

h4n(h)6−2�+
1

n(h)2�

)
∥
∥(ϕ0,ϕ1)

∥
∥2

H�+1
(0) ×H�

(0)
,

where I1 and I2 are, respectively, given as above by Eq. (3.26). Details are left to the
reader. ��

3.4.3 General Initial Data

In Propositions 3.4 and 3.6, the discrete initial data are very special ones constructed
during the proof. In this section, we explain how this yields convergence rates even
for other initial data.

Proposition 3.7. Let � ∈ (0,3] and (ϕ0,ϕ1) ∈ H�+1
(0) (0,1)×H�

(0)(0,1) and consider

a sequence (φ0
h ,φ

1
h ) satisfying, for some constants C0 > 0 and θ > 0 independent

of h > 0,
∥
∥(φ0

h ,φ
1
h )− (ϕ0,ϕ1)

∥
∥

H1
0 ×L2 ≤C0hθ . (3.39)

Denote by φh (respectively ϕ) the solution of Eq. (3.1) (resp. Eq. (3.2)) with initial
data (φ0

h ,φ
1
h ) (resp. (ϕ0,ϕ1)).

Then the following estimates hold:

sup
t∈[0,T ]

‖(φh(t),∂tφh(t))− (ϕ(t),∂tϕ(t))‖H1
0 ×L2

≤C

(

h2�/3
∥
∥(ϕ0,ϕ1)

∥
∥

H�+1
(0) ×H�

(0)
+C0hθ

)

, (3.40)

and
∥
∥
∥
∥

φN,h(·)
h

+ϕx(·,1)
∥
∥
∥
∥

L2(0,T )
≤C

(

h2�/3
∥
∥(ϕ0,ϕ1)

∥
∥

H�+1
(0) ×H�

(0)
+C0hθ

)

. (3.41)

Proof. The proof easily follows from Proposition 3.6 since it simply consists in
comparing ϕh, the solution of Eq. (3.1) given by Proposition 3.4, and φh, the solution
of Eq. (3.1) with initial data (φ0

h ,φ
1
h ). But ϕh−φh solves Eq. (3.1) with an initial data

of H1
0 (0,1)×L2(0,1)-norm less than Ch2�/3‖(ϕ0,ϕ1)‖H�+1

(0) ×H�
(0)

+CC0hθ .

The first estimate (3.40) then follows immediately from the fact that the discrete
energy is constant for solutions of Eq. (3.1), whereas estimate (3.41) is based on the
uniform admissibility results proved in Theorem 2.1. ��
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3.4.4 Convergence Rates in Weaker Norms

For later use, we also give the following result:

Proposition 3.8. Let (ϕ0,ϕ1) ∈ H2
(0)(0,1)×H1

(0)(0,1). Denote by ϕ the solution

of Eq. (3.2) with initial data (ϕ0,ϕ1). Then for all � ∈ (0,3], there exists a con-
stant C = C(T, �) independent of (ϕ0,ϕ1) such that the sequence ϕh of solutions
of Eq. (3.1) with initial data (ϕ0

h ,ϕ
1
h ) constructed in Proposition 3.4 satisfies, for all

h > 0,

sup
t∈[0,T ]

‖(ϕh(t),∂tϕh(t),∂tt ϕh(t))− (ϕ(t),∂tϕ(t),∂tt ϕ(t))‖H2−�
(0) ×H1−�

(0) ×H−�
(0)

≤Ch2�/3
∥
∥(ϕ0,ϕ1)

∥
∥

H2
(0)×H1

(0)
. (3.42)

In particular, if (φ0
h ,φ

1
h ) are discrete functions such that for some �0 ∈ (0,3], C0

independent of h > 0 and θ > 0,
∥
∥(φ0

h ,φ
1
h )− (ϕ0,ϕ1)

∥
∥

H
2−�0
(0) ×H

1−�0
(0)

≤C0hθ , (3.43)

then denoting by φh the corresponding solution of Eq. (3.1), we have

sup
t∈[0,T ]

‖(φh(t),∂tφh(t),∂tt φh(t))− (ϕ(t),∂tϕ(t),∂tt ϕ(t))‖H
2−�0
(0) ×H

1−�0
(0) ×H

−�0
(0)

≤C

(

h2�0/3
∥
∥(ϕ0,ϕ1)

∥
∥

H2
(0)×H1

(0)
+C0hθ

)

. (3.44)

Proof. The proof of Eq. (3.42) again follows the one of Proposition 3.4. This time,
following Eqs. (3.24)–(3.25), we get

‖ϕh(t)−ϕ(t)‖2
H2−�
(0)

+ ‖∂tϕh(t)− ∂tϕ(t)‖2
H1−�
(0)

≤C

(

n(h)6−2�h4 +
1

n(h)2�

)
∥
∥(ϕ0,ϕ1)

∥
∥2

H2
(0)×H1

(0)
.

The proof of the estimate

sup
t∈[0,T ]

‖∂ttϕh(t)− ∂ttϕ(t)‖H−�
(0)

≤Ch2�/3
∥
∥(ϕ0,ϕ1)

∥
∥

H2
(0)×H1

(0)

can be done by writing

∂ttϕh(t)− ∂ttϕ(t) =
n(h)

∑
|k|=1

ϕ̂kw|k|
(
−μk(h)

2eiμk(h)t + μ2
k eiμkt

)
+

∞

∑
n(h)+1

ϕ̂kw|k|μ2
k eiμkt

and by using the estimate
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∣
∣
∣−μk(h)

2eiμk(h)t + μ2
k eiμkt

∣
∣
∣≤Ck5h2.

The complete proof of Eq. (3.42) is left to the reader.
The proof of Eq. (3.44) for initial data satisfying Eq. (3.43) is very similar to the

one of Proposition 3.7 and is based on the following facts:

• For any ψh solution of the discrete wave equation (3.1), for all � ∈ Z, the
H2−�
(0) (0,1)× H1−�

(0) (0,1)-norm of (ψh(t),∂tψh(t)) is independent of the time
t ≥ 0, as one easily checks by writing the solutions under the form

ψh(t) =
N

∑
k=1

wk
(

ψ̂keiμk(h)t + ψ̂−ke−iμk(h)t
)
.

Applying this remark to (ψh,∂tψh) and to (∂tψh,∂tt ψh) for ψh = φh −ϕh, we get

sup
t∈[0,T ]

‖(φh(t),∂t φh(t),∂tt φh(t))− (ϕ(t),∂tϕ(t),∂tt ϕ(t))‖H
2−�0
(0) ×H

1−�0
(0) ×H

−�0
(0)

≤C

(

h2�0/3
∥
∥(ϕ0,ϕ1)

∥
∥

H2
(0)×H1

(0)

+
∥
∥(φ0

h ,φ
1
h ,Δhφ0

h )− (ϕ0
h ,ϕ

1
h ,Δhϕ0

h )
∥
∥

H
2−�0
(0) ×H

1−�0
(0) ×H

−�0
(0)

)

.

• By construction,
∥
∥Δhφ0

h −Δhϕ0
h

∥
∥

H
−�0
(0)

≤C
∥
∥φ0

h −ϕ0
h

∥
∥

H
2−�0
(0)

;

hence
∥
∥(φ0

h ,φ
1
h ,Δhφ0

h )− (ϕ0
h ,ϕ

1
h ,Δhϕ0

h )
∥
∥

H
2−�0
(0) ×H

1−�0
(0) ×H

−�0
(0)

≤C
∥
∥(φ0

h ,φ
1
h )− (ϕ0

h ,ϕ
1
h )
∥
∥

H
2−�0
(0) ×H

1−�0
(0)

.

• We finally conclude Eq. (3.44) by using Eq. (3.43) and the estimate (3.42) for
t = 0. ��

3.5 Numerics

In this section, we briefly illustrate the above convergence results on the normal
derivatives. The rate of convergence of the discrete trajectories towards the contin-
uous ones is well known and well illustrated in the literature.

We thus choose an initial data (ϕ0,ϕ1) ∈ H1
0 (0,1)×L2(0,1).



76 3 Convergence for Homogeneous Boundary Conditions

For N ∈ N, we set h = 1/(N + 1) and take (ϕ0
h ,ϕ

1
h ) defined by ϕ0

j,h = ϕ0( jh)

and ϕ1
j,h =

∫

(( j−1/2)h,( j+1/2)h)ϕ1( jh) for all j ∈ {1, . . . ,N}. We then compute ϕh

the corresponding solution of Eq. (3.1) and the corresponding discrete derivative at
x = 1, i.e., −ϕN,h(t)/h.

Note that, actually, this discrete solution should rather be denoted as ϕh,Δ t since
we also discretize in time using an explicit scheme. More precisely, if ϕk

h,Δ t denotes
the approximation of ϕh at time kΔ t, we solve

ϕk+1
h = 2ϕk

h −ϕk−1
h − (Δ t)2Δhϕk

h . (3.45)

The CFL condition is chosen such that Δ t/h = 0.2 so that the convergence of the
scheme (in what concurs solving the boundary–initial value problem) is ensured.

Since our goal is to estimate rates of convergence, we also need a reference data.
In order to do that, we expand the initial data (ϕ0,ϕ1) in Fourier:

ϕ0 =
∞

∑
k=1

âkwk, ϕ1 =
∞

∑
k=1

b̂kwk.

The corresponding solution ϕ of Eq. (3.2) is then explicitly given by

ϕ(t) =
∞

∑
k=1

(

âk cos(kπt)+ b̂k
sin(kπt)

kπ

)

wk,

so that

∂xϕ(t,1) =
∞

∑
k=1

(

âk cos(kπt)+ b̂k
sin(kπt)

kπ

)√
2(−1)kkπ . (3.46)

Of course, we cannot compute numerically these Fourier series for the continuous
solutions of Eq. (3.2) since they involve infinite sums. So we take a reference num-
ber Nref large enough and replace the infinite sum in formula (3.46) by a truncated
version up to Nref. Nref is taken to be large compared to N, the number of nodes in
the space discretization involved in the computations of ϕN,h(t)/h. We thus approx-
imate the normal derivative by

(∂xϕ(t,1))ref =

Nref
∑
k=1

(

âk cos(kπt)+ b̂k
sin(kπt)

kπ

)√
2(−1)kkπ .

In the computations below, we take Nref = 1,000 for N varying between 200
and 400.

In Fig. 3.1 (left), we have chosen (ϕ0,ϕ1) as follows:

ϕ0(x) = sin(πx), ϕ1(x) = 0. (3.47)

In this particular case, the continuous solution involves one single Fourier mode.
So, we could have taken Nref = 1. Figure 3.1 (left) represents the L2(0,T )-norm
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of (∂xϕ(t,1))ref +ϕN,h(t)/h for T = 1 versus N in logarithmic scales. The slope
of the linear regression is −1.99, thus very close to −2, the rate predicted by
Proposition 3.7.

We then test the initial data

ϕ0(x) = 0, ϕ1(x) =

{−x if x < 1/2,
−x+ 1 if x > 1/2,

(3.48)

and plot the error in Fig. 3.1 (middle). The initial data velocity only belongs to

∩ε>0H1/2−ε
(0) (0,1), so the predicted rate of convergence given by Proposition 3.7

is −(1/3)−. This is indeed very close to the slope −0.31 observed in Fig. 3.1 (right).
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5.3 5.4 5.5 5.6 5.7 5.8 5.9
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−2.65

−2.6

5.3 5.4 5.5 5.6 5.7 5.8 5.9
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−3.45
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−3.35
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−3.25
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−3.15
−3.1

−3.05
−3

Fig. 3.1 Plot of |(∂xϕ(t,1))ref +ϕN,h(t)/h|L2(0,T) versus log(N) for N ∈ {200, . . . ,400}, Nref =

1,000 and T = 1. Left: for the initial data (ϕ0,ϕ1) in Eq. (3.47), slope of the linear regression
= −1.99. Middle: for the initial data (ϕ0,ϕ1) in Eq. (3.48), slope = −0.31. Right: for the initial
data (ϕ0,ϕ1) in Eq. (3.49), with (∂xϕ(t,1))ref =−1+ t in this case, slope =−0.5.

These numerical experiments both confirm the accuracy of the rates of conver-
gence derived in Proposition 3.7.

We then test the initial data

ϕ0(x) = 0, ϕ1(x) = x. (3.49)

These data are smooth but ϕ1(1) �= 0. Hence ϕ1 only belongs to ∩ε>0H1/2−ε
(0) (0,1)

and we thus expect a convergence rate of order h1/3. Note that in this case, the
normal derivative of the solution at x = 1 can be computed explicitly using Fourier
series and ∂xϕ(t,1) = −1+ t (recall the formula (3.46)). Of course, we are thus
going to use this explicit expression to compute (∂xϕ(t,1))ref =−1+ t in this case.

