
Chapter 4

Transport in the Environment

John S. Gulliver

Glossary

Adsorption The process of dissolved chemicals sticking to a solid.

Convection The movement of a constituent with movement of the fluid.

Desorption The detachment of a chemical from a solid.

Diffusion The spreading of fluid constituents through the motion

inherent to atoms and molecules.

Diffusion coefficient A coefficient that describes the tendency of molecules to

spread a constituent mass.

Dirac delta An impulse of a given quantity (mass) that occurs over an

infinitely short time or space.

Kinematic viscosity The fluid viscosity divided by the fluid density, resulting in

units that are similar to a diffusion coefficient, or length

squared per time.

Laminar flow Flow that has no turbulent eddies, where the fluid flows in

laminas and diffusion creates the mixing of the fluid.

Retardation factor A divisor that indicates the slowing of chemical movement

through a media due to adsorption.

Reynolds number The ratio of inertial to viscous forces, resulting in

a meaningful velocity times a meaningful distance divided

by kinematic viscosity.
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Definition of Transport in the Environment

In this section various solution techniques for the convection-diffusion equation are

reviewed, which is generally defined as the mass transport equation with diffusive

terms. These techniques will be applied to chemical transport solutions in

sediments. There are also a number of applications to chemical transport in

biofilms. There are many other applications of the convection-diffusion equation,

but they require more background with regard to the physics of mixing

processes, which will be addressed in later sections of the volume.

Introduction

What is mass (or chemical) transport? It is the transport of a solute (the dissolved
chemical) in a solvent (everything else). The solute is the dissolvee and the solvent

is the dissolver. There are liquids that are generally classified as solvents because

they typically play that role in industry. Some examples would be degreasing and

dry-cleaning solvents, such as trichloroethylene (TCE). In environmental

applications, these “solvents” are the solutes, and water or air is usually the solvent.

In fact, when neither water nor air are the solvents, a general term “nonaqueous

phase liquid,” or NAPL, is applied. NAPL is defined as a liquid that is not water,

which could be composed of any number of compounds.

The substance being transported can either be dissolved (part of the same phase

as the solvent) or particulate substances. The diffusion equation will also be

discussed by considering mass conservation in a fixed control volume. The mass

conservation equation can be written as:

Flux rate IN � Flux rateOUT þ Rate of

ðSources� SinksÞ ¼ Rate of Accumulation
(4.1)

Now that there is our mass conservation equation, it must be decided which control

volume would be the most convenient for our applications. The control volumes used

most for this type of mass balance are given in Fig. 4.1. The general control volume,

given in Fig. 4.1a, is used for descriptive purposes, to maintain generality. It is rare that

one works with something that approximates such a contorted control volume. The

control volumes that are used in practice are given in Fig. 4.1b, c, and d. For the

environmental applications of chemical transport, the rectangular control volume,

Fig. 4.1b, has proven to be the most useful. The cylindrical control volume, Fig. 4.1c,

is used to make pipe or tube flow problems easier to solve, and the spherical control

volume, Fig. 4.1d, is often helpful when dealing with transport in and around particles
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or drops. For this control volume, it is convenient to imagine a light being shined along

the axis, which casts a shadow of the vector on to a plane normal to the light. The j
angle is measured from the reference axis to the shadow in this plane.

A rectangular control volume will be used for the development of our mass

conservation (diffusion) equation.

Development of the Diffusion Equation

The diffusion equation will be developed by considering each term in Eq. 4.1

separately. In addition, the flux terms will be divided into diffusive and convective

flux rates.

Diffusive Flux Rate

The molecules of a fluid “at rest” are still moving because of their internal energy.

They are vibrating. In a solid, the molecules are held in a lattice. In a gas or liquid,

they are not, so they move around because of this vibration. Since the molecules are

vibrating in all directions, the movement appears to be random. Diffusive fluxes are
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Fig. 4.1 Common control volumes found in engineering texts and (for the latter three) used in

solving the diffusion equation. (From [1])
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described by Fick’s law [9], given in the section by Dr. Cussler on diffusion. For

this purpose, let us consider one side of our control volume, normal to the x-axis,
with an area Ax, shown in Fig. 4.2. Fick’s law describes the diffusive flux rate as:

Diffusive flux rate (g/s)

¼�Dðm2/s)
@C

@x
ðg/m4ÞAxðm2Þ

(4.2)

where C is concentration of the solute (tracer), D is the diffusion coefficient of the

solute in the solvent (water), which relates to how fast how and far the tracer

molecules are moving to and fro, and ∂C/∂x is the gradient of concentration with

respect to x, or the slope of C with x, as shown in Fig. 4.2. Thus, the diffusive flux

rate depends upon the diffusion coefficient and the gradient of concentration with

distance.

