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  Abstract   The mesenchymal stromal/stem cell (MSC) has garnered attention as a 
promising candidate cell type for cell-based therapeutics, partly, by virtue of its 
ability to differentiate into a variety of cell types. However, the true therapeutic 
potential of MSCs may lie in the regulatory in fl uences they exert on their environ-
ments. Indeed, as a result of their natural homing response to wound sites, MSCs 
come into contact with a variety of environments and cell types as they leave their 
perivascular niches. This chapter describes the interactions between MSCs and four 
such environmental signals, speci fi cally the vasculature, the extracellular matrix, 
the immune system, and cancer. In vivo and in vitro studies detailing the effects of 
MSCs on each are presented, with special attention paid to cases of cross-talk in 
which MSCs alter the very environmental signals acting upon them. Finally, MSC 
performance in clinical trials is discussed and compared to expectations based on 
basic science  fi ndings. This chapter also identi fi es gaps in knowledge and current 
understandings where future research will prove most effective.      

   Introduction 

 Adult mesenchymal stromal/stem cells (MSCs) were  fi rst discovered in bone 
 marrow and described as mononuclear cells that culture ex vivo as adherent colony-
forming unit  fi broblasts (CFU-F)  [  1–  3  ] . In the decades since, MSCs have been 
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identi fi ed from mesoderm-, endoderm-, and ectoderm-derived tissues, including 
mesodermal (trabecular bone  [  4  ] , synovium  [  5,   6  ] , cartilage  [  7  ] , fat  [  8,   9  ] , muscle 
 [  10,   11  ] , blood vessels, and tonsil  [  12  ] ), endodermal (e.g., thymus  [  13  ] ), ectodermal 
(e.g., skin  [  14  ] , hair follicle  [  15  ] , dura mater  [  16  ] , and dental pulp  [  17  ] ), and prena-
tal and perinatal tissues (umbilical cord  [  18  ] , umbilical cord blood  [  19  ] , and pla-
centa  [  20  ] ). Because they have been isolated from a wide range of tissues, MSCs are 
known by many different names in addition to the original “mesenchymal stem 
cells” coined by Arnold Caplan  [  21  ] , including mesenchymal stromal cells  [  22  ] , 
bone marrow stromal cells  [  23  ] , marrow-isolated adult multipotent inducible cells 
 [  24  ] , and multipotent adult progenitor cells  [  25  ] . MSCs have traditionally been 
thought of in terms of their multi-lineage differentiation potential, including osteo-
genesis, chondrogenesis, and adipogenesis  [  26  ] . Since their initial description, how-
ever, the inherent cell biology of MSCs has come into focus due to their emerging 
roles in a variety of physiological and pathological processes, and these will be the 
focus of this chapter.  

   Interactions Between MSCs and the Vasculature 

 There is strong evidence to suggest that MSCs occupy a perivascular niche in a 
variety of vascularized tissues, affording them a prime location for regulating vas-
cular events such as angiogenesis  [  27–  31  ] . Furthermore, numerous similarities have 
been described between MSCs and pericytes, a microvascular cell type analogous to 
the smooth muscle cells (SMCs) of macrovessels  [  31,   32  ] . For example, MSCs 
express pericyte markers and vice versa; cultured bovine pericytes are positive for 
STRO-1, an MSC marker  [  27  ] , and MSCs from the bone marrow express the peri-
cyte markers CD106 (vascular cell adhesion molecule-1(VCAM-1)), CD146 (mela-
noma cell adhesion molecule), and smooth muscle  a -actin  [  27,   28  ] . Dental pulp 
MSCs express the pericyte marker 3G5  [  27  ] , and murine MSCs are positive for two 
perivascular markers, SAB-1 and SAB-2  [  27  ] . Also, like pericytes, MSCs enhance 
vessel formation and stabilization through paracrine interactions  [  29,   30  ] , and both 
cell types display similar differentiation capabilities  [  31–  34  ] . 

