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Foreword

The field of damage mechanics has made considerable headway since its initial

conception over 50 years ago as a means of associating changes of material com-

pliance and strain localization with evolving creep damage of materials. Develop-

ment of basic concepts in this field has evolved in several directions, with one stream

focused on continuum thermodynamics based on damage field variables and another

appealing to continuum micromechanics, attempting to account for explicit

defects and microstructure and linking to cooperative behavior through elastic

interactions. Although continuum damage mechanics and analytical/computational

micromechanics of materials may appear to have taken distinct and parallel courses

of development from the mid-1980s onward, the theoretical connections between

these two paths are rich and deep, rooted in thermodynamics and kinetics. This is

effectively expressed using internal state variables as a means to reduce the degrees

of freedom of the model description while maintaining consistency with damaged

material response at the level of a representative volume element.

This handbook thoroughly explores these connections, combining works in

foundational topics such as fabric tensors to represent networks of cracks or other

modes of damage with explicit modeling of microstructure and associated damage

mechanisms. Authored by a series of leading international experts in the field,

a unifying theme of the articles in this handbook is the treatment of structural-level

degradation of response. Damage mechanics has been fruitfully applied as a

practical approach for applications that involve complex aspects of distributed,

evolving damage. Examples in this volume are varied:

• Low cycle fatigue via damage mechanics coupled with internal state variable

crystal plasticity in polycrystalline metals

• Distributed particle/fiber cracking and interfacial debonding in particle- and

fiber-reinforced composites, including both implicit and explicit consideration

of damage modes

• Internal state variable modeling of distributed damage in polymers

• Damage evolution and failure of electronic materials and packaging

• Damage evolution and failure of materials subjected to extreme conditions,

including dynamic loading conditions, irradiation in nuclear power plant

components, and large-deformation metal forming

• Ductile fracture and damage localization in metals
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In addition to applications, fundamental aspects of thermodynamics of damaged

solids are addressed, including isotropic and anisotropic damage mechanics.

Readers will also find substantial treatment of multiscale modeling and various

approaches to homogenization of damage evolution processes. Emerging concepts

in the evolution of damage, such as fractal theory and discrete damage models,

round out theoretical aspects and explore the connectivity of damage mechanics

with statistical physics.

Finally, the handbook provides an overview of recent experimental methods to

measure evolving distributed damage in materials, with an emphasis on digital

image correlation, as well as characterization and inverse modeling. The reader will

find linkages between state-of-the-art theory, experiments, and applications in this

volume, establishing an invaluable contribution to the literature.

I trust that you will find this Handbook of Damage Mechanics an inspiring and

indispensable reference.

May 2014 David L. McDowell

Regents’ Professor and Carter N. Paden,

Jr. Distinguished Chair in Metals Processing

Georgia Institute of Technology

Atlanta, GA

USA
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Preface

Damage characterization and mechanics is a broad and highly interdisciplinary field

that has been continuously evolving in the last half century. This handbook is an

attempt to cover the wide spectrum of topics of damage mechanics in a single book

in order to reach a wide audience of readers ranging from students to active

researchers in both academia and industry. This was a monumental challenge for

the authors involved to overcome. An enormous group of internationally recog-

nized authors from both academia and industry assembled from three continents to

write 47 chapters on this topic and its various branches.

Tremendous developments have taken place within the research topic of con-

tinuum damage mechanics in the past 50 years. There are currently one dedicated

journal to this topic as well as numerous books and thousands of research papers.

In the framework of continuum damage mechanics, the collection of micro-defects

(like micro-cracks, micro-voids, etc.) are treated as a continuous region within

which the laws of continuum mechanics are assumed to apply. This is in contrast to

what is done in fracture mechanics where individual defects are treated separately

and discontinuities are allowed.

Our goal was to assimilate the existing damage mechanics knowledge of

academic interest into one consistent, self-contained volume accessible to engineers

in practice, researchers in this field, and interested people in academia and to

motivate nonspecialists with a strong desire to learn damage mechanics. Such a

task was beyond the scope of each of the collected research papers, which by nature

focus on narrow topics using very specialized terminology. Our intent was to

provide a detailed presentation of those areas of damage mechanics which we

have found to be of great practical utility in our industrial experience, while

maintaining a sufficiently formal approach both to be suitable as a trustworthy

reference for those whose primary interest is further research and to provide a solid

foundation for students and others first learning the subject.

Each chapter was written to provide a self-contained treatment of one major topic.

Collectively, however, the chapters have been designed and carefully integrated to

be entirely complementary with respect to definitions, terminology, and notation.

Furthermore, there is essentially no duplication of material across chapters.

The Handbook of Damage Mechanics comprises 12 distinct sections including

47 chapters covering the basics of damage mechanics as well as recent research.
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The topics covered include the fundamentals of continuum damage mechanics, dam-

age in disorderedmedia, damage in crystallinemetals and alloys, damage in structures,

damage in electronic packaging, damage in metal forming, micromechanics of dam-

age in composite materials, coupled elastoplastic damage and healing mechanics in

granular materials, damage under dynamic loading, experimental characterization of

damage, micromechanics of damage in laminated composites, nuclear damage char-

acterization, and recent trends in damage and healing mechanics.

One of the major features of the Handbook of Damage Mechanics is coverage of
the latest research in the new topic of healing mechanics of materials. The handbook

includes four chapters on this emerging subject. In addition, it includes three chapters

on the experimental characterization of damage in materials. The fundamentals of

continuum damage mechanics are presented in four chapters of the very first section.

The handbook integrated knowledge from the theoretical, numerical, and experi-

mental areas of damage mechanics. This book mainly targets graduate students of

damage mechanics, researchers in academia and industry who are active or intend to

become active in this field, and practicing engineers and scientists who work in this

topic and would like to solve problems utilizing the tools offered by damage mechan-

ics. This handbook should serve as an excellent text for a series of graduate courses in

mechanical engineering, civil engineering, materials science, engineering mechanics,

aerospace engineering, applied mathematics, applied physics, and applied chemistry.

The handbook is basically intended as a textbook for university courses as well

as a reference for researchers in this field. It will serve as a timely addition to the

literature on damage mechanics and as an invaluable resource to members of the

international scientific and industrial communities.

We hope that the reader will find this handbook a useful resource as he/she

progresses in their study and research in damage mechanics. We would also like to

wish the readers much success and welcome their suggestions for future improve-

ment of the handbook.

Each of the individual sections of this handbook could be considered a compact,

self-contained mini-book right under its own title. However, these topics are

presented in relation to the basic principles of damage mechanics.

What is finally presented in the handbook is the work contributed by celebrated

international experts for their best knowledge and practices on specific and related

topics in damage characterization and mechanics.

The editor would like to thank all the contributors who wrote chapters for this

handbook. Finally, the editor would like to acknowledge the help and support of his

family members and the editors at Springer who made this handbook possible.

March 2014 George Z. Voyiadjis

Baton Rouge, LA

USA
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Abstract

This chapter includes two main topics in isotropic and anisotropic damage

mechanics. In the first topic, various new proposed damage variables are intro-

duced, examined, and compared. The scalar case pertaining to isotropic damage

is investigated, and several types of new damage variables are proposed. The

damage variables introduced in this part can be applied to elastic materials

including homogeneous materials like metals and heterogeneous materials like

composite laminates. Moreover, higher-order strain energy forms are proposed.

These higher-order strain energy forms along with some of the proposed damage

variables are used in trying to lay the theoretical groundwork for the design of
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undamageable materials, i.e., materials that cannot be damaged where the value

of the damage variable remains zero throughout the deformation process.

The second topic presents a new concept of anisotropic damage that is

examined within the framework of continuum damage mechanics. New pro-

posed damage tensors are studied in order to investigate the damage effect

variables in the mechanical behavior of materials. In addition, new hybrid

damage tensors are proposed and defined in terms of the damage effect tensor

and the new proposed damage tensors. Accordingly, this study demonstrates that

most of the new proposed damage tensors are verified within the framework of

continuum damage mechanics.

Introduction

Research in the field of continuum damage mechanics has remarkably caused the

advancement of the material overall performance and the proliferation in material

engineering applications. Continuum damage mechanics addresses among others

the study of the growth of micro-cracks and micro-voids (and other defects) and

their effect on the mechanical behavior of the material. It also enables engineers and

researchers to improve the microstructure of the material. By the skillful manipu-

lation of this development, the correlation between the damage variables and the

mechanical properties of the materials is thus obtained. Further consideration in

that sense is the direct effect of damage on the mechanical properties of materials

which results in a significant influence on the safety aspect of engineering struc-

tures. This effect is frequently encountered in safety-critical applications, such as in

aeronautical and nuclear industries. An unpredicted failure may cause catastrophic

consequences in human life as well as detrimental financial disasters. Accordingly,

a great attention has been recently given by many researchers to the field of

continuum damage mechanics in order to study the mechanics of micro-cracks

and micro-voids and their effects on the mechanical behavior of materials.

Damage causes deterioration in the mechanical properties of materials due to the

creation and growth of micro-voids and/or micro-cracks which are discontinuities

in a medium considered as continuous at a larger scale (Lemaitre and Desmorat

2005). A representative volume element (RVE) is introduced in the mechanics of

continuous media (Lemaitre and Desmorat 2005) on which all properties are

represented by homogenized variables. Moreover, the effective stress concept is

used in order to obtain the damage variable that represents the average material

stiffness degradation within the framework of continuum damage mechanics. The

degradation that is included in the material reflects the various types of damage at

the microscale level like nucleation and growth of voids, cracks, cavities, micro-

cracks, and other microscopic defects (Krajcinovic 1996; Budiansky and O’Connell

1976; Lubarda and Krajcinovic 1993).

The damage variable is scalar in the case of isotropic damage mechanics, and the

evolution equations are quite easy to handle. It has been, however, shown by

Cauvin and Testa (1999) that the accurate and consistent description of the special

4 G.Z. Voyiadjis et al.



case of isotropic damage is obtained by using two independent damage variables.

New scalar damage variables have been previously proposed by Voyiadjis and

Kattan (2009). Lemaitre (1984) argued that isotropic damage gives good predic-

tions of the load carrying capacity, the number of cycles, or the time to local failure

in structural components. However, the experimental results have confirmed the

development of anisotropic damage (Chow andWang 1987; Lee et al. 1985) even if

the virgin material is isotropic. This has prompted several researchers to investigate

the general case of anisotropic damage (Voyiadjis and Kattan 1996, 1999, 2006;

Kattan and Voyiadjis 2001a, b).

Kachanov (1958) and Rabotnov (1969) used the case of uniaxial tension to

demonstrate the basic idea of the effective stress, and later, Lemaitre (1971) and

Chaboche (1981) obtained the three-dimensional states of stress. The second-rank

Cauchy stress tensor is applied to the damaged material, and the corresponding

effective stress tensor is applied to a fictitious state of the material which is totally

undamaged. They used the fictitious undamaged state and the actual damaged state

of the material in their formulation. In this regard, one of the following two

hypotheses, elastic strain equivalence or elastic energy equivalence, is usually

used to derive the corresponding constitutive formulations. Sidoroff (1981),

Cordebois and Sidoroff (1979), and Cordebois (1983) developed the theory of

anisotropic damage mechanics, and later Lee et al. (1985) and Chow and Wang

(1987, 1988) used it to solve simple ductile fracture problems. However, prior to

this latest development, Krajcinovic and Foneska (1981), Murakami and Ohno

(1981), Murakami (1983), and Krajcinovic (1983) investigated brittle and creep

fracture using appropriate anisotropic damage models.

Although these models are based on a sound physical background, they lack

vigorous mathematical justification and mechanical consistency. Consequently,

more work needs to be done to develop a more involved theory capable of

producing results that can be used for practical applications (Krajcinovic and

Foneska 1981; Krempl 1981). The damage variable has been shown to be tensorial

in nature in order to develop the general case of anisotropic damage (Murakami and

Ohno 1981; Leckie and Onat 1981). This damage tensor was shown to be an

irreducible even-rank tensor (Onat 1986; Onat and Leckie 1988). Betten (1981,

1986) showed several other basic properties of the damage tensor using the theory

of tensor functions. It was pointed out that even for isotropic damage, a damage

tensor should be employed (not a scalar damage variable) for characterizing the

state of damage in materials (Ju 1990). On the other hand, the damage process is

generally anisotropic due to the loading condition or the material nature itself.

Although the fourth-rank damage tensor can be directly used as a linear transfor-

mation tensor to define the effective stress tensor, it is not easy to computationally

use the fourth-rank damage tensor compared to the second-rank damage tensor.

This chapter introduces a new study in the field of continuum damage mechanics

and includes two main topics. In the first topic, various new proposed damage

variables are introduced, examined, and compared. The scalar case pertaining to

isotropic damage is investigated, and several types of new damage variables are

proposed. Damage variables are defined in terms of the cross-sectional area and the

1 Some Basic Issues of Isotropic and Anisotropic Continuum Damage Mechanics 5



elastic modulus or stiffness and the composite damage variables that are defined in

terms of two parameters relating to both cross-sectional area and stiffness. The

damage variables introduced in this part can be applied to elastic materials includ-

ing homogeneous materials like metals and heterogeneous materials like composite

laminates. Moreover, higher-order strain energy forms are proposed. It is seen that a

specific nonlinear stress–strain relationship is associated with each higher-order

strain energy form. These higher-order strain energy forms along with some of the

proposed damage variables are used in trying to lay the theoretical groundwork

for the design of undamageable materials, i.e., materials that cannot be damaged

where the value of the damage variable remains zero throughout the deformation

process.

On the other hand, the second topic presents a new concept of anisotropic

damage that is examined within the framework of continuum damage mechanics.

New proposed damage tensors are studied in order to investigate the damage effect

variables in the mechanical behavior of materials. All the cases studied here are

defined in terms of the elastic stiffness of the material and based on the hypotheses

of both the elastic strain equivalence and the elastic energy equivalence. Further-

more, the new concept of anisotropy is significantly applied to define the new

proposed damage tensor which is derived and anisotropically expressed in terms of

the well-known damage effect tensor. The principal-valued damage effect tensor is

utilized in order to obtain the first scalar invariant of that tensor and its inverse

which are employed in expressing and verifying the new proposed damage tensors.

In addition, new hybrid damage tensors are proposed and defined in terms of the

damage effect tensor and the new proposed damage tensors. The new hybrid

damage tensors are eventually obtained in terms of the damage effect tensor.

Accordingly, this study demonstrates that most of the new proposed damage tensors

are verified within the framework of continuum damage mechanics.

Isotropic Damage in Continuum Damage Mechanics

Review of Existing Damage Variables

Two major scalar damage variables used by researchers are elaborately discussed

here. The first scalar damage variable is defined in terms of the reduction in cross-

sectional area, while the second scalar damage variable is defined in terms of the

reduction in the elastic modulus or elastic stiffness. To illustrate the damaged and

effective undamaged configurations, consider a body (in the form of a cylinder) in

the initial undeformed and undamaged configuration, and also the configuration of

the body that is both deformed and damaged after a set of external agencies act on it

(see Fig. 1). A fictitious configuration of the body is then obtained from the

damaged configuration by removing all the damage that the body has undergone,

that is, this is the state of the body after it had only deformed without damage (see

Fig. 1). Therefore, in defining a damage variable ϕ, its value must vanish in the

fictitious configuration.

6 G.Z. Voyiadjis et al.



The first damage variable ϕ1 is usually defined as follows:

ϕ1 ¼
A� A

A
(1)

where A is the cross-sectional area in the damaged configuration, while A is the

cross-sectional area in the fictitious configuration withA > A . It is clear that when a

body is undamaged, i.e., when A ¼ A accordingly, then ϕ1 ¼ 0.

The stress in the fictitious configuration is called the effective stress and is

denoted by σ. The value of the effective stress σmay be obtained using the relation

σA ¼ σA where σ is the stress in the damaged configuration. Therefore, using this

relation along with the definition in Eq. 1, one obtains

σ ¼ σ
1� ϕ1

(2)

It should be mentioned that the equilibrium condition in the paragraph above

reflects a mean-field type of assumption on the stress redistribution (uniform over the

resistive section) and therefore appears to be appropriate only in the dilute damage

regime. Away from the stress–strain peak, cooperative effects dominate, and damage

localization takes place. This holds true, especially for the tensorial case.

Let us denote the ratio σ=σ by the symbol M, and accordingly one obtains the

following relation, M ¼ 1
1�ϕ1

. Figure 2 shows a plot of the relation between ϕ1 and

M using the above relation. The graph shown is plotted for the range 0 � ϕ1 � 1.

Clearly M � 1 which indicates that σ � σ. This is the governing condition for the

damage variable to be valid. From the graph, it is very clear that 1 � M � 1. These

are the limiting conditions forM. The variableM is called the damage effect variable.

In order to compute the effective elastic modulus E in this case, it is needed to

make a certain assumption regarding the energy/strain in the two configurations.

Usually, one of the following two hypotheses is assumed:

1. Hypothesis of elastic strain equivalence: in this case, the strain in the damaged

state ε is assumed to be equal to the effective strain ε (in the fictitious state).

2. Hypothesis of elastic energy equivalence: in this case the elastic strain energy is

assumed to be equal in both configurations.

T

A

Remove Both

Voids and Cracks

T

Ā

Effective Undamaged
Configuration

Damaged
Configuration

Fig. 1 Damaged and

effective undamaged

configurations (Reprinted

with permission from

Voyiadjis and Kattan 2012)
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While both types of hypotheses are usually used by researchers in the field of

damage mechanics, it is believed that the hypothesis of elastic energy equivalence

is more valid than the hypothesis of elastic strain equivalence, primarily because it

involves some form of energy formulation. Therefore, it is recommended to use the

second hypothesis listed above.

The second scalar damage variable ‘1 may be defined in terms of the reduction in

the elastic modulus as follows:

‘1 ¼ E� E

E
(3)

where E is the elastic modulus in the damaged state, while E is the effective elastic

modulus (in the fictitious state) with E > E (see Fig. 3). This damage variable was

used recently by Celentano et al. (2004), Nichols and Abell (2003), and Nichols and

Totoev (1999). It should also be mentioned that Voyiadjis (1988) and Voyiadjis and

Kattan (2009) used a similar relation but in the context of elastoplastic deformation.

The definition of the alternative damage variable of Eq. 3 may be rewritten in the

following more appropriate form:

E ¼ E 1þ ‘1ð Þ (4)

It is clear from the definition in Eq. 4 that ‘1 ¼ 0 when the body is undamaged,

i.e., when E ¼ E.

Hypothesis of Elastic Strain Equivalence
Using the hypothesis of elastic strain equivalence, we assume:

ε ¼ ε (5)

Fig. 2 Relation between the damage variable and M (Reprinted with permission from Voyiadjis

and Kattan 2012)

8 G.Z. Voyiadjis et al.



Using the elastic constitutive relations in both configurations as follows:

σ ¼ Eε (6)

σ ¼ Eε (7)

and substituting for σ and ε using Eqs. 2 and 5, respectively, into Eq. 7, one obtains

E ¼ E

1� ϕ1

(8)

In order to find an appropriate relation between the two damage variables ϕ1 and

‘1, one equates Eqs. 4 and 8 to obtain

‘1 ¼ 1

1� ϕ1

� 1 (9)

The above expression defines the exact relation between the two damage vari-

ables ‘1 and ϕ1 in the case of the hypothesis of elastic strain equivalence. The

relation in Eq. 9 may be rewritten in the following form:

ϕ1 ¼
‘1

1þ ‘1
(10)

The relation of Eq. 9 is plotted between ϕ1 and ‘1 as shown in Fig. 4. In this case,
it is clear that ‘1 ¼ 0 when ϕ1 ¼ 0. However, when one sets ‘1 to its maximum

value of 1, one obtains ϕ1 ¼ 0.5.

Consequently one obtains the following valid ranges 0 � ‘1 � 1 and 0 � ϕ1

� 0.5. This is obviously a limiting maximum value for ϕ1 based on the definition of

stiffness reduction of ‘1. Again, one stresses that this holds for the hypothesis of elastic
strain equivalence. It should be noted that Eq. 3 does not impose any limitations on the

value of ‘1. However, it is assumed that the damage variable ‘1 has a fractional

numerical value between 0 and 1. Thus, the statement that ‘1 has a maximum value

of 1 arises based on this assumption (see Voyiadjis and Kattan 2009).

Hypothesis of Elastic Energy Equivalence
Using the hypothesis of elastic energy equivalence, one assumes the complemen-

tary elastic strain energy σ2
2E

� �
to be equal in both configurations, i.e.,

Fig. 3 Damaged and

effective moduli of elasticity

(Reprinted with permission

from Voyiadjis and Kattan

2012)
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σ2

2E
¼ σ2

2E
(11)

Substituting for σ from Eq. 2 into Eq. 11 and simplifying, one obtains

E ¼ E

1� ϕ1ð Þ2 (12)

Next, in order to derive the relation between the two damage variables ϕ1 and ‘1,
one equates Eqs. 4 and 12 to obtain

‘1 ¼ 1

1� ϕ1ð Þ2 � 1 (13)

The above expression defines the exact relation between the two damage vari-

ables ‘1 and ϕ1 in the case of the hypothesis of elastic energy equivalence. The

relation in Eq. 13 may be rewritten in the following form:

ϕ1 ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘1

p (14)

One now plots the relation of Eq. 13 between ϕ1 and ‘1 as shown in Fig. 5. In this
case, it is clear that ‘1 ¼ 0 when ϕ1 ¼ 0. However, when one sets ‘1 to its

maximum value of 1, one obtains ϕ ¼ 0.293 � 0.3, and consequently the valid

ranges are as follows: 0 � ‘1 � 1 and 0 � ϕ1 � 0.293. This is obviously a limiting

maximum value for ϕ based on the definition of stiffness reduction of ‘1. Again, one
should stress that this holds for the hypothesis of elastic energy equivalence. It

should be noted that Eq. 3 does not impose any limitations on the value of ‘1.
However, it is assumed that the damage variable ‘1 has a fractional numerical value

between 0 and 1. Thus, the statement that ‘1 has a maximum value of 1 arises based

Fig. 4 Relation between the two damage variables in the case of elastic strain equivalence

(Reprinted with permission from Voyiadjis and Kattan 2012)
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on this assumption (see Voyiadjis and Kattan 2009). Table 1 summarizes the results

for the two hypotheses.

Proposed New Damage Variables

In this section, two alternative proposed new damage variables are presented that

are similar to ϕ1 and ‘1. These two new damage variables will be called ϕ2 and ‘2,
respectively, defined as follows:

ϕ2 ¼
A� A

A
(15)

‘2 ¼ E� E

E
(16)

Note that the differences between ϕ1 and ϕ2 and between ‘1 and ‘2 are only in the
denominator. These changes are made in order to investigate the relationships

between the various damage variables and assess their validity.

Fig. 5 Relation between the two damage variables for the case of elastic energy equivalence

(Reprinted with permission from Voyiadjis and Kattan 2012)

Table 1 Limiting Values of f1 and ‘1 (Reprinted with permission from Voyiadjis and Kattan

2012)

Hypothesis of elastic strain

equivalence

Hypothesis of elastic energy

equivalence

‘1 Min. value 0.0 0.0

Max. value 1.0 1.0

ϕ1 Min. value 0.0 0.0

Max. value 0.5 0.293
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Hypothesis of Elastic Strain Equivalence
Using the hypothesis of elastic strain equivalence, the following relation between

ϕ1 and ‘2 is obtained:

‘2 ¼ ϕ1 (17)

Thus, that under this hypothesis, the two damage variables ϕ1 and ‘2 are

equivalent. Therefore, this relationship is represented by a straight line as shown in

Fig. 6. The relation of Eq. 17 between ϕ1 and ‘2 is shown in Fig. 6. In this case, it is

clear that ‘2 ¼ 0 when ϕ1 ¼ 0. However, when one sets ‘2 to its maximum value of

1, then ϕ1 ¼ 1.0 with the following valid ranges 0 � ‘2 � 1 and 0 � ϕ1 � 1. This

is obviously a limiting maximum value for ϕ1 based on the definition of stiffness

reduction of ‘2. Again, one should stress that this holds for the hypothesis of elastic

strain equivalence. It should be noted that Eq. 16 does not impose any limitations on

the value of ‘2. However, it is assumed that the damage variable ‘2 has a fractional
numerical value between 0 and 1. Thus, the statement that ‘2 has a maximum value of

1 arises based on this assumption (see Voyiadjis and Kattan 2009).

Next, the relationship between the damage variables ϕ2 and ‘1 is obtained using

the hypothesis of elastic strain equivalence. Using this hypothesis, one deduces the

following relationship:

‘1 ¼ ϕ2 (18)

Thus, under this hypothesis, the two damage variables ϕ2 and ‘1 are equivalent.
Therefore, this relationship is represented by a straight line as shown in Fig. 7. The

relation of Eq. 18 between ϕ2 and ‘1 is plotted in Fig. 7. In this case, it is clear that

‘1 ¼ 0 when ϕ2 ¼ 0. However, when one sets ‘1 to its maximum value of 1, one

obtains ϕ2 ¼ 1.0 with the following valid ranges 0 � ‘1 � 1 and 0 � ϕ2 � 1. This

is obviously a limiting maximum value for ϕ2 based on the definition of stiffness

reduction of ‘1. This holds for the hypothesis of elastic strain equivalence.

Fig. 6 Relation between the two damage variables in the case of elastic strain equivalence

(Reprinted with permission from Voyiadjis and Kattan 2012)
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Next, the relationship between the proposed damage variables ϕ2 and ‘2 is

studied using the hypothesis of elastic strain equivalence. Using this hypothesis,

the following relationship is obtained:

‘2 ¼ 1� 1

1þ ϕ2

(19)

The above relationship can also be rewritten as follows:

ϕ2 ¼
‘2

1� ‘2
(20)

The relation of Eqs. 19 and 20 between ϕ2 and ‘2 is shown in Fig. 8. In this case, it
is clear that ‘2 ¼ 0 when ϕ2 ¼ 0. However, when one sets ϕ2 to its maximum value

of 1, one obtains ‘2 ¼ 0.5 also, with the valid ranges 0 � ‘2 � 0.5 and 0 � ϕ2 � 1.