Convective Flux

The convective flux rate into our control volume is simply the chemical mass

carried in by convection. If the same box of Fig. 4.2 is considered, except with

a velocity component u in the x-direction, the convective flux rate into the box from
the left-hand side is:

t = 0

C

C

x x
a b

0 < t < infinity t ⇒ infinity

Fig. 4.2 Illustration of net diffusive flux through one side of the rectangular control volume.

(From [1])
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Convective flux rate ðg/sÞ ¼ Velocity component

normal to surface ðm/sÞ � Surface area ðm2Þ
� Concentration (g/m3Þ

(4.3)

or

Convective flux rate ¼ uAxC (4.4)

where u is the component of velocity in the x-direction and Ax is the surface area

normal to the x-axis on that side of the box. All six sides of our box would have

a convective flux rate through them, just as they would have a diffusive flux.

Rate of Accumulation

The rate of accumulation is the change of chemical mass per unit time, or:

Rate of accumulation ðg=sÞ ¼ �Vðm3Þ@C
@t

ðg=m3=sÞ (4.5)

where �V is the volume of our box.

Source and Sink Rates

The solute chemical can appear or disappear through chemical reaction. In

addition, interfacial transfer is often integrated over the control volume and

considered as a source or sink throughout the control volume. This type of

pseudo-reaction can be of significant help in solving chemical transport problems

when averages over a larger control volume, such as cross-sectional mean

concentrations, are being computed. For both cases (chemical reactions and

pseudo-reactions), the source and sink rates are given as:

Source� sink rateðg=sÞ¼ S (g=m3=s)�Vðm3Þ (4.6)

where S is the net source/sink rate per unit volume. The particular reactions that

a given chemical is likely to undergo will determine the form of S used in Eq. 4.6.
These are listed in Table 4.1. The source/sink term could be a combination of two

or more of these reactions. For convenience in determining analytical solutions to
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the diffusion equation, most source/sink terms are approximated as either a first-

order or zero-order reaction.

Mass Balance on Control Volume

A mass balance on one compound in our box is based upon the principle that

whatever comes in must do one of three things: be accumulated in the box, flux out

of another side, or react in the source/sink terms. If it seems simple, it is.

We will begin by assigning lengths to the sides of our box of dx, dy, and dz, as
shown in Fig. 4.3. Then, for simplicity in this mass balance, we will arbitrarily

designate the flux as positive in the +x-direction, +y-direction, and +z-direction.
The x-direction flux, so designated, is illustrated in Fig. 4.4. Then, the two flux

terms in Eq. 4.1 become:

Flux rate inþ Difference in flux rate ¼ Flux rate out (4.7)

Table 4.1 Common source and sink terms used in the convection-diffusion equation

Source/sink name Equation Units of constant

Zero order S = ko ko – g/m3-s

First order S = k1C k1 = S�1

Second order S = k2C
2 k2-m

3/g-s

Independent variable S = k1i P
a k1i – s�1

S = k2i PC
b k2i – m3/g-s

Monod kineticsc
S ¼ mmC

kc þ C
P

mm = maximum growth rate (s�1)

kc = half-saturation coefficient (g/m3)
aIf P is nearly constant, then k1i can be provided as a zero-order term
bOften called second order
cCommon for biologically mediated reactions

Δx

Δy

Δz

Fig. 4.3 Dimension of the

rectangular control volume
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or, because a difference can be equated to a gradient times the distance over which
the gradient is applied:

Flux rate out� Flux rate in ¼Gradient in flux rate

� Distance
(4.8)

Equation 4.8 can thus be applied along each spatial component as:

Flux rate (out� inÞx ¼
@

@x
ðflux rateÞdx (4.9a)

Flux rate ðout� inÞy ¼
@

@y
ðflux rateÞdy (4.9b)

Flux rate ðout� inÞz ¼
@

@z
ðflux rateÞdz (4.9c)