Note that the numerical simulations yield the slope −0.5 for the linear regres-
sion (see Fig. 3.1 (right)). This error term mainly comes from the fact that the con-
tinuous solution ϕ of Eq. (3.2) does not satisfy ∂xϕ0(x) = −1 as the computation
(∂xϕ(t,1))ref = −1+ t would imply for t = 0. This creates a layer close to t = 0
that the numerical method has some difficulties to handle. In Fig. 3.2, we represent
the normal derivative computed numerically for N = 300 and compare it with the
continuous normal derivative ∂xϕ(t,1) =−1+t. As one can see, there is a boundary
layer close to t = 0.
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Fig. 3.2 Plot of −ϕN,h(t)/h computed for N = 300 (black solid line) and of (∂xϕ(t,1))ref =−1+t
(red dash dot line) for (ϕ0,ϕ1) in Eq. (3.49). Left: on the time interval (0,1). Right: a zoom on the
time interval (0,0.03).

This last example illustrates the fact that the boundary conditions play an impor-
tant role for the regularity properties of the trajectory of the continuous model (3.2)
and therefore also have an influence on the rates of convergence of the correspond-
ing approximations given by Eq. (3.1). The above example also confirms the good
accuracy of the rates of convergence given in Proposition 3.7 when the regularity
properties are limited by the boundary conditions.



Chapter 4
Convergence with Nonhomogeneous Boundary
Conditions

4.1 The Setting

In this chapter, we consider the continuous wave equation
⎧
⎨

⎩

∂tt y− ∂xxy = 0, (t,x) ∈ (0,T )× (0,1),
y(t,0) = 0, y(t,1) = v(t), t ∈ (0,T ),
(y(0, ·),∂t y(0, ·)) = (y0,y1),

(4.1)

with

(y0,y1) ∈ L2(0,1)×H−1(0,1), v ∈ L2(0,T ). (4.2)

Following [36] (see also [33, 35]), system (4.1) can be solved uniquely in the
sense of transposition and the solution y belongs to

C([0,T ];L2(0,1))×C1([0,T ];H−1(0,1)).

Let us briefly recall the main ingredients of this definition of solution in the sense
of transposition and this result.

The key idea is the following. Given smooth functions f , the solutions ϕ of
⎧
⎨

⎩

∂tt ϕ − ∂xxϕ = f , (t,x) ∈ (0,T )× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T ),
(ϕ(T, ·),∂tϕ(T, ·)) = (0,0),

(4.3)

which are smooth for smooth f , should satisfy

∫ T

0

∫ 1

0
y f dxdt = −

∫ T

0
v(t)∂xϕ(t,1)dt

−
∫ 1

0
y0(x)∂t ϕ(0,x)dx+ 〈y1,ϕ(0, ·)〉H−1,H1

0
. (4.4)

S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-5808-1 4,
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Thus one should first check that if f ∈ L1(0,T ;L2(0,1)), then the solution ϕ of
Eq. (4.3) belongs to the energy space C([0,T ];H1

0 (0,1))∩C1([0,T ];L2(0,1)) and is
such that ∂xϕ(t,1) ∈ L2(0,T ) with the following continuity estimate:

‖(ϕ ,∂tϕ)‖L∞(0,T ;H1
0 (0,1)×L2(0,1)) + ‖∂xϕ(t,1)‖L2(0,T ) ≤C‖ f‖L1(0,T ;L2(0,1)) . (4.5)

Of course, there, the first term can be estimated easily through the energy identity,
whereas the estimate on the normal derivative of ϕ at x = 1 is a hidden regularity
result that can be easily proved using multiplier techniques.

Assuming Eq. (4.5), the map

L ( f ) =−
∫ T

0
v(t)∂xϕ(t,1)dt −

∫ 1

0
y0(x)∂t ϕ(0,x)dx+ 〈y1,ϕ(0, ·)〉H−1,H1

0

is continuous on L1(0,T ;L2(0,1)) and thus there is a unique function y in the
space L∞(0,T ;L2(0,1)) that represents L , which is by definition the solution y of
Eq. (4.1) in the sense of transposition. The solution y actually belongs to the space
C([0,T ];L2(0,1)) since it can be approximated in L∞(0,T ;L2(0,1)) by smooth
functions by taking smooth approximations of v, y0, and y1.

A similar duality argument shows that ∂t y belongs to C([0,T ];H−1(0,1)).
Let us finally mention the following regularity result (see [34]): if (y0,y1) ∈

H1
0 (0,1)× L2(0,1) and v ∈ H1(0,T ) satisfies v(0) = 0, then the solution y of

Eq. (4.1) satisfies

y ∈C([0,T ];H1(0,1))∩C1([0,T ];L2(0,1)) and Δy ∈C([0,T ];H−1(0,1)). (4.6)

Now, the goal of this chapter is to study the convergence of the solutions of

⎧
⎪⎨

⎪⎩

∂tt y j,h − 1
h2 (y j+1,h − 2y j,h + y j−1,h) = 0, (t, j) ∈ (0,T )×{1, . . . ,N},

y0,h = 0, yN+1,h(t) = vh(t), t ∈ (0,T ),
(yh(0),∂t yh(0)) = (y0

h,y
1
h),

(4.7)

towards the solution y of Eq. (4.1), under suitable convergence assumptions on the
data (y0

h,y
1
h) and vh to (y0,y1) and v.

As in Chap. 3, yh will be identified with its Fourier extension Fh(yh). This will
allow us to identify the H−1(0,1)-norm of fh as

‖ fh‖H−1(0,1) = ‖zh‖H1
0 (0,1)

, where zh solves −∂xxzh = fh on (0,1), zh(0) = zh(1).

Note that, expanding these discrete functions on the Fourier basis, one can check
(see Proposition 4.1 below) that this norm is equivalent to ‖z̃h‖H1

0 (0,1)
, where z̃h

solves

− 1
h2

(
z̃ j+1,h + z̃ j−1,h − 2z̃ j,h

)
= f j,h, j ∈ {1, . . . ,N}, z̃0,h = z̃N+1,h = 0.
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The outline of this Chap. 4 is as follows. Since we are working with the H−1(0,1)-
norm, it will be convenient to present some further convergence results for the dis-
crete Laplace operator. In Sect. 4.3 we give some uniform bounds on the solutions
yh of Eq. (4.7). In Sect. 4.4 we derive explicit rates of convergence for smooth solu-
tions. In Sect. 4.5 we explain how these results yield various convergence results. In
Sect. 4.6, we illustrate our theoretical results by numerical experiments.

4.2 The Laplace Operator

In this section, we focus on the convergence of the discrete Laplace operator Δh,
defined for discrete functions zh = (z j,h) j∈{1,...,N} by

(Δhzh) j =
1
h2 (z j+1,h − 2z j,h + z j−1,h), j ∈ {1, . . . ,N}, with z0,h = zN+1,h = 0.

(4.8)
In particular, we give various results that will be used afterwards.

Let us first recall that the operator −Δh is self-adjoint positive definite on R
N

according to the analysis done in Sect. 2.2. Besides, its eigenvectors wk and eigen-
values λk(h) = μk(h)2 are explicit; the k-th eigenvector wk(x) =

√
2sin(kπx) is in-

dependent of h > 0 and μk(h) = 2sin(kπh/2)/h.

4.2.1 Natural Functional Spaces

In this section, we focus on the case of “natural” functional spaces, i.e., in our case
H1

0 (0,1), L2(0,1), and H−1(0,1).
As already mentioned, we have the following:

Proposition 4.1. If fh is a discrete function, then there exists a constant C indepen-
dent of h ∈ (0,1) such that

1
C
‖ fh‖H−1 ≤

∥
∥(−Δh)

−1 fh
∥
∥

H1
0
≤C‖ fh‖H−1 . (4.9)

To simplify notations, for f ∈ H−1(0,1), we shall often denote by (−∂xx)
−1 f the

solution z ∈ H1
0 (0,1) of

−∂xxz = f on (0,1), z(0) = z(1) = 0.

Proof. Since fh is a discrete function, it can be expanded in Fourier series as
follows:

fh =
N

∑
k=1

fkwk.
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Then the expansions of z = (−∂xx)
−1 fh and zh = (−Δh)

−1 fh are known:

z =
N

∑
k=1

fk

μ2
k

wk, zh =
N

∑
k=1

fk

μk(h)2 wk.

Hence

‖z‖2
H1

0
=

N

∑
k=1

| fk|2
μ2

k

, ‖zh‖2
H1

0
=

N

∑
k=1

| fk|2
μ2

k

μ4
k

μk(h)4 .

Since for all k ∈ {1, . . . ,N},

1 ≤ μ4
k

μk(h)4 ≤ π4

16
,

we easily get Proposition 4.1. ��
We now prove the following convergence result:

Theorem 4.1. Let f ∈ L2(0,1) and expand it in Fourier series as

f =
∞

∑
k=1

fkwk, (4.10)

and set

fh =
N

∑
k=1

fkwk. (4.11)

Let then z be the solution of

− ∂xxz = f , on (0,1), z(0) = z(1) = 0, (4.12)

and zh of

− (Δhzh) j = f j,h, j ∈ {1, . . . ,N}. (4.13)

Then

‖ f − fh‖H−1 + ‖z− zh‖H1
0
≤ Ch‖ f‖L2 (4.14)

‖z− zh‖L2 ≤ Ch2 ‖ f‖L2 . (4.15)

Remark 4.1. Of course, Theorem 4.1 is very classical and can be found for many
different discretization schemes and in particular for finite-element methods; see for
instance the textbook [46].

Proof. Our proof is of course based on the fact that the functions wk are eigenvectors
of both the continuous and discrete Laplace operators. Note that it is straightforward
to check that

‖ f − fh‖H−1 ≤Ch‖ f‖L2 .
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We thus focus on the comparison between z and zh. Again, we use the fact that
the expansions of z and zh in Fourier are explicit:

z =
∞

∑
k=1

fk

μ2
k

wk, zh =
N

∑
k=1

fk

μk(h)2 wk. (4.16)

Now, computing the H1
0 -norm of z− zh is easy:

‖z− zh‖2
H1

0
=

N

∑
k=1

| fk|2
μ2

k

(

1− μ2
k

μk(h)2

)2

+
∞

∑
k=N+1

| fk|2
μ2

k

≤ C
N

∑
k=1

| fk|2k2h4 +
1

N2

∞

∑
k=N+1

| fk|2,

where we have used that

1

μ2
k

(

1− μ2
k

μk(h)2

)2

≤Ck2h4, ∀k ∈ {1, . . . ,N}. (4.17)

Hence

‖z− zh‖2
H1

0
≤C

(

N2h4 +
1

N2

)

‖ f‖2
L2 .

Since N + 1 = 1/h, this concludes the proof of Eq. (4.14).
Similarly, one derives

‖z− zh‖2
L2 ≤C

(

h4 +
1

N4

)

‖ f‖2
L2 ,

which immediately implies Eq. (4.15). ��
From Proposition 4.1 and Theorem 4.1 we deduce:

Theorem 4.2. Let f ∈ H−1(0,1) and fh be a sequence of discrete functions such
that

lim
h→0

‖ f − fh‖H−1 = 0.

Then

lim
h→0

∥
∥(−∂xx)

−1 f − (−Δh)
−1 fh

∥
∥

H1
0
= 0. (4.18)

Besides, if f ∈ L2(0,1) and fh satisfies, for some θ > 0,

‖ f − fh‖H−1 ≤C0hθ ,

then
∥
∥(−∂xx)

−1 f − (−Δh)
−1 fh

∥
∥

H1
0
≤C

(
h‖ f‖L2 +C0hθ

)
. (4.19)
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Proof. The first part of Theorem 4.2 easily follows by the density of L2(0,1) func-
tions in H−1(0,1), the uniform stability result of Proposition 4.1 and the conver-
gence result of Theorem 4.1, similarly as in the proof of Proposition 3.5. The details
are left to the reader.

The second part of Theorem 4.2 consists of taking f̃h as in Eq. (4.11), for which
we have
∥
∥ f − f̃h

∥
∥

H−1 ≤Ch‖ f‖L2 and
∥
∥(−Δh)

−1 f̃h − (−∂xx)
−1 f

∥
∥

H1
0
≤Ch‖ f‖L2 .

Then Proposition 4.1 implies that
∥
∥(−Δh)

−1 fh − (−Δh)
−1 f̃h

∥
∥

H1
0
≤C

∥
∥ fh − f̃h

∥
∥

H−1 .

Of course, these three last estimates imply Eq. (4.19). ��
Finally, we mention this last result:

Theorem 4.3. Let f ∈ L2(0,1) and z = (−∂xx)
−1 f . Then there exists C such that

|∂xz(1)|2 ≤C‖ f‖L2 ‖ f‖H−1 . (4.20)

Similarly, there exists C > 0 such that for all h ∈ (0,1), if fh is a discrete function
and zh = (−Δh)

−1 fh, we have

∣
∣
∣
zN,h

h

∣
∣
∣
2 ≤C‖ fh‖L2 ‖ fh‖H−1 . (4.21)

Besides, taking fh as in Eq. (4.11), we have
∣
∣
∣∂xz(1)+

zN,h

h

∣
∣
∣≤C

√
h‖ f‖L2 . (4.22)

Proof. We prove this result using the multiplier technique. Since −∂xxz = f , multi-
plying the equation by x∂xz, easy integrations by parts show

|∂xz(1)|2 =−2
∫ 1

0
f x∂xz+

∫ 1

0
|∂xz|2.

