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Université Lille Nord de France, Laboratoire LAMIH UMR 8201 CNRS, Valenciennes Cedex 9,

France

e-mail: hakim.naceur@univ-valenciennes.fr

# Springer Science+Business Media New York 2015

G. Z. Voyiadjis (ed.), Handbook of Damage Mechanics,
DOI 10.1007/978-1-4614-5589-9_41

765

mailto:yq.guo@univ-reims.fr
mailto:yuming.li@univ-reims.fr
mailto:boussad.abbes@univ-reims.fr
mailto:alihalouani@yahoo.fr
mailto:hakim.naceur@univ-valenciennes.fr


Forming Process Optimization Using IA and PIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799

General Aspects of the Forming Process Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799

Optimization Procedure for Forming Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

Preform Design and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

Abstract

Some simplified numerical methods for damage predictions in metal forming

process modeling and optimization are presented in this chapter. The incremen-

tal approaches including advanced damage models lead to accurate results, but

the simulations are tedious and time-consuming. An efficient solving algorithm

called inverse approach (IA) allows the fast modeling of forming processes in

only one step between the known final part and the initial blank, avoiding the

contact treatment and the incremental plastic integration. To improve the stress

estimation in the IA, the so-called pseudo-inverse approach (PIA) has been

developed. Some intermediate configurations are geometrically created and

corrected by a free surface method to consider the deformation path, and the

plastic integration based on the flow theory is carried out incrementally to

consider the loading history. A simplified 3D strain-based damage model is

coupled with the plasticity and implemented into a direct scalar integration

algorithm of plasticity (without local iterations), which makes the plastic inte-

gration very fast and robust even for very large strain increments. These simpli-

fied approaches lead to very fast and useful numerical tools in the preliminary

design and optimization.

Introduction

Nowadays, the forming industry needs to increase the product quality and to reduce

the production costs and delay. The preliminary design of forming processes

implies expensive trials-corrections on forming tools. The actual tendency is to

use the numerical simulations in order to predict the forming feasibility (material

flow, stresses, damage, etc.) and to optimize the process parameters and the tool

geometry.

The numerical process modeling is a difficult task due to the involved complex

phenomena: large strains, viscoplasticity, damage, contact-friction, thermal effects,

etc. The incremental approaches with advanced damage models can give accurate

results, but the simulation remains tedious and time-consuming; hence, it quickly

becomes unfeasible in an optimization process. In this chapter, some simplified

methods for damage modeling in metal forming process and optimization will be

presented: (1) the fast forming algorithm IA which allows the calculation in only

one step between the known final part and the initial blank, (2) the PIA which

considers the loading path and improves significantly the stress estimation of the
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IA, (3) a simplified 3D strain-based damage model and an efficient direct scalar

integration algorithm of plasticity, and (4) the fast and robust forming process

optimization using the above simplified approaches.

Two main approaches are widely used for the metal forming simulation: the

incremental approach and the inverse approach (IA or one-step approach). The first

one simulates the real multi-physic phenomena step by step, which makes it fairly

accurate but very time-consuming. The second one exploits at maximum the

knowledge of the final part shape; it performs the calculation from the known

final configuration to the initial one in only one step to determine the strain and

stress fields satisfying the equilibrium (Guo et al. 1990; Lee and Huh 1998, among

others). The IA is based on two main assumptions: the tool actions are replaced by

simplified nodal forces to avoid the contact-friction treatment, and the loading is

supposed proportional to avoid the incremental plastic integration procedure. The

strains and stresses are calculated by directly comparing the initial and final

configurations. The IA is very fast and gives fairly good strain estimation. Nowa-

days, it is largely used as a valuable numerical tool in the preliminary design stages

in various forming processes (stamping, hydroforming, etc.), in order to optimize

the tool geometry and process parameters, such as the shape of initial metal sheet,

the addendum surfaces, the drawbead sizes and positions, the holding forces, the

springback compensation, etc. (Naceur et al. 2006; Dong et al. 2007; Azaouzi

et al. 2008).

However, the IA cannot consider the loading history, leading to poor stress state

estimation. The PIA has been developed to improve the stress estimation (Guo

et al. 2004; Halouani et al. 2012a). Some intermediate configurations are geomet-

rically created and mechanically corrected to take into account the deformation

paths. The coupled damage–plasticity model is based on the flow theory of plas-

ticity, and the plastic integration is carried out in an incremental form. The fast

direct scalar algorithm of plasticity (DSAP) is used to speed up the procedure and

avoid divergence problems in case of large strain increments. The PIA possesses

not only the advantages of the IA (simple and fast), but also the advantages of the

incremental approach (loading history, good stress estimation). Many research

works based on the forward or backward methods have investigated the tool

preform optimization (Kobayashi et al. 1989; Kim and Kobayashi 1990; Fourment

et al. 1996), but too much computation time is required to carry out an optimization

procedure. The PIA has been used for the automatic design and optimization of tool

preforms. Genetic optimization algorithms and surrogate meta-models are adopted

for the multi-objective optimization process in order to obtain the Pareto front

(Halouani et al. 2012b).

Two main theories are extensively used to describe the ductile damage occur-

rence and its effect on the metal behavior. The first one was pioneered by Gurson

(1977) and improved later by other researchers (Rousselier 1987, etc.). It is based

on the micro-mechanisms of void nucleation, growth, and coalescence. It uses the

void volume fraction as a “scalar” damage variable in the plastic potential in order

to model the void effect on the plastic flow. The second one ignores the micro-

defect mechanisms; it represents the damage effect on the overall elastoplastic
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behavior of the material. The continuum damage mechanics (CDM) (Chaboche

1988; Lemaı̂tre and Chaboche 1990) uses a scalar or tensorial damage variables to

represent the ductile defect evolution and their consequences on the other

thermomechanical fields. This kind of CDM-based phenomenological approach

has been widely applied to various metal forming and machining processes

(Saanouni and Chaboche 2003).

There are two principal methods for the damage modeling: the uncoupled

approach and the fully coupled one. The first one calculates the damage distribution

with the stress and strain fields at the end of a FE analysis without taking into

account its effect on other mechanical fields. It has been used by many authors to

analyze damaged zones in the final workpiece (Hartley et al. 1989, among others).

In some other works, the damage is used to find the forming limit strains in metal

forming (Gelin et al. 1985; Cordebois and Ladevèze 1985). On the other hand, in

the fully coupled approach, the damage effect is introduced directly into the

constitutive equations, so it affects the other thermomechanical fields. The widely

used models are based on the Gurson damage theory considering the void volume

fraction evolution (Aravas 1986; Onate and Kleiber 1988; Picart et al. 1998). Other

works are based on the continuum damage mechanics theory (CDM) (Lee

et al. 1985; Zhu et al. 1992; Saanouni et al. 2000). A simplified approach based

on Prandtl–Reuss plasticity model with nonlinear isotropic hardening is proposed in

Mathur and Dawson (1987) and Brunet et al. (1996); the damage effect is taken into

account by using the damage factor (1 � D) on the stress vectors. Based on the

thermodynamics of irreversible processes with state variables, an advanced

approach aims to model the multi-physics coupling between the main thermome-

chanical phenomena including the isotropic and anisotropic damage (Mariage

et al. 2002; Saanouni 2012, see also ▶Chap. 25, “Ductile Damage in Metal

Forming: Advanced Macroscopic Modeling and Numerical Simulation” of this

volume).

In this chapter, a simplified model called 3D strain-based damage model

(Lemaı̂tre and Chaboche 1990) and its applications in the IA and PIA will be

presented. This ductile damage model is based on the dissipation potential and

dedicated to the isotropic damage and hardening materials. The assumptions of the

hardening saturation after the damage threshold and the constant triaxiality under

proportional loading lead to a damage expression in terms of the equivalent plastic

strain in a rate form, even in an integrated form. In the IA, an integrated constitutive

equation is used to avoid the incremental plastic integration; the total damage

expression is used to determine the damage distribution in the final workpiece

(Cherouat et al. 2004). In the PIA, the damage effect is coupled with the plasticity

by introducing the damage variable into the plasticity criterion; the damage rate

expression is used to take account for their reciprocal effects (Guo et al. 2004).

In the PIA, the plastic strain increments are very large, so the classical iterative

plastic integration based on the return mapping algorithm (Simo and Taylor 1986)

requires much CPU time and may lead to divergence problems. A direct scalar

algorithm of plasticity (DSAP) enables to directly performing the plastic integration

without iterations (Li et al. 2007). The basic idea is to transform the unknown stress
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vectors into the equivalent stresses which can be determined by using the tensile

curve; then, the plastic multiplier λ can be directly calculated. The numerical results

have shown very good agreement between the two algorithms, as well as the

rapidity and robustness of the new DSAP.

Several examples will be presented to show the efficiency and limitations of the

IA and PIA. The results are compared with those obtained by the classical incre-

mental approach ABAQUS®/Explicit.

Inverse Approach for Sheet Forming Modeling

Basic Concept of the Inverse Approach

The IA has been proposed initially by Guo et al. (1990), for the estimation of the

large elastoplastic strains encountered in the sheet forming process. The calculation

is carried out from the known final workpiece to obtain the positions of material

points in the initial blank (Fig. 1). Two main assumptions are adopted: the simpli-

fied tool action assumption to avoid the contact treatment and the proportional

loading assumption to avoid the incremental plastic integration. This basic concept

makes the IA very fast.

Since then, the IA has known numerous improvements, allowing the simulation

of more complex 3D workpieces, including the friction, drawbeads, 3D anisotropy,

rotation-free shell model, initial target solutions, spares solvers, etc. An important

extension of the method has been done in order to deal with the tube hydroforming

(Chebbah et al. 2011) and the cold forging (Halouani et al. 2010).

