


Climate Change Modeling Methodology



This volume collects selected topical entries from the Encyclopedia of Sustainability Science
and Technology (ESST). ESST addresses the grand challenges for science and engineering
today. It provides unprecedented, peer-reviewed coverage of sustainability science and
technology with contributions from nearly 1,000 of the world’s leading scientists and
engineers, who write on more than 600 separate topics in 38 sections. ESST establishes a
foundation for the research, engineering, and economics supporting the many sustainability
and policy evaluations being performed in institutions worldwide.

Editor-in-Chief
ROBERT A. MEYERS, RAMTECH LIMITED, Larkspur, CA, USA

Editorial Board
RITA R. COLWELL, Distinguished University Professor, Center for Bioinformatics and
Computational Biology, University of Maryland, College Park, MD, USA

ANDREAS FISCHLIN, Terrestrial Systems Ecology, ETH-Zentrum, Zürich, Switzerland
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Chapter 1

Climate Change Modeling

Methodology, Introduction

Philip J. Rasch

In the early 1980s, Eugene F. Stoermer began informally using the term

“anthropocene” to refer to a time in the history of the Earth inwhich humans introduce

impacts that at times rival natural processes in the global functioning of the planet [7].

While there is some uncertainty about when the anthropocene began (with some

dating it as far back as 8,000 years ago), there is little doubt that humans are affecting

the planet today, and one of the ways is through our impact on the Earth’s climate.

Concern about the possible impact of mankind on climate dates back at least as

far as 1896, when Svante Arrhenius [1] suggested that mankind might inadvertently

warm the planet by increasing the concentration of carbon dioxide, and the idea that

man might have an impact on the Earth’s climate has been studied ever since.

Concern about the matter has been increasing since the 1970s, and in 1995, a very

large group of climate scientists, in an assessment produced by the Intergovern-

mental Panel on Climate Change [2], wrote that “the balance of evidence suggests a
discernible human influence on global climate.” That statement, based on a careful

evaluation of observational evidence, theory, and model studies, ignited a firestorm

of comment and controversy. There is little doubt that the vast majority of climate

scientists were concerned then, and study since that time has made the arguments

that man is affecting climate even more compelling. In February of 2007, the IPCC

released its fourth assessment [3], which found that “human actions are ‘very likely’
the cause of global warming,” with “very likely” specifically defined to mean a 90%

or greater probability of explaining an increase in average global temperatures over

the last 100 years, with many other attendant changes. Some debate continues about

these conclusions to this day, with a few scientists and more nonscientists
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indicating doubt that mankind is responsible for the changes, but almost no doubt

that the warming is real.

There are many reasons for skepticism about climate change: some scientific,

some not. It is not my intention that this section provides much information about

climate change itself. The assessment report, the “synthesis document,” and the

“summaries” intended for policymakers, laypersons, and scientists from other fields

[2–5] provide much more detail than could possibly be included here.

Instead, these entries are designed to introduce readers to the “methodologies”

used in climate science. What are the tools used for? How is confidence gained in

the use of those tools? It is impossible to provide a thorough review with the few

entries, and few pages of each entry in this section, but it is hoped that they provide

readers with an introduction to the science, and methodology, and pointers to places

where more detail can be found.

Climate science is a complex field. Climate is governed by processes that interact

and operate on a vast array of time and space scales. The processes involving

radiative transfer, chemistry, and phase changes of water are most easily described

at atomic and molecular scales; the influence of ice sheets, continents, and planetary

scale circulations controlling the basic energy balance of the planet operate at

continental scales; even planetary orbital and solar variations operating at millennial

time scales cannot be ignored. Many of those processes are well understood; other

less so.

Models are the means that scientists use to express their knowledge about

a process, or a set of processes using equations that can be solved on a computer.

It is impossible to represent everything known about all the processes that govern

climate in detail on today’s computers because it is simply beyond the computer

power currently available to us, and approximations must be made. There are also

many things scientists recognize that are “not known” that may be important in

understanding climate change. It is hoped that these entries will provide hints on

how climate models are constructed, how they are assessed and tested, and how

they are used to provide insight into the changing climate of the past, and the

possible changes that will take place in the future.

Here is a brief description of the entries of this section, and the rationale for their

inclusion.

A broad overview of coupled climate system modeling is provided in Coupled

Climate and Earth System Models by Gent. This entry introduces the components

of a coupled model, how they work together, and the kind of scientific problems that

they are designed to address.

The individual component models are described in more detail in the next set of

entries. Each of these component models can be used on its own to study a piece of

the climate system by essentially “prescribing” the behavior of the other

components, or they can be used as a part of the bigger model to explore

interactions. Bitz and Marshall describe treatments of the cryosphere (ice and

snow in the Earth System) in the entry Cryosphere, Modeling of; Yoon and

Ma cover ocean processes in Oceanic General Circulation Models. Bacmeister

discusses global atmospheric models from a weather modeling point of view in
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Weather Prediction Models, and Rasch discusses these models from a climate

perspective in the entry Atmospheric General Circulation Modeling. Niu and

Zeng provide an introduction to land surface models in Earth System Model,

Modeling the Land Component of. These models provide scientists with a picture

of how physical components of the climate system respond to “forcing” from other

components.

It is also interesting to explore the interaction between the physical system and

society. Integrated Assessment Modeling by Edmonds et al. describes “Integrated

Assessment” modeling and climate change that begin to assess how humans affect

climate and how climate affects humans.

Some aspects of climate change are most easily explored at a very high resolu-

tion with more detail than can be afforded on today’s computer systems. This

motivates the entry on Regional Climate Models by Leung. Methods used to assess

uncertainties in climate change studies are outlined in Climate Change Projections:

Characterizing Uncertainty Using Climate Models by Sanderson and Knutti.

Climate varies on many time scales. The entry by Goddard on Climate

Predictions, Seasonal-to-Decadal provides a very nice introduction to the issues

of prediction of climate processes on multi-decadal time scales. The climate section

concludes with an example by Wang and Lau of one way that the mankind may

be influencing a very important feature of the Earth system that influences the lives

of billions of people, the Indo-Asian monsoon (Monsoon Systems, Modeling of).

It is hoped that scientists and engineers find the entries interesting, and that they

stimulate additional study in this important topic in Sustainability Science.
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Chapter 2

Coupled Climate and Earth System Models

Peter R. Gent

Glossary

Climate model A numerical model consisting of four components:

atmosphere, ocean, land, and sea ice.

Earth system model A climate model with additional components, which

must include a carbon cycle in the land, atmosphere,

and ocean components.

Troposphere The lower part of the atmosphere where most of the

weather occurs.

Stratosphere The region of the atmosphere above the troposphere,

and is the location of the ozone layer.

Carbon cycle The processes by which carbon in all its forms

interacts and moves around in the land, atmosphere,

and ocean components of the climate system.

Positive feedback A set of processes whereby a small perturbation in the

climate system amplifies and increases in size.

Negative feedback A set of processes whereby a small perturbation in the

climate system decays and reduces in size.

Control simulation A run of a climate model or earth system model where

the forcing is kept constant in time.

Ensemble simulations A set of runs which have the identical forcing, but start

from slightly different initial conditions.
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Chaotic system A system of equations with the property that two runs

starting from slightly different initial conditions

diverge from each other, often quite quickly.

Climate projection A simulation of the climate system into the future with

prescribed forcing, where the model has not been

initialized to the observed climate.

Climate forecast A simulation of the climate system into the future with

prescribed forcing, where the model has been

initialized to the observed climate.

Equilibrium climate

sensitivity

The increase in the globally averaged surface temper-

ature in a model when the atmosphere concentration of

carbon dioxide is doubled.

Atmosphere Model

Intercomparison Project

A standard simulation of the atmosphere component of

a climate or earth system model, which allows differ-

ent models to be compared to each other.

El Nino-Southern

Oscillation

The largest interannual signal in the climate system,

which occurs primarily in the tropical region of the

Pacific Ocean.

Thermohaline circulation The overturning circulation in the global oceans where

water sinks at very high latitudes, spreads very slowly

horizontally to all the ocean basins, and then slowly

returns toward the surface.

Conveyor belt Another popular name for the thermohaline circulation.

Deep water formation The process by which very dense water near the sur-

face sinks to near the ocean bottom at high latitudes,

which forms the sinking part of the thermohaline

circulation.

Definition of the Subject

We are all familiar with weather forecasts that predict the local weather for the next

few days. These are made using a high-resolution numerical model of the atmo-

sphere, and sometimes extend out as far as 10 days. Most meteorological centers

also produce seasonal outlooks, which give probabilities of the average temperature

and precipitation being above, near, or below normal. These outlooks do not

forecast the weather for a particular day, but give predictions of the seasonal

averages. Seasonal outlooks are also made with an atmosphere model, but use

climatological observed values for the evolving state of the surface ocean, land, and

sea ice conditions. However, if forecasts are to be made more than a season ahead,

then using just an atmosphere model is not sufficient, and the evolution of the

ocean, land, and sea ice states must also be made using numerical models for these
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components of the climate system. The reason is that the surface ocean, land, and

sea ice states interact strongly with the atmosphere and influence its future evolu-

tion because they change on a much slower timescale than the atmosphere.

A climate model is used to understand how the climate system works, and how

the various components interact with each other. It is used to simulate the present

day climate, the recent past climate, and the climates of different paleoclimatic

epochs. It can also be used to simulate the future statistical state of the atmosphere

a decade or a century into the future, but does not predict the local weather on

particular days. The atmosphere resolution of a climate model is much reduced

compared to that used in a weather forecast, so that climate information is given on

regional to global scales, and not on local scales. The climate state a long time

ahead depends on the future levels of quantities that force the climate system, such

as the concentrations of carbon dioxide and other greenhouse gases, several differ-

ent atmospheric aerosols, and the levels of solar and volcanic activity. Therefore,

these climate projections depend on many future choices to be made by mankind,

which will determine the concentrations of greenhouse gases and aerosols over the

next century. Each climate projection needs a scenario for the future concentrations

of greenhouse gases and aerosols before it can be carried out.

Thus, a physical climate model consists of four components; atmosphere, ocean,

land, and sea ice. These components are used to calculate the future state of the

component given an initial state and the various quantities that force the compo-

nent. These four basic components have to interact with each other, so that most

climate models have a fifth component, often called the coupler, see Fig. 2.1, which

has two main functions. The first function is to start, oversee the time evolution, and

finish each model simulation. The second is to receive all the information from each

component that is required by the other components and to send back to each

component all the information that it requires to continue its simulation forward in

time. For example, the ocean component needs the atmosphere-ocean wind stress

that drives the ocean currents, the net heat flux and net fresh water flux (precipita-

tion plus river runoff and sea ice melt minus evaporation) going from the atmo-

sphere, ice, and land into the ocean. These are most often calculated in the coupler,

and depend on the atmosphere surface wind, temperature, and humidity, etc.,

Atmosphere

Sea iceCoupler

Ocean

Land

Fig. 2.1 Configuration

of a climate model
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and the ocean sea surface temperature and currents, which are fields that are sent to

the coupler.

There is another reason why the set up using a coupler shown in Fig. 2.1 is

extremely useful. Only a relatively small fraction of climate model runs are in fully

coupled mode, and there is a large number of different ways to run the model

components. In runs described in more detail later, one or more of the components

is replaced by its data equivalent, which provides the observed data required by the

coupler to force the active components. For example, in an Atmosphere Model

Intercomparison Project (AMIP) run, the numerical ocean and sea ice components

are turned off and replaced by simple data components that provide observed time

series of surface ocean and sea ice temperatures to the coupler. The coupler

framework shown in Fig. 2.1 then ensures that the fluxes exchanged between

various components are always calculated consistently, whether using observations

or predicted model fields.

There is no universally accepted definition of an Earth SystemModel (ESM), but

it must have more components than the four in a climate model. The usual

additional components are a model for the distribution of carbon on the land

surface, and an ocean ecosystem component, which are required if the ESM is to

simulate the earth’s carbon cycle. However, an ESM will often have additional

components as well. The commonest of these is an atmospheric chemistry compo-

nent, but some ESMs have an atmosphere component that simulates the upper

levels of the atmosphere, including the stratosphere, not just the troposphere, which

is the lowest layer of the atmosphere where most of the weather takes place. Finally,

several ESMs will soon include a component that simulates the Greenland and

Antarctic ice sheets, in order to estimate the future rate of ice loss that will raise the

level of the earth’s oceans.

Introduction

Numerical model simulation of the atmosphere has a long history that goes back

over 60 years. The first integrations were done on the ENIAC machine at the

Advanced Study Institute in Princeton by 1950 [1]. It took another 10 years for

this to develop into weather forecasts that used models that had vertical structure

and could be initialized using atmospheric observations. The first numerical ocean

models were developed in the mid 1960s by Kirk Bryan at the Geophysical Fluid

Dynamics Laboratory (GFDL) in Princeton [2], which used simplified sector

geometry for the ocean basins. The first coupled atmosphere/ocean model was

developed at GFDL when the global atmosphere model of Syukuro Manabe was

coupled to Bryan’s ocean model, and the results were published in 1969 [3].

However, the first real coupled climate model that had realistic geometry for the

ocean basins and very elementary components for the land and sea ice was

developed over the first half of the 1970s. The first results were published in two
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landmark papers by Manabe, Bryan, and coworkers in 1975 [4, 5]. The horizontal

grid-spacing of this model was 5� � 5�, and there were nine vertical levels in the

atmosphere component, and five levels in the ocean component. Even this coarse

resolution was sufficient that the climate model ran slowly on GFDL’s supercom-

puter of the early 1970s. Other meteorological and weather centers in several

countries followed the GFDL lead and produced similar climate models of their

own over the 1980s. As supercomputers became faster and larger, so the four

components became more sophisticated, and the resolution of climate models

improved.

However, there was a serious problem with all climate models when trying to

obtain a control run for the present day climate. All the components would be

initialized using the best set of observations available. It is most important to

initialize the ocean component because it has by far the largest heat capacity, and

its evolution is governed by much longer time scales than the other components.

The problem was that, as the control run continued in time, the ocean and sea ice

solutions would drift away from the realistic initial conditions. The drift was fast

enough that rather quickly the model climate became significantly different than

that of the present day earth.

The cause of this problem was diagnosed as follows. When the atmosphere and

ocean components were run in standalone mode with the other component replaced

by a data component that provides observations, the fluxes of heat and fresh water at

the air–sea interface can be calculated. These fluxes from the atmosphere and ocean

were very different, so that they were incompatible when coupled together. The

problem was overcome by a very unphysical fix called flux correction [6]. The

diagnosed heat and fresh water fluxes from atmosphere and ocean stand alone runs

were differenced, and this difference was added to the fluxes exchanged between

the atmosphere and ocean every time step of the coupled run. This enabled a climate

model to maintain a non-drifting solution in a present day control run. However, it

disguised the fact that the climate model components needed further development

work to improve the simulations and make their fluxes of heat and fresh water

across the air–sea interface compatible with each other. Use of flux corrections in

climate models remained the standard method of running until the late 1990s.

The first model that could maintain the present day climate in a control run

without the use of flux corrections was the first version of the Community Climate

System Model (CCSM) developed at the National Center for Atmospheric

Research (NCAR). A 300 year present day control simulation that showed virtually

zero drift was run during the second half of 1996 and documented in 1998 [7]. The

reason for this success was further refinement of the atmosphere, and especially the

ocean [8] components, so that the surface heat and fresh water fluxes produced by

the two components were compatible. Quite quickly, the climate centers in

Australia and the UK implemented two of the new ocean parameterization

improvements from the CCSM and were also able to run their models without

flux corrections [9, 10]. Now, a large majority of climate models run without flux

corrections, although some of the coarser resolution models still use this technique.

Coarse horizontal resolution now means a grid-spacing of about 3� � 3�, whereas
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many climate models currently use about 1� � 1� grid-spacing, or slightly higher,

for their standard runs.

The number of climate models maintained around the world has steadily

increased over the last decade, so that results from 18 different models were

submitted to the 4th Assessment Report of the Intergovernmental Panel on Climate

Change (IPCC), which was published in February 2007. This 4th Assessment

Report [11] was the joint recipient of the 2007 Nobel Peace Prize.

Earth System Models

All ESMs contain components that enable the carbon cycle in the land, ocean, and

atmosphere to be predicted, rather than being passive in simulations of the earth’s

climate, for the following reason. Only about half the carbon dioxide (CO2)

emitted into the atmosphere over the past 150 years has stayed in the

atmosphere; the other half has been taken up by the land and oceans in about

equal measure. Climate models need past and future concentrations of CO2 and

other greenhouse gases in order to simulate the past and future climates. For

future climate projections, it is currently assumed that the land and oceans sinks

will continue to be as effective as in the past in taking up CO2, so that future

atmosphere concentrations will be based on about half of the future emissions

staying in the atmosphere. However, there are real concerns that in the future, the

ocean especially will not be able to take up the same fraction of CO2 emissions

because it is becoming warmer and more saturated with CO2 [12]. Whether the

land will continue to take up the same fraction of CO2 is also not obvious and

strongly depends on future land use practices. Over the last 30 years, deforestation

of tropical forests has rapidly increased, which results in less CO2 taken up by the

land and more emitted into the atmosphere if the wood is burnt. This is now the

cause of a substantial fraction of the recent increase in atmospheric CO2 concen-

tration. In contrast, there has been reforestation at some locations in the northern

hemisphere mid-latitudes, such as the eastern part of the USA. Rather than

assuming how much of the emitted CO2 stays in the atmosphere, this fraction is

predicted by an ESM with a carbon cycle. Thus, if the model predicts that the

ocean will take up less CO2 in the future, then a larger fraction will stay in the

atmosphere to act as a greenhouse gas. This is a positive feedback in the climate

system that is in ESMs, but not in climate models. Interactive carbon cycles have

been put into a number of climate models around the world, and there has been an

intercomparison project that compares their results [13]. The strength of the

positive feedback from the carbon cycle is quite different in these various models,

so the strength of this positive feedback is presently quite uncertain and needs to

be constrained better.

There is some evidence that the stratospheric circulation can affect phenomena

such as the Arctic and Antarctic Oscillations [14, 15] and will be important in how

quickly the observed “ozone hole” in the southern hemisphere stratosphere will
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recover over the first half of the twenty-first century. If these processes are to be

included in an ESM, then the atmosphere component needs to include all of the

stratosphere, which is located above the troposphere. The region usually modeled by

the atmosphere component of a climate model is the troposphere and just the lower

part of the stratosphere. How important these processes are to the future trajectory of

climate change has not been fully evaluated at present. In addition, an atmospheric

chemistry component may be important to model the future levels of atmospheric

aerosols. These are important in reflecting incoming solar radiation and in the

formation of clouds, which are extremely important in the radiation budget of the

atmosphere. A chemistry component is also needed if an ESM is to evaluate future

levels of natural and man-made pollution in the very large cities of the future.

Another component of the earth system that has recently taken onmore importance

is the role of theGreenland andAntarctic ice sheets. There is growing evidence that the

Greenland ice sheet has lost mass more quickly in the first decade of the twenty-first

century than previously [16, 17], and there are changes in how quickly it is moving

[18]. There are also observations of accelerations inAntarctic glaciers, especially after

small ice shelves have collapsed [19, 20]. This has two important effects. The first is

that the freshwater input to the ocean from these ice sheets increases themean sea level

[21], although it is important to note that this increase is not uniform over the ocean.

The second is that fresh water input from the Greenland ice sheet can possibly cause

a future weakening of the so-called thermohaline circulation in the North Atlantic

Ocean [22, 23]. This circulation carries a lot of heat northward and certainly affects the

climate of Western Europe, and is discussed in more detail in the next section. These

possible future effects are not included in climate models at present. A new ice sheet

component to evaluate these future climate change possibilities will be a vital compo-

nent of ESMs over the next few years.

Climate Model Simulations

One or Two Active Components

As a climate model is being built and assembled, the first type of simulation that is

performed and analyzed is runs using either one or two of the components in

active mode, with the other components being replaced by simple data

components that provide observed time series of the required fields. The best

known of this type of run is when the atmosphere and land components are active,

and the ocean and sea ice are replaced by observations of sea and sea ice surface

temperature. When the observations are over the period 1960–2005, this is called

an AMIP run, which is named after the Atmosphere Model Intercomparison

Project, which first formalized this type of run. Results from AMIP runs made

with the atmosphere and land components of many different climate models have

been compared in this type of intercomparison for 20 years or more [24]. These
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comparisons have given, and continue to give, insight into the validity of the

parameterizations used to simulate the many important processes in the atmo-

sphere component of different climate models.

Scientists developing the land component of a climate model use these AMIP runs

to validate their component. However, in order to isolate parameterizations in the land

component, they frequently make simulations with just the land component active. In

this type of run, the land is forced by a time series of observations from1960 to 2005 of

all the surface atmosphere variables that are required to force the land component.

This same time series of surface atmosphere variables, but over the oceans, is very

frequently used to force the ocean component of climate models run in standalone

mode. This type of run is done to validate the ocean component because the ocean

observations available for comparison are mainly from the period 1960–2005. One of

the difficulties in setting up this type of run is how to force the ocean under sea ice. The

interaction between the ocean and sea ice is very important, especially when ice is

being formed. Sea ice is formedwith a salinity of about 5 parts per 1000 from seawater

with a salinity of about 35 parts per 1000. Therefore, this process rejects brine into the

surface water, and at cold temperatures, the ocean salinity is more important than

temperature in determining its density. Thus, sea ice formation produces very dense

surface water, and when this is denser than the water below, the water column

overturns down to a depth of 2 km or more, resulting in what is called “deep water

formation.” This only occurs in winter in a very few locations in the world oceans. Off

Antarctica, it occurs in the Weddell and Ross Seas, producing Antarctic Bottom

Water, which is the densest water mass in the oceans. It also occurs in the North

Atlantic Ocean in the Greenland–Iceland–Norwegian Seas north of Iceland and in the

Labrador Sea between Canada and western Greenland. This forms North Atlantic

Deep Water, which flows south at 2–3 km depth, and is the return flow of the North

Atlantic thermohaline circulation. This overturning circulation is often called the

“Conveyor Belt,” following Broecker [25], and a schematic is shown in Fig. 2.2.

The deep water formation regions in the North Atlantic and off Antarctica are the

sinking branches of the Conveyor Belt. The dense water near the bottom of the ocean

very slowly makes its way into the Indian and Pacific Oceans, and then slowly rises

toward the surface in all the oceans. It has been estimated fromocean observations and

models that deep water formed near Antarctica, which then goes into the Pacific

Ocean, will take between 800 and 1,000 years before it returns to the ocean surface. It

is also interesting to note that deep water formation does not occur in the North Pacific

Ocean. The main reason is that the salinity there is much less than in the North

Atlantic, and the surface water is never dense enough to overturn.

In order to overcome the difficulty of how to force the ocean under ice, the ocean

and sea ice components are sometimes run together in active mode, forced by the

time series of atmospheric surface observations. Often the scientists developing the

sea ice component wish to isolate that component, and make stand alone sea ice runs

forced by atmospheric observations, and allowing the sea ice to interact with a much

simpler ocean component called a slab ocean. A slab ocean component only models

the upper mixed layer near the ocean surface. This is needed because there are no

observations of the surface ocean under ice, so that a slab ocean component is used
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which exchanges heat and salt with the sea ice above. As stated earlier, given this

very large variety of ways required to run the climate model components, it becomes

obvious why the setup using a coupler shown in Fig. 2.1 is extremely useful.

Fully Coupled Simulations

The first fully coupled simulation performed with a new version of a climate model

is a present day control run. The model is given the year 2000 values of CO2 and

other greenhouse gases, the observed levels of natural and man-made aerosols, and

the level of solar radiation. As discussed in the Introduction, the first requirement of

the model is that the drift in this control run is small, so that the model does not drift

very far from the present day initial conditions. Once that is established by a run of

at least 100 years, then the simulation is continued for a longer period, sometimes

for as long as 1,000 years, and carefully examined for its variability. There is

variability on all time scales, such as the diurnal cycle, seasonal variability, the

annual cycle, interannual variability, for example, the El Nino-Southern Oscillation

(ENSO), and decadal variability. There is also plenty of data for comparison, see

the next section. However, this control run assumes that the climate forcings are

fixed, and the earth’s present day climate is in a statistical equilibrium, which means

that the climate is not in a truly steady equilibrium state, but has variability on all

time scales around a steady state climate. This is clearly not the case in 2000, as the

levels of CO2 and other greenhouse gases have been increasing substantially over

the twentieth century.

The last time the earth’s climate was essentially in a statistically steady state was

before mankind had started making large changes to the planet. This date can be

argued over because man’s changes to how land was used and trees felled changed

the earth’s climate somewhat. However, the date is usually taken to be before the

atmospheric CO2 level had increased significantly over the level at the Industrial

Revolution. In simulations to be submitted to the 5th IPCC Assessment Report, this

date has been chosen to be 1850. Therefore, most climate models will run another

control for 1850 conditions, forced by the CO2, aerosol, and solar values of that

year. A very desirable outcome of this control run is that the simulated climate

system does not lose or gain heat and fresh water over the duration of the control

run. In practice, it is extremely difficult to balance these budgets precisely to zero,

especially for heat, and all climate models lose or gain some heat from the ocean

during any control run. However, in modern climate models this drift is very small,

and is not a substantial problem. The real problem is that we do not have

observations of the climate system in 1850 to compare with the model results.

For example, we do not know the extent or thickness of Arctic and Antarctic sea

ice in 1850.

The real purpose of an 1850 control run is to provide initial conditions for runs

that simulate the period from 1850 to 2005, which are often called twentieth

century runs. Time series over this period of four quantities are needed to force
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this type of run. They are the atmospheric concentrations of CO2 and other

greenhouse gases, the levels of natural and man-made aerosols, the level of

solar output, and the level of aerosols in the atmosphere from volcanic eruptions.

The last quantity is determined from the observed levels of aerosols from recent

eruptions, such as El Chichon in 1982 and Pinatubo in 1991, and then scaled by

the size of significant eruptions earlier in the 1850–2005 period. Very often an

ensemble of these twentieth century simulations is run, where the initial

conditions are taken from different times in the 1850 control run. If a climate

model is to be useful, then its twentieth century runs must reproduce well many of

the observed changes in the earth’s climate over the last 150 years. Most of the

comparisons with observations will use the last 50 years of these runs, which is

when virtually all of the observations were made.

Note that for ESMs, which have an active carbon cycle, the twentieth century

runs will be forced by CO2 emissions, rather than atmospheric concentrations.

A severe test for twentieth century ESM simulations will be to reproduce the

time history of atmospheric CO2 concentration over the time period 1850–2005.

The reason is that to accomplish this, the ocean and land components of the ESM

will have to take up the correct fraction of CO2 emitted into the atmosphere. This

nicely illustrates the fact that as a climate model or ESM becomes more compli-

cated with more components, then it is required to perform at a higher level. The

reason is that very important quantities, such as the atmospheric CO2 concentration,

are now being predicted by the model, instead of being prescribed from

observations.

The ensemble of twentieth century runs will then be continued to make

projections of future climate changes over the rest of the twenty-first century. In

order to make a future climate projection, time series of two quantities are required:

the atmospheric CO2 concentrations (for climate models) or emissions (for ESMs)

and other greenhouse gases, and the levels of natural and man-made aerosols. In

these projections, the solar output is kept constant at its 2005 level, and only

a background level of volcanic aerosols is used to account for future small volcanic

eruptions. In all climate models, the magnitude of future climate change depends

crucially on the concentrations of CO2 and other greenhouse gases in the future, and

to a smaller extent on the future levels of man-made aerosols, which are expected to

keep reducing, as they have done over the last 30 years. For the 4th IPCC

Assessment Report, three scenarios for the future concentrations of CO2 were

used, which all had CO2 levels strongly increasing until 2100. For the 5th Assess-

ment Report, scenarios will be used where the CO2 concentrations increase at

a much slower rate during the second half of the twenty-first century because it

has been assumed that emissions will be much reduced over that period.

The second crucial factor that determines the magnitude of a model’s future

climate change over the twenty-first century is its climate sensitivity. Equilibrium

climate sensitivity (ECS) is defined as the increase in the globally averaged surface

temperature that results from a doubling of CO2 in the atmosphere component when

it is coupled to a slab ocean model. This setup of a climate model only takes about

30 years to come into equilibrium, whereas the full depth ocean component takes
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about 3,000 years. However, it has recently been shown [26] that the ECS using

a full depth ocean is not very different than that obtained using a slab ocean model.

Transient climate sensitivity (TCS) is defined as the increase in globally averaged

surface temperature that occurs when CO2 has doubled after 70 years of a transient

simulation where CO2 concentration increases at the rate of 1% per year. In general,

a model with a small (large) ECS will also have a small (large) TCS, but the

relationship is not one-to-one because models differ in the rate of heat uptake into

the ocean and the timescales of other feedbacks. It is interesting to note that the ECS

of every climate model ever developed has been positive, which is a very strong

indication that the equilibrium climate is warmer when there is an increased

concentration of atmospheric CO2. Almost all models used in the IPCC 4th

Assessment Report have an ECS in the range of 2�C–4.5�C. Despite dramatic

improvements in climate models over the last 20 years, this range of ECS is the

same as in the IPCC 1st Assessment Report [27]. It can be viewed as

a disappointment that the range of ECS in climate models has not been reduced

over this time period, but it reflects the fact that climate models still have to

parameterize several important processes that affect climate sensitivity, the most

important of which is clouds. The earth’s climate sensitivity has also been estimated

using observations [28], but this estimate has also not reduced the possible spread in

its value. This brings up the subject of how climate models are validated.

Model Validation

The atmosphere component is the easiest to validate because there is a whole host

of observations to compare its results against. These include observations taken by

instruments, including satellites, and the so-called atmospheric reanalyses, which

use a numerical model to assimilate many different observations to provide a time

history of the state of the global atmosphere. These observations and reanalyses are

compared with the results from AMIP simulations, which are described in

the previous section. AMIP runs use a time history of observed sea surface

temperature (SST), which is a relatively accurately observed quantity, especially

since the start of the satellite era. There are a large number of variables that can be

compared, which include temperature, winds, pressure, cloud amount, precipita-

tion, shortwave solar radiation, and long-wave radiation emitted by the earth. These

quantities can also be compared on many timescales from diurnal, seasonal, annual

to interannual variability. In general, most of these comparisons are quite good,

with cloud amount and precipitation being two of the more difficult variables for the

atmosphere component to simulate well. As an example, Fig. 2.3a shows the mean

annual cycle of precipitation from an AMIP simulation using the CCSM4 atmo-

sphere component compared to long-term observations made at the Southern Great

Plains site in Oklahoma. The difference between the model and observations is

plotted in Fig. 2.3b, and shows that the model has too little precipitation during the

fall and winter, but has too much precipitation in the late summer. Overall, the
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comparison is reasonable because the annual mean values from the model and

observations are quite close. Literally hundreds of such comparisons can be made,

but what is a lot more difficult is how to synthesize and interpret the comparison

results in order to produce better parameterizations for the clouds and precipitation

in the atmosphere component.

It is a different story for the ocean component because there are far fewer

observations to compare to ocean alone simulations. There is a compendium of

temperature and salinity observations at prescribed depths [29] that can be used to

compare to average conditions in the late twentieth century. In the best observed

oceans, these observations can be split into the four seasons, so that the annual cycle

in the upper ocean can be verified. It should be pointed out that satellites can only

measure surface ocean quantities, so that their observations do not give information

about the ocean vertical structure, unlike the atmosphere. However, there are direct

observations in a few regions of the ocean, such as the upper, tropical Pacific

Ocean, which can be used to make comparisons. Figure 2.4 shows the zonal current

along the equator in the upper 400 m of the Pacific Ocean from an ocean alone

simulation of the CCSM4 and observations [30]. It shows that the component does

quite a good job in reproducing the westward surface current, and the very strong

eastward equatorial undercurrent, which is one of the fastest ocean currents with

a maximum speed of about 100 cm/s. The model simulation depends on the

atmosphere winds used to force it, as well as some of the model parameterizations,

and it is frequently difficult to decide whether a poor comparison with observations

is the result of poor forcing fields or a problem with the model parameterizations.

The situation is worse for sea ice because there are even fewer observations. Sea

ice extent and concentration were not well known until they began to be observed

from satellites in 1979. Sea ice thickness is still not well observed, although the

general spatial patterns are known from accumulating point measurements over the
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years. However, there are many processes that affect sea ice, such as ridging, the

formation of polynas, and melt ponds, and how snow aging affects the albedo that

have to be parameterized, although there are few observations of them. There are

also not too many measurements to compare with the variables in the land
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ocean component of the CCSM4 and the observations in [30]
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component, although more than for sea ice. The measurements of quantities such as

soil temperature and moisture, albedo, and the leaf area amount have to be taken in

areas with natural vegetation, as well as in man-made areas such as croplands.

Again, there has been a large increase in observations over the past 20 years or so

during the satellite era, and from land based observations at several specific sites.

As mentioned in the previous section, there are difficulties comparing both

present day and 1850 control simulations with observations because the present

climate is not in equilibrium, and there are not many observations from 1850.

The only quantity from that time that can be estimated directly from observations

is the globally averaged surface temperature. Also, the global SST pattern from

1850 to the present has been estimated in the HadISST dataset [31] by determin-

ing the principle variation patterns from the period when SST has been well

measured and using these patterns to produce global data in the early part of

the period when there were only a few measurements. However, the best

simulations to compare with observations are the ensemble of twentieth century

runs from 1850 to 2005.

There are a very large number of variables that can be compared to observations

from the second half of the twentieth century, but some of the most important are

large-scale patterns of interannual variability, such as ENSO and the North Atlantic

Oscillation [32]. ENSO is the largest interannual signal in the earth’s climate and

much about it has been learned from observations over the last 25 years. The

variable that is most often used to characterize ENSO is called the nino3 SST,

which is the SST averaged over the area 90�W–150�W, 5�S–5�N in the central

Pacific Ocean. Figure 2.5 shows the nino3 monthly SST anomalies, and a wavelet

analysis, which is a method to plot the time variation of the amplitude of the

anomalies as a function of the frequency content. The three smaller boxes show

the power spectrum (variance against period in years), the autocorrelation against

lag time in months, and the annual cycle of the variance amplitude.

Figure 2.5 shows that the amplitude of nino3 SST anomalies in the CCSM4 is

a little smaller than in the HadISST observations, especially the warm events which

have a maximum amplitude of just over 3�C in the data, but are only 2.5�C in the

model. This means that the wavelet and power spectrum are also a little weak in the

CCSM4. However, the amplitude of nino3 SST anomalies from earlier periods of

the twentieth century run is larger than the HadISST data, which shows there is

strong decadal variability in the CCSM4 ENSO amplitude. The CCSM4 power

spectrum peaks at a period of 3–4 years compared to 4–5 years in the data, the

autocorrelation compares quite well, and the annual cycle of variance is quite good

with a minimum in May compared to April in the HadISST data. This good

comparison is independent of the period of the run examined and is a very important

improvement over all the previous versions of the CCSM, which had ENSO spectra

that had a dominant peak at 2 years. This improvement was due to two changes

made to the convection parameterization scheme in the atmosphere component

[33]. The CCSM was one of many climate models that had a poor ENSO simulation

for a long time [34], which was not a good situation given that ENSO is the largest

interannual signal in the earth’s climate.
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Probably the only well-measured variable that can be compared to the model

over the whole period of a twentieth century run is the globally averaged surface

temperature. Figure 2.6 shows this comparison over 1890–2000 between the

HadISST data and an ensemble of twentieth century runs using the CCSM version

3. The red line is the mean value from the ensemble, and the shading indicates the

standard deviation across the eight member ensemble. This comparison is not

perfect, but the data is not too often outside the shading. The model was then

integrated forward to make an ensemble of projections for the twenty-first century

[35] that were submitted to the IPCC 4th Assessment Report.

Another quantity that has been given a lot more attention in recent years is the

sea ice extent in the Arctic Ocean. In order to give realistic projections of the future

state of Arctic sea ice, a climate model must simulate it well at the end of the
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twentieth century. Arctic sea ice has a minimum extent in September, and this has

been well measured by satellite since 1979. Figure 2.7 shows the observed Septem-

ber Arctic sea ice extent from observations and the latest two versions of the

CCSM. For the CCSM3, the twentieth century run forced by observed

concentrations of CO2 ends in 2000, and the model then used a scenario for the

future levels of CO2. The projected decline in the CCSM3 ice extent between 2000

and 2009 is not quite as large as has been observed. However, the actual rise in CO2

concentration in the earth’s atmosphere in the decade since 2000 has been some-

what larger than in the forcing scenario used in the CCSM3 projection shown in

Fig. 2.7. It is important to remember that results from future projections strongly

depend on the forcing scenario used. This same projection suggests that the Arctic

Ocean will become virtually ice free in September by 2040 [36], but again the

actual year when this might occur will depend on the concentrations of CO2 and

70
60
50
40
30
20
10
0

2000199519901985
Model year

AutocorrelationPower spectrum Variance (K2)

081 2 3 4 5 6 7 48 J F M A M
MonthLag (months)Period (years)b

0 0.0
0.5
1.0
1.5
2.0

3.0

−1

1

0

2.5

20

40

V
ar

ia
nc

e 
(K

2 /
un

it 
fr

eq
.)

60

80

100

J J A S O N D362412

CCSM4 - nino3 monthly SST anomalies (5N-5S, 150W-90W)

Anomalies + Wavelet Power (K2/unit freq.)

198019751970

P
er

io
d 

(y
ea

rs
)

Δ 
S

S
T

 (
K

)

10
8

5
4
3

2

1

−3

−2

−1

0

1

2

3

Fig. 2.5 (continued)

2 Coupled Climate and Earth System Models 21



20001980196019401920

Observations

Global surface temperature anomalies
from 1890–1919 average

1900

−0.3

0.3°C

0.6

0.9

0.0

CCSM3

Fig. 2.6 Globally averaged surface temperature anomalies from HadISST data plotted against the

results of an ensemble of twentieth century runs using the CCSM3

2010200520001995
Year

Arctic september sea ice extent

1990

Satellite observations

19851980
3

4

5

10
6  

km
2

6

7

8

9

CCSM4

CCSM3

Fig. 2.7 Arctic September sea ice extent from observations, CCSM3, and CCSM4

22 P.R. Gent



other greenhouse gases over the next 30 years. The result from the CCSM4 shown

in Fig. 2.7 is just from a twentieth century run, which goes to the beginning of 2005.

Again the comparison is good, and the CCSM4 will be used to make future

projections for the IPCC 5th Assessment Report.

Other comparisons to validate the ability of a climate model to simulate the

historical evolution of the earth’s climate can be made, but the observations are

probably not as accurate as for surface temperature and sea ice extent. Two examples

are ocean heat content and the distribution of chlorofluorocarbon-11 (CFC-11) in

the ocean. The time history of CFC-11 concentration in the atmosphere is well

known, so this can be used as an input to the ocean component during a twentieth

century simulation. Observations of both ocean heat content and CFC-11 are sparse

in both time and space, but estimates of their changes can be made and compared to

model results [37]. This comparison helps to determine whether the ocean compo-

nent is taking up quantities at the correct rate. It is very important in an ESM that the

ocean takes up the correct fraction of the CO2 that is emitted into the atmosphere. It is

more difficult to make comparisons of changes in the land component because the

largest changes in land use over the twentieth century are man-made and not changes

in the natural vegetation. Changes in how land has been, and might be, used are often

imposed in the land component during twentieth and twenty-first century

simulations, which allows an assessment of how these changes have affected the

past climate and might affect future climate changes [38]. On the global scale, these

changes are much smaller than changes due to increases in CO2 and other greenhouse

gases, but they can be important in affecting the climate locally.

Climate Forecasts

First, the difference between a forecast and a projection needs to be explained.

When a weather forecast is made, there are two separate factors that determine the

quality of the forecast. The first is the quality of the atmosphere model used; all

models are not perfect, but some are better than others. However, just as important

is the quality of the analysis of the current state of the atmosphere that is used as the

initial condition for the forecast. Even if the model were perfect, if the initial

condition is slightly incorrect, then the model forecast and the real evolution of

the atmosphere will diverge. The reason is that both the real atmosphere and the

forecast model are examples of a chaotic system. What defines a chaotic system of

equations is that, if they are integrated forward from two very slightly different

initial conditions, then the two future solutions will diverge from each other, often

quite quickly. Chaos theory was founded by a famous meteorologist, Edward

Lorenz, who published a classic paper in 1963 [39]. He made drastic

approximations to the equations that represent the atmosphere to produce a set of

three, quite simple ordinary differential equations. When he integrated them for-

ward in time from two slightly different initial states, the solutions diverged, which

is the characteristic of what came to be called a chaotic system. In practice, it is very
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difficult to separate these two sources of error in a weather forecast because the

model is also used to create the initial conditions on the model grid using all the

latest meteorological observations from around the world. In order to reduce the

likelihood of a bad weather forecast, an ensemble of forecasts is made using a set of

slightly different initial conditions. If all the ensemble forecasts predict that some-

thing will occur, then it is forecast with a high probability; whereas if the ensemble

forecasts differ markedly, then it is forecast with a low probability.

Virtually all long climate model simulations of the future done so far are

projections, not forecasts. The reason is that most twenty-first century runs are

just a continuation of a twentieth century run of the model, and no attempt is made

to initialize the climate model to the observed climate in 2005, or whatever year the

twenty-first century run starts. All results submitted to the IPCC 4th Assessment

Report were from future climate projections. If something, such as a large ENSO

event or a sudden reduction in the September extent of Arctic sea ice for example,

occurs in 2015 in a projection, then this is not a forecast that it will actually happen

in 2015, but a strong indication that this type of event might very well occur in the

years around 2015. The case of ENSO events is interesting and instructive because

ENSO forecasts up to a year in advance are now regularly made by a number of

centers around the world using climate models [40].

For a weather forecast using an atmosphere model, it is important to start with

the correct initial state of the atmosphere. However, for a seasonal or ENSO

forecast, a full climate model must be used because the land, ocean, and sea ice

evolve on these time scales. For these forecasts, therefore, initial conditions for the

climate model are needed, and the most important component to initialize correctly

is the ocean because it has the slowest time scales and by far the largest heat

capacity. For an ENSO forecast, what is needed is the correct thermal state of the

upper 300–400 m of the tropical Pacific Ocean between about 15� north and south.

ENSO forecasts could not become a reality until there was an observing system in

the tropical Pacific to continuously measure and report upper ocean temperatures

[41]. An analysis is performed on these observations to produce a temperature field

on the model grid, and this is used as the ocean component initial condition. As the

forward integration starts, the tropical atmospheric circulation comes into balance

with the sea surface temperature field in about a week, which is why it is not

necessary to initialize the atmosphere component. As always, an ensemble of

ENSO forecasts is made by slightly changing the initial conditions used in the

ocean component. For an ENSO forecast, it is important to initialize correctly

the upper tropical Pacific Ocean, but for a climate forecast over a decade, there

are many more aspects of the climate model that need to be initialized correctly: the

ocean deeper than the upper 400 m, especially in the North Atlantic Ocean where

the thermohaline circulation occurs, the sea ice distribution in both the Arctic and

Antarctic, and some aspects of the land component, such as where the soil moisture

content is above or below normal. We do not know precisely all the quantities that

need to be initialized correctly, but we are absolutely certain that there are not

adequate observations of all these quantities.
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Forecasts of climate changes over the next decade on a regional basis are what

would be most helpful in planning for the future. A few preliminary decadal

forecasts have been made by centers in the UK and Germany [42, 43], and many

centers will submit a suite of decadal forecasts to the IPCC 5th Assessment Report.

However, the science of decadal climate forecasts is in its infancy [44], and there is

a very large amount of research to be done before they will become reliable.

Decadal forecasts are now where weather forecasts were 50 years ago, but they

have another disadvantage. Weather forecasts are made and verified every day, so

that there is a very large number of realizations that can be used to make

improvements. By their very nature, decadal forecasts are only verified after 10

years, so that the number of opportunities to compare model predictions to

observations is reduced enormously. However, the outlook for decadal forecasts

has improved over the last few years. First, there is now an ocean observing system

called ARGO floats (named after the mythical Greek ship used by Jason and the

Argonauts to seek the Golden Fleece), that since about 2003 has been giving nearly

global coverage of temperature and salinity down to a depth of 2 km, which has

improved enormously our ability to correctly initialize the ocean component [45].

However, no decadal forecast initialized using ARGO data, which can start at the

beginning of 2005 at the earliest, has yet had enough time to be verified. There are

also satellite observations of Arctic and Antarctic sea ice extent and the soil

moisture content over the continents, which could potentially be used in the

initialization. Second, as the computing capacity continues to increase, then the

resolution of climate models used for predictions will continue to improve, which

will enable decadal forecasts to be more accurate on the regional scales that are

required for future planning.

Future Directions

The computational power available to climate modelers will continue to increase in

the future, so how should it be used? Should it be used to increase the resolution of

present day climate models or used to increase the range of components in ESMs?

This is an extremely difficult question to answer definitively. Increased resolution

will undoubtedly improve some aspects of climate model simulations, but omitting

an additional component may well leave out feedbacks that are potentially important.

The answer will almost certainly be to push forward in both directions because

scientists with different interests will lead the work in the two different directions.

Another possibility is to increase the ensemble size used in future projections and

predictions, which will give more reliability to simulated changes in extreme events

[46], for example, which is a very important factor in planning for the future.

As mentioned above, clouds have to be parameterized in the atmosphere, and the

way this is done can change the ECS of a climate model. Clouds also have to be

parameterized in weather forecast models, but are often done so in a different way
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because the weather forecast model is run at a much higher resolution than the

climate model. Over the last few years, there has been the suggestion, called

Seamless Prediction, that the same atmosphere component should be used in both

weather and climate prediction. In this situation, the cloud parameterization used

would have to work well across all the scales involved in both weather and climate

predictions. This is not as easy as it sounds because both groups have developed

their own parameterizations over past years, which make rather different

assumptions. There have even been suggestions that both models should use

extremely fine resolution on the order of 1 km, so that clouds can be resolved rather

than parameterized, but running climate models at this resolution is still many years

away. Seamless Prediction is a long-term goal, but it will probably not be realized

over the next few years.

Another example of a phenomenon that is not resolved in present day climate

models is mesoscale eddies in the ocean. These are the equivalent of atmospheric

highs and lows, but occur at a range of scales from 200 to 300 km near the equator

to 20–30 km in the very high latitude oceans. Only the equatorial eddies are

partially resolved if the ocean component has a grid-spacing of about 1�. So, the
effect of these energetic eddies on the large-scale mean flow has to be

parameterized in present day climate models. However, it has been shown that

a majority of these eddies can be resolved when using a grid-spacing of 1/10� in the
ocean component [47, 48]. Diagnosis of these simulations has shown that the eddy

parameterization used in the 1� simulations works quite well, but still the question

remains: will future climate change projections in models that resolve the meso-

scale eddies give very similar answers to future projections where they are

parameterized? The answer to this important question should be found in the next

few years because some climate change runs with resolved eddies are now possible

with the available computer time.

Examples of new components that are currently being incorporated into ESMs

have been discussed earlier, and include chemistry-air quality, hydrological,

dynamic vegetation, and crop model components. The new component to simulate

the Greenland and Antarctic ice caps is a very nice example of an important new

component. However, there is a long list of possible feedbacks that have not been

included in any ESM so far. Good examples are the increased release of methane,

which is a very potent greenhouse gas, from Arctic tundra as the Arctic region

warms [49], the possible release of methane from ocean clathrates [50, 51], and the

possible fast breakup of theWest Antarctic Ice Sheet [52]. All these are examples of

possible abrupt climate changes that could result in large future changes that would

have very far reaching consequences. However, all are very difficult to simulate

accurately in an ESM and to assess quantitatively the possibilities that they

will occur.

The science of decadal forecasts will also be advanced in the near future, both by

new ideas and experience in how they should be initialized, and by increasing the

resolution of the components used that will give more regional information. As

explained in the previous section, there is a lot to learn andmuch experience needs to
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be gained before decadal forecasts become reliable. However, they will produce the

most useful kind of information that is required by people planning for the future.

Finally, what motivates the scientists working to develop climate models and

ESMs? First, it is a very stimulating intellectual challenge to understand what

controls the earth’s past, present and future climates, and to build an ESM that

gives a faithful representation of this. This requires the expertise of many scientists

across a large and diverse set of sciences ranging from several earth sciences to

computer science. It is a real challenge to make these models run correctly and

efficiently on several of today’s massively parallel supercomputers. I also know

from experience, that managing an ESM project is very challenging because it is

such a diverse scientific enterprise. A second motivating factor is also very impor-

tant to many scientists working on ESMs. It is that they believe these models are the

best means we have available to anticipate possible future changes to the earth’s

climate, and that their results should be made freely and widely available to anyone

who wants to see them.
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Chapter 3

Cryosphere, Modeling of

Cecilia M. Bitz and Shawn J. Marshall

Glossary

Ablation Snow and ice removed from an ice mass via meltwater runoff,

sublimation, wind scour, or glacial calving (mechanical fractur-

ing and separation).

Accretion Increase in ice mass by basal growth in the case of floating ice,

the compression of snow into ice, or freezing of water that has

pooled on the ice or percolated into snow from rain, meltwater, or

flooding of sea/lake/river water.

Accumulation Snow and ice added to an ice mass via snowfall, frost deposition,

rainfall that freezes on/in the ice mass, refrozen meltwater, wind-

blown snow deposition, and avalanching.

Glacier A perennial terrestrial ice mass that shows evidence of motion/

deformation under gravity.

Grounding line The transition zone between grounded and floating ice.

Ice sheet A large (i.e., continental-scale) dome of glacier ice that

overwhelms the local bedrock topography, with the ice flow

direction governed by the shape of the ice cap itself.
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Ice shelf Glacier ice that has flowed into an ocean or lake and is floating,

no longer supported by the bed.

Icefield A sheet of glacier ice in an alpine environment in which the ice is

not thick enough to overwhelm the local bedrock topography, but

is draped over and around it; glacier flow directions in an icefield

are dictated by the bed topography.

Lake/river ice Floating ice on rivers or lakes, usually freshwater ice.

Mass balance The overall gain or loss of mass for a component of the

cryosphere over a specified time interval, typically 1 year. This

can be expressed as a rate of change of mass (kg year�1), ice

volume (m3 year�1), or water-equivalent volume (m3 w.eq.

year�1). It is also common to express this as the area-averaged

rate of change or the specific mass balance rate, with units of

kg m�2 year�1 or m w.eq. year�1.

Permafrost Perennially frozen ground, technically defined as ground that is

at or below 0�C for at least 2 years.

Sea ice Floating ice from frozen seawater.

Snow Ice-crystal precipitation that accumulates on the surface.

Soil ice Ice in permafrost.

Definition of Subject

The global cryosphere encompasses snow and ice in all its forms in the natural

environment, including glaciers and ice sheets, sea ice, lake and river ice, perma-

frost, seasonal snow, and ice crystals in the atmosphere. Cryospheric models are

mathematical and numerical descriptions of these components of the Earth system,

designed to simulate snow and ice processes and feedbacks in the context of the

global climate system. This entry covers all forms of ice except ice crystals in the

atmosphere, which are more appropriately combined with clouds and appear in

entry Solar Radiation Management, Cloud Albedo Enhancement. We focus on

models that are appropriate for global climate modeling. There are regional climate

modeling applications that include some of the cryospheric components discussed

here as well.

The cryosphere is critical to understanding global climate change owing to its

control on Earth’s surface reflectivity. In addition, storage of freshwater by the

cryosphere and exchange of freshwater between the cryosphere and ocean are

fundamental to ocean circulation and sea level rise. Sea ice and snow insulate the

underlying surface and usually allow lower atmospheric temperatures than snow and

ice environments. Biogeochemical cycles in sea ice and permafrost influence carbon

dioxide and methane concentrations in the atmosphere, and sea ice hosts organisms
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and nutrients important to marine ecosystems. Modeling cryosphere-climate

interactions generally requires modeling the mass balance of ice on Earth and the

key features of ice that interact with the climate system.

Perennial ice covers 10.8% of Earth’s land, with most of this ice area in the great

polar ice sheets in Greenland and Antarctica. Smaller glaciers and icefields are

numerous – the global population is estimated at 160,000 – but these ice masses

cover less than 1% of the landscape. An additional 15.4% of Earth’s land surface is

covered by permafrost: frozen ground that ranges from a few meters to 100 s of

meters deep.

In contrast to this permanent land ice, seasonal snow and ice fluctuate dramati-

cally. Snow cover is the largest-varying element of the cryosphere, with complete

summer loss of this snow everywhere on Earth except over Antarctica, the interior

of Greenland, and in the accumulation areas of other high-altitude and polar ice

caps. In winter, the northern hemisphere snow cover reaches an average maximum

extent of 45.2� l06 km [1], based on data from 1966 to 2004). This amounts to 49%

of the Northern Hemisphere land mass. Because the southern hemisphere

continents are situated at lower latitudes (excepting Antarctica), southern snow

cover is less extensive, with the seasonal snow cover estimated at 1.2 � l06 km.

This combines with the permanent blanket of snow over Antarctica to give a peak

southern hemisphere terrestrial snow cover of 15.0 � l06 km.

Relative to the snowpack, seasonal sea ice cycles are more hemispherically

symmetric, although there are interesting north–south contrasts. Based on passive

microwave remote sensing for the period 1979–2010, the average minimum North-

ern Hemisphere sea ice area is 4.4 � l06 km, typically reached in September [2].

Maximum ice cover is usually attained in March, with an average area of 13.1 �
l06 km. The annual average Northern Hemisphere sea ice area is 9.4 � l06 km. The

Southern Hemisphere sea ice has a larger seasonal cycle, with relatively little

multiyear ice. Annual mean sea ice cover in the south is 8.7 � l06 km, varying

from 1.9 � l06 km (February) to 14.5 � l06 km (September).

Introduction

The early energy balance modelers of the 1960s who investigated global climate

recognized the importance of the high albedo of ice in the climate system [3, 4].

Their models parameterized snow and ice albedo by varying the land or ocean

surface albedo with surface temperature, but no other physical characteristics of ice,

such as its ability to insulate or store energy and freshwater, was simulated. When

subject to climate forcing, such as a perturbation to the solar constants, the models

nonetheless exhibited an amplification of temperature change in the high latitudes –

a phenomenon widely known as polar amplification. The albedo difference between

ice-covered and ice-free regions determined the strength of the polar amplification.

Today we know ice-albedo feedback is only one of many important ways that ice

and snow contribute to the climate system.
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The next progression in ice modeling among global climate models was to

include the major elements of the mass balance of snow on land [5] and sea ice

[6], both implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) in

1969. Yet the GFDL model and all other climate models for several more decades

had no ice dynamics, continued to treat ice sheets as shallow snow fields with

prescribed representative topography, and ignored soil ice altogether. The more

advanced aspects of cryosphere modeling evolved in parallel with, but independent

of global climate models.

In the 1950s, John Nye [7, 8] laid the theoretical foundations for glacier models,

through the elucidation of the essential physics as well as several well-judged

simplifications that permit analytical solutions. Theoretical and laboratory analyses

by a contemporary materials scientist, John Glen, led to the understanding that

glacier ice deforms as a nonlinear viscous fluid. Glen established a constitutive

relation for the rheology of glacier ice that endures to this day [9, 10]. Combined

with the conservation equations for mass, momentum, and energy, this provides the

basis for modeling glaciers and ice sheets. By the late 1960s and 1970s, emerging

computer power presented the opportunity to develop numerical models of glaciers

[11–13]. Model development through the 1980s largely focused on regional

simulations [14] and ice flow in different regimes, such as ice shelves and ice

streams [15, 16].

In the late 1980s, Philippe Huybrechts developed the first pragmatic, operational

3D thermomechanical ice sheet model [17, 18]. This model has been applied

extensively to the Greenland and Antarctic Ice Sheets, helping to understand

their past and present evolution, e.g., [19–22]. The Huybrechts model also

underpins the projections of ice sheet response to climate change in the IPCC

reports. Similar models have now been developed in several research groups, and

intercomparison exercises have been carried out to evaluate model strengths and

weaknesses [23, 24].

A few global climate models have incorporated a Huybrechts-type ice sheet

model such that changes to the global climate can interact with the shape and extent

of ice sheets in Greenland and Antarctica. The interaction occurs through changes

in surface albedo as the ice sheet retreats or advances over bare soil, elevation-

temperature feedbacks, and through changes in the atmospheric and oceanic circu-

lation [21, 25–27].

The low-order glacier models implemented in global climate models to date are

based on a simplified representation for ice sheet flow (see section “Land Ice Dynam-

ics”), which is not well-suited to ice shelves, ice streams, and ice sheet margins.

Because these features of ice sheets are known to be changing rapidly, current

development efforts are focusing on higher-order solutions of ice dynamics [28–32].

Models of valley glacier dynamics have followed a similar evolution from simplified

representations of ice dynamics, e.g., [33], to recent simulations that include a more

complete representation of the glacier stress and strain regime [34–38]. Parallel to this

recent effort are formal, community-scale programs to couple more sophisticated,

high-resolution ice sheet models into global climate models [39], although fully

coupled efforts with global climate models are still in their infancy.
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The development of sea ice models took a rather different path than glacial

models. Model development began later, but the methods, albeit often simplified,

migrated more quickly into global climate models. Today the lag between devel-

oping new sea ice model physics and implementing them in global climate models

is often only a few years.

The first sea ice rheology was proposed in the 1970s, roughly two decades after

the glacier rheology proposed by Nye and Glen. Initially a plastic rheology was put

forward as a way to produce deformation (ridging and rafting) for the Arctic Ice

Dynamics Joint Experiment (AIDJEX) model spearheaded by Max Coon [40].

Models attempting to treat ice as a plastic were only appropriate for local-scale

problems of a few weeks to a month duration and could not be used to investigate

ice-climate interactions owing to their inherent numerical complexity [41]. In the

late 1970s, William Hibler proposed a nonlinear viscous-plastic (VP) rheology –

a simplification motivated on physical grounds [42]. In a 1979 landmark paper,

Hibler applied his sea ice model to the whole Arctic Ocean basin and ran an 8-year

simulation [43]. The AIDJEX and Hibler sea ice dynamics remains the foundation

of modern sea ice models.

A subgridscale parameterization of the variety of sea ice thicknesses that are

found in a typical model grid box, known as an ice thickness distribution (ITD), was

developed by Alan Thorndike and colleagues [44] and implemented by Hibler at the

basin-scale in 1980 [43]. Modeling the intricacies of sea ice thermodynamics to

account for the thermal inertia of brine-pocket physics was developed slightly

earlier by Norbert Untersteiner and Gary Maykut [45, 46], but it was only

implemented in 1D until the present decade.

The first global climate models treated sea ice as a uniform slab without leads

(openings among floes), melt ponds, or brine pockets, based on the simplifications

proposed by Albert Semtner [47]. If the sea ice moved at all, it was advected with

the surface currents – in what is known as “free drift.” Once the sea ice thickness

reached some threshold (4 m was common), it was then held motionless to prevent

the sea ice from building to excess in regions of convergence [48–50].

It was not until Flato and Hibler [51] simplified the VP model by treating sea ice

as a cavitating fluid (CF) that global climate modelers attempted to implement sea

ice dynamics with a constitutive law. However, the lack of shear strength in the CF

model degraded the accuracy of the simulation compared to the VP model. Soon

after Hunke and Ducowicz [52] developed a technique of treating sea ice as an

elastic-viscous-plastic (EVP) material – a numerical approximation to the VPmodel

that asymptotes to the full VP solution and yet is efficient, highly parallelizable, and

offers flexible grid choices. Zhang and Hibler [53] followed suit by making the VP

numerics more efficient and parallelizable. These new dynamical schemes ushered

in a time of rapid improvement in the sea ice dynamics in climate models, and now

EVP and VP dynamics are in wide use among climate models. Thermodynamic

advances in global climate models have been slower. The use of an ITD and brine-

pocket physics has only been recent in climate models [54, 55]. Melt pond

parameterizations and radiative transfer that includes scattering have only been
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developed in one dimension and are in the early stages of production runs in the next

generation of models.

Snow and permafrost models used for one- and two-dimensional applications

also progressed significantly before their developments were brought into climate

models, e.g., [56–58]. Permafrost models are typically based on one-dimensional

thermal diffusion in the upper 2 km of the Earth surface, consisting of bedrock,

sediments, and soils. Where temperatures are below freezing, ground ice occupies

pore space and fractures in the rock. A freezing front propagates to a depth that is

limited by the geothermal heat flux. Permafrost models simulate the aggradation

or degradation of permafrost, based on mean annual surface (ground)

temperatures and subject to geothermal heat flux from below. Detailed near-

surface models can be added to simulate the seasonal melting/freezing of the

surface active layer. In reality, more complex thermodynamic and hydrological

processes are involved in permafrost dynamics. For instance, water flow can

advect heat and there are 3D thermal effects associated with horizontal gradients

in surface temperature, arising from variable surface vegetation, micro-topogra-

phy, snow cover, and surface lakes. In addition, freezing of subsurface water is

not always limited to the pore space; ice can accrue as “massive ice” deposits

(e.g., ice lenses) through migration of water to the interstices of soils and

sediments, driven by low capillary pressures. Simple permafrost models, as

used in climate models, typically neglect these processes and focus on large-

scale predictions of permafrost depth and 1D ground temperature structure.

For snow models, the chief physical processes that prove challenging to model

are snow aging and grain size evolution influences on the albedo and density; liquid

water infiltration and storage; snow blowing, redistribution, and collection by

vegetation; and active layer depth dynamics. Many global climate models have

developed terrestrial snow schemes to treat all but snow redistribution in the last

few decades because these processes have a major impact on surface albedo,

surface hydrology, and soil carbon storage [59–64]. Subgridscale snow distribution

models exist [65] but have yet to be implemented in any global climate model that

we are aware of. Models of snow on sea ice tend to be more primitive because

transporting every variable that describes the snow is necessary and expensive.

In subsequent sections we describe the equations and methods used to model

the cryosphere, followed by a brief outlook of future directions and priorities in

cryospheric modeling. Components of the cryosphere are grouped into four types

based on common characteristics and physics: Land ice refers to ice above the

soil/bedrock (e.g., glaciers and ice sheets) and ice shelves; floating ice refers to

river, lake, or sea ice; frozen soil includes permafrost and seasonally frozen soil;

and finally snow, which may overly land ice, floating ice, or soil. The underlying

equations for the dynamics of land and floating ice are rooted in a blend of

continuum mechanics and fluid dynamics, but there are significant differences

in their implementation, justifying separate descriptions. In contrast, thermody-

namics cuts across all aspects of the cryosphere, and much about it can be

described more generally.
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Thermodynamics of the Cryosphere

Conservation of Energy

The governing equation for the thermodynamics of the cryosphere is conservation

of energy:

Dq

Dt
þr � ðunfqnÞ ¼ �r � ðkrTÞ þ Qsw þ F (3.1)

which is written in terms of an enthalpy (q) for ice, snow, or mixed soil and ice,

where q is expressed in units of Jm�3,f is the void (or pore) fraction within the solid

where liquid water/vapor may exist, un is the velocity of liquid water/vapor moving

in the voids, T is temperature in the solid and voids, qn is the enthalpy of liquid water/
vapor in the voids, k is the conductivity in solids and voids, Qsw is the absorption of

shortwave radiation over a finite thickness of the ice (W m�3), which is assumed to

be significant only in ice, andF is the strain heat production due to deformation work

(significant for glaciers). The first term is a Lagrangian derivative of the heat

required to raise the temperature and change the phase between solid and liquid. It

is Lagrangian to account for the horizontal advection of heat in moving land and

floating ice (see sections “Land Ice Dynamics” and “Floating Ice Dynamics”). The

second term represents heat transport due to liquid water or vapor transport in the

voids, and the third term is diffusion of heat in both solid and voids. In models of

practical use today, vertical gradients in the enthalpy are far greater than those in the

horizontal; therefore, the horizontal diffusion and horizontal liquid/vapor transport

in the pore space are generally neglected.

The enthalpy can be written to a good approximation

q ¼ ciðT � ToÞ þ Lo ð1� fÞ (3.2)

where ci is the volumetric specific heat of ice or snow (or the ice and soil

combination for permafrost), Lo is the volumetric latent heat of fusion for ice or

snow, and f is the fraction of the volume that is not composed of ice. This includes

air- and liquid-filled pore space in the volume, and in frozen ground, it also includes

the soil or rock matrix. Modern models of snow and frozen soil may allow liquid

water to infiltrate and possibly supercool, and therefore, additional equations are

needed to describe liquid infiltration and the conversion of liquid to ice and vice

versa. Such equations may be devised such that the second term in Eq. 3.2 is not

needed. The reader may refer to the Community Land Model, CLM version 4 for

a description of one possible model of snow and frozen soil that is designed for

a global climate model but is relatively complete [66].

The boundary conditions of Eq. 3.1 depend on the cryosphere component and

possibly the climatic conditions. First consider the special case of floating ice where

the basal temperature is always assumed to be at Tf . In these materials, the bottom

3 Cryosphere, Modeling of 37



boundary of Eq. 3.1 has a temperature boundary condition, and the net flux into the

surface excluding the conductive flux in the ice is equal to the heat flux from the

water below: F|bottom = FW (fluxes are taken as positive toward the surface). In

contrast, the base of land ice and the lowest point considered in a soil or snowpack

model are generally not at the freezing point, in which case Eq. 3.1 has a flux

boundary condition at the base equal to the geothermal heat flux: F|bottom = FG. At
the top surface of ice or snow, one must test if the net flux into the top surface can

balance the conductive flux (taking z as positive down):

FðTÞjtop ¼ k
@T

@z

����
top

;

for a surface temperature below the freezing point (T < Tf). If so, then a flux

boundary condition is used at that surface in Eq. 3.1. If the surface temperature is

at or above the freezing point, then a temperature boundary condition is used at that

surface in Eq. 3.1 with T = Tf.

Ablation, Accretion, and Accumulation

Models of land ice, floating ice, and snow usually employ a fixed number of layers

and therefore layer thicknesses vary in time. This so-called moving boundary

method requires a Stefan condition to describe ablation, accretion, and accumula-

tion. The rate of change of the top surface position (zo, positive down) for snow or

ice from ablation is

q
dzo
dt

����
ablation

¼ FðTÞjtop�k
@T

@z

����
top

if FðTÞj
top
> k

@T

@z

����
top

: (3.3)

An additional equation is needed to account for snow processes that contribute to

increasing the mass of ice and/or snow at the top surface:

dzo
dt

����
accumulation

¼ �Sfall þ d; (3.4)

where Sfall is the rate of falling snow, and d is from snow densification, snow to ice

conversion, snow redistribution, etc. The rate of change of the bottom surface

position (zb, positive down) for ice from accretion (if liquid water is available) or

ablation is
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q
dzb
dt

¼ �FðTÞ
����
bottom

� k
@T

@z

����
bottom

: (3.5)

Floating ice may experience lateral accretion or ablation as well. Land and

floating ice must also take into account the horizontal transport of ice, which

is described in sections “Land Ice Dynamics” and “Floating Ice Dynamics”.

Surface Energy Balance, Radiation, Surface Albedo,
and Melt Ponds

The net flux entering the top surface of land and floating ice, soil, or snow is a sum

of radiative and turbulent heat fluxes:

FðTÞjtop ¼ Frð1� aÞ � I0 þ FL � esT4 þ Fs þ Fe; (3.6)

where Fr(1� a) is the net downward solar irradiance above the top surface, a is the
surface albedo, Io is the solar irradiance that penetrates the top surface, FL is the

downward longwave irradiance, esT4 is the upward longwave irradiance (for T in

Kelvin), e is the emissivity, s is the Stefan-Boltzmann constant, Fs and Fe are the

downward sensible and latent heat fluxes, respectively.

In many ice and snow models, the surface albedo is a function of various

quantities such as temperature, snow grain size, snow age, impurities, snow

depth, ice thickness, and melt pond coverage. Often shortwave radiation is absorbed

in the ice interior based on Beer’s law, although Beer’s law is inappropriate in

materials with depth-dependent surface albedo parameterizations. Usually the

temperature dependence of the surface albedo is a proxy for modeling melt pond,

grain size, and/or surface scattering characteristics. These relatively crude methods

are being revamped considerably in models at this time.

A better way is to design a highly interdependent set of physics for radiative

transfer, ponding, and liquid infiltration. Ideally one would have radiative transfer

account for multiple-scattering and be based on intrinsic optical properties that vary

with impurity concentrations, snow grain size, ice bubbles, and brine pockets.

Ponds would accumulate water above sea level when there is insufficient hydraulic

connectivity to drain meltwater, and they would accumulate below sea level when

there is hydraulic connectivity that is high enough to allow liquid water to rise up

from below and flood the surface.

Influence of Salts and Other Impurities

Dissolved impurities such as salts in the pore water depress the freezing point. For

ice to remain in local thermodynamic equilibrium, the pore water is always at the

3 Cryosphere, Modeling of 39



freezing point and freezing or melting must occur at the pore-ice interface to dilute

or concentrate the solute. If we assume for simplicity that the voids are completely

filled with liquid, then the void fraction is a function of temperature and the bulk

solute concentration. The solute concentration in the voids, assuming freezing

expels the solute completely into the voids, is a function of temperature according

to the liquidus relation from the phase diagram of the binary material (ice plus

solute). A few global climate models today have sea ice models that allow for such

pore-ice interchange (also known as brine-pocket physics in sea ice) [54, 55].

However, these models assume the bulk solute concentration is fixed in time, and

hence, they neglect the heat and solute transport in the voids. These simplifications

made it possible for the first step, but they cannot capture the important structural

evolution of young sea ice or rapidly changing permafrost. These processes should

not be neglected in models that aim to model biogeochemistry in the polar regions.

Land Ice Dynamics

Glaciers are perennial ice masses that are large enough to experience gravitational

deformation: the flow of ice under its own weight. Glaciers and ice sheets nucleate

where snow accumulation exceeds snow and ice ablation over a period of many

years or decades. With time, the accumulated snow is buried and compressed,

metamorphosing into firn and then glacier ice. Ice behaves as a nonlinear, visco-

plastic fluid; once the ice thickness is sufficient, internal gravitational stresses cause

the ice to deform.

Snow accumulation is primarily meteoric (derived from atmospheric precipita-

tion), but snow can also accumulate at a site through wind deposition or

avalanching. Ablation refers to the loss of snow and ice through melting, sublima-

tion, wind erosion, or calving, a process where slabs of ice at the glacier margin

mechanically fracture and detach from the main ice mass. Iceberg calving is a very

effective ablation mechanism for glacier and ice sheets that are in contact with the

ocean. Melting occurs at the glacier surface – the ice-atmosphere interface – but

there is also melting internally (englacially), at the glacier bed (subglacially), and

on vertical ice cliffs that are common at the ice margin, particularly where glaciers

reach the sea and a large area of ice can be in contact with water. Melting only leads

to ablation in the case where meltwater runs off and is removed from the system;

some surface meltwater in the upper regions of glaciers and ice sheets percolates

into the snowpack or ponds at the surface, where it can refreeze.

A glacier’s mass balance is determined by the net accumulation minus ablation

over a specific time period, typically 1 year. This can be expressed as a total balance

(kg year�1 or m3 year�1 water-equivalent for the entire glacier) or a specific

balance, per unit area of the glacier (kgm�2 year�1 or m year�1 water-equivalent).

There is no simple “threshold temperature” for a glacier to be viable; a mean annual

temperature below 0�C is not a necessary or sufficient condition for glacier ice to
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exist. Tidewater glaciers are vivid examples of this. Because ice flow delivers large

fluxes of ice to low elevations, glaciers can extend to sea level environments where

mean annual temperatures are several degrees above 0�C. While most glaciers do

not reach the ocean, this feature is intrinsic to all glaciers; glacier ice in the ablation

area does not grow in situ, but is a consequence of ice transport from the accumu-

lation area to the ablation area.

Glacier flow occurs through three different mechanisms: internal “creep” defor-

mation, decoupled sliding at the ice-bed interface, and deformation of subglacial

sediments (Fig. 3.1). The former is a function of ice rheology and the stress regime

in the ice, while the latter two mechanisms are governed by conditions at the base of

the glacier [67]. These processes are described in more detail below.

