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          16.1   Introduction 

 One of the most ancient legends about the origins of wine tells of a Persian princess 
who tried to poison herself so as to put an end to her love pangs. So she drank some 
juice from the bottom of a jar containing rotten grapes, and, instead of being killed 
by them, she forgot all her pain, and soon thereafter she regained her lover’s heart. 
The King himself tried the prodigious drink, and began to spread its fame through-
out his kingdom. Many other legends regarding the prodigious powers of wine can 
be found in literature, and even in the main world religions, of which the episode of 
Noah’s drunkenness in the Old Testament is an example. 

 The domestication of the grapevine can be traced back to the third millennium 
BC: since then, the cultivation of  Vitis  ssp. has expanded to all the continents, with 
the exception of Antarctica. According to the International Organization of Vine 
and Wine (O.I.V. Report  2008  ) , in 2007 the surface area given over to grape cultiva-
tion accounted for almost 7.8 million hectares, Europe being the main producer, 
transformer, and consumer of grapes for winemaking. Among the products derived 
from grapes, wine is the most signi fi cant. Wine production touched 266 million hL 
in 2007 (O.I.V. Report  2008  ) , showing a sharp decrease (more than 20%) since the 
beginning of the 1980s. This decrease has been accompanied by increasing atten-
tion on the part of consumers towards wine quality. Fraud concerning adulterated 
wines (Frank in 2007 reported that up to 5% of the wine sold in secondary markets 
could be counterfeit) leads to important economic losses in the wine trade, mostly 
due to the producers rightly or wrongly losing credibility, as well as causing severe 
safety alarms. 
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 The importance of the wine trade and the growing attention paid by modern 
consumers towards food quality has raised interest in recent years among the 
scienti fi c community in de fi ning quality markers for wine. The quality of a food is 
not unambiguous: it is made up of safety issues, organoleptic features, t echnological 
aspects, and nutritional requirements, among other characteristics. All these fea-
tures have been investigated in wines, and almost all of them have been studied with 
proteomic means, mostly in the last two decades. 

 The scienti fi c reviews on wine protein analysis published to date can be grouped into 
two main categories: those devoted to methodological issues (Moreno-Arribas et al. 
 2002 ; Flamini and De Rosso  2006 ; Curioni et al.  2008 ; Le Bourse et al.  2010  )  and those 
focused on the application of proteomics to speci fi c wine issues (Ferreira et al.  2002 ; 
Giribaldi and Giuffrida  2010 ; Pedreschi et al.  2010 ; D’Alessandro and Zolla  2012  ) . 
Moreno-Arribas and colleagues mainly described the methods used for the extraction, 
quanti fi cation, and separation of wine proteins (Moreno-Arribas et al.  2002  ) . 
Interestingly, mass spectrometry (MS) in their report was brie fl y described as a tool for 
identifying proteins, and only a few years later the review published by Flamini and De 
Rosso  (  2006  )  focused on its use for the separation, quanti fi cation, and identi fi cation of 
grape and wine proteins, thus paving the way for the leading role acquired by MS in the 
analysis of foods and beverages in recent years. In 2002, Ferreira and collaborators 
revised the state of the art on wine proteins by providing an overview of their origin and 
function, and focused on the turbidity issues caused by them, including possible solu-
tions to remove them. More recently, Curioni et al.  (  2008  )  and Le Bourse et al.  (  2010  )  
provided updated reviews of the latest trends in the analytical techniques used for the 
study of grape juice and wine proteins. In 2010, Giribaldi and Giuffrida updated the 
proteomic studies published since 2005, covering aspects of grape physiology and grape 
berry ripening, as well as protein function in wines (Giribaldi and Giuffrida  2010  ) . In 
the same year, wine proteomics was included in a review devoted to the application of 
proteomics to various important food industry sectors (Pedreschi et al.  2010  ) . The most 
recent survey on the issue is the review by D’Alessandro and Zolla  (  2012  )  on proteom-
ics applications in the  fi eld of wine safety and traceability. 

 The present chapter brie fl y and exhaustively describes the papers that recount 
proteomic means to study wine proteins in recent decades. However, the authors 
strongly recommend consulting these reviews in order to achieve a more complete 
understanding of wine protein science.  

    16.2   Methodological Aspects in Wine Proteomics 

 In recent decades, the application of new techniques to the characterization of wine 
proteins has brought the number of wine proteins identi fi ed by proteomics to over 
100 (D’Amato et al.  2011  ) . Traditional techniques, such as electrophoresis and 
chromatography, originally allowed for the detection of the most abundant proteins 
(accounting for only about 30% of the total protein species in wine, according to 
D’Amato and collaborators). 
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 One major step towards achieving these goals was made in 2007, when two 
independent studies, one supported by a French–Italian consortium (Jaillon et al. 
 2007  )  and the other by an Italian–American initiative (Velasco et al.  2007  ) , pub-
lished the genome sequence of one non-cultivated highly homozygous and of one 
cultivated highly heterozygous Pinot Noir clone, respectively. The annotation of the 
grapevine genome is still in progress, and although it may sometimes complicate 
the interpretation of research  fi ndings, the availability of genome sequences has 
signi fi cantly boosted grape and wine proteomics. 