Of course, this implies Eq. (4.20) from the fact that ‖z‖H1
0
= ‖ f‖H−1 .

In order to prove estimate (4.21), we develop a similar multiplier argument.
Namely, we multiply the equation

−(Δhzh) j = f j,h, j ∈ {1, . . . ,N},

by j(z j+1,h − z j−1,h). We thus obtain

∣
∣
∣
zN,h

h

∣
∣
∣
2
=−2h

N

∑
j=1

jh

(
z j+1,h − z j−1,h

h

)

f j,h + h
N

∑
j=0

(
z j+1,h − z j,h

h

)2

.
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Hence
∣
∣
∣
zN,h

h

∣
∣
∣
2 ≤C‖ fh‖L2 ‖zh‖H1

0
+C‖zh‖2

H1
0
≤C‖ fh‖L2 ‖ fh‖H−1 +C‖ fh‖2

H−1 ,

which yields estimate (4.21).
We now aim at proving Eq. (4.22). First remark that zh also solves

−∂xxzh = f̃h, on (0,1), zh(0) = zh(1) = 0,

where

f̃h =
N

∑
j=1

fk

(
μk

μk(h)

)2

wk. (4.23)

But one easily has
∥
∥ f̃h

∥
∥

L2 ≤C‖ f‖L2 ,
∥
∥ f̃h − f

∥
∥

H−1 ≤Ch‖ f‖L2 . (4.24)

Indeed, from Eq. (4.17),

∥
∥ f̃h − fh

∥
∥2

H−1 =
N

∑
k=1

| fk|2
μ2

k

(

1−
(

μk

μk(h)

)2
)2

≤Ch2‖ f‖2
L2 ,

and thus Eq. (4.14) yields Eq. (4.24).
Therefore, using Eq. (4.21),

|∂xz(1)− ∂xzh(1)| ≤C
(∥
∥ f − f̃h

∥
∥

L2

∥
∥ f − f̃h

∥
∥

H−1

)1/2 ≤C
√

h‖ f‖L2 . (4.25)

Besides,

∂xzh(1)+
zN,h

h
=

N

∑
k=1

fk

μk(h)2 (−1)k
(

1− sin(kπh)
kπh

)

kπ .

Note that this last expression coincides with the continuous normal derivative ∂xz̃(1)
of the solution z̃ of the continuous problem
⎧
⎪⎨

⎪⎩

−∂xxz̃ = g̃h, on (0,1), where g̃h =
N

∑
k=1

fk
μ2

k

μk(h)2

(

1− sin(kπh)
kπh

)

wk,

z̃(0) = z̃(1) = 0.

(4.26)

Using that for some constant C independent of h and k ∈ {1, . . . ,N},

∣
∣
∣
∣

μ2
k

μk(h)2

∣
∣
∣
∣≤C,

∣
∣
∣
∣1−

sin(kπh)
kπh

∣
∣
∣
∣≤Ck2h2,
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we easily compute

‖g̃h‖L2 ≤C‖ f‖L2 , ‖g̃h‖H−1 ≤Ch‖ f‖L2 . (4.27)

Hence, from Eq. (4.20),
∣
∣
∣∂xzh(1)+

zN,h

h

∣
∣
∣= |∂xz̃(1)| ≤C

√
h‖ f‖L2 .

Together with Eq. (4.25), this concludes the proof of Theorem 4.3. ��

4.2.2 Stronger Norms

Recalling the definition of the functional spaces H�
(0)(0,1) in Eq. (3.34), we prove

the counterparts of the above theorem within these spaces.
First, Proposition 4.1 can be modified into:

Proposition 4.2. Let � ∈ R. If fh is a discrete function, then there exists a constant
C =C(�) independent of h ∈ (0,1) such that

1
C
‖ fh‖H�

(0)
≤ ∥
∥(−Δh)

−1 fh

∥
∥

H�−2
(0)

≤C‖ fh‖H�
(0)
. (4.28)

The proof of Proposition 4.2 follows line to line the one of Proposition 4.1 and
is left to the reader.

The convergence results of Theorem 4.1 can be extended as follows:

Theorem 4.4. Let �∈R and f ∈H�
(0)(0,1) and z= (−∂xx)

−1 f be the corresponding
solution of the Laplace equation (4.12). With the notations of Theorem 4.1, setting
fh as in Eq. (4.11) and zh = (−Δh)

−1 fh, we have

‖ f − fh‖H�−1
(0)

+ ‖z− zh‖H�+1
(0)

≤ Ch‖ f‖H�
(0)
, (4.29)

‖z− zh‖H�
(0)

≤ Ch2‖ f‖H�
(0)
. (4.30)

Here again, the proof of Theorem 4.4 is very similar to the one of Theorem 4.1
and is left to the reader.

We now focus on the convergence of the normal derivatives:

Theorem 4.5. Let �≥ 0 and f ∈ H�
(0)(0,1) and z = (−∂xx)

−1 f be the corresponding
solution of the Laplace equation (4.12). With the notations of Theorem 4.1, setting
fh as in Eq. (4.11) and zh = (−Δh)

−1 fh, we have
∣
∣
∣∂xz(1)+

zN,h

h

∣
∣
∣≤Chmin{�+1/2,�/2+1,2}‖ f‖H�

(0)
. (4.31)
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Proof. The proof of Eq. (4.31) follows the one of Eq. (4.22), except for the esti-
mates (4.24) on f̃h in Eqs. (4.23) and (4.27) on g̃h defined in Eq. (4.26).

Using that for all h > 0 and k ∈ {1, . . . ,N},

(

1−
(

μk

μk(h)

)2
)2

≤Ck4h4,

we easily derive that

∥
∥ f − f̃h

∥
∥2

L2 ≤C

(
1

N2� +Ch4 max{1,N4−2�}
)

‖ f‖2
H�
(0)
.

In particular, if � ∈ (0,2],
∥
∥ f − f̃h

∥
∥

L2 ≤ Ch� ‖ f‖H�
(0)

and if � ≥ 2,
∥
∥ f − f̃h

∥
∥

L2 ≤
Ch2‖ f‖H�

(0)
, thus yielding

∥
∥ f − f̃h

∥
∥

L2 ≤Chmin{�,2} ‖ f‖H�
(0)
.

Similarly,
∥
∥ f − f̃h

∥
∥

H−1 ≤Chmin{�+1,2} ‖ f‖H�
(0)
.

We thus obtain, instead of Eq. (4.25),

|∂xz(1)− ∂xzh(1)| ≤Chmin{�+1/2,�/2+1,2}‖ f‖H�
(0)
.

Estimates on ∂xzh(1) + zN,h/h can be deduced similarly from estimates on g̃h

(defined in Eq. (4.26)) and are left to the reader. ��
Remark 4.2. Very likely, estimate (4.31) can be improved for � >−1/2 into

∣
∣
∣∂xz(1)+

zN,h

h

∣
∣
∣≤Chmin{�+1/2,2} ‖ f‖H�

(0)
. (4.32)

For instance, using that, if f = ∑k fkwk, the solution z of Eq. (4.12) can be ex-
panded as z = ∑k fk/μ2

k wk and we get

∂xz(1) = ∑
k

fk
∂xwk(1)

μ2
k

,

provided the sum converges. Since for all k ∈ N,

∣
∣
∣
∣
∂xwk(1)

μ2
k

∣
∣
∣
∣≤

C
μk

,
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by Cauchy–Schwarz, for any �0 >−1/2, we obtain

|∂xz(1)| ≤C�0 ‖ f‖
H
�0
(0)

instead of Eq. (4.20).
Of course, we can get similar estimates for the discrete solutions zh = (−Δh)

−1 fh

and obtain, for all �(0) >−1/2, a constant C�0 independent of h > 0 such that for all
discrete function fh and zh = (−Δh)

−1 fh,
∣
∣
∣
zN,h

h

∣
∣
∣≤C�0 ‖ fh‖H

�0
(0)

.

instead of Eq. (4.21).
Using these two estimates instead of Eqs. (4.20) and (4.21) and following the

proof of Theorem 4.5, we can obtain the following result: for all � > −1/2 and
ε > 0, there exists a constant C�,ε =C(�,ε) such that f ∈ H�

(0),

∣
∣
∣∂xz(1)+

zN,h

h

∣
∣
∣≤C�,ε hmin{�+1/2−ε,2} ‖ f‖H�

(0)
. (4.33)

This last estimate is better than Eq. (4.31) when � ∈ (−1/2,0) and when � ∈ (1,2).

4.2.3 Numerical Results

This section aims at giving numerical simulations and evidences of the convergence
results Eq. (4.31) for the normal derivatives of solutions of the discrete Laplace
equation. We do not present a systematic study of the convergence of the solution
in L2(0,1) nor in H1

0 (0,1) since these results are classical and can be found in many
textbooks of numerical analysis; see, e.g., [4, 46].

In order to do that, we choose continuous functions f and z solving Eq. (4.12).
For N ∈N, we then discretize the source term f into fh simply by taking fh( j) =

f ( jh) for j ∈ {1, . . . ,N} and compute zh the solution of −Δhzh = fh with z0,h =
zN+1,h = 0. We then compute ∂xz(1)+ zN,h/h.

Our first test function is

f (x) =−sin(2πx)+ 3sin(πx), for z(x) =
sin(2πx)

4π2 − 3sin(πx)
π

. (4.34)

The plot of
∣
∣∂xz(1)+ zN,h/h

∣
∣ versus N is represented in logarithmic scales in

Fig. 4.1, left. Here, we have chosen N ∈ [100,300]. The slope of the linear regression
is −1.99 and completely corresponds to the result of Theorem 4.5.
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Fig. 4.1 Plot of
∣
∣∂xz(1)+ zN,h/h

∣
∣ versus N in logarithmic scales. Left, for f as in Eq. (4.34), the

slope is −1.99. Right, for f as in Eq. (4.35), the slope is −1.00.

We then test

f (x) =
1

(x+ 1)3 , corresponding to z(x) =− 1
2(x+ 1)

+
1
2
− x

4
. (4.35)

Numerical simulations are represented in Fig. 4.1, right.
This function f is smooth, but it does not satisfy f (0) = f (1) = 0. Thus it is only

in ∩ε>0H1/2−ε
(0) (0,1) and the slope predicted by Theorem 4.5 is −1− and completely

agrees with the slope observed in Fig. 4.1 right.
These two examples indicate that the rates of convergence of the normal deriva-

tives obtained in Theorem 4.5 are accurate.

4.3 Uniform Bounds on yhyhyh

The goal of this section is to obtain uniform bounds on yh in the natural space for the
wave equation with nonhomogeneous Dirichlet control, that is C([0,T ];L2(0,1))∩
C1([0,T ];H−1(0,1)):

Theorem 4.6. There exists a constant C independent of h > 0 such that any solution
yh of Eq. (4.7) with initial data (y0

h,y
1
h) and source term vh ∈ L2(0,T ) satisfies

sup
t∈[0,T ]

‖(yh(t),∂t yh(t))‖L2(0,1)×H−1(0,1)

≤C
(∥
∥(y0

h,y
1
h)
∥
∥

L2(0,1)×H−1(0,1) + ‖vh‖L2(0,T)

)
. (4.36)

The proof of Theorem 4.6 is done in two steps: one focusing on the estimate on
yh and the other one on ∂t yh, respectively, corresponding to Propositions 4.3 and 4.4.

As we will see, each one of these propositions is based on a suitable duality
argument for solutions of the adjoint system.
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4.3.1 Estimates in C([0,T]; L2(0,1))L2(0,1))L2(0,1))

We have the following:

Proposition 4.3. There exists a constant C independent of h > 0 such that any solu-
tion yh of Eq. (4.7) satisfies

‖yh‖L∞(0,T ;L2(0,1)) ≤C
(∥
∥y0

h

∥
∥

L2(0,1) +
∥
∥y1

h

∥
∥

H−1(0,1) + ‖vh‖L2(0,T)

)
. (4.37)

We postpone the proof to the end of the section. As in the continuous case, Propo-
sition 4.3 will be a consequence of a suitable duality argument.

Namely, let fh ∈ L1(0,T ;L2(0,1)) and define φh as being the solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt φ j,h − 1
h2

[
φ j+1,h +φ j−1,h − 2φ j,h

]
= f j,h,

(t, j) ∈ (0,T )×{1, . . . ,N},
φ0,h(t) = φN+1,h(t) = 0, t ∈ (0,T ),
φ j,h(T ) = 0, ∂tφ j,h(T ) = 0, j = 1, . . . ,N.