This is obviously a limiting maximum value for ‘2 based on the definition of stiffness
reduction of ‘1. This holds for the hypothesis of elastic strain equivalence.

Hypothesis of Elastic Energy Equivalence
Using the hypothesis of elastic energy equivalence, the following relation is

obtained between ϕ1 and ‘2:

‘2 ¼ 1� 1� ϕ1ð Þ2 (21)

The above relationship may be rewritten as follows:

ϕ1 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ‘2

p
(22)

The relation of Eqs. 21 and 22 between ϕ1 and ‘2 is shown in Fig. 9. In this case,
it is clear that ‘2 ¼ 0 when ϕ1 ¼ 0. However, when by setting ‘2 to its maximum

Fig. 7 Relation between the two damage variables in the case of elastic strain equivalence

(Reprinted with permission from Voyiadjis and Kattan 2012)
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value of 1, one obtains ϕ1 ¼ 1.0 for the following valid ranges 0 � ‘2 � 1 and

0 � ϕ1 � 1. This is obviously a limiting maximum value for ϕ1 based on the

definition of stiffness reduction of ‘2. It should be noted that Eq. 16 does not impose

any limitations on the value of ‘2. However, it is assumed that the damage variable ‘2
has a fractional numerical value between 0 and 1. Thus, the statement that ‘2 has a
maximum value of 1 arises based on this assumption (see Voyiadjis and Kattan 2009).

The relationship is next studied between the damage variables ϕ2 and ‘1 using
the hypothesis of elastic energy equivalence. Using this hypothesis, one deduces the

following relationship:

‘1 ¼ ϕ2 2þ ϕ2ð Þ (23)

Fig. 8 Relation between the two damage variables in the case of elastic strain equivalence

(Reprinted with permission from Voyiadjis and Kattan 2012)

Fig. 9 Relation between the two damage variables in the case of elastic energy equivalence

(Reprinted with permission from Voyiadjis and Kattan 2012)
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The above relationship can be rewritten in the following form:

ϕ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘1

p
� 1 (24)

The relation of Eqs. 23 and 24 between ϕ2 and ‘1 is shown in Fig. 10. In this case,
it is clear that ‘1 ¼ 0 when ϕ2 ¼ 0. However, by setting ‘1 to its maximum value of

1, one obtains ϕ2 ¼ 0.414 for the valid ranges 0 � ‘1 � 1 and 0 � ϕ2 � 0.414.

This is obviously a limiting maximum value for ϕ2 based on the definition of

stiffness reduction of ‘1.
The relationship between the new proposed damage variables ϕ2 and ‘2 using the

hypothesis of elastic energy equivalence is now obtained. Using this hypothesis, the

following relation is deduced:

‘2 ¼ 1� 1

1þ ϕ2ð Þ2 (25)

The above relationship can also be rewritten as follows:

ϕ2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ‘2
p � 1 (26)

The relation of Eqs. 25 and 26 between ϕ2 and ‘2 is shown in Fig. 11. In this case,
it is clear that ‘2 ¼ 0 when ϕ2 ¼ 0. However, when one sets ‘2 to its maximum

value of 1, one obtains ϕ2 ! 1 for the valid ranges 0 � ‘2 � 1 and 0 � ϕ2 � 1.

Table 2 summarizes the new results for the two hypotheses.

In this section, a new class of damage variables is presented. The new proposed

damage variables are investigated and compared with the existing damage variables.

It should be noted that the new damage variables fall into two major categories based

on the discussion of section “Isotropic Damage in Continuum Damage Mechanics.”

The first category consists of all the damage variables that are defined in terms of the

Fig. 10 Relation between the two damage variables in the case of elastic energy equivalence

(Reprinted with permission from Voyiadjis and Kattan 2012)
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cross-sectional area similar to ϕ1. The second category consists of all the damage

variables that are defined in terms of the elastic stiffness similar to ‘1.

Other Proposed New Damage Variables

Damage Variables Defined in Terms of Area
Looking at the damage variable ϕ1 as defined in Eq. 1, a similar damage variable is

proposed ϕ2 defined as follows (as was shown in Eq. 15):

ϕ2 ¼
A� A

A
(27)

where the definition of ϕ2 is different from the definition of ϕ1 only in the

denominator. Based on Eqs. 1 and 27, one can easily show that the relation between

these two damage variables is given by

ϕ2 ¼ ϕ1 þ ϕ1ϕ2 (28)

From the above relation, it is clearly seen that ϕ2 ¼ ϕ1

1�ϕ1
. The new proposed

damage variable ϕ2 does not have the same limiting values as ϕ1. It was shown in

Fig. 11 Relation between the two damage variables in the case of elastic energy equivalence

(Reprinted with permission from Voyiadjis and Kattan 2012)

Table 2 Limiting values of f2 and ‘2 (Reprinted with permission from Voyiadjis and Kattan

2012)

Hypothesis of elastic strain

equivalence

Hypothesis of elastic energy

equivalence

‘2 Min. value 0.0 0.0

Max. value 1.0 1.0

ϕ2 Min. value 0.0 0.0

Max. value 0.5 0.414
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the previous section that 0 � ϕ1 � 1. However, the same is not true for ϕ2. From

the above equation, it can be deduced that 0 � ϕ2 � 1.

One now obtains the value of the damage effect variableM for this new proposed

damage variable. The value of the effective stress σ may be obtained using the

relation σA ¼ σA where σ is the stress in the damaged configuration. Therefore,

using this relation along with the definition in Eq. 27, one obtains

σ ¼ σ 1þ ϕ2ð Þ (29)

Denoting the ratio σ=σ by the letter M, consequently one obtains M ¼ 1 + ϕ2.

It is now clear that, unlike the classic damage variable, the value of this

proposed damage variable can approach infinity. Clearly, the new damage variable

satisfies the condition 1 � M � 1. Therefore, this new proposed damage variable

is valid.

Next, the following new damage variable is proposed that is slightly more

complicated:

ψ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � A

2

AA

s
(30)

One now investigates whether the above proposed damage variable is valid. The

damage effect variableM that is associated with ψ1 is now obtained. One can easily

show that the following relation is obtained based on Eq. 30:

σ ¼ 1

2
ψ2
1 �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ψ4

1

q� �
σ (31)

Thus, based on the evaluation of the damage effect variable M, the proposed

damage variable ψ1 is valid provided that it satisfies the condition

1
2
ψ2
1 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ψ4

1

p� �
� 1, i.e.,M � 1, as discussed in the beginning of this chapter.

One now considers next the following new proposed damage variable which is

similar to the one defined in Eq. 30:

ψ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� A
� �2

AA

s
(32)

The validity of the above proposed damage variable is now investigated. One

can easily show that the following relation is obtained based on Eq. 32:

σ ¼ 1þ 1

2
ψ2
2 �

1

2
ψ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ψ2

2

q� �
σ (33)

Thus, based on the evaluation of the damage effect variable M, the proposed

damage variable ψ2 is valid provided that it satisfies the condition
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1þ 1
2
ψ2
2 � 1

2
ψ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ψ2

2

p� �
� 1, i.e., M � 1, as discussed in the beginning of this

chapter.

A third damage variable is now proposed that is defined in terms of the cross-

sectional area as follows:

ψ3 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � A

2

A
2

s
(34)

One now investigates whether the above proposed damage variable is valid or

not. Let us derive the value of the damage effect variable M that is associated

with ψ3. Based on Eq. 34 the following relation is obtained:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ψ2

3

q
σ (35)

Thus, based on the evaluation of the damage effect variable M, the proposed

damage variable ψ3 is valid provided that it satisfies the condition
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ψ2

3

p � 1,

i.e., M � 1, as discussed in the beginning of this work.

The fourth proposed damage variable in this category is defined as follows:

ψ4 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � A

2

A2

s
(36)

The value of the damage effect variable M that is associated with ψ4 is obtained

from the relation based on Eq. 36:

σ ¼ σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ψ2

4

p (37)

Thus, based on the evaluation of the damage effect variable M, the proposed

damage variable ψ4 is also valid provided that it satisfies the condition
1ffiffiffiffiffiffiffiffiffiffi

1�4ψ2
4

p � 1,

i.e., M � 1, as discussed in the beginning of this work.

Finally, one presents the following two relations between the damage variables

ψ1 and ψ2 on one hand and ϕ1 and ϕ2 on the other hand:

ψ2
1 � ψ2

2 ¼ 2ϕ1 (38)

ψ2
1 þ ψ2

2 ¼ 2ϕ2 (39)

Consider now two new damage variables ψ5 and ψ6 defined as follows:

ψ5 ¼
A2 � A

2

2A
2

(40)
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ψ6 ¼
A� A
� �2

2A
2

(41)

It can be shown that ψ5 � ψ6 ¼ A
A
� 1 and ψ5 þ ψ6 ¼ A

A

� �2

� A
A
. These relations

can be used to prove the following relations between the effective stress and the

actual stress with regard to the two damage variables defined above:

σ ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 ψ5 þ ψ6ð Þ

ph i
σ (42)

σ ¼ 1þ ψ5 � ψ6ð Þ½ �σ (43)

Thus, based on the evaluation of the damage effect variable M, the combined

damage variable ψ5 + ψ6 is valid provided that it satisfies the condition
1
2
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 ψ5 þ ψ6ð Þp	 
 � 1, while the combined damage variable ψ5 � ψ6 is

valid provided that it satisfies the condition [1 + (ψ5 � ψ6)] � 1.

Consider now two new damage variables ψ7 and ψ8 defined as follows:

ψ7 ¼
A2 � A

2

2A2
(44)

ψ8 ¼
A� A
� �2

2A2
(45)

It can be shown easily that ψ7 þ ψ8 ¼ 1� 1

A

A

� � and ψ7 � ψ8 ¼ 1

A

A

� �� 1

A

A

� �2.

One can use these relations to prove the following relations between the

effective stress and the actual stress with regard to the two damage variables defined

above:

σ ¼ σ
1� ψ7 þ ψ8ð Þ (46)

σ ¼ 2σ
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4 ψ7 � ψ8ð Þp (47)

Thus, based on the evaluation of the damage effect variable M, the combined

damage variable ψ7 + ψ8 is valid provided that it satisfies the condition 1
1� ψ7þψ8ð Þ

� 1, while the combined damage variable ψ7 � ψ8 is valid provided that it satisfies

the condition 2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4 ψ7�ψ8ð Þ

p � 1.
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Damage Variables Defined in Terms of Stiffness
Looking at the damage variable ‘1 defined in terms of stiffness in Eq. 3, a similar

damage variable ‘2 is proposed that is also defined in terms of stiffness as follows

(as was shown in Eq. 16):

‘2 ¼ E� E

E
(48)

It can now be easily shown that the following relations between the damage

variables ‘1 and ‘2 are obtained:

‘1 � ‘2 ¼ ‘1‘2 (49)

‘1 þ ‘2 ¼ E
2 � E2

EE
(50)

Using the above results, two new damage variables are defined in terms of

stiffness as follows:

p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘1 þ ‘2

p
(51)

p2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘1 � ‘2

p
: (52)

It can be easily shown that the following two relations are obtained between the

effective stress and the actual stress based on the above damage variables using the

hypothesis of elastic strain equivalence:

σ ¼ 1

2
p21 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p41 þ 4

q� �
σ (53)

σ ¼ 1

2
p22 þ 2� p2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 þ 4

q� �
σ (54)

Thus, based on the evaluation of the damage effect variable M, the proposed

damage variable p1 is valid provided that it satisfies the condition

1
2

p21 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p41 þ 4

p� �
� 1, while the combined damage variable p2 is valid provided

that it satisfies the condition 1
2

p22 þ 2� p2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 þ 4

p� �
� 1.

However, when using the hypothesis of elastic energy equivalence, it can be

easily shown that the following two relations are obtained between the effective

stress and the actual stress based on the above damage variables:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
p21 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p41 þ 4

q� �s
σ (55)
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σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
p22 þ 2� p2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 þ 4

q� �s
σ (56)

Thus, based on the evaluation of the damage effect variable M, the proposed

damage variable p1 is valid provided that it satisfies the conditionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

p21 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p41 þ 4

p� �r
� 1, while the combined damage variable p2 is valid provided

that it satisfies the condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

p22 þ 2� p2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 þ 4

p� �r
� 1.

The basic damage variable ‘1 is now investigated in more detail.

For the hypothesis of elastic strain equivalence, σ ¼ E
E

� �
σ . In this case,

it is already shown that the damage variable ‘1 ¼ E�E
E will yield the relation

σ ¼ σ 1þ ‘1ð Þ.
Next, using the hypothesis of elastic energy equivalence, one has σ ¼

ffiffiffi
E
E

q
σ. In

this case, it can be easily shown that the damage variable ‘1 ¼ E�E
E will yield the

relation σ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘1

p
.

If one postulates a new hypothesis of higher-order energy equivalence in the

form 1
2
σ2ε ¼ 1

2
σ2ε or 1

2
σε2 ¼ 1

2
σε2, the relation σ ¼

ffiffiffi
E
E

3

q
is obtained. In this case, it

can be easily shown that using ‘1 ¼ E�E
E will yield the relation σ ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘1

3
p

.

Postulating another new hypothesis of higher-order energy equivalence in the

form 1
2
σ2ε2 ¼ 1

2
σ2ε2, the relation σ ¼

ffiffiffi
E
E

4

q
is obtained. In this case, it can be easily

shown that using ‘1 ¼ E�E
E will yield the relation σ ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘1

4
p

.

Finally, if a new hypothesis is postulated for the generalized equivalence of

higher-order energy in terms of the n-powers of σ and ε, then the following relation

is obtained σ ¼
ffiffiffi
E
E

n

q
. In this case, it can be shown that using ‘1 ¼ E�E

E will yield the

relation σ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘1

n
p

.

Several curves are plotted on the same graph paper to show the relations

between σ
σ (which is M, the ratio of the stresses) and ‘1 (see Fig. 12). It is clear

that for the limiting case when n ! 1, the curve has a constant value at 1.

Note that the lower curves appearing in Fig. 12 are for larger values of n.
What does this limiting case signify? Before addressing this question and com-

ment on these results, the above investigation is repeated for the other damage

variable ‘2.
Next, the basic damage variable ‘2 is investigated in more detail. For the

hypothesis of elastic strain equivalence, we have σ ¼ E=E
� �

σ. In this case, it has

already been shown that the damage variable ‘2 ¼ E� E
� �

=Ewill yield the relation

σ ¼ σ 1� ‘2ð Þ.
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For the hypothesis of elastic energy equivalence, one obtains σ ¼
ffiffiffi
E
E

q
σ . In

this case, it can be easily shown that the damage variable ‘2 ¼ E�E
E

will yield

the relation σ ¼ σffiffiffiffiffiffiffiffi
1�‘2

p .

If one postulates a new hypothesis of higher-order energy equivalence in the

form 1
2
σ2ε ¼ 1

2
σ2ε or 1

2
σε2 ¼ 1

2
σε2, the following relation is obtained σ ¼

ffiffiffi
E
E

3

q
σ. In

this case, it can be easily shown that using ‘2 ¼ E�E
E

will yield the relationσ ¼ σffiffiffiffiffiffiffiffi
1�‘2

3
p .

Postulating another new hypothesis of higher-order energy equivalence in the

form 1
2
σ2ε2 ¼ 1

2
σ2ε2, the following relation is obtainedσ ¼

ffiffiffi
E
E

4

q
σ. In this case, it can

be easily shown that using ‘2 ¼ E�E
E

will yield the relation σ ¼ σffiffiffiffiffiffiffiffi
1�‘2

4
p .

Finally, a generalized equivalence of higher-order energy hypothesis is postu-

lated in terms of the n-powers of σ and ε, such that σ ¼
ffiffiffi
E
E

n

q
σ. In this case, by using

‘2 ¼ E�E
E
, one obtains the relation σ ¼ σffiffiffiffiffiffiffiffi

1�‘2
n
p .

Plotting the two curves on the same graph to show the relations between σ
σ

(which is M, the ratio of the stresses) and ‘2 (see Fig. 13), it is clear that for the

limiting case when n ! 1, the curve has a constant value at n ¼ 1. Note that the

lower curve appearing in Fig. 13 is for the larger value of n. What does this limiting

case signify?

The above results are explained using the formulas derived for ‘2. A similar

treatment may be applied to ‘1. One starts with the formula σ ¼ σffiffiffiffiffiffiffiffi
1�‘2

n
p which was

derived in the previous paragraphs. The case when n ! 1 is now investigated. In

this case, the following relation is obtained:

Fig. 12 Relation between ‘1 and the ratio of the stresses M (Reprinted with permission from

Voyiadjis and Kattan 2012)
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σ ¼ σffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ‘2

n
p ¼ σ

1� ‘2ð Þ1n
¼ σ

1� ‘2ð Þ 1
1
¼ σ

1� ‘2ð Þ0 ¼
σ
1
¼ σ (57)

The relation σ ¼ σ is now obtained irrespective of the value of the damage

variable ‘2. This means that in this limiting case, the material remains totally

undamaged irrespective of the value of the damage variable. Of course, this is a

hypothetical case as it cannot be reached physically. However, it gives rise to the

following new issue. Does a material exist or can be manufactured which remains

totally undamaged during the deformation process no matter what the load may be.

This is the holy grail of damage mechanics and materials science in general – to

design a new type of material that cannot be damaged at all. The above equations

will provide some guidelines in this respect. The issue of the proposed higher-order

strain energy forms will be discussed in detail in the next section.

Higher-Order Strain Energy Forms
In this section, the nature of the proposed higher-order strain energy forms is

investigated that were introduced in section “Damage Variables Defined in Terms

of Stiffness.” Their exact relationships to the elastic constitutive equations of the

material are investigated. It will be seen that each higher-order strain energy form

will correspond to an exact nonlinear elastic stress–strain relation. These specific

stress–strain relations will be derived in this section. Looking at these proposed

higher-order strain energy forms, it is clearly seen that some of them do not have

units of energy. Thus, these forms may be called hyper-strain energy forms.

The general formulation is first considered of how to derive a specific

stress–strain relation if the corresponding strain energy form is known. For exam-

ple, in the linear case, the linear stress–strain relation σ ¼ E ε corresponds to the

Fig. 13 Relation between ‘2 and the ratio of the stresses M (Reprinted with permission from

Voyiadjis and Kattan 2012)
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usual strain energy form U ¼ 1
2
σε. The types of stress–strain relations are investi-

gated that may be obtained using the proposed higher-order strain energy forms
1
2
σε2, 1

2
σ2 ε, 1

2
σε3, 1

2
σ3 ε, 1

2
σ2 ε2, and so on with higher powers.

In general, the following general stress–strain relation is assumed:

σ ¼ E f(ε), where f(ε) is to be determined for each specific form of higher-order

strain energy. The higher-order strain energy U is defined (some form of hyper-strain

energy) as the area under the stress–strain curve. It is given by the following relation:

U ¼
ð
σdε (58)

Substituting the above general stress–strain relation in the expression for U, one
obtains

U ¼ E

ð
f εð Þdε (59)

Taking the derivative of both sides, the following formula for f(ε) is obtained:

f εð Þ ¼ dU=dε
E

(60)

Thus, the above formula can be used to obtain the specific function of the sought

nonlinear stress–strain relation for the material. This is illustrated with one example

using the higher-order strain energy form U ¼ 1
2
σε2.

The higher-order strain energy formU ¼ 1
2
σε2 is assumed. Substituting σ ¼ E f(ε)

in the above formula for U one obtains

U ¼ 1

2
Ef εð Þε2 (61)

Taking the derivative of the above formula the following expression is derived:

dU ¼ 1

2
Ef 0 εð Þε2dεþ Ef εð Þε dε (62)

One now substitutes the above formula into Eq. 60 to obtain

f εð Þ ¼ 1

2
f 0 εð Þε2 þ f εð Þε (63)

or

1

2
f 0 εð Þε2 þ f εð Þε� f εð Þ ¼ 0 (64)

Next, the above differential equation is solved in order to obtain the desired

nonlinear relation between stress and strain as follows. The solution to the above

ordinary differential equation is obtained as follows:
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f εð Þ ¼ eC
1

ε2
e�2=ε (65)

Substituting back into the original equation σ ¼ E f(ε), one obtains

σ ¼ EeC
1

ε2
e�2=ε (66)

One can assume the constant C ¼ 0 to obtain the following nonlinear

stress–strain relation:

σ ¼ E
1

ε2
e�2=ε (67)

Looking at the above stress–strain relation, it may appear that the stress

approaches infinity at the initial condition when the strain is zero, but this is not

the case. It is seen that the limit of the above expression for the stress approaches

zero as the strain approaches zero. Thus, the initial conditions of zero strain and

zero stress are satisfied.

Thus, it is seen that for the higher-order strain energy form 1
2
σε2, the

corresponding stress–strain relation is nonlinear and is given by the expression

σ ¼ E 1
ε2 e

�2=ε.

The above procedure can be repeated for the other proposed higher-order strain

energy forms to obtain their corresponding nonlinear stress–strain relations. These

results are summarized in Table 3.

Looking at the results presented in Table 3, one notices that the higher-order

strain energy forms are of three types. The first type is the one with powers of ε.
This type is well behaved and indeed has units of energy. The other two types are

the ones with powers of σ and with mixed powers of both ε and σ. These two types

are not well behaved and do not have units of energy. In fact, these powers do not

Table 3 The proposed higher-order strain energy forms and their corresponding stress–strain

relations (Reprinted with permission from Voyiadjis and Kattan 2012)

Proposed higher-order strain energy

form

Valid or

invalid

Corresponding stress–strain

relation

U ¼ 1
2
σε Valid σ ¼ E ε

U ¼ 1
2
σε2 Valid σ ¼ E 1

ε2 e
�2=ε

U ¼ 1
2
σ2 ε Invalid

σ ¼ 2 1� 1

1�1
2
E f εoð Þð Þ ffiffiffiffiffi

εo ε
p

� �
U ¼ 1

2
σε3 Valid σ ¼ E 1

ε3 e
�1=ε2

U ¼ 1
2
σ3 ε Invalid

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ε2=3o þ2�E2 f 2o εð Þð Þ ε�2=3

p
E

U ¼ 1
2
σ2 ε2 Invalid σ ¼ 1

ε lnεþ CEð Þ
U ¼ 1

2
σεn, n ¼ 1, 2, 3, :::: Valid σ ¼ E 1

εn e
�2= n�1ð Þε n�1ð Þ½ �
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satisfy the initial conditions that σ ¼ 0 when ε ¼ 0. Thus, the results for these two

types of higher-order energy forms are discarded.

One now investigates in more detail the higher-order strain energy forms with

powers of ε only. The general expression of these types of energy forms is given by

U ¼ 1
2
σεn. The corresponding nonlinear stress–strain relation for this general form

is given by σ ¼ E 1
εn e

�2= n�1ð Þε n�1ð Þ½ � as seen from Table 3. It is seen that this general

form satisfies the initial conditions σ ¼ 0 when ε ¼ 0 because the limit of the

expression for the stress approaches zero as the strain approaches zero. Thus, the

higher-order strain energy forms with powers of strain only are valid and can be

used in this discussion of undamageable materials as illustrated at the end of section

“Hypothesis of Elastic Energy Equivalence.” Note also that the special valid cases

appearing at the top of Table 3 can be deduced directly from the general solution.

Thus, in order to design an undamageable material as explained at the end of

section “Hypothesis of Elastic Energy Equivalence,” the stress–strain relation of this

hypothetical material will have to follow the highly nonlinear stress–strain relation

given in the last row of Table 3 when one takes the limit as the value of n goes to

infinity. This presentation is given here in its full theoretical framework in the hope

that sometime in the future, the manufacturing technology will advance to such a

stage that such a material can be realized. The constitutive relations of undamageable

materials are similar to those of rubber materials (Arruda and Boyce 1993).

Hybrid Damage Variables
In the remaining part of this work, two new hybrid damage variables are introduced.

These variables are more complicated than the previously introduced ones. They are

termed “hybrid” because they are defined in terms of both area and stiffness. The

hybrid damage variables introduced here may be applied to homogeneous materials

like metals as well as for heterogeneous materials like composite laminates.

Using the usual damage variables ϕ ¼ A�A
A and ‘ ¼ E�E

E , two new damage

variables s1 and s2 are defined as follows:

s1 ¼ ϕþ ‘� ϕ‘ (68)

s2 ¼ ϕþ ‘þ ϕ‘ (69)

These two new damage variables are called hybrid damage variables because each

one includes both parameters ϕ and ‘. It will be shown in this and subsequent

derivations that these two damage variables are not independent. Substituting the

equations for ϕ and ‘ into the equations of the two new proposed damage variables,

one obtains two simultaneous algebraic equations in the variables x and y as follows:

s1 ¼ 1� 2yþ xy (70)

s2 ¼ �1þ 2x� xy (71)

where x ¼ E
E and y ¼ A

A.
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Next, one solves the two simultaneous equations shown above to obtain:

x ¼
1þ 1

2
s1 � 1

2
s2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8s1 � 8s2 þ s21 þ 2s1s2 þ s22

q
1� 1

4
s1 � 1

4
s2 þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8s1 � 8s2 þ s21 þ 2s1s2 þ s22

q (72)

y ¼ 1� 1

4
s1 � 1

4
s2 þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8s1 � 8s2 þ s21 þ 2s1s2 þ s22

q
(73)

It can now be easily shown that

σ ¼
1þ 1

4
s1 þ s2 � cð Þ

�1� 1

2
s1 � s2 þ cð Þ

σ (74)

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 s2 � s2ð Þ þ s1 þ s2ð Þ2

q
.

