
Chapter 5

Infectious Disease Modeling

Angela R. McLean

Glossary

Basic reproductive

number

A summary parameter that encapsulates the infectiousness of

an infectious agent circulating in a population of hosts.

Host An organism that acts as the environment within which an

infectious agent replicates.

Infectious agent A microorganism that replicates inside another organism.

Pathogen An infectious agent that damages its host.

Variant One of several types of an infectious agent, often closely

related to and sometimes evolved from other variants under

consideration.

Definition of the Subject

Infectious disease models are mathematical descriptions of the spread of infection.

The majority of infectious disease models consider the spread of infection from one

host to another and are sometimes grouped together as “mathematical epidemiol-

ogy.” A growing body of work considers the spread of infection within an
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individual, often with a particular focus on interactions between the infectious

agent and the host’s immune responses. Such models are sometimes grouped

together as “within-host models.” Most recently, new models have been developed

that consider host–pathogen interactions at two levels simultaneously: both within-

host dynamics and between-host transmissions. Infectious disease models vary

widely in their complexity, in their attempts to refer to data from real-life infections

and in their focus on problems of an applied or more fundamental nature. This entry

will focus on simpler models tightly tied to data and aimed at addressing well-

defined practical problems.

Introduction

Why is it that smallpox was eradicated in 1979 [1] but measles, once scheduled for

eradication by the year 2000, still kills over a hundred thousand children each year

[2]? Both diseases can be prevented with cheap, safe, and effective vaccines which

probably induce lifelong immunity, and neither virus has an environmental or

animal reservoir.

One way to address this question is to consider the comparative ease of spread of

the two infections. A useful parameter that summarizes this ease of spread is the

“basic reproductive number” always denoted as R0. The definition of the basic

reproductive number is the number of secondary infections caused during the entire

duration of one infection if all contacts are susceptible (i.e., can be infected). The

concept has widespread currency in the literature on infectious disease models with

varying degrees of affection [3]. There is no question that it has been a useful,

simple rule of thumb for characterizing how easily an infection can spread [4].

Furthermore, the simplest of calculations relate R0 to the degree of intervention

needed to bring an infection under control and, eventually, eradicate it. The

relationship between the basic reproductive number and disease control arises

from the simple fact that if each infectious person causes less than one secondary

case, then the number of infections must fall. If it is always true, even when there is

no infection circulating, that each new case causes less than one secondary case,

then the infection will die out. This simple observation leads to a straightforward

calculation for the proportion of a population that must be vaccinated in order to

achieve eradication, pc:

pc ¼ 1� 1

R0

(5.1)

This relationship arises from the fact that if (R0 � 1) out of the R0 people a case

might have infected have been vaccinated, then each case, in a population vaccinated

to that degree, will cause less than one secondary case. For example, say R0 = 10, if

9/10 of the population are successfully immune following vaccination, then infection

cannot spread. Thus, in general, pc = (R0� 1)/R0, as stated in Eq. 5.1. If the fraction of
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the population that are successfully vaccinated is greater than pc, then each case will

cause, on average, less than one case, and infection cannot spread.

Comparing estimated values for R0 for measles and smallpox and inferred values

for the proportion that need to be vaccinated to ensure eradication (Table 5.1) leads

to a simple answer to the question why has smallpox been eradicated, but not

measles? Smallpox, with a basic reproductive number around three, was eradicated

with vaccination coverage of around 67%. The higher R0 for measles, nearer to 15,

requires vaccination coverage close to 95% to ensure eradication. Many parts of the

world remain unable to achieve such high coverage; measles remains suppressed by

tremendous efforts at vaccination but is not yet eradicated.

These calculations are so straightforward that they can be made without recourse

to any formal modeling. However, embedding these ideas inside a formal modeling

framework has proven very useful. The next section describes the simplest applica-

ble model.

The SIR Model

The “plain vanilla” model of mathematical epidemiology is called the SIR model

because it splits the host population into three groups:

• The susceptible (S) can be infected if exposed

• The infectious (I) are both infected and infectious to others

• The recovered (R) are no longer infectious and are immune to further infection

The SIR model’s structure then consists of a set of assumptions about how

people flow into, out of, and between these three groups. Those assumptions can

be represented graphically as in Fig. 5.1.