 However, interactions between MSCs and endothelial cells (ECs), the primary 
cell type of the vasculature, have implications beyond basic biology. Due to their 
natural abilities to home to wound sites, suppress in fl ammation, and support local 
cells and tissue healing, MSCs show a great promise for inclusion in cell-based 
therapies. Since the majority of these therapies involve intravenous (IV) or intra-
arterial (IA) injection of MSCs into patients, the need to understand the interactions 
between MSCs and the vasculature becomes apparent. Indeed, current studies sug-
gest that, while the therapeutic potential of MSCs to positively bene fi t the wound 
environment is strong, dif fi culties arise in physically delivering IV- or IA-delivered 
MSCs to the sites of injury. These dif fi culties are due to the fact that the vast major-
ity of IV-injected MSCs embolize in the capillaries of the lungs  [  35,   36  ] . This pas-
sive arrestment of MSCs appears to be due to the large size of MSCs relative to the 
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small diameter of microvessels  [  35,   36  ] . Many of the trapped MSCs die, while a 
small number  fi rst spread out on the lumenal sides of microvessels before extrava-
sating to the perivascular niche  [  35  ] . However, substantial evidence exists that not 
all exogenous MSCs embolize at the precapillary level and that some actively home 
to sites of injury. For example, MSC homing to organs other than the lungs increased 
signi fi cantly in a mouse injury model, suggesting that MSCs exhibit higher engraft-
ment ef fi ciencies within sites of in fl ammation or injury  [  37  ] . These results also 
suggest that MSC engraftment to damaged tissues is an active process, while the 
presence of MSCs in the lungs is due to passive entrapment. These in vivo  fi ndings 
are linked to in vitro studies in which MSCs demonstrate increased adhesiveness for 
damaged ECs treated with proin fl ammatory cytokines and proapoptotic agents  [  38  ] . 
However, the most convincing evidence that MSCs actively home to injured tissues 
comes from studies employing receptor blocking/knockout methodologies. For 
example, MSC interactions with ECs under shear  fl ow were shown to be dependent 
upon EC-expressed P-selectin and VCAM-1 and MSC very late antigen-4 (VLA-4) 
 [  39,   40  ] . Prestimulating either MSCs or ECs with proin fl ammatory cytokines 
enhanced these interactions. On the other hand, blocking integrin  b 1 speci fi cally 
was shown to interfere with MSC myocardial engraftment  [  41  ] . Such studies pro-
vide information on the identity and mechanisms of action of the receptors involved 
in MSC homing to various organs and tissues. A summary of these interactions is 
provided in Table  10.1 .   

   Interactions Between MSCs and the Extracellular Matrix 

 Tightly wrapped around the vessels, pericytic MSCs also interact with another criti-
cal regulator of the vascular environment, the vascular basement membrane (VBM). 
The VBM is a specialized extracellular matrix (ECM) that surrounds the blood ves-
sels of the body and is regulated through a control system involving proteases, 
which alter and degrade the matrix, and protease inhibitors, which maintain and 
protect the VBM from disruption  [  51  ] . This interplay between proteases and pro-
tease inhibitors and its effects on the VBM profoundly in fl uences vessel stability 
and, hence, many physiological and pathological processes. For example, disrup-
tion of the VBM is an early step in angiogenesis  [  51–  57  ] . During tumor growth and 
metastasis, cancer cells secrete proteases that degrade the VBM, allowing new 
blood vessels to sprout and nourish the growing tumor  [  51,   55,   58  ] . These extrinsic 
factors potentially tip the balance between proteases and protease inhibitors toward 
vascular disruption. As residents of the perivascular niche, MSCs are in a prime 
location to alter their local environment by affecting this balance. 

 As stem cells multipotent for lineages of the musculoskeletal system, MSCs are 
profoundly in fl uenced by signals originating from their local environments, particu-
larly when it comes to differentiation. Effects on MSC differentiation are often 
tissue dependent  [  59  ] . There is evidence to suggest that this tissue-instructive dif-
ferentiation is actually supported by the tissue-speci fi c composition of the 
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   Table 10.1    Interactions between MSCs and the vasculature   

 Effects of MSC-produced factors on vasculature 

 Vascular cell 
type 

 Factor  Effect  References 

 ECs  Cysteine-rich protein 61 
(Cyr61) 

 Induces EC chord formation on 
Matrigel in vitro, induces 
Matrigel plug neovasculariza-
tion in athymic mice in vivo 

  [  42  ]  

