
Chapter 10

Climate Change Projections: Characterizing

Uncertainty Using Climate Models

Ben Sanderson and Reto Knutti

Glossary

Bayes’ Theorem A law in probability theory relating the probability of

a hypothesis given observed evidence to the often easier

to characterize probability of that evidence given the

hypothesis. The theorem states that the conditional “poste-

rior” probability of an event A given an event B is equal to

the “prior” probability of A multiplied by the likelihood of

B given A is true, normalized by the prior probability of B.

Climate

sensitivity

The equilibrium global mean near surface air temperature

response in Kelvin to a sustained doubling of the atmo-

spheric carbon dioxide concentration.

CMIP-3 The CoupledModel Intercomparison Project Phase 3, a set

of coordinated model experiments using General Circula-

tion Models from the world’s major modeling centers.

Detection

and attribution

A process whereby spatial “fingerprints” associated with

individual climate forcing factors (such as aerosol or

greenhouse gas concentrations) are identified and used

to quantify whether an observed change exceeds the
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range of natural internal climate variability (detection)

and to attribute it to different causes, that is, different

forcings (attribution).

Empirical model A model based on fitting empirical data, and thus makes

no attempt to justify its representations of the system with

any physical basis.

General circulation

model (GCM)

A three-dimensionalmathematicalmodel for the atmosphere

and possibly the ocean, land, and sea ice.

Initial condition

ensemble

A number of simulations using a single climate model,

each with a small, unique perturbation to the initial state.

Last glacial

maximum (LGM)

A period in the most recent ice age lasting several 1,000

years, peaking approximately 20,000 years ago at the

maximum extent of the ice sheets.

Lead time The period in between the time at which the forecast is

made and the time to be forecasted.

Multi-model

ensemble (MME)

A collection of structurally different models from a range

of institutions used to perform a coordinated set of

experiments.

Parameter space The multidimensional domain created by considering the

possible values of a number of parameters within a model.

Perturbed

physics ensemble

A set of climate simulations generated by taking a single

physical model and altering uncertain parameters within

a range of plausibility.

Prior probability

(marginal probability)

The probability of an event before any additional data is

considered in a Bayesian sense.

Posterior probability The probability of an event after considering additional

relevant evidence in a Bayesian sense.

Systematic error The difference between a model simulation and

observations or a poorly represented process which is not

reducible by parameter tuning.

Definition of the Subject and Its Importance

The atmosphere, ocean, land surfaces, and ice sheets of the Earth are highly

complex and coupled systems, with physical laws which describe behavior from

the microscopic to the planetary scale. General Circulation Models are computa-

tional analogs for these physical systems, which can be used to study how these

systems might behave when boundary conditions are changed (e.g., by increasing

the concentration of atmospheric greenhouse gases).
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Inherent in the design of such models are a myriad of choices when deciding

which components of the system are to be modeled and how to represent processes

which cannot be currently modeled explicitly. In order to have any confidence in

the ability of our models to have value for simulating aspects of future climate

change, it is necessary for those models to reproduce observable properties of the

physical system. However, model errors in the simulation of the past or present are

likely to be smaller than errors in future projections because model developers can

use observations and historical records in the development of their code. Addition-

ally, some processes may not be observable or testable yet, because they might only

take place in a warmer (or otherwise changed) world.

One way to characterize at least some of the uncertainty in future projections is

to produce an ensemble of climate simulations, each making different but reason-

able assumptions about their representation of physical processes.

In recent years, a number of groups in the international climate science commu-

nity have produced General Circulation Models of the earth system, each making

different choices about model complexity, resolution, and parameterization of

processes which occur at scales finer than those resolved. By conducting coordi-

nated experiments with each of these models, it has become possible to examine

some of the effect that such choices have on uncertainty in future climate

simulations. However, the sheer volume of data and range of models available

from such an ensemble presents a new challenge for the science to address: How

can a spread of non-independent “best guesses” be combined to produce meaning-

ful statements of uncertainty which are relevant to climate-related policy decisions?

Introduction

In 1979, Jule Charney chaired a committee on anthropogenic global warming,

producing a report [1] providing a brief overview of the state of the science of

climate change. At the time, two General Circulation Models were available for

consideration, one led by Syukuro Manabe and the other by James Hansen. The

report produced an estimate for the climate sensitivity (the equilibrium global mean

temperature change to a doubling of the atmospheric carbon dioxide

concentrations) based on the mean result of these two models. In comparing the

predicted future climate of these two models, the report stated:

We conclude that the predictions of CO2-induced climate changes made with the various

models examined are basically consistent and mutually supporting. The differences in

model results are relatively small and may be accounted for by differences in model

characteristics and simplifying assumptions.

This, in many ways, represents the first effort to combine multiple results from

an ensemble of climate model simulations, and the statements made using those

models are still relevant to ensemble modeling. A better understanding in the

uncertainties in the simulations and increased confidence can be claimed if an
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ensemble of somewhat independent models produces common features in its

simulations, and if the origins of the differences between simulations may be traced

back to physical characteristics.

When presented with a range of simulations of future climate, one must make

judgments on many levels on how that ensemble should be interpreted: How should

model agreement, or lack of it, translate into a degree of confidence in the simulations?

Should all models be treated equally, and if not then how should one distinguish

between them? If some processes are absent from some or all of the simulations, how

can the projections be updated to account for these “known and unknown unknowns”?

Should each ensemble member be interpreted to be an estimate of the “truth” with

some unknown error, or should the “true” earth system be considered as a potential

member of the ensemble? Although some of these questions verge on the philosophi-

cal, the judgments made in answering them can have large effects on the results

themselves that are obtained and the degree of uncertainty in those results.

