
Chapter 11

Climate Predictions, Seasonal-to-Decadal

Lisa Goddard

Glossary

Climatology Reference period used to describe the characteristics of the

climate, such as the mean annual cycle, or the expected statistics

of weather or of year-to-year climate variability. The World

Meteorological Organization recommends the most recent three

full decades; e.g., in 2009, the WMO climatology period would

cover 1971– 2000.

External forcing Factors that influence the climate system but are not explicitly

driven by the climate system, such as human emissions of

greenhouse gases, changes in the sun’s radiation, and volcanic

emissions.

Forecast The guidance offered by a forecaster or forecast center on the

future climate conditions. A forecast could be based on a single

prediction, but typically is a distilled product that involves

recalibrated model predictions and often multiple prediction

inputs.

Internal

variability

The chaotic evolution of a fluid, such as the ocean or atmo-

sphere, due to nonlinear dynamics that are sensitive to small

uncertainties or variations in initial conditions. Depending on

timescale, internal variability may refer to that generated inter-

nally to the atmosphere, to the ocean, or due to
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ocean–atmosphere interaction. It is the part of the seasonal-to-

decadal climate that is not deterministically predictable.

Prediction The future climate conditions indicated by a single prediction

model, which could be statistical or dynamical. These differ

from climate change projections in that information of the

climate state at or near the initial time of the forecast is highly

relevant to its future evolution.

Teleconnections Climate variability in one region that is driven remotely by

climate variability in another region. This typically refers to

regional patterns of climate anomalies over land and/or oceans

that result from specific ocean phenomena, such as during El

Niño events.

Definition of the Subject and Its Importance

Seasonal-to-decadal climate prediction seeks to quantify the likely evolution or

change of the climate system over a specific time horizon of months to years.

Climate predictions based on dynamical models incorporate all relevant processes

to the extent possible, including anthropogenic climate change, but most impor-

tantly those processes that govern the likely evolution of natural climate variability.

The predictions, if well calibrated, describe the probability of a given magnitude of

change in the mean climate or changes in the characteristics of the weather over the

forecast period. For example, a seasonal forecast for next winter might indicate

a greater likelihood for the seasonal mean temperatures to be colder than usual, or

might indicate the likelihood for more frequent storms over the 3-month period.

Seasonal prediction is a fairly well-established enterprise with a number of

forecast centers around the world issuing real-time seasonal predictions–based

dynamical models [1]. Increasingly, national meteorological and hydrological

services create seasonal forecast products based on their own statistical or

dynamical prediction tools and/or incorporate predictions from the international

centers. Decadal prediction is a much newer endeavor and is still considered

experimental [2]. Only a few groups have attempted decadal-scale climate

predictions intended to capture the evolution of natural decadal variability for the

coming decade from a global circulation model [3–5], and although the results

indicate there may be added information from these predictions relative to the more

familiar climate change projections of the Intergovernmental Panel on Climate

Change (IPCC), it is not clear that the added information results from better

prediction of the decadal-scale climate variability that would exist even in the

absence of increasing greenhouse gases.

Climate forecasts are potentially valuable to society on seasonal-to-interannual

timescales to inform resource management, planning decisions, and on decadal

timescales to inform longer-term plans and infrastructure investment. Even in the
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climate change context, decadal prediction could prove important, as the climate

experienced regionally for the coming decade(s) will likely be some combination of

anthropogenic climate change and natural decadal variability. Decisions and

investments related to climate change adaptation typically apply to the next

10–20 years into the future, rather than 80 years into the future. Thus better

information on evolution of the climate and changes in risks of climate extremes

can lead to more appropriate planning. However, climate predictions are necessar-

ily probabilistic, and in the case of decadal predictions are yet to be established as

skillful. Thus it is important that decision systems be designed and optimized to

account for the inherent uncertainty in future climate, that can still allow benefits to

be realized in times of favorable climate and losses to be mitigated in times of

adverse climate.

Introduction

Climate varies on all timescales, from seasonal variations to millennial ice ages.

Prediction of the climate at timescales that are relevant to societal decisions, but

extending beyond weather forecasts, has been roughly broken into three classes:

seasonal-to-interannual prediction that addresses the changes in seasonal climate

and its weather characteristics a couple months to a year in the future, decadal

prediction, sometimes referred to as near-term climate change prediction that

addresses changes in the mean climate and its characteristics for a couple years to

a couple decades into the future, and climate change projections that consider

changes in the mean climate and its characteristics 50–100 years in the future.

The seasonal-to-interannual timescale dominates the climate that is experienced

locally. On a local-to-regional scale, year-to-year variability almost always

explains the majority of the variance in the observed climate (e.g., Fig. 11.1).

Year-to-year variability is where most impacts are experienced. However, it is

the superposition of the three climate timescales that can lead to changes or trends

in the frequency of adverse years. Extreme examples are potentially the protracted

drought conditions in the western United States from the mid-1990s to the early

twenty-first century [6], the 2003 European heat wave [7], or the extremely active

hurricane season 2005 [8], which was accompanied by many land-falling

hurricanes in the United States such as Katrina.

The primary difference between prediction of climate variability on different

timescales is the drivers, or phenomena, associated with those impacts. This leads

to differences in the way prediction systems are designed to predict the climate

fluctuations and associated impacts on different timescales. Seasonal-to-interannual

prediction is an initial value problem; by initializing the climate system close to the

observed state at the beginning of the prediction, a dynamical model will aim to

capture the likely evolution of the climate system. At the other end of the time

spectrum, climate change projection is a boundary value problem, which means that
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the driver of the climate change is external to the climate system and imposed upon

it. Anthropogenic increases in greenhouse gases are due to man’s activities and are

not part of the natural climate system. Climate change projections depend on

correctly projecting the changes in the Earth’s atmospheric composition and the

subsequent changes in the Earth’s energy balance. Decadal prediction lies at the

intersection between seasonal-to-interannual prediction and climate change projec-

tion; it is an initial value as well as a boundary value problem. Decadal prediction

depends both on initializing the climate system close to the observed state, espe-

cially the slowly evolving components, and on correctly representing the changes in

Earth’s energy budget.

This is not to say that predictions on longer timescales do not contain the higher

frequency phenomenon. However, there is a predictability limit for natural climate
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Fig. 11.1 Example of simple decomposition of (a) temperature and (b) precipitation averaged

over the state of Colorado in the United States. The top panels (black) show the observed annual

mean time series. The second panels (red) represent “climate change” time series, in which the

climate changes are consistent with the globally averaged temperature, obtained by decadally

filtering the time series and regressing it against a similar low-frequency filtered time series of

globally averaged temperature. The third panels (green) represent the “natural decadal

variability,” which is low-frequency time series that is not coincident with globally averaged

temperature changes, obtained as the difference between the low-frequency filtered time series and

the “climate change” time series. The bottom panels (blue) represent the year-to-year variability on
top of the low-frequency changes, which is the difference between the full time series and the

low-frequency filtered time series. Note that there is no attribution to anthropogenic changes or

physical phenomena in any of these time series. Details are likely to change with different filtering

parameters and with different approaches to estimate global warming
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variability, which refers to how far into the future some aspect of climate variability

can be predicted before the uncertainty, or range of possibilities, approaches the

climatological uncertainty. At that point little to no predictive information remains.

The limit of predictability is not necessarily a fixed quantity. It changes with the

phenomenon, but also changes with time, meaning that at some times

a phenomenon will be more predictable than others and thus the evolution can be

predicted farther into the future. It is not possible to determine what the true limit of

predictability is or should be [9]. The model(s) that can predict the phenomenon

with the greatest fidelity when compared to observations over some long history

containing many realizations of the phenomenon determine the current limit of

predictability.

In order to make a prediction one must first determine what is to be predicted. If

the aim is to predict local-to-regional scale climate over land, one must know the

driver of that climate variability. Numerous research and prediction studies have

demonstrated that it is the large-scale variability in the pattern of surface tempera-

ture, and in particular the sea surface temperatures that drive the predictable aspect

of changes in the atmospheric circulation and thus regional temperature and

precipitation. But what drives that sea surface temperature variability? The sea

surface temperatures must be predicted if it is hoped to predict the associated

terrestrial climate impacts. Once the ocean phenomena or processes relevant to

sea surface temperature variations are identified, the climate models must be

capable of simulating those. Furthermore, if the prediction of some phenomenon

from a particular model is to provide actionable information, then the phenomenon

must be predictable above the other ongoing processes in the climate system; in

other words, the signal of the phenomenon must be predictable above the back-

ground noise of the climate system. In the next section, an example of this process

of identification, model validation, and prediction based on the El Niño-Southern

Oscillation (ENSO) phenomenon and seasonal climate prediction is presented.

