
Chapter 5

Weather Prediction Models

Julio T. Bacmeister

Glossary

Assimilation The process of combining observations of the atmosphere

with a “first guess” (usually a model forecast) to define the

atmospheric state on a forecast model grid.

Geostrophic balance A possible state of rotating fluids in which flow is directed

along pressure gradients rather than across them.

Gravity waves Rapidly moving atmospheric disturbances driven by gravity

acting on vertical density gradients. Often arise as

a consequence of spurious geostrophic imbalance in initial

conditions.

Hydrostatic balance State in which the vertical pressure gradient force cancels the

downward accleration of gravity. Approximately obeyed in

atmospheric flows with horizontal scales larger than several

km.

Instabilities

(or unstable modes)

Spatial patterns in a flow that are able to extract energy from

the background flow and grow in amplitude.

Primitive equations Complete set of equations describing flow of a thin enve-

lope of fluid or gas surrounding a sphere.

Resolution Separation in space of notional points at which quantities

are defined in a numerical model.
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Definition of the Problem

Awareness of weather and concern about weather in the proximate future

certainly must have accompanied the emergence of human self-consciousness.

Although weather is a basic idea in human existence, it is difficult to define

precisely. Weather intuitively refers to a set of atmospheric conditions prevailing

over a relatively small area, and even more emphatically, over a relatively short

time. The immediacy contained in our notion of weather may be reflected in the

fact that in many languages the same root appears in the words for time and

weather, for example, Spanish (tiempo) or Hungarian (idö). Thus, weather is to be
distinguished from the notion of climate, or more subtly from the notion of

“spells” which imply a time window anywhere from a week to several years.

Our experience of weather does involve quantities which can be defined with

reasonable precision. These include air temperature, wind speed, precipitation

rates and types, cloud cover, and also humidity, air-quality, and barometric

pressure. Numerical weather prediction (NWP) is the attempt to predict the

evolution of such quantities by solving a set of partial differential equations

which describe the dynamics of a fluid like the atmosphere [1, 2]. These equations

must be solved using approximate or “numerical” techniques using computers.

They are integrated forward in time from a set of initial conditions, which are

derived from an optimized combination of observations and previous model

forecasts. This bootstrapped procedure is known as the analysis cycle and is an

integral part of the activities at all modern forecasting centers.

NWP and global climate simulation are closely related problems. The models

used in both endeavors are essentially the same. A key difference between NWP

and the climate problem is the role of atmospheric initial conditions. Initialization

of the atmosphere is of secondary importance in multiyear climate simulations.

However, good initialization of the atmospheric state is at the heart of the

forecasting problem. Initialization must give an accurate and comprehensive repre-

sentation of the state of the atmosphere that is compatible with numerical forecast

model being used. The initial state must also satisfy a number of “balance

constraints” to avoid spurious initial variability.

Lewis Fry Richardson (1881–1953) reported the first numerical weather fore-

cast, performed using hand calculations, in 1922 [3]. His attempt did not succeed

for reasons that are summarized below, and discussed in detail in the book by Lynch

[2], but Richardson’s effort marks the beginning of NWP as a field of inquiry.

Introduction: Direct Simulation of Atmospheric Flows

In order to appreciate the challenges faced by numerical models of the global

atmosphere it is useful to have a sense of the complex nature of the motions

which must be represented. A brief account of some of the dynamical processes
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that play a part in weather is given below. For more details, the reader is referred to

the excellent, comprehensive introduction to the dynamics of the atmosphere and

ocean by A.E. Gill (1937–1986) [4].

A Zoology of Atmospheric Motion

The atmospheric flows which are responsible for creating weather span a wide range

of space and time scales and are driven by rich variety of dynamical and thermody-

namic processes. Atmospheric flows may be forced by features at the Earth’s surface.

Mountainous terrain forces atmospheric circulations with spatial scales ranging from

several kilometers to several thousand kilometers. Surface temperature contrasts,

most pronounced between land and ocean but also created by variations in ground

cover, force sea-breeze circulations with scales of tens of kilometers, [5] as well as

continental-scale monsoonal circulations (Table 5.1) [6–8].

External forcing can produce wave-like motions in the atmosphere. Gravity

waves, or buoyancy waves, exist because of density stratification in the atmosphere,

and are analogs to waves on the surface of water. These waves are typically one to

hundreds of kilometers in scale, and have periods of minutes to hours, although in

the tropics both spatial and temporal scales may be longer [4]. Gravity waves may

play a role in triggering convection [9–11], as well as in organizing convection in

the mesoscale [10, 12, 13]. Mountain waves are large, nonlinear, gravity waves

generated by flow over mountains with horizontal scales from less than ten

kilometers to several hundred kilometers. Such waves are responsible for

a number of local but intense winds [14]. Gravity waves are also notorious for

contaminating forecasts when errors in initial conditions are present.

Rossby waves [4, 15–17] named after the Swedish meteorologist Carl Gustav

Rossby exist because of the change in the effective rotation rate experienced by

a fluid parcel as it moves from equator to pole. The effective rotation rate at the

Table 5.1 Motions in atmosphere

Phenomenon Spatial scale

Temporal

scale Role in weather

Acoustic waves Meters Seconds None

Gravity waves 1–1,000 km 15 min to

days

Initiating and organizing convection.

Mountain flows, e.g., chinooks, Foehns

. . .

