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Glossary

Convection Mass transfer effected by flow due to applied forces

like pressure (forced convection) or to density

differences (free convection).

Diffusion Mixing caused by molecular motion.

Diffusion coefficient The negative of the flux per concentration gradient.

Diffusivity Another name for the diffusion coefficient.

Dispersion Mixing caused by diffusion and simultaneous flow.

Flux Mass or moles transferred per area per time.

Mass transfer Diffusion and dispersion, especially across interfaces.

Mass transfer coefficient The flux per concentration difference, especially near

an interface.

Overall mass transfer

coefficient

The flux per virtual concentration difference from one

phase across an interface into a second phase.
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Definition of the Subject

Diffusion is mixing without stirring. It is mixing caused by Brownian motion, that

is, by thermally induced random motion of molecules or small particles. Because

diffusion is often slow, it frequently limits the overall rate of the process. Diffusion

has the reputation of being a difficult subject, which it can be; however, the

difficulty most often comes from complicated units, from interfaces, or from the

combination of diffusion and convection. By itself, diffusion is not hard. It is easier

than viscous flow and much easier than ideas like entropy or chemical potential.

Two other phenomena, closely related to diffusion, are also reviewed in this

entry. Dispersion is mixing caused by the interaction of flow and diffusion. Often, it

is described using mathematics similar to those which describe diffusion. In

environmental problems, these two phenomena are sometimes treated without

distinction and without penalty. Mass transfer, an alternative description of diffu-

sion, assumes that all concentration changes occur near interfaces. While it is used

largely to describe chemical processing, it has considerable value in environmental

problems.

Introduction

This entry is organized as four sections. The first section gives the mathematical

description of diffusion itself. The second reviews dispersion, a different phenome-

non that is mathematically similar to diffusion but which is caused by different

physical effects. The third section, “Diffusion Coefficients,” reviews values of the

diffusion coefficients themselves; and the fourth section “Diffusion Across

Interfaces,” explains mass transfer across interfaces, especially air–water interfaces.

Finally, the section “Important Special Cases” reports some common situations

which have important features.

Basic Diffusion

The basic mathematical description of diffusion is Fick’s Law, suggested by

Adolph Fick (1829–1910) when he was just 26 years old. For a dilute solution,

Fick’s Law is:

j1 ¼ �D
dc1
dz

(2.1)

where ji is the flux of a solute “1,” and dc1/dz is the concentration gradient, that is,

the change of the solute concentration with position. The diffusion coefficient D is

a proportionality constant which is nearly constant in almost all situations. The flux

is the amount of solute moving per cross-sectional area per time and so has the
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dimensions of mass (M) per area (length squared L2) per time (t). The concentration
gradient has dimensions of concentration (M/L3) per distance (L). Thus the diffu-

sion coefficient has dimensions of (L2/t).
The form of Fick’s Law in Eq. 2.1 has some hidden implications. First, it is a

one-dimensional equation of what is actually a more general vector relation. Because at

least four out of five diffusion problems are one-dimensional, this is often not a major

issue. Second, the concentration can be expressed in different units. If it were expressed

in moles per volume, then the flux would be in moles per area per time. If it were

expressed as a mole fraction or a mass fraction or a partial pressure, then unit

conversions would be necessary and annoying, but not difficult. Third, the minus

sign in Eq. 2.1 is arbitrary, stuck in to make the diffusion coefficient positive. The

only difficult implication of Eq. 2.1 is the restriction to dilute solutions, explored in

more detail at the end of this section. The restriction is rarely important because

solutions in the environment are so often dilute. For example, liquid water contains

55 mol/l, so almost every aqueous solution is dilute.

The most important case of Fick’s law is diffusion across a thin film, described

next. Other important cases and concentrated solutions are reviewed later.

Diffusion Across a Thin Film

The simplest case, steady diffusion across a film, is also the most important.

Imagine a thin film separating two well-stirred solutions, as shown in Fig. 2.1. On

the left, the solution has a concentration c10; on the right, the concentration is c1‘.
The key parts of this case are the variation of concentration across the film c1(z) and
the flux j1. Finding these requires a mass balance on a differential volume Dz thick
and located at an arbitrary position z within the film:

mass accumulationð Þ ¼ mass diffusing in� outð Þ

Δz

z

c10

c1l

l

Fig. 2.1 Concentration

profile across a thin film
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@

@t
c1ADzð Þ ¼ j1Að Þz � j1Að ÞzþDz (2.2)

where A is the constant cross-sectional area of the film. Because diffusion is steady,

the concentration does not change with time, the left-hand side of Eq. 2.2 is zero,

and

0 ¼ j1jz � j1jzþDz

zþ Dzð Þ � z

0 ¼ � dj1
dz

(2.3)

This restates the assumption of steady-state diffusion, independent of time.

Combining this relation with Fick’s Law (Eq. 2.1) yields:

0 ¼ D
d2c1
dz2

(2.4)

This is subject to two boundary conditions:

z ¼ 0 c1 ¼ c10 (2.5)

z ¼ ‘ c1 ¼ c1‘ (2.6)

This is enough to solve this important problem.

Equation 2.4 may be integrated once to find:

dc1
dz

¼ A (2.7)

where A is an integration constant. Integrating a second time gives:

c1 ¼ Azþ B (2.8)

where B is a second integration constant. Evaluating A and B from Eqs. 2.5 and 2.6

gives:

c1 � c10
c1‘ � c10

¼ z

‘
(2.9)

The flux can now be found by combining this result with Fick’s Law:

j1 ¼ �D
dc1
dz

¼ D

‘
c10 � c1‘ð Þ

(2.10)
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If the concentration difference across the film is doubled, the flux doubles. If the

diffusion coefficient is twice as big, the flux will be twice as big, too. If the film

thickness increases two times, the flux will be cut in half.