In recent years, there have been systematic efforts to explore and characterize

uncertainty using large ensembles of increasingly complex models of the earth

system. These model simulations have been coordinated and analyzed to help in

characterizing climate change in a series of assessment reports for the Intergovern-

mental Panel on Climate Change (IPCC). In 1990, 1995, 2001, and 2007,

a selection of GCMs were assembled from various major modeling groups around

the world to compare simulations of past, future, and other idealized scenarios of

climate change. Through the successive decades, model complexity and scope have

increased; the early GCMs of Manabe [2] and Hansen [3] modeled atmospheric

dynamics and radiative transfer, with a simplistic representation of the hydrological

cycle. By the time of the First Assessment Report of the IPCC [4] (FAR) in 1991,

models included clouds, a land surface model, and prescribed ice cover. For the

Second Assessment Report [5] (SAR), some models also included a representation

of the ocean and interactive sea ice. In the Third Assessment Report [6] (TAR),

some models considered the effects of volcanic eruptions and aerosol emissions,

with a fully dynamical representation of the oceans. By the time of most recent

Fourth Assessment Report [7] (AR-4), some models were beginning to include an

explicit representation of the carbon cycle in the earth system. Today’s models

continue to model additional components of the earth system, such as interactive

vegetation, dynamically resolved ice sheets, a coupled carbon-nitrogen cycle and

full atmospheric chemistry. In parallel with all of these improvements, the last few

decades have also seen a continued increase in model resolution. Where the models

used in the FAR split the earth into cells as large as 500 km on a side, models for the

AR4 can resolve at a scale of a few tens of kilometers.

This entry focuses on the advantages and additional complexities which one

must consider when studying a range of different model simulations. Rather than

giving a comprehensive description of the results of the models assessed in the

successive generations of the IPCC, this entry will discuss the added technical and

conceptual challenges encountered when considering the results of a range of

non-independent models and how a range of simulations may be combined into

best estimates and uncertainties for future climate evolution.
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Projection Uncertainty and the Need for Ensembles

Empirical and Physical Models

In 150 AD, Ptolemy devised a model of the motion of planets in the solar system by

describing a system of concentric, geocentric circles (or “deferents”) on which were
mounted smaller circles (“epicycles”) on which the planets themselves were

mounted. This system thus had a large number of degrees of freedom (the diameters

and speeds of rotation of each of the deferents and epicycles), which could be finely

tuned to reproduce the motions of the bodies in the night sky. Such was the

predictive power of this approach, that variations of this simple model were

accepted until Copernicus’ heliocentric model was published in 1543. Although

Copernicus’ model fits the established view of the universe more closely, both of

these models were empirical in that they were not based on any physical principles

at that time. However, even without a physical basis, Galileo was able to validate the

Copernican model by studying the phases of the planet Venus – which was only

consistent with the heliocentric formulation. It was not until Newton’s law of

universal gravitation that the model could be given a physical underpinning.

Any model of a physical system is an approximate representation of the truth. It

should be able to reproduce some behavior of that system, and it might do this

empirically like Ptolemy’s model or by explicitly simulating physical processes

within the true system like an orbital system based upon Newtonian gravitation.

A model, whether empirical or physical, cannot ever be validated in the strict sense

of showing it to be a wholly correct representation of the true system; it can only be

evaluated by reproducing some output not used in the tuning of the model itself.

This was true of Galileo’s observation of the phases of Venus – information not

used in the tuning of the Ptolemic model. However, any empirical model becomes

very sensitive to changing boundary conditions. For example, if the mass of the Sun

were to instantly double, the Copernican model of the solar system would be a very

poor approximation of planetary motion, whereas a model based upon Newtonian

mechanics would capture enough of the necessary physics to remain useful.

These fundamental principles are relevant to methodologies for simulating the

climate today. If the simplest, zero dimensional empirical model of the climate is

taken to be:

C
dT0

dt
¼ F0 � lT0

where T 0 is the global mean temperature difference from an equilibrium state, F 0 is
the additional radiative forcing to the planet (i.e., the change in the top of atmo-

sphere radiative balance caused by a forcing, e.g., increased CO2), C is the effective

heat capacity of the system, and l is the global sensitivity parameter. This equation

has two free parameters, C and l which may be tuned such that the model can fit an

observed past time series of F 0 and T 0, that of the twentieth century, for example.
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The model can then be evaluated by predicting a previously unseen time period,

such as the last glacial maximum. This evaluation, if successful, would give more

confidence in the model but would not necessarily make it trustworthy for

a prediction of the future – where the boundary conditions are outside those seen

in both the training and validation period.

The added advantage of using a GCM to simulate future climate is that model

simulations are in theory more trustworthy because they are based upon physical

principles, which it is believed can reproduce observed climate by coupling under-

lying physical laws that are known to be true. However, this view is often overopti-

mistic; although some components of the modeled climate, such as the equations of

motion in the atmosphere or the instantaneous radiative forcing due to a change in

atmospheric carbon dioxide concentrations are well understood and consistently

implemented in different GCMs, there are other processes such as convection

which cannot explicitly be resolved with current computing resources. These

processes and their effects on the large scale climate must be approximated with

uncertain parameters that must be estimated by tuning the model to reproduce some

observed features of the climate. What this means, in practice, is that a GCM is

neither only an empirical nor an explicitly physical model; it is a hybrid of the

two where model developers face many arbitrary choices in parameterizing pro-

cesses which cannot be explicitly resolved. The necessity for the tuning process

reintroduces some of the problems encountered with an empirical model, with the

possibility of false confidence in model performance by over-tuning the model to

reproduce past climate. The ambiguity in these parameterizations justifies the

existence of multiple models for the same purpose [8]; each of these models is

seen as a plausible approximation of the climate system given the imperfect

understanding, the uncertainties in observations and the computational constraints.

Types of Uncertainty and the Need for Ensembles

Although weather and climate simulations share some properties (sometimes they

are conducted with the same model), the limiting uncertainties are very different.

Climate represents the distribution of all possible states in which one expects to find

a system, whereas weather is the specific evolution of the system from a given

initial state. A model-based weather forecast is a prediction, in that the initial state

of the simulation is as close as possible to observations and the absolute errors grow

rapidly afterwards. In weather prediction, these errors occur as specific weather

systems evolve from the initial state. Because the atmosphere is a chaotic system,

very small errors in the estimate of the initial state can result in very large

differences in the distributions of weather systems a few days later. Initial condition

uncertainty is evaluated by repeating simulations with a range of slightly different

initial conditions to form “Initial Condition Ensembles.” The spread of these

ensembles initially grows rapidly but eventually saturates when the “memory” of
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the initial state is lost (this timescale is longer in the oceans, perhaps up to 10 years

for North Atlantic ocean temperatures [9]).