Using the result for y in Eq. 73 along with the hypothesis of elastic strain

equivalence, one can show that

σ ¼ 1� 1

4
s1 þ s2 � cð Þ

� �
σ (75)

Making use the result for y in Eq. 73 along with the hypothesis of elastic energy

equivalence, one obtains:

σ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4
s1 þ s2 � cð Þ

r
(76)

A Practical Example: Matrix Cracking in Cross-Ply Laminates
In this section, a practical example is provided for the stiffness reduction in carbon

fiber-reinforced cross-ply laminated composite materials. This stiffness reduction is

linked to the matrix cracking of the material. It has been shown through experi-

mental data analysis of (90/0)s laminates (Silberschmidt 1997) that the following

empirical relation for stiffness reduction is introduced:

E

E
¼ 1� c

2s
(77)

where 2s is the average spacing between neighboring cracks in the matrix and c is a
constant. The above formula provides for a valid physical and experimental basis

for the class of damage variables that are defined in terms of stiffness reduction.

A more general relation that accounts for a wider set of laminate characteristics

was also presented by Silberschmidt (1997) which is given by the following formula:
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E

E
¼ 1þ bþ dð ÞE

bE1

� 1

� �
tanh λ sð Þ

λ s

� ��1

(78)

where

λ2 ¼ BG23 bþ dð ÞE
bd2E2E1

(79)

b and d are the thickness of the 0� and 90� plies, respectively, G23 is a shear

modulus, andE1 andE2 are the uncracked longitudinal and transversemoduli of the ply,

respectively. The constant B is equal to 2 under an assumption of linear displacement

profile in the cracked90� plies andequal to 3 for aparabolic profile (Silberschmidt 1997).

The empirical formulae in Eqs. 77 and 78 provide for a practical and experi-

mental validation of the class of proposed damage variables that are defined in

terms of stiffness reduction.

Anisotropic Damage in Continuum Damage Mechanics

Review of Existing Damage Variables

The principles of the continuum mechanics theory for the general case of aniso-

tropic damage were recently (Voyiadjis and Park 1997; Voyiadjis and Kattan 1992,

1990, 2012; Kattan and Voyiadjis 1993; Cordebois and Sidoroff 1982) cast in a

consistent mathematical and mechanical framework. The generalized form of the

transformation equation for the anisotropic case, in indicial notation, is written as

follows (Murakami 1988; Chow and Wang 1988):

σij ¼ Mijklσkl (80)

where M is a symmetric fourth-rank tensor termed the damage effect tensor, σ is

the Cauchy stress tensor, and σ is the corresponding effective stress tensor (see

Fig. 1).

In order to compute the components of the effective elasticity tensor Ε (which is

defined in the fictitious configuration), the hypotheses of elastic energy equivalence

are used.

The second anisotropic damage tensor Lmay be defined in terms of the reduction

in the elastic stiffness components as follows:

L
1ð Þ
ijmn ¼ Eijkl � Eijkl

� �
E�1
klmn (81a)

L
2ð Þ
ijmn ¼ E�1

ijkl Eklmn � Eklmn

� �
(81b)

where E is the elastic stiffness tensor in the damaged state, while E is the effective

elastic tensor (in the fictitious state). This damage variable was used recently by
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Celentano et al. (2004), Nichols and Abell (2003), and Nichols and Totoev (1999)

for the scalar case only. It should also be mentioned that Voyiadjis (1988) used a

similar relation but in the context of elastoplastic deformation. See also Voyiadjis

and Kattan (2009). Two such tensors are proposed in this case as shown in Eqs. 81a

and 81b.

The definition of the alternative damage variables of Eqs. 81a and 81b may be

rewritten in the following more appropriate form:

Eijkl ¼ δimδjn þ L
1ð Þ
ijmn

� �
Emnkl (82a)

Eijkl ¼ Eijmn δmkδnl þ L
2ð Þ
mnkl

� �
(82b)

Hypothesis of Elastic Strain Equivalence
Making use of the hypothesis of elastic strain equivalence, one assumes

ϵij ¼ ϵij (83)

Using the elastic constitutive relations in both configurations as follows

σij ¼ Eijklϵkl (84)

σij ¼ Eijklϵkl (85)

and substituting for σ and ε using Eqs. 80 and 83, respectively, into Eq. 85 and

comparing the result with Eq. 84, one obtains

Eijmn ¼ MijklEklmn (86)

In order to find an appropriate relation between the two damage tensorsM and L,
one equates Eqs. 82a and 82b with 86 to obtain

L
1ð Þ
ijmn ¼ Mijmn � δimδjn (87a)

L
2ð Þ
ijmn ¼ δimδjn

1

9
α� 1

� �
(87b)

where

α ¼ Mijij

The above expression defines the exact relation between the two damage tensors

L and M in the case of the hypothesis of elastic strain equivalence.
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The relations in Eqs. 87a and 87b may be rewritten in the following form:

Mijmn ¼ δimδjn þ 1

9
δimδjnL

2ð Þ
klkl (88a)

Mijmn ¼ L
1ð Þ
ijmn þ δimδjn (88b)

It is clear that the above special relations for the case of anisotropic damage are

linear relations in terms of the damage effect tensor and the new proposed damage

tensors. It can be verified that the damage tensors L(1) and L(2) are valid for values of
L1111
(1) and L1111

(2) equal to or greater than zero.

Hypothesis of Elastic Energy Equivalence
Using the hypothesis of elastic energy equivalence undamageable material, by

assuming the complementary elastic strain energy to be equal in both configura-

tions, one obtains:

E�1
ijkl σij σkl ¼ E

�1

mnpq σmn σpq (89)

Substituting for σ from Eq. 80 into Eq. 89 and simplifying, one obtains

Eijkl ¼ Mijmn Emnpq M
T
pqkl (90)

Next, in order to derive the relation between the two damage tensors M and L,
one equates Eqs. 82a and 82b with 90 to obtain

L
1ð Þ
ijmn ¼ δimδjn � 1

9
α Mijmn (91a)

L
2ð Þ
ijmn ¼

1

9
α Mijmn � δimδjn (91b)

The above expression defines the exact relation between the two damage tensors

L and M in the case of the hypothesis of elastic energy equivalence.

The relations in Eqs. 91a and 91b may be rewritten in the following form:

Mijmn ¼ 9

α
δimδjn � L

1ð Þ
ijmn

h i
(92a)

Mijmn ¼ 9

α
δimδjn þ L

2ð Þ
ijmn

h i
(92b)

It is clear that the above special relations for the case of anisotropic damage are

nonlinear relations in terms of the damage effect tensor and the new proposed

damage tensors. It can be verified that the damage tensors L(1) and L(2) are valid for
values of L1111

(1) less than zero and values of L1111
(2) greater than zero.
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Proposed New Damage Tensors

In this section, two alternative proposed new damage tensors are presented that are

similar to L(1) and L(2). These two new damage tensors will be termed P(1) and P(2),

respectively, and defined as follows:

The two new damage tensors are given by

P
1ð Þ
ijmn ¼ Eijkl � Eijkl

� �
Eklmn (93a)

P
2ð Þ
ijmn ¼ Eklmn Eijkl � Eijkl

� �
(93b)

Note that the difference between L(1) and P(1) and between L(2) and P(2) is that the

elasticity tensor in the damaged configuration is replaced by the elasticity tensor in

the undamaged configuration. These changes are made in order to investigate the

relationships between the various damage tensors and assess their validity. Next,

these two new proposed damage tensors are investigated using the two hypotheses

outlined above.

Hypothesis of Elastic Strain Equivalence
Using the hypothesis of elastic strain equivalence, the following relations are

obtained between M and P:

P
1ð Þ
ijmn ¼ δimδjn �M�1

ijmn (94a)

P
2ð Þ
ijmn ¼ δimδjn 1� 1

9
β

� �
(94b)

where β ¼ Mijij
�1

The derivation of the above equations is straightforward and follows the same

procedure used in section “Hypothesis of Elastic Strain Equivalence.” The above

relationships can also be rewritten as follows:

Mijmn ¼ δimδjn � P
1ð Þ
ijmn

h i�T

(95a)

Mijmn ¼ δimδjn 1� 1

9
P

2ð Þ
klkl

� ��T

(95b)

It is clear that the above special relations for the case of anisotropic damage are

nonlinear relations in terms of the damage effect tensor and the new proposed

damage tensors. It can be verified that the damage tensors P(1) and P(2) are valid for

values of P1111
(1) and P1111

(2) equal to or greater than zero.
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Hypothesis of Elastic Energy Equivalence
Using the hypothesis of elastic energy equivalence, the following relations between

M and P are obtained:

P
1ð Þ
ijmn ¼ δimδjn � 1

9
β M�1

ijmn (96a)

P
2ð Þ
ijmn ¼ δimδjn � 1

9
β M�1

ijmn (96b)

The above relationships may be rewritten as follows:

Mijmn ¼ β
9

δimδjn � P
1ð Þ
ijmn

h i�T
(97a)

Mijmn ¼ β
9

δimδjn � P
2ð Þ
ijmn

h i�T
(97b)

It is clear that the above special relations for the case of anisotropic damage are

nonlinear relations in terms of the damage effect tensor and the new proposed

damage tensors. It can be verified that the damage tensors P(1) and P(2) are valid for

values of P1111
(1) and P1111

(2) equal to or greater than zero.

Other Proposed New Damage Tensors

In this part of research work, new anisotropic damage tensors are defined in terms of

the fourth-rank elasticity tensor. The hypotheses of the elastic strain equivalence

and the elastic energy equivalence are employed in order to obtain the anisotropic

tensors. In this section, the new proposed anisotropic damage tensors are denoted

by the letter R.

1. The anisotropic damage tensor R is given by

Rijkl ¼ L
1ð Þ
ijkl þ L

2ð Þ
ijkl (98)

Substituting Eqs. 87a and 87b into Eq. 98 and simplifying the terms result in the

following equation of the anisotropic damage tensor:

Rijkl ¼ Mijkl þ δikδjl
1

9
α� 2

� �
(99a)

It is demonstrated that Eq. 99a is derived based on the hypothesis of elastic strain

energy equivalence. It can be verified that the damage tensor R is valid for values of

R1111 greater than zero.
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The substitution of Eqs. 91a and 91b into Eq. 98, however, gives the anisotropic

damage tensor based on the hypothesis of elastic energy equivalence:

Rijkl ¼ 0 (99b)

Comparing Eqs. 99a and 99b, one notes that the damage tensor for the second

hypothesis is essentially zero. Thus, the damage tensor that is proposed for the

hypothesis of elastic energy equivalence in this case is not a valid damage tensor.

2. The anisotropic damage tensor R is given by

Rijkl ¼ L
1ð Þ
ijkl � L

2ð Þ
ijkl (100)

Substituting Eqs. 87a and 87b into Eq. 100 and simplifying the terms result in the

following equation of the anisotropic damage tensor based on the hypothesis of

elastic strain equivalence:

Rijkl ¼ Mijkl � 1

9
α δikδjl (101)

It can be verified that the damage tensor R is valid for values of R1111 greater than

zero. Substituting Eqs. 91a and 91b into Eq. 100 and simplifying the terms result in

the following equation of the anisotropic damage tensor based on the hypothesis of

elastic energy equivalence:

Rijkl ¼ 2 δikδjl � 1

9
α Mijkl

� �
(102)

It can be verified that the damage tensor R is valid for values of R1111 less than zero.

3. The anisotropic damage tensor R is given by

Rijkl ¼ EijmnEmnpq � EijmnEmnpq

� �
E
�1

pqrsE
�1
rskl (103)

Equation 103 may be rewritten in the following form:

RijklEklrsErspq ¼ EijmnEmnpq � EijmnEmnpq (104)

Substituting Eq. 86 into Eq. 104 and simplifying the terms, the following

equation is derived:

Rijkl ¼ Mijkl � β δikδjl (105a)

Equation 105a represents the anisotropic damage tensor based on the hypothesis

of elastic strain equivalence. It can be verified that the damage tensor R is valid for

values of R1111 greater than zero.
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However, the hypothesis of the elastic energy is applied to obtain the anisotropic

damage tensor. Substituting Eq. 90 into Eq. 104 and simplifying give the following

equation:

Rijkl ¼ α Mijkl � β2 δikδjl (105b)

Equation 105b represents the anisotropic damage tensor based on the hypothesis

of elastic strain equivalence. It can be verified that the damage tensor R is valid for

values of R1111 greater than zero.

4. The anisotropic damage tensor R is given by

Rijkl ¼ EijmnEmnkl � EijmnEmnkl

� �
E
�1

rspqE
�1
rspq (106)

Equation 106 may be rewritten in the following form:

RijklEpqrsEpqrs ¼ EijmnEmnkl � EijmnEmnkl (107)

Using the hypothesis of elastic strain equivalence and substituting Eq. 86 into

Eq. 107 give the following simple expression for the anisotropic damage tensor,

Eq. 108a:

Rijkl ¼ 1

9
Mijkl �M�1

ijkl

� �
(108a)

It can be verified that the damage tensor R is valid for values of R1111 greater

than zero.

Substituting Eq. 90 into Eq. 107, on the other hand, gives the anisotropic damage

tensor based on the hypothesis of elastic energy equivalence:

Rijkl ¼ Mijpq Mpqkl �M�1
ijtuM

�1
tukl (108b)

It can be verified that the damage tensor R is valid for values of R1111 greater

than zero.

5. The anisotropic damage tensor R is given by

Rijkl ¼ E
�1

ijmnEmnpq EpqrsErskl � EpqrsErskl

� �
(109)

Equation 109 may be rewritten in the following form:

EpqmnEmnijRijkl ¼ EpqrsErskl � EpqrsErskl (110)
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Substituting Eq. 86 into Eq. 110 and simplifying give the following equation:

Rijkl ¼ 1

9
δikδjl α� 9 β½ � (111a)

It can be verified that the damage tensor R is valid for values of R1111 greater

than zero.

Equation 111a demonstrates the anisotropic damage tensor based on the hypoth-

esis of elastic strain equivalence. In addition, substitution of Eq. 90 into Eq. 110 and

simplification of the equations give the anisotropic damage tensor using the

hypothesis of elastic energy equivalence:

Rijkl ¼ 1

9
α2δikδjl � β M�1

ijkl (111b)

It can be verified that the damage tensor R is valid for values of R1111 greater

than zero.

6. The anisotropic damage tensor is given by

Rijkl ¼ E
�1

rspqE
�1
rspq EijmnEmnkl � EijmnEmnkl

� �
(112)

Equation 112 may be rewritten in the following form:

EpqrsEpqrsRijkl ¼ EijmnEmnkl � EijmnEmnkl (113)

Substituting Eq. 86 into Eq. 113 and simplifying give the following equation:

Rijkl ¼ 1

9
Mijkl �M�1

ijkl

� �
(114a)

The above expression is exactly the same as the one derived previously in

Eq. 108a. It can be verified that the damage tensor R is valid for values of R1111

greater than zero.

Equation 114a represents the anisotropic damage tensor based on the hypothesis

of elastic strain equivalence. However, the hypothesis of the elastic energy is

applied to obtain the anisotropic damage tensor. Substituting Eq. 90 into Eq. 113

and simplifying give the following relation:

Rijkl ¼ Mijmn Mmnkl �M�1
ijtuM

�1
tukl (114b)

The above expression is exactly the same as the one derived previously in

Eq. 108b. It can be verified that the damage tensor R is valid for values of R1111

greater than zero.
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7. The anisotropic damage tensor is R given by

Rijkl ¼ Eijmn � Eijmn

� �
Emnpq � Emnpq

� �
E
�1

pqrsE
�1
rskl (115)

Equation 115 may be rewritten in the following form:

RijklEklrsErspq ¼ Emnpq � EijmnEmnpq � EijmnEmnpq þ EijmnEmnpq (116)

Substituting Eq. 86 into Eq. 116 and simplifying give the following equation:

Rijkl ¼ δikδjl �Mijkl

	 

β� 9½ � (117a)

It can be verified that the damage tensor R is valid for values of R1111 greater

than zero.

Equation 117a represents the anisotropic damage tensor based on the hypothesis

of elastic strain equivalence. However, the hypothesis of the elastic energy is

applied to obtain the anisotropic damage tensor. Substituting Eq. 90 into Eq. 116

and simplifying give the following relation:

Rijkl ¼ δikδjl β� 9½ � βþ 9½ � (117b)

It can be verified that the damage tensor R is valid for values of R1111 greater

than zero.

8. The anisotropic damage tensor R is given by

Rijkl ¼ E
�1

ijmnE
�1
mnpq Epqrs � Epqrs

� �
Erskl � Erskl

� �
(118)

Equation 118 may be rewritten in the following form:

EpqmnEmnijRijkl ¼ EpqrsErskl � EpqrsErskl � EpqrsErskl þ EpqrsErskl (119)

Substituting Eq. 86 into Eq. 119 and simplifying give the following equation:

Rijkl ¼ Mijkl � δikδjl
	 


9� β½ � (120a)

It can be verified that the damage tensor R is valid for values of R1111 greater

than zero.

Equation 120a demonstrates the anisotropic damage tensor based on the hypoth-

esis of elastic strain equivalence. In addition, substitution of Eq. 90 into Eq. 119 and

simplification of the equations give the anisotropic damage tensor using the

hypothesis of elastic energy equivalence.

Rijkl ¼ 1

9
δikδjl α� 9½ � αþ 9½ � �M�1

ijkl α� β½ � (120b)

It can be verified that the damage tensor R is valid for values of R1111 greater than

zero. In section “Hybrid Damage Tensors,” few new hybrid anisotropic damage

tensors are presented.
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Hybrid Damage Tensors

New hybrid damage tensors are proposed to be composed of the effective damage

tensor and the elasticity tensor, and they are given by

Nijkl ¼ Mijkl þ L
1ð Þ
ijkl �Mijmn L

1ð Þ
mnkl (121a)

Nijkl ¼ Mijkl þ L
2ð Þ
ijkl �Mijmn L

2ð Þ
mnkl (121b)

Using Eqs. 87a and 91a, the following relations are obtained:

Nijkl ¼ 3Mijkl �MijmnMmnkl (122a)

Nijkl ¼ δikδjl þ 1

9
α Mijmn Mmnkl � δmkδnl½ � (122b)

Equations 122a and 122b give the hybrid damage tensor expressions using the

damage tensor L(1) based on the hypothesis of elastic strain equivalence and the

hypothesis of elastic energy equivalence, respectively. It can be verified that the

damage tensors N are valid for values of N1111 greater than zero.

Using Eqs. 87b and 91b, the following relations are obtained:

Nijkl ¼ 2 Mijkl � δikδjl þ 1

9
α δikδjl �Mijkl

� �
(123a)

Nijkl ¼ 2Mijkl � δikδjl þ 1

9
α Mijmn δmkδnl �Mmnklð Þ (123b)

Equations 117a and 117b give the hybrid damage tensor using the damage tensor

L(2) based on the hypothesis of elastic strain equivalence and the hypothesis of

elastic energy equivalence, respectively.

Examples

This section demonstrates some examples in order to provide interpretation of the

new proposed damage tensors. A two-dimensional (2-D) stress state is employed in

these examples, and the damage effect tensor is represented by a 3 	 3 matrix, as it

is a second-order tensor.

Consider the 2-D stress state; the damage effect tensor is given by the following

3 	 3 matrix.

M½ � ¼ 1

Δ

1� φ22 0 φ12

0 1� φ11 φ12

1

2
φ12

1

2
φ12

1� φ11ð Þ þ 1� φ22ð Þ
2

2
664

3
775 (124)

where Δ is given by

Δ ¼ 1� φ11ð Þ 1� φ22ð Þ � φ2
12 (125)
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The inverse of the damage effect tensor is given by the following 3 	 3 matrix

M�1
	 
 ¼ Δ

1� φ22 0 φ12

0 1� φ11 φ12

1
2
φ12

1
2
φ12

1�φ11ð Þþ 1�φ22ð Þ
2

2
64

3
75
�1

(126)

Example 1 Equation 87a can be written in the following form:

L 1ð Þ
h i

¼ M½ � � I½ � (127)

where I is the identity tensor

For the undamaged material, the damage variables equal to zero, and the damage

effect tensor, in this case, equals to the identity tensor.

Substituting Eq. 124 into Eq. 127 and simplifying result in

L 1ð Þ
h i

¼
0 0 0

0 0 0

0 0 0

2
4

3
5 (128)

Since in this special case, the components of the damage tensor are identically

zero, one concludes that this proposed damage tensor is a valid damage tensor.

Example 2 Equation 87b can be written in the following form:

L 2ð Þ
h i

¼ 1

3
α� 1

� �
I½ � (129)

Since α ¼ 3.

Equation 129 is given by

L 2ð Þ
h i

¼
0 0 0

0 0 0

0 0 0

2
4

3
5 (130)

Since in this special case, the components of the damage tensor vanish, one

concludes that this proposed damage tensor is a valid damage tensor.

Example 3 Equation 91a can be written in the following form:

L 1ð Þ
h i

¼ I½ � � 1

3
α M½ � (131)

For the undamaged material, the damage variables equal to zero, and the damage

effect tensor, in this case, equals to the identity tensor.
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Substituting Eq. 124 into Eq. 131 and simplifying result in

L 1ð Þ
h i

¼
0 0 0

0 0 0

0 0 0

2
4

3
5 (132)

where α ¼ 3.

Since in this special case, the components of the damage tensor vanish, one

concludes that this proposed damage tensor is a valid damage tensor.

Example 4 Equation 91b can be written in the following form:

L 2ð Þ
h i

¼ 1

3
α M½ � � I½ � (133)

For the undamaged material, the damage variables equal to zero, and the damage

effect tensor, in this case, equals to the identity tensor.

Substituting Eq. 124 into Eq. 133 and simplifying give

L 2ð Þ
h i

¼
0 0 0

0 0 0

0 0 0

2
4

3
5 (134)

where α ¼ 3.

Since in this special case, the components of the damage tensor are identically

zero, it is concluded that this proposed damage tensor is a valid damage tensor.

Example 5 Equation 108a can be written in the following form:

R½ � ¼ 1

3
M½ � � M�1

	 
	 

(135)

For the undamaged material, the damage variables equal to zero, and the damage

effect tensor and its inverse, in this case, equal to the identity tensor.

Substituting Eqs. 124 and 126 into Eq. 135 and simplifying result in

R½ � ¼
0 0 0

0 0 0

0 0 0

2
4

3
5 (136)

Since in this special case, the components of the damage tensor vanish, it is

concluded that this proposed damage tensor is a valid damage tensor.
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As for the remaining proposed damage tensors, Table 4 shows each tensor along

with its validity that is determined in view of its application to the abovementioned

two-dimensional damage state.

After studying Table 4, it is seen that only 7 proposed anisotropic damage

tensors are invalid out of 27 proposed tensors. Furthermore, looking at the 20

valid ones, it is seen that some of them are identical. For example, tensors 14 and

18 in Table 4 are exactly identical. So eventually it is concluded that there are only

seven invalid proposed anisotropic damage tensors. The invalid tensors are num-

bered 12, 13, 16, 24, 25, 26, and 27 according to Table 4.

Table 4 Proposed anisotropic damage tensors and their validity (Reprinted with permission from

Voyiadjis and Kattan 2012)

No. Proposed damage tensor Validity

1 Lijmn
(1) ¼ Mijmn � δimδjn Valid

2 L
2ð Þ
ijmn ¼ δimδjn 1

9
α� 1

� �
Valid

3 L
1ð Þ
ijmn ¼ δimδjn � 1

9
αMijmn

Valid

4 L
2ð Þ
ijmn ¼ 1

9
α Mijmn � δimδjn Valid

5 Pijmn
(1) ¼ δimδjn � Mijmn

�1 Valid

6 P
2ð Þ
ijmn ¼ δimδjn 1� 1

9
β

� �
Valid

7 P
1ð Þ
ijmn ¼ δimδjn � 1

9
βM�1

ijmn
Valid

8 P
2ð Þ
ijmn ¼ δimδjn � 1

9
βM�1

ijmn
Valid

9 Rijkl ¼ Mijkl þ δikδjl 1
9
α� 2

� �
Valid

10 Rijkl ¼ Mijkl � 1
9
α δikδjl Valid

11 Rijkl ¼ 2 δikδjl � 1
9
αMijkl

� �
Valid

12 Rijkl ¼ Mijkl � β δikδjl Invalid

13 Rijkl ¼ α Mijkl � β2 δikδjl Invalid

14 Rijkl ¼ 1
9

Mijkl �M�1
ijkl

� �
Valid

15 Rijkl ¼ MijmnMmnkl � Mijtu
�1Mtukl

�1 Valid

16 Rijkl ¼ 1
9
δikδjl α� 9 β½ � Invalid

17 Rijkl ¼ 1
9
α2δikδjl � β M�1

ijkl
Valid

18 Rijkl ¼ 1
9

Mijkl �M�1
ijkl

� �
Valid

19 Rijkl ¼ MijmnMmnkl � Mijtu
�1Mtukl

�1 Valid

20 Rijkl ¼ [δikδjl � Mijkl][β � 9] Valid

21 Rijkl ¼ δikδjl[β � 9][β + 9] Valid

22 Rijkl ¼ [Mijkl � δikδjl][9 � β] Valid

23 Rijkl ¼ 1
9
δikδjl α� 9½ � αþ 9½ � �M�1

ijkl α� β½ � Valid

24 Nijkl ¼ 3Mijkl � MijmnMmnkl Invalid

25 Nijkl ¼ δikδjl þ 1
9
α Mijmn Mmnkl � δmkδnl½ � Invalid

26 Nijkl ¼ 2Mijkl � δikδjl þ 1
9
α δikδjl �Mijkl

� �
Invalid

27 Nijkl ¼ 2Mijkl � δikδjl þ 1
9
αMijmn δmkδnl �Mmnklð Þ Invalid
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Summary and Conclusions

In this chapter the basics of continuum damage mechanics are reviewed first. This is

followed by proposing several scalar damage variables. These variables are com-

pared, and several graphs are plotted. Then, the concept of higher-order strain

energy forms is presented. In addition, hybrid damage variables are postulated

that are defined both in terms of stiffness reduction and cross-sectional area

reduction. The mathematical formulation is then extended to the general three-

dimensional case using tensors. Finally, several examples are given.
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Abstract

This chapter introduces a new study in the field of continuum damage mechanics

and includes two main topics. In the first topic, both the concepts of Voyiadjis-

Kattan materials and undamageable materials are introduced. The Voyiadjis-

Kattan material of order n is defined as a nonlinear elastic material that has a

higher-order strain energy form in terms of n. The undamageable material is

obtained as the limit of the Voyiadjis-Kattan material of order n as n goes to

infinity. The relations of these types of materials to other nonlinear elastic

materials from the literature are outlined. Also, comparisons of these types of

materials with rubber materials are presented. It is hoped that these proposed
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new types of materials will open the way to new areas of research in both

damage mechanics and materials science.