Convective flux rates. The convective and diffusive flux rates are dealt with

separately. They will eventually be separated in the final diffusion equation, and

it is convenient to make that break now. The x-component of the convective flux

rate is equal to the x-component of velocity times the concentration times the area

of our box normal to the x-axis. Therefore, in terms of convective flux rates,

Eq. 4.9a becomes:

Convective flux rateðout� inÞx ¼
@

@x
ðuCAxÞdx

¼ @

@x
ðuCÞdx dy dz

(4.10a)

Flux rate
in = U0C0

Flux

dx

dx

x0 1

rate in
UC

Flux rate
out = U1C1

Flux rate
out

∂(UC) = Slope∂x

Fig. 4.4 Illustration of the x-
component of mass flux rate

into and out of the rectangular

control volume. (From [1])
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Because the normal area, Ax = dy dz, of our box does not change with x, it can be
pulled out of the partial with respect to x. This is done in the second part of Eq. 4.10a.
The same can be done with the y- and z-components of the convective flux rate:

Convective flux rate(out � in)y¼
@

@y
ðvCAyÞdy

¼ @

@y
ðvCÞdx dy dz

(4.10b)

Convective flux rate (out� in) z ¼ @

@y
ðwCAzÞdz

¼ @

@z
ðw CÞdx dy dz

(4.10c)

Finally, adding Eqs. 4.10a, 4.10b, and 4.10c results in the total net convective

flux rate.

Net convective flux rate

¼ @

@x
ðuCÞ þ @

@y
ðvCÞ þ @

@z
ðwCÞ

� �
dx dy dz

(4.11)

Diffusive flux rates. For net diffusive flux rate in the x-direction, Eq. 4.9a
becomes:

Diffusive flux rate(out� inÞx
¼ @

@x
�D

@C

@x
Ax

� �
dx

¼ @

@x
�D

@C

@x

� �
dx dy dz

(4.12a)

The y- and z-directions give a result similar to Eq. 4.12a:

Diffusive flux rate (out� in)y

¼ @

@y
�D

@C

@y
Ay

� �
dy

¼ @

@y
�D

@C

@y

� �
dx dy dz

(4.12b)

Diffusive flux rate (out� in)z

¼ @

@z
�D

@C

@z
Az

� �
dz

¼ @

@z
�D

@C

@z

� �
dx dy dz

(4.12c)
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Finally, Eqs. 4.12a, 4.12b, and 4.12c can be added to write an equation describ-

ing the net diffusive flux rate (out–in) out of the control volume:

Net diffusive flux rate

¼ � @

@x
D
@C

@x

� �
þ @

@y
D
@C

@y

� �
þ @

@z
D
@C

@z

� �� �
dx dy dz

(4.13)

The diffusion coefficient is often not a function of distance, such that Eq. 4.13

can be further simplified by putting the constant value diffusion coefficient in front

of the partial derivative. However, we will also be substituting turbulent diffusion

and dispersion coefficients for D when appropriate to certain applications, and they

are not always constant in all directions. We will therefore leave the diffusion

coefficient inside the brackets for now.

Control volume mass balance. Now Eqs. 4.1, 4.5, 4.6, 4.11, and 4.13 can be

combined into a mass balance on our box for Cartesian coordinates. After dividing

by�V = dx dy dz and moving the diffusive flux terms to the right-hand side, this mass

balance is:

@C

@t
þ @

@x
ðuCÞþ @

@y
ðvCÞþ @

@z
ðwCÞ

¼ @

@x
D
@C

@x

� �
þ @

@y
D
@C

@y

� �
þ @

@z
D
@C

@z

� �� �
þS

(4.14)

When working with a computational transport code, there is little reason to

further simplify Eq. 4.14. One primary objective of this section, however, is to

develop approximate analytical solutions to environmental transport problems, and

we will normally be assuming that diffusivity is not a function of position, or x, y,
and z. The convective transport terms can be expanded with the chain rule of partial

differentiation:

@

@x
ðuCÞ ¼ u

@C

@x
þ C

@u

@x
(4.15a)

@

@y
ðv CÞ ¼ v

@C

@y
þ C

@v

@y
(4.15b)

@

@z
ðwCÞ ¼ w

@C

@z
þ C

@w

@z
(4.15c)

This may not seem like much help, because we have expanded three terms into

six. However, if the flow is assumed to be incompressible, a derivation given in

fluid mechanics texts (the continuity equation) is:
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r
@u

@x
þ @v

@y
þ @w

@z

� �
¼ 0 (4.16)

where r is the density of the fluid. Since Eqs. 4.15a, b, and c are added together in

the mass balance equation, the incompressible assumption means that the terms on

the far right-hand side of these equations will sum to zero, or:

@

@x
ðuCÞþ @

@y
ðvCÞþ @

@z
ðwCÞ¼u

@C

@x
þv

@C

@y
þw

@C

@z
(4.17)

The incompressible flow assumption is most always accurate for water in

environmental applications, and is often a good assumption for air. Air flow is

close to incompressible as long as the Mach number (flow velocity/speed of sound)

is below 0.3. A Mach number of 0.3 corresponds to an air flow velocity of

approximately 110 m/s.

