
Chapter 18

Remote Sensing of Ocean Color

Heidi M. Dierssen and Kaylan Randolph

Glossary

Absorption, a(l) The fraction of a collimated beam of photons in

a particular wavelength (l), which is absorbed or

scattered per unit distance within the medium (units

1/length or m�1). Photons which are absorbed by

ocean water alter the spectral distribution of light

that can be observed remotely.

Apparent optical

properties (AOP)

Optical properties which depend primarily on the

medium itself but have a small dependence on the

ambient light field. Typically, AOPs are derived

from measurements of the ambient light field, particu-

larly upwelling and downwelling radiance and irradi-

ance. Principal AOPs include irradiance reflectance,

remote sensing reflectance, and the diffuse attenuation

coefficients.

Backscattering, bb(l) Light of a particular wavelength (l) that is scattered in
a direction 90–180� away from its original path (i.e.,

backward hemisphere). Backscattered light is what is

measured as ocean color in remote sensing, namely,

downward propagating sunlight that has been

redirected back toward the sea surface and out into

the atmosphere. For natural waters, only a few percent

of the light entering the ocean is backscattered out.
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Colored or chromophoric

dissolved organic

material (CDOM)

CDOM is yellow-brown in color and absorbs primarily

ultraviolet and blue light decreasing exponentially

with increasing wavelength. Produced from the

decay of plant material, it consists mainly of humic

and fulvic acids and is operationally defined as

substances that pass though a 0.2 mm filter.

Diffraction Light which propagates or bends along the boundary

of two different mediums with different indices of

refraction.

Diffuse attenuation

coefficient, K(l)
A normalized depth derivative that describes the rate

of change of light, plane incident irradiance,

with depth. Sunlight underwater typically decreases

exponentially with depth.

Index of refraction

(real), n
The speed of light in a medium, cmed, relative to the

speed of light in a vacuum, cv expressed as n ¼ cv=
cmed. The real index of refraction determines the scat-

tering of light at the boundary between two different

mediums and within the medium from thermal and

molecular fluctuations. The relative refractive index,

n0, is the ratio of the speed of light within the medium,

cm, to the speed of light within a particle, cp. As n0

deviates from 1, the scattering caused by the particle

increases for a general size and shape particle (e.g.,

minerals and bubbles).

Inherent optical

properties (IOP)

Optical properties which depend on the medium itself

and are independent of the ambient light field. IOPs

are defined from a parallel beam of light incident on

a thin layer of the medium. Two fundamental IOPs are

the absorption (a) and the volume scattering coeffi-

cient (b), which describe how light is either absorbed

or directionally scattered by ocean water.

Irradiance

(downward planar),

Ed(l)

The incremental amount of radiant energy per unit

time (W) incident on the sensor area (m�2) from all

solid angles contained in the upper hemisphere,

expressed per unit wavelength of light (l, nm�1).

This is used to measure the amount of spectral energy

from the sun reaching the sea surface.

Irradiance

reflectance, R(l)
The ratio of the upwelling irradiance, Eu(l), to the

plane downwelling irradiance, Ed(l), in different

wavelengths (l).
Optical depth, z A measure of how opaque a medium is to radiation.

The optical depth is a function of the geometric depth

and the vertical attenuation coefficient.

Optically shallow

waters

An aquatic system where the spectral reflectance off

the bottom contributes to radiance measured above the

sea surface and is defined by the water clarity, bottom

depth, and bottom composition.
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Photosynthetically

available radiation (PAR)

The integrated photon flux (photons per second per

square meter) within the 400–700 nm wavelength

range at the ocean surface. PAR is the total energy

available to phytoplankton for photosynthesis and is

reported in units of Q m�2 s�1, where Q is quanta, or

in mE m�2 s�1, where E is Einsteins.

Radiance, L(l) The incremental amount of radiant energy per unit

time (in Watts) incident on the sensor area (m�2) in

a solid angle view (sr�1) per unit wavelength (l) of
light (nm�1). A satellite measures radiance.

Reflection At the boundary of two different mediums with

different indices of refraction, a certain amount of

radiation is returned at an angle equal to the angle

of incidence.

Refraction The direction of light propagation changes, or is bent,

at the boundary between two mediums with different

indices of refraction. The refracted light bends toward

the normal boundary when the index of refraction

increases from one medium to another and away

from the normal boundary when the index of refrac-

tion decreases from one medium to another.

Remote sensing

reflectance, Rrs(l)
A specialized ratio used for remote sensing purposes

formulated as the ratio of the spectral water-leaving

radiance, Lw(l), to the plane irradiance incident on the
water, Ed(l). It represents the spectral distribution of

sunlight penetrating the sea surface that is

backscattered out again and potentially measured

remotely. Theoretically, it is proportional to spectral

backscattering bb(l) and inversely proportional to

absorption a(l) of the surface water column.

Water-leaving

radiance, Lw(l)
The component of the radiance signal measured

above the water consisting of photons that have penet-

rated the water column and been backscattered out

through the air-sea interface. It does not include photons

reflected off the sea surface, also called sun glint.

Definition of the Subject, Relevance, Motivation

The oceans cover over 70% of the earth’s surface and the life inhabiting the oceans

play an important role in shaping the earth’s climate. Phytoplankton, the micro-

scopic organisms in the surface ocean, are responsible for half of the photosynthesis
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on the planet. These organisms at the base of the food web take up light and carbon

dioxide and fix carbon into biological structures releasing oxygen. Estimating the

amount of microscopic phytoplankton and their associated primary productivity

over the vast expanses of the ocean is extremely challenging from ships. However,

as phytoplankton take up light for photosynthesis, they change the color of the

surface ocean from blue to green. Such shifts in ocean color can be measured from

sensors placed high above the sea on satellites or aircraft and is called “ocean color

remote sensing.” In open ocean waters, the ocean color is predominantly driven by

the phytoplankton concentration and ocean color remote sensing has been used to

estimate the amount of chlorophyll a, the primary light-absorbing pigment in all

phytoplankton. For the last few decades, satellite data have been used to estimate

large-scale patterns of chlorophyll and to model primary productivity across the

global ocean from daily to interannual timescales. Such global estimates of chloro-

phyll and primary productivity have been integrated into climate models and

illustrate the important feedbacks between ocean life and global climate processes.

In coastal and estuarine systems, ocean color is significantly influenced by other

light-absorbing and light-scattering components besides phytoplankton. New

approaches have been developed to evaluate the ocean color in relationship to

colored dissolved organic matter, suspended sediments, and even to characterize

the bathymetry and composition of the seafloor in optically shallow waters. Ocean

color measurements are increasingly being used for environmental monitoring of

harmful algal blooms, critical coastal habitats (e.g., seagrasses, kelps), eutrophica-

tion processes, oil spills, and a variety of hazards in the coastal zone.

Introduction

Remote sensing of ocean color allows for the estimation of phytoplankton biomass

and carbon fixation over the global ocean. From these data, approximately half of

the global carbon fixation is estimated to occur by ocean phytoplankton, accounting

for roughly 50 Gt C year�1 [1, 2]. Phytoplankton are the base of the marine food

web, responsible for producing organic carbon from carbon dioxide. The premise

behind ocean color remote sensing is to relate the intensity and spectral distribution

of visible light reflected out of the water (“ocean color”) to the biological and

biogeochemical processes that influence the optical properties of the water column

(“bio-optical properties”) [3]. The distribution, abundance, and temporal variation

in various biological, physical, and chemical processes can be observed synopti-

cally from local and regional to global spatial scales from sensors placed on

satellites or aircraft. Ocean color remote sensing provides the long-term, continuous

time series of phytoplankton biomass and productivity data necessary for global

carbon cycle and climate research [4–6], but the uses of ocean color data are

increasingly diverse from military to environmental monitoring applications [7].