This important example is so simple mathematically that many novices tend to

skip over it. This is a mistake. Its nuances are explored by the following questions:

1. How does the flux change if the film is chemically different than the adjacent
solutions?

In this case, the boundary conditions in Eqs. 2.5 and 2.6 change to:

z ¼ 0 c1 ¼ Hc10 (2.11)

z ¼ ‘ c1 ¼ Hc1‘ (2.12)

whereH is a partition coefficient, the ratio at equilibrium of the concentration inside

the film to that in the adjacent solution. Paralleling the arguments above,

j1 ¼ DHð Þ
‘

c10 � c1‘ð Þ (2.13)

The diffusion coefficient D in Eq. 2.10 is replaced with the product (DH), which
is called the permeability. (The term (DH/‘) is called the permeance.) As will be

shown later, diffusion coefficients in gases and liquids do not vary much, but

partition coefficients vary a lot. Thus partition is often the key to permeability.

2. How is the flux changed by a fast reversible reaction giving an immobile
product?

This case occurs surprisingly frequently in, for example, adsorption in soil or

dyeing of wool. The answer is that at steady state, the flux does not change. Every

point crossing the film has a different concentration which is in equilibrium with

a different absorbed amount. Still, at steady state, the reaction is at local equilibrium

and does not affect the flux. This is not the case for unsteady state, for irreversible

reactions, or for mobile reaction products.

Other Important Cases

Many diffusion problems are not thin films. Surprisingly, many do behave as if they

were thin films. For example, for a sphere of radius R slowly dissolving in

a stagnant fluid with a concentration of c11, the flux is:

j1 ¼ D

R
c10 � c11ð Þ (2.14)
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where c10 is the concentration in solution at the surface of the sphere. For diffusion

from a solution of c10 through a very thin, impermeable film with a cylindrical orifice

of radius R, and into a solution at c11, the flux is:

j1 ¼ D
p
2
R

c10 � c11ð Þ (2.15)

The fluxes in these cases are strong mathematical parallels to that in Eq. 2.10.

The mathematics in these cases is different, but the final result is remarkably

similar. The thin film limit is a good guide about 80% of the time.

For unsteady state diffusion, this is not true. Fluxes and concentration profiles for

a wide variety of unsteady cases have been calculated and are tabulated in a few clear

texts. One of these cases, useful in perhaps 10% of all cases, is unsteady diffusion into

a semi-infinite slab, shown in Fig. 2.2. In this case, a mass balance gives:

@c1
@t

¼ D
@2c1
@z2

(2.16)

where t is the time. For this semi-infinite slab, the initial and boundary conditions

are:

t ¼ 0 all z c1 ¼ c11 (2.17)

t ¼ 0 z ¼ 0 c1 ¼ c10 (2.18)

t ¼ 0 z ¼ 1 c1 ¼ c11 (2.19)

Position z

c10 Δz

Time

c1∞

Fig. 2.2 Concentration

profile into a semi-infinite

slab
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The concentration profile in this case is:

c1 � c11
c10 � c11

¼ 1� erf
zffiffiffiffiffiffiffiffi
4Dt

p (2.20)

where erf is the error function. The flux at the edge of the slab, that is, at z = 0, is:

j1 ¼
ffiffiffiffiffi
D

pt

r !
c1 � c11ð Þ (2.21)

This is the key result for this case.

The cases of a thin film and a semi-infinite slab are especially important because

they bracket observed behavior. More specifically, the result in Eq. 2.21 for a semi-

infinite slab is compared with the flux across a thin film in Table 2.1. In both cases,

the flux will double if the concentration difference doubles. If the diffusion coeffi-

cient doubles, the flux across a thin film doubles, but the flux into the semi-infinite

slab increases
ffiffiffi
2

p
times. If the film’s thickness doubles, the flux drops two times for

the film, but is unchanged for the slab. If diffusion occurs for twice as long, the flux

for the thin film keeps its steady value, but that for the slab drops by a factor of

1=
ffiffiffi
2

p
. These limits will usually bracket all diffusion behavior because all shapes

will be between the film and the slab. These two cases are key to understanding the

mathematics of diffusion.

A third special case is especially important for environmental engineering. This

is the decay of a pulse. In this case, a large amount of solute is released at

a particular plane at z = 0. Solute diffuses away from this position in only one

dimension. The solute concentration as a function of position z and time t gives the
details of any environmental impact.

The mathematics follows the same route as the slab: a mass balance is subject to

initial and boundary conditions, which are combined with Fick’s Law and solved to

give the concentration profile. The mass balance is:

@c1
@t

¼ D
@2c1
@z2

(2.22)

Table 2.1 Flux across a film or into a slab. These two cases are important because they

bracket almost all diffusion problems. In this table, K is the equilibrium constant of the rapid

chemical reaction

Thin film Semi-infinite slab

Concentration difference Dc1 Dc1
Diffusion coefficient D

ffiffiffiffi
D

p
Thickness ‘�1 –

Time – t�1

Flux without reaction j1 ¼ D
‘ Dc1 j1 ¼

ffiffiffi
D
pt

q
Dc1

Flux with fast reversible reaction j1 ¼ D
‘ Dc1 j1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D 1þKð Þ

pt

q
Dc1
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This mass balance, identical with the mass balance for the slab (Eq. 2.16), occurs

so frequently that some just call it “the diffusion equation.” The initial and

boundary conditions are different from Eqs. 2.17–2.19 for the slab:

t ¼ 0 all z c1 ¼ M

A
dðzÞ (2.23)

t ¼ 0 z ¼ 0
dc1
dz

¼ 0 (2.24)

z ¼ 1 c1 ¼ 0 (2.25)

In these conditions, M is the total solute injected, A is the cross-sectional area,

and d(z) is the Dirac function, equal to zero everywhere except at z = 0, where it is

infinity. While the mathematical solution of Eqs. 2.22–2.25 is tricky, the answer is

simple:

c1 ¼ M A=ffiffiffiffiffiffiffiffiffiffi
4pDt

p
� �

e�
z2

4Dt (2.26)

In this Gaussian concentration profile, the quantity in square brackets is the

maximum concentration, which drops as time grows. The mathematical form of this

important result is also observed for other environmental problems which do not

depend only on diffusion, as described in the section “Dispersion.”