The second topic lays special emphasis on the order and sequence of damage

processes occurring in materials. These processes can occur in series or in

parallel. For example, in a metallic material, the evolution of micro-cracks and

the evolution of micro-voids are considered as two separate damage processes.

These two different evolutions can occur simultaneously or they can occur

following each other. Another example would be matrix cracking and debonding

in a composite material. These two different damage processes can occur

simultaneously in parallel or sequentially in series. Three-dimensional states

of deformation and damage are also presented using the concepts discussed in

this work.

Introduction

Considerable interest has been recently given by many researchers to the field of

continuum damage mechanics in order to improve the microstructure of the mate-

rials. This improvement results in the advancement of the overall material perfor-

mance and its engineering applications. Moreover, the mechanical properties of the

material are directly affected by damage which causes a significant influence on

the safety aspect of engineering structures. In many engineering applications, the

design considerations include the useful life of components which is a crucial item

of information that is carefully considered during the design process. Based on this

treatment, the mechanical and structural components that are subjected to severe

service conditions, in particular, are therefore developed taking into account the

usefulness of the components’ life. In certain types of applications, such as aero-

space and automotive industries, the prediction of the mechanical failure is mainly

obtained by the design engineer. The designer in such cases is responsible for

ascertaining the malfunction of the components. However, the damage may cause

an unpredicted failure that incurs serious consequences in the mechanical and

structural components as well as the economic advancement.

The development of cavities in the microscopic, the mesoscopic, and the mac-

roscopic processes of fracture in materials together with the resulting deterioration

in their mechanical properties is termed damage (Murakami 2012). Continuum

damage mechanics, in particular, aims at the analysis of the damage development in

mesoscopic and macroscopic fracture processes in the framework of continuum

mechanics (Murakami 2012). In order to introduce the proposed undamageable

material, it is necessary first to review some basic issues of damage mechanics.

Kachanov (1958) introduced the concept of effective stress in the context of

continuum damage mechanics. This concept was further elaborated on by Rabotnov

(1969), Allix et al. (1989), Cauvin and Testa (1999), and Doghri (2000). The

effective stress was written in terms of what was called the damage variable. This

is a parameter that describes the damage state of the material ranging in values

between 0 and 1.
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Moreover, the original formulation of Kachanov was limited to the state of

isotropic damage. Later, other researchers (Murakami 1988; Lubarda and

Krajcinovic 1993; Lee et al. 1985; Voyiadjis and Kattan 1990, 1992, 1996, 1999,

2005, 2006a; Kattan and Voyiadjis 1990, 1993a, b, 2001b) extended Kachanov’s

work to the general anisotropic damage state. For this purpose, they generalized the

concept of effective stress to three-dimensional states of deformation and damage.

In this generalization process, they introduced the damage tensor – obviously a

generalization of the damage variable. It has been argued (Lemaitre 1984) that the

assumption of isotropic damage is sufficient to give good predictions of the load-

carrying capacity and the number of cycles or the time to local failure in structural

components. However, the development of anisotropic damage has been confirmed

experimentally (Chow and Wang 1987; Lee et al. 1985) even if the virgin material

is isotropic. For the case of isotropic damage mechanics, the damage variable is

scalar and the evolution equations are easy to handle (Lee et al. 1985; Voyiadjis and

Kattan 2006a; Kattan and Voyiadjis 2001a, b).

Several expressions of the damage tensor were introduced but mainly consisting

of second-rank and fourth-rank tensors (Krajcinovic 1996; Ladeveze et al. 1982;

Luccioni and Oller 2003). Silberschmidt (1997) presented an example of matrix

cracking in fiber-reinforced composite materials. Recently Voyiadjis and Kattan

(2012a, b) introduced the concept of undamageable materials. They also established

a link between damage mechanics and the theory of fabric tensors (Voyiadjis and

Kattan 2006b, c, 2007a, b). In addition, Budiansky and O’Connell (1976) solved the

problem of elastic cracked solids. Hansen and Schreyer (1994) provided a solid

thermodynamic basis for damage mechanics. In addition, in continuum damage

mechanics, usually a phenomenological approach is adopted. In this approach, the

most important concept is that of the representative volume element (RVE). The

discontinuous and discrete elements of damage are not considered within the RVE;

rather their combined effects are lumped together through the use of a macroscopic

internal variable. In this way, the formulation may be derived consistently using

sound mechanical and thermodynamic principles (Doghri 2000; Hansen and

Schreyer 1994; Luccioni and Oller 2003).

This chapter introduces a new study in the field of continuum damage mechanics

and includes two main topics. In the first topic, both the concepts of Voyiadjis-

Kattan materials and undamageable materials are introduced. The Voyiadjis-Kattan

material of order n is defined as a nonlinear elastic material that has a higher-order

strain energy form in terms of n. The undamageable material is obtained as the limit

of the Voyiadjis-Kattan material of order n as n goes to infinity. The relations of

these types of materials to other nonlinear elastic materials from the literature are

outlined. Also, comparisons of these types of materials with rubber materials are

presented. Finally, a proof is given to show that the value of the damage variable

remains zero in an undamageable material throughout the deformation process. It

is hoped that these proposed new types of materials will open the way to new areas

of research in both damage mechanics and materials science. Then damage

mechanics is finally utilized to show the full details of the proposed undamageable

materials.

2 Undamageable Materials and Damage Processes in Series and in Parallel 45



In the second topic discussed in this chapter, a conceptual framework for damage

processes in materials is presented here. In this framework, the mechanics of

damage processes in materials is investigated. These processes are categorized

into either damage processes described in terms of stiffness degradation or damage

processes described in terms of cross-sectional area reduction. Furthermore, the

damage processes are visualized to occur as sequences either in series or in parallel.

Schematic diagrams are used to illustrate these processes in a similar way to what is

done with elastic springs and electric circuits. Different kinds of combinations and

interactions of the damage processes are illustrated with various examples. This

work is currently limited to linear elastic materials. It is hoped that this work will

lay the groundwork to open new areas of research in damage mechanics.

Theory of Elastic Undamageable Materials

Higher-Order Strain Energy Forms

In this section, the nature of the proposed higher-order strain energy forms is

investigated and provides their exact relationships to the elastic constitutive equa-

tions of the material. It will be seen that each higher-order strain energy form will

correspond to an exact nonlinear elastic stress-strain relation. These specific stress-

strain relations will be derived in this section. These new proposed types of

materials are called here the Voyiadjis-Kattan materials (Voyiadjis and Kattan

2012c).

First, the general formulation is considered of how to derive a specific stress-

strain relation if the corresponding strain energy form is known. For example, in the

linear case, the linear stress-strain relation σ ¼ E e corresponds to the usual strain

energy form U ¼ 1
2
σ e. The types of stress-strain relations are now investigated that

may be derived from the proposed higher-order strain energy forms 1
2
σ e2, 1

2
σ e3, and

so on with higher powers of e.
Use is made of the terminology of Voyiadjis-Kattan material of order n to

designate any nonlinear elastic material that has a higher-order strain energy of

the form 1
2
σ en.

The following general stress-strain relation is assumed:

σ ¼ E f(e), where f(e) is to be determined for each specific form of higher-order

strain energy. The higher-order strain energy U (some form of hyper-strain energy)

is defined as the area under the stress-strain curve. This is given by the following

relation:

U ¼
ð
σ de (1)

The general case using the higher-order strain energy form U ¼ 1
2
σ en will now

be illustrated. Substituting this expression for U into Eq. 1, one obtains
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1

2
σ en ¼

ð
σ de (2)

Substituting the general stress-strain relation σ ¼ E f(e) into Eq. 2, the following
relation is obtained:

1

2
Ef eð Þ en ¼ E

ð
f eð Þde (3)

or

f eð Þ en ¼ 2

ð
f eð Þde (4)

Taking the derivative of both sides of the above equation with respect to e results
in

f 0 eð Þ en þ n f eð Þ en�1 ¼ 2f eð Þ (5)

The above expression is the governing differential equation for the Voyiadjis-

Kattan material of order n. The solution of the above differential equation is easily

obtained as follows using any symbolic algebra system like the MATLAB Sym-

bolic Math Toolbox:

f eð Þ ¼ 1

en
e�2= n�1ð Þe n�1ð Þ½ � (6)

Substituting the above expression into the general constitutive relation σ ¼ E f(e),
one obtains

σ ¼ E
1

en
e�2= n�1ð Þe n�1ð Þ½ � (7)

The above solution is obtained using the initial condition that the stress is zero

when the strain is zero. The above equation is a nonlinear stress-strain relationship

that governs the behavior of the Voyiadjis-Kattan material of order n.
Looking at the above stress-strain relation, it may appear that the stress

approaches infinity at the initial condition when the strain is zero but this is not

the case. It is seen that the limit of the above expression for the stress approaches

zero as the strain approaches zero. Thus, the initial conditions of zero strain and

zero stress are satisfied.

The above procedure can be repeated for the other proposed higher-order strain

energy forms to obtain their corresponding nonlinear stress-strain relations. These

results are summarized in Table 1.

In Table 2, a comparison is shown between the proposed Voyiadjis-Kattan

material of order n and other nonlinear elastic materials from the literature

(Bower 2009). For example, it is noted that the Voyiadjis-Kattan material of
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order 2 is comparable to the Mooney-Rivlin material in the sense that the strain

energy of both materials includes squared powers of strain. It is noted also that the

Voyiadjis-Kattan material of order 3 is comparable to the Neo-Hookean material in

the sense that the strain energy of both materials includes cubed powers of strain.

In the last row of Table 2, the concept of undamageable material is introduced.

This new proposed material is defined as the limit of the Voyiadjis-Kattan material

of order n as n goes to infinity. More details about this material are given in section

“The Damage Variable.”

As the limiting case when n!1 cannot be reached physically, then the concept

of an undamageable material is approached by utilizing a very high value for

exponent n. The stress-strain curves based on Table 1 are shown in a graph in

Fig. 1 for various values of n.

Comparison with Rubber Materials

In this section, a comparison is obtained between the proposed Voyiadjis-Kattan

materials, undamageable materials, and rubber materials.

The stress-strain curves appearing in Fig. 1 are similar to those of rubber

materials. Arruda and Boyce (1993) conducted extensive investigation of the

Table 1 The proposed higher-order strain energy forms and their corresponding stress-strain

relations (constitutive equations for Voyiadjis-Kattan material of order n) (Reprinted with per-

mission from Voyiadjis and Kattan (2012b))

Proposed higher-order strain

energy form

Corresponding stress-

strain relation Type of new proposed material

U ¼ 1
2
σ e σ ¼ E e Voyiadjis-Kattan material of

order 1 (linear elastic)

U ¼ 1
2
σ e2 σ ¼ E 1

e2 e
�2=e Voyiadjis-Kattan material of

order 2

U ¼ 1
2
σ e3 σ ¼ E 1

e3 e
�1=e2 Voyiadjis-Kattan material of

order 3

U ¼ 1
2
σ en, n ¼ 1, 2, 3,.... σ ¼ E 1

en e
�2= n�1ð Þe n�1ð Þ½ � Voyiadjis-Kattan material of

order n

Table 2 Comparison between the Voyiadjis-Kattan material of order n and other nonlinear elastic
materials from the literature (Reprinted with permission from Voyiadjis and Kattan (2012b))

Value of n Proposed material Comparable material (from the literature)

1 Voyiadjis-Kattan material of order 1 Linear elastic material

2 Voyiadjis-Kattan material of order 2 Mooney-Rivlin material

3 Voyiadjis-Kattan material of order 3 Neo-Hookean material

� � � � � � � � �
� � � � � � � � �
n (finite) Voyiadjis-Kattan material of order n Ogden material

1 Undamageable material –
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constitutive equations of elastic rubber materials. Figures 2, 3, and 4 show the

stress-strain curves obtained for different types of rubber materials based on the

work of Arruda and Boyce (1993).

It is clear from Fig. 1 that the derived stress-strain relationship for undamageable

materials is distinctly different from that for ordinary materials. Clearly, there is no

degradation of the elastic modulus. Also, it is seen that the values of the stress

remain identically zero until the strain reaches a certain critical value. As the

hypothetical undamageable material (for higher values of n in Fig. 1) is approached,

it is clearly seen that the stress-strain curve remains almost horizontal indicating

absolutely no stress or damage in the material. The value of the stress becomes

nonzero only after a considerable amount of strain is accumulated. At these high

values of strain, it is also seen that the modulus of elasticity actually strengthens

instead of degrading like in ordinary materials. This is the essence of the proposed

undamageable materials.

The Damage Variable

In this section, more details are provided for the proposed undamageable materials.

In particular, a proof is presented using damage mechanics to show that the value of

the damage variable remains zero throughout the deformation process in these types

of materials. A scalar damage variable which is defined in terms of reduction in

elastic stiffness or modulus is utilized for this purpose.

A linear elastic material with modulus of elasticity E is assumed in this work.

Also a fictitious undamaged state of the material is assumed in which the effective

elastic modulus is denoted byΕ. In order to compute the effective elastic modulusΕ

Fig. 1 Valid stress-strain curves for various values of n (Reprinted with permission from

Voyiadjis and Kattan (2012b))
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in this case, use is made of the hypothesis of elastic energy equivalence where the

elastic strain energy is assumed to be equal in both configurations (Sidoroff 1981).

This will be illustrated below.

The scalar damage variable ‘ is defined in terms of the reduction in the elastic

modulus as follows:

Ramp Tests in Uniaxial and Plane Strain
Compression for Silicone Rubber
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Fig. 2 Stress-strain curve for

silicon rubber (Reprinted with

permission from Voyiadjis

and Kattan (2012b))
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‘ ¼ E� E

E
(8)

where E is the elastic modulus in the damaged state while E is the effective elastic

modulus (in the fictitious state) with E > E (see Fig. 5). This damage variable was

used recently by Celentano et al. (2004), Nichols and Abell (2003), and Nichols and

Totoev (1999). Voyiadjis (1988) used a similar relation but in the context of

elastoplastic deformation. The reader is also referred to Voyiadjis and Kattan

(2009) for more details. The definition of the alternative damage variable of Eq. 8

may be rewritten in the following more appropriate form:

E ¼ E 1þ ‘ð Þ (9)

It is clear from the definition in Eq. 8 that ‘ ¼ 0 when the body is undamaged,

i.e., when E ¼ E.

Ramp Tests in Uniaxial and Plane Strain
Compression for Neoprene Rubber
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Fig. 4 Stress-strain curve for
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Fig. 5 Damaged and

effective moduli of elasticity

(Reprinted with permission

from Voyiadjis and Kattan

(2012b))
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Using the hypothesis of elastic energy equivalence, the complementary elastic

strain energy (σ
2

2E) is assumed to be equal in both configurations, i.e.,

σ2

2E
¼ σ2

2E
(10)

Next, the basic damage variable ‘ is explored in more detail and the concept of

an undamageable material is introduced using this variable.

Using the hypothesis of elastic energy equivalence and Eq. 10, one obtains

σ ¼
ffiffiffi
E
E

q
σ. In this case, it can be easily shown that the damage variable ‘ ¼ E�E

E

will yield σ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffi
1þ ‘

p
.

A new hypothesis of higher-order energy equivalence is postulated in the form

1

2
σ e2 ¼ 1

2
σ e2 (11a)

to obtain the following relation:

σ ¼
ffiffiffi
E

E

3

s
(11b)

In this case, it is easily shown that using ‘ ¼ E�E
E will yield the relation

σ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffi
1þ ‘3

p
(11c)

Finally, a new hypothesis is postulated of the generalized equivalence of higher-

order energy in terms of the n-powers of σ and e, in order to obtain the relation

σ ¼
ffiffiffi
E

E

n

s
(12a)

In this case, it is easily shown that using ‘ ¼ E�E
E will yield the general relation

σ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffi
1þ ‘n

p
(12b)

One now plots several curves on the same graph to show the relations between

the ratio of the stresses σ
σ and ‘ using Eqs. 11b and 12b (see Fig. 6). It is clear that

for the limiting case when n!1, the curve has a constant value at n¼ 1. Note that

the lower curves appearing in Fig. 3 are for larger values of n. What does this

limiting case signify?

The above results are now explained using the formulae derived for ‘. The

formula σ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffi
1þ ‘n

p
of Eq. 12b is used here to elaborate on the results. The
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case when n ! 1 is now investigated. In this case, the following relation is

obtained:

σ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffi
1þ ‘n

p
¼ σ 1þ ‘ð Þ1n ¼ σ 1þ ‘ð Þ 1

1 ¼ σ 1þ ‘ð Þ0 ¼ σ � 1 ¼ σ (13)

Therefore, one obtains σ ¼ σ irrespective of the value of the damage variable ‘.
This means that in this limiting case, the material remains totally undamaged

irrespective of the value of the damage variable. Of course, this is a hypothetical

case as it cannot be reached physically. However, it gives rise to the following new

issue. Does a material exists or can be manufactured which remains totally

undamaged during the deformation process no matter what the load may be? That

will be a seminal achievement of damage mechanics and materials science in

general – to design a new type of material that cannot be damaged at all. The

above equation will provide some guidelines in this respect.

The following is a summary of the main concepts and results in this work:

1. The Voyiadjis-Kattan material of order n is a nonlinear elastic material which

has strain energy of the form 1
2
σ en, where n is greater than 1.

2. The undamageable material is the limit of the Voyiadjis-Kattan material of order

n as n goes to infinity.

3. The linear elastic material is a type of Voyiadjis-Kattan material of order 1.

4. In an undamageable material, the value of the stress will remain equal to zero

throughout the deformation process. Also, the damage variable will be equal to

zero throughout.

5. The undamageable material has zero strain energy.

6. The undamageable material has nonzero strain values. Thus, the undamageable

material is a type of deformable body, not a rigid body.

Fig. 6 Relation between ‘1
and the ratio of the stresses

(Reprinted with permission

from Voyiadjis and Kattan

(2012b))
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7. The Voyiadjis-Kattan material of order n has nonzero stress values. The range of
the nonzero stress values changes depending on the value of n. The higher the

value of n, the narrower the range of nonzero stress values.

Thermodynamic Formulation with Internal Variables

In this section, use is made of the thermodynamic theory of Rice (1971). Consider

a material sample of size V which is measured in an unloaded reference state and

at a reference temperature T0. Let σ (or e), T, and ς be the thermodynamic state

variables of constrained equilibrium states of the material sample, where T is the

temperature and ς is a set of internal state variables that include the damage

variable.

Let η be the specific free energy and ψ its Legendre transform where η¼ η(e, T, ς)
andψ ¼ ψ σ,T, fð Þ ¼ e @η@e � η. Let θ be the specific energy and f be a set of conjugate
thermodynamic forces to ς. The following relations are obtained:

σ ¼ σ e, T, ςð Þ ¼ @η e,T, ςð Þ
@e

(14)

e ¼ e σ,T, ςð Þ ¼ @ψ σ,T, ςð Þ
@σ

(15)

θ ¼ θ σ,T, ςð Þ ¼ @ψ σ,T, ςð Þ
@T

(16)

The thermodynamic conjugate forces f are then given by

f ¼ V
@ψ

@ς
¼ �V

@η

@ς
(17)

where f ¼ f(σ, T, ς) or f ¼ f(e, T, f ). From Eq. 15, the following relation for the

increment of strains is derived:

de ¼ @2ψ

@σ2
dσ þ @2ψ

@σ@T
dT þ @2ψ

@σ@ς
dς (18)

Finally, the flow potential Q ¼ Q( f, T, ς) is given by

Q ¼ 1

V

ðf
0

_ςdf (19)

where dQ ¼ 1
V _ςdf .
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Damage Processes in Series and in Parallel

Review of Existing Damage Variables

In this section two major scalar damage variables are discussed that are used by

researchers at the present. The first scalar damage variable is defined in terms of

cross-sectional area reduction, while the second scalar damage variable is defined in

terms of the reduction in the elastic modulus or elastic stiffness (Voyiadjis and

Kattan 2009).

Consider a body (in the form of a cylinder) in the initial undeformed and

undamaged configuration. Consider also the configuration of the body that is both

deformed and damaged after a set of external agencies act on it (see Fig. 7). Next,

consider a fictitious configuration of the body obtained from the damaged config-

uration by removing all the damage that the body has undergone, i.e., this is the

state of the body after it had only deformed without damage (see Fig. 7). Therefore,

in defining a damage variable ϕ, its value must vanish in the fictitious configuration.

The first damage variable ϕ is usually defined as follows:

ϕ ¼ A� A

A
(20)

where A is the cross-sectional area in the damaged configuration, while A is the

cross-sectional area in the fictitious configuration withA > A. It is clear that when a

body is undamaged, i.e., when A ¼ A, then ϕ ¼ 0.

The stress in the fictitious configuration is called the effective stress and is

denoted by σ. The value of the effective stress σ may be obtained using the relation

σA ¼ σA where σ is the stress in the damaged configuration. Therefore, using this

relation along with the definition in Eq. 20, one obtains

σ ¼ σ

1� ϕ
(21)

It should be mentioned that the equilibrium condition in the paragraph above

reflects a mean-field type of assumption on the stress redistribution (uniform over

A

φ

Ā

Fig. 7 Damaged and

effective undamaged

configurations (Reprinted

with permission from

Voyiadjis et al. (2012))
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the resistive section) and therefore appears to be appropriate only in the dilute

damage regime, away from the stress-strain peak where cooperate effects dominate

and damage localization takes place.

The second scalar damage variable ‘ may be defined in terms of the reduction in

the elastic modulus as follows:

‘ ¼ E� E

E
(22)

where E is the elastic modulus in the damaged state while E is the effective elastic

modulus (in the fictitious state) with E > E (see Fig. 8). This damage variable was

used recently by Celentano et al. (2004), Nichols and Abell (2003), and Nichols and

Totoev (1999). It should also be mentioned that Voyiadjis (1988) used a similar

relation but in the context of elastoplastic deformation. See also Voyiadjis and

Kattan (2009, 2012d).

The definition of the alternative damage variable of Eq. 22 may be rewritten in

the following more appropriate form:

E ¼ E 1þ ‘ð Þ (23)

It is clear from the definition in Eq. 22 that ‘ ¼ 0 when the body is undamaged,

i.e., when E ¼ E.

Damage Processes Described in Terms of Stiffness Degradation

The damage processes are studied first that are described in terms of elastic stiffness

degradation as outlined in Eqs. 22 and 23. Multiple damage processes are assumed

that are operating within the damaged material. All the processes are also assumed

to be elastic and undergo elastic damage. The number of these processes is

generally assumed to be n.
Consider first a sequence of these damage processes that are described by a

sequence of scalar damage variables ‘1, ‘2, ‘3, . . . ‘n where damage is characterized

by the degradation of the elastic stiffness. Two different cases are considered in

which this sequence of n damage processes can occur.

Ē

E

σ

ε

Fig. 8 Stress-strain curves of

damage and undamaged

material (Reprinted with

permission from Voyiadjis

and Kattan (2012d))
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The damage processes can occur in a sequence one following the other (which is

termed damage processes in series) or they can occur simultaneously, at the same

time (which are termed damage processes in parallel). This conceptual description

is carried out in this work analogously to what is done in the theory of elastic

springs and electric circuits. Combinations of damage processes are studied in

series and in parallel later in this section.

Consider first the n damage processes occurring in series. Check Fig. 9 where

this process is illustrated using the stress-strain curves. Let ‘1 be the first damage

variable of the first damage process in which the elastic stiffness degrades fromE to

E1, and let ‘2 be the damage variable of the next damage process in which the elastic

stiffness is reduced from E1 to E2. It is assumed to continue in this fashion with a

sequence of damage processes occurring in series (i.e., one following the other one)

until one gets to the final damage variable ‘n of the final damage process in which

the elastic stiffness is reduced from En�1 to En. This conceptual framework is

illustrated in Fig. 9.

In this case, the following sequence of equations based on Eq. 22 are obtained:

‘1 ¼ E� E1

E1

(24a)

‘2 ¼ E1 � E2

E2

(24b)

‘3 ¼ E2 � E3

E3

(24c)

‘n ¼ En�1 � En

En
(24d)

However, if one looks at the total (or cumulative) damage variable ‘, then one

will assume it to represent the reduction of stiffness from the effective undamaged

stiffness E to the final damaged stiffness En. Therefore, the total damage variable is

given by the following expression:

Ē

E1

E2

En

σ

ε

Fig. 9 Damage processes in

series that are described in

terms of stiffness degradation

(Reprinted with permission

from Voyiadjis and Kattan

(2012d))
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‘ ¼ E� En

En
(25)

Next, one considers the following mathematical identity written as follows:

E

En
¼ E

E1

E1

E2

E2

E3

. . .
En�1

En
(26)

Substituting Eqs. 24 and 25 into Eq. 26, and simplifying the result, the following

relation is obtained between the total damage variable and the individual damage

variables for the damage processes in the sequence:

1þ ‘ ¼ 1þ ‘1ð Þ 1þ ‘2ð Þ 1þ ‘3ð Þ . . . 1þ ‘nð Þ (27)

In the special case of a sequence of two damage processes ‘1 and ‘2, Eq. 27 can

be reduced to the following simple form:

‘ ¼ ‘1 þ ‘2 þ ‘1‘2 (28)

Consider next the n damage processes occurring in parallel. Check Fig. 10 where

this process is illustrated using the stress-strain curves. Let ‘1 be the first damage

variable of the first damage process in which the elastic stiffness degrades from E to

E1, and let ‘2 be the damage variable of the second damage process in which the elastic

stiffness is reduced fromE to E2. One now continues in this fashion with a sequence of

damage processes occurring in parallel (i.e., at the same time) until the final damage

variable ‘n of the final damage process in which the elastic stiffness is reduced fromE
to En. This conceptual framework is illustrated schematically in Fig. 10.