    16.2.1   Quanti fi cation of Protein Content in Wines 

 Typically, protein concentrations have been reported in a range from 15 to 230 mg/L 
(Monteiro et al.  2001 ; Ferreira et al.  2002 ; Waters et al.  2005  ) . Proteins are thus 
considered as minor components of both white and red wines, with little nutritional 
relevance. Several techniques are currently available for total protein quanti fi cation 
in foods and beverages, but wine is typically rich in compounds that may interfere 
with normal quanti fi cation techniques, such as phenolics, ethanol, and organic acids 
(Marchal et al.  1997 ; Moreno-Arribas et al.  2002 ; Le Bourse et al.  2010  ) . 

 The standard protein quanti fi cation method in the food industry is based on the 
evaluation of total proteins by conversion of nitrogen measured by Kjeldahl assay 
(multiplying nitrogen content by 6.25)  (  AOAC method 960.52  ) , but this method is 
known to cause frequent overestimations of wine protein content (Vidigal et al. 
 2012  ) . The reliable quanti fi cation of wine proteins may have an impact on the sta-
bility of the wine itself, as they are major causes of white wine clouding (Waters 
et al.  2005  ) . The most common methods used for protein quanti fi cation in wines to 
date are based on spectrophotometric detections, such as the Bradford (Bradford 
 1976  ) , Lowry (Lowry et al.  1951  ) , Biuret (Gornall et al.  1949  ) , or Smith (Smith 
et al.  1985  )  tests, which have often been used due to their ease and speed (Vidigal 
et al.  2012  ) . Nevertheless, the presence of interfering compounds and the absence of 
standard wine proteins may lead to erroneous quanti fi cation with these methods 
(Moreno-Arribas et al.  2002 ; Le Bourse et al.  2010,   2011 ; Vidigal et al.  2012  ) . 

 In recent years, Vincenzi et al.  (  2005  )  and Smith et al.  (  2011  )  have provided 
comparisons between the more widely used protein quanti fi cation methods and 
developed improved procedures for protein recovery and quanti fi cation in white and 
red wines. Vincenzi et al.  (  2005  )  concluded that potassium dodecyl sulphate (KDS) 
precipitation coupled with Smith’s assay gave the most accurate results, consistent 
with those obtained by densitometric quanti fi cation of SDS-PAGE protein bands. 
Smith et al.  (  2011  )  concluded that, in red wines, protein precipitation with cold 
trichloroacetic acid/acetone and quanti fi cation based on Bradford’s assay absor-
bance using a yeast mannoprotein invertase standard gave results similar to those 
obtained by micro-Kjeldahl analysis. 

 Some authors have suggested using HPLC-based techniques to achieve reliable 
quanti fi cation of wine proteins (Peng et al.  1997 ; Pocock and Waters  2006  ) . 
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Marangon et al.  (  2009  )  developed a quanti fi cation method for protein fractions 
separated by hydrophobic interaction chromatography based on comparison with 
the HPLC peak area of two standard proteins (cytochrome c and bovine serum albu-
min, BSA), but this method may suffer from limitations due to the use of non-wine 
standard proteins (Le Bourse et al.  2010  ) . To circumvent this major drawback, Le 
Bourse et al.  (  2011  )  published a method for purifying grape juice class IV chitinase 
and thaumatin-like (TL) proteins by liquid chromatography. The pure protein frac-
tions were then used to build reliable calibration curves for ultra-HPLC and for 
ELISA quanti fi cation of these proteins in different grape juices and wine samples, 
thus providing a valuable tool for future oenological studies. 

 The densitometric quanti fi cation of wine protein bands from SDS-PAGE gels 
(after staining with Coomassie Brilliant Blue) was frequently used in the past 
(Marchal et al.  2000 ; Hsu and Heatherbell  1987a,   b  ) . Recently, Sauvage et al.  (  2010  )  
and Dufrechou et al.  (  2010 , 2012) reported a quanti fi cation method based on absorp-
tion/desorption of proteins with excess bentonite, a clay with protein absorption 
capacity commonly used in wine  fi ning, followed by SDS-PAGE, image analysis, 
and quanti fi cation of wine protein bands using a standard BSA band. This method, 
although it is said to provide an estimate of total wine proteins, fails to take into 
account low and high molecular weight proteins, which are not visualized in the 
SDS-PAGE gel. Moreover, it relies on the staining intensity of a non-wine protein, 
BSA, similarly to most of the previously cited techniques, loaded in a single con-
centration on the gel, and it thus fails to build a standard curve, with a regression and 
a correlation coef fi cient. In addition, similarly to all the methods based on Coomassie 
Brilliant Blue protein staining, including the Bradford method, the composition of 
some proteins may not give a linear response (Fountoulakis et al.  1992  ) . 