The assumptions of the SIR model with vaccination are the following: People

are born at a constant rate B, and a proportion p of them are vaccinated at birth.

Vaccinated newborns are immune for life and so they join the recovered class.

Unvaccinated newborns enter the susceptible class. Susceptibles are infected at

a per capita rate proportional to I, the number of infectious people in the population.

This gives rise to a transfer from the susceptible to the infectious class at rate bIS.
Susceptibles are also subject to a per capita background death rate m. Infectious
people recover into the recovered class I at per capita rate g or die at the per capita

background death rate m. Recovered individuals are immune for the rest of their

lives, so the only exit from the recovered class is at the per capita background

death rate m.

Table 5.1 The basic reproductive number, R0, and the critical vaccination proportion for eradi-

cation, pc, for measles and smallpox

Infection Place Time R0 pc (%)

Smallpox India 1970s 3 67

Measles India 1970s 15 93

Measles UK 1960s 15 93
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These assumptions can be written in several different forms of equations, for

example, difference equations, ordinary differential equations, or stochastic differ-

ential equations. The difference equation form is as follows:

Sðtþ 1Þ ¼ SðtÞ þ ð1� pÞB� bIðtÞSðtÞ � mSðtÞ (5.2)

Iðtþ 1Þ ¼ IðtÞ þ bIðtÞSðtÞ � gIðtÞ � mIðtÞ (5.3)

Rðtþ 1Þ ¼ RðtÞ þ pBþ gIðtÞ � mRðtÞ (5.4)

This difference equation form is particularly easy to handle numerically and can

be straightforwardly solved in a spreadsheet. Fig. 5.2a shows the solutions to

Eqs. 5.2–5.4 over 50 years with a 1-week timestep. Parameters are set so that an

infection with a basic reproductive number of 5 and a 1-week duration of infection

is spreading in a population of 100,000 individuals. The figure illustrates how this

model shows damped oscillations towards a stable state. The same is true for the

ODE version of this model.

This model is useful for understanding the impact of vaccination. In Fig. 5.2b, the

solutions to Eqs. 5.2–5.4 are shown when vaccination at birth is introduced 10 years

into the model run. With a basic reproductive number of 5, Eq. 5.1 tells us that

vaccination of over 80% of newborns will lead to eradication. This is exemplified

in the pink line where 90% vaccination leads to no further cases. Vaccination

coverage below this threshold value reduces the numbers of cases and increases

the inter-epidemic period but does not lead to eradication. Notice the very long inter-

epidemic period at 70% vaccination. This phenomen occurs when vaccine coverage

levels are close to but do not achieve the critical coverage level. Under these

circumstances, it takes a very long time to accumulate enough susceptibles to trigger

the first epidemic after vaccination is introduced. It may therefore appear as though

eradication has been achieved even though vaccination coverage is below the critical

level. This phenomenon, named “the honeymoon period,” [5] was first described in

modeling studies and later identified in field data [6].

S RI
βIS γI

μS μI μR

pB

(1−p)B

unvaccinated
births

infection recovery

vaccinated births

death death death

Fig. 5.1 The SIR model in graphical form. The host population is divided into three groups, and

transitions of people between those groups are described. Those transitions represent the five

processes: birth, vaccination, death, infection, and recovery
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Fig. 5.2 Numerical solutions to the SIR difference equation model. Infection circulates in

a population of 100,000 individuals, with an expectation of life at birth of 50 years. The infectious

period is 1 week, and the basic reproductive number is 5. This gives the following model

parameters: B = 38 per week, m = 0.00385 per person per week, g = 1 per person per week, and

b = 0.00005 per infected per susceptible per week. (a) shows damped oscillations in all

three classes after an initial perturbation of 20% of the susceptible class into the recovered class.

In (b), vaccination of 50%, 70%, or 90% of newborns is introduced at time 10 years. With R0 = 5,

the critical vaccination proportion pc = 0.8. Vaccination coverage above this level (at 90%) leads to

eradication
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The ability to identify target vaccination levels predicted to lead to disease

eradication has been widely influential in policy circles [7]. Models with the

same fundamental structure as the SIR model are used to set targets for vaccination

coverage in many settings [8]. Similar models are also used to understand the likely

impact of different interventions of other sorts, for example, drug treatment [9]

or measures for social distancing [10]. However, models for informing policy need

to explore more of the wrinkles and complexities of the real world than are

acknowledged in the simple equations of the SIR model. The next section describes

some of the types of host heterogeneity that have been explored in making versions

of the SIR model that aim to be better representations of the real world.

