
Chapter 5

Chemicals in the Environment,

Turbulent Transport

John S. Gulliver

Glossary

Diffusion The spreading of fluid constituents through the motion

inherent to atoms and molecules.

Diffusion coefficient A coefficient that describes the tendency of molecules to

spread a constituent mass

Dirac delta An impulse of a given quantity (mass) that occurs over an

infinitely short time or space.

Kinematic viscosity The fluid viscosity divided by the fluid density, resulting in

units that are similar to a diffusion coefficient, or length

squared per time.

Laminar flow Flow that has no turbulent eddies, where the fluid flows in

laminas and diffusion creates the mixing of the fluid.

Prandtl’s mixing

length

The mean length that the turbulence in the flow will trans-

port mass, momentum, or energy.

Reynolds number The ratio of inertial to viscous forces, resulting in

a meaningful velocity times a meaningful distance divided

by kinematic viscosity.

Turbulent diffusion The mixing of fluids through turbulent eddies created by

convection.
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Turbulent diffusion

coefficient

A coefficient that comes from the multiplication of two

turbulent velocities of the flow, divided by density of the

fluid. The coefficient’s location in the mass transport equa-

tion is similar to diffusion coefficients, and the units are

similar; so it is called a “turbulent diffusion coefficient.”

Definition of Turbulent Transport in the Environment

It is fairly safe to state that, except for flow through porous media, the environment

experiences turbulent flow. To emphasize this point, the constriction of a water flow

or airflow that would be required will be considered to have the other option,

laminar flow.

An experimentally based rule of thumb is that laminar flow typically occurs

when the pipe Reynolds number, Vd/n, is less than roughly 2,000, or when an open-
channel Reynolds number, Vh/n, is less than roughly 500, where V is the cross-

sectional mean velocity, d is the pipe diameter, n is the kinematic viscosity of the

fluid, and h is the channel depth. The diameter or depth that would not be exceeded

to have laminar flow by these experimental criteria is given in Table 5.1.

Table 5.1 shows that with the boundary conditions present in most environmen-

tal flows, that is, the earth’s surface, ocean top and bottom, river or lake bottom,

etc., turbulent flow would be the predominant condition. One exception that is

important for interfacial mass transfer would be very close to an interface, such as

air–solid, solid–liquid, or air–water interfaces, where the distance from the inter-

face is too small for turbulence to occur due to the high viscous dissipation. Because

turbulence is an important source of mass transfer, the lack of turbulence very near

the interface is also significant for mass transfer, where diffusion once again

becomes the predominant transport mechanism.

Table 5.1 Maximum diameter or depth to have laminar flow, with the transition Reynolds

number for a pipe at 2,000

Water (n = 10�6 m2/s) Air (n � 2 � 10�5 m2/s)

V (m/s) D (m) h (m) d (m)

10 2 � 10�4 5 � 10�5 0.004

3 7 � 10�4 1.5 � 10�4 0.014

1 0.002 0.0005 0.04

0.3 0.007 0.0015 0.14

0.1 0.02 0.005 0.4

0.03 0.07 0.015 1.4

0.01 0.2 0.05 4.0
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Introduction

What is turbulent flow? The simple illustration of a free-surface flow given in

Fig. 5.1 is used to describe the essential points of the turbulence phenomena.

Turbulent open-channel flow can be described with a temporal mean velocity

profile which reaches a steady value with turbulent eddies superimposed upon it.

These turbulent eddies are continually moving about in three dimensions, only

restricted by the boundaries of the flow, such that they are eliminated from the

temporal mean velocity profile, �u in Fig. 2.1. It is this temporal mean velocity profile

that is normally sketched in turbulent flows.

There will also be a temporal mean concentration. If there is a source or sink in

the flow, or transport across the boundaries as in Fig. 5.1, then the temporal mean

concentration profile will eventually reach a value such as that given in Fig. 5.1.

This flux of compound seems to be from the bottom toward the top of the flow.

Superimposed upon this temporal mean concentration profile will be short-term

variations in concentration caused by turbulent transport. The concentration profile

is “flatter” in the middle of the flow because the large turbulent eddies that transport

mass quickly are not as constrained by the flow boundaries in this region. Now,

if a concentration-velocity probe is placed into the flow at one location, the two

traces of velocity and concentration versus time would look something like that

shown in Fig. 5.2.