On decadal to century timescales, the mean and spread of an initial condition

ensemble represents a projection of the future climate state, although this spread is

only a small fraction of the total error (sometimes known as “uncertainty of the first

kind”). The second kind of uncertainty relates to the boundary conditions of the

problem, some of which are naturally occurring such as the level of incoming solar

radiation or volcanic activity, while others are dependent on anthropogenic factors

such as the future emissions of greenhouse gases or aerosols. To address this

uncertainty, one must perform a range of simulations using different plausible

scenarios for changes in boundary conditions. The results of any simulation are

therefore conditional on assumptions made about future human behavior. There is

currently little real skill in forecasting future volcanic activity and changing solar

activity so simplistic but plausible scenarios for these quantities are often used

(such as repeating past values). However, in most future scenarios these represent

a relatively small fraction of the total anthropogenic climate forcing.

Figure 10.1 shows the relative sources of error in a climate model projection as

a function of the lead time [11]. For lead times of less than a decade, the uncertainty in

the initial state combined with chaotic error growth and natural patterns of variability

are the dominant sources of error but on the scale of several decades or more, it is the

future emissions scenario which dominates the uncertainty. Predictions on all

timescales, however, are subject to model uncertainties. These arise when a climate

model contains parameterizations for unresolved or missing processes. Parameter-

izations take large-scale quantities resolved by the model, such as temperature, wind

speed, and humidity, and relate them to unresolved processes, such as convectivemass

flux and cloud profiles. Although these parameterizations are usually constructed from

physical underpinnings and evaluated with observed data, they introduce some

unavoidable uncertainty when a range of parameter values might be physically plausi-

ble.GCMsare often subject to a tuningof parameter values to reproduce features of the

observed climate, but with tens or hundreds of uncertain parameters this process is

time consuming and can yieldmultiple solutions because of the computational cost,

a systematic tuning of all parameters is unfeasible.

One method of quantifying the parameter uncertainty problem is to construct

a “Perturbed Physics Ensemble” (PPE) using a single GCM. This process has been

attempted using several major climate models [11–13] and involves taking a subset

of important unknown parameters within the GCM and perturbing them within the

bounds of physical plausibility. Such experiments might perturb, for example,

a parameter which states the necessary humidity required for the formation of

cloud. By varying this parameter, one can change dramatically how the model

distributes clouds both in the present day and the future. These changes can affect

the strength of global feedbacks which can change, for example, the amount of

warming that the model predicts for a given rise in greenhouse gases. An example

of a PPE is the “climateprediction.net” experiment [13], which used idle time in

volunteer’s computers to perform perturbed simulations of future climate.

Incorporating this range into an uncertainty estimate for predictions of future
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climate requires a framework for joint consideration of each model’s performance

in simulating past and present climate as well as its future response.

The remaining model uncertainties are due to so-called “systematic” or structural

errors arising from the model design, that is, the choices of which processes to model,

the resolution of the model, the numerical schemes, and the specific form of the

parameterization scheme. The structural differences between different GCMs provide

a lower bound on the extent of the structural difference between any one GCM and the

true climate system, but in reality the models in an ensemble such as those used for the

IPCC reports share many common properties in terms of resolution, numerical

methods, missing components, and parameterization schemes which might make all

themodels subject to similar errors. Nevertheless, considering a range ofGCMswhich

make different modeling assumptions is an essential step when evaluating the robust-

ness of any prediction of future climate change because it places a lower bound on the

uncertainty arising from the choices made by model developers.

Multi-model and Perturbed Physics Ensembles

When making predictions of a future climate state, there is a wealth of evidence to

suggest that considering a combined prediction using multiple, somewhat indepen-

dent models yields more accurate results than any single model [14–16].
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Fig. 10.1 A figure showing the fractional sources of uncertainty in a climate model projection as

a function of time. The orange “internal variability” line shows the errors due to uncertain

knowledge of the initial state of the system, while the dotted line shows the potential reduction

in error if effort is made to assimilate ocean observations into the model at the start of the

simulation. The green line shows the fractional error due to the unknown future emissions of

climate altering gases, while the blue line shows the error due to the model imperfections. The

boxes show where different types of uncertainty are dominant for a projection of future climate

(Reproduced from [10])
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Additionally, the spread of simulations provides a measure of robustness in the

prediction. The following section describes some reasons for the increased perfor-

mance of multi-model and perturbed physics ensemble forecasts, together with

some of the complexities arising from their analysis.

Range of Ensemble Responses

The spread of results from an ensemble of climate simulations is dependent upon

the experimental design, or lack of it. A perturbed physics ensemble (PPE) has the

luxury of allowing some control of the distribution of models in the parameter space

of the model, though the structure of the underlying model places a fundamental

limit on the range of observable behavior in the ensemble. For example, if a PPE is

created by perturbing cloud parameters in a GCM which has no parameterization

for cirrus clouds formed by gravity waves, then there is no way that such an

ensemble can include uncertainty about that process. Designers of such

experiments must also be aware that the decisions of how to sample the parameter

space of a model will directly influence the distribution of future climate

simulations [17]. In contrast, multi-model ensembles (MMEs) such as the Coupled

Model Intercomparison Project (CMIP-3), explore “systematic” model differences,

which sample models with different representations of the physical system, rather

than simply varying parameters in a single model. These are “ensembles of oppor-

tunity” where multiple modeling groups run coordinated experiments but the

ensemble itself is not sampled in any systematic fashion. Nor is the ensemble

randomly sampled because each modeling group will tune their model to minimize

model differences from observations, thus creating an ensemble of “best-guesses.”

This is quite different from the PPE case where the model is intentionally detuned

to produce a wide range of behavior. Evidence for this can be seen by examining the

spread of climate sensitivity in both a multi-model and a perturbed physics ensem-

ble (Fig. 10.2). When considering a range of observational constraints on climate

sensitivity, it is apparent that the multi-model values tend to cluster about the most

likely value, whereas the perturbed physics ensemble contains models which span

the full range of uncertainty in climate sensitivity. Although impossible to verify, it

also is possible that there is also a component of social anchoring [18] which draws

multi-model sensitivities toward the mean value as any group which finds their

model to be an outlier may have to defend why this is the case, whereas a model

with the consensus value of sensitivity is less likely to be questioned.

