
Chapter 7

Ecosystems and Spatial Patterns

Patrick M.A. James and Marie-Josée Fortin

Glossary

Disturbance A spatial process or event that reverts forest vegetation to early

successional stages typically altering forest structure and

composition.

Ecotone A region of interface between two communities, ecosystems, or

biogeographic regions.

Legacy A persisting spatial feature or pattern that was generated by

a historical disturbance. Legacies can constrain the spatial

dynamics of contemporary disturbances.

Multi-scale

analysis

A method of spatial analysis that looks at the relative

contributions of different scales of spatial pattern to a single

observed spatial pattern.

Pattern A repeatable and identifiable feature in a spatial context.

Scale An attribute of a spatial process or data used to represent that

process that describes its spatial dimensions. Scale includes

elements of grain, extent, and thematic resolution.

Spatial

autocorrelation

The degree of correlation of a variable and itself as a function of

the spatial distances among sample points.
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Stationarity A feature of a spatial process in which the mean and variance of

a process is consistent across the extent of a study area.

Variography A geostatistical modeling tool for describing spatial variance and

semivariance as a function of spatial distance among pairs of

points.

Definition of the Subject

Ecological processes such as forest disturbances act on ecosystems at multiple

spatial and temporal scales to generate complex spatial patterns. These patterns in

turn influence ecosystem dynamics and have important consequences for ecosys-

tem sustainability. Analysis of ecosystem spatial structure is a first step toward

understanding these dynamics and the uncertain interactions among processes.

There are many spatial statistics available to describe and test spatial pattern

within ecosystems and to infer the character of the processes that generated

them. Indeed, improving understanding of the processes that create spatial pattern

is a central objective of spatial pattern analysis. In addition to standard tests of

spatial autocorrelation and patch structure, methods for multi-scale decomposition

of spatial data and identification of stationarity are necessary to determine the key

spatial scales at which the processes operate and affect ecosystems and to identify

meaningful spatial subunits within larger contexts. Finally, tools for identifying

ecosystem boundaries are also important to monitor boundary movement and

changes in local ecosystem characteristics through time.

Introduction

Spatial Patterns in Ecosystems

The spatial structure of ecological systems is important to examine and understand

as spatial structure mediates the flows of individuals, materials, and information

through space and time [1]. These flows bear on the probabilities of occurrence and

persistence of floral and faunal populations which determine local and regional

biological diversity as well as ecosystem functioning [2]. Interruptions and

alterations of such flows within and among ecosystems in terms of rate, quantity,

or both as a result of human interventions or natural dynamics such as disturbance

can have important consequences for ecosystem sustainability and long-term pop-

ulation persistence. Quantitative characterization of spatial patterns and their rates

of change in natural environments is essential to understanding ecological
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processes and to inform sustainable management techniques that aim to minimize

degradation and alteration of ecosystem dynamics [3].

Spatial pattern, or simply spatial structure, refers to a quantifiable attribute of

a spatial context. General definitions of the word pattern include a simple definition

such as a distinctive or regular “form” or “order,” or a feature that is repeated with

some degree of “regularity” [4]. Recently, Wagner and Fortin [5] defined the more

general term “spatial heterogeneity” as spatially structured variability in a property

of interest. Both exogenous environmental (e.g., edaphic variability, elevation,

climate) and endogenous ecological (e.g., species interactions, pollen, and seed

dispersal) processes generate spatial structure. Each of these two types of spatial

processes can produce spatial pattern in multiple forms and scales (Fig. 7.1). The

simplest form of spatial pattern is a simple gradient (Fig. 7.1a). Spatial structure can

also be present in the form of patches, linear features, and points and can be

superimposed on a gradient (Fig. 7.1b–f). When biological spatial structure is

mostly responding to environmental conditions such as those depicted in Fig. 7.1,

the resulting spatial structure is said to have spatial dependency to the environmen-

tal factors. However, when spatial structure emerges as a result of interactions

among ecological processes, the pattern is said to be spatially autocorrelated [5].

Spatial patterns and heterogeneity can also be defined using spatial and topological

characteristics. These characteristics can include, but are not limited to, a pattern’s

intensity, autocorrelation, degree of clustering, variability, and scale, which itself

includes spatial grain and extent [6]. Importantly, a single pattern summarized using

different characteristics can result in different interpretations of the processes behind

that pattern [7, 8].
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Fig. 7.1 Spatial heterogeneity as a series of additive processes resulting in additive spatial

patterns to which individual organisms (here represented points) may respond. Some or all of

the different types of spatial heterogeneity may be present in any given landscape
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Because spatial pattern analysis is often interested in inferring the processes that

created them, it is important to recognize that any single observed pattern represents

but one realization of the stochastic process(es) that generated it [7, 9]. By

acknowledging that an observed pattern is but a single “snapshot,” its temporal

dimension is recognized and that under different circumstances, the patterns seen

may not be exactly the same. Hence, a main objective of studying spatial pattern is

to try to tease apart stochastic processes and the patterns they create from their

spatiotemporal conditionalities.