In this case, we write the following sequence of equations based on Eq. 22:

‘1 ¼ E� E1

E1

(29a)

‘2 ¼ E� E2

E2

(29b)

Ē

E1

σ

ε

Ē

E2

σ

ε

Ē

En

σ

ε

Fig. 10 Stress-strain curves of damage processes in parallel that are described in terms of

stiffness degradation (Reprinted with permission from Voyiadjis and Kattan (2012d))
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‘3 ¼ E� E3

E3

(29c)

‘n ¼ E� En

En
(29d)

However, if one observes the total (or cumulative) damage variable ‘ as shown
in Fig. 8, then one will assume it to represent the reduction of stiffness from the

effective undamaged stiffness E to the final damaged stiffness E. Therefore, the
total damage variable is given by the following expression:

‘ ¼ E� E

E
(30)

In order to relate the total elastic stiffness to the individual elastic stiffnesses E1,

E2, . . . En, some form of elaborate homogenization process should be used. How-

ever, for the sake of simplicity and to illustrate the concepts introduced, the

following simple relation is chosen:

E ¼ c1E1 þ c2E2 þ . . .þ cnEn (31)

where c1, c2, . . . cn are constants to be determined. For example, using c1 ¼ c2 ¼ . . .

¼ cn ¼ 1
n , then the total elastic stiffness is taken to be the average value of the

individual elastic stiffnesses.

Substituting Eqs. 29 and 30 into Eq. 31, and simplifying the results, the follow-

ing general relation is obtained between the total damage variable and the individ-

ual damage variables for the individual parallel damage processes:

1

1þ ‘
¼ c1

1þ ‘1
þ c2
1þ ‘2

þ . . .þ cn
1þ ‘n

(32)

Using the special case of two damage processes ‘1 and ‘2 occurring in parallel,

then Eq. 32 is reduced to the following simple form:

‘ ¼ 1þ ‘1ð Þ 1þ ‘2ð Þ
c1 1þ ‘2ð Þ þ c2 1þ ‘1ð Þ � 1 (33)

It should be noted that Shen et al. (2011) used a sequence of two damage

processes that they termed sequential homogenization in a way similar to the

framework presented here. However, they only considered the two damage pro-

cesses to occur in series but have not considered them to occur in parallel.

In order to illustrate various combinations of these damage processes occurring

in series and in parallel, one needs to use schematic diagrams. In this case, the

elastic spring is used to illustrate an individual damage process that is described in

terms of stiffness degradation as shown in Fig. 11.
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Based on the illustration of Fig. 11, these types of damage processes are shown

in series in Fig. 12 (corresponding to the stress-strain curves of Fig. 9) and these

types of damage processes in parallel in Fig. 13 (corresponding to the stress-strain

curves of Fig. 10).

One now considers several combinations of the above damage processes. Con-

sider first a sequence of n damage processes in series (characterized by the damage

variables ‘1, ‘2, . . . ‘n) followed by m damage processes in parallel as shown in

Fig. 14 (characterized by the damage variables ‘1
0 , ‘20 , . . . ‘m0 ).

This case can be investigated by considering that the first sequence of damage

processes in series can be characterized by a single total damage variable called ‘A,
while the second sequence of damage processes in parallel can be characterized by

a single total damage variable called ‘B as illustrated in Fig. 15.

The damage processes in Fig. 15 are clearly occurring in series. Therefore, the

total damage variable ‘ is given by (based on Eq. 27)

1þ ‘ ¼ 1þ ‘Að Þ 1þ ‘Bð Þ (34)

where ‘A and ‘B are obtained from Eqs. 27 and 32, respectively. Therefore,

expanding Eq. 34 one obtains the following general expression for the total damage

variable to describe the damage processes in Fig. 14:

`

Fig. 11 Schematic illustration of a damage process in terms of stiffness reduction (Reprinted with

permission from Voyiadjis and Kattan (2012d))

`1 `2 `n

Fig. 12 Damage processes in series described in terms of stiffness degradation (Reprinted with

permission from Voyiadjis and Kattan (2012d))

�1

�2

�n

Fig. 13 Damage processes

in parallel described in terms

of stiffness degradation

(Reprinted with permission

from Voyiadjis and Kattan

(2012d))
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1þ ‘ ¼ 1þ ‘1ð Þ 1þ ‘2ð Þ . . . 1þ ‘nð Þ
c1

1þ ‘
=
1

þ c2

1þ ‘
=
2

þ . . .þ cm

1þ ‘=m

(35)

Next, another combination of damage processes in series and in parallel is

considered. The damage processes illustrated schematically in Fig. 16 are consid-

ered where several sequences of damage processes in series occur collectively in

parallel (characterized by the sequences of damage variables ‘1, ‘2, . . . ‘n and m1,

m2, . . . mm, p1, p2, . . . pr).
In this case, let each sequence of damage processes in series be characterized by

a single total damage variable ‘A, ‘B, . . . ‘Z as shown in Fig. 17.

In this case, the single total damage variables ‘A, ‘B, . . . ‘Z can be obtained from

Eq. 27 as follows:

�1 �2 �n

�'1

�'2

�'m

Fig. 14 Damage processes in series followed by damage processes in parallel (Reprinted with

permission from Voyiadjis and Kattan (2012d))

�A �B

Fig. 15 Characterization of the two sequences of damage processes of Fig. 14 (Reprinted with

permission from Voyiadjis and Kattan (2012d))

�1

m1 m2 mm

p1 p2 pr

�2 �n

Fig. 16 Several damage processes in series occurring in parallel (Reprinted with permission from

Voyiadjis and Kattan (2012d))
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1þ ‘A ¼ 1þ ‘1ð Þ 1þ ‘2ð Þ . . . 1þ ‘nð Þ (36a)

1þ ‘B ¼ 1þ m1ð Þ 1þ m2ð Þ . . . 1þ mmð Þ (36b)

1þ ‘Z ¼ 1þ p1ð Þ 1þ p2ð Þ . . . 1þ prð Þ (36c)

Finally, the expression for the total damage variable can be obtained by using

Eqs. 32 and 36 as follows to describe the damage processes in Fig. 16:

1

1þ ‘
¼ cA

1þ ‘1ð Þ 1þ ‘2ð Þ . . . 1þ ‘nð Þ þ
cB

1þ m1ð Þ 1þ m2ð Þ . . . 1þ mmð Þ
þ . . .þ cZ

1þ p1ð Þ 1þ p2ð Þ . . . 1þ prð Þ (37)

Damage Processes Described in Terms of Cross-Sectional Area
Reduction

In this section, the damage processes are studied that are described in terms of

reduction of the cross-sectional area as outlined in Eq. 20 and Fig. 7. Multiple

damage processes are assumed that operate within the damaged material. In addi-

tion it is assumed that all the processes are elastic and undergo elastic damage. The

number of these processes is generally n processes.

Consider first a sequence of these damage processes that are described by a

sequence of scalar damage variables ϕ1, ϕ2, . . . ϕnwhere damage is characterized by

the reduction of the cross-sectional area. Two different cases are considered in which

this sequence of n damage processes can occur. The damage processes can occur in a

sequence one following the other (which is termed damage processes in series) or

they can occur simultaneously, at the same time (which is termed damage processes

in parallel). This conceptual description is carried out in this work analogously to

what is done in the theory of elastic springs and electric circuits. In addition

combinations of damage processes are studied that are in series and in parallel.

Consider first the n damage processes occurring in series. Check Fig. 18 where

this process is illustrated using cross-sectional area. Let ϕ1 be the first damage

�A

�B

�Z

Fig. 17 Characterization of

the damage processes of

Fig. 16 (Reprinted with

permission from Voyiadjis

and Kattan (2012d))
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variable of the first damage process in which the cross-sectional area is reduced

from A1 to A2, and let ϕ2 be the damage variable of the next damage process in

which the cross-sectional area is further reduced from A2 to A3. One continues in

this fashion with a sequence of damage processes occurring in series (i.e., one

following the other one) until the final damage variable ϕn of the final damage

process is obtained in which the cross-sectional area is reduced from An to A. This
conceptual framework is illustrated in Fig. 18.

In this case, the following sequence of equations is obtained based on Eq. 20:

ϕ1 ¼
A1 � A2

A1

(38a)

ϕ2 ¼
A2 � A3

A2

(38b)

ϕ3 ¼
A3 � A4

A3

(38c)

ϕn ¼
An � A

An
(38d)

The total damage variable ϕ in this case is defined based on the reduction of the

initial damaged area A1 to the effective undamaged area A as follows:

ϕ ¼ A1 � A

A1

(39)

The following mathematical identity is defined:

A

A1

¼ A

An

An

An�1

. . .
A3

A2

A2

A1

(40)

Substituting Eqs. 38 and 39 into Eq. 40, and simplifying the results, the follow-

ing general expression for the total damage variable is obtained in terms of the

individual damage variables:

A1

φ1 φ2 φn

A2 Ā

Fig. 18 Damage processes in series that are described in terms of reduction in cross-sectional area

(Reprinted with permission from Voyiadjis and Kattan (2012d))

2 Undamageable Materials and Damage Processes in Series and in Parallel 63



1� ϕ ¼ 1� ϕ1ð Þ 1� ϕ2ð Þ 1� ϕ3ð Þ . . . 1� ϕnð Þ (41)

In the special case of only two such processes ϕ1 and ϕ2 occurring in series, then

Eq. 41 is reduced to the following simple form:

ϕ ¼ ϕ1 þ ϕ2 � ϕ1ϕ2 (42)

Kattan and Voyiadjis (2001a) derived Eq. 42 considering the presence of voids

and cracks in a damaged material within the context of decomposing the damage

tensor into two components. The formulation presented here is more general and

includes the work of Kattan and Voyiadjis (2001a) as a special case.

Consider next the n damage processes occurring in parallel. Check Fig. 19 where

this process is illustrated using the reduction in cross-sectional areas. Let ϕ1 be the

first damage variable of the first damage process in which the cross-sectional area is

reduced from A1 to A , and let ϕ2 be the damage variable of the second damage

process in which the cross-sectional area is reduced from A2 to A. One continues in
this fashion with a sequence of damage processes occurring in parallel (i.e., at the

same time) until the final damage variable ϕn is obtained for the final damage

process in which the cross-sectional area is reduced from An to A. This conceptual
framework is illustrated schematically in Fig. 19.

A1

φ1

Ā

A2

φ2

Ā

An

φn

Ā

Fig. 19 Damage processes

in parallel that are described

in terms of reduction in cross-

sectional area (Reprinted with

permission from Voyiadjis

and Kattan (2012d))
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In this case the following sequence of equations based on Eq. 20 are obtained:

ϕ1 ¼
A1 � A

A1

(43a)

ϕ2 ¼
A2 � A

A2

(43b)

ϕ3 ¼
A3 � A

A3

(43c)

ϕn ¼
An � A

An
(43d)

However, if one looks at the total (or cumulative) damage variable ϕ as shown in

Fig. 7, then one assumes it to represent the reduction in cross-sectional area from

the damaged area A to the effective undamaged area A. Therefore, the total damage

variable is given by the following expression:

ϕ ¼ A� A

A
(44)

In order to find a way to relate the total damaged area A to the individual

damaged areas A1, A2, . . . An, some form of elaborate homogenization process

should be used in this case. However, for the sake of simplicity and to illustrate the

concepts introduced, the following simple relation is used:

A ¼ c1A1 þ c2A2 þ . . .þ cnAn (45)

where c1, c2, . . . cn are constants to be determined. For example, one may use

c1 ¼ c2 ¼ . . . ¼ cn ¼ 1
n in which case the total damaged area is taken to be the

average value of the individual damaged areas.

Substituting Eqs. 43 and 44 into Eq. 45, and simplifying the results, the follow-

ing general relation is obtained between the total damage variable and the individ-

ual damage variables for the separate parallel damage processes:

1

1� ϕ
¼ c1

1� ϕ1

þ c2
1� ϕ2

þ . . .þ cn
1� ϕn

(46)

Using the special case of two damage processes ϕ1 and ϕ2 occurring in parallel,

then Eq. 46 is reduced to the following simple form:

ϕ ¼ 1� 1� ϕ1ð Þ 1� ϕ2ð Þ
c1 1� ϕ2ð Þ þ c2 1� ϕ1ð Þ (47)

In order to illustrate various combinations of these damage processes occurring

in series and in parallel, one needs to use schematic diagrams. In this case, an elastic
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coil is used to illustrate an individual damage process that is described in terms of

reduction in cross-sectional area as shown in Fig. 20.

Based on the illustration of Fig. 20, these types of damage processes are shown

in series in Fig. 21 (corresponding to the cross-sectional areas of Fig. 18) and these

types of damage processes in parallel in Fig. 22 (corresponding to the cross-

sectional areas of Fig. 19).

Several combinations are now considered of the above damage processes.

Consider first a sequence of n damage processes in series (characterized by the

damage variables ϕ1, ϕ2, . . . ϕn) followed by m damage processes in parallel as

shown in Fig. 23 (characterized by the damage variables ϕ1
0
1, ϕ2

0 , . . . ϕm
0 ).

This case can be investigated by considering that the first sequence of damage

processes in series can be characterized by a single total damage variable called ϕA,

while the second sequence of damage processes in parallel can be characterized by

a single total damage variable called ϕB as illustrated in Fig. 24.

The damage processes in Fig. 24 are clearly occurring in series. Therefore, the

total damage variable ϕ is given by (based on Eq. 41)

1� ϕ ¼ 1� ϕAð Þ 1� ϕBð Þ (48)

where ϕA and ϕB are obtained from Eqs. 41 and 46, respectively. Therefore,

expanding Eq. 48, one obtains the following general expression for the total damage

variable in order to describe the damage processes in Fig. 23:

φ

Fig. 20 Schematic illustration of a damage process in terms of reduction in cross-sectional area

(Reprinted with permission from Voyiadjis and Kattan (2012d))

φ1 φ2 φn

Fig. 21 Damage processes in series described in terms of reduction in cross-sectional area

(Reprinted with permission from Voyiadjis and Kattan (2012d))

φ1

φ2

φn

Fig. 22 Damage processes

in parallel described in terms

of reduction in cross-sectional

area (Reprinted with

permission from Voyiadjis

and Kattan (2012d))
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1� ϕ ¼ 1� ϕ1ð Þ 1� ϕ2ð Þ . . . 1� ϕnð Þ
c1

1� ϕ0
1

þ c2
1� ϕ0

2

þ . . .þ cm
1� ϕ0

m

(49)

Another combination is considered of damage processes in series and in parallel.

Consider the processes illustrated schematically in Fig. 25 where several sequences

of damage processes in series occur collectively in parallel (characterized by the

sequences of damage variables ϕ1,ϕ2, . . .ϕn,ψ1,ψ 2
, . . .ψm, ρ1, ρ2, ρr).

In this case, let each sequence of damage processes in series be characterized by

a single total damage variable ϕA, ϕB, . . . ϕZ as shown in Fig. 26.

In this case, the single total damage variables ϕA, ϕB, . . . ϕZ can be obtained from

Eq. 41 as follows:

1� ϕA ¼ 1� ϕ1ð Þ 1� ϕ2ð Þ . . . 1� ϕnð Þ (50a)

1� ϕB ¼ 1� ψ1ð Þ 1� ψ2ð Þ . . . 1� ψmð Þ (50b)

φ'1

φ'2

φ'm

φnφ2φ1

Fig. 23 Damage processes in series followed by damage processes in parallel (Reprinted with

permission from Voyiadjis and Kattan (2012d))

φA φB

Fig. 24 Characterization of the two sequences of damage processes of Fig. 23 (Reprinted with

permission from Voyiadjis and Kattan (2012d))

φ1 φ2 φn

ψ1 ψ2 ψm

ρ1 ρ2 ρr

Fig. 25 Several damage processes in series occurring in parallel (Reprinted with permission from

Voyiadjis and Kattan (2012d))
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1� ϕZ ¼ 1� ρ1ð Þ 1� ρ2ð Þ . . . 1� ρrð Þ (50c)

Finally, the expression for the total damage variable can be obtained by using

Eqs. 46 and 50 as follows to describe the damage processes in Fig. 25:

1

1� ϕ
¼ cA

1� ϕ1ð Þ 1� ϕ2ð Þ . . . 1� ϕnð Þ þ
cB

1� ψ1ð Þ 1� ψ2ð Þ . . . 1� ψmð Þ
þ . . .þ cZ

1� ρ1ð Þ 1� ρ2ð Þ . . . 1� ρrð Þ (51)

Illustrative Example

In this section, a simple example is illustrated in which four damage processes

occur in a damaged system. The individual damage processes are not specified but

are indicated with the respective damage variables. The objective of this example is

to show how to handle situations in which different types of damage processes are

involved. In this case, a mixed combination of two damage processes is described in

terms of stiffness degradation (characterized by the damage variables ‘o and 2‘o),
and two other damage processes are described in terms of cross-sectional area

reduction (characterized by ϕo and 3ϕo). This specific damage system is shown

schematically in Fig. 27. The solution of this example will have several interpre-

tations and important implications.

In trying to solve this simple example, one needs first to reduce the two damage

processes operating in parallel that are designated with the damage variables 2‘o
and 3ϕo. The net results of these two mixed parallel damage processes can be

described in two different ways. The net result is described as a resulting damage

process in terms of stiffness degradation. In this case, one designates the resulting

damage state with the damage variable ‘0. Alternatively, one can describe the net

result as a resulting damage process that is obtained in terms of cross-sectional area

reduction. In this case, the resulting damage state is designated with the damage

variable ϕ0. These two differing alternative solutions are illustrated in Figs. 28 and

29, respectively.

φA

φB

φZ

Fig. 26 Characterization of

the damage processes of

Fig. 25 (Reprinted with

permission from Voyiadjis

and Kattan (2012d))
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Based on Eqs. 32 and 46, the following formulae are obtained for the two

damage variables ‘0 and ϕ0:

1

1þ ‘0
¼ c1

1þ 2‘o
þ c2
1� 3ϕo

(52)

1

1� ϕ0 ¼
d1

1þ 2‘o
þ d2
1� 3ϕo

(53)

where c1, c2, d1, d2 are constants. In the simplest case, one can assign each one

of the constants c1, c2, d1, d2 the value of 1
2
in which case this is an averaging

procedure. It should be noted that Eqs. 52 and 53 should not be used together; one

chooses either Eq. 52 or Eq. 53 depending on the desired description of the resulting

damage process.

In the last step, the final damage state of the material system which is schemat-

ically shown in Fig. 27 can be characterized in terms of stiffness degradation or

cross-sectional area reduction. In the first case of stiffness degradation, the final

damage state is designated by the damage variable ‘, while in the second case in

terms of the cross-sectional area reduction. The final damage state is designated

by the damage variable ϕ. Utilizing Eqs. 27 and 41 along with Eqs. 52 and 53,

one can write the following alternative expressions for the resulting damage vari-

ables ‘ and ϕ:

1þ ‘ ¼ 1� ϕoð Þ 1þ ‘oð Þ
c1

1þ 2‘o
þ c2
1� 3ϕo

(54)

`0

2`0

3φ0

φ0

Fig. 27 An illustrative example (Reprinted with permission from Voyiadjis and Kattan (2012d))

φ0 `0 `'

Fig. 28 The first alternative solution of the illustrative example (Reprinted with permission from

Voyiadjis and Kattan (2012d))

φ0 `0
φ'

Fig. 29 The second alternative solution of the illustrative example (Reprinted with permission

from Voyiadjis and Kattan (2012d))
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1þ ‘ ¼ 1� ϕoð Þ 1þ ‘oð Þ
d1

1þ 2‘o
þ d2
1� 3ϕo

(55)

1� ϕ ¼ 1� ϕoð Þ 1þ ‘oð Þ
c1

1þ 2‘o
þ c2
1� 3ϕo

(56)

1� ϕ ¼ 1� ϕoð Þ 1þ ‘oð Þ
d1

1þ 2‘o
þ d2
1� 3ϕo

(57)

It should be noted that Eqs. 54, 55, 56, and 57 are four alternative descriptions

for the final resulting damage state of the damage system described by Fig. 27. If

one decides to describe the final damage state in terms of stiffness degradation, then

one should use either Eq. 54 or Eq. 55 and utilize the final damage variable ‘. On the
other hand, if one decides to describe the final damage state in terms of cross-

sectional area reduction, then one should use either Eq. 56 or Eq. 57 and utilize the

final damage variable ϕ. It should be kept in mind that Eqs. 54, 55, 56, and 57 are

four possible interpretations of the damage state depicted in Fig. 27. These four

different interpretations should also be equivalent.

Three-Dimensional States of Deformation and Damage

In this section, a possible generalization of the concepts discussed in the previous

sections to three-dimensional states of deformation and damage is proposed. For

this purpose, use is made of tensorial damage variables instead of scalar damage

variables. In addition, the tensorial damage variables will be represented in the form

of their associated matrices.

The damage state described in terms of stiffness degradation can be easily

generalized to three dimensions. This is performed directly by using the fourth-

rank elasticity tensor. This tensor will be represented here by its associated

matrix [E]. What remains is the proper form of the damage tensor to describe

this case. The other damage state described in terms of cross-sectional area

reduction is more difficult to generalize to three dimensions. This is due to the

difficulty in generalizing the cross-sectional area along three perpendicular

directions. This generalization of the cross-sectional was carried out in the

literature using the fourth-rank damage effect tensor [M] (Murakami 1988).

However, this case will not be pursued here. The formulation will be limited to

the first damage state only.

The generalization of Eq. 22 to three-dimensional states of deformation and

damage can be carried out using the following two alternative expressions that were

proposed originally by Voyiadjis and Kattan (2009):
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L½ � 1ð Þ ¼ E
� �� E½ �� �

E½ ��1
(58)

L½ � 2ð Þ ¼ E½ ��1 E
� �� E½ �� �

(59)

where [E] and E
� �

are the matrix representations of the fourth-rank damaged and

effective undamaged elasticity tensors, respectively. In Eqs. 58 and 59, [L](1) and
[L](2) are two possible matrix generalizations of the scalar damage variable ‘.

Equations 58 and 59 are two alternative descriptions for the general damage state

in terms of the degradation of the elastic modulus. Use is made of the above two

equations to study these types of damage states when they occur in series and in

parallel.

For damage processes occurring in series and following the same line of

derivation presented in Eqs. 24, 25, 26, and 27 for the scalar case, one starts with

Eqs. 58 and 59 in order to obtain the following final results:

I½ � þ L½ � 1ð Þ ¼ I½ � þ L½ � 1ð Þ
1

� �
I½ � þ L½ � 1ð Þ

2

� �
I½ � þ L½ � 1ð Þ

3

� �
. . . I½ � þ L½ � 1ð Þ

n

� �
(60)

I½ � þ L½ � 2ð Þ ¼ I½ � þ L½ � 2ð Þ
1

� �
I½ � þ L½ � 2ð Þ

2

� �
I½ � þ L½ � 2ð Þ

3

� �
. . . I½ � þ L½ � 2ð Þ

n

� �
(61)

where [L]k
(1) and [L]k

(2) are the proposed damage matrix representations for the

individual damage processes in the series sequence k ¼ 1, 2, 3, . . . n and [I] is
the identity matrix representing the identity tensor. It is clear that Eqs. 60 and 61 are

the two possible generalizations of Eq. 27.

For damage processes occurring in parallel and following the same line of

derivation presented in Eqs. 29, 30, 31, and 32 for the scalar case, one starts with

Eqs. 58 and 59 to obtain the following final results:

I½ � þ L½ � 1ð Þ
� ��1

¼ c1 I½ � þ L½ � 1ð Þ
1

� ��1

þ c2 I½ � þ L½ � 1ð Þ
2

� ��1

þ . . .

þ cn I½ � þ L½ � 1ð Þ
n

� ��1

(62)

I½ � þ L½ � 2ð Þ
� ��1

¼ c1 I½ � þ L½ � 2ð Þ
1

� ��1

þ c2 I½ � þ L½ � 2ð Þ
2

� ��1

þ . . .

þ cn I½ � þ L½ � 2ð Þ
n

� ��1

(63)

where [L]k
(1) and [L]k

(2) are the proposed damage matrix representations for the

individual damage processes in the parallel sequence k ¼ 1, 2, 3, . . . n. It is clear
that Eqs. 62 and 63 are the two possible generalizations of Eq. 32.

For general damage states that are described by the reduction in cross-sectional

area, one can use the fourth-rank damage tensor [M] used by Murakami (1988) and

Voyiadjis and Kattan (2009) to derive the generalized equations for this case
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corresponding to Eqs. 41 and 46 of the scalar case. The generalization of Eq. 21 is

well known in the literature and is written in the following form:

σf g ¼ M½ � σf g (64)

However, this type of generalization is not straightforward and will not be

discussed here. The reason is that in this case one needs to utilize a hypothesis to

derive the required equations. Usually the hypothesis of elastic strain equivalence

or the hypothesis of elastic energy equivalence is used. Using these hypotheses in

this work will not be carried out in order to maintain the simplicity of the current

formulation of the conceptual framework. The interested reader may pursue this

line of thought on his/her own after studying these two hypotheses and the associ-

ated damage tensors as presented by Voyiadjis and Kattan (2009).

Summary and Conclusions

This chapter consists of two distinct parts. The first part deals with the new topic of

undamageable materials. These types of materials are currently hypothetical and

are proposed in the hope that future technologies will be able to manufacture them.

The theory of undamageable materials provides for a stress-free material that

undergoes deformation while maintaining a zero value for the damage variable.