Eastery waves 500–2,000 km Days Organizing tropical convection, tropical

cyclogenesis

Baroclinic instability Thousands of

km

Days Midlatitude cyclogenesis

Madden–Julian

oscillation

10,000 km 20–60 days Possible modulation of tropical

and midlatitude weather
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Equator is zero, since all of the effects of Earth’s rotation are directed in the vertical

and are felt as a slight reduction in the pull of gravity. At the poles, the effective

rotation rate is as intuitively expected – one cycle or 2p radians per day. In between

equator and pole, this rate varies as the sine of latitude. Rossby waves which exploit

this gradient have scales of thousands to ten thousands of kilometers and periods of

days to weeks. Immense planetary-scale Rossby waves or “planetary waves”

generated by topographic features such as the Himalayas and Rockies, as well as,

by continental-scale land-sea contrasts, dominate the tropospheric flow and are

responsible for the mean position of the jet-streams, and for the mean paths of storms.

Probably more important in the overall problem of weather, and certainly more

difficult to predict, is another class of flows driven by internal exchanges of energy in

the atmosphere. These instabilities or unstable modes are essentially flow patterns that

are able to extract energy from their surroundings and grow in amplitude. Initial

growth of unstablemodes is typically exponential. Familiar examples of such behavior

in fluids include the growth of wind driven waves on the surface of water. The

convective instability of a fluid heated from below is another example that is both

familiar in everyday experience and also important in the atmosphere.

In the atmosphere, a particularly important mode of unstable growth is through

baroclinic instability [18, 19]. This instability arises from a combination of thermal

and inertial effects in a rotating fluid with a horizontal temperature along the lower

boundary. Baroclinic instability is characterized by length scales of 1,000 km and

growth times of days – making it a key factor in weather. It is fair to say that the

problem of weather forecasting in midlatitudes is essentially that of predicting the

evolution of baroclinically unstable modes in the atmosphere.

The tropics possess another as yet poorly understood class of motions, in which

moist heating plays a key role in energizing and modifying wave motions in the

atmosphere [20]. Tropical easterly waves [21] have periods of several days and

scales of hundreds to thousands of kilometers and play an important role in the

genesis of tropical cyclones [22–24]. The Madden–Julian oscillation or “MJO” [25,

26] is an eastward traveling disturbance in the tropics with a length scale close to

10,000 km and a period of weeks. It is thought to play a role in modulating tropical

cyclone frequency in various basins [27–31] and possibly midlatitude disturbances

as well [32, 33]. The dynamics behind the MJO are not yet understood. Successful

forecasting of the MJO could improve prospects for accurate forecasts out to lead

times of weeks [34].

Early History

Weather prediction, not climate simulation, was the original motivation for devel-

oping numerical models that describe the time evolution of the atmosphere.

Richardson’s 1922 attempt at NWP predates initial attempts to study climate
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numerical models by at least four decades. The first attempts at simulating the

longer-term equilibrium state of the atmosphere did not occur until the 1960s [35].

The notion of predicting weather systematically using equations to describe the

evolution of systems can probably be traced to the Norwegian meteorologist

Vilhelm Bjerknes (1862–1951) [1, 2] who founded the famous “Bergen School”

of meteorology [36, 37]. Bjerknes considered graphical methods to predict the

motion of fronts and other features in the atmosphere, as well as numerical

techniques to solve the equations themselves. However, it was L. F. Richardson

who finally conceived and implemented a concrete plan to use a numerical solution

of the partial differential equations describing the atmosphere (see section on

“primitive equations”) to make forecasts. His approach was remarkably prescient

both in concept and in detail. He employed a finite-difference technique on a

regularly spaced grid of points over central Europe and attempted to predict the

tendency of surface pressure over 6 h. Richardson’s forecast was a famous failure or

“bust” (see the book by Lynch [2] for a detailed and readable account of

Richardson’s attempt, as well as for a comprehensive account of the development

of NWP). However, the reasons for Richardson’s failure lay in the initial conditions

used in the forecast not in his method as Richardson himself suspected [2].

The potential for numerical prediction was clear. The major obstacle beside the

question of initialization, was the sheer amount of calculation required to produce

even a short forecast over a limited area. Richardson imagined computational

“factories” employing thousands of people to produce weather forecasts [2]. The

appearance of electronic computers soon after World War II made numerical

prediction plausible. The potential application to the problem of weather prediction

was recognized by one of the main intellects behind the development of electronic

computers John von Neumann (1903–1957) [1]. In the first successful attempts at

NWP using electronic computers so-called filtered equation sets were used [2].

Filtered equations describe a limited set of atmospheric motions, but allow large

time steps to be taken in numerical integration and side step the need for

well-balanced initial conditions (see sections on “Numerics and Initialization”).

Development of Modern NWP Models

It was recognized early on by Jule Charney and others that models using filtered

equations were not a promising long-term path for NWP [2]. As computer power

increased, the limitations on the time-step length allowed by more complete

equations became less important. The problem of initialization was not solved,

but its tractability became apparent [38]. Development work on NWP models

using the primitive equations began in the late 1950s and eventually led to the

adoption of primitive equation models at all major forecasting centers by the

mid 1960s [2].
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The Primitive Equations

The primitive equations are essentially the complete Navier–Stokes or Euler

equations for fluid motion with the hydrostatic approximation invoked. As long

as the horizontal scales of interest are much larger than 10 km, the hydrostatic

approximation is well satisfied. However, at the time of writing, major NWP

models are reaching horizontal resolutions that test the limits of this approximation.

The Euler equations using a generalized vertical coordinate �, including

connections between the fully nonhydrostatic system and the hydrostatic system

currently used in NWP models, are nicely described by Laprise [39].