Turbulent diffusion is thus not really diffusion, but the mixing of chemicals

through turbulent eddies created by convection. Turbulent diffusion is thus a form

of convection. Although it has the appearance of diffusion in the end, that is,

u

C

Fig. 5.1 Turbulent eddies superimposed on a temporal-mean velocity and temporal-mean

concentration profiles (From Gulliver [1])

u u
C

Time Time

C

Fig. 5.2 Time traces of typical measurements of velocity and concentration in a turbulent flow
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random mixing similar to diffusion, the causes of diffusion and turbulent diffusion

are very different. Since the end products are similar, diffusion coefficients and

turbulent diffusion coefficients are often simply added together.

It is convenient to divide the velocity and concentration traces into temporal

mean values and fluctuating components:

u ¼ �uþ u0 (5.1)

and

C ¼ �Cþ C0 (5.2)

where �u is the temporal mean velocity at a point location, u 0 is the fluctuating

component of velocity (variable over time), �C is the temporal mean concentration at

a point location, and C 0 is the fluctuating concentration component of concentration

which is also variable over time. Formal definitions of �u and �C are as follows:

�u ¼ 1

Dt

ZDt
0

u dt (5.3)

and

�C ¼ 1

Dt

ZDt
0

C dt (5.4)

where Dt is long compared to the time period of the oscillating components.

Mass Transport Equation with Turbulent Diffusion Coefficients

In this section the most common equations for dealing with mass transport in

a turbulent flow will be derived. Beginning with the mass transport equation

developed in the entry “▾Transport in the Environment,”

@C

@t
þ @ðuCÞ

@x
þ @ðvCÞ

@y
þ @ðwCÞ

@z

¼ @

@x
D
@C

@x

� �
þ @

@y
D
@C

@y

� �
þ @

@z
D
@C

@z

� �
þ S

(5.5)

the temporal mean of the entire equation will be taken and eventually one will end

up with an equation that incorporates turbulent diffusion coefficients.

In a turbulent flow field, Eq. 5.5 is difficult to apply because C, u, v, and w are all

highly variable functions of time and space. Osborne Reynolds [2] reduced the

complexities of applying Eq. 5.5 to a turbulent flow by taking the temporal mean of
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each term (e.g., the entire equation). Then, the mean value of a fluctuating compo-

nent will be equal to zero, or

@C

@t
¼ @ð�Cþ C0Þ

@t
¼ @ �C

@t
þ @C0

@t
¼ @ �C

@t
þ 0 (5.6)

Equation 5.6, the change of a temporal mean over time, may seem like a misno-

mer, but it will be left in to identify changes in �C over a longer time period than Dt.
Continuing,

@C

@x
¼ @ð�Cþ C0Þ

@x
¼ @ �C

@x
þ @C0

@x
¼ @ �C

@x
(5.7)

@C

@y
¼ @ð�Cþ C0Þ

@y
¼ @ �C

@y
þ @C0

@y
¼ @ �C

@y
(5.8)

@C

@z
¼ @ð�Cþ C0Þ

@z
¼ @ �C

@z
þ @C0

@z
¼ @ �C

@z
(5.9)

However, the temporal mean value of two fluctuating components, multiplied by

each other, will not necessarily be zero:

u0C0 6¼ �u0 �C0 (5.10)

This is similar to a least-square regression, where the mean error is zero, but the

sum of square error is not. The x-component of our convective transport terms will

be dealt with first:

uC ¼ ð�uþ u0Þð�Cþ c0Þ ¼ �u �Cþ �uC0 þ u0 �Cþ u0C0 (5.11)

Three of the four terms in Eq. 5.11 may be reduced to something known:

�u �C ¼ �u �C (5.12)

�uC0 ¼ 0 (5.13)

u0 �C ¼ 0 (5.14)

but, the fourth term will take some additional consideration, because it is not equal

to zero:

u0C0 6¼ 0 (5.15)
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By inference, the following can be written for all three convective transport

terms:

uC ¼ �u �Cþ u0C0 (5.16)

vC ¼ �v �Cþ v0C0 (5.17)

and

wC ¼ �w �Cþ w0C0 (5.18)

Finally, applying continuity �uþ �vþ �w ¼ 0ð Þ to Eq. 5.5 and taking the temporal

mean results of Eqs. 5.6, 5.7, 5.8, 5.9, 5.16, 5.17, and 5.18

@ �C

@t
þ �u

@ �C

@x
þ �v

@ �C

@y
þ �w

@ �C

@z

¼ � @

@x
u0C0 � @

@y
v0C0 � @

@z
w0C0 þ @

@x
D
@ �C

@x

� �

þ @

@y
D
@ �C

@y

� �
þ @

@z
D
@ �C

@z

� �
þ �S

(5.19)

where the turbulent convective transport term can be moved to the right-hand side,

because the concentration distribution that results from these terms looks similar to

diffusion.