The Ensemble Mean State

In various fields, it has been shown that the combined performance ofmultiple models

can exceed that of an individual ensemble member. Examples of this can be seen in

models of crop yield [20], diseasemodeling [21], and even in the optimization routines
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used for movie recommendations based upon past viewing choices [22]. Similarly in

seasonal climate predictions, it has been shown that the multi-model ensemble means

yield better forecasts, in general, than using only initial condition ensembles from

a single model [16]. A multi-model study incorporating a set of initial conditions for

each model is often referred to as a “super-ensemble.” The accuracy of the model

mean often performs best in multivariate applications, that is, a single model may

show increased skill in predicting one particular diagnostic, but when many variables

are considered in the samemetric the ensemble mean prediction tends to show greater

skill than any individual model [23].

This effect can also be seen in GCM simulations of recent past climate.

Figure 10.3 shows successive generations of the CMIP ensemble evaluated using

a multivariate error metric comparing twentieth century observations to model

simulations of that period for a variety of model diagnostics. The figure shows

that model errors in simulating the current climate have decreased over time but

also that for each generation of the ensemble, the multi-model mean results in

a model-data discrepancy almost as good, or better than the best performing

ensemble member. Various studies have found that both in detection and attribution

studies [24] and in simulations of recent climate [25] that a multi-model mean

provides a better multivariate simulation than any individual model.

Combining multiple lines of evidence

Instrumental period

0 2 4

Climate sensitivity (K)

6 8 10

Current climate mean state

Last millenium

Volcanic eruptions

Last glacial maximum (data)

Last glacial maximum (models)

Proxy data from millions of years ago

Climateprediction.net
CMIP–3

Fig. 10.2 Distribution functions of climate sensitivity (an estimate of the equilibrium response of

a model to a doubling of CO2) for models in the CMIP-3 ensemble (hinting at the range of

responses from an MMF analysis), compared with a selection of models from the

climateprediction.net project (hinting at the range of uncertainty from a PPE analysis). Box and
whisker plots show estimates of the most likely values, together with 66th and 90th percentiles of

likelihood for climate sensitivity taken from various lines of observational evidence (Adapted

from [19]). Histograms represent the fraction of models in each 0.5 K bin of climate sensitivity for

the atmosphere-only components of 19 models in the CMIP-3 archive and for a 2,000 member

subset of the climateprediction.net ensemble [13]
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This approach is common in the reports of the IPCC, where an unweighted mean

of future model simulations is used to show a “best-guess” simulation of future

climate, while the degree of model spread is used to estimate some measure of the

significance of the result. There are more sophisticated methodologies that one may

use for model combination, involving Bayesian methodologies [27] or model

weighting [28], but the correct implementation and interpretation of such studies

is subject to some debate. It has been shown that the ranking of model performance

within a multi-model ensemble such as CMIP-3 is often highly dependent on the

choice of metric used to evaluate the model. A metric based on the model’s ability

to reproduce observed variability will produce a different ranking than a metric

which evaluates the model simulation of the mean state [30], and the performance

of different models on these two metrics are very weakly correlated (Fig. 10.4). In

addition, violation of the model “democracy” (one model, one vote) in the IPCC

process is potentially controversial, as choices of how to weight models could be

interpreted as a political statement [31].

The question of why multi-model means perform better than individual models

is a complex one. Certainly, the mean is not in itself a self-consistent representation

of a physical system and is therefore not subject to many of the restrictions that

apply when tuning one model to reproduce an observed climate. As an example,

a single model may be tuned in different ways to reproduce two different observed

values “A” and “B,” but it might be impossible to tune the model to reproduce “A”

and “B” simultaneously. However, if different models in the ensemble make

different choices about the relative importance of “A” and “B,” it is likely that

the ensemble mean will be close to the observed values in the case of a large

ensemble. Clearly, real GCMs have a large number of observable diagnostics to
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reproduce and a large number of tuning parameters, but it remains true that the

multi-model mean is less restricted by model structure than any individual model in

the ensemble. Another interpretation is that some of the model biases are random

perturbations about the truth (i.e., each model reproduces the observations with

some pattern of bias that is characteristic to that model and but different in each

model), such that averaging many models reduces the magnitude of the biases. In

the limit of completely random independent biases, the average would be perfect

for an infinite number of models.

In some cases, the multi-model mean can indicate behavior unrepresentative of

any of the models within the ensemble. Figure 10.5 shows the distribution of

expected percentage precipitation change per unit global temperature increase in

the current dry season for variousmodels within the CMIP3 archive. Each individual

model shows a wide distribution of change with some regions showing up to 30%

decrease in precipitation for every degree rise in global mean temperature. If the

models are averaged together in advance, however, the resulting multi-model mean

has no region which displays this extreme decrease in precipitation in the dry season.

The multi-model mean is thus not representative of the findings of the individual

ensemble members in the respect that it fails to recover the extremes of the

distribution of precipitation change. The reason for this discrepancy is, at least

partially, a difference of the spatial representation of precipitation patterns in

different ensemble members. Different models have different resolution,

representations of orography, and parameterizations for precipitation. When com-

bined this gives each models unique spatial modes of variability for precipitation.

This allows each model to display extreme future drying in some specific regions,

but critically those regions are not necessarily identical in all models in the
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ensemble, effectively smearing out the small scales and the extremes of the distri-

bution. Thus, although the mean result of a large ensemble may provide a reduction

in model bias, the averaging process itself may create an unrepresentative forecast.

Model Independence

Given a set of truly independent models distributed about the truth, one would

always be able to improve simulation quality by increasing the number of models in

the ensemble as truly independent errors would tend to cancel. Any study which

treats CMIP ensemble members as independent realizations of a possible future is

implicitly making this assumption, but one can make statistical arguments to show

that the models are not distributed in a way which would be consistent with this

assumption [36]. To illustrate this visually, Fig. 10.6 shows maps of temperature

and precipitation from a selection of models in the CMIP-3 archive, all of which

could be used with equal weight in producing a multi-model mean. However, one

can see instantly that the two GFDL models have very similar biases in surface

temperature, even though they are submitted as separate models to the archive. The

temperature biases in the other two models shown have very different spatial

patterns. The precipitation plots, however, show that there are some common biases

in all four of the models. There are many reasons why these common biases might

exist; all models in the CMIP-3 ensemble cannot explicitly resolve features smaller

than about half a degree, which renders them incapable of simulating behavior such