The exact stress-strain relationship for these materials is derived. In the second part

of this chapter, a conceptual framework is derived for two types of damage

processes – those processes occurring in series (consecutively or following each

other) and those occurring in parallel (simultaneously or at the same time). The

complete mathematics of these types of processes is described. Finally, an example

is shown to demonstrate the theory.
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Abstract

In this chapter, a new formulation is presented to link continuum damage

mechanics with the concept of fabric tensors within the framework of classical

elasticity theory. A fourth-rank damage tensor is used and its exact relationship

to the fabric tensors is illustrated. A model of damage mechanics for directional

data is formulated using fabric tensors. The applications of the new formulation

to micro-crack distributions are well illustrated in two solved examples. In the

first example, a micro-crack distribution is considered with its data represented

by a circular histogram. The values of the fabric tensors and damage tensor are
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calculated in this case. In the second example, two sets of parallel micro-crack

distributions with two different orientations are investigated.

A general hypothesis for damage mechanics is postulated. It is seen that the

two available hypotheses of elastic strain equivalence and elastic energy equiv-

alence may be obtained as special cases of the postulated general hypothesis.

This general hypothesis is then used to derive the sought relationship between

the damage tensor and fabric tensors. Finally, the evolution of the damage tensor

is derived in a mathematically consistent manner that is based on sound ther-

modynamic principles.

Introduction

The major objective of this work is to try to find a physical interpretation of the

damage tensor. Since its beginnings, the subject of continuum damage mechanics

has been plagued with controversy as the concept of the damage tensor was not

based on a sound physical ground. The subject of this work is to try to link the

damage tensor with the concept of fabric tensors which have valid and convincing

physical interpretation. The fabric tensors have been formulated by Kanatani

(1984a) to describe directional data and microstructural anisotropy and further

elaborated upon by Lubarda and Krajcinovic (1993) to describe crack distributions.

Satake (1982) applied the concept of fabric tensors to granular materials. The

anisotropy due to the fabric (of the distributed data like crack distributions or

granular particles) is represented by a tensor in terms of the normals (to the cracks

or to the contact surfaces in granular materials). This tensor is usually called the

fabric tensor (Satake 1982; Kanatani 1984a; Oda et al. 1982). The fabric tensor is

usually related to the probability density function of the distributed data (crack

normals or contact normals).

Kanatani (1984a) formulated the concept of fabric tensors based on a rigorous

mathematical treatment. He used fabric tensors to describe distributions of direc-

tional data like crack distributions in a damaged material element. He applied the

least square approximation (a well-known statistical technique) to derive equations

for the various fabric tensors he postulated. He defined three types of fabric tensors:

fabric tensors of the first kind, denoted by N; fabric tensors of the second kind,

denoted by F; and fabric tensors of the third kind, denoted by D. He derived the

exact mathematical relations between these three types of fabric tensors. The work

of Kanatani (1984a) on fabric tensors is very important and is used extensively here.

Zysset and Curnier (1995, 1996) formulated an alternative model for anisotropic

elasticity based on fabric tensors. Actually Cowin (1989) made an attempt to relate

the microstructure (through the use of fabric tensors) to the fourth-rank elasticity

tensor. He used a normalized second-rank tensor and presented expressions for the

elastic constants in terms of the invariant of the fabric tensors. Zysset and Curnier

(1995) introduced a general approach for relating the material microstructure to

the fourth-rank elasticity tensor based on the Fourier series decomposition.

They proposed an approximation based on a scalar and a symmetric traceless

76 G.Z. Voyiadjis et al.



second-rank fabric tensor. Using the representation theorem for anisotropic func-

tions with tensorial arguments, Zysset and Curnier (1995) derived a general expres-

sion for the elastic free energy and discussed the resulting material symmetry in

terms of the fabric tensors. Finally, they derived a general explicit expression for

the fourth-rank elasticity tensor in terms of the fabric tensor. This last result is very

important and is used extensively here (Cowin 1989).

Lubarda and Krajcinovic (1993) applied the definitions of fabric tensors

(Kanatani 1984a) to crack density distributions. They actually recast Kanatani’s

general work on directional data (Kanatani 1984a) in terms of crack distributions.

Lubarda and Krajcinovic (1993) examined the relationship between a given, exper-

imentally determined, distribution of cracks and the scalar second-rank and fourth-

rank fabric tensors. They employed the usual representation of experimentally

measured micro-crack densities in planes with different orientations in the form

of circular histogram (rose diagram). They then used the data contained in the

circular histogram to approximate the distribution function defined on a unit sphere

and centered in a material point. They solved several examples with different crack

distributions to illustrate this point. They assumed that one of the three types of

fabric tensors is identical to the damage tensor of continuum damage mechanics.

The damage variable (or tensor), based on the effective stress concept, represents

average material degradation which reflects the various types of damage at the

microscale level like nucleation and growth of voids, cracks, cavities, micro-cracks,

and other microscopic defects.

For the case of isotropic damage mechanics, the damage variable is scalar and

the evolution equations are easy to handle. However, it has been show by Cauvin

and Testa (1999) that two independent damage variables must be used in order to

describe accurately and consistently the special case of isotropic damage. It has

been argued (Lemaitre 1984) that the assumption of isotropic damage is sufficient

to give good predictions of the load carrying capacity, the number of cycles, or the

time to local failure in structural components. However, the development of

anisotropic damage has been confirmed experimentally (Hayhurst 1972; Chow

and Wang 1987; Lee et al. 1985) even if the virgin material is isotropic. This has

prompted several researchers to investigate the general case of anisotropic damage

(Voyiadjis and Kattan 1996, 1999; Kattan and Voyiadjis 2001a, b).

In continuum damage mechanics, usually a phenomenological approach is

adopted. In this approach, the most important concept is that of the representative

volume element (RVE). The discontinuous and discrete elements of damage are not

considered within the RVE; rather their combined effects are lumped together

through the use of a macroscopic internal variable. In this way, the formulation

may be derived consistently using sound mechanical and thermodynamic

principles.

In this chapter, a new formulation is investigated to find a relationship between

the damage tensor of continuum damage mechanics and the concept of the fabric

tensors within the framework of classical elasticity theory. Actually what is

attempted here is the coupling of the three theories of damage mechanics, fabric

tensors, and classical elasticity in formulating a new theory that can accurately
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describe real practical engineering problems involving anisotropy and directional

data like complicated micro-crack distributions. An explicit expression of the

fourth-rank damage tensor is derived in terms of the fabric tensors. The exact

relationship between the damage tensor and the fabric tensors is also illustrated in

detail.

The formulation is presented within the framework of the usual classical theory

of elasticity. Starting with an RVE with a micro-crack distribution that is experi-

mentally determined like that in Fig. 1, one proceeds to calculate the fabric tensors

for the micro-crack distribution based on the data contained within the circular

histogram. This step was performed by many authors (Kanatani 1984a; Lubarda

and Krajcinovic 1993). The next step involves calculating the damage tensor using

the fabric tensors determined in the previous step. This step is performed using the

new formulas derived in the current formulation. Using the values of the damage

tensor components thus calculated, one proceeds to calculate the classical elasticity

tensor. The elasticity tensor calculated in this manner represents the elasticity

tensor of the damaged material reflecting the characteristics of the microstructure.

This final elasticity tensor can then be used to solve boundary-value problems

involving the aforementioned micro-crack distribution.

Two applications are presented and solved numerically to illustrate the new

formulation. The first application involves a micro-crack distribution within an

RVE of a damaged material. A circular histogram is presented for the data in the

micro-crack distribution. This histogram is then used to determine the fabric tensors

needed. These fabric tensors are then used to determine the damage tensor. Finally,

various relations between the damage tensor and fabric tensors are illustrated for

this particular example. The second application involves the investigation of two

sets of parallel micro-cracks. It is seen that in this case, the interchange of the angle

of orientation of the parallel micro-cracks causes a corresponding interchange in the

first two diagonal terms in the elastic stiffness matrix.

It should be noted that the theory presented here is for general directional data.

When applying this theory for micro-crack distributions, then the theory depends

exclusively on the orientations of micro-cracks. This theory does not consider the

growth of micro-crack lengths, the opening of the micro-cracks, the closeness of the

micro-cracks, and the interaction among the micro-cracks. These effects are beyond

the scope of this work. Detailed description of the theory that depends on the

Fig. 1 A cross section

showing a typical random

micro-crack distribution

(Reprinted with permission

from G. Voyiadjis, P. Kattan,

Mech. Mater. Struct.

13, 4 (2006))
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orientation and length of micro-cracks can be found in ▶Chap. 4, “Evolution of

Fabric Tensors in Continuum Damage Mechanics of Solids with Micro-cracks:

Studying the Effects of Length and Orientation.”

The reader is referred to the book by Nemat-Nasser (2004) regarding damage

mechanics and fabric. In particular the reader should refer to ▶Chap. 7. This

chapter covers the issue of fabric rather thoroughly, both theoretically and exper-

imentally. There is a detailed discussion and review of the fundamentals of the

characterization of the distribution of the contact normals in granular materials, the

relation with stress tensor, and many other issues. In addition the book by Nemat-

Nasser and Hori (1999) addresses many examples of micro-crack distributions for

several conditions, including opening and closing of micro-cracks, random distri-

butions, effect of friction, load-induced anisotropy, and interactions of micro-

cracks. They point out in detail the effect of these issues on the elastic moduli.

However, in all of these examples, they assume that the micro-crack distributions

are dilute. In the work presented in this chapter, the authors do not have this

assumption of dilute micro-crack distributions in the theory or examples. Although

the proposed approach does not consider many of the issues mentioned above, the

micro-crack distributions are general in the sense that there are no limits on the

volume fraction of the micro-cracks. However, the model presented here is limited

to considering only the orientation of micro-cracks, without considering opening

and closing of micro-cracks, effect of friction, or interaction of micro-cracks. Based

on the above remarks, the authors do not see a basis for a consistent comparison of

their results with those of Nemat-Nasser and Hori (1999). Effectively, the authors

cannot compare the results of dilute distributions with those of non-dilute systems.

However, they do acknowledge the work and examples in the book of Nemat-

Nasser and Hori (1999).

The reader is also referred to the work of Voyiadjis et al. (2007a) and (2007b)

where the applications of fabric tensors in damage mechanics discussed here are

further extended to study composite materials.

The tensor notation used here is as follows. All vectors and tensors appear in

bold type. The following operations are also defined. For second-rank tensors A and

B, the following notation is used:

A� Bð Þij ¼ Aij � Bij, A : B ¼ AijBij, A� Bð Þijkl ¼ AijBkl,

A��
�
B

� �
ijkl

¼ 1

2
AikBjl þ AilBjk

� �

For fourth-rank tensors C and D, the following notation is used: (C � D)ijkl ¼
Cijkl � Dijkl, (C : D)ijkl ¼ CijmnDmnkl, C :: D ¼ CijklDijkl, (C � D)ijklmnpq ¼ CijklDmnpq.

For second-rank tensor A and fourth-rank tensor C, the following notation is used:

(C : A)ij ¼ CijklAkl. For fourth-rank tensor C and eighth-rank tensor F, the following

notation is used: (F :: C)ijkl ¼ FijklmnpqCmnpq. For damage tensors, fabric tensors, and

identity tensors, a superscript with braces is used to indicate the order of the tensor.

For all other tensors, the order of the tensor is clear from the text and equations.
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Fabric Tensors

In this section, the use of fabric tensors to describe directional data and microstruc-

tural anisotropy are reviewed. Kanatani (1984a, b) introduced the idea of fabric

tensors with regard to the distribution of directional data. He used fabric tensors for

the stereological determination of structural isotropy. Zysset and Curnier (1995)

used fabric tensors to derive an alternative model of anisotropic elasticity. They

derived a new formula for the general elasticity tensor of damaged materials in

terms of fabric tensors. He and Curnier (1995) formulated a more fundamental

approach to damaged elastic stress–strain relations using fabric tensors. Zysset and

Curnier (1996) used a damage model based on fabric tensors in the analysis of

trabecular bone. Sutcliffe (1992) presented a rigorous mathematical formulation for

the spectral decomposition of the general elasticity tensor. This important result is

of paramount importance and will be used later in this work.

Consider a distribution of directional data that is radially symmetric, i.e.,

symmetric with respect to the origin. Let n be a unit vector specifying the orien-

tation and consider the orientation distribution function f(N) where N is given by

N 0ð Þ ¼ 1 (1:1)

N
2ð Þ
ij ¼ < ninj > ¼ 1

N

XN
α¼1

n
αð Þ
i n

αð Þ
j (1:2)

where N is the number of the directional data. In Eqs. 1.1 and 1.2, N(0) and N(2) are

called the zero-rank and second-rank fabric tensors of the first kind, respectively

(Kanatani 1984a). Kanatani (1984a) also defined two other fabric tensors F and

D as follows:

F 0ð Þ ¼ 1 (1:3)

F
2ð Þ
ij ¼ 15

2
N

2ð Þ
ij � 1

5
δij

� �
(1:4)

D 0ð Þ ¼ 1 (1:5)

D
2ð Þ
ij ¼ 15

2
N

2ð Þ
ij � 1

3
δij

� �
(1:6)

where F(0) and F
(2) are the zero-rank and second-rank fabric tensors of the second

kind, respectively; D(0) and D(2) are the zero-rank and second-rank fabric tensors of

the third kind, respectively; and δij is the Kronecker delta.
It is assumed here that the distribution function f is to be always positive and

square integrable. Then, the function f can be expanded in a convergent Fourier

series as follows (Jones 1985; Zysset and Curnier 1995):
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f Nð Þ ¼ G 0ð Þ:1þG 2ð Þ : F 2ð Þ Nð Þ þG 4ð Þ :: F 4ð Þ Nð Þ þ . . . (2)

for each N, where G(0), G(2), and G(4) are zero-rank (i.e., scalar), second-rank, and

fourth-rank fabric tensors, respectively, while 1, F(2)(N), and F(4)(N) are zero-rank

(i.e., scalar), second-rank, and fourth-rank basis functions, respectively. It should be

noted that G(0) andG(2) are exactly the same fabric tensors D(0) and D(2) of the third

kind of Kanatani (1984a). Furthermore, note that the basis function F(2)(N) of

Zysset and Curnier (1995) in Eq. 2 is different from the second-rank fabric tensor

of the second kind F(2) of Kanatani (1984a) in Eq. 1.4, although the same symbols

are used for both quantities. The basis functions F(2)(N) and F(4)(N) are given by

(Kanatani 1984a, b; Zysset and Curnier 1995)

F 2ð Þ Nð Þ ¼ N� 1

3
I 2ð Þ (3:1)

F 4ð Þ Nð Þ ¼ N� N� 1

7
I 2ð Þ � Nþ N� I 2ð Þ
� �

� 2

7

�
I 2ð Þ��

�
Nþ N��

�
I 2ð Þ�

þ 1

35
I 2ð Þ � I 2ð Þ þ 2

35
I 2ð Þ��

�
I 2ð Þ

(3:2)

The three fabric tensors G(0), G(2), and G
(4) are determined using the following

integrals (Zysset and Curnier 1995):

G 0ð Þ ¼ 1

4π

ð
S

f Nð Þda (4)

G 2ð Þ ¼ 15

8π

ð
S

f Nð ÞF 2ð Þ Nð Þda (5)

G 4ð Þ ¼ 315

32π

ð
S

f Nð ÞF 4ð Þ Nð Þda (6)

where S is the surface of the unit sphere and a is the integration parameter.

Kanatani (1984a, b) showed that the first two terms in the expansion given in

Eq. 2 are enough and they can describe material anisotropy sufficiently and

accurately. Therefore, the third term in the expansion is neglected and only the

first two terms are retained as follows:

f Nð Þ � G 0ð Þ:1þG 2ð Þ : F 2ð Þ Nð Þ (7)

Thus, it is clear from the above expression that only zero-rank (scalar) and

second-rank fabric tensors will be dealt with – there is no need to deal with the

fourth-rank fabric tensor. It also should be noted that the function f in the above

approximation (Eq. 7) must remain always positive.
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The approximation of the distribution function f(N) given in Eq. 7 characterizes

anisotropy, i.e., the traceless second-rank tensor G(2) describes orthotropy with

three orthogonal planes of symmetry and all three eigenvalues being distinct. Using

only the first term in Eq. 7, i.e., f(N) ¼ G(0), will characterize the special case of

isotropy. The case of transverse isotropy is characterized if the second-rank tensor

G(2) has only two eigenvalues that are distinct (Zysset and Curnier 1995).

Let E be the fourth-rank constant elasticity tensor for the virgin material in

the undamaged configuration and is assumed to be here for isotropic materials.

Next, the expression of the fourth-rank constant elasticity tensor E is written as

follows:

E ¼ λ I 2ð Þ � I 2ð Þ þ 2μ I 2ð Þ ��
�
I 2ð Þ (8)

where λ and μ are Lame’s constants. Zysset and Curnier (1995) showed that by

replacing the identity tensor I(2) in the expression of E by the tensor G(0)I(2) + G(2),

the fourth-rank tensor E (a fourth-rank variable elasticity tensor for the damaged

material) which includes the effects of microstructural anisotropy and directional

data, i.e., effects of damage, is obtained. Thus, the following expression for E is

now available (see Eq. 8 in Zysset and Curnier (1995)):

E ¼ λ G 0ð ÞI 2ð Þ þG 2ð Þ
� �

� G 0ð ÞI 2ð Þ þG 2ð Þ
� �

þ 2μ G 0ð ÞI 2ð Þ þG 2ð Þ
� �

��
�

G 0ð ÞI 2ð Þ þG 2ð Þ
� �

(9)

It is clear that the expression given in Eq. 9 provides a formula for the elasticity

tensor E of the damaged material in terms of the two fabric tensors G(0) and G(2).

Next, the spectral decomposition of the second-rank fabric tensor G(2) is con-

sidered as follows:

G 2ð Þ ¼
X3
i¼1

gi gi � gið Þ (10)

where gi(i ¼ 1, 2, 3) are the eigenvalues of G(2) and gi(i ¼ 1, 2, 3) are the

corresponding eigenvectors. Zysset and Curnier (1995) used the terminology Gi

to denote the dyadic product gi � gi as follows:

Gi ¼ gi � gi no sum over ið Þ (11)

where it is clear that
X3
i¼1

Gi ¼ I 2ð Þ . Using this new terminology, the following

alternative expression for E, which was derived in detail by Zysset and Curnier

(1995) in the principal coordinate system, can be written as (see Eq. 11 in Zysset

and Curnier (1995))
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E ¼ λþ 2μð Þm2k
i

�
Gi �Gi

�þ λmk
i m

k
j

�
Gi �Gj þGj �Gi

�
þ 2μmk

i m
k
j Gi�

�
�
Gj þGj�

�
�
Gi

� �
(12)

where k is a constant scalar parameter and mi is given by the following:

mi ¼ G 0ð Þ þ gi (13)

In the above equation, it should be noted that
X3
i¼1

mi ¼ constant. It should also be

noted that Eq. 12 is valid for damaged materials while Eq. 9 is valid only for

granular materials. This is because of the different properties of the microstructure

of damaged materials and granular materials. The effects of the fabric tensor on the

elasticity tensor for these two kinds of materials are totally in contrary, in that if one

principal value of the fabric tensor is larger, the associated Young’s modulus will be

larger for granular materials and smaller for damaged materials. For the special case

of isotropy, gi ¼ 0, (i ¼ 1, 2, 3) and mi ¼ G(0), (i ¼ 1, 2, 3), so Eq. 12 reduces to the

following equation of isotropic elasticity:

E ¼ λþ 2μð Þg2k�Gi �Gi

�þ λg2k
�
Gi �Gj þGj �Gi

�
þ 2μg2k Gi �Gj þGj �Gi

� � (14)

Finally, the stress tensor σij is related to the strain tensor eij through the fourth-

rank variable elasticity tensor E as follows:

σij ¼ Eijklekl (14:1)

General Hypothesis and New Formulation of Damage Mechanics

In this section, derivations are presented for the important concepts of damage

mechanics that are relevant to this work, particularly to fabric tensors. This deri-

vation is presented within the general framework of continuum damage mechanics

(Cauvin and Testa 1999; Voyiadjis and Kattan 1999) using a general hypothesis

that is postulated here. It is shown that general states of anisotropic damage in the

material must be described by a fourth-rank damage tensor.

Let E be the fourth-rank constant elasticity tensor of the virgin material and let

E be the elasticity tensor of the damaged material. Then, the two tensorsE and E are

related by the following general relation (Cauvin and Testa 1999):

E ¼ I 8ð Þ � φ 8ð Þ
� �

:: E (15)

where I(8) is the eighth-rank identity tensor and φ(8) is the general eighth-rank

damage tensor.
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Next, a new formulation is derived and a general hypothesis is postulated to show

that Eq. 15 can be reduced to a similar equation involving a damage tensor of rank

four at most. Cauvin and Testa (1999) have shown this result only for the special case

of the hypothesis of elastic strain equivalence. Therefore, there will be no need to deal

with the eighth-rank general damage tensor φ(8) in the constitutive equations.

Kachanov (1958) and Rabotnov (1969) introduced the concept of effective stress

for the case of uniaxial tension. This concept was later generalized to three-

dimensional states of stress by Lemaitre (1971) and Chaboche (1981). Let σ be

the second-rank Cauchy stress tensor and σ be the corresponding effective stress

tensor. The effective stress σ is the stress applied to a fictitious state of the material

which is totally undamaged, i.e., all damage in this state has been removed. This

fictitious state is assumed to be mechanically equivalent to the actual damaged state

of the material. In this regard, one of the two hypotheses (elastic strain equivalence

or elastic energy equivalence) is usually used. However, in this work, a general

hypothesis of strain transformation is postulated. The elastic strain tensor «e in

the actual damaged state is related to the effective elastic strain tensor «e in the

fictitious state by the following transformation law:

«e ¼ L φ 8ð Þ
� �

: «e (16)

where L(φ(8)) is a fourth-rank tensorial function of the damage tensor φ(8). It is

noted that both the two hypotheses (elastic strain equivalence and elastic energy

equivalence) are obtained as special cases of Eq. 16. By using L(φ(8)) ¼ I(4), the

hypothesis of elastic strain equivalence is obtained, and by using L(φ(8)) ¼ M�T,

the hypothesis of elastic energy equivalence is obtained, where the fourth-rank

tensor M is the damage effect tensor as used by Voyiadjis and Kattan (1999).

Equation 15 may be postulated even in the absence of the concept of the

effective stress space as a relation that evolves the process of degradation of the

elastic stiffness. It may be compared in form to Eqs. 10, 13, and 15. In the absence

of the presence of an effective stress space, Eq. 16 is nonexisting and may be

interpreted as an identity relation.

The elastic constitutive relation is written in the actual damage state as follows:

σ ¼ E : «e (17)

A similar elastic constitutive relation in the fictitious state can now be written as

follows:

σ ¼ E : «e (18)

Substituting Eq. 16 into Eq. 18, one obtains

σ ¼ E : L φ 8ð Þ
� �

: «e (19)

Next, Eq. 15 is substituted into Eq. 17 to obtain
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σ ¼ I 8ð Þ � φ 8ð Þ
� �

:: E : «e (20)

Solving Eq. 19 for ee and substituting the result into Eq. 20, one obtains

σ ¼ I 8ð Þ � φ 8ð Þ
� �

:: E : L�1 φ 8ð Þ
� �

: E
�1

: σ
� �

(21)

Equation 21 above can be rewritten in the following simpler form (note that only

fourth-rank tensors are used if adopting the hypothesis of elastic strain equivalence):

σ ¼ I4 � φ4ð Þ : E : L�1 φ 4ð Þ
� �

: E
�1

: σ (22)

where I
(4) is the fourth-rank identity tensor and φ(4) is the fourth-rank damage

tensor. In deriving Eq. 22, the following relation is used:

I 4ð Þ � φ 4ð Þ ¼ I 8ð Þ � φ 8ð Þ
� �

:: E
� �

: L�1 φ 8ð Þ
� �

: L φ 4ð Þ
� �

: E
�1

(23)

It can be shown that using Eq. 23, one obtains the following relation between the

two damage tensors:

φ 4ð Þ ¼ φ 8ð Þ :: E
� �

: L�1 φ 8ð Þ
� �

: L φ 4ð Þ
� �

: E
�1

(24)

where the identity tensors I(4) and I(8) are given by

I
4ð Þ
ijkl ¼

1

2
δikδjl þ δilδjk
� �

(25)

I
8ð Þ
ijklmnpq ¼

1

4
δimδjnδkpδlq þ δimδjnδkqδlp þ δinδjmδkpδlq þ δinδjmδkqδlp
� �

(26)

Next, Eq. 15 is expanded as follows:

E ¼ E� φ 8ð Þ :: E (27)

Post-multiplying Eq. 24 by E, one obtains

φ 4ð Þ : E : L�1 φ 4ð Þ
� �

: L φ 8ð Þ
� �

¼ φ 8ð Þ :: E (28)

Substituting Eq. 28 into Eq. 27 and simplifying, one obtains the desired relation

as follows:

E ¼ E� φ 4ð Þ : E : L�1 φ 4ð Þ
� �

: L φ 8ð Þ
� �

(29)

It has now been shown that using the general hypothesis of strain transformation of

Eq. 16, Eq. 15 (which involves an eighth-rank damage tensor) was reduced to Eq. 29

(which involves a fourth-rank damage tensor and an eighth-rank damage tensor).
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Cauvin and Testa (1999) have shown that for the case of orthotropic damage, the

fourth-rank damage tensor φ(4) can be represented by the following 6 x 6 matrix:

φ 4ð Þ ¼

φ1111 φ1122 φ1133 0 0 0

φ2211 φ2222 φ2233 0 0 0

φ3311 φ3322 φ3333 0 0 0

0 0 0 2φ2323 0 0

0 0 0 0 2φ1313 0

0 0 0 0 0 2φ1212

2
6666664

3
7777775

(30)

where it is clear that φ(4) has twelve independent components. In writing the matrix

representation in Eq. 30, it is assumed that the stress and strain tensors can be

represented as 6 � 1 column matrices as follows:

σ ¼ σ11 σ22 σ33 σ23 σ13 σ12½ �T (31:1)
« ¼ «11 «22 «33 «23 «13 «12½ �T (31:2)

The Damage Tensor and Fabric Tensors

In this section, an explicit expression is derived for the damage tensor in terms of

the fabric tensors. The expression to be derived will provide a link between damage

mechanics and fabric tensors. It will provide the theory of damage mechanics with a

solid physical basis that directly depends on the microstructure.