Phytoplankton have a marked influence on the subsurface and emergent light

field [8]. The light harvesting systems of phytoplankton, including the chlorophyll a
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pigment which is ubiquitous among phytoplankton species, absorb light across the

visible spectrum and influence the color of the near-surface ocean [9]. An increase

in absorption, or reduction in reflectance, in the blue relative to the green portion of

the spectrum can be empirically related to chlorophyll a concentration [10]. In other
words, as phytoplankton are added to the water column, more blue light is absorbed

and the reflected color changes from blue to green. The advent of space-based ocean

color sensors in 1978 with NASA’s Coastal Zone Color Scanner (CZCS) and the

follow on Sea-viewing Wide Field of View Sensor (SeaWiFS) in 1997 greatly

enhanced the understanding of phytoplankton distribution and concentration in the

ocean [11]. Satellite ocean color imagery provides estimates of phytoplankton

abundance across all ocean basins (Atlantic, Pacific, Indian, Arctic, and Southern

Oceans) and quantifies the variability from seasonal to interannual timescales.

Over the last several decades, ocean color has expanded beyond chlorophyll and

a whole field has emerged to study how the nature of the upwelling light field

changes as a function of the quantity and composition of a variety of constituents in

the near-surface ocean, including biogenic and nonbiogenic inorganic material,

nonliving and living organic material (i.e., phytoplankton, bacteria and viruses),

dissolved substances, and benthic habitats. Ocean color research has sought to

define the fundamental relationship between the inherent optical properties of the

ocean, or the absorption and scattering properties of the constituents, and water-

leaving radiance. With improved technology, including radiometers with better

spectral resolution, calibration, and a high signal-to-noise ratio, and in situ optical

instrumentation, which provided a description of the optical properties of oceanic

constituents, biogeochemical parameters are being estimated with greater accuracy

and precision. Ocean color remote sensing has moved beyond estimations of

chlorophyll alone and is now used to measure total suspended sediment, colored

dissolved organic material, particulate inorganic carbon, and phytoplankton func-

tional groups, as well as critical habitats and hazards influencing pelagic and coastal

waters.

Optical Properties of the Water Column

Scattering and absorption of photons, the basic unit of light energy, in the surface

ocean determines the intensity and spectral shape of the water-leaving light signal

measured at an ocean color sensor. Photons that propagate into the ocean interact

with water molecules, dissolved and particulate matter and are either absorbed or

scattered. Because most of the light is propagated downward into the water column,

only a small amount of the signal is scattered back out of the water column and

measured remotely. The bulk optical properties of water are used to describe how

the spectral and directional distribution of photons is altered within the natural

water body.
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Inherent Optical Properties

The absorption and scattering properties of water molecules and the dissolved and

particulate constituents within the water are called inherent optical properties

(IOPs). IOPs do not depend on the ambient light conditions, but are a function of

the medium alone. The two IOPs commonly used for remote sensing purposes

include the absorption (a) and scattering (b) coefficients, which refer to the fraction
of incident light, a single, narrow, collimated beam of photons, which is absorbed or

scattered per unit distance within the medium (units 1/length or m�1). The scatter-

ing coefficient stems from the volume scattering function (b), which is the differ-

ential scattering cross section per unit volume per solid angle, and is calculated as

the integral over all directions (0–180�). The attenuation coefficient (c) accounts for
the reduction in light intensity due to absorption and scattering processes combined.

Both absorption and scattering processes can change the color of the ocean as

observed from a satellite. Oceanic constituents that are primarily responsible for

absorption of photons include water molecules, phytoplankton pigments, particulate

detritus, and colored or chromophoric dissolved organic material (CDOM)

(Fig. 18.1). Pure water is increasingly effective at absorbing light at wavelengths

greater than 550 nm and absorbs minimally in the blue and green portion of the

visible spectrum. Conversely, CDOM, operationally defined as all of the colored

material that passes through a 0.2 mm filter, absorbs maximally in the ultraviolet and

blue portion of the spectrum, decreasing exponentially with wavelength at a rate

which is related to the composition, or degradation state, of the material. CDOM is

generally comprised of humic and fulvic acids and small colloidal material released

through the degradation of plant tissue, whether in soils or in water [12, 13].

Commonly, CDOM is modeled with an exponential function, but a hyperbolic

model may be more accurate [14]. Nonliving particulate material, called detritus or
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tripton, absorbs in a manner similar to CDOM and the two components are difficult to

differentiate spectrally.

Phytoplankton absorb light in a complex manner related to the composition and

quantity of their photosynthetic pigments, molecules structured to absorb photons

within the visible range of 400–700 nm, dubbed photosynthetically available
radiation or PAR. There are three distinct classes of pigments, namely,

chlorophylls, carotenoids, and biliproteins [101]. All phytoplankton contain chlo-

rophyll a and most contain chlorophylls b and/or c. Chlorophylls a, b, and c have
two strong absorption bands in the red and blue portions of the spectrum. Chloro-

phyll a absorption is low in the green (450–650 nm) portion of the spectrum. The

presence of chlorophylls b and c extend the range of light available for photosyn-

thesis further into both the short- and regions. Carotenoids, of which there are many

types, have both light harvesting and photoprotective functions. Finally, some

phytoplankton contain red or blue pigments called biliproteins, which are divided

into classes based on the position of their absorption peaks. The phytoplankton

absorption coefficient describes the spectral absorption for natural waters

comprised of mixtures of phytoplankton and has been commonly parameterized

by chlorophyll concentration and dominant cell size [15, 16].

Scattering processes, which include refraction, reflection and diffraction, occur
at the boundary of a particle with a different index of refraction, the ratio of the speed
of light in the surrounding medium to the speed of light within the particle, than the

surrounding medium. Scattering is predominantly elastic, the energy of the photon is

conserved, but the direction of propagation is altered. Rather than reducing light,

scattering works to inhibit the straight-path vertical penetration of light. The total

scattering coefficient (b) can be subdivided into light which scatters in the forward

direction (bf) (0–90�) and the backward direction (bb) (90–180�) relative to the

unattenuated beam. The backscattered light is the radiance that is scattered out of

the water column and measured by a sensor as “ocean color.” The magnitude of bb
is a function of the concentration, composition (i.e., index of refraction), shape, and

size of particles [17].

Water molecules, salts, organic and inorganic particles, and bubbles provide

strong contributions to light scattering in the ocean. Scattering by pure water is the

result of density fluctuations from the random motion of water molecules and has

a wavelength dependence of l�4 [18]. The presence of salt increases scattering,

where pure seawater, with a salinity of 35–38‰, scatters 30% more light than pure

water devoid of salt. When particles are present, as in natural waters, scattering

increases markedly [19]. The scattering coefficient for the clearest surface waters is

an order of magnitude greater than that of pure seawater. Particles that are large

relative to the wavelength of light scatter mainly in the forward direction via diffrac-

tion, where photons propagating along the particle boundary change their direction in

response to the boundary in a manner proportional to the cross-sectional area of the

particle. Photons entering large particles are likely absorbed. Conversely, small

particles mainly reflect and refract light in a manner proportional to the

volume of the particle. Small particles with an index of refraction that deviates

markedly from 1, including micron (10�6 m)-sized calcium carbonate plates or
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coccoliths generated by coccolithophorid phytoplankton (n0 = 1.25) or bubbles (n0 =
0.75), are highly efficient at scattering light in the backward direction [17].