In addition to being driven by processes that are stochastic, patterns emerge as

a result of multiple processes that operate at different spatial and temporal scales

[10, 11]. These processes can be biotic or abiotic and are usually interconnected

through dynamic, and occasionally nonlinear, feedback loops. For example, emer-

gent spatial pattern following forest fires is conditional on the initial distribution of

forest fuels as well as fire-weather conditions [12]. Similarly, patterns in forest

vegetation composition are often related to patterns in abiotic factors such as

moisture, drainage, and soil conditions. Patterns in the genetic composition in

animal populations have also been shown to be influenced by the environmental

variation (e.g., suitable vs. unsuitable habitat) between sampled populations [13].

These relationships are often nonlinear as the patterns that result from the

interactions among pattern-generating processes tend to be different than any one

process on its own [14, 15].

Novel spatial patterns created by contemporary anthropogenic processes have

uncertain consequences for natural ecosystem dynamics. Anthropogenic processes

including deforestation, development, land use change, and climate change do not

replace natural processes, but have the capacity to interact with and alter them. As

such, a significant question in modern ecology and ecosystem science is that of

what are the effects of such novel patterns and processes on natural, or historical,

system dynamics [16–18]. Not only do new sources of spatial variability influence

natural dynamics through changing the patterns to which natural processes respond,

but they also can alter the processes themselves. For example, with regard to forest

fire dynamics, this is true where forest composition has been changed due to fire

suppression and management (pattern change) and fire frequencies are increased

due to increased ignitions near roads or changes in local weather patterns (process

change). Similarly, with regard to animal population dynamics, movement and

dispersal may be impeded through habitat loss and fragmentation (pattern change)

and habitat loss can have an absolute effect on effective population size, rates of

dispersal, and genetic variability (process change). Sophisticated spatial statistical

analyses are required to begin to disentangle the contributions of different processes

to observed spatial patterns to understand how best to manage natural systems to

safeguard against further habitat-related losses to biodiversity [19].

Here the causes and consequences of spatial patterns in terrestrial forest

ecosystems are reviewed with particular emphasis on patterns of forest vegetation

generated through landscape level disturbance processes. Spatial patterns in forest

vegetation are both ecologically and economically important in that they are directly

relevant to wildlife habitat supply, timber supply, future disturbance dynamics,
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and represent future challenges to forest and land managers. Uncertainty regarding

future disturbance dynamics, in particular fire and insects outbreaks, in the context of

global climate change makes investigations into disturbance interactions and

potential long-terms consequences for ecosystem spatial structure and functioning

particularly relevant.

Forest Ecosystems

In North American forests, disturbance processes generally include landscape level

fires, insect outbreaks, forest management (i.e., logging), and fine-scale local

disturbances such as windthrow and fungal diseases. The patterns created through

the interactions among disturbances can have important economic and ecological

consequences. For example, Stadler et al. [20] demonstrated that hemlock wolly

adelgid (Adelges tsugae) infestations in New England can affect both fast and slow

ecosystem dynamics, nutrient cycling dynamics in the short term, and landscape-

scale patterns of forest composition in the long term. Similarly, compounded

disturbances (e.g., fire and logging) in the eastern boreal forest can result in alternate

forest states [21], which can have consequences for biodiversity conservation. Eco-

nomically, it has been clearly demonstrated that forests under risk of disturbance,

either through fire or insect outbreaks, required longer rotation periods to accommo-

date for the losses [22].

Logging, fire, and insect outbreaks represent disturbance processes that revert

forest stands to early seral stages. Succession describes processes of forest recov-

ery, regeneration, and change that vary in response to different disturbances.

Although multiple processes generate forest spatial heterogeneity, not all influence

it in the same way. Spatial disturbance legacies vary in terms of shape, size,

intensity, boundary characteristics, influence on forest succession, and effects on

forest age structure [18, 23–25]. The interactions among processes, or more prop-

erly, interactions among current disturbance and existing spatial legacies, create

and maintain heterogeneous forest landscapes. This cascade of effects and

constraints creates mutual dynamic feedbacks among patterns (spatial legacies)

and spatial processes (disturbances) [26, 27] with important consequences for

ecosystem dynamics.

Different forest disturbances create different forms of spatial structure. Indeed,

each disturbance imposes its own unique “spatial signature” on the landscape that

also has different temporal characteristics contingent on a disturbance’s interaction

with succession (Fig. 7.2). Fires, for example, tend to produce relatively discrete

patches that occur over a short time frame and vary in terms of the residual forest

structure that is left behind [28]. Logging is somewhat similar to fires in that the

patches created are discrete and occur over short time frames and forest managers

have control over the scale and amount of residual structure. Insect disturbances,

such as outbreaks of spruce budworm (Choristoneura fumiferana), forest tent

caterpillar (Malacasoma disstri), and the mountain pine beetle (Dendroctonus
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ponderosae), are less discrete and tend to produce more complicated spatial struc-

ture and continue to affect forest structure at a given location for multiple consecu-

tive years [29].