Equation 4.14 then becomes

@C

@t
þ u

@C

@x
þ v

@C

@y
þ w

@C

@z

¼ D
@2C

@x2
þ @2C

@y2
þ @2C

@z2

� �
þ S

(4.18)

The only assumptions made in developing Eq. 4.18 are (1) that diffusivity does

not change with spatial coordinate and (2) incompressible flow. Equation 4.18 will

be further simplified in order to develop analytical solutions for mass transport

problems. In some cases, all that needs to be done is orient the flow direction so that

it corresponds with one of the coordinate axes. There would then be only one

convection term.

Adsorption and Desorption in Sediments and Soils

Sorption relates to a compound sticking to the surface of a particle. Adsorption

relates to the process of compound attachment to a particle surface, and desorption

relates to the process of detachment. Sorption processes will now be reviewed

because there are many compounds that are sorptive and subject to spills. Then the

solutions of the diffusion equation can be examined as they apply to highly sorptive

compounds.

Environmental chemicals are generally classified by the Greek terms hydro-

philic (likes water) and hydrophobic (hates water). Water is a polar molecule, in

that it has two hydrogen atoms on one side, and an oxygen atom on the other.

Solutes with a polarity or charge, therefore, will have water molecules
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surrounding them with the tendency to have the proper charge of atom adjacent to

the solute. Most amides and alcohols are strongly polar, and also soluble in water.

These are generally hydrophilic compounds. Other organic compounds with

larger molecular weights, especially with aromatic rings, are generally nonpolar

and are classified as hydrophobic compounds. It makes sense that these hydro-

phobic compounds would adsorb to the nonpolar organic material in the sediments

or soils. There are handbooks [7] that can be used to estimate the chemical

thermodynamics of a water-particle system.

How can sorption be handled in our transport equation? For particles that are not

transported with the flow field, like sediments and groundwater flow, we are

interested in the water concentrations. The sorbed portion of the compound is not

in the solute phase, and should not be considered in the transport equation except

when transfer of the compound between the water and particles occur. Adsorption

would then be a sink of the compound and desorption would be a source.

Let us assign Sp to be the mass of chemical sorbed to particles per mass of solids

contained in our control volume, and C to be the concentration of the compound in

solution. Then, the source term in the diffusion equation is equal to the rate of

change of mass due to adsorption and desorption per unit volume, or:

S ¼ rb
e

@Sp
@t

(4.19)

where rb is the bulk density of the solid (mass of solid/volume of fluid and solid), e
is the porosity of the media (volume of fluid/volume of fluid and solid), and ∂Sp/∂t
is the rate of sorption relative to the mass of solid (mass adsorbed/mass of solid/

time). If the sorption rate is negative, desorption is occurring. The units of S in

Eq. 4.19 are mass adsorbed/volume of fluid/time. This is similar to the units for

the ∂C/∂t term, which are a change of mass/volume of fluid/time.

The source term in Eq. 4.19 requires a separate differential equation for Sp,
which would incorporate the concentration of the compound in solution. There

would thus be two equations that need to be solved simultaneously. However,

most sorption rates are high, relative to the transport rates in sediments and soil.