Concentrated Diffusion

One reason that diffusion has the reputation of being difficult comes from the major

complexities of concentrated solutions. These complexities are rarely important in

environmental engineering and so should be ignored unless there are good experi-

mental reasons not to do so. These complexities are mentioned here only to

illustrate when they are important.

To explore this, imagine putting a pot of room temperature water of 25�C on

a stove that is turned off. The flux of any evaporating water will be given by

Eq. 2.10. If the air above the stove were dry, c1‘would be zero. Because the water at
25�C has a vapor pressure of about 25 mmHg, c10 is about:
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c10 ¼ 25 mm Hg

750 mm Hg

� �
1 mol

22:4� 10�3 m3

¼ 1:5
mol

m3

(2.27)

If the liquid water in the pot is 0.1 m below the rim and the diffusion coefficient

of water vapor in air is about 2.8 � 10�5 m2/s, the flux is:

j1 ¼ D

‘
c10 � c1‘ð Þ

¼ 2:8� 10�5m2/s

0:1m
1:5

mol

m3
� 0

� �

¼ 4� 10�4 mol

m2s

(2.28)

Now imagine heating the liquid water in the pot to boiling. If the heat flux q is 20
kJ/m2 s, then the molar flux caused by boiling is:

n1 ¼ q

D ~Hvap

¼ 20 kJ /m2s

48 kJ/mol

¼ 0:4
mol

m2s

(2.29)

The boiling flux n1 is 1,000 times greater than the diffusion flux at room tempera-

ture, but it is not a function of D. Thus slow dilute evaporation is a function of the

diffusion coefficient; but boiling depends not on diffusion but on heating rate.

But what about intermediate cases? For example, how fast will evaporation take

place at 50�C?
Answering this question requires a more complete form of Fick’s Law. Unfortu-

nately, there is no single way to do this. One choice is the following:

Total flux½ � ¼ Diffusion flux½ � þ Convective flux½ �

n1 ¼ c1 v1 � vð Þ þ c1v ¼ j1 þ c1v

¼ �D
dc1
dz

þ c1v
(2.30)

where v is most often a volume average velocity. The most common alternative

form of Fick’s law, strongly advocated by a few zealots, may be approximated as:

rc1 ¼ c1c2
cD

v2 � v1ð Þ (2.31)
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where c2 and v2 are the concentration and velocity of the solvent. This form avoids

choosing a convective velocity, but it can cloud the physical significance of the

problem.

Fortunately, the result for a problem like the water evaporation given above is

the same for both forms of Fick’s Law given in Eqs. 2.30 and 2.31. If water at 50�C
is evaporating from the pot above into dry stagnant air, the total flux is:

n1 ¼ �Dc

‘
ln 1� c10

c

� �

¼
�2:8� 10�5m2 s= 1 mol

22:4�10�3m3

� �
0:1 m

ln 1� 92:5

760

� �
¼ 1:62� 10�3mol m2s

	
(2.32)

This is about 7% greater than the result would be if calculated from Eq. 2.10 for

a dilute solution at 50�C. The moral is clear: the effects of concentrated diffusion

will only rarely be important in the atmospheric and aquatic environments.

This completes our basic description of the three cases key to understanding

diffusion. These are the thin film (80% of the cases), the semi-infinite slab (10% of

the cases), and the decay of a pulse (5% of the cases). Other cases with different

boundary conditions do occur, and solutions for these are tabulated in the literature.

However, these other cases are not as common in practice. Similarly, diffusion in

concentrated solutions is complicated but infrequently important. The simple form

of Fick’s Law in these three cases is the best way to get started.

Dispersion

We now turn to an environmentally important problem mathematically similar to

diffusion but with a different physical origin. To make this problem specific,

imagine dealing with the spill of a single toxin on the ground. Imagine the

concentration of the toxin spreads in one dimension with time and groundwater

flow, producing a roughly Gaussian concentration profile. We want to know how

the spread of this toxin varies with the diffusion coefficient of the toxin.

The answer is surprising: if the diffusion coefficient increases, the spread of the

toxin may be bigger, smaller, or unchanged. The toxin’s concentration profile is:

c1 ¼ M A=ffiffiffiffiffiffiffiffiffiffi
4pEt

p e�
z�vtð Þ2
4Et (2.33)

where M is the total amount of toxin, A is the cross-sectional area across which the

dispersion occurs, and v is the velocity of any flow through the soil. The dispersion

coefficient E has the same units as the diffusion coefficient but will often be much

larger. This result, a complete analogue to Eq. 2.26, can be derived from parallels to
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Eqs. 2.22–2.25 by replacing the diffusion coefficient D with the dispersion coeffi-

cient E. However, while this mathematical parallel is complete, it does not explain

the physics responsible for dispersion.

To explore the physics involved, imagine the toxin is injected as a pulse into

a small tube of diameter d. The toxin’s dispersion will be a strong function of how

much flow is in the tube. If there is absolutely no flow, then the dispersion coefficient

equals the diffusion coefficient:

E ¼ D (2.34)

Increasing diffusion increases dispersion. If there is a small, laminar flow of

velocity v, then:

E ¼ v2d2

192D
(2.35)

Increasing diffusion decreases dispersion. The velocity where Eq. 2.35 becomes

dominant is when:

v2d2

192D2
� 1 (2.36)

For non-absorbing soil with the equivalent of 500 mm particles and diffusion in

water liquid, D is about 10�9 m2/s, so v must be much greater than 30 mm/s or

2 m/day for Eq. 2.35 to swamp Eq. 2.34. If there is a large, turbulent flow (dv/n >
2,000), then:

E ¼ dv

2
(2.37)

Dispersion, now independent of diffusion, is due to the coupled turbulent

fluctuations of concentration and velocity. The physical basis of Eqs. 2.33–2.37 is

associated with G.I. Taylor.