Each disturbance also has a unique relationship with forest regeneration pro-

cesses [30] such that forest succession is tightly coupled to the type of disturbance

that reinitiates stand development. These relationships determine future forest

structure. Historically, fire and insects were the main disturbances in North Ameri-

can forest systems. Adaptations to disturbance such as serotiny in pine species
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Fig. 7.2 Spatial and temporal scales of forest disturbances. Interactions among disturbances are

dependent on the unique successional responses to each disturbance (row 1). Historical forest
systems were governed by interactions mainly between fire and insects (arrows) although pres-

ently, logging also interacts with these historical processes. Columns show the unique spatial and

temporal attributes of each of the three main boreal forest disturbance agents: fire, insects

(i.e., SBW), and harvesting (i.e., logging). These different spatial features result in different

realization, or spatial signatures, of each disturbance (row 4). Interactions among these different

processes produce a single observed spatial realization of spatial structure that contains elements

of each of the different processes (row 5). Observed patterns contain elements of all three main

processes; the objective of spatial analyses is to begin to tease apart the relative contributions of

different processes to observed spatial pattern (row 6)
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(e.g., jack pine; Pinus banksiana) and advanced regeneration in the understory of

spruce (e.g., Picea spp.) and balsam fir (Abies balsamea) stands that maintain

spruce budworm host availability over time [31] are evidence of this dynamic

feedback between disturbance and succession. The spatial patterns created through

forest management and their influences on forest succession in turn influence future

forest disturbances dynamics [32]. Spatial pattern analysis is important to better

understand the effects of human activities on natural disturbance dynamics.

Sources of Heterogeneity

Understanding the nature and consequences of spatial heterogeneity in ecosystems

requires an understanding of the processes that generate this heterogeneity. In this

section, different types of spatial heterogeneity and how different types of processes

may give rise to complex spatial patterns are described. The consequences and

potential challenges involved in indentifying the relative contributions of these

different and frequently interacting processes are discussed next [6].

Levels of Organization

Processes that generate spatial heterogeneity can be classified into a hierarchy of

spatial processes that operate at different levels of ecological organization: (1) indi-

vidual, (2) population, (3) community, and (4) landscape/ecosystem. Individual

processes include organism dispersal and habitat selection; population processes

can include demographic dynamics as well as immigration/emigration; community

level processes are highly relevant to natural disturbance dynamics and can include

successional changes and rates of species turnover. Examples of landscape/ecosys-

tem level processes include disturbance, climate change, and migration.

Processes within this organizational hierarchy are not necessarily independent

and can influence each other among levels. Such interactions can influence emer-

gent patterns due to potential cross-scale interactions and amplifications [33] and

can also further complicate efforts to identify clear cause-and-effect relationships.

A recent example of such cross-scale amplification in a forest ecosystem can be

found within the mountain pine beetle (Dendroctonus ponderosae) system of

Western Canada, where the recent outbreaks of the lodgepole pine infesting

beetle have affected an unprecedented millions of hectares [34]. Here, the local

dynamics of population control by host tree defenses were overcome when popula-

tion numbers increased dramatically due to persistent warmer temperatures in the

early 2000s. The interactions between these local- and landscape-level processes

are thought to have led to a positive feedback that allowed the outbreak to expand as

much as it did [34].
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Interactions Among Spatial Processes

Spatial processes within ecosystems interact with each other directly as well as with

the spatial legacies of previous, historical processes. In this way, spatial patterns

and processes are connected through a dynamic and persistent feedback loop [32].

Spatial legacies can be thought of as a form of spatiotemporal connectivity among

disjunct spatial processes or events that are mediated by forest succession and

aging. The legacies of historical processes as represented by contemporary patterns

can have long-lasting and significant impacts on biodiversity [16, 35] and efforts to

sustainably manage forest ecosystems [23, 36].

Spatial legacies can be defined at different scales and describe persisting features

within a stand, landscape, or ecosystem. The term “legacy” can refer to fine-scale

structural complexity following windthrow [37], landscape level forest age struc-

ture [18, 38], disturbance-mediated seed availability [39], and residual forest

structure following fire [39, 40]. Because patterns of historical land use can

influence contemporary ecosystem composition, configuration, and ecosystem pro-

cess dynamics long after the actual event [41], a better understanding of spatial

legacies and their influence on ecosystem dynamics and landscape change over

time is needed and requires novel spatial and temporal methods of investigation

and analysis.