 The most recent advance in the  fi eld of protein quanti fi cation in white wines is the 
modi fi ed Lowry assay coupled with solid-phase extraction recently developed by Vidigal 
et al.  (  2012  ) . The method is based on the retention of proteins in the solid support, nitrilo-
triacetic acid Super fl ow beads (Qiagen), charged by Cu 2+ , and on the absorbance at 
500 nm after addition of Folin–Ciocalteu’s reagent. Results from Vidigal’s work repre-
sent a signi fi cant advance with respect to current methods in terms of sample volume 
required, poor pre-processing before analysis, and automation (Vidigal et al.  2012  ) . The 
limitations due to the use of non-wine standard protein should be evaluated carefully, and 
further investigations into its reliability for wine glycoprotein quanti fi cation are needed.  

    16.2.2   Methods Used in Wine Protein Characterization 

 As brilliantly summarized in several reviews (Moreno-Arribas et al.  2002 ; Flamini 
and De Rosso  2006 ; Curioni et al.  2008 ; Le Bourse et al.  2010  ) , the main techniques 
used for grape and wine proteome analysis can be grouped into chromatography, 
electrophoresis, and MS-based methods. 

 Electrophoresis and 2-D-electrophoresis have been widely used in the past and 
are still in use to characterize the protein fraction of wines, often in association with 
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chromatographic techniques. Early works mainly used electrophoretic techniques, 
in the form of both native gel electrophoresis (Bayly and Berg  1967 ; Pueyo et al. 
 1993 ; Moreno-Arribas et al.  1999  )  and denaturing gel electrophoresis (Yokotsuka 
et al.  1991 ; Waters et al.  1992,   1993 ; Pueyo et al.  1993 ; Dorrestein et al.  1995 ; 
Santoro  1995 ; Marchal et al.  1996  ) . Wine proteins have often been separated accord-
ing to their isoelectric point as a preparatory or analytical step (Murphey et al.  1989 ; 
Yokotsuka et al.  1991 ; Pueyo et al.  1993 ; Dawes et al.  1994 ; Marchal et al.  1996 ; 
Luguera et al.  1998  ) . The coupling of isoelectrofocusing and denaturing electropho-
resis led to detailed screening of wine proteins ever since its early application to 
wine proteomics (Hsu and Heatherbell  1987a,   b ; Hsu et al.  1987  ) . Protein immuno-
blotting has been widely used as a tool for investigating the origin and the structural 
similarity of wine proteins from different varieties (Hsu and Heatherbell  1987a,   b ; 
Hsu et al.  1987 ; Marchal et al.  1998 ; Monteiro et al.  1999 ; Ferreira et al.  2000 ; 
Monteiro et al.  2001,   2003a,   b ; Dambrouck et al.  2003 ; Manteau et al.  2003 ; 
Monteiro et al.  2007  ) . In more recent years, the coupling of electrophoresis with 
protein identi fi cation by mass spectrometry has allowed researchers to unravel the 
complexity of the wine proteome in different conditions, and thus improved wine 
science (Okuda et al.  2006 ; Cilindre et al.  2008 ; Wigand et al.  2009 ; Sauvage et al. 
 2010 ; Vincenzi et al.  2011  ) . Moreover, the introduction of enrichment technologies, 
such as the use of combinatorial peptide ligand libraries (CPLL), has increased the 
detection of low-abundance constitutive or contaminating proteins in wines (Cereda 
et al.  2010 ; D’Amato et al.  2010,   2011  ) . 

 Capillary electrophoresis has been applied in the past to wine protein analysis 
(Moine Ledoux et al.  1992 ; Luguera et al.  1997,   1998 ; Dizy and Bisson  1999  ) , and 
one recent example of its potential is represented by varietal differentiation recently 
obtained by high-performance capillary electrophoresis of wine proteins and shi-
kimic acid quanti fi cation by Chabreyrie et al.  (  2008  ) . 

 Chromatographic approaches used in wine proteomics for protein puri fi cation, 
separation, and characterization include FPLC (Waters et al.  1992,   1993 ; Dawes 
et al.  1994 ; Dorrestein et al.  1995 ; Waters et al.  1995 ; Luguera et al.  1998 ; Monteiro 
et al.  1999,   2001,   2003a,   b,   2007 ; Esteruelas et al.  2009  ) , HPLC (Tyson et al.  1981 ; 
Santoro  1995 ; Yokotsuka and Singleton  1997 ; Girbau et al.  2004  ) , size exclusion 
chromatography (Pellerin et al.  1993 ; Gonçalves et al.  2002  ) , af fi nity chromatogra-
phy (Pellerin et al.  1993 ; Waters et al.  1993 ; Marchal et al.  1996 ; Gonçalves et al. 
 2002 ; Vanrell et al.  2007  ) , and more recently hydrophobic interaction chromatogra-
phy (Falconer et al.  2010 ; Marangon et al.  2009,   2011a,   b  ) , hydrophilic interaction 
chromatography, titanium dioxide enrichment, and hydrazide chemistry enrichment 
(Palmisano et al.  2010  ) . 