Formulation of the Inverse Approach

The IA formulation is presented below for the sheet forming and tube hydroforming

by using a shell element. The FE formulation for axisymmetric cold forging can be

found in Halouani et al. (2010).

The IA using the deformation theory of plasticity has different features compar-

ing to the classical incremental approach: the known quantities are the final

workpiece shape C, the FE mesh on C, and the thickness of the initial blank

C0, while the unknowns are the horizontal coordinates of the nodes in the initial

tools actions

Workpiece
(3D surface)

P
h, e, s ?

W

initial flat blank

h0P0

u

u,v

n

A0 B0

A B

Fig. 1 Basic concept of the

inverse approach
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flat blank and the thickness distribution in the final workpiece (Fig. 1). These

unknowns are obtained by directly comparing C and C0 in an iterative manner to

satisfy the equilibrium conditions on C.

3D Shell Kinematics
Figure 2 illustrates the movement of a thin shell from its initial configuration C0 to

its final configuration C. p0 is a material point on the shell mid-surface on C0, q0 is a
point on the surface normal at p0, and p and q are their final positions on C. Using
the Kirchhoff assumption on the normal conservation, the following kinematic

relations are obtained:

X 0
q ¼ X 0

p þ z0 n0 ¼ Xp �Up þ z

λ3
n0;� h0

2
� z0 � h0

2
; z0 ¼ z

λ3
(1)

Xq ¼ Xp þ zn;� h

2
� z � h

2
(2)

where Xp
0 and Xp are the position vectors of p

0 and p, Up is the displacement vector

between them, h0 and h are the initial and final thicknesses, z0 and z are the

coordinates of q0 and q through the thickness, λ3 is the thickness stretch, and n0

and n are the unit normal vectors at p0 and p, respectively. It is noted that the final

configuration is known and taken as reference.

Large Strain Measurement
Using two tangent vectors and the normal vector (t1, t2, n) in p on the mid-surface of

C, a local reference (x, y, z) is established:

Z

X p

X q

h

n, z

q

q0
n0,z0

t 0
2

t 0
1

h0

Uq

p

p0

t2

t1

0

X

C

C0

Y

Fig. 2 Kinematics of 3D thin

shell
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t1 ¼ Xp,x

Xp,x
�� �� ; t2 ¼ Xp, y

Xp, y
�� �� ; n ¼ t1 ^ t2 (3)

The differentiation of Eqs. 1 and 2 gives the deformation gradient tensors with

respect to the local reference (x, y, z):

dX 0
q5 F 0

x

� ��1
dx with F 0

x

� ��1 ¼ Xp, x �Up, x⋮Xp, y �Up, y⋮n0=λ3
� �

(4)

dXq ¼ Fx dx with Fx ¼ Xp, x þ z n, x⋮Xp, y þ z n, y⋮n
� �

(5)

The above two equations enable to obtain the inverse of deformation gradient

tensor (F�1) between dXq
0 and dXq and then the inverse of Cauchy–Green left tensor:

B�15F �TF �1 (6)

The eigenvalues (λ1�2, λ2�2) of the tensor B�1 give the two in-plane principal

stretches; the eigenvectors give their directions. The thickness elongation can be

obtained by the incompressibility condition λ1λ2λ3 ¼ 1. The logarithmic principal

strains in the final configuration C are given by

< e1 e2 e3 >¼< lnλ1 lnλ2 lnλ3 > (7)

Integrated Constitutive Law
In the IA, the proportional loading assumption is adopted to obtain an integrated

constitutive law between the initial and final configurations. The loading history is

ignored, leading to a total strain-stress law (see section “Simplified Plastic Ductile

Damage Models and Direct Integration Algorithms” for more details):

σ ¼ H�1 þ 1

ES
� 1

E

� �
P

	 
�1

« (8)

where « is the total strain vector, H is Hooke’s elastic constitutive matrix, Es is the

secant modulus, E is Young’s modulus, and P is the matrix defined by the von

Mises isotropic criterion or Hill anisotropic criterion. The damage effect is

uncoupled with the plasticity and evaluated as post-processing.

A non-quadratic anisotropic yield surface was proposed by Barlat et al. (2003) to

deal with aluminum-based material parts:

f ¼ Φ0 þΦ00 � 2σmf ¼ X0
1 � X0

2

�� ��m þ 2X00
2 � X00

1

�� ��m þ 2X00
1 � X00

2

�� ��m � 2σmf ¼ 0 (9)

where σmf is the updated effective yielding stress and the exponent m is mainly

associated with the crystal structure of the material: a great m value corresponds

to a small curvature radius at the rounded vertices of the yield surface. Typically,

m ¼ 6 and 8 are recommended, and X1
0 , X2

0 , X1
00, X2

00 are the principal values of the

transformed deviatoric stresses S:
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X05C0 S
X005C00 S

�
(10)

where C0 C00 are the tensors of material parameters given in Barlat et al. (2003) and

σ is the Cauchy stress tensor.

Using the normality law and the proportional loading assumption of the IA, the

plastic strain rate can be integrated analytically, leading to a direct relationship

between the total plastic strains and deviatoric stresses:

S ¼ Hp «p (11)

Initial Solution Using Geometric Mapping Method

Several initial geometric guess techniques have been introduced by Naceur et al. (2002)

to speed up the convergence of the static implicit solver in the IA. The authors proposed

also other techniques for the treatment of vertical walls (balancing, opening, matrix

condensing) which have been proven essential for complex 3D industrial parts.

To explain the basic concept of the initial solution, the geometric mapping

method is described for the hydroforming of cylindrical tubes. The final

mid-surface is discretized into triangular shell elements and mapped onto the initial

cylindrical tube surface (Fig. 3).

Knowing the positions of the element nodes in the final configuration, the first

guess can be achieved by radial projection of the nodes onto the initial cylindrical

tube surface. These positions will be modified iteratively to meet the equilibrium in

the final workpiece.

Final configuration C

Initial configuration C0

Initial guess

x, u z, w

y, vY, V

n

z, w

U1U2
U3

t2

t1

P2

P3

P3
0

P2
0

P1
P

P1
0

P3
P

P2
P

P1

j

k

i
O

R

Fig. 3 3D mesh mapping onto the initial cylindrical tube surface
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Since the mapping is made onto the known initial cylindrical surface, the radial

displacement Ur of each node is known. The two other unknown displacements are

axial and circumferential ones. The circumferential displacement is dependent on

the unknown rotation angle Δφ. Its Cartesian components can be calculated as

follows (Fig. 4):

Ui
p ¼ Ur cosφ� ΔUi

p

Vi
p ¼ Ur sinφþ ΔVi

p

with
ΔUi

p ¼ R0

�
cos φ� Δφið Þ � cosφ

�
ΔVi

p ¼ R0

�
sin φ� Δφið Þ � sinφ

� (12)

where R0 is the radius of the tube mid-surface.

Variational Formulation

The discretization of the final shape of the desired workpiece is done by using a

rotation-free shell element called DKTRF (Guo et al. 2002). This element is based

on the membrane element CST and the plate element DKT6 (Batoz and Dhatt

1990). The DKTRF formulation involves the three neighboring elements in order to

define the bending curvatures and build the element stiffness matrix without

Y

XZ

Fr

Ft

F
ir

Ur

PP

P i

P0

Up

R0

U i
p

ΔU i
p

ϕ

Δϕi

ΔV ip

iϕ

P

Fig. 4 Radial projection of

point P and its movement on

the tube surface

24 Damage Prediction in Metal Forming Process Modeling and Optimization:. . . 773



rotation degrees of freedom (Fig. 5). The resulting element has only three trans-

lations DOF per node.

Approximation of Strain Displacements
In the local reference of an element, the virtual membrane strains are expressed in

terms of the two in-plane displacements along x and y:

e� ¼ < u�, x v�, y u�, yþv�, x > (13)

Linear approximations are used for u* and v* (constant strain triangle membrane

element, CST) to obtain a constant membrane strain operator:

e� ¼ Bm δ u�n
� �

m
; unð Þm ¼ u1 v1 u2 v2 u3 v3h i (14)

For the bending part, the rotations around the three element sides (θ4, θ5, θ6) are
expressed in terms of the transverse displacements of the six nodes (w1, w2, w3, wi,

wj, wk, Fig. 5), the rotations normal to the three sides are expressed in terms of the

transverse displacements of the three nodes (w1, w2, w3, Fig. 5). Finally, a constant

bending curvature operator is obtained, which is free from rotation degrees of

freedom (Guo et al. 2002).

χ � ¼ Bf u�n
� �

f
; unð Þf ¼< w1 w2 w3 wi wj wk > (15)

Internal Force Vector
The principle of virtual work is used to establish the equilibrium on the final

workpiece. The transverse shear effects are neglected for the thin sheet forming

process. The virtual work of internal forces in an element is given by:

Fig. 5 DKT rotation-free triangular shell element
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We
int ¼

ð
Ve

«�T σ dV ¼ u�Tn f e
int (16)

By using the above FE approximation, the internal force vector in the global

coordinate system is obtained:

We
int ¼U�T

n F e
int (17)

F e
int ¼ TT

ð
Ve

Bm
T þ z Bf

T
� �

σ dV ¼ Ae TT Bm
TNþ Bf

TM
� �

(18)

where T is the transformation matrix between the local and global references, N is

the internal membrane force vector, and M is the internal bending–torsion moment

vector.