From the perspective of sustainability, spatial disturbance legacies, including

those created through human activities, represent future ecosystem patterns and

future challenges for sustainable management. Gustafson et al. [42] showed that

new forest harvest goals are not easy to achieve due to existing conditions when

examining shifting forest management rules. Wallin et al. [38] demonstrated that

shifts from a dispersed to an aggregated harvest pattern did not immediately result

in a change in forest attributes such as patch size and edge density. Instead, new

harvest rules had to work around the legacies of previous patterns, and original

patterns were enforced. Similarly, Gustafson and Rasmussen [43] found that when

varying parameters in a harvest simulation model, the persistent legacies of previ-

ous harvest patterns resulted in timber harvest shortfalls. Using a simulation

approach, James et al. [18] demonstrated that legacies in forest age structure created

through forest management can persist for over 100 years. Ecologically, the

consequences of these legacies interacting with new disturbances can result in

greater system variability and gradual ecosystem degradation [43–45] or alternative

stable states [21, 46].

Multiple Spatial Scales

Inferring the characteristics of spatial processes through analysis of spatial pattern

is a central goal of most ecological studies as it is often very difficult to analyze the

processes of interest directly. This can be particularly challenging when several

types of pattern (Fig. 7.1) and underlying processes are present (Fig. 7.2). The
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challenge resides in the fact that the single observed pattern is an amalgamation of

these multiple processes interacting with existing spatial structure and historical

legacies; the functional relationships that connect these contributors to pattern are

largely uncertain (Fig. 7.2). When analyzing the spatial structure of sampled data, it

is not easy to disentangle the key spatial scales, and therefore processes, that act on

the data. However, in the last decade, hierarchical decomposition methods (multi-

scale ordination [47]; PCNM [48]; wavelets, [49] more detailed below) have been

developed to identify the spatial scales at which data are most strongly structured

and to decompose the data on the basis of scale-specific variances. Beyond simply

describing patterns and the scales at which they are structured, it is also important to

have a priori hypotheses about which scales and processes are the most relevant for

the questions under study as these methods could reveal many patterns and spatial

scales, many of which may not be of relevance [8]. Spatial pattern analysis will be

more effective at describing underlying processes when used in an explicit and

informed hypothesis testing framework.

Ecological Consequences of Spatial Heterogeneity

The consequences of changes in spatial pattern in forest landscapes are easily

confounded by absolute losses in wildlife habitat [19]. That is, although both forest

composition and configuration are important, issues related to configuration are

only relevant below a critical threshold of forest amount (usually 20–30% of area;

[50]). Above the critical threshold, the landscape generally remains “connected”

and organisms or disturbances can spread in the landscape [51]. Below such

a critical threshold, species’ response to the amount of habitat area is nonlinear as

most species do not have enough habitat to meet their needs. Surrounding habitat

quality (composition) and configuration become more important for local popula-

tion persistence in this case. Moreover, fragmented landscapes with various

landcover types can impede species abilities to move from habitat patches to

another [52]. For example, nesting birds do not cross forest gaps larger than 25 m

[53]. Impediments to movement across landscapes can influence population

dynamics [54] as well as genetic heterogeneity [55], both of which affect the

probability of population persistence.

Spatial Analyses

There are three main approaches to investigating the different aspects and

consequences of spatial heterogeneity. Spatial statistics, landscape metrics, and

statistical modeling, all approach the question of identifying spatial pattern in

ecosystems in a slightly different way [5]. Owing to the varied history of

approaches to studying spatial patterns including methods and concepts drawn
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from a diverse set of disciplines such as geography, geostatistics, and ecology, only

the key concepts related to the most commonly used methods that quantify spatial

structure within and among ecosystems are presented. Before describing the differ-

ent types of analysis, some fundamental issues related to the spatial analysis of data

are presented.

Assumption of Stationarity

To infer spatial pattern from samples spatial statistics require that the area under

study is governed by the same underlying process (i.e., the assumption of

stationarity; [7]). As it is often impossible to be sure that the underlying process

is stationary, one needs either to assume it or to determine whether or not the

observed data are stationary (i.e., their statistical properties such as mean, variance,

isotropy do not vary with spatial distance). Nonstationary processes may arise when

more than one process is present and that these multiple processes may be acting at

different spatial or temporal scales. Yet, in most forest ecosystems, processes

interact with one another, resulting in unique types and scales of spatial pattern

which violate the assumption of stationarity. In such circumstances, it is required to

first identify stationary subregions within such a larger spatial context. A few

spatial analysis methods do not require the stationarity such as lacunarity analysis,

local quadrat variance methods, and wavelets [7]. It is worth noting that these types

of analyses although different and originating from different developmental

histories are quite similar to one another mathematically [56].

Data Type

Spatial pattern within ecosystems can be represented using categorical or continu-

ous data depending on the nature of the variable under investigation. Each type of

data requires different methods of analysis (Fig. 7.3; [7]). Categorical data can be

described by the amount and configuration of the different discrete types on the

landscape. Examples of categorical spatial data include forest type and age, or

classified habitat patches. Both amount and configuration can be described in

numerous ways using landscape pattern metrics [9, 57, 58]. Continuous data

requires more subtlety in describing patterns and can include variables such as

soil moisture, forest basal area, or remotely sensed reflectance indices (e.g., NDVI).