In the remaining part of this section, one goes back to the general case of

anisotropy and Eq. 7. Looking at Eqs. 10 and 30, it can be realized that they both

describe the same quantity. Equation 29 describes the elasticity tensor for the

damaged material in terms of the damage tensor. On the other hand, Eq. 9 describes

the same elasticity tensor in terms of the fabric tensors. Therefore, equating the two

equations yields the following:

E� φ 4ð Þ : E : L�1 φ 4ð Þ� �
: L
�
φ 8ð Þ� ¼ λ G 0ð ÞI 2ð Þ þG 2ð Þ

� �
� �G 0ð ÞI 2ð Þ þG 2ð Þ�

þ 2μ G 0ð ÞI 2ð Þ þG 2ð Þ
� �

��
�
�
G 0ð ÞI 2ð Þ þG 2ð Þ�

(32)

Solving the above equation for φ(4), one obtains the following expression:

φ 4ð Þ ¼
�
E� λ G 0ð ÞI 2ð Þ þG 2ð Þ

� �
� �G 0ð ÞI 2ð Þ þG 2ð Þ�

þ 2μ G 0ð ÞI 2ð Þ þG 2ð Þ
� �

��
�
�
G 0ð ÞI 2ð Þ þG 2ð Þ�	 : L�1

�
φ 8ð Þ� : L�φ 4ð Þ� : E�1

(33:1)

Equation 33.1 represents an explicit expression for the fourth-rank damage

tensor φ(4) in terms of the zero-rank fabric tensor (scalar) G(0) and the
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second-rank fabric tensor G(2). The other elements appearing in this expression are

all constant scalars like λ and μ or constant tensors like I(2), I(4), and E. The fourth-

rank tensorial function L must be substituted for in terms of other parameters.

For the special case of the hypothesis of elastic strain equivalence, one sets

L(φ(8))¼ L(φ(4))¼ I(4). In this case, Eq. 33.1 reduces to the following simpler form:

φ 4ð Þ ¼ I 4ð Þ �
�
λ G 0ð ÞI 2ð Þ þG 2ð Þ
� �

� �G 0ð ÞI 2ð Þ þG 2ð Þ�
þ 2μ G 0ð ÞI 2ð Þ þG 2ð Þ

� �
��
�
�
G 0ð ÞI 2ð Þ þG 2ð Þ�	 : E�1

(33:2)

For the other special case of the hypothesis of elastic energy equivalence, one

sets L(φ(8))¼M�T(φ(8)) and L(φ(4))¼M�T(φ(4)). In this case, Eq. 33.1 reduces to

the following form:

φ 4ð Þ ¼
�
E� λ G 0ð ÞI 2ð Þ þG 2ð Þ

� �
� �G 0ð ÞI 2ð Þ þG 2ð Þ�

þ 2μ G 0ð ÞI 2ð Þ þG 2ð Þ
� �

��
�
�
G 0ð ÞI 2ð Þ þG 2ð Þ�	 : MT

�
φ 8ð Þ� : M�T

�
φ 4ð Þ� : E�1

(33:3)

where M is the fourth-rank damage effect tensor as used by Voyiadjis and

Kattan (1999).

For the remaining part of this work, the simpler formula of Eq. 33.2 is adopted

and used for the special case of elastic strain equivalence. This simple equation is

selected to be used in the derivation of the four cases to be studied in the subsequent

sections and in the numerical application involving micro-crack distributions.

Therefore, Eq. 33.2 may be rewritten in indicial notation as follows:

φ 4ð Þ
ijkl ¼

1

2
δikδjl þ δilδjk
� �� λ

�
G 0ð Þδij þ G

2ð Þ
ij

��
G 0ð Þδmn þ G 2ð Þ

mn

�h
þ μ G 0ð Þδim þ G

2ð Þ
im

� ��
G 0ð Þδjn þ G

2ð Þ
jn

�þ μ
�
G 0ð Þδin þ G

2ð Þ
in

��
G 0ð Þδjm þ G

2ð Þ
jm

�i
E
�1

mnkl

(34)

Equation 34 can be expanded to obtain the following explicit expression:

φ 4ð Þ
ijkl ¼

1

2
δikδjl þ δilδjk
� �� λ

�
G 0ð Þ2δijδmn þ G 0ð ÞδijG 2ð Þ

mn þ G 0ð ÞδmnG
2ð Þ
ij þ G

2ð Þ
ij G 2ð Þ

mn

�
E
�1

mnkl:

� μ G 0ð Þ2δimδjn þ G 0ð ÞδimG
2ð Þ
jn þ G 0ð ÞδjnG

2ð Þ
im þ G

2ð Þ
im G

2ð Þ
jn

� �
E
�1

mnkl

� μ G 0ð Þ2δinδjm þ G 0ð ÞδinG
2ð Þ
jm þ G 0ð ÞδjmG

2ð Þ
in þ G

2ð Þ
in G

2ð Þ
jm

� �
E
�1

mnkl

(35)

Alternatively, one may use Eq. 12 instead of Eq. 9. Thus, equating Eqs. 13 and

30 and solving for φ(4), one obtains
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φ 4ð Þ ¼ I 4ð Þ �
�
λþ 2μð Þm2k

i

�
Gi �Gi

�þ λmk
i m

k
j

�
Gi �Gj þGj �Gi

�
þ 2μmk

i m
k
j Gi�

�
�
Gj þGj�

�
�
Gi

� �	
: L�1

�
φ 8ð Þ� : L�φ 4ð Þ� : E�1

(36)

Equation 36 provides an alternative expression for the fourth-rank damage

tensor φ(4) in terms of the fabric tensors. It should be noted that in this alternative

expression, the fabric tensors do not appear explicitly. However, the variables

mi(i ¼ 1, 2, 3) and Gi(i ¼ 1, 2, 3) are obtained directly from the fabric tensors

through the use of Eqs. 12 and 14 where Gi is defined as the cross product of the

eigenvectors gi of the second-rank fabric tensor G
(2), while mi is defined as the sum

of the zero-rank fabric tensor (scalar) G(0) and the eigenvalue gi of the second-rank
fabric tensor G(2).

Equation 36 can be rewritten in indicial notation for the special case of the

hypothesis of elastic strain equivalence as follows:

φ 4ð Þ
ijkl ¼

1

2
δikδjl þ δilδjk
� �� �λþ 2μ

�
m2k

i GiijGimnE
�1

mnkl � λmk
i m

k
j

�
GiijGjmn þ GjijGimn

�
E
�1

mnkl:

�μmk
i m

k
j GiimGjjn þ GiinGjjm þ GjimGijn þ GjinGijm

� �
E
�1

mnkl

(37)

Next, the 6� 6 matrix representations of the various tensors involved are written

in detail using the notation adopted in Eqs. 31 and 32. Eventually, one will derive

explicit expressions for the damage tensor components φijkl in terms of the other

variables based on the fabric tensors. This is performed in the remaining part of this

work for the special case of the hypothesis of elastic strain equivalence.

The general 6� 6 matrix representation of the fourth-rank elasticity tensor of the

damaged material is given as follows based on Eq. 12 – see Zysset and Curnier

(1995):

E ¼

λþ 2μð Þm2k
1 λmk

1m
k
2 λmk

1m
k
3 0 0 0

λmk
2m

k
1 λþ 2μð Þm2k

2 λmk
2m

k
3 0 0 0

λmk
3m

k
1 λmk

3m
k
2 λþ 2μð Þm2k

3 0 0 0

0 0 0 2μmk
2m

k
3 0 0

0 0 0 0 2μmk
3m

k
1 0

0 0 0 0 0 2μmk
1m

k
2

2
66666664

3
77777775

(38)

where λ and μ are Lame’s constants, k is a constant scalar parameter with a value

less than zero, andmi(i¼ 1, 2, 3) are related to the fabric tensors as given by Eq. 13.

Thus, Eq. 38 is a matrix representation of the elasticity tensor E of damaged

materials in terms of the fabric tensors. Next, the inverse elasticity tensor E
�1

(also called the compliance tensor) of the virgin material as a 6� 6 matrix is written

as follows:
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E
�1 ¼

1

E1

� ν12
E1

� ν13
E1

0 0 0

� ν12
E1

1

E2

� ν23
E2

0 0 0

� ν13
E1

� ν23
E2

1

E3

0 0 0

0 0 0
1

2G23

0 0

0 0 0 0
1

2G31

0

0 0 0 0 0
1

2G12

2
6666666666666666664

3
7777777777777777775

(39)

where E1, E2, E3, ν12, ν13, ν23, G12, G23, and G31 are the nine independent material

constants of orthotropic elasticity. Then, the 6 � 6 matrix representation of the

fourth-rank identity tensor I(4) is written as follows:

I 4ð Þ ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

(40)

Solving Eq. 29 for φ(4) while using L ¼ I(4), one obtains the following

expression:

φ 4ð Þ ¼ I 4ð Þ � E : E
�1

(41)

Substituting the matrix representations of Eqs. 39, 40, and 41 into Eq. 41, one

obtains the 6� 6 matrix representation of the fourth-rank damage tensor φ(4) for the

general case of orthotropic damage. Comparing the matrix obtained with the matrix

in Eq. 30, one obtains the following explicit expressions for the damage tensor

components φijkl in terms of λ, μ, k, and mi(i ¼ 1, 2, 3) where mi(i ¼ 1, 2, 3)

represents the fabric tensors:

φ1111 ¼ 1� λþ 2μð Þm2k
1

E1

þ λmk
1m

k
2ν21

E2

þ λmk
1m

k
3ν31

E3

(42:1)

φ1122 ¼
λþ 2μð Þm2k

1 ν12
E1

� λmk
1m

k
2

E2

þ λmk
1m

k
3ν31

E3

(42:2)

φ1133 ¼
λþ 2μð Þm2k

1 ν13
E1

þ λmk
1m

k
2ν23

E2

� λmk
1m

k
3

E3

(42:3)
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φ2211 ¼ � λmk
2m

k
1

E1

þ λþ 2μð Þm2k
2 ν21

E2

þ λmk
2m

k
3ν31

E3

(42:4)

φ2222 ¼ 1þ λmk
2m

k
1ν12

E1

� λþ 2μð Þm2k
2

E2

þ λmk
2m

k
3ν32

E3

(42:5)

φ2233 ¼
λmk

2m
k
1ν13

E1

þ λþ 2μð Þm2k
2 ν23

E2

� λmk
2m

k
3

E3

(42:6)

φ3311 ¼ � λmk
3m

k
1

E1

þ λmk
3m

k
2ν21

E2

þ λþ 2μð Þm2k
3 ν31

E3

(42:7)

φ3322 ¼
λmk

3m
k
1ν12

E1

� λmk
3m

k
2

E2

þ λþ 2μð Þm2k
3 ν32

E3

(42:8)

φ3333 ¼ 1þ λmk
3m

k
1ν13

E1

þ λmk
3m

k
2ν23

E2

� λþ 2μð Þm2k
3

E3

(42:9)

φ2323 ¼
μmk

2m
k
3

2G23

(42:10)

φ3131 ¼
μmk

3m
k
1

2G31

(42:11)

φ1212 ¼
μmk

1m
k
2

2G12

(42:12)

It is clear from the expressions of the damage tensor components φijkl of Eqs. 42

that the damage tensor φ(4) is not symmetric.

In the next section, the special case of plane stress is considered and the damage

tensor and fabric tensor equations are illustrated for this case.

Case of Plane Stress

The case of plane stress in the x1� x2 plane is considered here. In this case the three
stress components σ33, σ13, and σ23 vanish, i.e., σ33 ¼ σ13 ¼ σ23 ¼ 0. Therefore, the

stress and strain tensors can be represented in this case by the following 3 � 1

column matrices:

σ ¼ σ11 σ22 σ12½ �T (43:1)

« ¼ «11 «22 «12½ �T (43:2)

It should be noted that in this case, the out-of-plane strain component «33 does
not vanish, i.e., «33 6¼ 0. In this case, the damage state may be described by a fourth-

rank tensor φ(4) which is represented by the following general 3 � 3 matrix:
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φ 4ð Þ ¼
φ1111 φ1212 φ1313

φ2121 φ2222 φ2323

φ3131 φ3232 φ3333

2
4

3
5 (44)

In this case, Eq. 29 may now be rewritten in matrix form as follows:

E½ � ¼ I 4ð Þ
h i

� φ 4ð Þ
h i� �

E

 �

(45)

where I(4) is the fourth-rank identity tensor represented by the following

3 � 3 identity matrix:

I 4ð Þ ¼
1 0 0

0 1 0

0 0 1

2
4

3
5 (46)

The elasticity tensor E of the virgin material may be represented as follows for

the case of plane stress:

E ¼ E

1� ν2

1 ν 0

ν 1 0

0 0
1� ν
2

2
64

3
75 (47)

where E and ν are the modulus of elasticity and Poisson’s ratio of the virgin

material, respectively. The relations between E, ν and Lame’s constants λ, μ are

given by the following two equations:

λ ¼ νE
1þ νð Þ 1� 2νð Þ (48:1)

μ ¼ E

2 1þ νð Þ (48:2)

In this case, the matrix representation of the elasticity tensor E of the damaged

material may be written as follows (see Eq. 38):

E ¼ E

1� ν2

m2k
1 νmk

1m
k
2 0

νmk
2m

k
1 m2k

2 0

0 0
1� ν
2

mk
1m

k
2

2
664

3
775 (49)

Next, Eqs. 45, 47, and 48 are substituted into Eq. 45 and the resulting equation is

then simplified. Comparing the resulting matrix with the matrix in Eq. 49, one
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obtains the following nine linear simultaneous algebraic equations in the damage

tensor components φijkl:

1� φ1111 � νφ1212 ¼ m2k
1 (50:1)

ν� νφ1111 � φ1212 ¼ νmk
1m

k
2 (50:2)

φ1313 ¼ 0 (50:3)

ν� νφ2222 � φ2121 ¼ νmk
2m

k
1 (50:4)

�νφ2121 þ 1� φ2222 ¼ m2k
2 (50:5)

φ2323 ¼ 0 (50:6)

φ3131 þ νφ3232 ¼ 0 (50:7)

νφ3131 þ φ3232 ¼ 0 (50:8)

1� φ3333 ¼ mk
1m

k
2 (50:9)

It is possible now to immediately use Eqs. 50.3, 50.6, 50.7, and 50.8 to conclude

that φ1313 ¼ φ2323 ¼ φ3131 ¼ φ3232 ¼ 0. Therefore, four of the damage tensor

components φijkl vanish in the case of plane stress. This leaves the following system

of five linear simultaneous algebraic equations:

1� φ1111 � νφ1212 ¼ m2k
1 (51:1)

ν� νφ1111 � φ1212 ¼ νmk
1m

k
2 (51:2)

ν� νφ2222 � φ2121 ¼ νmk
2m

k
1 (51:3)

�νφ2121 þ 1� φ2222 ¼ m2k
2 (51:4)

1� φ3333 ¼ mk
1m

k
2 (51:5)

Next, one combines the two Eqs. 51.2 and 51.3 in order to obtain the following

relation between φ1212 and φ2121:

φ2121 ¼ φ1212 � ν φ2222 � φ1111ð Þ (52)

Equation 52 clearly shows that the damage tensor φ(4) is not symmetric.

Equation 51.5 may be solved directly for φ3333 in order to obtain the following

explicit expression:

φ3333 ¼ 1� mk
1m

k
2 (53)

Equation 53 clearly indicates that the out-of-plane damage tensor component

φ3333 does not vanish in the case of plane stress. This damage tensor component is

92 G.Z. Voyiadjis et al.



clearly given in Eq. 53 in terms of the fabric tensor parameters m1 and m2. This

conclusion indicates that the case of plane stress does not imply a case of plane

damage also.

The remaining four damage tensor components φ1111, φ2222, φ1212, and φ2121

can be obtained by solving the remaining four implicit Eqs. 51.1, 51.2, 51.3,

and 51.4 simultaneously to obtain (note that Eqs. 51.1 and 51.2 may be solved

simultaneously while the other two Eqs. 51.3 and 51.4 may also be solved

simultaneously):

φ1111 ¼ 1� mk
1 mk

1 � ν2mk
2

� �
1� ν2

(54:1)

φ1212 ¼
νmk

1 mk
1 � mk

2

� �
1� ν2

(54:2)

φ2222 ¼ 1� mk
2 mk

2 � ν2mk
1

� �
1� ν2

(54:3)

φ2121 ¼
νmk

2 mk
2 � mk

1

� �
1� ν2

(54:4)

Equations 54 clearly show explicit expressions for the four damage tensor

components φ1111, φ2222, φ1212, and φ2121 in terms of the fabric tensor parameters

m1 and m2 and Poisson’s ratio ν. It is clear that the relation between the damage

tensor components and the fabric tensor parameters is independent of Young’s

modulus E of the material. Only the material constant ν plays a role in this

relationship.

Application to Micro-crack Distributions

In this section, an application of the damage and fabric tensors to the case of micro-

crack distributions is presented. This can be effectively illustrated by solving a

practical example. Consider a two-dimensional (planar) micro-crack distribution

whose circular histogram (rose diagram) is shown in Fig. 2. It is assumed that the

micro-crack distribution is symmetric with respect to the origin. The circular

histogram shows the distributions of the normals to the micro-cracks as a rose

diagram. The angle is varied in 10� increments from 0� to 360� while the heights of
the histogram represent the frequency of the normals to the micro-cracks that are

oriented within the specified angle range.

Next, the components of the fabric tensors G(0), G(2), and G(4) for this specific

example are calculated. It is noted that the fabric tensors G(2) and G(4) are taken to

correspond to the fabric tensors of the third kind Dij and Dijkl introduced by
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Kanatani (1984a). The second-rank fabric tensor of the third kind is calculated as

follows:

G 2ð Þ ¼ D 2ð Þ ¼
1:2305 0:4065 0

0:4065 1:2695 0

0 0 �2:500

2
4

3
5 (55)

Using the above matrix, the eigenvalues of the second-rank fabric tensorG(2) are

calculated as follows:

g1 ¼ 1:6570 (56:1)

g2 ¼ 0:8430 (56:2)

where obviously g3 ¼ �2.5. Next, the second-rank fabric tensor of the second kind

F(2) is calculated to obtain

F 2ð Þ ¼
2:2305 0:4065 0

0:4065 2:2695 0

0 0 0

2
4

3
5 (57)

Using the second-rank fabric tensor of the second kind F(2), the following

approximation ρ(n) of the crack distribution (Kanatani 1984a) can be used:

ρ nð Þ ¼ F
2ð Þ
ij ninj (58)

Substituting Eq. 57 into Eq. 58 and using the data from the circular histogram of

Fig. 3, one obtains the following second-order approximation of the crack distribution:

Fig. 2 A circular histogram

(rose diagram) for the micro-

crack distribution of the

application (Reprinted with

permission from

G. Voyiadjis, P. Kattan,

Mech. Mater. Struct.

13, 4 (2006))
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ρ nð Þ ¼ 2:2305cos2θ þ 2:2695sin2θ þ 0:8130sin θcos θ (59)

where 0 	 θ 	 2π. The approximate distribution of Eq. 59 is now plotted as shown

in Fig. 3. A comparison between Figs. 2 and 3 shows the close relationship between

the actual distribution and the approximate distribution.

Next, the fourth-rank fabric tensor N(4) is calculated in order to plot a fourth-

order approximation to the micro-crack distribution. The fourth-rank fabric tensor

N
(4) is calculated from the following formula (Kanatani 1984a):

N
4ð Þ
ijkl ¼ < ninjnknl > ¼ 1

N

XN
α¼1

n
αð Þ
i n

αð Þ
j n

αð Þ
k n

αð Þ
l (60)

The fourth-rank fabric tensor of the second kind F(4) defined by Kanatani

(1984a) can now be introduced as follows:

F
4ð Þ
ijkl ¼

315

8
N

4ð Þ
ijkl �

2

3
δijN

2ð Þ
kl þ 1

21
δijδkl

� �
(61)

Using Eq. 61, one obtains the values of the components of the fourth-rank

fabric tensor of the second kind F(4) as follows: F1111
(4) ¼ 3.6698, F2222

(4) ¼ 3.7369,

F1212
(4) ¼ 4.7368, F1222

(4) ¼ 1.0316, and F1112
(4) ¼ �0.3163.

Using the fourth-rank fabric tensor of the second kind F(4), one can use the

following approximation ρ(n) of the crack distribution (Kanatani 1984a):

Fig. 3 A polar plot showing

the second-order

approximation to the micro-

crack distribution data. This

second-order approximation

was obtained using second-

rank fabric tensors (Reprinted

with permission from

G. Voyiadjis, P. Kattan,

Mech. Mater. Struct.

13, 4 (2006))
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ρ nð Þ ¼ F
4ð Þ
ijklninjnknl (62)

Substituting the values of the components of the fourth-rank fabric tensor of the

second kind F(4) into Eq. 62 and using the data from the circular histogram of Fig. 2,

one obtains the following fourth-order approximation of the crack distribution:

ρ nð Þ ¼ 3:6698cos4θ þ 3:7369 sin4θ þ 18:9474 sin2θ cos2θ
þ 4:1264cos θ sin 3θ � 1:2652cos3θ sin θ

(63)

where 0 	 θ 	 2π. The approximate distribution of Eq. 63 is now plotted as shown

in Fig. 4. A comparison between Figs. 2, 3, and 4 shows the close relationship

between the actual distribution and the approximate distribution.

Next, the precise relationship between the damage tensor components and the

fabric tensors’ components for this example is illustrated. In this example, one can

use the simple expressions for the damage tensor components derived earlier for the

case of plane stress, i.e., Eqs. 54 and 55. First the expression of φ1111 given in

Eq. 54.1 is investigated. It is seen from this equation that the value of φ1111 depends

on four parameters, namely, the fabric tensor parameters m1 and m2, Poisson’s ratio

ν, and the constant k. The values of the two constants are taken in this example as

ν¼ 0.3 and k¼�0.2 (several values of k were investigated and the value used here
was found to give realistic results). Furthermore, in order to simplify the resulting

equation, one may find a relation between m1 and m2 for this particular example as

follows. Using Eq. 13, the following relation is available:

Fig. 4 A polar plot showing

the fourth-order

approximation to the micro-

crack distribution data. This

fourth-order approximation

was obtained using fourth-

rank fabric tensors (Reprinted

with permission from

G. Voyiadjis, P. Kattan,

Mech. Mater. Struct.

13, 4 (2006))
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m1 þ m2 ¼ 2G 0ð Þ þ g1 þ g2 (64)

However, one has G(0) ¼ 1. Substituting the values from Eqs. 56 and 57 into

Eq. 64, one concludes that the sum of m1 and m2 is equal to 4.5 which is a constant

in this example. Therefore, one obtains the following relation:

m2 ¼ 4:5� m1 (65)

Substituting Eq. 65 and the values of ν and k given above into Eq. 54.1, one

obtains the following explicit formula for φ1111:

φ1111 ¼ 1�
m�0:2

1 m�0:2
1 � 0:09 4:5� m1ð Þ�0:2

h i
1� 0:09

(66)

Equation 66 above clearly shows that φ1111 is a function of one variable (m1) for

this example. This function is plotted in Fig. 5 to show clearly that φ1111 is a

monotonically increasing positive function of m1. In realistic problems, usually the

values of m1 are within the range 1.5 < m1 < 3.5, so one can see that in this region

of the plot, the relation is almost linear and the values of φ1111 are between

0 and 0.5.

Fig. 5 Variation of damage tensor components versus m1 (Reprinted with permission from

G. Voyiadjis, P. Kattan, Mech. Mater. Struct. 13, 4 (2006))
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Rewriting Eq. 66 in terms ofm2 instead ofm1, one obtains the following relation:

φ1111 ¼ 1�
4:5� m2ð Þ�0:2

4:5� m2ð Þ�0:2 � 0:09m�0:2
2

h i
1� 0:09

(67)

The plot of Eq. 67 is shown in Fig. 6. It clearly shows that φ1111 is a monoton-

ically decreasing function of m2. Within the specified range 1.5 < m2 < 3.5 that is

found in practical applications, it is seen that the values of φ1111 are positive and

range between 0 and 0.5.

Equations 54.2, 54.3, and 54.4 are now rewritten for this example as follows.

Each equation is rewritten twice – once in terms of m1 and then in terms of m2:

φ1212 ¼
0:3m�0:2

1 m�0:2
1 � 4:5� m1ð Þ�0:2

h i
1� 0:09

(68:1)

φ1212 ¼
0:3 4:5� m2ð Þ�0:2

4:5� m2ð Þ�0:2 � m�0:2
2

h i
1� 0:09

(68:2)

φ2222 ¼ 1�
4:5� m1ð Þ�0:2

4:5� m1ð Þ�0:2 � 0:09m�0:2
1

h i
1� 0:09

(68:3)

Fig. 6 Variation of damage tensor components versus m2 (Reprinted with permission from

G. Voyiadjis, P. Kattan, Mech. Mater. Struct. 13, 4 (2006))
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φ2222 ¼ 1�
m�0:2

2 m�0:2
2 � 0:09 4:5� m2ð Þ�0:2

h i
1� 0:09

(68:4)

φ2121 ¼
0:3 4:5� m1ð Þ�0:2

4:5� m1ð Þ�0:2 � m�0:2
1

h i
1� 0:09

(68:5)

φ2121 ¼
0:3m�0:2

2 m�0:2
2 � 4:5� m2ð Þ�0:2

h i
1� 0:09

(68:6)

The graphs of Eqs. 68.1, 68.2, 68.3, 68.4, 68.5, and 68.6 are also shown

in Figs. 5 and 6. In these two figures, the same trends are observed. In the range

1.5 < m1 < 3.5, one obtains positive realistic results for the damage tensor

components.