The processes of absorption and scattering are considered additive, therefore the

sum of the contribution of each constituent determines the magnitude of the total

coefficients at and bt. As such, IOPs are separated into operationally defined

components which comprise a and bb:

at ¼ aw þ aph þ ad þ ag; and

bbt ¼ bbw þ bbp

where the subscripts correspond to water (w), algal or phytoplanktonic (ph), non-
algal or detrital (d) matter, and dissolved material, originally termed “gelbstoff” (g).
Dissolved material does not scatter light and the contributions of both algal and

non-algal matter are generally consolidated into backscattering from particulate (p)
material. Recent advances in optical instrumentation have allowed for the measure-

ment of absorption and scattering properties in situ and contributed to advances in

ocean color remote sensing [20].

Apparent Optical Properties

Measurements of how light of different wavelengths attenuates with depth in the

water column have been the historical basis of optical oceanography [21] following

from the use of white Secchi disks to estimate water clarity. The properties that can be

derived from measurements of ambient light in the water column are generally

termed “apparent” optical properties (AOP) because they operate as optical

properties describing the fundamental properties of the medium with only a slight

dependence on the angular distribution of the light field. Spectral radiance, L, is the
fundamental radiometric quantity which describes the spatial, temporal, directional,

and wavelength-dependent structure of the light field in units of radiant flux per area

per wavelength per solid angle (W m�2 nm�1 sr�1) [18]. Planar downwelling

irradiance, Ed, is a measure of the radiant energy flux incident on the surface from

all directions or solid angles contained in the upper hemisphere, with units of radiant

flux per unit area per unit wavelength (W m�2 nm�1). The same concept, applied to

the lower hemisphere, describes upwelling irradiance, Eu. The ratio of the upwelling

to downwelling irradiance yields irradiance reflectance, R, a measure of how much

light of a certain wavelength entering the ocean is scattered backward by ocean

molecules and particles.

For remote sensing purposes, only the radiance from a specific direction is

measured by a sensor, not the entire upwelling irradiance. Hence, the color is

parameterized as remote sensing reflectance (Rrs, sr
�1), which is the ratio of

water-leaving radiance to downwelling irradiance. The term “water-leaving radi-

ance” represents the radiance signal emerging from the water column in a nadir
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direction and specifically excludes those upward-directed photons that have only

reflected off the sea surface and not penetrated the water column (i.e., sun glint).

The term Rrs represents the proportion of the downwelling light incident on the

water surface that is returned through the air-water interface in the nadir direction

due to differential absorption and scattering processes. The parameter Rrs is pro-

portional to backscattering coefficient and inversely proportional to absorption

coefficient and can be approximated as:

Rrs ¼ f

Q

bb
ðaþ bbÞ

where the ratio f/Q is related to the bidirectionality of the light field and varies from

0.09 to 0.11 for most remote sensing applications [22].

The rate of change of radiance and irradiance with depth, known as the vertical

diffuse attenuation coefficient (K; m�1), is another principle AOP. Irradiance and

radiance decrease approximately exponentially with depth. The downward diffuse

attenuation coefficient, Kd, the rate of decrease in downwelling irradiance, Ed(0),

with depth (z),

EdðzÞ ¼ Edð0Þe�Kdz

is commonly used in biological studies and is closely linked to the absorption

coefficient of the medium specifically. The optical depth, z, corresponding to any

given physical depth is defined below:

z ¼ Kdz

Optical depths frequently used by biologists include 2.3 and 4.6, corresponding

to the 10% and 1% light levels, respectively. Also, the portion of the surface water

column contributing 90% of the water-leaving radiance has a depth, z, described by
z ¼ 1=Kd [12]. The radiative transfer equation is the mathematical formulation that

defines the relationship between the apparent and inherent optical properties of

natural water bodies [18] and is the basis for the semi-analytical models used in

ocean remote sensing.

Basics of Ocean Color Remote Sensing

Many challenges are inherent to remote sensing of ocean color. In comparison to

land, the ocean target is dark, with an albedo of only a few percent. This means

that most of the light that enters the water is propagated downward into the water

column and only a few percent is scattered back out again. This is quite different

from land and ice surfaces which have a much higher albedo. Most ocean color
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sensors are passive in that they measure only the radiation that originates from the

sun, as opposed to active sensors that produce and sense their own stream of light

(e.g., Light Detection and Ranging or LIDAR). Viewed from space, moreover, the

ocean is observed through a thick atmosphere which reflects sunlight back to the

sensor and is significantly brighter in the visible wavelengths than the water itself.

In technical terms, this is quantified as a low signal-to-noise ratio where the

“signal” is the light reflected from within the ocean and the “noise” is light

reflected from the atmosphere and sea surface. This section outlines the platforms,

calibration, atmospheric correction, and levels of data processing critical for

successful ocean color remote sensing.

Sensors and Platforms

Ocean color sensors can be mounted on space-based satellites or on suborbital

platforms like aircraft or unmanned aerial vehicles. The spatial and temporal

sampling and the questions that can be addressed with the data depend on the

type of platform employed. Most current ocean color sensors have a wide field of

view, which translates to a wide sampling swath, and are mounted on sun synchro-

nous polar-orbiting satellites (e.g., CZCS, SeaWiFS, MODIS Aqua and Terra).

These sensors have the potential to provide global coverage of the earth roughly

every 3 days at the equator and more frequently at the poles. However, clouds

obscure the ability of the sensor to view the ocean color and, in reality, temporal

sampling for any given region is much less. Data are frequently averaged over

longer time periods to produce weekly, monthly, and seasonal composite images of

the global ocean (Fig. 18.2). The spatial resolution is also limited nominally to 1 km

pixel widths (and down to 250 m for select channels) in these polar-orbiting sensors

in part because of limitations in signal-to-noise inherent to the dark ocean surfaces

(see atmosphere correction below). Global datasets are often aggregated to 4-km or

9-km pixels. However, higher spatial resolution on the scale of meters can be

obtained from some space-based platforms and from ocean color sensors placed

on aircraft (Fig. 18.3).

The current suite of ocean color sensors has nominally six to seven spectral

bands spanning the visible wavelengths (400–700 nm). These bands are not spread

uniformly across the visible spectrum, but have been selected to correspond to

reflectance characteristics of open ocean waters, particularly those related to phy-

toplankton pigment absorption features. Three bands are generally found in the

“blue” (near 410, 440, and 490 nm), one to two bands in the “green”

(510 or 530, 560 nm), and one to two channels in the “red” (670, 680 nm). In

addition, channels are also incorporated in the near infrared (NIR) to short-wave

infrared (SWIR) for purposes of atmospheric correction (see section “Atmospheric

Correction”). Most of the visible channels were selected to match absorption

features of phytoplankton and other constituents. Additional channels are also

needed to bridge the large 100 nm gap between 560 and 670 nm, where absorption
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features are dominated by water, to better constrain backscattering in complex

coastal waters [23, 24]. New technology has allowed for the development of sensors

that span the full range of visible and near infrared (NIR) spectrum or

“hyperpsectral,” also referred to as imaging spectrometers.