Composition of continuous variables can be described using the density distribution

of the variable and configuration is usually described by a spatial covariance

function that captures the strength, directionality, and scale of autocorrelation of

the variable [5, 7, 59].

In addition to the categorical/quantitative dichotomy of data types, patterns can

be described using different geometric topologies of spatial features or units: the
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vector format (points, lines, polygons) and the raster (i.e., pixel) format [60].

Representation of spatial structure in one form of data does not preclude use of

another form. For example, annual polygons of insect defoliation data can be

converted into raster form and analyses can be undertaken using time series of

raster values at a specific location [61]. Furthermore, binary rasters (presence/

absence) can be converted to continuous rasters by increasing the cell size and

counting the number of “presence” pixels surrounding a focal pixel using

4-neighbour, 8-neighbour, 16-neighbour rules and assigning this value to the to

the new, larger pixel.

Raster data can be used to represent any continuous variable. In contrast to

point data, in raster data types, the information fully covers the extent of the study

area. There is also a unique grain (or cell size) to each raster “pixel” that

determines the subarea of continuous space that is discretized by the raster cell.

The selection of raster grain can have important consequences to the results of

spatial analyses [6]. Raster data can be used to represent any number of spatial

variables relevant to disturbance ecology including, but not limited to, tree species

[62], stand age [18, 63], basal area [64], insect damage [61], and number of fire

occurrences [65]. The continuous coverage of raster data makes it amenable to

many different analytical techniques such local quadrat variance, lacunarity, and

wavelets [56].

Gradient Analysis

Quantitative Data

Spatial Statistics 
• Spatial Autocorrelation
• Range
• Anisotropy

a b

Categorical Analysis

Qualitative Data 

Landscape Metrics
• Composition
 (patch type and proportion)
• Configuration 
 (patch size, patch shape,
 patch orientation, spatial
 arrangement)

Fig. 7.3 Spatial analysis can be undertaken on different types of spatial data. (a) Raster-based
quantitative spatial data (e.g., forest height, basal area, NDVI) that can be analyzed using spatial

statistics to determine the intensity, spatial range, and directionality (anisotropy) of the spatial

pattern. (b) Categorical and qualitative forest data (e.g., species, stand age) require a different

analytical approach that typically includes landscape pattern metrics
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Spatial Analyses within an Ecosystem

Ecological variables that are geographically distributed in space and time tend to be

more similar when compared close together [66]. Autocorrelation is a feature of

most data and can be quantified by the degree of self-similarity or dissimilarity in

a variable between pairs of locations at a given distance apart (i.e., spatial lag

determined in terms of equidistant classes). Note that spatial statistics on their own

cannot differentiate between spatial dependence to environmental factors and

spatial autocorrelation due to ecological processes; only prior knowledge and

multiple testing can differentiate between these two sources of spatial structure.

Spatial Description of the Pattern

The objective of many spatial statistics is often to characterize to what degree

spatial data are autocorrelated, if they are oriented in a particular direction (anisot-

ropy), and at what scale. As these spatial statistics have been thoroughly reviewed

elsewhere [7, 58], we focus on three topics (1) methods of spatial pattern analysis

devoted to identifying structure in point data, (2) methods of spatial analysis that

are devoted to identifying structure and pattern in two-dimensional raster (pixel) or

polygon data, and (3) methods of spatial analysis explicitly concerned with

identifying the scale, or scales of structure that are present in either point or two-

dimensional data. Both the data types discussed can be examined in uni-, bi-, and

multivariate contexts and can include either categorically or continuously measured

variables.

Point Pattern Analysis

Spatial point processes describe phenomena that produce events represented as

points in space [67, 68]. The objective of point pattern analysis is to determine

whether the distribution of events (points in space) is more or less spatially

aggregated than is expected by chance and tests the null hypothesis of complete

spatial randomness. The use of complete spatial randomness assumes that the

underlying process is the same over the study area (i.e., stationarity). When it is

not the case, the study area is said to “inhomogeneous” such that significance

cannot be achieved using a single process such as complete spatial randomness.

Modified statistics and corrections have been developed to account for inhomoge-

neity within the study area [69, 70]. Point pattern analysis also assumes complete

census of all point occurrences in the study area [7]. Fortin et al. [71] showed that

the significance of spatial aggregation estimations is biased only when a subset of

sample points is used rather than the entire set of points in the study area.
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The most commonly used method of point pattern analysis is Ripley’s K
statistic [72]. New statistics have also been developed to compute local estimates

[68]. Ripley’s K statistic, and derived statistics, can be applied in one-, two-, or

three-dimensional space to compare the degree of aggregation of points [68]. In

cases where two (or more) point processes are operating, it may be of interest to

assess whether one process influences the other and whether points of different

types tend to cluster together. Examples of ecologically relevant spatial point

processes include fire occurrence, plant occurrences [67], or the distribution of

animal nesting or denning sites [72]. The bivariate, or cross-K, Ripley’s K test

assesses whether the co-occurrence of two types of points is clustered together

more or less than is expected by chance [58]. Using this technique, Lynch and

Moorcroft [73] examined co-occurrence of fire and insect outbreaks and found

that contrary to expectation, insect-caused forest mortality does not increase the

risk of forest fire.