The hydrostatic primitive equations include an equation describing the evolution

of horizontal momentum or velocity V:

d

dt
V þ fk� V ¼ �ar�p�r�fþ Fphys

where f is the Coriolis parameter or local apparent rotation rate and k is the unit

vector in vertical direction. The symbol r� denotes a gradient along surfaces of

fixed �. As is common in the meteorological literature ’ denotes the geopotential

height or potential energy density of a fluid parcel along constant �. The remaining

symbols a and p denote specific volume and pressure. This equation is simply the

fluid dynamical form of Newton’s law F = ma, where the right-hand side contains

forces accelerating fluid parcels in the horizontal. In current meteorological litera-

ture, the individual velocity components are usually designated as u for the east-

ward or “zonal” component, and u for the northward or “merdional” component.

Another equation restates the first law of thermodynamics dE = dQ + dW in fluid

form:

Cp
d

dt
T � a

d

dt
p ¼ Hphys

where T is the absolute temperature and Cp is the heat capacity of air at constant

pressure. In both the momentum and energy equations the symbol d
dt is used to

denote:

@

@t

� �
�

þ V � r� þ _�
@

@�

the Lagrangian derivative that tracks changes in a quantity following a fluid parcel.

A prognostic equation for mass continuity is also required:

@

@t

@p

@�

� �� �
�

þr� � V
@p

@�

� �
þ @

@�
_�
@p

@�

� �
¼ 0
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where g�1 @p
@� is the mass per unit area in a column between surfaces of constant �.

Three diagnostic relationships are needed to complete the system. The equation

of state for a gas:

pa ¼ RT

and a relationship that determines the geopotential height of �-surfaces:

f ¼ fs þ
Z �s

�

a
@p

@�0
d�

This relationship uses the surface geopotential height ’s as well as the integral of

the hydrostatic relationship:

@p

@�
¼ 1

a
@f
@�

between pressure and specific volume.

The right-hand sides of the momentum and energy equations also contain the

terms Fphys and Hphys. These represent the effects of physical parameterizations on

the grid scale variables, and include effects from radiative heating, friction, and

other processes which will be described in more detail in the section on parameteri-

zation. The use of the generalized vertical coordinate � gives the equations

a somewhat unfamiliar look. However, replacing � with the geometric height z,
and noting that rz’ = 0 reduces them to a more familiar form.

Due to the complex shape of Earth’s topography most NWP models do not use

geometric height as their vertical coordinate. Most use a version of the so-called s-
coordinate defined by:

s ¼ p� pt
psðx; y; tÞ � pt

where ps(x, y, t) is the surface pressure and pt is the pressure at the model top,

typically a constant value. The coordinate surface s = 1 follows the bottom of the

model domain while s = 0 follows the top. Boundary conditions on “vertical”

velocity become simply _sð1Þ ¼ _sð0Þ ¼ 0. Thus, the difficulties of representing flow

boundaries in and around topographic obstacles are replaced by the need for

a prognostic equation describing ps. This is obtained by integrating the mass

continuity equation in the vertical.

The primitive equations can describe all of the motions discussed in the intro-

duction except for fully three dimensional acoustic waves. They do allow

a horizontal acoustic mode known as the Lamb wave [4] which can produce

difficulties for numerical integrations. Gravity waves and convective instabilities

with horizontal scales much smaller than 100 km are not well represented, and this
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may become a significant handicap for models in the next 10 years (see section on

“Future Directions”).

In addition to the equations describing the dynamics and thermodynamics of the

atmosphere, modern NWP models include equations that describe the evolution of

trace gases and trace species in the atmosphere. Each additional species results in an

additional prognostic equation of the form:

d

dt
qi ¼ Ci;phys

where qi is the mixing ratio of the ith species and Ci,phys are the sources and losses of

the species. The most important of these trace quantities is water vapor. Water

vapor was included in primitive equation NWP models early on [40]. As NWP

model domains were extended into the tropics during the 1970s [41] strong con-

densational heating associated with high tropical humidities presented problems for

NWP that spurred the development of deep convection parameterizations [42] (see

section on “Parameterization”). More recently, NWP models have incorporated

prognostic treatment of condensed water species known as prognostic cloud

schemes [43, 44].

Numerics

Closed form solutions of the primitive equations do not exist. Approximate numer-

ical techniques must be used. An illustration of how this proceeds is given here

using a simple equation that describes one dimensional advection of a constituent C
by a constant flow u:

@tCþ u@x C ¼ S

Figure 5.1 shows three time steps from a numerical integration of this equation.

Finite-difference approximations of the partial derivatives in both space and time

are calculated as shown in the figure. The approach illustrated is known as

a “centered difference” since the approximation uses a symmetric stencil of equally

weighted points. With these approximations to the derivatives in time and space,

a solution for the tracer distribution at t + 1 can be obtained:

Cði; tþ 1Þ � Cði; t� 1Þ � u2Dt
Cðiþ 1; tÞ � Cði� 1; tÞ

2Dx

� �

As a technical detail, notice that to start (or initialize) this calculation two time

levels of data must be given. In practice, these can be set equal to each other.
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Once initial values are given, the arithmetic equation above can be repeated, or

iterated, many times to give the time evolution of C.
The algorithm described above is a simple but stable scheme that was employed

in early numerical models. However, it has many undesirable properties, which are

described in [45]. Nevertheless, the basic concepts illustrated by this method hold

for all explicit finite-difference approaches. In implicit methods, the terms in the

approximation of @xC above are replaced by their values at time t + 1. In the case

above, this leads to a tridiagonal matrix problem that can be easily solved using

standard techniques [45].