(4.38)

Then, multiplying Eq. (4.7) by φh solution of Eq. (4.38), we obtain

0 = h
N

∑
j=1

∫ T

0
∂tt y j,hφ j,h dt − h

N

∑
j=1

∫ T

0

1
h2 [y j+1,h + y j−1,h− 2y j,h]φ j,h dt

= h
N

∑
j=1

∫ T

0
y j,h∂tt φ j,h dt − h

N

∑
j=1

∫ T

0

1
h2 y j,h[φ j+1,h +φ j−1,h − 2φ j,h]dt

+h
N

∑
j=1

(∂t y j,hφ j,h − y j,h∂tφ j,h)
∣
∣
∣
T

0
−
∫ T

0
yN+1,h

φN,h

h
dt

= h
N

∑
j=1

∫ T

0
y j,h f j,h dt + h

N

∑
j=1

(y0
j,h∂tφ j,h(0)− y1

j,hφ j,h(0)) (4.39)

−
∫ T

0
vh(t)

φN,h(t)

h
dt.

Note that identity (4.39) is a discrete counterpart of the continuous identity (4.4).
Remark that this can be used as a definition of solutions of Eq. (4.7) by transpo-
sition, even if in that case, solutions of Eq. (4.7) obviously exist due to the finite
dimensional nature of system (4.7).

Formulation (4.39) will be used to derive estimates on solutions yh by duality.
But we shall first prove the following lemma:

Lemma 4.1. For φh solution of Eq. (4.38), there exists a constant C independent of
h > 0 such that

‖φh‖L∞(0,T ;H1
0 (0,1))

+ ‖∂tφh‖L∞(0,T ;L2(0,1)) ≤C‖ fh‖L1(0,T ;L2(0,1)) (4.40)
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and
∥
∥
∥
∥

φN,h

h

∥
∥
∥
∥

L2(0,T)
≤C‖ fh‖L1(0,T ;L2(0,1)) . (4.41)

Proof. The first inequality (4.40) is an energy estimate, whereas Eq. (4.41) is a hid-
den regularity property.

Multiplying Eq. (4.38) by ∂tφ j,h and summing over j, we obtain

h
N

∑
j=1

∂tt φ j,h∂tφ j,h − h
N

∑
j=1

1
h2

[
φ j+1,h +φ j−1,h − 2φ j,h

]
∂tφ j,h

= h
N

∑
j=1

f j,h∂tφ j,h. (4.42)

The left-hand side of Eq. (4.42) is the derivative of the energy

d
dt

(
h
2

N

∑
j=1

|∂tφ j,h|2 + h
2

N

∑
j=1

(
φ j+1,h −φ j,h

h

)2
)

=
1
2

dEh[φh]

dt
,

whereas the right-hand side satisfies

∣
∣
∣
∣
∣
h

N

∑
j=1

f j,h∂tφ j,h

∣
∣
∣
∣
∣
≤
(

h
N

∑
j=1

| f j,h|2
)1/2(

h
N

∑
j=1

|∂tφ j,h|2
)1/2

≤
(

h
N

∑
j=1

| f j,h|2
)1/2

√
Eh[φh](t).

Equation (4.42) then implies

∣
∣
∣
∣
d
√

Eh

dt
(t)

∣
∣
∣
∣≤

(

h
N

∑
j=1

| f j,h(t)|2
)1/2

. (4.43)

Integrating in time, we obtain that for all t ∈ [0,T ],

√
Eh(t)≤

∫ T

0

(

h
N

∑
j=1

| f j,h(t)|2
)1/2

dt.

Finally, recalling the properties of the Fourier extension operator in Sect. 3.2, we
obtain Eq. (4.40).
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Estimate (4.41) can be deduced from the multiplier approach developed in the
proof of Theorem 2.2 by multiplying Eq. (4.38) by j(φ j+1,h −φ j−1,h):

h
N

∑
j=1

∫ T

0
f j,h jh

(
φ j+1,h −φ j−1,h

h

)

dt

= h
N

∑
j=1

∫ T

0
∂tt φ j,h jh

(
φ j+1,h −φ j−1,h

h

)

dt

−h
N

∑
j=1

∫ T

0

[
φ j+1,h +φ j−1,h − 2φ j,h

h2

]

jh

(
φ j+1,h −φ j−1,h

h

)

dt. (4.44)

The right-hand side of Eq. (4.44) has already been dealt with in the proof of Theo-
rem 2.2 and yields

h
N

∑
j=1

∫ T

0
∂ttφ j,h jh

(
φ j+1,h −φ j−1,h

h

)

dt

−h
N

∑
j=1

∫ T

0

[
φ j+1,h +φ j−1,h − 2φ j,h

h2

]

jh

(
φ j+1,h −φ j−1,h

h

)

=

∫ T

0

∣
∣
∣
∣
φN,h(t)

h

∣
∣
∣
∣

2

dt +
h3

2

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tφ j+1,h − ∂tφ j,h

h

∣
∣
∣
∣

2

dt

−
∫ T

0
Eh(t)dt −Xh(t)

∣
∣
∣
T

0
,

where, similarly as in Eq. (2.14), Xh(t) is given by

Xh(t) = 2h
N

∑
j=1

jh

(
φ j+1,h −φ j−1,h

2h

)

∂tφ j,h.

From the conditions φh(T ) = ∂tφh(T ) = 0 in Eq. (4.38), Xh(T ) = 0. Besides, as in
Eq. (2.15), one has |Xh(0)| ≤ Eh(0).

On the other hand,
∣
∣
∣
∣
∣
h

N

∑
j=1

∫ T

0
f j,h jh

(
φ j+1,h −φ j−1,h

h

)

dt

∣
∣
∣
∣
∣

≤
∫ T

0

(

h
N

∑
j=1

| f j,h|2
)1/2

√
Eh(t)dt

≤ sup
t∈[0,T ]

{√
Eh(t)

}∫ T

0

(

h
N

∑
j=1

| f j,h|2
)1/2

dt.

Therefore, from Eq. (4.40), there exists a constant independent of h such that
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∫ T

0

∣
∣
∣
∣
φN,h(t)

h

∣
∣
∣
∣

2

dt +
h3

2

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tφ j+1,h − ∂tφ j,h

h

∣
∣
∣
∣

2

dt

≤C

⎛

⎝
∫ T

0

(

h
N

∑
j=1

| f j,h|2
)1/2

dt

⎞

⎠

2

,

which implies Eq. (4.41). ��
Proof (Proposition 4.3). Lemma 4.1 and identity (4.39) allow us to deduce bounds
on yh. Indeed,

‖yh‖L∞(0,T ;L2(0,1)) = sup
f∈L1(0,T ;L2(0,1))
‖ f‖L1((0,T );L2(0,1))

∫ 1

0
yh(x) f (x)dx.

But there yh is the Fourier extension Fh(yh) (recall Sect. 3.2); hence it involves only
Fourier modes smaller than N. We thus only have to consider the projection of f
onto the first N Fourier modes. But this exactly corresponds to discrete functions fh.
Therefore,

‖yh‖L∞(0,T ;L2(0,1)) = sup
fh∈L1(0,T ;L2(0,1))

‖ fh‖L1((0,T );L2(0,1))≤1

{

h
N

∑
j=1

∫ T

0
y j,h f j,h dt

}

.

But, introducing φh, the solution of Eq. (4.38) with source term fh, using Lemma 4.1,
we obtain:

h
N

∑
j=1

∫ T

0
y j,h f j,h dt = −h

N

∑
j=1

(y0
j,h∂tφ j,h(0)− y1

j,hφ j,h(0))+
∫ T

0
vh(t)

φN,h(t)

h
dt

≤ C
∥
∥y0

h

∥
∥

L2(0,1) ‖∂tφh(0)‖L2(0,1) +C
∥
∥y1

h

∥
∥

H−1(0,1) ‖φh(0)‖H1
0 (0,1)

+‖vh‖L2(0,T )

∥
∥
∥
∥

φN,h

h

∥
∥
∥
∥

L2(0,T )

≤ C
(∥
∥y0

h

∥
∥

L2(0,1) +
∥
∥y1

h

∥
∥

H−1(0,1) + ‖vh‖L2(0,T)

)
‖ fh‖L1(0,T ;L2(0,1)) .

This yields in particular Eq. (4.37). ��

4.3.2 Estimates on ∂∂∂ tyh

We now focus on getting estimates on ∂t yh.

Proposition 4.4. There exists a constant C independent of h > 0 such that any solu-
tion yh of Eq. (4.7) satisfies
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‖∂t yh‖L∞(0,T ;H−1(0,1)) ≤C
(∥
∥y0

h

∥
∥

L2(0,1) +
∥
∥y1

h

∥
∥

H−1(0,1) + ‖vh‖L2(0,T)

)
. (4.45)

Similarly as for Proposition 4.3, this result is obtained by duality, based on the
following identity: if φh solves the adjoint wave equation (4.38) with source term
fh = ∂t gh with gh ∈ L1(0,T ;H1

0 (0,1)), we have:

h
N

∑
j=1

∫ T

0
y j,h∂t g j,h dt = −h

N

∑
j=1

(y0
j,h∂tφ j,h(0)− y1

j,hφ j,h(0))

+

∫ T

0
vh(t)

φN,h(t)

h
dt. (4.46)

The proof of Proposition 4.4 is sketched at the end of the section, since it is very
similar to the one of Proposition 4.3.

Hence, we focus on the following adjoint problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt φ j,h − 1
h2

[
φ j+1,h +φ j−1,h − 2φ j,h

]
= ∂t g j,h,

(t, j) ∈ (0,T )×{1, . . . ,N},
φ0,h(t) = φN+1,h(t) = 0, t ∈ (0,T ),
φ j,h(T ) = 0, ∂tφ j,0(T ) = 0, j = 1, . . . ,N.

(4.47)

We shall thus prove the following:

Lemma 4.2. For φh solution of Eq. (4.47), there exists a constant C independent of
h > 0 such that

‖φh‖L∞(0,T ;H1
0 (0,1))

+ ‖∂tφh(0)‖L2(0,1) ≤C‖gh‖L1(0,T ;H1
0 (0,1))

(4.48)

and
∥
∥
∥
∥

φN,h

h

∥
∥
∥
∥

L2(0,T)
≤C‖gh‖L1(0,T ;H1

0 (0,1))
. (4.49)

Proof. To study solutions φh of Eq. (4.47), it is convenient to first assume that gh is
compactly supported in time in (0,T ) and use the density of compactly supported
functions in time in L1(0,T ;H1

0 (0,1)).
Let us introduce ψh satisfying ∂tψh = φh, which satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ttψ j,h − 1
h2

[
ψ j+1,h +ψ j−1,h − 2ψ j,h

]
= g j,h,

(t, j) ∈ (0,T )×{1, . . . ,N},
ψ0,h(t) = ψN+1,h(t) = 0, t ∈ (0,T ),
ψ j,h(T ) = 0, ∂tψ j,h(T ) = 0, j = 1, . . . ,N.

(4.50)

Obviously, using Lemma 4.1, we immediately obtain
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‖ψh‖L∞(0,T ;H1
0 (0,1))

+ ‖∂tψh‖L∞(0,T ;L2(0,1)) +
∥
∥
∥

ψN,h

h

∥
∥
∥

L2(0,T )
≤C‖gh‖L1(0,T ;L2(0,1))

≤C‖gh‖L1(0,T ;H1
0 (0,1))

.

To derive more precise estimates on φh, we multiply Eq. (4.50) by −(∂tψ j+1,h +
∂tψ j−1,h − 2∂tψ j,h)/h2:

d
dt

(
h
2

N

∑
j=0

(
∂tψ j+1,h − ∂tψ j,h

h

)2

+
h
2

N

∑
j=1

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)2
)

= h
N

∑
j=1

(
g j+1,h − g j,h

h

)(
∂tψ j+1,h − ∂tψ j,h

h

)

.

Arguing as in Eq. (4.43), this allows to conclude that

sup
t∈[0,T ]

{
h
2

N

∑
j=0

(
∂tψ j+1,h − ∂tψ j,h

h

)2

+
h
2

N

∑
j=1

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)2
}

≤C

⎛

⎝
∫ T

0

(

h
N

∑
j=0

(
g j+1,h − g j,h

h

)2
)1/2

dt

⎞

⎠

2

. (4.51)

Using Eq. (4.38) and ∂tψh = φh and again the equivalences proven in Sect. 3.2, we
deduce

‖φh‖L∞(0,T ; H1
0 (0,1))

+ ‖∂tt ψh + gh‖L∞((0,T);L2(0,1)) ≤C‖gh‖L1(0,T ;H1
0 (0,1))

,

where we use the equation of ψh. In order to get Eq. (4.48), we only use the fact that
gh(0) = 0.

To deduce Eq. (4.49), we need to apply a multiplier technique on the Eq. (4.47)
directly.