With this temporal mean process, we have reduced the terms for which we will

have difficulty defining boundary conditions in turbulent flow fields from seven in

Eq. 5.5 to three in Eq. 5.19. We will now deal with these three terms.

The diffusion equation is a useful and convenient equation to describe mixing in

environmental flows, where the boundaries are often not easily defined. It also lends

itself to analytical solutions and is fairly straightforward in numerical solutions.

Although an alternative technique for solutions to mixing problems is the mixed

cell method described in the entry “▾Chemicals in the Environment, Dispersive

Transport,” there are complications when applied to multiple dimensions and to

flows that vary with space and time. Finally, we are comfortable with the diffusion

equation, so we would prefer to use that to describe turbulent mixing if possible.

Therefore, let us consider the following thought process: if the end result of

turbulence, when visualized from sufficient distance, looks like diffusion with

seemingly random fluctuations, then we should be able to identify the terms causing

these fluctuations in Eq. 5.19. Once identified, they can be related to a “turbulent

diffusion coefficient” that describes the diffusion caused by turbulent eddies.

Looking over the terms in Eq. 5.19 from left to right, we see an unsteady term,

three mean convective terms, the three “unknown” terms, the diffusive terms and
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the source/sink rate terms. The “unknown” terms are the only possibility to describe

turbulent diffusion.

In the late nineteenth century, Boussinesq [3] probably went through something

similar to the thought process described above. The end result was the Boussinesq
eddy diffusion coefficient:

� u0C0 ¼ ex
@ �C

@x
(5.20a)

� v0C0 ¼ ey
@ �C

@y
(5.20b)

� w0C0 ¼ ez
@ �C

@z
(5.20c)

where ex, ey , and ez are the turbulent (or eddy) diffusion coefficients, with units of

m2/s similar to the (molecular) diffusion coefficients.

Then Eq. 5.19 with Eqs. 5.20a, 5.20b, and 5.20c becomes

@ �C

@t
þ �u

@ �C

@x
þ �v

@ �C

@y
þ �w

@ �C

@z
¼ @

@x
ðDþ exÞ @

�C

@x

� �

þ @

@y
ðDþ eyÞ @

�C

@y

� �
þ @

@z
Dþ ezð Þ @

�C

@z

� �
þ S

(5.21)

Turbulent diffusion is created by the flow field, which can vary with distance.

Hence, turbulent diffusion coefficient cannot be assumed constant with distance.

Removing that assumption leaves turbulent diffusion coefficient inside of the

brackets.

Character of Turbulent Diffusion Coefficients

A turbulent eddy can be visualized as a large number of differently sized rotating

spheres or ellipsoids. Each sphere has sub-spheres, and so on until the smallest eddy

size is reached. The smallest eddies are dissipated by viscosity, which explains why

turbulence does not occur in narrow passages: there is simply no room for eddies

that will not be dissipated by viscosity.

The cause of the rotation is shear forces created by solid boundaries or variations

in velocity lateral to the primary flow direction. A buoyant plume of smoke or

steam, for example, will have a temporal mean velocity profile develop laterally to

the plume, as the rising plume mixes with the ambient air. Turbulent eddies are

formed by this velocity gradient, and can be seen at the edge of the smoke or steam

plume. The magnitude of turbulent diffusion coefficients is primarily dependent
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upon the scale of turbulent eddies and the speed of the eddy rotation. As illustrated

in Fig. 5.3, a large eddy will have greater eddy diffusion coefficient than a small

eddy because it will transport a compound (or solute) farther in one rotation.

Likewise, a faster spinning eddy will have a larger eddy diffusion coefficient than

one which is the same size but spinning more slowly because the solute simply gets

there faster. These two facts provide meaning to the following observations:

1. The largest scale of turbulence is roughly equal to the smallest overall scale of the

flow field. Thismay be seen in comparing the size of eddies at the edge of the smoke

or steam plume to the width of the plume.

2. The rotational eddy velocity is roughly proportional to the velocity gradient

times the eddy scale.

3. Eddy size decreases near boundaries to the flow field. Since the eddy size is zero

at a solid boundary, and often close to zero at a fluid density interface (like an

air–water interface), the turbulent eddy size has to decrease as one approaches

the boundaries. In addition, since the flow cannot go through a boundary, the

largest eddy size cannot be greater than the distance from the center of the eddy

to the boundary.