Spatial Autocorrelation

Often, a researcher is interested in determining the scale and strength of spatial

autocorrelation of a variable as well as whether there is a directional trend in the

data (i.e., anisotropy). This can be achieved using spatial autocorrelation

coefficients such as Moran’s I which computes the product of the deviations of

the values of the variable to its average according to various distance intervals (lags,

classes) standardized by the variance at that spatial lag [7]. Moran’s I behaves like
a Pearson’s correlation coefficient such that the null hypothesis is the absence of

spatial autocorrelation, positive autocorrelation (mostly a short distance) indicates

that values have comparable values, while negative values indicate that the values

are very dissimilar. Moran’s I assumes that the underlying process is the same over

the entire study area (i.e., stationarity). Hence, the spatial autocorrelation

coefficients computed at various distance classes are average values. Spatial auto-

correlation in this sense can be referred to as a global spatial statistic that describes

an attribute of the data over the entire study area [7]. Significance of each coeffi-

cient can be computed based on an asymptotic t or randomization procedure. In

either case, stationarity is required. Moran’s I is very sensitive to skewed data as the
mean will be biased and in consequence all the deviations values based on it will

also be biased. It is therefore recommended to check the distribution of the data

before computing spatial autocorrelation and if needed transform the data to obtain

a symmetric distribution.

Measures of spatial autocorrelation are also sensitive to sample size. When

autocorrelation is estimated using too few locations, (e.g., <30 positions), spatial

patterns may not be detected, even though present. Similarly, depending on the

spacing among sampling locations, there will be different numbers of paired

comparisons at each lag distance. Typically, there are few pairs at short distances

due to the edge effects of the edge of the study area (no locations outside to
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compare too), most of the pairs at intermediate distances and very fewer at large

distances (because of the overall size of the study area). To mitigate these unequal

numbers of pair per distance lag, it is recommended to focus on lags distances equal

to the length of the first half (up to two thirds) of the smallest edge of the study area

as most spatial autocorrelation occurs at short distances and that the probability of

detecting it is also highest in the first spatial lag [7].

A plot of spatial autocorrelation coefficients against distance lags is called

a spatial correlogram. If the lags are based on distance only, the correlogram is

said to be an omnidirectional correlogram. When the data contain directionality, the

omnidirectional correlogram cannot reveal it and may, in fact, “mask” it. To detect

the presence of anisotropic spatial pattern (i.e., not having the same sill and range

according to direction), the samples need to be divided by distance class as well as

direction angle range (usually 0�, 45�, 90�, 135�) to produce a set of directional

correlograms.

In areas where several processes influence ecological data, Moran’s I that

assumes stationarity cannot be used. Instead, local indicator of spatial aggregation

statistics, LISA (e.g., local Moran, local Getis), can be used as they are computed at

each sampling location and allow the identification of subareas that have similar

high (“hot spots”) or low (“cold spots”) values [7].

Geostatistics

Spatial structure can be determined in terms of spatial autocorrelation as presented

above or as spatial variance according to distance as computed using variograms

which are part of the family of spatial statistical methods known as geostatistics [7,

58]. Variograms represent a global method of scale-specific analysis that has been

used extensively in ecology to analyze spatial patterns [58]. Variograms model the

relationship between lag distance and semivariance and can be calculated using

continuous raster or point data. Semivariance is calculated as the sum of the squared

differences between pairs of locations separated by a given lag distance divided by

twice the number of pairs of locations at that particular lag distance [7]. From the

observed, or empirical, variogram, three parameters can be estimated to fit

a theoretical variogram: (1) range, or scale at which distance does not affect the

estimate of variance, (2) sill, or the variance of the data, and (3) nugget effect,

which represents the variability in the data that is not accounted for by spatial

structure [58]. Theoretical variogram models can identify whether there is

a directional trend in the data, that is, anisotropy as the spatial autocorrelation

values. In addition to describing the attributes of spatial structure, geostatistical

models can be used to “krige” (i.e., spatially interpolate) data [58] and to simulate

spatial patterns using a chosen variogram model, process model, and parameter

estimates [74].
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Spatial Scale and Scaling

In addition to understanding the type (e.g., trend, patch) and strength (e.g., degree and

distance) of a spatial pattern, it is useful to identify the spatial scale at which such

patterns are present. Because patterns are the result of multiple processes that each

have their own unique scales of spatial structure [75], disentangling the relative

contributions of these processes and assigning relative importance to them and the

scales at which they operate are of fundamental importance to ecology and improving

the understanding of complex systems [11, 16]. Furthermore, the identification of the

relative contributions of different processes and scales to observed patterns is neces-

sary for understanding cross-scale interactions [33] which is necessary to make

reliable predictions of system dynamics, ostensibly the objective of any spatial

analysis [76].