The most natural coordinate system for a global atmospheric model is spherical,

with latitude and longitude as the horizontal coordinates. Unfortunately, as either

pole is approached, equally spaced longitude lines come arbitrarily close together.

This presents problems for most finite-difference numerical schemes, which

become inaccurate or unstable when information travels across multiple grid

lengths in a single time step. For example, in the simple case described in

Fig. 5.1 the time step must be chosen such that uDt
Dx < 1 to avoid numerical

instability. Versions of this limit, known as the Courant-Friedrichs–Levy (CFL)

limit, exist for most explicit finite-difference schemes. In systems of equations that

support propagating waves, as the primitive equations do, the relevant velocity in

the CFL limit is typically the sum of the wave propagation speeds and the advective

speed. Thus, the stability of explicit calculations is limited by the fastest wave

modes in the system, which are often of little interest, for example, Lamb waves or

deep gravity waves. Global models whose numerics are based on finite differences

C(i,t +1)–C(i,t –1)
C ª

∂
∂t 2Δt

C(i,t +1)

C(i +1,t)–C(i –1,t)
C ª∂

∂x 2Δx

C(i,t )

C(i,t –1)

490 495 500 505 510

Fig. 5.1 Three time steps from numerical advection of a Gaussian tracer pulse using a second-

order, space-centered, time-centered finite-difference scheme. The +’s indicate grid-point

locations. A constant velocity of u = �0.5 is used with grid spacing Dx = 1 and time step Dt = 1
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(“grid-point models”) address this issue by introducing polar filters which are

designed to suppress small-scale motions in the polar regions of the model.

A revolutionary innovation occurred in the late 1960s with the introduction of

spectral techniques for solving the primitive equations [46]. Spectral models

decompose the atmosphere into a finite sequence of spherical harmonic functions,

rather than onto a grid of points. For example, the wind u is approximated by:

u l; y; z; tð Þ ¼
XN
n¼0

Xn
m¼�n

Um
n z; tð ÞYm

n l; yð Þ

where l is longitude and y is latitude. The time evolution of the atmospheric flow is

then represented as the time evolution of the amplitudes Um
n ðz; tÞ . Nonlinear

advection terms arising in the primitive equations may be dealt with directly in

spectral space, as interactions of spherical harmonics or in physical space with

transformation of the tendencies back to spectral space [45].

The resolution of spectral models is determined by the truncation parameter N.
The form of the finite sum used above is referred to as a triangular truncation.

A model with N = 799 in this kind of decomposition is referred as a “T799” model.

Lynch [2] gives a useful rule-of-thumb for estimating the spatial resolution D
corresponding a particular value of N. He uses D � (2pae)/2 N or D � (20,000

km)/N where the circumference of the Earth 2pae has been approximated by

40,000 km.

Spectral techniques are not only highly accurate, but also nicely sidestep the pole

problem faced by grid-point models formulated in terms of latitude and longitude

on the sphere. Discretization into spherical harmonics produces no special

difficulties at the poles.

A disadvantage of spectral schemes is that fields with strong variation across

small-spatial scales, such as most trace gas concentrations (including water vapor),

precipitation, or topography cannot be represented without introducing significant

spurious nonlocal oscillations in these fields. This behavior, known as the Gibbs

phenomenon is a simple consequence of attempting to represent highly localized

features with global basis functions. The nature of these truncation errors is such that

the amplitude of spurious oscillations decreases slowly with resolution. The presence

of Gibbs oscillations can lead to serious problems in global simulations, such as the

formation of negative trace gas concentrations.

Due to the difficulties in spectrally representing fields with intense spatial

variability, grid-point models have not been abandoned. In addition, grid-point

models can be made more efficient than spectral models at very high resolution.

So, while most operational forecasting centers currently use some form of spectral

dynamical core in their NWP models, this may change in the next decade. Current

research is focused on developing grid-point or finite element approaches on

nonstandard grids such as the icosahedral, that is, “bucky-ball” or “soccer-ball,”

grid to bypass the pole problem encountered in latitude-longitude discretizations

(see section on “Future Directions”) (Table 5.2).
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Parameterizations

Representation of physical processes such as radiation, turbulence, gravity wave

drag, convection, and precipitation also became more sophisticated in NWPmodels

as they evolved. The earliest successes in NWP using a filtered barotropic model

did not even formally incorporate temperature as a prognostic variable. Today,

NWP models may track several condensed water species, as well radiatively active

trace gases such as ozone. It was the incorporation of radiative transfer schemes and

simple moist convective adjustment schemes into NWP models in the 1960s [35]

that led to the first climate models capable of self-consistently representing the

basic feature of Earth’s atmospheric general circulation.

Parameterization development for NWP models has followed that for climate

models. The suite of parameterizations currently used in global NWP models is

identical to that used for climate simulations. It is arguable whether most physics

parameterizations exert an appreciable effect on short-term (1–3 day) forecasts.

Deep convection and orographic wave drag parameterizations have been shown to

exert a significant short-term effect [47–49]. At medium range (3 days to 2 weeks),

physical parameterizations are thought to have an important effect on forecast skill

(Bengtsson 2000). In addition climate biases resulting from deficient parameter-

izations can have a negative impact on data assimilation schemes (see section on

“Data Assimilation Systems”). This can indirectly affect short-term forecasts by

introducing errors in the initial conditions.

How Are NWP Models (Versus Climate Models) Evaluated?