Brief History of ENSO Prediction: Impacts of the ENSO phenomenon have been

experienced for centuries, long before the phenomenon itself was identified. The

peoples of Peru used the term El Niño to refer to the expected changes in the local

climate and fish stocks associated with a seasonal reversal of the current system off

the coast of western South America, because these changes occur near the end of

the year at a time near Christmas (El Niño is Spanish for the Christ child). However,

they also noted that warm seasonal waters associated with the change of currents,

would occasionally be very warm and would also bring abundant rainfall. It is these

extreme years, which recur about every 3–7 years that are now called El Niño

events. Farmers in drought-prone regions of the Andes even developed a method to

predict the coming of the increased rainfall during these events by monitoring the

visibility of a star in the Pleiades constellation [10]. What they were observing was

the shift of convection from the western tropical Pacific into the central Pacific in

concert with the development of an El Niño event (Fig. 11.2).

Sir Gilbert Walker could be said to be the pioneer of seasonal forecasting as he

sought to quantify the atmospheric component of ENSO, the Southern Oscillation,
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and its relationship to regional climate variability, such as the devastating droughts

in India [11]. To accomplish this he examined correlations between 32 stations

across the world for fields of sea level pressure, temperature, rainfall, and riverflow.

He discovered that negative excursion of the Southern Oscillation Index was

associated with increased likelihood for drought over India; his empirical model

has not been much improved upon over the last century for that region. Researchers

have continued to improve upon the foundation that Walker laid for ENSO

teleconnections (Fig. 11.3). Maps that show significant correlation between

regional temperature and precipitation changes to ENSO events for specific 3-

month average seasons are widely used to illustrate ENSO’s global reach [12, 13].

However, these teleconnection patterns represent expectations based on statistics

and are not guaranteed to occur in any specific event; the probabilistic likelihood of

a regional impact [14] is a further refinement of the climate anomalies due to

ENSO, and something that climate prediction models should be expected to repli-

cate in their ensemble distributions over time.

It was not until the second half of the twentieth century that researchers discov-

ered that the Southern Oscillation was associated with changes in the large-scale sea

surface temperature pattern over the tropical Pacific; it was the coupled interaction

between the east–west sea surface temperature gradient and the low-level winds

between the high and low pressure centers of the Southern Oscillation that led to the

growth of Niño events [15]. It was soon after recognized that the change in the

winds due to the changes in sea surface temperatures, associated with the Southern

Oscillation, modified the distribution of the upper-ocean mass field below the

surface [16], and that the adjustment of these perturbations to the mass field

could lead to the eventual decay of the El Niño event and possible initiation of

the opposite phase, La Niña.

EI Niño ConditionsNormal Conditions

Convective Loop

Thermocline Thermocline

Equator

80°W 120°E 80°W

Equator

Fig. 11.2 Schematic drawing of the tropical Pacific ocean–atmosphere state during (a) average or
neutral conditions in which trade winds blow east to west, pushing warm surface waters to the

western Pacific, which pushes down the thermocline (separation between warm upper ocean and

cold deep ocean) and concentrates the deep convection in the western Pacific; (b) El Niño

conditions in which the thermocline becomes deeper in the eastern Pacific and warm water

moves westward, which weakens the east–west Trade Winds and allows the convection to move

into the central Pacific (Source: http://www.tao.noaa.gov/proj_overview/tao_tour_ndbc.shtml)
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iñ
o
ev
en
ts
d
u
ri
n
g

n
o
rt
h
er
n
h
em

is
p
h
er
e
w
in
te
r
w
h
en

ev
en
ts
ar
e
m
at
u
re
;
an
d
fo
r
(c
)
L
a
N
iñ
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iñ
a
ev
en
ts
d
u
ri
n
g
n
o
rt
h
er
n

h
em

is
p
h
er
e
w
in
te
r
(S
o
u
rc
e:

h
tt
p
:/
/w
w
w
.s
rh
.n
o
aa
.g
o
v
/j
et
st
re
am

//
tr
o
p
ic
s/
en
so
_
im

p
ac
ts
.h
tm

)

11 Climate Predictions, Seasonal-to-Decadal 267

http://www.srh.noaa.gov/jetstream//tropics/enso_impacts.htm


In the 1980s simple dynamical models [17–19] were developed that simulated

the coupled air-sea processes central to ENSO and reinforced the theory that had

been informed primarily by observations. The first experimental El Niño forecast

was published in 1986 [20], using one of these simplified dynamical models. Since

then more complex models have been built that capture not only the dominant

processes behind ENSO but also provide a more complete representation of

the climate system to better capture uncertainties in ENSO. These models also

simulate the atmospheric teleconnections that lead to changes in sea surface

temperatures of other ocean basins and to changes in the terrestrial climate. These

are the impacts that served as the initial motivation for the study of ENSO. Finally,

through the process of identification of a primary driver of seasonal climate

variability and the dominant physical processes behind it, and the development of

models that could simulate and predict this driver and its teleconnections, seasonal

prediction was born.

The prediction of decadal-scale climate variability is a much more recent

endeavor. Although research on decadal climate variability through the use of

observations and models is not new [21–26], a community-wide effort in this

area is new. The motivation to predict decadal climate variability has arisen in

part from a desire to use the climate change projections that appear in the Working

Group 1 report of the Intergovernmental Panel on Climate Change [27] to inform

sectoral decision making, [28] as well as plans and investments toward climate

change adaptation. For these societal needs, climate information for the next 5–20

years becomes more relevant than that for the next 100 years. The other side to the

motivation behind experimental decadal predictions is the realization that there are

processes inherent in the natural climate system evolving at decadal-to-

multidecadal timescales, and the mounting evidence that dynamical models have

some ability to simulate some aspects of the observed variability [29, 30].

As the successes and failures in climate prediction are considered, it must be

borne in mind that climate predictions are necessarily probabilistic. They indicate

the likelihood of a range of possible outcomes. The magnitude of this range of

outcomes, often referred to as the uncertainty or probability distribution, is sensitive

to uncertainties in the initial conditions from which the predictions evolve, to

uncertainties in external forcings, and to errors in prediction models. The value

about which the uncertainty is centered is sensitive to the external forcings and to

information in the initial conditions that may lead to specific, robust evolution of

the climate system. Particularly in the case of decadal prediction, which is still in

the experimental phase, success refers to relative performance, or agreement

between prediction and observations, compared to the state of predictions beyond

the seasonal timescale, namely, climate change projections. In other words, much

of the judgment of decadal prediction in these early experiments focuses on the

added forecast quality from the initial conditions relative to that from the boundary

conditions, or external forcing. Therefore, success in the eyes of the climate

community may not constitute information that is accurate enough or specific

enough to be actionable.
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Although both seasonal prediction and decadal prediction experiments, and

climate change projections for that matter, use the same type of dynamical models,

substantial differences exist between their application for these different timescales

of prediction. The following sections contain discussions of Drivers of Variability,

Model Fidelity, Prediction Systems, and Internationally Coordinated Efforts, first

for the seasonal-to-interannual timescale, followed by a similar analysis for the

decadal prediction problem. The only difference in the structures is that the section

on seasonal-to-interannual prediction also contains a discussion of Forecast Skill.

The echoed structure is intentional in that many of the issues and approaches will be

similar for both timescales. However, there are important differences in what is

known about the drivers of climate variability at these different timescales as well

as differences in the maturity of the prediction systems.

Seasonal-to-Interannual Prediction

Seasonal-to-Interannual Prediction: Drivers of Interannual
Variability

Seasonal-to-interannual prediction derives from initial conditions of the climate

system. Unlike weather forecasts, where the relevant initial condition is the atmo-

spheric state and the sea surface temperatures are approximately constant, seasonal

forecasts depend more on the initial condition of the ocean. The evolution of the

ocean state, particularly the density structure and the currents, leads to changes in

the pattern of sea surface temperatures that can then influence the atmospheric

circulation.

The dominant pattern of surface temperature variability, after accounting for

global warming, is that of the El Niño-Southern Oscillation (ENSO) (e.g., [31]). For

this reason ENSO has received a great deal of attention in studies of climate

prediction on seasonal-to-interannual timescales. Changes in winds and precipita-

tion are associated with these global temperature pattern changes.

El Niño events recur about every 3–7 years on average, and are somewhat locked

to the annual cycle in that they tend to develop and grow through the middle of the

year and tend to peak near the end of the year. During an El Niño event when much

of the warm water in the western equatorial Pacific moves eastward, the region of

deep convection also moves eastward into the central Pacific (Fig. 11.2), and in

some cases reaches as far as the coast of South America. Since the equatorial Pacific

spans nearly half the circumference of the Earth, a shift of the largest region of deep

convection from the far western Pacific to the central equatorial Pacific represents

a huge spatial shift in where the tropical atmosphere is heated.