No single platform is ideal for addressing all of the temporal and spatial

variability in the oceans. A constellation of ocean color imagers with complemen-

tary capabilities and specifications is ultimately required to adequately address the

diverse requirements of the coastal research and applied user communities. For

example, the Hyperspectral Imager for the Coastal Ocean (HICO) was recently

installed on the International Space Station for the study of the coastal ocean and

adjacent lands. This imaging spectrometer is intended to provide hyperspectral

imagery at 100-m resolution sampling at different angles and times of the day for

selected regions. Sensors are also being considered for placement on geostationary

satellites, similar to the international constellation of meteorological satellites. Such

sensors would look at the same regional location on earth for extended periods of

time and be able to provide better temporal resolution of ocean processes and

episodic hazards. Regional efforts such as the Geostationary Ocean Color Imager

(GOCI) on the COMS-1 platform from South Korea are already planned for launch.

In addition, higher spatial and spectral resolution polar orbiting sensors are pro-

posed to address questions related to seasonal variability in global coastal habitats

and polar ice cover.

Portable sensors flown on aircraft or unmanned aerial vehicles (UAV’s) provide

a critical sampling niche distinct from satellite-borne sensors that is particularly well

Daily

Monthly Seasonal

8-Day

a

c

b

d

Fig. 18.2 Global maps of satellite-derived chlorophyll showing increasing levels of temporal

resolution from daily to seasonal. Imagery from MODIS Aqua satellite from 2006: (a) 17

December; (b) 11–17 December; (c) 1–31 December; (d) Autumn. White spacing in imagery

represents gaps in orbital coverage (daily image), as well as clouds and ice cover. Merging of

imagery from different sensors can provide enhanced daily coverage [100]
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suited for coastal applications and ice research (Fig. 18.3a) [25]. Airborne sensors can

sample at finer spatial scales (meters), can operate under clouds and with nearly

unlimited repeat coverage, and are effective platforms for high-resolution active

sensors (e.g., LIDAR). Flight lines and scanning geometries can also be oriented to

10 m – Aircraft

a

~1 km – Satellite

9 km – Satellite4 km – Satellite

log Chlorophyll a (mg m–3)

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

36.95

36.9

36.85

36.8

36.75

36.7

36.65

36.6

36.55
–122.3 –122.2 –122.1 –122 –121.9 –121.8

b

c d

Fig. 18.3 Ocean color remote sensing imagery of Monterey Bay, California, illustrates different

spatial resolutions available: (a) AVIRIS sensor flown on an aircraft, 10 m pixels [25]; (b)

SeaWiFS satellite Level 2 data, 1 km pixels; (c) SeaWiFS satellite gridded to 4-km pixels;

(d) SeaWiFS satellite Level 3 9-km standard product
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avoid sun glint and their range can be greatly expanded by launching from ships. The

technology required to build portable sensors for coastal applications is developing

with wide field of views, minimum polarization dependence, high response uniformity,

and optimized signal-to-noise ratio for low-light channels [26, 27]. These sensors are

becoming more popular for use in the environmental management of coral reefs,

seagrasses, kelps, and other coastal targets, and have the potential to monitor episodic

events such as harmful algal blooms and runoff and flooding from storms.

Ocean color sensors in space have traditionally been “whisk broom” in design

where a single detector collects data one pixel at a time as the telescope rotates to

build up pixels along a scan line. Some satellites and most of the suborbital sensors

are “pushbroom” where the entire scan line is imaged synoptically by a line of

sensors arranged perpendicularly to the flight direction. In order to achieve high-

quality data that can track climatological trends in ocean color, sensors are required to

have very high radiometric accuracy and stability. Detectors are calibrated pre- and

post-launch and degradation over time is carefully quantified with vicarious

calibrations from field measurements and ideally lunar imaging. Periodic

reprocessing of the satellite data is considered critical to obtaining high-quality

datasets and continuity over multiple missions [5, 28].

Atmospheric Correction

One of the most challenging aspects of ocean color remote sensing is successfully

removing the atmospheric signal from the water column signal. Aerosols and gas

molecules are the primary contributors to the radiance measured at the top of the

atmosphere. Approximately 80–85% of the radiance measured at the sensor is the

result of Rayleigh scattering by molecules in the atmosphere that are small relative

to the wavelength of light. Photons reaching the sensor (Lu) are a combination of

those scattered by the atmosphere (Lp), reflected at the air-water interface (Lr),
known as specular reflection, or have been backscattered from within the water

column, dubbed water leaving radiance, or Lw (Fig. 18.4). The water-leaving

radiance, used for most ocean color applications, is only a small portion of the

signal retrieved at a satellite and must be differentiated from the photons scattered

within the atmosphere and specularly from the sea surface in a process called

“atmospheric correction.”

Rayleigh scattering, which decreases with wavelength (l) following l�4, can be

estimated using a single-scattering radiative transfer equation using the atmo-

spheric pressure and appropriate viewing geometry [29]. An additional 0–10% of

the radiance signal is due to aerosols (i.e., haze, dust, and pollution), particles with

sizes comparable to the wavelength of light which absorb and scatter as a complex

function of their type, size, and concentration. The type and concentrations of

aerosols overlying the ocean are quite variable in space and time, particularly in

coastal regions subject to urban pollution and terrestrial dust [30].
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Atmospheric correction of aerosols remains a challenge for accurately deriving

water-leaving radiance from satellites and aircraft. Approaches generally focus on

channels in the NIR and even in the short wave infrared (SWIR) [29, 31, 32].

Because water absorbs so heavily in the infrared, very few photons are reflected out

of water in this part of the electromagnetic spectrum and the signal is dominated by

reflection from atmospheric gases and aerosols. Various types of models are used,

including coupled models and multi-scattering models, to infer the contribution of

aerosol reflectance in the visible portion of the spectrum from the infrared. Aerosol

reflectance is not spectrally flat, but varies with wavelength, and at least two

channels are necessary to determine the spectral shape of aerosol reflectance and

extrapolate from the NIR to visible wavelengths [29, 33].

Dust, particularly from desert storms, can also impact the optical properties of

the atmosphere and most atmospheric correction algorithms for ocean color sensors

are not capable of handling absorbing mineral dust (i.e., colored dust) [34]. For

example, airborne plumes of Saharan dust are observable all year on satellite

images over the Tropical Atlantic and may be increasing in areas like the

Sunlight scattered
from atmosphere

Sunlight reflected off
the sea surface

Particulate and dissolved
matter absorb and
backscatter light

Water–leaving radiance

Sunlight penetrating
the water column

Fig. 18.4 Radiance measured by a satellite includes light scattered by the atmosphere and

reflected off the sea surface (i.e., glint). In a process called “atmospheric correction,” these signals

are removed leaving the “water-leaving radiance” or the light that has penetrated the water column

and been backscattered out to the satellite – a measure of ocean color
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Mediterranean Sea [35]. If colored dusts are not properly corrected for in the

atmospheric correction schemes, then the color of the ocean is not accurately

estimated resulting in errors in chlorophyll and other biogeochemical properties

retrieved from the satellite data [36]. In addition to its radiative impact, it has been

suggested that this mineral dust has a substantial influence on the marine produc-

tivity and may also carry pollutants to the oceans [37, 38].