Perhaps the most significant differences between global climate models and NWP

models arise from the different jobs they are expected to perform. Ideally, a solver

Table 5.2 Parameterizations in Weather Forecasting models. The first column gives the usual

designation used in the meteorological community. The second column summarizes the effects of

the parameterization. The third column indicates the primitive equation forcing term in which

tendencies from the parameterization appear

Parameterization Effects Included in

Deep convection Transports heat, moisture and momentum

vertically. Damps convergence

Hphys, Fphys, Ci,phys

Orographic gravity

wave drag

Decelerates flow over mountains Fphys

Planetary boundary layer

(PBL) turbulence

Transports heat, moisture and momentum

vertically

Hphys, Fphys, Ci,phys

Radiation (Solar and IR) Calculates heating due radiative flux

convergence

Hphys

Diagnostic cloud Estimates cloud cover and thickness

Prognostic cloud Calculates cloud condensate concentrations

and estimates cloud optical properties

Hphys, Ci,phys
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for the primitive equations, coupled to set of physically realistic parameterizations

of processes like convection, should perform both long-term and short-term

simulations of the atmospheric flow with equal accuracy. However, this is not the

case. Even when run at comparable resolutions, models developed for NWP and

climate do not perform each other’s tasks with comparable skill. The likely cause of

this discordance is the process of model tuning. The need for “tuning” is widely

recognized in both the NWP community and the climate modeling community as an

inevitable consequence of using imperfect models [41]. The bulk of model tuning

occurs in choosing empirical factors that regulate physical parameterizations. Some

of this can be explained (or excused) as an attempt to represent unknown sub-grid

distributions of quantities such as water vapor, temperature, or topographic rough-

ness. Unfortunately, the process of selecting these empirical factors can be ad hoc,

and parochial in character. Even if optimal tunings exist that combine high accuracy

in short-term forecasting as well as unbiased climate simulations, they are unlikely

to be found. Groups involved in developing climate models rarely have the compu-

tational resources to perform extensive testing of their models at high resolution in

forecast mode, while NWP groups are typically under intense operational pressures,

and have little time or incentive to examine their models in free-running climate

simulations.

There is as yet no set of universally accepted metrics for climate models,

although developments in this direction are taking place [50]. Metrics typically

targeted by climate modelers include seasonal mean distributions of precipitation

and seasonal mean planetary wave patterns. Other, functional, constraints exist for

atmospheric models used in climate research. For example, when used in coupled

climate simulations, that is, connected through boundary fluxes to ocean and land

surface models, obtaining correct global budgets of energy and momentum in an

atmospheric model is critical. Thus, intensive tuning of cloud parameterizations is

usually conducted to ensure that seasonal and annual-mean radiation budgets at the

top of the atmosphere are realistic, to minimize spurious long-term drift in extended

simulations. Generally speaking, exact conservation of energy and momentum is

a key concern in the design of atmospheric models for climate, while being of

secondary importance in the design of NWP models.

On the other hand, operational NWP models are regularly subjected to a number

of rigorous, and more-or-less universally accepted tests at each step in their

development. Not surprisingly, these tests emphasize short-term simulation accu-

racy rather seasonal or annual-mean performance.

500 hPa Height Anomaly Correlation

At many centers including the European Center for Medium Range Weather

Forecasting (ECMWF), the most important measure of global forecast model

performance or skill is the 500 hPa height anomaly correlation. This measure is
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essentially the pattern correlation of two maps of geopotential height anomalies ’0

interpolated to a pressure level of 500 hPa (corresponding to altitude close to 5 km).

A height anomaly is defined the deviation in height from its average value along

a latitude circle. One map is an analysis of height anomaly at 500 hPa f0
anaðx; y;

p500; taÞ (see section on “Initialization and Data Assimilation”) and the second is

a map of forecast height anomaly valid at the same timef0
f ðx; y; p500; taÞwhere ta

= ti + Dtf . Here Dtf is the forecast lead time and ti is the initiation time. These two

height fields are then used to form a correlation.

r500ðDtf Þ ¼
f

0
f ðti þ Dtf Þ;f 0

ana

D E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

0
f ;f

0
f

D E
f

0
ana;f

0
ana

� �r

where <> represents the spatial covariance over some region, typically the south-

ern hemisphere or the northern hemisphere.

Figure 5.2 shows the average evolution of r500 in twomajor global forecast models

for the period January 1 through March 31, 2009. The plots illustrate the state-of-the-

art in NWP as of this writing. As expected the pattern correlations decrease with time,

but remain quite high, above 0.8, out to a forecast lead of 5 days. Northern hemisphere

correlations are higher in both systems, probably reflecting the higher density of in situ

measurements available there. Many operational forecasting centers do not allow

changes to their systems that degrade this measure of performance.

Although using r500 as the single measure of forecast accuracy may seem

somewhat restrictive, it should noted that that the geopotential height ’ at

500 hPa is an integrated measure of the temperature in a deep layer, form the

surface to around 5,000 m. So, r500 is a concise summary of model performance in

a horizontally extensive and deep atmospheric slab.
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Skill Scores

The S1 skill score [51, 52] has been used since the 1950s by forecasters at the

National Meteorological Center (NMC), and after 1995 the National Center for

Environmental Prediction (NCEP), to evaluate forecast performance. An S1 score

can be defined for any quantity. It is calculated:

S1ðwÞ ¼ 100�
R
Ajrðwf � woÞjdAR

A maxðjrwf j; jrwojÞdA

where wf is forecast w and wo is the observed value for verification. S1 then is the

ratio of the integrated absolute gradient in forecast error, normalized by the

integrated absolute gradient of the quantity itself, where at each location the larger

of the forecast or observed values is used. A value of S1 = 0 represents a perfect

forecast. The quantity w used to calculate S1 is typically sea-level pressure or

geopotential height.