In the tropics, where the effect of Earth’s rotation is weaker, the atmospheric

response to the pattern of sea surface temperatures is thermally direct. The low-

level winds converge toward the warmest water, or equivalently, to the region of
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lower pressure. This is true of the mean conditions as well as the anomalous

conditions. Since the lower atmosphere is very humid in the tropics, the regions

of converging low-level winds produce an upward flow of very moist air and heavy

precipitation with a very large latent heat release to the atmosphere associated with

water vapor condensation. Near the top of the troposphere, relatively dry air is

expelled from these regions of strong deep convection, and that air then sinks. The

sinking dry air suppresses convection. The regions of warmest sea surface

temperatures and associated strong deep convection are located typically over the

western Pacific warm pool and the western hemisphere warm pool, which

encompasses the northeastern tropical Pacific extending to the northwestern tropi-

cal Atlantic. Variations in these warm pool regions have direct impacts on the

climate in the neighboring regions, but changes in the strength and location of those

convective centers can also impact regional climate remotely though changes in

atmospheric circulation.

The resulting changes in the atmospheric circulation can lead to warmer

conditions in the other tropical oceans [32, 33], which carry additional regional

climate impacts. For prediction of the regional climate due to tropical sea surface

temperature changes outside the Pacific, it is important to be able to predict those

sea surface temperatures. For example, the tendency for northeastern Brazil to be

drier than normal during an El Niño event (Fig. 11.3) is due in part to the anomalous

subsidence from the shift in deep convection over the central Pacific, but it is also

due to associated warming of the sea surface temperatures over the north tropical

Atlantic [34]. Similarly, wetter conditions in eastern Africa associated statistically

with El Niño events are now known to result from the warming of SSTs in the

western Indian Ocean that are also associated with El Niño events [35]; an El Niño

event that is not accompanied by warm SST anomalies in the western Indian Ocean

leads to drier conditions over East Africa due to anomalous subsidence resulting

from El Niño’s enhanced convection in the central Pacific.

El Niño can affect weather and seasonal climate outside the tropics through

changes in the position and strength of the storm tracks. When the warm water that

normally resides in the western Pacific extends across the Pacific, it changes the

large-scale temperature differences between the tropical and the midlatitudes. This

allows the storm track associated with the subtropical jet stream to strengthen over

the central and eastern subtropical Pacific where it is usually weaker and more

variable. Additionally, the warming of the equatorial Pacific region as a whole

allows the amount water vapor in the lower atmosphere to increase. The combina-

tion brings more frequent and stronger storms into the southern tier of the United

States during El Niño events. This impact on extratropical climate is seen in the

winter hemisphere because this is when the jet stream is strongest. So although

a similar influence can be discerned for storm track headed toward South America,

the impact is less robust, since El Niño events are typically growing during southern

hemisphere winter in the middle of the year. During the northern hemisphere winter

is closer to the time when El Niño events are mature.

It is the large-scale changes in the patterns of low-level heat and moisture that

drive changes in the atmospheric circulation. El Niño happens to be the dominant
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phenomenon influencing that and the focus of those changes is primarily over the

tropical oceans. However, changes in land-surface conditions, such as soil moisture

or ice, can also influence regional climate. Soil moisture influences the overlying

atmosphere primarily through evaporation, which can then influence precipitation

as well as near-surface air temperature during certain times of the year [36]. Dry

soil conditions, and thus a reduced ability of the surface to cool itself through

evaporation, are likely to have contributed to the 2003 European heat wave [37].

Changes in patterns, extent, and timing of snow cover can also impact the atmo-

spheric circulation through changes in land atmosphere energy exchange and may

impart predictability to northern hemisphere wintertime temperatures [38] and also

the strength of the East Asian monsoon [39].

Seasonal-to-Interannual Prediction: Model Fidelity

Once the main drivers of seasonal-to-interannual climate variability are

identified, it is then necessary to ascertain whether the model to be used for

seasonal-to-interannual prediction can replicate the drivers with sufficient realism.

Change in patterns of SSTs is the dominant driver of seasonal-to-interannual

climate variability worldwide. However, the regional terrestrial climate will only

be predictable if the relevant SSTs are predictable [40]. Given that the El Niño

phenomenon represents the majority of year-to-year variance in SSTs, including

influencing the global ocean outside the tropical Pacific [41], most studies of the

suitability of a model to predict seasonal-to-interannual climate will focus on the

model’s ability to predict El Niño. Of course, such studies of model fidelity help

further elucidate the processes behind such phenomena.

The first attempt to predict El Niño employed a very simple model of the tropical

Pacific Ocean that consisted of a warm, lighter, upper ocean overlying a cold,

heavier deep ocean [17]. The depth of the upper layer determined the temperature at

the surface in the eastern and central equatorial Pacific where upward currents are

known to bring cold water from the deeper ocean into the upper layer and cool the

surface; the more shallow the upper layer, the easier for the upwelling currents to

bring cold water to the surface. The surface temperature anomalies in the east

influence the east–west temperature gradient, which affects the strength of the trade

winds, which affect the slope of the interface between the upper and lower ocean

layers, and thus affects the eastern equatorial surface temperature. This describes

the classic Bjerknes feedback mechanism [15] that maintains the mean state as well

as the coupled air-sea feedbacks that can evolve an El Niño or La Niña event. Off

the equator in the western Pacific the anomalous winds create depth anomalies of

the opposite sign to those in the eastern equatorial Pacific, which can then adjust via

equatorial wave dynamics, eventually causing the decline of the current event (e.g.,

El Niño) and potentially initiating an event of the opposite sign (e.g., La Niña). The

positive feedback growth together with the delayed negative feedback that can cause

11 Climate Predictions, Seasonal-to-Decadal 271



the turnabout from one phase to the next was named the Delayed Oscillator

mechanism [19]. Variants on this central idea, such as the Recharge Oscillator [42]

have since been formulated as observations of the tropical Pacific became available

[43] and as the tropical Pacific air-sea variability was studied in more models.

Although the first models to successfully predict El Niño in the late 1980s were

very simplified compared to the complexity of the real ocean–atmosphere system,

they still remain viable prediction tools. It is very difficult to represent all the

physical processes in the tropical ocean–atmosphere system precisely, and because

of the strong interconnectedness of these processes, small errors in the representa-

tion of one process leads to associate errors in others. Thus it was not until the early

twenty-first century that coupled ocean–atmosphere models of full complexity

clearly demonstrated parity with simpler prediction models (Fig. 11.4) [44]. The

metric most commonly presented to represent a model’s ability to predict El Niño is

the NINO3.4 index of sea surface temperature, which is the average of the temper-

ature anomaly over the central equatorial Pacific from 5S–5N and 170W to 120W,

as this is the region that exhibits the highest correlation with terrestrial climate

anomalies worldwide [45].

However, this simple index does not capture all of the characteristics of El Niño.

The timing and spatial structure of El Niño-related sea surface temperature
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Fig. 11.4 Anomaly correlation (%) by various methods of the seasonal mean Niño-3.4 SST as

a function of lead (horizontal; in months). The results are accumulated for all seasons in the

(target) period DJF 1997/1998 to DJF 2003/2004. Except for CFS (the Climate Forecast System)

coupled ocean–atmosphere model of the National Weather Service’s Climate Prediction Center

(CPC), all forecasts were archived in real time at CPC from 1996 onward. CMP14 is the previous

coupled model, CCA is canonical correlation analysis, CA is constructed analog, CONS is

a consolidation (a weighted mean), and MARKOV is an autoregressive method (From [44])

272 L. Goddard



anomalies can also influence the resulting teleconnections [46]. Additionally, single

metrics such as correlation or mean error can mask the conditions under which El

Niño is predictable. Most dynamical systems, particularly those with a chaotic

component, exhibit conditional predictability meaning that there are times when

the system is more predictable than others [47]. Thus it is also common to present

the prediction history of models, to show how observed sea surface temperatures

along the equator vary compared to the predictions as a function of lead time [48].

A common finding from such qualitative examination is that although models may

do well in predicting the occurrence of an El Niño event, they have difficulty

predicting the magnitude of large events or locating the variability far enough

east during strong events [49, 50]. Such biases have repercussions for predicting

the associated climate anomalies.

Predicting the driver of the climate anomalies is the first step. Next is to predict

the associated climate anomalies. Biases in prediction of the drivers, such as El

Niño events that do not exhibit the strength or structure of observed events, lead to

biases in regional climate prediction. One way to circumvent some of the error in

predicted SSTs is to statistically correct them before providing this information as

boundary conditions to the atmospheric model. This approach is known as two-

tier forecasting because the SSTs are predicted first and the climate is predicted

second using an atmospheric GCM. Changes in the atmospheric circulation do not

feed back onto the SST anomalies. Because El Niño is the largest driver of climate

anomalies, and El Niño teleconnections are driven by the ocean variability, this is

a viable approach. However, outside the tropical Pacific a notable fraction of the

ocean variability is driven by the atmosphere, and thus in those regions heat and

momentum fluxes will not be properly represented by two-tier forecasts.