4. Turbulent diffusion occurs because turbulent eddies are transporting mass,

momentum, and energy over the eddy scale at the rotational velocity. This

transport rate is generally orders of magnitude greater than the transport rate

due to molecular motion. Thus, when a flow is turbulent, diffusion is normally

ignored because e � D. The exception is very near the flow boundaries, where

the eddy size (and turbulent diffusion coefficient) decreases to zero.

Thus, what influences the velocity and scale of eddies? For the most part, it is the

velocity gradients and scale of the flow. Velocity gradients are the change in

velocity over distance. If we have a high velocity, we typically have a large velocity

gradient somewhere in the flow field. At solid walls, for example, the velocity must

go to zero. Thus, the large velocity difference results in large velocity gradients,
which results in faster spinning eddies and a larger turbulent diffusion coefficient.
This process is illustrated in Fig. 5.4.

Distance an eddy
encompasses
increases ε

Speed at which
it spins also
increases ε

ε large > ε small 

ε fast > ε slow

Fig. 5.3 Character

of turbulent diffusion

coefficients

(From Gulliver [1])
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The scale of the flow field is also important because the larger eddies perform
most of the transport. The small eddies are always there in a turbulent flow, and

their existence is important for local mixing. It is the large eddies, however, that are

the most responsible for transport, as illustrated in Fig. 5.5.

The four observations, listed above, were enough for Ludwig Prandtl [4] to

hypothesize a simple model for describing turbulent transport that works surpris-

ingly well, considering the complexity of turbulent flow.

Prandtl’s Mixing Length Hypothesis for Turbulent Flow

Prandtl’s mixing length hypothesis was developed for momentum transport, instead

of mass transport. The end result was a turbulent viscosity, instead of a turbulent

diffusivity. However, since both turbulent viscosity and turbulent diffusion coeffi-

cient are properties of the flow field, they are related. Turbulent viscosity describes

the transport of momentum by turbulence, and turbulent diffusivity describes the

transport of mass by the same turbulence. Thus,

Large velocity
gradient

b

Velocity profile

Fig. 5.4 Eddy formation at

the edge of a jet issuing into

a tank illustrates the

importance of velocity

gradients in eddy diffusion

coefficient (From Gulliver

[1])

u

Fig. 5.5 Large and small

eddies in an open-channel

flow. The large eddies

perform most of the top-to-

bottom transport

(From Gulliver [1])
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ex ¼ mtx=r; ey ¼ mty=r; and ez ¼ mtz=r

where mtx, mty , and mtz are the turbulent viscosity in the x, y, and z directions. Now,
for the x-component of momentum (ru), the Boussinesq approximation is

� r u0u0 ¼ mtx
@ �u

@x
(5.22)

� r v0u0 ¼ mty
@ �u

@y
(5.23)

� r w0u0 ¼ mtz
@ �u

@z
(5.24)

Let us consider the fully developed velocity profile in the middle of a wide-open

channel, with x-, y-, and z-components in the longitudinal, lateral, and vertical

directions, respectively. It is fully developed because @�u=@x is close to zero. The

fact that it is a wide channel means that@�u=@yalso is very small in the middle. From

Eqs. 5.22 and 5.23, we can see that the turbulent transport of momentum in the x-
and y-directions will be small because the gradients are small. Equation 5.24

indicates that there will be a net turbulent transport of momentum in the z-direction.

� w0u0 ¼ ez
@ �u

@z
6¼ 0 (5.25)

Now, half of the w 0 values will be positive, and the other half will be negative.

We will use this criterion to divide them into two parts:

w0u0 ¼ w0u0þ þ w0u0� (5.26)

where w 0u 0+ has a value when w 0 is positive and is equal to zero when w 0 is
negative. w 0u 0� has a value when w 0 is negative and is equal to zero when w 0 is
positive. Consider the cases when w 0 is positive. Then Eq. 5.26 becomes

w0u0 ¼ w0u0
þ þ 0 (5.27)

Let us assume that an eddy of length L is pulling a blob of fluid upward, as

illustrated in Fig. 5.6. On average, the blob will have an x-component of velocity

equal to uðz� L=2Þ, where z is the location where u 0 is to be estimated. Thus, the

eddy pulls up, on average, the u value that is at z – L/2. This will become the deviation

from the temporal mean velocity at location z:

u0 ¼ u� �u� �uðz�L=2Þ� �uðzÞ ffi 1

2
�uðz�LÞ� �uðzÞð Þ (5.28)
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Equation 5.28 is a relation for a difference in velocity, which can be written as

a velocity gradient times a distance:

u0 ¼ � @ �u

@x

L

2

� �
(5.29)