As stated above, spatial pattern describes a “quantifiable attribute of a spatial

context.” Scale-specific analysis identifies the spatial scale at which that attribute is

structured establishes its specific context. With regard to forest disturbance dynamics,

for example, individual forest stands may seem unstable through the processes of

destruction and renewal through disturbances such as fire, but the larger forest land-

scape (i.e., collection of stands) is in fact stable with respect to the proportion and

relative configuration of the different stand types. This is what is meant when distur-

bance-mediated forest systems are described as a shifting mosaic [77]. Different

conclusionswould be drawn about forest stability and resilience (sensu [78]) depending

on the spatial or temporal scale of investigation.

Scale generally describes the spatial extent, grain, and thematic resolution of

a set of data [6]. However, scale can also be used to refer to a level within an

organizational hierarchy to which such data pertain, such as a population, or

community, or ecosystem [79]. It is important to note that scale in this latter

sense is not directly equivalent to the former; scaling up, that is, increasing from

local to a broader extent, or aggregating data from a fine to a coarse scale may move

the analysis into another level or an organizational hierarchy, but not necessarily

[80]. Although scale is best thought of as a feature of the phenomena of interest, it

can also be a feature of sampling scheme imposed by a researcher, or the methods of

analysis applied [6]. All of these features can influence a researcher’s ability to

identify scales of structure in spatial data and to make meaningful inferences

regarding the underlying processes. It is therefore important to distinguish structure

that is emergent from the data from those related to sampling or analytic scales (i.e.,

arbitrary scales; [10]), as such a priori scales may have little to do with the actual

scale of structure in the ecological phenomena of interest [76].

The ability to identify meaningful scales of spatial structure depends on the

methods used and the type of data being analyzed [77, 81]. Methods differ in their

ability to identify local vs. global scales of pattern. Global methods of scale-specific

analysis summarize spatial pattern at a single scale and generally assume that the

underlying processes are stationary. Examples of global methods of analysis

include variography [58], spectral (i.e., Fourier) analysis [82], and global measures
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of spatial autocorrelation such as Moran’s I and Geary’s c [7]. Multi-scale methods

of analysis identify both global and local scales of structure, can assign relative

importance to difference scales, and do not assume stationarity. Instead, such

methods can be used to identify boundaries and scale-specific stationary subregions

within a larger spatial context [7, 74]. Multi-scale methods of analysis include

lacunarity analysis [83], wavelets [74, 81, 84], distance-based Eigenvector methods

(e.g., PCNM; [85]), and local spatial statistics [86].

Wavelet analysis is a particularly powerful method of local spatial analysis that

can be used to decompose continuous data into its scale-specific components

[87, 88]. A proportion of the total variance in the data set is associated with each

level of the decomposition through use of the wavelet variance [84] and the relative

contributions of different scales to overall structure can be assessed and visualized

as a scalogram (Fig. 7.4b). Each of these scales of pattern can then be isolated using

a multi-resolution decomposition (Fig. 7.5; [88]). Under conditions where observed

spatial pattern is assumed to be the result of multiple interacting processes, such

data decomposition provides an opportunity to assess the relationship among

processes and individual scales of spatial structure present in the data. In combi-

nation with the scalogram (Fig. 7.4b), the relative importance of these different

scales can also be determined and further analyses can be restricted to only those

spatial layers that correspond to the scales of interest. Isolated scales of spatial

pattern can then be examined independently or used as scale-specific predictors in

further statistical analyses [89].

Whereas Fourier analysis assumes that observed patterns can be described as

a sum of sine waves of different frequencies, wavelet analysis identifies global and

local structure at different scales using a local wavelet template that can take on
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Fig. 7.4 Example of a hierarchical multi-scale decomposition of two-dimensional, quantitative

data using wavelets. (a) Simulated spatial data. (Data were simulated using an exponential

variogram model with the following parameters: Sill = 1; Range = 40; Nugget = 0.1).

(b) Scalogram that summarizes the proportion of total variance in the original data

associated with each scale of the decomposition. Wavelet decomposition was accomplished

using a maximal-overlap discrete wavelet transform (MODWT; Percival and Walden [109])
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a wide variety of shapes and forms [90]. The majority of wavelet applications have

been in the analysis of temporal signals to identify periodicity in things such as

climatic variability [91] and epidemiological time series [92, 93]. However, spatial

applications of wavelet analysis in ecology continue to be developed and have

been used to investigate one-dimensional forest canopy gap structure [87], vegeta-

tion reflectance [89], two-dimensional structure in grassland productivity [81],

tree crown identification [94], and the significance of spatial structure in forest

basal area [74].