as atmospheric blocking or the response to local orography. Models may also share

parameterization schemes and be tuned to reproduce the same observations [32],
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Fig. 10.5 This plot, from Knutti [31] shows the fraction of land area between 60�N and 60�S
experiencing a given change in precipitation in the dry season. Precipitation change is measured in

percent per unit global temperature rise in Kelvin measured over the period 1900–2100 relative to

the 1900–1950 average. Each light blue line represents a single CMIP3 ensemble member, the

dark blue linemarks the average of all distributions. The black line shows the precipitation change
in the multi-model mean. The expected absolute precipitation change in the multi-model mean is

about 30% smaller than in any single model
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and in some cases the same model can be submitted to the ensemble at multiple

resolutions meaning that models can share considerable parts of code, making it

very likely that model biases will be correlated. In summary, it is both expected and

evident that the current generation of climate models does not provide an indepen-

dent sample of estimates distributed about an underlying truth, and it is unlikely that

increasing the number of similar models in the ensemble would drastically increase

the accuracy of combined predictions.

Model Validation and Tuning

GCMs are frequently tuned by minimizing differences between simulations of the

past century and observations. The observations can be in the form of data from

satellites and in situ measurements or may be expressed as reanalyzed products

gfdl_cm2_0 gfdl_cm2_1 ncar_ccsm3_0 iap_fgoals1_0_g

Temperature Difference from NCEP (K)

Precipitation Difference from NCEP (mm/year)

−10 −5 0 5 10

−50 0 50

Fig. 10.6 Temperature and precipitation maps of the North Atlantic region from four models

submitted to the CMIP-3 archive. Each map shows the 1980–2000 averages for June, July, and

August – expressed as a difference between the model simulation and the NCEP reanalysis for the

same period. The top row shows the anomaly for surface temperatures, while the bottom row
shows the anomaly for annual total precipitation
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which attempt to incorporate information from both of these. Simulations of earlier

periods may also be evaluated against proxy data (estimates of temperature or

rainfall etc., produced from tree rings, ice cores, etc.), although the long simulations

and necessary model reconfiguration for these periods often mean they do not form

part of the active model development process. Because models are tuned to agree

with data over the twentieth century, they tend to agree with each other for this time

period. There is little spread in the model simulations over the twentieth century.

Figure 10.7 taken from the IPCC AR-4 report shows that the models behave

similarly throughout the twentiethcentury when compared to any one of the

scenarios for the twenty-first century. The reader should not attach any significance

to the absolute values of the global mean temperature time series, which are

expressed as anomalies with respect to the 1980–2000 mean for all models.

The remarkable consistency of the global mean temperature evolution in the

twentiethcentury in the current generation of GCMs is made possible through the

various degrees of freedom the models have in fitting this well-observed period. The

response of any model is governed by a combination of transient ocean heat uptake,

climate sensitivity, and the radiative forcing to the system, which effectively makes

the problem poorly constrained with multiple ways to fit the twentieth century global

mean temperature time series [33]. A study by Kiehl (2007) concluded that models

produced this agreement by compensating between differences in climate sensitivity

with differences in aerosol forcing. Figure 10.8 shows both the climate sensitivities

and the later twentieth century anthropogenic forcing of climate in a selection of

GCMs [34]. It is apparent that those models with a larger anthropogenic climate

forcing in the twentieth century have a smaller climate sensitivity, allowing the

models to successfully reproduce the twentieth century temperature record (a weak

correlation between aerosol forcing and climate sensitivity is also seen in the CMIP-

3 archive used for the AR4 report [35]).
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Fig. 10.7 A figure reproduced from the IPCC AR-4 report (Fig. 10.4) showing the mean and inter-

model spread of simulations in the CMIP-3 model archive for simulations of the twentieth century,

together with the simulations of three different scenarios for periods after the year 2000. Global

mean temperatures are shown relative to the 1990–2000 mean. In each case, the line represents the
multi-model mean and the shading shows the 1 standard deviation ensemble spread
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In each of the twenty-first century scenarios illustrated in Fig. 10.7, the aerosol

concentrations are predicted to decrease as increasingly stringent clean air legislation

comes into effect. Meanwhile, all the scenarios show a continuing increase in green-

house gases throughout the twenty-first century, whichmakes the climate sensitivity of

the models the primary factor influencing their future evolution as the total anthropo-

genic forcing increases. The differing climate sensitivities amongst the CMIP3models

thus cause a larger spread in the twenty-first century simulations than for the twentieth

century simulations. However, it should be noted that most AR4 models included the

“direct” radiative effect of aerosols, but not their indirect effect on cloud properties.

This means that eliminating the correlation between climate sensitivity and aerosol

forcing would not necessarily reduce projection uncertainty, and the success of most

models in simulating the twentieth century may be partly spurious [36].

An additional problem lies in the lack of independent data with which to tune

and verify the models. In many cases, model quality metrics are based upon mean

state and variability data from the latter twentieth century data, which is very likely

to be used in the development of parameterizations and tuning of the model. For

example, most models use satellite data products to tune the top of atmosphere

energy fluxes, and these products are often considered to be one of the more robust

constraints when evaluating a model quality metric. In addition, models may often

be evaluated against reanalyses, rather than the observational data itself. Reanaly-

sis products are model simulations strongly “nudged” to reproduce an incomplete

set of observations, effectively filling in the gaps with self-consistent model data

output. This process introduces an additional layer of complexity, because the

reanalysis climate will contain features both of the constraining observations and

the underlying model. For fields where real data is sparse or where data is not

assimilated directly (such as precipitation metrics), the reanalysis output might
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have much more dependence on the underlying model than on any real-world data.

As a result, when using reanalysis data as a constraint for multiple models, those

models with a similar representation of the hydrological cycle to that used in the

reanalysis will appear to perform better.

The model development process involves a considerable amount of value judg-

ment, as a model serves many purposes and some compromise between the many

different plausible performance metrics must be made. The relatively small number

of degrees of freedom available to model developers makes it impossible to

perfectly match a large number of observable quantities simultaneously, which

means that there may be multiple possible parameter combinations which are

equally valid. Each of these combinations, although they fit historical observations

equally well, may have different projections of future climate change if they exhibit

different climate sensitivities or aerosol responses.