One-tier forecasts, where the ocean and atmosphere evolve together, allow for

a more physically consistent evolution of the ocean–atmosphere system. Coupled

ocean–atmosphere models are increasingly the prediction tools of choice at

operational forecast centers around the world [1]. However, due to model biases

over some parts of the tropical ocean, regional climate prediction remains prob-

lematic with coupled models. In particular coupled models have great difficulty in

representing the mean state of the tropical Atlantic, with the warmer water

occurring in the western instead of the eastern equatorial Atlantic [51]. As

a result, the tropical Atlantic SST variability is not predicted with any skill for

most seasons by the current generation of coupled models, and the potential

predictability of climate variability over western Africa and northeastern Brazil

is substantially degraded compared to what it would be with skillful SST

predictions [40].

Other biases that have been known for decades still persist in coupled

ocean–atmosphere models and limit the quality of climate predictions. Such sys-

tematic biases include a double intertropical convergence zone over the Pacific,

poor representation of regions of stratus clouds over the eastern subtropical and

extratropical oceans, and vertical temperature gradients that are too diffuse in the

equatorial Pacific where the warm upper ocean transitions to the cold deep ocean.

The processes responsible for these features in Nature and how they are represented
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in models are active areas of research. Recent modeling experiments using models

with a spatial resolution of tens of kilometers rather than hundreds of kilometers

does reduce some of these biases by better resolving certain climate processes.

Seasonal-to-Interannual Prediction: Prediction Systems

Prediction systems are based on observations, models, and their connection through

data assimilation systems. The three together form the three-legged chair of predic-

tion systems [9]. Any weak leg compromises the system, and improvements in one

leg often lead to improvements in the other legs.

Predictability of seasonal-to-interannual climate variability arises from the ini-

tial conditions of the ocean, particularly those conditions in the tropical Pacific

Ocean that carry some signal of future El Niño conditions. Observations of upper

ocean heat content anomalies in the other tropical oceans are also important for

prediction as they can influence the persistence of local sea surface temperature

anomalies as well as moderate the impacts of El Niño-related teleconnections in the

region. Therefore, it is important to adequately observe the tropical ocean state.

However, since models have errors in their representation of the real world, using

the observations too faithfully to describe the initial conditions for model forecasts

can cause problems. This is where data assimilation is essential to prediction

systems.

Data assimilation is the process used to produce initial conditions for

a dynamical model by combining observations with other information from

a previous simulation of the model. If this is not done carefully, the introduction

of the observations into the models can lead to initialization shock when the

prediction is started. Initialization shock is a term used to identify the rapid

development of model errors when a simulation is started. One approach to

minimizing this problem is called anomaly initialization in which observed

anomalies of the ocean state rather than the full state are added to the model’s

mean state to arrive at initial conditions. Other data assimilation methods address

the mismatch between the spatial and temporal characteristics of the variability

between Nature and the model. Currently, the atmosphere, ocean, and land

components of prediction models are initialized separately. The data assimilation

efforts are separate, and thus consistency in the initial states and tendencies of these

components is not ensured. Methods to assimilate observational data into the

coupled model as a whole are being investigated starting with the coupled

ocean–atmosphere system [52].

Recent advances in El Niño prediction skill at the European Centre for Medium-

Range Weather Forecasts in the United Kingdom were accomplished by both

improvements to their model and improvements to the ocean data assimilation system

[53]. Additionally, retrospective forecasts, also called “hindcasts,” of the NINO3.4 El

Niño index from 1960 to present from that forecast system have demonstrated the

274 L. Goddard



value of the observations provided by the Tropical Atmosphere–Ocean array of data

buoys that measure temperatures of the upper 500 m of the tropical Pacific Ocean,

some at the equator also measuring ocean currents, as well as temperature, winds, and

humidity at the surface.At the timewhen the array of buoyswas completed in the early

1990s, the forecast error of the NINO3.4 index dropped dramatically [54]. This result

ismost clearly demonstrated in forecasts that are initiated in February, when the biases

in the model are at a minimum. This echoes the connected nature of these three

elements of forecast systems; observations and their assimilation into models are

crucial for prediction, but better models better elucidate the value of the observing

network.

Even at that point when models, the observing network, and the use of those

observations for forecast initial conditions becomes essentially perfect, climate

forecasts will still contain uncertainties. Small, almost imperceptible, uncertainties

in the initial state or the detailed evolution of some small-scale processes will lead

to some divergence in the future state. This is the chaotic element of the climate

system, sometimes referred to as the “butterfly effect.” Where uncertainty is due to

errors, there is the potential to reduce it. However, it is not necessarily the goal of

forecasters to eliminate uncertainty, as this would be unrealistic, but to quantify it to

the extent possible. Better models that can capture the random nature of processes,

such as turbulence or convection, would improve process-related contributions to

uncertainty. Better representation of such processes may actually increase the

uncertainty in forecasts, relative to what models now indicate. Better observations,

more complete observational networks, and improved data assimilation techniques

can better indicate the uncertainties that arise from initial conditions [55, 56].

The uncertainty in climate forecasts should thus be considered as a range of

possible outcomes. Typically the range of possible outcomes, or probabilities, are

presented relative to the past climate history of the last several decades. A common

format used by many operational forecast centers is tercile classes. For example, the

precipitation for a given location over the last 30 years is used to quantify the

above-normal category as the wettest 10 years, the below-normal category as the

driest 10 years, and the near-normal category as those in between. In this case, the

climatological probabilities are 33.3% for any category without any further knowl-

edge. This should be the forecast probability for each category if there is no signal

in the current prediction or if the prediction tools have no skill in that region and/or

season. If skill and signal exists, then the forecast probabilities will differ from the

climatological probabilities (Fig. 11.5). If the signal in the forecast indicates

likelihood for wetter conditions, then the probability for above-normal precipitation

will be higher than 33.3% and the probability for below-normal precipitation will

be less. Alternatively, the forecast can be represented as the probability for exceed-

ing or not exceeding some quantitative value.

One of the most important qualities of probabilistic forecasts is that the

probabilities are reliable, or representative of the frequency of occurrence. The

other important quality is that they are sharp, or differ substantially from the

climatological probabilities. Diagnostics of these forecast characteristics can be

visualized through reliability and attributes diagrams (Fig. 11.6) and quantified
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through reliability and resolution skill scores, respectively [57]. A reliability

diagram shows the complete joint distribution of forecasts and observations for

a probabilistic forecast of an event or forecast category (such as the above-normal

tercile). In a reliable forecast system, the probability assigned to a particular

outcome should be the frequency with which – given the same forecast – that

outcome should be observed. The information supplied by reliability diagrams

includes calibration, or what is observed given a specific forecast (e.g., under and

overforecasting), as well as resolution and refinement which is the frequency

distribution of each of the possible forecasts giving information on the degree

of aggregate forecaster confidence (small inset graph in Fig. 11.6). Reliability

diagrams can further indicate whether there are systematic biases in the forecasts,

such as not predicting enough occurrences of above-normal temperatures. Such

probabilistic verification, such as reliability diagrams also can be useful for

estimating event-specific prediction skill, for example if El Niño events were better

predicted than La Niña events or drought conditions were better predicted than very

wet seasons. A distinction in prediction skill between the cases of high and low

variability calls for further examination of the physical causes of the discrepancy

and whether it is inherent to the climate system dynamics or a shortcoming of the

model(s).

It is a common feature of dynamical model predictions to be overconfident,

indicated by a reliability curve that is more horizontal than the 45� angle that would
indicate a reliable prediction system. For example, an overconfident forecast would

be one in which a forecast that indicates above-normal rainfall is 80% likely in

a given season, but overtime that forecast is followed by observations of above-

normal rainfall 40% of the time. Such overconfidence can arise from errors in both

the forecast signal and the forecast uncertainty.
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Recalibration of predictions and multi-model ensembling are two approaches

used to improve forecast reliability. Multi-model ensembling, which combines the

prediction of several dynamical models, can improve the reliability and overall skill

of predictions in two ways. First, although all models have errors, they do not

necessarily have the same errors, thus combining the models reduces the systematic

errors that would exist in the prediction from a single model. This can lead to

reduced error and thus increased correlation skill in El Niño predictions, for

example (Fig. 11.7) [59]. Similarly, it can increase the spatial coverage for where

there is skill in capturing the predictable signals in the climate. The second

advantage is the improvement in uncertainty estimation by considering the random

errors and different parameterizations of random processes that give rise to the

range of possible outcomes.