Host Heterogeneity

There are many aspects of host heterogeneity that have bearing on the transmission

and impact of infections. Two of the most important are host age and spatial

distribution. In this section, the modeling of these two types of host heterogeneity

is introduced with reference to two specific infections: rubella and foot-and-mouth

disease.

Rubella is a directly transmitted viral infection that usually causes mild disease

when contracted during childhood. However, infection of a woman during early

pregnancy can lead to serious birth defects for her unborn child. The set of

consequent conditions is labeled “congenital rubella syndrome” or CRS. Because

vaccination acts to extend the time between epidemics (Fig. 5.1b), it also acts to

increase the average age at infection. This sets up a complex trade-off when

introducing rubella vaccination to a community. On the one hand, vaccinated

girls are protected from catching rubella at any age, but on the other hand, the

girls who remain unvaccinated are likely to catch rubella when they are older, more

likely to be in their childbearing years and so at greater risk of CRS. This means

that vaccination with low coverage can actually lead to more CRS, and only when

coverage levels get above a certain level do the benefits of vaccinating the commu-

nity outweigh the costs. Calculating where that level lies then becomes an important

public health question.

Because age is such an important component of the risks associated with rubella

infection, models of this system need to take account of host age. The relevant

versions of Eqs. 5.2–5.4 are difference equations with two independent variables,

age (a) and time (t):

Sðaþ 1; tþ 1Þ ¼ Sða; tÞ � Sða; tÞ½Sa0bða; a0ÞIða; tÞ� � mðaÞSða; tÞ (5.5)

Iðaþ 1; tþ 1Þ ¼ Iða; tÞþSða; tÞ½Sa0bða; a0ÞIða; tÞ�
� gðaÞIða; tÞ � mðaÞIða; tÞ (5.6)
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Rðaþ 1; tþ 1Þ ¼ Rða; tÞþ gðaÞIða; tÞ � mðaÞRða; tÞ (5.7)

Notice how these equations, by taking account of age as well as time, allow

consideration of several different kinds of age dependence. Firstly, Eq. 5.6

calculates the number of cases of infection of a given age over time. Since the

main consideration in balancing up the pros and cons of rubella vaccination is the

number of cases in women of childbearing age, this is an essential model output.

Secondly, the per capita rate at which susceptibles become infected depends on

their age and on the age of all the infected people. This model is thus able to take

account of the complexities of family, school, and working life which drive people

of different ages to age-dependent patterns of mixing. Thirdly, the recovery rate

g(a) and, more importantly, the background death rate m(a) can both be made to

depend on age. Since a fixed per capita death rate is a particularly bad approxima-

tion of human survival, this is another important advance on models without age

structure.

Models with age structure akin to that presented in Eqs. 5.5–5.7 have been

essential components of the planning of rubella vaccination strategies around the

world [11, 12]. A model as simple as these equations would never be used for

formulating policy; furthermore, most age-structured models use the continuous

time and age versions and so have the structure of partial differential equations.

Nevertheless, Eqs. 5.5–5.7 illustrate the fundamentals of how to include age in an

epidemiological model.

The spatial distribution of hosts is another important aspect of their heterogene-

ity. If the units of infection are sessile (e.g., plants), the assumption that all hosts are

equally likely to contact each other becomes particularly egregious and models that

acknowledge the spatial location of hosts more important. One example of units of

infection that do not move is farms. If trade between farms has been halted because

of a disease outbreak, then disease transmission between farms is likely to be

strongly dependent upon their location. This was the case during the 2001 foot-

and-mouth disease epidemic in the UK, and spatial models of that epidemic are nice

examples of how to explicitly include the distance between hosts in a model

epidemic.

On February 19, 2001, a vet in Essex reported suspected cases of foot-and-mouth

disease (FMD) in pigs he had inspected at an abattoir. FMD is a highly infectious

viral disease of cloven-hoofed animals. Because of its economic and welfare

implications for livestock, FMD had been eradicated from Western Europe. The

FMD outbreak that unfolded in the UK over the ensuing months had a huge impact

with millions of farm animals killed and major economic impact in the countryside

as tourism was virtually shut down.