Governing Equations for Glacier Dynamics

Similar to models of atmosphere or ocean dynamics, the flow of glaciers and ice

sheets is mathematically described from the equations for the conservation of mass,

momentum, and energy. For a point on the glacier with ice thickness H, the
vertically integrated form of the conservation of mass is most commonly employed

in glaciological models:

@H

@t
¼ �r � ðuHÞ þ b: (3.7)

Here u is the average horizontal velocity in the vertically integrated ice column

and b is the mass balance rate. The mass balance is computed generally from

Eqs. 3.3–3.5 by

z = b
udub

us

H

z = s

z

x

Fig. 3.1 Schematic of glacier flow mechanisms. The surface velocity us = ub + ud(s). Basal
velocity is the sum of deformation of underlying sediments and decoupled sliding at the ice-bed

interface. Where ice is moving at the bed, these two processes can operate together, or only one of

them may be active
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b ¼ � dzo
dt

����
ablation

�dzo
dt

����
accumulation

þ dzb
dt

: (3.8)

The first term on the right-hand-side describes the horizontal divergence of ice

flux, while the second term describes the net local source or sink of mass associated

with accumulation and ablation. The vertically averaged velocity includes ice flow

due to both internal deformation and basal flow: u ¼ ud þ ub . Glacial ice moves

slowly, so a year is typically adopted as the most convenient unit of time; hence, ice

velocities are reported in m year�1 and b is expressed as m year�1 of ice-equivalent

gain or loss of mass.

The main challenge in modeling glaciers and ice sheet is evaluation of the

velocity field. Acceleration and inertial terms are negligible in glacier flow, so the

Navier–Stokes equations that describe conservation of momentum reduce to

a case of Stokes flow, where gravitational stress is balanced by internal deforma-

tion in the ice:

r � s ¼ �rg; (3.9)

where s is the ice stress tensor, r is ice density, and g is the gravitational acceleration.

Expanding this into the three directional components,

@sxx
@x

þ @sxy
@y

þ @sxz
@z

¼ 0;

@syz
@x

þ @syy
@y

þ @syz
@z

¼ 0;

@sxz
@x

þ @syz
@y

þ @szz
@z

¼ �rig:

(3.10)

Ice deformation is independent of confining (i.e., hydrostatic) pressure, so ice

rheology is usually couched as a function of the deviatoric stress tensor, s0. Under
the assumption that ice is incompressible, themomentumequations can be analyzed to

give the horizontal balances

2
@s

0
xx

@x
þ @s

0
yy

@x
þ @s

0
xy

@y
þ @s

0
xz

@z
¼ �rg

@h

@x
;

@s
0
yz

@x
þ 2

@s
0
yy

@y
þ @s

0
xx

@y
þ @s

0
yz

@z
¼ �rg

@h

@y
:

(3.11)

The terms on the right-hand-side represent the surface slope, for the glacier

surface h(x, y). Greve and Blatter [129] present a detailed derivation of this full

system of equations and their solution. A constitutive relation is needed to express

internal stresses in terms of strain rates in the ice: _eij ¼ 0:5ð@ui=@xj þ @uj=@xiÞ .
Equation 3.11 can then be rewritten as a function of the 3D ice velocity field,
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providing a framework to solve for ū and integrate Eq. 3.7 to model the evolution of

glacier geometry in response to variations in ice dynamics or climate. The next section

describes the constitutive relation that is most commonly used in glacier modeling.

Because ice rheology is strongly temperature-dependent, an additional equation

is needed to solve for the 3D temperature distribution. As discussed in section

“Thermodynamics of the Cryosphere,” the local energy balance gives the

governing equation for temperature evolution in the ice sheet in Eq. 3.1.

Given a 3D temperature distribution through the ice sheet, the effective rheology

of the ice can be evaluated and the velocity field can be numerically determined.

Knowledge of the temperature field is also essential to assessing whether the base of

the ice sheet is at the pressure melting point or not; if so, liquid water can be present

at the bed and the glacier or ice sheet is subject to basal flow.

Internal Deformation: Ice Rheology

In order to solve the Stokes flow diagnostic equation, ice sheet stresses need to be

expressed as velocity fields, via a constitutive relation for ice. The rheology of

polycrystalline glacier ice is well-studied in laboratory and field environments [68].

Lab studies of tertiary ice deformation reveal that ice deforms as a nonlinear

viscous fluid [9, 10, 69, 70]. The original form of the flow law proposed by Glen

[9, 10] is broadly supported by field studies of tunnel and borehole deformation

[7, 71], as well as observations and modeling of large-scale ice motion [72, 73].

This constitutive relation is known as Glen’s flow law and is written as a function

of the second invariant of the deviatoric stress tensor,
P0

2 ¼ s
0
ij s

0
ji

� �
=2,

_eij ¼ BðTÞ
X0ðn�1Þ=2

2
s

0
ij: (3.12)

B(T) is an “ice softness” term that follows an Arrhenius temperature

dependence,

BðTÞ ¼ B0 exp
�Q

RT

� �
: (3.13)

B0 is called the Glen flow law parameter, R is a constant, and Q is the creep

activation energy. Lab and field studies of ice deformation suggest that B0 can vary

by a factor of about 10 [68]. Including the effects of strain-softening and tempera-

ture, the effective viscosity of ice varies by several orders of magnitude.

This formulation is an isotropic flow law that allows the first-order effects of ice

temperature and deviatoric stress regime to be incorporated in estimates of ice

deformation. Ice deformation is typically modeled as an n = 3 process. Where shear

stress and shear deformation are dominant, as is often the case, this is well-

approximated by
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_exz ¼ BðTÞ s03
xz: (3.14)

Glen’s flow law is for pure, isotropic ice. There are numerous other complicating

factors for ice deformation, such as anisotropic ice fabric [74–76], the potential

impact of grain size [77, 78], and the presence of impurities and intergranular liquid

water content [79]. These effects are not explicitly resolved in ice sheet models, but

the flow rate parameter, B0, is typically tuned to approximate the bulk effects of

crystal fabric, grain size, and impurity content.

The strain rates in Eq. 3.12 or 3.14 can be expressed as velocity gradients, and

then vertically integrated or inverted and substituted into the momentum balance,

Eq. 3.11, to give a set of equations for the horizontal ice velocity. Various numeri-

cal solutions to these equations have been adopted in glacier and ice sheet

modeling, outlined in more detail in the next section.

Basal Flow

In addition to internal deformation, glacier ice can flow at the base where the bed is

at the pressure melting point, through some combination of subglacial sediment

deformation and decoupled sliding over the bed. Large-scale basal flow generally

requires pressurized subglacial meltwater, which can lubricate the bed, float the ice,

or weaken subglacial sediments. Subglacial hydrology therefore plays a pivotal role

in fast-flowing glaciers and ice streams [80, 81]. High subglacial water pressures

can decouple the ice from the bed by reducing or eliminating basal friction. On local

scales this may not entice a significant ice-dynamical response, as resistive stresses

can be taken up at adjacent well-coupled regions of the bed, by side drag from

valley walls or adjacent ice, or by longitudinal stress bridging (upstream and

downstream resistance to flow). However, numerous observational studies report

occasions where inputs of surface meltwater to the bed overwhelm these

resistive stresses and produce localized speedups in valley glaciers, e.g., [82, 83]

and in polar icefields [84–86].

For large-scale ice stream flow or surging of outlet glaciers, subglacial water

must occupy a significant portion of the glacier bed, at pressures which are

sufficient to drown geologic and topographic pinning points [83, 87]. In this

situation, widespread ice-bed decoupling can permit high rates of basal flow

(100–1,000 s of m year�1) and a regime in which ice fluxes are dominated by

basal flow.

In ice sheets that exhibit high rates of basal flow, there is ongoing uncertainty as to

the relative importance of sliding flow along the ice-bed interface versus deforma-

tion of the underlying glacial sediment. High subglacial water pressures are condu-

cive to both processes. Fast flow in West Antarctica’s Siple Coast ice streams is

associated with plastic failure of a thin layer of saturated marine sediment [88, 89],

and similar processes are expected to be important wherever subglacial sediments

and topographic features offer a relatively smooth, low-friction substrate [90].
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Models make some allowance for basal flow, usually through a local sliding “law”

relating basal flow, ub, to gravitational shear stress at the bed, raised to some powerm,
ub / tmd . In some applications, the effects of subglacial water pressure on basal flow

are introduced, typically through the effective pressure pe. This is the difference

between glaciostatic (ice) pressure and subglacial water pressure: pe = pi � pw . An
effective pressure of 0 indicates that ice is floating, so low or negative effective

pressures promote ice-bed decoupling and enhanced basal flow. While it is safe to

assume that ub / p�k
e , for some unknown power k, there is likely no generalized local

relationship between ub and pe; actual basal flow is affected by regional-scale ice

dynamics, not just local conditions. A prescription of the form ub ¼ Atmd =p
k
e is

unstable as this blows up as pe ! 0. Local flotation is commonly observed in nature,

so pe = 0 is a physically acceptable possibility. The mathematical instability is

simply a failure of the local form of the basal flow law. An alternative is to introduce

a parameterization in terms of the flotation fraction pw=pi , with ub = 0 when pw =

0 and basal flow increasing with pw=pi . The local expression ub ¼ Atmd f ðpw=piÞ
can represent this, e.g., [91]. Basal flow observations are notoriously difficult to make

so there is no clear recommendation as to the functional form of f ðpw=piÞ. Hydrologi-
cal enabling of basal flow is expected to be a nonlinear, threshold process [92].

Modeling Glaciers and Ice Sheets

This section describes the physical approximations and numerical techniques in

place for simulations of glacier and ice sheet dynamics, based on solution to

Eqs. 3.7, 3.11, and 3.1.

One common reduction in ice sheet modeling, known as the shallow-ice approx-

imation, involves a number of scaling assumptions that are valid when horizontal

gradients in ice thickness and velocity are small and ice flows dominantly by

vertical shear deformation. Under these conditions, Eq. 3.11 simplifies to

@s
0
iz

@z
¼ �rg

@h

@xi
: (3.15)

where subscript i refers to the horizontal direction of interest (x, y). Equation 3.15

can be vertically integrated to give

s
0
izðzÞ ¼ �rg ðh� zÞ @h

@xi
: (3.16)

This vertical shear stress is commonly known as the gravitational driving stress,

td. It vanishes at the glacier surface (z = h) and td ¼ �rgHr h at the glacier bed.
Substituting for the strain rates based on Glen’s flow law and representing strain

rates in terms of velocity gradients gives
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uiðzÞ¼ ubi�2ðrgÞn rhj jn�1 @h

@xi

Z z

b

BðTÞðh� zÞndz; (3.17)

for basal velocity ub.

For the shallow-ice approximation represented in Eq. 3.17, the vertically aver-

aged ice velocity due to deformation is nonlinearly proportional to local surface

slope and ice thickness,

ud / ðrhÞnHnþ1: (3.18)

This treatment of ice dynamics has been adopted in most ice sheet modeling

studies to date, e.g., [19, 20, 93]. The nonlinearity of Glen’s flow law gives ice

deformation rates that are exceptionally sensitive to the glacier thickness and

surface slope. Under this approximation, ice velocity is solely a function of local

ice geometry. This neglects “farfield” effects and other complicating influences on

ice flow, such as longitudinal stretching/compression of the ice and horizontal

shearing due to the friction of valley walls. The influence of longitudinal stress

coupling on ice dynamics is significant in complex terrain such as valley glaciers

and mesoscale icefields [34, 94]. It is also important in settings such as tidewater

glaciers, ice shelves, ice streams, transition regions from inland to floating ice

dynamics, and ice sheet divides [14, 28]. Many of the most interesting questions

in ice sheet behavior involve these parts of the system, so more complete

representations of ice dynamics are of great interest.

Doug MacAyeal [16, 130] introduced an approximation for ice shelf and ice

stream flow that is essentially the complement of the shallow-ice approximation in

Eq. 3.15. Because flow in ice streams is predominantly at the base, a plug-flow

approximation, assuming no vertical shear, is reasonable. The gravitational driving

stress is then taken up by longitudinal stress, horizontal shear stress, and basal

friction. In ice shelves, the basal traction also vanishes. Under this approximation,

Eq. 3.11 can be written

@

@x
ð2s0

xx þ s
0
yyÞ þ

@

@y
ðs0

xyÞ ¼ �rg
@h

@x
;

@

@x
ðs0

xyÞ þ
@

@y
ðs0

xx þ 2s
0
yyÞ ¼ �rg

@h

@y
:

(3.19)

Substituting for strain rates and defining an effective viscosity me from the

inverted form of Glen’s flow law [16],

@

@x
me 2

@u

@x
þ@u
@y

� �� �
þ @

@y

me
2

@u

@y
þ@u
@x

� �� �
¼�rg

@h

@x
;

@

@x

me
2

@u

@y
þ@u
@x

� �� �
þ @

@y
me

@u

@x
þ2

@u
@y

� �� �
¼�rg

@h

@y
:

(3.20)
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A vertically integrated form of Eq. 3.20 is readily derived under the assumption

that there is no vertical variation in strain rates. These equations can be numerically

solved to give the horizontal velocity fields, subject to prescription of a basal shear

stress as a boundary condition at the bed.

This set of equations provides a good representation of ice dynamics where

vertical shear deformation is negligible. MacAyeal and colleagues have had good

success in simulating Antarctic ice stream and ice shelf dynamics with this

method. This approach to modeling ice dynamics has also been applied to former

ice streams in the Laurentide Ice Sheet [95] and in studies of the inland propaga-

tion of ice-marginal thinning in the Amundsen Sea sector of West Antarctica [31].

Using control theory (inverse methods), these equations also provide an opportu-

nity to construct the basal friction from known surface velocity fields [96, 97].

The assumptions that underlie both shallow-ice models and the “plug-flow”

equations are limiting in mixed flow regimes where vertical and horizontal shear

stresses and longitudinal stresses are all important. This is the case where ice flow

goes through a transition from grounded to floating conditions (the grounding line),

where there are large spatial gradients in basal flow, at ice divides, and in valley

glaciers, where the shallow-ice approximation is not valid because the ice thickness

is of similar magnitude to horizontal variations in ice thickness and velocity. To

address this and provide a modeling framework that is generic and self-consistent

for all environments, recent efforts have explored solutions to the full Stokes

system, Eq. 3.10, as well as intermediate stages of complexity between the shal-

low-ice approximation and the full Stokes solution. The development of theoretical

and numerical solutions of full stress-field solutions is promising, and has become

tractable on regional scales [28, 29, 32]. Full solutions are still computationally

unwieldy on continental scales, and have yet to be applied to whole ice sheet

simulations in Greenland or Antarctica.

Progress has been slower in numerical simulations of the subglacial geological

and hydrological processes that give rise to basal flow. This remains absent or

oversimplified in models, where basal sliding is often specified as a function of

gravitational driving stress, subject to thermal regulation. Warm-based ice can

slide, while ice frozen to the bed is subject to a no-slip boundary condition. Some

recent efforts include explicit models of subglacial water flow and storage,

permitting sliding-law formulations that model this control on basal flow

[98–100], but the physical understanding and the numerical representation of

these processes remain limited.

Computational Considerations

For whole ice sheet simulations, the horizontal grid spacing is typically

20–50 km, with some 30 layers in the vertical. Recent simulations have adopted

grid sizes of 5–10 km. Such resolutions are tractable but the computational

demand increases by an order of magnitude for each factor of two reduction in
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the resolution, due to a fourfold increase in grid cells and the necessary reduction

in the solution time step.

Part of the computational challenge for full-stress solutions arises from the need

for long spin-up simulations for the polar ice sheets. Both Greenland and Antarctica

contain ice that is more than 200 k year old, and it is essential to model the

temperature and thickness evolution of the ice sheets through the last one or two

glacial cycles in order to provide a reasonable internal temperature field for present-

day studies or future projections of the ice sheets. Present-day dynamical

adjustments are ongoing from the long-term evolution of the ice sheets, and this

provides a background signal that must be understood in order to evaluate the

response of the ice sheets to recent climate change. Regions of the ice sheets are

thickening and thinning as a result of the ice sheet and climate history, largely

associated with the long timescales of thermal advection and diffusion. The ice

sheets are also adjusting to the geometric changes that attended the last deglacia-

tion, e.g., [101]. These “secular” effects are further compounded by the slow

(103–104 year) timescale of isostatic adjustment to the last glacial maximum and the

subsequent deglaciation, which also needs to be simulated for the ice sheet system.

Finite difference and finite element approaches have both been applied to glacier

and ice sheet models. Finite elements are more versatile and applicable to the complex

geometry of mountain glaciers and fixed, limited spatial domains such as ice shelves,

and these have advantages for solution of the diagnostic equations for ice velocity.

Time-adaptive,moving grids are needed to simulate the evolution of glacier geometry,

however, and this combines with the simplicity of finite-difference methods to make

these more popular for simulation of large-scale ice sheet dynamics.

Priorities and Challenges

Fundamental glaciological data are still sparse in large sectors of the polar ice

sheets and mountain glaciers, including knowledge of ice thickness, thermal

regime, and subglacial conditions. It is difficult to apply hydrological and basal

flow models to much of Greenland and Antarctica, where groundwater drainage,

sediment properties, and other details of the subglacial environment are poorly

known. Better understanding of the essential subglacial processes physics is also

needed [67], as well as methods to parameterize these subgrid-scale processes in

large-scale models. Similar physical and numerical challenges are involved in

simulation of iceberg calving; there is no established “calving law,” as the underly-

ing physics and environmental controls are not fully understood.

There is a recent emphasis on glacial systems modeling, including subglacial

processes and hydrological evolution, e.g., [92], but these efforts are still in early stages.

With these limitations in mind, there is potential for major progress on at least two

fronts based on what is currently well-understood about glaciers and ice sheets:

(1) through high-resolution, full Stokes solutions, which are on the horizon,

and (2) through improved coupling of ice sheet and climatemodels. Improved coupling
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with climate models is necessary and many research groups have initiated this effort in

recent years, for both individual glaciers [102] and continental ice sheets [25, 103–105].

Improved representation of stress–strain regimes at ice sheet margins, within

floating ice and grounding zones, and in drainage basins that feed fast-moving

outlets will provide a better representation of interannual and decadal variability of

the ice sheets. This will also improve model capability in simulating glacier and ice

sheet sensitivity to climate change. Resolutions (and input bedrock and climate-

forcing datasets) of order 1 km are needed for this advance in the polar ice sheets, at

least in the areas of complex flow and steep gradients at the ice sheet margin. For

valley glaciers, input fields and ice dynamics need to be simulated at resolutions of

order 100 m, and closer to 10 m if one wishes to simulate interannual glacier

terminus response to climate change. It is also important to recognize that even with

full Stokes solutions, ice streams, surging behavior, summer speedups, ice shelf

instabilities, and areas of fast flow within the ice sheets will not spontaneously arise

in the correct places; these are associated with processes and forcings that are

absent in most models. In particular, there is limited two-way interaction between

oceans and ice sheets in modeling studies to date, despite recent evidence that ice

sheets are highly responsive to ocean warming [106].

Floating Ice Dynamics

State-of-the-art climate models today treat the jumble of floating ice floes as

a continuum. At present, in global models, the only floating ice with dynamics is

sea ice, and lake and river ice models are generally thermodynamics only. There are

specialized models of lakes and river ice with dynamics, and they are based on the

same principles as in sea ice models, so we discuss their dynamics together here.

The physics of floating ice is strongly dependent on the thickness. Therefore,

floating ice is generally described in terms of a distribution of ice thicknesses at the

subgrid-scale. The ice motion is also considered for a continuum, rather than for

individual floes. With this brief overview, a global-scale floating ice model can be

developed from the description of thermodynamics given in section “Thermody-

namics of the Cryosphere” and the additional governing equations for the dynamics

and ice thickness distribution given in this section.

Ice-Thickness Distribution

The formulation of a floating ice model begins with the ice thickness distribution

equation. The ITD is a probability density function (pdf), usually written g(h), that
describes the probability that the ice cover in a particular region has thickness h.
A cruder alternative is to model the mean thickness of the pdf and the total ice

concentration.
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In a floating ice model, the ITD describes the pdf of a grid cell and thus it is

sometimes called a subgrid-scale parameterization. A parameterization typically

represents processes that are too small-scale or complex to be represented explic-

itly. For example, deformation is parameterized with a set of rules in a continuum

model because there is no known differential equation that describes deformation in

this type of model. The rules must select the portion of the ITD that will deform and

then redistribute it within the ITD. In contrast, ice growth and melt alter the ITD in

a way that is computed from first principles. Hence the ITD actually includes both

parameterized and explicit physics.

The ITD equation is

Dg

Dt
¼ �gr � uþC� @

@h
ð fgÞ þ L (3.21)

where the left-hand-side is the Lagrangian derivative of g following an ice

“parcel” and terms on the right-hand-side are the rate of change of g from parcel

convergence, mechanical redistribution (C, see Fig. 3.2), advection of g in ice

thickness space from growth/melt (see Fig. 3.3), and the reduction rate of g from
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lateral melt (L). Here, u is the horizontal ice velocity (vertical ice velocity is

ignored) and f is the net growth rate. We use the variable f as is traditional in the

ITD literature, though it is essentially equivalent to the mass balance b used to

describe glaciers in Eqs. 3.7 and 3.8. The ITD equation was introduced by [44].

Models that specify the ITD, e.g., [107], or only permit a single ice thickness in

the ice-covered fraction of a model grid cell, e.g., [108], would have an equation

for the gridcell mean ice thickness instead.

There are two parts to deformation: a rate of opening (creating open water) and

closing (closing open water and/or deforming and redistributing the ice), which

depend on u and g(h). The opening and closing rates depend on the convergence

and/or shear in the ice motion field. It may not be obvious that shear would

cause deformation. Imagine that the ice pack is composed of pieces with jagged

edges. When shearing, the jagged edges can catch on one another and cause

deformation, which converts kinetic energy into potential energy from piling up

ice, or shearing can cause frictional loss of energy and no deformation. Thus

the closing rates also depend on assumptions made about frictional losses, see

e.g., [51, 54].

A mathematical representation of lead opening and mechanical redistribution is

most conveniently written in terms of the divergence and shear of u, _2I and _2II ,

respectively. The parameterization follows from [44]:

c ¼ j _2j½a0ðyÞdðhÞ þ arðyÞwrðh; gÞ�; (3.22)

where j _2j ¼ ð _22
I þ _22

IIÞ1=2; y ¼ tan�1ð _2II= _2IÞ; dðhÞ (the delta function) is the

opening mode and wr(h,g) is the ridging mode. The coefficients j _2ja0ðyÞ and j _2j
arðyÞ are known as the lead opening and closing rates, respectively,

and they are related such that their difference equals the divergence, _2ja0ðyÞ�
j _2jarðyÞ ¼ _2I.

For the redistribution process, some portion of g(h) is identified as potentially

able to “participate” in redistribution (see Fig. 3.2). This is usually the thinnest 15%

of g(h). If the openwater fraction exceeds 15%, then no redistribution takes place, and

instead the open water closes under convergence and nothing happens under shear.

The so-called participation function is weighted according to its thickness, so that the

thinnest ice is most likely to deform. Then a rule is needed to redistribute the ice that

ridges. Originally, Thorndike et al. [44] proposed that ridged ice would end-up five

times thicker than its starting thickness. Other more complex redistribution schemes

have been used since then [43, 109]. The interested reader can refer to these references,

for examples, of parameterizations for wr(h,g).
The other primary mechanism that changes g(h) is ice growth or melt, which

cause g(h) to shift in thickness space. This process is illustrated in Fig. 3.3. The

growth/melt rate depends on thickness, so g(h) becomes distorted in the process.

An explicit conservation equation for ice volume (or mass) is not given in this

section because conservation of volume is contained in the equation for g(h) (or at
least it depends on the way g(h) is discretized).
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Momentum Equation

The second governing equation is conservation of momentum:

m
Du

Dt
¼ �mfk� uþ ta þ tw �mgrrYþr � s; (3.23)

where the left-hand-side is the Lagrangian derivative of u following an ice parcel,

the right-hand-side begins with a term representing Coriolis force, air and water

stresses, the force due to ocean surface tilt, and the ice internal force. In this

equation m is mass per unit area, f is the Coriolis parameter, gr is gravity, Y is the

sea surface height, and s is the ice stress.

The force balance at two locations, one just north of Greenland and the other in

the Weddell Gyre, is given in Fig. 3.4. The internal stress constitutes a very large

internal force in the sea ice near Greenland, where the sea ice is converging against

the coast. In contrast, at the Weddell location, the ice is nearly in free drift and the

main force balance is between air and water drag. In both cases, the ice motion is

perpendicular to the Coriolis Force, to the left in the upper panel and to the right in

the lower.

Ice Rheology and the Constitutive Law

A constitutive law characterizes the relationship between the ice stress and strain rate

and defines the nature of the ice dynamics. A simplistic picture of a converging ice

pack with uniform thickness under an imposed compressive wind force is given in

τa −mfk×u

τwResidual

∇·σ
τw

τa

−mfk×u

Fig. 3.4 Illustration of force

balance from CCSM4 in

October at 85N 65W (upper)
and 64S 164W (lower).
The residual force is the force

needed to balance the other

forces that are shown, and it is

equal to the acceleration

minus the force due to ocean

tilt, the latter normally is very

small. The forces from

internal stress and the residual

are negligible at the location

of the lower panel
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Fig. 3.5. Floating ice generally repels the compressive force somewhat even if it is

deforming. The resulting internal force is associated with a nonzero stress state. In

Fig. 3.5 the ice pack is converging such that its length L on one side decreases by dL in
some time dt, so the ice experiences a strain _e = dL/L and a strain rate _e ¼ dL=Ldt.
A modeler chooses the constitutive law to relate s and _e , which are actually two-

dimensional tensors, not scalars as shown in Fig. 3.3 for illustrative purposes only. In

two dimensions, the divergence and shear of the ice velocity can be conveniently used

to describe the strain rate tensor as they are invariant across grid transformations.

The momentum equation depends on the ice internal force, which in turn

depends on the ice stress tensor. The most common rheology used today is the

viscous-plastic rheology from [108] (or a close derivative thereof) where the ice

behavior is plastic at normal strain rates and viscous at very small strain rates.

The constitutive law for the viscous-plasticmodel of floating ice can be cast in terms

of the invariants of stress (sI andsII) and strain rate (_eI and _eII)with the pair of equations

sI ¼ z_eI � P=2

sII ¼ �_eII;
(3.24)

where P is the ice strength and z and � are bulk and shear viscosities, respectively.

The relationship between the viscosities and strain rate invariants is chosen so that

the stress state lies on an elliptical yield curve,

ðsI þ P=2Þ2
ðP=2Þ2 þ s2II

ðP=2eÞ2 ¼ 1; (3.25)

where e is the ratio of the principal axes of the ellipse (the original Hibler model

[108] used e = 2, which is still common today). Thus requiring

z ¼ P

2D

� ¼ z
e2

D ¼ ð_e2I þ _e2IIe
�2Þ1=2

(3.26)

Ice slab side view

After applying a converging wind stress for time d t

Volume is conserved
so the ice is thickerτa τa

Initial state

L-d L

length L

Fig. 3.5 Illustration of ice

slab that deforms under

compressive force
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for plastic behavior. To avoid infinite viscosities as D ! 0, z and � are assigned

large constant values. In this case, the stress state lies inside the elliptical yield

curve and the ice behaves like a viscous fluid, exhibiting creep.

The ice strength must be parameterized somehow. For a model with ridging, P
can be based on the energetics argument proposed by Rothrock [110] for plastic

deformation, where the compressive strength is equated to the potential energy

increase per unit strain in pure convergence. Following [43], the potential energy is

multiplied by a constant to account for the dissipation of kinetic energy by frictional

energy loss during ridging,

P ¼ ZCp

Z 1

0

h2wrðhÞdh (3.27)

where Cp = 0.5(ri /rw)ĝ (rw � ri) and Z is the ratio of total energy dissipated to

potential energy gain (ri and rw are the densities of ice and water and ĝ is the

acceleration due to gravity). [111] and [112] recommend Z = 17.

Computational Considerations

Computation time given to the sea ice component of a typical global climate models

is roughly 10–20% for a �100 km resolution ice grid, although it could easily be

more or less depending on the relative resolution, sophistication, and optimization

among components. Lake and river ice in global climate models take a trivial

portion of the total computation time because their area is so small compared to

the rest of the globe.

A key consideration for climate modelers is to design a model that can run the

scenarios of interest in a time to meet publication deadlines. Choices must be made

to balance model resolution, physics, parameterizations, and numerics. High-

performance computers today have tens of thousands of cores and many have

been constructed for the purpose of running climate models. Codes must parallelize

well to take advantage of these machines, and sea ice codes generally do because

there are relatively many processes that operate at the grid-scale (e.g., vertical heat

equation) and subgrid-scale (e.g., deformation). The Los Alamos Sea Ice model

CICE has already been successfully scaled beyond 10,000 cores on Cray XT

equipment [113].

Future Directions

Most of the progress to date in modeling glaciers, ice sheets, permafrost, and snow

science has stemmed from independent efforts by individual researchers. Advances
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have paralleled the much larger, coordinated research programs dedicated to the

development of climate models, with little crossover or integration. This contrasts

with modeling developments in sea ice studies, which are now fully integrated in

most ocean–atmosphere general circulation models.

To date there have been few efforts to couple climate and ice sheet models. Most

ice sheet simulations use “offline” forcing where climate model–derived fields are

used to drive simulations of ice sheet evolution, through one-way forcing. The long

timescale of ice sheet evolution means that this may be a reasonable approach, but

evolution of ice sheet albedo and topography feeds back on atmospheric conditions

on timescales of decades to millennia. Further, there are direct seasonal-timescale

links between climate and the dynamics of glaciers and ice sheets, including the

effects of surface meltwater and a possible link between coastal ocean temperature

and sea ice conditions and outlet-glacier dynamics. These processes all require

improved coupling between climate and ice sheet models. This is particularly true

at the ice-ocean interface, where mass and energy exchanges are not physically

modeled in current simulations.

In general, the mass balance fields (accumulation minus melt) simulated by

climate models are not accurate enough for fully coupled ice sheet-climate

modeling, nor can sophisticated atmospheric models be integrated over the millen-

nial time scales of interest for ice sheet evolution. However, the development of

improved regional-scale meteorological and glacier mass balance models, e.g.,

[114–116], permit direct estimates of surface mass balance from meteorological

models, and offer a good physically based method to simulate how these fields can

be expected to change with ice sheet geometry.

The challenge is greater for the mass balance fields and surface climatological

forcing of mountain glaciers and permafrost. Mountain glaciers reside in complex

terrain where temperature and precipitation gradients are steep. The topography and

relevant meteorological processes are not faithfully resolved in even regional

climate models, so some form of climatic downscaling is needed to prescribe

mass balance fields for glacier modeling [102]. These methods generally do not

conserve energy or mass, and improved treatments are needed. There are different

considerations for permafrost modeling, but they also relate to the resolution of the

landscape and surface climate. The mean annual surface temperature that governs

permafrost aggradation and degradation depends on local-scale vegetation, snow-

pack depth, hydrology, and soil properties, which commonly vary over a spatial scale

of meters. Hence, global-scale permafrost and snow models should be interpreted

“statistically” for a region (i.e., via a distribution of permafrost thickness and snow

depth in a given climatemodel grid cell, based on the range of ground cover and snow

conditions in the region).

In contrast to the terrestrial components of the cryosphere, the needs of global

climate models often drive sea ice model developments. For example, models that

use eddy-resolving ocean components are approaching the large floe-scale, where

sea ice (assumed to be on the same grid) can no longer be considered a continuum.

Rheologies that attempt to treat ice as a granular material hold promise as a means

to extend the utility of continuum models to smaller length scales. Such rheologies
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often use Mohr-Coulomb or decohesive type yield curves, which depart from the

standard elliptical yield curve particularly where the stress states on the ellipse

resist breaking under tension. The floe models to date do well at modeling defor-

mation but the process of joining floes at freeze-up has not been solved [111, 117].

Recent observations of sea ice reveal very long, narrow openings, or leads, in the

ice that suggest oriented weaknesses occur. These regions have been dubbed linear

kinematic features [118]. Such features occur in sea ice models with isotropic

rheologies, such as the viscous-plastic type, with some level of realism at fine

resolution [119]. However, models that account for such anisotropy explicitly by

keeping track of lead orientation and computing resistance to opening depending on

the orientation with respect to leads, e.g., [120, 121], may be able to match

observations better [122].

The drive to model the carbon cycle and hence ecosystem dynamics in global

climate models has spawned an effort to model sea ice algae and nutrient

cycling. When seawater freezes, algae stick to the ice particles, and as the ice

particles combine they trap brine, nutrients, and organisms in brine pockets.

Biomass concentrations can be hundreds of times greater in sea ice than in seawater,

and carbon and key nutrients in sea ice are a substantial fraction of the total in ice-

covered regions. When sea ice melts it deposits these materials into the ocean

precisely when solar input and meltwater runoff is highest, creating prime

conditions for an ocean bloom. Models of these processes have been developed

offline [123–127] and will soon be implemented in sea ice models of global climate

models. Models of ecosystem dynamics in sea ice also require a treatment of

seawater infiltration, brine drainage, and meltwater flushing, which necessarily

involves modeling sea ice salinity [127].

Modeling the cryosphere today is concerned with far more than describing

Earth’s surface albedo. Global climate models need to be coupled to components

of the cryosphere with adequate sophistication to investigate modern scientific

problems involving sea level rise, Arctic sea ice retreat, permafrost thawing, and

more. There is also evidence that models with better physics are among the models

that agree best with observations [128].
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Chapter 4

Oceanic General Circulation Models

Jin-Ho Yoon and Po-Lun Ma

Glossary

Bathymetry The depth of ocean floor. Bathymetric map represents the

terrain of the seafloor.

Biogeochemical

cycle

A pathway that is described by the physical, biological, and

chemical processes that control the evolution of elements

found in the Earth system.

Boussinesq

approximation

In Boussinesq approximation, a fluid parcel is assumed to

maintain the same volume or density during its transport

because of near incompressibility. This approximation was

named after French physicist and mathematician, Joseph

Valentin Boussinesq. By adopting this approximation, sound

waves that propagate through a density change can be

eliminated in numerical model.

Diapycnal mixing Mixing of a fluid across different density surfaces. To be

contrasted with isopycnal mixing which occurs along the

same density surfaces.

El Niño-Southern

Oscillation (ENSO)

A quasi-periodic change of the ocean and atmospheric

conditions along the equatorial Pacific Ocean. The change

in the sea surface temperature (SST) can be as large as

�2�C during its extreme phases: anomalously warm over

the tropical Pacific (El Niño) and cold (La Niña). Surface
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air pressures measured at both ends of the tropical Pacific

basin vary closely with the change of SST.

Geostrophic

approximation

The angular momentum is balanced by the Coriolis force

and the horizontal pressure gradient force. It is generally

true when the spatial and temporal scales are large, roughly

over 100 km and a few days in the deep ocean.

Hydrostatic

approximation

The equation describing vertical motion of the ocean

column is simplified to assume that the vertical pressure

at any level is due to the weight of the air and water above

it. Variation of density is considered only in vertical direc-

tion when gravitational acceleration term (g) exists. This is

valid when the vertical scale of a feature is small compared

to the horizontal scale for both the atmosphere and ocean.

Isopycnal coordinate Vertical coordinate that follows a constant density surface.

Meridional

overturning

circulation (MOC)

This has often been assumed to be the same as the thermoha-

line circulation. However, the MOC explicitly describes the

ocean circulation system with the upwelling/downwelling

and associates the northward/southward transport.

Ocean gyre A large-scale rotating circulation in the ocean primarily

forced by the atmospheric wind and the Coriolis force.

These include the North Atlantic Gyre, South Atlantic

Gyre, Indian Ocean Gyre, North Pacific Gyre, and South

Pacific which tend to be more elongated in the east-west

direction. There are also other types of Gyre forced by

different mechanisms such as baroclinicity.

(Oceanic)

Mesoscale eddy

A vigorous rotational circulation or vortex at spatial scales

roughly 100 km and smaller, existing for weeks to months.

Rossby radius

(of deformation)

The horizontal scale at which rotational effect becomes as

important as buoyancy or gravity wave effects. Mathemati-

cally, this can be computed in terms of potential temperature,

temperature, wind speed, or the depth of the boundary layer.

This radius is important in determining the phase speed and

wavelength of Rossby waves.

Salinity Dissolved content of the salt in the ocean. Traditionally,

salinity is represented in the unit of either g/Kg or PSU

(Practical Salinity Unit).

Shallowness

approximation

This approximation can be applied when the vertical-to-

horizontal aspect ratio is very small.

Structured (regular)/

unstructured

(irregular) grid

A structured (unstructured) grid has regular (irregular)

connectivity with neighboring points. In structured

(unstructured) grid, its connectivity can (cannot) be easily

represented with a two- or three-dimensional array.

Thermocline A distinct ocean layer where the temperature changes

greatly with its depth compared to the layers above and
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below. It is often thought of as a boundary separating the

well-mixed upper ocean and the deep ocean.

Thermohaline

circulation

The global oceanic circulation driven by the density

gradients, primarily determined by salinity and temperature.

(Atmospheric)

Wind stress

The horizontal force exerted by the atmospheric wind on

the ocean surface. This can also be interpreted as the

vertical transfer of horizontal momentum from the atmo-

sphere to the ocean surface. Wind stress is a function of the

square of the wind speed.

Definition of the Subject

The purpose of this text is to provide an introduction to aspects of oceanic

general circulation models (OGCMs), an important component of Climate Sys-

tem or Earth System Model (ESM). The emerging need for understanding the

Earth’s climate system and especially projecting its future evolution has

encouraged scientists to explore the dynamical, physical, and biogeochemical

processes in the ocean. Understanding the role of these processes in the climate

system is an interesting and challenging scientific subject. For example,

a research question exploring how much extra heat or CO2 generated by anthro-

pogenic activities can be stored in the deep ocean is not only of scientific interest

but also important in projecting future climate of the Earth. Thus, OGCMs have

been developed and applied to investigate the various oceanic processes and

their role in the climate system.

Coupled climate models incorporating some representation of ocean circulations

have been used since the pioneering work of Manabe and Bryan [38]. Because of

computational limits at that time, an extremely simplified Earth geography –

composed of only one continent and ocean basin (Fig. 4.1) – was used. Despite

its simplicity, this was the first numerical model to include reasonably complex

formulations for the atmosphere, land, ocean, and more importantly feedbacks

among these components. Later it was demonstrated that deep ocean circulation

in this simplified coupled model was not at an equilibrium even after a century-long

integration [64]. Like this case, processes that control the adjustment of deep ocean

circulation toward an equilibrium remain an important issue in contemporary

climate models. It took another 6 years for Manabe and Bryan to produce a coupled

climate model with more realistic geography of the Earth [39]. Now contemporary

OGCMs can resolve complex regional flows in a much more realistic way. How-

ever, there are still many issues to be solved and large room for improvement [48].

The goal in this text is to outline the basics of Ocean General Circulation

modeling, reviewing the mathematical representation of the ocean circulation
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(section Equations of Motion), and the discretization method with horizontal and

vertical coordinate systems (section Horizontal and Vertical Grid System). A brief

discussion is provided on how the sub-grid scale processes are represented in

relatively coarse-resolution OGCMs (section Sub-grid Scale Parameterization).

Then, using a couple of relatively simple examples, the coupling between the

ocean and other climate components, especially the atmosphere by various physical

processes will be explained (section Simple Conceptual Models). Also, how the

ocean is coupled in terms of biogeochemical cycle will be illustrated in the section

Biogeochemical Cycle Modeling. The entry concludes with a brief description of

contemporary OGCMs and its future development (section Future Directions).

Introduction

An oceanic general circulation model (OGCM) is used to simulate the physical and

dynamical features of the global ocean using equations representing the conserva-

tion of momentum, energy, and mass for water and salt. These equations are

usually called the equations of motion, and they describe how the temperature,
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salinity, and currents evolve with time in the ocean. OGCMs also need appropri-

ate boundary and initial conditions that describe how the ocean interacts with the

atmosphere, land and sea ice and the state of the ocean when the model is started.

An OGCM has a great similarity with its atmospheric counterpart in the entry

Atmospheric General Circulation Modeling. However, there are important and

non-negligible differences. First of all, the ocean is primarily forced at its surface

boundaries by both thermal and mechanical forcings, while the atmosphere is

forced throughout its entire volume mainly by thermal forcing. The global ocean

is more strongly constrained by its complex terrain which results in oceanic gyres

confined by lateral boundaries (continents and shelves), while the atmosphere is

relatively less restricted. Also, very narrow boundary layers exist on almost every

ocean surface and within its interior. Finally, observing the ocean is much more

difficult than its atmospheric counterpart. The amount of ocean observation data

is far less available than in the atmosphere. Thus, boundary and initial conditions

are difficult to determine and the lack of long term and uniform observation

imposes a challenge in validating the OGCMs’ performance. Although a great

deal of additional measurements has become available since satellite and buoys

which have been deployed in the 1980s, it is estimated that data available to

oceanic scientist in the 1990s is still an order of magnitude fewer than in the

atmosphere [21].

The role played by the ocean in the global climate system is relatively well

understood. For example, the ocean regulates the Earth surface heat budget

through its large heat capacity and heat transport by the oceanic circulation

from tropics to high latitudes. Large portions of this heat transport is carried out

by both strong western boundary currents and oceanic mesoscale eddies (a

dominant dynamical feature of the global ocean circulation at spatial scales

from roughly 100 km and smaller with time scales of weeks to months). One

example of a mesoscale eddy can be seen near the Atlantic coast of the USA in

Fig. 4.2. The figure shows satellite-retrieved sea surface temperature from the

NASA Aqua/MODIS mission over the western Atlantic where gray areas repre-

sent the land and color indicates temperature over the ocean surface. One can

observe that generally warmer (colder) water exists in the south (north). Along the

boundary that warm and cold waters are interwined, small-scale meanders and

eddies are evident. These eddies are generated by strong shear instabilities in

ocean currents, occurring particularly from currents along western boundaries and

by horizontal density gradients. Oceanic kinetic energy is largely redistributed

and transported by these eddies, and they are very important in the poleward

transport of energy in the Earth’s climate system.

In order for OGCMs to properly simulate these mesoscale eddies, they must

operate at a high spatial resolution, resolving features that can be a few tens of

kilometers and smaller. OGCMs divide the ocean up into small “cells” where

temperature, salinity, and water velocity are calculated (discussed in more detail

later). Ocean models that are designed to reproduce the behavior of eddies accu-

rately (called Eddy-Permitting models) contain many cells and are extremely

expensive in terms of computation. As of 2007, only a couple of the coupled
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climate models with eddy-permitting resolution (around 1/6� to 1/3�) successfully
simulated these features explicitly [48].

OGCMs have historically been run at a much lower resolution to reduce the high

computational burden. But since these lower resolution models are not able to

explicitly represent these eddies, they must use other ways to represent the

eddy effects. These effects are frequently treated through “parameterization”

(more information on parameterization is provided below Sub-grid Scale

Parameterization).

Recently ocean models now include representations of other important ocean

components such as nutrient transports, ocean chemistry, and ecosystem evolution

in order to calculate the evolution of biogeochemical cycles of the planet, including

CO2. The ocean regulates the amount of CO2 stored through both biological and

physical processes, which in general are similar to their terrestrial counterpart. The

ocean absorbed about half of the CO2 released in the last few centuries (e.g., [31]).

And it becomes more important to understand how much of extra carbon can the

ocean absorb in the near future.

This document has outlined the basis of the dynamical and physical properties of

the ocean. More information on ocean processes can be found in various textbooks
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Fig. 4.2 Sea surface temperature at 18 April 2005 retrieved from Aqua MODIS [63]. Level 3

mapped data of MODIS SST was obtained from NASA JPL
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or other review articles (e.g., [24, 29]). In the next section, more emphasis will be

given on the numerical formulation, and discretization of these processes will be

provided, along with some information on the coupling between atmosphere and

the ocean in a numerical form.

Equations of Motion

Ocean models solve the equations governing oceanic flow using computational

fluid dynamics (CFD) methods with specific assumptions and approximations

appropriate to the ocean. The equations for global ocean models are, like atmo-

spheric models, based on Newtonian mechanics and irreversible thermodynamics

applied to a particular fluid. Conservation of momentum, heat, and mass of

constituents comprise the equations used for an OGCM. However, a wide range

of mathematical formulation has been used to represent the numerous oceanic

processes and phenomena occurring at various spatial and temporal scales, in the

ocean. Only the primitive equations of motion that are the core of OGCM numerical

formulations are described. A more complete derivation can be found in Griffies

[24] and Vernois [62].

Hydrostatic Primitive Equations

A number of approximations are used in simplifying the fluid equations when used

to represent ocean circulations, namely, the hydrostatic, shallowness, Boussinesq,

and rigid lid approximations. The hydrostatic approximation assumes that the

vertical momentum equation can be simplified by neglecting all terms except those

resulting in the vertical pressure gradient being balanced by the gravitational accel-

eration (equivalently that the vertical pressure at any level is due to the weight of the

air and water above it). The shallowness approximation assumes the ocean is thin

compared to the Earth’s radius. The Boussinesq approximation neglects variations in

density except where density appears multiplied with gravity. The advantage of the

Boussinesq approximation is to eliminate acoustic waves [7]. Although this approxi-

mation has been applied in many OGCMs, a couple of limitations seem to be found.

One of the most noticeable limitations is that it cannot account for steric effect, i.e.,

thermal expansion and salinity-density compensation of sea water. Thus, sea-level

change due to global warming cannot be properly predicted by this kind of model.

Finally, the surface elevation of the global ocean is assumed static in the rigid lid

approximation. With these approximations, the temporal and spatial variations of

density are small compared to its mean value. Thus, it can be described in the

following form:
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rtot ¼ �rþ rðx; y; z; tÞ; (4.1)

where �r represents the mean density of the ocean and �r � jrj is true and r can be

replaced by �r except the buoyancy term, rg and in the thermodynamic density

conservation equation.

With these approximations, the hydrostatic primitive equation in Cartesian

coordinates is described in the following format:

du

dt
¼ fv� 1

�r
@p

@x
(4.2)

dv

dt
¼ �fu� 1

�r
@p

@y
(4.3)

@p

@z
¼ �rg (4.4)

dT

dt
¼ 0 (4.5)

dS

dt
¼ 0 (4.6)

and

@u

@x
þ @v

@y
þ @w

@z
¼ 0; (4.7)

where (x, y, z) represents Cartesian coordinates and (u, v, w) as current in the

direction of x, y, and z, respectively. �r is the mean density of the ocean as in Eq. 4.1,

f is the Coriolis frequency, and T and S are temperature and salinity of the ocean.

And the total derivative and local derivatives are related in the following way:

d

dt
¼ @

@t
þ u

@

@x
þ v

@

@y
þ w

@

@z
(4.8)

To close the set of equations (Eqs. 4.2–4.6), an equation of state, another equation

of state to link density to ocean temperature, salinity, and pressure is added:

r ¼ rðT; S; pÞ (4.9)

It is also noted here that these sets of equation are written for spherical

geometry in a global ocean model. Details can be found in Haidvogel and

Bryan [29] or Bryan [5].
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The above sets of equation are derived from the fluid dynamics with the help of

approximations or assumptions. Some of the approximations, like Boussinesq

approximation, have been still used in OGCM. Others, like the rigid lid approxima-

tion are not used any longer. There is a trend toward more explicitly representing the

ocean status and processes. More realistic simulation of the ocean with better

computational efficiency is now being achieved in contemporaryOGCMs (see [27]).

Boundary Conditions

To solve the equations of motions, boundary conditions are needed. Upper boundary

conditions are governed by interactions with the atmosphere or sea ice. The surface

boundary condition on momentum below an ice-free atmosphere is governed by the

wind stress:

tx ¼ �rvx
@u

@z

���z¼0
; (4.10)

ty ¼ �rvy
@v

@z

���z¼0
; (4.11)

where vx and vy are the turbulent eddy viscosity coefficients. The wind stress is

sometimes provided by observational estimates (from a measurement climatology)

and other times is provided by an atmospheric model. More discussion will be given

later in Atmospheric forcing section.

The boundary condition for temperature is also treated in a variety of ways.

When ocean models are coupled with a climate model, they calculate turbulent

fluxes of heat and radiative fluxes based upon the state of the atmosphere and ocean.

When ocean models are driven with observations, other choices are possible.

Sometimes sea surface temperature (SST) is specified. In other situations surface

fluxes are calculated in a similar fashion to the way they are done when coupled to

an atmospheric model.

Salinity boundary condition depends upon evaporation, and the freshwater flux

from precipitation, river runoff, and sea ice melt. In simple models where feedback

between salinity and its forcing is not considered, one can use the prescribed surface

salinity flux. However, it is found that there is important feedback between salinity

and its forcing even in the case when ocean models are not coupled to atmosphere

and sea ice models (e.g., [6]).

The Surface Mixed Layer

In the ocean, the heating term can be neglected generally except in the regions

where solar radiation can play a role and heat exchange with the overlaying
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atmosphere is active, which is called the surface mixed layer. Both vigorous mixing

and surface heating play important roles. Therefore, the surface heating term has to

be included in the temperature equation:

@T

@t
¼ � @

@z
ðTwÞ þ 1

�rcp
Qðz; tÞ; (4.12)

where the first term in the right hand side represents the heat exchange due to vertical

mixing, the second term is the solar heating absorbed at depth in the water column,

and cp is the specific heat of water. Although the equation looks simple, complication

arises how to close. Two general approaches are taken: differential and bulk models

[33]. TheMellorYamada level-2model is an example of the former [43], inwhich the

stress terms now include both eddy coefficients for both within and below the mixed

layer. On the other hand, the Niler model [41] uses a bulk model in which the mixed

layer is treated as a well-defined homogeneous layer.

Horizontal and Vertical Grid System

To solve the governing equations of the oceanic general circulation, these equations

have to be discretized with appropriate horizontal and vertical grid systems. Vari-

ous methodologies have been developed and applied in the different OGCMs. In

this section, both horizontal and vertical grid systems will be reviewed.

Horizontal Grid System

OGCMs have widely adopted the finite volume and finite elements methods. These

methods will be discussed here for brevity, but a few distinguishing characteristics be

mentioned.Discretized governing equations are applied in flux form so scalars such as

temperature, density, salinity, etc., are updated through fluxes at the boundaries of

each grid, and therefore, these quantities are conserved. Structured meshes with

regular distributions of neighboring grids throughout the entire domain and unstruc-

turedmesheswhere the number of neighboring grids varies throughout the domain are

both utilized with finite volumes and finite element discretizations. Successful model

implementations include orthogonal meshes (e.g., [58]), cubed sphere meshes (e.g.,

[1]), icosahedral meshes (e.g., [47, 51, 52]), and unstructured triangular meshes

(e.g., [10, 12]). Figure 4.3 shows an example of a structured and unstructured grid.

Structured grids are computationally efficient, accurate, and convenient. However,

the major shortcoming with structured grids is that the grid-spacing is not uniform. Lack

of flexibility to increase resolution in coastal regions or regions with complex topogra-

phy make the computation expensive if the resolution of the entire domain has to be
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increased at the same time.An irregular gridding system that can increase resolution near

the coast while keeping lower resolution over the open ocean coarse provides better

computational efficiency more easily. In addition, because the unstructured grid can

better represent the coastal area, it is advantageous over structured grid in simulating

coastal currents and eddies.

To avoid a singular point at the North Pole, where grid lines converge, the ocean

models either rotate the global gridding system, or create a tripolar grid with poles

located over Canada, Russia, and Antarctica, such that the singular points of the

grids are positioned over land instead of ocean.

An unresolved issue is the resolution–dependent physics in ocean models.

Parameterizations of sub-grid scale processes inevitably produce some “free”

(undefined) parameters (hence the name) and need to be in accordance with

observations. These parameters are at varying horizontal grid sizes to capture the

effects of processes from eddies with different sizes. The diffusion and viscosity

terms will need to be adjusted accordingly.

Vertical Coordinate

Ocean models have developed several different vertical coordinate systems:

(1) geopotential coordinate (or z-coordinate), (2) terrain-following coordinate,

and (3) isopycnal coordinate, as shown in Fig. 4.4. Also, there is hybrid coordinate

which combines various coordinate systems. Each one has its own advantages and

disadvantages.

The most popular coordinate system is the geopotential coordinate [42]. For

example, the first coupled climate model also utilized this vertical coordinate

Structured Grid

Real Coastline

Ocean

Unstructured Grid

Model Coastline

Fig. 4.3 An example of fitting a structured grid (left) and an unstructured grid (right) to a simple

coastal embayment. The true coastline is shown in black, the model coastline in red. Note how the

unstructured triangular grid can be adjusted so that the model coastline follows the true coastline,

while the structured grid coastline is jagged – which can result in unrealistic flow disturbance close

to the coast (Figure taken from Fig. 4.1 in Chen et al. [13] in Oceanography, reproduced with

permission)
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system with the hydrostatic and Boussinesq approximations [26, 38]. The

geopotential coordinate adopts a straightforward concept that the ocean water

body is divided into regular boxes which are invariant with time. The vertical

coordinate is based on the geopotential or depth of the ocean. Governing equations

using lower-order finite difference methods are frequently used. In ocean models

that adopt the geopotential coordinate (e.g., [35, 56]), the vertical resolution

decreases as a function of depth (i.e., higher vertical resolution in the upper ocean

and lower vertical resolution in the deep ocean) in order to better resolve processes

around the thermocline. However, some studies have shown that the geopotential

coordinate models have problems simulating the topographical effects on the ocean

circulation because of their “stepwise” representation of the topography. They also

have mesoscale eddy-induced vertical diffusion much greater than the observations.

The discontinued representation of the bathymetry and sidewall geometry in the

geopotential coordinate system has been related to spurious topographic effects on

the ocean circulation. Terrain-following (or sigma) coordinate models have been

developed to handle complex lateral and bottom boundaries and avoid some of

these problems. The sigma coordinate system is based on a fractional depth scaled

from 0 to 1, with 0 being the surface and 1 being the bottom of the ocean. However,

because the pressure gradient term is projected to be along the sigma surfaces, the

horizontal pressure gradient produces considerable errors as a function of topo-

graphical slope and the stratification near the sea floor [2, 16, 32, 57]. Due to this

problem, studies have shown that models that adopt the terrain-following coordi-

nate are not suitable for global-scale simulations, unless the horizontal resolution is

very high (the order of 10 km).

The isopycnal coordinate system uses isopycnal surfaces to be the vertical

levels. Its advantage is due to the fact that the ocean currents and the transport of

Z

σ

ρ

Fig. 4.4 A schematic diagram of an ocean basin illustrating the three regimes of the ocean

germane to the considerations of an appropriate vertical coordinate. The surface mixed layer is

naturally represented using fixed-depth z (or pressure p) coordinates, the interior is naturally

represented using isopycnic r (density tracking) coordinates, and the bottom boundary is naturally

represented using terrain-following s coordinates (after [25]) (Figure taken from Box 1 in

Chassignet et al. [11] in Oceanography, reproduced with permission)
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tracers generally proceed along isopycnal surfaces, so that the model that adopts

this coordinate can ease the treatment of advection. The diapycnal mixing due to

eddies can be added to the model as a parameterization. Furthermore, since

isopycnal surfaces evolve over time, the isopycnal coordinate is, by nature, an

adaptive system. It can better resolve the frontal region and thermocline where

sharp vertical gradients of density exist [4]. However, for areas with a low-density

gradient such as the well-mixed shelf area or deepwater formation areas, the model

has a lower resolution than it would with other vertical coordinate choices. Because

it avoids some of the shortcomings of the two other coordinate systems, isopycnal

models, or “hybrid” models using a combination of these coordinate systems have

a great potential in becoming more and more viable for global climate simulations

in the future. Examples of models that use hybrid coordinates include the Global

Navy Coastal Ocean Model that uses sigma-z coordinate, and the experimental

Hybrid Coordinate Ocean Model that uses the z- (or sigma) coordinate in the upper

ocean and the isopycnal coordinate in the stratified ocean.

Sub-grid Scale Parameterization

With spatial discretization, one can solve the governing equation discussed in the

section Equations of Motion. But, representing continuous fluid with limited num-

ber of grid points imposes some new challenges. For example, the global OGCM

with horizontal grid scale of 200 km cannot explicitly simulate oceanic mesoscale

eddies (Fig. 4.2). To overcome this, spatial resolution of the OGCM has been

increasing greatly. Indeed, increasing the ocean resolution in the coupled climate

model has resulted in many improvements in the simulation of ocean circulation

features. However, the impact of higher ocean resolution on the atmospheric

simulation in coupled models has been found to be relatively small and localized

unless the resolution of the atmosphere is also changed [30]. Further it has been

shown that increasing spatial resolution plays a secondary role in simulating

ENSO properly [28]. To achieve realistic representation of the ocean circulation

and physical status requires not only increasing resolution but also physical

parameterization. In this section, these parameterizations are discussed.

There are many processes occurring in the ocean that are not expressed explicitly

in the equations of motion, or that take place at time and space scales that are too

small to be treated explicitly in a global ocean model. No OGCM can simulate

process in the ocean explicitly due to computational constraints or lack of knowl-

edge about these processes. However, these can be very important in influencing

oceanic circulations. Sub-grid processes such as vertical mixing and eddies with

a scale smaller than the grid that cannot be resolved are “parameterized” based on

theoretical considerations, observational data, and/or results from finer-resolution

models. In “non-eddy” resolving (or permitting) OGCMs, the effects of mesoscale

eddies are represented by parameterizations called neutral diffusion [49, 59] and
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eddy-induced advection [19, 20]. Maltrud and McClean [37] have suggested that

a horizontal grid-spacing of 50 km in mid-latitudes and 10 km in high latitudes is

sufficient to resolve eddies. Higher resolution models are believed to be able to

resolve these processes.

Turbulent mixing at the upper ocean surface must also be represented (e.g.,

[18, 34, 45]). The stirring and mixing at the ocean surface can penetrate to the

interior of the ocean and trigger further vertical mixing. These waves can be

reflected, scattered, or transformed by the seafloor at the bottom and lateral

boundary of the ocean. The diapycnal mixing takes place as a result of baroclinic

instability, and is brought to balance by geostrophic adjustment via radiation of

gravity waves. These processes interact with the topography and the mean flow.

Depending on the stability of the ocean, the diapycnal mixing can affect the

general circulation or dissipate without having any effect.

Many sub-grid scale processes are recognized to be important but remain poorly

understood. The lack of the four-dimensional observational data of ocean flows as

well as the state variables of the ocean in the oceanic interior make validation of the

parameterizations against observations difficult, so validations are usually

performed by evaluating their bulk effect against a high-resolution model. Recently

satellite measurements of sea surface height, sea surface temperature, winds,

etc. that cover a large scale of domain with a reasonable resolution have proved

very helpful for understanding the features of mesoscale eddies but more in situ

measurements are necessary to validate the model and to calibrate satellite

observations. With the coordinated efforts from both modeling and measurement

communities, parameterizations in ocean models can be scientifically evaluated and

improved accordingly.

Simple Conceptual Models

Continuing atmospheric-ocean coupling process, a brief review is provided in this

section on two simple ocean models which describe two important oceanic phenom-

ena that have a large impact on the entire climate system: (1) the El Niño Southern

Oscillation and (2) the thermohaline circulation. The former feature produces the

largest signal in interannual climate variability in the Earth system, and the latter is

a feature that is very important in longer-term climate variability.

These features are most easily described using simple models based on the full

sets of mathematical equations but with their complexity reduced to make it easier

to describe the basic features of particular phenomena. For example, idealized

geometries with simplified boundary conditions may be applied or several

approximations can be made for some regions, which are not uniformly applicable

to the global ocean. However, these simple models provide very useful insight on

how a specific physical process is maintained and respond to individual forcing. For

example, the ocean thermocline and wind-stress effects on El Niño Southern
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Oscillation can be easily understood and modeled in a Cane–Zebiak model. In this

subsection, a couple of simple models will be reviewed. One is this Cane–Zebiak

model and the other describes the oceanic thermohaline circulation [15].

Cane–Zebiak Model

El Niño Southern Oscillation (ENSO) is a climate pattern found in nature. The

pattern is centered in the tropical pacific, but its signal can be detected globally. It is

frequently described through an index measuring surface pressure differences

between Tahiti and Darwin, or ocean surface temperature over the eastern Pacific

but its signatures can be found in precipitation changes over tropics as well as mid-

latitudes and in many other components of the Earth climate system. The feature

has a very large interannual variability. On average there is an event every

3–6 years but it occurs irregularly. Various degrees of simple conceptual models

have been proposed to explain and model ENSO. All these efforts can be

summarized by the Bjerknes–Wyrtki model [3, 65], in which it was suggested

that ENSO is an internal mode of oscillation of the coupled atmosphere-ocean

system, driven by a continuous imbalance between the tightly coupled surface

winds and temperatures on the one hand, and the more sluggish subsurface heat

reservoir on the other. In the early 1980s, several highly idealized coupled models

were developed based on the Bjerknes–Wyrtki model. The first one was that of

Cane and Zebiak [9] and Zebiak and Cane [67]. Both the atmosphere and the ocean

are highly simplified. These components are outlined in the next subsection.

The Atmosphere Model

Tropical atmosphere exhibits a couple of unique characteristics. One is that the

wind is driven by latent heat release due to convection, and the other is a reversed

polarity in the vertical structure, for example, low-level convergence with upper-

level divergence in the divergent circulation. Therefore, linear dynamics with

a single degree of freedom in the vertical coordinate has proven surprisingly

accurate in reproducing the atmospheric circulation, classified as a Gill-type

model [22, 44]. In ZC model, steady-state, linear shallow-water equation on an

equatorial beta plane is used, just like a Gill-type model as follows:

@u

@t
� byv ¼ � @F

@x
(4.13)

@v

@t
� byu ¼ � @F

@y
(4.14)
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@f
@t

þ c2ar � ~V ¼ J

Cp
(4.15)

where ~V ¼ ðu; vÞ are the surface wind vector,f is the geopotential, b ¼ df=dy, with
f being the Coriolis parameter, and ca is a constant related to momentum and

mass in the form of Newtonian cooling. Earlier, Matsuno [8] solved this equation

for free tropics diabatic heating, and later Gill [22] found the steady solution for

both the forced and damped versions. Lindzen and Nigam [36] introduced an

alternative view on how surface wind was forced. They proposed the surface

temperature gradient causes overlaying atmospheric pressure gradient and in turn

surface wind anomalies.

The atmospheric heating anomalyQ is contributed by local evaporation (QS) and

low-level moisture convergence (QL). It has been shown that the atmospheric

moisture convergence is important for tropical heat budget and tomaintain divergent

circulation (e.g., [14]).

The Ocean Model

The ZC model represents the ocean as a single basin, the tropical Pacific, consisting

of two vertical layers with a simplification of the ocean dynamics called a linear

reduced gravity model. Vertically, the change of the thermocline needs to be

considered, which is assumed motionless and linear. The set of equations is as

follows:

@u

@t
� byv ¼ �Dr

r
@h

@x
þ tSx

r�h
� ru ; (4.16)

byu ¼ �Dr
r

@h

@y
þ tSy

r�h
� rv ; (4.17)

@h

@t
þ hr � ~V ¼ �rh ; (4.18)

@T

@t
¼ �~V � rT �Mws

@T

@z
� aST ; (4.19)

where (u,v) is the horizontal velocity in the layer, h is the derivation of the layer

thickness from its mean value H, r is a Rayleigh friction parameter, tS is the surface
wind stress, and Dr a characteristic density difference between the layers. The

upwelling is represented as follows:

wS ¼ H1r � ~V1: (4.20)
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The function M accounts for the fact that surface temperature is affected by

upwelling. The anomalous temperature gradient, @T=@z, is defined by

@T

@x
¼ ðT � TeÞ

H1

; (4.21)

Te ¼ ð1� gÞT þ gTd; (4.22)

where H1 is the surface layer depth, Te measures temperature entrained into the

surface layer, with g as a mixing parameter (= 0.5), and Td relates the subsurface

temperature anomaly to the mean and anomalous thermocline depths.

In summary, the ocean model is essentially a reduced gravity model with one and

half layer of ocean which includes the surface mixed layer and the layer below as one

layer. Thus, the surface temperature is affected by both the atmospheric wind stress at

the surface and the temperature entrained into the surface layer from the deep layer.

With reasonable choice of parameters, this coupled model has produced anoma-

lous SST pattern and wind that resembles the observed ENSO anomalies (Fig. 4.5).
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Fig. 4.5 An example of El Nino simulated by ZC model. (a) SST anomalies at March 1073,

(b) same as (a) except December 1073, and (c) area averaged over the eastern equatorial Pacific

(90� W to 150� W, 5� S to 5� N). The entire simulation was for the period of 1001–1200

4 Oceanic General Circulation Models 79



El Niño occurs every 3–4 years, followed by the La Niña events. A well-known

deficiency of this model is that ENSO occurs too regularly with the fixed period

around 2 years.

Although it is an idealized and theoretical model, this model included both the

atmosphere and the ocean dynamics and was shown to have a reasonable evolution

and life cycle of the ENSO compared to what was observed. Essentially, a Gill-type

atmosphere with heating mainly tied to SST anomaly and convergence feedback

term is coupled with a reduced gravity ocean model. In the mid-1980s, slightly

different models were examined: one by Philander et al. [46], in which the SST

anomaly was assumed proportional to both thermocline displacement and its

anomaly; the other by Gill [68] in which the tendency of SST was assumed to be

a function of advection of mean temperature by anomalous zonal current and

atmospheric heating was determined by the SST anomaly. The former resulted

a Kelvin wave response, while the latter a westward growing coupled mode.

These model variants, although far simpler than an OGCM, were constructed

with careful thought on the processes influencing SST changes that are essential in

producing the coupled ENSO phenomena. Simulating realistic ENSO remains

a challenge for developers of climate models. Because ENSO is a dominant feature

in interannual variability, and El Niño (La Niña) induces anomalous wet (dry)

conditions all over the worlds, it is critical to simulate right. Understanding ENSO,

and how it might change in an era of the global warming is an important research

topic. For example, a recent study using the IPCC’s AR4 model projections showed

the El Niño with its center over the central Pacific may dominate in the future [66].

A Box Model for Thermohaline Circulation

The ZCmodel is primarily forced by surface wind stress and buoyancy plays aminor

role. However, in climate application, ocean circulation can be driven by salinity and

density gradients, which contributes much longer-term variability than ENSOwhich

is predominately in interannual timescales. Although state-of-the-art OGCMs can

now simulate the thermohaline circulation relatively well, it has been one of the

long-standing challenges for modelers. Therefore, different types of simple concep-

tual models have been developed and used. Difference between the ZC model and

the thermohalinemodels are not limited to the physical forcingmechanisms, but also

through the introduction of nonlinearity in the thermohaline circulation and different

mathematical treatment associated with the vertical stratification of buoyancy.

Therefore, an alternative to the formal mathematical derivation of simplified

models from the full equations of motion is used to pose a conceptual model or

simple physical analog for the ocean system. In this entry, an idealized model by

Marotzke [40] will be briefly described. Two boxes which represent tropical and polar

regions of the ocean are considered. Several assumptions are made: (1) ocean tempera-

ture is very close to atmospheric temperature in each box, and (2) salinity is forced by
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a flux ofmoisture through the atmosphere from the low-latitude to the high-latitude box.

Salinity forcing is used to make the low-latitude box saltier and denser, and the high-

latitude box fresher and less dense (Fig. 4.6). The governing equation of salt can be

described as follows following Haidvogel and Bryan [29]:

V
dS1
dt

¼ �FS0 þ jqj S2 � S1ð Þ; (4.23)

V
dS2
dt

¼ �FS0 þ jqj S1 � S2ð Þ; (4.24)

where V is the volume of the boxes which is assumed to be equal, S0 is a constant
reference salinity, and q is the rate of volume exchanged in the pipes which connect

the low-latitude and polar boxes. Pressure differences between the two boxes drive

the system, which can be modeled using resistivity k�1:

q ¼ � k

r0
ðr2 � r1Þ : (4.25)

These are completed using a linear equation of state:

r ¼ r0 ð1� aT þ bSÞ ; (4.26)

where a is the thermal expansion coefficient and b is the haline contraction

coefficient.

As mentioned above, the state-of-the-art climate models now can simulate

decent thermohaline circulation. However, it is still difficult to observe this circu-

lation and bias exists in its location and intensity simulated by OGCM.

Biogeochemical Cycle Modeling

The oceans play a role in not only through physical quantities, such as wind stress

and surface energy exchange, but also through chemical species, especially

−F

T1,S1 T2,S2
q

F
Fig. 4.6 A schematic

diagram of the two-box model

of the thermohaline

circulation (modified from

[29])
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greenhouse gases, such as CO2 and N2O. Also, sea salt from the ocean surface is an

important source of natural aerosols which have impacts on climate through

aerosol–climate interaction. In this section, a few aspects on modeling of the

biogeochemical cycle in the OGCM are briefly reviewed.

Currently, approximately 6 Gt/year of carbon is released in the atmosphere due

to anthropogenic activity. Only about half of carbon remains in the atmosphere and

the rest is stored either in the vegetation and soil, or in biota and dissolved trace

species in the ocean. This stored carbon is typically identified as terrestrial and

ocean carbon pools. These fluxes and reservoirs for carbon are summarized in

Fig. 4.7. The size of the terrestrial and atmospheric carbon pools are about 2,200

and 750 Gt, while the Ocean carbon pool is estimated to hold about 40,000 Gt, the

largest carbon pool except sediments and rocks.

The first generation of the Ocean Carbon model to treat the exchange process

between atmosphere and ocean was developed more than 50 years ago by Revelle

and Suess [50], which used two boxes of oceanic carbon pools with exchange

processes between atmosphere and ocean. The rationale of this simple box model

has been employed consistently through later generations of the ocean carbon

model (e.g., [31]). Research questions about how much of the extra CO2 released

by human activity in the atmosphere can be stored in the ocean carbon pools resides

Fig. 4.7 A schematic diagram of the global carbon cycle, obtained from http://earthobservatory.

nasa.gov/Features/CarbonCycle/carbon_cycle4.php
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at the core of climate change science, and how these large carbon pools will respond

to global warming is also critical to understand.

The conservation equation for any trace constituent (like CO2) in the ocean or

atmosphere can be written as follows:

@C

@t
¼�~V � rC�Cr � ~VþCSource �CSink; (4.27)

where C is a mixing ratio of any trace constituent (units mass of trace constituent to

mass of sea water).

There exist two important source and sink processes for carbon in the ocean, that

are typically labeled as the biological and solubility pumps. The biological pump

refers to the transport of carbon from the oceanic surface to its interior in the form

of carbon bound to other elements and labeled organic or inorganic carbon,

according to whether the carbon resides in chemical compound that arises primarily

through biological activity (organic) or other chemical reactions (inorganic). Vari-

ous routes for the transport of carbon from the atmosphere into different parts of the

ocean have been discovered and are treated in modern climate models treating

biogeochemistry. The strength of this biological pump is measured by the so-called

f-ratio, a fraction of total primary production fueled by nitrate [17].

Second, the solubility pump is a transport process that takes place through

physical-chemical interactions. Both temperature in the ocean layers and the

aforementioned thermohaline circulation are two important players in determining

the strength of the solubility pump. The most of the climate models in the IPCC 4th

Assessment Report (AR4) does not have representation of carbon cycle. However,

the next generation of OGCMs to be used in the IPCC 5th Assessment Report

(AR5) has some degree of numerical representation of these two pumps.

Future Directions

The simulations of the oceans by contemporary OGCM in coupled climate model

still exhibit various degrees of biases compared to observations despite

improvements. Further reduction of these biases is required. Some dynamical,

physical, and even biological processes are poorly represented, and others are

entirely missing. Thus, much emphasis has been weighted on developing more

comprehensive and computationally efficient ocean climate model at the same time.

As a first step, increasing spatial resolution has been pursued as a way forward by

many modeling groups in the world and reduces the need for some sub-grid scale

processes which must currently be parameterized. Also, better numerical algorithm

suitable for extreme computing environment has been sought at the same time.

In summary, several key aspects in the development of the next generation of the

OGCM are as follows:
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1. Multi-decadal natural variability-Atlantic Meridional Overturning Circulation

(AMOC): This phenomenon is important for climate not only in the pan-Atlantic

regions, but also for other regions in longer-term climate variability [60]. With

limited availability of observational data, the OGCM has been playing an

important role in understanding many processes involved with the AMOC and

in simulating its historical evolution as well as current status. For example, most

of climate simulations produce a weakening of the AMOC under the global

warming due to increasing temperature [23, 55]. However, a role played by the

fresh water budget on the AMOC has large uncertainty [61]. Many regional and

international efforts have been made to collect more data and to improve model

simulation of the AMOC [53].

2. Sea-level change in the warming world: Sea-level change in the global ocean is

not only a function of temperature increase, but also many regional processes.

As reviewed earlier, the OGCM with the Boussinesq approximation has its

limitation in suitably simulating this sea-level change. Also, the ice sheet and

sea ice variability and change have to be simulated and incorporated into the

OGCM.