Those with a more practical bent may correctly be skeptical of modeling flow

through a soil as occurring in a straight tube. Others sharing this skepticism have

extended this analysis to flow in packed beds. The key results involve two new

quantities:

t ¼ t 1þ k0ð Þ (2.38)

k0 ¼ Soil concentration

Solution concentration

� �
1� e
e

� �
(2.39)
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where e is the void fraction available for flow. In physical terms, t is the time

corrected for any absorption by the soil, including material that diffuses into the

soil’s pores. The quantity k 0 is a type of equilibrium constant between the soil and

the solution, lumping together adsorption and absorption. In this case, a pulse of

toxin may still be dispersed to give the Gaussian concentration profile in Eq. 2.24,

but with time t replaced by t. The dispersion coefficient E is now given by:

E ¼ D 1þ k0ð Þ þ d2v2

192D

1þ 6k0 þ 11ðk0Þ2
1þ k0

 !

þ d2v2

3D 0
k0

1þ k0

� � (2.40)

where d is an equivalent thickness of an absorbent andD0 is the diffusion coefficient
in the absorbent, not in the solution. The first term on the right-hand side of

Eq. 2.40, the parallel of Eq. 2.34, is due to diffusion in the direction of flow. The

second term, the analogue of Eq. 2.37, comes from Taylor dispersion and is often

the most important. The third term is new, the result of the rate of absorption.

This overview of dispersion is intended as a caution and a starting point. The

caution is that many Gaussian concentration profiles are due to diffusion coupled

with other phenomena. The starting point in understanding these profiles is

recognizing that their spread can depend inversely on diffusion. In other words,

slow diffusion may result in wide dispersion.

Diffusion Coefficients

Diffusion is an important process because it is slow, and diffusion coefficients thus

often control the overall rate of processes involving diffusion, flow, and chemical

reaction. Typical values of diffusion coefficients, shown in Table 2.2, are chosen

from the wide number of references in the literature but corrected to a temperature

of 25�C. This wide literature is much less extensive than studies of other physical

properties like viscosity or Young’s modulus, because diffusion coefficients are

relatively difficult to measure.

The values in Table 2.2 show diffusion in gases is about 10,000 times faster than

diffusion in liquids, which is in turn over a billion times faster than diffusion in

solids. Diffusion coefficients in gases fall around 10�5 m2/s. Diffusion coefficients

in liquids fall around 10�9 m2/s. Diffusion coefficients in solids are much more

variable, but are so slow that most of the mass transport occurs in fluid-filled gaps

and pores within the solid. For example, in a bed of sand, most transport occurs in

the spaces between sand grains and relatively little within the bulk of the grains

themselves. In environmental problems, diffusion in gases and liquids is more

important.
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The diffusion coefficients, given in Table 2.2 for 1 atm and 25�C, do change with
process variables, as outlined in Table 2.3. The variation with temperature in gases

and liquids is small. For example, the temperature must be increased from 25�C
(= 298� K) to 200�C (= 473� K) to double the diffusion coefficient in gases. Because
the viscosity of a liquid drops as the temperature rises, the diffusion coefficient in

a liquid changes faster with temperature, but the change is still modest. In contrast,

diffusion coefficients in solids usually change more rapidly with temperature,

doubling every 10�C or so.

Other process variables also have relatively small effects. The diffusion coeffi-

cient in gases does vary inversely with pressure; but the gas concentration varies

Table 2.2 Diffusion coefficients. Values given are in m2/s and at 298 K and 1 atm

Gases

Gas pair Diffusion coefficient

Air-H2O 2.6 � 10�5

CO2-O2 1.6 � 10�5

H2-N2 7.8 � 10�5

H2-O2 8.9 � 10�5

N2-O2 2.2 � 10�5

N2-H2O 2.9 � 10�5

O2-H2O 2.8 � 10�5

O2-octane 0.7 � 10�5

Solids

Diffusion coefficient

C in Fe (BCC) 6 � 10�25

Fe in Fe (BCC) 3 � 10�52

B in Si 7 � 10�33

He in SiO2 4 � 10�14

Na+ in NaCl 1 � 10�36

Ag+ in AgCl 1 � 10�19

Liquids

Solute-solvent Diffusion coefficient

O2-H2O 2.10 � 10�9

CO2-H2O 1.92 � 10�9

H2S-H2O 1.41 � 10�9

HCl-H2O 3.33 � 10�9

NaCl-H2O 1.61 � 10�9

CaCl-H2O 1.33 � 10�9

NH3-H2O 1.64 � 10�9

Urea-H2O 1.38 � 10�9

Sucrose-H2O 0.52 � 10�9

Albumin-H2O 0.08 � 10�9

H2O-C2H5OH 1.24 � 10�9

Benzene-butanol 0.99 � 10�9

Hexane-heptane 4.21 � 10�9
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directly with pressure; so the flux, related to the diffusion coefficient times the

concentration, may remain more constant. The diffusion coefficient does vary

inversely with the size of the diffusing species. While these effects are usually

modest for gases and liquids, they can be much larger for solids. These

generalizations are justified by the approximate physical arguments given next.