Multi-model ensembling can lead to overall better information on the climate

signal and its uncertainty [60], and thus on forecast reliability (Fig. 11.8). Different

approaches exist to combine models. The most straightforward is to treat all models

equally. Particularly for prediction systems with short retrospective forecast
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The diagram compares the forecasted probability of an event (in this case, above-normal winter
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dashed line, a horizontal line represents a forecast identical to climatology, and sloped lines are
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probability events). Typically, a histogram accompanies a reliability diagram (inset), indicating
the number of times that forecasts of various confidence levels were issued (Source: Adapted

from [58])
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histories of about 25 years or less, it will be difficult to discern differences in

forecast quality between comparable models. This is the typically situation with

one-tier prediction systems that use coupled ocean–atmosphere models, because the

ocean observations used in the forecast initialization is only available since the late

1980s. For two-tiered forecast systems that use atmosphere-only models the ocean

temperatures can be predicted statistically, which allows for longer histories of

retrospective forecasts. In these systems, it becomes possible to discern differences
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1980–2001 with respect to lead time after removing the mean bias. The mean skill for all four

cases including February, May, August, and November initial conditions is shown. Black for

observation, red for 10 CGCM multi-model ensemble, blue for the Stat-Dyn forecast, and colored
dots for individual coupled models as shown in the legend, respectively (From [59])
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in regional forecast performance and to use that information to give more weight to

better performing models, which can lead to further improvements in forecast

reliability [61, 62].

An alternative approach to performance-weighting models is to recalibrate the

models prior to combination [63]. Recalibration has the advantage of improv-

ing forecast quality of individual models. It is also more viable for prediction

systems with limited retrospective forecast histories, although a minimum of

about 25 years is still required to identify systematic biases in seasonal-to-

interannual variability. The recalibration of predictions is an attempt to account

for systematic biases in both the signal and uncertainty in the predictions at a given

location. Recalibration can also be used to account for spatial biases in the forecasts

by comparing observed and predicted seasonal climate over several decades [9].

Reliable forecast information may still not provide enough specificity for those

who wish to include seasonal-to-interannual climate forecasts in their decision

models, such as those in the agricultural or water sectors. The spatial mismatch
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of the information, the fact that decision makers in sectors such as agriculture and

water require information at much higher resolution, even if it means greater

uncertainty, is a commonly cited reason for not using the operational forecasts

[64]. There may also exist the desire for greater temporal resolution, such as the

characterization of the weather within the climate that might predict the likely

number of dry spells of a given duration. In some cases, certain weather

characteristics of the seasonal climate may be more predictable than the seasonal

totals (e.g., [65]). One way to address the information mismatch between the coarse

spatial resolution, or the quality of the higher temporal variability, from global

seasonal climate forecasts and the more detailed needs of the end user is through

downscaling techniques. In statistical downscaling, the global climate forecast

provides the input parameters for an empirical model with high spatial resolution.

Statistical techniques can also be used to infer the signal in the weather

characteristics relative to the seasonal mean, based on changes in the large-scale

background climate, such as those empirically related to ENSO [66, 67], or to

changes in atmospheric circulation [65]. In the dynamical downscaling, the global

forecast is used to provide lateral boundary conditions to a high-resolution nested

regional atmospheric model. While it may provide greater detail of the mean

climate by better resolving terrain and coastlines, it has not been robustly

demonstrated that dynamical downscaling improves prediction of the climate

variability relative to the global model. Dynamical downscaling cannot over-

come large-scale errors in the global model driving the nested model, and

in many cases will exacerbate those errors. With increases in computing

power, global climate models are starting to close the gap by providing fine

spatial resolution, and attempting to provide better representation of weather

transients that may be of interest to the end user. However, for the next decade or

so downscaling techniques, particularly statistical downscaling will continue to

add value to seasonal-to-interannual forecasts.

Seasonal-to-Interannual Prediction: Forecast Skill

Forecast skill is a measure of how accurately the prediction system can predict the

observed climate variability or how well the probabilities describe the frequency of

occurrence of particular outcomes. Measures of accuracy between the best guess, or

most likely outcome, of the forecasts and what was observed are often referred to as

deterministic measures, meaning they are concerned with verifying the prediction

for a single specific outcome, such as a prediction for an above-normal temperature

or 2�C warmer than average in the coming season. The metrics for deterministic

quantitative forecasts include the Brier skill score and its decomposition, which

includes anomaly correlations or root-mean squared errors. The quality, or skill, of

deterministic categorical forecasts can be assessed using a variety of measures.

There is no single measure of forecast performance that can indicate all aspects of
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forecast quality [68]. Additionally, forecast producers may be interested in different

aspects of forecast performance than users of the forecast information. The World

Meteorological Organization has compiled a list of recommended deterministic and

probabilistic verification measures for seasonal predictions entitled, The Standard

Verification System for Long-Range Forecasts [69].

Keeping in mind that there are different, complementary measures of forecast

skill, the accuracy of predictions is typically used to estimate the limit of predict-

ability. The limit of predictability is a function of the predictable signal and the

unpredictable chaotic, or noise, component in the climate system. With an ensem-

ble of predictions from a single model or a set of models, the signal and noise can be

estimated from that set of information. The signal would be the predicted informa-

tion that the ensemble has in common and the noise is the range of discrepancy

about the signal (Fig. 11.5). When the forecast is initialized, the ensemble contains

very little noise, but as the prediction proceeds, the chaotic processes in the climate

system lead to divergence of the ensemble members. The limit of temporal predict-

ability is reached once the magnitude of the noise becomes comparable to the

signal. This in part, determines how far into the future the certain aspects of the

climate can be predicted. Similarly, the average signal-to-noise ratio for a given

region, season, variable, etc. describes the expected climate predictability in that

case. Since Nature has only one realization, it is not possible to estimate the

inherent limit of predictability of the climate system [9]. Estimates of the limit of

predictability can be determined in a given prediction system as described above,

but that will be only an estimate, and will be different for different forecast systems.

At best, the most accurate prediction system for a given region, season, variable,

etc. represents the limit of predictability for that case, and should be considered the

lower limit of predictability, as the prediction accuracy is found to be at least that

good and may improve further with improved models and data assimilation

systems.

Given that real-time predictions have been in production for more than a decade

now [1], several properties of forecast skill have emerged for seasonal-to-

interannual predictions. First, predictions of seasonal mean temperature are more

predictable than those for seasonal precipitation totals. This is related in part to the

larger-scale nature of temperature anomalies and the processes behind them. Even

the coarse resolution global climate models can represent fairly accurately the

changes in seasonal temperatures. Precipitation processes and patterns have much

smaller spatial scales and are more affected by local scale features. While the global

models may be able to capture large-scale shifts in regions of convection and storm

tracks, they may have difficulty with the characteristics of storms or local convec-

tive activity. The potential importance of local scale processes on precipitation

variability also means that the noise component of seasonal precipitation variability

is larger than that for temperature. As a result, more ensemble members are required

to estimate the seasonal signal for precipitation than for temperature. The second

robust property of seasonal predictions is that the tropics are much more predictable

than are the extratropics. In the tropics, the atmospheric circulation is more explic-

itly tied to the changes in patterns of surface temperatures, and the noise in the
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resulting atmospheric circulation is relatively small. A third and notable property of

the predictions, which actually applies to predictions at all timescales, is that there

is conditional skill in the expected accuracy. There are times when the initial and

evolving state of the climate system carries a much larger predictable signal than

other times. For seasonal-to-interannual forecasts this coincides with El Niño

events. For seasonal predictions over the United States most predictability derives

from El Niño or La Niña conditions [70]. Similar results hold on a global scale too;

the fraction of land area over which skillful forecasts can be made is up to twice as

large during El Niño or La Niña conditions than in their absence [71]. Moreover,

since these events have an inherent timescale of 6–12 months, or longer, the time

horizon into the future that skillful forecasts can be issued is also expanded.

Seasonal-to-Interannual Prediction: Internationally
Coordinated Efforts

Several internationally coordinated efforts have led to the understanding of sea-

sonal-to-interannual climate variability and its prediction using dynamical models.

One of the earliest was the Atmospheric Model Intercomparison Project (AMIP)

[72]. This project was organized by the Working Group on Numerical Experimen-

tation as a contribution to the World Climate Research Programme. Different

atmospheric models were run with the same observed sea surface temperatures as

boundary conditions for the period 1979–1988. The goal was to identify systematic

errors as well as systematic responses to the boundary conditions across models.

Without such a coordinated effort there had been questions whether the results from

a single model were particular to that model or a more robust response expected of

the climate system. Other coordinated activities followed.

In the late 1990s, experiments were carried out using different atmospheric

models to test the predictability of seasonal climate relative to the variability

of sea surface temperatures. Two important issues addressed in that collection of

research were the relative impact of initial atmospheric conditions predictability of

the seasonal climate and a suggestion that prediction skill could be improved

through a multi-model approach. In the United States five modeling centers

participated in this research under the Dynamical Seasonal Prediction (DSP)

project. On the other side of the Atlantic, 11 different partners throughout Europe

contributed to the Prediction of Climate Variations on Seasonal to Interannual

Timescales (PROVOST) project [73].