The S1 skill score was selected by NMC from many measures of forecast quality

with guidance from practicing forecasters. Forecasters in 1950s noted that values of

S1 around 20 corresponded to very good forecasts, while values of 70 or more

represented nearly worthless forecasts. As a result, it became common practice to

express “skill” as 2(70 � S1), so that now a very good forecast S1 = 20 has a skill

score of 100, while useless forecasts have a skill score of 0 [52].

Equitable Threat Scores

Evaluation of precipitation forecasts is difficult for a number of reasons. Precipita-

tion is a field with high variance and sharp boundaries. In many circumstances, the

important forecast parameter is whether rain or precipitation (above a certain

threshold) has occurred. Such categorical forecasts are evaluated using various

methods based on matrices of possible outcomes, for example,YY – rain is forecast

and occurs, YN – rain is forecast but does not occur, NY – rain is not forecast but

occurs, and NN – rain is not forecast and does not occur. The most commonly used

method is that of Equitable Threat Scores (ETS) [53] which attempts to account for

the long-term statistical probability of each category.

Initialization and Data Assimilation

A moment’s reflection shows that establishing initial conditions for a global model

of the atmosphere is a nontrivial task. First of all, there may be instrumental errors
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in the measurements of wind, temperature, humidity, or other quantities needed to

specify the initial state of the atmosphere. While perhaps the most obvious problem,

instrumental error may also be the least important problem faced in initialization.

A more serious problem is hinted at in Fig. 5.3 which shows the current global

distribution of radiosonde balloon launch sights. Radiosondes provide very accu-

rate and reliable measurements of winds, temperatures, and humidities from the

surface to around 10 km altitude. Launches are made by international agreement at

either 0Z or 12Z (“Z” refers to Greenwich mean time) or at both times, depending
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all lat; all lon; all lev; kt = 44; kx = 120; all qcx; all qch
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Fig. 5.3 Locations of radiosonde observations (top) and satellite temperature observations

(bottom) for May 12, 2008 from NASA’s GEOS-5 DAS
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on the station. However, as the figure shows, radiosonde launch sites are distributed

in a completely unstructured way across the globe. High concentrations occur in the

developed world, with sparse or no coverage over oceans and over less-developed

land areas. Even in the developed world the location of sites is determined by

human factors – and is more-or-less spatially random. Numerical models of the

atmosphere, both spectral and grid point, require a spatially structured set of

numbers to begin their integrations. Satellite data presents similar challenges.

While it is structured – along orbital tracks – the structure does not conform to

the needs of NWP models. In addition, satellite data is asynchronous, that is,

sampling occurs continuously as the satellite travels, not at a specified time as

with radiosonde data.

Thus a major challenge faced in NWP is to derive a complete model state on

a structured set of points at a single instant in time, from data that may be neither

spatially structured nor representative of a single point in time. Naive interpolation

in space and/or time is inadequate. The model state derived from the data must not

only cover the globe, it must do so while also satisfying a number of other

dynamical and physical constraints.

Fluid flows, and vector fields in general, can be decomposed into a sum of

divergent (r ∙ u1 6¼ 0) and nondivergent (r ∙ u2 = 0) components. Generally

speaking, the atmospheric motions of most significance in 1–5 day forecasts are

characterized by “small” horizontal convergence and divergence in a relative sense.

In these flows, two or three of the terms in the momentum equation form a dominant

steady-state balance that describes the flow to first-order. These balanced flows are

almost nondivergent. However, their time evolution can be profoundly affected by

the small divergent component. The earliest and most basic balance identified by

meteorologists is the so-called geostrophic balance, described below. The subtleties

of the divergent wind field in geostrophically balanced flow are what doomed L. F.

Richardson’s pioneering NWP experiment.

Geostrophically Balanced Flow

The origin of geostrophic balance ismost easily seen by performing a scale analysis of

the momentum equation in the primitive equation system. Scale analysis is a common

procedure in fluidmechanics to systematically identify themost important terms in the

complicated equations describing fluid flow [4]. It begins by identifying scales of

motion for the phenomenon of interest. For midlatitude weather systems, especially

after considering the spacing and resolution of radiosonde and satellite data,

a reasonable choice of spatial scale L is around 1,000 km. Other reasonable choices of

scales are for horizontal windU� 10 ms�1, and for pressure disturbance P� 10 hPa

or 1,000 Pa. These scales along with local apparent rotation rate f with values

� 10�4 s�1 in midlatitudes are used to estimate the sizes of the terms in the equation.

For example, d
dt V will be� U2/L where the horizontal advective time scale has been
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used as the relevant time scale. It is easy to see that the ratio of this term to the Coriolis

term fk� V will scale as U/fL, which is a key nondimensional parameter in dynamic

meteorology known as the Rossby number or Ro. For the scales of motion typical for

midlatitude systems, Ro is close to 0.1. So the advective term is likely to small

compared to the Coriolis term and also, it turns out, compared to the pressure gradient.

Thus, the “leading order” balance in midlatitude systems is left as:

fk� V¼� arzp

where we have used height as the vertical coordinate. Equivalent expressions exist

for other vertical coordinates. In component form this balance is written as:

�fv ¼ �a@xp ; fu ¼ �a@yp

This balance is the dominant feature of midlatitude flow. It is also responsible for

one of the most counterintuitive aspects of weather maps in midlatitudes – that the

wind blows along pressure contours rather than from high pressure to low pressure.