Thus, local equilibrium in adsorption and desorption is often a good assumption.
It also simplifies the solution to a transport problem considerably. If that assump-

tion is made, Sp changes in proportion to C alone, or:

Sp ¼ SpðCÞ (4.20)

and

@Sp
@t

¼ @Sp
@ C

@C

@t
(4.21)

Now, if Eq. 4.21 is substituted into 4.19, we get:
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S ¼ rb
e

@Sp
@C

@C

@t
(4.22)

The ∂Sp/∂C term can be found from the equilibrium relationship of Freundlich

isotherms, expressed as:

Sp ¼ Kd C
b (4.23)

where Kd is an equilibrium-partitioning coefficient between the fluid and sorption to

the solid and b is a coefficient fit to measured data. Then,

@Sp
@C

¼ bKd C
b�1 (4.24)

At the lower concentrations normally found in the environment, b = 1 is a valid

assumption. Then Eq. 4.24 becomes

@Sp
@C

¼ Kd ðb ¼ 1Þ (4.25)

Substituting Eq. 4.25 into 4.22 now results in a source term that no longer

contains the variable Sp, and keeps the partial differential equation (PDE) of our

mass balance linear:

S ¼ rb
e

Kd
@C

@t
(4.26)

Now, if Eq. 4.26 is substituted into our mass transport Eqs. 4.15a–c for the

source term, the result is a PDE where the only dependent variable is C:

@C

@t
þ u

@C

@x
þ v

@C

@ y
þ w

@C

@ z

¼ D
@2C

@x2
þ @2C

@y2
þ @2C

@z2

� �
� rb

e
Kd

@C

@ t

(4.27)

or

1þ rb
e
Kd

� � @C

@t
þ u

@C

@x
þ v

@C

@y
þ w

@C

@z

¼ D
@2C

@x2
þ @2C

@y2
þ @2C

@z2

� � (4.28)

If we divide Eq. 4.28 by the term (1 + Kdrb/e), we can see that all convective and
diffusive transport is retarded by equilibrium adsorption and desorption. Thus,

a retardation factor is defined:

R ¼ retardation factor ¼ 1þ Kdrb=e (4.29)
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and Eq. 4.28 becomes:

@C

@t
þ u

R

@C

@x
þ v

R

@C

@y
þ w

R

@C

@z

¼ D

R

@2C

@x2
þ @2C

@ y2
þ @2C

@ z2

� � (4.30)

Equation 4.30 indicates that as long as it can be assumed that the sorption rates

are fast compared to our transport rates and the equilibrium partitioning is linearly

related to concentration, the retardation factor can utilize and simply convert all of

the transport terms through dividing by R. Thus, if there is a spill into the ground-

water table that is highly hydrophobic, it would transport through the soil more

slowly than one which is hydrophilic. Both the convective and the diffusive flux

would be “retarded” for the hydrophobic compound. If both hydrophilic and

hydrophobic compounds are contained in the spill, the hydrophilic compound

would show up first at a downstream location. The similarity to the manner in

which a chromatographic column separates compounds is not fortuitous, because

the column is separating compounds through their sorption to the column’s media.

Determination of Kd from octanol-water partitioning coefficient. There have been

a number of empirical equations developed to determine the water-solid

partitioning coefficient, Kd [7]. These are primarily for the many organic chemicals

that exist in the environment, usually due to human impacts. Many of them use the

octanol-water partitioning coefficient for the compound as an indicator of

hydrophobicity. Octanol is a relatively insoluble organic compound. Since most

organic compounds tend to adsorb to the organic portion of the particles,

a hydrophobic organic compound placed in an octanol-water solution will tend

toward the octanol. The ratio of concentration in the octanol over concentration in

the water will indicate the degree of the hydrophobicity. It is a straightforward and

relatively easy measurement to make, so most organic compounds of interest in the

environment have an octanol-water partitioning coefficient that has been measured.

Karikhoff et al. [2] developed a simple empirical equation for equilibrium

partitioning of organic compounds that will be used in this text (other equations

are given in Lehman et al. [7]):

Kd ¼ bf Kow (4.31)

where Kow is the dimensionless octanol-water partitioning coefficient, f is the

fraction of soil that is organic matter (usually from zero in sand to 0.01 in sandy

soil to 0.10 in muck), and b is an empirical coefficient, estimated by Karikhoff to be

0.41 cm3/g. It is generally the organic matter in the medium to which organic

compounds adsorb, hence the use of organic fraction.

The other parameters required to compute a retardation coefficient are the bulk

density, rb, and the porosity of the media, e. The bulk density of the water and soil is
typically 1.6–2.1 g/cm3. The porosity of the soil or sediments is typically 0.2–0.4.

Thus rb/e is typically between 4 and 10 g/cm3.
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Example Applications of the Diffusion Equation

The first application of the diffusive is transport of oxygen into lake sediments and

the use of oxygen by the bacteria to result in a steady-state oxygen concentration

profile.