In the past, model tuning has largely been a time-consuming process of expert

judgment and trial and error, which leads to some uncertainty of what errors in

a simulation are irreducible through parameter adjustment. Although not yet used

operationally, various techniques have been proposed to automate this tuning

process. One technique uses an optimal gradient descent approach to minimize

some multivariate error metric [34]. This approach can yield multiple solutions, as

the response surface in the parameter space of the model may show local minima.

Another approach involves using a preexisting perturbed physics ensemble and

fitting a nonlinear response surface [37] to interpolate between the sampled points

in the parameter space. This effectively produces a “model emulator” which can

predict the point in parameter space which minimizes model error, but the result is

dependent on the parameter space being sufficiently densely sampled to capture the

dominant features. One can also combine the predictions from a range of plausible

perturbed models. The ensemble Kalman filter [38] approach has been used [39] to

create a set of valid perturbed versions of a single climate model, but is subject to

uncertainty that there is an unknown systematic error in the climate model which

cannot be corrected by parameter modification.

A final problem lies in the incompleteness of the model representation of the

climate. Many current models, for example, cannot simulate the indirect effect of

aerosols on cloud amounts. Tuning an incomplete model to reproduce the observed

radiative balance at the top of the atmosphere therefore involves overcompensating

the cloud amounts by artificially enhancing other processes, which arguably makes

the representation of the current and future state less accurate.

Statements of Probability

Multi-model Ensembles

As indicated throughout this entry, the production of a probabilistic statement for

future climate from a multimember or perturbed physics ensemble has no clearly

established methodology and requires a priori assumptions to be made. Arguably
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the simplest assumption that can be made is one of model equality, using the

democratic “one model, one vote” approach [40]. In such a method, the probability

of a future event is estimated by the fraction of models in which the event happens.

This hypothesis can be tested by cross-validation within an unused subset of the

ensemble. However, this approach is limited by the implicit assumption that the

ensemble is a random sample of plausible estimates of the true climate, where the

various arguments in section “Projection Uncertainty and the Need for Ensembles”

suggest this assumption may not be valid.

The next logical step is therefore to consider some measure of model skill as

a weighting for each model, producing an estimate of future climate as a median of

model predictions, such that models with a small bias are given a greater weight

[41]. Such approaches are always highly dependent on the exact choice of metric

used to evaluate the model weighting [29].

Many studies have adopted Bayesian methodologies, where prior beliefs about the

range of future climate change are updated with information from models and/or

observations. One example [42] takes a prior probability distribution for current and

future regionally averaged climate signal (or the corresponding climate change signal)

and updates this using information from models and observations. Priors can be

chosen to be uninformative (flat over a large range of possible values) so that the

final PDF shape is mainly influenced by the information from models and

observations. The likelihood of each model simulation of the past and the future is

then represented as the realization from PDFs centered around the unknown “true”

present and future climate, as if the ensemble were a sample from a large idealized

population of possible models. The width of the PDFs is in turn estimated jointly with

the climate signals. Its magnitude depends on that model bias compared to the

consensus estimate of the present day and future state. Markov Chain Monte Carlo

techniques are used to approximate the result of Bayes theorem applied to priors and

likelihood, allowing a joint probability distribution for the “true” climate states and the

unknown parameters characterizing the model distributions to be estimated. From it,

the PDF of the regional climate change signal is also straightforward to derive.

A Bayesian approach has been also applied at the grid-point scale by

representing the entire field of future climate anomaly for each model in terms of

a truncated set of basis functions combined with some noise estimate [43], such that

each model has its own low-dimensional set of coefficients to describe the pattern

of climate change. The advantage of this approach is that a similar Bayesian

methodology may be applied to derive estimates for the “true” values of the

coefficients, which when recombined with the basic functions results in PDFs for

climate change at the grid-point level.

An issue with both traditional weighting schemes and the Bayesian approaches is

theway inwhichoutliers are treated – the so-called “convergence criterion”. In the case

of a large PPE, such as the climateprediction.net experiment, the logic in down-

weighting outliers assumes that there is some significance in the consensus mean

projection, errors are distributed randomly and that models which deviate strongly

from the consensus are somewhat less trustworthy. However, in a small ensemble of

best-guesses such as CMIP-3, this argument is subject to question. It is possible that
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a singlemodel in the ensemble is able to simulate processes which are not simulated in

other models. This model is arguably more trustworthy than the rest of the ensemble

and yet it would be down-weighted through the application of a simple convergence

criterion.

Another issue with all of the methods discussed thus far is the assumption of

model independence. It can be shown [44] that the width of the final PDF using

a Bayesian methodology is inversely proportional to the number of the models

considered in the ensemble. Whilst this would be true if all models were indepen-

dent estimates of a true climate, it has been demonstrated that this not a valid

assumption [32]. Although some statistical methodologies have endeavored to

artificially reduce the more obvious interdependencies of the CMIP-3 ensemble

[45], there is at present no generally accepted methodology for doing so. The

Bayesian techniques that have been developed so far tend to produce a PDF

narrower than the spread of the original ensemble, as the independence assumption

causes uncertainties to decrease with added ensemble members.

A completely different approach to producing model projections is to statisti-

cally “calibrate” models, where a relationship is established between model

simulations and observations over an observed period. Once this relationship has

been determined, it may be applied to future climate projections to produce

a “calibrated” estimate of the true future response. This approach assumes, of

course, that the relationship between the projections and the true response will

remain constant in the future. This approach has been applied to large scale metrics

such as past and future sea-ice loss [46], as well as more complex statistical

multivariate approaches which find the best fitting relationship between modes of

variability in model simulated and observed past climate, again using those

relationships to produce a calibrated future projection [47, 48].

Finally, some “detection and attribution” studies [49] determine spatial patterns

of climate changes associated with different atmospheric forcings, using

observations to determine whether models are over- or under-representing those

changes in past simulations. This allows future model projections to be rescaled in

light of the observations. One of the major uncertainties in such approaches is in the

derivation of the calibration coefficients themselves, and whether the calibration is

valid when applied to a future planet in a very different state. These uncertainties

tend to result in wider PDFs than Bayesian methodologies [33].