 Apoptotic ECs  Unknown     ECs treated with 
proin fl ammatory cytokines 
and proapoptotic agents 
exhibited increases adhesion 
for MSCs in vitro 

  [  38  ]  

 ECs  Unknown  MSCs enhance and stabilize EC 
tubes on HFF feeder layers 
and on Matrigel in vitro 

  [  43  ]  

 ECs  MMPs  Enhance tube formation through 
high-density  fi brin gels in vitro 

  [  44  ]  

 ECs  P-selectin, VCAM-1/VLA-4  Mediate rolling and adhesion 
between MSCs and ECs 
under shear  fl ow. Adhesion 
increased when ECs were 
prestimulated with TNF- a  

  [  39  ]  

 ECs  VCAM-1 (NOT ICAM-1)  MSCs injected intraventrically 
adhered to ECs. Pre-
activation of MSCs with 
TNF- a  enhanced cardiac 
homing in a VCAM-
dependent process 

  [  40  ]  

 Heart  Unknown  MSCs promote wound repair and 
regeneration in damaged hearts 

  [  45–  50  ]  

 extracellular matrix  [  60–  68  ] . Indeed, interactions with various matrix molecules, 
including those derived from ECs, modulate MSC behavior and differentiation  [  61–
  76  ] . As part of the perivascular niche, MSCs are subjected to various signals origi-
nating from the vascular environment and the VBM. For example, proteolytic 
degradation alters the biological activity of a variety of these matrix molecules by 
revealing cryptic domains  [  77–  81  ] , releasing bioactive fragments  [  51,   72–  74,   79, 
  82–  92  ] , and liberating stores of matrix-bound and matrix-regulated growth factors 
 [  51,   83,   89,   93–  102  ] . Interestingly, MSCs secrete a variety of molecules that regu-
late matrix remodeling  [  29,   52,   55,   56,   67,   68,   103–  105  ] . 

 A speci fi c class of extracellular matrix-degrading metalloenzymes, the matrix met-
alloproteinases (MMPs), and their endogenous inhibitors, the tissue inhibitors of met-
alloproteinases (TIMP), are speci fi cally linked with VBM remodeling  [  106  ] . Of the 
approximately 26 currently recognized MMPs, several are of particular relevance to the 
perivascular environment  [  106  ] . For example, MMP-2 and MMP-9 are unique among 
MMPs in that they contain type II  fi bronectin domains, allowing them to bind gelatin, 
collagens, and laminin  [  107  ] . This allows MMP-2 and MMP-9 to bind intact matrix, 
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where they degrade gelatin as well as laminins and collagen type IV, the main matrix 
components of the VBM  [  56  ] . Furthermore, membrane type 1-MMP (MT1-MMP), 
working pericellularly, degrades a wide range of matrix molecules, including those of 
the VBM  [  107  ] . The TIMPs are the main MMP inhibitors, binding 1:1 stoichiometri-
cally with the MMP active-site cleft  [  107  ] . Four TIMPS (TIMP-1, TIMP-2, TIMP-3, 
and TIMP-4) have been identi fi ed  [  107  ] , and each TIMP is composed of distinct N- 
and C-terminal domains  [  108  ] . The N-terminal domains take part in the inhibitory 
actions, while the C-terminal domains mediate non-inhibitory complexes with MMPs. 
While the TIMPs as a group are largely speci fi c in their inhibition for MMPs over other 
proteases, each of the four TIMPs exhibit important differences among their binding 
properties for speci fi c MMPs. For example, the N-terminal domains of TIMP-2, TIMP-
3, and TIMP-4, but not TIMP-1, are potent inhibitors of MT1-MMP  [  108,   109  ] . 
Furthermore, the C-terminal domains of TIMP-2 and TIMP-4 bind the hemopexin 
domain of MMP-2, while TIMP-1 and TIMP-3 do not  [  54,   108,   109  ] . All MMPs are 
initially expressed as inactive zymogens and require proteolytic removal of N-terminal 
inhibitory pro-peptides for activation  [  56  ] . For example, proMMP-2 activation occurs 
at the cell surface in a process that requires TIMP-2 and active MT1-MMP  [  110  ] . The 
N-terminal domain of TIMP-2 binds to the active cleft of MT1-MMP on the surface of 
the cell, while the C-terminal domain binds to the proMMP-2 hemopexin domain  [  54  ] . 
ProMMP-2 is then activated though proteolytic processing by other, noncomplexed 
MT1-MMP. Only TIMP-2 is able to mediate the ternary complex proMMP-2/TIMP-2/
MT1-MMP. TIMP-4, which binds the hemopexin domain of proMMP-2 and potently 
inhibits MT1-MMP but does not support the ternary complex, competes with TIMP-2 
for proMMP-2 and MT1-MMP binding. 