External Force Vector
In the IA, the tool actions are simply represented by some external nodal forces to

avoid the contact treatment. At a node, the resultant tool force F is composed of a

normal pressure force Fn and a tangential friction force Ft. F is situated on the

friction cone surface defined by β ¼ arc tan μ (μ is friction coefficient, Fig. 6). Its

direction nf can be determined by the friction cone and the slide direction:

F ¼ Fnn� Ftt ¼ Fffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p n� μtð Þ ¼ Fnf (19)

where n is the unit normal vector of the contour and t is the unit vector of the node
displacement on the tangent direction.

F

Fn

Ft
Part

Tool

n

t

nf

b

Fig. 6 Determination of the

tool contact force by the

friction cone
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The value of F can be determined by the equilibrium condition at the contour.

The following equilibrium equation can be established on a node k:

F k
ext F

k
� �� Fi

int ¼
FknkX
FknkY
FknkZ

8<
:

9=
;

ext

�
Fk
X

Fk
Y

Fk
Z

8<
:

9=
;

int

¼
0

0

0

8<
:

9=
; (20)

where nkr nkZ
� �T ¼ nkf represents the resultant force direction at the node k. Then,

the value of Fk and the nodal external force vector are obtained:

Fk ¼ nkX nkY nkZ
� � Fk

X

Fk
Y

Fk
Z

8<
:

9=
;

int

; Fk
ext ¼ Fk

Fk
X

Fk
Y

Fk
Z

8<
:

9=
;

ext

(21)

Application: Hydroforming of an Aluminum Alloy Conical Tube

The hydroforming of a conical tube has been studied by Jansson et al. (2008)

(Fig. 7). The circumferential expansion attains 47.5 % from its original position.

This is a difficult process because it requires a massive metal feeding into the

expansion zone in order to avoid a burst fracture.

A6-axis hydraulic press of 75 tons is used for the tube hydroforming.The axial feeding

is provided on both sides of the tube. Thewhole device is instrumentedwith encoders and

pressure sensors which allow the application of the axial feeding and pressure at any time

during forming. Figure 8 shows the evolutions of the normalized pressure and feeding.

The tube is made of an aluminum alloy AA6063-T4. Both Hill (1948) and Barlat
(2000) criteria are used. R00, R45, and R90 are the anisotropic coefficients; F, G, H, N,
L are material parameters forHill criterion; α1–α8 are the material parameters for Barlat
criterion; they enable to consider the anisotropy in the evolution of the plastic

flow surface for the case of uniaxial stress or biaxial stress state. The material data

are as follows: E¼ 68300MPa, ν ¼ 0.3, σ00¼ 78 MPa, σ45¼ 76MPa, σ90¼ 74MPa,

σ11¼ 23.4MPa, σ22¼ 85MPa, R00¼ 0.47, R45¼ 0.12, R90¼ 1.5, F¼ 0.43,G¼ 1.36,

H¼ 0.64,N¼ 1.11, L¼ 0.43, and α1–α8¼ 0.72, 1.29, 0.99, 0.97, 1.03, 0.98, 0.16, 1.23.

The curves of the pressure and feeding in function of time (Fig. 8) allow

controlling the strain path, leading to a fully formed tube without bursting

(Fig. 9). Firstly, the pressure is increased to 10 MPa with a moderate feeding in

Die

Tube 50

31.10

Feeding direction100

Axis of revolution

Fig. 7 Tube geometry and conical die
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order to obtain a good compromise between the expansion and shortening; then, it is

maintained constant while the axial feeding is increased until its maximum value of

33 mm. Secondly, the pressure is increased from 10 to 33 MPa to finish the

expansion of the tube in the die.

In the numerical simulation, a quarter of the tube is discretized into 4536

DKTRF shell elements for the IA (Fig. 10). The same mesh is used for S3 shell

elements in ABAQUS. The IA calculation uses only 38.7 s of CPU time, whereas

the ABAQUS/Explicit calculation uses 275 s.

Figure 11 shows the thickness variation along the tube axis. The result obtained

by the IA using the Barlat (2000) yielding criteria is in good agreement with that of

ABAQUS using the same criterion.

It is noted that the thickness variation obtained by ABAQUS is closer to the

experimental result than that by IA, especially at the die corner radius (at 80 and

210 mm). This can be explained by the fact that friction in the corner radii plays an

important role, whereas the IA uses a simplified tooling action without loading

history consideration.

Fig. 8 Evolutions of the

stroke (maximal value

33 mm) and pressure

(maximal value 33 MPa)

during forming

Fig. 9 Entirely formed conical tube
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Pseudo-inverse Approach for Forming Process Modeling

In the IA, only the initial and final configurations are considered to calculate the

total strains and then the total stresses by using the deformation theory of plasticity.

This allows obtaining good strain estimation, but poor stress estimation. In the PIA,

some realistic intermediate configurations are introduced to consider the deforma-

tion paths, and the incremental flow theory of plasticity with the damage is adopted

to take into account the loading history.

Creation of Intermediate Configurations

Creation of Intermediate Configurations for Sheet Forming Modeling
In a 3D sheet forming process, since the final part shape and the tools are known, the

intermediate configurations can be approximately generated by a geometrical

Fig. 11 Comparison of

thickness variations along the

tube axis

Fig. 10 Finite element mesh

used for the IA calculation
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method before the mechanical calculation (Guo et al. 2004). Considering a sheet as

a stretched membrane in accordance with the tools (Fig. 12), its shape can be

determined by minimizing its total surface:

J ¼ Min
X
e

Ae; zP, i � zS, i � zD, i (22)

where Ae is an element area and zP, zS, and zD are the nodal vertical positions of a

point on the punch, sheet, and die, respectively.

For a 2D or axisymmetric part, the minimization of the sheet surfaces can be

done by using its profile. In a 3D case, the workpiece is divided into several sectors,

and each of them is treated as a 2D case; all sectors are assembled together by linear

interpolation (Fig. 13).

It is noted that the nodes having the same number in the intermediate and final

meshes do not represent the same material point; a transfer of the strain and stress

fields should be done between these two independent meshes.

Free Surface Method for Axisymmetric Cold Forging
In the axisymmetric cold forging process, some intermediate configurations are

generated to consider the deformation history. An intermediate configuration is

Z

zD,i

zP,i

zS,i

punch

die

blank

r

Fig. 12 Creation of an

intermediate configuration by

minimizing sheet surface

Fig. 13 Generation of the 3D mesh of an intermediate sheet configuration

24 Damage Prediction in Metal Forming Process Modeling and Optimization:. . . 779



created geometrically and then corrected by using a free surface method (Halouani

et al. 2012), in order to obtain the free surface shape satisfying the equilibrium

conditions.

Geometric Proportional Intermediate Configurations
In the PIA, the FE meshM2 is created on the known final part C2. The contour of the

initial billet C0 is also known. For a two-step forging process, a geometric propor-

tional configuration is generated as follows (Fig. 14):

1. The contour nodes ofM2 are mapped onto the contour of C0, and the positions of

the interior nodes on C0 are determined by a linear solution on M2 with the

imposed contour node displacements from C2 to C0 as boundary conditions.

2. The intermediate mesh Mp
1 is created by using a geometric proportional

interpolation:

X 1
p ¼ X0 þ 0:5 X 2 � X 0

� �
(23)

where X0, Xp
1, and X2 are the nodal position vectors of the meshes on the initial,

intermediate, and final configurations.

3. The kinematic conditions of the mesh Mp
1 are checked. If some nodes penetrate

into the tool, they are mapped back on the tool contour (Fig. 15).

Determination of the Free Surface of an Intermediate Configuration
Once the kinematically admissible intermediate mesh is obtained, an inverse

calculation is carried out between Mp
1 and M0. The mesh M0 is fixed, the mesh Mp

1

is taken as a reference to calculate the strains and stresses;Mp
1 is modified iteratively

in order to satisfy the equilibrium and contact conditions. Thus, the free surface

Fig. 14 Proportional intermediate mesh for PIA in a two-stage forging
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shape is determined at the end of the equilibrium loop. The boundary conditions of

Mp
1 are defined as follows (Fig. 15):

• If the nodal force points outward from the billet (Fn > 0, false), the node

should be on a free surface having the boundary conditions: U 6¼ 0, V 6¼ 0,

σn ¼ 0, τn ¼ 0.

• If the nodal force points toward inside (Fn < 0), the contact conditions

between the billet and tool give the tangent displacement Ui
0 6¼ 0 and the normal

one Vi
0 ¼ 0 on the tool contour.

• Then, the IA calculation is performed and the nodal positions are updated in the

intermediate configuration Mp
1.

The above operations are repeated in the equilibrium iteration loop until the

convergence. The incompressibility condition, the contact condition, and the equi-

librium at the free surface enable to obtain the mesh M1
1 (superscript means step 1,

subscript means configuration C1) representing the real shape of the free surface.

Figure 16 shows the intermediate configurations obtained by the geometric

proportional method, the PIA free surface method and ABAQUS® at the sixth

step for a PIA calculation. It is noted that the proportional mesh is a good initial

mesh but has a notable difference compared to the ABAQUSmesh (zones A and B).

The realistic mesh obtained by the free surface method is very close to the

ABAQUS® mesh.

Calculation of Large Strain Increments

The calculation of the large logarithmic strains in the IA is done in one step by

directly comparing the initial billet and the final part (Halouani et al. 2010).

A similar calculation is kept in the PIA but between two successive configurations.

For an axisymmetric problem, each material point moves in its meridian plane;

the displacement field is therefore independent of the circumferential coordinate.