 Mass spectrometry and N-terminal sequencing have greatly increased our under-
standing, allowing the identi fi cation of several wine proteins. In recent years, MS 
has become a useful tool for wine traceability, allowing for varietal  fi ngerprinting 
and contaminant detection in both red and white wines (Szilágyi et al.  1996 ; Weiss 
et al.  1998 ; Kwon  2004 ; Catharino et al.  2006 ; Carpentieri et al.  2007 ; Chambery 
et al.  2009 ; Monaci et al.  2010,   2011 ; Simonato et al.  2011 ; Tolin et al.  2012 ; Nunes-
Miranda et al.  2012  ) .   
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    16.3   The Origin of Wine Proteins 

 One of the main aspects investigated by wine proteomics has been the elucidation 
of the origin of wine proteins. Early investigations declared wine proteins to be 
derived exclusively from the grape berry (Luguera et al.  1998 ; Ruiz-Larrea et al. 
 1998 ; Ferreira et al.  2000  ) . One reason could be the fact that, according to almost 
all the reports, grape-derived proteins, and especially the class named pathogen-
esis-related (PR) proteins (Linthorst  1991  ) , represent the vast majority of the 
protein components found in all studied wines (Waters et al.  1996 ; Monteiro 
et al.  2001 ; Okuda et al.  2006 ; Wigand et al.  2009 ; Dufrechou et al.  2010 ; Sauvage 
et al.  2010 ; Vincenzi et al.  2011 ; Dufrechou et al.  2012  ) . According to other 
hypotheses, the poor visualization of yeast proteins from wines may be due to the 
revelation method used, as their sugar moiety makes them poorly detectable by 
Coomassie and silver-based stains (Waters et al.  1993 ; Dambrouck et al.  2003 ; 
Wigand et al.  2009  ) . 

 Currently, most authors agree on the mixed origin of wine proteins, as yeast-
deriving proteins (mostly cell wall components) have been demonstrated to occur 
in wines by several methodological approaches, such as chromatography 
(Marchal et al.  1996 ; Yokotsuka and Singleton  1997 ; Monteiro et al.  2001 ; 
Gonçalves et al.  2002 ; Palmisano et al.  2010  ) , electrophoresis (Waters et al. 
 1993 ; Dupin et al.  2000 ; Kwon  2004 ; Cilindre et al.  2008 ; Wigand et al.  2009 ; 
D’Amato et al.  2011 ; Marangon et al.  2011a,   b  ) , immunostaining (Monteiro et al. 
 2001 ; Dambrouck et al.  2003  ) , and mass spectrometry (Simonato et al.  2011 ; 
Tolin et al.  2012  ) . The functions of parietal yeast mannoproteins include adsorp-
tion of ochratoxin A, combination with phenolic compounds, increased growth 
of malolactic bacteria, inhibition of tartrate salt crystallization, interaction with 
the yeast-derived super fi cial  fi lm (  fl or ) formed in the manufacture of sherry-type 
products, reinforcement of aromatic components, and wine enrichment during 
aging on  fi ne lees (Caridi  2006 ; Blasco et al.  2011  ) . Their major roles, being 
haze-protective factors in white wines and foam aids in sparkling wines, are 
detailed in the following chapter. 

 Other fermentative agents in wines include several types of bacteria. The pres-
ence of bacterial proteins in wines used to be excluded by immunostaining 
(Dambrouck et al.  2003  )  until recently. Simonato et al.  (  2011  )  and Tolin et al. 
 (  2012  ) , by means of LC-MS/MS pro fi ling, were the  fi rst, to the author’s knowledge, 
to detect one 60 kDa chaperonin from  Oenococcus oeni,  a lactic acid bacterium 
involved in malolactic fermentation. 

 Fungal pathogens are responsible for considerable economic losses for wine-
makers, and the costs of  fi eld prevention against their occurrence are a major expense 
for agriculture. The presence of proteins deriving from fungal infection of grape 
clusters on the vine has been demonstrated by Western blot and electrophoresis in 
recent years (Kwon  2004 ; Cilindre et al.  2007,   2008  ) . One recent investigation of a 
commercial Valpolicella red wine revealed the presence of proteins from several 
fungal pathogens (D’Amato et al.  2011  ) .  
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    16.4   The Role of Proteins in Wines 

 Although they are minor constituents in wines, proteins are widely recognized to 
have a signi fi cant impact on wine quality. They are thought to contribute to wine 
taste and body (Jones et al.  2008  ) , and to the foaming properties of sparkling wines 
(Vanrell et al.  2007 ; Blasco et al.  2011 ; Coelho et al.  2011  ) . They are known to be 
detrimental for wine quality on some occasions, causing turbidity in white wines 
(Waters et al.  1992,   2005  ) . Moreover, some of the wine proteins have been found to 
be allergenic for some susceptible individuals (Pastorello et al.  2003 ; Vassilopoulou 
et al.  2007 ; Giribaldi and Giuffrida  2010 ; Gonzalez-Quintela et al.  2011  ) . 