 MSCs secrete high levels of TIMPs that stabilize vessels and protect the VBM 
from MMP-induced degradation  [  105  ] . MSC secretion of TIMPs and the conse-
quent vessel-protective properties of MSCs were sustained even under simulated 
disease conditions. This last feature was not exhibited by ECs, suggesting that 
MSCs, acting as robust sources of TIMP-1 and TIMP-2, are an important protective 
element of the perivascular niche from protease-mediated degradation.  

   Interactions Between MSCs and Immune System 

 Perhaps one of the most signi fi cant discoveries involving MSCs concerns their abili-
ties to suppress the immune system. The  fi rst such  fi ndings concerned the ability of 
MSCs to suppress T cell proliferation  [  111,   112  ] . While the exact mechanisms remain 
only partially known, cell-cell contact and soluble factors are thought to support vari-
ous levels of MSC suppression of T cells. For example, cell-cell signaling involving 
programmed death-1 (PD-1) has been found to mediate contact-driven MSC/T cell 
interactions  [  113  ] , while other studies have traced MSC immunosuppressive abilities 
to MSC-secreted factors, including transforming growth factor- b 1 (TGF- b 1), hepato-
cyte growth factor (HGF), soluble isoform of histocompatibility antigen, class I, G 
(HLA-G5), and indoleamine-pyrrole 2,3-dioxygenase (IDO)  [  112,   114–  117  ] . Still 
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other studies have focused on the involvement of proteases such as MMP-2 and MMP-
9, which cleave interleukin-2 receptors on the surface of T cells, in MSC modulation 
of T cell biology  [  118  ] . Importantly, the effects of MSCs on T cell proliferation do not 
appear to involve apoptosis, instead, MSCs promote T cell survival in a quiescent state 
 [  119  ] . The effects of MSCs on other types of T cells have also been investigated. For 
example, MSCs were found to decrease interferon-gamma (IFN- g ) production in type 
1 helper T cells (T 

H
 1 cells) and increase interleukin-4 (IL-4) secretion in type 2 helper 

T cells (T 
H
 2 cells), indicating a shift from a pro- to an anti-in fl ammatory state  [  120–

  122  ] . MSCs have also been shown to downregulate cell killing of cytotoxic T lympho-
cytes (CTLs) and to induce expansion of regulatory T cells (T 

Reg
  cells), both of which 

act to suppress immune system activity  [  114,   117,   123  ] . 
 Whatever the mechanism, the in fl uence of MSCs on the immune system is not 

restricted to T cells. Acting as links between the innate and adaptive immune sys-
tems, dendritic cells represent an important target of MSC modulation. MSCs have 
been shown to inhibit myeloid dendritic cell (DC) differentiation and impair the 
critical antigen-presenting functions of DCs  [  121,   124–  129  ] . MSCs also increase 
IL-10 secretion by plasmacytoid dendritic cells (pDCs), which ultimately promotes 
T 

Reg
  cell proliferation and immune system suppression  [  121,   128  ] . 