Multiplying Eq. (4.47) by j(φ j+1,h−φ j−1,h), we obtain, similarly as in Eq. (2.13),

∫ T

0

∣
∣
∣
∣
φN,h(t)

h

∣
∣
∣
∣

2

dt +
h3

2

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tφ j+1,h − ∂tφ j,h

h

∣
∣
∣
∣

2

dt

=
∫ T

0
Eh(t)dt −Xh(0)− h

∫ T

0

N

∑
j=1

jh

(
φ j+1,h −φ j−1,h

h

)

∂t g j,h dt, (4.52)

where Xh is as in Eq. (2.14). To derive Eq. (4.49), it is then sufficient to bound each
term in the right-hand side of this identity.
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First remark that

∫ T

0
Eh(t)dt = h

∫ T

0

N

∑
j=0

(
φ j+1,h −φ j,h

h

)2

dt + h
∫ T

0

N

∑
j=0

|∂tφ j,h|2 dt

= h
∫ T

0

N

∑
j=0

(
∂tψ j+1,h − ∂tψ j,h

h

)2

dt + h
∫ T

0

N

∑
j=0

|∂ttψ j,h|2 dt

= h
∫ T

0

N

∑
j=0

(
∂tψ j+1,h − ∂tψ j,h

h

)2

dt + h
∫ T

0

N

∑
j=1

(
ψ j+1,h +ψ j−1,h− 2ψ j,h

h2

)2

dt

+h
∫ T

0

N

∑
j=0

g2
j,h dt + 2h

∫ T

0

N

∑
j=1

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)

g j,h dt.

In particular, from Eq. (4.51), we obtain
∣
∣
∣
∣
∣

∫ T

0
Eh(t)dt − h

∫ T

0

N

∑
j=0

g2
j,h dt

∣
∣
∣
∣
∣
≤C‖g‖2

L1(0,T ;H1
0 (0,1))

.

Let us then bound Xh(0). Since gh(0) = 0,

Xh(0) = 2h
N

∑
j=1

jh

(
φ j+1,h(0)−φ j−1,h(0)

2h

)

∂tφ j(0)

= 2h
N

∑
j=1

jh

(
φ j+1,h(0)−φ j−1,h(0)

2h

)

∂ttψ j(0)

= 2h
N

∑
j=1

jh

(
φ j+1,h(0)−φ j−1,h(0)

2h

)(
ψ j+1,h(0)+ψ j−1,h(0)− 2ψ j,h(0)

h2

)

.

It follows then from Eq. (4.51) that

|Xh(0)| ≤C‖gh‖2
L1(0,T ;H1

0 (0,1))
.

We now deal with the last term in Eq. (4.52):

I := 2h
∫ T

0

N

∑
j=1

jh

(
φ j+1,h −φ j−1,h

2h

)

∂tg j,h dt.

Integrating by parts we get

I = −h
∫ T

0

N

∑
j=1

φ j,h
(
( j+ 1)∂tg j+1,h − ( j− 1)∂tg j−1,h

)
dt

= −h
∫ T

0

N

∑
j=1

φ j,h

(

(∂t g j−1,h + ∂tg j+1,h)+ jh

(
∂tg j+1,h − ∂tg j−1,h

h

))

dt.
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Taking into account that, by assumption, gh(0) = gh(T ) = 0,

I = h
∫ T

0

N

∑
j=1

∂tφ j,h

(

(g j−1,h + g j+1,h)+ jh

(
g j+1,h − g j−1,h

h

))

dt.

But ∂tφ j,h = ∂ttψ j,h, and then Eq. (4.50) yields:

I = h
∫ T

0

N

∑
j=1

g j,h

(

(g j−1,h + g j+1,h)+ jh

(
g j+1,h − g j−1,h

h

))

dt

+h
∫ T

0

N

∑
j=1

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)

(g j−1,h + g j+1,h)dt.

+h
∫ T

0

N

∑
j=1

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)

jh

(
g j+1,h − g j−1,h

h

)

dt.

Since

h
∫ T

0

N

∑
j=1

g j,h

(

(g j−1,h + g j+1,h)+ jh

(
g j+1,h − g j−1,h

h

))

dt

= h
∫ T

0

N

∑
j=1

g j,hg j+1,h dt,

due to estimates (4.51), we obtain
∣
∣
∣
∣
∣
I − h

∫ T

0

N

∑
j=1

g j,hg j+1,h dt

∣
∣
∣
∣
∣
≤C‖g‖2

L1(0,T ;H1
0 (0,1))

.

These estimates, combined with Eq. (4.52), finally give
∣
∣
∣
∣
∣

∫ T

0

∣
∣
∣
∣
φN,h(t)

h

∣
∣
∣
∣

2

dt +
h3

2

N

∑
j=0

∫ T

0

∣
∣
∣
∣
∂tφ j+1,h − ∂tφ j,h

h

∣
∣
∣
∣

2

dt

−h
∫ T

0

N

∑
j=1

(|g j,h|2 − g j,hg j+1,h
)

dt

∣
∣
∣
∣
∣
≤C‖g‖2

L1(0,T ;H1
0 (0,1))

,

or, equivalently,
∣
∣
∣
∣
∣

∫ T

0

∣
∣
∣
∣
φN,h(t)

h

∣
∣
∣
∣

2

dt +
h
2

N

∑
j=0

∫ T

0

∣
∣∂tφ j+1,h − ∂tφ j,h

∣
∣2 dt

−h
2

∫ T

0

N

∑
j=0

|g j+1,h − g j,h|2 dt

∣
∣
∣
∣
∣
≤C‖g‖2

L1(0,T ;H1
0 (0,1))

. (4.53)
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Remark then that

h
N

∑
j=0

∫ T

0

∣
∣∂tφ j+1,h − ∂tφ j,h

∣
∣2 dt − h

∫ T

0

N

∑
j=0

|g j+1,h − g j,h|2 dt

= h
N

∑
j=0

∫ T

0

∣
∣∂tt ψ j+1,h − ∂ttψ j,h

∣
∣2 dt − h

∫ T

0

N

∑
j=0

|g j+1,h − g j,h|2 dt

= h
N

∑
j=0

∫ T

0

(
ψ j+2,h +ψ j,h − 2ψ j+1,h

h2 − ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)2

dt

+2h
N

∑
j=0

∫ T

0

(
ψ j+2,h +ψ j,h − 2ψ j+1,h

h2

)

(g j+1,h − g j,h)dt,

−2h
N

∑
j=0

∫ T

0

(
ψ j+1,h +ψ j−1,h − 2ψ j,h

h2

)

(g j+1,h − g j,h)dt,

with the notation ψ−1,h =−ψ1,h and ψN+2,h =−ψN,h.
In view of Eq. (4.51), we have

∣
∣
∣
∣
∣
h

N

∑
j=0

∫ T

0

∣
∣∂tφ j+1,h − ∂tφ j,h

∣
∣2 dt − h

∫ T

0

N

∑
j=0

|g j+1,h − g j,h|2 dt

∣
∣
∣
∣
∣

≤C‖g‖2
L1(0,T ;H1

0 (0,1))
.

Estimate (4.49) then follows directly from Eq. (4.53). ��
Proof (Proposition 4.4). Since yh is a smooth function of time and space (recall that
yh has been identified with its Fourier extension; see Sect. 3.2),

‖∂t yh‖L∞((0,T);H−1(0,1)) = sup
g∈L1((0,T);H1

0 (0,1))
‖g‖

L1((0,T );H1
0 (0,1))

≤1

∫ T

0
∂tyhg.

As in the proof of Proposition 4.3, we can take the supremum of the functions
g ∈ L1(0,T ;H1

0 (0,1)) that are Fourier extensions of discrete functions. Therefore,
using Lemma 4.2 together with the duality identity (4.46), we immediately obtain
Proposition 4.4. ��

4.4 Convergence Rates for Smooth Data

4.4.1 Main Convergence Result

Our goal is to show the following result:
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Theorem 4.7. Let (y0,y1) ∈ H1
0 (0,1)× L2(0,1) and v ∈ H1(0,T ) be such that

v(0) = 0 and y the corresponding solution of Eq. (4.1) with initial data (y0,y1) and
boundary condition v.

Then there exists a discrete sequence of initial data (y0
h,y

1
h) such that the solution

yh of Eq. (4.7) with initial data (y0
h,y

1
h) and boundary data v satisfies the following

convergence rates:

• Convergence of yh: the following convergence estimates hold:

sup
t∈[0,T ]

‖yh(t)− y(t)‖L2 ≤C
(

h2/3
∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + h1/2‖v‖H1

)
. (4.54)

If we furthermore assume that v(T ) = 0,

‖yh(T )− y(T )‖L2 ≤Ch2/3
(∥
∥(y0,y1)

∥
∥

H1
0×L2 + ‖v‖H1

)
. (4.55)

• Convergence of ∂t yh: the following convergence estimates hold:

sup
t∈[0,T ]

‖∂t yh(t)− ∂ty(t)‖H−1 ≤Ch2/3
(∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1

)
. (4.56)

Remark 4.3. The above convergences (4.54) and (4.56) may appear surprising since
the rates of convergence of the displacement and of the velocity are not the same
except when v(T ) = 0. We refer to Sect. 4.4.2 for the details of the proof.

More curiously, the rates of convergence for the displacement are not the same
depending on the fact that v(T ) = 0 or not. This definitely is a surprise. In the proof
below, we will see that this is due to the rate Eq. (4.22) of convergence of the normal
derivative for solutions of the Laplace operator.

The proof is divided in two main steps, namely one focusing on the convergence
of yh towards y and the other one on the convergence of ∂t yh to ∂t y, these two
estimates being the object of the next sections.

Also, recall that under the assumptions of Theorem 4.7, the solution y of Eq. (4.1)
lies in C([0,T ];H1(0,1)), its time derivative ∂t y belongs to C([0,T ];L2(0,1)) and Δy
to C([0,T ];H−1(0,1)).

As in the case of homogeneous Dirichlet boundary conditions, we will write
down

y0 =
∞

∑
k=1

ŷ0
kwk, y1 =

∞

∑
k=1

ŷ1
kwk, (4.57)

whose H1
0 (0,1)×L2(0,1)-norm coincides with

∥
∥(y0,y1)

∥
∥2

H1
0 ×L2 =

∞

∑
k=1

k2π2|ŷ0
k |2 +

∞

∑
k=1

|ŷ1
k |2 < ∞.
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We will then choose the initial data (y0
h,y

1
h) of the form

y0
h =

N

∑
k=1

ŷ0
kwk, y1

h =
N

∑
k=1

ŷ1
kwk. (4.58)

4.4.2 Convergence of yhyhyh

Proposition 4.5. Under the assumptions of Theorem 4.7, taking (y0
h,y

1
h) as in

Eq. (4.58), we have the convergences (4.54) and Eq. (4.55).

Proof. To estimate the convergence of yh to y at time T , we write

‖yh(T )− y(T )‖L2 = sup
φT∈L2(0,1)

‖φT ‖L2(0,1)≤1

{∫ 1

0
(yh(T )− y(T))φT

}

. (4.59)

We thus fix φT ∈ L2(0,1) and compute

∫ 1

0
(yh(T )− y(T ))φT . (4.60)

We expand φT on its Fourier basis:

φT =
∞

∑
k=1

φ̂kwk,
∞

∑
k=1

|φ̂k|2 < ∞. (4.61)

4.4.2.1 Computation of
∫ 1

0 y(T )φT
∫ 1

0 y(T )φT
∫ 1

0 y(T )φT

Let us now compute
∫ 1

0 y(T )φT . In order to do that, we introduce ϕ solution of

⎧
⎨

⎩

∂ttϕ − ∂xxϕ = 0, (t,x) ∈ (0,T )× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T ),
ϕ(T ) = 0, ∂tϕ(T ) = φT .

(4.62)

Then, multiplying Eq. (4.1) by ϕ , we easily obtain

∫ 1

0
y(T )φT =

∫ T

0
v(t)∂xϕ(t,1)dt +

∫ 1

0
y0∂tϕ(0)−

∫ 1

0
y1ϕ(0). (4.63)

But v(t) =
∫ t

0 ∂t v(s)ds, thus yielding

∫ T

0
v(t)∂xϕ(t,1)dt =

∫ T

0
∂t v(t)

(∫ T

t
∂xϕ(s,1)ds

)

dt.
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We therefore introduce Φ(t) =
∫ T

t ϕ(s)ds. One then easily checks that

∫ 1

0
y(T )φT =

∫ T

0
∂t v(t)∂xΦ(t,1)dt −

∫ 1

0
y0∂tt Φ(0)+

∫ 1

0
y1∂tΦ(0), (4.64)

where Φ solves
⎧
⎨

⎩

∂ttΦ − ∂xxΦ =−φT , (t,x) ∈ (0,T )× (0,1),
Φ(t,0) = Φ(t,1) = 0, t ∈ (0,T ),
Φ(T ) = 0, ∂tΦ(T ) = 0.

(4.65)

We also introduce zT the solution of

− ∂xxzT = φT , on(0,1), zT (0) = zT (1) = 0, (4.66)

so that

Ψ = Φ − zT (4.67)

satisfies
⎧
⎨

⎩

∂ttΨ − ∂xxΨ = 0, (t,x) ∈ (0,T )× (0,1)
Ψ (t,0) =Ψ(t,1) = 0, t ∈ (0,T ),
Ψ (T ) = zT , ∂tΨ (T ) = 0.