3. Simulation of marine ecosystem in the OGCM: The OGCM was typically for

description of ocean circulation and physical properties. However, as our planet

changes due to the anthropogenic activities, there are increasing demands on

what would be the impact of climate change on marine ecosystem in a very

regional scale (such as the coastal region of the Gulf of Mexico). On the other

hand, proper simulation of marine ecosystem benefits better representation of the

biological pump in the ocean biogeochemical cycle.

This entry introduces some of the basic concepts and examples of the OGCM.

More details on each subject can be found in the following articles or textbooks. For

example, general introductory and review on the contemporary OGCM can be

found in Randall et al. [48], Griffies et al. [27], and Haidvogel and Bryan [29];

numerical formulation can be found in Griffies [24], Griffies et al. [26], and Bryan

[5]; and biogeochemistry in the OGCM can be described in much more detail in

Sarmiento [54].
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Chapter 5

Weather Prediction Models

Julio T. Bacmeister

Glossary

Assimilation The process of combining observations of the atmosphere

with a “first guess” (usually a model forecast) to define the

atmospheric state on a forecast model grid.

Geostrophic balance A possible state of rotating fluids in which flow is directed

along pressure gradients rather than across them.

Gravity waves Rapidly moving atmospheric disturbances driven by gravity

acting on vertical density gradients. Often arise as

a consequence of spurious geostrophic imbalance in initial

conditions.

Hydrostatic balance State in which the vertical pressure gradient force cancels the

downward accleration of gravity. Approximately obeyed in

atmospheric flows with horizontal scales larger than several

km.

Instabilities

(or unstable modes)

Spatial patterns in a flow that are able to extract energy from

the background flow and grow in amplitude.

Primitive equations Complete set of equations describing flow of a thin enve-

lope of fluid or gas surrounding a sphere.

Resolution Separation in space of notional points at which quantities

are defined in a numerical model.
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Definition of the Problem

Awareness of weather and concern about weather in the proximate future

certainly must have accompanied the emergence of human self-consciousness.

Although weather is a basic idea in human existence, it is difficult to define

precisely. Weather intuitively refers to a set of atmospheric conditions prevailing

over a relatively small area, and even more emphatically, over a relatively short

time. The immediacy contained in our notion of weather may be reflected in the

fact that in many languages the same root appears in the words for time and

weather, for example, Spanish (tiempo) or Hungarian (idö). Thus, weather is to be
distinguished from the notion of climate, or more subtly from the notion of

“spells” which imply a time window anywhere from a week to several years.

Our experience of weather does involve quantities which can be defined with

reasonable precision. These include air temperature, wind speed, precipitation

rates and types, cloud cover, and also humidity, air-quality, and barometric

pressure. Numerical weather prediction (NWP) is the attempt to predict the

evolution of such quantities by solving a set of partial differential equations

which describe the dynamics of a fluid like the atmosphere [1, 2]. These equations

must be solved using approximate or “numerical” techniques using computers.

They are integrated forward in time from a set of initial conditions, which are

derived from an optimized combination of observations and previous model

forecasts. This bootstrapped procedure is known as the analysis cycle and is an

integral part of the activities at all modern forecasting centers.

NWP and global climate simulation are closely related problems. The models

used in both endeavors are essentially the same. A key difference between NWP

and the climate problem is the role of atmospheric initial conditions. Initialization

of the atmosphere is of secondary importance in multiyear climate simulations.

However, good initialization of the atmospheric state is at the heart of the

forecasting problem. Initialization must give an accurate and comprehensive repre-

sentation of the state of the atmosphere that is compatible with numerical forecast

model being used. The initial state must also satisfy a number of “balance

constraints” to avoid spurious initial variability.

Lewis Fry Richardson (1881–1953) reported the first numerical weather fore-

cast, performed using hand calculations, in 1922 [3]. His attempt did not succeed

for reasons that are summarized below, and discussed in detail in the book by Lynch

[2], but Richardson’s effort marks the beginning of NWP as a field of inquiry.

Introduction: Direct Simulation of Atmospheric Flows

In order to appreciate the challenges faced by numerical models of the global

atmosphere it is useful to have a sense of the complex nature of the motions

which must be represented. A brief account of some of the dynamical processes
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that play a part in weather is given below. For more details, the reader is referred to

the excellent, comprehensive introduction to the dynamics of the atmosphere and

ocean by A.E. Gill (1937–1986) [4].

A Zoology of Atmospheric Motion

The atmospheric flows which are responsible for creating weather span a wide range

of space and time scales and are driven by rich variety of dynamical and thermody-

namic processes. Atmospheric flows may be forced by features at the Earth’s surface.

Mountainous terrain forces atmospheric circulations with spatial scales ranging from

several kilometers to several thousand kilometers. Surface temperature contrasts,

most pronounced between land and ocean but also created by variations in ground

cover, force sea-breeze circulations with scales of tens of kilometers, [5] as well as

continental-scale monsoonal circulations (Table 5.1) [6–8].

External forcing can produce wave-like motions in the atmosphere. Gravity

waves, or buoyancy waves, exist because of density stratification in the atmosphere,

and are analogs to waves on the surface of water. These waves are typically one to

hundreds of kilometers in scale, and have periods of minutes to hours, although in

the tropics both spatial and temporal scales may be longer [4]. Gravity waves may

play a role in triggering convection [9–11], as well as in organizing convection in

the mesoscale [10, 12, 13]. Mountain waves are large, nonlinear, gravity waves

generated by flow over mountains with horizontal scales from less than ten

kilometers to several hundred kilometers. Such waves are responsible for

a number of local but intense winds [14]. Gravity waves are also notorious for

contaminating forecasts when errors in initial conditions are present.

Rossby waves [4, 15–17] named after the Swedish meteorologist Carl Gustav

Rossby exist because of the change in the effective rotation rate experienced by

a fluid parcel as it moves from equator to pole. The effective rotation rate at the

Table 5.1 Motions in atmosphere

Phenomenon Spatial scale

Temporal

scale Role in weather

Acoustic waves Meters Seconds None

Gravity waves 1–1,000 km 15 min to

days

Initiating and organizing convection.

Mountain flows, e.g., chinooks, Foehns

. . .

Eastery waves 500–2,000 km Days Organizing tropical convection, tropical

cyclogenesis

Baroclinic instability Thousands of

km

Days Midlatitude cyclogenesis

Madden–Julian

oscillation

10,000 km 20–60 days Possible modulation of tropical

and midlatitude weather
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Equator is zero, since all of the effects of Earth’s rotation are directed in the vertical

and are felt as a slight reduction in the pull of gravity. At the poles, the effective

rotation rate is as intuitively expected – one cycle or 2p radians per day. In between

equator and pole, this rate varies as the sine of latitude. Rossby waves which exploit

this gradient have scales of thousands to ten thousands of kilometers and periods of

days to weeks. Immense planetary-scale Rossby waves or “planetary waves”

generated by topographic features such as the Himalayas and Rockies, as well as,

by continental-scale land-sea contrasts, dominate the tropospheric flow and are

responsible for the mean position of the jet-streams, and for the mean paths of storms.

Probably more important in the overall problem of weather, and certainly more

difficult to predict, is another class of flows driven by internal exchanges of energy in

the atmosphere. These instabilities or unstable modes are essentially flow patterns that

are able to extract energy from their surroundings and grow in amplitude. Initial

growth of unstablemodes is typically exponential. Familiar examples of such behavior

in fluids include the growth of wind driven waves on the surface of water. The

convective instability of a fluid heated from below is another example that is both

familiar in everyday experience and also important in the atmosphere.

In the atmosphere, a particularly important mode of unstable growth is through

baroclinic instability [18, 19]. This instability arises from a combination of thermal

and inertial effects in a rotating fluid with a horizontal temperature along the lower

boundary. Baroclinic instability is characterized by length scales of 1,000 km and

growth times of days – making it a key factor in weather. It is fair to say that the

problem of weather forecasting in midlatitudes is essentially that of predicting the

evolution of baroclinically unstable modes in the atmosphere.

The tropics possess another as yet poorly understood class of motions, in which

moist heating plays a key role in energizing and modifying wave motions in the

atmosphere [20]. Tropical easterly waves [21] have periods of several days and

scales of hundreds to thousands of kilometers and play an important role in the

genesis of tropical cyclones [22–24]. The Madden–Julian oscillation or “MJO” [25,

26] is an eastward traveling disturbance in the tropics with a length scale close to

10,000 km and a period of weeks. It is thought to play a role in modulating tropical

cyclone frequency in various basins [27–31] and possibly midlatitude disturbances

as well [32, 33]. The dynamics behind the MJO are not yet understood. Successful

forecasting of the MJO could improve prospects for accurate forecasts out to lead

times of weeks [34].

Early History

Weather prediction, not climate simulation, was the original motivation for devel-

oping numerical models that describe the time evolution of the atmosphere.

Richardson’s 1922 attempt at NWP predates initial attempts to study climate
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numerical models by at least four decades. The first attempts at simulating the

longer-term equilibrium state of the atmosphere did not occur until the 1960s [35].

The notion of predicting weather systematically using equations to describe the

evolution of systems can probably be traced to the Norwegian meteorologist

Vilhelm Bjerknes (1862–1951) [1, 2] who founded the famous “Bergen School”

of meteorology [36, 37]. Bjerknes considered graphical methods to predict the

motion of fronts and other features in the atmosphere, as well as numerical

techniques to solve the equations themselves. However, it was L. F. Richardson

who finally conceived and implemented a concrete plan to use a numerical solution

of the partial differential equations describing the atmosphere (see section on

“primitive equations”) to make forecasts. His approach was remarkably prescient

both in concept and in detail. He employed a finite-difference technique on a

regularly spaced grid of points over central Europe and attempted to predict the

tendency of surface pressure over 6 h. Richardson’s forecast was a famous failure or

“bust” (see the book by Lynch [2] for a detailed and readable account of

Richardson’s attempt, as well as for a comprehensive account of the development

of NWP). However, the reasons for Richardson’s failure lay in the initial conditions

used in the forecast not in his method as Richardson himself suspected [2].

The potential for numerical prediction was clear. The major obstacle beside the

question of initialization, was the sheer amount of calculation required to produce

even a short forecast over a limited area. Richardson imagined computational

“factories” employing thousands of people to produce weather forecasts [2]. The

appearance of electronic computers soon after World War II made numerical

prediction plausible. The potential application to the problem of weather prediction

was recognized by one of the main intellects behind the development of electronic

computers John von Neumann (1903–1957) [1]. In the first successful attempts at

NWP using electronic computers so-called filtered equation sets were used [2].

Filtered equations describe a limited set of atmospheric motions, but allow large

time steps to be taken in numerical integration and side step the need for

well-balanced initial conditions (see sections on “Numerics and Initialization”).

Development of Modern NWP Models

It was recognized early on by Jule Charney and others that models using filtered

equations were not a promising long-term path for NWP [2]. As computer power

increased, the limitations on the time-step length allowed by more complete

equations became less important. The problem of initialization was not solved,

but its tractability became apparent [38]. Development work on NWP models

using the primitive equations began in the late 1950s and eventually led to the

adoption of primitive equation models at all major forecasting centers by the

mid 1960s [2].
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The Primitive Equations

The primitive equations are essentially the complete Navier–Stokes or Euler

equations for fluid motion with the hydrostatic approximation invoked. As long

as the horizontal scales of interest are much larger than 10 km, the hydrostatic

approximation is well satisfied. However, at the time of writing, major NWP

models are reaching horizontal resolutions that test the limits of this approximation.

The Euler equations using a generalized vertical coordinate �, including

connections between the fully nonhydrostatic system and the hydrostatic system

currently used in NWP models, are nicely described by Laprise [39].

The hydrostatic primitive equations include an equation describing the evolution

of horizontal momentum or velocity V:

d

dt
V þ fk� V ¼ �ar�p�r�fþ Fphys

where f is the Coriolis parameter or local apparent rotation rate and k is the unit

vector in vertical direction. The symbol r� denotes a gradient along surfaces of

fixed �. As is common in the meteorological literature ’ denotes the geopotential

height or potential energy density of a fluid parcel along constant �. The remaining

symbols a and p denote specific volume and pressure. This equation is simply the

fluid dynamical form of Newton’s law F = ma, where the right-hand side contains

forces accelerating fluid parcels in the horizontal. In current meteorological litera-

ture, the individual velocity components are usually designated as u for the east-

ward or “zonal” component, and u for the northward or “merdional” component.

Another equation restates the first law of thermodynamics dE = dQ + dW in fluid

form:

Cp
d

dt
T � a

d

dt
p ¼ Hphys

where T is the absolute temperature and Cp is the heat capacity of air at constant

pressure. In both the momentum and energy equations the symbol d
dt is used to

denote:

@

@t

� �
�

þ V � r� þ _�
@

@�

the Lagrangian derivative that tracks changes in a quantity following a fluid parcel.

A prognostic equation for mass continuity is also required:

@

@t

@p

@�

� �� �
�

þr� � V
@p

@�

� �
þ @

@�
_�
@p

@�

� �
¼ 0
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where g�1 @p
@� is the mass per unit area in a column between surfaces of constant �.

Three diagnostic relationships are needed to complete the system. The equation

of state for a gas:

pa ¼ RT

and a relationship that determines the geopotential height of �-surfaces:

f ¼ fs þ
Z �s

�

a
@p

@�0
d�

This relationship uses the surface geopotential height ’s as well as the integral of

the hydrostatic relationship:

@p

@�
¼ 1

a
@f
@�

between pressure and specific volume.

The right-hand sides of the momentum and energy equations also contain the

terms Fphys and Hphys. These represent the effects of physical parameterizations on

the grid scale variables, and include effects from radiative heating, friction, and

other processes which will be described in more detail in the section on parameteri-

zation. The use of the generalized vertical coordinate � gives the equations

a somewhat unfamiliar look. However, replacing � with the geometric height z,
and noting that rz’ = 0 reduces them to a more familiar form.

Due to the complex shape of Earth’s topography most NWP models do not use

geometric height as their vertical coordinate. Most use a version of the so-called s-
coordinate defined by:

s ¼ p� pt
psðx; y; tÞ � pt

where ps(x, y, t) is the surface pressure and pt is the pressure at the model top,

typically a constant value. The coordinate surface s = 1 follows the bottom of the

model domain while s = 0 follows the top. Boundary conditions on “vertical”

velocity become simply _sð1Þ ¼ _sð0Þ ¼ 0. Thus, the difficulties of representing flow

boundaries in and around topographic obstacles are replaced by the need for

a prognostic equation describing ps. This is obtained by integrating the mass

continuity equation in the vertical.

The primitive equations can describe all of the motions discussed in the intro-

duction except for fully three dimensional acoustic waves. They do allow

a horizontal acoustic mode known as the Lamb wave [4] which can produce

difficulties for numerical integrations. Gravity waves and convective instabilities

with horizontal scales much smaller than 100 km are not well represented, and this
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may become a significant handicap for models in the next 10 years (see section on

“Future Directions”).

In addition to the equations describing the dynamics and thermodynamics of the

atmosphere, modern NWP models include equations that describe the evolution of

trace gases and trace species in the atmosphere. Each additional species results in an

additional prognostic equation of the form:

d

dt
qi ¼ Ci;phys

where qi is the mixing ratio of the ith species and Ci,phys are the sources and losses of

the species. The most important of these trace quantities is water vapor. Water

vapor was included in primitive equation NWP models early on [40]. As NWP

model domains were extended into the tropics during the 1970s [41] strong con-

densational heating associated with high tropical humidities presented problems for

NWP that spurred the development of deep convection parameterizations [42] (see

section on “Parameterization”). More recently, NWP models have incorporated

prognostic treatment of condensed water species known as prognostic cloud

schemes [43, 44].

Numerics

Closed form solutions of the primitive equations do not exist. Approximate numer-

ical techniques must be used. An illustration of how this proceeds is given here

using a simple equation that describes one dimensional advection of a constituent C
by a constant flow u:

@tCþ u@x C ¼ S

Figure 5.1 shows three time steps from a numerical integration of this equation.

Finite-difference approximations of the partial derivatives in both space and time

are calculated as shown in the figure. The approach illustrated is known as

a “centered difference” since the approximation uses a symmetric stencil of equally

weighted points. With these approximations to the derivatives in time and space,

a solution for the tracer distribution at t + 1 can be obtained:

Cði; tþ 1Þ � Cði; t� 1Þ � u2Dt
Cðiþ 1; tÞ � Cði� 1; tÞ

2Dx

� �

As a technical detail, notice that to start (or initialize) this calculation two time

levels of data must be given. In practice, these can be set equal to each other.
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Once initial values are given, the arithmetic equation above can be repeated, or

iterated, many times to give the time evolution of C.
The algorithm described above is a simple but stable scheme that was employed

in early numerical models. However, it has many undesirable properties, which are

described in [45]. Nevertheless, the basic concepts illustrated by this method hold

for all explicit finite-difference approaches. In implicit methods, the terms in the

approximation of @xC above are replaced by their values at time t + 1. In the case

above, this leads to a tridiagonal matrix problem that can be easily solved using

standard techniques [45].

The most natural coordinate system for a global atmospheric model is spherical,

with latitude and longitude as the horizontal coordinates. Unfortunately, as either

pole is approached, equally spaced longitude lines come arbitrarily close together.

This presents problems for most finite-difference numerical schemes, which

become inaccurate or unstable when information travels across multiple grid

lengths in a single time step. For example, in the simple case described in

Fig. 5.1 the time step must be chosen such that uDt
Dx < 1 to avoid numerical

instability. Versions of this limit, known as the Courant-Friedrichs–Levy (CFL)

limit, exist for most explicit finite-difference schemes. In systems of equations that

support propagating waves, as the primitive equations do, the relevant velocity in

the CFL limit is typically the sum of the wave propagation speeds and the advective

speed. Thus, the stability of explicit calculations is limited by the fastest wave

modes in the system, which are often of little interest, for example, Lamb waves or

deep gravity waves. Global models whose numerics are based on finite differences

C(i,t +1)–C(i,t –1)
C ª

∂
∂t 2Δt

C(i,t +1)

C(i +1,t)–C(i –1,t)
C ª∂

∂x 2Δx

C(i,t )

C(i,t –1)

490 495 500 505 510

Fig. 5.1 Three time steps from numerical advection of a Gaussian tracer pulse using a second-

order, space-centered, time-centered finite-difference scheme. The +’s indicate grid-point

locations. A constant velocity of u = �0.5 is used with grid spacing Dx = 1 and time step Dt = 1
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(“grid-point models”) address this issue by introducing polar filters which are

designed to suppress small-scale motions in the polar regions of the model.

A revolutionary innovation occurred in the late 1960s with the introduction of

spectral techniques for solving the primitive equations [46]. Spectral models

decompose the atmosphere into a finite sequence of spherical harmonic functions,

rather than onto a grid of points. For example, the wind u is approximated by:

u l; y; z; tð Þ ¼
XN
n¼0

Xn
m¼�n

Um
n z; tð ÞYm

n l; yð Þ

where l is longitude and y is latitude. The time evolution of the atmospheric flow is

then represented as the time evolution of the amplitudes Um
n ðz; tÞ . Nonlinear

advection terms arising in the primitive equations may be dealt with directly in

spectral space, as interactions of spherical harmonics or in physical space with

transformation of the tendencies back to spectral space [45].

The resolution of spectral models is determined by the truncation parameter N.
The form of the finite sum used above is referred to as a triangular truncation.

A model with N = 799 in this kind of decomposition is referred as a “T799” model.

Lynch [2] gives a useful rule-of-thumb for estimating the spatial resolution D
corresponding a particular value of N. He uses D � (2pae)/2 N or D � (20,000

km)/N where the circumference of the Earth 2pae has been approximated by

40,000 km.

Spectral techniques are not only highly accurate, but also nicely sidestep the pole

problem faced by grid-point models formulated in terms of latitude and longitude

on the sphere. Discretization into spherical harmonics produces no special

difficulties at the poles.

A disadvantage of spectral schemes is that fields with strong variation across

small-spatial scales, such as most trace gas concentrations (including water vapor),

precipitation, or topography cannot be represented without introducing significant

spurious nonlocal oscillations in these fields. This behavior, known as the Gibbs

phenomenon is a simple consequence of attempting to represent highly localized

features with global basis functions. The nature of these truncation errors is such that

the amplitude of spurious oscillations decreases slowly with resolution. The presence

of Gibbs oscillations can lead to serious problems in global simulations, such as the

formation of negative trace gas concentrations.

Due to the difficulties in spectrally representing fields with intense spatial

variability, grid-point models have not been abandoned. In addition, grid-point

models can be made more efficient than spectral models at very high resolution.

So, while most operational forecasting centers currently use some form of spectral

dynamical core in their NWP models, this may change in the next decade. Current

research is focused on developing grid-point or finite element approaches on

nonstandard grids such as the icosahedral, that is, “bucky-ball” or “soccer-ball,”

grid to bypass the pole problem encountered in latitude-longitude discretizations

(see section on “Future Directions”) (Table 5.2).
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Parameterizations

Representation of physical processes such as radiation, turbulence, gravity wave

drag, convection, and precipitation also became more sophisticated in NWPmodels

as they evolved. The earliest successes in NWP using a filtered barotropic model

did not even formally incorporate temperature as a prognostic variable. Today,

NWP models may track several condensed water species, as well radiatively active

trace gases such as ozone. It was the incorporation of radiative transfer schemes and

simple moist convective adjustment schemes into NWP models in the 1960s [35]

that led to the first climate models capable of self-consistently representing the

basic feature of Earth’s atmospheric general circulation.

Parameterization development for NWP models has followed that for climate

models. The suite of parameterizations currently used in global NWP models is

identical to that used for climate simulations. It is arguable whether most physics

parameterizations exert an appreciable effect on short-term (1–3 day) forecasts.

Deep convection and orographic wave drag parameterizations have been shown to

exert a significant short-term effect [47–49]. At medium range (3 days to 2 weeks),

physical parameterizations are thought to have an important effect on forecast skill

(Bengtsson 2000). In addition climate biases resulting from deficient parameter-

izations can have a negative impact on data assimilation schemes (see section on

“Data Assimilation Systems”). This can indirectly affect short-term forecasts by

introducing errors in the initial conditions.

How Are NWP Models (Versus Climate Models) Evaluated?

Perhaps the most significant differences between global climate models and NWP

models arise from the different jobs they are expected to perform. Ideally, a solver

Table 5.2 Parameterizations in Weather Forecasting models. The first column gives the usual

designation used in the meteorological community. The second column summarizes the effects of

the parameterization. The third column indicates the primitive equation forcing term in which

tendencies from the parameterization appear

Parameterization Effects Included in

Deep convection Transports heat, moisture and momentum

vertically. Damps convergence

Hphys, Fphys, Ci,phys

Orographic gravity

wave drag

Decelerates flow over mountains Fphys

Planetary boundary layer

(PBL) turbulence

Transports heat, moisture and momentum

vertically

Hphys, Fphys, Ci,phys

Radiation (Solar and IR) Calculates heating due radiative flux

convergence

Hphys

Diagnostic cloud Estimates cloud cover and thickness

Prognostic cloud Calculates cloud condensate concentrations

and estimates cloud optical properties

Hphys, Ci,phys
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for the primitive equations, coupled to set of physically realistic parameterizations

of processes like convection, should perform both long-term and short-term

simulations of the atmospheric flow with equal accuracy. However, this is not the

case. Even when run at comparable resolutions, models developed for NWP and

climate do not perform each other’s tasks with comparable skill. The likely cause of

this discordance is the process of model tuning. The need for “tuning” is widely

recognized in both the NWP community and the climate modeling community as an

inevitable consequence of using imperfect models [41]. The bulk of model tuning

occurs in choosing empirical factors that regulate physical parameterizations. Some

of this can be explained (or excused) as an attempt to represent unknown sub-grid

distributions of quantities such as water vapor, temperature, or topographic rough-

ness. Unfortunately, the process of selecting these empirical factors can be ad hoc,

and parochial in character. Even if optimal tunings exist that combine high accuracy

in short-term forecasting as well as unbiased climate simulations, they are unlikely

to be found. Groups involved in developing climate models rarely have the compu-

tational resources to perform extensive testing of their models at high resolution in

forecast mode, while NWP groups are typically under intense operational pressures,

and have little time or incentive to examine their models in free-running climate

simulations.

There is as yet no set of universally accepted metrics for climate models,

although developments in this direction are taking place [50]. Metrics typically

targeted by climate modelers include seasonal mean distributions of precipitation

and seasonal mean planetary wave patterns. Other, functional, constraints exist for

atmospheric models used in climate research. For example, when used in coupled

climate simulations, that is, connected through boundary fluxes to ocean and land

surface models, obtaining correct global budgets of energy and momentum in an

atmospheric model is critical. Thus, intensive tuning of cloud parameterizations is

usually conducted to ensure that seasonal and annual-mean radiation budgets at the

top of the atmosphere are realistic, to minimize spurious long-term drift in extended

simulations. Generally speaking, exact conservation of energy and momentum is

a key concern in the design of atmospheric models for climate, while being of

secondary importance in the design of NWP models.

On the other hand, operational NWP models are regularly subjected to a number

of rigorous, and more-or-less universally accepted tests at each step in their

development. Not surprisingly, these tests emphasize short-term simulation accu-

racy rather seasonal or annual-mean performance.

500 hPa Height Anomaly Correlation

At many centers including the European Center for Medium Range Weather

Forecasting (ECMWF), the most important measure of global forecast model

performance or skill is the 500 hPa height anomaly correlation. This measure is
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essentially the pattern correlation of two maps of geopotential height anomalies ’0

interpolated to a pressure level of 500 hPa (corresponding to altitude close to 5 km).

A height anomaly is defined the deviation in height from its average value along

a latitude circle. One map is an analysis of height anomaly at 500 hPa f0
anaðx; y;

p500; taÞ (see section on “Initialization and Data Assimilation”) and the second is

a map of forecast height anomaly valid at the same timef0
f ðx; y; p500; taÞwhere ta

= ti + Dtf . Here Dtf is the forecast lead time and ti is the initiation time. These two

height fields are then used to form a correlation.

r500ðDtf Þ ¼
f

0
f ðti þ Dtf Þ;f 0

ana

D E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

0
f ;f

0
f

D E
f

0
ana;f

0
ana

� �r

where <> represents the spatial covariance over some region, typically the south-

ern hemisphere or the northern hemisphere.

Figure 5.2 shows the average evolution of r500 in twomajor global forecast models

for the period January 1 through March 31, 2009. The plots illustrate the state-of-the-

art in NWP as of this writing. As expected the pattern correlations decrease with time,

but remain quite high, above 0.8, out to a forecast lead of 5 days. Northern hemisphere

correlations are higher in both systems, probably reflecting the higher density of in situ

measurements available there. Many operational forecasting centers do not allow

changes to their systems that degrade this measure of performance.

Although using r500 as the single measure of forecast accuracy may seem

somewhat restrictive, it should noted that that the geopotential height ’ at

500 hPa is an integrated measure of the temperature in a deep layer, form the

surface to around 5,000 m. So, r500 is a concise summary of model performance in

a horizontally extensive and deep atmospheric slab.
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NWP models for the January

through March
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Skill Scores

The S1 skill score [51, 52] has been used since the 1950s by forecasters at the

National Meteorological Center (NMC), and after 1995 the National Center for

Environmental Prediction (NCEP), to evaluate forecast performance. An S1 score

can be defined for any quantity. It is calculated:

S1ðwÞ ¼ 100�
R
Ajrðwf � woÞjdAR

A maxðjrwf j; jrwojÞdA

where wf is forecast w and wo is the observed value for verification. S1 then is the

ratio of the integrated absolute gradient in forecast error, normalized by the

integrated absolute gradient of the quantity itself, where at each location the larger

of the forecast or observed values is used. A value of S1 = 0 represents a perfect

forecast. The quantity w used to calculate S1 is typically sea-level pressure or

geopotential height.

The S1 skill score was selected by NMC from many measures of forecast quality

with guidance from practicing forecasters. Forecasters in 1950s noted that values of

S1 around 20 corresponded to very good forecasts, while values of 70 or more

represented nearly worthless forecasts. As a result, it became common practice to

express “skill” as 2(70 � S1), so that now a very good forecast S1 = 20 has a skill

score of 100, while useless forecasts have a skill score of 0 [52].

Equitable Threat Scores

Evaluation of precipitation forecasts is difficult for a number of reasons. Precipita-

tion is a field with high variance and sharp boundaries. In many circumstances, the

important forecast parameter is whether rain or precipitation (above a certain

threshold) has occurred. Such categorical forecasts are evaluated using various

methods based on matrices of possible outcomes, for example,YY – rain is forecast

and occurs, YN – rain is forecast but does not occur, NY – rain is not forecast but

occurs, and NN – rain is not forecast and does not occur. The most commonly used

method is that of Equitable Threat Scores (ETS) [53] which attempts to account for

the long-term statistical probability of each category.

Initialization and Data Assimilation

A moment’s reflection shows that establishing initial conditions for a global model

of the atmosphere is a nontrivial task. First of all, there may be instrumental errors
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in the measurements of wind, temperature, humidity, or other quantities needed to

specify the initial state of the atmosphere. While perhaps the most obvious problem,

instrumental error may also be the least important problem faced in initialization.

A more serious problem is hinted at in Fig. 5.3 which shows the current global

distribution of radiosonde balloon launch sights. Radiosondes provide very accu-

rate and reliable measurements of winds, temperatures, and humidities from the

surface to around 10 km altitude. Launches are made by international agreement at

either 0Z or 12Z (“Z” refers to Greenwich mean time) or at both times, depending

60 120

03May2010,12ZRadiosonde temperatures: 27614 observations
all lat; all lon; all lev; kt = 44; kx = 120; all qcx; all qch
d520_fp.ana.obs.20100503_12z.ods 
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Fig. 5.3 Locations of radiosonde observations (top) and satellite temperature observations

(bottom) for May 12, 2008 from NASA’s GEOS-5 DAS
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on the station. However, as the figure shows, radiosonde launch sites are distributed

in a completely unstructured way across the globe. High concentrations occur in the

developed world, with sparse or no coverage over oceans and over less-developed

land areas. Even in the developed world the location of sites is determined by

human factors – and is more-or-less spatially random. Numerical models of the

atmosphere, both spectral and grid point, require a spatially structured set of

numbers to begin their integrations. Satellite data presents similar challenges.

While it is structured – along orbital tracks – the structure does not conform to

the needs of NWP models. In addition, satellite data is asynchronous, that is,

sampling occurs continuously as the satellite travels, not at a specified time as

with radiosonde data.

Thus a major challenge faced in NWP is to derive a complete model state on

a structured set of points at a single instant in time, from data that may be neither

spatially structured nor representative of a single point in time. Naive interpolation

in space and/or time is inadequate. The model state derived from the data must not

only cover the globe, it must do so while also satisfying a number of other

dynamical and physical constraints.

Fluid flows, and vector fields in general, can be decomposed into a sum of

divergent (r ∙ u1 6¼ 0) and nondivergent (r ∙ u2 = 0) components. Generally

speaking, the atmospheric motions of most significance in 1–5 day forecasts are

characterized by “small” horizontal convergence and divergence in a relative sense.

In these flows, two or three of the terms in the momentum equation form a dominant

steady-state balance that describes the flow to first-order. These balanced flows are

almost nondivergent. However, their time evolution can be profoundly affected by

the small divergent component. The earliest and most basic balance identified by

meteorologists is the so-called geostrophic balance, described below. The subtleties

of the divergent wind field in geostrophically balanced flow are what doomed L. F.

Richardson’s pioneering NWP experiment.

Geostrophically Balanced Flow

The origin of geostrophic balance ismost easily seen by performing a scale analysis of

the momentum equation in the primitive equation system. Scale analysis is a common

procedure in fluidmechanics to systematically identify themost important terms in the

complicated equations describing fluid flow [4]. It begins by identifying scales of

motion for the phenomenon of interest. For midlatitude weather systems, especially

after considering the spacing and resolution of radiosonde and satellite data,

a reasonable choice of spatial scale L is around 1,000 km. Other reasonable choices of

scales are for horizontal windU� 10 ms�1, and for pressure disturbance P� 10 hPa

or 1,000 Pa. These scales along with local apparent rotation rate f with values

� 10�4 s�1 in midlatitudes are used to estimate the sizes of the terms in the equation.

For example, d
dt V will be� U2/L where the horizontal advective time scale has been
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used as the relevant time scale. It is easy to see that the ratio of this term to the Coriolis

term fk� V will scale as U/fL, which is a key nondimensional parameter in dynamic

meteorology known as the Rossby number or Ro. For the scales of motion typical for

midlatitude systems, Ro is close to 0.1. So the advective term is likely to small

compared to the Coriolis term and also, it turns out, compared to the pressure gradient.

Thus, the “leading order” balance in midlatitude systems is left as:

fk� V¼� arzp

where we have used height as the vertical coordinate. Equivalent expressions exist

for other vertical coordinates. In component form this balance is written as:

�fv ¼ �a@xp ; fu ¼ �a@yp

This balance is the dominant feature of midlatitude flow. It is also responsible for

one of the most counterintuitive aspects of weather maps in midlatitudes – that the

wind blows along pressure contours rather than from high pressure to low pressure.

It is also the reason air flows in a counterclockwise sense around low-pressure

centers in the northern hemisphere. A perplexing aspect of this balance is that it is

a steady-state relation. In other words, the largest forces in the system give no

information about its time evolution.

It is easy to see that this leading-order geostrophic flow is horizontally

nondivergent. However, spurious divergent flow features can easily appear when

constructing initial conditions from observations of horizontal. An idea of the

difficulty of this challenge can be obtained by considering the following argument.

The relative vorticity of the horizontal wind is determined from:

z ¼ @xv� @yu

and, further scale analysis of the equations of motion in midlatitudes (see [45])

shows that the ratio r ∙ V to z will typically be close to Ro or � 0.1. The individual

horizontal derivative terms in the expressions for vorticity and divergence are of the

same order. The small relative magnitude of r ∙ V is only possible through near

cancelation of its much larger component terms. It is not trivial to maintain this

cancelation during the data assimilation process. Errors in the divergence can have

large effects on surface pressure tendencies since

@tps � psr � V:

More complete and correct balance relationships than geostrophic balance can

be derived [54]. Balanced initial conditions have been sought in a number of ways

during the history of NWP. The most successful of these was perhaps nonlinear

normal mode initialization introduced in the 1970s [55–57]. In this technique, fast

and slow normal modes of the nonlinear equations of motion are found through an

iterative procedure.
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Data Assimilation Systems

Modern operational centers handle the problem of initializing their forecasts by

using a data assimilation system (DAS). A central feature of a DAS is the forecast

model itself (or a linearized version thereof). Analyses at operational forecasting

centers are typically performed four times daily at 00Z, 06Z, 12Z, and 18Z. The

analysis procedure combines measurements with a short model forecast, typically

6 h initialized with the previous analysis. This forecast is often referred to as the

“first guess” or “background.” The job of the analysis algorithm, denoted by the

yellow diamond in Fig. 5.4, is to blend the myriad sources of data, which includes

radiosonde observations satellite measurements, pilot reports, surface station

reports, ship buoy measurements, and more, with the forecast to produce an optimal

estimate of the state of the atmosphere on the model grid. The process illustrated in

Fig. 5.4 depicts a “3D-Var” system. In 3D-Var, data gathered within an analysis

time window, typically 3 h before and after the standard analysis times, is assumed

to be synchronous. The analysis then consists of an optimal blending of

measurements and forecast background in space.

This optimal blending can be expressed as a “cost function minimization.” The

cost function is written in matrix form [2, 54, 58]:

“Analysis correction
 or  increment”

Analysis 
algorithm

Data collection during analysis window

Analysis time + 6 hrs

Forecast initial condition

Forecast endpoint
Radiosonde obs
Other obs., e.g. satellite etc..

6-hour forecast

Analysis time–6 hrs Analysis time 

Fig. 5.4 Schematic diagram of 3D-var analysis
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JðxÞ ¼ ðx� xbÞT B�1ðx� xbÞ
þ ½y� HðxÞ�T R�1½y� HðxÞ� þ JbðxÞ

where x is a model “state vector,” that is V, T, q and possibly other analyzed

species on the model’s numerical grid (or spectral decomposition). The quantity

xb is the model state from a forecast, that is, the first guess or background, and the

matrix B is the background, or forecast, error covariance matrix. This matrix is

a key piece of the analysis algorithm, and is estimated by examining differences

between forecasts radiosonde observations [59] or more recently by calculating

the covariance of different short forecasts, for example, 24 h and 48 h, valid at the

same time [60, 61].

The second term in the cost function contains the observation error covariance

matrix R, the observation vector y and a vector H(x) which is the result of the

“observation operator” H acting on the model state x. In the case of an observation

taken by a thermometer placed at a model grid-point, the observation operator

would simply select the appropriate element of x. However, in the case of remote

satellite observations, which directly measure radiances (photons) from the atmo-

sphere, H could represent a complex radiative transfer calculation using for exam-

ple T and q from the model state to estimate the radiance measured by a particular

instrument. The approach of transforming model quantities into a form that is

directly comparable with observations, sometimes referred to as “radiance assimi-

lation,” led to dramatic increases in the positive impact of satellite measurements

on forecasting [62].

The third term in the cost function represents balance constraints on the flow,

such as those discussed in the section on “Geostrophically Balanced Flows”.

Inclusion of such a term at NCEP has eliminated the need for a separate initialization

procedure for forecasts [60].

The task of the analysis algorithm is to find the model state xa that minimizes the

cost function J(x). For more details on how this solution is actually accomplished

the reader is referred to discussion in Chap. 5 of Kalnay (2003) [54]. 3D-var as

described here is used by NCEP as well as in slightly modified version by NASA’s

Global Modeling and Assimilation Office (GMAO) in their GEOS-5 DAS [63]. A

somewhat different approach known as 4D-Var is used at ECMWF. This approach

takes into account the possibly asynchronous nature of data when formulating the

cost function. For more details, see the discussion in Kalnay (2003).

Ensemble Forecasting

The early thinking of researchers in NWP was that the central problem of forecast

initialization was to correctly filter out rapid divergent motions, and, that once this was

accomplished no fundamental limits on atmospheric predictability existed. A series of
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seminal papers by Edward N. Lorenz proved this to be incorrect [64–66]. Lorenz

showed that simple analogs to atmospheric equations of motion possess a sensitive

dependence to initial conditions. In other words, small differences in even well-

balanced initial conditions will cause forecasts to become uncorrelated after a finite

time.

Modern operational forecasting centers typically perform ensembles of many

runs with slightly different initial conditions, as well as a single higher-resolution

“deterministic” run to produce forecasts for a given time [54, 67]. The generation of

ensemble members is a nontrivial task. Ideally, the members of the ensemble should

vary in special directions in phase space that are related to the most rapidly growing

instabilities in the flow [54, 68].

Future Directions

Weather forecasts have improved demonstrably during the 50 year history of NWP.

This is illustrated in Fig. 5.5, which shows the evolution of r500 at 3, 5, and 7 days

over the last 30 years in the ECMWF system [69]. Part of the improvement is

traceable to the explosion in the amount of satellite data over the last 30 years.

However, a large part of the improvement in skill is due to improvements in the

forecast and analysis “system,” such as increased forecast model resolution,

improved analysis algorithms etc. This is nicely demonstrated in the bottom panel

of Fig. 5.5, which shows the evolution of skill in retrospective forecasts, using the

current ECMWF system on the historical data base. The skill of retrospective

forecasts is significantly higher, indicating that the improved forecast and analysis

system makes a significant, perhaps the dominant, contribution to the overall

increase in skill seen in the last 30 years. One aspect of improvement that is clearly

due to improved data sources (satellites) is the convergence of skill in southern and

northern hemispheres.

Scalable Dynamical Cores

As computing power increases NWPmodel resolution also continues to increase. In

the last several years, the increase in computer power has appeared primarily in the

form of massively parallel machines with larger and larger numbers of processors,

rather than in the form of faster individual processors. This means that “time-to-

solution” has not decreased dramatically in recent years, but the size of feasible

calculations has increased dramatically. This has stimulated the development of

scalable models. Scalability means that model speed increases more-or-less linearly

with the number of processors used. A trivial example of perfectly scalable problem

is the addition of 1,000 pairs of numbers a + b = c. If one processor is available then

the calculation will take 1,000 CPU time units. If 1,000 processors are available the

108 J.T. Bacmeister



entire calculation can take place in 1 CPU time unit. However, communication

between processors also costs time. In any real numerical model of the atmosphere

processors eventually need information residing in other processors. This prevents

numerical models of the atmosphere from scaling perfectly.

The amount of cross-processor communication required can vary widely

depending on model design. Ideally decomposition will maximize the ratio of

Anomaly correlation of 500hPa height forecasts
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Fig. 5.5 Evolution of forecast skill at ECMWF, adapted and extended from the study of Simmons

and Hollingsworth (2002). The top panel shows a history of r500 at 3, 5, and 7 days from the ECMWF

operational forecast beginning in 1980. The colored and shaded areas are bounded by southern

hemisphere skill below and northern hemisphere skill above. The lower panel shows retrospective
forecasts produced using two versions of current ECMWF analysis and forecast systems. In these

cases, the “system” is fixed in time, while data inputs evolve in actual historical fashion
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area to perimeter in computational subdomains to minimize the need for cross-

processor communication. The scalability of grid-point models on latitude-

longitude grids is severely hampered by the need to apply polar filters to overcome

numerical instabilities that arise due to the convergence of longitude lines at both

poles. These filters typically require knowledge of atmospheric fields all the way

around latitude circles. Thus, modelers must either decompose the globe into thin

computational domains circling the globe, which will lead to large communication

requirements in the north–south direction, or they must pay the cost of frequent

“gathers” to obtain the necessary inputs for polar filters. Transforms in spectral

models likewise require knowledge of fields around latitude circles.

Recent efforts in numerical techniques for global atmosphericmodels have focused

on the development of grid-point or finite element models on nonstandard grids

[70–73]. Several examples of such grids are shown in Fig. 5.6. These grids have fairly

uniform grid cell sizes over the entire globe. Polar filters are therefore not required.

Nonhydrostatic Dynamics

Once horizontal resolution becomes much finer than 10 km, nonhydrostatic effects

must be taken into account. This will require models based on a different set of

equations. One option is to simply use the full Euler or Navier Stokes equations [39,

74] and pay the costs associated with the short time-steps required by the presence

of acoustic waves. Another approach is to use an inelastic equations system [75],

but this requires solution of an elliptic equation which is an intrinsically nonlocal

procedure and again raises cross-processor communication costs.

Seamless Models for Climate and Weather

Modern global NWP and climate models are essentially the same. Both use the

same set of dynamical equations (see section on “Primitive Equations”). Both also

Lat-lon Cubed-sphere Icosahedral Yin-Yang

Fig. 5.6 The standard latitude-longitude “lat-lon” grid (leftmost globe) compared with newer,

non-traditional grids for global atmospheric models
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use the same set of physical parameterization schemes (see section on “Parameteri-

zation”). In practice, differences do exist between global models of the atmosphere

intended for climate simulation and those intended for forecasting. Operational

global NWP models have typically used resolutions that are a factor of 8–16 times

higher than those used in long climate simulations. Other differences arise, more-

or-less unintentionally, in the tuning process as a consequence of the different

metrics used in the evaluation of NWP and climate models (see section on How

are NWP models (versus climate models) evaluated?).

Climate researchers understand that atmospheric phenomena such as squall lines

and tropical cyclones may play a role in establishing climate on both regional and

global scales. Such “mesoscale” features are not resolved in climate models with

resolutions of 100 km or coarser. However, the continued increase in computer

power, and the recent emphasis on massively parallel architecture, will allow decadal

or even century-long simulations at resolutions close to 10 km in the near future. At

these resolutions, mesoscale circulations should be well represented. These

resolutions will also present novel challenges to the sub-grid parameterizations

used in climate models, as assumptions about scale-separation and statistical equilib-

rium become questionable.
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Chapter 6

Atmospheric General Circulation Modeling

Philip J. Rasch

Glossary

Aerosols The small (solid and liquid) particles that are suspended in the

atmosphere. Aerosols have both natural (e.g., sea-salt, dust,

and some organic compounds released by vegetation) and

anthropogenic origins (e.g., the pollution released by power

plants, cars, trucks, agricultural burning, etc.).

Climate The statistical description of characteristics of our environment

over longperiods, including properties like themeanand extreme

values of value of fields like temperature, winds, and moisture.

Climate

sensitivity

Usually used to mean the change in globally averaged surface

temperature ΔT that would occur in a model if it were allowed

to equilibrate to a forcing ΔF associated with a doubling of

CO2. It is sometimes used in a looser fashion to refer to the

change in temperature resulting from a change in forcing.

Feedback A process in the climate system that can either amplify (“posi-

tive feedback”) or diminish (“negative feedback”) a change in

climate forcing.

Lapse rate A term that refers to the vertical temperature decrease in the

atmosphere. When that lapse rate exceeds certain thresholds,

convective overturning can occur. Two threshold lapse rates

are important. The dry adiabatic lapse rate identifies the rate at

which an unsaturated parcel will cool if it is lifted adiabatically.

If the environmental lapse rate is larger than the dry adiabatic
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lapse rate, a parcel lifted adiabatically will gain buoyancy and

convective overturning can occur. When saturated air is lifted

adiabatically, it will cool at a temperature-dependent rate as

phase change occurs. At warm temperatures, the saturated

adiabatic lapse rate is less than the dry adiabatic lapse rate.

Since the atmosphere will produce overturning to reduce these

instabilities associated with buoyant parcels, the lapse rate and

water vapor amount play an important role in convection. The

moist and dry adiabatic lapse rates explain much of the vertical

temperature gradient to lowest order.

Parameterization The equations and computer code describing the representa-

tion of a particular physical process in a climate model, for

example, the representation of convection.

Radiative forcing A change altering the energy budget of the climate system

usually associated with changes in the atmospheric abundance

of greenhouse gases and aerosols, or factors like solar

variability and volcanic. These changes are expressed in

terms of radiative forcing, which is used to compare how

a range of human and natural factors drive warming or cooling

influences on global climate.

Subgrid scale The behavior of a process at time and space scales that are

smaller than the model can resolve.

Tropopause A permeable boundary separating two layers of the atmo-

sphere: the stratosphere (a relatively stable region above) and

the troposphere (a less stable region below where convective

overturning often occurs). The tropopause varies quite

smoothly in latitude. It is highest in the tropics (18 km) and

decreases toward the poles (to 10 km or so).

Weather The short-term evolution of our environment.

Definition of the Subject

This entry provides a brief introduction to the computer models of the atmosphere

used for climate studies. The concepts of atmospheric forcing and response are

developed and used to highlight the importance of clouds and aerosols to the

climate system and the many uncertainties associated with their representation.

Many processes that are important to the accurate representation of clouds and

aerosols for climate are subgrid scale, and present both physical and computational

challenges in atmospheric modeling. Other factors contributing to uncertainties in

models are discussed, and some remaining challenges in atmospheric models are

introduced.
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Introduction

This entry provides a brief description of models of the atmosphere used for climate

studies. These models can be part of a coupled climate system model or Coupled

Climate and Earth System Models, as described by Gent elesewhere in the section

Climate Change Modeling and Methodology, but they can also be used separately

with prescribed values for surface fields, or simpler treatments for surface

processes.

The atmospheric component of climate models can vary enormously in com-

plexity. Simple atmospheric models based on energy balance arguments can be run

on a laptop to provide rapid estimates of global, annual averaged properties of the

atmosphere (e.g., surface temperature, e.g., [22]). The simpler types of atmospheric

models (Energy Balance Models and Models of Intermediate Complexity) are

discussed in the entry Climate Change Projections: Characterizing Uncertainty

Using Climate Models by Sanderson, and Knutti, and Edmonds et al.

Much more elaborate models typically used in Earth system models are capable

of simulating the distributions (in space and time) of hundreds of atmospheric fields

and processes, the interaction between those fields and processes, and their response

to external forcing. In this entry, the focus is on the more complex form of

atmospheric models. These models are frequently also called General Circulation

Models (GCMs) or Atmospheric General Circulation Models (AGCMs). The term

GCM will be used here. More detail is found in the textbooks by Washington and

Parkinson [20], Jacobson [5], and McGuffie and Henderson-Sellers [9].

GCMs share a great many features with the weather prediction models described

by Bacmeister in this section Climate Change Modeling and Methodology. Both
use the “equations of motion” (simplified versions of the Navier–Stokes for fluid

flow, coupled with thermodynamic and mass conservation equations) to describe

the evolution of the atmosphere, and parameterizations, but the way the models

are used, and the focus is different (discussed more below).

A nice history of climate science and the development of weather and climate

models can be found in Weart [21]. The first incarnation of atmospheric models

solved on computers can be traced back to the efforts of a small group of

meteorologists and physicists initially lead by John von Neumann and later Jule

Charney near Princeton, New Jersey, soon after World War II. That effort started

with the solution of simplified versions of the equations of motion on the most

powerful computers available at the time (less powerful than the laptops in use

today).

The complexity of present-day models has increased enormously, and large

communities have grown up around those models. There are perhaps a dozen

comprehensive independent GCMs in use today around the world, and many

more prototypes used for study and development. Those communities include

scientists and computer staff engaged in the development of the basic model,

including testing and evaluation, as well as scientists that use the model as a tool

for investigating climate science.
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An easy example of a community activity focused on a particular GCM is the

Community Atmosphere Model (CAM; http://www.cesm.ucar.edu/working_

groups/Atmosphere/) project, an activity started in the USA about 30 years ago.

That model is part of the larger Community Earth System Modeling (CESM)

Project (http://www.cesm.ucar.edu).

CAM is a computer code that is order 400,000 lines of FORTRAN90 code. It is

capable of being run in a variety of configurations, each optimized for different

purposes, for example:

• Configurations useful for paleoclimate problems. These simulations sometimes

require different positions of the continents. Simulations might be performed

over millennia to explore climate change in response to orbital changes, or the

Sun’s luminosity.

• Idealized model configurations that simplify the Earth system by assuming the

underlying surface is an “aquaplanet” (a world entirely covered by water).

• Configurations able to simulate the reactive photochemistry important for under-

standing the evolution of ozone distributions in the middle atmosphere handling

hundreds of trace constituents, and many chemical reactions between those

constituents.

• Configurations useful for study the reasons for climate change arising from

nature and mankind over the last two centuries, and useful for producing

projections given various scenarios of change in the future.

There are many other model configurations, and this list is not inclusive.

Detailed technical notes and scientific papers describing these types of

applications can be found on the web sites mentioned above. The model is “open

source,” and it can be downloaded and run by anyone (provided a sufficiently

powerful computer is available to perform a desired calculation). Archives of

previous simulations are also available for download and examination.

The CESM and CAM projects are perhaps the largest of the GCM modeling

activities in existence today, and so it provides an easy example to discuss and

describe, but perhaps a dozen other activities around the world have similar

capabilities.

The rest of this entry discusses the “generic” characteristics of this kind of

climate model.

Global GCMs are generally run at resolutions resolving horizontal features

larger than hundreds of kilometers and vertical variations of a few hundred meters.

These resolutions are somewhat lower than used by weather models, where more

detail is often needed. GCMs frequently include representation of processes and

variables that are neglected or treated more simply in weather models (e.g., weather

models often neglect details of the evolution of aerosols, or the slow evolution of

greenhouse gases that affect the Earth system over longer timescales than are

important for weather). GCMs may also include external forcing terms (e.g.,

variations in solar fluxes, or a historic database of volcanic eruption information)

that are neglected by weather models.
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Weather prediction models have typically been optimized to provide information

about local features of the atmosphere over shorter time periods at higher resolution.

Because initial conditions for weather models are constantly being “reset” to

observed values, less attention has been paid to processes that affect the simulation

over longer timescales (months to years). Climate models, on the other hand, focus

on a description of the subtle balances and feedbacks occurring between processes

and tend to describe these relationships through statistics of their long-term behav-

ior. For many applications, climate models ignore initial conditions (weather

modelers have traditionally viewed their simulations as an initial value problem;

climate modelers, as a boundary value problem). A focus on statistical properties

necessarily requires “multiple samples” from a distribution, with less attention on

initial conditions, and more attention on the processes that control the model

equilibrium or produce a transition from one climate regime to another. These

points of view are changing, as discussed below.

This divergence in focus between weather and climate has led to differences in

model design and configuration. Climate scientists have developed models that

allow simulations over centuries or millennia. Weather models provide much

higher resolution information, but those simulations are often for periods of only

a few days or weeks.

GCMs being used around 2010 divide the atmosphere into columns of about

a hundred kilometer on a side with 30–50 layers vertically (see Fig. 6.1). Most of

the focus is on the atmosphere within the 40 km nearest the Earth’s surface.

Weather models may use columns as narrow as 10 km on a size with two to three

times the number of vertical layers. Global weather models thus divide the atmo-

sphere into volumes about 200 times smaller than climate models. Computational

and accuracy constraints require that model time steps decrease in proportion to the

size of the model volume. A reasonable first guess on model cost (the number of

floating point operations required to complete a simulation of fixed length) is that it

scales as the cube of the model resolution. Figure 6.1 shows a typical type of

atmospheric model grid (in this case uniform in latitude and longitude), but other

discretizations are possible (see Bacmeister, this volume).

This difference in horizontal and vertical resolution produces significant

differences in the way some features important to weather and climate are

represented in these models. An example is shown in Fig. 6.2, which displays

the surface topography for North and South America at a 200-km horizontal

resolution typical of climate models and a 20-km resolution typical of weather

models. The very sharp, small-scale topographic features like the Andes have

been significantly “smoothed out” at low resolution, differing in altitude by

almost a factor of 2 and spread over a much broader horizontal extent, with

measurable impacts on the role of the Andes as a barrier to winds, and their role

in influencing precipitation patterns. The need to resolve some features important

for climate at high resolution while minimizing computational cost is one of the

motivations for the development of regional climate models (see Regional Cli-

mate Models by Leung), or models with variable resolution meshes to put the

resolution where it is needed.
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Figure 6.3 shows a typical layer structure for an atmospheric climate model.

Most models in use today rewrite their equations to employ a vertical coordinate

that follows the terrain near the surface, with a gradual transition to a fixed height or

pressure coordinate at higher altitudes. Model layers are generally concentrated

near the Earth’s surface to deal with the complexity of processes taking place there

due to boundary layer effects, terrain, interactions with surface models, and the fact

that mankind lives in that region. Models typically use layers 10–100-m thick near

the surface and gradually decrease that resolution to use 1–2-km-thick layers at

higher altitudes. Other coordinate systems have also been considered for climate

models. The equations of motion are expressed more simply with height- and

pressure-based vertical coordinates, but treatment of boundary conditions is more

complex. Some modeling groups have explored the use of vertical coordinates that

approximately follow a material surface. These formulations result in more com-

plex models with coordinate surfaces that can also intersect the surface of the Earth,

introducing additional complexity in the treatment of boundary conditions, but the

benefit is a model with much more accurate treatment of vertical transport.

advection

advection

mixed layer ocean

snow

solar
radiation

terreatrial
radiation

ATMOSPHERE

CONTINENT

Horizontal Grid
(Latitude-Longitude)

Vertical Grid
(Height or Pressure)

Physical Processes in a Model

momentum heat water sea ice

OCEAN

Fig. 6.1 Typical discretization of a GCM or weather model (Figure from http://www.oar.noaa.

gov/climate/t_modeling.html)
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Climate problems require descriptions of physical interactions at multiscale

scales, leading to a very demanding challenge in physics and computational math-

ematics. Small-scale phenomena operating on the scale of molecules (e.g., chemis-

try, phase change of water, and radiative transfer) influence larger-scale features

Surface Height (km)

0 0.5 1 1.5 2 2.5 3 3.5 4.54 5

Fig. 6.2 The topography

used by a typical “low-

resolution” global

atmospheric model

(approximately 2� horizontal
resolution, upper panel) and
the high-resolution

topography more typical of

weather models, and next-

generation climate models

(about 0.25� resolution). Note
the factor of 2 difference in

height of the Andes and

similar differences over the

Rockies of N. America
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and eventually have global impacts. The physics and chemistry occurring at those

small scales influence fluid motions through radiative heating and phase change to

produce important phenomena like clouds with important features at scales of

meters to kilometers, for example, updrafts and downdrafts. A brute force repre-

sentation to treat fluid motions like up- and downdrafts would require a model

that explicitly resolves those features, requiring discretizations with cells as small

as a few meters on a side. It is not feasible to represent the whole globe at this

resolution, and other methods are required. For this reason, many processes of

climate relevance involve treatment of processes and features that are inevitably

smaller than a GCM cell, or “subgrid.” Figure 6.4 shows a satellite image of a cloud

system in the equatorial eastern Atlantic with a typical GCM grid superimposed

upon it in the right panel. The cloud features are clearly below the resolution of the

model. A zoomed image of a small portion of a grid cell (outlined in red) is

presented in the left panel, showing important cloud features at yet finer scales.

Parameterizations have been developed in order to represent processes that are

important to the atmosphere, but occur at resolutions much below the scales the

Vertical resolution

Resolution near
tropopause is > 1000m

Resolution near sfc 100m

Level
Index

1

2

k-1

k

k+1

k-1

k+1/2

k-1/2

k-3/2

k+3/2

k+1/2

k-1/2
Fs FL

Fs FL

Mc

Mc

Ac u,v,t,q,ζ,δ,ω,φ

η

k-3/2

2 1/2

11/2

1/2

k

Pressure

2.917 mb

83.1425 mb

surface Φs

Hybrid
Sigma-Pressure
Region

Pure
Sigma
Region

Pure
Pressure
Region

Interface
Index

η

Fig. 6.3 Typical distribution of layers in an atmospheric model. Top model layer will reach

around 40 km for models with a focus on the troposphere and much higher for models interested in

middle atmosphere problems (Figure from http://www.cesm.ucar.edu/models/atm-cam/docs/

description/description.pdf)
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model is able to resolve (see Stensrud [16]). The equations describing the

fundamental physics equations are sometimes abandoned, or simplified, through

an “abstraction” to approximate that process. Sometimes those simplifications are

based upon formal mathematical decompositions, like the turbulence parameter-

izations that depend upon “Reynolds averaging” of the equations of motion, along

with appropriate choices for the constitutive equations, and “closure assumptions.”

In other parameterizations, the complete equations are simplified to speed the

calculation: for example, the equations of radiative heating are often approximated

by assuming plane-parallel radiative transfer, and integrated over wavelength

intervals to capture the essential absorption and emission for the gases and

condensed species present in the atmosphere.

Other parameterizations are more explicitly “empirical,” employing process

representations which are based upon observed behavior of the atmosphere. For

example, some parameterizations for convection [2, 8] attempt to represent the

overturning that occurs in the atmosphere when less dense air resides below more

dense air by simply adjusting the profiles of temperature and water vapor toward

prescribed profiles that agree approximately with observations. Profiles can be

defined for shallow (nonprecipitating) and deep precipitating convection based on

both observational evidence and theoretical considerations. So, rather than

identifying a mechanism through which convection operates to reduce

instabilities in the atmosphere, the parameterization makes robust statements

about the “end state” of an adjustment process, and introduces empirical

tendencies in the evolution equations that adjust the profile to agree with the

observed profiles. This type of parameterization is more frequently used in

weather prediction than in climate modeling because these empirical parameter-

izations may not express enough of the physical underpinning to allow inferences

to be made about how, why, and where that process is important, or allow

extensions to handle additional model needs. Adjustment schemes, for example,

Reference PanelGalapagos
Islands

~ 130 km

Panama

zoom T42
Grid

Fig. 6.4 A satellite image (courtesy NASA) of the Eastern Central Pacific showing the cloud

features in the context of a typical climate model resolution. The blue lines of the right panel show
a superimposed grid typical of a low-resolution atmospheric model. A zoomed image of the small

red box shown in the right panel appears on the left, showing even more detail
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would have difficulty handling convective transport of trace species, or adjusting

to changes in the fundamental physics that might be occurring as the climate

changes (e.g., the response of convective precipitation to pollution).

A third class of parameterizations resort to “process-based models.” These

parameterizations replace the basic physics with a conceptual model that is

assumed to mimic the processes that occur in the real world. An example of

a process-based model parameterization can be seen in the use of a “bulk plume

model” to represent the role of convective clouds in a model column; this type of

model is used in the majority of climate models in use in 2010 (see, e.g., [23]).

In a bulk plume model, the convective overturning occurring in the atmosphere

in clouds, like those seen in the right panel of Fig. 6.5, is envisioned to take place

through an ensemble of up- and downdrafts. The updrafts are assumed to begin at

the “level of free convection” (the level where a parcel lifted from the surface will

be both saturated and buoyant with respect to the ambient environment). The

updraft is assumed to be driven by heat released during condensation taking place

in parcels within the updrafts. The condensation produced in the updraft is assumed

to produce rain. The rain falling into surrounding air is assumed to partially

evaporate and initiate a saturated downdraft. These up- and downdrafts carry air

from one level to another, entraining air from outside the cloud in the lower part of

the cloud layers to dilute the updrafts, and detraining air to the environment aloft, to

moisten it and redistribute heat. The ensemble of updrafts is represented by a single

“bulk” updraft plume that entrains and detrains at multiple levels and a single

“bulk” downdraft driven by evaporating rain to produce a conceptual model of

convection like that described in the left panel of Fig. 6.5. The details of the

representative up- and downdrafts are in turn controlled by specifications of the

rate of entrainment and detrainment, how condensation, conversion of condensate

to precipitation, and evaporation occurs within those up- and downdrafts, and

a “closure assumption” that describes how the buoyancy generation occurring

outside of the clouds is reduced by the mass fluxes within the up- and downdrafts.

These parameterizations are obviously gross simplifications of the way clouds

behave in the real world. The parameterizations introduce many “uncertain

parameters” that require tuning to mimic the behavior of clouds in the real world.

The reader will note that the citations chosen here describe convective

parameterizations written in, or prior to, the 1990s. Progress has been slow in

developing better formulations for convection. Most parameterizations of convec-

tion have made progress “around the edges” by incrementally improving some

aspect of the parameterization, like “closure assumptions” (the assumptions that

deter how buoyancy excesses are removed from a column) or the “microphysical

formulations” (controlling the ways that condensation, conversion to precipitation,

and evaporation operate within the up- and downdrafts). Cloud parameterizations

are viewed by climate scientists as one of the least satisfactory components of

a GCM [12]. Convective parameterizations based upon plume models have the

advantage over the very simple formulations like the Betts-Miller scheme of

providing a physical picture (albeit crude) of how convection works that permits

the expression of conservation laws (conservation of energy, enthalpy, momentum,

124 P.J. Rasch



mass, etc.). Plume model parameterizations also allow extensions to represent

interactions between aerosols and clouds, for example, or the transport of soluble

and insoluble trace constituents through vigorous convection, but they still have

many limitations. Recently, a new class of parameterizations has begun to be

explored, in which a “nearly cloud-resolving model” is embedded within each

column of a GCM (e.g., [6]). These “super-parameterizations” of clouds have

their own strengths and weakness: they use equations which are very close to the

original equations of motion, but those equations are solved at scales that do not

really resolve cloud motions. The parameterizations also increase the cost of the

model by at least a factor of 100 over models using more traditional parameter-

izations so that their behavior for climate problems has not yet been thoroughly

explored. Other new frameworks for cloud parameterization have also been

suggested [1] that present an interesting approach to extending conventional

parameterizations. There has not yet been time to evaluate the approach.

Clouds and Aerosols in Climate Models

The accurate representation of the effect of clouds and aerosols in the atmosphere is

one of the most difficult and challenging tasks in climate models for scientists at the

time this entry is written.

Fig. 6.5 The conceptual model used to produce a parameterization of a convective cloud like that

seen in the figure at right. See text for details
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This task is important because clouds play many roles in the atmosphere: they

scatter and absorb radiant energy in both the solar (shortwave) and infrared

(longwave) part of the energy spectrum, reflecting sizable amounts of sunlight (short-

wave energy) back to space and thus acting to cool the planet, but they also hinder the

escape of heat/energy in the longwave, and thus can warm the Earth. Clouds are also

reservoirs for heat and water acting to temporarily store energy and water in

condensed phases, then return it to the atmosphere at other times and locations; they

are sites for important in situ atmospheric chemistry and affect photolysis rates in both

clear and cloudy regions of the atmosphere by changing the actinic flux; they are

regions responsible for the rapid transport of atmospheric trace constituents from the

lower to the upper atmosphere through vigorous convection; and they are also entities

responsible for the removal of soluble species (gases and particles) through “wet

deposition” processes. And, as discussed in the previous section, they are also

incredibly difficult to represent accurately and comprehensively in GCMs.

But clouds are also strongly affected by “aerosols,” the small (solid and liquid)

particles with sizes less than about 10 um that are suspended in the atmosphere.

Aerosols have both natural (e.g., sea-salt, dust, and some organic compounds

released by vegetation) and anthropogenic origins (e.g., the pollution released by

power plants, cars, trucks, agricultural burning, etc.). Like clouds, aerosols scatter

and absorb radiant energy in both the solar and infrared part of the energy spectrum,

and thus play a direct role in the energy budget of the planet. Aerosols also affect air

quality and can affect ecosystems in a number of ways (e.g., the mobilization of

dust particles from deserts, their subsequent transport by winds, followed by

deposition; dust deposition is believed to be a source of iron as a nutrient to

ocean biota). In addition, some aerosols act as sites that facilitate the phase change

of water from vapor to liquid, or ice at far lower vapor pressures than would be

needed for the phase change to occur in the absence of the particles. The aerosols

that act as sites for water vapor condensation to form liquid cloud drops are known

as Cloud Condensation Nuclei (CCN); those that are sites for formation of ice

crystals are called Ice Nuclei (IN). Different types of aerosols are more and less

effective as CCN and IN, and aerosols “compete” with each other and nearby cloud

drops and ice crystals for water vapor, making their interactions extremely complex

and hence difficult to model (see, e.g., Seinfeld and Pandis [14] and Lohmann and

Feichter [7] for complementary discussions on some of these issues).

The aerosols that become part of cloud drops or ice crystals will eventually be

removed from the atmosphere when those drops or crystals get large enough to

precipitate out (this is termed nucleation scavenging). Aerosols are also removed as

precipitation (raindrops, snow, hail, and graupel) falls and “collects” particles along

the way (termed below cloud scavenging). The treatment of aerosols thus depends

intimately on the treatment of clouds in GCMs.

Aerosols and clouds thus interact in many ways. It is easy to find examples of

situations where aerosols can affect the cellular structure of clouds and their

reflectivity. Figure 6.6 shows a dramatic example of the influence of pollution

from ship emissions on the brightness of low clouds near the ocean surface. Climate

scientists believe that anthropogenic emissions of many aerosol types, from
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pollution, biomass burning, agriculture, etc., affect both the reflectivity of low

clouds with impact on how clouds cool the planet, and the partial opacity of the

high ice clouds that hinder the escape of heat from the planet.

The subtle interactions between clouds and aerosols, and their interactions with

other components of the climate system, produce some of the largest uncertainties in

interpreting the signatures of climate changeover the twentieth century and complicate

modelers’ abilities to produce accurate projections of climate change in the future.

These issues are discussed in great detail in the fourth assessment of the

Intergovernmental Panel on Climate Change (AR4, IPCC2007), and it is not

possible to provide much detail here. The reader should consult AR4 and the

references therein for more detail.

Figure 6.7 shows globally averaged radiative forcing estimates for various

forcing agents from IPCC2007. Changes in the atmospheric abundance of green-

house gases and aerosols, in solar radiation, and in land surface properties alter the

energy balance of the climate system. These changes are expressed in terms of

a “radiative forcing” (W/m2), a term used to compare how a range of human and

natural factors drive warming or cooling trends on global climate. The three

estimates related to aerosols (surface albedo, direct effect, and cloud albedo effect)

are particularly noteworthy when compared to other forcing agents.

Surface albedo changes through Black Carbon deposition on snow are estimated

to have a relatively small warming effect (positive forcing) on the planet. The

forcing is a result of the decrease in reflectivity of the snow that occurs when the

dark material is deposited on the snow surface. Since sunlight is more easily

absorbed by the darker surface in this situation, the snow melts more quickly,

Fig. 6.6 NASA image (http://eoimages.gsfc.nasa.gov/images/imagerecords/5000/5488/ShipTracks

_TMO_2005131_lrg.jpg)
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revealing other darker surfaces below (vegetation, dirt, sea-ice, etc.), which further

increases the warming effect.

The “direct effect” of aerosols refers to the ability of aerosol to reflect or absorb

sunlight as it enters the atmosphere. When the aerosols scatter sunlight back to

space, the implied forcing is identified as negative (cooling) because less energy is

absorbed by the planet. When aerosols absorb sunlight, they reduce the planetary

albedo and warm the planet, producing a positive radiative forcing. The net radia-

tive direct effect is estimated to be positive; models estimate that aerosols reflect

more energy back to space than they absorb, but the uncertainty indicated by the

horizontal whiskers is very large, and the level of scientific understanding (LOSU)

is judged to be “low,” as indicated in the figure.

The aerosol “indirect effect” refers to the role that aerosols play on clouds.

Increasing aerosols (e.g., from pollution) can increase the number of particles

available for cloud drops or ice particles to form on by acting as CCN or IN.

Those “extra” cloud drops or ice particles introduced by the additional CCN and IN

compete with the ambient aerosols for water vapor, and the result is that the cloud

drops and ice crystals will be smaller than they would be in the absence of pollution.

Smaller drops and particles scatter sunlight more efficiently (as demonstrated by

simple physical arguments and the ship tracks seen in Fig. 6.6), and they frequently

also precipitate less efficiently, affecting cloud lifetime and areal extent. Models

RF Terms

Long-lived
greenhouse gases

Ozone

Surface albedo

Total
Aerosol

A
nt

hr
op

og
en

ic
N

at
ur

al

Linear contrails

Total net
anthropogenic

RF values (W m−2)

1.66 [1.49 to 1.83]

–0.05 [–0.15 to 0.05]

–0.2 [–0.4 to 0.0]

–0.5 [–0.9 to 0.1]

–0.7 [–1.8 to –0.3]

0.1 [0.0 to 0.2]

0.01 [0.003 to 0.03]

0.12 [0.06 to 0.30]

1.6 [0.6 to 2.4]

0.48 [0.43 to 0.53]
0.16 [0.14 to 0.18]

0.35 [0.25 to 0.65]

0.07 [0.02 to 0.12]

0.34 [0.31 to 0.37]

Spatial scale LOSU

HighGlobal

Global

Global

Global

Continental
to global

Continental
to global

Continental
to global

Continental

Local to
continental

High

Med

Med
-Low

Med
-Low

Low

Low

Low

Low

Solar irradiance

Radiative Forcing (W m−2)

–2 –1 0 1 2

Black carbon
on snow

Tropospheric

Halocarbons

Stratospheric

CO2

N2O

CH4

Land use

Direct effect

Cloud albedo
effect

Stratospheric  water
 vapour from CH4

Fig. 6.7 From the summary for policymakers, IPCC AR4 [4] showing the globally averaged

radiative forcing estimates for various forcing agents along with uncertainty estimates and level of

scientific understanding (LOSU)
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estimate the indirect effect to produce a very large negative forcing, but the

whiskers again indicate that the uncertainty is very large, and the LOSU very

low. While the processes that produce cloud brightening in the presence of addi-

tional CCN and IN are well understood, there are numerous other factors that

complicate the response of cloud reflectivity enormously, and scientists know that

climate models treat these other factors very crudely, and inaccurately (see Stevens

and Feingold [17]). For example, increasing the number of cloud drops and

decreasing their size can also cause cloud drops to evaporate more readily, so the

cloud reflectivity can actually decrease, and changing the reflectivity of particular

regions of a cloud system can induce changes in the cloud dynamics (the intensity

and extent of up- and downdrafts that control the precipitation and cloud areal

extent; see, e.g., [19]), changing the cloud morphology and thus its radiative

forcing.

The take-home message from the figure and discussion above is that aerosols of

anthropogenic origin are currently estimated to have offset a substantial fraction of

the positive forcing (heating) produced by increasing greenhouse gas

concentrations over the twentieth century, but that result is very uncertain, and

the level of understanding is low. These uncertainties in the estimates of the role of

aerosols, clouds, and their interaction are strongly influenced by the deficiencies in

the model representation of these processes, and by remaining deficiencies in our

understanding of how these processes act.

Since it is not known how much of the twentieth century climate change (e.g.,

changes in surface temperature or precipitation) should be assigned to aerosol

forcing and how much to the changes in greenhouse gas concentrations, it makes

it much more difficult to interpret the system response to that forcing, and using

understanding developed from simulations of past climate, provide accurate

projections of how climate will change in the future.