Further research on seasonal predictability and the value of multi-model

ensembles was conducted with coupled models from seven European modeling

centers under the Development of a European Multimodel Ensemble system for

seasonal to inTERannual prediction (DEMETER) project [74]. This project also

encouraged research to determine the value of seasonal predictions through their use

in models that use the climate data to make prediction over a wide range of interests,
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from agriculture to health. The next generation of DEMETER was ENSEMBLES,

which continued to advance methods and application of seasonal predictions from

European Earth system models, thus adding complexity to the dynamical prediction

models [75]. The ENSEMBLES project also began to extend those predictions to

decadal timescales. TheWorkingGroup on Seasonal to Interannual Prediction under

the World Climate Research Programme is currently coordinating the Climate-

system Historical Forecast Project (CHFP), which will provide access to a wide

range of hindcasts to evaluate subseasonal-to-decadal predictions of the climate

system, which also aims to quantify the predictability added by elements other than

sea surface temperatures, for example through initialization and prediction of the

land surface, the cryosphere, and the stratosphere [76].

Decadal Prediction (Experiments)

Decadal Prediction: Drivers of Decadal-Scale Climate

Decadal climate predictions sit between the seasonal-to-interannual forecasts of the

next months to a year in the future and the climate change projections of 50–100

years in the future. There are many features of the climate system with timescales

that vary over decades (decadal variability). The dominant drivers of climate

features over decadal timescales are believed to be changing atmospheric composi-

tion, mainly increasing greenhouse gases, and slow changes in ocean circulation

that lead to slow changes in the pattern of sea surface temperatures. The changing

atmospheric composition changes the energy balance of Earth, which leads to

warmer temperatures and other associated climate changes that manifest primarily

as trends. The temperature trends are not spatially uniform. Ice-albedo feedback in

higher latitudes leads to greater rates of warming there than at low latitudes. Land

has a lower heat capacity than water, so the continents warm faster than the oceans.

Ocean dynamics also play a role in the patterns of climate change warming,

particularly in upwelling regions, where the radiative warming is offset by the

upward advection of colder ocean water from depth.

What decadal predictions aim to capture that climate change projections do not

is the predicted evolution of naturally occurring decadal-scale features. Climate

change projections contain these processes and the associated variability, but since

the climate system is not initialized with observations, the decadal evolution will

not be temporally consistent with the observations. So one first test of a model is to

see whether it is capable of simulating the dominant decadal-scale features

observed in Nature.

Decadal-scale variability has been identified in Nature in both the Pacific and

Atlantic Oceans. In the Pacific Ocean the variability is referred to as the Pacific

Decadal Oscillation (PDO), or more correctly Pacific Decadal Variability (PDV).

The pattern of PDV (Fig. 11.8a) has its signature in sea surface temperatures with

11 Climate Predictions, Seasonal-to-Decadal 283



cooler than normal temperatures in the midlatitudes of the North Pacific Ocean and

warmer than normal temperatures in the eastern and central equatorial Pacific

Ocean during the positive PDV conditions [22]. The time series associated with

the projection of sea surface temperature anomalies on this pattern represents the

PDO index (Fig. 11.8b). This sea surface temperature pattern is reminiscent of El

Niño conditions, except that the magnitude of sea surface temperature anomalies is

larger in the midlatitudes than in the tropics, and the tropical sea

surface temperatures have a broader meridional extent. This pattern of sea surface

temperatures is accompanied by sea level pressure anomalies in the North

Pacific. A measure of the time series of changes in North Pacific sea level pressures

is known as the North Pacific Pressure Index (NPPI). It was later realized that there

is symmetry in the Pacific decadal variability such that a similar pattern of cooler

than normal sea surface temperatures and anomalous low sea level pressure is also

found in the midlatitudes of the South Pacific Ocean. The full Pacific view of

decadal variability has been named the Interdecadal Pacific Oscillation (IPO, [77]).

However, the PDO is the more commonly used index outside Australia.

The symmetry of ocean–atmosphere anomalies outside the tropics, and the

resemblance to El Niño, suggests a role for El Niño in driving PDV. It is

also notable that there is considerable year-to-year fluctuation in the PDO

index. It is very difficult to identify in any particular year what phase, positive

or negative, the PDV is in because within the protracted periods in which the

PDV is preferentially of one sign or the other, there exist excursions of

the index of opposite sign that may only last a year or two.

Simple model experiments have shown that El Niño events can affect the positive

phase of PDV [41]. Model analysis suggests an atmospheric Rossby wave train

emanating from anomalous convective heating in the central Pacific leads to anom-

alous low sea level pressure in the region of the Aleutian low, thus strengthening the

westerly trade winds. The strengthened winds lead to cooling through enhanced

evaporation and also drive southward Ekman flow that brings colder water from the

north southward. Those changes in the ocean mixed layer can be sequestered from

the atmosphere from one winter to the next due to changes in the ocean mixed layer

depth and its connection to the surface from winter, when El Niño peaks, the storm

track is strongest and the atmosphere can directly affect the upper ocean, to summer

when the previous El Niño would have decayed, the storm track is relatively weak,

and increased solar radiation stabilizes the upper ocean. The following winter when

the westerly winds of the storm track again increase, the sequestered mixed layer

temperature anomalies reemerge [78]. This reemergence mechanism is

hypothesized to the main way that the year-to-year variability associated with El

Niño and La Niña can be rectified into longer timescale variability. However, other

processes may also contribute to PDV. Some mechanisms that have been proposed

included ocean–atmosphere coupling of a basin gyre mode [25], excitation of

midlatitude oceanic Rossby waves [79], and a complementary, possibly indepen-

dent oscillation driven by the tropics particularly when El Niño events are focused

toward the central equatorial Pacific [80].
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Associated with the decadal changes in Pacific Ocean conditions, decadal-scale

terrestrial climate anomalies have also been identified over the United States [22]

and throughout the Pacific sector [81]. Many of these climate anomalies are

consistent with El Niño-related teleconnection patterns, such as wetter conditions

in the southern tier of the United States and drier conditions over the Pacific

Northwest [82]. Although only a few realizations of each phase of PDV exist in

the instrumental records, the broad pattern seems to be consistent across these

cases. However, because it is likely that El Niño is a dominant driver of PDV,

and is associated with similar terrestrial teleconnections, it is difficult to say with

confidence that the PDV is somehow independent of the mere existence of extended

periods when El Niño events are stronger or more frequent versus when El Niño

events are weaker or less frequent.

Decadal-scale variability in the Atlantic is referred to as the Atlantic Multi-

decadal Oscillation (AMO), or more correctly Atlantic Multi-decadal Variability

(AMV), because there does not seem to be a spectral peak signaling a true oscilla-

tion. Because positive AMV conditions are associated with warming throughout

the North Atlantic (Fig. 11.9), the index of AMV is simply the sea surface

temperature anomaly averaged over the North Atlantic, and it is often detrended

[83]. Other more elaborate means of isolating decadal-scale variability over the

Atlantic have been used (e.g., [24]), but result in very similar time series, so the

simple index is now the one most widely used.

The hypothesized mechanism driving the AMV is associated with changes in the

Atlantic Meridional Overturning Circulation (AMOC). The AMOC brings warm

and salty water from the tropical Atlantic poleward. At high latitudes, cold salty

water becomes denser than the water below it due to heat fluxes from the westerly

storm tracks and brine injection from sea ice formation. The heavy surface water

then sinks and flows back equatorward as North Atlantic Deep Water. The sinking

water is replaced by the surface flow from tropics to high latitudes. If the rate of

sinking increases, the poleward flow of surface water increases, bringing more

warm tropical water into the midlatitudes. This represents an increase in the

strength of the AMOC, and the AMV index becomes positive. If the North Atlantic

water gets too warm or if it freshens the rate of sinking water slows down, and the

rate of transport of warm tropical water poleward slows down. This represents

a decrease in the strength of the AMOC, and the AMV will become negative.

The AMOC is forced on all timescales. Because the Gulf Stream is the western

boundary current of the wind-driven ocean gyre as well as contributing to the

AMOC, changes in the winds will affect the AMOC as well as ocean temperatures.