 Interactions between MSCs and natural killer (NK) cells is complicated by the 
 fi ndings that NK cells effectively lyse MSCs  [  130  ] . On the other hand, MSCs decrease 
NK cell cytokine secretion and interfere with the ability of NK cells to kill other cells. 
The susceptibility of MSCs to NK cell-mediated cytotoxicity is dependent upon the 
naturally low levels of major histocompatibility complex (MHC) class I expression 
in MSCs, and treatment with factors, such as IFN- g , that increase expression of MHC 
class I work to partially protect MSCs from NK cell-targeted killing. The relationship 
between MSCs and B cells is also dif fi cult to interpret due to con fl icting reports on 
the effects of their interactions. Most studies have found that MSCs, either through 
soluble factor or cell-cell contact, inhibit B cell proliferation and antibody production 
 [  113,   131,   132  ] , while others have demonstrated MSC support of B cell survival, 
proliferation, and differentiation. In the end, however, the interactions between MSCs 
and B cells may be secondary to the primary roles T cells play in the regulation of B 
cell activity. Indeed, several in vivo studies have detected reduced levels of antibodies 
and T cell activity, indicating that MSCs may modulate B cell antibody production 
in vivo via reduced proliferation of T cells  [  133  ] . 

 Perhaps one of the most interesting aspects of MSC interactions with the immune 
system is the high degree of back-and-forth cross-talk between them and other cells; 
often stimulation by immune cells is involved in activating MSC modulation of the 
same or different cells of the immune system. For example, IFN- g  released by 
immune cells triggers MSCs to release nitric oxide (NO) and IDO, which in turn 
inhibit immune cell activity and proliferation  [  122,   134,   135  ] . Similarly, IFN- g  and 
other cytokines stimulate MSC production of T cell-attracting chemokines and 
inducible nitric oxide synthase (iNOS), which inhibits T cell activation via NO 
 [  120,   122,   134,   136,   137  ] . 

 These interactions between MSCs and the immune system are summarized in 
Table  10.2 .   
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   Interactions Between MSCs and Cancer 

The topic of MSCs and cancer offers a good review of the various facets of MSC 
environmental interactions due to the wide range of physiologic and pathologic 
processes that underlies cancer progression (see Table   [10.3  ]   for a summary of these 
interactions). MSCs naturally home to sites of injury as part of the body’s natural 
wound healing response through their interactions with immune cells and the vas-
culature  [  31,   150  ] . These cellular activities are hijacked by cancer cells, which cre-
ate local environments that share many similarities with chronic, unresolved wounds. 
The abilities of MSCs to leave their perivascular niche and migrate toward tumors 
and sites of injury and metastasis have been well established  [  148,   150–  155  ] . Even 
exogenous MSCs injected into the circulation of animals with breast cancer tumors 
exhibit highly speci fi c migration to the tumor microenvironment  [  143  ] . This strong 
chemotactic response has been attributed to tumor-produced and tumor-induced 
in fl ammatory cytokines, such as platelet-derived growth factor (PDGF-BB), 

Table 10.3 Interactions between MSCs and cancer cells

Effects of MSC-produced factors on cancer

Cancer type Factor Effect References

Breast cancer cells CCL5 (RANTES) Increase motility, invasion, 
and metastasis

   [143  ] 

Renca adenocarcinoma or the 
B16 melanoma cell lines

unknown Low numbers of MSCs 
induced tumor rejection; 
higher numbers enhanced 
tumor progression

 [144  ] 

Kaposi’s sarcoma Cell-cell contact? 
(E-cadherin/Akt?)

MSCs inhibit tumor growth 
and AKT activation

 [145  ] 

Adenocarcinoma IL-6 Promote tumor growth  [146  ] 
Effects of cancer-produced factors on MSCs

Cancer type Factor Effect References

U87 and LN229 glioma 
cells

PDGF-BB Mediates MSC tropism for gliomas  [147  ] 

Breast cancer cells MCP-1 Responsible for MSC homing to 
tumors

 [148  ] 

Ovarian tumors LL-37 Recruit MSCs to tumors and induce 
MSC secretion of proangiogenic 
factors

 [149  ] 