Climate Forcing and Response

Climate change can be thought of as the response by the Earth system to the

combination of externally imposed natural (e.g., solar variability and volcanic

activity that changes the albedo of the planet) and anthropogenic forcings (e.g.,

greenhouse gases and aerosols), modulated by the internal model processes that

allow the system to adjust to the imposed forcing. The response is strongly

influenced by internal feedbacks within the Earth system. Negative feedbacks

will increase the rate of cooling in the presence of positive external forcing

(warming). Positive feedbacks can amplify that warming (see the discussion in

the entry Coupled Climate and Earth System Models by Gent). The relative

importance of positive and negative feedbacks in the climate system controls the

amplitude of climate change produced from a given amount of external forcing.

There are a variety of ways to characterize the ratio of forcing to response. One

convenient measure is “climate sensitivity.” Climate sensitivity is sometimes
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expressed in terms of a feedback parameter l (expressed in W m�2 K�1) or its

inverse, 1/l. Oftentimes, the sensitivity is expressed as the change in globally

averaged surface temperature ΔT that would occur in a model if it were allowed

to equilibrate to a forcing ΔF associated with a doubling of CO2:

DT2�CO2
¼ l�DF2�CO2

It is generally assumed that l can be expressed as the sum of a sequence of

feedbacks li where i indicates the process responsible for the feedback:

l ¼
X

li

The equilibrium change in surface temperature is a somewhat arbitrary measure of

climate response, and other measurements have also been explored. The oceans have

a very large heat capacity, and the rate of transport of heat into the deep oceans is very

slow, which means that it would take a very long time (thousands of years) to reach an

equilibrium. It is possible, with clever analytic methods, to estimate this equilibrium

sensitivity, and other definitions are also used (e.g., the “transient climate sensitivity”)

to describe the ratio of forcing to response. The different ways are not critical for this

discussion, and the equilibrium definition is followed here.

This value is estimated in IPCC2007 (AR4) as “likely to be in the range 2–4.5�C
with a best estimate of about 3�C, and is very unlikely to be less than 1.5�C. Values
substantially higher than 4.5�C cannot be excluded, but agreement of models with
observations is not as good for those values.”

The first, largest, and perhaps easiest feedback to describe is the so-called Planck

Feedback or Planck response, which describes the increase in emission that will

occur as temperature increases due to a positive forcing. If one assumes from theory

and detailed radiative calculations that the change in forcing F produced by

a change in CO2 from concentration C0 to C (e.g., Myhre [25]) can be written as

F ¼ k�ln C=C0ð Þ where k � 5Wm�2

then a doubling of CO2 will result in an increase in the forcing of roughly 4 W/m2.

That positive forcing will tend to increase surface temperature. If one then assumes

that (1) the emission temperature of the planet is proportional to the surface

temperature, (2) the planet radiates energy in proportion to the Stefan-Boltzman

equation (sT4), and (3) no other atmospheric properties (clouds, water vapor, etc.)

change, then model calculations indicate that l is about �3.2 � 0.1 W m�2 K�1

where the sign is chosen negative to indicate that the feedback is negative. And it

follows that an increase of 4 W m�2 in forcing will result in an approximate change

of 1 K in surface temperature.

This feedback estimate is robust, with very little uncertainty, and it is much

lower than AGCMs report. The higher values of climate sensitivity are a result of

the amplification of the response by other positive feedbacks that exist in the

climate system (see, e.g., [4, 15]).
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The largest positive feedback is believed to be the water vapor feedback:

observations and models indicate that relative humidity (the ratio of ambient

water vapor to the saturation value at a given temperature) remains approximately

constant as temperature changes, particularly at high altitude (5–20 km). Therefore,

an increase in temperature (e.g., from CO2) will produce an increase in water vapor,

which is the strongest of greenhouse gases. That increase in water vapor hinders the

escape of energy, and the warming is amplified. IPCC2007 estimated lWV to be

about 1.8 W m�2 K�1.

Another important feedback is the “lapse rate feedback” lLR. When estimating

the Planck Feedback, it was assumed that temperature change was constant

(in latitude, longitude, and altitude). But it is known that the atmosphere will not

produce a uniform change in the presence of a new forcing. The observed atmo-

spheric lapse rate (vertical temperature gradient, see Glossary) roughly follows

a “moist adiabatic lapse rate” in the tropics. It is temperature dependent and

decreases more rapidly at cool temperatures than warm. So a temperature increase

introduced near the surface in the tropics will produce adjustments that approxi-

mately follow a moist adiabatic lapse rate, and the perturbation will amplify with

altitude. Since emission of infrared radiation varies with temperature, it will be

more efficient as temperature increases, producing a negative lapse rate feedback
that weakens the greenhouse effect. Model studies indicate that lLR has to be about

–.84 W m�2 K�1.

It is interesting to note that models suggest that the water vapor feedback and

lapse rate feedback are strongly (negatively) correlated, and the agreement by

models on the sum of these two feedbacks is much more robust than the individual

components: lLR+WV = 0.95 � 0.1 W m�2 K�1.

The surface albedo feedback occurs because an increase in surface temperature

due to a positive forcing can melt surface snow and ice. A decrease in ice and

snow reduces surface reflectivity, allowing more energy to be absorbed at the

surface, producing further warming, and further reducing snow and ice. Soden

and Held [15] and IPCC estimate the surface albedo feedback lalb to be 0.26

� 0.08 W m�2 K�1.

The last feedback to be discussed is the cloud feedback. A variety of observa-

tional, theoretical, and modeling studies suggest that low clouds tend to cool the

planet by reflecting sunlight back to space. High ice clouds not only reflect sunlight

back to space but also have a “greenhouse effect” and hinder the escape of

longwave energy to space. Observational and modeling studies indicate that the

net effect of high and low clouds is to cool the Earth (cloud reflection dominates the

longwave trapping of energy). But it is by no means clear how cloud radiative

forcing will change in the presence of external climate forcing. Clouds are so varied

and complex that fewer clear general statements emerge to guide inferences about

the sign and amplitude of their feedback processes. This is an area of very active

research. Soden and Held found that all the GCMs used for AR4 had a positive

cloud feedback (0.68 � 0.37 W m�2 K�1), even though half the models exhibited

a reduction in net radiative forcing in response to a warmer climate. They

concluded that change in cloud forcing itself is not a reliable measure of the sign
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or absolute magnitude of cloud feedback due to noncloud feedbacks on the cloud

forcing. Note that the uncertainty in feedback amplitude from clouds is about three

times larger than that found for the lapse rate + water vapor feedback, or the albedo

feedback.

The combination of positive and negative climate feedbacks produces the likely

warming range of 2–4.5�C for a CO2 doubling cited in IPCC2007. Climate skeptics

contend that the planet is unlikely to warm as much as GCMs predict by arguing that

negative feedbacks are missing or underestimated or positive feedbacks overestimated

in GCMs. These criticisms frequently appear in informal venues (blogs, the popular

press, and elsewhere).When they are submitted to peer-reviewed refereed publications,

they are taken seriously and scrutinized further. To date, the feedbacks described here

have been found to be robust and dominant, and estimates of the range and distribution

of climate quite robust.

Calibration (Tuning) and Evaluation of GCMs

There are still aspects of the atmosphere that are poorly characterized, and many

processes remained crudely represented in GCMs. Even in situations where the

correct physics is known, it is often too expensive to include the knowledge with

brute force techniques, and approximations must be employed. Both lack of

understanding and process approximation lead to uncertainties, and these

uncertainties produce significant variations in model formulations adopted by

groups around the world.

Multiple alternative parameterizations may also exist for a particular process

(e.g., convection). Even in the event that a certain configuration of parameter-

izations is selected, there are many “uncertain” parameters within that configura-

tion. The choices adopted for those uncertain parameters can have strong impacts

on the behavior of the model.

So, substantial resources in the modeling community are invested in evaluating

the behavior of the model in the presence of these uncertainties, and in selecting the

parameterizations to be used in the model, or the values of the uncertain parameters

to be used in subsequent simulations. The process of choosing the parameter values

is known as “calibration” or “tuning.” Model tuning has historically been

performed in a series of stages, and it is sort of an “Art” that requires a lot of

insight by participating scientists, and perhaps multiple repetition of those stages.

One obvious method of tuning is to compare the behavior of a model, or a model

component to observations that strongly constrain the process and adjust the

parameters until the simulation agrees to some tolerance with observations. This

tuning procedure can be considered an optimization problem, and it occurs fre-

quently during model development.

For example, a parameterization of deep convection might first be tuned to

make sure that it produces approximately the observed rate of precipitation,

and observed tendencies of water vapor, and temperature, at a particular location
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and time period (the outputs) where deep convection occurs frequently, given

a set of measurements of the atmospheric state (the inputs).

After this tuning, parameterization evaluation can begin by looking at its behav-

ior at other locations and times not used for tuning. Some insight is gained during

this process about reasonable values for parameter, and parameter sensitivity to

variations of tunable parameters, and inputs. Sometimes “single-column model”

versions of the GCM are used for this purpose. This is a version of the GCM in

which a single-column model is isolated, and all lateral fluxes of information

supplied from observations to identify the model behavior in strongly prescribed

situations.

The model can also be tuned to optimize relationships after processes equilibrate

with each other; the statistical characteristics of the model can be evaluated and

compared with statistical properties of the atmosphere. For example, model top of

atmosphere energy fluxes could be compared to observed energy fluxes. Small changes

in tunable parametersmay be performed to assure that the approximate global averages

of top of atmosphere fluxes are similar to observed values without significantly

degrading the agreement with observations at the process level.

The model can also be compared with observations for fields, processes, or

situations that were not part of the calibration process. Figure 6.8 provides one

example of this kind of evaluation showing differences between model annually

averaged column-integrated water vapor in a long simulation of a climate model

(top panel), compared to an estimate of the corresponding observed value (middle

panel) and the difference. Column-integrated water is actually a pretty difficult field

to observe and observational uncertainty quite high, but a variety of independent

methods are available to provide estimates, and the signatures seen in the difference

field are quite robust to choices of the observational dataset used. This particular

model is quite moist in the tropics.

Another interesting evaluation and calibration method is the use of a climate

model in “weather forecast” mode. The climate model is started from initial

conditions from archives of meteorological conditions produced from a forecast

center and run for a brief (few day) simulation. These kinds of simulations are often

called “hindcasts.” The evolution of differences between the short simulations and

observed fields provides information about how and why errors develop in the

model. Individual processes can be examined to help in identifying the role of each

process in driving the error growth.

The strategy can also be extended to longer periods (months or seasons) as part

of a strategy sometimes called “seamless prediction” [10]. Models are viewed as

representing processes that operate over different timescales. Fast processes (e.g.,

clouds) respond and produce measurable signatures to forcing on timescales of

a day or so, systematic changes to heating rates can perturb planetary-wave

structures in the atmosphere on the timescale of 10 days, and ocean and land

surface react to changes in wave structure on the timescale of 100 days. On

timescales of a thousand days and longer, anomalies will produce modifications

to the cryosphere and biosphere. Atmospheric models (without coupling to

oceans, ice, and the biosphere) can thus react and produce meaningful information
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on forcing and response through processes like clouds and planetary waves.

Longer timescale phenomena need to be evaluated with coupled models. Seam-

less prediction paradigms ask that models be evaluated and improved on each

timescale to provide increasing confidence in the model.

Once an “optimized” or “calibrated” model configuration has been found, it

can be compared with other models, or other configurations of the model

to quantify its sensitivity to changes in forcing, to identify the reasons that it

responds the way it does, and to put that sensitivity in context compared to the

behavior of other models. This process is one component of an evolving field

of climate change science called “Uncertainty Quantification.”

Remaining Challenges in Modeling the Atmosphere

There are many situations where scientists understand the fundamental physics of

a physical process much more thoroughly than they can afford to express in

a climate model, and scientists know that it is important to represent those processes

more accurately. These are, in a sense, “known unknowns” in the parlance of

Donald Rumsfeld. Scientists know that the parameterizations of clouds and aerosols

used in climate models today can be formulated more accurately, and they know (in

principle) how to do it. The challenge is (1) representing fields and processes that

are truly important for the relevant climate problem and (2) expressing knowledge

about that process in a computationally tractable way. This requires both scientific

study and computational work. Many of these improvements can be achieved by

clever revisions to the computational representation of critical processes in models.

Scientists are rewriting model components to make more efficient use of evolving

computer architectures that are providing enormous increments in computational

resources, and developing more accurate and efficient computation methods to

represent those processes. It may be possible in a few years to “brute force” problems

that in the past required clever but potentially inaccurate approximations.

While some efforts to create a global cloud-resolving model have been made,

their computation cost is at least a million times higher than models run at current

climate resolution (e.g., [13]). It is currently a challenge just to complete a single

annual cycle with models at this resolution. Scientists are also rewriting models to

support “variable resolution” to allow models to provide higher resolution in areas

that require it. One of the immediate challenges in this situation is that many of the

approximations currently employed in atmospheric parameterizations are “scale

dependent,” that is, the quantitative behavior of the parameterization changes

behavior as the resolution changes. Current parameterizations are typically

“retuned” for different resolutions, and any cloud parameterization that adapts to

resolution changes is not yet known, although scale-aware parameterizations of

subgrid-scale propagation of waves and wave breaking do exist. It is desirable that

parameterizations become “scale aware” in the sense that they adapt to the resolu-

tion they are used at. Parameterizations of subgrid-scale processes should recognize
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that the definition of the phenomena they are being asked to resolve changes as the

resolution changes [1]). Scale-aware parameterizations and the model equations

that they are embedded in should reduce to “fundamental physics” as model

resolution approaches the resolution of the process being represented. This is an

area of active research.

There are also challenges for climate models in treating “unknown unknowns,”

or “missing physics.” These are phenomena that scientists believe may be important

to represent, but that they do not know about or are very unsure of. An example of

this situation is the role of Organic Aerosols on climate. These aerosols are difficult

to measure and model. They are semivolatile; the aerosols condense, evaporate, and

evolve chemically with atmospheric dilution. Aerosol scientists now believe that

these aerosols play a much larger role in the climate system than was originally

recognized, but they only have hints as to the complex chain of events that produce

these aerosols. Precursor emissions, chemical evolution, and interaction with other

aerosols and atmospheric trace species are complex, and they are treated very

simply in climate models today.

Finally, there are many ways that climate science can be advanced by

improvements in methodology. Ensembles of model simulations can be used to

characterize model uncertainty. Model intercomparison activities like AMIP [3]

and CMIP5 [18] continue to improve and allow more robust evaluation of the

strength and weaknesses of climate models and their ability to represent the real

world and their performance as a tool for understanding climate change.

Acknowledgments I would like to thank Sarah Fillmore for her editorial help and my colleagues

at the Pacific Northwest National Laboratory and the National Center for Atmospheric Research

for their willingness to share their expertise, knowledge, and model results with me over many

years.

Bibliography

1. Arakawa A (2011) Toward unification of the multiscale modeling of the atmosphere. Atmos

Chem Phys 11:3731–3742. doi:10.5194/acp-11-3731-2011, www.atmos-chem-phys.net/11/

3731/2011/

2. Betts AK, Miller MJ (1993) The Betts–Miller scheme. In: Emanuel KA, Raymond DJ (eds)

The representation of cumulus convection in numerical models of the atmosphere. American

Meteorological Society, Boston

3. Gates WL et al (1999) An overview of the results of the atmospheric model intercomparison

project (AMIP I). Bull Atmos Sci 80:29–55

4. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis

M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis.

contribution of working group I to the fourth assessment report of the intergovernmental panel

on climate change. Cambridge University Press, Cambridge, UK/New York

5. Jacobson MZ (2005) Fundamentals of atmospheric modeling, 2nd edn. Cambridge University

Press, New York, p 813

136 P.J. Rasch

http://www.atmos-chem-phys.net/11/


6. Khairoutdinov MF, Randall DA, DeMotte C (2005) Simulations of the atmospheric general

circulation using a cloud-resolving model as a super-parameterization of physical processes.

J Atmos Sci 62:2136–2154

7. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys

5:715–737. doi:1680-7324/acp/2005-5-715, www.atmos-chem-phys.org/acp/5/715/

8. Manabe S, Smagorinsky J, Strickler RF (1965) Simulated climatology of a general circulation

model with a hydrologic cycle. Mon Weather Rev 93:769–798

9. McGuffie K, Henderson-Sellers A (2005) A climate modeling primer. Wiley, New York

10. Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2008) Towards seamless predic-

tion: calibration of climate-change projections using seasonal forecasts. BAMS 89:459–470

11. Philips TJ et al (2004) Evaluating parameterizations in general circulation models: climate

simulation meets weather. Bull Am Meteorol Soc 85:1903–1915

12. Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parame-

terization deadlock. Bull Am Meteorol Soc 84:1547–1564

13. Satoh M, Matsuno T, Tomita H, Miura H, Nasuna T, Iga S (2008) Nonhydrostatic icosahedral

atmospheric model (NICAM) for global cloud resolving simulations. J Comput Phys 227:

3486–3514

14. Seinfeld JH, Pandis SN (1997) Atmospheric chemistry and physics. Wiley, New York

15. Soden B, Held I (2006) An assessment of climate feedbacks in coupled

ocean–atmosphere models. J Climate 19:3354–3360

16. Stensrud DJ (2007) Parameterization schemes: keys to understanding numerical weather

prediction models. Cambridge University Press, Cambridge

17. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in

a buffered system. Nature 461:607–613

18. Taylor KE, Stouffer RJ,MeehlGA (2011)An overview of CMIP5 and the experiment design. Bull

Am Meteorol Soc. doi:10.1175/BAMS-D-11-00094.1

19. Wang H, Rasch PJ, Feingold G (2011) Manipulating marine stratocumulus cloud amount and

albedo: a process-modeling study of aerosol-cloud-precipitation interactions in response to

injection of cloud condensation nuclei. Atmos Chem Phys Discuss 11:885–916. doi:10.5194/

acpd-11-885-2011

20. Washington W, Parkinson CL (2005) An introduction to three dimensional climate modeling,

2nd edn. University Science, Sausalito, p 354

21. Weart SR (2010) The discovery of global warming. Harvard University Press, Cambridge, MA

22. Wigley TML, Raper SCB (2005) Extended scenarios for glacier melt due to anthropogenic

forcing. Geophys Res Lett 32:L05704. doi:10.1029/2004GL021238

23. Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of

cumulus convection in the Canadian climate centre general circulation model. Atmos Ocean

33(3):407–446

24. Zhu P et al (2005) Intercomparison and interpretation of single-column model simulations of

a nocturnal stratocumulus-topped marine boundary layer. Mon Weather Rev 133:2741–2758

25. Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to

well mixed greenhouse gases. Geophysical Research Letters 25(14), pp. 2715–2718, doi:

10.1029/98GL01908

6 Atmospheric General Circulation Modeling 137

http://www.atmos-chem-phys.org/acp/5/715/


Chapter 7

Earth System Model, Modeling the Land

Component of

Guo-Yue Niu and Xubin Zeng

Glossary

Aerodynamic

resistance

Or drag or aerodynamic drag. The component of force

exerted by the air on a liquid or solid object that is parallel

and opposite to the direction of flow relative to the object.

Evapotranspiration A term used to describe the sum of evaporation and plants’

transpiration from the Earth’s land surface to the

atmosphere.

LAI The ratio of total upper leaf surface area of vegetation

divided by the surface area of the land on which the vegeta-

tion grows. LAI is a dimensionless value, typically ranging

from 0 for bare ground to 6 for a dense forest.

Land surface

processes

The various biogeophysical and biogeochemical processes

occurring within and over various land surface components

and interacting with the atmospheric processes.

Parameterization A method or process to approximate the effect on the model

resolved processes that would be generated by unresolved

subgrid-scale processes using formulations containing

empirical parameters.
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Stomatal resistance The opposition to transport of quantities such as water vapor

and carbon dioxide (CO2) to or from the stomata of plant

leaves.

Subgrid

heterogeneity

The spatial variation in land surface properties, for example,

soil wetness, snow, vegetation, and terrain within an ESM

grid cell, which is on the order of �100 km.

Tile method A method dealing with subgrid heterogeneity. It gathers

similar homogeneous land patches at different geographic

locations within an ESM grid-cell into a number of “tiles” or

“mosaics”; computes surface fluxes over each “tile” using

distinct parameters of each tile while sharing the same atmo-

spheric forcing; and then averages the computed fluxes from

the tiles, weighted by the fractional areas of each “tile.”

Topographic

index

Or “wetness index,” = ln(a/tanb), where a is the specific

catchment area, that is, the upstream area above a pixel that

drains through the unit contour at the pixel, and tanb is the

local surface topographic slope. A greater value corresponds

to a pixel of lowland areas that are potentially wetter.

Definition of the Subject and Its Importance

Land covers about 29% of the Earth’s surface and represents an important component

of the Earth’s climate system. The land surface encompasses soil, snow, vegetation,

glaciers, urban, lakes and rivers, mountains, etc. Land surface processes refer to

various biogeophysical and biogeochemical processes occurring within and over

these components and interacting with the atmospheric processes. Land surface

models (LSMs) are mathematical descriptions of the land surface processes, with

particular attention to momentum, energy, and mass (water, carbon, dust, and other

constituents) flux exchanges with its overlaying atmosphere; these fluxes are inti-

mately related to their storages in these components. In the context of an earth

system model (ESM), LSMs are designed to provide the atmospheric model with

lower boundary conditions over global land areas, describing the interactions of the

land surface with the atmosphere. In addition, LSMs provide ocean models with

discharges of water, sediments, and solutes. In this chapter, the focus is on

descriptions of processes related to momentum, energy, water, and carbon, while

processes related to other mass constituents, like dust, sediment, solute transports will

not be included. Readers can also further refer to reviews of land surface modeling

such as Sellers et al. [1], Pitman [2], and Yang [3].

Most LSMs, if not all, for use in ESMs and operational weather forecasting

models are vertically one-dimensional (1D) models solving soil temperature and

moisture equations, while parameterizing the effects of lateral flows of surface and

subsurface water driven by subgrid topography. Although three-dimensional (3D)
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hydrological models numerically describing lateral flows of surface and subsurface

water and operating at a resolution of meters have existed for years, it is not

practical to include them in a climate model due to their expensive computational

cost. Vertically, an LSM extends down to a few meters of the soil (2–6 m in

different models) and a few meters above the vegetation canopy or the urban

canopy. Some LSMs extend their depth to tens of meters deep to consider the

long-term effects of permafrost and unconfined aquifers [4].

LSMs describe processes at various spatial scales ranging from millimeter to

continental scales. The energy flux exchanges between land surface and the atmo-

sphere involve processes at various scales from scattering of photons by plants and

latent and sensible heat transfer by surface layer small eddies to convective

planetary boundary layer large eddies. The water flux exchange involves processes

at scales from water infiltration and percolation through soil micropores, transpira-

tion through plant stomata, hillslope overland flow to continental-scale hydrologi-

cal processes. The subgrid, unresolvable small-scale processes are highly

parameterized using empirical equations based on a basic understanding of the

processes, but not attempting to represent the process by equations representing first

principles. This is why LSMs are also referred to as land surface parameterization

schemes.

The land surface processes can influence weather and climate at timescales

ranging from seconds to millions of years. For instance, the convective atmospheric

boundary layer is developed in response to land surface heating on timescales from

seconds to hours. Atmospheric temperature and precipitation can be affected

through changes in soil water and groundwater, seasonal variations in snow cover

and frozen soil, and vegetation phenology on a scale ranging from days to seasons.

Temperature and water availability can greatly influence vegetation structure and

function from years to centuries [5]. The Earth’s climate has been tightly coupled to

atmospheric CO2 levels through the carbonate silicate cycle and/or the organic

carbon cycle on geological timescales spanning hundreds of millions of years [6].

Land surface processes are critical for understanding climate dynamics owing

to its momentum, energy, and mass exchanges with the overlying atmosphere.

Land surface can “memorize” climate dynamics by recording and filtering the

signals of weather events through storages of energy, water, and carbon and feed

back to the atmosphere through surface fluxes. Pitman [2] reviewed coupled

model experiments including sensitivity studies of changing albedo (e.g., [7]),

roughness length (e.g., [8]), LAI [9], water-holding capacity [10], and roots [11],

etc., deforestation [12], desertification [13], land cover change (e.g., [14]), eco-

system feedback under doubling CO2 [15], and vegetation-snow-albedo feedback

[16]. These sensitivity experiments provided evidence that climate models are

sensitive to the land surface processes [2]. In addition, land surface feedbacks

may amplify and prolong sea surface temperature (SST) anomaly triggered

droughts, playing a critical role in the persistence of droughts and mega-droughts

[17, 18]. It is well known that global climate dynamics is greatly affected by

ocean–atmosphere interactions. However, land surface processes are of great

importance for seasonal, interannual, and decadal climate change over specific
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land areas. Koster et al. [19] revealed that land and ocean processes have essen-

tially different geographic regions of influence on precipitation variance, that is,

the ocean’s influence is dominant mainly in the tropical land, while the land’s

influence is dominant over midlatitude land areas. Koster et al. [20] identified the

arid-to-wet transition regions over land as “hot spots” where changes in surface

water fluxes associated with soil water storage have greater impacts on

precipitation.

The land surface is more heterogeneous than other Earth surface components.

Within one grid-cell of an ESM on the order of �100 km, different land surface

types, for example, bare soil, snow, grass, crop, and forests, may coexist. An LSM

has to parameterize the integral effects of these subgrid surfaces on surface energy,

water, and carbon fluxes over the grid cell. A variety of methods are used, for

example, effective parameters, “mosaic” (or tile) methods, probability density

function (pdf) methods, or finer grids than the host climate model. LSMs are usually

community efforts, because they are inherently interdisciplinary including atmo-

spheric sciences, hydrology, ecology, soil and snow physics, etc., as well as social

sciences related to land use and water use managements.

Introduction

LSMs have evolved for three generations [1, 2] since the advent of the first

generation global climate models (GCMs). The first LSM was the “bucket

model,” which describes the land surface as a bucket with a fixed water holding

capacity of 15 cm [21]. The bucket can be filled with precipitation and emptied by

evaporation. Runoff is generated as the water that exceeds the bucket holding

capacity, and evaporation is limited by the water content of the bucket. In the

first generation models, the transfer of sensible and latent heat was based on simple

aerodynamic bulk transfer formulations, using uniform and prescribed surface

parameters, for example, water holding capacity, albedo, and roughness length.

These models did not account for ecological processes (e.g., transpiration through

plants’ stomata) and more detailed hydrological processes (e.g., infiltration and

capillary upward flow through soil micropores). Despite their simplifications, the

first generation models represent a key step to describe land surface processes in

ESMs, and their simulated soil moisture and evapotranspiration (ET) were compa-

rable to more complex models at longer timescales.

From the 1980s to early 1990s, a second generation of models appeared. They

explicitly represented vegetation effects and more complex soil hydrology in

the calculation of surface energy and water balances [22–24]. Representative

second-generation models are the Biosphere-Atmosphere Transfer Scheme

(BATS) [23] and the Simple Biosphere Model (SiB) [24]. During this period,

two dozen second-generation models were developed with emphasis on various

specific processes (e.g., [25–28]). These models vary in detail, but they have

142 G.-Y. Niu and X. Zeng



many common features. They usually have a number of soil layers, a single

canopy layer (or an additional understory canopy layer like in SiB), and a bulk

snow layer. Micrometeorological, hydrological, and ecological processes are

more explicitly represented in these models. Instead of the fixed surface albedo

in the first-generation models, more explicit radiation transfer through the vege-

tation canopy differentiating visible and near-infrared and beam and diffusive

lights was taken into account. Turbulent transfer of heat from multiple surface

sources, for example, canopy leaves and the ground surface was considered, and

the under-canopy and leaf boundary layer turbulences were parameterized based

on atmospheric boundary layer similarity theories. Transpiration through plants’

stomata were considered using the Jarvis-type stomatal conductance scheme [29],

a simple empirical formulation as a function of light (photosynthetically active

radiation; PAR), water (leaf water potential), and environmental conditions (tem-

perature and humidity). Whether the soil moisture Richards equation is solved or

not, vertical gravity and capillary flows of water were taken into account. Runoff

was parameterized as various functions of soil water storage or excess

above infiltration, neglecting topographic effects. Accumulation and ablation of

snow on the ground were represented with a bulk layer of snow, neglecting

snowpack internal processes.

Since the early 1990s, third-generation models have been developed. The third-

generation models were mainly characterized by the capability of simulating

carbon uptake by plants and vegetation dynamics, or “greening” of the land surface

[1, 2]. Other aspects of the model were substantially improved at the same time.

Some models also began to incorporate treatments of nutrient dynamics and

biogeography, so that vegetation systems can change location in response

to climate shifts. Collatz et al. [30] and Sellers et al. [31] began to integrate stomatal

conductance and photosynthesis into LSMs based on the work of Farquhar et al.

[32]. A semiempirical model of leaf conductance was proposed [30] based on the

understandings of the limitations on carbon assimilation by leaf and maximum use

of water by plant [33].

During the same time period, LSMs were substantially improved in other

aspects with regard to representations of hydrological processes in ESMs.

LSMs started to account for subgrid variability in a more explicit way, for

example, the “tile” approach to represent vegetation patchiness [34, 35] and the

statistical approach to represent subgrid distribution of soil moisture and runoff

generation [36], spatial variability of infiltration [37], topographic control on

subgrid soil moisture distribution and runoff generation [38, 39], and subgrid

snow distributions [40, 41]. LSMs started to include more physically based,

multilayer snow submodels to accommodate more internal processes by

parameterizing growth of grain size and liquid water retention and percolation

within snowpack [42–44]. Ice content within soil (frozen soil) was explicitly

resolved as a new prognostic variable, and its impacts on runoff and infiltration

were investigated [45–47]. Most recently, groundwater processes were

implemented in LSMs [48–52], and LSMs entered a new era involving multiple

disciplinary sciences.
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Major Processes Represented in an LSM

Subgrid Heterogeneity and Surface Data

Within an ESM grid on the order of�100 km, land surface properties, for example,

soil wetness, snow, vegetation, and terrain, vary at the scale of a fewmeters. Because

of the strongly nonlinear dependence of surface fluxes on surface properties and

states, for example, the dependence of ET on soil wetness, simple area-averaging

approaches used to aggregate surface properties and states is problematic. The use of

LSM grids whose resolution is higher than ESMs may partially improve the accu-

racy of grid cell averaged fluxes [53] but it is still very difficult to explicitly resolve

the variability. Therefore, representing subgrid variability within ESMs will always

remain a challenge no matter how fine the model resolution is [36, 54]. There are

three major approaches to representing the subgrid heterogeneity, that is, effective

parameters, “mosaic” or “tile” approach, and statistical approach.

Earlier LSMs used effective parameters to obtain the correct fluxes averaged

over patches of a grid cell. Some effective parameters can be obtained by simply

averaging the parameters for various patches, e.g., albedo, because of the linear

relationship between radiative fluxes and surface albedo. But other effective

parameters, which have a nonlinear relationship with surface fluxes, for example,

the effective roughness length, cannot be obtained by simply averaging parameter

values of individual patches and need to be derived in such a way that correct area-

averaged fluxes [55–57] can be ensured.

The statistical approach uses pdf of input variables to derive grid cell averaged

runoff and ET. Assuming point precipitation intensity and soil wetness are spatially

distributed over a large ESM grid cell according to exponential and gamma

distributions respectively, Entakhabi and Eagleson [36] derived grid cell mean

surface runoff ratio (to grid cell mean precipitation), bare soil evaporation effi-

ciency (ratio of actual to potential), and transpiration efficiency (ratio of actual to

potential evaporation). Liang et al. [37] implemented spatially variability of infil-

tration capacity in the Variable Infiltration Capacity (VIC) model. Niu et al. [39]

used an exponential distribution of topographic index (or wetness index) to param-

eterize fractional saturated area and saturation excess runoff.

The tile approach [34, 35] gathers similar homogeneous land patches at different

geographic locations within an ESM grid cell into a number of “tiles” or “mosaics,”

computes surface fluxes over each “tile” using distinct parameters of each tile while

sharing the same atmospheric forcing, and then averages the computed fluxes from

the tiles, weighted by the fractional areas of each “tile.” The performance of the tile

approach has been evaluated in numerous offline studies (e.g., [35]), boundary layer

or mesoscale atmospheric models (e.g., [34]), and coupled ESMs [26, 58]. The tile

can be also generated using different variables, for example, topographic index

[38], soil wetness [54], or soil ice content [59]. The tile approach may overlap too

much canopy shadows and thus induce errors in computing net solar radiation

absorbed by the ground, especially over high latitude, boreal forest regions [60].
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However, this approach is widely used in numerous second- and third-generation

LSMs, because of its readiness to make full use of high-resolution satellite remotely

sensed land surface data to generate the “tiles.”

As an example, the National Center for Atmospheric Research (NCAR) Com-

munity Land Model version 4.0 (CLM4) [61] adopted the tile approach and

parameterized some key processes using the statistical approach. CLM4 accounts

for the subgrid heterogeneity as a nested subgrid hierarchy of landunits, soil/snow

columns, and plant functional types (PFTs). Each grid cell can have a number of

different landunits, for example, glacier, wetland, lake, urban, natural vegetation,

and managed vegetation (crops). Each landunit can have a number of different

columns (e.g., irrigated and rainfed soil), and each column can havemultiple PFTs.

CLM4 adopted the statistical method of Niu et al. [39] to parameterize surface

saturated area and associated runoff. Surface datasets to feed CLM4 include

percentages of glacier, lake, wetland, urban, and various PFTs to determine the

fractional area of these surface tiles. PFTs are based on MODIS satellite data at

30 s (�1 km) resolution [62]. Prescribed PFT LAI was derived from the MODIS

satellite data ofMyneni et al. [63]. Prescribed PFT stem area index (SAI) is derived

from PFT LAI phenology combined with the method of Zeng et al. [64]. Prescribed

canopy top and bottom heights are from Bonan et al. [65]. Soil color dataset

(affecting surface albedo) is based on Lawrence and Chase [62]. The IGBP soil

dataset (Global Soil Data Task 2000) of 4,931 soil mapping units and their sand

and clay content for each soil layer is used to create a mineral soil texture dataset

[65] and an organic matter density dataset [66] that vary with depth.

Surface Energy Balance

Over an ESM grid cell, the net radiation (Rn) absorbed by the land surface is

balanced by latent (LE), sensible (H), and ground heat fluxes (G):

Rn ¼ LEþ H þ G (7.1)

Note that the chemical energy stored during photosynthesis and released by

respiration is not included in the above equation as it amounts to less than 1% of the

absorbed insolation [2]. Rn includes net shortwave and net longwave radiation

fluxes. LSMs that do not differentiate the vegetation canopy and the ground, for

example, Noah [67] use the above equation and compute a single temperature for

the land surface. More complex models that have a separate canopy layer from the

ground, like versions of SiB and CLM, use two energy balance equations, one for

the vegetation canopy and another for the ground surface, to solve their

temperatures. The partitioning of available energy (Rn) into latent and sensible

heat fluxes represented by Eq. 7.1 is greatly controlled by the land surface hydro-

logical conditions. For an LSM using the tile subgrid approach, Eq. 7.1 is applied

over each tile.
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Net Shortwave Radiation

LSMs compute net shortwave radiation over various land surfaces:

Sa ¼ Sð1� asÞ (7.2)

where S is the incoming solar radiation from the host ESM, and as is the surface

albedo, varying with solar zenith angle (SZA), vegetation types, snow cover, and

soil moisture conditions. In earlier LSMs, aswas prescribed for various land surface
types. More complex second- and third-generation models used Beer’s Law and

two-stream approximation scheme [68, 69] to compute radiative transfer through

the vegetation canopy, net radiation absorbed by the vegetation canopy and the

ground, and the surface albedo.

Beer’s law assumes that irradiance decreases exponentially with path length

through an absorbing medium. Thus, the radiation reaching the ground, Sg ¼ S

eð�kLAIÞ, where k is a constant attenuation coefficient, and LAI is the effective leaf
area index of the canopy. However, Beer’s law does not account for the scattering

and multiple reflections by the canopy leaves [70].

The two-stream approximation [68, 69] accounts for beam and two main streams

(vertical upward and downward) of diffusive radiation over two wavebands (visible

and near-infrared). However, it assumes that the canopy leaves are evenly

distributed within a grid cell. On the basis of complex radiation transfer models

[71], Yang and Friedl [72] proposed a modified two-stream scheme to account for

aggregation of the evenly distributed leaves represented by a two-stream scheme

into canopy crowns with between-canopy and within-canopy gaps, which vary with

radius and thickness of the canopy, tree density (the distance between trunks), and

SZA. The scheme needs prescribed optical parameters, for example, reflectivity and

absorptivity of the vegetation and ground, for various land surface types. The two-

stream approximation also computes the fraction of sunlit and shaded leaves, which

are crucial to photosynthesis processes.

Net Longwave Radiation

The net longwave radiation (or infrared) is computed as the residual of the incom-

ing (L#) and emitted by the surface:

La ¼ EðL# � sT4
s Þ (7.3)

The upward longwave radiative flux emitted by the surface is based on the

Stefan-Boltzmann Law. In the above equation s is the Stefan-Boltzmann constant,

e is the emissivity of the land surface, and Ts is the surface skin temperature. For

a model that has a canopy layer, computation of La becomes more complicated due

to the interactions between the ground surface and its overlaying canopy [61].
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Sensible and Latent Heat Fluxes

The turbulent transfer of latent and sensible heat fluxes in most LSMs is based on

Monin-Obukhov similarity theory [73, 74]. LSMs compute surface sensible and

latent heat fluxes using the bulk transfer scheme:

H ¼ rCpCHuðT0 � TaÞ (7.4)

LE ¼ rCp

g
CWuðe0 � eaÞ (7.5)

where r is air density,Cp is the specific heat of dry air, g is the psychrometric constant,

CH and CW are the turbulent exchange coefficients for heat and water vapor, respec-

tively, Ta and u are the air temperature and wind speed at the lowest layer of the host

ESM, and T0 and e0 are the temperature and water vapor pressure at the height of the

surface roughness length, z0. The first-generation models prescribed CH and CW with

different values for various land surfaces. The second- and third-generation models

calculate CH and CW according to Monin-Obukhov similarity theory, accounting for

surface stability conditions. For simplicity,CH=CW and is assumed to be equivalent to

that for momentum CD in some LSMs. More elaborate schemes differentiate CH

(=CW) from CD using roughness lengths different for heat z0H and momentum z0;
and usually z0 > z0H, because the transfer of momentum is more efficient (through

pressure and diffusion) than those of heat andmass (through diffusion only). The value

of ln(z0/z0H) is about 2.0 over a range of vegetation surfaces, and in practical

applications, z0/z0H = 10 [75]. In analogy with Ohm’s law in electricity, the drag

coefficient can be transformed to an aerodynamic resistance:

ra;H ¼ ra;W ¼ ðCHuÞ�1
(7.6)

Shuttleworth [75] provided a review on formulations of the aerodynamic

resistances for estimating surface ET and stability correction.

Complexmodels compute sensible and latent heat fluxes frommultiple sources of

the land surface such as soil, snow, plants’ leaves, and stomata using equations

similar to Eqs. 7.4 and 7.5. Over the soil surface, because of the strong temperature

gradient between the soil skin (at 0 m) and z0 as well as the difficulty in computing

the temperature at z0, LSMs use the skin temperature Ts to compute sensible and

latent heat fluxes for convenience. The skin temperature over these surfaces can be

computed iteratively using Eq. 7.1 till the surface energy is balanced. Because of the

use of Ts rather than T0 in Eqs. 7.4 and 7.5, an extra resistance, rsoil, is needed [76]:

H ¼ rCp
ðTs � TaÞ
ra;H þ rsoil

(7.7)

LE ¼ rCp

g
ðe�ðTsÞ � eaÞ
ra;W þ rsoil

(7.8)
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where e*(Ts) is the saturated vapor pressure at Ts, and rsoil accounts for the

resistance to water vapor and heat transfer from the surface soil pore space to z0H
(roughness sub-layer) through molecular diffusion. Some LSMs also added

a relative humidity term before e*(Ts) to estimate the water vapor pressure within

surface soil pore space. Sakaguchi and Zeng [77] reviewed numerous soil resistance

schemes. This expression for soil surface evaporation is similar to that for transpi-

ration through leaf stomata

LE ¼ rCp

g
ðe�ðTvÞ � eaÞ

ra;v þ rc
(7.9)

where Tv is the vegetation canopy temperature, ra,v is the leaf boundary layer

resistance per unit LAI [73], and rc is the canopy-scale stomatal resistance that is

scaled up from the stomatal-scale stomatal resistance, rst , using LAI: rc = rst/LAI.
Most second-generation models implemented the Jarvis-type stomatal resistance

[29], which relates rst to multiplicative stress factors:

1=rst ¼ g0fSðPARÞfDðDeÞfTðTaÞfWðclÞ (7.10)

where g0 is a vegetation type-dependent maximum stomatal conductance and fS, fD ,
fT , and fW , all of which range from 0 to 1, are environmental stress factors

associated with PAR, water vapor deficit of the surrounding air (De), air tempera-

ture (Ta), and leaf water potential that relates to root-zone soil moisture,

respectively.

Ground Heat Flux

The ground heat flux is controlled by the soil thermal diffusion (or conduction)

process and can be expressed as

G ¼ �l
T1 � Ts
Dz1=2

(7.11)

where l is the soil thermal conductivity, T1 is the temperature of the first soil

layer, and Dz1 is the layer thickness of the first soil layer. By definition (G ¼ �l
ð@T=@zÞz¼0), the smaller Dz1, the more accurate G is. In case of soil covered by

snow, LSMs that have a bulk snow layer replace Dz1/2 in the above equation

with (Dz1/2 + hsnow), where hsnow is the snow depth. Thus, when the snowpack

becomes thicker, G becomes more inaccurate. This is one of the major reasons

that complex models use a multilayer structure for the snowpack.G is then used as

the upper boundary condition of soil temperature equation.
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Heat Storage in the Soil and Snow

The soil thermal conduction (or diffusion) equation is written as

C
@T

@t
¼ @

@z
ðl @T

@z
Þ (7.12)

where C and l are the volumetric heat capacity and thermal conductivity, respec-

tively. LSMs solve the above equation using various methods, for example, the

more efficient force-restore method [22, 78] as used in BATS and SiB and the finite

difference method as used in the Noah and CLM4 models.

The force-restore method is based on an analytical solution of the above

equation under two assumptions that the surface forcing is periodic and the soil

thermal properties are uniform. It is named after the two terms controlling surface

temperature, that is, the forcing term (G in Eq. 7.11) and a restoring term due to

heat diffusion from surface to a deeper soil layer. Recognizing that the two

assumptions are not always valid, Dickinson [78] took into consideration the

nonuniform thermal properties induced by snow and soil moisture and

generalized the force-restore method. However, the surface temperature solved

through the force-restore method is not so responsive to variations in surface

forcing with a frequency higher than diurnal (e.g., cloud effects on solar radiation)

as the iterative method solving the surface energy balance equation (Eq. 7.1).

Therefore, it may cause difficulties in resolving the available energy for snow-

melt, which occurs at a sub-daily scale [60].

Current LSMs explicitly solve Eq. 7.12 using finite difference methods for layered

soil and snow. The upper boundary condition is the surface forcing (G), and lower

(bottom) boundary condition is either specified as a zero flux as used in CLM or as the

long-term averaged surface air temperature at a deep soil layer (e.g., 8 m) as used in

Noah [67]. The zero flux condition is more readily satisfied when the bottom layer

is deeper. The accuracy of the solution increases as the number of layers increases.

Due to the computational cost, the number of layers cannot be very large. CLM has

ten soil layers, while many other LSMs have three to five layers. To account for

the thermal inertia of deep ground, the number of soil layers of CLM4 is changed

from 10 to 15 layers, extending the total depth of the soil column down to 42 m [4].

When covered by snow, the soil temperature is solved together with the tempera-

ture of snow of a varying number of layers [43, 60]. The layering of snowpack and the

number of layers varywith the total snowdepth and ismore complex than layering soil

(e.g., [43, 61]). For frozen soil, a source/sink termdue to phase change,riceLf @yice=@t;
where rice, Lf , yice , and t are density of ice, heat for fusion, volumetric ice content, and

time, respectively, is added to the right-hand side of Eq. 7.12. This term accounts for

the heat released by freezing liquid water or heat consumed to melt ice. It is usually

combined with heat conductivity C and named as “apparent heat capacity,” Ca,

Ca ¼ C� riceLf
dyice
dT

(7.13)
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Surface Water Balance

The temporal variation of the water storage (S) in a grid cell of an ESM is controlled

by the water incident on land surface, that is, precipitation (P) and the water leaving
the grid cell, that is, ET and runoff (R):

dS

dt
¼ P� ET � R (7.14)

The above equation neglects the lateral surface and subsurface flows that

transport water to adjacent grid cells. The storage term in the above equation

includes water (ice and liquid water) intercepted by the canopy, snow on the

ground, water in the soil and aquifers. ET includes ground evaporation, canopy

evaporation, and transpiration, which can be derived from their corresponding

latent heat fluxes by dividing the heat of vaporization, L. For most LSMs, R
includes surface runoff and subsurface runoff, which will be discussed later.

Canopy-Intercepted Water

Although the amount of the canopy-intercepted water is relatively small compared

to other water storages, it plays an important role in contributing to the total ET and

altering the canopy reflectance by intercepting snowfall. Most LSMs takes into

consideration liquid water interception by the vegetation canopy, while few LSMs

explicitly consider additional processes of loading and unloading of snowfall

[79, 80]. The temporal variation of the liquid water stored on the vegetation canopy,

Wc,liq , is determined by the rates of interception (Rintr), evaporation/dew (Ec), and

drip (Rdrip):

dWc;liq

dt
¼ Rint r � Ec � Rdrip (7.15)

The interception rate is parameterized as a function of LAI and SAI. The

interception capacity of the vegetation canopy is also related to the subgrid distri-

bution of vegetation and precipitation. Considering only a fraction of the vegetation

canopy within the large area of an ESM grid cell receives precipitation, CLM4

introduced a fractional area of precipitation as a limiting factor (0.25) to its

interception rate [61]. However, this factor should vary with the distribution of

precipitation that relates to the ratio of convective precipitation to total precipitation

[39] and should be further investigated using high-resolution precipitation data.

The interception capacity for snow is estimated to be about 50 times greater than

for rain [80]. Interception of snowfall by the vegetation canopy significantly

reduces snow mass on the forest floor. About 30–40% of the annual snowfall

over complete coniferous canopies sublimates from the canopy and thus never

150 G.-Y. Niu and X. Zeng



reaches the ground [80]. Depending on meteorological conditions, the intercepted

snow may fall to the ground, sublimate, melt, or refreeze. Implementing a snowfall

interception model and properly representing the sublimation of the canopy-

intercepted snow can significantly improve the simulation of snow on the ground

[81]. More importantly, properly representing interception of snow can signifi-

cantly improve the simulation of surface albedo. However, most LSMs do not

explicitly distinguish between solid and liquid phases of water on the canopy

surface, and they use the same interception capacity for both snowfall and rainfall.

Based on the water stored on the vegetation canopy, a wet fraction of the canopy

can be computed. Many LSMs (e.g., BATS and CLM) calculate the wet fraction as

the 2/3 power of the ratio of canopy water to its maximum value, following

Deardorff [22], while others (e.g., SiB) compute it as the ratio of the canopy

water storage to its maximum value when the saturation vapor pressure at leaf

temperature is less than the vapor pressure of the surrounding air. The maximum

value of the canopy water is parameterized as a function of LAI.

Snow Water

Snow cover is an important part of the climate system because of its high albedo,

low thermal conductivity, and ability to absorb heat when melting. In addition, the

snowmelt water is the primary source of stream flow and groundwater recharge in

cold and alpine regions. The impacts of snow-cover processes on global and

regional climate have been investigated by numerous researchers (e.g., [82–84])

using earlier GCMs. In addition, numerous sensitivity studies using GCMs found

that the removal of all forests north of 45�N would lead to cooling and delay

snowmelt because of the increased surface albedo (e.g., [12, 85]), indicating the

important role of forest canopies in modifying the surface energy budget and

climate over snow covered regions.

Snow covered area exhibits spatial and temporal fluctuations ranging from 7% to

40% seasonally in the Northern Hemisphere [86]. Snow cover extent in the North-

ern Hemisphere has been decreasing since the mid-1980s in response to a global

warming trend [87, 88]. On the other hand, Arctic warming may be accelerated by

decreases in snow cover due to the positive snow-albedo feedback. Chapin et al.

[89] reported that Arctic summer warming is highly related to an increase in snow-

free days and the transition from tundra (short to be easily buried by snow) to forest.

LSMs compute snow water equivalent (SWE), snow depth, and fractional area

covered by snow. The representation of snow processes in the first- and second-

generation LSMs was relatively simple using a bulk snow layer (e.g., [26, 90,

91]). Third-generation models tend to have multiple snow layers to resolve the

internal processes of snowpack such as densification, liquid water flow, and

multiphase changes of water [42–44, 92]. The multilayer structure also has

a thin surface layer designed to produce a more accurate ground heat flux and

snow skin temperature [60].
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Bulk-layer models combine the snowpack with the top soil layer as a bulk layer.

These models, for instance, BATS and SiB, use the force-restore approach to

solve snow temperature. However, the force-restore approach cannot accurately

resolve high-frequency variations in snow surface forcing and temperature, and

thus induce errors in snowmelt. Most of the multilayer snow models were simplified

from schemes with detailed internal processes such as grain-size growth and

gravitational flows of liquid water within a snowpack (e.g., [93, 94]). In

a multilayer model like CLM4, the snow mass balance includes ice and liquid water

content, but neglects the vapor phase. Densification processes include destructive or

equi-temperature metamorphism, compaction due to the weight of the overlying

layers of snow mass, and melt metamorphism, following Anderson [93]. Excessive

liquid water above the holding capacity (ratio of liquid water volume to the free space

of a snow layer) flowdown to next layer. Themelting (or freezing) energy for a layer is

assessed as the energy excess (or deficit) needed to change the temperature of the layer

to the freezing point [60].

Researchers also recognized that snowpack modeling for hydrological

applications and climate studies needs to account for the radiative effects of the

vegetation canopy (e.g., [95]) and the impacts of the interception of snow by the

vegetation canopy [80, 96]. In addition, the turbulent transfer of sensible heat flux

below the vegetation canopy under a stable condition during melting season

significantly affects melting snow on the ground [81]. However, these studies

were not fully introduced into ESMs.

Snow depth varies greatly at subgrid-scales because of heterogeneities in land

cover, terrain, snow deposition, snowmelt, and meteorological conditions [40]. In

LSMs, subgrid snow distributions are represented as snow cover fraction (SCF),

that is, the fraction of a grid cell covered by snow, through the relationship between

SCF and snow depth. At an ESM grid cell scale, one of the largest uncertainties in

modeling snow and its interactions with the atmosphere comes from SCF

formulations and their associated parameters. Various SCF formulations as

summarized in Liston [40] result in a wide spread of SCFs between models.

ESMs vary significantly in simulating SCF, and most of them underestimate SCF

[97] because of unrealistic SCF formulations. Most SCF formulations are

parameterized as a function of grid cell mean snow depth and the ground roughness

length [40, 41, 81, 90]. Some of them also considered the impact of subgrid

topography variations on SCF [91]. Using gridded snow depth and SWE reanalysis

and the advanced very high resolution radiometer (AVHRR) SCF [87], Niu and

Yang [41] found the SCF–snow depth relationship varies with seasons and

introduced snow density into an existing SCF formulation [90] to approximate

the seasonal variation in the SCF–snow depth relationship.

Soil Water

Although soil water accounts for a very small portion (�1%) of the terrestrial water

storage, it plays an important role in the climate system through its controlling role
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on ET. Soil moisture anomalies (i.e., deviation from the mean) can persist from

weeks to seasons [98, 99]. Numerous researchers have investigated its impact on

climate predictability using GCMs (e.g., [100]). Koster et al. [19] revealed that the

land’s influence is dominant over midlatitude land areas. In analogy to the oceanic

hot spot, for example, the eastern equatorial Pacific, playing a key role in the El

Niño-La Niña cycle, Koster et al. [20] found the terrestrial “hot spots,” that is, the

arid-to-wet transition regions, where precipitation is affected by soil moisture

anomalies during boreal summer. These hot spots were further confirmed by

Zeng et al. [101] using an alternative index accounting for the land-precipitation

coupling strength. For this reason, a proper initialization of soil moisture can

enhance precipitation prediction skill over these hot spots [102–104]. Also,

upgrades of LSMs with more elaborate representations of soil moisture can improve

climate prediction skill especially during ENSO neutral years when the SST signal

is relatively weak [104].

Temporal variation in the total soil moisture of a soil column within a certain

depth (e.g., 3.4 m in CLM4) is controlled by infiltration, that is, the residual of

precipitation minus runoff and evaporation at the soil surface, root uptake through

transpiration, and the water flux at the bottom. The vertical distribution of soil water

is controlled by vertical root distribution and soil property that determine gravita-

tional and capillary water fluxes. Evolving from the first-generation “bucket”

models, which neglects the capillary water flux, some second- and third-generation

models directly solve the 1D, mass-based (y) Richards equation to calculate the

vertical distribution of soil moisture [61, 67]. Modern LSMs also tend to increase

the number of soil layers to improve the accuracy of the solution. Various model

intercomparison projects indicated that LSMs have a much better ability to simulate

the soil moisture anomalies than to simulate the absolute value of soil moisture

(e.g., [105, 106]).

The mass-based form (y) of the Richards equation cannot resolve the soil water

distribution at both unsaturated zone and saturated zone (groundwater) as continu-

ously as a pressure-based (c) Richards equation. However, when solved through

finite-difference numerical scheme, it conserves mass better than the pressure-

based form. Zeng and Decker [107] demonstrated that a previous version of CLM

cannot maintain the hydrostatic equilibrium of soil moisture distribution, and this

problem cannot be resolved by increasing the vertical resolution of the soil column.

In CLM4, they proposed a revised form of the Richard equation by explicitly

subtracting the hydrostatic equilibrium pressure profile, cE(z), from the soil water

pressure profile, c(z).

Frozen Soil

Frozen soil has a tremendous impact on soil thermal and hydrological properties,

ecosystem diversity and productivity, and greenhouse gas release from the soil.

Freezing of soil water delays the winter cooling of the land surface; thawing of the

frozen soil delays the summer warming of the land surface. Frozen soil also affects
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the snowmelt runoff and soil hydrology by reducing the soil permeability. Runoff

from the Arctic river systems is about 50% of the net flux of freshwater to the Arctic

Ocean [108]. This is a large percentage when compared to the freshwater inputs to

the tropical oceans, where freshwater input is dominated by precipitation. Runoff

and the degree of freshening can affect ocean salinity, sea ice conditions, and

thermohaline circulation.

Earlier LSMs did not explicitly solve soil ice content. These LSMs showed

a much larger scatter in the simulated soil moisture and runoff in spring than in

other seasons due to different representations of the effects of frozen soil on

infiltration [109]. Some of them switched off infiltration for subfreezing

temperatures, for example, in simplified SiB [25] and BATS [110]. This treatment

failed to produce the spring peaks of soil moisture due to the underestimated

infiltration [111, 112]. Xue et al. [112] improved SSiB’s ability to simulate the

spring peaks of soil moisture by gradually decreasing the hydraulic conductivity at

a rate of 10% per degree for subfreezing temperatures following SiB2 [113]. Pitman

et al. [45] implemented an explicit representation of the hydrological and thermal

effects of soil ice in their LSM but found that the representation degraded runoff

simulation in a large-scale river basin.

Field studies showed that the effect of frozen soil on infiltration depends on

scale, surface conditions of snow and vegetation, and soil structures. Shanley and

Chalmers [114] showed that the effects of frozen soil on runoff are scale-dependent.

There was no significant correlation between seasonal runoff ratios and ground frost

depth for the 15 year of record from the Sleepers River watershed, USA, with an

area of 111 km2, while the increased runoff due to frozen ground was observed

occasionally in its 0.59-km2 agricultural subcatchment. Lindstrom et al. [115] also

concluded that there were no clear effects of frozen soil on the timing and magni-

tude of runoff from an analysis of 16-year data in a 0.5-km2 watershed in northern

Sweden. Researchers have demonstrated that soil structure, air-filled porosity, ice

content, and the number of freezing and thawing cycles are the governing factors

affecting the infiltration capacity of frozen soil. Even at very local scales, recent

laboratory and field studies using dye tracer techniques (e.g., [116]) revealed that

water can infiltrate into deeper soil through preferential pathways where air-filled

macropores exist at the time of freezing.

One-dimensional numerical models using the fully coupled heat and mass

balance equations [46, 59, 117–119] used a variety of ways to parameterize the

hydraulic properties of frozen soil. Some of the models [117, 119] assume that the

freezing–thawing process is similar to the drying–wetting process with regard to the

dependence of the soil matric potential on the liquid water content. This assumption

leads to a very low infiltration rate or even upward water movements resulting in ice

heave in surface layers. However, other modelers [46, 47, 59, 118] proposed

various schemes to compute hydraulic properties as a means to produce greater

infiltration rates. Stähli et al. [118] proposed two separate domains for the water

infiltration into frozen soil: the low-flow domain where water flows through the

liquid water film absorbed by the soil particles and the high-flow domain where

water flows through the air-filled macropores. Koren et al. [46] assumed that frozen
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soil is permeable due to soil structural aggregates, cracks, dead root passages, and

worm holes and reduced the effects of frozen soil on runoff production. Cherkauer

and Lettenmaier [59] assumed that surface water tends to find areas of higher

infiltration capacity as it flows across a frozen surface. They split their model

domain into 10 bins with each having different ice content, which was derived

from the observed spatial distribution of soil temperature, to increase the infiltration

rate in VIC model. Niu and Yang [47] introduced fractional permeable area, which

partitions an ESM grid cell into an impermeable fraction and a permeable fraction,

and used the total soil moisture (liquid water and ice) to calculate soil matric

potential and hydraulic conductivity over the permeable fraction.

When soil water freezes, the water closest to soil particles remains in liquid form

due to the absorptive and capillary forces exerted by soil particles. For this reason,

there is a certain amount of liquid water coexisting with ice over a wide range of

temperatures below 0�C. This supercooled soil water at subfreezing temperatures can

be computed with the freezing point depression equation [46, 47] or parameterized

with observational data [120]. Most LSMs, for example, CLM4, consider ice and

liquid water content but neglect the water vapor phase. The energy available for phase

change between ice and liquid water is assessed in the same way as for snow except

that only the excess above the supercooled liquid water can be frozen in the soil.

Li et al. [121] provided a thorough summary of frozen soilmodelswith different levels

of complexity.

Groundwater

Groundwater storage constitutes about 30% of the terrestrial water storage. Ground-

water storage shows as large variations as that of soil water at monthly or longer

timescales in Illinois [122]. The groundwater level also shows a strong diurnal

cycle in aquifers where the water table depth is less than 2 m because of the water

uptake by the roots of the aboveground plants [51]. The rise and fall of the water

table directly interacts with soil moisture in the vegetation root zone and thus acts as

a source term for ET. Groundwater dynamics also control runoff generation, which

can further affect the computation of soil moisture and ET in a climate model.

Observational data show that runoff is much more related to the water table depth

than to precipitation at monthly timescale in Illinois [50].

Earlier LSMs did not explicitly account for groundwater storage and its

interactions with soil moisture. When solving the soil moisture equation, these

LSMs assumed zero flux or free drainage at the bottom of the soil column as the

lower boundary condition. For instance, an earlier version of CLM (version 3.0)

used gravitational free drainage as its lower boundary condition at a depth of 3.4 m.

Water drained from the soil bottom under gravity during wet seasons or wet years

(parameterized as subsurface runoff) would never come back to the soil column in

dry seasons or dry years. In reality, when the soil is drying, the soil can draw water

through capillary suction from its underlying aquifer (or saturated layers), which

has a longer memory of the past precipitation events than the soil. LSMs implicitly
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include such a process when the water table is shallow enough to be within the

model soil layers. However, when the water table is below the model’s soil bottom,

LSMs neglect this upward water flow through capillary forces while taking into

consideration gravitational free drainage at the model bottom, resulting in unrealis-

tically dry deep soil.

During the past decade, the need for a groundwater component in LSMs has

received increasing attention. As a result, a number of researchers have

incorporated a groundwater component into LSMs [48–52, 123]. These models,

for use in climate studies, can be divided in two categories: 3D models [51,

123] and 1D models [48–50, 52]. Because the horizontal transport of groundwater

is more pronounced at a smaller scale, 3D models are more applicable to

regional climate and water resource studies, while 1D models are often used

in ESMs.

Researchers [48–50] have proposed more realistic solutions to solve the contin-

uum of soil and relatively shallow aquifers at the expense of adding more integra-

tion elements, that is, 100 nodes, 50 layers, and 10 layers, respectively, in the

above-referenced studies. Even with these additional layers, the models are only

applicable for relatively shallow aquifers (<5 m) because of the prescribed depth of

the model. Niu et al. [52] added a single integration element below the soil of CLM

and parameterized groundwater recharge rate according to Darcy’s law to account

for the interactions between soil water and groundwater. Zeng and Decker [107]

proposed another simple way to represent the groundwater recharge rate using the

deviation of soil water pressure from its hydrostatic equilibrium at the soil bottom.

All these developments represent a step forward from the current LSMs using

gravitational free drainage or zero flux as their lower boundary condition. Further

development and evaluation are needed to more realistically represent groundwater

in ESMs.

Runoff

Runoff is one of the major components of the global water cycle and accounts for

about 40% of the precipitation that falls on land. It plays an important role in the

global climate system by affecting ET and freshwater inputs to the oceans, which in

turn affects the ocean thermohaline circulation. LSMs’ runoff formulation directly

affects the partitioning of precipitation into runoff and ET and soil moisture.

Runoff is conceptually difficult to represent in ESMs. The environmental factors

that control runoff, precipitation, soil moisture, and topography, often vary consid-

erably on local scales. The plethora of conceptualizations for runoff schemes

reflects the uncertainties in understanding and representing fundamental

runoff processes. Land model intercomparison projects (e.g., [106, 124])

summarized various implementations of runoff schemes ranging from simple

bucket models to more sophisticated topography-based runoff models. The

partitioning of precipitation into evapotranspiration, surface runoff and subsurface

runoff (baseflow) varies widely among these LSMs. Climate models have been

156 G.-Y. Niu and X. Zeng



adjusted so that the global, multiyear average runoff production is about one third of

the average precipitation. Runoff in BATS is divided approximately equally

between surface and subsurface runoff to match the early observational

estimates [110].

Most LSMs parameterize runoff processes as a sum of surface runoff (fast

component) and subsurface runoff or base flow (slow component). The surface

runoff is generated by two major mechanisms: Horton runoff (infiltration excess)

and Dunne runoff (saturation excess). The former is assessed as the excess of

precipitation intensity over soil infiltration capability, while the latter is estimated

as the precipitation over saturated and impermeable surfaces. Horton runoff is more

difficult to represent in ESMs because the precipitation intensity produced by ESMs

is unrealistically small (“drizzle” problem) and thus precipitation needs to be

distributed in both space and time to mimic storms. Hydrologists introduced the

concept of fractional saturated area as the dominant control on surface runoff.

Surface runoff is largely dominated by the fractional saturated area, that is, the

saturated fraction of a grid cell of ESMs, where rainfall or snowmelt water

immediately flows into local river systems [125–127].

The fractional saturated area is conceptually correlated with near-surface soil

moisture as it is represented in BATS [110]. More recent implementations [38, 39,

127–129] relate the fractional saturated area to the water table depth (or water

deficit depth) and the subgrid characteristics of the topography following

TOPMODEL [126, 130]. The latter is described by statistics of the “topographic

index” (or “wetness index,” l = ln(a/tanb), where a is the specific catchment area,

i.e., the upstream area above a pixel that drains through the unit contour at the

pixel, and tanb is the local surface topographic slope) computed from the high-

resolution digital elevation model (DEM) [131]. Famiglietti and Wood [38]

proposed a discretized framework in which the distribution of the topographic

index was disaggregated into a number of bands, each representing a fraction of

the watershed with similar water table depth and soil moisture, to parameterize

the subgrid variability in soil moisture and runoff. However, its structural

conflicts with climate models and its high computation costs impeded its applica-

tion to ESMs. Most applications (e.g., [127–130]) used a three-parameter gamma

distribution function to represent the pdf of the topographic index. By fitting

the pdf of the topographic index with an exponential function, Niu et al. [39]

simply expressed the saturated fraction as an exponential function of the water

table depth.

The slow component was formulated as drainage under gravity in BATS [110] or

a downslope lateral drainage in SiB [24]. TOPMODEL formulated its base flow as

an exponential function of the soil water storage deficit [126] or the water table

depth [130]. The TOPMODEL-based runoff schemes for ESMs also parameterized

base flow as an exponential function of the catchment water storage deficit [128] or

the water table depth [38, 39, 127, 129]. The exponential relationship between

runoff (surface runoff and base flow) and the water table depth was demonstrated by

observations [50].
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Carbon Budgets and Vegetation Dynamics

The terrestrial ecosystem stores very large amounts of carbon, which is estimated at

about 500 Pg of carbon (1 Pg C = 1015 g C) in plant biomass and 2,000 Pg of carbon

in soil organic matter (top 1 m) [132]. The atmosphere, with a CO2 concentration of

370 ppmv, contains about 785 Pg C as CO2 [132]. Terrestrial ecosystem absorbs

atmospheric CO2 through photosynthesis at a rate of about 120 Pg C per year (gross

primary productivity; GPP) and releases about half of that back to the atmosphere

as CO2 by respiration, resulting in net primary production (NPP) at about 60 Pg

C per year. At the same time, heterotrophic respiration from soil and fire return

about 60 Pg C per year back to atmospheric CO2, closing the loop. The carbon

fluxes between terrestrial ecosystem and the atmosphere have been quite stable for

millennia. However, losses of C from land use change have been steadily increasing

over the last one-and-half centuries, approaching rates of about 2 Pg C per year,

mostly from tropical deforestation. Net cumulative CO2 emissions from land use

change may be close to 200 Pg C during the human history [132], about 25% of the

atmospheric CO2 at the level of 370 ppmv. Therefore, ESMs simulating the

evolution of climate for centuries of the past and the future should represent these

processes more realistically in their LSMs. ESMs also need to realistically simulate

the relative role of land versus ocean in taking up the CO2 released by anthropo-

genic sources.

Representing carbon budgets and vegetation dynamics is a major feature of the

third-generation LSMs. The third-generation models try to fully represent plant

physiology and phenology. Most of these LSMs use a semiempirical model of leaf

conductance [1, 30, 33] to link the stomatal resistance with photosynthesis

processes:

1=rst ¼ m
An

ca

ea
esat

Pþ g0 (7.16)

where m is an empirical coefficient (�9 for most C3 plants and �4 for C4 plants;

a larger mmeans the leaf consumes more water to assimilate the same carbon), An is

the net carbon assimilation rate, ca and ea are the CO2 concentration and vapor

pressure at the leaf surface, respectively, esat is the saturated vapor pressure at the

leaf temperature, P is the atmospheric pressure, and g0 is the minimum stomatal

conductance.

The net carbon assimilation is calculated as the minimum of three limiting

factors: the Rubisco-limited, light-limited, and export-limited rates of carboxyla-

tion rate for C3 plants and PEP-carboxylase limitation for C4 grasses based on

Collatz et al. [30, 133]. Both Rubisco-limited and export-limited rates of carboxyl-

ation are related to the maximum rate of carboxylation, which varies with tempera-

ture, foliage nitrogen, and soil water:
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Vmax ¼ Vmax 25a
Tv�25
10

vmax f ðNÞf ðTvÞb (7.17)

whereVmax 25 is maximum carboxylation rate at 25�C depending on plant functional

types (PFTs) and avmaxis the Q10 parameter (i.e., for an increase in temperature by

10�C, Vmax would increase by avmaxÞ , f ðTvÞ is a function that mimics thermal

breakdown of metabolic processes [30, 32], f ðNÞ is a foliage nitrogen factor and,

the b factor is the soil moisture stress factor.

Most third-generation models, for example, SiB2 [113], IBIS [5], MOSES [117],

and CLM4 [61] represent plant physiology using the above formulations. To

simulate the net carbon budgets from the terrestrial ecosystem, the models also

included representations of autotrophic respiration and heterotrophic respiration.

For instance, CLM4 represents autotrophic respiration as the sum of maintenance

respiration and growth respiration. Maintenance respiration is a function of tem-

perature and tissue nitrogen concentration for live biomass [134], while growth

respiration is assumed to be about 0.3 of the total carbon in new growth on a given

time step based on construction cost for a range of woody and nonwoody tissues.

CLM4 also represents decomposition, mineralization, and immobilization pro-

cesses of carbon and nitrogen stored in three litter pools, three soil organic matter

pools, and a coarse woody debris pool, under the soil moisture and temperature

controls [134].

These models also describe plant phenology. For instance, CLM4 predicts LAI,

SAI, and vegetation heights, including three distinct phenological types: evergreen,

seasonal-deciduous, and stress-deciduous. The seasonal-deciduous phenology algo-

rithm is based on the parameterizations for leaf onset and offset for temperate

deciduous broadleaf forest [135]. Initiation of leaf onset is triggered when

a common degree-day summation exceeds a critical value, and leaf litterfall is

initiated when daylength is shorter than a critical value. The stress-deciduous

phenology algorithm is based in part on the grass phenology model proposed by

White et al. [135]. The algorithm handles phenology for vegetation types such as

grasses and tropical drought-deciduous trees that respond to both cold and drought

stresses, and that can have multiple growing seasons per year. The overall reason-

able performance of CLM4 has been documented in Lawrence et al. [4].

Future Directions

LSMs have been developed for more than 3 decades, focusing more on

representations of biogeophysical processes, that is, the energy and water processes

occurring in various terrestrial components, and are now at their third generation.

They are becoming more complex and more realistically process based than earlier

generations. The third-generation models already include terrestrial ecosystem

dynamics and associated physiological effects on terrestrial carbon budgets.
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However, processes affecting greenhouse gas (GHG) emissions from various natural

and anthropogenic sources over land are still not fully represented in these models.

GHG emissions from various land surfaces are intimately coupled with various

terrestrial biogeochemical processes. As suggested by Pitman [2], the need for an

LSM to capture biogeochemical processes, which are tightly coupled to hydrological

processes, is increasing and this provides focuses for future developments.

Numerous researchers have investigated the feedback of terrestrial ecosystem to

climate change for the next century using the third-generation models (e.g., [15,

136]). Despite differences in details, these results demonstrate an important but

uncertain role of the future ecosystems in the climate system. In these simulations,

the terrestrial ecosystem functions as a sink through about 2050 and then turns into

a source due to the collapse of the soil-carbon sink, resulting in an acceleration of

global warming (1.5 K higher than without the carbon feedback). However, these

results are questionable, because the terrestrial ecosystem and related biogeochem-

ical processes are more complex than what are currently represented in these LSMs.

For instance, these models do not fully represent key processes for stabilizing soil

carbon, the hysteresis relationship between soil respiration and temperature, and the

isoprene protective effects on photosynthesis under high temperature and light

stress, etc. As an example, CLM4 includes the controlling role of soil temperature

and water potential in the decomposition of leaf litter and soil organic carbon, but it

lacks a representation of key processes such as biogeochemical weathering,

heteroaggregate formation, and microbial activities. To represent more sensitive

links between climate, microbial physiology, and C transformations, the response

of microbial enzymes and active fungi to bacteria ratios to climatic variation and

plant cover should be included [137, 138]. CLM4 considered emissions of biogenic

volatile organic carbon (BVOC) including isoprene and monoterpenes [139] based

on the emission model of Guenther et al. [140]. However, CLM4 neglects the

allocation of the assimilated carbon through photosynthesis to BVOC emissions

versus respiratory CO2 emissions and CO2 inhibitive effects on isoprene emissions.

As recently reviewed by Vickers et al. [141], a rich literature exists demonstrating

the role of isoprene in protecting photosynthesis under high temperature and light

stresses. Therefore, third-generation models have recently started to implement

photosynthesis-based isoprene emission algorithms [142]. In addition, a growing

body of evidence suggests a temperature-respiration relationship that exhibits

a diurnal hysteresis pattern [143]. A representative model (based on a Q10 factor)

that does not consider hysteresis would overestimate soil CO2 efflux for the entire

growing season [143]. It has also been found that the hysteresis is caused by the

imbalance of production and diffusion of CO2 within soil, and soil moisture

controls the transition from the imbalanced hysteresis pattern under wet soil

conditions to a balanced pattern without hysteresis under dry soil conditions. As

such, Riveros-Iregui et al. [143] suggested that the role of soil moisture in

controlling the hysteresis temperature–respiration relationship should be consid-

ered in models. In addition, autotrophic respiration from roots and more elaborate

representation of vertical root distribution should also receive more attention.
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A major indication of the anthropogenic effects on the climate system is the

large-scale conversion of natural ecosystems to cropland throughout human history.