It is also the reason air flows in a counterclockwise sense around low-pressure

centers in the northern hemisphere. A perplexing aspect of this balance is that it is

a steady-state relation. In other words, the largest forces in the system give no

information about its time evolution.

It is easy to see that this leading-order geostrophic flow is horizontally

nondivergent. However, spurious divergent flow features can easily appear when

constructing initial conditions from observations of horizontal. An idea of the

difficulty of this challenge can be obtained by considering the following argument.

The relative vorticity of the horizontal wind is determined from:

z ¼ @xv� @yu

and, further scale analysis of the equations of motion in midlatitudes (see [45])

shows that the ratior ∙ V to z will typically be close to Ro or � 0.1. The individual

horizontal derivative terms in the expressions for vorticity and divergence are of the

same order. The small relative magnitude of r ∙ V is only possible through near

cancelation of its much larger component terms. It is not trivial to maintain this

cancelation during the data assimilation process. Errors in the divergence can have

large effects on surface pressure tendencies since

@tps � psr � V:

More complete and correct balance relationships than geostrophic balance can

be derived [54]. Balanced initial conditions have been sought in a number of ways

during the history of NWP. The most successful of these was perhaps nonlinear

normal mode initialization introduced in the 1970s [55–57]. In this technique, fast

and slow normal modes of the nonlinear equations of motion are found through an

iterative procedure.
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Data Assimilation Systems

Modern operational centers handle the problem of initializing their forecasts by

using a data assimilation system (DAS). A central feature of a DAS is the forecast

model itself (or a linearized version thereof). Analyses at operational forecasting

centers are typically performed four times daily at 00Z, 06Z, 12Z, and 18Z. The

analysis procedure combines measurements with a short model forecast, typically

6 h initialized with the previous analysis. This forecast is often referred to as the

“first guess” or “background.” The job of the analysis algorithm, denoted by the

yellow diamond in Fig. 5.4, is to blend the myriad sources of data, which includes

radiosonde observations satellite measurements, pilot reports, surface station

reports, ship buoy measurements, and more, with the forecast to produce an optimal

estimate of the state of the atmosphere on the model grid. The process illustrated in

Fig. 5.4 depicts a “3D-Var” system. In 3D-Var, data gathered within an analysis

time window, typically 3 h before and after the standard analysis times, is assumed

to be synchronous. The analysis then consists of an optimal blending of

measurements and forecast background in space.

This optimal blending can be expressed as a “cost function minimization.” The

cost function is written in matrix form [2, 54, 58]:

“Analysis correction
 or  increment”

Analysis 
algorithm

Data collection during analysis window

Analysis time + 6 hrs

Forecast initial condition

Forecast endpoint
Radiosonde obs
Other obs., e.g. satellite etc..

6-hour forecast

Analysis time–6 hrs Analysis time 

Fig. 5.4 Schematic diagram of 3D-var analysis
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JðxÞ ¼ ðx� xbÞT B�1ðx� xbÞ
þ ½y� HðxÞ�T R�1½y� HðxÞ� þ JbðxÞ

where x is a model “state vector,” that is V, T, q and possibly other analyzed

species on the model’s numerical grid (or spectral decomposition). The quantity

xb is the model state from a forecast, that is, the first guess or background, and the

matrix B is the background, or forecast, error covariance matrix. This matrix is

a key piece of the analysis algorithm, and is estimated by examining differences

between forecasts radiosonde observations [59] or more recently by calculating

the covariance of different short forecasts, for example, 24 h and 48 h, valid at the

same time [60, 61].

The second term in the cost function contains the observation error covariance

matrix R, the observation vector y and a vector H(x) which is the result of the

“observation operator” H acting on the model state x. In the case of an observation

taken by a thermometer placed at a model grid-point, the observation operator

would simply select the appropriate element of x. However, in the case of remote

satellite observations, which directly measure radiances (photons) from the atmo-

sphere, H could represent a complex radiative transfer calculation using for exam-

ple T and q from the model state to estimate the radiance measured by a particular

instrument. The approach of transforming model quantities into a form that is

directly comparable with observations, sometimes referred to as “radiance assimi-

lation,” led to dramatic increases in the positive impact of satellite measurements

on forecasting [62].

The third term in the cost function represents balance constraints on the flow,

such as those discussed in the section on “Geostrophically Balanced Flows”.

Inclusion of such a term at NCEP has eliminated the need for a separate initialization

procedure for forecasts [60].

The task of the analysis algorithm is to find the model state xa that minimizes the

cost function J(x). For more details on how this solution is actually accomplished

the reader is referred to discussion in Chap. 5 of Kalnay (2003) [54]. 3D-var as

described here is used by NCEP as well as in slightly modified version by NASA’s

Global Modeling and Assimilation Office (GMAO) in their GEOS-5 DAS [63]. A

somewhat different approach known as 4D-Var is used at ECMWF. This approach

takes into account the possibly asynchronous nature of data when formulating the

cost function. For more details, see the discussion in Kalnay (2003).

Ensemble Forecasting

The early thinking of researchers in NWP was that the central problem of forecast

initialization was to correctly filter out rapid divergent motions, and, that once this was

accomplished no fundamental limits on atmospheric predictability existed. A series of
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seminal papers by Edward N. Lorenz proved this to be incorrect [64–66]. Lorenz

showed that simple analogs to atmospheric equations of motion possess a sensitive

dependence to initial conditions. In other words, small differences in even well-

balanced initial conditions will cause forecasts to become uncorrelated after a finite

time.