Adenocarcinomas unknown Convert MSCs to TAFs  [146  ] 
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 monocyte chemotactic protein-1 (MCP-1), and the N-terminal peptide of human 
cationic antimicrobial protein 18 (LL-37)  [  147–  150  ] . Upon integrating with the 
tumor microenvironment, MSCs modulate tumor growth and metastasis, but the 
precise mechanisms remain unclear  [  156  ] . Most studies conclude that MSCs are 
overall pro-tumorigenic and promote cancer metastasis, but again the speci fi cs 
remain unresolved. For example, the MSC-secreted chemokine (C-C motif) ligand 
5 (CCL5) is reported to directly increase cancer cell motility, invasion, and metas-
tasis  [  143  ] , while other studies suggest MSCs play more indirect tumor-supporting 
roles by suppressing the immune system and promoting angiogenesis  [  144  ] . 
However, like the other areas of study concerning MSC environmental interactions, 
there exists a large degree of controversy. For example, several studies suggested 
that MSCs inhibit tumor growth through direct cell-cell contact  [  145  ] , while others 
found a biphasic response of MSCs on tumor progression, wherein MSCs either 
promoted or inhibited tumor development depending on the number of cells involved 
in the experiment and independent of direct contact between MSCs and tumor cells 
 [  144  ] . In another similarity to the trends seen in the other avenues of MSC interac-
tions, there also appears to be a great deal of back-and-forth cross-talk between 
MSCs and tumors. For example, exposure to cancer-secreted factors is reported to 
convert MSCs to tumor-associated  fi broblasts (TAFs). These TAFs act to promote 
tumor progression through secretion of IL-6  [  146  ] . Similarly, tumors produce 
LL-37, which recruits MSCs and induces their expression of pro-tumor and proan-
giogenic factors, including interleukin (IL)-6, IL-10, CCL5, vascular endothelial 
growth factor (VEGF), and MMP-2  [  149  ] 

     Filling in the Gaps: Areas for Potential Future Work 

 The vast majority of interactions between MSCs and their microenvironment remain 
largely unstudied and poorly characterized. Among these areas of future study, sev-
eral connections have been outlined in separate studies, and future work needs only 
connect the dots. In the most common examples, a group of studies describe MSC 
production of a particular factor, while a distinct pool of  fi ndings describes the 
response to the same factor in some other cell type. Connecting these two seemingly 
unrelated areas of study would surely yield some interesting  fi ndings. Table  10.4  
summarizes a number of possible considerations. For example, the antiangiogenic 
properties described for the TIMPs are noteworthy. Several independent research 
groups have found that TIMP-1, TIMP-2, and TIMP-3 inhibit angiogenesis  [  157–
  161  ] . At least in the cases of TIMP-2 and TIMP-3, these antiangiogenic properties 
appear to result from inhibition of signaling between receptor tyrosine kinases 
(RTKs) and growth factors, either by competing with the growth factors for receptor 
binding  [  160  ]  or through interactions with third-party cell surface receptors  [  158, 
  159  ] . Angiogenesis is an important step in cancer development, and at least TIMP-1 
has been shown to slow tumor development through interfering with angiogenesis 
 [  157  ] . When one considers the fact that MSCs secrete high levels of functionally 
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activeTIMP-1 and TIMP-2  [  105  ] , it begs investigating whether MSCs affect angio-
genesis and cancer development via TIMPs.  

 MSCs are also known to secrete proteases with demonstrated regulatory roles in 
breast cancer tumor progression  [  51,   56,   152  ] . For example, proteases facilitate the 
changes in cell-cell contacts exhibited by breast cancer cells as they transform from 
normal breast epithelial cells to malignant migratory cells. This epithelial to mesen-
chymal transition is highly regulated by E-cadherin, a homotypic cell-cell adhesion 
molecule that facilitates normal epithelial cell contacts and whose continued expres-
sion inhibits breast cancer metastasis  [  169  ] . As breast cancer cells become malig-
nant, E-cadherin is degraded by proteases, weakening interactions between cancer 
cells and the surrounding tissue and releasing E-cadherin fragments that signal 
breast cancer cells to migrate  [  170  ] . MMP-7 and MMP-3, proteases secreted by 
MSCs, are known to degrade E-cadherin  [  106  ] . Thus, the effects of MSCs on cancer 

   Table 10.4    Potential areas of future study   

 Factors produced by MSCs 

 Factor  Effect  Proposed connection 

 TIMP-1  Inhibits tumor growth and 
angiogenesis  [  157  ]  

 Does MSC-secreted TIMP-1 affect 
tumor progression? 

 TIMP-2  Interacts with integrin  a 3 b 1 and 
inhibits RTK-growth factor 
signaling, including angiogenic 
FGF and VEGF signaling in 
endothelial cells  [  158,   159  ]  

 Is MSC-secreted TIMP-2 an autocrine 
and/or paracrine inhibitor of 
growth factor signaling? 