Velocity ¼ velocity � distance

difference gradient

Then,

w0u0þ � w0

2
�uðz� LÞ � �uðzÞ½ � � �w0

2
L
@ �u

@z
(5.30)

the development is similar for w0u0�:

w0u0� � w0u0þ � �w0

2
L
@ �u

@z
(5.31)

Now combining Eqs. 5.26, 5.30, and 5.31 gives

w0u0 ¼ �w0L
@ �u

@z
(5.32)

Because turbulent eddies tend to be close to spherical in shape:

w0j j � u0j j (5.33)

and from Eq. 5.29:

w0 � L
@ �u0

@z
(5.34)

u z

z-  /2

w′ = ⊕

Fig. 5.6 Illustration of the

relationship between velocity

profile, turbulent eddies, and

mixing length
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If we substitute Eq. 5.34 into Eq. 5.32, and then substitute the result into

Eq. 5.24, we get

� w0u0 ¼ ez
@ �u

@z
¼ L2

@ �u

@z

� �2

(5.35)

or

ez ¼ L2
@ �u

@z

����
���� (5.36)

Equation 5.36 is Prandtl’s mixing length hypothesis, and it works well, consid-

ering that the basis for the equation is so empirical. However, Eq. 5.36 does present

a challenge for us that mixing length, L, still needs to be specified. Measurements

have shown us the following:

1. Near a wall, L = kz, where k is von Kármán’s constant [5] and is very close to

0.4, and z is the distance from the closest wall.

Prandtl also made another assumption in this region, that w 0u 0 could be

approximated by a constant equal to the mean wall shear stress, or

� w0u0 ¼ t=r ¼ u2	 (5.37)

Then, eliminating w0u0 from Eqs. 5.35 and 5.37 results in the well-known

logarithmic velocity profile:

�u

u	
¼ 1

k
‘n

z

z0

� �
(5.38)

where u* is the shear velocity at the wall, t is the wall shear stress, and z0 is an
integration constant, often called the dynamic roughness. Table 5.2 provides some

Table 5.2 Dynamic

roughness lengths, z0, for
typical atmospheric surfaces

(Turner [7])

Surface Type z0 (m)

Urban 1.-3

Forest 1.3

Deciduous forest in winter 0.5

Desert shrubland 0.3

Wetland 0.3

Cropland (summer) 0.2

Cropland (winter) 0.01

Grassland (summer) 0.1

Grassland (winter) 0.001

Water �0.0001
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typical dynamic roughness lengths for atmospheric boundary layers. Applying

Eq. 5.36 to 5.37 results in an equation for ez in this region:

ez ¼ ku	z (5.39)

2. Very near a wall (approaching the laminar sublayer where the turbulence is so

small that it is eliminated by the viscosity of the fluid), that is, for zu*/n < 35,

L � y2 [6].
Making the same assumption that u 0w 0 is approximately equal to wall shear

stress, this relation for L results in the following relation for velocity profile very

near the wall:

�u

u	
¼ b

n
u		z

(5.40)

Equation 5.40 is not used in mass transport calculations near a wall or interface

because the unsteady character of mass transport in this region is very important,

and Eq. 5.39 is for a temporal mean velocity profile.

3. Away from a wall, where the closest wall does not influence the velocity profile,

L is a function of another variable of the flow field (Prandtl [8]). For example,

consider the jet mixer given in Fig. 5.4. In this case, the mixing length, L, is
a function of the width of the jet or plume. As the jet/plume grows larger, the

value of L is larger.

Here, it is easier to simply give the experimental relation for eddy diffusivity:

ez ¼ b umaxb (5.41)

where b is the width of the mixing zone, b is a constant, and umax is the maximum

velocity in the jet at the given location, x.

Figure 5.7 gives some relationships for eddy diffusion coefficient profiles

under different conditions that will be handy in applications of turbulent diffu-

sive transport.

Example Applications

Example 5.1: Profile of eddy diffusion coefficient Estimate the eddy diffusivity

profile for a wind velocity of 18 m/s measured at 10 m over a large lake (Fig. 5.8),

and calculate the elevation above the water surface where ez = D for water vapor.