However, the multi-decadal-scale variability described above is a much slower

process related to the inertia of the overturning circulation and the associated

impact on the density properties of the Atlantic Ocean. Since observations of the

AMOC have become available only since the end of the twentieth century, there is

not enough observational evidence to quantitatively link the sea surface

temperatures of the AMV with multi-decadal variability of the AMOC. However,

the low-frequency variability of AMOC in some models is associated with a pattern

of sea surface temperature anomalies that closely resembles the observed AMV
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pattern [83]. What has not been resolved is what process or collection of processes

can influence the AMOC on long timescales. Some studies point to modification of

the strength and local of the intertropical convergence zone over the Atlantic as

a way to modify the salinity of the water transported from the tropics [84]. Others

suggest that the North Atlantic Oscillation (NAO – also called the Arctic Oscilla-

tion, AO) plays a dominant role by influencing the strength of the winds, which then

influence the rate of convection, or sinking of heavy water, in the Labrador Sea

region with an estimated 10-year lag time [85]. Although this would be a fairly

white noise process, the suggestion is that the ocean integrates the noise into

a longer timescale red noise process, but one that might still carry some predict-

ability due to persistence.

The teleconnections associated with the positive phase of AMV include wetter

conditions over the Sahel and India and drier conditions over northeast Brazil, due

to the northward shift of the intertropical convergence zone toward the relatively

warmer conditions north of the equator [29]. Also the warm tropical North Atlantic

provides more fuel for the growth of tropical storms, and empirically it is seen that

more tropical storms grow to hurricane intensity during the positive, warm phase of

AMV than during the negative or cool phase.

Decadal Prediction: Model Fidelity

The task of judging whether a model captures decadal variability in the Pacific or

Atlantic oceans for the right reason is greatly complicated by the limited history of

observations compared to the timescale of the variability. Since the measurements

of surface temperature and sea level pressure go back to the nineteenth century,

most comparisons are made to these fields. In many cases, the question of model

fidelity is closely tied to examination of the processes involved in producing

the variability in a particular model and to what extent those are observed in Nature.

The difficulty with that approach is as described in the previous section: different

models may not agree on which process(es) dominates, or is even involved.

Different models also may yield somewhat different spatial patterns or spectra

than suggested by the limited observations [86]. A similar situation exists relative to

El Niño in coupled dynamical models [87], and this has not prevented the use of

those models for El Niño prediction. Thus, the most important factor may be simply

whether or not a model is capable of capturing a reasonable representation of

decadal variability in sea surface temperatures, as this is how whatever changes

are occurring in the ocean will be communicated to the atmosphere.

Exactly how best to validate decadal variability in the models is an area of active

research. To date, more work has been focused around Atlantic variability perhaps

because of the recognition of the role of the AMOC in the AMV. The idea is that if

the AMOC is responsible for the AMV, then it is the AMOC that a model must be

able to predict from a given set of initial conditions. The AMOC must then produce

a surface temperature of reasonable resemblance to Nature, and the overlying
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atmosphere must be able to respond to the changes in surface temperature in a way

that captures the observed teleconnections. Again, the difficulty is that very few

realizations of the variability exist in the observational record, although

paleoclimate reconstructions of past temperature or precipitation suggest that, for

example, multi-decadal variability consistent with observed AMV has impacted

regional climate 400–500 years back [88]. But the few realizations of the spatial

pattern of sea surface temperatures makes it difficult to know which parts of the

pattern of anomalies are robust across events and which are variable from one

positive phase to another.

For PDV,most models capture the response of themidlatitude PacificOcean to El

Niño variability. However, they often do not demonstrate the same level of multi-

year persistence through a reemergence mechanism. Different models are also

influenced to differing degrees by other processes hypothesized to contribute to

PDV, including the white noise imposed by variability in the storm track. As a result

the patterns of PDV, such as where the sea surface temperature anomalies are

focused and the magnitude of that temperature variance, also differ among models.

Some modeling studies have shown that at least the atmospheric models can

translate the changes in patterns of sea surface temperature into realistic

teleconnections. For example, using observed heat fluxes from the positive, warm

phase of AMV in the Atlantic Ocean to drive an atmospheric model leads

to decadal-scale changes consistent with observed changes in precipitation over

the Sahel and India and also in the wind shear over the tropical North Atlantic

relevant to hurricane formation (Fig. 11.10) [30]. Thus as with El Niño, if the sea

surface temperatures can be predicted then there may be at least some predictability

of the associated terrestrial climate impacts.
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Decadal Prediction: Prediction Experiments

Experimental decadal prediction has only recently begun. Decadal prediction

differs from climate change projections in the initialization of the climate system,

with particular emphasis on initialization of the oceans. The first paper

demonstrating actual retrospective, decade-long, initialized forecasts was published

in 2007 [3]. They showed improvements in prediction of globally averaged

temperatures relative to the un-initialized climate change projections from the

same model. However, it was not clear how much predictive information is

available at the regional scale from these predictions, and it is not obvious what

the main drivers are behind any predictive information they may yield.

The prediction systems for decadal prediction are essentially the same as for

seasonal-to-interannual prediction. They require observations, models, and their

connection through data assimilation systems. One of the main differences is the

requirements on the observations: seasonal-to-interannual predictions mainly need

information about the upper several hundred meters of the tropical oceans; decadal

predictions require information about the global oceans, including the middle and

high latitudes and also to much greater depths to capture information on the lower

branch of the AMOC.

Observations needed to produce initial ocean conditions are incomplete. The

creation of retrospective forecasts of decadal variability at least several decades into

the past requires information on salinity fields that just do not exist. This has tested

the limits of ocean state estimation with limited data, and the estimates even for

large-scale averages, such as the average salinity anomaly in the upper 700 m of the

midlatitudes of the Atlantic Ocean, can vary greatly. The uncertainty among

datasets for upper ocean salinity anomalies on basin scales is larger than the

variability within a single dataset [89]. Since the beginning of the twenty-first

century, however, the Argo program of drifting buoys has provided unprecedented

measurements of the upper 2 km of the global ocean. The floats measure tempera-

ture and salinity profiles as they descend and ascend the water column about every

10 days. There are currently over 3,000 floats reporting data through satellites

(Fig. 11.11). Even with good observational data coverage of the global oceans

there will still be challenges in merging those data efficiently with models through

data assimilation systems to account for both mean biases and biases in space-time

variability.

The first step in exploring decadal prediction has been through perfect model

studies. In perfect model studies, a free-running integration of the model is taken as

truth; this integration assumes the role of the “observations.” Ensemble members

are set up to start from a particular point in the free-running integration with small

perturbations to the initial state, representing the uncertainty in initial conditions.

The ensemble members are then integrated forward to see how well they can track

the “truth” of the free-running integration. In this experimental setup, the

“observations” are perfect because since they are taken from the model they are

known everywhere, and the model is perfect, because it is dynamically consistent
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with the “observations,” which are just a snapshot from the model. Similar

experiments toward the design of assimilation systems test the insertion of these

perfect “observations” but sampled only at locations that the actual observing

network could provide data. The idea is to see if in this most idealized

of circumstances – perfect observations and perfect model – the model is able to

predict the evolution of the “observed” variability taken from the free-running

integration. If not, it implies that in the particular model, too much noise exists to

extract a predictable signal. The situation will only be worse in a real forecast

setting with imperfect observations in the model that is also not perfect.

A number of these perfect model prediction experiments have been carried out

since the early part of the twenty-first century. In a coordinated experiment of five

European modeling centers, called PREDICATE, two to three experiments were

carried out by each group starting their ensemble predictions at different points in

time to explore the prediction dependence on the variability of the AMOC. In all

cases there was some skill in predicting the evolution of the AMOC (Fig. 11.12).

The experiments also demonstrated conditional predictability much like is seen

with El Niño predictions. The perfect model predictions started when the AMOC

was stronger than average yielded predictability of the AMOC to about 10–15 years

into the future; predictions started with a weak AMOC predicted the future evolu-

tion of the AMOC only 2–5 years into the future [90]. The PREDICATE

experiments were based on model control runs, meaning that atmospheric compo-

sition was held fixed. More recent perfect model studies explore the relative

predictive signal due to the initial conditions versus due to radiative forcing from

increasing greenhouse gases [91]. Several common lessons are beginning to emerge

from these studies. One is that the predictable time horizon, when the signal in the

ensemble of predictions is larger than the uncertainty across ensemble members, is

longer for midlatitudes than for the tropics due to the dominance of year-to-year

variability in the tropical oceans. Another lesson is that upper ocean heat content is

more predictable than sea surface temperature due to the impact of weather noise on

surface temperatures, while the upper ocean temperatures are more reflective of the

slow changes in the atmospheric circulation. Thus even if the AMOC is predictable,

the surface temperatures connected with that feature will be less so, but it is this

surface expression that is necessary for predicting the terrestrial climate impacts.

Finally, it appears that the external forcing due to increasing greenhouse gases

becomes comparable to the information from ocean initial conditions by 10 years

out for the midlatitudes and less in the tropics. Again, these are perfect model

results. However, such results only indicate the upper limit of predictability for

a particular model, and even though the similar results have been found across

several of the current models, it is not to say that different results might be possible

from better models.