 Pro fi ling by nano-HPLC/tandem MS of a Sauvignon Blanc wine led to the 
identi fi cation of 20 major proteins, including several yeast proteins (Kwon  2004  ) . 
The identi fi ed grape-derived proteins were vacuolar invertase, TL proteins, class IV 
endochitinase, and  b -glucanase (Kwon  2004  ) . The 2DE pattern of one Chardonnay 
wine con fi rmed the occurrence of several vacuolar invertase protein spots, as well 
as the presence of PR proteins such as osmotins and thaumatins, and detected for the 
 fi rst time one low molecular weight lipid transfer protein (Okuda et al.  2006  ) . The 
presence of these proteins has since been con fi rmed in red and white wines by other 
published reports (Sauvage et al.  2010 ; Dufrechou et al.  2012 ; Lambri et al.  2012  ) , 
with minor differences, such as the detection of grape ripening-related proteins and 
of PR4 proteins (chitin-binding proteins) in some cases (Cilindre et al.  2008 ; 
Esteruelas et al.  2009 ; Marangon et al.  2009 ; Wigand et al.  2009  ) . 

 The application of more sensitive techniques such as direct MS analysis, or the 
use of enrichment strategies such as CPLL (Righetti et al.  2011  )  and glycopeptide 
enrichment (Palmisano et al.  2010  ) , has helped to identify several other low-abun-
dance proteins present in red (Simonato et al.  2011 ; Tolin et al.  2012  )  and white 
wines (D’Amato et al.  2011  ) . Although there is detailed knowledge of the type of 
proteins that wine may contain, there is still little understanding of the role they may 
play in wine, especially with regard to low-abundance proteins. 

    16.4.1   Heat-Unstable Proteins and Haze Formation 

 Wine proteins may cause a common white wine defect called “casse protéique.” 
During bottle storage, occasional extremes of temperature may lead to protein 
aggregation and  fl occulation, which causes turbidity (Waters et al.  2005  ) . A haze or 
deposit in bottled wine can reduce or invalidate its commercial value, and winemak-
ers usually perform  fi ning treatments, typically with bentonite, to avoid this turbid-
ity. The occurrence of this defect led to early studies on wine proteins (Koch and 
Sajak  1959 ; Moretti and Berg  1965 ; Bayly and Berg  1967 ; Hsu and Heatherbell 
 1987b ; Waters et al.  1992  ) . 

 Although total protein quantity may have an impact on the probability of haze 
development in white wines (Mesquita et al.  2001  ) , not all wine protein fractions 
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seem to share the tendency to  fl occulate, as some are more heat-labile than others 
(Moretti and Berg  1965 ; Bayly and Berg  1967 ; Hsu and Heatherbell  1987b ; Hsu 
et al.  1987 ; Moine Ledoux et al.  1992 ; Waters et al.  1992  ) . One recent applica-
tion of CPLL to the soluble fraction and sediment of one white wine revealed a 
very limited overlap between the two types of proteins (D’Amato et al.  2011  ) , 
thus contributing to the hypothesis of differential haze-forming tendencies for 
different wine proteins. 

 The heat-unstable protein fraction is mainly made up of grape PR proteins 
(Waters et al.  1996 ; Esteruelas et al.  2009 ; Sauvage et al.  2010 ; Marangon et al. 
 2011a,   b ; Vincenzi et al.  2011 ; Dufrechou et al.  2012  ) . These proteins are able to 
persist through the winemaking process (Vincenzi et al.  2011  ) , mainly due to their 
resistance to proteolysis and to their stability at acid pH (Linthorst  1991  ) . The 
major contributors to natural wine haze to date have been identi fi ed as  b -gluca-
nases, class IV chitinases, and TL proteins (Waters et al.  1996 ; Esteruelas et al. 
 2009 ; Falconer et al.  2010 ; Marangon et al.  2011b ; Sauvage et al.  2010 ; Dufrechou 
et al.  2012  ) . These proteins were characterized recently for their haze-forming 
tendency and absorbance by bentonite (Sauvage et al.  2010  ) . A progressive sensi-
tivity to heat-induced precipitation, and a concomitant increased susceptibility to 
bentonite absorption, was found for  b -glucanases, class IV chitinases, and a frac-
tion of TL proteins, with invertases and the other fraction of TLs being less 
affected. These results con fi rmed previous  fi ndings on the thermal stability of 
puri fi ed chitinase, invertase, and TL protein, which reported that chitinase is the 
major player in heat-induced wine haze formation, probably due to its low melting 
temperature (Falconer et al.  2010  ) . 

 The aggregation kinetics in white wines at different temperatures were deter-
mined by dynamic light-scattering experiments (Dufrechou et al.  2010  ) . At low 
temperature (40 °C), aggregation took place during the heating phase, whereas at 
higher temperatures (60 °C and 70 °C) protein aggregation mainly developed during 
the cooling phase. Results con fi rmed the differential heat sensitivity of diverse TL 
protein fractions and the haze-forming tendency at low temperatures of  b -gluca-
nases and class IV chitinases (Sauvage et al.  2010  ) , but a temperature lower than 
that reported in model wine solutions (Falconer et al.  2010  )  was found to be neces-
sary for invertase aggregation and precipitation. Recently, Marangon and co-work-
ers  (  2011b  )  found that the natural haze of white wine consisted mainly of class IV 
chitinase, with the contribution of  b -glucanase and, for the  fi rst time, of one yeast 
cell wall glucantransferase. Using a model wine solution, they found that haze in the 
presence of puri fi ed chitinase and TL protein was formed only when sulphate was 
present. Similar results were found in a protein-free wine added with isolated chi-
tinase, TL proteins, and sulphate. As reported for invertase by Dufrechou et al. 
 (  2010  ) , the wine proteins tested by Marangon and co-workers  (  2011b  )  had lower 
unfolding temperatures in real wine than in model wine solutions. 