Associated with this conversion are changes in GHG emissions and related water

use. Global agriculture is a major contributor to increasing the GHGs, with �18%

of the total anthropogenic emissions, including 9% of the total CO2 emissions due

to land use (e.g., deforestation), 40% of the total CH4 emissions due to rice

cultivation, and 62% of the total N2O emissions due to fertilizer application for

year 2000 [144]. For irrigation, global cropland consumes about 2,500 km3 of water

each year, which represents almost 70% of the global fresh water withdrawal from

surface reservoirs and aquifers [145]. LSMs have started to include crop models and

irrigation schemes (e.g., CLM4). Fully representing agricultural practices, for

example, sowing, dates, cultivars, irrigation, and fertilization and associated bio-

geochemical processes that affect GHG emissions and water use represents

a direction in future LSM development. Crop models developed by the agriculture

community and measurements from the Free-air Controlled Enhancement (FACE)

[146] over various natural and agricultural ecosystems should be helpful for

developing models and test models’ response to enhanced temperature and CO2

concentration.

Almost all LSMs for use in ESMs are 1D, solving the governing equations in the

vertical direction. However, water flows also in lateral directions at surface and in

subsurface driven by gravity; the lateral water flow controls the formation and

persistence of wetlands and governs the dynamics of freshwater inputs to the

oceans. There is an increasing need to implement 3D hydrologic model into

LSMs for use in ESMs. Methane emission, which is the second largest contributor

to the anthropogenic GHG, is highly related to wetland dynamics. Of all the natural

and anthropogenic sources of methane, methane emission from wetlands is known

to be the single largest [147]. However, most LSMs lack a representation of wetland

dynamics, prescribing wetland area as a fixed value. To more realistically represent

wetland area, Fan et al. [148] developed an efficient hydrologic framework to

simulate wetlands for climate models, involving large-scale groundwater conver-

gence that feeds wetland. The spatial resolution of ESMs is increasing (�10 km)

with recent computational advances. Implementing a quasi 3D hydrological model,

which describes lateral surface and saturated subsurface (groundwater) flows and

operates at a high spatial resolution (1 km), to LSMs will become possible in the

near future. The hydrology community recently proposed hyper-resolution (1 km)

global land surface modeling for monitoring Earth’s terrestrial water resources,

studies of biogeochemical processes, and agricultural applications, etc. [149].

Lessons learned from developing such a hyper-resolution model will certainly be

beneficial for developing advanced 3D LSMs for use in ESMs.
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Chapter 8

Integrated Assessment Modeling

James A. Edmonds, Katherine V. Calvin, Leon E. Clarke, Anthony C. Janetos,

Son H. Kim, Marshall A. Wise, and Haewon C. McJeon

Glossary

Climate policy

(greenhouse gas

mitigation policy)

A climate policy refers to a policy scheme designed to

deliberately limit the magnitude of climate change, often

involving mitigation of greenhouse gases. Integrated assess-

ment models (IAMs) represent climate policies in abstract

forms. The most commonly modeled climate policy is

attaching a universal price on emissions of carbon dioxide

(or carbon dioxide equivalent of other greenhouse gases).

Such policy represents a universal carbon tax or an econ-

omy-wide cap-and-trade policy. Other forms of climate

policies, such as differential carbon price by sector or renew-

able portfolio standards, have also been used in IAMs.

Cost of greenhouse

gas mitigation

(economic cost)

Integrated assessment models (IAMs) employ varies metrics

for estimating the economic cost of mitigation policy. One

common approach estimates reduction in GDP, a proxy for

slowdown in economic activity due to increased price of

energy and agricultural products. Another approach

estimates the (gross) loss in social welfare due to a policy

by measuring the area under the marginal abatement cost
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curve. Other metrics include foregone consumption,

compensated variation, and equivalent variation.

Integrated

assessment

model (IAM)

Integrated assessment model (IAM) in climate change

research is a model which simulates the interactions of

human decision-making about energy systems and land use

with biogeochemistry and the natural Earth system. IAMs

can be divided into two categories.

Higher resolution IAMs focus on explicitly representing

processes and process interactions among human and natural

Earth systems.

Highly aggregated IAMs use highly reduced-form

representations of the link between human activities, impacts

from climate change, and the cost of emissions mitigation.

Integrated earth

system model

(iESM)

Integrated Earth System Models (iESMs) are a class of

models under development by collaboration between

integrated assessment modeling community and climate

modeling community. By fully integrating the human

dimension from an IAM and the natural dimension from

a climate model, iESM allows simultaneously estimating

human system impacts on climate change and climate

change impacts on human systems, as well as examining

the effects of feedbacks between the components.

Land use

(land-use

emissions)

Land use is one of the largest anthropogenic sources of

emissionsofgreenhousegases, aerosols, and short-lived species.

Emissions, as well as sequestration of emissions, may occur

from land-use practices, changes in land cover, or changes in

forested area or the density. On the other hand, land-use patterns

are affected by the changes in the climate. As such, modeling

land use has been an important component of the integrated

assessment modeling of climate change.

Representative

concentration

pathways (RCPs)

The Representative Concentration Pathways (RCPs) are the

most recent set of emission scenarios generated by integrated

assessment models. Four scenarios explicitly considering

emissionmitigation efforts that were sufficiently differentiated

in terms of radiative forcing at the end of the century were

selected from published literature. RCPs are designed to facili-

tate the interactions with climate models by including

geospatially resolved emissions and land-use data.

Definition of the Subject

This entry discusses the role of integrated assessment models (IAMs) in climate

change research. IAMs are an interdisciplinary research platform, which constitutes

a consistent scientific framework in which the large-scale interactions between
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human and natural Earth systems can be examined. In so doing, IAMs provide

insights that would otherwise be unavailable from traditional single-discipline

research. By providing a broader view of the issue, IAMs constitute an important

tool for decision support. IAMs are also a home of human Earth system research

and provide natural Earth system scientists information about the nature of human

intervention in global biogeophysical and geochemical processes.

Introduction

Integrated assessment models (IAMs) are a class of models which simulate the

interactions of human decision-making about energy systems and land use with

biogeochemistry and the natural Earth system (see Fig. 8.1). In so doing, IAMs

provide insights that would otherwise be unavailable from investigating either

Human Systems

Natural Earth Systems
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Fig. 8.1 Integrated assessment models integrate human and physical Earth system climate science

(Source: Janetos et al. [72])
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natural systems or human systems, or their various components, alone. By their

nature, IAMs capture interactions between complex and highly nonlinear systems.

IAMs serve multiple purposes. One purpose is to provide natural science

researchers with information about human systems such as greenhouse gas

emissions, land use, and land cover. Another purpose of IAMs is to help human

system researchers – such as social scientists – better understand the nature of the

human impacts on the natural Earth systems.

Traditionally, researchers have relied on models that are each built on the

foundations of a single discipline – such as economics, geography, meteorology,

etc. By integrating research methods from various disciplines that characterize both

the human and natural Earth systems, IAMs produce insights that would not

otherwise be available from disciplinary research. The work of Wigley, Richels,

and Edmonds [1] provides a classic example of the nature of insights that are

available from the explicit linking of human and Earth systems. Wigley et al.

showed that the consideration of economic efficiency in the context of the

physical carbon cycle carried important implications for the timing of emissions

and emissions mitigation in a world seeking to stabilize the concentration of

atmospheric CO2. In other words, the imposition of human system considerations –

in this case economic efficiency considerations – led to a different and smaller set

of emissions pathways for consideration than were indicated by Earth system

considerations alone.

This entry discusses a range of selected topics associated with the development

and use of IAMs. This is not an extensive survey of the literature and the available

models. Instead, it focuses on a selected set of topics required to understand the

various types and uses of IAMs as well as those required to understand the

direction of cutting-edge IAM research. In addition, the entry focuses more

heavily on the strain of IAMs and integrated assessment modeling

(IA modeling) research focused on more effectively modeling human and Earth

system processes (higher resolution IAMs) than on the strain of IAMs and

IA modeling research that focuses on more aggregate representations of these

systems to allow for cost-benefit analysis. The remainder of this entry proceeds as

follows. Section “The Variety of Integrated Assessment Models” focuses on the

emerging distinction between highly aggregated and higher resolution IAMs.

Section “GCAM as an Example of a Higher Resolution IAM” then follows with

a discussion of the Global Change Assessment Model (GCAM) as an example of

a higher resolution IAM. Section “Using Higher Resolution IAMs to Analyze

the Impact of Policies to Mitigate Greenhouse Gas Emissions” discusses the long

history of using IAMs to explore the costs of greenhouse gas policies as well as

several of the most important conceptual issues that the IAMs have had to wrestle

with in this regard. Section “Future Directions: Integrating Climate Impacts

with IAM” then explores an important cutting-edge research direction for

higher resolution IAMs: the inclusion of structural or process models of

climate impacts.
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The Variety of Integrated Assessment Models

There are many approaches that have been used to develop and use IAMs. Indeed,

every IAM is different. One of the most important ways that IAMs are distinguished

from one another is the level of resolution at which they model the underlying

human and natural Earth system process. At one end of the spectrum are highly
aggregated IAMs. Highly aggregated IAMs use highly reduced-form representations

of the link between human activities, impacts from climate change, and the cost of

emissions mitigation. At the other end of the spectrum are higher resolution
IAMs. Higher resolution IAMs focus on explicitly representing processes and pro-

cess interactions among human and natural Earth systems. The following two

subsections provide background on each of these two classes of IAMs.

Highly Aggregated IAMs

The highly aggregated class of IAMs was developed to be able to explore the general

shape of optimal climate policy, taking into account both the economic costs of

mitigation and the economic damages from a changing climate. Highly aggregated

IAMs typically frame the climate change mitigation problem in a cost-benefit frame-

work, choosing emission pathways by explicitly weighing the economic costs of

mitigation with the economic benefits of reduced impacts. For this reason, highly

aggregated IAMs often focus on issues such as the social cost of carbon or optimal

tradeoffs over time between mitigation and impacts. Simplicity and parsimony are

main virtues of highly aggregated IAMs.

The oldest of the highly aggregated IAMs is the DICE (Dynamic Integrated

model of Climate and the Economy) model, whose antecedents have roots in the

work of Nordhaus and Yohe [2]. The original DICE model [3] was utilized to

explore the integration of human and natural Earth systems as part of a cost-benefit

calculation. Originally developed as a one-region global model, DICE was soon

followed by a multiregional version, RICE (Regional dynamic Integrated model of

Climate and the Economy) [4]. Other such models also emerged building on the

Nordhaus-Yohe and DICE paradigm of combining economic costs and benefits in

a single framework. These models include, among others, ICAM (the Integrated

Climate Assessment Model) [5], PAGE (Policy Analysis of the Greenhouse Effect)

[6], and FUND (Climate Framework for Uncertainty, Negotiation and Distribution)

[7] (Weyant et al. [8] and Parson and Fisher-Vanden [9] provide good sources of

information on pioneering IAMs).

Highly aggregated IAMs are generally composed of three parts: emissions and

mitigation, atmosphere and climate, and climate impacts. Mitigation cost and

climate change damages are typically monetized (i.e., expressed in dollars or

another currency) to allow comparison between mitigation and impacts on a

common basis. Highly aggregated IAMs do not attempt to describe in detail either
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the energy system or the land-use systems that generate emissions. Similarly,

detailed descriptions of the physical process links between climate change and

emissions are generally beyond their scope. Instead these models use emissions

mitigation supply schedules and climate damage functions. The former maps the

relationship between the degree of emissions mitigation and associated cost, while

the latter represents the relationship between a measure of climate change and the

economic value of damages including both damages from market and nonmarket

activities. The strength of these reduced-form representations is that they allow

highly aggregated IAMs to weigh costs and benefits explicitly. The drawback is that

they cannot provide insight into the actual processes that lead to these costs and

benefits.

The technical structure of highly aggregated models is simple, but the equations

and associated parameterizations are carefully estimated to capture the behavior of

more complex systems. These functions are parameterized by either approximating

the behavior of more complex process models, or by fitting simple equations to

highly aggregated variables. Analyses using FUND, for example, often produce

simple equations that capture the behavior of systems that are represented in more

complex models and data. Some models use a simpler approach, in which the

economic damages from a prescribed level of climate change are first estimated –

for example, a 2�C global mean surface temperature change (GMST) relative to

preindustrial level – and a simple function that passes through the estimate – for

example, a power function – is assigned to represent the relationship between

GMST and total economic damages.

A principle role of highly aggregated IAMs is to integrate and to compare in

a common metric, both mitigation effort and climate change impact – each estimated

from different disciplines – in order to determine the optimal pathway of emissions

reductions or the social cost of carbon. Valuation of damages provides substantial

conceptual challenges for highly aggregated IAMs. For example, they must put

a value on the loss of human lives as well as nonmarket damages. Another difficult

challenge faced by highly aggregated IAMs concerns the relative valuation of impacts

that occur at different points in time. See Box 8.1 for details.

Other issues that arise within the highly aggregated IAM paradigm include the

problem of interactive effects, that is, the state of one system directly affects the

state of another. For example, emissions mitigation may have large-scale effects on

land use, which in turn affect the climate, or the climate system may change as

a consequence of land-use policy. A challenge for highly aggregated IAMs is to

represent such complex interactions in a simple model structure.

Another challenge for highly aggregated IAMs is to determine how to treat

impacts occurring outside of the country undertaking the valuation. Early work with

highly aggregated IAMs looked at the problem of climate change from the perspec-

tive of a single, global, infinitely lived decision maker. But, more recent work has

shifted from the perspective of the globe (e.g., [3, 11]) to the perspective of a single

country, for example, the United States [14].
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The Higher Resolution IAMs

The higher resolution IAMs have roots in the same era as the highly aggregated IAMs.

However, they were developed along different lines to serve different purposes. The

higher resolution IAMs were developed to provide detailed information about human

and natural Earth system processes and the interactions between these processes. The

initial focus of these models was the determinants of anthropogenic carbon emissions.

To address this problem, IAMs developed detailed representations of the key features

determining long-term energy production, transformation, and end use. The higher

Box 8.1. Valuation over Time and Across Generations

Climate change is an issue that is inherently long term as well as global. The

nature of carbon cycle processes and their associated time scales create

a cumulative relationship between CO2 emissions and concentrations in the

atmosphere (and ocean). Thus, unlike traditional atmospheric pollution

problems, control of emissions to a level is insufficient to control the

concentration of greenhouses in the atmosphere. In other words, CO2 and

other greenhouse gases are stock pollutants.

One of the most important determinants of the social cost of carbon is the

rate at which future events are discounted back to the present. Nordhaus [10]

argues that the order of magnitude difference between his estimate of the

social value of carbon, derived using DICE, and the value estimated in the

Stern Report [11], derived using PAGE, is predominantly a result of the

differences in valuing the present relative to the future.

The problem is that there is no consensus on precisely how to approach

discounting over periods of time long enough to connect multiple

generations. The issues are laid out in Portney and Weyant [12], where the

editors note in their overview chapter that “those looking for guidance on the

choice of a discount rate could find justification for a rate at or near zero, as

high as 20% and any and all values in between” ([12], p. 4). The range of

estimates for the appropriate discount rate is generally nonnegative, though

even that generalization has its exceptions, for example [13].

Methods for determining the appropriate method for discounting the future

can be grouped into two general categories – those which are prescriptive and
those which are descriptive. The prescriptive approach appeals to ethical and

moral grounds for choosing a discount rate, while the descriptive approach

appeals to observed rates of return on assets in economic markets. It is

frequently observed that prescriptive approaches tend to generate lower

discount rates than descriptive approaches.
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resolution models distinguished different forms of energy, their supplies, demands,

and their transformation fromprimary energy to fuels and electricity for use in end-use

sectors such as buildings, transportation, and industry. Examples of higher resolution

IAMs are provided in Table 8.1.

Over time these models have grown in complexity. The models have added

increasing detail to their representations of both the energy system and the econ-

omy. They also broadened their scope, adding natural Earth system processes such

as carbon cycle. The current generations of higher resolution IAMs also typically

contain representations of agriculture, land use, land cover, and terrestrial carbon

cycle processes in addition to representations of atmosphere and climate processes.

While all of the higher resolution IAMs model both human and natural Earth

system processes, each model was developed independently and each IAM devel-

opment path emphasized different features of the climate change problem. Some

emphasized the development of detailed atmosphere and climate system models.

Some focused on detailed representations of technology. Others focused on

regional differences in emission patterns and energy systems data. The complex

nature of the models requires interdisciplinary research and modeling teams, some

of which are listed in Table 8.1.

Table 8.1 Some higher resolution integrated assessment models

Some higher resolution integrated assessment models with interdisciplinary research teams

Model Home institution Web link

AIM National Institutes for

Environmental Studies,

Tsukuba, Japan

http://www-iam.nies.go.jp/

aim/Asia-Pacific integrated model

GCAM Joint Global Change Research

Institute, PNNL, College

Park, MD

http://www.globalchange.

umd.edu/models/gcam/Global change assessment model

IGSM Joint Program on the Science

and Policy of Global

Change, MIT, Cambridge,

MA

http://globalchange.mit.edu/

igsm/Integrated global system model

IMAGE PBL Netherlands

Environmental Assessment

Agency, Bildhoven, The

Netherlands

http://themasites.pbl.nl/en/

themasites/image/The integrated model to assess

the global environment

MERGE Electric Power Research

Institute, Palo Alto, CA

http://www.stanford.edu/

group/MERGE/Model for evaluating the regional

and global effects of GHG

reduction policies

MESSAGE International Institute for

Applied Systems Analysis;

Laxenburg, Austria

http://www.iiasa.ac.at/

Research/ENE/model/

message.html
Model for energy supply strategy

alternatives and their general

environmental impact

ReMIND Potsdam Institute for Climate

Impact Research; Potsdam,

Germany

http://www.pik-potsdam.de/

research/sustainable-

solutions/models/

remind/

Refined model of investments

and technological

development
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Because the higher resolution IAMs have grown in their complexity over time,

describing the structure of each model in detail is beyond the scope of this entry. For

a reference, comparison of three IAMs – IGCM, MERGE, and MiniCAM (the

direct ancestor of GCAM) – can be found in [14]. Here, we present the summary

comparison table from the report in Table 8.2. All three of these modeling systems

have evolved considerably in the subsequent years.

GCAM as an Example of a Higher Resolution IAM

Introduction to GCAM

Rather than try to describe and compare the set of higher resolution IAMs, we have

chosen to describe here the Global Change Assessment Model (GCAM) as an

example of the higher resolution IAM genre. GCAM is the oldest of the higher

resolution IAMs. It traces its roots to work initiated in the late 1970s. The model’s

first applications were completed in the early 1980s by Edmonds and Reilly

[15–18]. Over time the model has developed and evolved through a series of

advances documented in a variety of papers including [19–22]. Documentation

for GCAM under its previous name, MiniCAM, can be found at http://www.

globalchange.umd.edu/models/MiniCAM.pdf/. Other higher resolution IAMs,

such as IMAGE and MESSAGE, also use MAGICC to represent atmosphere and

climate processes.

At the top level the GCAM model is broken into two interacting system, human

Earth system and natural Earth systems. Each of these systems in turn is made up of

subsystems. This is the basic structure of all IAMs. GCAM and the other higher

resolution IAMs are distinguished from the highly aggregated IAMs in the degree

of detail that is incorporated in describing human and natural Earth systems.

All higher resolution IAMs emphasize the representation of human activities and

their connection to the sources of greenhouse gas emissions. However, each

modeling team has taken a different approach. For example, the IGSM employs

a computable general equilibrium (CGE) model of the economy [23]. CGE models

emphasize the structure of the economy and the interaction of economic sectors

with each other and with labor and capital markets. The MERGE model also

employs a highly aggregated CGE model in combination with more highly

disaggregated energy sector models all embedded in an intertemporal

optimization framework [24, 25]. The Asia-Pacific Integrated Model (AIM)

employs a set of models that are used in combination [26]. The GCAM model

uses a partial equilibrium framework, rather than a CGE framework. Partial equi-

librium models delve into more detail in sectors that are directly related to the

analysis in question (e.g., energy supply and demand, agricultural production, land

use, and land-use change), and treat other sectors of the economy in aggregate.
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Table 8.2 Characteristics of the three integrated assessment models

Feature

IGSM (with EPPA

economics component) MERGE MiniCAM

Regions 16 9 14

Time horizon,

time steps

2100, 5-year steps 2200, 10-year steps 2095, 15-year steps

Model structure General equilibrium General equilibrium Partial equilibrium

Solution Recursive dynamic Inter-temporal

optimization

Recursive dynamic

Final energy

demand

sectors in

each region

Households, private

transportation,

commercial

transportation,

service sector,

agriculture, energy-

intensive industries,

and other industry

A single, nonenergy

production sector

Buildings,

transportation, and

industry (including

agriculture)

Capital turnover Five vintages of capital

with a depreciation

rate

A putty clay approach

wherein the input-

output coefficients

for each cohort are

optimally adjusted to

the future trajectory

of prices at the time

of investment

Vintages with constant

depreciation rate for

all electricity-sector

capital; capital

structure not

explicitly modeled in

other sectors

Goods in

international

trade

All energy and

nonenergy goods as

well as emissions

permits

Energy, energy-

intensive industry

goods, emissions

permits, and

representative

tradable goods

Oil, coal, natural gas,

biomass, agricultural

goods, and emissions

permits

Emissions CO2, CH4, N2O, HFCs,

PFCs, SF6, CO, NOx,

SOx, NMVOCs, BC,

OC, NH3

CO2, CH4, N2O, long-

lived F-gases, short-

lived F-gases, and

SOx

CO2, CH4, N2O, CO,

NOx, SO2,

NMVOCs, BC, OC,

HFC245fa,

HFC134a, HFC125,

HFC143a, SF6, C2F6,

and CF4
Land use Agriculture (crops,

livestock, and

forests), biomass

land use, and land

use for wind and/or

solar energy

Reduced-form emissions

from land use; no

explicit land-use

sector; assume no net

terrestrial emissions

of CO2

Agriculture (crops,

pasture, and forests)

as well as biomass

land use and

unmanaged land; the

agriculture-land-use

module directly

determines land-use

change emissions

and terrestrial carbon

stocks

(continued)
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Table 8.2 (continued)

Feature

IGSM (with EPPA

economics component) MERGE MiniCAM

Population Exogenous Exogenous Exogenous

GDP growth Exogenous productivity

growth assumptions

for labor, energy, and

land; exogenous

labor force growth

determined from

population growth;

endogenous capital

growth through

savings and

investment

Exogenous productivity

growth assumptions

for labor and energy;

exogenous labor

force growth

determined from

population growth;

endogenous capital

growth through

savings and

investment

Exogenous productivity

growth assumptions

for labor; exogenous

labor force growth

based on population

demographics

Energy efficiency

change

Exogenous Proportional to the rate

of GDP growth in

each region

Exogenous

Energy resources Oil (including tar sands),

shale oil, gas, coal,

wind and/or solar,

land (biomass),

hydro, and nuclear

fuel

Conventional oil,

unconventional oil

(coal-based

synthetics, tar sands,

and shale oil), gas,

coal, wind, solar,

biomass, hydro, and

nuclear fuel

Conventional oil,

unconventional oil

(including tar sands

and shale oil), gas,

coal, wind, solar,

biomass (waste and/

or residues and

crops), hydro, and

nuclear fuel

(uranium and

thorium); includes

a full representation

of the nuclear fuel

cycle

Electricity

technologies

Conventional fossil

(coal, gas, and oil),

nuclear, hydro,

natural gas combined

cycle (NGCC) with

and without capture,

integrated coal

gasification with

capture, and wind

and/or solar, biomass

Conventional fossil

(coal, gas, and oil),

nuclear, hydro, new

coal and gas with and

without CCS, other

renewables

Conventional fossil (coal,

gas, and oil) with and

without capture;

IGCCs with and

without capture;

NGCC with and

without capture; Gen

II, III, and IV reactors

and associated fuel

cycles; hydro, wind,

solar, and biomass

(traditional and

modern commercial)

(continued)
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Table 8.2 (continued)

Feature

IGSM (with EPPA

economics component) MERGE MiniCAM

Conversion

technologies

Oil refining, coal

gasification, and bio-

liquids

Oil refining, coal

gasification and

liquefaction, bio-

liquids, and

electrolysis

Oil refining, natural gas

processing, natural

gas to liquids

conversion, coal, and

biomass conversion

to synthetic liquids

and gases; hydrogen

production using

liquids, natural gas,

coal, biomass; and

electrolysis,

including direct

production from

wind and solar, and

nuclear thermal

conversion

Atmosphere –

ocean

2-dimensional

atmosphere with a 3-

dimensional ocean

general circulation

model, resolved at 20

minute time steps, 4�

latitude, 4 surface

types, and 12 vertical

layers in the

atmosphere

Parameterized ocean

thermal lag

Global multi-box energy

balance model with

upwelling-diffusion

ocean heat transport

Carbon cycle Biogeochemical models

of terrestrial and

ocean processes;

depends on climate

and/or atmospheric

conditions with 35

terrestrial ecosystem

types

Convolution ocean

carbon cycle model

assuming a neutral

biosphere

Globally balanced

carbon cycle with

separate ocean and

terrestrial

components, with

terrestrial response to

land-use changes

Natural

emissions

CH4, N2O, and weather

and/or climate

dependent as part of

biogeochemical

process models

Fixed natural emissions

over time

Fixed natural emissions

over time

Atmospheric fate

of GHGs,

pollutants

Process models of

atmospheric

chemistry resolved

for urban and

background

conditions

Single box models with

fixed decay rates. No

consideration of

reactive gases

Reduced-form models

for reactive gases and

their interactions

Radiation code Radiation code

accounting for all

significant GHGs and

aerosols

Reduced form, top-of-

the-atmosphere

forcing

Reduced form and top-

of-the-atmosphere

forcing; including

indirect forcing

effects

Source: Clarke et al. [14]



TheGCAMmodel drives the scale of human activities for each of its 14 geopolitical

regions utilizing assumptions about future labor force – determined by working-age

population, labor participation, and unemployment rate assumptions – along

with the assumptions about labor productivity growth. The highly disaggregated

energy, agriculture, and land-use components of GCAM are driven by the scale of

human activity. The GCAM geopolitical regions are explicitly linked through

international trade in energy commodities, agricultural and forest products, and other

goods such as emissions permits.

The human dimension of the Earth system as shown in Fig. 8.2 integrates the

energy system and the agriculture and land-use system, as well as the economic

system that drives the activity in both systems. An important feature of the GCAM

architecture is that the GCAM terrestrial carbon cycle model is embedded within

the agriculture-land-use system model; that is, the agriculture-land-use system

model explicitly calculates net land-use-change emissions from changes in land-

use patterns over time. The energy system model produces and transforms energy

for use in three end-use sectors: buildings, industry, and transport. The global

human Earth systems are modeled for 14 geopolitical regions.

GCAM is a dynamic-recursive market equilibrium model. In each period of time

the model’s solution algorithm reconciles the supplies and demands for goods and

services in all markets by finding a set of market-clearing prices. That market

solution establishes the foundation from which the model steps forward to the

next time period. Other IAMs, such as MERGE and MESSAGE, are built on an

intertemporal optimization framework. These models solve all periods simulta-

neously so that expectations about the future are consistent with the model’s future

realizations in each time period. In contrast, GCAM, and other dynamic-recursive

models, do not assume such intertemporal optimization takes place. Decisions

taken in one period contain only expectations about future market conditions.

These expectations will not necessarily be realized in the future. In other words,

the economic agents in GCAM make decisions based on a less-than-perfect fore-

sight, and the agents’ only recourse in the subsequent period is to make another set

of decisions, which can also be suboptimal.

The GCAM’s time step is variable, but in general is set to 5 years, which is

relatively common among integrated assessment models. GCAM tracks 16 different

greenhouse gases, aerosols, and short-lived species. The GCAM physical atmosphere

and climate are represented by the Model for the Assessment of Greenhouse-Gas

Induced Climate Change (MAGICC) [27–29].

In the remainder of this section, we discuss in more detail two of the most

important model components in GCAM: the representation of the energy system

and the representation of agriculture and land use more generally.

The Energy System in GCAM

In GCAM, the energy system represents processes of energy resource extraction,

transformation, and delivery, ultimately producing services demanded by end users
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(Fig. 8.3). In each time period, the market prices of all goods and services, including

primary energy resources, land, agricultural goods, and other products, are deter-

mined by the market equilibrium.

Primary energy production is limited by regional resource availability. Fossil

fuel and uranium resources are finite, graded, and depletable. Wind, solar, hydro,

and geothermal resources are also finite and graded, but renewable. Bioenergy is

also renewable, but is treated as an explicit product of the agriculture-land-use

portion of the model. Extraction costs for graded resources rise as the resource

consumption increases, but can fall with improvement in extraction technologies,

and can rise or fall depending on other environmental costs.

Primary energy forms can be transformed into six final energy products:

• Refined liquid energy products (oil and oil substitutes)

• Processed gas products (natural gas and other artificially gasified fuels)

• Coal

• Bioenergy solids (various forms of biomass)

• Electricity

• Hydrogen

Energy transformation sectors convert resources initially into fuels, which may be

consumed by either other energy transformation sectors or ultimately into goods and

services consumed by end users. In each energy sector,multiple technologies compete

for market share; shares are allocated among competing technologies using a logit

choice formulation [30–32]. The cost of a technology in any period is determined by

two key exogenous input parameters – the nonenergy cost and the efficiency of energy

transformation – as well as the prices of the fuels it consumes. The nonenergy cost

Oil 
Production

Biomass 
Conversion

Electric 
Power 

Generation

Liquids
Refining

N. Gas 
Production

Coal 
Production

Biomass 
Production

Coal 
Conversion

Gas 
Processing

Hydro

Solar

Bioenergy 
Market

Natural Gas 
Market

Hydrogen 
Market

Electricity 
Market

Wind

Geothermal

Buildings 
Sector

Industrial 
Sector

Transport 
Sector

Coal Market

Liquids 
Market

Hydrogen
Nuclear/Fusion

Fig. 8.3 The energy system in GCAM
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represents all fixed and variable costs incurred over the lifetime of the equipment

(except for fuel costs), amortized into a unit cost of output. For example, a coal-fired

electricity plant incurs a range of costs associated with construction (a capital cost)

and annual operations and maintenance. The efficiency of a technology determines

the amount of fuel required to produce each unit of output (e.g., the fuel efficiency of

a vehicle in passenger-km per GJ, or the electricity generation efficiency of a coal-

fired power plant). The prices of different fuels are calculated endogenously in each

time period based on supplies, demands, and resource depletion.

The representation of energy technologies in GCAM is highly disaggregated.

Table 8.3 shows, for example, the set of technologies with accompanying

assumptions of technology change over time, for the detailed US representation of

residential buildings in GCAM.

Other energy sectors in GCAM have similar, high degrees of technology disag-

gregation. There are, for example, multiple technology options for generating

electric power which include a variety of technologies utilizing solar energy as

well as technology options to capture, transport, and store CO2 in geologic

repositories (CCS). The deployment of CCS technology in conjunction with

bioenergy is of special interest in the consideration of very low long-term limits

on CO2 concentrations in that this combination potentially allows the production of

energy with negative net CO2 emissions. We discuss this particular technology

combination in greater detail in a subsequent section of this entry.

Table 8.3 Residential sector efficiencies by service and technology (Source: Kyle et al. [79])

Residential Reference Advanced

Service Technology unit 2005 2050 2095 2050 2095

Building shell W/m2 0.232 0.182 0.150 0.163 0.125

Heating Gas furnace Out/in 0.82 0.90 0.97 Same as Ref

Gas heat pump Out/in n/a n/a n/a 1.75 2.45

Electric furnace Out/in 0.98 0.99 0.99 Same as Ref

Electric heat pump Out/in 2.14 2.49 2.79 2.94 4.12

Oil furnace Out/in 0.82 0.86 0.93 Same as Ref

Wood furnace Out/in 0.40 0.42 0.44 Same as Ref

Cooling Air conditioning Out/in 2.81 3.90 4.88 4.59 7.19

Water heating Gas water heater Out/in 0.56 0.61 0.64 0.79 0.88

Gas HP water heater Out/in 0.89 1.09 1.22 1.75 2.45

Electric water heater Out/in 0.88 0.93 0.97 Same as Ref

Electric HP water heater Out/in n/a 2.46 2.75 2.75 3.45

Oil water heater Out/in 0.55 0.56 0.59 Same as Ref

Lighting Incandescent lighting Lumens/W 14 15 16 Same as Ref

Fluorescent lighting Lumens/W 60 75 94 Same as Ref

Solid-state lighting Lumens/W 100 112 125 156 245

Appliances Gas appliances Indexed 1.00 1.12 1.25 Same as Ref

Electric appliances Indexed 1.00 1.23 1.38 1.44 2.01

Other Other gas Indexed 1.00 1.12 1.25 Same as Ref

Other electric Indexed 1.00 1.08 1.21 1.40 1.96

Other oil Indexed 1.00 1.12 1.25 Same as Ref
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Agriculture and Land Use in GCAM

Overview of the Agriculture and Land-Use Model in GCAM

Land use is one of the largest anthropogenic sources of emissions of greenhouse

gases, aerosols, and short-lived species. The conversion of grasslands and forests to

agricultural land results in a net emission of CO2 to the atmosphere. In the

nineteenth century, the conversion of forests to agricultural land was the largest

source of anthropogenic carbon emissions. In the future, biomass energy crops

could compete for agricultural land with traditional agricultural crops, providing

a crucial linkage between land use and the energy system. Efforts to sequester

carbon in terrestrial reservoirs, such as forests, may limit deforestation activities,

and potentially lead to afforestation or reforestation activities. Interactions with

crop prices may also prove important. Since land is limited, increasing the demand

for land either to protect forests or to plant bioenergy crops could put upward

pressure on crop prices that would not otherwise occur [33].

Many higher resolution IAMs include representations of agriculture, land use,

and land cover. For some models, such as IGSM or IMAGE, a separate ecosystem

model is used to represent terrestrial systems, which is then loosely coupled to the

other elements of the IAM. These models represent land use, land cover, and the

terrestrial carbon cycle. The IGSM model employs the Terrestrial Ecosystems

Model [23], while IMAGE employs their terrestrial environment system submodel

[34]. Since these models represent terrestrial processes at fine geographic scales – ½

degree by ½ degree gridded maps, for example – land use is determined by coupling

an aggregated model of agriculture with a downscaling algorithm.

GCAM uses a model of land use and land cover, which allocates land area within

each of its 14 global geopolitical regions among different land uses and tracks

production from these uses and corresponding carbon flows into and out of terres-

trial reservoirs. The GCAM agriculture, land use, land cover, terrestrial carbon

cycle module determines the demands for and production of agricultural products,

the prices of these products, the allocation of land to competing ends, and the

carbon stocks and flows associated with land use.

Land is allocated between alternative uses based on expected profitability, which

in turn depends on the productivity of the land-based product (e.g., mass of

harvestable product per hectare), product price, and non-land costs of production

(labor, fertilizer, etc.). The allocation of land types takes place in the model through

global and regional markets for agricultural products. These markets include those

for raw agricultural products as well as those for intermediate products such as

poultry and beef. Demands for most agricultural products, with the exception of

biomass products, are driven primarily by income and population. Land allocations

evolve over time through the operation of these markets, in response to changes in

income, population, technology, and prices.

The boundary between managed and unmanaged ecosystems is assumed to be

elastic in GCAM. The area of land under cultivation expands and contracts as crops
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become more or less profitable. Thus, increased demands for land result in higher

cropland profitability and expansion into unmanaged ecosystems and vice versa.

Competition between alternative land uses in the GCAM is modeled using a nested

logit architecture [30–32] as depicted in Fig. 8.4.

The costs of supplying agricultural products are based on regional

characteristics, such as the productivity of land and the variable costs of producing

the crop. The productivity of land-based products is subject to change over time

based on future estimates of crop productivity change. It has been shown that the

rate of crop yield improvement is a critical determinant of land-use change

emissions [33, 35–37].

Bioenergy in GCAM’s Agriculture and Land-Use Model

Bioenergy supply is determined by the agriculture-land-use component (AgLU) of

GCAM, while bioenergy demand is determined in the energy component of the

model. For example, the larger the value of carbon, the more valuable biomass is as

an energy source and hence the greater the price the energy markets will be willing

to pay for biomass. Conversely, as populations grow and incomes increase, com-

peting demands for land may drive down the amount of land that would be available

for biomass production at a given price.

There are three types of bioenergy produced in GCAM: traditional bioenergy

production and use, bioenergy from waste products, and purpose-grown bioenergy.

Traditional bioenergy consists of straw, dung, fuel wood, and other energy forms

that are utilized in an unrefined state in the traditional sector of an economy.

Traditional bioenergy use, although significant in developing nations, is

Land

Tundra RockIceDesert UrbanLand AgroForestLand

AgroForest NonPasture

GrassShrubLand CropLand

AllPastureLand

UnmanagedPasture Pasture

OtherArableLandAllOtherCropsBiomassWheatCornShrnbLandGrassLandForestUnmanagedForest

AllForestLand

Fig. 8.4 Competition for land in GCAM. Gray exogenous in future periods, Green unmanaged

land use, Red managed land use. AgLU tracks carbon content in different land uses. Changes in

land use result in carbon flux to the atmosphere. Land owners compare economic returns across

crops, biomass, pasture, and (future) forest, based on underlying probability distribution of yields

per hectare
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a relatively small component of global energy. Traditional bioenergy is modeled

as a function of regional income levels with its use diminishing as per capita

incomes rise.

Other two types of bioenergy products are fuels that are consumed in the

modernized sectors of the economy. Bioenergy from waste products are

by-products of another activity. Examples in the model include forestry and

milling by-products, crop residues in agriculture, and municipal solid waste.

The availability of byproduct energy feedstocks is determined by the underlying

production of primary products and the cost of collection. The total potential

agricultural waste available is calculated as the total mass of the crop less the

portion that is harvested for food, grains, and fibers, and the amount of bioenergy

needed to prevent soil erosion and nutrient loss and sustain the land productivity.

The amount of potential waste that is converted to bioenergy is based on the price

of bioenergy.

The third category of bioenergy is purpose-grown energy crops. Purpose-grown

bioenergy refers to crops whose primary purpose is the provision of energy. These

would include, for example, switchgrass and woody poplar. The profitability of

purpose-grown bioenergy depends on the expected profitability of growing and

selling that crop relative to other land-use options in GCAM. This in turn depends

on numerous other model factors: in the agricultural sector, bioenergy crop produc-

tivity (which in turn depends on the character of available land as well as crop type

and technology) and nonenergy costs of crop production, and in the fuel processing

sector, cost and efficiency of transformation of purpose-grown bioenergy crops to

final energy forms (including liquids, gases, solids, electricity, and hydrogen), cost

of transportation to the refinery, and the price of final energy forms. Furthermore,

the price of final energy forms is determined endogenously as a consequence of

competition between alternative energy resources, transformation technologies,

and end-use energy service delivery technologies. In other words, prices are

determined so as to simultaneously match demand and supplies in all energy

markets as well as all land-use markets.

A variety of crops could potentially be grown as bioenergy feedstocks. The

productivity of those crops will depend on where they are grown – which soils

they are grown in, climate characteristics and their variability, whether or not they

are fertilized or irrigated, the availability of nitrogen and other minerals, ambient

CO2 concentrations, and their latitude. GCAM typically include a generic

bioenergy crop, with its characteristics similar to switchgrass that is assumed to

be grown in all regions. Productivity is based on region-specific climate and soil

characterizes and varies by a factor of three across the GCAM regions. GCAM

allows for the possibility that bioenergy could be used in the production of electric

power and in combination with technologies to provide CO2 emissions captured

and stored in geological reservoirs (CCS). This particular technology combination is

of interest because bioenergy obtains its carbon from the atmosphere and if that

carbon were to be captured and isolated permanently from the atmosphere the net

effect of the two technologies would be to produce energy with negative CO2

emissions. See, for example, [33, 38].
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Pricing Carbon in Terrestrial Systems

Efficient climate policies are those that apply an identical price to greenhouse gas

emissions wherever they occur. Hence, an efficient policy is one that applies

identical prices to land-use change emissions and fossil and industrial emissions.

This efficient approach is used as the default for emissions mitigation scenarios,

though other policy options have also been modeled (A change in atmospheric CO2

concentration has the same impact on climate change no matter what the source.

Thus, to a first approximation land-use emissions have the same impact as fossil

emissions. But, there are important differences. Land-use emissions do not have the

same impact on atmospheric concentrations as fossil emissions because land-use

emissions also imply changes in the future behavior of the carbon cycle. A tonne of

carbon emitted due to deforestation, for example, is associated with a decrease in

forest that would otherwise act as a carbon sink in the future. This effect, however, is

not currently captured in GCAM).

Carbon in terrestrial systems can be priced using either a flow approach or

a stock approach. The flow approach is analogous to the pricing generally discussed

for emissions in the energy sector: landowners would receive either a tax or

a subsidy based on the net flow of carbon in or out of their land. If they cut down

a forest to grow bioenergy crops, then they would pay a tax on the CO2 emissions

from the deforestation. In contrast, the stock approach applies a tax or a subsidy to

landowners based on the carbon content of their land. If the carbon content of the

land changes, for example, by cutting forests to grow bioenergy crops, then the tax

or subsidy that the landowner receives is adjusted to represent the new carbon stock

in the land. The stock approach can be viewed as applying a “carbon rental rate” on

the carbon in land. Both approaches have strengths and weaknesses. Real-world

approaches may not be explicitly one or the other. By default, GCAM uses the

stock approach.

Using Higher Resolution IAMs to Analyze the Impact

of Policies to Mitigate Greenhouse Gas Emissions

A Brief Overview of IAMs in Mitigation Policy Analysis

Higher resolution IAMs have been used extensively to estimate the effects of

measures to reduce greenhouse gas emissions. Until recently, the great bulk of the

literature focused on the analysis of idealized policy instruments, particularly

carbon taxes and cap-and-trade policies. For example, an important vein of early

analysis focused on the question of emissions trading. In general, this literature

showed that emissions mitigation undertaken with tradable permits resulted in

lower costs to all parties without any reduction in overall emissions mitigation

(see, for example, [39, 78]. The basic architecture of the Kyoto Protocol [40]

188 J.A. Edmonds et al.



reflected this line of thought. The application of these idealized pollution pricing

mechanisms was inherently straightforward in higher resolution IAMs because

these IAMs’ representations of the energy and terrestrial systems are all built on

economic principles. Furthermore, these mechanisms were of interest because

they were theoretically attractive for the efficiency with which they reduced

emissions.

In all the stabilization scenarios, the carbon price rises, by design, over time until

stabilization is achieved (or the end-year 2100 is reached), and the prices are higher

the more stringent is the stabilization level. There are substantial differences in

carbon prices between MERGE and MiniCAM stabilization scenarios, on the one

hand, and the IGSM stabilization scenarios on the other. Differences between the

models reflect differences in the emissions reductions necessary for stabilization

and differences in the technologies that might facilitate carbon emissions

reductions, particularly in the second half of the century.

Whether for CO2 or for multiple gases, a major focus of analysis has been to

compute minimum-cost emissions trajectories for meeting long-term stabilization

goals. The minimum cost is generally calculated on the assumption that all

regions of the world undertake emissions mitigation in a coordinated,

intertemporal program that reduces emissions in an economically efficient man-

ner. One key characteristic of this pathway is that the marginal cost of emissions

mitigation is equal in all sectors and in all regions at any point in time. It also

means that the price of CO2 rises at the rate of interest plus the rate of removal of

CO2 from the atmosphere until stabilization is reached [41]. After stabilization is

reached, the CO2 price no longer rises at this roughly constant rate, but instead is

determined so as to ensure that at any point in time emissions match uptake so

concentrations remain constant. Examples of classic stabilization CO2 price

pathways are shown in Fig. 8.5.

While mitigation cost may be one of the core questions addressed by the higher

resolution IAMs, it is not the only question. A second and complementary set of

questions focuses on implications for energy and agricultural systems, the next

level of detail upon which higher resolution IAMs focus. How fast must the

energy system change? Which technologies need to be deployed and when (see,

e.g., [42, 43])? Stabilization of the concentration of CO2 at any level requires that

net anthropogenic carbon emissions must peak and decline indefinitely toward

zero [1], but an almost infinite set of combinations of technology could in

principle deliver that outcome. For example, fossil fuel use could be replaced

with renewable energy forms in combination with energy efficiency

improvements. Alternatively, fossil fuels could continue to be deployed in the

global energy system in combination with CO2 capture and storage (CCS),

nuclear power, renewable energy, and energy efficiency. The combinations that

emerge from different models depend on assumptions about technology perfor-

mance and availability, scale of the economic system, and climate policy. A wide

range of studies has made evolution of the energy system to meet long-term goals

a focus of analysis (see, e.g., Fig. 8.6 from [14]).
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Stabilization in IAMs with Multiple Greenhouse Gases

The UnitedNations Framework Convention onClimate Change (UNFCCC) has as its

goal the stabilization of the concentration of greenhouse gases in the atmosphere. As

discussed above, examination of the cost of stabilization of CO2 and other gases has

been the focus of a great number of papers utilizing higher resolution IAMs. Early

studies focused exclusively on stabilization. However, more recent efforts have

explored stabilization considering multiple greenhouse gases [14, 44].

When multiple greenhouse gases are considered simultaneously the problem

emerges as to how to compare the greenhouse effects across the various

constituents. In terms of climate change, the natural aggregate measure is radiative

forcing (see Box 8.2). It is relatively straightforward to compute the radiative

forcing for a group of gases, aerosols, and short-lived species and then to estimate

what concentration of CO2 would yield that radiative forcing level if all other

species were set at their preindustrial levels. The answer to that question is the CO2-

equivalent concentration for that bundle of gases.

Two approaches have been used to determine the optimal mix of abatement

across gases in stabilization. One approach is to minimize the total costs of meeting

a long-term radiative forcing target, based on the combined mitigation costs for all

greenhouse gases using intertemporal optimization. This is the approach employed

by intertemporal optimization models such as MERGE. In this structure, all of the

prices of the different greenhouse gases rise at relatively constant rates until
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Fig. 8.6 Global primary energy production across scenarios from three higher resolution IAMs

leading to approximately 450 ppmv CO2 (Source: Clarke et al. [14])
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Box 8.2. Radiative Forcing

Most of the Sun’s energy that reaches the Earth is absorbed by the oceans and

land masses and radiated back into the atmosphere in the form of heat or

infrared radiation. Some of this infrared energy is absorbed and reradiated

back to the Earth by atmospheric gases, including water vapor, CO2, and other

substances. As concentrations of GHGs increase, there are direct and indirect

effects on the Earth’s energy balance. The direct effect is often referred to as

a radiative forcing, a subset of a more general set of phenomena referred to as

climate forcings. The National Research Council [45] offers the following set

of definitions:

Factors that affect climate change are usefully separated into forcings and feedbacks.

. . . A climate forcing is an energy imbalance imposed on the climate system either

externally or by human activities. Examples include changes in solar energy output,

volcanic emissions, deliberate land modification, or anthropogenic emissions of

greenhouse gases, aerosols, and their precursors. A climate feedback is an internal

climate process that amplifies or dampens the climate response to an initial forcing.

An example is the increase in atmospheric water vapor that is triggered by an initial

warming due to rising carbon dioxide (CO2) concentrations, which then acts to

amplify the warming through the greenhouse properties of water vapor.. . .
Climate forcing: An energy imbalance imposed on the climate system either

externally or by human activities.

• Direct radiative forcing: A climate forcing that directly affects the radia-

tive budget of the Earth’s climate system; for example, added carbon

dioxide (CO2) absorbs and emits infrared radiation. Direct radiative forc-

ing may be due to a change in concentration of radiatively active gases,

a change in solar radiation reaching the Earth, or changes in surface

albedo. Radiative forcing is reported in the climate change scientific

literature as a change in energy flux at the tropopause, calculated in units

of watts per square meter (W/m2); model calculations typically report

values in which the stratosphere was allowed to adjust thermally to the

forcing under an assumption of fixed stratospheric dynamics.

• Indirect radiative forcing: A climate forcing that creates a radiative imbal-

ance by first altering climate system components (e.g., precipitation effi-

ciency of clouds), which then almost immediately lead to changes in

radiative fluxes. Examples include the effect of solar variability on strato-

spheric ozone and the modification of cloud properties by aerosols.

• Nonradiative forcing: A climate forcing that creates an energy imbalance

that does not immediately involve radiation. An example is the increasing

evapotranspiration flux resulting from agricultural irrigation.

Source: Clarke et al. [14], Box 1.1; NRC [45]
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stabilization is reached, consistent with the general result for minimum-cost CO2

pathways discussed in the previous section [41], but the rates vary among gases.

This leads to different timing of mitigation across gases. Indeed, one of the

outcomes of this sort of approach to multi-gas stabilization is that the rate of

increase in greenhouse gas prices is higher for gases with shorter lifetimes, with

the implication that mitigation for these gases is delayed relative to CO2. For

example, this approach leads to scenarios in which mitigation of CH4 is relatively

modest in the early term and then increases dramatically as the total radiative

forcing target gets close.

An alternative, though less rigorous methodology that is used to compare

greenhouse gases in multi-gas emissions mitigation programs is the application of

Global Warming Potential (GWP) coefficients. This is the approach generally used

by dynamic-recursive models such as GCAM. The GWP was developed as an

analogue to the Ozone Depletion Potential (ODP) coefficients employed to com-

pare the various stratospheric ozone depleting substances [46]. GWPs are defined as

the effect on radiative forcing of the release of an additional kilogram of a gas,

relative to the simultaneous release of a kilogram of CO2, integrated over one of

three time horizons: 20 years, 100 years, and 500 years. Values for the GWPs

calculated by IPCC Working Group I in the Fourth Assessment Report [47] are

given in Table 8.4. GWPs are something of a mixture between the relative contri-

bution of a gas to radiative forcing, which would be better calculated directly if

possible, and an incomplete estimate of climate damage associated with the release

of an additional kilogram of a greenhouse gas.

Table 8.4 Direct global warming potential coefficients

Industrial

designation or

common name

(years)

Chemical

formula

Lifetime

(years)

Radiative

efficiency

(Wm�2 ppb�1)

IPCC

[48]

(100�year) 20�year 100�year 500�year

Carbon dioxide CO2 See

notesa

b1.4�10�5 1 1 1 1

Methanec CH4 12c 3.7�10�4 21 72 25 7.6

Nitrous oxide N2O 114 3.03�10�3 310 289 298 153
aThe CO2 response function used in this report is based on the revised version of the Bern carbon

cycle model (Bern2.5CC) [49] used in IPCC [47] Chap. 10 Global Climate Projections using

a background CO2 concentration value of 378 ppm. The decay of a pulse of CO2 with time t is

given by a0 þ
P3
l¼1

ai � e�t=tl where a0 = 0.217, a1 = 0.259, a2 = 0.338, a3 = 0.186, t1 = 172.9 years,

t2 = 18.51 years, and t3 = 1.186 years
bThe radiative efficiency of CO2 is calculated using the IPCC [50] simplified expression as revised

in the TAR, with an updated background concentration value of 378 ppm and a perturbation of

+1 ppm (see IPCC [47], Sect. 2.10.2)
cThe perturbation lifetime for methane is 12 years as in the IPCC [48] (see also [47], Sect. 7.4). The

GWP for methane includes indirect effects from enhancements of ozone and stratospheric water

vapor (see [47], Sect. 2.10.3.1)

Source: IPCC [43], Table 2.14, pp. 212–213
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The primary virtue in the GWP is its application as an estimate of the relative

importance of various greenhouse gases by national, local, and regional parties.

Multi-gas policy instruments often employ GWPs as a means of comparing

emissions of different greenhouse gases. The ratio of any pair of GWPs serves as

the inverse of the relative price of any pair of greenhouse gases.

In application to stabilization studies in IAMs, GWPs yield constant estimates of

the relative contributions of various greenhouse gases to climate change. In other

words, since the GWPs are assumed to be constant over time, the relative prices of

CO2 and other gases are also constant over time. Hence, in studies that use GWPs to

achieve multi-gas stabilization, mitigation for gases with shorter lifetimes generally

takes place more quickly that would be the case in models that employ an

intertemporal optimization approach. In this sense, although GWPs are a reality

in policy design, they are an imperfect tool for comparing greenhouse gases over

time. Manne and Richels [52] showed that if the total cost is the only criteria by

which emissions pathways are judged then GWPs were not constant, but would

rather change systematically with time. Peck and Wan [41] showed that if

minimizing the total cost of limiting radiative forcing were the sole criterion by

which greenhouse gas concentrations were controlled then the shadow price of each

greenhouse gas rises at the interest rate plus the rate of removal from the atmo-

sphere. Hence the corresponding GWP ratio of any two gases changes over time at a

rate equal to the removal rate difference between the two gases. This notion is

profoundly different than the concept of the GWP as a constant.

Manne and Richels [52] did show that the inclusion of secondary criteria, in

addition to limiting radiative forcing, such as limiting the rate of change of radiative

forcing, could produce very different GWPs and rates of change in GWPs over

time. Some combinations of objective criteria could generate relatively stable

GWPs.

The Economic Costs of Implementing the Framework Convention
on Climate Change

As mentioned above, estimating the costs of meeting long-term targets is a primary

function of IAMs. Typical estimates for global costs of limiting CO2 equivalent

concentrations to alternative levels from the IPCC [43] are shown below for two

representative years, 2030 (Table 8.5) and 2050 (Table 8.6).

While the question of the measurement of the economic cost of emissions

mitigation has not generated as much debate as questions about discounting, there

are important differences in methodology that different modeling teams employ.

Perhaps the most commonly used metric comparable across models is the price of

carbon. This metric is useful for comparing across models when simple policy

instruments to mitigate emissions are employed – specifically either an economy-

wide carbon tax or the carbon price emerging from an economy-wide cap-and-
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trade. As policy assumptions become more complex the usefulness of this metric

fades. In fact, in mixed emissions mitigation systems, where only part of the

economy is controlled by a tax or cap-and-trade program, the carbon price and

real economic cost can move in opposite directions. That is, as more of the high-

cost sectors of the economy are controlled with less-efficient nonmarket-based

policies, the price of carbon may fall while the total economic cost rises.

A variety of approaches have been applied to obtain the total economic cost.

These include integration under the marginal abatement cost schedule, measure-

ment of foregone consumption, and compensated/equivalent variation. Each of

these approaches traces its method back to welfare economics. While measures

that directly link to welfare functions are in principle best, welfare cannot be

Table 8.5 Estimated global macroeconomic costs in 2030a for least-cost trajectories toward

different long-term stabilization levelsb, c

Stabilization levels

(ppm CO2-eq)

Median GDP

reductiond (%)

Range of GDP

reductiond, e (%)

Reduction of average annual GDP

growth ratesd, f (percentage points)

590–710 0.2 �0.6 to 1.2 <0.06

535–590 0.6 0.2 to 2.5 <0.1

445–535g Not available <3 <0.12
aFor a given stabilization level, GDP reduction would increase over time in most models after

2030. Long-term costs also become more uncertain
bResults based on studies using various baselines
cStudies vary in terms of the point in time stabilization is achieved; generally this is in 2100 or later
dThese are global GDP-based market exchange rates
eThe median and the 10th and 90th percentile range of the analyzed data are given
fThe calculation of the reduction of the annual growth rate is based on the average reduction during

the period till 2030 that would result in the indicated GDP decrease in 2030
gThe number of studies that report GDP results is relatively small and they generally use low

baselines

Source: IPCC [43], SPM, p. 12

Table 8.6 Estimated global macroeconomic costs in 2050 for least-cost trajectories toward

different long-term stabilization levelsa

Stabilization levels

(ppm CO2-eq)

Median GDP

reductionb (%)

Range of GDP

reductionb, c (%)

Reduction of average annual GDP

growth ratesb, d (percentage points)

590–710 0.5 �1 to 2 <0.05

535–590 1.3 Slightly negative-4 <0.1

445–535e Not available <5.5 <0.12
aThis corresponds to the full literature across all baselines and mitigation scenarios that provide

GDP numbers
bThese are global GDP-based market exchange rates
cThe median and the 10th and 90th percentile range of the analyzed data are given
dThe calculation of the reduction of the annual growth rate is based on the average reduction

during the period until 2050 that would result in the indicated GDP decrease in 2050
eThe number of studies is relatively small and they generally use low baselines. High emissions

baselines generally lead to higher costs

Source: IPCC [43], SPM, p. 18
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directly observed and unless highly unlikely circumstances prevail, Arrow [53]

has shown that a welfare function with the properties needed to get a measure on

real economic cost cannot exist – a distinct disadvantage for numerical

simulations.

While the choice of methodological approach to measuring real economic cost

will doubtless affect valuation, two larger sources of variation in cost estimates

are the policy instruments applied and the assumed rate of technological improve-

ment. It is well known that different policy instruments can attain the same

mitigation level with different costs [54]. Differences in technology assumptions

can also produce substantial differences in cost (see, e.g., [42, 55]). Exploring the

implication of different policy instruments and technology availability are two

important directions of future work by the higher resolution IAM research

community.

The principal research question which the higher resolution IAMs addressed has

been different from that of the highly aggregated IAMs. Whereas the highly

aggregated IAMs focused on the problem of determining the optimal balance

between emissions mitigation and adaptation to climate change, the higher resolu-

tion IAMs focused more on the cost of implementing a policy to limit emissions,

concentrations, or combined radiative forcing of greenhouse gases. The higher

resolution IAM community has generally taken an agnostic position on the question

of whether the policy instrument or the policy goal in question was desirable or not

and simply went about the task of calculating the cost of achieving the given goal

of implementing the prescribed policy.

As time has passed, the political conversation has moved away from the question

of the use of cap-and-trade to control emissions to consider hybrid policy

architectures in which emissions mitigation is pursued through a combination of

policy measures some of which differ substantially from the conventional market

mechanisms, such as carbon taxes or cap-and-trade. For example, many current

emissions mitigation proposals contain renewable portfolio standards (RPS). These

policy instruments require a minimum fraction of total power generation to be

provided by renewable energy forms such as wind and solar.

There are many reasons for the shift. The prospects for a comprehensive

international agreement based on the principles of cap-and-trade have diminished.

Many parties in the international negotiations were less concerned with economic

efficiency and cost-minimization than they were with a sense of moral obligation

to achieve domestic emissions mitigation targets without resorting to emission

trading. Within the United States similar forces are at work. Efforts to develop

a comprehensive countrywide emissions cap-and-trade system show little pros-

pect for entering into effect. Also, the European Union and Japan have either

chosen alternatives to cap-and-trade or employ cap-and-trade within limited

sectors of the economy. Such policies have pushed IAMs to develop more

sophisticated representations of policies in order to estimate the policy effects

[56]. In the same context, the IAMs have begun to explore the implications of

international regimes in which nations begin emissions mitigation at different

times [57, 58].
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Future Directions: Integrating Human Earth Systems

with Natural Earth Systems

Integrated Assessment modeling research is a continuously evolving field. As the

models have matured and diversified, researchers have pushed the development

frontiers in multiple directions simultaneously in order to answer a wide range of

research questions. For example, researchers have broadened the scope of the

models to include more sectors of the human Earth system such as land use and

agriculture. They have expanded coverage of various types of the greenhouse gases

by including an increasingly diverse set of their sources and activities. They have

also lengthened the time horizon of analysis, pressing past the year 2100 and

multiple centuries beyond. At the same time, the researchers have elaborated the

key model components by slicing each of them in smaller pieces, for example, by

adding finer spatial and temporal resolution and disaggregated representation of

technologies.

An increasingly prominent research frontier has been the formal integration

with other fields of climate change research, namely climate modeling (CM) and

impacts, adaptation, and vulnerability (IAV) research. Although many research

questions do not require the use of IPCC-class models of human and natural Earth

systems, others cannot be addressed adequately without the development of

integrated Earth systems models. The development of integrated Earth systems

models opens the door to formally modeling the simultaneous interactions

between human activities, climate change, and climate change impacts on

human systems.

The Representative Concentration Pathways: An Example
of Interactions with Climate Models

The assessment of climate change has traditionally been a linear research process.

IA researchers produce emissions scenarios which in turn are transferred to the

climate modeling community for use as inputs. The climate modeling community

employs these scenarios to force future climate calculations. These climate

calculations are then used by IAV researchers to produce estimates of the

consequences of climate change. In the past, there has been little communication or

feedback between research communities. Each community conducted its research

independently and left it for others to figure out how or whether to use it. Beginning in

1990, the integrated assessment modeling community began to interact with the

climate modeling community, though interactions with the carbon cycle and other

natural Earth system researchers go back even further (see, e.g., [59], and more

generally, [60]). Moss et al. [61] provide a succinct history of scenario development,

which is summarized in Fig. 8.7.
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1969 Coupled
occean-atmosphere
GCM 63

1970s Scenarios
used to explore
natural resource
sustainability 23–26

1980s Scenarios
become
mainstream in
futures
research 27–29

1988 GCM
simulations using
time-dependent
(transient) scenarios
indicate the signal of
anthropogenic climate
warming would soon
emerge from natural
variability 66

1990 IPCC First
Assessment Report
uses analogue and
equilibrium climate
scenarios for
impact assessment

1990 IPCC
SA90
emissions
scenarios 36

1991 Impact
studies
published
based on
transient
climate
scenarios 68,69

1994 IPCC
impact
assessment
guidelines 70

1992 IPCC IS92
scenarios 30

1967 Modelled
estimates of
climate
sensitivity 62

1896 Arrhenius�
estimates CO2−
induced
warming 64

Figure 1 | Timeline highlighting some notable developments in the creation and use of emissions and climate scenarios. The entries are illustrative of the
Overall course of model-based scenario development (blue) and application (beige) described in this Perspective, and also give some context (green); they do

1983 Villach
Conference
reviews
agricultural
and ecosystem
impacts with
scenarios 67

1985 second
Villach Conference
estimates mid 21st
century rise of
global mean
temperature
greater than any in
human history 68

1988 IPCC
established

1980 World
Climate
Research
Program
established1960 Keeling

shows
atmospheric
CO2 is
increasing 65

1995
Scenario
generator for
non-specialists 71

1998
Emissions
scenarios
database
published 74

1996 Country
studies of
impacts 73

1998 IPCC
regional impacts
assessment
(using IS92) 75

1999 SRES,
no climate policies
included 32

2001 IPCC
Third
Assessment
Report impact
results using
IS92 scenarios

2000 Pattern
scaling of IS92-
based climate
projections to
emulate SRES 76

2001
Comprehensive
multi-model
assessment of
mitigation
scenarios 77

2004 Regional
projections of
seasonal
temperature and
precipitation based
on SRES 79

2007 IPPc ‘new
scenarios’ expert
meeting 3 and model
comparison of
economic and
technological pathways
to stabilize radiative
forcing at several
levels 48

2009 UK
probabilistic
national climate
projections 81

and extension
of methodology
for probabilistic
climate
projections 82

2009 World
Climate
Conference 3
discusses
development
of capacity to
respond to the
needs of users
of climate
information
worldwide.

not provide a comprehensive account of all  major scenarios and significant studies or assessments that have used them. See Supplementary Information for
details. GCM, general circulation model; GHG, greenhouse gas; IAMC, Integrated Assessment Modelling Consortium.

2009 RCPs
released, starting
‘Parallel phase’ of
new scenario
process

2005 Scenarios
and model
comparison of
mitigation
options for non-
CO2 GHGs 80

2001 Socio-
economic
‘vulnerability’
scenarios 78

2005
Millennium
Ecosystem
Assessment

2007 IPCC Fourth
Assessment
Report uses SRES
and IS92 scenarios
for impacts

2007 IAMC founded

1995
comparison of
global vegetation
model results
using equilibrium
GCM 2 × CO2 72

1995 IPCC
Second
Assessment
Report uses
equilibrium
climate
scenarios in
impact report
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Fig. 8.7 Timeline highlighting some notable developments in the creation and use of emissions

and climate scenarios (Source: Moss et al. [61], pp 748–749)
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There have been numerous long-term scenarios of global greenhouse gas

emissions. Three important benchmarks were the publication of scenarios referred

to as SA90 [51], IS92 [62], and SRES [63]. These scenarios are notable in that the

climate modeling community used them to simulate potential effect of future

emissions paths on the climate system. The earliest scenarios considered only fossil

fuel CO2 emissions. Over time scenarios became richer, including land-use change

emissions, non-CO2 greenhouse gases, and short-lived species. While these

scenarios span a wide range of potential future emissions, none considered

limitations on emissions, that is, until Moss et al. [61] and the publication of the

Representative Concentration Pathways (RCPs).

The RCPs are the most recent set of scenarios developed for use in the climate

models. They were chosen to initiate an assessment cycle by providing the climate

modeling community with a set of scenarios that were sufficiently differentiated by

the end of the century to be scientifically relevant and to provide detailed

information on the sources of emissions of greenhouse gases and short-lived species

from all anthropogenic sources. RCPs differ from earlier scenario development

activities in that they were selected from existing scenarios that were available in

the peer-reviewed literature rather than being developed de novo. Selected

scenarios from the open literature were named corresponding to their century’s

end radiative forcing levels: 8.5, 6.0, 4.5, and 2. 6 Wm�2 (see Table 8.7).

Subsequent to selection, the four scenarios were updated and harmonized to

include the most recent observational data and downscaled to produce harmonized

gridded outputs for emissions, land use, and land cover. The resulting time-paths for

radiative forcing are given in Fig. 8.8 (The detailed scenario data are available at

www.iiasa.ac.at/web-apps/tnt/RcpDb/).

The RCPs differ from previous scenarios employed by the climate modeling

community in that they

1. Include scenarios with explicit emissions mitigation

2. Provide geospatially resolved emissions at ½ degree by ½ degree

3. Provide geospatially resolved land use and land cover at ½ degree by ½ degree

The most recent set of scenarios, while highly useful to the climate modeling

community, are less useful from the perspective of the impacts, adaptation, and

vulnerability community. While the scenarios contain detailed information that

would be of interest to climate modelers, they do not carry associated socioeco-

nomic information, or energy or commodity prices.

Furthermore, even if the socioeconomic data were included for these scenarios,

each of the scenarios was crafted by a different modeling team, using different

assumptions about key socioeconomic and other variables. For instance, it would be

difficult, if not impossible to determine if the difference in estimated impacts of

climate change associated with RCP4.5 and RCP2.6 was the result of differences in

the magnitude of climate change or that of differences in the underlying human

Earth systems that characterize the GCAM and IMAGE scenarios, respectively.

In order to establish a framework, in which the human system impact of climate

change could be coupled with emissions scenario and climate model, a new
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scenario matrix architecture is under development. This architecture would create

a suite of scenarios that are defined in terms of two bundles of descriptors: shared

socio-ecosystem pathways (SSPs) and shared climate policy assumptions (SPAs).

SSPs have three components: a set of quantitative assumptions that are used by

IAMs, such as population and economic growth; a set of quantified assumptions

about variables that are not part of IAMs, for example, governance index; and

a narrative which describes the general state of the world and its evolution over

the course of the twenty-first century.

SPAs define the state of climate policy and its evolution around the world. They

are defined with quantitative descriptors, where appropriate, and a qualitative

narrative. The quantitative descriptors could be, for example, a limit on radiative

forcing, such as was used to define the RCPs. In addition, information regarding the

nature of policies that are to be employed to affect the prescribed outcome could be

included.

The virtue of harmonizing SPAs with RCPs is that the new scenarios could be

coupled smoothly with climate model output from ensemble calculations. This in

turn would facilitate analysis that could potentially be fully integrated across three

broad research communities: climate modeling, integrated assessment modeling

and impacts, and adaptation and vulnerability. Two examples of such scenario

matrix architectures can be found in [70, 71].
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four RCP scenarios (Source:

Moss et al. [61], P. 748–749)
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Climate Impacts in Higher Resolution IAMs

Higher resolution IAMs are increasingly focusing on explicitly modeling the

physical impacts of climate change [72]. This work builds on a long tradition of

modeling climate impacts in the higher resolution IAM community (see, e.g., [26,

73–75]). However, to date higher resolution IAMs have examined climate impacts

using a sequential methodology, that is, they start with emissions, which are

assumed to be given by climate models, and then analyzed the consequences of

the ensuing climate change.

New model development is increasingly focused on methods and tools that will

allow higher resolution IAMs to examine impacts simultaneously with mitigation

and therefore to allow the two to interact. For example, there are on-going research

efforts that utilize the higher resolution IAMs to study scenarios

in which interactions between policies to mitigate emissions through changes in

land-use and land cover – e.g., afforestation policies – and adaptive responses to

climate change in agricultural sectors are simultaneously examined. Two comple-

mentary model development directions are also worthy of note. First, the higher

resolution models are beginning to couple with state-of-the-art natural Earth system

models (discussed later in this section) and second, they are beginning tomove to finer

spatial and temporal resolutions.

The increasing attention to climate impacts implies that the higher resolution IAMs

will produce new results that will also contribute to the impacts, adaptation, and

vulnerability (IAV) research. For nonmarket impacts of climate change, higher reso-

lution IAMs will compute physical consequences, but not necessarily economic

damage estimates, as it has generally been the casewith climate impacts that the higher

resolution IAMs have examined to date. For climate impacts associated with market-

able goods and services, economic costs can also be estimated. But, the nonlinear

nature of the human and natural Earth system means that separating out the impact of

emissions mitigation from the impact of climate change will be nontrivial.

A good example of new work on the interactions between mitigation and impacts

within higher resolution IAMs is land use and land cover. Land use will be affected

both by a changing climate and by emissions mitigation effort. Mitigation effects will

take the form of forest expansion to reduce land-use change emissions along with the

use of bioenergy crops for energy production. A changing climate will bring about

many changes in the nature of terrestrial systems, including changes in crop yields. All

of these dynamics will interact.

To illustrate these interactions, the effects of climate change on crops were

modeled as a response function derived from data reported in IPCC [76]. Figure 8.9

shows the distribution of estimates of crop yields for maize and wheat for low and

other latitudes.

Both a reference scenario and a policy scenario in which CO2 concentrations

were limited to stay below 500 ppm were presented. Land-use change emissions of

CO2 were recorded for the two scenarios, with and without consideration of climate

feedbacks through agricultural crops. These results are displayed in Fig. 8.10.
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Fig. 8.9 The modeled effects of climate change on crops. Sensitivity of cereal yield to climate

change for maize, wheat and rice, as derived from the results of 69 published studies at multiple

simulation sites, against mean local temperature change used as a proxy to indicate magnitude of

climate change in each study. Responses include cases without adaptation (red dots) and with

adaptation (dark green dots). Adaptations represented in these studies include changes in planting,

changes in cultivar, and shifts from rain-fed to irrigated conditions. Lines are best-fit polynomials

and are used here as a way to summarise results across studies rather than as a predictive tool. The

studies span a range of precipitation changes and CO2 concentrations, and vary in how they

represent future changes in climate variability. For instance, lighter-coloured dots in (b) and (c)

represent responses of rain-fed crops under climate scenarios with decreased precipitation.

(Source: Parry et al. [76], P. 286)



Note that cumulative land-use change emissions vary significantly when climate

change effects are considered in the reference scenario, with land-use change

emissions significantly higher as a consequence of crop yield reductions in the

face of climate change.

Results for the scenario in which CO2 concentrations were not allowed to exceed

500 ppm exhibit lower emissions than either of the reference scenarios. This is

because the mitigation scenario valued terrestrial carbon emissions equally with

fossil fuel emissions (results would have been very different had terrestrial carbon

not been valued; see also [33, 77]). Equally as interesting, land-use change

emissions with and without consideration of climate change effects on crop yields

are not significantly different between the two scenarios. This result follows

directly from the fact that limiting CO2 concentrations to 500 ppm would also

limit the magnitude of climate change, which in turn moderates the effects on crop

yields. The purpose of this example is not so much to showcase results, but rather to

motivate the joint consideration of impacts, adaptation, and vulnerability with

integrated assessment of emissions mitigation.

Linking Higher Resolution IAMs into integrated Earth System
Models (iESMs)

Several research teams have undertaken joint work with the climate modeling

community. The IGSM team has developed a relationship with climate researchers
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Fig. 8.10 Land-use change emissions of CO2 under the scenarios with and without consideration

of climate feedbacks through agricultural crops

204 J.A. Edmonds et al.



at the US National Center for Atmospheric Research (NCAR). The IMAGE team

has developed several collaborative relationships including those with the Oak

Ridge National Laboratory (ORNL), the Centre National de Recherches

Météorologiques Coupled global climate Model (CNRM-CM3) team of France,

and other European climate modeling teams to develop coupled scenarios. The

MESSAGE integrated assessment modeling team has developed a collaboration

with the NASA Goddard Institute for Space Studies climate modeling team. The

GCAM team has developed a collaboration with ORNL and the Lawrence Berkeley

National Laboratory (LBNL) in the development of a modeling system that joins

the Community Earth System Model (CESM) representation of natural Earth

systems with the GCAM representation of human Earth systems. To date, the

collaborations have produced one-way coupling models, where emission scenarios

from IAMs affect the climate, while the resulting climate change does not feedback

to emissions. However, current effort is focused around developing a two-way

coupled system.