(4.68)

and
∫ 1

0
y(T )φT =

∫ T

0
∂tv(t)∂xΨ(t,1)dt −

∫ 1

0
y0∂ttΨ(0)+

∫ 1

0
y1∂tΨ(0)

+
∫ T

0
∂t v(t)∂xzT (1)dt,

and, using that zT is independent of time,

∫ 1

0
y(T )φT =

∫ T

0
∂t v(t)∂xΨ(t,1)dt −

∫ 1

0
y0∂ttΨ(0)+

∫ 1

0
y1∂tΨ(0)

+v(T )∂xzT (1). (4.69)

4.4.2.2 Computation of
∫ 1

0 yh(T )φT
∫ 1

0 yh(T )φT
∫ 1

0 yh(T )φT

Expanding yh(T ) in discrete Fourier series, we get

∫ 1

0
yh(T )φT =

∫ 1

0
yh(T )φT,h = h

N

∑
j=1

y j,h(T )φ j,T,h,
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where

φ j,T,h =
N

∑
k=1

φ̂kwk
j , j ∈ {1, . . . ,N}. (4.70)

Then, similarly as in Eq. (4.64), we can prove

∫ 1

0
yh(T )φT =−

∫ T

0
∂t v(t)

ΦN,h

h
dt − h

N

∑
j=1

y0
j,h∂tt Φ j,h(0)+ h

N

∑
j=1

y1
j,h∂tΦ j,h(0),

(4.71)
where Φh is the solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt Φ j,h − 1
h2

(
Φ j+1,h − 2Φ j,h +Φ j−1,h

)
=−φ j,T,h,

(t, j) ∈ (0,T )×{1, . . . ,N},
Φ0,h(t) = ΦN+1,h(t) = 0, t ∈ (0,T ),
Φh(T ) = 0, ∂tΦh(T ) = 0.

(4.72)

Note that, due to the orthogonality properties of the Fourier basis, we can write

−h
N

∑
j=1

y0
j,h∂ttΦ j,h(0)+ h

N

∑
j=1

y1
j,h∂tΦ j,h(0) = −

∫ 1

0
y0

h∂tt Φh(0)+
∫ 1

0
y1

h∂tΦh(0)

= −
∫ 1

0
y0∂tt Φh(0)+

∫ 1

0
y1∂tΦh(0),

and thus Eq. (4.71) can be rewritten as

∫ 1

0
yh(T )φT =−

∫ T

0
∂t v(t)

ΦN,h

h
dt −

∫ 1

0
y0∂ttΦh(0)+

∫ 1

0
y1∂tΦh(0). (4.73)

Then setting

zT,h = (−Δh)
−1φT,h, (4.74)

we obtain
∫ 1

0
yh(T )φT = −

∫ T

0
∂t v(t)

ΨN,h

h
dt −

∫ 1

0
y0∂ttΨh(0)+

∫ 1

0
y1∂tΨh(0) (4.75)

−v(T )
zN,T,h

h
,

where Ψh is the solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ttΨj,h − 1
h2

(
Ψj+1,h − 2Ψj,h +Ψj−1,h

)
= 0,

(t, j) ∈ (0,T )×{1, . . . ,N},
Ψ0,h(t) =ΨN+1,h(t) = 0, t ∈ (0,T )
Ψh(T ) = zT,h, ∂tΨh(T ) = 0.

(4.76)
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4.4.2.3 Estimating the Difference
∫ 1

0 y(T )φT − ∫ 1
0 yh(T )φT

∫ 1
0 y(T )φT − ∫ 1

0 yh(T )φT
∫ 1

0 y(T )φT − ∫ 1
0 yh(T )φT

First, since zT solves the Laplace equation (4.66), zT ∈ H2 ∩H1
0 (0,1) and

‖zT ‖H2∩H1
0
� ‖φT‖L2 .

Since φT ∈ L2(0,1), using Theorems 4.1 and 4.3,
∥
∥zT,h − zT

∥
∥

H1
0
≤ Ch‖φT‖L2 , (4.77)

∣
∣
∣∂xzT (1)+

zN,T,h

h

∣
∣
∣ ≤ C

√
h‖φT ‖L2 . (4.78)

Hence using Proposition 3.8, we obtain

sup
t∈[0,T ]

‖(Ψh,∂tΨh,∂ttΨh)− (Ψ ,∂tΨ ,∂ttΨ )‖H1
0 ×L2×H−1

+

∥
∥
∥
∥∂xΨ(t,1)+

ΨN,h

h
(t)

∥
∥
∥
∥

L2(0,T )
≤Ch2/3‖φT‖L2 . (4.79)

We thus deduce that

∣
∣
∣
∣

∫ T

0
∂tv(t)

(
ΨN,h

h
+ ∂xΨ(t,1)

)

dt +
∫ 1

0
y0(∂ttΨh(0)− ∂ttΨ(0))

−
∫ 1

0
y1(∂tΨh(0)− ∂tΨ(0))

∣
∣
∣
∣≤Ch2/3‖φT‖L2

(∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1

)
.

According to Eqs. (4.69), (4.75), and the bound Eq. (4.78), this implies
∣
∣
∣
∣

∫ 1

0
(yh(T )− y(T))φT

∣
∣
∣
∣

≤C
(√

h|v(T )|+ h2/3(
∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1)

)
‖φT‖L2 .

Using now identity (4.59), we obtain the following result:

‖yh(T )− y(T )‖L2 ≤C
(√

h|v(T )|+ h2/3(
∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1)

)
,

which implies that, if v(T ) = 0,

‖yh(T )− y(T)‖L2 ≤Ch2/3
(∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1

)
,

whereas otherwise

‖yh(T )− y(T )‖L2 ≤C
(

h2/3
∥
∥(y0,y1)

∥
∥

H1
0 ×L2 +

√
h‖v‖H1

)
.
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4.4.2.4 Conclusion

Note that all the above estimates hold uniformly for T in bounded intervals of time.
This concludes the proof of Proposition 4.5. ��

4.4.3 Convergence of ∂t yh∂t yh∂tyh

Proposition 4.6. Under the assumptions of Theorem 4.7, taking (y0
h,y

1
h) as in

Eq. (4.58), we have the convergence (4.56).

Proof. The proof of Proposition 4.6 closely follows the one of Proposition 4.5 and
actually it is easier. We first begin by the following remark:

‖∂tyh(T )− ∂ty(T )‖H−1 = sup
φT∈H1

0
‖φT ‖H1

0
≤1

{∫ 1

0
∂t yh(T )φT −

∫ 1

0
∂t y(T )φT

}

.

Hence we fix φT ∈ H1
0 (0,1). We expand it in Fourier series:

φT =
∞

∑
k=1

φ̂kwk, with ‖φT ‖2
H1

0
=

∞

∑
k=1

k2π2|φ̂k|2. (4.80)

We thus introduce

φT,h =
N

∑
k=1

φ̂kwk.

Using the fact that ∂t yh belongs to the span of the N-first Fourier modes,

∫ 1

0
∂t yh(T )φT =

∫ 1

0
∂tyh(T )φT,h. (4.81)

Hence we are reduced to show
∣
∣
∣
∣

∫ 1

0
∂t y(T )φT −

∫ 1

0
∂t yh(T )φT,h

∣
∣
∣
∣

≤Ch2/3
(∥
∥(y0,y1)

∥
∥

H1
0×L2 + ‖v‖H1

)
‖φT ‖H1

0
. (4.82)

Again, we will express each of these quantities by an adjoint formulation and
then relate the proof of Eq. (4.82) to convergence results for the adjoint system.

Indeed,

∫ 1

0
∂t y(T )φT =

∫ T

0
v(t)∂xϕ(t,1)dt −

∫ 1

0
y0∂tϕ(0)+

∫ 1

0
y1ϕ(0), (4.83)
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where ϕ solves
⎧
⎨

⎩

∂tt ϕ − ∂xxϕ = 0, (t,x) ∈ (0,T )× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T ),
(ϕ(T ),∂tϕ(T )) = (φT ,0).

(4.84)

Then, introducing Φ(t) =
∫ T

t ϕ(s)ds, we easily check that Φ solves

⎧
⎨

⎩

∂tt Φ − ∂xxΦ = 0, (t,x) ∈ (0,T )× (0,1),
Φ(t,0) = Φ(t,1) = 0, t ∈ (0,T ),
(Φ(T ),∂tΦ(T )) = (0,−φT ).

(4.85)

Besides, identity (4.83) then becomes

∫ 1

0
∂t y(T )φT =

∫ T

0
∂t v(t)∂xΦ(t,1)dt +

∫ 1

0
y0∂tt Φ(0)−

∫ 1

0
y1∂tΦ(0). (4.86)

Similarly, we have

∫ 1

0
∂t yh(T )φT,h =−

∫ T

0
∂tv(t)

ΦN,h

h
(t)dt+

∫ 1

0
y0

h∂ttΦh(0)−
∫ 1

0
y1

h∂tΦh(0), (4.87)

where Φh solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt Φ j,h − 1
h2

(
Φ j+1,h +Φ j−1,h − 2Φ j,h

)
= 0,

(t, j) ∈ (0,T )×{1, . . . ,N},
Φ0,h(t) = ΦN+1,h(t) = 0, t ∈ (0,T ),
(Φh(T ),∂tΦh(T )) = (0,−φT,h).

(4.88)

Also remark that, since φT,h is formed by Fourier modes smaller than N, Φh has
this same structure. Due to the orthogonality properties of the Fourier basis and the
choice of the initial data in Eq. (4.58), we have

∫ 1

0
∂t yh(T )φT,h =−

∫ T

0
∂tv(t)

ΦN,h

h
(t)dt+

∫ 1

0
y0∂ttΦh(0)−

∫ 1

0
y1∂tΦh(0). (4.89)

We are thus in the setting of Proposition 3.8 since φT ∈ H1
0 and one easily checks

∥
∥φT −φT,h

∥
∥

L2 ≤Ch‖φT ‖H1
0
.

We thus obtain

sup
t∈[0,T ]

‖(∂tΦh,∂tt Φh)− (∂tΦ,∂tt Φ)‖L2×H−1 +

∥
∥
∥
∥∂xΦ(t,1)+

ΦN,h

h
(t)

∥
∥
∥
∥

L2(0,T)

≤Ch2/3‖φT ‖H1
0
. (4.90)
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Then, using the identities (4.86) and (4.89), we get
∣
∣
∣
∣

∫ 1

0
∂t y(T )φT −

∫ T

0
∂t yh(T )φT,h

∣
∣
∣
∣

≤Ch2/3‖φT ‖H1
0

(∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1

)
. (4.91)

Combined with Eq. (4.81), this easily yields Eq. (4.82). ��

4.4.4 More Regular Data

In this section, our goal is to explain what happens for smoother initial data (y0,y1)
and v, for instance, for (y0,y1) ∈ H2 ∩H1

0 (0,1)×H1
0 (0,1) and v ∈ H2(0,T ) with

v(0) = ∂t v(0) = 0. More precisely, we are going to prove the following:

Theorem 4.8. Let �0 ∈ {1,2} and fix (y0,y1) ∈ H�0+1
(0) (0,1)×H�0

(0)(0,1) and v ∈
H�0+1(0,T ) satisfying v(0) = ∂t v(0) = 0 if �0 = 1, or v(0) = ∂t v(0) = ∂tt v(0) = 0 if
�0 = 2. Let (y0

h,y
1
h) be as in Eq. (4.58) and yh the corresponding solution of Eq. (4.7)

with Dirichlet boundary conditions vh = v.
Then there exists a constant C > 0 independent of h > 0 and t ∈ [0,T ] such that:
• For the displacement yh, for all t ∈ [0,T ],

‖yh(t)− y(t)‖L2 ≤ Ch2(�0+1)/3
(
∥
∥(y0,y1)

∥
∥

H
�0+1
(0) ×H

�0
(0)

+ ‖v‖H�0+1(0,T )

)

+Ch1/2|v(t)|. (4.92)

• For the velocity ∂t yh, for all t ∈ [0,T ],

‖∂t yh(t)− ∂ty(t)‖H−1 ≤ Ch2(�0+1)/3
(
∥
∥(y0,y1)

∥
∥

H
�0+1
(0) ×H

�0
(0)

+ ‖v‖H�0+1(0,T)

)

+Ch3/2|∂tv(t)|. (4.93)

Proof. The proof follows the one of Theorem 4.7.
Let us then focus on the convergence of the displacement and follow the proof of

Proposition 4.5. We introduce φT ∈ L2(0,1), zT as in Eq. (4.66), Ψ the solution of
the homogeneous wave equation (4.68) with initial data (zT ,0) and, similarly, φT,h as
in Eq. (4.70), zT,h as in Eq. (4.74), and Ψh the solution of the discrete homogeneous
wave equation (4.76) with initial data (zT,h,0). Since zT ∈ H2

(0)(0,1) and ‖zT‖H2
(0)

�
‖φT‖L2 , applying (4.15), we get

∥
∥zT,h − zT

∥
∥

L2 ≤Ch2 ‖φT ‖L2 . (4.94)

Proposition 3.8 then applies and yields
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‖(∂tΨh,∂ttΨh)− (∂tΨ ,∂ttΨ)‖H−�0×H−�0−1 ≤Ch2(�0+1)/3‖φT ‖L2 .