Whitecaps breaking on the sea surface must also be corrected from derivations

of water-leaving radiance. Whitecap reflectance is often modeled using an empir-

ical cubic relationship to wind speed and an approximate reflectance value for an

individual whitecap [39], but such models often overcorrected the imagery, and

a fixed whitecap correction is applied when wind speeds exceed a threshold (e.g.,

8 m s�1 for SeaWiFS). At high winds, some of the signal attributable to whitecaps

is removed by the aerosol corrections.

Levels of Processing

Standards for ocean color data processing, developed at US National Aeronautics

and Space Administration (NASA) for the SeaWiFS mission [40], are widely

followed by the international community of ocean color users and involve four

levels of processing (Table 18.1).

Ocean Color Algorithms

This section presents the classification of the global ocean into two optical classes:

Case 1 and Case 2. The general approaches for two of the main products from ocean

Table 18.1 Levels of data processing products from ocean color satellites

Level Processing Spatial qualities

0 Raw data as measured directly from the

spacecraft

Satellite coordinates at highest spatial

resolution

1 Converted to radiance using calibrations

and sensor characterization information

Satellite coordinates at highest spatial

resolution

2 Atmospherically corrected to water-leaving

radiance and derived products

Satellite coordinates at highest spatial

resolution

3 Derived products have been mapped onto

a two-dimensional grid at known spatial

resolution and can be averaged over

timescales (weekly, monthly)

Regular gridded data at lower

spatial resolution (e.g., 4 or 9 km)

4 Products that have been merged or

assimilated with data from other sensors,

in situ observations, or model outputs

Regular gridded data at lower

spatial resolution
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color imagery, chlorophyll and primary productivity, for Case 1 waters and a

description of the semi-analytical algorithms used for both Case 1 and Case 2

waters are presented.

Optical Classification of Aquatic Systems

Ocean waters have long been classified based on their color properties [41].

A classification system introduced in 1977 differentiates phytoplankton-dominated

waters from those where inorganic particles are dominant, known as Case 1 and

Case 2, respectively [42]. These cases have evolved from their original forms into

the categories used today: Case 1 waters are those waters where optical properties

are determined primarily by phytoplankton and related colored dissolved organic

matter (CDOM) and detritus degradation products; Case 2 waters are waters where

optical properties are significantly influenced by other constituents such as mineral

particles, CDOM, or microbubbles that do not covary with the phytoplankton

concentration [8, 43]. In today’s world, approximately 97% of the surface ocean

falls toward the optically simple, deep water, Case 1 classification. When inorganic,

organic, particulate, and dissolved material all vary independently of one another,

such as in coastal ecosystems with considerable riverine influence, bottom resus-

pension, or optically shallow regions, the system falls toward the Case 2 classifica-

tion, also called “optically complex.”

This binary classification scheme has been prevalent in bio-optical modeling of

ocean waters and development of ocean color algorithms. However, many

problems exist with use of such simplified schemes in modeling natural systems.

For example, there is no sharp dividing line between the cases and each investiga-

tion tends to use as different criteria for defining Case 1 and Case 2. Commonly the

two cases are defined by the relationship between chlorophyll and remote sensing

reflectance or scattering. Even in the global ocean considered to be Case 1, CDOM

concentrations do not covary with the instantaneous chlorophyll concentration [44],

but can vary from 30% to 60% of the total non-water light absorption [45] and result

from differences in water mass ventilation, water column oxidative reminera-

lization, and photobleaching [46].

In optically shallow waters, in addition to the water column and its constituents

(i.e., dissolved and particulate material), the bottom contributes to the water leaving

radiance in a way that depends on the bottom composition and roughness. Periodic

measurements of bottom types using passive remote sensing in coastal systems are

valuable for describing and monitoring habitats [47]. The magnitude and spectral

quality of light reflected off of the bottom material can allow separation of bottom

reflectance from the water column signal, where different bottom types will have

a different effect on reflectance. Shallow, clear water will yield the most informa-

tion about bottom material, more readily allowing spectral discrimination of bottom
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type. However, as depth and the diffuse attenuation coefficient, Kd, increase, the

bottom signal becomes difficult to differentiate.

Empirical Chlorophyll Algorithms

Standard calculation of chlorophyll from ocean color imagery involves an empirical

relationship developed from field observations collected throughout the global

ocean [10]. Algorithms are typically not developed from the remotely sensing

imagery itself, because this would incorporate any biases in calibration and atmo-

spheric correction procedures used to derive reflectance, as well as any spatial

inhomogeneity in parameters over pixel scales, and would require new algorithms

for every new calibration, reprocessing, and sensor. Empirical solutions are used

because an analytical solution to the problem requires an assessment of the entire

radiance distribution and depth derivative and such measurements are not possible

with remote sensing [48]. Only the upward flux incident upon the water-air inter-

face at angles less than 48�, the angle at which complete internal reflection occurs,

is measurable from above the sea surface [6] and generally only the flux emitted in

a single viewing angle is remotely sensed.

The current empirical algorithms use the shift in ocean color from “blue” at low

Chl, where Rrs peaks at 400 nm, to “green” at high chlorophyll, where Rrs peaks at

555 nm (Fig. 18.5a). Empirical ocean color algorithms have been applied to the vast

majority of the global ocean considered Case 1 and use multiple ocean color bands
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Fig. 18.5 (a) Remote sensing reflectance (Rrs) spectra modeled for different concentrations of

chlorophyll a (Chl) from 0.01 to 50 mg m�3. The color of each line represents the modeled ocean

color a human might observe following [61]. (b) The empirical OC3M model for deriving Chl

from Rrs for the MODIS Aqua sensor. The model uses the “blue” channel with the highest Rrs

value (443 or 488 nm) divided by the “green” channel at 551 nm. Each square represents the

modeled Chl for the corresponding Rrs spectra in panel A and demonstrates how the model

becomes less accurate at high Chl
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typically log-transformed and in a ratio formulation to minimize problems with

atmospheric correction and differential scattering in the ocean. The coefficients for

the algorithms are regularly adjusted to account for different sets of wavebands in

various sensors and as new field data becomes available (Table 18.2). The OC3M

algorithm developed for MODIS, for example, uses a 4th order polynomial derived

from a large global dataset of field measurements of chlorophyll and Rrs. It uses

a logarithmic ratio of blue light (either 443 and 488 nm depending on which is

greater) to green light (555 nm) and follows an inverse relationship such that low

Chl is retrieved or high ratios when the ocean color is blue and high Chl when more

green light is reflected (Fig. 18.5b). These types of algorithms tend to work best at

lower Chl (<1 mg m�3), found in most of the world ocean, where the algorithm has

a flatter slope [49].

For much of the open ocean where chlorophyll concentrations are low, the

empirical algorithms work well and relative error is estimated to under 35% [50].

However, empirical derivations of chlorophyll in Case 1 waters can be in error by

a factor of 5 or more, particularly at higher Chl [49]. Such variability is due to

differences in absorption and backscattering properties of phytoplankton and

related concentrations of colored dissolved organic matter (CDOM) and minerals.