The movement of a material point between two successive configurations Cn�1 and

Mapping back the nodes
penetrating in the  tool
into the tool’s cavity

Tool’s contour

Free surface

Fig. 15 Kinematically

admissible free surface
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Cn is expressed by rn�1 ¼ r � Δu where rn�1 and r are the position vectors in Cn�1

and Cn and Δu is the displacement increment vector in the radial plane.

Taking the known configurations Cn as reference, the inverse deformation

gradient tensor is defined in the reference (r, z) as follows:

drn�1 ¼ @rn�1

@r
dr ¼ I� @Δu

@r

� �
dr ¼ F�1

L dr (24)

with

F�1
L ¼

1� Δu, r 0 �Δu, z
0 1� Δu

r
0

�Δw, r 0 1� Δw, z

2
64

3
75 (25)

The inverse of the Cauchy–Green left tensor is defined by:

drnð ÞTdrn ¼ drTF�T
L F�1

L dr ¼ drTB�1dr (26)

B�1 ¼
1� Δu, r
� �2 þ �Δw, r�2

0

�Δu, z 1� Δu, r
� �� Δw, r

�
1� Δw, z

�
2
4 0 �Δu, z 1� Δu, r

� �� Δw, r
�
1� Δw, z

�
1� Δu

r

� �2
0

0 1� Δw, z
� �2 þ �Δu, z�2

3
75

(27)

The eigenvalues (Δλ1�2, Δλ2�2, Δλ3�2) of the tensor B�1 give the three principal

elongations (Δλ1, Δλ2, Δλ3), and the eigenvectors define the directions of these

principal elongations:

Fig. 16 Proportional mesh, PIA free surface mesh, and ABAQUS® mesh at step 6
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B�1 ¼ M
λ�2
1 0 0

0 λ�2
2 0

0 0 λ�2
3

2
4

3
5MT (28)

Then, the principal logarithmic strain increment is given by

Δ« ¼
Δe1
Δe2
Δe3

8<
:

9=
; ¼

lnΔλ1
lnΔλ2
lnΔλ3

8<
:

9=
; (29)

The large logarithmic strains in the reference (r, z) can be obtained by the

following transformation (Batoz and Dhatt 1990):

Δ« ¼
Δer
Δeθ
Δez
Δγrz

8>><
>>:

9>>=
>>; ¼

cos 2 φ
0

sin 2 φ
2 sinφ cosφ

0

1

0

0

sin 2 φ
0

cos 2 φ
�2 sinφ cosφ

2
664

3
775

Δe1
Δe2
Δe3

8<
:

9=
; (30)

where φ is the angle from the r axis to the first principal strain axis.

In the PIA, the inverse calculation is carried out between two successive

configurations using the strains and stresses obtained in the previous step. At the

step n-1, the FE mesh is created on Cn–1 and modified by the free surface method; at

the step n, the mesh is created on Cn and mapped on Cn–1 for the inverse calculation.

These two meshes on Cn–1 are completely independent, so a transfer of the strain

and stress fields should be done between them.

Direct Integration of Plasticity and Damage for Large Strain
Increments

The return mapping algorithm (RMA) (Simo and Taylor 1986) is the most widely

used iterative scheme. It is considered as an efficient method for the plastic

integration, but it consumes much computation time because of numerous integra-

tion points in whole structure and numerous iterations in the global equilibrium

loop. Moreover, this iterative scheme may cause divergence problems for large

strain increments. The new algorithm called direct scalar algorithm of plasticity

(DSAP) proposed by Li et al. (2007) is very fast and robust without local iterative

loop. The basic idea of the DSAP is to transform the constitutive equations with

unknown stress vectors into a scalar equation in terms of equivalent stresses which

can be obtained by using the tensile curve, leading to a direct solution to obtain the

plastic multiplierΔλ (see section “▶ Simplified Plastic Ductile DamageModels and

Direct Integration Algorithms”).
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Numerical Results: Simulation of a Three-Stage Stamping Process

An axisymmetric pot is realized by three successive stamping stages (Fig. 17). The

stamping is carried out continuously on a sheet band. The geometrical dimensions

are given in Fig. 18. The first two stages are designed to obtain the biaxial strain

states below the FLC curve.

The sheet is cut by six arc knives before the stamping to facilitate the sheet draw-

in. In the third stage, the pot with a large diameter should be pushed by the punch

into the die of smaller diameter; this implies the bending–unbending effect. The

intermediate shape of the part is determined by the geometrical relations between

the sheet and the tools (Fig. 19).

The material of the sheet is the steel DC04, its thickness is 1 mm. The part

heights at the three stages are 13, 15 and 15 mm, respectively. The friction

coefficient is 0.144 between the sheet and die.

In stage 1, a good agreement of the thickness distributions is obtained between

the numerical results of the PIA and the experimental results of CETIM. It is found

that the maximal thickness thinning is 13.2 % for CETIM and 10.6 % for PIA. The

comparison of the FLD (forming limit diagram) shows also a good coherence

between the numerical and experimental strain states.

In stage 2, the thickness distributions obtained by CETIM and PIA are also very

similar. The maximal thinning is situated at the upper radius of the part. The

maximal values are 17.4 % by CETIM and 15.3 % by PIA (Fig. 20). The experi-

mental FLD points correspond well to those obtained by the PIA (Fig. 21). It is

noted that only a small zone on the part has been measured in the experimental test.

In stage 3, the difference of the thickness distributions becomes notable between

the numerical and experimental results: 30.3 % of thinning for PIA but 40.7 %

for CETIM (Fig. 22). The reason of this error is due to the assumption on the

Fig. 17 Photo of an axisymmetric pot stamping in three stages
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Stage 1

H = 13
Rp = 14 Rd = 6

A B

Rd = 5

A

H = 15
Rp = 6

C

A(21, 0)

B(22.5, 0)

Stage 2

A(16.7, 0)

B(22.5, 0)

C(4.5, 15)

Stage 3

A(13.2, 0)

B(22.5, 0)

C(4.5, 15)

B

Rd = 3.5

A

H = 15 Rp = 4

C

B

Fig. 18 Part geometry at the three stamping stages

Fig. 19 Determination of the intermediate sheet shape in the third stage
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Percent True Valuesa Part  DC04
step 2

Thickness Strain

maillarddc 04

−17.4
−17.2
−16.9
−16.6
−16.4
−16.1
−15.8
−15.6
−15.3
−15.1
−14.8
−14.5
−14.3
−14.0
−13.7
−13.5
−13.2
−12.9
−12.7
−12.4
−12.1
−11.9

b
THICK VARIATION

14.377
11.083
7.7893
4.4954
1.2016
−2.0923
−5.3861

−11.974
−15.267

−8.68

Fig. 20 Thickness variation (%) obtained by PIA and by test in stage 2. (a) Experimental test of

CETIM. (b) Numerical simulation of PIA
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Fig. 21 FLC and FLD diagrams in stage 2
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contact-friction effects. Despite this difference, PIA is able to find correctly the

maximal thinning zone.

In stage 3, the FLD numerical and experimental results are also fairly coherent

(Fig. 23). In a “good part” just before the rupture, the points are very close to the

FLC in both cases.

Percent True Values
a

b

Part  DC04
step 3 

Thickness Strain

maillarddc04

−40.7
−39.6
−38.5
−37.4
−36.3
−35.2
−34.1
−33.0
−32.0
−30.9
−29.8
−28.7
−27.6
−26.5
−25.4
−24.3
−23.2
−22.1
−21.0
−19.9
−18.8
−17.7

THICK VARIATION

8.775

4.4345

−4.2466

−8.5871

−12.928

−17.268

−21.609

−25.949
−30.289

0.093938

Fig. 22 Thickness variation (%) obtained by PIA and by test in stage 3. (a) Experimental test of

CETIM. (b) Numerical simulation of PIA
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Simplified Plastic Ductile Damage Models and Direct Integration
Algorithms

Strain-Based Damage Model

The damage models based on the continuum damage mechanics (CDM) were

presented by (Chaboche 1988; Lemaı̂tre and Chaboche 1990). The damage effect

is represented on the overall elastoplastic behavior of the material. This phenom-

enological model uses a scalar damage variable to describe the ductile defect

evolution and thermomechanical behaviors. Advanced models on the CDM ductile

damages and their strong couplings with elasto-viscoplastic behaviors are presented

in ▶Chap. 25, “Ductile Damage in Metal Forming: Advanced Macroscopic Model

ing and Numerical Simulation”. In the present chapter, a simplified damage model

called “3D strain-based damage model” (Lemaı̂tre and Chaboche 1990) is used.

This model partially ignores the loading history and is weakly coupled with the

plastic behavior. It makes the formulation very simple and well adapted to the PIA,

leading to an efficient numerical damage modeling.

The damage potential φ�
D is chosen as the function of the strain energy density

release rate (�Y ), so the damage rate _D for a material with the isotropic hardening

and damage can be written as follows:

_D ¼ � _λD
@φ�

D

@Y
¼ �Y

S0

� �s0
_e
p

(31)

�Y ¼ σ2eq

2E 1� Dð Þ2
2

3
1þ νð Þ þ 3 1� 2νð Þ σH

σeq

� �2
" #

(32)

where _λD is the damage multiplier rate, s0 and S0 are material coefficients in function

of the temperature, σeq is the equivalent stress, σH is the hydrostatic stress, _e
p
is the

equivalent plastic strain rate, E is Young’s modulus, and ν is Poisson’s coefficient.
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Fig. 23 FLC and FLD diagrams in stage 3
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Two assumptions are made to obtain a strain-based damagemodel: the assumption

of hardening saturation after the damage threshold giving a perfect plasticity behavior

and the assumption of proportional loading giving a constant triaxiality ratio σH/σeq.
Introducing the damage threshold eD, the equivalent plastic strain eR at the

rupture, and the damage value at the rupture Dc (experimentally available, Zhu

et al. 1992), a simplified strain-based damage model can be obtained in a rate form

or in an integrated form:

_D ¼ Dc

eR � eD

2

3
1þ νð Þ þ 3 1� 2νð Þ σH

σeq

� �2
" #

_e
p
; if e p > eD and σH > 0ð Þ

(33)

D ¼ Dc

eR � eD
ep

2

3
1þ νð Þ þ 3 1� 2νð Þ σH

σeq

� �2
" #

� eD

 !
(34)

where _e
p
is the equivalent plastic strain rate, a compressive stress state (σH < 0)

cannot induce the damage, giving _D ¼ 0.