There is only one assumption needed:

1. The wind fetch is sufficient so thatU10 is influenced by shear at the water surface

(10 m is inside the boundary layer of the lake surface at this point).
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w

Unconfined boundary layer

Flows with a free surface

Jetlike flows (not close to a boundary)

Depth averaged transverse turbulent diffusion in a river

x

b(x)Q
(m3/s)

h u

z

εz

εz

εz = κu* z

εz = κu* z(1 – z/h)

εy = βum b = constant

εy = (0.6 ± 0.3)u* h

depth = h

τo

y

εy

a

b

c

d

Fig. 5.7 Profiles of eddy diffusion coefficient for various types of applications (FromGulliver [1])
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Then, mixing length theory may be used with momentum transport to derive:

@ �u

@z
¼ u	

kz
(5.42)

and,

ez ¼ k u	z (5.43)

Now, Wu [9] has provided the following equation from a fit of field data:

u	 ¼ 0:01U10 8þ 0:65U10

� �1=2
(5.44)

which indicates that as the waves get larger at high wind speeds the boundary

roughness effect upon u∗ increases by the factor 8þ 0:65 U10

� �1=2
, where U10 is

given in m/s.

Then,

ezðm2/sÞ ¼ 0:01 k �u10z 8þ 0:65 �u10ð Þ1=2 ¼ 0:32 z

when z is given in meters. Now, the diffusion coefficient of water vapor in air is

calculated to be D = 2.6� 10�5 m2/s. Then, the elevation at which the diffusivity of

water vapor would equal eddy diffusivity in this case would be,

0:32z ¼ 2:6� 10�5

or,

z ¼ 8� 10�5 m ¼ 0:08 mm ¼ 80 mm

10 m

U10 = 18 m′sec

z

Fig. 5.8 Velocity profile

over a large lake
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Thus at z = 80 mm elevation above the water surface, eddy diffusivity will be equal

to the diffusivity of water. A similarly small elevation would result for almost any

environmentally relevant compound. We can thus see that both e and D need to be

considered simultaneously in Eq. 5.20 only very close to surfaces in turbulent flow,

where e approaches the diffusion coefficient. Otherwise, diffusivities can be ignored

in solving turbulent flow transport problems, since e +D is essentially equal to e.

Example 5.2: Concentration profile of suspended sediment in a river (assuming ez
is constant) We will apply Eq. 5.20 to solve for the concentration profile of

suspended sediment in a river, with some simplifying assumptions. Suspended

sediment is generally considered similar to a solute, in that it is a scalar quantity

in Eq. 5.20, except that it has a settling velocity. We will also change our notation,

in that the bars over the temporal mean values will be dropped. This is a common

protocol in turbulent transport, and will be followed here for conformity. Thus, if an

eddy diffusion coefficient,e, is in the transport equation,

u means �u

v means �v

w means �w and

C means �C

throughout the remainder of this entry. Fig. 5.9 gives a longitudinal and lateral cross

section of our river. We will make the following assumptions:

1. The flow is steady over the long term, so that ∂C/∂t = 0.

2. The flow is fully developed, such that any gradient with respect to x is equal to
zero (∂C/∂x = 0).

3. The river can be divided into a series of longitudinal planes with no significant

interaction, such that v = 0 and ey = 0 (this is the assumption of the stream-tube

computational models).

4. The vertical eddy diffusivity, ez, is a constant value.

u

C

Co

h
z

ε

Fig. 5.9 Lateral and

longitudinal cross sections

of a typical river
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Assumptions 3 and 4 are more difficult to justify.

The solute will have a vertical velocity, w =�vs, where vs is the settling velocity
of the suspended sediment.

Then, Eq. 5.20 becomes

� ns
@C

@z
¼ @

@z
ðDþ ezÞ @C

@z

� �
(5.45)

where we have not yet applied assumption 4. We can move the settling velocity into

the partial term:

@ð�nsCÞ
@z

¼ @

@z
ðDþ ezÞ @C

@z

� �
(5.46)

and since both sides of Eq. 5.46 are a gradient with respect to z, the terms inside of

the gradients must also be equal:

� nsC ¼ ðDþ ezÞ dC
dz

(5.47)

Equation 5.47 is converted to an ordinary differential equation because all

variables are only a function of z. Now, we will deal with assumption 4. Fig. 5.7

gives the equation developed by Rouse [10] for ez:

ez ¼ k u	z 1� z=hð Þ (5.48)

where u∗ is the shear velocity at the bottom of the channel, or

u	 ¼
ffiffiffiffiffiffiffiffi
t=r

p
(5.49)

where t is the shear stress at the wall. For a fully developed open-channel flow in

a wide channel, the following relation is easily derived:

u	 ¼
ffiffiffiffiffiffiffiffi
ghS

p
(5.50)

This derivation can be found in a text on fluid mechanics or open-channel flow.