Gases. The diffusion coefficients in gases can be predicted with reasonable accu-

racy from kinetic theory. This theory assumes that a gas contains individual

molecules moving with thermal motion and colliding with each other only as

pairs. Under these cases, the diffusion coefficient is given by:

D ¼ 1

3
lv (2.41)

where l is the distance between collisions and v is the molecular velocity. For

a monatomic gas, this velocity is kinetic, related to the thermal energy:

1

2
mv2 ¼ kBT (2.42)

where m is the molecular mass and kB is Boltzmann’s constant. Keep in mind that

here v is a molecular velocity. It is the sonic velocity; it is much greater than the

average velocity v used in Eqs. 2.30 and 2.31.

We must now estimate the distance between collisions l. There are two cases.

First, for the bulk gas, l is found from the volume occupied by one molecule:

Volume of one molecule½ � ¼
Distance between collisions½ � �
Area swept out between collisions½ �

kBT

p
¼ l

p
4
s2

h i
(2.43)

where s is the molecular diameter. Equations 2.41–2.43 can be combined to find:

D ¼ 4
ffiffiffi
2

p

3p

� �
kBT

 �3

2

ps2
ffiffiffiffi
m

p (2.44)

Table 2.3 Variations of diffusion coefficients

Gases Liquids Solids

Typical value, m2/s 10�5 10�9 Much smaller

vs. T T3/2 T Large

vs. p p�1 – –

vs. solute diameter size�2 size�1 size2

vs. viscosity m m1 m�1 –
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This approximate relation is close to that found from more complex theories:

D does vary inversely with p, s2, and
ffiffiffiffi
m

p
; it does vary with T to a power greater

than one and less than two.

The second important limit of Eq. 2.41 occurs only for a gas diffusing in small

pores of diameter d. In this case, the diffusing species is much more likely to collide

with the pore walls than with other molecules. Thus the combination of Eqs. 2.41

and 2.34 becomes:

D ¼
ffiffiffi
2

p

3
d

ffiffiffiffiffiffiffiffiffi
kBT

m

r
(2.45)

This case, called Knudsen diffusion, has a diffusion coefficient which depends

on the pore diameter d, but not on the molecular diameter s. Now, the diffusion

coefficient is independent of pressure, though it does vary inversely with the square

root of solute mass. Under ambient temperature and pressure, Knudsen diffusion is

important when the pores are much less than 0.1 mm.

Liquids. Diffusion in liquids is normally not described by a kinetic theory but as the

motion of a rigid, spherical solute diffusing in a continuum of solvent. Despite the

major approximations obviously made by this simple model, it gives remarkably

good results. It is the standard against which new predictions are always judged.

The model begins by describing the friction on a solute sphere:

Force = Coefficient of friction f½ � � Velocity v1 (2.46)

The velocity v1 now is the average and not the sonic value v used for gases. The

coefficient of friction f is given by Stokes Law:

f ¼ 6pmR (2.47)

where m is the solvent velocity and R is the solute radius. The force was suggested

by Einstein to be the negative of the gradient of the chemical potential m1. Thus:

� dm1
dz

¼ 6pmR½ �v1

¼ �r kBT ln c1

 � ¼ � kBT

c1

dc1
dz

(2.48)

Rearranging:

� c1v1 ¼ kBT

6pmR

� �
dc1
dz

(2.49)

But (c1v1) is the total flux n1, equal in dilute solution to the diffusion flux j1.
Comparing this with Eq. 2.33 gives:
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D ¼ kBT

6pmR
(2.50)

The diffusion coefficient in liquids varies inversely with solute size and with

solvent velocity. This simple relation is called the Stokes–Einstein equation.

Equation 2.50 often gives good estimates of diffusion in liquids. Its simplicity is an

invitation to attempt improvements. These include assuming the sphere is not solid but

gas, replacing the spherewith an ellipsoid, allowing the sphere to spin, and putting it in

a small pore. Other attempts at improvement allow for nonideal solutions, assigning

different friction coefficients to solute and solvent, and considering changes close to

the spinoidal.While none of these efforts is definitive, each can clarify the perspective

of a particular chemical system. Still, the simple Stokes–Einstein equation is the best

place to start for understanding diffusion in liquids.

Solids. As explained above, the diffusion in solids is so slow that most transport

usually occurs in any fluid-filled flows and voids within the solid. Some solid

processes are certainly dramatically affected by diffusion – metallic welds and

doped semiconductors are two good examples – but the diffusion of chemicals in

the environment is usually through fluids.

The relative unimportance of diffusion in solids is fortunate, because diffusion

coefficients in solids scatter. These coefficients do not cluster around a single value,

and they depend strongly on crystal structures. For example, the diffusion of carbon

in body-centered cubic iron is 1010 times faster than the diffusion of carbon in face-

centered cubic iron. Sometimes, an anomalously high coefficient reflects different

types of vacancies in the solid crystals. For example, silver ion diffuses 1017 times

faster in AgCl than sodium ion diffuses in NaCl.

Estimates of diffusion in solids, which normally begin with a face-centered

cubic lattice, assume a coefficient given by:

D ¼ R2No (2.51)

where R is now the distance between atoms or ions in the crystal; N is the

dimensionless fraction of vacant sites; and o is the jump frequency, the number

of atomic or ionic movements per time. The size of R is estimated from crystal

structure, and the fraction N from the free energy of mixing. The jump frequency o
is often felt to have an Arrhenius temperature dependence. Arguments like this are

not predictions but are rationales to organize data.

Diffusion Across Interfaces

Diffusion from one phase to another is an important and complex limit, a source of

confusion for many. In this case, there are two limits that are close parallels to the
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cases of a thin film and a semi-infinite slab discussed above in the sections

“Diffusion Across a Thin Film” and “Other Important Cases.” One case is

exemplified by the so-called infinite couple, when two alloy bars of different but

homogeneous composition are closely joined together. In this case, each atomic

species can diffuse between the two bars, giving concentration profiles that are

known. This limit is rarely important in environmental science and engineering.