Constitutive Equations

In this chapter, the material is supposed to obey von Mises isotropic yield criterion

(for cold forging) or Hill anisotropic yield criterion (for sheet forming). These

criteria of plasticity with the damage consideration are given by

f ¼ σeq
1� D

� σ epð Þ ¼ 0 (35)

with
σeq ¼ σTP σ

� �1=2
(36)

where σ ¼ σ epð Þ represents the uniaxial tensile curve, σeq is the equivalent stress,

and P is isotropic or anisotropic matrix defined below.

The plastic normality rule is used as the flow rule to obtain the plastic strain rate:

_«p ¼ _λ
@f

@σ
¼ _λ

@f

@σeq

@σeq
@σ

¼ _λ
P σ

1� Dð Þσeq (37)

Using the equivalent plastic work _e
p
σeq ¼ _«pð ÞTσ , the relation between the

equivalent plastic strain rate and the plastic multiplier rate _λ is obtained:

_e
p ¼ 1

σeq

_λ σTPT

1� Dð Þσeq σ ¼
_λ

1� D
(38)

The equivalent plastic strain is defined by
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_e
p ¼ _«pð ÞTA _«p (39)

For the axisymmetrical cold forging, the isotropic material gives

σf g ¼

σr

σθ

σz

σrz

8>>><
>>>:

9>>>=
>>>;
; ef g ¼

er
eθ
ez
erz

8>>><
>>>:

9>>>=
>>>;
; P ¼

1

�0:5

�0:5

0

�0:5

1

�0:5

0

�0:5

�0:5

1

0

0

0

0

3

2
6664

3
7775;

A ¼ 2

3

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0:5

2
6664

3
7775

For the thin sheet forming, the assumptions of plane stress, transverse anisotropy,

and isotropic hardening are adopted. Using the equivalent plastic work _e
p
σeq ¼ _«pð ÞT

σ and Eqs. 33, 35, the following relations in a local reference are obtained:

σf g ¼
σx
σy
σxy

8<
:

9=
;; _epf g ¼

_epx
_epy
_epxy

8><
>:

9>=
>;; A ¼ P�1 ¼

1 �r
1þr 0

�r
1þr 1 0

0 0
2 1þ2rð Þ
1þr

2
64

3
75
�1

with the average transverse anisotropy coefficient r ¼ 1
4
r0 þ 2r45 þ r90ð Þ.

Integrated Constitutive Law

In the IA, the proportional loading assumption postulates that the stress tensor at a

point is proportional to an initial tensor independent of the time:

σ x, tð Þ ¼ α tð Þσ x, t0ð Þ (40)

so the term σ/σeq is independent of the time and Eq. 37 can be analytically integrated:

«p ¼ ep

σeq
P σ ¼ 1

ES
� 1

E

� �
P σ (41)

where the relation _«
p ¼ _λ in Eq. 38 has been used (but without the damage

consideration). Adding the elastic strain vector in Eq. 40, the total strain–stress

relation is obtained:

σ ¼ H�1 þ 1

ES
� 1

E

� �
P

	 
�1

« (42)
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where H is the elastic constitutive matrix. The damage effect is uncoupled with the

plasticity and evaluated in the post-processing using Eq. 34.

Classical Return Mapping Algorithm for Plasticity–Damage

The elastic law coupled with damage can be written in a total or rate form:

σ ¼ 1� Dð ÞH«e (43)

_σ ¼ 1� Dð ÞH _«� _«pð Þ �
_Dσ

1� D
(44)

While from Eqs. 33 and 38, the damage rate can be defined by

_D ¼ Ŷ

1� D
_λ (45)

with

Ŷ ¼ Dc

eR � eD

2

3
1þ νð Þ þ 3 1� 2νð Þ σH

σeq

� �2
" #

(46)

Using Eqs. 37 and 44, 45, and 46, the stress rate can be expressed in function of

the plastic multiplier rate _λ:

_σ ¼ 1� Dð ÞH _«� _λ
HP

σeq
þ Ŷ

1� Dð Þ2 I
 !

σ (47)

Thus, the stress vector at the step n can be expressed in an incremental form:

σn � σn�1 ¼ 1� Dnð ÞHΔ«� Δλ
HP

σeq, n
þ Ŷ

1� Dnð Þ2 I
 !

σn (48)

where an implicit scheme is taken to ensure the numerical stability. Equation 44 can

be rewritten as

Iþ Δλ
HP

σeq, n
þ Ŷ

1� Dnð Þ2 I
 ! !

σn ¼ σn�1 þ 1� Dnð ÞHΔ« (49)

where the stress vector σn can be determined by using an elastic prediction then a

plastic correction. The elastic prediction gives a trial stress state as follows:

σen ¼ σn�1 þ 1� Dnð ÞHΔ« (50)

The above elastic stress vector is substituted into the plastic criterion (Eq. 35),

noted as f e. f e< 0 means the stress state inside the flow surface (elastic prediction is

true), giving Δλ ¼ 0; f e > 0 means the plasticity occurrence; a plastic correction
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should be used to determine a new stress state on the flow surface ( f ¼ 0). In the

Simo’s return mapping method, one substitutes σn (in Eq. 49) into the plastic

criterion (Eq. 35) and solves the nonlinear equation f(Δλ) ¼ 0 by using the

Newton–Raphson iterative method to obtain Δλ. It is noted that a weak coupling

method between the damage and plasticity is often adopted by using the damage

value Dn at the previous equilibrium iteration.

Direct Scalar Algorithm of Plasticity (DSAP) for Fast Plastic
Integration

In this direct algorithm, using the equivalent stress operator, Eq. 45 with unknown

stress vectors is transformed into a scalar equation in terms of the equivalent

stresses which can be determined by using the tensile curve. Thus, a quadratic

equation with an unique unknown Δλ is obtained, leading to a direct solution.

Calculation of Approximate Ratio of the Elastic Strain Part in a Strain
Increment
For a given strain increment, if the elastic and plastic parts can be separated

(even approximately), the equivalent plastic strain epn ¼ epn�1 þ Δep can be

obtained, and then the equivalent stress can be calculated by using the tensile

curve σn ¼ σ epn
� �

.

In a loading increment, a material point may undergo an elastic unloading (AD in

Fig. 24) and reloading (DA), and then an elastoplastic loading (AC) which is

modeled numerically by an elastic prediction (AB) and plastic correction (BC).
How can we determine the ratios of the elastic and plastic parts in a strain increment

(γΔ« and (1–γ)Δ«)?
Supposing that the elastic part γΔ« enables the stress state to reach the flow

surface, the criterion of plasticity should be satisfied, leading to the following

equations (Eq. 35):

Fig. 24 Elastic unloading

(AD), reloading (DA), and
elastoplastic loading (AC)
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σγn ¼ σn�1 þ γ 1� Dnð ÞHΔ« (51)

f σγ
n γð Þ� � ¼ 0 (52)

Equation 52 can be solved by the Newton–Raphson method. In order to avoid the

iterative solution, the notion of the equivalent stress is adopted to transform Eq. 51

into a scalar equation by using the operation σTPσ at the two sides of Eq. 51:

σγeq, n

� �2
¼ σeq, n�1

� �2 þ 2 1� Dnð ÞγσTn�1PHΔ«

þ γ2 1� Dnð Þ2Δ«THPHΔ« (53)

In the above equation, σeq,n
γ and σeq,n�1 are determined by using the tensile curve,

so γ can be obtained directly without iterations. The elastic ratio γ should be

between 0 and 1. γ > 1 means that the total strain increment is insufficient to

bring the stresses state back to the flow surface, so γ ¼ 1 should be taken.

Once the elastic percentage γ is obtained, the equivalent plastic strain and

equivalent stress at the step n can be calculated by

epn ¼ epn�1 þ 1� γð ÞΔen (54)

σeq, n ¼ 1� Dnð Þσ epn
� �

(55)

The stress σeq,n will be used in Eq. 57 to calculate the plastic multiplier Δλ.

Direct Calculation of the Plastic Multiplier Dl
In the plastic correction phase, Eqs. 49 and 50 can be rewritten as follows:

σen ¼ Iþ Δλ
HP

σeq, n
þ Ŷ

1� Dnð Þ2 I
 ! !

σn (56)

By using the equivalent stress notion, the operation σTPσ is done on the two

sides of the above equation, leading to an equation of second degree in Δλ:

σeeq, n

� �2
¼ �σeq, n�2 þ 2Δλ σTn

HP

σeq, n
þ Ŷ

1� Dnð Þ2 I
 !

Pσn

þ Δλ2σTn
HP

σeq, n
þ Ŷ

1� Dnð Þ2I
 !T

P
HP

σeq, n
þ Ŷ

1� Dnð Þ2 I
 !