The empirical algorithms have built-in assumptions that follow the basic precept of

biological oceanography; i.e., oligotrophic regions with low phytoplankton biomass

are populated with small phytoplankton while more productive regions contain

larger bloom-forming phytoplankton. With a changing world ocean, phytoplankton

composition may shift in response to altered environmental forcing and CDOM and

mineral concentrations may become uncoupled from phytoplankton stocks creating

further uncertainty and error in the empirical approaches [49].

Table 18.2 Empirical chlorophyll algorithms for a variety of ocean color sensors

Namea Sensor

Channelsb Coefficientsc

Blue Green a0c a1 a2 a3 a4

OC4 SeaWiFS 443 > 490 > 510 555 0.366 �3.067 1.93 0.649 �1.532

OC3S SeaWiFS 443 > 490 555 0.2409 �2.4768 1.5296 0.1061 �1.1077

OC2S SeaWiFS 490 555 0.2372 �2.4541 1.7114 �0.3399 �2.788

OC3M MODIS 443 > 488 551 0.283 �2.753 1.457 0.659 �1.403

OC2M HMODIS 469 555 0.1543 �1.9764 1.0704 �0.2327 �1.1404

OC4O OCTS 443 > 490 > 520 565 0.4006 �3.1247 3.1041 �1.4179 �0.3654

OC3O OCTS 443 > 490 565 0.2836 �2.1982 1.0541 0.186 �0.717

OC2O OCTS 490 565 0.2805 �2.167 1.1789 �0.1597 �1.5591

OC3C CZCS 443 > 520 550 0.3012 �4.4988 9.0983 �9.9821 3.235
aName of ocean color (OC) algorithm incorporates the number of wavebands (2–4) used in the

formulation and the initial for the sensor used (S = SeaWiFS; M =MODIS; O = OCTS; C = CZCS)
bThe algorithms use a log-transformed ratio of “Blue” (443–520 nm) to “Green” (550–565 nm)

remote sensing reflectance (Rrs). When more than one “Blue” channel is provided, only the

channel with the highest Rrs is used. x = log10(Rrs(Blue)/Rrs(Green))
cChlorophyll a is modeled as a fourth polynomial fit to the field data such that:

Chl ¼ 10^ða0þ a1�xþ a2�x2 þ a3�x3 þ a4�x4Þ
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The empirical approach is not widely applicable in Case 2 waters, generally

found near the coasts. Such waters are influenced by freshwater plumes with

CDOM and minerals that significantly impact the optical properties, as well as

resuspension of bottom sediments [51]. Phytoplankton assemblages can also be

diverse in coastal regimes and light absorption per unit of Chl is difficult to

constrain. Melting and runoff of glacial sources can increase particle concentrations

in the nearshore and change phytoplankton assemblages. In order to use remote

sensing in coastal waters, semi-analytical models are employed that are able to

decompose the reflected color into the many absorbing and scattering constituents

in the water column (see section “Semi-analytical Algorithms”).

Primary Productivity Algorithms

Net primary production is a key parameter derived from ocean color data that

provides a measure of how much carbon dioxide is taken up and incorporated into

ocean phytoplankton during photosynthesis. Export of fixed carbon to the ocean

interior, while only a fraction of the total biomass produced, provides a long-term

sink for atmospheric carbon dioxide [52]. While satellite-derived Chl is not a direct

measure of carbon fixation in phytoplankton, such estimates are typically derived

from correlates of Chl and rates of carbon fixation [53]. Net primary productivity

varies with phytoplankton species assemblages and their physiological state related

to light, temperature, nutrients, and other environmental factors.

A variety of formulations have been developed for ocean color remote sensing

and parameterized for the global ocean or specific regions. Models are generally

restricted to parameters that can also be globally derived from remote sensing

imagery, such as sea surface temperature and photosynthetically available radiation

(PAR). Moving from a standing stock of phytoplankton biomass to photosynthetic

rate requires a time-dependent variable. Solar radiation in the form of PAR is

commonly used in formulations to convert biomass to primary productivity. The

physiological response of the measured chlorophyll to light, nutrients, temperature,

and other environmental variables must also be incorporated in the model. Primary

productivity models can be differentiated by the degree of explicit resolution in

depth and irradiance [53].

Round robin experiments have been conducted to compare the performance of

models for assessing global productivity from ocean color imagery, as well as the

output from ecosystem-based general circulation models [1, 54]. The third such

effort found that global average primary productivity varied by a factor of two

between models and the global mean productivity for the different model groups

ranged from 44 to 57 Gt C year�1 with an average of 50.7 Gt C year�1. The models

diverged the most in the high-nutrient low chlorophyll waters of the Southern

Ocean. Primary productivity algorithms have also been formulated from remote
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sensing estimates of the inherent optical properties (such as light absorption and

backscattering) directly [55, 56], without incorporating Chl and the associated

uncertainties inherent in that parameter.

Semi-analytical Algorithms

The empirical algorithms used for deriving chlorophyll have been likened to

a “black box” that provides no mechanistic understanding of ocean optics and are

particularly challenging to apply in a changing ocean, when the water properties are

different from the empirical data used to develop the formulation [57]. Analytical

solutions to deriving IOPs from water-leaving radiance are not possible because the

radiance can only be measured from a few angles. Semi-analytical algorithms (or

“quasi-analytical”) are based on a fundamental understanding of the propagation of

light in the ocean and provide a more mechanistic approach to ocean color. These

algorithms incorporate some empirical approximations, but do not rely on fixed

predetermined relationships between the absorption and backscattering components

of the water column.

In semi-analytic models, the ocean color signal is inverted to obtain estimates of

the various absorbing and backscattering constituents directly. Parameterization of

how water, phytoplankton, and dissolved and detrital material inherently absorb

and backscatter light across the visible spectrum (i.e., their spectral shape) is used in

these models. The spectral reflectance measured at the satellite is often inverted to

retrieve the amounts of each individual component contributing to the absorption

and backscattering of light. Such algorithms are the primary methods for obtaining

CDOM distributions across the ocean surface [58]. In semi-analytical models, the

biogeochemical parameters, such as Chl and total suspended matter, are derived

secondarily from the IOPs. Semi-analytical formulations vary in terms of their

architecture and statistical methods employed to retrieve the inherent optical

properties from the remote sensing signal and the empirical parameterizations

within the models [57].

Applications for Oceanography

Ocean color remote sensing is an important tool for many branches of oceanogra-

phy, including biological, physical, and chemical oceanography. The section below

summarizes only some of the main applications of ocean color remote sensing with

the understanding that the uses of ocean color are continuously expanding. A recent

monograph from the International Ocean Color Coordinating Group (IOCCG)

entitled “Why Ocean Colour?: The Societal Benefits of Ocean-Colour Technology”
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extensively documents the many uses of ocean color remote sensing from scientists

to environmental managers to the general public [7]. Web-based software has also

been developed, see, e.g., Giovanni [59], which allows the public to freely map and

analyze ocean color imagery over time and space. Figure 18.6 provides an example

of various types of figures that can be easily generated from remotely sensed

chlorophyll using that software.