Example 1: Steady O2 concentration profile in lake sediments (steady-state
solution with a first-order sink) Given a concentration, Co, in the overlying

water, and a first-order sink of oxygen in the sediments, develop an equation to

describe the dissolved oxygen concentration profile in the sediments (Fig. 4.5).

Assume:

– Steady: @
@ t ) 0

– No flow: u; v;w ) 0

– Small horizontal variation: @2C
@z2 � @2C

@x2 ;
@2C
@y2

– No sorption: R = 1 (accurate for O2 in sediments)

– First-order sink: S = �kC, where k is a rate constant

Then, the diffusive mass transport Eqs. 4.15a–c becomes:

0 ¼ D
@2 C

@z2
� kC

or, since C = C(z)

0 ¼ D
d2 C

@z2
� kC

A solution to this equation requires two boundary conditions because it is

a second-order equation. These two are:

B.C.#1: @ z = 0, C = C;0

B.C.#2: @ z ! 1, C ) 0

C0

z = 1 mm

Water

Sediment

z

Fig. 4.5 Illustration of

dissolved oxygen profile in

lake sediments. (From [1])
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This solution may be achieved by: (1) separating variables and integrating or

(2) solving the equation as a second-order, linear ordinary differential equation

(ODE). The latter will be used since the solution technique is more general.

1. Assign l to be the d
dz operator. Then, the equation becomes

l2 � k

D

� �
C ¼ 0

2. Solve for l

l ¼ �
ffiffiffiffiffiffiffiffiffi
k=D

p
3. The solution, developed in texts on solving ordinary differential equations [6], is

C ¼ b1e
l1z þ b2e

l1z l 1 ¼ þ
ffiffiffiffiffiffiffiffiffi
k=D

p
l2 ¼ �

ffiffiffiffiffiffiffiffiffi
k=D

p
4. b1 and b2 are determined from boundary conditions

Apply B.C. #2:

C ¼ 0 ¼ b1 e
ffiffiffiffiffiffi
k=D

p
1 þ b2 e

�
ffiffiffiffiffiffi
k=D

p
1

This is only possible if b1 = 0. Apply B.C. #1:

C0 ¼ 0þ b2e
�0 ¼ b2

Thus, the solution is:

C ¼ Co e�
ffiffiffiffiffiffi
k=D

p
z

which is plotted in Fig. 4.6.

At steady state, the oxygen profile is a balance between diffusion from the sediment

surface and bacterial use of oxygen in the sediments. If the sediments are mostly sand,

the depth of the layer with oxygen can be 10 cm or more. If the sediments have

a substantial organic content (like a mud), the aerobic layer (>0.1 g/m3 oxygen

concentration) can be less than 1 mm.

Example 2: Unsteady dissolution of a highly soluble pollutant (Herbicides,

Pesticides, Ammonia, Alcohols, etc.) into groundwater (unsteady, one-dimensional
solution with pulse boundary conditions) A tanker truck carrying a highly

soluble compound in Mississippi tried to avoid an armadillo at night, ran
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off the interstate at a high speed, turned over in the drainage ditch, and

spilled a soluble compound. The compound has infiltrated into the ground,

and much of it has reached and temporarily spread out over the groundwater

table, as illustrated in Fig. 4.7. As part of a spill response team, you need to

estimate the groundwater contamination. Predict concentrations over time in

the groundwater table.
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Example 1
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Fig. 4.7 Illustration of the tanker truck spill. (From [1])
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The mass transport equation for this example is:

@C

@t
þ u

@C

@x
þ v

@C

dy
þ w

@C

@z

¼ D
@2C

@x2
þ @2C

@y2
þ @2C

@z2

� �
þ S

Assume:

1. Minimal horizontal variations

0 ffi @C

@x
¼ @2C

@x2
ffi @C

@y
ffi @2C

@y2

2. No flow in the vertical direction, w = 0

3. No reactions, including adsorption and desorption, such that S = 0.

Then with these three assumptions, the governing equation becomes:

@C

@ t
¼ D

@2C

@z2

The initial conditions will be simulated with these boundary conditions:

1. The mass of chemical is assumed to be spread instantaneously across a very thin

layer at t = 0 (a Dirac delta in z and t). At z = 0+, t = 0, the total mass =M and the

total surface area is A.
2. At z ) 1, C ) 0.