 TIMP-3  Blocks VEGF binding to KDR and 
inhibits downstream signaling 
and angiogenesis  [  160  ] . Inhibits 
VEGF- and FGF-induced 
chemotaxis and FGF-induced 
angiogenesis  [  161  ]  

 Does MSC-secreted TIMP-3 inhibit 
angiogenesis? 

 MMP-3, MMP-7  Induce cancer cell metastasis by 
degrading E-cadherin 

 Do MSC-secreted MMPs promote 
cancer development? 

 Factors produced by other cells 

 Factor  Effect  Proposed connection 

 Exosomes  Discharge of  b -catenin and 
suppression of  b -catenin-
mediated Wnt signaling 
 [  162  ]  

 Could MSCs receive/lose 
 b -catenin via exosomes? 

 Exosomes  Transfer mRNAs and 
microRNAs between cells 
 [  163  ]  

 Could MSCs receive/send 
RNA from/to other cells 
via exosomes? 

 EC- and cancer cell-derived 
microparticles 

 Bind proteases, including 
plasmin and MMPs, at 
their surfaces  [  164–  167  ]  

 Could microparticles transfer 
MMPs from cancer cells to 
MSCs? 

 Immune cell-derived 
microparticles 

 Induced expression of select 
MMPs and cytokines in 
synovial  fi broblasts  [  168  ]  

 Do microparticles affect MSC 
MMP/cytokine 
production? 
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metastasis through degradation of E-cadherin contacts remain a potential topic of 
study. 

 One of the most interesting, and often overlooked, areas of study involving 
 interactions between cells and their environment centers on microparticles    and exo-
somes   . Both microparticles and exosomes are membrane vesicles that are released 
into the extracellular environment by a variety of cell types  [  171–  177  ] . Microparticles 
and exosomes differ in size (50–1,000 nm in diameter for microparticles  [  171,   178  ] , 
50–100 nm for exosomes  [  179  ] ) and in composition and origin. Exosomes are 
enriched in tetraspanins, milk fat globule-EGF factor 8 (MFG-E8), and MHC class 
II molecules  [  180  ] , while microparticles are associated with their own set of mark-
ers, including MMPs  [  164,   181  ] ). Microparticles, also known as ectosomes, are 
formed directly by ectocytosis  [  171,   177,   181  ] , whereas exosomes originate from 
multivesicular bodies (MVBs) that result when endosomes bud inwardly into their 
lumens  [  182–  184  ] . Exosomes are released as MVBs fuse with the plasma mem-
brane and release their intraluminal vesicles. Both are distinct from apoptotic bod-
ies, which are larger (1–4  m m), formed at the end of apoptosis, and are usually 
immediately taken up by macrophages  [  185,   186  ] . 

 Both microparticles and exosomes contain membrane and cytosolic components 
that can be transferred from one cell to another as the particles are released and fuse 
with neighboring cells. For example, exosomes released by human mast cell lines 
are capable of transferring mRNAs and microRNAs to other mast cells. Once inside 
the recipient cell, this “exosomal shuttle RNA” (esRNA) is functional and affects 
cell behavior  [  163  ] . While the effects of esRNA on MSCs have yet to be considered, 
given the various cell types that MSCs interact with, the implications of MSCs 
receiving functional RNA from neighboring cells are very interesting. 

 Exosomes have also been shown to discard membrane and cytosolic proteins 
 [  162,   176  ] . For example, release of  b -catenin from cells via exosomes has been 
shown to suppress  b -catenin-mediated Wnt signaling. While this study did not con-
sider intercellular transfer of  b -catenin via exosomes, the notion is intriguing con-
sidering the importance of Wnt/ b -catenin signaling in MSC biology; activation of 
canonical Wnt signaling in MSCs, which is mediated via  b -catenin, is reported to 
keep the stem cells in a self-renewing and undifferentiated state and suppress adipo-
genesis and early osteogenesis and late chondrogenesis  [  187–  190  ] . However, other 
reports describe activation of myogenesis and late-stage osteogenesis by canonical 
Wnt signaling in MSCs  [  191–  193  ] , and effects on chondrogenesis appear to be 
largely dependent on the speci fi c Wnt ligand and the developmental state when Wnt 
is engaged  [  194–  198  ] . Clearly, Wnt signaling is closely regulated in MSCs, and the 
shuttling of  b -catenin via exosomes may represent a previously unexplored avenue 
by which MSC Wnt/ b -catenin signaling is in fl uenced by surrounding cells. 