Assumption 4 states that ez ¼ �ez for all values of z, where ez is the depth average, or

�ez ¼ 1

h

Zh
0

ezdz ¼ ku	
h

Zh
o

zð1� z=hÞdz ¼ 0:067 u	h (5.51)
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where h is the depth of the stream. The term�ez is almost always much greater than D
in a turbulent flow. Thus,

Dþ ez ffi ez

Now, substituting these equations into Eq. 5.47 results in

ez
dC

dz
þ nsC ¼ 0

We will solve this by separating variables,

dC

C
¼ �ns

�ez
dz

integrating, and taking both sides of the solution to the power of e :

C ¼ b1 e
�vs
�ez
z

Now, we need a boundary condition to determine b1. This is difficult with

suspended sediment profiles. We can develop a fairly good estimate of the distri-

bution of suspended sediment once we have a known concentration at some location

in the flow field. In the sediment transport field bed load and suspended load are often

discussed. The relation between the two, and some experience and measurements of

both simultaneously, can be used to predict an equivalent suspended sediment

concentration at the bed. Then, the relevant boundary condition is

1. At

z ¼ 0; C ¼ C0:

where C0 is the concentration that has been determined from the bed

load–suspended load relationship. Applying this boundary condition gives b1 =
C0, and our solution is

C ¼ C0 e
�nsz=�ez

The result is illustrated in Fig. 5.10. This problem can also be solved without
assumption 4 [10].

Example 5.3: Concentration of organic compounds released into the air by an
industrial plant (application of the product rule to error function solutions) There
is some concern about the emissions from the adhesives produced in an industrial

plant. Specifically, the town of Scream Hollow is 1 km away from the plant, where

citizens have begun to complain about odors from the plant and of headaches.
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One culprit, aside from a haunting, may be the release of Acrolein, C3H4O,

a priority pollutant that is an intermediary of many organic reactions. The average

release from the 200 m� 200 m� 10 m plant sketched in Fig. 5.11 is assumed to be

20 g/h. If the wind is blowing directly toward Scream Hollow, at 3 m/s measured at

3 m height, with a dynamic roughness of 0.2 m for the farmland, what

concentrations will the Scream Hollow inhabitants experience? Is this above the

EPA threshold limit of 0.1 ppm(v)?
We will need to make some assumptions to formulate this problem. They are:

1. The Acrolein release is distributed over the most downwind plane of the

building. With the important concentration being 1 km away, this is not a bad

assumption. Then, the Acrolein will be released over the plane that is 200 m �
10 m. If 20 g/h = 0.0056 g/s are released into a wind moving at 3 m/s, the initial

concentration is

C0 ¼ 0:0056 g/s

3 m/sð200 mÞð10 mÞ ¼ 9:3� 10�7 g/m3

2. We will use a cross-sectional mean velocity ofU ¼ �u at 3 m height, orU = 3 m/s.

3. We will use �ez ¼ �ey ¼ ez at 3 m height.

4. We will not consider any of the source or sink terms for Acrolein.
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v s
 z

 / 
ε z

 

Fig. 5.10 Suspended

sediment concentration

profile for Example 2

wind
plant 10 m Acrolein

Town

Fig. 5.11 Illustration of toxic chemical release into the atmosphere, with the wind blowing toward

a town
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We will also set up the coordinates so that (x,y,z) = (0,0,0) occurs on the ground

at mid-plant width, and will orient the wind in the x-direction.
With these assumptions, the governing equation becomes

U
@C

@x
¼ �ey

@2C

@y2
þ �ez

@2C

@z2
(5.52)

The boundary conditions are

1. At (x,y,z) = (0, �100 m ) 100 m, 0 ) 10 m), C = C0.

2. As x ) 1, y ) 1, or z ) 1, C ) 0.

3. Zero mass flux at z = 0.

These boundary conditions, illustrated in Fig. 5.12, will give us a concentration

front, but in two dimensions. In addition, we have a zero flux condition that will

require an image solution. We will use the solution of Example 5 in the entry

“▾Transport in the Environment” to develop a solution for this problem. The

solution, before applying boundary conditions, was

C ¼ bo þ b1erf
zffiffiffiffiffiffiffiffi
4Dt

p
� �

Now, we need an image to the concentration front about the z = 0 plane. In the

y-direction we have a step-up at y = �Dy and a step down at y = Dy. We will also

use the product rule (Example 3, Transport in the Environment) to indicate that the

solution to our governing equation for the y-direction should be multiplied times the

solution in the z-direction. Then the solution can be given as

C

Co
¼ boþ b1 erf

ðzþDzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ezx=U

p
 !