σn

(57)

Normally, this nonlinear equation requires an iterative solution. However, if one

uses the equivalent stress obtained by Eq. 55, the damage value Dn at the previous

equilibrium iteration, and an approximate stress normal direction, then Δλ can be

directly obtained by solving Eq. 57 without iterations. Using the criterion of

plasticity (Eq. 35) and the plastic normality flow rule, the normal of the flow surface

can be determined by
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n ¼ @f

@σ
¼ Pσ

1� Dð Þσeq ! n ¼ Pσn
1� Dnð Þσeq, n ¼

Pσn
1� Dnð Þ2σn

(58)

where the last known stress normal direction can be used. Finally, Eq. 57 can be

simplified to a second-order equation of Δλ:

Δλ2 1� Dnð Þ2nTHPHnþ Ŷ
1�Dnð Þ2

� �2
σeq, n
� �2 þ 2σeq, nŶnTHn

	 


þ2Δλ 1� Dnð Þ2σeq, nnTHnþ Ŷ

1� Dnð Þ2 σeq, n
� �2#"

þ σeq, n
� �2 � σeeq, n

� �2
¼ 0

(59)

It is noted that some quantities such as γ, n, and Dn have been calculated

approximately, an improvement can be done by replacing 1� γð ÞΔen in Eq. 54

by Δλ/(1�D) (Eq. 38) and repeat the operations of Eqs. 55 and 57 once again. But

the numerical tests have shown a good agreement with the classical return mapping

method even without this improvement.

This direct scalar algorithm to obtain Δλ is very fast and robust; it enables to use
large strain increments without divergence problems.

Numerical Results of Damage Prediction

Sheet Forming of a Square Box
An advanced fully coupled damage model is developed and implemented in

ABAQUS/Explicit (Saanouni et al. 2000; Cherouat et al. 2004). This program is

used to simulate the damage evolution in the sheet forming of a square box and to

validate the PIA with the damage consideration.

The geometric data are as follows: initial blank 200 � 200 � 0.82 mm3, punch

section of 100 � 100 mm2 with a round radius of 8 mm, and die cavity of 102.5 �
102.5 mm2 with a round radius of 5 mm. The punch travel is 36 mm. The material

properties are as follows: friction coefficient μ ¼ 0.144, Young’s modulus

E ¼ 210 GPa, Poisson’s coefficient ν ¼ 0.3, yield stress σy ¼ 400 MPa, and

isotropic plasticity law σ ¼ Q 1� e�be
� � ¼ 1000 1� e�5e

� �
MPa. In the PIA, the

used damage parameters (Dc ¼ 0.95, eR ¼ 0.7, eD ¼ 0) give a similar damage

behavior with that of Cherouat et al. (2004), but PIA damage model is not able to

describe very large damage until the rupture. Figure 25 shows the damage distri-

butions obtained by ABAQUS with coupled or uncoupled plasticity–damage

models. It is found that the damage is always located in the same zone, but the

damage value given by the coupled model is more concentrated and much bigger

(Dmax ¼ 90.5 %) in the coupled case than in the uncoupled case (Dmax ¼ 53.48 %).

In Fig. 26, the damage distributions obtained by PIA are presented for the

coupled and uncoupled cases. A similar phenomenon is observed, but the damage

evolutions show some difference due to the different damage models: the rigidity in

the ABAQUS simulation decreases more rapidly after the ultimate load.

794 Y.-Q. Guo et al.



SWIFT Stamping Simulation (Steel DC04)
This example is treated experimentally by CETIM and numerically by using the

commercial code STAMPACK and the simplified PIA. Only eight steps are used

for the PIA calculations. The geometry is presented in Fig. 27, and the material

and process parameters are as follows: punch diameter D ¼ 33 mm; die diameter

DM ¼ 35.2 mm; friction coefficient μ ¼ 0.144; blank-holding force 500 daN;

damage parameters for PIA Dc ¼ 0.4, eR ¼ 0.7, eD ¼0.2; punch travel 14 mm;

initial sheet diameter 74 mm; sheet thickness t¼ 1 mm; fillet radii rP¼ 5 mm, rM¼
4 mm; Young’s modulus E ¼ 82.377 GPa; anisotropic coefficients r0 ¼ 1.87, r45 ¼
1.12, r90 ¼ 2.02; and plastic behavior law σ ¼ 559:66 ep þ 0:0057

� �0:226
:

In Fig. 28, the FLC curves and FLD diagrams obtained by PIA and STAMPACK

(without damage consideration) are presented. It is observed that these two codes

give very similar FLD.
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Fig. 25 Damage distributions by ABAQUS with advanced damage model. (a) Coupled

damage–plasticity. (b) Non-coupled damage–plasticity
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Fig. 26 Damage distributions by PIA with simplified strain-based damage model. (a) Coupled
damage–plasticity. (b) Uncoupled damage–plasticity
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The damage distribution obtained by PIA is presented in Fig. 29. The strong

damage zones are situated on the punch radius and on the die’s entrance. The

numerical results are in good agreement with the experimental results of CETIM.

The rupture on the punch’s radius and the necking on the die’s entrance are clearly

shown in the photo of CETIM.

Cold Forging of a Wheel
In this section, the cold forging modeling of a wheel is presented to show the

efficiency and limitations of the PIA for the forging process. The results of the PIA

including the strain-based damage model are compared to those obtained by the

incremental approach ABAQUS/Explicit.

The geometry of the billet and punch is shown in Fig. 30. Due to the symmetry of

the wheel, only a quarter of the part section is considered. The symmetric boundary

conditions are imposed on the vertical axis and horizontal plane. To compare the

two approaches, the final mesh obtained by ABAQUS® is taken for the PIA

modeling, containing 1,402 nodes and 1,324 axisymmetric quadrangle elements.

The tools are supposed rigid and modeled by analytic rigid wires.
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Fig. 27 Geometry of SWIFT stamping test
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Fig. 28 FLD diagrams obtained by PIA and STAMPACK. (a) PIA eight steps. (b) STAMPACK
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The material properties of the billet in lead are Young’s modulus E ¼ 17 GPa,

Poisson’s ratio ν ¼ 0.42, friction coefficient μ ¼ 0.05, mass density ρ ¼ 11.35

g/cm3, and Hollomon strain–stress curve σ ¼ 65:8 εpð Þ0:27 MPa. The vertical punch

travel is 38.8 mm. The damage parameters are Dc ¼ 0.5, eR ¼ 0.315 and eD ¼ 0.05.

Only 14 steps are needed for the PIA simulation, the results obtained by using more

steps are almost unchanged.

Figure 31 shows the distributions of the equivalent plastic strain obtained by the

PIA and ABAQUS®/Explicit. It is observed that the distributions are very similar and

the maximal and minimal values are in good agreement between the two approaches.

The distributions of the equivalent stress obtained by the PIA and ABAQUS®

are shown in Fig. 32. It is observed that the stress distributions are quantitatively

very similar to each other. The maximum equivalent stresses are 57.59 MPa (PIA)

and 57.49 MPa (ABAQUS®), respectively, giving an error of 0.2 %.

The damage distributions obtained by PIA and ABAQUS®/Explicit are

presented in Fig. 33. It is found that the two approaches give very close damage

values in the same zone: Dmax ¼ 20.9 % by the PIA and Dmax ¼ 19.7 % by

ABAQUS®.

The PIA leads to a considerable gain of the CPU time compared to ABAQUS®.

The ABAQUS®/Explicit uses 2,126 s, but the PIA uses only 460 s, saving 79 % of

CPU time.

endo h/2
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Fig. 29 Damage distribution obtained by PIA and rupture obtained by CETIM test. (a) Damage

obtained by PIA. (b) Rupture in an experimental test

Fig. 30 Geometry of the

billet and punch
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Fig. 31 Equivalent plastic strain distribution obtained by PIA and ABAQUS®. (a) Pseudo-

inverse approach (14 steps). (b) ABAQUS® (339268 increments)
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Fig. 32 Equivalent stress distribution obtained by PIA and ABAQUS®. (a) Pseudo-inverse

approach (14 steps). (b) ABAQUS® (339268 increments)
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Fig. 33 Damage distributions obtained by PIA and ABAQUS®. (a) Pseudo-inverse approach

(14 steps). (b) ABAQUS® (339268 increments)
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Forming Process Optimization Using IA and PIA

General Aspects of the Forming Process Optimization

In a forming process, the original problem is usually a design or optimization

problem. Firstly, its solution requires an accurate and efficient simulation of the

process in multistages by an incremental or inverse method, taking into account the

uncertainties, the affecting parameters, and the fine identification of material

behaviors and interfaces. Secondly, the process and part geometry must be param-

eterized to reduce at maximum the computation time. Thirdly, global, robust, multi-

objective, and parallel optimization algorithms should be used to find the optimal

process and shape parameters.

The process optimization can largely improve the formability of the material and

the robustness of the process. The combination of a numerical forming solver with

an optimization algorithm allows an automatic design and control of process

parameters, such as the material properties, the holding forces, the punch velocity

and force, the geometry of the tools and initial billets, the addendum surfaces, the

number and shapes of the forming tools, the friction aspects, the thermal

effects, etc.

In the sheet forming field, many studies were presented on the optimization of

forming process parameters such as the blank holding forces, the drawbead

restraining forces, etc. (Jansson et al. 2005; Shim and Son 2000). Gelin

et al. (2005) presented their works on the optimal design and control strategies

for the sheet forming and tube hydroforming processes. Many works were done on

the optimization of geometrical parameters such as the initial blank shape and the

binder surface (Azaouzi et al. 2008, among others). Schenk and Hillmann (2004)

proposed an approach for the design and optimization of addendum surfaces by

changing the profile of the protection walls and the drawbead restraining forces.