When data are not sampled in a continuous way (i.e., they are irregularly spaced),

multi-scale decompositions can be performed using spatial eigenfunction analyses

such as principal coordinate analysis of neighbor matrices (PCNM) and Moran’s

eigenvector maps (MEM) [48, 95, 96]. These methods model spatial structure in

a multivariate framework using distance matrices where the spatial coordinates of the

sampled sites are converted into a set of synthetic spatial variables that represent
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spatial structure at different spatial scales. These synthetic variables can then be used

in combination with constrained ordination methods (e.g., canonical correspondence

analysis and redundancy analysis; [95]) to identify the spatial scales at which data

are dominantly structured. Jombert et al. [97] also proposed a multi-scale pattern

analysis (MSPA) to determine which of these many scales are the most relevant to use

as spatial predictors in subsequent analyses such as partial ordination or multiple

regression [85].

Spatial Analyses Among Ecosystems

The ecotonal interfaces between ecosystems are important to delineate as they are

the locations where the exchange of nutrients and species turnover occurs [7]. It is

also important to determine not only the boundary location between ecosystems,

that is, where one system begins and another ends, but also its width (i.e., sharp/line

or gradual/zone) [98]. There are two different types of methods that can be used to

determine the interface between ecosystems: by creating spatial clusters or by

detecting boundaries [99]. In either case, the sampling design used to collect the

data is crucial: The determination of a boundary (i.e., area of high rate of changes in

the values of variables, hence a heterogeneous area) is relative to the two adjacent

spatially homogeneous ecosystems. Therefore, the sampled data should cover

enough of both ecosystems such that their interface can be detected.

Spatial Clustering

To delimit boundaries between ecosystems, spatially homogeneous clusters can be

determined based on the degree of similarity of sample attributes and their spatial

adjacencies [66, 99, 100]. The degree of similarity can be based on commonly used

clustering algorithms (agglomerative, k-means, fuzzy logic, etc.) and adjacency can be

based on network connectivity algorithms (e.g., nearest neighbors, minimum spanning

tree, Gabriel network, Delaunay network; [7]). Spatial clustering provides the mem-

bership of each location to a spatial cluster and therefore, as a by-product, identifies

boundaries among clusters. However, clustering procedures do not provide any

information about the location and width of the identified boundaries between

clusters. When information about location and width are needed, other methods

should be used such as boundary detection methods ([99]; but see [101]).

Spatial Boundary Analyses

Ecological boundaries can be defined as areas of high rates of change or large

absolute differences between adjacent locations [102]. Boundary detection methods

[98] include edge detection algorithms (Laplacian, Canny, Sobel, Monomier, etc.),
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wavelet analysis [74, 81], and wombling (lattice, triangulation, categorical). The

two former families of methods require the data to be in a contiguous fashion (grid)

without any missing values while the latter one can either be used with contiguous

or irregularly sampled data. All methods compute the magnitude of rate of change

between adjacent locations over the entire extent of the study area. To determine

which rates of changes are significantly higher than the others, different statistics

and significance tests having been developed. Wombling typically uses arbitrary

percentile thresholds of boundary elements to identify significant boundaries [7].

James et al. [74] proposed a series of restricted randomization procedures to test the

significance of wavelet boundaries using variogram-based spatial null models.

Oden et al. [103] developed boundary statistics to test the cohesiveness properties

of the boundaries. Once cohesive boundaries have been detected and tested,

subsequent hypothesis testing can be performed by comparing the spatial overlap

and movement of boundaries using spatial overlap statistics [7, 104, 105] or

polygon change analysis [106].

Future Directions

The detection and characterization of spatial structure is necessary for developing the

understanding of ecosystem function and for ensuring sustainable management and

use of landscape resources. Indeed, the current scale and pace of anthropogenic

influence on the natural environment is without precedent and the ways in which

novel human-created spatial patterns interact with and influence natural processes are

uncertain. Even more uncertain are the relationships among different scales of spatial

and temporal pattern and what such cross-scale interactions may mean to ecosystem

dynamics [107]. Future directions in the analysis of spatial pattern will require

approaches and methods that can begin to tease apart the separate scales, both spatial

and temporal, of processes that contribute to spatial patterns both within and among

ecosystems. These methods should include multi-scale approaches such as the wave-

let-based methods described above, tools to assess statistically significant changes

over time, and methods that can identify local spatially significant subregions within

larger spatial contexts [74].Meaningful inference in these regardswill only be possible

if the spatial pattern analysis is applied within a hypothesis testing framework, where

competing notions of how individual processes percolate through the landscape to

produce pattern can be tested statistically [8]. Finally, increasing availability of

remotely sensed data (e.g., NDVI, LiDAR, Quickbird, LANDSAT, MODIS) will

allow people to detect spatial patterns at finer spatial and temporal scales over much

larger spatial extents than has been previously possible. These huge amounts of data

will also require focused, hypothesis-driven questions, the use of data-mining tools

[108], and the further development of spatiotemporal statistics.
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