To date, only a few pioneering attempts have been documented of “retrospective

forecasts,” which are decadal predictions initialized with real observed

initial conditions from some time ago. These prediction experiments not only

used different models, they also used very different methods to obtain the initial

conditions: one initialized with only sea surface temperatures [4], one initialized the
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observed data for ocean temperature and salinity anomalies as well as atmospheric

anomalies [3], the third nudges their model toward the observational analysis using

a different procedure [5].

The results are mixed. All claim to gain benefit from initialization of the climate

system compared to the climate change projections that consider only changes in

the atmospheric composition. Two of the studies [3, 5] show improvement in global

mean temperatures compared to the un-initialized climate change projections; the

other study [4] slightly degrades their prediction of global mean temperatures with

initialization. All claim, or at least imply, that much of the decadal variability that is
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captured is due to initialization of the AMOC. Two of the studies [4, 5] demonstrate

improved temperature predictions over the eastern North Atlantic region, but for the

study that also quantifies the impact of initialization on prediction errors [4] shows

larger errors for North Atlantic sea surface temperature in the initialized

predictions. The same two studies that show improved correlations for North

Atlantic temperature predictions claim that it is due to improved prediction of the

AMOC. Since there are no observations of this circulation feature in the twentieth

century, the conclusions are based on comparison with the analysis responsible for

the initial conditions, which constitutes something like a semi-perfect model result

rather than a verified prediction.

Two of the early prediction experiments [3, 4] do show some improvement in

regional temperature predictions over land, but how much improvement is not

easily discerned, and is difficult to compare across the experiments. There are

also some regions where the temperature predictions are less skillful. Maps of

skill, or differences in skill, are not provided for precipitation in these studies.

These papers are only the beginning of assessment decadal prediction skill.

What these results do or do not show must be viewed with caution though.

Several difficulties stand in the way of more conclusive estimates of predictability

and prediction skill for decadal climate variability. One difficulty is that the current

sets of experiments, and even those that will soon be available (see Decadal

Prediction: Internationally Coordinated Efforts) have very few ensemble members.

Small ensemble size leads to uncertainty in the predicted signal, and provides very

little information about the uncertainty due to uncertain initial conditions in

a particular model. Multi-model ensembles will likely be more problematic for

decadal predictions given the wide range of approaches to initial conditions; the

prediction skill can also be compromised by the data assimilation component, even

if the models are of equally high quality. Data assimilation and the development of

initialization techniques for current and retrospective decadal predictions require

considerable research investment. What experiments do exist and are likely to exist

in the next several years will have limited realizations of decadal-scale variability,

complicated with the evolution of that variability against a changing background

climate due to increasing greenhouse gases. That combined with limited

observations, not only of the subsurface ocean but also of terrestrial climate for

much of the world, makes verification of retrospective forecasts extremely

challenging.

Decadal Prediction: Internationally Coordinated Efforts

Several international efforts have been organized since the beginning of the twenty-

first century to ascertain the predictability and prediction skill of decadal climate

variability by systematizing the investigation across many models. The PREDI-

CATE project, which was referred to above, provided a systematic comparison of

the “perfect model” predictability in five European coupled models. They found
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potential predictability in the AMOC (Fig. 11.12), and also to some extent in

surface air temperatures, that exceeded damped persistence [90]. The PREDICATE

project examined the potential predictability of the response of atmospheric models

to prescribed sea surface temperatures, such as those associated with the AMV, and

found good consistency across the models suggesting potential predictability if

the pattern of SST was itself predictable [92].

A more recent activity, also drawing on the European modeling and prediction

community is ENSEMBLES ([75]; http://ensembles-eu.metoffice.com/). This was

a 5-year climate change research project begun in 2004, and involving 66 research

partners across Europe. The project generated retrospective climate forecasts from

seasonal to multi-decadal scales, provided local interpolation and/or downscaling,

and sought to apply that information to sectoral outlooks, such as agriculture,

health, and energy, across Europe.

The most extensive collaboration on decadal prediction experiments is the

coordinated experiments designed and being run for the IPCC Fifth Assessment

Report [93]. Together with the climate change projections for the next IPCC report,

these decadal prediction experiments will be part of the Coupled Model Intercom-

parison Project-5 (CMIP5). There is a minimal set of runs at the core of the

experimental design that requires hindcasts initialized for near the end of 1960

and every 5 years after that to 2005, in each case predicting 10 years past the

initialization. Of those 10 sets of experimental start dates, a subset – those

initialized at 1960, 1980, and 2005 – will be run out for 30 years. These experiments

are to be run with a nominal ensemble size of 3. Of the dozen or more international

modeling and prediction centers that will participate in the decadal prediction

experiments of CMIP5, several will run with larger ensemble sizes and more start

dates.

What is not being coordinated for the CMIP5 decadal prediction experiments is

the data assimilation or initialization strategy. The guidelines only require that the

predictions begin with a state of the climate system representative of the

observations at that time. Thus, although there will likely be prediction systems

that perform better than others, considerable analyses and further research will be

required to assess which part of various prediction systems are responsible for their

relative success or failure.

Future Directions

Although seasonal prediction is a relatively mature activity, considerable room for

further improvement exists in the production, provision, and application of seasonal

climate forecasts [9]. Dynamical models have many recognized biases in their

tropical climate, such as tropical upper ocean structure and mixing, a tendency to

produce a double intertropical convergence zone in the Pacific, and poor simulation

of the stratus clouds that sit near the coasts along the eastern subtropical oceans.
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These problems are probably not unrelated, but they have proved difficult to solve.

These tropical biases impact the realism of predicted El Niño events, which

introduces biases into the associated teleconnections. Although much of the discus-

sion in this chapter has focused on the climate predictability that arises from

tropical SSTs, and especially El Niño, other factors in the climate system that are

not well represented of initialized in models may carry additional prediction skill.

Such processes include land characteristics [36] such as soil moisture, snow, and

vegetation, as well as sea ice, variability in the stratosphere [94], and intra-seasonal

variability such as the Madden–Julian Oscillation [95]. The provision of seasonal

forecasts has improved since the 1990s; it has become common practice for

operational centers to provide probabilistic information. However, that information

is not sufficient for many decision makers if it is not accompanied by information

on how the forecast is constructed, the past skill of the system, and more flexible or

varied information that would allow sophisticated users to incorporate the data into

quantitative decision systems. These types of best practices are much easier to

address than model biases. Also, if addressed they would allow for broader use of

past forecasts for research to underpin the use of current forecasts for decisions.

Decadal prediction is still in the phase of research and experimentation. Thus,

decadal prediction itself should be considered a future direction of climate predic-

tion. Although there have been some pioneering studies that present results from

decadal prediction systems, there is no community-wide agreement on how decadal

prediction systems should be constructed, what information can be provided, with

what accuracy, and even how best to verify the information that is predicted [2]. The

internationally coordinated set of experiments under CMIP5 should contribute to

a better understanding of these prediction systems and their potential. These experi-

mental predictions will build on the current limited understanding to illuminate the

relative information provided by initial conditions, in a real forecast setting, com-

pared to the radiative forcing from current and future atmospheric greenhouse gas

increases. The prediction experiments taken together should also help identify

model biases that are of particular concern to decadal variability and set priorities

on the future development andmaintenance of the ocean observing system. Also, the

added complexities of data assimilation for decadal prediction that will encompass

longer timescales, greater depths in the ocean, and more need for salinity informa-

tion, which was not available for most of the ocean prior to the twenty-first century,

will lead to innovations in data assimilation systems (e.g., [96]).

The seasonal and decadal prediction systems share many common elements. In

particular, they use the same type of dynamical models, and they both rely heavily

on ocean initial conditions interpreted through data assimilation systems. They are

both potentially impacted by external forcings such as solar variability and

volcanoes. The same model biases that affect seasonal prediction skill will impact

decadal predictions also. As the research community develops improved dynamical

models, that better represent the Earth system in all its complexity, it will benefit

climate predictions at all timescales. The additional observational data and more

sophisticated data assimilation systems that are required for initialization of decadal

predictions will provide more information of the ocean state that could be relevant
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for seasonal predictions as well. Already, some efforts to create retrospective

seasonal predictions are being run farther into the future to investigate the ability

of those systems to predict interannual-to-decadal climate variability. On the other

side, retrospective decadal predictions that will contribute to the CMIP5 database

already predict through the seasonal timescale.

The larger vision for the future direction of seasonal and decadal prediction is

the union of the two efforts. This has been called “seamless prediction” [97, 98],

which seeks the seasonal predictions to both the longer-term decadal predictions as

well as the shorter-term weather forecasts. Initial steps in bridging the weather and

seasonal timescales have been made (e.g., [97]), and since the observational and

data assimilation systems are in place and have been well tested for these

timescales, it is a sensible starting point. The joining of seasonal and decadal

prediction scales would appear to be developing naturally as part of the evolving

research into climate variability, predictability, and prediction on these timescales.
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