More recently, Dong et al. (2007) proposed an automatic procedure for the design

and optimization of addendum surfaces by using the fast IA solver and the

OpenCascade (2006) free library.

In the forging field, Kobayashi et al. (1989) firstly developed the backward

tracing method for the preform design shape. Other groups worked on this method

later and used it for the optimization procedure (Han et al. 1993). Zhao et al. (1997)

presented an optimization method for the preform die shape design in metal

forming processes. Fourment et al. (1996) and Vieilledent and Fourment (2001)

made a great progress in this field. They developed shape sensitivity methods for

the optimization of nonsteady-state forging processes; the preform shape was

defined by B-spline curve taking the control points as design variables. Zhao

et al. (2004) presented their studies on the multiple objective preform die shape

optimal design by using the forward simulation and sensitivity analysis. Meng

et al. (2010) worked on the multi-objective optimization of multistage forging by

using advanced thermo-viscoplasticity-damage models and meta-models to opti-

mize the tool shapes. Castro et al. (2010) worked on the optimization of shape

and process parameters in metal forging using the genetic algorithms.
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Halouani et al. (2012b) developed a fast forging solver called PIA for the multi-

objective optimization of tool preform shapes.

For most of nongradient optimization algorithms (such as the response surface, the

genetic method or simulated annealing), an important step is to carefully select a

number of sampling points by a design of experiments (DOE). This selection has a

great influence on the efficiency and accuracy of the optimization procedure. The DOE

consists in selecting assessment of points in the design space. The difficulty is how to

use the minimum points to obtain the best distribution of the sampling points. Several

DOE can be found in the literature (Myers and Montgomery 2002). The well-known

methods are the factorial design, central composite design, Latin hypercube, D-optimal,

Box–Behnken, etc. A space-filling Latin hypercube design (LHD) is a good and

popular DOE strategy for constructing meta-models from deterministic computer

experiments (such as FE simulations) (McKay et al. 1979; Santner et al. 2003).

To limit the number of forming simulations, surrogate meta-models are often

used to construct an approximate response surface based on the real simulation

results for the optimal solution searching. In the literature, there are the moving

least square method (Breitkopf et al. 2005; Naceur et al. 2010), the Kriging method

(Emmerich et al. 2006), the diffuse approximation (Nayrolles et al. 1992), etc.

Since the metal forming processes involve very complicated phenomena, the

multi-objective optimization with several constraints should be considered. The

nongradient optimization algorithms are often adopted to avoid the gradient com-

putation, to have a robust searching procedure, and to find global optimal solutions.

Among the stochastic methods, the genetic algorithms and the simulated annealing

algorithms are largely used (Fourment et al. 1996; Castro et al. 2010; Meng

et al. 2010) to determine the Pareto front points and then to find the optimal solution

according to other technological constraints. However, these algorithms are time-

consuming; it is indispensible to reduce the number of design variables and to use a

fast forming solver (Halouani et al. 2012b).

Optimization Procedure for Forming Processes

An optimization procedure comprises four steps: defining the objective functions,

selecting the design variables, defining constraint functions, and finding the optimal

design variables. The first three steps are denoted as the optimization “modeling.”

The fourth step is the optimization “solving” problem.

Design Variables
In metal forming processes, the design variables can be divided into geometrical,

material and process-related variables. For the workpiece, the geometrical param-

eters are their shapes and dimensions; for the tools, the parameters are related to the

die and punch geometries, including the holding part and drawbeads. The material

parameters concern the Young’s modulus, Poison coefficient, hardening behavior,

anisotropy, damage, viscosity, etc. The process variables include the holding forces,

punch travel and velocity, temperatures, friction, etc.
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The shape optimization involves much more design variables than the process

optimization. Since the computation time strongly depends on the number of design

variables, so it is indispensible to parameterize the tools’ geometries. This parame-

terization can be made by using segments and radii for the simple geometry such as

the initial billet and final part (Meng et al. 2010). For more complicated geometry

such as preforms, the B-spline curves and surfaces are adopted (Halouani et al. 2012).

Objective Functions
The optimization targets can be defined by multi-objective functions:

min f 1 xð Þ, f 2 xð Þ, . . .½ �
x ¼< x1, x2, . . . , xn>

T ; xiL � xi � xiU; i ¼ 1, 2, . . . , n
(60)

where fi(x) are the objective functions, xi the design variables, and xiL and xiU the

lower and upper bounds of the design variables.

Metal forming processes are very complicated, so the optimization procedure

often involves several objective functions which depend on the forming process:

• Deep drawing: the objectives can be to minimize the thickness variation, reduce

the number of forming stages, improve the surface aspect, minimize the

springback, prevent the wrinkling or necking, minimize the blank weight,

control the punch force, etc. The following objective function was proposed by

Naceur et al. (2001) to minimize the thickness variation and avoid the necking

and wrinkling:

f ¼ min
1

Nelt

XNelt

e¼1

he � h0

h0

� �p

(61)

where h0 is the initial sheet thickness, he is the final thickness of an element, and p is
a positive pair integer ( p ¼ 2, 4, . . .).
• Forging: the objectives can be to optimize the grain sizes, reduce the punch force

or forging energy, minimize the strain variance, avoid the folding, etc. The

following objective function was used to minimize the strain variance (Meng

et al. 2010; Halouani et al. 2012b):

f ¼ min
1

Vt

XNelt

i¼1

Vi epi � epavg
� �2

with epavg ¼
1

Vt

XNelt

i¼1

Vie
p
i (62)

where epi is the equivalent plastic strain of the element i, epavg is the average

equivalent plastic strain, Vi is the volume of the element i, and Vt is the total volume.

Constraint Functions
The constraints and objective functions are related to each other in the sense that

they are often exchangeable. In an optimization modeling, one should decide which
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quantity is selected as objective, which as constraint. For example, to avoid

excessive thickness uniformity, the objective function (60) can be replaced by a

constraint on the thinning and thickening. The implicit constraint functions are

defined as follows:

gi xð Þ � 0 i ¼ 1, 2, . . . , n (63)

In the case of the deep drawing, it is not allowed that the strain states exceed the

forming limit curve (FLC). The constraint can be that all FLD points are situated

below the FLC curve. In the case of forging, the constraint functions can be the

conditions on the damage, wrinkling, filling, and volume (Meng et al. 2012;

Halouani et al. 2012b): the maximal damage should be inferior to the damage

threshold, the contour of the forged part should not have sudden changes (folding),

the volume should remain constant, etc.

Optimization Algorithms
Five types of algorithms are often used for the forming process optimization: iterative

algorithms, evolutionary and genetic algorithms, approximate optimization algorithms,

adaptive optimization algorithms, hybrid and combined optimization algorithms.

(a) Iterative Algorithms

Optimization of metal-forming processes can be performed by using classical

iterative algorithms (SIMPLEX, conjugate gradient, SQP, BFGS, etc.). These

algorithms usually require the sensitivities of the objective function and con-

straint functions with respect to the design variables. In the case of metal

forming, the FEM calculations are very time-consuming and may give inaccu-

rate sensitivities. Generally, the iterative algorithms are inadaptable to the

multi-objective optimization and may get trapped in local optima.

(b) Evolutionary and Genetic Algorithms

Genetic and evolutionary algorithms are promising because of their tendency

to find the global optimum and the possibility for parallel computing. Further-

more, they do not require the sensitivity computation. However, the large

number of function evaluations is a serious drawback. The non-dominated

sorting genetic algorithm NSGA-II (Deb 2000) is appealing to many authors

for the metal forming optimization.

(c) Approximate Algorithms

The response surface method (RSM) is a well-known representative of

approximate optimization algorithms. RSM is based on fitting a low-order

polynomial meta-model through real response points, which are obtained by

running FEM calculations for some chosen design variable settings. Next to the

RSM, other meta-modeling techniques are Kriging and neural networks.

Allowing the parallel computing and avoiding the sensitivity calculation, the

approximate optimization is a preferred technique for many authors. A disad-

vantage of these methods is that the result is an approximate optimum rather

than the real global optimum.
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(d) Adaptive Algorithms

Adaptive algorithms are incorporated within FEM codes and generally opti-

mize the time-dependent load paths of the metal-forming process during each

increment of the FEM calculation. For example, to optimize the time-dependent

pressure load path in hydroforming, one should keep a sufficient pressure to

avoid the wrinkling. When such risk is detected during a loading increment, the

pressure is increased in the next increment to avoid wrinkles in the final product.

The advantage of these algorithms is that the optimum is obtained in only one

FEM simulation. However, the access inside the FEM software is necessary, and

only time-dependent design variables can be considered. These disadvantages

seriously limit the general applicability of these algorithms.

(e) Hybrid and Combined Algorithms

Many researchers tried to combine the advantages of different optimization

algorithms. Within the metal forming community, most authors used approxi-

mate algorithms to establish a meta-model and adopted an iterative algorithm to

find the optimum. Some others constructed relatively noisy meta-models (i.e.,

many local optima) by using the Kriging and neural networks techniques and then

used a global genetic algorithm to solve the optimization problem. For adaptive

optimization algorithms, certain choose iterative algorithms, others genetic ones.

It is also possible to enhance an evolutionary algorithm with the information

provided by a meta-model-based approximate algorithm to make it more efficient

and to overcome the difficulty of the large number of function evaluations.