The goal of the joint collaborations is to create a first-generation integrated Earth

System Model (iESM) by fully integrating the human dimension from an IAM and

a natural dimension from a climate model, that is, to create the capability of

simultaneously estimating human system impacts on climate change and climate

change impacts on human systems. After creating the capacity to examine the

coupled natural and human Earth systems, the project could apply the model to

the examination of feedbacks between human systems, the climate systems, and

land-use systems. For instance, the policy response of land-use change presented in

[33] could be revisited to estimate the magnitude of feedbacks in the system.

Significant effort is required before such research becomes routine. Nonethe-

less, as the research potential this collaboration opens up is virtually limitless,

the importance of integrating human Earth systems with natural Earth systems is

sufficiently compelling to drive future collaborations between ESMs and IAMs.
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Chapter 9

Regional Climate Models

L. Ruby Leung

Glossary

Downscaling Development of climate information at local or regional scale from

coarse resolution data or model outputs; both statistical and

dynamical methods can be used.

GCM Global climate model, a climate model based on the general circula-

tion of the atmosphere, often coupled with models of ocean circula-

tion and sea ice.

Mesoscale In the atmosphere, mesoscale generally refers to horizontal scales that

lie between the scale height of the atmosphere (about 10 km) and the

Rossby radius of deformation (tens to hundreds of kilometers).

Nudging Method to reduce the differences between the simulated and

observed or imposed states by applying corrections, usually in the

form of tendencies to the prognostic equations, based on the

differences.

RCM Regional climate model (also called nested regional climate

model), a climate model applied over a limited area with boundary

conditions provided by global models or analyses.
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Definition of the Subject and Its Importance

Regional climate models are numerical models that simulate the climate of geo-

graphic regions typically covering a few thousand square kilometers to a continent.

Most regional climate models include models that describe the atmosphere and the

underlying land surface, but a few also include models of ocean and sea ice and

atmospheric aerosols and chemistry. Given the atmospheric state at the lateral

boundaries, regional climate models simulate regional climate in the context of the

evolving global climate. Because regional domains cover only a fraction of the globe,

it is computationally more feasible to apply regional climate models at higher grid

resolution compared to global climate models to better resolve atmospheric and

terrestrial processes and how they respond to regional forcings such as topography

and land cover/land use. While global climate models are generally applied at grid

resolution of a few hundred kilometers, regional climate models have been more

commonly applied at grid resolution of a few tens of kilometers. Therefore,

a common application of regional climate models is the dynamical downscaling of

global climate simulations to provide regional climate information related to climate

change projections or climate predictions. As such, regional climate models have

served an important function of providing regional climate scenarios needed to assess

a wide range of societal relevant climate impacts such as climate change effects on

water resources and ecosystems. Regional climate models are also used to study

regional climate processes, particularly those that are related to the water cycle that is

inherently multi-scale; so explicitly representing finer scale processes is important to

simulate its variations at multiple time and space scales.

Introduction

Regional climate models were first developed in the late 1980s to provide a means

to simulate climate features that were not well captured by global climate models

(GCMs) because of their coarse spatial resolution. Figure 9.1 shows the representa-

tion of surface elevation and land cover/land use in climate models of different

horizontal resolutions. At 400 km resolution, which was typical for GCMs in the

early 1990s, climate models can only resolve very crude topographic variations and

land surface heterogeneities to simulate their effects on large-scale and mesoscale

circulation. At 50 km resolution, which is a common resolution used in regional

climate models even today, models can begin to realistically capture topographic

and land cover features important for regional climate.

The first regional climate model (RCM) was developed and applied to the

western USA where regional climate is significantly influenced by the complex

terrain not well resolved by GCMs [13,17]. The RCM was adapted from

a mesoscale or limited-area atmospheric model that was designed for weather

forecasting or short-term simulation of a few days. The model was enhanced for

212 L.R. Leung



1.
0

2
6

10
14

18

2
6

10
14

18

2

5
15

25
35

20
60

10
0

14
0

18
0

22
0

26
0

5
15

25
35

20 10

10
30

50
70

90
11

0
13

0

30507090

36
01 1

1234567891011121314151617181920212223242520
1

40
1

60
1

80
1

10
01

12
01

14
01

16
01

18
01

20
01

22
01

24
01

26
01

28
01

30
01

32
01

34
01

6010
0

14
0

18
0

610141822 2610141822

3.
0

5.
0

7.
0

9.
0

11
.0 1.
0

3.
0

5.
0

7.
0

9.
0

11
.0

F
ig
.
9
.1

S
u
rf
ac
e
el
ev
at
io
n
(i
n
m
et
er
s)
(t
op

ro
w
)
an
d
la
n
d
co
v
er
/l
an
d
u
se

(t
y
p
e)

(b
ot
to
m
ro
w
)
re
p
re
se
n
te
d
at
4
0
0
k
m

(l
ef
t)
,
2
0
0
k
m

(m
id
dl
e)
,
an
d
5
0
k
m

(r
ig
ht
)

h
o
ri
zo
n
ta
l
re
so
lu
ti
o
n
in

cl
im

at
e
m
o
d
el
s.
T
h
e
la
n
d
co
v
er
/l
an
d
u
se

ty
p
es

ar
e:

1
u
rb
an
,
2
d
ry
la
n
d
cr
o
p
,
3
ir
ri
g
at
ed

cr
o
p
,
4
m
ix
ed

cr
o
p
,
5
cr
o
p
/g
ra
ss
,
6
cr
o
p
/

w
o
o
d
la
n
d
,
7
g
ra
ss
,
8
sh
ru
b
,
9
m
ix
ed

sh
ru
b
/g
ra
ss
,
10

sa
v
an
n
a,

11
d
ec
id
u
o
u
s
b
ro
ad
le
af
,
12

d
ec
id
u
o
u
s
n
ee
d
le
le
af
,
13

ev
er
g
re
en

b
ro
ad
le
af
,
14

ev
er
g
re
en

n
ee
d
le
le
af
,
15

m
ix
ed

fo
re
st
,
16

w
at
er

b
o
d
ie
s,
17

h
er
b
ac
eo
u
s
w
et
la
n
d
,
18

w
o
o
d
ed

w
et
la
n
d
,
19

b
ar
re
n
/s
p
ar
se
ly

v
eg
et
at
ed
,
20

h
er
b
ac
eo
u
s
tu
n
d
ra
,
21

w
o
o
d
ed

tu
n
d
ra
,
22

m
ix
ed

tu
n
d
ra
,
23

b
ar
e
g
ro
u
n
d
tu
n
d
ra
,
24

sn
o
w
/i
ce
,
25

p
la
y
a.
T
h
e
x
-
an
d
y
-a
x
es

sh
o
w
th
e
n
u
m
b
er

o
f
g
ri
d
p
o
in
ts
in

th
e
d
o
m
ai
n
at

th
e
th
re
e
sp
at
ia
l

re
so
lu
ti
o
n
s

9 Regional Climate Models 213



climate simulation by improving the physics representations for processes such as

radiative transfer and biosphere-atmosphere exchange at the land surface that

governs the energy and water budgets of the climate system. This was achieved

by adopting the physics parameterizations used in a GCM. The RCM was driven at

the lateral boundaries by atmospheric analysis [17] that provides an observationally

constrained and dynamically balanced atmospheric state and global climate

simulations [13].

Giorgi and Bates [17] showed, for the first time, that limited-area models could

be used to produce long-term (more than a month) continuous simulations, as

opposed to prior applications that use limited-area models to simulate weather for

just a few days. By comparing the regional simulations with observations and the

GCM simulations, it was demonstrated that a mesoscale weather model, with

appropriate modifications, could be used for regional climate simulations. Fol-

lowing these pioneering studies, Giorgi et al. [19] further enhanced their RCM by

updating the physics parameterizations with newer options available from the

GCM, and explored model sensitivity to physics parameterizations and methods

of assimilating the lateral boundary conditions. Giorgi and Mearns [16] showed

that errors (e.g., measured by the deviation of the model solution from the driving

large-scale fields) in limited-area models grow initially during model spin up, but

reach an asymptotic value after a few days. At this stage, the climate simulated

by the models is defined by the large-scale driving conditions and the model

internal physics and dynamics, as well as the regional forcings within the

model domain.

Subsequent to the early studies by Giorgi and his colleagues, more regional

climate models have been developed following a similar approach and development

path. These models have been applied to many regions around the world to assess

their simulation skill under different climate regimes such as the monsoon, arid and

semiarid deserts, mid-latitude regimes influenced by synoptic systems, and the high

latitudes where cryospheric processes are important. As regional climate models

became more widely used, questions have been raised about the validity and

usefulness of the approach that prompted a series of studies to vigorously assess

the various assumptions, and proposed practical or more mathematically well-

posed solutions to regional climate modeling (section “Modeling Approach”).

Different datasets and approaches have been used to evaluate RCMs, and large

model intercomparison projects have been organized to evaluate and intercompare

simulations produced by different RCMs (section “Evaluating Regional Climate

Models”). At the same time, many studies have applied RCMs to simulate regional

climate change that provided insights on climate change impacts. Regional climate

models have also been used to study regional climate processes such as the role of

land-atmosphere feedbacks on droughts and monsoon precipitation, effects of

aerosols and land use on regional climate and the hydrological cycle, and processes

leading to extreme climate events. The following sections provide a synopsis of

these topics, and discuss the future directions in regional climate modeling.

Examples of RCM applications are given in section “Application of Regional

Climate Models.”
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Modeling Approach

How Do Regional Climate Models Work

Regional climate models are numerical models that simulate the climate of

a specific region. Although some regional climate models, or regional earth system

models, are beginning to include models of ocean, sea ice, and atmospheric aerosol

and chemistry coupled to the atmosphere and land components, this review focuses

mainly on regional climate models that traditionally include only atmosphere and

land components with prescribed sea surface temperature and sea ice.

Similar to global atmospheric models, regional climate models numerically and

simultaneously solve the equations of the conservation of energy, momentum, and

water vapor that govern the atmospheric state. These equations are based on the

Navier-Stokes equations for fluid flow (conservation of momentum) with

approximations that apply to the atmosphere, the thermodynamic energy equation

(conservation of energy), the continuity equation (conservation of mass), and the

equation of state (ideal gas law). These partial differential equations are cast in various

forms for different conservative properties and integrated forward in time using

dynamical solvers. The solvers are applied to three-dimensional computational

domains that are divided horizontally with grid spacing of a few to tens of kilometers

and vertically into tens of vertical layers with a model top near 10–50 hPa. In regional

climate models, solving these equations on limited-area domains require lateral

boundary conditions, which can be derived from global climate simulations or global

analyses to describe the large-scale atmospheric states. This method of simulating

regional climate using limited-area models with prescribed lateral boundary

conditions is called nesting (Fig. 9.2), so regional climate models are also called

nested regional climate models to distinguish them from other dynamical frameworks

such as global variable resolution or global stretched-grid models that simulate

180

140

100

60

20

180 220 2601401006020

Fig. 9.2 A schematic showing the nesting of a regional climate model within a global climate

model. The right hand figure shows the regional domain over North America with the horizontal

grid (black lines), boundary of the buffer zone (red box), and a vertical column indicating the

atmospheric layers represented by the model
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regional climate for specific regions through regional refinement within the global

domain.

The most commonly used lateral boundary treatment in nested regional climate

models involves the relaxation of the interior flow in the vicinity of the boundary,

called the lateral boundary buffer zone, to the prescribed flow [8]. In most models,

the same treatment is also applied to the thermodynamics variables. When applied

to RCMs, increasing the width of the lateral boundary buffer zone allows stronger

control of the lateral boundary conditions to keep the simulated large scales closer to

the global simulations or analyses that provide the lateral boundary conditions. Some

RCMs have the capability to use nesting to further zoom into smaller regions with

increasing grid resolutions. As computational resources increased over time, more

RCMs are now formulated using non-hydrostatic dynamics, as the mean vertical

motion of the air column within a model grid cell can no longer be assumed

negligible at higher grid resolution. In contrast, most GCMs use hydrostatic solvers

because the hydrostatic assumption is valid in coarser grids.

Besides numerically solving the momentum, thermodynamics, and continuity

equations, climate models, global or regional, include parameterizations of physical

processes such as radiative transfer, convection, cloud microphysics, land surface

and biosphere-atmosphere exchange, and boundary layer turbulence. These

parameterizations calculate the diabatic heating, moistening, and momentum

changes due to the various processes. The resulting tendencies or rates of change

are included as sources and sinks in the equations of energy, momentum, and water

vapor to drive the atmospheric circulation.

Traditionally, GCMs use more sophisticated parameterizations of slow physi-

cal processes such as radiation and land surface for more accurate simulations of

the global energy budgets, while limited-area models that are developed mainly

for weather forecasting and short-term simulations emphasize detailed parameter-

izations of fast physical processes such as cloud microphysics and turbulence

transfer. To simulate regional climate, both fast and slow physical processes are

important because of the short spatial scale and long time scale of interest.

Therefore many RCMs have adapted parameterizations of slow processes from

GCMs, while maintaining the suite of the relatively detailed parameterizations of

fast processes used in weather forecasting. Sharing of physics parameterizations

between the global and regional models is considered desirable to reduce

inconsistency between the simulated and driving large-scale conditions (see

section “Modeling Issues” for a discussion of potential issues caused by mismatch

of GCM and RCM solutions) and facilitate interpretation of differences simulated

by the RCMs and GCMs. Since the first RCM (section “Introduction”), most

RCMs developed and in use today still include subsets of physics parameter-

izations that are adapted from their host GCMs. Driven by high performance

computing and the need to improve accuracy, both global and regional climate

models are including more and more sophisticated parameterizations for

all physical processes, which together with increasing model resolution, demand

significant advances in high performance computing to support climate

modeling research.
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Modeling Issues

The climate of a region is determined by the large-scale atmospheric circulation

as well as regional forcings such as topography within the region, and how they

interact through various physical and dynamical processes. For example, the

regional climate of the US Great Plains is strongly influenced by atmospheric

circulation that brings moisture from the Gulf of Mexico during summer. How

much precipitation is produced over land depends on moisture convergence,

which is influenced not only by large-scale circulation patterns, but mesoscale

features such as the Great Plain Low Level Jet, propagating disturbance from the

Rocky Mountain, and local moisture sources from the land surface also play an

important role. Therefore in the nested regional climate modeling approach,

regional climate simulations depend on both the lateral boundary conditions

that control the large-scale circulation, regional topography and land cover/land

use features being resolved by the model, as well as physics parameterizations

that ultimately determine the local changes in the energy, moisture, and momen-

tum as influenced by the large-scale circulation and regional forcings.

Because of the dependence on large-scale circulation, large biases in global

climate simulations used to provide lateral boundary conditions could have

detrimental effects on the regional climate simulations under the nesting approach.

Even if the global climate simulations were perfect, the lateral boundary conditions

do not uniquely define the regional climate because the associated boundary value

problem (i.e., solving the hyperbolic equations) is ill posed. Relaxation methods

such as proposed by Davies [8] convert the hyperbolic equations to the well-posed

parabolic form. However, mismatches between the large-scale circulation

simulated by the regional models and the imposed atmospheric states at the lateral

boundaries that may result from differences in grid resolution, physics, and

dynamical formulations between the global and regional models can induce errors

that propagate to the interior of the domains and contaminate the regional

simulations [56]. This issue also leads to the sensitivity of the simulated regional

climate to the domain size and locations of the lateral boundaries – an undesirable

feature as it introduces uncertainties to the simulation results.

To address the validity of the nested regional climate modeling approach,

a series of idealized numerical experiments have been designed and performed to

assess the various assumptions used in regional climate modeling. The idealized

experimental framework, known as “Big Brother Experiments (BBE)” [10],

addresses modeling issues specifically related to the nested regional climate

modeling approach. The Big Brother Experiment protocol consists of performing

a high-resolution global climate simulation, referred as the Big Brother, BB, that

serves as reference against which a regional climate simulation, referred as the

Little Brother, LB, would be compared (Fig. 9.3). The BB, with proper spatial

filtering to remove the fine scales to emulate coarse resolution global climate

simulations, provides lateral boundary conditions for driving the LB. The

differences between the climate simulated by the LB and the reference BB could
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be attributed to the nesting approach of the limited-area model. Unlike the evalua-

tion of real-world simulations that depends on the fidelity of model physics and

availability of observational data, the idealized BBE framework allows different

nesting-specific issues (e.g., the relaxation treatment and width of the buffer zone,

frequency of LBC update) to be evaluated regardless of limitations of model

physics and data because deficiencies of the nesting approach can be identified

and quantified based on the comparison of the LB and BB alone.

A series of studies using the BBE protocol has been performed, focusing on

different modeling issues specific to the nested regional modeling approach. As

summarized by Laprise et al. [31], the BBE shows that the LB is capable of

generating small-scale features absent from the lateral boundary conditions, and

the small-scale features are consistent with the BB. These results demonstrate that

the nested regional climate modeling approach does work as designed. That is,

given large-scale conditions provided by the GCMs at the lateral boundaries, the

RCMs can downscale to produce finer scale features absent from the GCMs.

Moreover, the fine scales produced by the RCMs are consistent with what the

GCMs would generate if they were applied at similar spatial resolution as the

regional models. However, the small scales are not uniquely defined by the lateral

High-res.
RCM

High-res.
simulation

High-res.
simulation

High-res.
Ref. climate

High-res.
RCM. climate

High-res.
Large-dom. RCM

Low-res.
Reanalyses

Filter
Small scales

Low-res.
LBC

BB Statistics

Validation

LB Statistics

Fig. 9.3 Flow chart of the Big Brother Experiment (BBE). The high-resolution large domain

RCM simulation is used as a virtual reality to evaluate the high-resolution simulation generated by

the same RCM for a smaller domain achieved through nesting (Source Laprise et al. [31]# 2008

Meteor. Atmos. Phys.)
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boundary conditions and the domain-specific regional forcings, as the interactions

between the two can be sensitive to small perturbations in the initial conditions that

alter the time evolution of the small scales. The variations produced in regional

simulations by perturbations in the initial conditions have been called “internal

variability,” as they relate to internal processes rather than external or LBC

forcings. This issue has also been investigated by others (e.g., [3, 9, 21, 27]) who

found that model internal variability depends on factors such as seasons, atmo-

spheric flow regimes, and domain size. This puts a caveat on using single member

short (seasonal and sub-seasonal) RCM simulations for model evaluation or

hypothesis testing, as internal variability may overwhelm the signals (e.g., model

errors or model response to external perturbations) being sought.

To address the issue of internal variability, ensemble modeling with perturbed

initial conditions can be performed to quantify the internal variability and

its impacts on model errors or model response. Alternatively, different techniques

have been developed to constrain the large scales simulated by the regional models

by the global climate simulations or global analyses throughout the regional

domains. Spectral nudging [2, 28, 44, 54] is one example of such techniques.

With spectral nudging, both the regional climate simulation and the global analyses

or global climate simulations that provide lateral boundary conditions are

decomposed into different spectral components in space. The simulated large-

scale spectral components are nudged toward that of the global data using relaxa-

tion to provide stronger large-scale constraints on the regional climate simulations

than that imposed by the lateral boundary conditions alone. These methods reduce

the mismatch between the simulated large scales and the imposed lateral boundary

conditions that contaminate the regional simulations. They also reduce internal

variability, so simulation with a single initial atmospheric condition may be suffi-

cient to assess model errors or estimate model response to external forcings. On the

other hand, the degree of nudging to be applied to constrain the large scales can be

rather arbitrary. Also, one may argue that by nudging the large scales of the regional

climate simulations toward the global climate simulations, these methods increase

the dependence of the regional simulations on the skill of the global models and

eliminate the potential for the regional models to improve the large scales through

upscaling of mesoscale features that are better resolved by the regional models [43].

Besides some form of large-scale nudging applied throughout the regional model

domain, some studies have proposed a different mode of simulating regional

climate by applying regional climate models with frequent initialization of the

atmosphere to simulate short time segments that are then concatenated to compose

the long-term regional climate simulations [45, 47]. This method takes advantage of

the time period of limited error growth shortly after model initialization so the

mismatch between the simulated and imposed large scale is small even without

additional constraints on the large scale in the interior of the model domain. Two-

way nesting of global and regional models has also been proposed as an approach to

reduce large-scale inconsistency that may develop in one-way nested regional

climate models because the upscaled influences of the regional models are included
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in the global models through feedbacks [40]. Such an approach has only been

evaluated in a few studies [26, 41], and the results have been encouraging.

In summary, although the limited-area or nested modeling approach upon which

regional climate models are based is an ill-posed boundary value problem, practical

solutions such as the relaxation boundary treatment and spectral nudging of the

large scale throughout the regional climate model domain have been developed and

found to work well for a large number of cases. Furthermore, idealized experiments

have confirmed most of the assumptions used in regional climate modeling [31].

However, uncertainty in regional climate simulations remain, owing in part to

issues such as physics parameterizations, model resolutions, and initial conditions

that are common to both global and regional climate models, and issues such as

dependence on the lateral boundary condition, boundary treatment, regional

domain size and location, and use of interior nudging that are specific to the nested

regional modeling. Reviews and discussions of these issues can be found in Giorgi

and Mearns [16], Laprise et al. [31], Leung et al. [35], and Wang et al. [55]. More

research is needed to better understand the sensitivity of regional climate

simulations to different factors and develop ways to reduce the uncertainty

introduced by the nested modeling framework.

Evaluating Regional Climate Models

Model evaluation is important for assessing and documenting model skill and how

it may evolve over time as changes and improvements are added to the models. It

also provides information needed to understand model behaviors and diagnose

model biases, and to assess uncertainties associated with the regional climate

simulations. Model evaluation is achieved primarily by comparing model

simulations with observations. The most common observation data used in

evaluating regional climate simulations are atmospheric data such as 500 hPa

height and upper level winds from global analyses, and surface temperature and

precipitation from surface meteorological stations (e.g., Climatic Research Unit

(CRU) and University of Delaware (UD) datasets), satellite-derived data

(e.g., Tropical Rainfall Measurement Mission (TRMM)), and integrated station/

satellite products (e.g., Global Precipitation Climatology Project (GPCP) [24] and

Climate Prediction Center (CPC) Merged Analysis of Precipitation CMAP) [59].

These data are typically spatially interpolated to uniform latitude/longitude grids.

Both surface temperature and precipitation have high spatial variability due to

surface topography and other factors. The effect of topography is relatively easy to

account for in surface temperature as it varies with altitude more or less according

to the standard temperature lapse rate, but its influence on precipitation is more

spatially variable depending on a number of factors such as wind direction and

surface slope and aspect. Statistical methods such as Parameter-elevation

Regressions on Independent Slopes Model (PRISM) [7] have been developed to
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account for surface topographical effects in gridded precipitation data. There is

a continuing need to develop high temporal and spatial resolution datasets for

evaluating regional climate models. Recent efforts in Europe [22] and Asia [60]

have made great strides in providing high resolution (0.1� and 25/50 km resolution

for Europe and 0.25� and 0.5� for Asia) gridded daily precipitation data for model

evaluation and analysis, although differences among datasets can still be substantial

in mountain areas due to measurement methods, retrieval algorithms, grid

resolutions, and whether topographic effects are explicitly accounted for.

By comparing observed and simulated surface temperature, precipitation, and

atmospheric fields, model biases can be identified. However, determining the

sources of model errors and thereby providing guidance on reducing model biases

requires more information. Observations that can be used to diagnose model errors

are more limited. For example, to understand model biases in surface temperature,

it is useful to know which components (e.g., net shortwave and longwave radiation

and sensible and latent heat fluxes) of the surface energy budgets may be in error.

Ground-based measurements of the surface energy fluxes are limited both spatially

and temporally. However, some flux data are available from a global network

(FLUXNET) of about 400 micrometeorological tower sites that provide continuous

measurements, some dating back to 1996. There is a challenge in relating point

measurements of surface fluxes with model simulations that represent grid box

averages. Satellite retrievals of radiation fluxes are available globally for recent

decades, but large differences exist among different datasets such as Clouds and the

Earth’s Radiant Energy System (CERES) and International Satellite Cloud

Climatology Project (ISCCP).

Diagnosing errors in precipitation is even more challenging because precipita-

tion is the end product of many interactive processes. Although precipitation is

more directly related to clouds, measurements of cloud macrophysical and micro-

physical properties are limited. Cloud climatologies are available from ISCCP and

CERES, but the grid resolution is relatively coarse (280 km for ISCCP and 1� for
CERES) compared to regional models. Furthermore, errors in simulating clouds

may be reflecting other problems because myriads of processes can influence the

formation and evolution of clouds. Higher temporal and spatial resolution precipi-

tation can provide a means to evaluate temporal variability from diurnal to seasonal,

and probability distribution of precipitation rates, which can provide important

clues to processes that may not be well represented in models. Some surface

hydrological variables such as river runoff and snowpack may also be used to

infer model biases in precipitation or combinations of precipitation and temperature

biases.

Besides advances in the development of datasets for model evaluation, the

methods used to evaluate models have also become more sophisticated. In the

1990s, comparisons of observations and model simulations were mostly limited to

seasonal/annual and regional averages, but more studies now also compare

observed and simulated temporal and spatial variability such as interannual

variability and spatial distributions. With more studies producing longer regional

climate simulations, more aspects of the simulations such as diurnal variability,
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extreme statistics, regime-specific features, frequency distributions, co-variability

of different variables (e.g., between temperature and precipitation), and parameters

that reflect the strengths of feedback processes have been evaluated (e.g., compar-

ing land-atmosphere coupling strengths between models).

Although model evaluation studies are broadly aimed at understanding and

quantifying model biases so model improvements can be made, some efforts also

evaluate specific aspects such as precipitation and runoff [32], wind resources [57]

of the regional simulations to provide practical guidance on their usefulness to

provide climate information for impact assessments and resource management or

planning. To support more detailed analyses, the requirements on model outputs

have significantly increased as higher temporal frequency model outputs (e.g.,

hourly and daily) and more simulated state variables and tendencies are becoming

more commonly archived.

Besides comparing model simulations with observations, model intercompari-

son can add significant information to understand and characterize model

differences and uncertainties. The Atmospheric Model Intercomparison (AMIP)

project [15] was initiated in the early 1990s to determine the systematic errors of

global atmospheric models used to simulate long-term climate. Since the first AMIP

project, many intercomparison projects have been developed to evaluate climate

models used in different simulation modes. Similar coordinated projects have also

been initiated to intercompare regional climate simulations since the mid-1990s.

The first of such projects is the Project to Intercompare Regional Climate

Simulations (PIRCS) [53]. PIRCS includes two phases, with the first phase focusing

on simulations of two anomalous years, the 1988 drought and 1993 flood in the US

Great Plains, and the second phase comparing multiyear simulations over North

America. All simulations were driven by global reanalysis data and observed sea

surface temperature. Besides regional climate models, one global stretched-grid

model also participated in PIRCS for comparison between two dynamical

frameworks for regional climate modeling. Following PIRCS, several intercompar-

ison projects were developed to compare regional climate simulations over the

Arctic (ARCMIP) (http://curry.eas.gatech.edu/ARCMIP/) and East Asia (RMIP)

[14]. More discussions of intercomparison projects that focus on climate change

simulations are provided in section “Dynamical Downscaling.”

Applications of Regional Climate Models

Climate Process Studies

An important application of regional climate models is to advance the understand-

ing of regional climate processes. In this context, regional climate models are often

used to test hypotheses of how different regional forcings or feedback mechanisms

play a role in regional climate variability and change.
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For example, Leung et al. [34] used long-term simulations of the western USA to

investigate the role of topography on precipitation spatial distribution during

El-Nino and La-Nina events. Comparing precipitation during El-Nino years with

the 20-year simulated climatology, they found a positive-negative-positive anomaly

pattern in the Olympic Mountains and the west side and east side of the Cascades

Mountains in the US Pacific Northwest. The pattern was found to be a result of the

interactions between the large-scale atmospheric circulation that are influenced by the

ENSO conditions and the orientation of the mountains. With atmospheric flow

assuming a more southwesterly rather than a westerly direction during El-Nino

years, the rain shadow created by the north-south oriented Cascades Mountains is

reduced, resulting in more precipitation reaching the lee side of the mountains. Such

regional anomaly patterns are generally not found in global reanalyses or global

climate simulations because of their coarser resolution, but are consistent with

observed precipitation and streamflow anomalies in the region.

Hughes and Hall [25] performed regional climate simulations for the western

USA to investigate large-scale and local controls on Santa Ana winds in Southern

California. Using a simulation at 6 km resolution, their analysis showed that both

large-scale anomaly corresponding to a high pressure over the Great Basins, and

local thermodynamic forcing due to surface temperature gradient between the cold

desert (Mojave Desert) and warm ocean create pressure gradients that drive off-

shore winds. The latter was found to be particularly important in determining the

timing of Santa Ana winds, which occur more frequently during December when

the temperature gradient between the desert and Pacific coast is the largest.

The role of soot on mountain snowpack and hydrology was investigated by

Qian et al. [48] using regional climate simulations with and without soot deposi-

tion in western USA. Their study shows that soot-induced snow-albedo

perturbations increase the surface net solar radiation flux during late winter to

early spring. This increases the surface air temperature and reduces snow

accumulation and spring snowmelt, causing a trend toward earlier snowmelt.

Snow-albedo feedback was found to play an important role in amplifying the

soot effects in the mountains.

Riddle and Cook [50] used regional climate simulations to study the mechanism

of abrupt rainfall transition in the Greater Horn of Africa. The yearly monsoon jump

of about 20� latitude during April and May was found to coincide with abrupt

circulation changes associated with the Somali jet that develops during that time.

The cross-equatorial branch of the Somali jet brings moisture to the southern slopes

of the Ethiopian plateau, which then produces the abrupt rainfall transition in

the region.

To investigate why temperature in the central USA has cooled by 0.2–0.8�C in

the late twentieth century, instead of warmed as in most continental regions, Pan

et al. [46] used a regional climate model and found that under a global warming

scenario, increased moisture from the Gulf of Mexico due to warming and increas-

ing occurrence of the Great Plain Low Level Jet (LLJ) in the south and decreasing

occurrence in the north enhances atmospheric moisture convergence and cloudiness

and precipitation in the central USA. These changes replenish soil moisture during
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summer, which increases late-summer evapotranspiration and suppresses daytime

maximum temperature, and hence the “warming hole.” Because of coarse resolu-

tion, most GCMs cannot simulate the observed “warming hole” in the late twentieth

century.

Regional climate models also offer great potentials to understand the

mechanisms of extreme events and their projected changes in the future. For

example, Seneviratne et al. (2006) performed two regional climate simulations

with and without land-atmosphere interactions to investigate the role of

land-atmosphere feedbacks on heat waves in Europe. They showed that soil mois-

ture – temperature and soil moisture – precipitation feedbacks increase summer

temperature variability in central and eastern Europe. Under climate change, the

region of stronger land-atmosphere coupling shifts northward in response to green-

house warming to central and eastern Europe, and enhances summer temperature

variability and increases the potential for more frequent heat waves in that region.

In the above examples, high resolution is important for the model to reproduce

the observed climatology of temperature, precipitation, wind, or snowpack, which

in the western USA, Europe, and the Greater Horn of Africa depend strongly on

regional orography. High resolution is also important for simulating soot deposition

caused by anthropogenic emissions in cities being carried to the mountains down-

wind, or LLJ and its effects on cloudiness and precipitation. Successful simulations

of the base states and model ability to simulate regional forcings and feedback

mechanisms (e.g., snow-albedo, soil moisture – temperature feedbacks, LLJ –

precipitation coupling) are critical for assessing their role in the observed regional

climate phenomena.

Dynamical Downscaling

Dynamical downscaling is an important application of regional climate models,

which aims to provide more spatially resolved climate predictions or projections

provided by GCMs. Most of the downscaling applications to date are related to

climate change projections. Early efforts described the use of an individual RCM to

dynamically downscale climate change projections by a specific GCM. Typically

only a single emission scenario such as the business-as-usual scenario (1% increase

of CO2 per decade) was used. Although GCMs generally produce simulations that

cover preindustrial to 2100, RCM simulations are usually performed only for two

time segments of 10–30 years corresponding to a current and a future time period.

Giorgi et al. [18] reported the first set of studies on using a regional climate model

to dynamical downscale climate change scenario for Europe and the western Medi-

terranean basin. The GCM and RCM they used had a spatial resolution of R15 (about

400 km) and 70 km, respectively. The current and future climate corresponds to the

equilibrium conditions simulated by the GCM using 1 � CO2 (preindustrial level)

and 2 � CO2 (doubling of preindustrial level), respectively. Although the GCM
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generally reproduced the basic seasonal migration patterns of storm tracks, signifi-

cant biases were also found in large-scale features such as the location and strength

of the North Atlantic jet, cold tropospheric temperature and low tropospheric

relative humidity, and underprediction of summer precipitation. Overall, the RCM

was found to inherit most of the large-scale biases from the GCM, but the spatial

distribution of temperature and precipitation was better simulated due to topo-

graphic effects. In addition, the RCM produced more spatially refined temperature

and precipitation change scenarios. The RCM also simulated significant sub-GCM-

scale changes in surface hydrological variables such as snow depth and runoff.

Following a similar approach, Leung and Ghan [36] used a regional climate

model driven by GCM 1 � CO2 and 2 � CO2 simulations to produce climate

change scenarios for the western USA. However, much more spatially resolved

simulations of temperature and precipitation were produced by using a subgrid

parameterization of orographic precipitation and vegetation [38, 39]. This method

divides a model grid cell into subgrid surface elevation and vegetation classes based

on high resolution (1 km) DEM and vegetation data. The influence of topography

and vegetation on atmospheric and land surface processes is represented through

a parameterization that accounts for orographic effects on clouds, which then affect

precipitation and surface hydrology. During postprocessing, surface temperature

and precipitation, among other variables, simulated for each subgrid class are

mapped geographically to 1 km resolution based on the DEM and vegetation

data. This approach greatly improves the simulation of surface temperature, pre-

cipitation, and snowpack compared to the GCMs. Their results show that snowpack

will potentially be reduced by up to 50% under a 2� CO2 scenario. They also found

a strong elevation dependence of climate change signals in temperature, precipita-

tion (amount and phase), snow cover, and runoff (see also [1, 20] for a discussion of

elevation dependence of climate change signals in mountainous regions).

In the 2000s, as more GCM transient simulations became available and the

regional modeling community has grown, more studies have been published that

investigated the potential effects of climate change in different climatic regimes or

geographical locations. Figure 9.4 shows an example of cold season heavy precipi-

tation (95th percentile) simulated by a GCM and an RCM driven by the GCM

boundary conditions, using the same models described by Leung et al. [32], except

for a change in the regional domain to cover the conterminous USA. Comparison of

the simulated and observed heavy precipitation shows that the RCM reproduced the

observed spatial distribution of heavy precipitation better than the GCM primarily

because of the increased spatial resolution. As regional climate information is

useful for assessing climate impacts and addressing climate adaptation, many

studies that involve the use of regional climate models for producing regional

climate change scenarios included scientists and stakeholders of the specific regions

being studied to focus on subjects both scientifically interesting and societally

relevant. The regional human resources and knowledge base that have been tapped

have proven beneficial and contributed to more diverse analyses and applications of

the climate change results. More examples of these efforts have been summarized

in Christensen et al. [5].
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Fig. 9.4 An example of cold season heavy (95th percentile) precipitation simulated by a GCM

(top) and an RCM (middle) and comparison with observation (bottom) over the USA. The

prominent effects of topography are well captured by the RCM at 36 km grid resolution compared

to the GCM, which was applied at roughly 250 km resolution



Besides individual efforts of using a particular RCM to downscale climate

predictions or projections from a particular GCM, larger efforts have also been

coordinated to develop ensembles of dynamically downscaled simulations. Com-

mon to these coordinated efforts is the objective to fill the gap in providing regional

climate change scenarios for different geographic regions and to improve the

characterization of uncertainty of the scenarios. To this end, an ensemble modeling

approach is used in which multiple RCMs are nested within multiple GCMs to

generate a matrix of regional climate change scenarios to facilitate the interpreta-

tion and characterization of uncertainty of regional climate change. These efforts

also enable large, multi-model datasets to be archived following common protocols

similar to the AMIP and CMIP efforts adopted by the GCM community over the

last two decades.

In Europe, two large coordinated projects, PRUDENCE [5] and ENSEMBLES

[23], intercompared regional climate models driven by global reanalysis as well as

global climate simulations for the current and future climate. PRUDENCE designed,

executed, analyzed, and synthesized regional climate scenario development for

Europe. In brief, four GCMs and ten RCMs were involved to produce regional climate

scenarios at 50 km resolution, but a few scenarios at 20 km resolution were also

produced. Two time slices were simulated by each RCM, corresponding to 30 years of

control and future (2071–2100) conditions. Two emission scenarios, A2 and B2, were

considered, and some GCMs and RCMs provided multiple ensemble members (using

different initial conditions) for assessing internal variability. Although only 28

combinations out of the full matrix of GCM, RCM, and scenario combinations were

performed, PRUDENCE provided sufficient model outputs to evaluate the variance

due to the four sources of uncertainty: GCM, RCM, scenario, and sampling. Figure 9.5

summarizes the surface temperature and precipitation changes simulated by the

regional models for Europe.

One of the main conclusions of PRUDENCE is that the largest source of

uncertainty resides in the GCM boundary conditions applied to the RCM [11].

The choice of RCM becomes more important, however, for certain subregions or

seasons (summer in particular). Furthermore, many local features and aspects of

extremes can vary substantially between RCMs [30] to alter the climate change

signal from that simulated by the driving GCM. For example, RCM simulations

performed at higher resolution (12 km vs 25 km) reduced the magnitude of future

summer drying over southern Europe [4]. This effect could be attributed to the

diminished control of the LBCs on RCM simulations during summer, and the

general tendency of RCM to produce more precipitation at higher resolutions

(e.g., [33, 49]).

Building on the foundation of PRUDENCE, ENSEMBLES is the largest and

most comprehensive RCM comparison project conducted to date. Focusing again

on Europe, ENSEMBLES utilized 15 GCMs and 11 RCMs to create a large GCM-

RCM matrix for a single emission scenario (A1B). Simulations were also

performed with reanalysis boundary conditions at 25 km and 50 km horizontal

resolution. Interestingly, higher resolution (25 km vs 50 km) did not improve the

simulation of large-scale weather types [51] or seasonal precipitation [49] by
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many RCMs, suggesting that physics and/or downscaling approach (i.e.,

dynamical framework) may be more important than resolution. The most novel

aspect of the ENSEMBLES project is the construction and use of a set of metrics

to weight models according to their performance to construct an ensemble mean

[6]. However, application of the weights to the GCM-forced RCM simulations for

the twentieth century did not substantially improve the performance of the multi-

model temperature or precipitation mean over the unweighted multi-model mean

when averaged over Europe. This suggests that more research is needed to further

explore the productive use of ensembles of climate change scenarios to reduce

uncertainty.

The North American Regional Climate Change Assessment Program

(NARCCAP) [42] is another coordinated project similar to PRUDENCE and
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Fig. 9.5 An overview of seasonal changes in surface temperature (degree C) (left) and precipita-

tion (relative change) (right) simulated by the PRUDENCE regional climate models for different

analysis areas (row) and models (column). The analysis areas are: BI British Isles, IP Iberian

Peninsula, FR France,MEMid-Europe, SC Scandinavia, AL Alps,MDMediterranean, EA Eastern

Europe. Results from 17 regional simulations (some are produced by the same model at different

resolutions) are shown, but some simulations did not cover certain geographical areas (shown by

the black squares) (Source Christensen and Christensen [4] # 2007 Climatic Change)
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ENSEMBLES, but with a geographic focus on North America. The NARCCAP

GCM-RCMmatrix includes mapping 4 GCMs with 6 RCMs statistically for a more

balanced design for uncertainty analysis. In addition, two high-resolution time-slice

global simulations are included for comparison with the RCM simulations over

North America. More recently, CORDEX (a COordinated Regional Downscaling

EXperiment) has been developed to coordinate regional climate change scenario

development for all continents around the world, and to foster international

collaborations and promote interactions and communications between the various

communities involved in scenario development and applications. The CORDEX

design is similar to the multi-GCM/RCM matrix used in PRUDENCE,

ENSEMBLES, and NARCCAP, but an additional level of uncertainty being

assessed is model dependence on climate regimes and/or geographic locations.

Therefore, an important CORDEX effort is to develop and compare climate

simulations across different continents. Additionally, CORDEX encourages the

development of Regional Analysis and Evaluation Teams to develop a set of

regionally specific metrics for model evaluation, collect observational data, design

experiments to investigate the added value of RCMs, and evaluate the ensemble of

simulations from CORDEX.

Besides climate change, dynamical downscaling has also been applied to the

area of seasonal climate predictions, but to a much lesser extent compared to

downscaling of climate change simulations. The Multi-Regional Ensemble

Downscaling (MRED) is a coordinated project in which multiple RCMs were

used to downscale global seasonal climate forecasts for the USA (http://ecpc.

ucsd.edu/projects/MRED/). Dynamical downscaling has also been used to

develop regional analysis for studying climate variability and trends. Unlike

regional analysis such as the North American Regional Reanalysis that

assimilates observation data in regional models driven by global analysis, the

dynamical downscaling approach assimilates only global analysis, but no addi-

tional observational data within the regional model domains to generate regional

climate information. As examples, Sotillo et al. [52] used a regional model to

downscale global reanalysis to generate a high-resolution 44-year atmospheric

analysis for the Mediterranean Basin. Kanamitsu and Kanamaru [29] used a

regional climate model at 10 km resolution driven by a global reanalysis in the

California Reanalysis Downscaling at 10 km (CaRD10) project to produce

57 years of regional analysis for California.

Although numerous studies that evaluated different aspects of regional climate

simulations using observations have demonstrated some skill in simulating regional

temperature and precipitation, the skill depends very much on the large-scale data

used to drive the model, the model physics, and how the models were configured.

More recently, besides asking what ability RCMs have in reproducing observed

climate features, the question of whether dynamical downscaling adds values to

global climate simulations has become an important topic. Essentially, this begs the

question of whether the additional step of running regional climate models as

a means to dynamically downscale global climate simulations indeed provides

additional (useful) information not available from the global climate simulations.
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One way to address this question is to define and apply various metrics to quantita-

tively measure the added skill or added information provided by the regional

models. For example, spatial filters can be used to partition the model-simulated

variability to a larger scale that is resolved by the global simulation and a smaller

scale that is beyond the limit resolved by the global simulation. The amount of finer

scale variability generated by the regional models is considered value added since it

provides climate information beyond what the global simulations provide (e.g.,

[12]). Similarly, spectral decomposition can be applied to simulated quantities such

as different components of the surface water budgets and forecast skill to determine

the added value of regional modeling.

Another aspect of evaluating the value added by RCMs is to compare dynamical

downscaling with statistical downscaling, which is computationally a much cheaper

method to produce regional climate information. To date, comparison of dynamical

and statistical downscaling methods is limited to a few studies. Wood et al. [58]

represent an early effort to apply a simple statistical downscaling method called

Bias Correction Spatial Disaggregation (BCSD) to not only global simulations, but

also regional climate simulations. The latter is a hybrid approach that combines

dynamical and statistical downscaling. Comparing statistically downscaled

simulations driven by global and regional simulations with the global and regional

simulations, this study showed that hydrologic response to climate change can be

enhanced using the hybrid approach compared to applying statistical downscaling

directly to the GCM outputs because the RCM simulated larger warming in

mountainous areas as a result of snow-albedo feedbacks, which are not captured

by GCM or statistical downscaling.

Future Directions

In summary, both idealized experiments and real case applications have

demonstrated that nested regional climate modeling is a viable approach

for regional climate simulations. However, applications of regional climate models

must be exercised with care because many factors can introduce uncertainty in the

simulated results. These factors, which include domain size and location, physics

parameterization, model resolution, lateral boundary condition and treatment, and

use of interior nudging, must be carefully assessed before proceeding to long-term

climate simulations. More research is also needed to better understand the sensitiv-

ity of regional climate simulations to those factors and develop ways to characterize

and reduce uncertainty introduced by the nested modeling framework. As comput-

ing resources allow global models to be applied at higher and higher spatial

resolution, and alternative approaches such as global variable resolution models

become feasible, more research is needed to evaluate and compare different

approaches to modeling regional climate to establish their validity and usefulness

in addressing different aspects of climate research and applications.
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Chapter 10

Climate Change Projections: Characterizing

Uncertainty Using Climate Models

Ben Sanderson and Reto Knutti

Glossary

Bayes’ Theorem A law in probability theory relating the probability of

a hypothesis given observed evidence to the often easier

to characterize probability of that evidence given the

hypothesis. The theorem states that the conditional “poste-

rior” probability of an event A given an event B is equal to

the “prior” probability of A multiplied by the likelihood of

B given A is true, normalized by the prior probability of B.

Climate

sensitivity

The equilibrium global mean near surface air temperature

response in Kelvin to a sustained doubling of the atmo-

spheric carbon dioxide concentration.

CMIP-3 The CoupledModel Intercomparison Project Phase 3, a set

of coordinated model experiments using General Circula-

tion Models from the world’s major modeling centers.

Detection

and attribution

A process whereby spatial “fingerprints” associated with

individual climate forcing factors (such as aerosol or

greenhouse gas concentrations) are identified and used

to quantify whether an observed change exceeds the
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range of natural internal climate variability (detection)

and to attribute it to different causes, that is, different

forcings (attribution).

Empirical model A model based on fitting empirical data, and thus makes

no attempt to justify its representations of the system with

any physical basis.

General circulation

model (GCM)

A three-dimensionalmathematicalmodel for the atmosphere

and possibly the ocean, land, and sea ice.

Initial condition

ensemble

A number of simulations using a single climate model,

each with a small, unique perturbation to the initial state.

Last glacial

maximum (LGM)

A period in the most recent ice age lasting several 1,000

years, peaking approximately 20,000 years ago at the

maximum extent of the ice sheets.

Lead time The period in between the time at which the forecast is

made and the time to be forecasted.

Multi-model

ensemble (MME)

A collection of structurally different models from a range

of institutions used to perform a coordinated set of

experiments.

Parameter space The multidimensional domain created by considering the

possible values of a number of parameters within a model.

Perturbed

physics ensemble

A set of climate simulations generated by taking a single

physical model and altering uncertain parameters within

a range of plausibility.

Prior probability

(marginal probability)

The probability of an event before any additional data is

considered in a Bayesian sense.

Posterior probability The probability of an event after considering additional

relevant evidence in a Bayesian sense.

Systematic error The difference between a model simulation and

observations or a poorly represented process which is not

reducible by parameter tuning.

Definition of the Subject and Its Importance

The atmosphere, ocean, land surfaces, and ice sheets of the Earth are highly

complex and coupled systems, with physical laws which describe behavior from

the microscopic to the planetary scale. General Circulation Models are computa-

tional analogs for these physical systems, which can be used to study how these

systems might behave when boundary conditions are changed (e.g., by increasing

the concentration of atmospheric greenhouse gases).
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Inherent in the design of such models are a myriad of choices when deciding

which components of the system are to be modeled and how to represent processes

which cannot be currently modeled explicitly. In order to have any confidence in

the ability of our models to have value for simulating aspects of future climate

change, it is necessary for those models to reproduce observable properties of the

physical system. However, model errors in the simulation of the past or present are

likely to be smaller than errors in future projections because model developers can

use observations and historical records in the development of their code. Addition-

ally, some processes may not be observable or testable yet, because they might only

take place in a warmer (or otherwise changed) world.

One way to characterize at least some of the uncertainty in future projections is

to produce an ensemble of climate simulations, each making different but reason-

able assumptions about their representation of physical processes.

In recent years, a number of groups in the international climate science commu-

nity have produced General Circulation Models of the earth system, each making

different choices about model complexity, resolution, and parameterization of

processes which occur at scales finer than those resolved. By conducting coordi-

nated experiments with each of these models, it has become possible to examine

some of the effect that such choices have on uncertainty in future climate

simulations. However, the sheer volume of data and range of models available

from such an ensemble presents a new challenge for the science to address: How

can a spread of non-independent “best guesses” be combined to produce meaning-

ful statements of uncertainty which are relevant to climate-related policy decisions?

Introduction

In 1979, Jule Charney chaired a committee on anthropogenic global warming,

producing a report [1] providing a brief overview of the state of the science of

climate change. At the time, two General Circulation Models were available for

consideration, one led by Syukuro Manabe and the other by James Hansen. The

report produced an estimate for the climate sensitivity (the equilibrium global mean

temperature change to a doubling of the atmospheric carbon dioxide

concentrations) based on the mean result of these two models. In comparing the

predicted future climate of these two models, the report stated:

We conclude that the predictions of CO2-induced climate changes made with the various

models examined are basically consistent and mutually supporting. The differences in

model results are relatively small and may be accounted for by differences in model

characteristics and simplifying assumptions.

This, in many ways, represents the first effort to combine multiple results from

an ensemble of climate model simulations, and the statements made using those

models are still relevant to ensemble modeling. A better understanding in the

uncertainties in the simulations and increased confidence can be claimed if an
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ensemble of somewhat independent models produces common features in its

simulations, and if the origins of the differences between simulations may be traced

back to physical characteristics.

When presented with a range of simulations of future climate, one must make

judgments on many levels on how that ensemble should be interpreted: How should

model agreement, or lack of it, translate into a degree of confidence in the simulations?

Should all models be treated equally, and if not then how should one distinguish

between them? If some processes are absent from some or all of the simulations, how

can the projections be updated to account for these “known and unknown unknowns”?

Should each ensemble member be interpreted to be an estimate of the “truth” with

some unknown error, or should the “true” earth system be considered as a potential

member of the ensemble? Although some of these questions verge on the philosophi-

cal, the judgments made in answering them can have large effects on the results

themselves that are obtained and the degree of uncertainty in those results.

In recent years, there have been systematic efforts to explore and characterize

uncertainty using large ensembles of increasingly complex models of the earth

system. These model simulations have been coordinated and analyzed to help in

characterizing climate change in a series of assessment reports for the Intergovern-

mental Panel on Climate Change (IPCC). In 1990, 1995, 2001, and 2007,

a selection of GCMs were assembled from various major modeling groups around

the world to compare simulations of past, future, and other idealized scenarios of

climate change. Through the successive decades, model complexity and scope have

increased; the early GCMs of Manabe [2] and Hansen [3] modeled atmospheric

dynamics and radiative transfer, with a simplistic representation of the hydrological

cycle. By the time of the First Assessment Report of the IPCC [4] (FAR) in 1991,

models included clouds, a land surface model, and prescribed ice cover. For the

Second Assessment Report [5] (SAR), some models also included a representation

of the ocean and interactive sea ice. In the Third Assessment Report [6] (TAR),

some models considered the effects of volcanic eruptions and aerosol emissions,

with a fully dynamical representation of the oceans. By the time of most recent

Fourth Assessment Report [7] (AR-4), some models were beginning to include an

explicit representation of the carbon cycle in the earth system. Today’s models

continue to model additional components of the earth system, such as interactive

vegetation, dynamically resolved ice sheets, a coupled carbon-nitrogen cycle and

full atmospheric chemistry. In parallel with all of these improvements, the last few

decades have also seen a continued increase in model resolution. Where the models

used in the FAR split the earth into cells as large as 500 km on a side, models for the

AR4 can resolve at a scale of a few tens of kilometers.

This entry focuses on the advantages and additional complexities which one

must consider when studying a range of different model simulations. Rather than

giving a comprehensive description of the results of the models assessed in the

successive generations of the IPCC, this entry will discuss the added technical and

conceptual challenges encountered when considering the results of a range of

non-independent models and how a range of simulations may be combined into

best estimates and uncertainties for future climate evolution.
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Projection Uncertainty and the Need for Ensembles

Empirical and Physical Models

In 150 AD, Ptolemy devised a model of the motion of planets in the solar system by

describing a system of concentric, geocentric circles (or “deferents”) on which were
mounted smaller circles (“epicycles”) on which the planets themselves were

mounted. This system thus had a large number of degrees of freedom (the diameters

and speeds of rotation of each of the deferents and epicycles), which could be finely

tuned to reproduce the motions of the bodies in the night sky. Such was the

predictive power of this approach, that variations of this simple model were

accepted until Copernicus’ heliocentric model was published in 1543. Although

Copernicus’ model fits the established view of the universe more closely, both of

these models were empirical in that they were not based on any physical principles

at that time. However, even without a physical basis, Galileo was able to validate the

Copernican model by studying the phases of the planet Venus – which was only

consistent with the heliocentric formulation. It was not until Newton’s law of

universal gravitation that the model could be given a physical underpinning.

Any model of a physical system is an approximate representation of the truth. It

should be able to reproduce some behavior of that system, and it might do this

empirically like Ptolemy’s model or by explicitly simulating physical processes

within the true system like an orbital system based upon Newtonian gravitation.

A model, whether empirical or physical, cannot ever be validated in the strict sense

of showing it to be a wholly correct representation of the true system; it can only be

evaluated by reproducing some output not used in the tuning of the model itself.

This was true of Galileo’s observation of the phases of Venus – information not

used in the tuning of the Ptolemic model. However, any empirical model becomes

very sensitive to changing boundary conditions. For example, if the mass of the Sun

were to instantly double, the Copernican model of the solar system would be a very

poor approximation of planetary motion, whereas a model based upon Newtonian

mechanics would capture enough of the necessary physics to remain useful.

These fundamental principles are relevant to methodologies for simulating the

climate today. If the simplest, zero dimensional empirical model of the climate is

taken to be:

C
dT0

dt
¼ F0 � lT0

where T 0 is the global mean temperature difference from an equilibrium state, F 0 is
the additional radiative forcing to the planet (i.e., the change in the top of atmo-

sphere radiative balance caused by a forcing, e.g., increased CO2), C is the effective

heat capacity of the system, and l is the global sensitivity parameter. This equation

has two free parameters, C and l which may be tuned such that the model can fit an

observed past time series of F 0 and T 0, that of the twentieth century, for example.
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The model can then be evaluated by predicting a previously unseen time period,

such as the last glacial maximum. This evaluation, if successful, would give more

confidence in the model but would not necessarily make it trustworthy for

a prediction of the future – where the boundary conditions are outside those seen

in both the training and validation period.

The added advantage of using a GCM to simulate future climate is that model

simulations are in theory more trustworthy because they are based upon physical

principles, which it is believed can reproduce observed climate by coupling under-

lying physical laws that are known to be true. However, this view is often overopti-

mistic; although some components of the modeled climate, such as the equations of

motion in the atmosphere or the instantaneous radiative forcing due to a change in

atmospheric carbon dioxide concentrations are well understood and consistently

implemented in different GCMs, there are other processes such as convection

which cannot explicitly be resolved with current computing resources. These

processes and their effects on the large scale climate must be approximated with

uncertain parameters that must be estimated by tuning the model to reproduce some

observed features of the climate. What this means, in practice, is that a GCM is

neither only an empirical nor an explicitly physical model; it is a hybrid of the

two where model developers face many arbitrary choices in parameterizing pro-

cesses which cannot be explicitly resolved. The necessity for the tuning process

reintroduces some of the problems encountered with an empirical model, with the

possibility of false confidence in model performance by over-tuning the model to

reproduce past climate. The ambiguity in these parameterizations justifies the

existence of multiple models for the same purpose [8]; each of these models is

seen as a plausible approximation of the climate system given the imperfect

understanding, the uncertainties in observations and the computational constraints.

Types of Uncertainty and the Need for Ensembles

Although weather and climate simulations share some properties (sometimes they

are conducted with the same model), the limiting uncertainties are very different.

Climate represents the distribution of all possible states in which one expects to find

a system, whereas weather is the specific evolution of the system from a given

initial state. A model-based weather forecast is a prediction, in that the initial state

of the simulation is as close as possible to observations and the absolute errors grow

rapidly afterwards. In weather prediction, these errors occur as specific weather

systems evolve from the initial state. Because the atmosphere is a chaotic system,

very small errors in the estimate of the initial state can result in very large

differences in the distributions of weather systems a few days later. Initial condition

uncertainty is evaluated by repeating simulations with a range of slightly different

initial conditions to form “Initial Condition Ensembles.” The spread of these

ensembles initially grows rapidly but eventually saturates when the “memory” of
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the initial state is lost (this timescale is longer in the oceans, perhaps up to 10 years

for North Atlantic ocean temperatures [9]).

On decadal to century timescales, the mean and spread of an initial condition

ensemble represents a projection of the future climate state, although this spread is

only a small fraction of the total error (sometimes known as “uncertainty of the first

kind”). The second kind of uncertainty relates to the boundary conditions of the

problem, some of which are naturally occurring such as the level of incoming solar

radiation or volcanic activity, while others are dependent on anthropogenic factors

such as the future emissions of greenhouse gases or aerosols. To address this

uncertainty, one must perform a range of simulations using different plausible

scenarios for changes in boundary conditions. The results of any simulation are

therefore conditional on assumptions made about future human behavior. There is

currently little real skill in forecasting future volcanic activity and changing solar

activity so simplistic but plausible scenarios for these quantities are often used

(such as repeating past values). However, in most future scenarios these represent

a relatively small fraction of the total anthropogenic climate forcing.

Figure 10.1 shows the relative sources of error in a climate model projection as

a function of the lead time [11]. For lead times of less than a decade, the uncertainty in

the initial state combined with chaotic error growth and natural patterns of variability

are the dominant sources of error but on the scale of several decades or more, it is the

future emissions scenario which dominates the uncertainty. Predictions on all

timescales, however, are subject to model uncertainties. These arise when a climate

model contains parameterizations for unresolved or missing processes. Parameter-

izations take large-scale quantities resolved by the model, such as temperature, wind

speed, and humidity, and relate them to unresolved processes, such as convectivemass

flux and cloud profiles. Although these parameterizations are usually constructed from

physical underpinnings and evaluated with observed data, they introduce some

unavoidable uncertainty when a range of parameter values might be physically plausi-

ble.GCMsare often subject to a tuningof parameter values to reproduce features of the

observed climate, but with tens or hundreds of uncertain parameters this process is

time consuming and can yieldmultiple solutions because of the computational cost,

a systematic tuning of all parameters is unfeasible.

One method of quantifying the parameter uncertainty problem is to construct

a “Perturbed Physics Ensemble” (PPE) using a single GCM. This process has been

attempted using several major climate models [11–13] and involves taking a subset

of important unknown parameters within the GCM and perturbing them within the

bounds of physical plausibility. Such experiments might perturb, for example,

a parameter which states the necessary humidity required for the formation of

cloud. By varying this parameter, one can change dramatically how the model

distributes clouds both in the present day and the future. These changes can affect

the strength of global feedbacks which can change, for example, the amount of

warming that the model predicts for a given rise in greenhouse gases. An example

of a PPE is the “climateprediction.net” experiment [13], which used idle time in

volunteer’s computers to perform perturbed simulations of future climate.

Incorporating this range into an uncertainty estimate for predictions of future
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climate requires a framework for joint consideration of each model’s performance

in simulating past and present climate as well as its future response.

The remaining model uncertainties are due to so-called “systematic” or structural

errors arising from the model design, that is, the choices of which processes to model,

the resolution of the model, the numerical schemes, and the specific form of the

parameterization scheme. The structural differences between different GCMs provide

a lower bound on the extent of the structural difference between any one GCM and the

true climate system, but in reality the models in an ensemble such as those used for the

IPCC reports share many common properties in terms of resolution, numerical

methods, missing components, and parameterization schemes which might make all

themodels subject to similar errors. Nevertheless, considering a range ofGCMswhich

make different modeling assumptions is an essential step when evaluating the robust-

ness of any prediction of future climate change because it places a lower bound on the

uncertainty arising from the choices made by model developers.

Multi-model and Perturbed Physics Ensembles

When making predictions of a future climate state, there is a wealth of evidence to

suggest that considering a combined prediction using multiple, somewhat indepen-

dent models yields more accurate results than any single model [14–16].
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Fig. 10.1 A figure showing the fractional sources of uncertainty in a climate model projection as

a function of time. The orange “internal variability” line shows the errors due to uncertain

knowledge of the initial state of the system, while the dotted line shows the potential reduction

in error if effort is made to assimilate ocean observations into the model at the start of the

simulation. The green line shows the fractional error due to the unknown future emissions of

climate altering gases, while the blue line shows the error due to the model imperfections. The

boxes show where different types of uncertainty are dominant for a projection of future climate

(Reproduced from [10])
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Additionally, the spread of simulations provides a measure of robustness in the

prediction. The following section describes some reasons for the increased perfor-

mance of multi-model and perturbed physics ensemble forecasts, together with

some of the complexities arising from their analysis.

Range of Ensemble Responses

The spread of results from an ensemble of climate simulations is dependent upon

the experimental design, or lack of it. A perturbed physics ensemble (PPE) has the

luxury of allowing some control of the distribution of models in the parameter space

of the model, though the structure of the underlying model places a fundamental

limit on the range of observable behavior in the ensemble. For example, if a PPE is

created by perturbing cloud parameters in a GCM which has no parameterization

for cirrus clouds formed by gravity waves, then there is no way that such an

ensemble can include uncertainty about that process. Designers of such

experiments must also be aware that the decisions of how to sample the parameter

space of a model will directly influence the distribution of future climate

simulations [17]. In contrast, multi-model ensembles (MMEs) such as the Coupled

Model Intercomparison Project (CMIP-3), explore “systematic” model differences,

which sample models with different representations of the physical system, rather

than simply varying parameters in a single model. These are “ensembles of oppor-

tunity” where multiple modeling groups run coordinated experiments but the

ensemble itself is not sampled in any systematic fashion. Nor is the ensemble

randomly sampled because each modeling group will tune their model to minimize

model differences from observations, thus creating an ensemble of “best-guesses.”

This is quite different from the PPE case where the model is intentionally detuned

to produce a wide range of behavior. Evidence for this can be seen by examining the

spread of climate sensitivity in both a multi-model and a perturbed physics ensem-

ble (Fig. 10.2). When considering a range of observational constraints on climate

sensitivity, it is apparent that the multi-model values tend to cluster about the most

likely value, whereas the perturbed physics ensemble contains models which span

the full range of uncertainty in climate sensitivity. Although impossible to verify, it

also is possible that there is also a component of social anchoring [18] which draws

multi-model sensitivities toward the mean value as any group which finds their

model to be an outlier may have to defend why this is the case, whereas a model

with the consensus value of sensitivity is less likely to be questioned.

The Ensemble Mean State

In various fields, it has been shown that the combined performance ofmultiple models

can exceed that of an individual ensemble member. Examples of this can be seen in

models of crop yield [20], diseasemodeling [21], and even in the optimization routines
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used for movie recommendations based upon past viewing choices [22]. Similarly in

seasonal climate predictions, it has been shown that the multi-model ensemble means

yield better forecasts, in general, than using only initial condition ensembles from

a single model [16]. A multi-model study incorporating a set of initial conditions for

each model is often referred to as a “super-ensemble.” The accuracy of the model

mean often performs best in multivariate applications, that is, a single model may

show increased skill in predicting one particular diagnostic, but when many variables

are considered in the samemetric the ensemble mean prediction tends to show greater

skill than any individual model [23].

This effect can also be seen in GCM simulations of recent past climate.

Figure 10.3 shows successive generations of the CMIP ensemble evaluated using

a multivariate error metric comparing twentieth century observations to model

simulations of that period for a variety of model diagnostics. The figure shows

that model errors in simulating the current climate have decreased over time but

also that for each generation of the ensemble, the multi-model mean results in

a model-data discrepancy almost as good, or better than the best performing

ensemble member. Various studies have found that both in detection and attribution

studies [24] and in simulations of recent climate [25] that a multi-model mean

provides a better multivariate simulation than any individual model.

Combining multiple lines of evidence

Instrumental period

0 2 4

Climate sensitivity (K)
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Current climate mean state

Last millenium

Volcanic eruptions

Last glacial maximum (data)

Last glacial maximum (models)

Proxy data from millions of years ago

Climateprediction.net
CMIP–3

Fig. 10.2 Distribution functions of climate sensitivity (an estimate of the equilibrium response of

a model to a doubling of CO2) for models in the CMIP-3 ensemble (hinting at the range of

responses from an MMF analysis), compared with a selection of models from the

climateprediction.net project (hinting at the range of uncertainty from a PPE analysis). Box and
whisker plots show estimates of the most likely values, together with 66th and 90th percentiles of

likelihood for climate sensitivity taken from various lines of observational evidence (Adapted

from [19]). Histograms represent the fraction of models in each 0.5 K bin of climate sensitivity for

the atmosphere-only components of 19 models in the CMIP-3 archive and for a 2,000 member

subset of the climateprediction.net ensemble [13]
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This approach is common in the reports of the IPCC, where an unweighted mean

of future model simulations is used to show a “best-guess” simulation of future

climate, while the degree of model spread is used to estimate some measure of the

significance of the result. There are more sophisticated methodologies that one may

use for model combination, involving Bayesian methodologies [27] or model

weighting [28], but the correct implementation and interpretation of such studies

is subject to some debate. It has been shown that the ranking of model performance

within a multi-model ensemble such as CMIP-3 is often highly dependent on the

choice of metric used to evaluate the model. A metric based on the model’s ability

to reproduce observed variability will produce a different ranking than a metric

which evaluates the model simulation of the mean state [30], and the performance

of different models on these two metrics are very weakly correlated (Fig. 10.4). In

addition, violation of the model “democracy” (one model, one vote) in the IPCC

process is potentially controversial, as choices of how to weight models could be

interpreted as a political statement [31].

The question of why multi-model means perform better than individual models

is a complex one. Certainly, the mean is not in itself a self-consistent representation

of a physical system and is therefore not subject to many of the restrictions that

apply when tuning one model to reproduce an observed climate. As an example,

a single model may be tuned in different ways to reproduce two different observed

values “A” and “B,” but it might be impossible to tune the model to reproduce “A”

and “B” simultaneously. However, if different models in the ensemble make

different choices about the relative importance of “A” and “B,” it is likely that

the ensemble mean will be close to the observed values in the case of a large

ensemble. Clearly, real GCMs have a large number of observable diagnostics to
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reproduce and a large number of tuning parameters, but it remains true that the

multi-model mean is less restricted by model structure than any individual model in

the ensemble. Another interpretation is that some of the model biases are random

perturbations about the truth (i.e., each model reproduces the observations with

some pattern of bias that is characteristic to that model and but different in each

model), such that averaging many models reduces the magnitude of the biases. In

the limit of completely random independent biases, the average would be perfect

for an infinite number of models.

In some cases, the multi-model mean can indicate behavior unrepresentative of

any of the models within the ensemble. Figure 10.5 shows the distribution of

expected percentage precipitation change per unit global temperature increase in

the current dry season for variousmodels within the CMIP3 archive. Each individual

model shows a wide distribution of change with some regions showing up to 30%

decrease in precipitation for every degree rise in global mean temperature. If the

models are averaged together in advance, however, the resulting multi-model mean

has no region which displays this extreme decrease in precipitation in the dry season.

The multi-model mean is thus not representative of the findings of the individual

ensemble members in the respect that it fails to recover the extremes of the

distribution of precipitation change. The reason for this discrepancy is, at least

partially, a difference of the spatial representation of precipitation patterns in

different ensemble members. Different models have different resolution,

representations of orography, and parameterizations for precipitation. When com-

bined this gives each models unique spatial modes of variability for precipitation.

This allows each model to display extreme future drying in some specific regions,

but critically those regions are not necessarily identical in all models in the
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ensemble, effectively smearing out the small scales and the extremes of the distri-

bution. Thus, although the mean result of a large ensemble may provide a reduction

in model bias, the averaging process itself may create an unrepresentative forecast.

Model Independence

Given a set of truly independent models distributed about the truth, one would

always be able to improve simulation quality by increasing the number of models in

the ensemble as truly independent errors would tend to cancel. Any study which

treats CMIP ensemble members as independent realizations of a possible future is

implicitly making this assumption, but one can make statistical arguments to show

that the models are not distributed in a way which would be consistent with this

assumption [36]. To illustrate this visually, Fig. 10.6 shows maps of temperature

and precipitation from a selection of models in the CMIP-3 archive, all of which

could be used with equal weight in producing a multi-model mean. However, one

can see instantly that the two GFDL models have very similar biases in surface

temperature, even though they are submitted as separate models to the archive. The

temperature biases in the other two models shown have very different spatial

patterns. The precipitation plots, however, show that there are some common biases

in all four of the models. There are many reasons why these common biases might

exist; all models in the CMIP-3 ensemble cannot explicitly resolve features smaller

than about half a degree, which renders them incapable of simulating behavior such

as atmospheric blocking or the response to local orography. Models may also share

parameterization schemes and be tuned to reproduce the same observations [32],
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Fig. 10.5 This plot, from Knutti [31] shows the fraction of land area between 60�N and 60�S
experiencing a given change in precipitation in the dry season. Precipitation change is measured in

percent per unit global temperature rise in Kelvin measured over the period 1900–2100 relative to

the 1900–1950 average. Each light blue line represents a single CMIP3 ensemble member, the

dark blue linemarks the average of all distributions. The black line shows the precipitation change
in the multi-model mean. The expected absolute precipitation change in the multi-model mean is

about 30% smaller than in any single model
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and in some cases the same model can be submitted to the ensemble at multiple

resolutions meaning that models can share considerable parts of code, making it

very likely that model biases will be correlated. In summary, it is both expected and

evident that the current generation of climate models does not provide an indepen-

dent sample of estimates distributed about an underlying truth, and it is unlikely that

increasing the number of similar models in the ensemble would drastically increase

the accuracy of combined predictions.

Model Validation and Tuning

GCMs are frequently tuned by minimizing differences between simulations of the

past century and observations. The observations can be in the form of data from

satellites and in situ measurements or may be expressed as reanalyzed products

gfdl_cm2_0 gfdl_cm2_1 ncar_ccsm3_0 iap_fgoals1_0_g

Temperature Difference from NCEP (K)

Precipitation Difference from NCEP (mm/year)

−10 −5 0 5 10

−50 0 50

Fig. 10.6 Temperature and precipitation maps of the North Atlantic region from four models

submitted to the CMIP-3 archive. Each map shows the 1980–2000 averages for June, July, and

August – expressed as a difference between the model simulation and the NCEP reanalysis for the

same period. The top row shows the anomaly for surface temperatures, while the bottom row
shows the anomaly for annual total precipitation
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which attempt to incorporate information from both of these. Simulations of earlier

periods may also be evaluated against proxy data (estimates of temperature or

rainfall etc., produced from tree rings, ice cores, etc.), although the long simulations

and necessary model reconfiguration for these periods often mean they do not form

part of the active model development process. Because models are tuned to agree

with data over the twentieth century, they tend to agree with each other for this time

period. There is little spread in the model simulations over the twentieth century.

Figure 10.7 taken from the IPCC AR-4 report shows that the models behave

similarly throughout the twentiethcentury when compared to any one of the

scenarios for the twenty-first century. The reader should not attach any significance

to the absolute values of the global mean temperature time series, which are

expressed as anomalies with respect to the 1980–2000 mean for all models.

The remarkable consistency of the global mean temperature evolution in the

twentiethcentury in the current generation of GCMs is made possible through the

various degrees of freedom the models have in fitting this well-observed period. The

response of any model is governed by a combination of transient ocean heat uptake,

climate sensitivity, and the radiative forcing to the system, which effectively makes

the problem poorly constrained with multiple ways to fit the twentieth century global

mean temperature time series [33]. A study by Kiehl (2007) concluded that models

produced this agreement by compensating between differences in climate sensitivity

with differences in aerosol forcing. Figure 10.8 shows both the climate sensitivities

and the later twentieth century anthropogenic forcing of climate in a selection of

GCMs [34]. It is apparent that those models with a larger anthropogenic climate

forcing in the twentieth century have a smaller climate sensitivity, allowing the

models to successfully reproduce the twentieth century temperature record (a weak

correlation between aerosol forcing and climate sensitivity is also seen in the CMIP-

3 archive used for the AR4 report [35]).
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Fig. 10.7 A figure reproduced from the IPCC AR-4 report (Fig. 10.4) showing the mean and inter-

model spread of simulations in the CMIP-3 model archive for simulations of the twentieth century,

together with the simulations of three different scenarios for periods after the year 2000. Global

mean temperatures are shown relative to the 1990–2000 mean. In each case, the line represents the
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In each of the twenty-first century scenarios illustrated in Fig. 10.7, the aerosol

concentrations are predicted to decrease as increasingly stringent clean air legislation

comes into effect. Meanwhile, all the scenarios show a continuing increase in green-

house gases throughout the twenty-first century, whichmakes the climate sensitivity of

the models the primary factor influencing their future evolution as the total anthropo-

genic forcing increases. The differing climate sensitivities amongst the CMIP3models

thus cause a larger spread in the twenty-first century simulations than for the twentieth

century simulations. However, it should be noted that most AR4 models included the

“direct” radiative effect of aerosols, but not their indirect effect on cloud properties.