The second, much more important limit occurs when solutes diffuse from one

relatively well-mixed phase across a phase boundary to a second relatively well-

mixed phase. This limit approximates what happens when sulfur dioxide in the air

diffuses into a lake. In this case, bulk air is often well-mixed, and the bulk water in

the lake is, too. However, this good mixing does not extend all the way to the

air–water interface. About the last one millimeter of air and about the last one-tenth

millimeter of the water are not well-mixed. Diffusion across these two films, one in

air and the other in the water, is what governs the rate of sulfur dioxide dissolution

in the lake.

We develop these ideas below. “The Mathematics of Mass Transfer” derives the

mathematical framework. “Concentration Units” details transport across interfaces.

“The Meaning of c1
∗” uses this framework to calculate the mass transfer in several

environmentally relevant situations.

The Mathematics of Mass Transfer

To begin our study of mass transfer, imagine a small volume of air containing

hydrogen sulfide at concentration c10 that is suddenly contacted with a large

volume of water. The sulfide dissolves in the water so that its concentration c1
drops with time. Predicting this concentration change with the diffusion equations

given above is possible, but difficult. Often, an easier prediction is to use an

alternative tool, a mass transfer analysis, which is more suitable for engineering

applications.

This mass transfer analysis begins by writing a mass balance on the H2S in the air:

Accumulation in the air½ � ¼
Amount dissolved in water½ �

V
dc1
dt

¼ �AK c1 � c1
�ð Þ (2.52)

where V is the air volume, A is the interfacial area between air and water, and c1
∗ is

proportional to the concentration of the H2S in the water. When there is a lot of

pure, well-mixed water present, this concentration is zero. The rate constant K in

Eq. 2.52 is an overall mass transfer coefficient, a function of H2S diffusion in both
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the water and the air. It has the units of velocity, that is, of length L per time t. This
mass balance is subject to the initial condition:

t ¼ 0 c1 ¼ c10 (2.53)

Integrating, Eq. 2.52 becomes:

c1
c10

¼ e�K A
Vð Þt (2.54)

The H2S concentration in the air decays exponentially with time, as if it were

undergoing a first-order chemical reaction. The rate constant of this reaction (KA/V)
has units of reciprocal time. However, the concentration in air is not dropping

because of a chemical reaction but because of diffusion of H2S from the air into the

water.

As a second example, imagine absorbing carbon dioxide from flue gas. The flue

gas is steadily flowing upward in a small absorption tower. Excess strong base is

steadily flowing downward through the tower. A mass balance on the carbon

dioxide in a small differential volume dV in the tower results in:

Accumulation in dV½ � ¼ CO2 Flow in�out½ �
þ CO2 Absorbed by base½ �

0 ¼ Q
dc1
dV

� Ka c1 � c1
�ð Þ (2.55)

where Q is the volumetric flow rate of flue gas, a is the interfacial area per volume

in the tower, and c1
∗ is about zero because the base is strong and there is a lot of it.

As before, K is an overall mass transfer coefficient describing the rate of reaction.

This mass balance is subject to a boundary condition:

V ¼ 0 c1 ¼ c10 (2.56)

Integration gives:

c1
c10

¼ e�Ka V
Qð Þ (2.57)

The CO2 concentration exiting the absorption column decreases exponentially as

the column volume V is increased or as the column flow Q is decreased. Note that

Eqs. 2.54 and 2.57 are complete mathematical parallels, even though the former

describes unsteady dissolution without flow, and the latter describes steady absorp-

tion with flow.

Interfacial mass transfer is not hard. It is just an alternative description of

diffusion which complements that given by Fick’s Law. The three features do
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make interfacial mass transfer complicated. These three complications are the units

of concentration, the detailed meaning of c1
∗, and the values of the mass transfer

coefficient K. Details of these features follow.

Concentration Units

The first issue, concentration units, results because the units used for clearly

explaining the ideas are not always those easiest to use in practice. The concentra-

tion units implied in this essay are of the amount per volume, for example, moles

per liter or grams per cubic meter. The concentration units used in practice are

different. In gases, the units are sometimes partial pressures; in liquids, the units are

often mole fractions.

Expressing concentrations as partial pressures or mole fractions leads to differ-

ent definitions of mass transfer coefficients. In particular, the total flux across the

interface N1 from one dilute gaseous solution into another dilute liquid solution may

be defined as:

N1 ¼ n1jinterface ¼ j1jinterface
¼ K c1 � c1

�ð Þ (2.58)

where c1 is the concentration of species “1” in the gas. The restriction to dilute

solution is not a major constraint. Alternatively, the interfacial flux can be defined

as:

N1 ¼ Kp p1 � p1
�ð Þ (2.59)

where p1 is the partial pressure of solute “1” in the gas, and Kp is a new, different

overall mass transfer coefficient. But from the ideal gas law:

p1 ¼ n1RT

V
¼ c1RT (2.60)

Comparing the two equations shows:

Kp ¼ K

RT
(2.61)

If K has units of meters per second, then Kp may have units of moles per square

meter per second per pascal.

Similarly, for mass transfer from a liquid into a gas, an alternative definition is:

N1 ¼ K c1 � c1
�ð Þ (2.62)
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where c1 is now the concentration of species “1”in the liquid, and K is an overall

mass transfer coefficient different from that in Eq. 2.58. Alternatively,

N1 ¼ Kx x1 � x1
�ð Þ (2.63)

where x1 is the mole fraction of species “1” in the liquid, and Kx is still another

overall mass transfer coefficient. Because

c1 ¼ cx1 (2.64)

where c is the total concentration in the liquid, the two overall coefficients are

related:

Kx ¼ cK (2.65)

For example, if K is in meters per second, and c is in moles per meter cubed, then

Kx will have units of moles per square meters per second. Other definitions of

coefficients are also possible, but are no harder.