There was heated debate about the best way to control the spread of infection

from farm to farm. FMD virus is so very infectious that no attempt was made to

control its spread within a farm. Once infection of livestock on a farm was detected,

all susceptible animals were slaughtered. Mathematical models of the spread of this

epidemic thus treat each farm as a unit of infection, and, as before, farms can be
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categorized as susceptible, infectious, etc. The best of these models [13] keeps track

of every single farm in the United Kingdom, characterizing farms by their location

and the number of sheep and cattle they hold. The model classifies farms into four

groups: susceptible, incubating, infectious, or slaughtered. As in all epidemic

models, the heart of the model is the per capita rate at which susceptible farms

become infected – the so-called force of infection. Because this FMD model is an

individual-based, stochastic simulation, it is not possible to write out its equations

in a simple form as before, but the probability of infection for a single farm can

easily be written.

Suppose all farms in the UK are listed and indexed with i. Then pi, the

probability that an individual farm i becomes infected during one unit of time, is:

pi ¼ biSall infectious farmsjtjKðdijÞ (5.8)

where bi is the susceptibility of farm i, determined by the number of sheep and cows

it holds; tj is the infectiousness of farm j, also determined by the number of sheep

and cows it holds; and K (dij) is a function of the distance between the pair of farms

i and j which determines howquickly infectiousness falls off with increasing distance.

K is known as the “infection kernel.” In the FMD example, the infection kernel was

estimated from contact tracing data on farms that were sources of infection and their

secondary cases. This observed relationship shows a very sharp falling off of infec-

tiousness, with a farm just 2 km distant being less than tenfold as infectious to

a susceptible farm than one that is adjacent.

This section describes just two of the possible heterogeneities that are often

included when making models of the spread of epidemics. There is almost no end to

how complex an epidemiological model can become. However, it is very easy for

complex models to outstrip the data available to calculate their parameters. In some

cases, this can mean that models become black boxes concealing ill-informed

guesswork, rather than prisms unveiling the implications of well-sourced and

well-understood data.

Within-Host Dynamics

Mathematical models can also be used to investigate the dynamics of events that

unfold within infected hosts. In these models, the units of study are often infected

cells and immune cells responding to infection. As with epidemiological models,

there is a wide range of modeling styles: Some models detail many different

interacting components; others make a virtue of parsimony in their description of

within-host interactions. In this section, a simple model of the within-host evolution

of HIV is used to illustrate how pared-down, within-host models of infection can

address important practical questions.
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Several trials of prophylactic HIV vaccines have shown little or no effect

[14–16], and understanding why these vaccines failed is a major research priority

[17]. A quantitative description of the interaction between HIV and host immune

cells would be an asset to such understanding. For one component of host immunity –

the cytotoxic T cell (CTL) response – such a description can be derived. The question

is how effective are host CTL responses at killing HIV-infected cells? Not howmany

CTLs are present, nor which cytokines they secrete, but how fast do they kill

HIV-infected cells?

During the course of a single infection, HIV evolves to escape from the selection

pressure imposed by host CTLs [18]. In this process, new HIV variants emerge that

are not recognized by the host CTLs. These variants are called “CTL escape

mutants.” These CTL escape mutants can be seen to grow out in hosts who

mount relevant CTL responses (Fig. 5.3) and to revert in hosts who do not. The

rate of reversion in hosts without relevant CTL responses reflects the underlying

fitness cost of the mutation. The rate of outgrowth in hosts who do mount relevant

CTL responses is a balance between the efficacy of those responses and the fitness

cost of the mutations. These costs and benefits need to be examined in the context of

the underlying rate of turnover of HIV-infected cells. All this can be represented in

a two-line mathematical model [19].