þb2 erf
ðz�DzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ezx=U

p
 !" #

� b3 erf
ðyþDyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�eyx=U

p
 !

þb4 erf
ðy�DyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�eyx=U

p
 !" #

where Dy = 100 m and Dz = 10 m.

w

z
y

x

Fig. 5.12 Illustration of the

coordinate system for

Example 5

108 J.S. Gulliver

http://dx.doi.org/
http://dx.doi.org/


Now, to see if our boundary conditions can be satisfied with the form of the

solution:

@ x ) 1;C ) 0: Thus b0 ¼ 0:

@ z ) 1;C ) 0: Thus b1 ¼ �b2:

@ y ) 1;C ) 0: Thus b3 ¼ �b4:

@ x ) 0; and y; zð Þ ¼ 0; 0ð Þ;C=C0 ¼ 1:

With the last boundary condition, Eq. E5.5.3 becomes

1 ¼ ðb1 � b2Þðb3 � b4Þ

or,

1 ¼ 2b1 � 2b3

or,

1 ¼ 2b2 � 2b4

Finally, @ x ) 0 and (y,z) = (0,Dz), C/C0 = ½. Thus b1 = ½.

Applying this last boundary condition results in b3 = ½, b2 = �½, and b4 = �½.

Thus, the solution to Eq. 5.52 is

C

Co
¼ 1

2
erf

ðzþ DzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ezx=U

p
 !

� erf
ðz� DzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ezx=U

p
 !( )

� erf
ðyþ DyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�eyx=U

p
 !

� erf
ðy� DyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�eyx=U

p
 !( ) (5.53)

Now, if we use Dz = 10 m, Dy = 100 m, U = 3 m/s, the only remaining parameter

to find is �e. Using Eq. 5.43 given in Example 1:

�ez ¼ �ey ¼ ku	z (5.43)

Note that the logarithmic boundary equation can be written as

�u

u	
¼ ‘n

z

zo

� �
(5.54)

where z0 is the dynamic roughness, assumed to be 0.2 m for the crop land between

the plant and Scream Hollow. Then,
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u	 ¼ �u

‘nðz=zoÞ ¼
3m/s

‘n 3m
0:2m
� � ¼ 1:1 m/s

and

�ez ¼ 0:4ð1:1m=sÞð3mÞ ¼ 1:3 m2=s

If we now plug all of the parameters for the industrial plant into Eq. 5.53, we get C
= 0.25 mg/m3 = 2.5� 10�7 g/m3. In terms of ppm(v), we will use rair = 1.2 g/m3, and

the molecular weights of air and Acrolein of 29 and 56 g/mole, respectively. Then,

C ¼ 2:5� 10�7 g/m3

rair

MWair
MWC3H40

¼ 2:5� 10�7 g/m3

1:2 g/m3

20 g/mole

56 g/mole

¼ 1:08� 10�7 molesC3H40

mole air

This is right at the threshold for continuous exposure, and the pollution from the

plant should be investigated in more detail.

Conclusions

1. Although turbulent diffusion is a convection transport, and not a diffusive

transport, the result looks similar to diffusion, and can be described by

a turbulent diffusion coefficient.

2. Most environmental flows are turbulent. The exceptions are flow through porous

media and flows that are very close to an interface.

3. Reynolds averaging and the Boussinesq assumption result in a turbulent transport

equation that contains many features of the diffusive mass transport equation,

and can be solved by similar techniques.

4. Prandtl’s mixing length is a relatively accurate simplification for many turbulent

flows.

Future Directions

The future for turbulent transport in the environment is in the direction of computa-

tional mass transport. This requires a simultaneous fluid dynamics–mass transport

solution. On typical environmental scales, the computational power of our computers
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still must be advanced to solve these large problems while resolving the scale of the

smallest turbulent eddies. Direct numerical simulation cannot deal with the scale of

these problems, and large eddy simulation cannot keep both the scale and grid

refinement required.
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