Perturbed Physics Ensembles

While “one model, one vote” may be a questionable assumption in a multimodel

ensemble, it is quite ostensibly wrong in a perturbed physics ensemble where some

models have vastly inaccurate simulations of the mean climate [50]. PDFs of future

climate derived from a perturbed physics ensemble have therefore often been

forced to take a different approach.
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Most studies thus far arising from PPEs have focused on producing PDFs for

climate sensitivity, and have broadly fallen into three categories: weighting of the

parameter space, using the ensemble to establish relationships between observable

quantities and unknowns such as climate sensitivity, or a traditional Bayesian tech-

nique. An example of the first approach [11] takes a PPE and ascribes each model

a weighting, based upon model skill in reproducing the observed climate. By

interpolating between the sampled points in the parameter space, one can then produce

a weighted integral of the unknown quantity (e.g., climate sensitivity). It is argued,

however [51], that the PDF obtained from such an approach is fundamentally depen-

dent upon the prior assumptions made in sampling the original parameters.

A second approach of finding relationships between observable and unknown

quantities has been demonstrated using both linear [52] and nonlinear [53] transfer

functions. In each case, the ensemble is used to derive some predictors which

internally estimate the climate sensitivities of ensemble members. These regression

coefficients can then be used together with observations of the true climate state to

make a prediction of the true climate sensitivity. Clearly, these predictions are

subject to uncertainty in the observational state and in the internally derived

prediction error, both of which may be estimated relatively easily. The major

“unknown unknown” in such an approach is the systematic or irreducible error of

the underlying model, that is, how much additional uncertainty arises when the

predictor is applied to the real world. A lower bound of this quantity may be

obtained by examining the skill of the predictor when applied to a multimodel

ensemble such as CMIP-3, but this will not account for common errors arising from

lack of resolution or simulated processes.

The final approach to be considered is the use of an ensemble Kalman filter [40].

The ensemble is used together with observations to update prior beliefs about several

unknown model parameters. The ensemble Kalman filter then involves an iterative

process forming an idealized ensemble of plausible perturbed models. Once again the

methodology is sensitive to assumptions about model error, which scale the relative

importance of the model-observation discrepancies forming the overall cost function.

By assuming model errors are small, the resulting idealized ensemble will be more

tightly clustered about the observed state. The distribution of climate sensitivities in

this idealized ensemble is then deemed to approximate a PDF for the sensitivity. One

advantage of such a technique is that the predictions may be validated by producing

a hindcast for the past (the Last Glacial Maximum, in this case). The LGM simulation

can then be used to produce an out of sample weighting for the optimized ensemble.

Future Directions

The analysis of climate simulations from multiple models is still a problem in its

relative infancy. Various techniques have been proposed in this entry, each making

different assumptions about model independence, prior distributions, systematic
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model errors, and about what statistical framework is appropriate. These choices

remain, at present, somewhat subjective and often yield different probability

distributions for unknown climate variables. The apparent contradictions between

the methodologies can be understood, however, in light of the assumptions made. In

contrast to a numerical weather forecast where thousands of verification cases are

available to test the forecast skill, the climate projections for a century into the

future are making a statement about a situation never observed before and where no

model evaluation is possible. Because there is only a single realization of the future,

any statement of probability expresses a degree of belief in a Bayesian sense of how

different future outcomes are supported by current evidence (models, data,

methods), and is therefore inherently subjective.

Clearly, any projection (and the uncertainty associated with it) must be tailored

in a fashion useful to decisions on policy and planning for a changing climate.

Policymakers tend to push for increases in precision, but this can lead to decreases

in real accuracy if predictions are overconfident [54]. There is arguably little point

in providing PDFs of future change for planning purposes if the width of those

PDFs are massively sensitive to either subjective decisions or unknown errors,

and the raw collection of “best-guesses” from the different models is as useful

a way as any to present the ensemble of forecasts. One inherent danger with this

approach, however, is the tendency to see the multi-model distribution as

a discrete probability distribution for future climate. As is seen, the lack of

model independence, the fact that all models are neglecting certain sources of

uncertainty (e.g., the carbon cycle climate feedback uncertainty) and the fact that

every modeling group will tend to submit only a best-guess climate together

implies that the true uncertainty may be larger than that indicated by the spread

of model simulations.

Future generations of multi-model ensembles are also likely to introduce more

complex “Earth System Models,” at least for some ensemble members. These

models, in addition to atmosphere, ocean, land, and sea ice components are likely

to introduce fully coupled carbon–nitrogen cycles, chemistry, urban, and ecosystem

models into the simulation. These components of future uncertainty have not been

thoroughly explored in previous generations of the CMIP experiments, and are

likely to increase the spread of simulation response for the coming century.

Although this could be perceived to indicate an increase in uncertainty, it is more

accurately converting an “unknown unknown” into a parametric uncertainty. If

different models include different components of the earth system in their models, it

will also become more difficult to compare them on a like-with-like basis, as is

mostly possible today. However, this underlines the importance with each genera-

tion of climate models of recognizing the uncertainties associated with what is

omitted, as well as those arising from the simulations themselves.

Although there may be some use in overall metrics of model skill [55], it is

likely that projections of specific phenomena will benefit from tailored metrics to

rank the performance of different models (e.g., El Niño or future sea ice extent).

This will also require a proper assessment of which subset of models to use for

each particular application based upon both past model skill and physical
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plausibility [31]. In addition, the community may benefit more from a diverse

range of model predictions, where each model may be evaluated on its own

performance, in place of a group of models which are artificially clustered toward

a mean response leaving no way of simulating the extremes or boundaries of

future climate change.

In this entry both multi-model ensembles and perturbed physics ensembles have

been discussed, but there is little discussion on how the information from the two

may be combined. Indeed, at present there is little to no literature on how one may

combine the parametric uncertainty sampled in a PPE with the inter-model system-

atic differences in a multi-model ensemble. This presents a fundamental problem in

that current PDFs from both of these techniques cannot incorporate the best

estimates of systematic and parametric uncertainty. Future analyses must combine

these various uncertainties in order to make statements about model robustness.

Currently, the ability to conduct such an analysis is limited because only a small

subset of the models in the CMIP-3 archive have produced a perturbed physics

ensemble, and for those ensembles which do exist, the experiments have not been

conducted in any coordinated fashion.