Modern operational forecasting centers typically perform ensembles of many

runs with slightly different initial conditions, as well as a single higher-resolution

“deterministic” run to produce forecasts for a given time [54, 67]. The generation of

ensemble members is a nontrivial task. Ideally, the members of the ensemble should

vary in special directions in phase space that are related to the most rapidly growing

instabilities in the flow [54, 68].

Future Directions

Weather forecasts have improved demonstrably during the 50 year history of NWP.

This is illustrated in Fig. 5.5, which shows the evolution of r500 at 3, 5, and 7 days

over the last 30 years in the ECMWF system [69]. Part of the improvement is

traceable to the explosion in the amount of satellite data over the last 30 years.

However, a large part of the improvement in skill is due to improvements in the

forecast and analysis “system,” such as increased forecast model resolution,

improved analysis algorithms etc. This is nicely demonstrated in the bottom panel

of Fig. 5.5, which shows the evolution of skill in retrospective forecasts, using the

current ECMWF system on the historical data base. The skill of retrospective

forecasts is significantly higher, indicating that the improved forecast and analysis

system makes a significant, perhaps the dominant, contribution to the overall

increase in skill seen in the last 30 years. One aspect of improvement that is clearly

due to improved data sources (satellites) is the convergence of skill in southern and

northern hemispheres.

Scalable Dynamical Cores

As computing power increases NWPmodel resolution also continues to increase. In

the last several years, the increase in computer power has appeared primarily in the

form of massively parallel machines with larger and larger numbers of processors,

rather than in the form of faster individual processors. This means that “time-to-

solution” has not decreased dramatically in recent years, but the size of feasible

calculations has increased dramatically. This has stimulated the development of

scalable models. Scalability means that model speed increases more-or-less linearly

with the number of processors used. A trivial example of perfectly scalable problem

is the addition of 1,000 pairs of numbers a + b = c. If one processor is available then

the calculation will take 1,000 CPU time units. If 1,000 processors are available the
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entire calculation can take place in 1 CPU time unit. However, communication

between processors also costs time. In any real numerical model of the atmosphere

processors eventually need information residing in other processors. This prevents

numerical models of the atmosphere from scaling perfectly.

The amount of cross-processor communication required can vary widely

depending on model design. Ideally decomposition will maximize the ratio of

Anomaly correlation of 500hPa height forecasts
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Fig. 5.5 Evolution of forecast skill at ECMWF, adapted and extended from the study of Simmons

and Hollingsworth (2002). The top panel shows a history of r500 at 3, 5, and 7 days from the ECMWF

operational forecast beginning in 1980. The colored and shaded areas are bounded by southern

hemisphere skill below and northern hemisphere skill above. The lower panel shows retrospective
forecasts produced using two versions of current ECMWF analysis and forecast systems. In these

cases, the “system” is fixed in time, while data inputs evolve in actual historical fashion
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area to perimeter in computational subdomains to minimize the need for cross-

processor communication. The scalability of grid-point models on latitude-

longitude grids is severely hampered by the need to apply polar filters to overcome

numerical instabilities that arise due to the convergence of longitude lines at both

poles. These filters typically require knowledge of atmospheric fields all the way

around latitude circles. Thus, modelers must either decompose the globe into thin

computational domains circling the globe, which will lead to large communication

requirements in the north–south direction, or they must pay the cost of frequent

“gathers” to obtain the necessary inputs for polar filters. Transforms in spectral

models likewise require knowledge of fields around latitude circles.

Recent efforts in numerical techniques for global atmosphericmodels have focused

on the development of grid-point or finite element models on nonstandard grids

[70–73]. Several examples of such grids are shown in Fig. 5.6. These grids have fairly

uniform grid cell sizes over the entire globe. Polar filters are therefore not required.

Nonhydrostatic Dynamics

Once horizontal resolution becomes much finer than 10 km, nonhydrostatic effects

must be taken into account. This will require models based on a different set of

equations. One option is to simply use the full Euler or Navier Stokes equations [39,

74] and pay the costs associated with the short time-steps required by the presence

of acoustic waves. Another approach is to use an inelastic equations system [75],

but this requires solution of an elliptic equation which is an intrinsically nonlocal

procedure and again raises cross-processor communication costs.

Seamless Models for Climate and Weather

Modern global NWP and climate models are essentially the same. Both use the

same set of dynamical equations (see section on “Primitive Equations”). Both also

Lat-lon Cubed-sphere Icosahedral Yin-Yang

Fig. 5.6 The standard latitude-longitude “lat-lon” grid (leftmost globe) compared with newer,

non-traditional grids for global atmospheric models
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use the same set of physical parameterization schemes (see section on “Parameteri-

zation”). In practice, differences do exist between global models of the atmosphere

intended for climate simulation and those intended for forecasting. Operational

global NWP models have typically used resolutions that are a factor of 8–16 times

higher than those used in long climate simulations. Other differences arise, more-

or-less unintentionally, in the tuning process as a consequence of the different

metrics used in the evaluation of NWP and climate models (see section on How

are NWP models (versus climate models) evaluated?).

Climate researchers understand that atmospheric phenomena such as squall lines

and tropical cyclones may play a role in establishing climate on both regional and

global scales. Such “mesoscale” features are not resolved in climate models with

resolutions of 100 km or coarser. However, the continued increase in computer

power, and the recent emphasis on massively parallel architecture, will allow decadal

or even century-long simulations at resolutions close to 10 km in the near future. At

these resolutions, mesoscale circulations should be well represented. These

resolutions will also present novel challenges to the sub-grid parameterizations

used in climate models, as assumptions about scale-separation and statistical equilib-

rium become questionable.
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