In particular,
∣
∣
∣
∣

∫ 1

0
y0(∂ttΨh(0)− ∂ttΨ(0))−

∫ 1

0
y1(∂tΨh(0)− ∂tΨ(0))

∣
∣
∣
∣

≤Ch2(�0+1)/3‖φT‖L2

∥
∥(y0,y1)

∥
∥

H
�0+1
(0) ×H

�0
(0)

. (4.95)

According to identities (4.69) and (4.75), we shall then derive a convergence
estimate on ∫ T

0
∂t v

(

∂xΨ (t,1)+
ΨN,h(t)

h

)

dt.

In order to do that, we write ∂t v =
∫ t

0 ∂tt v and introduce

ξ (t) =
∫ T

t
Ψ(s)ds, ξh(t) =

∫ T

t
Ψh(s)ds,

so that
∫ T

0
∂t v

(

∂xΨ(t,1)+
ΨN,h(t)

h

)

dt =
∫ T

0
∂tt v

(

∂xξ (t,1)+
ξN,h(t)

h

)

dt.

Of course, ξ and ξh can be interpreted as solutions of continuous and discrete wave
equations: ξ solves

⎧
⎨

⎩

∂ttξ − ∂xxξ = 0, (t,x) ∈ (0,T )× (0,1)
ξ (t,0) = ξ (t,1) = 0, t ∈ (0,T ),
ξ (T ) = 0, ∂tξ (T ) =−zT ,

(4.96)

whereas ξh solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt ξ j,h − 1
h2

(
ξ j+1,h − 2ξ j,h + ξ j−1,h

)
= 0,

(t, j) ∈ (0,T )×{1, . . . ,N},
ξ0,h(t) = ξN+1,h(t) = 0, t ∈ (0,T ),
ξh(T ) = 0, ∂tξh(T ) =−zT,h.

(4.97)

Then, due to Eq. (4.94), the convergence results in Proposition 3.7 yield
∥
∥
∥
∥∂xξ (t,1)+

ξN,h(t)

h

∥
∥
∥
∥

L2(0,T )
≤Ch4/3‖φT‖L2 .
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This implies in particular that
∣
∣
∣
∣

∫ T

0
∂t v

(

∂xΨ(t,1)+
ΨN,h(t)

h

)

dt

∣
∣
∣
∣≤Ch4/3‖φT‖L2 ‖∂tt v‖L2(0,T) . (4.98)

Hence, if �0 = 1, i.e., (y0,y1) ∈ H2
(0)(0,1)× H1

(0)(0,1) and v ∈ H2(0,T ) with
v(0) = ∂tv(0) = 0, combining Eqs. (4.95) and (4.98) in identities (4.69) and (4.75),
we get

‖yh(T )− y(T )‖L2(0,1) ≤ Ch4/3
(
∥
∥(y0,y1)

∥
∥

H2
(0)×H1

(0)
+ ‖v‖H2(0,T)

)

+Ch1/2|v(T )|.
(4.99)

The Case �0 = 2. In this case, v ∈ H3(0,T ), we introduce ζ =
∫ T

t ξ and ζh =
∫ T

t ξh, so that

∫ T

0
∂t v

(

∂xΨ(t,1)+
ΨN,h(t)

h

)

dt =
∫ T

0
∂ttt v

(

∂xζ (t,1)+
ζN,h(t)

h

)

dt. (4.100)

Obviously, the function ζ can be characterized as the solution of a wave equation,
namely,

⎧
⎨

⎩

∂tt ζ − ∂xxζ = zT , (t,x) ∈ (0,T )× (0,1)
ζ (t,0) = ζ (t,1) = 0, t ∈ (0,T ),
ζ (T ) = 0, ∂tζ (T ) = 0.

(4.101)

We thus introduce wT solution of

∂xxwT = zT , on (0,1), wT (0) = wT (1) = 0, (4.102)

so that

ζ̃ = ζ −wT

solves
⎧
⎨

⎩

∂tt ζ̃ − ∂xxζ̃ = 0, (t,x) ∈ (0,T )× (0,1)
ζ̃ (t,0) = ζ̃ (t,1) = 0, t ∈ (0,T ),
ζ̃ (T ) = wT , ∂t ζ̃ (T ) = 0.

(4.103)

Doing that

∫ T

0
∂ttt v∂xζ (t,1)dt =

∫ T

0
∂ttt v∂xζ̃ (t,1)dt − ∂xwT (1)∂tt v(T ). (4.104)

Similar computations can be done for ζh. We thus obtain that

∫ T

0
∂ttt v

ζN,h(t)

h
dt =

∫ T

0
∂ttt v

ζ̃N,h(t)

h
dt − wN,T,h

h
∂tt v(T ), (4.105)
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where wT,h = (Δh)
−1zT,h and ζ̃h solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tt ζ̃ j,h − 1
h2

(
ζ̃ j+1,h − 2ζ̃ j,h+ ζ̃ j−1,h

)
= 0,

(t, j) ∈ (0,T )×{1, . . . ,N},
ζ̃0,h(t) = ζ̃N+1,h(t) = 0, t ∈ (0,T )
ζ̃h(T ) = wT,h, ∂t ζ̃h(T ) = 0.

(4.106)

We now derive convergence estimates. Recall first that zT ∈ H2
(0)(0,1) and the con-

vergences (4.94). Since zT ∈ H2
(0), setting z̃T,h its projection on the N-first Fourier

modes, we have
∥
∥z̃T,h − zT

∥
∥

L2 ≤Ch2 ‖zT ‖H2
(0)

≤Ch2 ‖φT‖L2 . (4.107)

Setting w̃T,h = (Δh)
−1z̃T,h, Theorems 4.4 and 4.5 yield
∥
∥wT − w̃T,h

∥
∥

H1
0
≤ Ch2‖zT‖H2

(0)
≤Ch2‖φT‖L2 ,

∣
∣
∣
∣∂xwT (1)+

w̃N,T,h

h

∣
∣
∣
∣≤ Ch2‖zT‖H2

(0)
≤Ch2‖φT‖L2 .

(4.108)

According to the estimate (4.94), we thus have
∥
∥z̃T,h − zT,h

∥
∥

L2 ≤Ch2 ‖zT ‖H2
(0)

≤Ch2 ‖φT ‖L2 .

Using then estimate (4.21),
∣
∣
∣
∣
w̃N,T,h

h
− wN,T,h

h

∣
∣
∣
∣≤Ch2‖φT‖L2 ,

and thus
∣
∣
∣∂xwT (1)+

wN,T,h

h

∣
∣
∣≤Ch2 ‖φT ‖L2 . (4.109)

Besides, due to Eqs. (4.94) and (4.107),
∥
∥zT,h − z̃T,h

∥
∥

L2 ≤Ch2 ‖φT ‖L2 ,

which readily implies
∥
∥wT,h − w̃T,h

∥
∥

H1
0
≤Ch2 ‖φT‖L2 ,

and thus, by Eq. (4.108),
∥
∥wT,h −wT

∥
∥

H1
0
≤Ch2 ‖φT‖L2 .

Using then Proposition 3.6,
∥
∥
∥
∥∂xζ (·,1)+ ζN,h

h
(·)
∥
∥
∥
∥

L2(0,T )
≤Ch2 ‖φT ‖L2 . (4.110)
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Combined with the convergences (4.109) and (4.110), identities (4.100), (4.104),
and (4.105) then imply

∣
∣
∣
∣

∫ T

0
∂tv

(

∂xΨ (t,1)+
ΨN,h(t)

h

)

dt

∣
∣
∣
∣

≤Ch2 ‖φT ‖L2 ‖∂ttt v‖L2 +Ch2‖φT‖L2 |∂tt v(T )| ≤Ch2 ‖φT‖L2 ‖v‖H3 . (4.111)

Combining Eqs. (4.95) and (4.111) in identities (4.69) and (4.75), we get
Eq. (4.92) when �0 = 2.

The proof of the estimate (4.93) on the rate of convergence for ∂t yh relies on very
similar estimates which are left to the reader. ��

4.5 Further Convergence Results

As a corollary to Theorems 4.6 and 4.7, we can give convergence results for any
sequence of discrete initial data (y0

h,y
1
h) and boundary data vh satisfying

lim
h→0

∥
∥(y0

h,y
1
h)− (y0,y1)

∥
∥

L2×H−1 = 0 and lim
h→0

‖vh − v‖L2(0,T) = 0. (4.112)

Proposition 4.7. Let (y0,y1) ∈ L2(0,1)× H−1(0,1) and v ∈ L2(0,T ). Then con-
sider sequences of discrete initial data (y0

h,y
1
h) and vh satisfying Eq. (4.112). Then

the solutions yh of Eq. (4.7) with initial data (y0
h,y

1
h) and boundary data vh con-

verge strongly in C([0,T ];L2(0,1))∩C1([0,T ];H−1(0,1)) towards the solution y of
Eq. (4.1) with initial data (y0,y1) and boundary data v as h → 0.

Proof. Similarly as in the proof of Proposition 3.5, this result is obtained by us-
ing the density of H1

0 (0,T ) in L2(0,T ) and of H1
0 (0,1)× L2(0,1) in L2(0,1)×

H−1(0,1). We then use Theorem 4.7 for smooth solutions and the uniform stability
results in Theorem 4.6 to obtain Proposition 4.7. Details of the proof are left to the
reader. ��

Another important corollary of Theorem 4.7 is the fact that, if the initial data
(y0,y1) belong to H1

0 (0,1)×L2(0,1) and the Dirichlet data v lies in H1
0 (0,T ), any

sequence of discrete initial (y0
h,y

1
h) and Dirichlet data vh satisfying

∥
∥(y0

h,y
1
h)− (y0,y1)

∥
∥

L2×H−1 + ‖v− vh‖L2(0,T) ≤C0hθ , (4.113)

for some constant C0 uniform in h> 0 and θ > 0, yield solutions yh of Eq. (4.7) such
that yh(T ) approximates at a rate hmin{2/3,θ} the state y(T ), where y is the continuous
trajectory corresponding to initial data (y0,y1) and source term v.

Proposition 4.8. Let (y0,y1) ∈ H1
0 (0,1)×L2(0,1) and v ∈ H1

0 (0,T ) and consider
sequences (y0

h,y
1
h) and vh satisfying Eq. (4.113).
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Denote by yh (respectively y) the solution of Eq. (4.7) (resp. (4.1)) with initial
data (y0

h,y
1
h) (resp. (y0,y1)) and Dirichlet boundary data vh, (resp. v).

Then the following estimates hold:

‖(yh(T ),∂t yh(T ))− (y(T ),∂t y(T ))‖L2×H−1

≤Ch2/3
(∥
∥(y0,y1)

∥
∥

H1
0×L2 + ‖v‖H1

0 (0,T)

)
+CC0hθ . (4.114)

Remark 4.4. In the convergence result Eq. (4.114), we keep explicitly the depen-
dence in the constant C0 coming into play in Eq. (4.113). In many situations, this
constant can be chosen proportional to

∥
∥(y0,y1)

∥
∥

H1
0 ×L2 + ‖v‖H1

0 (0,T)
. In particular,

in the control theoretical setting of Chap. 1 and its application to the wave equation
in Sect. 1.7, this dependence on C0 is important to derive Assumption 1 and more
specifically estimate (1.29).

Proof. The proof follows the one of Proposition 3.7. The idea is to compare y with
ỹh, the solution of Eq. (4.7) constructed in Theorem 4.7 and then to compare ỹh and
yh by using Propositions 4.3 and 4.6. ��
Remark 4.5. Note that under the assumptions of Proposition 4.8, the trajectories
yh converge to y in the space C([0,T ];L2(0,1)) ∩C1([0,T ];H−1(0,1)) with the
rates (4.54)–(4.56) in addition to the error C0hθ .

Of course, Proposition 4.8 is based on the convergence result obtained in Theo-
rem 4.7. Similar results can be stated based on Theorem 4.8, for instance:

Proposition 4.9. Let �0 ∈ {0,1,2}. Let (y0,y1) ∈ H�0+1
(0) (0,1)×H�0

(0)(0,1) and v ∈
H�0+1

0 (0,T ) and consider sequences (y0
h,y

1
h) and vh satisfying Eq. (4.113).

Let (y0
h,y

1
h) as in Eq. (4.58) and yh the corresponding solution of Eq. (4.7) with

Dirichlet boundary conditions vh.
Denote by yh (respectively y) the solution of Eq. (4.7) (resp. Eq. (4.1)) with initial

data (y0
h,y

1
h) (resp. (y0,y1)) and Dirichlet boundary data vh (resp. v).