Hovmoller Diagram showing Chlorophyll over Time by Longitude
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Fig. 18.6 Various times series analyses that can be conducted with standard Level 3 chlorophyll

imagery including (a) Temporally averaged spatial distributions; (b) time series of interannual

variability; (c) histograms showing the statistical distributions; (d) Hovmoller plots presenting

both spatial (x-axis) and temporal (y-axis) variability. Such plots can be easily generated by the

public with the Giovanni interface [59]
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Biological Oceanography

Apart from estimating chlorophyll and primary productivity, ocean color remote

sensing has many biological applications that range from phytoplankton physiology

to assessing distributions of migrating whales. Phytoplankton physiology, particu-

larly the efficiency of light capture and utilization, has been modeled from the

natural fluorescence signature provided by ocean color remote sensing [60]. Even

though the spectral resolution available in most current ocean color satellite is

limited to six to eight available spectral channels [61], a variety of phytoplankton

taxa and groups have also been distinguished from satellite imagery based on their

unique optical properties and/or regional tuning of algorithms using knowledge of

the local phytoplankton composition. Phytoplankton taxa can have unique sets of

accessory pigments that differentiate them from one another and can result in

unique absorbance spectra. In addition, phytoplankton can have cell walls or

exterior plates comprised of different materials (e.g., silica, calcium carbonate)

that can make them more or less reflective. Various approaches have been devel-

oped to map size classes (from pico- to microplankton) or major groups of phyto-

plankton in the global ocean [62]. Other algorithms have targeted particular

phytoplankton taxa such as coccolithophores, nitrogen-fixing Trichodesmium
[63], toxic dinoflagellates [64], and nuisance cyanobacteria [65].

Satellite-derived chlorophyll and primary productivity provide a key metric to

assess marine ecosystems temporally on a global scale and have been used exten-

sively to monitor conditions that impact other biological organisms in the sea. The

relationship between satellite-derived chlorophyll data and organisms at higher

trophic levels depends upon the number of linkages in the food web. For species

like anchovies and sardines, which eat phytoplankton in their life cycle, the linkage

can be direct [66]; whereas, many trophic levels can exist for other species and the

relationship can be quite nonlinear [7]. The distribution, movement, and migration

of whales, dolphins, pinnipeds, penguins, and sea turtles has been related, either

directly or indirectly, to remotely sensed patterns of Chl (reviewed in [7]). Most fish

have planktonic larval stages that are strongly influenced by ocean circulation and

recruitment success has been found to be related to the degree of timing between

spawning and the seasonal phytoplankton bloom, as observed from satellites [67].

Ocean color remote sensing has also been used to study invertebrates in the global

ocean, such as shrimp in the Newfoundland-Labrador Shelf [68] and pteropods and

pelagic mollusks in the Ross Sea [69]. Mean net primary productivity, determined

from ocean color satellite imagery, elucidates species richness in biogeographical

studies of cephalopods [70].

New techniques have also been developed to use ocean color remote sensing in

optically shallow water systems to deduce changes in benthic habitats [71].

Optically shallow water occurs when the seafloor contributes to the reflectance

signal observed remotely by a satellite (Fig. 18.7a) and is defined by a combination

of water clarity, water depth, and bottom composition. Satellite estimates of

biomass and net productivity of seagrasses, kelps, and other benthic producers
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have been conducted over regional scales [47, 72] (Fig. 18.7b). Ocean color imagery

from aircraft can map fine-scale distributions of seagrasses, coral reefs, and other

coastal habitats at local scales [73, 74]. Changes in ocean color signals over time can

also be used to assess contributions of coastal carbon to the global carbon cycle [75, 76].

Responses of coastal regions linked to terrestrial changes can also be observed with

ocean color imagery. Warming of the Eurasian landmass, for example, has led to

enhanced productivity in the water column [77]. Agricultural runoff from fields in

Mexico was shown to stimulate large phytoplankton blooms in the Gulf of California

that alter water clarity and potentially lead to anoxic conditions [78].

Ocean Physics

Ocean color data is well suited to the detection of convergence zones and oceanic

fronts, sometimes better than thermal sensors which penetrate only the skin layer,

or the first 10 mm, of the water column. Interestingly, a sequence of ocean-color-

derived chlorophyll images may help predict the formation of eddies days before

they appear. The increased penetration of visible radiation reveals more frontal

features and with greater detail than those retrieved with sea surface temperature

data alone [79]. Likewise, upwelling regions, which bring cold, nutrient-rich

waters up to the surface can be readily identified in ocean color images as areas

with an enhanced chlorophyll concentration. The intensity of upwelling from

year-to-year can be tracked through the time series of chlorophyll abundance.

Chlorophyll is an effective indicator for detecting anomalous activity in the
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Fig. 18.7 The Great Bahama Bank is an example of optically shallow water where the seafloor

color can be observed from space. (a) Pseudo-true color image from MODIS Aqua showing the

bright Bahamas Banks with Florida, USA, to the West and Cuba to the Southwest. White wispy

clouds can obscure the ocean color. (b) Net primary productivity (mgC m�2 d�1) of seagrass and

benthic algae estimated from ocean color imagery over the Great Bahama Bank [47]
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oceanic environment. Evidence of an El Niño event beginning in November of

1997, during which phytoplankton pigment concentrations appeared anomalously

low in the Equatorial Upwelling Zone, was obvious in the continuous coverage

supplied by SeaWiFS. The onset of restored upwelling was likewise evident with

the increased chlorophyll concentrations during the months of June and July 1998

[80].

Ocean water clarity also affects the distribution of shortwave heating in the

water column. Both chlorophyll and CDOM concentrations have been linked to

changes in heating of surface waters [81, 82]. Increased clarity would be expected

to cool the surface and heat subsurface depths as shortwave radiation penetrates

deeper into the water column. Recent studies show that water clarity, as determined

from ocean color remote sensing, is an important feature in atmospheric circulation

(the Hadley cells), oceanic circulation (Walker Circulation), and formation of mode

water [83]. Importantly, ocean color imagery is also critical to predicting tropical

cyclone activity. The presence of light-absorbing constituents (like Chl and

CDOM) shapes the path of Pacific tropical cyclones and propagation to higher

latitudes [84].

Chemical Oceanography

A major contributor to the ocean carbon system is colored dissolved organic

material (CDOM), a mixture of compounds produced primarily by decomposition

of plant matter. CDOM, when present in high enough concentrations, produces

a yellow or brownish color and is highly reactive in the presence of sunlight. When

CDOM undergoes photodegradation, organic compounds essential to phytoplank-

ton and bacterial growth are released [85]. Satellite measurements collected using

SeaWiFS, MODIS, and MERIS produce daily estimates of CDOM at 1 km resolu-

tion. High temporal resolution CDOMmaps can be used to identify and track water

masses at timescales close to the processes determining its distribution. CDOM

dynamics play an important role in ocean biogeochemistry, regulating the absorp-

tion of blue and UV radiation in the surface ocean and therefore altering the depth

of the euphotic zone [58] and heating surface waters [82]. Although CDOM is

difficult to analyze chemically, its distribution and abundance, identifiable using

ocean color remote sensing, is highly relevant to understanding carbon cycling in

the ocean.

The particulate inorganic carbon (PIC) pool, calcium carbonate (CaCO3),

contributes substantially to the ocean carbon cycle and ocean color reflectance.

Calcification reduces surface carbonate, decreasing alkalinity. Organic carbon pro-

duction via photosynthesis counterbalances this effect. Coccolithophores, haptophyte

algae, are responsible for the majority of the biogenic particulate inorganic carbon

production. Coccolithophores generate and shed tiny white plates of calcium carbon-

ate called coccoliths, which are highly efficient at reflecting light, ultimately produc-

ing large turquoise patches in the ocean readily visible in ocean color imagery [86].