Let x be the number of host cells infected with “wild-type” virus – that is, virus

that can be recognized by the relevant host CTL responses. Let y be the number of

host cells infected with escape mutant virus. The model then consists of a pair of

ordinary differential equations describing the growth rate of each population of

infected cells. The wild-type population grows at rate a, is killed by the CTL

response in question at rate c, and is killed by all other processes at rate b. The

escape mutant population grows at rate â (â< a, reflecting the underlying fitness cost

of the mutation) and is killed by all other processes at rate b. Escape-mutant-infected
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Fig. 5.3 The outgrowth of

HIV CTL escape mutants

through time. Data sets from

three different patients

(reviewed in [19]) are shown
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symbols. Equation 5.12 is

fitted to these data, yielding

rates of outgrowth, c�(a� â),
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cells are not killed by the CTL response in question because of the presence of the

escape mutation in the viral genome. These assumptions give rise to the following

pair of linear ordinary differential equations:

x0 ¼ ax� bx� cx (5.9)

y0 ¼ ây� by (5.10)

The observed quantity, call it p, is the fraction of virus that is of the escape

mutant type; p = y/(x + y). Simple application of the quotient rule for differentiation

yields the single differential equation

p0 ¼ c� ða� âÞð Þpð1� pÞ (5.11)

with solution:

p ¼ k exp � c� ða� âÞð Þtð Þ þ 1ð Þ�1
(5.12)

where for p0, the fraction escaped at time 0:

k ¼ ð1� p0Þ
p0

(5.13)

It is straightforward to fit the analytic expression (12) to data on the

outgrowth of escape mutants to obtain estimates of the quantity c � (a � â).

Figure 5.3 shows fitted curves with estimates of c � (a � â) of 0.048, 0.012, and

0.006. The quantity of interest is the parameter c – the rate at which CTL kills

cells infected with wild-type virus. Fortunately, independent estimates of the

fitness cost of the escape mutation (a � â) are available. The median of several

such observations yields (a � â) = 0.005 [19]. Taken together and combined with

further data, the inference is that on average, a single CTL response kills

infected cells at rate 0.02 per day.

The half-life of an HIV-infected cell is about 1 day. This figure was itself

derived from the application of elegantly simple models to data on the post-

treatment dynamics of HIV [20, 21]. If a single CTL response kills infected cells

at rate 0.02 per day and their overall death rate is one, then just 2% of the death of

infected cells can be attributed to killing by one CTL response. Patients will

typically mount many responses – but probably not more than a dozen. This

analysis shows that even though CTL responses are effective enough to drive

viral evolution, they are, in quantitative terms, very weak. A vaccine to protect

against HIV infection would have to elicit immune responses that are manyfold

stronger than the natural responses detected in ongoing infection. This simple,

model-based observation greatly helps understand why the vaccines trialed so far

have failed.
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Multilevel Models

The models discussed so far deal either with events inside individuals or with

transmission amongst individuals (people or farms) in a population. Some questions

require simultaneous consideration of events at both levels of organization. This is

particularly true for questions about the evolution of infectious agents as their

evolution proceeds within individual hosts, but they are also transmitted between

hosts. Models that capture events at both the within-host and between-host levels

are fairly recent additions to the literature on infectious disease modeling. Here,

they are illustrated with two examples, a set of models that consider the emergence

of a zoonotic infection in humans and a model of the within-host evolution and

between-host transmission of HIV.

Emerging infections are a continuing threat to human well-being. The pandemics

of SARS in 2003 and H1N1 swine flu in 2009 illustrated how quickly a new

infectious agent spreads around the world. Neither of these was as devastating as

some predicted, but the continuing pandemic of HIV is ample proof that emerging

infectious diseases can have devastating consequences for human communities.

Many novel emerging infections arise as zoonoses – that is, infections that cross

from animals into humans [22]. To become a successful emerging infection of

humans – that is, one that spreads widely amongst people – is a multi-step process

[23]. First, the pathogen must cross the species barrier into people, then it must

transmit between people, and finally, it must transmit efficiently enough that

epidemics arise. This latter step amounts to having a basic reproductive number,

R0, that is greater than 1. The emerging infections mentioned already, SARS, swine

flu, and HIV, have transited all these steps. But there are other zoonoses that transmit

to humans without emerging as epidemics or pandemics. For example, simian foamy

virus, a retrovirus that is endemic in most old-world primates [24], can be detected in

people who work with primates [25] or hunt them [26]. There is no record of any

human-to-human transmission, implying that this zoonosis only completes the first

step in becoming an emerging infection. Other infections, whilst spreading from

person to person, still do not cause epidemics because that spread is insufficiently

efficient. An example of such an infection is the newly discovered arenavirus from

Southern Africa called “Lujo virus” [27]. This virus caused a small outbreak in the

autumn of 2008. Very dramatically, four out of the five known cases died, but with

five cases and just four transmission events, the basic reproductive number stayed

below one, and there was no epidemic.