The Meaning of c1
∗

The meaning of the concentration c1
∗ appearing in Eqs. 2.52, 2.55, 2.58, 2.59, and

2.62 is the hardest step in this description. These flux equations all assert that the

flux is proportional to a concentration difference. The flux will be zero when the

concentration is zero. Thus, c1
∗ must be the hypothetical gaseous concentration of

species “1” that is in equilibrium with species “1” dissolved in the liquid. This is

harder than interfacial heat transfer: there, the heat flux is proportional to the

temperature on one side of the interface minus that on the other side. Here, the

mass flux is proportional to a concentration difference which equals to one real

concentration that does exist minus a second one which is hypothetical.

To be more specific, imagine the case in Eq. 2.58, where c1 is the actual

concentration of species “1” in the well-mixed, bulk gas on one side of the

interface. The concentration c1
∗ is equal to the concentration in the well-mixed,

bulk liquid times some type of Henry’s Law constant, which describes equilibrium

between gas and liquid. Sometimes, those studying this point for the first time can

be helped by silently chanting

▾c1* is the concentration that would be in the gas if it were in equilibrium with the liquid

(which it isn’t).

Remembering this chant may help mastering this difficult point.

To try to make this point clearer, imagine in calculating the flux of oxygen in air

into wastewater with a concentration of 1 � 10�4 mol/‘. At equilibrium,
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c1 gasð Þ ¼ 30c1 liquidð Þ (2.66)

Thus,

c1
� gasð Þ ¼ 30� 10�4 mol/‘ (2.67)

As a result,

c1 � c1
� ¼ 0:21 mol

22:4‘
� 30� 10�4 mol

‘

¼ 64� 10�4 mol/‘

(2.68)

Understanding problems like these is often helped by always checking what

happens when the system is at equilibrium.

Values of Mass Transfer Coefficients

We now turn to the variations of the overall mass transfer coefficient with quantities

like the diffusion coefficient in the adjacent phases. The most common case is that

of transfer from a gas into a liquid. The concentration in the gas is expressed as

a partial pressure, and the concentration in the liquid is expressed as a mole fraction.

The flux N1 across the interface is then:

N1 ¼ Kp p1 � p1
�ð Þ

¼ kp p1 � p1ið Þ
¼ kx x1i � x1ð Þ (2.69)

where p1 and x1 are the average concentrations in the gas and liquid, respectively;

and p1i and x1i are the corresponding but unknown gas and liquid concentrations at

the interface. The mass transfer coefficients kp and kx describe transport in the gas

and in the liquid. Sensibly, the individual mass transfer coefficient kp is a function
of diffusion in the gas, but not of diffusion in the liquid; and the individual mass

transfer coefficient kx is the reverse.
The concentrations across the interface will normally be in equilibrium, so that:

p1i ¼ Hx1i (2.70)

where H is a Henry’s Law constant. Combining this constraint with Eq. 2.69 gives:

N1 ¼ 1
1
kp
þ H

kx

" #
p1 � Hx1ð Þ (2.71)
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By comparing this with the overall mass transfer coefficient Kp yields:

Kp ¼ 1
1
kp
þ H

kx

(2.72)

p1
� ¼ Hx1 (2.73)

These are the results sought. Obviously, similar equations are possible for other

concentrations and other equilibria analogous to Henry’s Law.

The way in which kp and kx vary with the diffusion coefficients can be estimated

either from experiments or from theories. The experiments are summarized as

correlations, most often in terms of dimensionless numbers. For example, for

mass transfer into a liquid flowing through a packed tower with packing of size d,
the most widely accepted correlation is:

kx ¼ k liquidð Þc liquidð Þ (2.74)

k liquidð Þ 1

ng

� �1
3

¼ 0:0051
v

an

� �0:67 D

n

� �0:50

adð Þ0:4 (2.75)

where n is the kinematic viscosity of the liquid, g is the acceleration due to gravity,

v is the superficial liquid velocity, a is the surface area per volume of the packing,

andD is the diffusion coefficient in the liquid. The quantity (v/an) is one form of the

dimensionless Reynolds number; the quotient (n/D) is the dimensionless Schmidt

number. Correlations like this, which are based on extensive experiments, should be

used for estimates whenever possible.

In many cases, however, appropriate correlations may not be reliable, or may not

be available at all. In these cases, estimates for liquids can bemade by assuming that:

k liquidð Þ ¼ D

‘
¼ D

10�4m
(2.76)

where D is the diffusion coefficient in the liquid and ‘ is often called the film

thickness or the boundary layer. This casual description can be confusing, because

these terms are more specifically defined in theories of mass transfer.

A corresponding estimate for gases is:

k gasð Þ ¼ D

‘
¼ D

10�3m
(2.77)

where D is now the diffusion coefficient in gases, typically 104 times larger than

that in liquids. Equations 2.76 and 2.77 are major approximations to be used only in

desperation.
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Important Special Cases

The sections above describe the mathematics of diffusion and dispersion. They

have summarized characteristics of diffusion coefficients and listed some typical

values. They have discussed mass transfer coefficients as an alternative description

of interfacial diffusion frequently valuable in environmental engineering. None of

the ideas presented are especially difficult to understand.

However, actually putting these ideas into practice can be complicated, largely

because of difficult units and subtle definitions. This final section considers specific

chemical examples that illustrate the ideas involved. These examples are approxi-

mate but can serve as a warning of where trouble can occur.