(f) Simulated Annealing Method

This stochastic optimization method was developed by Kirkpatrick

et al. 1983. This method is derived from an analogy with the slow cooling

phenomenon of a molten body, which leads to a low-energy solid state. It should

slowly lower the temperature, marking long plateaus so that the body reaches

the thermodynamic equilibrium at each temperature plateau. For materials, this

low energy manifests itself by obtaining a regular structure, such as crystals in

the steel. The analogy used by the simulated annealing is to search a physic state

p minimizing the energy function Φ( p). Simulated annealing usually exploits

the criteria defined by the algorithm of Metropolis et al. (1953) for the accep-

tance of a solution obtained by perturbation of the current solution. Theoretical

studies show that the simulated annealing algorithm converges to a global

optimum under certain conditions. The main drawback is related to the choice

of numerous annealing parameters such as the initial temperature, the decay rate

of the temperature, the stopping criteria, or the lengths of the temperature

plateaus. These parameters are often chosen empirically.

Preform Design and Optimization

The two-stage cold forging of an axisymmetric wheel is simulated and optimized.

The forging process is composed of a preforming stage using a preform tool

(Fig. 34) and forging stage using the final tool given by the desired part (Fig. 35).
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The initial billet is a cylinder (height ¼ 80 mm, radius ¼ 45 mm). The geometry

of the billet, the starting preform shape, and the final tools are shown in Figs. 34

and 35. The axisymmetric boundary conditions are imposed. The section is meshed

with 830 nodes and 774 quadrilateral elements. The tools are supposed rigid and

modeled by analytic rigid wires. The billet material is the lead: Young’s modulus

Fig. 34 Preforming stage using starting tool preform. (a) Initial billet. (b) Starting tool preform

(to be optimized)

Fig. 35 Forging stage using preformed billet and final forging tools. (a) Billet obtained by

performing stage. (b) Desired final forged part
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E ¼ 17 GPa, Poisson’s ratio ν ¼ 0.42, friction coefficient μ ¼ 0.05, and Hollomon

tensile curve σ ¼ 65:8 epð Þ0:27 MPa.

In this work, the starting preform is created as follows:

1. Mesh mapping from the final forged part Cf to the initial billet C0. A FE mesh is

created on the known Cf, and the nodes at the contour of Cf are mapped on the

contour of C0; the positions of other nodes (interior nodes) in C0 are determined

by a linear solution with the imposed displacements on the contour (Fig. 36).

2. Creation of the geometrically proportional FE mesh between C0 and Cf (Fig. 37):

Xp
1 ¼ Xf � (Xf � X0)/2.

3. Generation of a starting tool preform. The B-spline curve of this preform should

fit well the proportional mesh contour except for the free surface part (Fig. 37).

The right extremity (F) of the punch curve has the same height than that of the

left extremity (E) and the same horizontal position than the maximal radial

position (G) of the proportional preform. This choice gives a notable gap

between the punch curve and preform shape on the zone B, but this gap has a

little influence on the preform optimization. The B-spline curve of the lower die

can be obtained by the same method.

A B-spline curve of the preform is defined by a polygonal contour having

n + 1 (n + 1 � 4) control points C1 . . . Cn+1. These control points can be active or

passive. Figure 38 shows the punch shape curve with seven control points; only

their vertical displacements are taken as geometrical parameters to reduce the

number of design variables. C2 and C6 are the passive points having the same

vertical positions than C1 and C7 in order to keep the horizontal tangents at C1 and

C7; other five are active points giving only five optimization design variables. The

Fig. 36 FE mesh mapped from final part to initial billet

24 Damage Prediction in Metal Forming Process Modeling and Optimization:. . . 805



die shape curve is defined in same manner. Finally, there are only ten optimization

design variables. These starting B-spline curves are then modified in the optimiza-

tion loop to minimize the objective functions.

The validation of the PIA is done by using the software ABAQUS/Explicit. The

punch travels are 23.7 mm in the preforming stage and 24.9 mm in the forming

stage. The PIA is used firstly between the preform and initial billet, and then

between the final part and preform. According to our numerical tests, the PIA

results are no longer sensitive to the number of steps, from 11 steps for the

preforming stage and from 12 for the forging stage.

Fig. 37 Generation of

proportional mesh and

B-spline curves of the starting

perform tools

Fig. 38 Control points of the

starting B-spline curves for

preform tools
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In a multi-objective optimization, the concept of the best design is replaced by

the concept of dominant design. This set of dominant designs is called Pareto

frontier. The designer should find a good compromise for all objective functions

according to other technical or economic constraints.

Two objective functions are adopted to minimize the plastic strain variation

(Eq. 62) and the maximal punch force. A simulated annealing optimization algo-

rithm called MOSA is used (ModeFRONTIER™ 4, User Manual). The initial

Pareto points for this two-objective optimization problem are obtained by using

200 PIA simulations (or 200 iterations in the MOSA optimization loop). The

distribution of these Pareto points (marked by red circles) is presented in the

objective function plan (Fobj
I and Fobj

II , Fig. 39).

The multi-objective optimization algorithms require a large amount of simula-

tions, so it will be very expensive to minimize the objective functions entirely using

real FE simulations. The Kriging method is adopted to build the surrogate meta-

model for the two objective functions. Kriging method is a nonparametric interpo-

lation model which interpolates the responses exactly at all sampling points.

Figure 40 shows the surrogated metal-models of the two objective functions Fobj
I

and Fobj
II using Gaussian Kriging method.

To get the optimal design values after building the meta-model, the genetic

optimization algorithm called NSGA-II in the software modeFRONTIER™ is used.

The distribution of the Pareto points obtained by using NSGA-II algorithm coupled

with the Gaussian Kriging model is shown in Fig. 41. During the optimization, lots

of new solutions are generated. This enables to have more optimal values on the

3.06E6 API simulations

Pareto front
Initial simulations

2.66E6

2.26E6

1.86E6

1.46E6

1.06E6

F
II ob

j

FI
obj

6.63E5

2.86E-2 5.86E-25.36E-24.86E-24.36E-23.86E-23.36E-2
2.63E5

Fig. 39 Initial Pareto points obtained by using the real simulation results
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Pareto front, giving the final optimal solutions (marked by red circles in Fig. 41). It

can be seen that the two objective functions largely decrease during the optimiza-

tion (Fobj
I ¼ 0.052! 0.035, Fobj

II ¼ 1842733.7! 504926.9, Fig. 41), giving 33 % of

reduction for the equivalent plastic strain and 72 % of reduction for the punch force.
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Fig. 40 Kriging surrogate meta-model of Fobj
I and Fobj

II in function of two design variables

(vertical displacements of P1 and P3 in Fig. 38)
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Fig. 41 Pareto front given by NSGA-II/Kriging
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Figure 42 shows a comparison between the initial preform shape and the optimal

one; a better result was achieved by using the proposed concept.

The CPU times for this two-stage forging simulation are also compared: the PIA

uses only 285 s, but the ABAQUS/Explicit uses 1,453 s (5.1 times). Therefore, in

the optimization procedure using 200 API simulations, the gain of the CPU time

becomes enormous.

Conclusions

In this chapter, several simplified and practical approaches for damage prediction in

metal-forming process modeling and optimization were presented.

• The IA exploits the knowledge of the final part shape and executes the calcula-

tion from the final part mesh to the initial blank or billet. The assumptions of

proportional loading and simplified tool actions make the IA calculation very

fast. This method gives fairly good strain estimation for the deep drawing,

hydroforming, and cold forging processes, but poor stress evaluation. A simpli-

fied total strain-based damage model is implemented into the IA without con-

sidering the coupling effect between the plasticity and damage. The IA can be

used as a numerical tool for the preliminary design and optimization in forming

processes.

• The PIA is a good compromise between the IA and incremental approaches. The

contact treatment is avoided by using some simplified tool actions as in the IA. In

order to consider the strain path, some intermediate configurations are deter-

mined geometrically and corrected by using a surface minimization method or a

free surface method, allowing very large strain increments. A 3D strain-based

damage model in a rate form is adopted and coupled with the plasticity. An

efficient direct scalar algorithm for damage–plasticity integration enables to take

Fig. 42 Initial and optimal

preform shapes
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into account the loading history so obtain good stress estimation. The PIA

combines the advantages of the IA and incremental approaches: it gives better

stress estimation then that of the IA and it is much faster than the incremental

approach. The PIA is an efficient numerical tool for the damage prediction and

forming processes optimization.

• The 3D strain damage model is based on the assumptions of the hardening

saturation after the damage threshold and the proportional loading condition. It

is implemented into the IA in a total form without considering its coupling with

the plasticity. In the PIA, the model coupling the damage and plasticity is

formulated and implemented in a rate form. The efficient direct scalar algorithm

of plasticity (DSAP) for the integration of coupled damage–plasticity is devel-

oped to take into account the loading history. Using the notion of the equivalent

stress, the constitutive equations in stress vectors are transformed into a scalar

equation in which the equivalent stresses can be obtained by the tensile curve.

Thus, the plastic multiplier can be obtained directly without iterations. This

DSAP enables to largely reduce the CPU time and to avoid divergence problems

even though for very large strain increments.

• Some optimization algorithms are combined with the IA using an integrated

material law or with the PIA using the DSAP. These simplified methods make

the optimization very efficient and robust, allowing to use the time-consuming

optimization algorithms (such as genetic algorithm, simulated annealing method,

etc.) in order to find globally optimal Pareto points for multi-objective functions.

Further research investigations will be devoted to continuously improve the

original approaches IA and PIA. In the future, the authors will implement an

adaptive meshing algorithm in the PIA in order to deal with complex parts under-

going very large plastic strains. In a forthcoming research, the authors will also

include viscoplastic and thermomechanical material models in the PIA for the hot

forging simulation. The fast PIA will be used to optimize tool preform shapes and

other parameters of the forging process.
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