 Because different wines with different haze potential usually contain very simi-
lar protein fractions (Ferreira et al.  2000 ; Monteiro et al.  2001 ; Wigand et al.  2009  ) , 
one or more unknown non-proteinaceous wine component(s) (termed X factors) are 
thought to be needed to cause visible haze formation (Mesquita et al.  2001 ; Waters 
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et al.  2005 ; Batista et al.  2009  ) . Candidate factors that may play a modulating role 
in wine haze formation include the sulfate anion (Pocock et al.  2007 ; Marangon 
et al.  2011a,   b  ) , pH value (Batista et al.  2009 ; Dufrechou et al.  2012  ) , ionic strength 
(Dufrechou et al.  2010,   2012 ; Marangon et al.  2011a  ) , phenolic compounds (Waters 
et al.  1995 ; Marangon et al.  2010 ; Esteruelas et al.  2011  ) , and organic acids (Batista 
et al.  2010  ) . To date, the identity of the X factor remains unclear. 

 Marangon et al.  (  2011a  )  studied the impact of ionic strength and sulfate upon 
thermal aggregation of puri fi ed grape chitinases and TL proteins in a model wine 
solution. They reported that, although TL proteins are not very susceptible to ionic 
strength changes, chitinase isoforms behave differently, one being precipitated 
above 21 mM, the other above 100 mM. Sulphate, even at low concentration, 
increased the instability of both chitinase isoforms, and it had no effect on TLs. 
Very recently, Dufrechou et al.  (  2012  )  published a report on the effects of ionic 
strength, pH, and temperature on wine protein instability, using both model and 
real wines. By screening aggregation kinetics, they proposed a model for heat-
induced haze formation which includes a balance between pH-induced unfolding, 
leading to conformational changes responsible for colloidal aggregation of wine 
proteins at low pH, and heat-induced unfolding, leading to denaturation and aggre-
gation at higher temperatures. 

 The validity of the experiments on wine protein instability involving the analysis 
of wine model solutions containing organic acids has been recently questioned: 
Batista et al.  (  2010  )  found a dramatic reduction in the haze potential of wine pro-
teins when measured in the presence of organic acids normally encountered in 
wines. This reduction was also observed in real wines when added with organic 
acids. They suggested this phenomenon may be linked to the removal of consider-
able amounts of phenolics, which are apparently involved in protein haze formation 
(Waters et al.  1995 ; Marangon et al.  2010 ; Esteruelas et al.  2011  ) . 

 Glycosylated proteins are known to play an important role in wine turbidity, as 
they may interact with tannins, polyphenols, and other proteins (Siebert et al.  1996  ) . 
Moine-Ledoux et al.  (  1992  )  showed that wines aged on yeast lees were less prone 
to haze formation and were stabilized by the addition of less bentonite than wines 
aged without lees. Subsequently, they were able to demonstrate that this protection 
from haze was due to a 32-kDa fragment of glycosylated yeast invertase (Moine-
Ledoux and Dubourdieu  1999  ) . Dupin et al.  (  2000  )  proposed a competitive mecha-
nism between yeast mannoprotein and wine proteins for unknown wine components, 
otherwise required for the formation of large insoluble aggregates of denatured pro-
tein (the X factor?). Other glycoproteins showing haze-protective activity include 
whole yeast invertase (Moine-Ledoux and Dubourdieu  1999  ) , Arabinogalactan pro-
teins (Waters et al.  1994b ; Pellerin et al.  1993  ) , and high molecular weight yeast 
mannoproteins (Waters et al.  1993 ; Waters et al.  1994a  ) . To date, several studies 
have demonstrated that modi fi ed yeast strains overproducing mannoproteins 
signi fi cantly contributed to improved white wine stability (Brown et al.  2007 ; 
Gonzalez-Ramos et al.  2008  ) . The recent screening of wine glycoproteins pub-
lished by Palmisano and co-workers  (  2010  )  may increase the possibilities for the 
characterization of yeast and grape glycoproteins, which may have a technical 
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application in the reduction of white wine haziness. To this intent, one predictive 
assay for wine haze tendency based on the separate recovery and quanti fi cation 
of wine proteins and glycoproteins was recently developed (Fusi et al.  2010  ) . 
The authors showed that protein content and glycoprotein concentrations are dif-
ferent in wine, whereas their electrophoretic patterns are almost superimposable. 
They also demonstrated a straightforward connection between their assay and 
prediction of haze as measured by traditional assays.  