The above equation, with boundary conditions (1) and (2), has the solution:

C ¼ 2M=Affiffiffiffiffiffiffiffiffiffiffiffi
4 pDt

p e�z2=4Dt

What does the solution look like? The solution can be made dimensionless by

assuming that the initial thickness of the spill layer is Dh. Then, a new variable z = k
Dh will be used in assigning:

� ¼ Dhffiffiffiffiffiffiffiffi
4Dt

p

with

C� ¼ CADh
2M
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Substituting these equations into the solution gives:

C� ¼ �ffiffiffi
p

p e �ðk�Þ2

which is plotted versus depth at various times in Fig. 4.8. The concentration at z = 0

decreases as the initial mass is diffused. At low values of time, the concentration at

and close to z = 0 is strongly dependent upon the Dh chosen. At larger times and

deeper depths, however, this dependency decreases, and the solution becomes

independent of Dh.
It is interesting to note that the solution is very similar to a Gaussian probability

distribution, with the following relationship for P(z):

PðzÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p e�ðz�zmÞ2=2s2

where zm is the depth of the maximum concentration (or the center of concentration

mass).

Comparing the probability distribution and the solution to this problem, we can

see that:

2 s2 , 4Dt

or:

D ¼ s2=2t

Note that if we measure s, we can determine D.
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Example 3: Dichlorobenzene concentration in lake sediments due to a plating
facility discharge (solution to a concentration front) Sometimes the boundary

conditions can be approximated as a step in concentration. This difference in

boundary conditions changes the solution from one which is related to pulse

boundaries (known mass release) to one resulting from a concentration front with

a known concentration at one boundary.

For many years, a plating facility for a telecommunications company let their

rinse waters flow into an adjacent lake. The compounds used in their rinse

included dichlorobenzene, which is a semi-volatile compound that also has

a fairly high tendency to adsorb to organic compounds in the sediments. Within

a few years of the plating facility opening, the dichlorobenzene concentration

reached a steady-state value in the lake waters as illustrated in Fig. 4.9. Estimate

the buildup of dichlorobenzene in the sediments during the 50 years since the

facility opened until it stopped discharging its untreated waste water.

Assumptions:

1. Biodegradation is small. ∴ S ) 0 except for sorption.

2. Variation in x and y are small

@2C

@x2
;
@2C

@y2
� @2C

@z2

Volatilization
Cl

Cl

C

Co

C
z

t 1yr 2yr

Assumed

Water

Sediment

t

Inflow = volatilization

Actual

1,2, Di Cl Benzene
(solvent)

[DCB]

Diffusion

[DCB] rapidly reaches a steady concentration in lake waters, due to volatilization:
Accum. → 0 Inflow + Accum. = Volatilization + Diff into sediments

Kd = 15 cm3/g

Fig. 4.9 Illustration of concentration front moving down into the sediments of a lake. (From [1])
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3. No flow in sediments under lake: u = v = w = 0

4. D ffi 6 � 10�10 m2/s

5. rb
e
¼ 6:3 ) R ¼ 1þ rb

e
Kd ¼ 96

Then the diffusion equation for the sediments becomes:

@C

@t
¼ D

R

@2C

@z2

with boundary conditions:

(a) t > 0, z = 0; C = C0

(b) t = 0, z 6¼ 0; C = 0

There are three known techniques to solve this governing equation:

Laplace transforms, Fourier transforms, and change of variables, which

incorporates both luck and skill. We will use change of variables:

Assign � ¼ zffiffiffiffiffiffiffiffiffiffi
4Dt=R

p

@C

@t
¼ @C

@�

@�

@t
¼ �1

4

zffiffiffiffiffiffiffiffiffiffiffiffi
Dt=Rt

p @C

@�
¼ ��

2t

@C

@�

@C

@z
¼ @C

@�

@�

@z
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
Dt=R

p @C

@�

@2C

@z2
¼ @

@�

@C

@z

� �
@�

@z
¼ R

4Dt

@2C

@�2

Then the governing equation becomes:

��

2t

@C

@�
þ D

R

R

4Dt

@2C

@�2

� �
¼ 0

or

d2C

d�2
þ 2�

dC

d�
¼ 0 (4.32)

This equation may be written as: dC
0

d� þ 2�C0 ¼ 0

where C0 ¼ dC
d� or

1

C0 dC
0 ¼ �2� d�
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We can integrate this:

‘nC0 ¼ ��2 þ bo

or

C0 ¼ ebo e��2 ¼ b1 e
��2

Now integrate again:

C ¼ b1

Z�
0

e��2d� þ b2 ) b1

Z�
0

e�f2

dfþ b2

Now, note that the error function is given as:

erf ð�Þ ¼ 2ffiffiffi
p

p
Z�
0

e�f2

df

and the complementary error function is erfc(�) = 1�erf(�). Values of the error

function and complimentary error function for various values of Z may be found in

an Internet search. The error function is designed such that erf(1) = 1, erfc(1) = 0,

erf(0) = 0, and erfc(0) = 1. The solution may therefore be written as:

C ¼ b1 erf ð�Þ þ b2

Now we need to determine our boundary conditions in terms of �:

1. t > 0, z = 0, � = 0, C = C0

2. t = 0, z = 0, � = 1, C = 0

Checking other boundary conditions:

t ! 1, � ) 0, C = C0

z ! 1, � ) 1, C = 0

Now, at � = 0, C = C0, thus:

C0 ¼ b10þ b2

or

b2 ¼ C0

At � = 1, C = 0
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0 ¼ b11þ C0

or

b1 ¼ �C0

Then, our solution is:

C¼C0 1� erf
zffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Dt=R
p
 ! !

¼C0 erfcð�Þ (4.33)

which is illustrated in Fig. 4.10.

We will now apply Eq. 4.33 to estimate the dichlorobenzene penetration versus

time from spillage. The results are given in Table 4.2, which gives the interstitial

dichlorobenzene concentrations.

The total concentration (TDCB(z)) includes compound adsorbed to the

sediments.

TDCBðzÞ ¼ CðzÞ þ ð1� eÞrsS
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Fig. 4.10 Illustration of the

effect of the change of

variables used in Example 3.

Eta = �

Table 4.2 Penetration of dichlorobenzene into the sediment over time

Time, z 1 year, C/C0 4 years, C/C0 10 years, C/C0 50 years, C/C0

1 mm 0.96 0.98 0.988 0.994

1 cm 0.62 0.803 0.87 0.94

10 cm 0 0.015 0.11 0.48

20 cm 0 0 0.01 0.16

30 cm 0 0 0 0.03

100 cm 0 0 0 0
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where e = porosity

1�e = % by volume sediment ffi 0.6

rs = density of sediment ffi 2.5 g/cm3

S = concentration of sorbed compound (g DCB/g sediment)

Since S = Kd C1, the above equation becomes:

TDCBðzÞ ¼CðzÞð1þð1� eÞrsKdÞ
¼CðzÞð1þ 0:6ð2:5 g=cm3Þ(15 cm3=g)

or

TDCB ¼ 23:5CðzÞ

Thus, the total dichlorobenzene per volume of sediment and water would be 23.5

times the concentrations given in Table 4.2.

Conclusion

The purpose of this section of the volume is to introduce the reader to the

equations and mathematics used in developing approximate solutions (due to

simplified boundary conditions) to convection-diffusion processes. One may say

that, with computational capabilities, there is no longer any need to develop these

approximate solutions. However, these approximate solutions are useful in the

following manners:

1. A quick, back of the envelope solution is always much quicker and more reliable

than a computational solution. Computational solutions require substantial time

to develop and are often wrong until they are fully vetted.

2. A computational solution always requires vetting, which means that

a computational solution is compared to an analytical solution, hopefully in

a similar condition with simplified boundary conditions. This means that some

analytical solution is always needed, and as close to the real simulation as

possible, to make sure that the computational solution is doing what the user

desires.

3. Developing analytical solutions are an excellent means of getting a feel for

solutions to the convection-diffusion equations. It is a knowledge-building

practice that is difficult to surpass.

Note that the examples given in this section do not include any with convection.

That is because convection in the environment most always includes either turbu-

lence (surface waters and the atmosphere) or dispersion (groundwater). These will

be dealt with in other sections.
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Future Directions

Most of the future directions with regard to transport in the environment (without

turbulent transport) will involve transport across interfaces, such as the air–water

and solid–fluid interfaces. While research has been conducted on describing the

predominant transport mechanisms for these two cases (McCready et al. [8], [3–5]),

there is more to be done. An especially vexing problem is transport in the vadose

zone of soils (unsaturated zone). The multiplicity of three interfaces, air, water, and

soil, and the heterogeneities in the soil make this a complex problem to handle in

a deterministic manner. However, meaningful relationships for an effective diffu-

sion coefficient still need to be developed.
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