Despite all of the challenges associated with combining and interpreting results

from multiple climate models, the presence of coordinated ensembles of projections

provides an invaluable insight into the magnitude of some of the uncertainties

which are inherent in every simulation conducted, and the ensemble provides

a unique opportunity to understand why models differ. As time goes on, the length

of good quality observations will increase allowing better evaluation of the tran-

sient behavior of the models (a better metric for future transient response than those

based upon the model simulation of the base climate [56]). In addition, as more

components of the climate system are simulated, although model convergence is

not expected (at least in the short term), one can be confident that at least “unknown

unknowns” in future predictions can be represented in the form of parametric

uncertainty.

Finally, possibly the greatest single uncertainty in future climate remains that of

human behavior. Certainly in the case of the CMIP-3 ensemble, the spread in

twenty-first century simulations due to different emission scenarios generally

exceeded that of the inter-model spread to any particular scenario. Simple models

of the climate have already been coupled to socioeconomic models [57–59], but

little progress to date has been made in coupling socioeconomic models to GCMs.

As a result, potential complex feedbacks between climate change and human

behavior have not been sampled in any systematic framework. Nevertheless,

although an integrated treatment of uncertainty in future climate projections may

seem some way off, the use of multi-model ensembles will continue to frame at

least some of those uncertainties in a systematic framework, providing a robustness

which would be impossible with any single model, however complex that model

may become.

256 B. Sanderson and R. Knutti



Bibliography

Primary Literature

1. Ad Hoc Study Group on Carbon Dioxide and Climate (1979) Carbon dioxide and climate:

a scientific assessment. National Academy of Sciences, Washington, DC

2. Manabe S et al (1979) A global ocean-atmosphere climate model with seasonal variation for

future studies of climate sensitivity. Dyn Atmos Oceans 3:393–426

3. Hansen JE et al (1983) Efficient three-dimensional global models for climate studies: models

I and II. Mon Weather Rev 111:609–662

4. Houghton JT, Jenkins GJ, Ephraums JJ (eds) (1991) Scientific assessment of climate change –

report of working group I. Cambridge University Press, Cambridge, p 365

5. Houghton JT, Meira Filho LG, Callender BA, Harris N, Kattenberg A, Maskell K (eds) (1995)

Contribution of working group I to the second assessment of the Intergovernmental Panel on

Climate Change. Cambridge University Press, Cambridge, p 572

6. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001)

Contribution of working group I to the third assessment report of the Intergovernmental Panel

on Climate Change (IPCC). Cambridge University Press, Cambridge, p 944

7. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds)

(2007) Contribution of working group I to the fourth assessment report of the Intergovern-

mental Panel on Climate Change, 2007. Cambridge University Press, Cambridge/New York

8. Parker WS (2006) Understanding pluralism in climate modeling. Found Sci 11:349–368

9. Collins M, Allen MR (2002) Assessing the relative roles of initial and boundary conditions in

interannual to decadal climate predictability. J Climate 15:3104–3109

10. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate

predictions. BAMS 90:1095–1107

11. Murphy JM et al (2004) Quantifying uncertainties in climate change from a large ensemble of

general circulation model predictions. Nature 430:768–772

12. Stainforth DA et al (2005) Uncertainty in predictions of the climate response to rising levels of

greenhouse gases. Nature 433:403–406

13. Annan J, Hargreaves J (2006) Using multiple observationally-based constraints to estimate

climate sensitivity. Geophys Res Lett 33(4):L06704

14. Palmer TN, Doblas-Reyes FJ, Hagedorn R, Weisheimer A (2005) Probabilistic prediction of

climate using multi-model ensembles: from basics to applications. Philos Trans R Soc

B 360:1991–1998

15. Weigel AP, Liniger MA, Appenzeller C (2008) Can multi-model combination really

enhance the prediction skill of probabilistic ensemble forecasts? Q J R Meteorol Soc

134:241–260

16. Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-

model ensembles in seasonal forecasting. Part I: basic concept. Tellus 57A:219–233

17. Frame DJ, Booth BBB, Kettleborough JA, Stainforth DA, Gregory JM, Collins M, Allen MR

(2005) Constraining climate forecasts: the role of prior assumptions. Geophys Res Lett 32:

L09702. doi:10.1029/2004GL022241

18. van der Sluijs J et al (1998) Anchoring devices in science for policy: the case of consensus

around climate sensitivity. Soc Stud Sci 28(2):291–323

19. Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the Earth’s temperature to radiation

changes. Nat Geosci 1:735–743

20. Cantelaube P, Terres J-M (2005) Seasonal weather forecasts for crop yield modelling in

Europe. Tellus Ser A 57:476–487. doi:10.1111/j.1600-0870.2005.00125.x

21. Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse AP,

Palmer TN (2006) Malaria early warnings based on seasonal climate forecasts from multi-

model ensembles. Nature 439:576–579. doi:10.1038/nature04503

10 Climate Change Projections: Characterizing Uncertainty Using Climate Models 257



22. Schclar A et al (2009) Ensemble methods for improving the performance of neighborhood-based

collaborative filtering. In: Proceedings of the third ACM conference on recommender systems,

ACM, New York, 23–25 Oct 2009, pp 261–264

23. Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-

model ensembles in seasonal forecasting – I. Basic concept. Tellus A57:219–233. doi:10.1111/

j.1600-0870.2005.00103.x

24. Gillett NP, Zwiers FW, Weaver AJ, Hegerl GC, Allen MR, Stott PA (2002) Detecting

anthropogenic influence with a multi-model ensemble. Geophys Res Lett 29:1970.

doi:10.1029/2002GL015836

25. Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate

models. Clim Dyn 17:83–106. doi:10.1007/PL00013736

26. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am

Meteorol Soc 89:303–311

27. Robertson AW, Lall U, Zebiak SE, Goddard L (2004) Improved combination of multiple

atmospheric GCM ensembles for seasonal predition. Mon Weather Rev 132:2732–2744.

doi:10.1175/MWR2818.1

28. Krishnamurti TN, Kishtawal CM, Zhang Z, Larow T, Bachiochi D, Williford E, Gadgil S,

Surendran S (2000) Multimodel ensemble forecasts for weather and seasonal climate.

J Climate 13:4196–4216. doi:10.1175/1520-0442(2000) 013!4196:MEFFWAO2.0.CO;2

29. Santer BD, Taylor KE, Gleckler PJ, Bonfils C, Barnett TP, Pierce DW,Wigley TML, Mears C,
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