    16.4.2   Foam Formation and Stability 

 Wine proteins have been shown to play an important role in the sparkling wine 
industry because they are known to promote foam formation and stability. A 
positive correlation between protein concentration and foam formation in spar-
kling wines has been reported since the earliest studies (Brissonet and Maujean 
 1993 ; Malvy et al.  1994 ; Andres-Lacueva et al.  1996 ; Marchal et al.  1996 ; 
Luguera et al.  1997,   1998  ) . The occurrence of protein degradation in sparkling 
wines has been shown to reduce their foamability. Dambrouck et al.  (  2005  )  
found that a signi fi cant decrease in both the total protein and the grape invertase 
contents of Champagne-base wines was correlated with the loss of wine  foaming 
properties. 

 Several studies have investigated the detrimental effect on foam stability of infec-
tion by fungal pathogens, such as  Botrytis cinerea.  The reduction in foamability 
registered in the presence of botrytized grapes was due to fungal proteases able to 
signi fi cantly hydrolyze wine proteins (Girbau et al.  2004 ; Marchal et al.  2006 ; 
Cilindre et al.  2007,   2008  ) . 

 Vanrell and colleagues demonstrated that the use of bentonite  fi ning treatments 
on sparkling wines caused a signi fi cant reduction in foam formation and stability. 
This effect was due to the registered depletion of all the protein fractions by benton-
ite, except for the high molecular mass fraction, which probably contains glycopro-
teins and polysaccharides (Vanrell et al.  2007  ) . 

 As previously described, during alcoholic fermentation and aging on lees, glyco-
sylated proteins (mannoproteins) are released by the yeasts. These proteins were 
recently shown to have potential foam-active properties in wine and also in beers 
(Blasco et al.  2011  ) . Very recently, one experiment on molecular reconstituted 
model sparkling wines demonstrated that foam height and foam stability increased 
exponentially with the concentration of high molecular weight mannoproteins 
(Coelho et al.  2011  ) . 

 Due to the contribution to foam formation and stability of some wine proteins, 
especially the high molecular weight glycosylated proteins, the investigation of 
 fi ning methods other than bentonite, with a more selective removal capacity, is still 
one of the major needs of the oenological industry.   
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    16.5   Wine Proteins as a Tool for Traceability 

    16.5.1   Varietal/Geographical Differentiation 

 The transformation of the wine market into a global market has pushed producers 
and legislators towards the approval of protection policies for several high-quality 
wines. To this end, labeling policies have been created throughout the world. The 
two main types of labeling policy are derived from the American and the French 
model. In the  fi rst model, wines are labeled according to the most abundant grape 
variety used (minimum 75%). In the French policy, the system of Protected 
Designations of Origin, geographical criteria are as important as varietal ones. 
Regardless of the system used, wines bearing protected labels are considered of 
higher quality and are generally more expensive than non-labeled wines. It is thus 
not surprising to see efforts being made by scientists to develop new techniques to 
prove wine authenticity. Most of these techniques rely on DNA typing (Siret et al. 
 2000 ; García-Beneytez et al.  2002  ) , biochemical characterization of both volatile 
and non-volatile compounds (Rebolo et al.  2000 ; Moret et al.  1994  ) , and analysis of 
stable isotopes (Day et al.  1995 ; Di Paola-Naranjo et al.  2011  ) . 

 In more recent years, the study of compounds that can be used in grape trace-
ability has expanded to nitrogenous compounds, including proteins. The  fi rst steps 
towards varietal differentiation of wines based on protein pro fi ling were taken by 
Pueyo et al.  (  1993  ) , who found differences in the native electrophoresis patterns of 
musts obtained from different grape varieties, and by Moreno-Arribas et al.  (  1999  ) , 
who analyzed 41 musts made from a mixture of grapes from large vineyards and 
were able to group them according to the grape variety using the same approach. 

 In  2002 , Rodriguez-Delgado and collaborators used capillary gel electrophoresis of 
wine proteins in order to differentiate between different wines from the Canary Islands, 
and found that, although similar, the relative amounts of speci fi c protein fractions 
allowed differentiation among them, due to the different grape varieties used, the soil 
in which the vines grew, and the climatic conditions. One recent application of high-
performance capillary electrophoresis to varietal differentiation of still white wines, 
based on protein pro fi ling coupled with shikimic acid quanti fi cation, has been pro-
posed (Chabreyrie et al.  2008  ) . Comparison of the SDS-PAGE patterns of commercial 
red, rosé, and white wines from different varieties revealed great similarities among 
the analyzed wines, although some differences could be found (Wigand et al.  2009  ) . 
The protein band identi fi ed as lipid transfer protein, for example, was not detected in 
most of the commercial red wines, although it was fully detected in the Dornfelder red 
wine, less in the rosé wine, and not in white wines, probably due to the shorter contact 
times between wine and skins (Wigand et al.  2009  ) . 