462 H.M. Dierssen and K. Randolph



Ocean color remote sensing algorithms have been formulated for generating quanti-

tative estimates of particulate inorganic carbon and calcification rates on regional and

global scales [87, 88]. A continued, long-term assessment of coccolithophore and

particulate inorganic carbon abundance from satellite imagery will aid in understand-

ing the impact of ocean acidification on marine organisms reliant on carbonate for the

formation of shells [89].

Ocean color imagery provides the ability to expand small-scale biogeochemical

studies to regional or global scales. For example, the marine inorganic carbon cycle

has been shown to be not only influenced by marine plankton but also by fish that

precipitate carbonates into the surface waters. Extrapolations from satellite-derived

net primary productivity up several trophic levels to marine fish [90] reveal that fish

may contribute 3–15% of the total oceanic carbon production [91].

Applications for Environmental Monitoring

Ocean color remote sensing plays a major role in monitoring and sustaining the

health and resilience of marine ecosystems, including fisheries and endangered

species [40]. Ocean color products are helping to address how environmental

variability influences annual recruitment of fish stock [92] and to locate and manage

fisheries [7]. Ocean color imagery coupled with other remote sensing products such

as sea surface temperature is a fundamental tool in ecosystem-based management

of marine resources [93].

Ocean color remote sensing can monitor a variety of acute and chronic hazards

influencing the oceans including: harmful algal blooms, oil spills, coastal flooding,

icebergs and marine debris [7]. A combination of ocean color, field, and meteoro-

logical datasets have been critical in identifying the onset of harmful algal blooms

(HABs), which can produce toxins and create hypoxic conditions. While toxins

cannot be directly observed from ocean color, the onset of potential harmful blooms

can be identified using a chlorophyll anomaly method [94] in concert with other

forecasting tools such as field and meteorological datasets. This information can

then be passed on to coastal managers and state agencies to put strategies in place to

deal with an impending bloom. A long-term time series of ocean color products can

aid in elucidating forcing and transport mechanisms of these harmful blooms and

help improve predictability.

New techniques are being developed for early detection, containment, and clean

up of oil spills. Remote sensing can be used to detect oil spills that can change

surface reflectance properties and the color of the ocean [95]. Coarse spatial and

temporal resolution, limited spectral bands, cloud-cover issues and high sunlight

requirements have generally restricted the usefulness of ocean color imagery for

oil-spill detection from polar orbiting satellites [96]. Moreover, current processing

methods may not allow data availability within hours of data capture. The spatial,

temporal, and spectral resolution needed for oil spill recovery planning requires
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high-resolution, hyperspectral ocean color radiometers deployed in geostationary

orbit [40].

Ocean color imagery has also been used to track marine debris on the ocean

surface which can entangle a variety of pelagic species, such as endangered sea

turtles, seals, and whales. The nets also become ensnared on coral reefs and damage

the reef structure and associated organisms that require a healthy reef ecosystem

[97, 98]. Satellite ocean color data are part of the methods being developed to locate

and identify potential locations of marine debris to aid their removal from these

ecosystems.

Ocean color imagery is also useful in monitoring water quality in inland aquatic

water bodies. Nuisance algal blooms, such as cyanobacteria, cause aesthetic degra-

dation to lakes and reservoirs resulting in surface scum, unpleasant taste and odor in

drinking water (from the production of metabolites such as methyl isoborneol and

geosmin), and possible adverse effects to human health from blue-green algal

toxins. Predicting the locations and timing of blue-green algal bloom using tradi-

tional sampling techniques is difficult and hyperspectral remote sensing can be an

important tool in such monitoring efforts [99].

Future Directions

Within a few decades, the ability to view the global ocean color regularly through

remote sensing has revolutionized the perceptions about ocean processes and

feedbacks to the earth’s climate. The decade of continuous ocean color imagery

has provided a foundation for assessing change in the earth’s systems and long-term

averages or “climatologies” of products, such as chlorophyll, CDOM, and PIC,

have been produced to provide a baseline of ocean biogeochemistry (Fig. 18.8). The

products obtained from ocean color are now incorporated into all domains of

oceanography, global climate forecasts, military applications, and environmental

monitoring across the expansive global ocean and the vulnerable coastal regions

where most of the human population resides [11]. While successful, the technology

and processing of ocean color remote sensing is still in its infancy in terms of

monitoring the ocean from immediate to climatological timescales.

The relationships between climatological forcing and biological carbon storage

in the ocean are complex and not readily incorporated in models. Ocean color

imagery can provide assessments of potential changes to ocean processes including

primary productivity, surface heating, sediment plumes, altered food webs, harmful

algal blooms, changing acidity, and alterations of benthic habitats in response to

shifts in winds and upwelling, clouds and radiative forcing, and storm intensity and

frequency. Recent observed changes in chlorophyll, primary production, and the

size of the oligotrophic gyres from ocean color satellites are compelling evidence of

significant changes in the global ocean. A recent study demonstrates that a time

series of at least 40 years in length is needed to unequivocally distinguish a global
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Fig. 18.8 Global climatologies or long-term averages of products derived from the Ocean Color

SeaWiFS sensor from 1998–2011. (a) Chlorophyll a (mg m�3); (b) colored dissolved organic

matter (CDOM) index; (c) particulate inorganic carbon (PIC) (mol m�3)
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warming trend from natural variability [6] and sustained long-term observations of

ocean color are in jeopardy [40].

In addition to sustained imagery, there is a need for integrating ocean color

imagery from different platforms to monitor the oceans and aquatic habitats at

a variety of desired spectral, spatial, and temporal resolutions. Integration of

satellite sensors with suborbital platforms will allow for better assessment of

vulnerable marine and aquatic habitats, as well as responses to hazards such as

harmful algal blooms, oil spills, and storms that cause coastal flooding and erosion.

Active sensors, such as Light Detection and Ranging (LIDAR), will allow us to

probe into the depths of the oceans. Moreover, integrating surface ocean color

measurements with three-dimensional measurements and models of the ocean will

be increasingly important in discerning a changing ocean [49].

Finally, the approaches or algorithms for conducting ocean color remote sensing

will be augmented as more spectral channels become routinely available and as

ocean properties change. Purely statistical or empirical models are only accurate

when conditions are similar to past conditions. When considering a changing ocean,

the cause of the color change must be carefully assessed to separate the spectral

variability due to phytoplankton from other sources of variability, such as sediments,

CDOM, and even atmospheric aerosols. Considerable growth is also expected in

approaches and technology for remote sensing of coastal habitats and assessing acute

and chronic hazards. Comprehensive and consistent field observations from ships to

autonomous vehicles and floats are required to assess the accuracy of satellite-derived

products, build improved algorithms, and provide better linkages between surface

measurements made from space and the processes within the water column [49].

Future effort will also be directed at assimilation of ocean color imagery into global

circulation and climate models. As outlined above, remote sensing of ocean color is

a complex discipline requiring radiometrically accurate and calibrated sensors,

advanced techniques for atmospheric correction of aerosols and dust, and approaches

that can deduce the source of variability in the color signal measured by a sensor.

With the many important applications of ocean color remote sensing, from climate

forecasting to environmental monitoring, a consistent and coordinated international

investment in education, research, and technology is required to maintain and

advance this dynamic field.
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