Acquiring R0 > 1 is thus an important threshold that zoonoses must breach

before they can become emerging infections. Antia and colleagues [28] developed

an elegant model of the within-host evolution and between-host transmission of

a zoonotic infection that initially has R0 < 1, but through within-host adaptation in

humans can evolve to become efficient enough at transmitting from one human to

another that R0 increases above 1 and epidemics become possible. They developed

a multi-type branching process model of the transmission and evolution of

a zoonosis. They found that the probability of emergence depends very strongly
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on the basic reproductive number of the pathogen as it crosses into humans. This

is because, even when R0 < 1, short chains of transmission are still possible

(as exemplified with Lujo virus described above). During ongoing infections in

humans, the zoonosis has opportunities to evolve towards higher transmissibility.

The higher its initial R0, the more opportunities there are for such ongoing evolution

and hence for emergence.

This model of the emergence of a novel infection has been extended by other

authors to address questions about the interpretation of surveillance data [29] and

the role of host heterogeneity in the process of emergence [30]. These extensions

confirm the original finding that the transmission efficiency (R0) of the introduced

variant (and any intermediate variants) is a very important driver of the probability

of emergence. Kubiak and colleagues explored the emergence of a novel infection

in populations split into several communities, with commuters acting to join those

communities together. They found that most communities are sufficiently

interconnected to show no effect of spatial distribution on the emergence process,

even a small number of commuters being sufficient to successfully transmit any

novel pathogen between settlements. Thus, although many zoonotic events happen

in isolated parts of the world, unless they are really cut off from urban centers, that

isolation offers little barrier to the transmission of newly emerged infections.

HIV emerged as a human infection sometime during the end of the 1800s and the

early 1900s [31]. It was only recognized as a new human infection in the 1980s

when cases of immunodeficiency in young Americans were unusual enough to

warrant investigation [32]. As discussed above, during the course of a single

infection, HIV is able to adapt to escape from the selection pressures imposed by

its host’s immune response. HIV variants that cannot be recognized by current host

CTLs are termed “CTL escape mutants.” These mutants yield important informa-

tion about the strength of the immune responses that they evade. However, since

they were shown to transmit from one host to another, their status has been raised to

potential drivers of evolutionary change across the global HIV pandemic [33, 34].

Different hosts respond to different parts of HIV’s proteins (known as epitopes).

For CTL responses, it is the host class 1 human leukocyte antigen (HLA) type that

determines which epitopes are recognized. When CTL escape mutants are trans-

mitted into a host who does not make immune response to that epitope, the

mutations are no longer advantageous, and the virus can revert to the wild type

[35]. Global change in the prevalence of CTL escape mutants is therefore driven by

three parallel processes: the selection of escape mutants in some hosts, transmission

between hosts, and reversion of escape mutants in other hosts. Once again, this is

a process that takes place across multiple levels of organization, evolution and

reversion of escape mutations within infected hosts, and transmission between

hosts.

Fryer and colleagues [36] developed a multilevel model of the three processes of

within-host evolution, within-host reversion, and between-host transmission. The

model is a version of the so-called SI model which is a simplified version of the SIR

model presented above which does not allow recovery. The model allows hetero-

geneity in hosts and in the infecting virus so that there are hosts who do and do not
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mount immune responses to a given epitope and there are viruses that do and do not

have escape mutations in that epitope. This model is represented in Fig. 5.4. As in

the SIR model described in section “The SIR Model,” the rate at which susceptibles

become infected is determined by the number of infectious people present. How-

ever, in this model, because it represents the spread of a sexually transmitted

disease, it is the proportion of hosts who are infectious that drives new infections.

Furthermore, there are now two virus types circulating – wild type and escape

mutant. Within-host adaptation allows hosts who do mount immune responses to

the epitope to drive the evolution of escape mutants, and conversely, hosts who do

not mount such responses can drive the reversion of escape mutant viruses back to

the wild type.