This means that eliminating the correlation between climate sensitivity and aerosol

forcing would not necessarily reduce projection uncertainty, and the success of most

models in simulating the twentieth century may be partly spurious [36].

An additional problem lies in the lack of independent data with which to tune

and verify the models. In many cases, model quality metrics are based upon mean

state and variability data from the latter twentieth century data, which is very likely

to be used in the development of parameterizations and tuning of the model. For

example, most models use satellite data products to tune the top of atmosphere

energy fluxes, and these products are often considered to be one of the more robust

constraints when evaluating a model quality metric. In addition, models may often

be evaluated against reanalyses, rather than the observational data itself. Reanaly-

sis products are model simulations strongly “nudged” to reproduce an incomplete

set of observations, effectively filling in the gaps with self-consistent model data

output. This process introduces an additional layer of complexity, because the

reanalysis climate will contain features both of the constraining observations and

the underlying model. For fields where real data is sparse or where data is not

assimilated directly (such as precipitation metrics), the reanalysis output might
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have much more dependence on the underlying model than on any real-world data.

As a result, when using reanalysis data as a constraint for multiple models, those

models with a similar representation of the hydrological cycle to that used in the

reanalysis will appear to perform better.

The model development process involves a considerable amount of value judg-

ment, as a model serves many purposes and some compromise between the many

different plausible performance metrics must be made. The relatively small number

of degrees of freedom available to model developers makes it impossible to

perfectly match a large number of observable quantities simultaneously, which

means that there may be multiple possible parameter combinations which are

equally valid. Each of these combinations, although they fit historical observations

equally well, may have different projections of future climate change if they exhibit

different climate sensitivities or aerosol responses.

In the past, model tuning has largely been a time-consuming process of expert

judgment and trial and error, which leads to some uncertainty of what errors in

a simulation are irreducible through parameter adjustment. Although not yet used

operationally, various techniques have been proposed to automate this tuning

process. One technique uses an optimal gradient descent approach to minimize

some multivariate error metric [34]. This approach can yield multiple solutions, as

the response surface in the parameter space of the model may show local minima.

Another approach involves using a preexisting perturbed physics ensemble and

fitting a nonlinear response surface [37] to interpolate between the sampled points

in the parameter space. This effectively produces a “model emulator” which can

predict the point in parameter space which minimizes model error, but the result is

dependent on the parameter space being sufficiently densely sampled to capture the

dominant features. One can also combine the predictions from a range of plausible

perturbed models. The ensemble Kalman filter [38] approach has been used [39] to

create a set of valid perturbed versions of a single climate model, but is subject to

uncertainty that there is an unknown systematic error in the climate model which

cannot be corrected by parameter modification.

A final problem lies in the incompleteness of the model representation of the

climate. Many current models, for example, cannot simulate the indirect effect of

aerosols on cloud amounts. Tuning an incomplete model to reproduce the observed

radiative balance at the top of the atmosphere therefore involves overcompensating

the cloud amounts by artificially enhancing other processes, which arguably makes

the representation of the current and future state less accurate.

Statements of Probability

Multi-model Ensembles

As indicated throughout this entry, the production of a probabilistic statement for

future climate from a multimember or perturbed physics ensemble has no clearly

established methodology and requires a priori assumptions to be made. Arguably
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the simplest assumption that can be made is one of model equality, using the

democratic “one model, one vote” approach [40]. In such a method, the probability

of a future event is estimated by the fraction of models in which the event happens.

This hypothesis can be tested by cross-validation within an unused subset of the

ensemble. However, this approach is limited by the implicit assumption that the

ensemble is a random sample of plausible estimates of the true climate, where the

various arguments in section “Projection Uncertainty and the Need for Ensembles”

suggest this assumption may not be valid.

The next logical step is therefore to consider some measure of model skill as

a weighting for each model, producing an estimate of future climate as a median of

model predictions, such that models with a small bias are given a greater weight

[41]. Such approaches are always highly dependent on the exact choice of metric

used to evaluate the model weighting [29].

Many studies have adopted Bayesian methodologies, where prior beliefs about the

range of future climate change are updated with information from models and/or

observations. One example [42] takes a prior probability distribution for current and

future regionally averaged climate signal (or the corresponding climate change signal)

and updates this using information from models and observations. Priors can be

chosen to be uninformative (flat over a large range of possible values) so that the

final PDF shape is mainly influenced by the information from models and

observations. The likelihood of each model simulation of the past and the future is

then represented as the realization from PDFs centered around the unknown “true”

present and future climate, as if the ensemble were a sample from a large idealized

population of possible models. The width of the PDFs is in turn estimated jointly with

the climate signals. Its magnitude depends on that model bias compared to the

consensus estimate of the present day and future state. Markov Chain Monte Carlo

techniques are used to approximate the result of Bayes theorem applied to priors and

likelihood, allowing a joint probability distribution for the “true” climate states and the

unknown parameters characterizing the model distributions to be estimated. From it,

the PDF of the regional climate change signal is also straightforward to derive.

A Bayesian approach has been also applied at the grid-point scale by

representing the entire field of future climate anomaly for each model in terms of

a truncated set of basis functions combined with some noise estimate [43], such that

each model has its own low-dimensional set of coefficients to describe the pattern

of climate change. The advantage of this approach is that a similar Bayesian

methodology may be applied to derive estimates for the “true” values of the

coefficients, which when recombined with the basic functions results in PDFs for

climate change at the grid-point level.

An issue with both traditional weighting schemes and the Bayesian approaches is

theway inwhichoutliers are treated – the so-called “convergence criterion”. In the case

of a large PPE, such as the climateprediction.net experiment, the logic in down-

weighting outliers assumes that there is some significance in the consensus mean

projection, errors are distributed randomly and that models which deviate strongly

from the consensus are somewhat less trustworthy. However, in a small ensemble of

best-guesses such as CMIP-3, this argument is subject to question. It is possible that
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a singlemodel in the ensemble is able to simulate processes which are not simulated in

other models. This model is arguably more trustworthy than the rest of the ensemble

and yet it would be down-weighted through the application of a simple convergence

criterion.

Another issue with all of the methods discussed thus far is the assumption of

model independence. It can be shown [44] that the width of the final PDF using

a Bayesian methodology is inversely proportional to the number of the models

considered in the ensemble. Whilst this would be true if all models were indepen-

dent estimates of a true climate, it has been demonstrated that this not a valid

assumption [32]. Although some statistical methodologies have endeavored to

artificially reduce the more obvious interdependencies of the CMIP-3 ensemble

[45], there is at present no generally accepted methodology for doing so. The

Bayesian techniques that have been developed so far tend to produce a PDF

narrower than the spread of the original ensemble, as the independence assumption

causes uncertainties to decrease with added ensemble members.

A completely different approach to producing model projections is to statisti-

cally “calibrate” models, where a relationship is established between model

simulations and observations over an observed period. Once this relationship has

been determined, it may be applied to future climate projections to produce

a “calibrated” estimate of the true future response. This approach assumes, of

course, that the relationship between the projections and the true response will

remain constant in the future. This approach has been applied to large scale metrics

such as past and future sea-ice loss [46], as well as more complex statistical

multivariate approaches which find the best fitting relationship between modes of

variability in model simulated and observed past climate, again using those

relationships to produce a calibrated future projection [47, 48].

Finally, some “detection and attribution” studies [49] determine spatial patterns

of climate changes associated with different atmospheric forcings, using

observations to determine whether models are over- or under-representing those

changes in past simulations. This allows future model projections to be rescaled in

light of the observations. One of the major uncertainties in such approaches is in the

derivation of the calibration coefficients themselves, and whether the calibration is

valid when applied to a future planet in a very different state. These uncertainties

tend to result in wider PDFs than Bayesian methodologies [33].

Perturbed Physics Ensembles

While “one model, one vote” may be a questionable assumption in a multimodel

ensemble, it is quite ostensibly wrong in a perturbed physics ensemble where some

models have vastly inaccurate simulations of the mean climate [50]. PDFs of future

climate derived from a perturbed physics ensemble have therefore often been

forced to take a different approach.
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Most studies thus far arising from PPEs have focused on producing PDFs for

climate sensitivity, and have broadly fallen into three categories: weighting of the

parameter space, using the ensemble to establish relationships between observable

quantities and unknowns such as climate sensitivity, or a traditional Bayesian tech-

nique. An example of the first approach [11] takes a PPE and ascribes each model

a weighting, based upon model skill in reproducing the observed climate. By

interpolating between the sampled points in the parameter space, one can then produce

a weighted integral of the unknown quantity (e.g., climate sensitivity). It is argued,

however [51], that the PDF obtained from such an approach is fundamentally depen-

dent upon the prior assumptions made in sampling the original parameters.

A second approach of finding relationships between observable and unknown

quantities has been demonstrated using both linear [52] and nonlinear [53] transfer

functions. In each case, the ensemble is used to derive some predictors which

internally estimate the climate sensitivities of ensemble members. These regression

coefficients can then be used together with observations of the true climate state to

make a prediction of the true climate sensitivity. Clearly, these predictions are

subject to uncertainty in the observational state and in the internally derived

prediction error, both of which may be estimated relatively easily. The major

“unknown unknown” in such an approach is the systematic or irreducible error of

the underlying model, that is, how much additional uncertainty arises when the

predictor is applied to the real world. A lower bound of this quantity may be

obtained by examining the skill of the predictor when applied to a multimodel

ensemble such as CMIP-3, but this will not account for common errors arising from

lack of resolution or simulated processes.

The final approach to be considered is the use of an ensemble Kalman filter [40].

The ensemble is used together with observations to update prior beliefs about several

unknown model parameters. The ensemble Kalman filter then involves an iterative

process forming an idealized ensemble of plausible perturbed models. Once again the

methodology is sensitive to assumptions about model error, which scale the relative

importance of the model-observation discrepancies forming the overall cost function.

By assuming model errors are small, the resulting idealized ensemble will be more

tightly clustered about the observed state. The distribution of climate sensitivities in

this idealized ensemble is then deemed to approximate a PDF for the sensitivity. One

advantage of such a technique is that the predictions may be validated by producing

a hindcast for the past (the Last Glacial Maximum, in this case). The LGM simulation

can then be used to produce an out of sample weighting for the optimized ensemble.

Future Directions

The analysis of climate simulations from multiple models is still a problem in its

relative infancy. Various techniques have been proposed in this entry, each making

different assumptions about model independence, prior distributions, systematic

254 B. Sanderson and R. Knutti



model errors, and about what statistical framework is appropriate. These choices

remain, at present, somewhat subjective and often yield different probability

distributions for unknown climate variables. The apparent contradictions between

the methodologies can be understood, however, in light of the assumptions made. In

contrast to a numerical weather forecast where thousands of verification cases are

available to test the forecast skill, the climate projections for a century into the

future are making a statement about a situation never observed before and where no

model evaluation is possible. Because there is only a single realization of the future,

any statement of probability expresses a degree of belief in a Bayesian sense of how

different future outcomes are supported by current evidence (models, data,

methods), and is therefore inherently subjective.

Clearly, any projection (and the uncertainty associated with it) must be tailored

in a fashion useful to decisions on policy and planning for a changing climate.

Policymakers tend to push for increases in precision, but this can lead to decreases

in real accuracy if predictions are overconfident [54]. There is arguably little point

in providing PDFs of future change for planning purposes if the width of those

PDFs are massively sensitive to either subjective decisions or unknown errors,

and the raw collection of “best-guesses” from the different models is as useful

a way as any to present the ensemble of forecasts. One inherent danger with this

approach, however, is the tendency to see the multi-model distribution as

a discrete probability distribution for future climate. As is seen, the lack of

model independence, the fact that all models are neglecting certain sources of

uncertainty (e.g., the carbon cycle climate feedback uncertainty) and the fact that

every modeling group will tend to submit only a best-guess climate together

implies that the true uncertainty may be larger than that indicated by the spread

of model simulations.

Future generations of multi-model ensembles are also likely to introduce more

complex “Earth System Models,” at least for some ensemble members. These

models, in addition to atmosphere, ocean, land, and sea ice components are likely

to introduce fully coupled carbon–nitrogen cycles, chemistry, urban, and ecosystem

models into the simulation. These components of future uncertainty have not been

thoroughly explored in previous generations of the CMIP experiments, and are

likely to increase the spread of simulation response for the coming century.

Although this could be perceived to indicate an increase in uncertainty, it is more

accurately converting an “unknown unknown” into a parametric uncertainty. If

different models include different components of the earth system in their models, it

will also become more difficult to compare them on a like-with-like basis, as is

mostly possible today. However, this underlines the importance with each genera-

tion of climate models of recognizing the uncertainties associated with what is

omitted, as well as those arising from the simulations themselves.

Although there may be some use in overall metrics of model skill [55], it is

likely that projections of specific phenomena will benefit from tailored metrics to

rank the performance of different models (e.g., El Niño or future sea ice extent).

This will also require a proper assessment of which subset of models to use for

each particular application based upon both past model skill and physical
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plausibility [31]. In addition, the community may benefit more from a diverse

range of model predictions, where each model may be evaluated on its own

performance, in place of a group of models which are artificially clustered toward

a mean response leaving no way of simulating the extremes or boundaries of

future climate change.

In this entry both multi-model ensembles and perturbed physics ensembles have

been discussed, but there is little discussion on how the information from the two

may be combined. Indeed, at present there is little to no literature on how one may

combine the parametric uncertainty sampled in a PPE with the inter-model system-

atic differences in a multi-model ensemble. This presents a fundamental problem in

that current PDFs from both of these techniques cannot incorporate the best

estimates of systematic and parametric uncertainty. Future analyses must combine

these various uncertainties in order to make statements about model robustness.

Currently, the ability to conduct such an analysis is limited because only a small

subset of the models in the CMIP-3 archive have produced a perturbed physics

ensemble, and for those ensembles which do exist, the experiments have not been

conducted in any coordinated fashion.

Despite all of the challenges associated with combining and interpreting results

from multiple climate models, the presence of coordinated ensembles of projections

provides an invaluable insight into the magnitude of some of the uncertainties

which are inherent in every simulation conducted, and the ensemble provides

a unique opportunity to understand why models differ. As time goes on, the length

of good quality observations will increase allowing better evaluation of the tran-

sient behavior of the models (a better metric for future transient response than those

based upon the model simulation of the base climate [56]). In addition, as more

components of the climate system are simulated, although model convergence is

not expected (at least in the short term), one can be confident that at least “unknown

unknowns” in future predictions can be represented in the form of parametric

uncertainty.

Finally, possibly the greatest single uncertainty in future climate remains that of

human behavior. Certainly in the case of the CMIP-3 ensemble, the spread in

twenty-first century simulations due to different emission scenarios generally

exceeded that of the inter-model spread to any particular scenario. Simple models

of the climate have already been coupled to socioeconomic models [57–59], but

little progress to date has been made in coupling socioeconomic models to GCMs.

As a result, potential complex feedbacks between climate change and human

behavior have not been sampled in any systematic framework. Nevertheless,

although an integrated treatment of uncertainty in future climate projections may

seem some way off, the use of multi-model ensembles will continue to frame at

least some of those uncertainties in a systematic framework, providing a robustness

which would be impossible with any single model, however complex that model

may become.
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Chapter 11

Climate Predictions, Seasonal-to-Decadal

Lisa Goddard

Glossary

Climatology Reference period used to describe the characteristics of the

climate, such as the mean annual cycle, or the expected statistics

of weather or of year-to-year climate variability. The World

Meteorological Organization recommends the most recent three

full decades; e.g., in 2009, the WMO climatology period would

cover 1971– 2000.

External forcing Factors that influence the climate system but are not explicitly

driven by the climate system, such as human emissions of

greenhouse gases, changes in the sun’s radiation, and volcanic

emissions.

Forecast The guidance offered by a forecaster or forecast center on the

future climate conditions. A forecast could be based on a single

prediction, but typically is a distilled product that involves

recalibrated model predictions and often multiple prediction

inputs.

Internal

variability

The chaotic evolution of a fluid, such as the ocean or atmo-

sphere, due to nonlinear dynamics that are sensitive to small

uncertainties or variations in initial conditions. Depending on

timescale, internal variability may refer to that generated inter-

nally to the atmosphere, to the ocean, or due to
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ocean–atmosphere interaction. It is the part of the seasonal-to-

decadal climate that is not deterministically predictable.

Prediction The future climate conditions indicated by a single prediction

model, which could be statistical or dynamical. These differ

from climate change projections in that information of the

climate state at or near the initial time of the forecast is highly

relevant to its future evolution.

Teleconnections Climate variability in one region that is driven remotely by

climate variability in another region. This typically refers to

regional patterns of climate anomalies over land and/or oceans

that result from specific ocean phenomena, such as during El

Niño events.

Definition of the Subject and Its Importance

Seasonal-to-decadal climate prediction seeks to quantify the likely evolution or

change of the climate system over a specific time horizon of months to years.

Climate predictions based on dynamical models incorporate all relevant processes

to the extent possible, including anthropogenic climate change, but most impor-

tantly those processes that govern the likely evolution of natural climate variability.

The predictions, if well calibrated, describe the probability of a given magnitude of

change in the mean climate or changes in the characteristics of the weather over the

forecast period. For example, a seasonal forecast for next winter might indicate

a greater likelihood for the seasonal mean temperatures to be colder than usual, or

might indicate the likelihood for more frequent storms over the 3-month period.

Seasonal prediction is a fairly well-established enterprise with a number of

forecast centers around the world issuing real-time seasonal predictions–based

dynamical models [1]. Increasingly, national meteorological and hydrological

services create seasonal forecast products based on their own statistical or

dynamical prediction tools and/or incorporate predictions from the international

centers. Decadal prediction is a much newer endeavor and is still considered

experimental [2]. Only a few groups have attempted decadal-scale climate

predictions intended to capture the evolution of natural decadal variability for the

coming decade from a global circulation model [3–5], and although the results

indicate there may be added information from these predictions relative to the more

familiar climate change projections of the Intergovernmental Panel on Climate

Change (IPCC), it is not clear that the added information results from better

prediction of the decadal-scale climate variability that would exist even in the

absence of increasing greenhouse gases.

Climate forecasts are potentially valuable to society on seasonal-to-interannual

timescales to inform resource management, planning decisions, and on decadal

timescales to inform longer-term plans and infrastructure investment. Even in the
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climate change context, decadal prediction could prove important, as the climate

experienced regionally for the coming decade(s) will likely be some combination of

anthropogenic climate change and natural decadal variability. Decisions and

investments related to climate change adaptation typically apply to the next

10–20 years into the future, rather than 80 years into the future. Thus better

information on evolution of the climate and changes in risks of climate extremes

can lead to more appropriate planning. However, climate predictions are necessar-

ily probabilistic, and in the case of decadal predictions are yet to be established as

skillful. Thus it is important that decision systems be designed and optimized to

account for the inherent uncertainty in future climate, that can still allow benefits to

be realized in times of favorable climate and losses to be mitigated in times of

adverse climate.

Introduction

Climate varies on all timescales, from seasonal variations to millennial ice ages.

Prediction of the climate at timescales that are relevant to societal decisions, but

extending beyond weather forecasts, has been roughly broken into three classes:

seasonal-to-interannual prediction that addresses the changes in seasonal climate

and its weather characteristics a couple months to a year in the future, decadal

prediction, sometimes referred to as near-term climate change prediction that

addresses changes in the mean climate and its characteristics for a couple years to

a couple decades into the future, and climate change projections that consider

changes in the mean climate and its characteristics 50–100 years in the future.

The seasonal-to-interannual timescale dominates the climate that is experienced

locally. On a local-to-regional scale, year-to-year variability almost always

explains the majority of the variance in the observed climate (e.g., Fig. 11.1).

Year-to-year variability is where most impacts are experienced. However, it is

the superposition of the three climate timescales that can lead to changes or trends

in the frequency of adverse years. Extreme examples are potentially the protracted

drought conditions in the western United States from the mid-1990s to the early

twenty-first century [6], the 2003 European heat wave [7], or the extremely active

hurricane season 2005 [8], which was accompanied by many land-falling

hurricanes in the United States such as Katrina.

The primary difference between prediction of climate variability on different

timescales is the drivers, or phenomena, associated with those impacts. This leads

to differences in the way prediction systems are designed to predict the climate

fluctuations and associated impacts on different timescales. Seasonal-to-interannual

prediction is an initial value problem; by initializing the climate system close to the

observed state at the beginning of the prediction, a dynamical model will aim to

capture the likely evolution of the climate system. At the other end of the time

spectrum, climate change projection is a boundary value problem, which means that
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the driver of the climate change is external to the climate system and imposed upon

it. Anthropogenic increases in greenhouse gases are due to man’s activities and are

not part of the natural climate system. Climate change projections depend on

correctly projecting the changes in the Earth’s atmospheric composition and the

subsequent changes in the Earth’s energy balance. Decadal prediction lies at the

intersection between seasonal-to-interannual prediction and climate change projec-

tion; it is an initial value as well as a boundary value problem. Decadal prediction

depends both on initializing the climate system close to the observed state, espe-

cially the slowly evolving components, and on correctly representing the changes in

Earth’s energy budget.

This is not to say that predictions on longer timescales do not contain the higher

frequency phenomenon. However, there is a predictability limit for natural climate
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Fig. 11.1 Example of simple decomposition of (a) temperature and (b) precipitation averaged

over the state of Colorado in the United States. The top panels (black) show the observed annual

mean time series. The second panels (red) represent “climate change” time series, in which the

climate changes are consistent with the globally averaged temperature, obtained by decadally

filtering the time series and regressing it against a similar low-frequency filtered time series of

globally averaged temperature. The third panels (green) represent the “natural decadal

variability,” which is low-frequency time series that is not coincident with globally averaged

temperature changes, obtained as the difference between the low-frequency filtered time series and

the “climate change” time series. The bottom panels (blue) represent the year-to-year variability on
top of the low-frequency changes, which is the difference between the full time series and the

low-frequency filtered time series. Note that there is no attribution to anthropogenic changes or

physical phenomena in any of these time series. Details are likely to change with different filtering

parameters and with different approaches to estimate global warming
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variability, which refers to how far into the future some aspect of climate variability

can be predicted before the uncertainty, or range of possibilities, approaches the

climatological uncertainty. At that point little to no predictive information remains.

The limit of predictability is not necessarily a fixed quantity. It changes with the

phenomenon, but also changes with time, meaning that at some times

a phenomenon will be more predictable than others and thus the evolution can be

predicted farther into the future. It is not possible to determine what the true limit of

predictability is or should be [9]. The model(s) that can predict the phenomenon

with the greatest fidelity when compared to observations over some long history

containing many realizations of the phenomenon determine the current limit of

predictability.

In order to make a prediction one must first determine what is to be predicted. If

the aim is to predict local-to-regional scale climate over land, one must know the

driver of that climate variability. Numerous research and prediction studies have

demonstrated that it is the large-scale variability in the pattern of surface tempera-

ture, and in particular the sea surface temperatures that drive the predictable aspect

of changes in the atmospheric circulation and thus regional temperature and

precipitation. But what drives that sea surface temperature variability? The sea

surface temperatures must be predicted if it is hoped to predict the associated

terrestrial climate impacts. Once the ocean phenomena or processes relevant to

sea surface temperature variations are identified, the climate models must be

capable of simulating those. Furthermore, if the prediction of some phenomenon

from a particular model is to provide actionable information, then the phenomenon

must be predictable above the other ongoing processes in the climate system; in

other words, the signal of the phenomenon must be predictable above the back-

ground noise of the climate system. In the next section, an example of this process

of identification, model validation, and prediction based on the El Niño-Southern

Oscillation (ENSO) phenomenon and seasonal climate prediction is presented.

Brief History of ENSO Prediction: Impacts of the ENSO phenomenon have been

experienced for centuries, long before the phenomenon itself was identified. The

peoples of Peru used the term El Niño to refer to the expected changes in the local

climate and fish stocks associated with a seasonal reversal of the current system off

the coast of western South America, because these changes occur near the end of

the year at a time near Christmas (El Niño is Spanish for the Christ child). However,

they also noted that warm seasonal waters associated with the change of currents,

would occasionally be very warm and would also bring abundant rainfall. It is these

extreme years, which recur about every 3–7 years that are now called El Niño

events. Farmers in drought-prone regions of the Andes even developed a method to

predict the coming of the increased rainfall during these events by monitoring the

visibility of a star in the Pleiades constellation [10]. What they were observing was

the shift of convection from the western tropical Pacific into the central Pacific in

concert with the development of an El Niño event (Fig. 11.2).

Sir Gilbert Walker could be said to be the pioneer of seasonal forecasting as he

sought to quantify the atmospheric component of ENSO, the Southern Oscillation,
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and its relationship to regional climate variability, such as the devastating droughts

in India [11]. To accomplish this he examined correlations between 32 stations

across the world for fields of sea level pressure, temperature, rainfall, and riverflow.

He discovered that negative excursion of the Southern Oscillation Index was

associated with increased likelihood for drought over India; his empirical model

has not been much improved upon over the last century for that region. Researchers

have continued to improve upon the foundation that Walker laid for ENSO

teleconnections (Fig. 11.3). Maps that show significant correlation between

regional temperature and precipitation changes to ENSO events for specific 3-

month average seasons are widely used to illustrate ENSO’s global reach [12, 13].

However, these teleconnection patterns represent expectations based on statistics

and are not guaranteed to occur in any specific event; the probabilistic likelihood of

a regional impact [14] is a further refinement of the climate anomalies due to

ENSO, and something that climate prediction models should be expected to repli-

cate in their ensemble distributions over time.

It was not until the second half of the twentieth century that researchers discov-

ered that the Southern Oscillation was associated with changes in the large-scale sea

surface temperature pattern over the tropical Pacific; it was the coupled interaction

between the east–west sea surface temperature gradient and the low-level winds

between the high and low pressure centers of the Southern Oscillation that led to the

growth of Niño events [15]. It was soon after recognized that the change in the

winds due to the changes in sea surface temperatures, associated with the Southern

Oscillation, modified the distribution of the upper-ocean mass field below the

surface [16], and that the adjustment of these perturbations to the mass field

could lead to the eventual decay of the El Niño event and possible initiation of

the opposite phase, La Niña.

EI Niño ConditionsNormal Conditions

Convective Loop

Thermocline Thermocline

Equator

80°W 120°E 80°W

Equator

Fig. 11.2 Schematic drawing of the tropical Pacific ocean–atmosphere state during (a) average or

neutral conditions in which trade winds blow east to west, pushing warm surface waters to the

western Pacific, which pushes down the thermocline (separation between warm upper ocean and

cold deep ocean) and concentrates the deep convection in the western Pacific; (b) El Niño

conditions in which the thermocline becomes deeper in the eastern Pacific and warm water

moves westward, which weakens the east–west Trade Winds and allows the convection to move

into the central Pacific (Source: http://www.tao.noaa.gov/proj_overview/tao_tour_ndbc.shtml)
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In the 1980s simple dynamical models [17–19] were developed that simulated

the coupled air-sea processes central to ENSO and reinforced the theory that had

been informed primarily by observations. The first experimental El Niño forecast

was published in 1986 [20], using one of these simplified dynamical models. Since

then more complex models have been built that capture not only the dominant

processes behind ENSO but also provide a more complete representation of

the climate system to better capture uncertainties in ENSO. These models also

simulate the atmospheric teleconnections that lead to changes in sea surface

temperatures of other ocean basins and to changes in the terrestrial climate. These

are the impacts that served as the initial motivation for the study of ENSO. Finally,

through the process of identification of a primary driver of seasonal climate

variability and the dominant physical processes behind it, and the development of

models that could simulate and predict this driver and its teleconnections, seasonal

prediction was born.

The prediction of decadal-scale climate variability is a much more recent

endeavor. Although research on decadal climate variability through the use of

observations and models is not new [21–26], a community-wide effort in this

area is new. The motivation to predict decadal climate variability has arisen in

part from a desire to use the climate change projections that appear in the Working

Group 1 report of the Intergovernmental Panel on Climate Change [27] to inform

sectoral decision making, [28] as well as plans and investments toward climate

change adaptation. For these societal needs, climate information for the next 5–20

years becomes more relevant than that for the next 100 years. The other side to the

motivation behind experimental decadal predictions is the realization that there are

processes inherent in the natural climate system evolving at decadal-to-

multidecadal timescales, and the mounting evidence that dynamical models have

some ability to simulate some aspects of the observed variability [29, 30].

As the successes and failures in climate prediction are considered, it must be

borne in mind that climate predictions are necessarily probabilistic. They indicate

the likelihood of a range of possible outcomes. The magnitude of this range of

outcomes, often referred to as the uncertainty or probability distribution, is sensitive

to uncertainties in the initial conditions from which the predictions evolve, to

uncertainties in external forcings, and to errors in prediction models. The value

about which the uncertainty is centered is sensitive to the external forcings and to

information in the initial conditions that may lead to specific, robust evolution of

the climate system. Particularly in the case of decadal prediction, which is still in

the experimental phase, success refers to relative performance, or agreement

between prediction and observations, compared to the state of predictions beyond

the seasonal timescale, namely, climate change projections. In other words, much

of the judgment of decadal prediction in these early experiments focuses on the

added forecast quality from the initial conditions relative to that from the boundary

conditions, or external forcing. Therefore, success in the eyes of the climate

community may not constitute information that is accurate enough or specific

enough to be actionable.
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Although both seasonal prediction and decadal prediction experiments, and

climate change projections for that matter, use the same type of dynamical models,

substantial differences exist between their application for these different timescales

of prediction. The following sections contain discussions of Drivers of Variability,

Model Fidelity, Prediction Systems, and Internationally Coordinated Efforts, first

for the seasonal-to-interannual timescale, followed by a similar analysis for the

decadal prediction problem. The only difference in the structures is that the section

on seasonal-to-interannual prediction also contains a discussion of Forecast Skill.

The echoed structure is intentional in that many of the issues and approaches will be

similar for both timescales. However, there are important differences in what is

known about the drivers of climate variability at these different timescales as well

as differences in the maturity of the prediction systems.

Seasonal-to-Interannual Prediction

Seasonal-to-Interannual Prediction: Drivers of Interannual
Variability

Seasonal-to-interannual prediction derives from initial conditions of the climate

system. Unlike weather forecasts, where the relevant initial condition is the atmo-

spheric state and the sea surface temperatures are approximately constant, seasonal

forecasts depend more on the initial condition of the ocean. The evolution of the

ocean state, particularly the density structure and the currents, leads to changes in

the pattern of sea surface temperatures that can then influence the atmospheric

circulation.

The dominant pattern of surface temperature variability, after accounting for

global warming, is that of the El Niño-Southern Oscillation (ENSO) (e.g., [31]). For

this reason ENSO has received a great deal of attention in studies of climate

prediction on seasonal-to-interannual timescales. Changes in winds and precipita-

tion are associated with these global temperature pattern changes.

El Niño events recur about every 3–7 years on average, and are somewhat locked

to the annual cycle in that they tend to develop and grow through the middle of the

year and tend to peak near the end of the year. During an El Niño event when much

of the warm water in the western equatorial Pacific moves eastward, the region of

deep convection also moves eastward into the central Pacific (Fig. 11.2), and in

some cases reaches as far as the coast of South America. Since the equatorial Pacific

spans nearly half the circumference of the Earth, a shift of the largest region of deep

convection from the far western Pacific to the central equatorial Pacific represents

a huge spatial shift in where the tropical atmosphere is heated.

In the tropics, where the effect of Earth’s rotation is weaker, the atmospheric

response to the pattern of sea surface temperatures is thermally direct. The low-

level winds converge toward the warmest water, or equivalently, to the region of
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lower pressure. This is true of the mean conditions as well as the anomalous

conditions. Since the lower atmosphere is very humid in the tropics, the regions

of converging low-level winds produce an upward flow of very moist air and heavy

precipitation with a very large latent heat release to the atmosphere associated with

water vapor condensation. Near the top of the troposphere, relatively dry air is

expelled from these regions of strong deep convection, and that air then sinks. The

sinking dry air suppresses convection. The regions of warmest sea surface

temperatures and associated strong deep convection are located typically over the

western Pacific warm pool and the western hemisphere warm pool, which

encompasses the northeastern tropical Pacific extending to the northwestern tropi-

cal Atlantic. Variations in these warm pool regions have direct impacts on the

climate in the neighboring regions, but changes in the strength and location of those

convective centers can also impact regional climate remotely though changes in

atmospheric circulation.

The resulting changes in the atmospheric circulation can lead to warmer

conditions in the other tropical oceans [32, 33], which carry additional regional

climate impacts. For prediction of the regional climate due to tropical sea surface

temperature changes outside the Pacific, it is important to be able to predict those

sea surface temperatures. For example, the tendency for northeastern Brazil to be

drier than normal during an El Niño event (Fig. 11.3) is due in part to the anomalous

subsidence from the shift in deep convection over the central Pacific, but it is also

due to associated warming of the sea surface temperatures over the north tropical

Atlantic [34]. Similarly, wetter conditions in eastern Africa associated statistically

with El Niño events are now known to result from the warming of SSTs in the

western Indian Ocean that are also associated with El Niño events [35]; an El Niño

event that is not accompanied by warm SST anomalies in the western Indian Ocean

leads to drier conditions over East Africa due to anomalous subsidence resulting

from El Niño’s enhanced convection in the central Pacific.

El Niño can affect weather and seasonal climate outside the tropics through

changes in the position and strength of the storm tracks. When the warm water that

normally resides in the western Pacific extends across the Pacific, it changes the

large-scale temperature differences between the tropical and the midlatitudes. This

allows the storm track associated with the subtropical jet stream to strengthen over

the central and eastern subtropical Pacific where it is usually weaker and more

variable. Additionally, the warming of the equatorial Pacific region as a whole

allows the amount water vapor in the lower atmosphere to increase. The combina-

tion brings more frequent and stronger storms into the southern tier of the United

States during El Niño events. This impact on extratropical climate is seen in the

winter hemisphere because this is when the jet stream is strongest. So although

a similar influence can be discerned for storm track headed toward South America,

the impact is less robust, since El Niño events are typically growing during southern

hemisphere winter in the middle of the year. During the northern hemisphere winter

is closer to the time when El Niño events are mature.

It is the large-scale changes in the patterns of low-level heat and moisture that

drive changes in the atmospheric circulation. El Niño happens to be the dominant
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phenomenon influencing that and the focus of those changes is primarily over the

tropical oceans. However, changes in land-surface conditions, such as soil moisture

or ice, can also influence regional climate. Soil moisture influences the overlying

atmosphere primarily through evaporation, which can then influence precipitation

as well as near-surface air temperature during certain times of the year [36]. Dry

soil conditions, and thus a reduced ability of the surface to cool itself through

evaporation, are likely to have contributed to the 2003 European heat wave [37].

Changes in patterns, extent, and timing of snow cover can also impact the atmo-

spheric circulation through changes in land atmosphere energy exchange and may

impart predictability to northern hemisphere wintertime temperatures [38] and also

the strength of the East Asian monsoon [39].

Seasonal-to-Interannual Prediction: Model Fidelity

Once the main drivers of seasonal-to-interannual climate variability are

identified, it is then necessary to ascertain whether the model to be used for

seasonal-to-interannual prediction can replicate the drivers with sufficient realism.

Change in patterns of SSTs is the dominant driver of seasonal-to-interannual

climate variability worldwide. However, the regional terrestrial climate will only

be predictable if the relevant SSTs are predictable [40]. Given that the El Niño

phenomenon represents the majority of year-to-year variance in SSTs, including

influencing the global ocean outside the tropical Pacific [41], most studies of the

suitability of a model to predict seasonal-to-interannual climate will focus on the

model’s ability to predict El Niño. Of course, such studies of model fidelity help

further elucidate the processes behind such phenomena.

The first attempt to predict El Niño employed a very simple model of the tropical

Pacific Ocean that consisted of a warm, lighter, upper ocean overlying a cold,

heavier deep ocean [17]. The depth of the upper layer determined the temperature at

the surface in the eastern and central equatorial Pacific where upward currents are

known to bring cold water from the deeper ocean into the upper layer and cool the

surface; the more shallow the upper layer, the easier for the upwelling currents to

bring cold water to the surface. The surface temperature anomalies in the east

influence the east–west temperature gradient, which affects the strength of the trade

winds, which affect the slope of the interface between the upper and lower ocean

layers, and thus affects the eastern equatorial surface temperature. This describes

the classic Bjerknes feedback mechanism [15] that maintains the mean state as well

as the coupled air-sea feedbacks that can evolve an El Niño or La Niña event. Off

the equator in the western Pacific the anomalous winds create depth anomalies of

the opposite sign to those in the eastern equatorial Pacific, which can then adjust via

equatorial wave dynamics, eventually causing the decline of the current event (e.g.,

El Niño) and potentially initiating an event of the opposite sign (e.g., La Niña). The

positive feedback growth together with the delayed negative feedback that can cause
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the turnabout from one phase to the next was named the Delayed Oscillator

mechanism [19]. Variants on this central idea, such as the Recharge Oscillator [42]

have since been formulated as observations of the tropical Pacific became available

[43] and as the tropical Pacific air-sea variability was studied in more models.

Although the first models to successfully predict El Niño in the late 1980s were

very simplified compared to the complexity of the real ocean–atmosphere system,

they still remain viable prediction tools. It is very difficult to represent all the

physical processes in the tropical ocean–atmosphere system precisely, and because

of the strong interconnectedness of these processes, small errors in the representa-

tion of one process leads to associate errors in others. Thus it was not until the early

twenty-first century that coupled ocean–atmosphere models of full complexity

clearly demonstrated parity with simpler prediction models (Fig. 11.4) [44]. The

metric most commonly presented to represent a model’s ability to predict El Niño is

the NINO3.4 index of sea surface temperature, which is the average of the temper-

ature anomaly over the central equatorial Pacific from 5S–5N and 170W to 120W,

as this is the region that exhibits the highest correlation with terrestrial climate

anomalies worldwide [45].

However, this simple index does not capture all of the characteristics of El Niño.

The timing and spatial structure of El Niño-related sea surface temperature
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Fig. 11.4 Anomaly correlation (%) by various methods of the seasonal mean Niño-3.4 SST as

a function of lead (horizontal; in months). The results are accumulated for all seasons in the

(target) period DJF 1997/1998 to DJF 2003/2004. Except for CFS (the Climate Forecast System)

coupled ocean–atmosphere model of the National Weather Service’s Climate Prediction Center

(CPC), all forecasts were archived in real time at CPC from 1996 onward. CMP14 is the previous

coupled model, CCA is canonical correlation analysis, CA is constructed analog, CONS is

a consolidation (a weighted mean), and MARKOV is an autoregressive method (From [44])
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anomalies can also influence the resulting teleconnections [46]. Additionally, single

metrics such as correlation or mean error can mask the conditions under which El

Niño is predictable. Most dynamical systems, particularly those with a chaotic

component, exhibit conditional predictability meaning that there are times when

the system is more predictable than others [47]. Thus it is also common to present

the prediction history of models, to show how observed sea surface temperatures

along the equator vary compared to the predictions as a function of lead time [48].

A common finding from such qualitative examination is that although models may

do well in predicting the occurrence of an El Niño event, they have difficulty

predicting the magnitude of large events or locating the variability far enough

east during strong events [49, 50]. Such biases have repercussions for predicting

the associated climate anomalies.

Predicting the driver of the climate anomalies is the first step. Next is to predict

the associated climate anomalies. Biases in prediction of the drivers, such as El

Niño events that do not exhibit the strength or structure of observed events, lead to

biases in regional climate prediction. One way to circumvent some of the error in

predicted SSTs is to statistically correct them before providing this information as

boundary conditions to the atmospheric model. This approach is known as two-

tier forecasting because the SSTs are predicted first and the climate is predicted

second using an atmospheric GCM. Changes in the atmospheric circulation do not

feed back onto the SST anomalies. Because El Niño is the largest driver of climate

anomalies, and El Niño teleconnections are driven by the ocean variability, this is

a viable approach. However, outside the tropical Pacific a notable fraction of the

ocean variability is driven by the atmosphere, and thus in those regions heat and

momentum fluxes will not be properly represented by two-tier forecasts.

One-tier forecasts, where the ocean and atmosphere evolve together, allow for

a more physically consistent evolution of the ocean–atmosphere system. Coupled

ocean–atmosphere models are increasingly the prediction tools of choice at

operational forecast centers around the world [1]. However, due to model biases

over some parts of the tropical ocean, regional climate prediction remains prob-

lematic with coupled models. In particular coupled models have great difficulty in

representing the mean state of the tropical Atlantic, with the warmer water

occurring in the western instead of the eastern equatorial Atlantic [51]. As

a result, the tropical Atlantic SST variability is not predicted with any skill for

most seasons by the current generation of coupled models, and the potential

predictability of climate variability over western Africa and northeastern Brazil

is substantially degraded compared to what it would be with skillful SST

predictions [40].

Other biases that have been known for decades still persist in coupled

ocean–atmosphere models and limit the quality of climate predictions. Such sys-

tematic biases include a double intertropical convergence zone over the Pacific,

poor representation of regions of stratus clouds over the eastern subtropical and

extratropical oceans, and vertical temperature gradients that are too diffuse in the

equatorial Pacific where the warm upper ocean transitions to the cold deep ocean.

The processes responsible for these features in Nature and how they are represented
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in models are active areas of research. Recent modeling experiments using models

with a spatial resolution of tens of kilometers rather than hundreds of kilometers

does reduce some of these biases by better resolving certain climate processes.

Seasonal-to-Interannual Prediction: Prediction Systems

Prediction systems are based on observations, models, and their connection through

data assimilation systems. The three together form the three-legged chair of predic-

tion systems [9]. Any weak leg compromises the system, and improvements in one

leg often lead to improvements in the other legs.

Predictability of seasonal-to-interannual climate variability arises from the ini-

tial conditions of the ocean, particularly those conditions in the tropical Pacific

Ocean that carry some signal of future El Niño conditions. Observations of upper

ocean heat content anomalies in the other tropical oceans are also important for

prediction as they can influence the persistence of local sea surface temperature

anomalies as well as moderate the impacts of El Niño-related teleconnections in the

region. Therefore, it is important to adequately observe the tropical ocean state.

However, since models have errors in their representation of the real world, using

the observations too faithfully to describe the initial conditions for model forecasts

can cause problems. This is where data assimilation is essential to prediction

systems.

Data assimilation is the process used to produce initial conditions for

a dynamical model by combining observations with other information from

a previous simulation of the model. If this is not done carefully, the introduction

of the observations into the models can lead to initialization shock when the

prediction is started. Initialization shock is a term used to identify the rapid

development of model errors when a simulation is started. One approach to

minimizing this problem is called anomaly initialization in which observed

anomalies of the ocean state rather than the full state are added to the model’s

mean state to arrive at initial conditions. Other data assimilation methods address

the mismatch between the spatial and temporal characteristics of the variability

between Nature and the model. Currently, the atmosphere, ocean, and land

components of prediction models are initialized separately. The data assimilation

efforts are separate, and thus consistency in the initial states and tendencies of these

components is not ensured. Methods to assimilate observational data into the

coupled model as a whole are being investigated starting with the coupled

ocean–atmosphere system [52].

Recent advances in El Niño prediction skill at the European Centre for Medium-

Range Weather Forecasts in the United Kingdom were accomplished by both

improvements to their model and improvements to the ocean data assimilation system

[53]. Additionally, retrospective forecasts, also called “hindcasts,” of the NINO3.4 El

Niño index from 1960 to present from that forecast system have demonstrated the
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value of the observations provided by the Tropical Atmosphere–Ocean array of data

buoys that measure temperatures of the upper 500 m of the tropical Pacific Ocean,

some at the equator also measuring ocean currents, as well as temperature, winds, and

humidity at the surface.At the timewhen the array of buoyswas completed in the early

1990s, the forecast error of the NINO3.4 index dropped dramatically [54]. This result

ismost clearly demonstrated in forecasts that are initiated in February, when the biases

in the model are at a minimum. This echoes the connected nature of these three

elements of forecast systems; observations and their assimilation into models are

crucial for prediction, but better models better elucidate the value of the observing

network.

Even at that point when models, the observing network, and the use of those

observations for forecast initial conditions becomes essentially perfect, climate

forecasts will still contain uncertainties. Small, almost imperceptible, uncertainties

in the initial state or the detailed evolution of some small-scale processes will lead

to some divergence in the future state. This is the chaotic element of the climate

system, sometimes referred to as the “butterfly effect.” Where uncertainty is due to

errors, there is the potential to reduce it. However, it is not necessarily the goal of

forecasters to eliminate uncertainty, as this would be unrealistic, but to quantify it to

the extent possible. Better models that can capture the random nature of processes,

such as turbulence or convection, would improve process-related contributions to

uncertainty. Better representation of such processes may actually increase the

uncertainty in forecasts, relative to what models now indicate. Better observations,

more complete observational networks, and improved data assimilation techniques

can better indicate the uncertainties that arise from initial conditions [55, 56].

The uncertainty in climate forecasts should thus be considered as a range of

possible outcomes. Typically the range of possible outcomes, or probabilities, are

presented relative to the past climate history of the last several decades. A common

format used by many operational forecast centers is tercile classes. For example, the

precipitation for a given location over the last 30 years is used to quantify the

above-normal category as the wettest 10 years, the below-normal category as the

driest 10 years, and the near-normal category as those in between. In this case, the

climatological probabilities are 33.3% for any category without any further knowl-

edge. This should be the forecast probability for each category if there is no signal

in the current prediction or if the prediction tools have no skill in that region and/or

season. If skill and signal exists, then the forecast probabilities will differ from the

climatological probabilities (Fig. 11.5). If the signal in the forecast indicates

likelihood for wetter conditions, then the probability for above-normal precipitation

will be higher than 33.3% and the probability for below-normal precipitation will

be less. Alternatively, the forecast can be represented as the probability for exceed-

ing or not exceeding some quantitative value.

One of the most important qualities of probabilistic forecasts is that the

probabilities are reliable, or representative of the frequency of occurrence. The

other important quality is that they are sharp, or differ substantially from the

climatological probabilities. Diagnostics of these forecast characteristics can be

visualized through reliability and attributes diagrams (Fig. 11.6) and quantified
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through reliability and resolution skill scores, respectively [57]. A reliability

diagram shows the complete joint distribution of forecasts and observations for

a probabilistic forecast of an event or forecast category (such as the above-normal

tercile). In a reliable forecast system, the probability assigned to a particular

outcome should be the frequency with which – given the same forecast – that

outcome should be observed. The information supplied by reliability diagrams

includes calibration, or what is observed given a specific forecast (e.g., under and

overforecasting), as well as resolution and refinement which is the frequency

distribution of each of the possible forecasts giving information on the degree

of aggregate forecaster confidence (small inset graph in Fig. 11.6). Reliability

diagrams can further indicate whether there are systematic biases in the forecasts,

such as not predicting enough occurrences of above-normal temperatures. Such

probabilistic verification, such as reliability diagrams also can be useful for

estimating event-specific prediction skill, for example if El Niño events were better

predicted than La Niña events or drought conditions were better predicted than very

wet seasons. A distinction in prediction skill between the cases of high and low

variability calls for further examination of the physical causes of the discrepancy

and whether it is inherent to the climate system dynamics or a shortcoming of the

model(s).

It is a common feature of dynamical model predictions to be overconfident,

indicated by a reliability curve that is more horizontal than the 45� angle that would
indicate a reliable prediction system. For example, an overconfident forecast would

be one in which a forecast that indicates above-normal rainfall is 80% likely in

a given season, but overtime that forecast is followed by observations of above-

normal rainfall 40% of the time. Such overconfidence can arise from errors in both

the forecast signal and the forecast uncertainty.
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Recalibration of predictions and multi-model ensembling are two approaches

used to improve forecast reliability. Multi-model ensembling, which combines the

prediction of several dynamical models, can improve the reliability and overall skill

of predictions in two ways. First, although all models have errors, they do not

necessarily have the same errors, thus combining the models reduces the systematic

errors that would exist in the prediction from a single model. This can lead to

reduced error and thus increased correlation skill in El Niño predictions, for

example (Fig. 11.7) [59]. Similarly, it can increase the spatial coverage for where

there is skill in capturing the predictable signals in the climate. The second

advantage is the improvement in uncertainty estimation by considering the random

errors and different parameterizations of random processes that give rise to the

range of possible outcomes.

Multi-model ensembling can lead to overall better information on the climate

signal and its uncertainty [60], and thus on forecast reliability (Fig. 11.8). Different

approaches exist to combine models. The most straightforward is to treat all models

equally. Particularly for prediction systems with short retrospective forecast
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histories of about 25 years or less, it will be difficult to discern differences in

forecast quality between comparable models. This is the typically situation with

one-tier prediction systems that use coupled ocean–atmosphere models, because the

ocean observations used in the forecast initialization is only available since the late

1980s. For two-tiered forecast systems that use atmosphere-only models the ocean

temperatures can be predicted statistically, which allows for longer histories of

retrospective forecasts. In these systems, it becomes possible to discern differences
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in regional forecast performance and to use that information to give more weight to

better performing models, which can lead to further improvements in forecast

reliability [61, 62].

An alternative approach to performance-weighting models is to recalibrate the

models prior to combination [63]. Recalibration has the advantage of improv-

ing forecast quality of individual models. It is also more viable for prediction

systems with limited retrospective forecast histories, although a minimum of

about 25 years is still required to identify systematic biases in seasonal-to-

interannual variability. The recalibration of predictions is an attempt to account

for systematic biases in both the signal and uncertainty in the predictions at a given

location. Recalibration can also be used to account for spatial biases in the forecasts

by comparing observed and predicted seasonal climate over several decades [9].

Reliable forecast information may still not provide enough specificity for those

who wish to include seasonal-to-interannual climate forecasts in their decision

models, such as those in the agricultural or water sectors. The spatial mismatch
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of the information, the fact that decision makers in sectors such as agriculture and

water require information at much higher resolution, even if it means greater

uncertainty, is a commonly cited reason for not using the operational forecasts

[64]. There may also exist the desire for greater temporal resolution, such as the

characterization of the weather within the climate that might predict the likely

number of dry spells of a given duration. In some cases, certain weather

characteristics of the seasonal climate may be more predictable than the seasonal

totals (e.g., [65]). One way to address the information mismatch between the coarse

spatial resolution, or the quality of the higher temporal variability, from global

seasonal climate forecasts and the more detailed needs of the end user is through

downscaling techniques. In statistical downscaling, the global climate forecast

provides the input parameters for an empirical model with high spatial resolution.

Statistical techniques can also be used to infer the signal in the weather

characteristics relative to the seasonal mean, based on changes in the large-scale

background climate, such as those empirically related to ENSO [66, 67], or to

changes in atmospheric circulation [65]. In the dynamical downscaling, the global

forecast is used to provide lateral boundary conditions to a high-resolution nested

regional atmospheric model. While it may provide greater detail of the mean

climate by better resolving terrain and coastlines, it has not been robustly

demonstrated that dynamical downscaling improves prediction of the climate

variability relative to the global model. Dynamical downscaling cannot over-

come large-scale errors in the global model driving the nested model, and

in many cases will exacerbate those errors. With increases in computing

power, global climate models are starting to close the gap by providing fine

spatial resolution, and attempting to provide better representation of weather

transients that may be of interest to the end user. However, for the next decade or

so downscaling techniques, particularly statistical downscaling will continue to

add value to seasonal-to-interannual forecasts.

Seasonal-to-Interannual Prediction: Forecast Skill

Forecast skill is a measure of how accurately the prediction system can predict the

observed climate variability or how well the probabilities describe the frequency of

occurrence of particular outcomes. Measures of accuracy between the best guess, or

most likely outcome, of the forecasts and what was observed are often referred to as

deterministic measures, meaning they are concerned with verifying the prediction

for a single specific outcome, such as a prediction for an above-normal temperature

or 2�C warmer than average in the coming season. The metrics for deterministic

quantitative forecasts include the Brier skill score and its decomposition, which

includes anomaly correlations or root-mean squared errors. The quality, or skill, of

deterministic categorical forecasts can be assessed using a variety of measures.

There is no single measure of forecast performance that can indicate all aspects of
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forecast quality [68]. Additionally, forecast producers may be interested in different

aspects of forecast performance than users of the forecast information. The World

Meteorological Organization has compiled a list of recommended deterministic and

probabilistic verification measures for seasonal predictions entitled, The Standard

Verification System for Long-Range Forecasts [69].

Keeping in mind that there are different, complementary measures of forecast

skill, the accuracy of predictions is typically used to estimate the limit of predict-

ability. The limit of predictability is a function of the predictable signal and the

unpredictable chaotic, or noise, component in the climate system. With an ensem-

ble of predictions from a single model or a set of models, the signal and noise can be

estimated from that set of information. The signal would be the predicted informa-

tion that the ensemble has in common and the noise is the range of discrepancy

about the signal (Fig. 11.5). When the forecast is initialized, the ensemble contains

very little noise, but as the prediction proceeds, the chaotic processes in the climate

system lead to divergence of the ensemble members. The limit of temporal predict-

ability is reached once the magnitude of the noise becomes comparable to the

signal. This in part, determines how far into the future the certain aspects of the

climate can be predicted. Similarly, the average signal-to-noise ratio for a given

region, season, variable, etc. describes the expected climate predictability in that

case. Since Nature has only one realization, it is not possible to estimate the

inherent limit of predictability of the climate system [9]. Estimates of the limit of

predictability can be determined in a given prediction system as described above,

but that will be only an estimate, and will be different for different forecast systems.

At best, the most accurate prediction system for a given region, season, variable,

etc. represents the limit of predictability for that case, and should be considered the

lower limit of predictability, as the prediction accuracy is found to be at least that

good and may improve further with improved models and data assimilation

systems.

Given that real-time predictions have been in production for more than a decade

now [1], several properties of forecast skill have emerged for seasonal-to-

interannual predictions. First, predictions of seasonal mean temperature are more

predictable than those for seasonal precipitation totals. This is related in part to the

larger-scale nature of temperature anomalies and the processes behind them. Even

the coarse resolution global climate models can represent fairly accurately the

changes in seasonal temperatures. Precipitation processes and patterns have much

smaller spatial scales and are more affected by local scale features. While the global

models may be able to capture large-scale shifts in regions of convection and storm

tracks, they may have difficulty with the characteristics of storms or local convec-

tive activity. The potential importance of local scale processes on precipitation

variability also means that the noise component of seasonal precipitation variability

is larger than that for temperature. As a result, more ensemble members are required

to estimate the seasonal signal for precipitation than for temperature. The second

robust property of seasonal predictions is that the tropics are much more predictable

than are the extratropics. In the tropics, the atmospheric circulation is more explic-

itly tied to the changes in patterns of surface temperatures, and the noise in the
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resulting atmospheric circulation is relatively small. A third and notable property of

the predictions, which actually applies to predictions at all timescales, is that there

is conditional skill in the expected accuracy. There are times when the initial and

evolving state of the climate system carries a much larger predictable signal than

other times. For seasonal-to-interannual forecasts this coincides with El Niño

events. For seasonal predictions over the United States most predictability derives

from El Niño or La Niña conditions [70]. Similar results hold on a global scale too;

the fraction of land area over which skillful forecasts can be made is up to twice as

large during El Niño or La Niña conditions than in their absence [71]. Moreover,

since these events have an inherent timescale of 6–12 months, or longer, the time

horizon into the future that skillful forecasts can be issued is also expanded.

Seasonal-to-Interannual Prediction: Internationally
Coordinated Efforts

Several internationally coordinated efforts have led to the understanding of sea-

sonal-to-interannual climate variability and its prediction using dynamical models.

One of the earliest was the Atmospheric Model Intercomparison Project (AMIP)

[72]. This project was organized by the Working Group on Numerical Experimen-

tation as a contribution to the World Climate Research Programme. Different

atmospheric models were run with the same observed sea surface temperatures as

boundary conditions for the period 1979–1988. The goal was to identify systematic

errors as well as systematic responses to the boundary conditions across models.

Without such a coordinated effort there had been questions whether the results from

a single model were particular to that model or a more robust response expected of

the climate system. Other coordinated activities followed.

In the late 1990s, experiments were carried out using different atmospheric

models to test the predictability of seasonal climate relative to the variability

of sea surface temperatures. Two important issues addressed in that collection of

research were the relative impact of initial atmospheric conditions predictability of

the seasonal climate and a suggestion that prediction skill could be improved

through a multi-model approach. In the United States five modeling centers

participated in this research under the Dynamical Seasonal Prediction (DSP)

project. On the other side of the Atlantic, 11 different partners throughout Europe

contributed to the Prediction of Climate Variations on Seasonal to Interannual

Timescales (PROVOST) project [73].

Further research on seasonal predictability and the value of multi-model

ensembles was conducted with coupled models from seven European modeling

centers under the Development of a European Multimodel Ensemble system for

seasonal to inTERannual prediction (DEMETER) project [74]. This project also

encouraged research to determine the value of seasonal predictions through their use

in models that use the climate data to make prediction over a wide range of interests,
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from agriculture to health. The next generation of DEMETER was ENSEMBLES,

which continued to advance methods and application of seasonal predictions from

European Earth system models, thus adding complexity to the dynamical prediction

models [75]. The ENSEMBLES project also began to extend those predictions to

decadal timescales. TheWorkingGroup on Seasonal to Interannual Prediction under

the World Climate Research Programme is currently coordinating the Climate-

system Historical Forecast Project (CHFP), which will provide access to a wide

range of hindcasts to evaluate subseasonal-to-decadal predictions of the climate

system, which also aims to quantify the predictability added by elements other than

sea surface temperatures, for example through initialization and prediction of the

land surface, the cryosphere, and the stratosphere [76].

Decadal Prediction (Experiments)

Decadal Prediction: Drivers of Decadal-Scale Climate

Decadal climate predictions sit between the seasonal-to-interannual forecasts of the

next months to a year in the future and the climate change projections of 50–100

years in the future. There are many features of the climate system with timescales

that vary over decades (decadal variability). The dominant drivers of climate

features over decadal timescales are believed to be changing atmospheric composi-

tion, mainly increasing greenhouse gases, and slow changes in ocean circulation

that lead to slow changes in the pattern of sea surface temperatures. The changing

atmospheric composition changes the energy balance of Earth, which leads to

warmer temperatures and other associated climate changes that manifest primarily

as trends. The temperature trends are not spatially uniform. Ice-albedo feedback in

higher latitudes leads to greater rates of warming there than at low latitudes. Land

has a lower heat capacity than water, so the continents warm faster than the oceans.

Ocean dynamics also play a role in the patterns of climate change warming,

particularly in upwelling regions, where the radiative warming is offset by the

upward advection of colder ocean water from depth.

What decadal predictions aim to capture that climate change projections do not

is the predicted evolution of naturally occurring decadal-scale features. Climate

change projections contain these processes and the associated variability, but since

the climate system is not initialized with observations, the decadal evolution will

not be temporally consistent with the observations. So one first test of a model is to

see whether it is capable of simulating the dominant decadal-scale features

observed in Nature.

Decadal-scale variability has been identified in Nature in both the Pacific and

Atlantic Oceans. In the Pacific Ocean the variability is referred to as the Pacific

Decadal Oscillation (PDO), or more correctly Pacific Decadal Variability (PDV).

The pattern of PDV (Fig. 11.8a) has its signature in sea surface temperatures with
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cooler than normal temperatures in the midlatitudes of the North Pacific Ocean and

warmer than normal temperatures in the eastern and central equatorial Pacific

Ocean during the positive PDV conditions [22]. The time series associated with

the projection of sea surface temperature anomalies on this pattern represents the

PDO index (Fig. 11.8b). This sea surface temperature pattern is reminiscent of El

Niño conditions, except that the magnitude of sea surface temperature anomalies is

larger in the midlatitudes than in the tropics, and the tropical sea

surface temperatures have a broader meridional extent. This pattern of sea surface

temperatures is accompanied by sea level pressure anomalies in the North

Pacific. A measure of the time series of changes in North Pacific sea level pressures

is known as the North Pacific Pressure Index (NPPI). It was later realized that there

is symmetry in the Pacific decadal variability such that a similar pattern of cooler

than normal sea surface temperatures and anomalous low sea level pressure is also

found in the midlatitudes of the South Pacific Ocean. The full Pacific view of

decadal variability has been named the Interdecadal Pacific Oscillation (IPO, [77]).

However, the PDO is the more commonly used index outside Australia.

The symmetry of ocean–atmosphere anomalies outside the tropics, and the

resemblance to El Niño, suggests a role for El Niño in driving PDV. It is

also notable that there is considerable year-to-year fluctuation in the PDO

index. It is very difficult to identify in any particular year what phase, positive

or negative, the PDV is in because within the protracted periods in which the

PDV is preferentially of one sign or the other, there exist excursions of

the index of opposite sign that may only last a year or two.

Simple model experiments have shown that El Niño events can affect the positive

phase of PDV [41]. Model analysis suggests an atmospheric Rossby wave train

emanating from anomalous convective heating in the central Pacific leads to anom-

alous low sea level pressure in the region of the Aleutian low, thus strengthening the

westerly trade winds. The strengthened winds lead to cooling through enhanced

evaporation and also drive southward Ekman flow that brings colder water from the

north southward. Those changes in the ocean mixed layer can be sequestered from

the atmosphere from one winter to the next due to changes in the ocean mixed layer

depth and its connection to the surface from winter, when El Niño peaks, the storm

track is strongest and the atmosphere can directly affect the upper ocean, to summer

when the previous El Niño would have decayed, the storm track is relatively weak,

and increased solar radiation stabilizes the upper ocean. The following winter when

the westerly winds of the storm track again increase, the sequestered mixed layer

temperature anomalies reemerge [78]. This reemergence mechanism is

hypothesized to the main way that the year-to-year variability associated with El

Niño and La Niña can be rectified into longer timescale variability. However, other

processes may also contribute to PDV. Some mechanisms that have been proposed

included ocean–atmosphere coupling of a basin gyre mode [25], excitation of

midlatitude oceanic Rossby waves [79], and a complementary, possibly indepen-

dent oscillation driven by the tropics particularly when El Niño events are focused

toward the central equatorial Pacific [80].
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Associated with the decadal changes in Pacific Ocean conditions, decadal-scale

terrestrial climate anomalies have also been identified over the United States [22]

and throughout the Pacific sector [81]. Many of these climate anomalies are

consistent with El Niño-related teleconnection patterns, such as wetter conditions

in the southern tier of the United States and drier conditions over the Pacific

Northwest [82]. Although only a few realizations of each phase of PDV exist in

the instrumental records, the broad pattern seems to be consistent across these

cases. However, because it is likely that El Niño is a dominant driver of PDV,

and is associated with similar terrestrial teleconnections, it is difficult to say with

confidence that the PDV is somehow independent of the mere existence of extended

periods when El Niño events are stronger or more frequent versus when El Niño

events are weaker or less frequent.

Decadal-scale variability in the Atlantic is referred to as the Atlantic Multi-

decadal Oscillation (AMO), or more correctly Atlantic Multi-decadal Variability

(AMV), because there does not seem to be a spectral peak signaling a true oscilla-

tion. Because positive AMV conditions are associated with warming throughout

the North Atlantic (Fig. 11.9), the index of AMV is simply the sea surface

temperature anomaly averaged over the North Atlantic, and it is often detrended

[83]. Other more elaborate means of isolating decadal-scale variability over the

Atlantic have been used (e.g., [24]), but result in very similar time series, so the

simple index is now the one most widely used.

The hypothesized mechanism driving the AMV is associated with changes in the

Atlantic Meridional Overturning Circulation (AMOC). The AMOC brings warm

and salty water from the tropical Atlantic poleward. At high latitudes, cold salty

water becomes denser than the water below it due to heat fluxes from the westerly

storm tracks and brine injection from sea ice formation. The heavy surface water

then sinks and flows back equatorward as North Atlantic Deep Water. The sinking

water is replaced by the surface flow from tropics to high latitudes. If the rate of

sinking increases, the poleward flow of surface water increases, bringing more

warm tropical water into the midlatitudes. This represents an increase in the

strength of the AMOC, and the AMV index becomes positive. If the North Atlantic

water gets too warm or if it freshens the rate of sinking water slows down, and the

rate of transport of warm tropical water poleward slows down. This represents

a decrease in the strength of the AMOC, and the AMV will become negative.

The AMOC is forced on all timescales. Because the Gulf Stream is the western

boundary current of the wind-driven ocean gyre as well as contributing to the

AMOC, changes in the winds will affect the AMOC as well as ocean temperatures.

However, the multi-decadal-scale variability described above is a much slower

process related to the inertia of the overturning circulation and the associated

impact on the density properties of the Atlantic Ocean. Since observations of the

AMOC have become available only since the end of the twentieth century, there is

not enough observational evidence to quantitatively link the sea surface

temperatures of the AMV with multi-decadal variability of the AMOC. However,

the low-frequency variability of AMOC in some models is associated with a pattern

of sea surface temperature anomalies that closely resembles the observed AMV
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pattern [83]. What has not been resolved is what process or collection of processes

can influence the AMOC on long timescales. Some studies point to modification of

the strength and local of the intertropical convergence zone over the Atlantic as

a way to modify the salinity of the water transported from the tropics [84]. Others

suggest that the North Atlantic Oscillation (NAO – also called the Arctic Oscilla-

tion, AO) plays a dominant role by influencing the strength of the winds, which then

influence the rate of convection, or sinking of heavy water, in the Labrador Sea

region with an estimated 10-year lag time [85]. Although this would be a fairly

white noise process, the suggestion is that the ocean integrates the noise into

a longer timescale red noise process, but one that might still carry some predict-

ability due to persistence.

The teleconnections associated with the positive phase of AMV include wetter

conditions over the Sahel and India and drier conditions over northeast Brazil, due

to the northward shift of the intertropical convergence zone toward the relatively

warmer conditions north of the equator [29]. Also the warm tropical North Atlantic

provides more fuel for the growth of tropical storms, and empirically it is seen that

more tropical storms grow to hurricane intensity during the positive, warm phase of

AMV than during the negative or cool phase.

Decadal Prediction: Model Fidelity

The task of judging whether a model captures decadal variability in the Pacific or

Atlantic oceans for the right reason is greatly complicated by the limited history of

observations compared to the timescale of the variability. Since the measurements

of surface temperature and sea level pressure go back to the nineteenth century,

most comparisons are made to these fields. In many cases, the question of model

fidelity is closely tied to examination of the processes involved in producing

the variability in a particular model and to what extent those are observed in Nature.

The difficulty with that approach is as described in the previous section: different

models may not agree on which process(es) dominates, or is even involved.

Different models also may yield somewhat different spatial patterns or spectra

than suggested by the limited observations [86]. A similar situation exists relative to

El Niño in coupled dynamical models [87], and this has not prevented the use of

those models for El Niño prediction. Thus, the most important factor may be simply

whether or not a model is capable of capturing a reasonable representation of

decadal variability in sea surface temperatures, as this is how whatever changes

are occurring in the ocean will be communicated to the atmosphere.

Exactly how best to validate decadal variability in the models is an area of active

research. To date, more work has been focused around Atlantic variability perhaps

because of the recognition of the role of the AMOC in the AMV. The idea is that if

the AMOC is responsible for the AMV, then it is the AMOC that a model must be

able to predict from a given set of initial conditions. The AMOC must then produce

a surface temperature of reasonable resemblance to Nature, and the overlying
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atmosphere must be able to respond to the changes in surface temperature in a way

that captures the observed teleconnections. Again, the difficulty is that very few

realizations of the variability exist in the observational record, although

paleoclimate reconstructions of past temperature or precipitation suggest that, for

example, multi-decadal variability consistent with observed AMV has impacted

regional climate 400–500 years back [88]. But the few realizations of the spatial

pattern of sea surface temperatures makes it difficult to know which parts of the

pattern of anomalies are robust across events and which are variable from one

positive phase to another.

For PDV,most models capture the response of themidlatitude PacificOcean to El

Niño variability. However, they often do not demonstrate the same level of multi-

year persistence through a reemergence mechanism. Different models are also

influenced to differing degrees by other processes hypothesized to contribute to

PDV, including the white noise imposed by variability in the storm track. As a result

the patterns of PDV, such as where the sea surface temperature anomalies are

focused and the magnitude of that temperature variance, also differ among models.

Some modeling studies have shown that at least the atmospheric models can

translate the changes in patterns of sea surface temperature into realistic

teleconnections. For example, using observed heat fluxes from the positive, warm

phase of AMV in the Atlantic Ocean to drive an atmospheric model leads

to decadal-scale changes consistent with observed changes in precipitation over

the Sahel and India and also in the wind shear over the tropical North Atlantic

relevant to hurricane formation (Fig. 11.10) [30]. Thus as with El Niño, if the sea

surface temperatures can be predicted then there may be at least some predictability

of the associated terrestrial climate impacts.
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Decadal Prediction: Prediction Experiments

Experimental decadal prediction has only recently begun. Decadal prediction

differs from climate change projections in the initialization of the climate system,

with particular emphasis on initialization of the oceans. The first paper

demonstrating actual retrospective, decade-long, initialized forecasts was published

in 2007 [3]. They showed improvements in prediction of globally averaged

temperatures relative to the un-initialized climate change projections from the

same model. However, it was not clear how much predictive information is

available at the regional scale from these predictions, and it is not obvious what

the main drivers are behind any predictive information they may yield.

The prediction systems for decadal prediction are essentially the same as for

seasonal-to-interannual prediction. They require observations, models, and their

connection through data assimilation systems. One of the main differences is the

requirements on the observations: seasonal-to-interannual predictions mainly need

information about the upper several hundred meters of the tropical oceans; decadal

predictions require information about the global oceans, including the middle and

high latitudes and also to much greater depths to capture information on the lower

branch of the AMOC.

Observations needed to produce initial ocean conditions are incomplete. The

creation of retrospective forecasts of decadal variability at least several decades into

the past requires information on salinity fields that just do not exist. This has tested

the limits of ocean state estimation with limited data, and the estimates even for

large-scale averages, such as the average salinity anomaly in the upper 700 m of the

midlatitudes of the Atlantic Ocean, can vary greatly. The uncertainty among

datasets for upper ocean salinity anomalies on basin scales is larger than the

variability within a single dataset [89]. Since the beginning of the twenty-first

century, however, the Argo program of drifting buoys has provided unprecedented

measurements of the upper 2 km of the global ocean. The floats measure tempera-

ture and salinity profiles as they descend and ascend the water column about every

10 days. There are currently over 3,000 floats reporting data through satellites

(Fig. 11.11). Even with good observational data coverage of the global oceans

there will still be challenges in merging those data efficiently with models through

data assimilation systems to account for both mean biases and biases in space-time

variability.

The first step in exploring decadal prediction has been through perfect model

studies. In perfect model studies, a free-running integration of the model is taken as

truth; this integration assumes the role of the “observations.” Ensemble members

are set up to start from a particular point in the free-running integration with small

perturbations to the initial state, representing the uncertainty in initial conditions.

The ensemble members are then integrated forward to see how well they can track

the “truth” of the free-running integration. In this experimental setup, the

“observations” are perfect because since they are taken from the model they are

known everywhere, and the model is perfect, because it is dynamically consistent
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with the “observations,” which are just a snapshot from the model. Similar

experiments toward the design of assimilation systems test the insertion of these

perfect “observations” but sampled only at locations that the actual observing

network could provide data. The idea is to see if in this most idealized

of circumstances – perfect observations and perfect model – the model is able to

predict the evolution of the “observed” variability taken from the free-running

integration. If not, it implies that in the particular model, too much noise exists to

extract a predictable signal. The situation will only be worse in a real forecast

setting with imperfect observations in the model that is also not perfect.

A number of these perfect model prediction experiments have been carried out

since the early part of the twenty-first century. In a coordinated experiment of five

European modeling centers, called PREDICATE, two to three experiments were

carried out by each group starting their ensemble predictions at different points in

time to explore the prediction dependence on the variability of the AMOC. In all

cases there was some skill in predicting the evolution of the AMOC (Fig. 11.12).

The experiments also demonstrated conditional predictability much like is seen

with El Niño predictions. The perfect model predictions started when the AMOC

was stronger than average yielded predictability of the AMOC to about 10–15 years

into the future; predictions started with a weak AMOC predicted the future evolu-

tion of the AMOC only 2–5 years into the future [90]. The PREDICATE

experiments were based on model control runs, meaning that atmospheric compo-

sition was held fixed. More recent perfect model studies explore the relative

predictive signal due to the initial conditions versus due to radiative forcing from

increasing greenhouse gases [91]. Several common lessons are beginning to emerge

from these studies. One is that the predictable time horizon, when the signal in the

ensemble of predictions is larger than the uncertainty across ensemble members, is

longer for midlatitudes than for the tropics due to the dominance of year-to-year

variability in the tropical oceans. Another lesson is that upper ocean heat content is

more predictable than sea surface temperature due to the impact of weather noise on

surface temperatures, while the upper ocean temperatures are more reflective of the

slow changes in the atmospheric circulation. Thus even if the AMOC is predictable,

the surface temperatures connected with that feature will be less so, but it is this

surface expression that is necessary for predicting the terrestrial climate impacts.