 MS analysis of wine proteins has been proposed as a tool for wine authentication 
since 1996, when Szilágyi and colleagues published their results on the application 
of MALDI for distinguishing wines and musts. MALDI and SELDI  (surface-enhanced 
laser desorption/ionization) were then used for the  fi ngerprinting of proteins in dif-
ferent wines (Weiss et al.  1998  ) , and ESI-MS was used on directly infused musts 
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and wines, and proved to be able to reveal the addition of unfermented must or sugar 
(Catharino et al.  2006  ) . MALDI-TOF-MS pro fi ling of peptides obtained by tryptic 
digestion has been recently proposed as a tool for differentiating high-quality white 
wines from the Campania region (Chambery et al.  2009  ) . 

 To promote the use of MS pro fi ling of wine proteins as a tool for differentiation, 
more methodological and technical evidence is needed. To this end, one recent study 
has been published by Nunes-Miranda et al.  (  2012  ) , taking into account the type of 
matrix, the number of bottles of white wine, the number of technical replicates, and the 
number of spots, as well as the classi fi cation algorithm used. In their report, the best 
conditions for the reliable pro fi ling of unprocessed wine proteins were found to be the 
use of  a -Cyano-4-hydroxycinnamic acid matrix, mixed 0.75:1 with analyzed wine, 
with three spots from  fi ve different bottles of each wine as minimum requirements, with 
the Bayes-Net algorithm performing the best in these conditions (Nunes-Miranda et al. 
 2012  ) . Although expensive both in terms of costs and time, more studies in this direc-
tion are urgently needed to move from the  fi eld of research to real applications of MS 
for proteins and peptides in the  fi eld of varietal/geographical differentiation of wines.  

    16.5.2   Detection of Contaminating Proteins 

 One major issue for wine traceability in the last decade has been the detection of 
residual proteins deriving from  fi ning treatments. Some winemakers usually add 
protein-based  fi ning agents (milk casein, egg ovalbumin,  fi sh gelatin, gluten) in 
order to reduce or eliminate potential sediments of grape and yeast proteins during 
long-term bottle storage (D’Alessandro and Zolla  2012  ) . These  fi ning proteins may 
cause severe problems for wine commercialization, as most of them are potentially 
allergenic, and are now subjected to mandatory labeling. The techniques used to 
date for detection of contaminating proteins of animal and/or plant origin in wines 
mainly relied on the antibody/antigen reaction, such as ELISA (Rolland et al.  2008 ; 
Weber et al.  2009 ; Lacorn et al.  2011  )  and Western blotting (Weber et al.  2009  ) . The 
detection limit of these methods is often considered too high (100  m g/L for Weber 
et al.  2009,   2010  ) . One recent clinical work by Vassilopoulou et al.  (  2011  )  reported 
that, although no allergen was detected by traditional methods in the  fi ned wines, 
positive skin prick test reactions and basophil activation to the treated wines were 
observed in the majority of patients with allergy to milk, egg, or  fi sh, correlating 
with the concentration of the  fi ning agents used. 

 Mass spectrometry has been applied in recent years to the detection of these  fi ning 
proteins to wines. Capillary LC combined with ESI-Q-TOF-MS was used by Monaci 
et al.  (  2010  )  for the detection of caseins in white wines, with a declared limit of detec-
tion (50 mg/L) which is still much higher than approved ELISA methods. Very 
recently, one commercial ELISA kit has been validated for detection of caseins in 
white wine with a declared detection limit as low as 1 ppm (Restani et al.  2011  ) . 

 Mass spectrometry has also been used for the detection of gluten-derived pro-
teins in red wines by LC-MS/MS analysis (Simonato et al.  2011  ) , and the method 



29716 Wine Quality

proved to be signi fi cantly more sensitive (LOD: 1 mg/L) than the usual ELISA 
methods (LOD: 50 mg/L). The same research approach has recently been used for 
egg protein detection in red wines, and again in this case proved to be more effective 
than immunochemical methods, achieving an LOD of 5 mg/L of egg white (Tolin 
et al.  2012  ) . 

 The application by Cereda et al. in 2010 of the CPLL to white wines allowed the 
detection of amounts of added caseins as low as 1  m g/L. The same research group 
performed screening of commercial Italian red wines using the same approach, and 
was able to detect the use of milk proteins for red wine  fi ning instead of the expected 
occurrence of egg ovalbumin (D’Amato et al.  2010  ) . Major criticisms of the cited 
method for the detection of allergenic  fi ning proteins in wines are the poor quantita-
tive results, mainly due to the limited dynamic range of electrophoresis and staining 
techniques. Nevertheless, their signi fi cant improvement in the detection limit of 
contaminating proteins in wines have boosted the chances of preventing frauds that 
can seriously damage consumer health.   

    16.6   Concluding Remarks 

 Wine proteomics has recently achieved new relevance, and the number of surveys 
devoted to oenological aspects in fl uenced by the wine proteins has exponentially 
increased since the accomplishment of grape genome sequencing. Nevertheless, 
more efforts towards absolute protein quanti fi cation and standardization of the 
methods are currently needed in the  fi eld of wine proteomics, particularly for its use 
in quality assessment and in traceability.      
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