This model’s behavior is easy to understand. The total numbers of susceptible

and infectious people simply follow the well-characterized SI model. Figure 5.5a

shows total cases through time. The total epidemic goes through three phases: an

initial exponential growth, a saturation phase, and then settling to a long-term

equilibrium. Figure 5.5b shows the proportion of all cases that are escape mutants

through time. Not surprisingly, faster escape rates and slower reversion rates lead to

higher prevalence of escape mutants. Less intuitive are the following characteristics

of Fig. 5.5b. Whilst the epidemic is in its exponential growth phase, so long as
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Fig. 5.4 A model of the within-host evolution and between-host transmission of HIV escape

mutants [36]. Hosts are divided into two types: immune responders (superscript IR) and nonim-

mune responders (superscript NIR). There are also two variants of virus, wild type (subscript WT)

and escape mutant (subscript E). Hosts are either susceptible, S, or infectious, I, and the type of

virus with which they are infected is denoted by the subscript. Rates of infection are determined by

the number of people infectious with each virus type. Immune responding hosts infected with the

wild-type virus drive immune escape at per capita rate f, whilst nonimmune responding hosts

infected with escape mutant virus drive reversion at per capita rate c. All hosts are prone to per

capita death rate m, and infected hosts have an additional death rate a
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reversion rates are reasonably fast (say once in 10 years or faster), the prevalence of

escape is expected to stabilize quite quickly. However, this is not a long-term

equilibrium, and as the total epidemic turns over, the escape prevalence shifts

again. For an epitope that escapes fast but reverts at an intermediate rate, this

leads to a substantial drop in the prevalence of escape. Secondly, fixation of escape

variants only occurs if they never revert, and even then fixation takes a very long

time – much longer than it takes for the underlying epidemic to equilibrate. Thirdly,

the predicted dynamics and equilibrium are very sensitive to the reversion rate
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Fig. 5.5 Predictions of a model of within-host evolution and between-host transmission of HIV.

(a) shows total numbers of susceptible (blue) and infectious (red) people through time. (b) shows

the proportion of infections that are with escape mutant virus for a range of escape and reversion

rates. The mean times to escape and reversion for each curve are as follows: red – escape 1 month,

reversion never; brown – escape 5 years, reversion never; yellow – escape 5 years, reversion

50 years; pink – escape 1 year, reversion 10 years; green – escape 5 years, reversion 10 years;

mauve – escape 1 year, reversion 1 year
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when that is slow. Notice the big difference, in the long term, between no reversion

(brown line) and average time to reversion of 50 years (yellow line).

As well as predicting the future spread of escape mutations for different rates of

escape and reversion, this model can be used to infer escape and reversion rates

from data on their current prevalence. This exercise reveals a surprisingly slow

average rate of escape. Across 26 different epitopes, the median time to escape was

over 8 years. There is close agreement between rates of escape inferred using this

model and those estimated from a longitudinal cohort study. These slow rates are in

marked contrast to the general impression given by a large number of case reports

in which escape is described as occurring during the first year of infection. How-

ever, a collection of case reports is a poor basis upon which to estimate an average

rate of escape.

These are just two examples from the new family of infectious disease models

that encapsulate processes at multiple levels of organization. As data on pathogen

evolution continues to accrue, this approach will doubtlessly continue to yield

new insights.

Future Directions

It seems likely that infectious diseases will continue to trouble both individuals and

communities. Whilst technological advances in new drugs, new vaccines, and

better methods for surveillance will undoubtedly assist with the control of infection,

several trends in society pull in the opposite direction. Chief amongst these is

a growing population, and second is increasing population density as more

and more people live in towns and cities. What can infectious disease modeling

do to help?

Models can help in two different ways. The first is to assist the understanding

of systems that are intrinsically complicated. Many different interacting

populations, events that occur on multiple timescales, and systems with multiple

levels of organization can all be better understood when appropriate models are

used as an organizing principle and a tool for formal analysis. Sometimes, the

problem is that there is not enough data. A systematic description can be very

revealing in searching for which new data are most needed. There are also

situations where the problem is a deluge of data. In these circumstances, well-

constructed models provide a useful organizing scheme with which to interrogate

those data.

The second use of models is as representations of well-understood systems used

as tools for comparing different intervention strategies. The model of the farm-to-

farm spread of FMD described at section “Host Heterogeneity” is a fine example of

this use of modeling. It includes enough detail to be a useful tool for comparing

different interventions, but is still firmly rooted in available data so does not rest on

large numbers of untested assumptions.
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