Overall Mass Transfer Coefficient of Oxygen (Case #1)

Imagine wanting to estimate the mass transfer coefficient Kp of oxygen from air into

water. From Table 2.2 and Eq. 2.77,

k gasð Þ ¼ D

‘
¼ 2� 10�4 m2 s=

10�3m
¼ 0:02 m s= (2.78)

The coefficient kp is found from this by a unit conversion:

kp ¼ k gasð Þ
RT

¼ 0:02 m s=

8:2�10�6m2 atm
mol�K

� �
298�K

¼ 8
mol

m2s atm
(2.79)

Similarly, from Table 2.3 and Eq. 2.76,

k liquidð Þ ¼ 2� 10�9 m2 s=

10�4 m
¼ 2� 10�5 m s= (2.80)

The coefficient kx has a different conversion:

kx ¼ k liquidð Þc ¼ 2� 10�5 m s=

 � 1 mol

18� 10�6 m3

� �

¼ 1:1
mol

m2s

(2.81)

Henry’s Law for this system is (cf. Eq. 2.70):

p1 ¼ 4:3� 104 atm

 �

x1 (2.82)
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Thus from Eq. 2.72,

Kp ¼ 1

m2s atm
8 mol

þ 4:3�104 atm m2s
1.1 mol

¼ 2:6� 10�5 mol

m2s atm

(2.83)

This coefficient describes oxygen transport between air and water when the

concentration difference is expressed as partial pressures of oxygen.

Overall Mass Transfer Coefficient of Oxygen (Case #2)

The example above is straightforward because it matches the detailed equations

given earlier. The same problem can be solved in different units. Thus, the fluxN1 is:

N1 ¼ Kc c1
� � c1ð Þ (2.84)

where c1 is the actual oxygen concentration in water, c1
∗ is the oxygen concentra-

tion in water that is in equilibrium with air, Kc is a different overall mass transfer

coefficient given by:

Kc ¼ 1
m

k gasð Þ þ
1

k liquidð Þ
(2.85)

and m is a different form of Henry’s Law constant, defined by the equilibrium:

c1 liquidð Þ ¼ mc1 gasð Þ (2.86)

Comparing Eqs. 2.81 and 2.82 gives:

m ¼ c liquidð ÞRT
H

¼ mol

18� 10�6m3

� �
8:2� 10�6 m

3 atm

mol� K

� �
298�K

4:3� 10�4atm

� �
¼ 0:03

(2.87)

The numerical value of Henry’s Law constant is completely different. The

combination of Eqs. 2.78, 2.80, 2.85, and 2.87 gives:
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Kc ¼ �1
0:03

0:02 m s= þ 3
2�10�5 m s=

¼ 2� 10�5 m s=

(2.88)

In both this formulation and that in Eq. 2.83, diffusion in the liquid dominates the

mass transfer. This is often taken as a consequence of the slower diffusion in the

liquid. This is not completely true, as the next example shows.

Overall Mass Transfer Coefficient of Ammonia from Air into Water

This example illustrates how the rate at which ammonia is dissolved in water can be

estimated. The individual mass transfer coefficients of ammonia are easily found:

k gasð Þ ¼ D gasð Þ
‘

¼ 2:3� 10�5m2 s=

10�3m
¼ 0:023 m s= (2.89)

and

k liquidð Þ ¼ D liquidð Þ
‘

¼ 1:6� 10�9m2 s=

10�4m

¼ 1:6� 10�4m s=

(2.90)

One Henry’s Law constant for dilute acid is given in the literature as:

p1 atmð Þ ¼ 7000
atm ‘

mol

� �
c1 liquid, molarð Þ (2.91)

Converting the pressure into a molar concentration:

c1 gas, molarð Þ ¼ 7000
atm ‘

mol

� �
mol� K

0.082 atm ‘

� �
c1 liquid, molarð Þ

298�K

� �
¼ 290c1 liquid, molarð Þ

(2.92)

Combining these results with Eq. 2.85 gives:

Kc ¼ 1
290

0:023 m s= þ 1
1:6�10�5 m s=

¼ 1:3� 10�4 m s=

(2.93)
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The much higher solubility of ammonia in dilute acid means the mass transfer is

now more affected by diffusion in air.

Toxin Diffusion in a Biofilm

The final example imagines a dilute toxin dissolved in water and metabolized

irreversibly by microorganisms immobilized in a biofilm. This example, which is

not as chemically specific as the first three, also assumes that the concentration of

dissolved oxygen is much greater than the concentration of the toxin. Thus, the rate

per biofilm area N1 is given by the overall rate of diffusion of the toxin to the

biofilm, followed by the diffusion and reaction of the toxin within the biofilm.

This overall rate is mathematically equivalent to mass transfer across an inter-

face, where the solute diffused through the gas to reach the interface, quickly

crossed the interface, and then diffused into the liquid. In fact, the biofilm case is

often easier because most biofilms are largely water and hence their partition

coefficient m is one. Thus,

N1 ¼ c1
1

k liquidð Þ þ
1

k biofilmð Þ
(2.94)

The coefficient k (liquid) can often be found from mass transfer correlations;

Equation 2.76 provides a first guess. The value in the biofilm depends on the details

of the reaction. However, delightfully, most theories give the same result:

k biofilmð Þ ¼ D biofilmð Þ
t

� �1
2

(2.95)

where t is the half-life of the reaction. While beyond the scope of this entry, this

result is carefully derived in most books on diffusion and reaction. This result

underscores the value of the simple ideas of diffusion and reaction presented here.

Future Directions

After 150 years of concentrated effort, diffusion is an established subject. Active

research does continue on, for example, semiconductors and polymer membranes,

but this does not have major environmental application.

Diffusion is an important tool for describing environmentally significant mass

transfer. In many cases, this transfer can be described in terms of diffusion

coefficients. In many air pollution problems, mass transfer can be described in
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terms of dispersion, which is mathematically similar to diffusion but due to coupled

diffusion and flow.

The underused description of mass transfer, especially across interfaces, is in

terms of mass transfer coefficients. These are functions of diffusion coefficients and

of other parameters, like velocity and viscosity. Exploiting this topic offers poten-

tial gain for environmental engineering.
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