Finally, it appears that the external forcing due to increasing greenhouse gases

becomes comparable to the information from ocean initial conditions by 10 years

out for the midlatitudes and less in the tropics. Again, these are perfect model

results. However, such results only indicate the upper limit of predictability for

a particular model, and even though the similar results have been found across

several of the current models, it is not to say that different results might be possible

from better models.

To date, only a few pioneering attempts have been documented of “retrospective

forecasts,” which are decadal predictions initialized with real observed

initial conditions from some time ago. These prediction experiments not only

used different models, they also used very different methods to obtain the initial

conditions: one initialized with only sea surface temperatures [4], one initialized the
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observed data for ocean temperature and salinity anomalies as well as atmospheric

anomalies [3], the third nudges their model toward the observational analysis using

a different procedure [5].

The results are mixed. All claim to gain benefit from initialization of the climate

system compared to the climate change projections that consider only changes in

the atmospheric composition. Two of the studies [3, 5] show improvement in global

mean temperatures compared to the un-initialized climate change projections; the

other study [4] slightly degrades their prediction of global mean temperatures with

initialization. All claim, or at least imply, that much of the decadal variability that is
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Fig. 11.12 Measures of the potential predictability of variations in the strength of the Atlantic

Meridional Overturning Circulation from four of the five coupled models (see legend). (left) The
anomaly correlation coefficient (ACC: unity for perfect potential predictability; zero for no

potential predictability) for (top) strong and (bottom) weak MOC initial conditions (right). The
normalized root mean squared error (rmse: zero for perfect potential predictability; unity for no

potential predictability) in the same order. Also shown in the figures are the multi-model average

ACC and rmse (thick black line) and the multi-model average ACC for a simple damped

persistence (thick gray line) (Source: From [90])
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captured is due to initialization of the AMOC. Two of the studies [4, 5] demonstrate

improved temperature predictions over the eastern North Atlantic region, but for the

study that also quantifies the impact of initialization on prediction errors [4] shows

larger errors for North Atlantic sea surface temperature in the initialized

predictions. The same two studies that show improved correlations for North

Atlantic temperature predictions claim that it is due to improved prediction of the

AMOC. Since there are no observations of this circulation feature in the twentieth

century, the conclusions are based on comparison with the analysis responsible for

the initial conditions, which constitutes something like a semi-perfect model result

rather than a verified prediction.

Two of the early prediction experiments [3, 4] do show some improvement in

regional temperature predictions over land, but how much improvement is not

easily discerned, and is difficult to compare across the experiments. There are

also some regions where the temperature predictions are less skillful. Maps of

skill, or differences in skill, are not provided for precipitation in these studies.

These papers are only the beginning of assessment decadal prediction skill.

What these results do or do not show must be viewed with caution though.

Several difficulties stand in the way of more conclusive estimates of predictability

and prediction skill for decadal climate variability. One difficulty is that the current

sets of experiments, and even those that will soon be available (see Decadal

Prediction: Internationally Coordinated Efforts) have very few ensemble members.

Small ensemble size leads to uncertainty in the predicted signal, and provides very

little information about the uncertainty due to uncertain initial conditions in

a particular model. Multi-model ensembles will likely be more problematic for

decadal predictions given the wide range of approaches to initial conditions; the

prediction skill can also be compromised by the data assimilation component, even

if the models are of equally high quality. Data assimilation and the development of

initialization techniques for current and retrospective decadal predictions require

considerable research investment. What experiments do exist and are likely to exist

in the next several years will have limited realizations of decadal-scale variability,

complicated with the evolution of that variability against a changing background

climate due to increasing greenhouse gases. That combined with limited

observations, not only of the subsurface ocean but also of terrestrial climate for

much of the world, makes verification of retrospective forecasts extremely

challenging.

Decadal Prediction: Internationally Coordinated Efforts

Several international efforts have been organized since the beginning of the twenty-

first century to ascertain the predictability and prediction skill of decadal climate

variability by systematizing the investigation across many models. The PREDI-

CATE project, which was referred to above, provided a systematic comparison of

the “perfect model” predictability in five European coupled models. They found
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potential predictability in the AMOC (Fig. 11.12), and also to some extent in

surface air temperatures, that exceeded damped persistence [90]. The PREDICATE

project examined the potential predictability of the response of atmospheric models

to prescribed sea surface temperatures, such as those associated with the AMV, and

found good consistency across the models suggesting potential predictability if

the pattern of SST was itself predictable [92].

A more recent activity, also drawing on the European modeling and prediction

community is ENSEMBLES ([75]; http://ensembles-eu.metoffice.com/). This was

a 5-year climate change research project begun in 2004, and involving 66 research

partners across Europe. The project generated retrospective climate forecasts from

seasonal to multi-decadal scales, provided local interpolation and/or downscaling,

and sought to apply that information to sectoral outlooks, such as agriculture,

health, and energy, across Europe.

The most extensive collaboration on decadal prediction experiments is the

coordinated experiments designed and being run for the IPCC Fifth Assessment

Report [93]. Together with the climate change projections for the next IPCC report,

these decadal prediction experiments will be part of the Coupled Model Intercom-

parison Project-5 (CMIP5). There is a minimal set of runs at the core of the

experimental design that requires hindcasts initialized for near the end of 1960

and every 5 years after that to 2005, in each case predicting 10 years past the

initialization. Of those 10 sets of experimental start dates, a subset – those

initialized at 1960, 1980, and 2005 – will be run out for 30 years. These experiments

are to be run with a nominal ensemble size of 3. Of the dozen or more international

modeling and prediction centers that will participate in the decadal prediction

experiments of CMIP5, several will run with larger ensemble sizes and more start

dates.

What is not being coordinated for the CMIP5 decadal prediction experiments is

the data assimilation or initialization strategy. The guidelines only require that the

predictions begin with a state of the climate system representative of the

observations at that time. Thus, although there will likely be prediction systems

that perform better than others, considerable analyses and further research will be

required to assess which part of various prediction systems are responsible for their

relative success or failure.

Future Directions

Although seasonal prediction is a relatively mature activity, considerable room for

further improvement exists in the production, provision, and application of seasonal

climate forecasts [9]. Dynamical models have many recognized biases in their

tropical climate, such as tropical upper ocean structure and mixing, a tendency to

produce a double intertropical convergence zone in the Pacific, and poor simulation

of the stratus clouds that sit near the coasts along the eastern subtropical oceans.
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These problems are probably not unrelated, but they have proved difficult to solve.

These tropical biases impact the realism of predicted El Niño events, which

introduces biases into the associated teleconnections. Although much of the discus-

sion in this chapter has focused on the climate predictability that arises from

tropical SSTs, and especially El Niño, other factors in the climate system that are

not well represented of initialized in models may carry additional prediction skill.

Such processes include land characteristics [36] such as soil moisture, snow, and

vegetation, as well as sea ice, variability in the stratosphere [94], and intra-seasonal

variability such as the Madden–Julian Oscillation [95]. The provision of seasonal

forecasts has improved since the 1990s; it has become common practice for

operational centers to provide probabilistic information. However, that information

is not sufficient for many decision makers if it is not accompanied by information

on how the forecast is constructed, the past skill of the system, and more flexible or

varied information that would allow sophisticated users to incorporate the data into

quantitative decision systems. These types of best practices are much easier to

address than model biases. Also, if addressed they would allow for broader use of

past forecasts for research to underpin the use of current forecasts for decisions.

Decadal prediction is still in the phase of research and experimentation. Thus,

decadal prediction itself should be considered a future direction of climate predic-

tion. Although there have been some pioneering studies that present results from

decadal prediction systems, there is no community-wide agreement on how decadal

prediction systems should be constructed, what information can be provided, with

what accuracy, and even how best to verify the information that is predicted [2]. The

internationally coordinated set of experiments under CMIP5 should contribute to

a better understanding of these prediction systems and their potential. These experi-

mental predictions will build on the current limited understanding to illuminate the

relative information provided by initial conditions, in a real forecast setting, com-

pared to the radiative forcing from current and future atmospheric greenhouse gas

increases. The prediction experiments taken together should also help identify

model biases that are of particular concern to decadal variability and set priorities

on the future development andmaintenance of the ocean observing system. Also, the

added complexities of data assimilation for decadal prediction that will encompass

longer timescales, greater depths in the ocean, and more need for salinity informa-

tion, which was not available for most of the ocean prior to the twenty-first century,

will lead to innovations in data assimilation systems (e.g., [96]).

The seasonal and decadal prediction systems share many common elements. In

particular, they use the same type of dynamical models, and they both rely heavily

on ocean initial conditions interpreted through data assimilation systems. They are

both potentially impacted by external forcings such as solar variability and

volcanoes. The same model biases that affect seasonal prediction skill will impact

decadal predictions also. As the research community develops improved dynamical

models, that better represent the Earth system in all its complexity, it will benefit

climate predictions at all timescales. The additional observational data and more

sophisticated data assimilation systems that are required for initialization of decadal

predictions will provide more information of the ocean state that could be relevant
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for seasonal predictions as well. Already, some efforts to create retrospective

seasonal predictions are being run farther into the future to investigate the ability

of those systems to predict interannual-to-decadal climate variability. On the other

side, retrospective decadal predictions that will contribute to the CMIP5 database

already predict through the seasonal timescale.

The larger vision for the future direction of seasonal and decadal prediction is

the union of the two efforts. This has been called “seamless prediction” [97, 98],

which seeks the seasonal predictions to both the longer-term decadal predictions as

well as the shorter-term weather forecasts. Initial steps in bridging the weather and

seasonal timescales have been made (e.g., [97]), and since the observational and

data assimilation systems are in place and have been well tested for these

timescales, it is a sensible starting point. The joining of seasonal and decadal

prediction scales would appear to be developing naturally as part of the evolving

research into climate variability, predictability, and prediction on these timescales.
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Chapter 12

Monsoon Systems, Modeling of

Chien Wang and William K.M. Lau

Glossary

Aerosol Small particles suspended in the atmosphere in solid or

liquid phase.

El Niño and Southern

Oscillation (ENSO)

Two intimately linked phenomena in tropical regions; El

Niño (“the Christ Child” in Spanish) refers to the signifi-

cant increase in sea surface temperature that irregularly

occurs during Christmas time over eastern and central

Pacific Ocean; Southern Oscillation refers to the low-

latitude oscillation of sea level pressure centered respec-

tively in the eastern Pacific and the western Pacific to

Indian Ocean.

General circulation

model (GCM)

A computer program that solves numerically the time-

dependent governing equations describing the evolution

of atmospheric or oceanic circulation.

Intertropical

convergence zone

(ITCZ)

A longitudinally extended zone near the equator that

separates the northeast wind in the Northern Hemisphere

from the southeast wind in the Southern Hemisphere near

the Earth’s surface.
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Madden–Julian

oscillation (MJO)

An oscillation of zonal wind in both the boundary layer

and upper troposphere propagating eastward with an aver-

age speed of 5 m/s across equatorial Indian and western

and central Pacific Ocean.

Moist static

energy (MSE)

An atmospheric thermodynamic variable defined as:

MSE ¼ CpT þ gzþ Lvq

Here Cp is the specific heat of air, T is air temperature, g is
gravity, z is height above surface or a given reference

level, Lv is the latent heat of water vaporization, and q is

the ratio of water vapor to total air in mass.

Tropical biennial

oscillation (TBO)

A zonal wind oscillation in the equatorial stratosphere.

Definition of the Subject

The word monsoon derives from the Arabic word “mausim,” referring to the seasonal

reversal of prevailing low-levelwinds blowing from relatively cold andmoist ocean to

warm land during the wet season (summer), and from cold and dry land to ocean

during the dry season (winter). Monsoon systems are found in tropical regions from

Africa, India, East Asia, Australia, and the Americas. Deep convection along with

heavy rainfall occurs during the wet monsoon season over land as well as ocean.

Typically, inmonsoon regions the rainfall inwet season accounts formore than half of

the annual surface precipitation. Monsoon evolution heavily influences human

activities including agricultural practice and societal habits of billions of people living

in monsoon regions. Knowledge and improving prediction of the onset, maintenance,

variability, and key drivers are critical to the livelihood of these people. Because the

monsoon is an integral part of the global climate system, better understanding of the

monsoon is pivotal to predict future climate change and also the response of monsoon

systems to such change.

The onset and strength of monsoons are determined by dynamical and thermo-

dynamical processes not only locally over monsoon regions but also remotely over

other regions. Computer models combining related dynamical, physical, and chem-

ical processes in various scales are hence important tools to examine the current

understanding of monsoon dynamics. These models can be used to test various

hypotheses, and to actually simulate and forecast monsoon evolution. Simple

models used in the earlier days of monsoon research mostly described the monsoon

system from an energy budget perspective. These models could capture very

rudimentary features of monsoon energy conversion. However, they lack
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the capability to go further in revealing the details of rainfall intensity and distribu-

tion, and particularly the timing of monsoon onset. Sophisticated three-dimensional

regional and global climate models have been used in recent years to simulate

monsoon systems, and to study the sensitivity of monsoon circulation and precipi-

tation to various factors, including identification of the anthropogenic impact on

monsoon system. These models have also been used to project monsoon evolution

under different scenarios of possible future climate change.

Introduction

Over 60% of the world’s population lives in monsoon regimes with a clear annual

cycle of wind and precipitation. Such a cycle consists of a wet and a dry season.

Wind in the lower atmosphere blows poleward from a relatively cold ocean to warm

land during the wet season, and goes in the opposite direction during the dry season

(Fig. 12.1). The monsoon regions include a large part of tropical and subtropical

Asia and Africa as well as Australia, where some of the most populous nations in

the world are located.

Agricultural activities, water resources, and many societal events in regions with

a monsoon climate are strongly influenced by the wind reversal and the uneven

distribution of rainfall. Forecasting monsoon rainfall and onset, the sudden transi-

tion from dry condition into a heavy downpour, has practical meanings to human

activities in these places. In addition, whether future climate change would alter the

behavior and strength of monsoon is a critical issue in making climate related

strategies. The achievement of an adequate skill to forecast future monsoon evolu-

tion relies on a good understanding of fundamental monsoon dynamics along with

its variability. This requires knowledge about the formation mechanism and the

Fig. 12.1 Land areas that have the majority of their rainfall in summer, associated with the

poleward motion of deep convection. Where appropriate, low-level wind directions that carry

moist warm air are indicated. In areas where there are no arrows, winds are relatively dry, or are

weak (as over South America). Shaded areas show the normal maximum extent of deep convec-

tion (From [1] by J.F.P. Galvin with permissions from the author and Wiley)
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major driving factors, including both natural and anthropogenic ones, of the

monsoon system.

Monsoon Dynamics Fundamentals

Research to identify the driving forces of monsoon onset and strength has been

conducted by correlating various diagnostic quantities with monsoon system

characteristics. These characteristics include moisture, clouds, precipitation, and

the large-scale circulation. With continued advancement of observational

technology, from rain gauge stations to satellite monitoring, such effort has gained

momentum, leading to improved knowledge. However, improved knowledge often

reveals additional complexity of monsoon systems. This will in turn require even

better understanding to further improve theory and modeling. This requirement has

led to the building of a hierarchy of regional through global climate-system models

for monsoon research.

It has long been held that differential heating on land and ocean following solar

insolation cycle to be the major formation mechanism of the large-scale monsoon

circulation [2, 3]. Such a heating contrast would force wind blow toward warm

region, although because of the geostrophic constraint the actual wind direction is

altered. Various rather simple models were developed to simulate monsoon systems

based on the differential heating concept. These include zonally symmetric and

other types of two-dimensional models that describe the zonal circulation and

precipitation from ocean to land over monsoon regions, and often include

a description of the planetary boundary layer. These simple models along with

their limitations have been discussed extensively in literature [4, 5].

Attempts to forecast monsoons have linked monsoon strength with other phe-

nomena or processes, ranging from the snowfall on the hills of Himalaya in the

previous winter [6], mountains [7, 8], to the El Niño and Southern Oscillation

(ENSO) ([9] and many others). Some of these factors are still within the framework

of the large-scale land-sea thermal contrast model while others clearly connect to

global climate dynamics.

In recent years, there have been studies suggesting that as a northward extension

of the Intertropical convergence zone (ITCZ), the onset of the monsoon could just

be a result of a longitudinal sea surface temperature (SST) gradient, not necessarily

the traditionally held land-ocean temperature gradient (e.g., [10, 11]). It has also

been demonstrated that the poleward boundary of monsoon circulations are

co-located with a maximum in sub-cloud layer moist static energy (or entropy;

MSE), corresponding to the minimum of vertical meridional wind shear [12–14].

Such a location and extent of the monsoon would also be influenced by the position

of subtropical thermodynamic forcing as well as the advection of MSE.

Due to a meteorological phenomenon called the “thermal wind balance,” the

heating over land to the north and the cooler ocean to the south during the summer

monsoon will produce easterly winds aloft and westerly winds below. When the
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upper troposphere easterly wind is strong, in the case of a strong monsoon,

instability of easterly jet may stimulate the formation of eddies. The formation of

these eddies might not always amplify the monsoonal circulation because the

northeastward flow from ocean could bring low MSE air to land [5, 12, 13].

A recent proposal [15] actually suggested viewing monsoons as eddy-mediated

transitions in the tropical overturning circulation between regimes that are distinct

in the degree to which eddy momentum fluxes control the strength of the circula-

tion. In this study, the idealized general circulation model (GCM) simulation on an

aqua-planet demonstrated that the role of land in monsoon onset is to just provide

a media of low thermal inertia. Whenever such surface differences in heat capacity

exist monsoon onset would happen regardless of other surface inhomogeneities.

Therefore, interactions between extratropical eddies and the tropical meridional

overturning circulation could be essential for monsoons. In addressing the interac-

tion of monsoon and other dynamical system, it was indicated that the feedback of

atmosphere to SST forcing might have played a critical role in monsoon evolution

[16].

One specific implication of these new hypotheses is on the predictability of the

monsoon system. It has been argued that because the dominant forcing of monsoon

system are the rather slow processes that control the tropical sea surface

temperatures (SST), therefore, the predictability of monsoon rainfall at least in

monthly or seasonal scale may be promising [17]. However, should the

extratropical eddies and atmosphere to ocean feedback be critical in monsoon

onset and evolution, the monsoon predictability issue even on relatively long time

scales would be much more complicated. The predictability of the monsoon is

further confounded by the ubiquitous presence of monsoon-intraseasonal

oscillations (MISO) in both the summer and the winter seasons. These are intrinsic

oscillations in the monsoon region, with characteristic timescales of 20–70 days,

arising from the organization of tropical convection over the ocean associated, (e.g.,

planetary scale Madden–Julian Oscillation (MJO); see [18] and many others).

MISO are mediated by SST changes as well as the monsoon regional topography,

and influence the onset, break, and maintenance of the monsoon as well through

interactions with ENSO. Realistic simulations of MISO and MJO have been

a challenge even for the state-of-the-art climate models.

Modeling the Monsoon

Because of the complex, multi-scale characteristics of monsoon systems, efforts to

understand and to examine various hypotheses about monsoon onset, evolution, and

strength have to rely largely on computer models in combination with available data.

In order to understand the interaction between this large-scale moist circulation and

many other complicated but critical processes, ranging from ocean–atmosphere

interaction, extratropical–tropical interaction, MISO, to potential “teleconnection”
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through synoptic waves between tropical systems in distance, one needs to use

a three-dimensional global climate model or a regional climate model interacting

with a global climate model.

Simulation of monsoon systems using three-dimensional global models started

from the very early stage of atmospheric general circulation models. Typical model

used in these early simulations had coarse horizontal resolution (270–540 km) and

11 vertical layers, forced by prescribed seasonal variations of insolation and often

sea surface temperature [19]. These simulations were mostly used for exploratory

purposes due to their short integration time (often shorter than 3 years), coarse

model resolution, and the prescription of some fields of potential importance in

modeling the monsoon. Understanding the onset of the monsoon was clearly a far-

reach at that stage.

The availability of multi-decadal sea surface temperature data allowed three-

dimensional atmospheric general circulation models (AGCM) to simulate monsoon

system evolution driven by observed SST time series. This type of simulations

follows the procedure of the Atmospheric Modeling Intercomparison Project

(AMIP, and AMIP II later; [20]), forced by “real-time” SST data and thus ignored

the feedback between the atmosphere and ocean. AMIP models, which generally

include interactive land surface models, have the advantage of identifying atmo-

spheric feedback mechanisms without dealing with the complexity of the coupled

ocean–atmosphere system. They were the models of choice in the 1980s–1990s.

Nowadays, long-term climate simulations are generally done with coupled

ocean–atmosphere models. However, AMIP models are still useful when run

at high resolutions to test sensitivity to model atmospheric processes of physics,

chemistry, and aerosols, and interaction of the atmosphere with surface vegetation.

Some current AMIP runs are conducted at mesoscale resolution (<25 km) globally,

and others are configured even at higher resolution for global hurricanes studies.

With such configurations, models could explore the onset of the monsoon

and aspects of the MJO and MISO [21]. The very high-resolution AMIP models

are extremely computationally demanding, and can only be run using

high-performance computers at large institutions.

Studies exploring multi-decadal to centennial timescale issues that need to

consider the role of atmosphere-ocean feedback in monsoon dynamics, typically

utilize moderate-to-low resolution (100–200 km) AGCMs coupled with either

mixed-layer ocean model or full ocean general circulation model to reduce the

computational demand. Regional climate models have also been used for this

purpose. The influence of future climate change on monsoon evolution has also

been studied mostly using the ensemble results of three-dimensional climate model

simulations included in the Fourth Assessment Report (AR4) of the Intergovern-

mental Panel of Climate Change (IPCC). A fast growing effort in recent years is to

study the impacts of anthropogenic forcings particularly of aerosols on monsoon

circulation and precipitation.

This entry will begin by describing efforts to use climate models to simulate

monsoon systems. Recent research on the potential role of aerosols in monsoon

systems is then described. The projections of monsoon system changes under
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possible climate change scenarios will also be discussed, concluding with an

overview of the future opportunities. The discussion will be focused on the utiliza-

tion of general circulation models and regional climate models, of moderate-to-low

resolution in simulating monsoon systems and the study of the sensitivity of

monsoon to various climate dynamical processes as well as anthropogenic impacts

on equilibrium climate, or on climate time scales of a century or less.

Simulating Monsoon Systems Using Climate Models

Before attempting to use a computer model to forecast monsoon evolution, one

would ask the very question that how well the model might reproduce the major

observed characteristics and variability of a monsoon, if some of the known factors

controlling monsoons were included in the model (of course this condition itself is

somewhat a unsettled issue). This actually leads to a type of modeling study, so-

called retrospective modeling. In modeling monsoon systems, a retrospect simula-

tion would be performed by prescribing the time series of sea surface temperature,

assuming that the ocean is such a large heat reservoir comparing to the atmosphere

so that the change in SST reflect the long-term state of energy balance. This type of

modeling allows modelers to concentrate on issues other than the feedbacks from

the atmosphere to ocean. With the assumption that historical SST change might

well represent the effect of all the long-term forcings, this type of simulations is

expected to capture major features of the monsoon systems in the past.

In simulating monsoon systems, it is essential for the model to capture certain

representative features of the system. These would at least include the reverse

atmospheric circulation between the upper and lower levels, the onset of monsoon

rainfall, and total precipitation during monsoon season. In addition, the climatolog-

ical rainfall patterns including land-ocean partition during monsoon is also among

important system characters. A more subtle and difficult task in modeling is to

capture the weak correlation between ENSO and Indian summer monsoon rainfall

[9], and the correlation between anomaly of Gulf of Guinea SST and the dipole

rainfall pattern of theWest African monsoon over Guinean coast and the Sahel [22].

Interannual and decadal variability is another important test for both retrospect

modeling and for revealing the dependency of monsoon systems on critical

forcings. Simulating the intraseasonal variation of detailed rainfall strength and

distribution (e.g., [23]) would be an important task for regional or high-resolution

global models.

Much progress has been made through years of efforts in modeling the monsoon

system. In early stage of such attempt, models typically had low resolution and

prescribed seasonal forcing of SST. Arguably, the physics processes such as clouds

and radiation in those models were also poorly treated comparing to models used

today. Nevertheless, the early models captured certain basic features of the mon-

soon system (mostly on Indian summer monsoon due to its rather clearly defined

annual cycle and relatively extensive analyses) such as the reverse low-level
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circulation over northern Indian Ocean (e.g., [19]). Besides, the role of certain

hypothesized driving factors of monsoon circulation such as mountains [7] and the

anomaly of Arabian Sea surface temperature [24] had been also examined. The

simulated onset of monsoon, however, was much delayed and the distribution

of rainfall and intensity has large biases compared to observations.

With the availability of decadal-long observed SST dataset, nearly all the major

AGCMs in the world joined the effort of Atmospheric Modeling Intercomparison

Project (AMIP) in the 1990s. An AMIP configuration is a typical retrospect

simulation, where atmospheric general circulation models were driven by a time

series of observed SST data to reproduce the past climate. Lau and Yang had used

the Goddard Space Flight Center GCM (4� 5 degree resolution along latitude and

longitude, respectively and 17 vertical layers) in an AMIP 1979–1988 simulation

to examine the Asian monsoon system [25]. The model was able to capture many

broad-scale structures of Asianmonsoon system, including evolution of global and

regional circulation, rainfall, moisture flux, and intraseasonal and synoptic

variability. Interestingly, the model also successfully simulated multiple onset of

East Asianmonsoon along with the onset of Indian summermonsoon. These onsets

were initiated by a sudden jump of the ITCZ from the equator to 10�N, related to

a northward shift of the ascending branch of the local Hadley circulation. Clearly,

this was a significant advance from the early simulations. On the other hand, the

model did not reproduce observed rainfall distribution and quantity over many

precipitation centers. Intraseasonal transition of ITCZ between equatorial region

(ocean) and monsoon land was not well captured. The East Asian monsoon trough

was also severely underdeveloped in the model. These shortcomings actually

existed in most AMIP models.

In AMIP-type simulations, the atmosphere-ocean feedback is set aside. The

modeling focus is instead on the atmospheric simulation, presuming that the SST

time series realistically reflects the forcing of the past. Based on the results of

ensemble AMIP simulations, Wang et al. indicated that a lack of the atmospheric

feedback in simulations forced by observed SST could lead to serious biases in

modeled monsoon precipitation [16]. They found that the atmospheric feedback

to SST forcing is more significant than SST to atmospheric forcing. Therefore,

coupled model would be critical in even retrospect modeling of monsoon and the

atmospheric feedback to tropical SST forcing needs to be included. Meehl et al.

further demonstrated an improvement of modeled monsoon features using a higher

resolution (T85) coupled atmosphere-ocean model compared to a lower resolution

(T42) AMIP configuration model [26]. There have also been reports of significant

improvement in modeling monsoon features made simply by using high-resolution

atmospheric GCM or regional climate model driven by observed SST (see [27]).

When using coupled model to simulate monsoon system, drifts of SSTs away

from observation could become an issue. With a rather coarse-resolution coupled

model (4.5� 7.5 degree and nine layer for the atmospheric model; 5� 5 degree and

four layer for the ocean model), Meehl indicated that without adopting correction

terms to force the coupled model to the observed state, model-simulated SSTs in the

tropics tend to be too cold. This bias would enhance land-sea temperature contrast
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in the monsoon region, yet the pattern of mean monsoon seasonal precipitation and

the variability of the simulated South Asian monsoon (SAM) were comparable to

the observed pattern [28]. One alternative method to the AMIP configuration is to

predict SST using a 2½-layer tropical ocean model between 30�S and 30�N and to

prescribe SST in other places [16]. The SST-monsoon rainfall correlations

indicated by observations (with 1 month lag) were reflected correctly in the

simulation conducted by using this method.

Models have also been used to identify certain hypothesized driving factors

behind monsoon variability. For instance, it is known that the Tropical Biennial

Oscillation (TBO), a variation in precipitation occurring with approximately a 2-

year period, affects monsoon strength. Therefore, identifying the relative impor-

tance of various potential conditions leading to TBO transitions could help us to

understand the factors that affect monsoon variability. It was found that among

three conditions hypothesized to contribute to TBO transitions, tropical Indian

Ocean SST anomaly and tropical Pacific Ocean SST anomaly are more effective

than anomalous meridional temperature gradients over Asia [29]. The two types of

tropical SST anomalies were found to dominate the TBO transitions and thus

produce large monsoon response in the model sensitivity results. In addition, the

location of the SST anomalies over the tropical Indian Ocean is found to be

important. Warm SST anomalies throughout the tropical Indian Ocean enhance

rainfall over the ocean and South Asian land areas. Warm SST anomalies near

equatorial Indian Ocean produce increased rainfall locally with decreased rainfall

over South Asian land areas.

Despite significant progresses achieved, there is still much room for improve-

ment regarding the performance of current climate models in simulating various

features of monsoon systems from mean state to variability [30]. For instance,

among 18 coupled GCMs that participated the effort of the IPCC Fourth Assess-

ment Report (IPCC AR4), only six of them were found to have realistic representa-

tion of South Asian monsoon precipitation climatology in the twentieth century

[31]. It is noteworthy that these six models all had large pattern correlation and

small root-mean-square differences (RMSD) with observations in modeling

June–July–August–September (JJAS) rainfall climatology, both over India

(7�–30�N, 65�–95�E) and for the larger monsoon domain (25�S–40�N,
40�E–180�). Only four out of these six, though, exhibited a robust ENSO-SAM

teleconnection.

Recent results from the West African Monsoon Model Evaluation (WAMME)

project showed that AMIP-type models (both regional and global) generally have

reasonable skills in simulating the pattern of the spatial distribution of West African

monsoon (WAM) in seasonal mean precipitation, surface temperature, averaged

zonal wind in latitude-height cross-section, and low-level circulation [32].

However, there are large differences among models in addition to model

biases compared to observations in simulating spatial correlation, intensity, and

variability of precipitation.

In a well-designed analysis [22], the abilities of above-mentioned 18 models

were evaluated based on whether they can correctly simulate the circulation
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characteristics that support the precipitation climatology and the physical processes

of a prominent mode of WAM variability, that is, the “rainfall dipole” variability

that is often associated with dry conditions in the Sahel when SSTs in the Gulf of

Guinea are anomalously warm. It was found that each model captured the largest-

scale rainfall pattern featuring a zonally oriented precipitation maximum, but about

one third of them did not generate the West African monsoon, that is, they did not

bring the ITCZ and its associated rainfall onto the African continent during boreal

summer. Only three further captured the three precipitation maxima over the

continent, that is, the maximum on the west coast, over the eastern portion of the

Guinean coast, and over the Ethiopian highlands. It was thus concluded that the

current generation of coupled GCMs is much more capable of accurately

representing the summer precipitation climatology over North America and Europe

than over Africa.

In modeling the Sahel drought during 1970s–1980s, the most pronounced

climate signal in WAM regions that had been suggested as a consequence of

warm anomalous SST surrounding Africa (e.g., [33]), Lau et al. evaluated the

performance of 19 coupled general circulation models (also AR4 models) in

twentieth-century simulations [34]. They found that only eight of these models

produced a reasonable Sahel drought signal, while others either produced excessive

rainfall over the Sahel during the observed drought period or showed no significant

deviation from normal. Even the model with the highest prediction skill of the Sahel

drought could only predict the increasing trend of severe drought events but not the

beginning and duration of the events. Based on the analysis, it was recommended

that in order to accurately simulate the Sahel drought, models need to have a strong

coupling between Sahel rainfall and the SSTs of both Indian and Atlantic Ocean, in

addition to a robust land surface feedback with strong sensitivity of precipitation

and land evaporation to soil moisture.

The performance of 12 coupled models in the Coupled Model Intercomparison

Project phase 3 (CMIP3; the same group of models that participated in IPCC AR4)

in simulating present-day East Asian monsoon has been examined as well [35].

Almost all of these models were found to be able to reproduce observed interannual

variability of summer rain belt and associated circulation. The models can also

reproduce the interannual variation of the western North Pacific subtropical high

(WNPSH) in the lower troposphere, a parameter closely related to the interannual

variation of summer rainfall. However, the predicted quantities of interannual

variation of WNPSH from these models differ significantly.

Modeling the Impacts of Aerosols on Monsoon System

Atmospheric aerosols serve as a critical player in the climate system. All aerosols

attenuate solar radiation through either scattering or absorption, both leading to

cooling at the Earth’s surface. In addition, absorbing aerosols warm the atmosphere,
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affecting atmospheric profile and thus dynamical processes. Aerosols also dominate

the cloud formation in the atmosphere, serving as cloud condensation nuclei (CCN)

or ice nuclei (IN) to provide preexisting surfaces and thus a superior mean for cloud

particles to form than homogeneous nucleation. Therefore, changes in aerosol

properties such as number concentration, size distribution, or chemical composition

(hygroscopicity) are expected to affect atmospheric systems from regional to global

scales including the monsoon.

Human activities produce aerosols containing inorganic matters such as sulfate

and nitrate, and organic matter as well as black carbon. These anthropogenic

aerosols are regarded as an addition to the natural aerosols that mainly include

dust, biogenic, and sea salt particles, and hence exert a forcing to the climate

system. Studies suggested that the reduction in Indian monsoon strength in recent

decades could be a result of an increase of anthropogenic aerosols over monsoon

regions, mostly coinciding with the fastest growing economies including China and

India as well as Southeast Asia [36].

On the other hand, a recent analysis of 1951–2003 daily gridded rainfall data

over India revealed a decreasing trend in both early and late monsoon rainfall and

number of rainy days, implying a shorter monsoon over India [37]. There is also

a sharp decrease in the area that receives a certain amount of rainfall and number of

rainy days during the season. An increase in the frequency of heavy precipitation in

the Indian summer monsoon was also identified [38].

A great deal of attention has been paid to the influence of anthropogenic aerosols

(particularly absorbing aerosols) on tropical precipitation in recent years. Absorb-

ing aerosols influence the climate in distinctly different ways from aerosols that

primarily scatter energy back to space. Studies using different general circulation

models all indicate that direct radiative forcing (DRF) of absorbing black carbon

(BC) aerosols can lead to a northward shift of precipitation in ITCZ over the Pacific

Ocean [39–41]. Modeling studies also suggest that DRF of aerosols could have

a significant impact on the monsoon systems as well [42]. Correlations between

estimated precipitation/circulation changes with increasing trend of aerosols have

unquestionably fueled the researches toward this direction.

Studies of aerosol-monsoon impact are rapidly growing not only for the Indian

summer monsoon, but also for the East Asian monsoon, the West African mon-

soon, and the Australian monsoon. Most of these studies are conducted by using

three-dimensional atmospheric GCMs or coupled climate models. Paired

simulations driven respectively by including and excluding aerosol effects, or by

including a reference and an altered aerosol profile along with aerosol effects,

provide a comparison in climate response between different aerosol forcing

assumptions. The aerosol effects would be isolated barring the assumption that

model’s artifact in simulating the monsoon system would not be significantly

amplified by using different aerosol profiles. The descriptions of aerosol and

aerosol–climate interaction vary in studies though.
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Impacts of Aerosols on the Asian Monsoon

Earlier works focused on impacts of absorbing aerosols (black carbon and dust) on

atmospheric water cycle in the Asian monsoon, by using prescribed aerosol

distributions from global chemistry transport models and/or observations. These

studies excluded the dynamical feedbacks between winds and precipitation features

and the aerosol distribution. An early exploratory study tested the climate response

to absorbing aerosols over China and India [43]. In this study, a 12-layer and 4 � 5

degree resolution three-dimensional AGCM was used to explore the model

response to prescribed aerosol optical depth and single scattering albedo over

China and India only. The researchers found that the convection would be enhanced

along 20�–30�E in longitude from eastern China to Indian subcontinent in

responding to the added aerosol forcing. Despite many discrepancies in detailed

results between this study and later ones, perhaps attributed to the regional-only

aerosol loading and rather coarse resolution of the model in [43], the general

response in large-scale dynamics associated with the monsoon systems caused by

the direct radiative effects of absorbing aerosols remains consistent with later

studies. For instance, Wang noticed an enhancement of the Indian summer mon-

soon circulation by the direct radiative forcing of black carbon aerosols in a coupled

GCM simulation, though the analysis was done on an annual-mean base so that the

seasonal features of the circulation were not discussed [39, 44]. A similar effect of

BC aerosols was also found in another study, though where the simulation was

driven by prescribed SST [45].

Perhaps the most interesting outcome in recent modeling efforts of aerosol-

monsoon studies is the proposals of various hypotheses on the mechanisms of

aerosol impact specifically on Indian summer monsoon. The discussions are also

centered at the role of absorbing aerosols.

The radiative effects of absorbing (primarily dust and anthropogenic carbona-

ceous) aerosols in cooling the surface (dimming effect) and in heating the atmo-

sphere can play different roles in affecting the monsoon system. The cooling over

land from absorbing aerosols would assist lowering the land-ocean temperature

gradient. Ramanathan et al. found that an increase in the BC DRF over Indian

Subcontinent and surrounding regions in their model leads to a reduction of

monsoon precipitation while an enhancement to the pre-monsoon precipitation of

March–April–May (MAM) [36]. Using a coupled atmosphere-ocean general

circulation model with prescribed black carbon direct radiative forcing, Meehl

et al. found similar circulation and precipitation changes due to BC impact in the

pre-monsoon (enhancement) and in monsoon season (reduction) [46]. It was also

found that although during the monsoon months the effect of BC is likely to reduce

the precipitation over India, it might enhance the precipitation over the elevated

Tibetan Plateau. Meehl et al. suggested that BC DRF could weaken the surface

temperature gradient between the tropical waters and the land of the Indian Sub-

continent. This could serve as the forcing mechanism of BC on the monsoon

circulation and precipitation, that is, through the dimming effect.
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One specific characteristics of absorbing aerosols is its heating to the atmo-

sphere. How would this effect play a role in aerosol-monsoon impact is also

discussed. Lau et al. used an atmospheric GCM driven by prescribed global

three-dimensional climatology of aerosol optical depth to examine the direct effects

of aerosol on the monsoon water cycle variability [34]. The study suggested that,

referred to as an “elevated heat pump” effect (EHP) (Fig. 12.2), dust mixed with

black carbon aerosols that extend against the foothills of the Himalayas over the

Indo-Gangetic Plain (IGP) in April and May could heat the air. This would initiate

a positive feedback by drawing water convergence from oceans first and then form

condensation and thus further heating over the slope of the Plateau. Based on this

hypothesis, monsoon precipitation would be suppressed over central India due to

aerosol-induced surface cooling. However, precipitation would come earlier and be

enhanced over northern India and the southern slope of the Tibetan Plateau.

Monsoon rainfall in July and August over the entire India would also be enhanced.

Lately, using satellite aerosol index (AI) data and observed clouds and precipitation

data, two studies have demonstrated the existence of anomalous absorbing aerosol

loading in late spring over IGP [47, 48]. Both works also suggested a correlation of

this aerosol anomaly with variation of monsoon evolution. A widespread warming

over the Himalayan-Gangetic region and consequent strengthening of the land-sea

thermal gradient was also found recently through satellite microwave sounding data

[49]. This trend is most pronounced in the pre-monsoon season, resulting in

a warming of 2.7�C in the record. All these observation-based analyses appear to

Warm

Warm
EHP-accelerated
monsoon water cycle
(May-June)

Normal monsoon
water cycle (May-June)

W

W

Coolθe

θe
Warm

Warmer

Fig. 12.2 Schematic showing the monsoon water cycle (top) with no aerosol forcing and (bottom)
with aerosol-induced elevated heat pump effect. Low-level monsoon westerlies are denoted by W.

The dashed line indicates magnitude of the low-level equivalent potential temperature ye. Deep
convection is indicated over regions of maximum ye. (See text for further discussions) (Adopted
from [42], # American Meteorological Society. Reprinted with permission)
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be consistent with the EHP effect. The hypothesis involves both atmospheric-heating

and surface-cooling effect of absorbing aerosols as well as induced changes in

cloudiness. It is different than the hypothesis that only emphasizes surface cooling.

The feedback mechanisms introduced by EHP hypothesis are, however, more com-

plicated. For example, Prive and Plumb indicated that the equatorial oceanic air

would have low moist static energy so that the low-level convergence might lead to

a negative feedback to monsoon circulation [12, 13].

More recent works include the use of interactive aerosols in the models, that is,

the dynamical feedback to aerosol distribution and forcing. For example, the model

used in [50] includes a size- and mixing state-dependent aerosol module that is fully

coupled with the climate model. Certain sophisticated aerosol microphysical and

chemical processes including aging and coating of carbonaceous aerosols with

sulfate, along with optical properties of these mixed aerosols are also included.

Using this interactive aerosol-climate model coupled with a mixed-layer ocean

model, Wang et al. proposed another possible mechanism that absorbing aerosols

could affect on Indian summer monsoon [50]. The researchers find that absorbing

anthropogenic aerosols, whether coexisting with scattering aerosols or not, can

significantly affect the Indian summer monsoon system. This is drawn from

a comparison of the results of three simulations. The first two simulations each

only included absorbing aerosols (ABS) and scattering aerosols (SCA), respec-

tively; the third one included both types of aerosols (COM). Aerosol-induced

climate responses in each of these runs were derived by comparing results to

a reference run that excluded the aerosol effect (REF). The similarity in aerosol-

induced response between absorbing-aerosol-only case (ABS) and the case with

both types of aerosols (COM) was identified. Results of both cases also differ

sharply from that of the scattering-aerosol-only case (SCA). The researchers further

identified that the influence of absorbing aerosols is reflected in a perturbation to the

moist static energy in the sub-cloud layer, initiated as a heating by absorbing

aerosols in the planetary boundary layer (Fig. 12.3). The perturbation appears

mostly over land, extending from just north of the Arabian Sea to northern India

along the southern slope of the Tibetan Plateau. As a result, during the summer

monsoon season, modeled convective precipitation experiences a clear northward

shift, coincidently in general agreement with observed monsoon precipitation

changes in recent decades particularly during the onset season (Fig. 12.4).

According to previous works, the northward extent of monsoon convection should

collocate with the maximum sub-cloud layer MSE [12–14]. Therefore, a small

perturbation in such a location could lead to an observable change in distribution of

convection and heavy precipitation. Interestingly, the modeled largest perturbation

of absorbing aerosols on sub-cloud layer MSE appeared across this zone. Compared

to the forcing required to significantly lower the meridional temperature gradient,

the forcing of absorbing aerosols through perturbing MSE to influence monsoon

dynamics and precipitation distribution is much more effective. The importance of

sub-cloud layer processes, however, does not necessarily preclude the EHP that

emphasizes the heating above the boundary layer. It is likely that the heating of the
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entire atmospheric column from the boundary layer to the upper troposphere could

be important in creating the northward shift of the monsoon rainbelt.

At present, there is still a range of opinions about the reasons behind the impact

of aerosols on Indian summer monsoon [42]. Detailed mechanisms of the afore-

mentioned hypothetical impacts still remain to be examined.
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Fig. 12.3 May–June (MJ) mean of wind and moist static energy in the reference run (REF), which

excludes the aerosol radiative effect, and anomalies of MJ mean wind and moist static energy

derived from three model runs (ABS, SCA, and COM). Data shown are averaged values for the

lowermost three atmospheric layers based on year 41–60 means. Unit wind vector = 1 m/s. Moist

static energy is in 103 J/kg. Note that in the three anomaly plots, a different color scale is used in

SCA. A terrain correction has been applied to the REF result (From [50], Copyright 2009

American Geophysical Union. Reproduced/modified by permission of American Geophysical

Union)
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Impacts of Aerosols on the West African Monsoon

Aerosol impacts on another monsoon system, the West African Monsoon (WAM)

have also been studied. It is known that aerosols over this region are among the

most abundant and persistent on the Earth with distinct seasonal variability. The

dominant aerosol type is mineral dust from North Africa through May to August

and biomass-burning smoke from southern Africa from July to September. The

mixture of dust and biomass-burning smoke appear in November–February due to

persistent yearlong dust emission from some North African sources and biomass

burning in Sahel region [51–56]. Therefore, this region provides an ideal natural

test bed for studying aerosol effects on precipitation. Analyses using satellite data

have demonstrated that a high concentration of aerosols can induce a significant

precipitation reduction in the WAM region along the coast of the Gulf of Guinea,

particularly in the boreal late autumn and winter [57, 58]. A recent study [59]

further compared the observational results to a global model simulation including

only direct radiative forcing of black carbon [39]. It was found from both

observations and model simulations that in boreal cold seasons anomalously high

African aerosols are associated with significant reductions in cloud amount, cloud

top height, and surface precipitation. This result suggests that the observed precipi-

tation reduction in the WAM region is caused by radiative effect of absorbing BC.

The mechanism for this reduction, however, remains to be revealed.

In connection to the hypothesis of aerosol-Indian summer monsoon effect

proposed by Wang et al. [50], Eltahir and Gong found a correlation of the strength

of the West African monsoon to subtropical meridional gradient of sub-cloud MSE

[60]. Therefore, similar mechanism could also exist in aerosol-WAM effect.

Recently, Lau et al. showed from GCM experiment that the EHP effect by

Saharan dusts and biomass-burning black carbon has a significant impact on the

climate and water cycle of the North Atlantic and WAM [61]. They found that

during the boreal summer, as a result of large-scale atmospheric feedback triggered

by absorbing aerosols, rainfall and cloudiness are enhanced over the West Africa/

Eastern Atlantic ITCZ while suppressed over the West Atlantic and Caribbean

region. As shown in Fig. 12.5, the elevated dust layer warms the air over West

Africa and the eastern Atlantic. As the warm air rises, it spawns an anomalous

large-scale onshore flow carrying the moist air from the eastern Atlantic and the

Gulf of Guinea. The onshore flow in turn enhances the deep convection over West

Africa land, and the eastern Atlantic. The condensation heating associated with the

ensuing deep convection drives and maintains an anomalous large-scale east–west

overturning circulation, with rising motion over West Africa/eastern Atlantic and

sinking motion over the Caribbean region. The response reflects a strengthening of

the West African monsoon, manifested in a northward shift of the West Africa

precipitation over land, increased low-level westerly flow over West Africa at the

southern edge of the dust layer, and a near surface westerly jet underneath the dust

layer over the Sahara. The dust radiative forcing also leads to significant changes in

surface energy fluxes, resulting in cooling of the West African land and the eastern
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Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most

effective for moderate to highly absorbing dusts, and becomes minimized for

reflecting dust with single scattering albedo at 0.95 or higher.

Additionally, from the same experiments the authors found strong modulation of

the diurnal cycle and a northward shift of the African easterly jet, in conjunction

with increased cyclonic vorticity to the south of its axis, and increased rainfall in the

Sahel [62]. These modeling results are consistent with recent observations [63]

showing that during the periods of a strong Sahara dust outbreak, the Atlantic ITCZ

tends to be shifted northward of its climatological position, accompanied by

a similar shift of the Africa easterly jet.

Impacts of Aerosols on the Australian Monsoon

The anthropogenic aerosol level in the Southern Hemisphere is lower compared to

the condition of Northern Hemisphere. Therefore, the impact of local aerosols on

Australian monsoon system is expected to be insignificant. However, since mon-

soon systems are closely associated with large-scale circulation, aerosol effects in

the Northern Hemisphere could influence southern hemispheric circulation and thus

precipitation by altering the general circulation patterns. This has been suggested in

reduced upper level clouds
increased upper level clouds

increased low level clouds

induced
subsidence
suppresses
convection

increased
moisture transport

increased
rainfall

dust
sourcereduced SW

cooler ocean
cooler land

Caribbean

Gulf of Guinea
60°W 20°W

Fig. 12.5 Schematic diagram showing key features in the latitude domain 5–15oN, associated

with the “elevated heat pump” mechanism by radiative heating of Saharan dust: anomalous

Walker-type and Hadley-type circulations, increased moisture transport from the eastern Atlantic

and the Gulf of Guinea to West Africa; enhanced rainfall over the Sahel and the ITCZ off the cost

of West Africa; subsidence and suppressed cloudiness in the central Atlantic and Caribbean, and

the Gulf of Guinea; cooling of the WAM land, and the upper ocean in the eastern Pacific

underneath the dust plume (Adopted from [61] # Author(s) 2009, distributed under the Creative

Commons Attribution 3.0 License)
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a recent modeling study [64]. Drawn from the results of a pair of ensemble

simulations conducted using a coupled atmosphere-ocean climate model respec-

tively including and excluding Asian aerosols, the researchers hypothesized that

Asian aerosols could lead to an increase in both rainfall and cloudiness particularly

over northwest Australia, which coincides with observed rainfall trend in the region

since 1950s. The study suggested that this effect could be implemented through an

altered latitudinal gradient of temperature (and thus of pressure) over tropical

Indian Ocean by Asian aerosols, which would further enhance monsoonal circula-

tion toward Australia. A recent analysis of the twentieth-century modeling results

of 24 CMIP3 models, all including either only direct or both direct and indirect

aerosol forcing, however, cannot provide support to the above hypothesis [65].

Despite of the inclusion of aerosol effect in these models, their ensembles did not

produce the hypothesized rainfall increase in northwest Australia.

Climate Change and Monsoon System

Analyses using oxygen isotope data from Chinese caves providing information

about monsoons over millennia suggest that Asian monsoons are influenced by

changes in summer insolation in the Northern Hemisphere [66, 67]. However,

variability in shorter terms can also be influenced by other factors. Historically,

such variation in Asian monsoon system might have triggered social unrest and thus

played a key role in causing demise of several Chinese dynasties [68]. Similarly, the

persistent drought in Sahel occurred later last century also led to serious food

supply problems and could well be responsible for certain conflicts in Africa. It is

thus critical to understand these variabilities of monsoon systems and to identify the

natural and anthropogenic influences on such variations.

Several persistent trends have been revealed recently. The reconstructed mon-

soon winds for the past 1,000 years using fossil Globigerina bulloides abundance in
box cores from the Arabian Sea suggested an increase in strength during the past

four centuries while the Northern Hemisphere has been warming [69]. This implies

that the Indian summer monsoon strength could be enhanced during the coming

century as greenhouse gas concentrations continue to rise and northern latitudes

continue to warm. In the most recent decade, the sea surface winds over the western

Arabian Sea have been continually strengthening [70]. Such escalation of summer

monsoon winds, accompanied by enhanced upwelling, leads to an increase of more

than 350% in average summertime phytoplankton biomass along the coast and over

300% offshore, implying that the current warming trend of the Eurasian landmass is

making the Arabian Sea more productive.

Over India, analyses based on rainfall data since early 1950 suggest that in the

last half century, the frequencies of moderate and low rain days over the entire

country have significantly decreased while the frequency and the magnitude of

extreme rain events has significantly increased [38, 71]. Decreasing trends were
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also found in both early and late monsoon rainfall and number of rainy days,

implying a shorter monsoon over India [37]. There is also a sharp decrease in the

area that receives a certain amount of rainfall and number of rainy days during the

season. One study found that the seasonal mean all-India rainfall did not show

a significant trend since 1950s [38]. The researchers argued that this is because that

the contribution from increasing heavy events is offset by decreasing moderate

events. Apparently, should the trend continue, a substantial increase in hazards

related to heavy rain would be expected over central India in the future. In another

recent study [72], the authors stressed the need to subdivide Indian rainfall geograph-

ically and to distinguish early and peak monsoon seasons for the purpose of rainfall

trend detection and attribution. They found fingerprints of absorbing aerosols impact

on regional rainfall since 1960s featuring increased rainfall in north and northwestern

India inMay–June and decreased rainfall in central and southern India in July–August

since 1960s. However, whether the observed monsoon systems have strengthened or

reduced is still very much an open question, limited by the availability of reliable

long-term data record. Based on the dramatic decline in ENSO-monsoon correlation

in recent decades, it has been suggested that warming over Eurasia continent might

have already led to a favored condition for strong monsoons [9]. Besides the potential

cause of global warming behind these trends, anthropogenic aerosols could also be

a significant factor based on observation-based and modeling studies discussed in

previous sections.

Besides anthropogenic influences, natural variability could also be responsible

for decadal to centennial variability of the monsoon. Natural variability in the

African monsoon over the past three millennia has been reconstructed using

geochemical evidence from the sediments of Lake Bosumtwi, Ghana [73]. It was

found that intervals of severe drought lasting for periods ranging from decades to

centuries are characteristic of the monsoon and are linked to natural variations in

Atlantic sea surface temperatures. The researchers thus believe that the severe

drought of recent decades is not anomalous in the context of the past three

millennia.

The use of climate models to understand causes and consequences of changes in

the past and future monsoon climate system is necessary when complex

relationships are under consideration. Patricola and Cook used a regional climate

model to study the West Africa monsoon in the African Humid Period (AHP; about

14,800–5,500 years ago) when humidity was increased over Africa based on

paleoclimate evidence suggesting that the West African summer monsoon was

stronger than today, and the Saharan Desert was green [74]. The model was driven

by prescribed changes in insolation, atmospheric CO2, and vegetation to impose

conditions at 6,000 years before present, with SSTs fixed at present-day values. The

model simulation produced a precipitation increase across the Sahel and Sahara that

is in good agreement with the paleoclimate data. They found the precipitation

increase in the Sahel is related to a northward shift of monsoon, the elimination

of the African easterly jet, and intensification and deepening of the low-level

westerly jet on the west coast. Interestingly, the thermal low-Saharan high system

of the present-day climate is replaced by a deep thermal low. Even though solar
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forcing is the ultimate cause of the AHP, the model responded more strongly to the

vegetation forcing, emphasizing the importance of vegetation in maintaining the

intensified monsoon system.

Takata et al. carried out a pair of climate model simulations using according land

use estimates over China and India in 1700 and 1850 [75]. The comparison between

these two runs isolates the climate responses to the two different land use

estimations. It was found that land use change over China and India from 1700 to

1850 due to population growth (forest to cropland) led to a reduction of surface

roughness and thus a weakening of monsoon circulation and precipitation in India.

Various groups have also studied the influence of projected future climate

warming on monsoon evolution. Coupled atmosphere-ocean GCM simulations

suggested that the increase of surface temperature due to a doubling of CO2

concentration could enhance mean precipitation of Indian summer monsoon and,

as a partial consequence, interannual variability of area-averaged monsoon rainfall

[76]. This is believed to be consistent with the observed large variability associated

with warm surface temperature.

The performance of the current GCMs in retrospective modeling of monsoon

evolution raises issues on both the capability of these models in projecting monsoon

in future climate and certain variabilities used to evaluate the models (e.g., the

ENSO-Indian summer monsoon rainfall relation). In a recent study, four out of 18

models participated in IPCC AR4 were selected based on their performance of the

twentieth-century modeling of monsoon evolution [31]. An analysis was done then

for each of these four models using their results from integrations in which the

atmospheric CO2 concentration doubled over preindustrial values. These selected

models in the double CO2 simulations all projected an increase both in the mean

monsoon rainfall over the Indian subcontinent (by 5–25%) and in its interannual

variability (5–10%). For each model the ENSO-monsoon correlation in the global

warming runs is very similar to that in the twentieth-century runs, suggesting that

the ENSO-monsoon connection will not weaken as global climate warms. This

result is, however, curiously inconsistent with the finding in [9]. In addition, the

diversity as seen in the simulations of ENSO variability of these coupled models

suggests that these results should be taken with caution.

In a similar study to explore model performance in simulating twentieth-century

WAM climatology, Cook and Vizy selected three best-performing models out of 18

coupled GCMs participated in IPCC AR4 to analyze their twenty-first-century

integrations under various assumptions about future greenhouse gas increase [22].

Interestingly, each of these three models behaved differently in the twenty-first-

century simulations. Only one model projected wet Guinea coast and more frequent

dry year in Sahel that are consistent with predicted warming in the Gulf of Guinea

based on known dynamic mechanism of the precipitation dipole. The authors thus

concluded that there is no consensus among the models concerning the future of the

West African monsoon system under greenhouse gas forcing. In another study

based on the results from the CMIP3 models, a similar conclusion was obtained

that the outlook for Sahel precipitation in these simulations of the twenty-first

century is very uncertain, with different models disagreeing even on the sign of
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the trends [77]. It is especially surprising because most of these models in the

twentieth-century integration reproduced the links of Sahel rainfall anomalies

to tropical SST anomalies at interannual time scales as shown in observations.

Conversely, such a relationship does not explain the rainfall trend in the twenty-first

century in a majority of the models.

Future Directions

A key component that limits modeling of monsoon system is observation. The

availability of high-resolution surface precipitation data, based on satellite

retrievals and surface rain gauge measurements in recent 2 decades, has generally

improved the situation. To analyze the longer-term variability, results derived from

such dataset need to be compared more carefully with that from the high-density

local meteorological measurements. For certain regions such as India, the latter

type of data covers more than half century.

Computational technology is advancing rapidly, providing opportunity to model

monsoons at higher resolution. However, the speed or memory gain from hardware

or software advancements needs to be harnessed not only to increase model

resolution but also for improved treatments of physical, chemical, and

biogeophysical processes. For modeling the monsoon systems, previous experience

suggests that one might need both. One issue that remains a huge challenge in the

field of global climate modeling ever since its earliest day is the parameterization of

convection. Because the requirement of a-few-kilometer resolution to resolve

convection has been a far stretch for GCMs (and will likely still be the case in

the near future), description of convection processes for the monsoon system in

these models were empirically formulated using parameters resolved in model grid

scale. Though still expensive, today’s GCMs are already being run in horizontal

resolution much closer to the cloud-resolving scale in exploratory and short tests,

and perhaps will reach that scale earlier than one would expect. An immediate issue

that would come along with this advancement, however, is the realization that

variability of monsoon features will also increase at such a high resolution. Clearly,

an accurate characterization of monsoon features at the cloud scale exceeds all the

current available measurement networks, providing a challenge in the constraint of

the high-resolution global climate models by observations.

Instead of using a global high-resolution climate model, the monsoon system can

be also simulated in high resolution by coupling the global model with a regional

climate model. The latter model usually has a more realistic description of various

physical and chemical processes. When needed, running the regional rather than

global climate in cloud-resolving scale would greatly reduce the demand for

computation. There are numerous attempts reported in literature of so-called

downscaling modeling, mostly done by driving a regional model using the output

from a global model with a given increment of time (e.g., 6 h). The two-way
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coupling of such approach, that is, to include certain feedbacks of regional

processes to influence the global model, however, is still rare. For modeling the

monsoon system, the two-way coupling would provide a better description in the

global model of atmospheric feedback to external forcing such as SST anomalies,

presuming that the coupled atmosphere and ocean GCMs will remain dominant

type of models to cover the global scale.

Studies in recent years have demonstrated the potential influence of aerosols on

monsoon circulation and precipitation. Models need to be improved to include

more physical- and chemical-based aerosol descriptions, for example, the mixing

of anthropogenic aerosol species with dust by the chemical and physical evolution

of those particles. The treatment of aerosol–cloud interactions (the so-called

indirect effect) is currently quite crude and dependence of these interactions on

cloud dynamics is also very crude. Both sets of processes need to be improved in

next generation models in order to explore their effects on monsoons. The role of

absorbing aerosols revealed in recent studies and limited by measurements of

aerosol absorption strength and the distribution of absorbing aerosols also remains

a challenge and needs to be much improved.

The onset and evolution of the monsoon system can be influenced by both

natural and anthropogenic factors, which are often intertwined both in space and

time. Future modeling study should work toward unraveling these two major

impacts through better simulation design and advanced statistical analysis.

Separating anthropogenic impact from natural variability is essential in narrowing

uncertainties in projecting future changes of global climate including monsoon

system.
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European modeling centers, 291

fully coupled simulations, 14

globally averaged surface

temperature, 19

independence, 247

interactive carbon cycles, 10

model emulator, 251

model equality, 252

model error, 254

model tuning, 251

model validation, 16

multi-model ensembles, 251, 255

parameterizations, 241

perturbed physics ensemble, 253, 256

representative concentration pathway

(RCP), 199

simulation, 255

tuning, 248

validation, 248

of a region, 217

prediction

Brier skill score, 280

climate variability, 280

data assimilation, 274

dominant drivers, 283

forecast skill, 280

internationally coordinated efforts, 282

limit of predictability, 281

multi-model ensembling, 277

one-tier forecasts, 273

recalibration, 277

reliability diagram, 276

seasonal-to-decadal, 262

super-ensemble, 244

systems, 274

two-tier forecasting, 273

response, 129

science, 2, 117, 237

seamless models, 110

sensitivity, 249, 254

simulations, 92, 240

multi-model ensembles (MMEs), 243

perturbed physics ensemble (PPE), 243

super-ensemble, 244

system, butterfly effect, 275

validation, 248

variability

decadal prediction, 264

seasonal-to-interannual, 269, 271, 274

climate forecasts, 23

climate model

multi-model mean, 247

simulations, 11

tuning, 248

climatology, simulations, 223

cloudiness

in climate models, 125

super-parameterization, 125

cloud parameterization, 124

clouds

climatologies, 221

condensation nucleus (CCN), 126, 313

earth’s radiant energy system

(CERES), 221

feedback, 131

in climate models, 125

parameterization, 125

community

climate system model (CCSM), 9

Community atmosphere model (CAM), 118

earth system model (CESM), 205
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convergence criterion, 252

conveyor belt, 12

Copernicus’ heliocentric model, 239

Coriolis

force, 52

term, 105

coupled model intercomparison project-5

(CMIP5), 294

Courant-Friedrichs–Levy (CFL) limit, 97

cryosphere, 133

conservation of energy, 37

modeling, 31

thermodynamics, 37

D

Darcy’s law, 156

decadal forecast, 26

decadal prediction

data assimilation, 295

internationally coordinated efforts, 293

model fidelity, 286

observations, 289

prediction experiments, 289

deep water, formation, 12

deferent, 239

delayed oscillator mechanism, 272

dimming effect, 314

drought, 214

Dunne runoff, 157

dynamic(s), 40

E

earth

energy balance, 192

system

carbon cycle, 238

model (ESM), 8, 10, 65, 117, 140, 255

modeling the land component, 139

eddy-permitting model, 67

elastic-viscous-plastic (EVP) material, 35

“elevated heat pump” effect (EHP), 315

El Niño- Southern Oscillation (ENSO), 14,

77, 306

events, 265–266, 269, 295

phenomenon, 265

teleconnections, 266

energy

balance, 33

transformation, 183

ensemble Kalman filter, 254

epicycles, 239

equation of motion, 123

equilibrium climate sensitivity (ECS), 15

Euler equation, 94, 110

evapotranspiration, 142

F

float/floating, ice, 38

floating ice, 39, 53

Floating Ice Dynamics, 49

flux correction, 9

forecasts

monsoon rainfall, 305

overconfident, 276

probabilities, 275

reliability, 277

retrospective, 278

seasonal-to-interannual, 280

skill, 269

uncertainty, 276

free-air controlled enhancement (FACE), 161

freezing point, 40

frozen soil, 153, 154

future climate

Bayesian methodologies, 252, 253

best-guess simulation, 245

discrete probability distribution, 255

probabilistic statement, 251

G

geologic/geological

repositories (CCS), 184

reservoirs (CCS), 187

geopotential height, 102

geostrophic balance, 104

Gibbs oscillations, 98

gill-type atmosphere, 80

glacier/glacial, 11, 33, 55

dynamics, governing equations, 41

geometry, 43

glacier ice, basal flow, 44

glaciological data, 48

modeling, 45

Glen’s flow law, 44, 46

global

atmospheric models, 215

change assessment model (GCAM)

agriculture, 185

agriculture-land-use component (AgLU), 186

architecture, 181

bioenergy, 186

energy system, 181
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land use, 185

partial equilibrium framework, 177

circulation model (GCM), 262

climate forecast, 280

climate model/modeling (GCM), 32,

212, 308

biosphere-atmosphere transfer scheme

(BATS), 142

bucket model, 142

downscaling modeling, 324

Simple Biosphere Model (SiB), 142

climate simulations, 219, 229

climate system, 304

mean temperatures, 292

temperature, 246

warming potential (GWP), 193

water cycle, 156

gravitational driving stress, 45

gravity waves, 95, 97

greenhouse effect, 131

greenhouse gas emissions, 129, 160

ground heat flux, 148

groundwater storage, 155

growth respiration, 159

H

Hadley circulation, 310

Horton runoff, 157

human earth system, 177, 197

hydrologic/hydrological

cycle, 251

three-dimensional (3D) models,

140–141

hydrostatic primitive equation, 70

hygroscopicity, 313

hyperbolic equations, 217

hysteresis, 160

I

ice

accretion, 38

accumulation, 38

dynamics, 46

modeling, 34

nuclei (IN), 126, 313

rheology, 42, 52

sheet

computational considerations, 47

geometry, 55

Huybrechts model, 34

modeling, 45

simulations, 55

strength, 54

stress tensor, 42

thickness distribution (ITD), 35

velocity, 51

volume, 51

warm-based, 47

ice-albedo feedback, 33

ice-atmosphere interface, 40

iceberg calving, 40

icefield, 33

ice-ocean interface, 55

ice sheets, 44

ice-thickness distribution, 49

ideal gas law, 215

Indian summer monsoon, 321

initialization shock, 274

integrated assessment modeling (IAM)

economic costs, 194

higher resolution, 173, 175

climate impacts, 202

integrated Earth system models

(iESMs), 204

highly aggregated, 173

in mitigation policy analysis, 188

multiple greenhouse gases, 191

stabilization studies, 194

integrated Earth system model

(iESM), 205

Intergovernmental Panel on Climate Change

(IPCC), 238

International Satellite Cloud Climatology

Project (ISCCP), 221

intertropical convergence zone

(ITCZ), 306

isoprene, 160

J

Jarvis-type stomatal resistance, 148

L

Lagrangian derivative, 37

Lamb wave, 95, 97

land allocations, 185

land-atmosphere interaction, 224

land ice, 40

land surface model

bucket models, 142, 153

bulk-layer models, 152

force-restore method, 149

Monin-Obukhov similarity theory, 147
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net shortwave radiation, 146

Stefan-Boltzmann constant, 146

subgrid heterogeneity, 144

surface data, 144

topography-based runoff models, 156

variable infiltration capacity (VIC)

model, 144

La Niña events, 271, 276

Laurentide ice sheet, 47

Los Alamos Sea Ice model, 54

M

Madden Julian oscillation (MJO), 92, 295

maintenance respiration, 159

Markov Chain Monte Carlo (MCMC)

techniques, 252

micro-topography, 36

Moderate Resolution Imaging

Spectroradiometer (MODIS), satellite

data, 145

moisture, 143

Monin-Obukhov similarity theory, 147

monoterpene, 160

monsoon, 214, 271

circulation, 305, 316, 325

climate change, 321

climate system, 322

direct radiative forcing (DRF), 313

dynamics, 306, 316

evolution, 323

forecast, 306

high-resolution global models, 309

impacts of aerosols, 312

modeling, 303, 307, 324

regions, 304

retrospective modeling, 309

monsoon-intraseasonal oscillations

(MISO), 307

mountain glaciers, 55

moving boundary method, 38

N

natural earth systems, 177, 197

Navier–Stokes equations, 42, 94, 110, 215

nested regional climate model, 215

net carbon assimilation, 158

Newtonian gravitation, 239

Newton’s law, 94

nino3 SST, 19

North Atlantic

oscillation (NAO), 286

temperature predictions, 293

North Pacific pressure index (NPPI), 284

nucleation scavenging, 126

numerical weather prediction/forecast

ensemble forecasting, 107

models, 99

nonhydrostatic dynamics, 110

parameterizations, 99

remote satellite observations, 107

scalable dynamical cores, 108

O

ocean–atmosphere

interactions, 141

system, 272, 274

ocean/oceanic

biogeochemical cycle, 66

biogeochemical processes, 65

bloom, 56

carbon model, 82

circulation

isopycnal coordinate system, 74

topographic effects, 74

general circulation models (OGCM),

63, 65

horizontal grid system, 72

simulation of marine ecosystem, 84

sub-grid scale parameterization, 75

vertical coordinate systems, 73

heat content, 23

heating term, 71

kinetic energy, 67

mesoscale eddies, 67

model

atmosphere model, 69, 77

biogeochemical cycle modeling, 81

Bjerknes–Wyrtki model, 77

boundary conditions, 71

Cane–Zebiak model, 77

computational fluid dynamics (CFD)

methods, 69

equations of motion, 71, 75

Gill-type model, 77

hydrostatic primitive equations, 69

sea surface temperature (SST), 71

observation data, 67

salinity, anomalies, 12, 289

sea-level change, 84

simulations, 83

surface mixed layer, 72

organic aerosols, 136

orography, 247
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ozone

depletion potential (ODP), 193

hole, 10

P

Pacific decadal oscillation

(PDO), 283

Pacific decadal variability (PDV), 283

paleoclimate, 118, 322

parameter-elevation regressions on

independent slopes model

(PRISM), 220

perennial ice, 33

permafrost models, 32, 36, 55

perturbed physics ensemble

(PPE), 241

photosynthesis/photosynthetic(ally), 158

Planck Feedback, 130

plant

functional types (PFTs), 145

phenology, 159

polar amplification, 33

pore water, influence of salts, 39

power system, parameterizations, 246

precipitation forecasts, 102, 246

prediction experiment, 291

project to intercompare regional climate

simulations (PIRCS), 222

R

radiative forcing, 127

reanalysis climate, 250

recharge oscillator, 272

reforestation, 10

regional climate modeling, 212, 214, 220,

222, 224

dynamical downscaling, 224

evaluating, 220

regional climate simulation, 219, 229

regional earth system model, 215

reliability diagrams, 276

retrospective forecasts, 289, 291

Richards equation, 153

Rossby

number, 105

wave, 284

S

satellite aerosol index, 315

sea ice, 12, 17, 32–33, 35, 40, 54

brine-pocket physics, 40

computational considerations, 54

global climate models, 35

models, 35

seasonal, 33

seamless prediction, 25, 133

seasonal

climate, 263, 282

forecasting, 262, 265

prediction, 294

snow, 33

sea surface temperature, anomalies, 16, 141,

282, 286–287, 306

shared climate policy assumptions (SPAs), 201

shared socio-ecosystem pathway (SSP), 201

slab ocean, 12, 15

snow

ablation, 38

accretion, 38

accumulation, 38, 40

cover fraction (SCF), 152

heat storage, 149

interception capacity, 150

water, 151

snowpack, 33

socioeconomic models, 256

soil

carbon, 160

evaporation efficiency, 144

hydrology, 142

moisture, 153, 155

temperature, 149, 160

thermal diffusion, 148

transpiration efficiency, 144

water freezing 152–153

soil moisture, Richards equation, 153

soil water, 153

solar activity, 241

solar irradiance/irradiation, 39

solar system, 239

solar zenith angle (SZA), 146

South Asian monsoon (SAM), 311

Southern hemispheric circulation, 320

Stefan-Boltzman

constant, 39

equation, 130

law, 146

Stefan condition, 38

Stokes

flow diagnostic equation, 43

system, 47

storm track, 270, 281, 284

stratosphere/stratospheric, 10
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sunlight, 128

surface

albedo, 36, 39, 131

energy balance, 39, 145

forcing, 149

hydrology, 225

meltwater, 40

runoff 156–157

temperature, 247, 265

tiles, 145

topography, 220

water balance, 150

T

teleconnection, El Niño-related, 266, 274, 286

terrestrial water storage (TWS), 155

thermal

forcing, 67

wind balance, 306

thermodynamic(s), 216

thermohaline circulation, box model, 24, 80

tidewater glacier, 41

topography/topographic index, 144, 157

transient climate sensitivity (TCS), 15

tropical atmosphere, 77

tropical biennial oscillation (TBO), 311

tropical climate, 294

tropical cyclone, 111

troposphere/tropospheric, 10

V

vegetation

canopy, 150

dynamics, 158

vertical shear stress, 45

volcanic

activity, 241

aerosols, 15

eruption, 14, 238

W

warming hole, 224

water

canopy-intercepted, 150

snowmelt, 151

storage, 150, 152

weather

forecast(ing), 92, 133, 140

models, 118

prediction model, 89, 92

data assimilation, 102, 106

equitable threat scores, 102

geostrophically balanced flow, 104

height anomaly correlation, 100

initialization, 102

skill scores, 102

seamless models, 110

weather forecasts, 6, 90, 240, 263

West African Monsoon (WAM)

greenhouse gas forcing, 323

impacts of aerosols, 319

model evaluation (WAMME)

project, 311

wetland, 161

wetness index, 144, 157

Z

zoology of atmospheric motion, 91
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