 Formed by budding of the plasma membranes, microparticles contain a wide range 
of membrane-associated proteins. For example, microparticles have been shown to 
mediate the intracellular transfer of the chemokine receptor CCR5. While no study 
has focused on the transfer of membrane proteins to MSCs as of yet, the possibility is 
intriguing. For example, transfer of exogenous receptors to MSCs by microparticles 
could in fl uence how MSCs respond to both autocrine and paracrine factors. 
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Furthermore, microparticles derived from cancer cells and ECs contain proteases 
 [  164–  167  ] , and EC microparticles have been shown to bind MSC-secreted MMPs 
 [  164  ] . Transfer of these proteases to the surfaces of MSCs could have profound effects 
on MSC migration and tissue invasion. Microparticles have also been shown to signal 
changes in cell behavior, such as induction of MMPs and cytokine expression in syn-
ovial  fi broblasts  [  168  ] . This brings up the interesting possibility of microparticles and 
exosomes mediating long-range cell-cell interactions. Both microparticles and exo-
somes have been shown to display cell adhesion molecules, including E-, N-, and 
VE-cadherin; P-selectin; and integrins  [  162,   164,   180,   199  ] . Signaling through such 

  Fig. 10.1    MSC environmental interactions. MSCs in fl uence, and are in fl uenced by, a variety of 
cells, matrix molecules, and cytokines as they home to wound sites. Within the vasculature, MSCs 
interact with ECs, particularly those activated by the wound environment. MSCs also secrete fac-
tors that affect blood vessel structure and promote angiogenesis by regulating the extracellular 
matrix of the VBM. At the wound site, MSCs suppress the immune system by regulating the pro-
liferation and activation of various immune cells. If cancer is present at the wound site, cross-talk 
between cancer cells and MSCs may potentiate tumor growth and metastasis (see text for abbrevia-
tions and detailed descriptions)       
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molecules are usually restricted to cells in direct physical contact with one another, 
but perhaps microparticles/exosomes provide a means for MSCs to interact with the 
surface receptors shed from other cells over longer distances.  

   Conclusion 

 The current understanding of the interactions between MSCs and their environment 
strongly suggests a dynamic relationship in which cells alter their surroundings and 
vice versa (Fig.  10.1 ). Studying these interactions has demonstrated unique attri-
butes in MSCs that threaten to overshadow their differentiation capabilities as their 
most therapeutically important characteristics. Indeed, two of the most exciting 
properties of MSCs were discovered by considering their interactions with other 
cell types. These include the abilities of MSCs to home to sites of injury and to sup-
press the immune system. Several clinical trials involving MSCs that exploit the 
potential bene fi ts of these properties have already concluded. These studies showed 
that IV delivery or direct injection of MSCs into patients with hematological pathol-
ogies, heart diseases, or cancer/chemotherapy represents a viable form of therapy 
with reduced chances of toxicity and adverse reactions. Furthermore, many studies 
observed improved healing in patients, with a variety of disorders, that were treated 
with MSCs. Taking into consideration that the majority of infused MSCs embolize 
in the lungs, these results suggest that lung-engrafted MSCs are still able to effect 
systemic healing in remote tissues. Perhaps the most interesting clinical results 
involving MSC-based therapies to promote wound repair and tissue regeneration 
concern cardiovascular diseases of the heart. Given the results of such studies dem-
onstrating the proangiogenic capabilities of MSCs, the exact mechanism by which 
therapeutic MSCs effect improvements in impaired hearts and other wounded tis-
sues is probably multipronged. Future research will be needed to tease apart the 
intricacies of these speci fi c interactions and also to address potential side effects of 
MSC-based therapies, particularly those related to cancer and immunosuppression. 
The study of MSC and their environmental interactions thus holds the promise of 
generating therapies virtually impossible by any other means.       
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