Then the following estimates hold:

‖(yh(T ),∂t yh(T ))− (y(T ),∂t y(T ))‖L2×H−1

≤Ch2(�0+1)/3
(
∥
∥(y0,y1)

∥
∥

H
�0+1
(0) ×H

�0
(0)

+ ‖v‖
H
�0+1
0 (0,T )

)

+CC0hθ . (4.115)

Remark 4.6. Proposition 4.9 can then be slightly generalized for �0 ∈ [0,2] by inter-
polation.

4.6 Numerical Results

In this section, we present numerical simulations and evidences of Proposition 4.9.
Since our main interest is in the non-homogeneous boundary condition, we focus
on the case (y0,y1) = (0,0) and (y0

h,y
1
h) = (0,0).
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We fix T = 2. This choice is done for convenience to explicitly compute the
solution y of Eq. (4.1) with initial data (0,0) and source term v. Indeed, for T = 2,
multiplying the equation (4.1) by ϕ solution of Eq. (3.2) with initial data (ϕ0,ϕ1) ∈
H1

0 (0,1)×L2(0,1) and using the two-periodicity of the solutions of the wave equa-
tion (3.2), we obtain

∫ 1

0
y(2,x)ϕ1(x)dx−

∫ 1

0
∂t y(2,x)ϕ0(x)dx =

∫ 2

0
v(t)∂xϕ(t,1)dt.

Based on this formula, taking successively (ϕ0,ϕ1) = (wk,0) and (0,wk) and solv-
ing explicitly the equation (3.2) satisfied by ϕ , we obtain

y(2) = ∑
k

(√
2(−1)k

∫ 2

0
v(t)sin(kπt)dt

)

wk,

∂t y(2) = ∑
k

(√
2(−1)k+1kπ

∫ 2

0
v(t)cos(kπt)dt

)

wk.

We will numerically compute the reference solutions using these formulae by re-
stricting the sums over k ∈ {1, . . . ,Nref} for a large enough Nref. We will choose
Nref = 300 for N varying between 50 and 200.

We then compute numerically the solution yh of Eq. (4.7) with initial data
(y0

h,y
1
h) = (0,0) and source term v(t).

Of course, we also discretize the equation (4.7) in time. We do it in an explicit
manner similarly as in Eq. (3.45). If yk

h denotes the approximation of yh solution of
Eq. (4.7) at time kΔ t, we solve

yk+1
h = 2yk

h − yk−1
h − (Δ t)2Δhyk

h −
(

Δ t
h

)2

Fk, Fk =

⎛

⎜
⎜
⎜
⎝

0
...
0

v(kΔ t)

⎞

⎟
⎟
⎟
⎠
.

The time discretization parameter Δ t is chosen such that the CFL condition is
Δ t/h = 0.3. With such low CFL condition, the effects of the time-discretization
can be neglected.

We run the tests for several choices of v and for N ∈ {50, . . . ,200}:

v1(t) = sin(πt)3, t ∈ (0,2), v2(t) = sin(πt)2, t ∈ (0,2),

v3(t) = sin(πt), t ∈ (0,2), v4(t) = t, t ∈ (0,2),

v5(t) = t sin(πt), t ∈ (0,2).

In each case, we plot the L2-norm of the error on the displacement and the H−1-norm
of the error on the velocity versus N in logarithmic scales: Fig. 4.2 corresponds to
the data v1. We then compute the slopes of the linear regression for the L2-error
on the displacement and for the H−1-error on the velocity. We put all these data in
Table 4.1.
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Fig. 4.2 Plots of the errors versus N in logarithmic scales for v1. Left, the L2(0,1)-error
‖yh(T )− y(T )‖L2 for T = 2: the slope of the linear regression is −1.96. Right, the H−1(0,1)-error
‖∂t yh(T )−∂t y(T )‖H−1 for T = 2: the slope of the linear regression is −1.98.

Table 4.1 Numerical investigation of the convergence rates.

Data Computed L2 slope Computed H−1 slope Exp. L2 slope Exp. H−1 slope
v1 −1.96 −1.98 −2 −2
v2 −1.87 −1.70 −5/3− −5/3−
v3 −0.99 −0.95 −1− −1−
v4 −0.97 −0.95 −1/2 −1−
v5 −1.82 −1.47 −5/3− −3/2

Columns 2 and 3 give the slopes observed numerically (respectively, for the L2-error on the dis-
placement, for the H−1-error on the velocity), whereas columns 4 and 5 provide the slopes (re-
spectively, for the L2-error on the displacement, for the H−1-error on the velocity) expected from
our theoretical results

Table 4.1 is composed of five columns. The first one is the data under considera-
tion. The second and third ones, respectively, are the computed slopes of the linear
regression of, respectively, the L2-error on the displacement and for the H−1-error
on the velocity. The fourth and fifth columns are the rates expected from the analysis
of the data v and Proposition 4.9:

• v1 ∈ H3
0 (0,2): we thus expect from Eq. (4.115) a convergence of the order of h2.

This is indeed what is observed numerically.
• v2 is smooth but its boundary condition vanishes only up to order 1. Hence

v2 ∈H5/2−ε
0 (0,2) for all ε > 0 due to the boundary conditions. Using Remark 4.6,

the expected slopes are −5/3−, which is not far from the slopes computed
numerically.

• The same discussion applies for v3, which belongs to H3/2−ε
0 (0,2) for all ε > 0.

Hence the expected slopes are −1−, which again are confirmed by the numerical
experiments.

• v4 almost belongs to H3/2−ε
0 (0,2) except for what concerns its nonzero value at

t = 2. But the value of v is an impediment for the order of convergence only for
the displacement; see Theorem 4.8. We therefore expect a convergence of the
L2-norm of the error on the displacement like

√
h, whereas the convergence of

the H−1-norm of the error on the velocity is expected to go much faster, as h1− .
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The numerical test indicates a good accuracy on the convergence of the H−1-
norm on the velocity error. The convergence of the L2-norm of the displacement
is better than expected.

• v5 is smooth and satisfies v5(0) = ∂t v5(0) = 0 and v5(2) = 0 but ∂tv5(2) �= 0.
According to Theorem 4.8, we thus expect that the L2-norm of the error on the

displacement behaves as when v5 belongs to H5/2−
0 (0,1), i.e., as h5/3− . However,

the H−1-norm of the error on the velocity should behave like h3/2 according to
Eq. (4.93). This is completely consistent with the slopes observed numerically.

In each case, the numerical results indicate good accuracy of the theoretical
results derived in Theorem 4.8 and Proposition 4.9.



Chapter 5
Further Comments and Open Problems

5.1 Discrete Versus Continuous Approaches

We have developed the time-continuous and space discrete approaches for solving
a control problem (and a data assimilation one) and we have proved that:

• The continuous approach works well for a limited number of iterations. In other
words, the error between the continuous control and the approximated one de-
creases for a number of iterations. But, if one goes too far in the iteration process,
beyond a threshold that theory predicts, the result can be completely misleading.
Indeed, one eventually converges to a discrete control that is far away from the
continuous one because of the high-frequency spurious oscillations. Thus, getting
precise estimates on the threshold in the number of iterations is very important.
But this is hard to do in practical applications since this requires, in particular,
explicit bounds on the observability constants, something that is unknown in gen-
eral and in particular for problems with variable coefficients, multidimensional
problems with complex geometries, etc.

The main advantage of the continuous approach is that it can be applied by
simply combining the control theoretical results of the continuous model and the
numerical convergence results for the initial–boundary value problem without
any further study of the control theoretical properties of the numerical approxi-
mation scheme.

• The discrete approach yields good results after a given number of iterations (very
close to the one of the continuous approach) and has the great advantage that
the error keeps diminishing as the number of iterations increases. Thus there
is no risk in going beyond any threshold in the number of iterations. However,
guaranteeing that the discrete approach converges, contrarily to the continuous
approach, requires the study of the control theoretical properties of the discrete
systems and, in particular, the proof of a uniform observability result, uniformly
with respect to the mesh size. This requires a good understanding of the dynam-
ics of the solutions of numerical schemes and often careful filtering devices to
eliminate the high-frequency spurious oscillations.

S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-5808-1 5,
© Sylvain Ervedoza and Enrique Zuazua 2013
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• The main advantage of the discrete approach is that one may consider faster
minimization algorithms, like conjugate gradient methods or more sophisti-
cated ones, which converge often much faster. This justifies why the thorough
study of uniform observability properties still is a major issue when numerically
computing controls.

5.2 Comparison with Russell’s Approach

The steepest descent algorithm applied in the continuous setting using the HUM
approach leads to the following sequence of solutions of the adjoint problem

ϕk =

(
k−1

∑
j=0

(I−ρΛT )
j

)

ρy0,

which, as k tends to infinity, approximates the solution of the adjoint system deter-
mining the exact control. Indeed, when letting k → ∞, we get

lim
k→∞

ϕk = (I − (I−ρΛT ))
−1ρy0 = Λ−1

T y0.

Of course, this holds when the operator (I−ρΛT ) is of norm strictly smaller than 1.
This is precisely implied by the assumption that ρ > 0 is small enough and the fact
that ΛT is positive definite; see (1.47).

On the other hand, the approach developed in [9], inspired in Russell’s iteration,
which allows to get the control as a consequence of the stabilization property, leads
to (see also [25] in the context of data assimilation)

Ψ0 = ∑
k≥0

(LT )
ky0,

where LT is an operator of L(X) of norm strictly smaller than 1 and LT is computed
through the resolution of two wave equations (one forward and one backward) on
(0,T ) (where T ≥ T ∗) with a damping term.

The numerical method proposed in [9] then follows the same strategy as our
so-called continuous approach:

• Study the convergence of the sequence Ψ k
0 = ∑k

j=0(LT )
jy0, in the spaces X and

D(A). At this stage, the authors use that BB∗ maps D(A3/2) into D(A).
• Approximate LT by some discrete operator LT h based on the natural approxima-

tions of the wave equation.
• Compare Ψ k

0h = ∑k
j=0(LT h)

jy0h with Ψ k
0 .

• Optimize the choice of k.

The method in [9] enters in the class of continuous methods. Note however that
the continuous approach we proposed, inspired in HUM rather than on Russell’s
principle, does not require BB∗ to map D(A3/2) into D(A).
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In the continuous setting, the algorithm based on the time-reversal approach
derived in [29] when recovering a source term is very close to Russell’s approach:
indeed, it corresponds to computing iterates of an operator of norm strictly smaller
than one and deduced from the resolution of two dissipative wave equations. In that
context, one easily understands that the approach in [25] enters the framework of
the continuous approach based on [29].

5.3 Uniform Discrete Observability Estimates

The discrete approach relies in an essential manner upon the uniform observability
estimates (1.37) of the semi-discrete approximations of the continuous model, i.e.,
Assumption 3, which, as we have said, is not an easy task to prove in practice.

In particular, to our knowledge, there are only few results which hold in general
geometric settings and for regular finite-element method (not necessarily on uni-
form meshes), namely the ones in [12, 41]. However, these two works do not yield
estimates on the time under which uniform observability holds. This is due to their
strategy, based on resolvent estimates as a characterization of observability; see for
instance [40]. The scale of filtering employed in these works to guarantee uniform
discrete observability estimates is very likely not optimal. Its improvement is an
interesting open problem.

Therefore, getting uniform observability estimates still is a challenging issue
when considering general geometric setting guaranteeing the observability inequal-
ity (1.5) of the continuous model, in particular with respect to the time and the scale
of filtering required for guaranteeing uniform discrete observability estimates.

5.4 Optimal Control Theory

Optimal control problems and the design of feedback control systems are topics
that are closely related to the questions we have analyzed. Similarly to the numer-
ical algorithms for exact control problem we studied here, we could also address
the problem of numerically computing feedback control operators. As one could
expect, getting discrete optimal feedback controls which converge to the continuous
one usually requires the so-called uniform stabilizability property (see [19, 30, 32]),
ensuring that the exponential decay rate of the energy of the solutions, both contin-
uous and discrete, is bounded from below uniformly with respect to the mesh-size
parameter. This issue is very closely related to the uniform discrete observability
estimates (1.37). In [14], following the approach of [26], we explained how dis-
crete observability inequalities can be transferred into uniform stabilizability results
for the corresponding damped equations by the addition of a suitable numerical
viscosity. This should provide convergent approximations of optimal feedback op-
erators, as it has been done in [44].
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However, to our knowledge, getting explicit rates on the convergence of these
feedback controllers is an open problem.

5.5 Fully Discrete Approximations

Our approach is very general and can also be applied to fully discrete systems under
very similar assumptions. For instance, one can formulate the analogs of Assump-
tions 1 and 2 that take into account the required convergence properties of the fully
discrete numerical approximation scheme, whereas Assumption 3 consists of a uni-
form (with respect to the space-time mesh-size parameters) observability result for
the fully discrete systems.

Note that, according to the results in [18], the corresponding fully discrete
version of Assumption 3, which reads as uniform observability estimates for the
fully discrete system, can be deduced as a consequence of the time-continuous
(and space discrete) analogs.
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de France, 1982 (Gauthier Villars, Paris, 1983)
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