Similarly, Eq. 53 is also rewritten twice as follows:

φ3333 ¼ 1� m�0:2
1 4:5� m1ð Þ�0:2

(69:1)

φ3333 ¼ 1� 4:5� m2ð Þ�0:2m�0:2
2 (69:2)

Figures 5 and 6 show also the graphs of Eqs. 69.1 and 69.2, respectively. The

same trends are observed here also in that realistic results are obtained in the range

1.5 < m1 < 3.5. In conclusion, it is noted that in this example, actual values for the

damage tensor components based on the micro-crack distribution data given in the

circular histogram are not possible to obtain.

Application to Parallel Micro-cracks

A second application is presented now to compare the elasticity matrix of two

different sets of parallel micro-cracks. Consider the first set A of parallel micro-

cracks to be oriented such that their normals are at an angle of θ ¼ 0� as shown in

Fig. 7a. Let the second set B of parallel micro-cracks be oriented such that their

normals are at an angle θ ¼ 90� as shown in Fig. 7b. One can calculate both the

fabric tensors and damage tensors for these two sets of micro-cracks and conclude

by calculating and comparing the damage elasticity matrices for these two

orientations.

It should be pointed out that the number of these parallel micro-cracks is

immaterial since an RVE is considered. One will obtain the same fabric tensors

irrespective of the number of these parallel micro-cracks.

It should be noted that the number of micro-cracks N cancels out from the

equations in order to be able to obtain the above matrices. Next, the second-rank

fabric tensors of the third kind G(2) are calculated for both sets as follows noting

that GA
(0) ¼ GB

(0) ¼ 1:
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G
2ð Þ
A ¼

5 0 0

0 �2:5 0

0 0 �2:5

2
4

3
5 (70:1)

G
2ð Þ
B ¼

�2:5 0 0

0 5 0

0 0 �2:5

2
4

3
5 (70:2)

Next, the eigenvalues ofG(2) for each set are calculated using Eqs. 70 as follows:

g1 ¼ 5, g2 ¼ �2:5 for set A (71:1)

g1 ¼ �2:5, g2 ¼ 5 for set B (71:2)

Substituting Eq. 71 along with GA
(0) ¼ GB

(0) ¼ 1 into Eq. 13, one obtains the

values for the fabric tensor parameters m1 and m2 for each set as follows:

m1 ¼ 6, m2 ¼ �1:5 for set A (72:1)

m1 ¼ �1:5, m2 ¼ 6 for set B (72:2)

Using the values of material parameters ν ¼ 0.3 and k ¼ � 0.2, substituting

Eqs. 72 into Eqs. (55), one obtains the following principal values for the damage

tensor φ(4) (special care must be taken when evaluating the negative value �1.5

raised to a negative exponent):

φ 4ð Þ
A ¼

0:5181 0 0

0 0:1383 0

0 0 0:3556

2
4

3
5 (73:1)

ϕ 4ð Þ
B ¼

0:1383 0 0

0 0:5181 0

0 0 0:3556

2
4

3
5 (73:2)

It is clear from the above two matrices that the values of the damage variable are

interchanged for the two cases. This makes sense since changing the orientation

a bFig. 7 Two sets of parallel

micro-cracks: (a) set A with

angle of 0, (b) set B with

angle of 90 (Reprinted with

permission from

G. Voyiadjis, P. Kattan,

Mech. Mater. Struct.

13, 4 (2006))
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from θ ¼ 0� to θ ¼ 90� clearly causes an interchange in the diagonal terms in the

matrix representation of the damage tensor.

Finally, substituting Eqs. 71 along with GA
(0) ¼ GB

(0) ¼ 1 into Eqs. 28 and 34.3,

the components Eijkl of the damage elasticity tensor for each set are calculated and

written in matrix form as follows:

EA ¼
36 λþ 2μð Þ �9λ 0

�9λ 2:25 λþ 2μð Þ 0

0 0 2μ

2
4

3
5 (74:1)

EB ¼
2:25 λþ 2μð Þ �9λ 0

�9λ 36 λþ 2μð Þ 0

0 0 2μ

2
4

3
5 (74:2)

Notice that the two elasticity matrices in Eqs. 74 are identical except that the first

two diagonal terms are interchanged. This interchange effect results from changing

the orientation of the parallel micro-cracks from θ ¼ 0� to θ ¼ 90�. Since the two
elasticity matrices are different for the two sets of distributions, one expects to

obtain different stresses and strains in each case. Therefore, it is clear that the model

presented here accounts for this clear anisotropy in the microstructure.

Thermodynamics and General Damage Evolution

In this section, thermal elastic damage material behavior is considered. A thermo-

dynamic framework is presented for damage evolution. The dependent constitutive

variables are function of the strain tensor « (totally elastic), the absolute tempera-

ture T, the temperature gradient vector ∇iT, and a number of phenomenological

state variables Nk(k ¼ 1, 2, 3). Hence, within the thermodynamic framework and

considering the assumption of infinitesimal displacements/strain relationships, the

Helmholtz free energy density function Ψ can be written as follows (Coleman and

Gurtin 1967; Lemaitre and Chaboche 1990; Lubliner 1990; Doghri 2000; Voyiadjis

and Kattan 1999):

Ψ ¼ eΨ εij,T,∇iT,Nk

� �
(75)

In order to describe the various micro-damage mechanisms, a finite set of

internal state variables Nk representing either a scalar or a tensorial variable are

assumed such that

Nk ¼ N


k Ξnð Þ (76)

where Ξn is a set of damage hardening internal state variables. This set of macro

internal state variables Ξn is postulated as follows:
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Ξn ¼ eΞn r,Γijkl,φijkl

� �
(77)

where r denotes the accumulative damage, Γ denotes the flux of the residual stress

in the damage growth process, and φ denotes the fourth-rank damage tensor. These

damage hardening variables are introduced in the Helmholtz free energy density in

order to provide sufficient details of the deformation defects (micro-cracks and

micro-voids) and their interactions in order to properly (i.e., physically) character-

ize the material microstructural behavior. These variables will provide an adequate

characterization of these defects in terms of size, orientation, distribution, spacing,

interaction among defects, and so forth.

The determination of the evolution of the assumed internal state variables is the

main challenge to modern constitutive modeling. This can be effectively achieved,

so far, through the use of the thermodynamic principles for the development of a

continuum thermoelastic damage-based model. That is, use is made of the

balancing laws, the conservation of mass, linear and angular momentum, and the

first and second laws of thermodynamics (Coleman and Gurtin 1967; Lemaitre and

Chaboche 1990; Lubliner 1990; Doghri 2000; Voyiadjis and Kattan 1999).

The Clausius-Duhem inequality can be written for our case as follows:

σij _εij � ρ _Ψþ η _T
� �� 1

T
qi∇iT � 0 (78)

where ρ, η, and q are the mass density, specific entropy, and the heat flux vector,

respectively. Meanwhile, Ψ, T, and η are related by

Ψ ¼ e� Tη (79)

where e is the internal energy density. Next, it is assumed that the decomposition of

the specific free energy density function Ψ into thermoelastic and thermo-damage

parts is as follows:

eΨ εij,T,∇iT,Nk

� � ¼ eΨte
εij,T,∇iT,φijkl

� �þ eΨtd
T,∇iT, r,Γij,φijkl

� �
(80)

where Ψts is the thermoelastic stored energy while Ψtd is the energy stored due to

material hardening due to the damage mechanisms.

According to the definition given above for Ψ, the time derivative of Eq. 75 with

respect to its internal state variables is given by

_Ψ ¼ @Ψ
@εij

_εij þ @Ψ
@T

_T þ @Ψ
@∇iT

∇i
_T þ @Ψ

@Nk

_Nk (81)

where (from Eq. 76)
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@Ψ
@Nk

_Nk ¼ @Ψ
@Ξn

_Ξn (82)

with (from Eq. 77)

@Ψ
@Ξn

_Ξn ¼ @Ψ
@r

_r þ @Ψ
@Γijkl

_Γijkl þ @Ψ
@φijkl

_φijkl (83)

Substituting the rate of the Helmholtz free energy density (Eq. 81) into the

Clausius-Duhem inequality (Eq. 78), one obtains the following thermodynamic

constraint:

σij � ρ
@Ψ
@εij

� �
_εij � ρ

@Ψ
@T

þ η
� �

_T � ρ
@Ψ

@∇iT
∇i

_T � ρ
@Ψ
@Nk

_Nk � qi
T
∇T � 0 (84)

Assuming that the axiom of entropy production holds, then the above inequality

equation results in the following thermodynamic state laws:

σij ¼ ρ
@Ψ
@εij

(85:1)

η ¼ � @Ψ
@T

(85:2)

qi
_T
¼ ρ

@Ψ
@∇iT

(85:3)

X
k
¼ ρ

@Ψ
@Nk

k ¼ 1, 2, 3ð Þ (85:4)

where the above equations describe the relations between the state variables and

their associated thermodynamic conjugate forces. Note that the three thermody-

namic conjugate forces ∑k denote the following three quantities: K which is

associated with r, Hijkl which is associated with Γijkl, and Yijkl which is associated

with φijkl. The stress σ is a measure of the elastic changes in the internal structure,

while Y is a measure of the elastic damage changes in the internal structure

resulting from crack closure and void contraction during the unloading process.

The conjugate forces K and H are measures of the damage changes in the internal

structure of the material.

Substituting Eqs. 85 into Eq. 84, one reduces the Clausius-Duhem inequality to

express the fact that the dissipation energy Π is necessarily positive:

Π ¼ �Πint � qi

∇iT
T þ∇i

_T

_T

 !
� 0 (86)

where the internal dissipation energy Πint can be written as follows:
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Πint ¼
X3
k¼1

Σk
_Nk ¼ K _r þ Hijkl

_Γijkl � Yijkl _φijkl � 0 (87)

One may rewrite the dissipation energy Π as the summation of dissipations due

to damage and thermal effects as follows:

Π ¼ Πd þ Πth (88)

where

Πd ¼ �K _r � Hijkl
_Γijkl þ Yijkl _φijkl � 0 (89)

Πth ¼ �qi
∇iT

T
þ∇i

_T
_T

� �
� 0 (90)

Complementary laws can be related to the dissipation processes given by

Eqs. 89 and 90, which implies the existence of the dissipation potential expressed

as a continuous and convex scalar valued function of the flux variables as shown

below:

Θ _Nk, qi=T
� � ¼ Θd _Nk

� �þ Θth T,∇iTð Þ (91)

The complementary laws are then expressed by the normality property as

follows:

X
k
¼ � @Θd

@ _Nk

(92)

qi
_T
¼ � @Θth

@ ∇iTð Þ (93)

Using the Legendre-Fenchel transformation of the dissipation potential Θ, one
can define the corresponding dual potential with respect to the force variables as

follows:

Θ� P
k,∇iT

� � ¼ Π
P

k, qi;
_Nk, T,∇iT

� �� Θ
�
_Nk,T,∇iT

�
¼ Θ�d P

k

� �þ Θ�th�T,∇iT
� (94)

from which the complementary laws in the form of the evolution laws of the flux

variables as a function of the dual variables can then be written as follows:

� _Nk ¼ @Θ�d

@
P

k

(95)
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�∇iT
_T

¼ @Θ�th

@qi
(96)

It is clearly seen that the definitions of Ψ, Θ�d, and consequently _Nk k ¼ 1, 2, 3ð Þ
are essential features of the formulation in order to describe the thermomechanical/

microstructural behavior of the material involved in the deformation and damage

processes. The associative evolution law of φ can be obtained by utilizing the

calculus of several variables with the Lagrange multiplier _λd . The dissipation

function Πd (Eqs. 88 and 89) is subjected to the constraint g ¼ 0 (Voyiadjis and

Kattan 1990, 1992, 1999; Kattan and Voyiadjis 1990, 1993, 2001b) such that the

following objective function is formed:

Ω ¼ Πd � _λdg (97)

where g is the damage surface (i.e., criterion) to be defined later. One now makes

use of the maximum dissipation principle which states that the actual state of the

thermodynamic force Y is that which maximizes the dissipation function over all

other possible admissible states. Therefore, the objective function Ω is maximized

by using the following necessary condition:

@Ω
@Yijkl

¼ 0 (98)

Substitution of Eq. 97 into Eq. 98 along with Eq. 89 yields the thermodynamic

law corresponding to the evolution of the damage tensor _φ as follows:

_φijkl ¼ _λd
@g

@Yijkl
(99)

The above equation represents the evolution equation for the fourth-rank dam-

age tensor φ(4). On the other hand, an evolution equation for the fourth-rank

damage tensor φ(4) can be written in terms of the evolution of the fabric tensors.

This is performed by taking the time derivative of Eq. 33.2 as follows:

_φ 4ð Þ ¼ �2 λ G 0ð ÞI 2ð Þ þG 2ð Þ
� �

� _G
0ð Þ
I 2ð Þ þ _G

2ð Þ� �h
þ 2μ G 0ð ÞI 2ð Þ þG 2ð Þ

� �
��
�

_G
0ð Þ
I 2ð Þ þ _G

2ð ÞÞ
� i

: E
�1

(100)

The accumulative damage rate _r may be defined as follows:

_r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_φijkl _φijkl

q
(101)
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The thermoelastic energy Ψte can be postulated as follows:

Ψte ¼ 1

2ρ
εijEijkl φð Þεkl � 1

ρ
βijεij T � Trð Þ � ηr T � Trð Þ � 1

2
c T � Trð Þ2

� 1

2ρ
kij∇iT∇jT (102)

On the other hand, the thermo-damage energy Ψtd is assumed as follows:

ρΨtd ¼ 1

2
a1r

2V þ 1

2
a2ΓijklΓijklV (103)

where E(φ) is the fourth-rank damage elasticity tensor, β is the tangent conjugate

tensor of thermal dilatation (Lubliner 1990), c is the coefficient of thermal expan-

sion, ηr is the reference entropy, Tr is the reference temperature, a1 and a2 are

material-dependent constants which are considered independent of temperature,

k ¼ kδ is the heat conductivity second-rank tensor (k being the conductivity

coefficient and δ is the Kronecker delta), and V is the homologous temperature

defined as V ¼ 1 � (T/Tm)
n, where Tm is the melting temperature and n is the

temperature softening component.

The proposed definition of Ψ allows the derivation of the constitutive equations

and the internal dissipation described next. The constitutive equations for stress

(Eq. 85.1) can be written from the thermodynamic potential of Eq. 102 as follows:

σij ¼ Eijklεkl � βij T � Trð Þ (104)

where

Eijkl ¼ ρ
@2Ψ

@εij@εkl
(105)

βij ¼ �ρ
@2Ψ
@εij@T

(106)

The constitutive equations for the entropy (Eq. 85.2) can be written from the

thermodynamic potential of Eqs. 102 and 103, assuming a decoupling between the

thermal effects induced through elasticity and damage, such that

η ¼ ηte þ ηtd (107)

where

ηte ¼ ηr þ c T � Trð Þ þ 1

ρ
βijεij (108)
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ηtd ¼ 1

2ρ
a1r

2 þ a2ΓijklΓijkl

� � @V
@T

(109)

In the above equation, @V@T is given by

@V

@T
¼ n

Tm

T

Tm

� �n�1

(110)

The constitutive equation for the heat flux vector q can be obtained from

Eq. 85.3 as follows:

qi ¼ �kij∇jT (111)

which is the well-known Fourier heat conduction law. The negative sign indicates

that the heat flow is opposite to the direction of temperature increase.

The next important step is the selection of the appropriate form of the damage

potential function in order to establish the desired constitutive equations that

describe the mechanical behavior of the material. In order to be consistent and to

satisfy the generalized normality rule of thermodynamics, a proper analytical form

for the damage potential function needs to be postulated to obtain evolution

equations of the assumed flux variables, such that

G ¼ gþ 1

2
h1K

2 þ 1

2
h2HijklHijkl (112)

where h1 and h2 are material constants used to adjust the units of the equation and

g is the damage surface (criterion) defined as follows:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yijkl � Hijkl

� �
Yijkl � Hijkl

� �q
� l� K 	 0 (113)

where the damage forces Y and H characterize damage evolution and damage

kinematic hardening; l is the initial damage threshold as a function of temperature

which has the form l ¼ l0V, where l0 is the initial damage threshold at zero absolute

temperature; while K is the damage isotropic hardening function.

The model response in the damage domain is then characterized by the

Kuhn-Tucker complementary conditions as follows:

g 	 0, _λd � 0, _λdg ¼ 0 (114)

In order to derive the hardening evolution equations associated with the damage

process, Eq. 112 is substituted into the evolution law of _r so that one obtains the

following relation:

_r ¼ _λd 1� h1Kð Þ (115)
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The evolution equations for the damage isotropic hardening function K can be

obtained by first making use of Eq. 115 and substituting it into the evolution law for
_K so that one can obtain the following relation:

_K ¼ a1 1� h1Kð Þ _λdV (116)

Furthermore, the evolution equation for the damage kinematic hardening param-

eter can be obtained by using Eq. 112 and substituting it into the evolution law of _Γ
while realizing that @g/@H ¼ �@g/@Y (clear from Eq. 113) and using Eq. 99 to

obtain

_Γijkl ¼ _φijkl � h2 _λ
d
Hijkl (117)

Finally, it can be easily seen that by substituting Eq. 117 into the evolution law

of _H, one may obtain the following relation:

_Hijkl ¼ a2 _φijkl � h2a2 _λ
d
Hijkl

� �
V (118)

Equations 115, 116, 117, and 118 represent the evolution laws for the various

parameters involved in the damage process and damage hardening. One may

continue and derive an explicit expression for the thermodynamic force Y. But

this is not performed here as this step may limit the theory by invoking the effective

stress space and the special case of using the damage effect tensor.

Summary and Conclusions

A new theory of damage mechanics in terms of fabric tensors is postulated within

the framework of classical elasticity assuming small strains. The new theory is

called damage mechanics with fabric tensors. First, a review of the concepts of fiber

tensors is presented. Then, a general hypothesis is postulated in damage mechanics

where it is seen that the two hypotheses of elastic strain equivalence and elastic

energy equivalence are obtained as special cases. This is followed by the derivation

of an explicit expression of the fourth-rank damage tensor of the zero-rank and

second-rank fabric tensors. This is then followed by the investigation of the case of

plane stress.

An application of the theory to micro-crack distributions is presented next. The

data for a micro-crack distribution is presented first in the form of a circular

histogram (rose diagram). This histogram is then used to determine the values of

the components of the second-rank and fourth-rank fabric tensors. Then the com-

ponents of the damage tensor are calculated using the determined values of the

fabric tensor. Two approximations of the micro-crack distributions are also given –

one is a second-order approximation based on the second-rank fabric tensor, while

the other one is a fourth-order approximation based on the fourth-rank fabric tensor.
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These two approximations of the distribution are then compared with the real

distribution given in the circular histogram. Finally, certain relationships are

derived between the damage tensor components and the fabric tensor parameters,

and several of these relationships are plotted in a graphical format.

Another application of the theory is presented to compare two sets of parallel

micro-crack distributions with two different orientations. In this case, it is seen that

interchanging the orientation of the parallel micro-cracks causes an interchange in

the first two diagonal terms in the elastic stiffness matrix.

Finally, this work is concluded with an exposition of thermodynamical concepts

and derivation of the equations of damage evolution. This is performed in a

mathematically consistent manner that is based on sound thermodynamic princi-

ples. It should be pointed out that this work will form the basis for future work in

this area including visualization and finite element implementation with application

to composite materials.
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Abstract

In this chapter, the evolution of fabric tensors, based on micro-crack distribu-

tions, is formulated within the framework of thermodynamics. The exact defi-

nition of fabric tensors based on micro-crack distributions is presented. This

definition is seen to incorporate both the orientation and length of a micro-crack.

In this regard, the micro-crack distribution is assumed to be radially symmetric,

i.e., symmetric about a line through the origin. A thermodynamic force that is

associated with the fabric tensor is defined and utilized in the derivation of the

evolution equations. The application of the theory to the case of uniaxial tension

is derived and presented.

Specific uncoupled equations for the evolution of the length and orientation

of micro-cracks are also derived. In this regard, some interesting results are

obtained. It is concluded that the micro-crack length and orientation cannot

evolve simultaneously for the same set of micro-cracks. However, two different
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sets of micro-cracks may be considered in the same representative volume

element (RVE) where in one set the micro-crack length evolves, while in the

second set the micro-crack orientation evolves.

Introduction

Satake (1982) applied the concept of fabric tensors to granular materials. The

anisotropy due to the fabric (of the distributed data like crack distributions or

granular particles) is represented by a tensor in terms of the normals (to the cracks

or to the contact surfaces in granular materials). This tensor is usually called the

fabric tensor (Satake 1982; Kanatani 1984a; Oda 1982). The fabric tensor is usually

related to the probability density function of the distributed data (crack normals or

contact normals).

Kanatani (1984a) formulated the concept of fabric tensors based on a rigorous

mathematical treatment. He used fabric tensors to describe distributions of direc-

tional data like crack distributions in a damaged material element. He applied the

least square approximation (a well-known statistical technique) to derive equations

for the various fabric tensors he postulated. He defined three types of fabric tensors:

fabric tensors of the first kind, denoted by N; fabric tensors of the second kind,

denoted by F; and fabric tensors of the third kind, denoted by D. He derived

the exact mathematical relations between these three types of fabric tensors. The

work of Kanatani (1984a) on fabric tensors is very important and is used

extensively here.

Zysset and Curnier (1995, 1996) formulated an alternative model for anisotropic

elasticity based on fabric tensors. Zysset and Curnier (1995) introduced a general

approach for relating the material microstructure to the fourth-rank elasticity tensor

based on the Fourier series decomposition. They proposed an approximation based

on a scalar and a symmetric, traceless second-rank fabric tensor. Using the repre-

sentation theorem for anisotropic functions with tensorial arguments, Zysset and

Curnier (1995) derived a general expression for the elastic free energy and

discussed the resulting material symmetry in terms of the fabric tensors. Finally,

they derived a general explicit expression for the fourth-rank elasticity tensor in

terms of the fabric tensor. This last result is very important and is used

extensively here.

Lubarda and Krajcinovic (1993) applied the definitions of fabric tensors

(Kanatani 1984a) to crack density distributions. They actually recast Kanatani’s

general work on directional data (Kanatani 1984a) in terms of crack distributions.

Lubarda and Krajcinovic (1993) examined the relationship between a given, exper-

imentally determined, distribution of cracks and the scalar, second-rank and fourth-

rank fabric tensors. They employed the usual representation of experimentally

measured micro-crack densities in planes with different orientations in the form

of circular histogram (rose diagram). They then used the data contained in the

circular histogram to approximate the distribution function defined on a unit sphere

and centered in a material point. They solved several examples with different crack
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distributions to illustrate this point. They assumed that one of the three types of

fabric tensors is identical to the damage tensor of continuum damage mechanics.

The damage variable (or tensor), based on the effective stress concept, represents

average material degradation which reflects the various types of damage at the

microscale level like nucleation and growth of voids, cracks, cavities, micro-cracks,

and other microscopic defects (Chaboche 1981; Kattan and Voyiadjis 1990, 1993;

Lemaitre 1971; Lemaitre and Chaboche 1990; Rabotnov 1969; Voyiadjis and

Kattan 1990, 1992).

For the case of isotropic damage mechanics, the damage variable is scalar and

the evolution equations are easy to handle. However, it has been shown by Cauvin

and Testa (1999) that two independent damage variables must be used in order to

describe accurately and consistently the special case of isotropic damage. It has

been argued (Lemaitre 1984) that the assumption of isotropic damage is sufficient

to give good predictions of the load-carrying capacity, the number of cycles, or the

time to local failure in structural components. However, the development of

anisotropic damage has been confirmed experimentally (Hayhurst 1972; Chow

and Wang 1987; Lee et al. 1985) even if the virgin material is isotropic. This has

prompted several researchers to investigate the general case of anisotropic damage

(Voyiadjis and Kattan 1996, 1999; Kattan and Voyiadjis 2001a, b).

In continuum damage mechanics, usually a phenomenological approach is

adopted. In this approach, the most important concept is that of the representative

volume element (RVE). The discontinuous and discrete elements of damage are not

considered within the RVE; rather their combined effects are lumped together

through the use of a macroscopic internal variable. In this way, the formulation

may be derived consistently using sound mechanical and thermodynamic

principles.

In this work, the evolution equations of fabric tensors are formulated based on

sound thermodynamic principles. For this purpose, a general thermodynamic

force that is associated with the fabric tensor is defined. Then, both the fabric

tensor and its associated thermodynamic force are used in the derivation of the

evolution equations. In this chapter, the exact definition of fabric tensors based on

micro-crack distributions is presented. This definition is seen to incorporate both

the orientation and length of a micro-crack. In this regard, the micro-crack

distribution is assumed to be radially symmetric, i.e., symmetric about a line

through the origin.

The equations of thermodynamics are employed in order to derive the exact

evolution equations of the fabric tensors defined in Part I. In this regard, a thermo-

dynamic force that is associated with the fabric tensor is defined and utilized in the

derivation of the evolution equations. The application of the theory to the case of

uniaxial tension is derived in this chapter.

It should be noted that the theory presented here is for general directional data.

When applying this theory for micro-crack distributions, then the theory depends

exclusively on the orientations and the lengths of micro-cracks. This theory does

not consider the opening and closing of the micro-cracks, the closeness of the

micro-cracks, and the interaction among the micro-cracks. These effects are beyond
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the scope of this work. Detailed description of the theory that depends exclusively

on the orientation of micro-cracks can be found in this chapter.

Specific uncoupled equations for the evolution of the length and orientation of

micro-cracks are also derived. In this regard, some interesting results are obtained.

It is concluded that the micro-crack length and orientation cannot evolve simulta-

neously for the same set of micro-cracks. However, two different sets of micro-

cracks may be considered in the same RVE where in one set the micro-crack length

evolves, while in the second set the micro-crack orientation evolves.

The tensor notation used here is as follows. All vectors and tensors appear in

bold type. The following operations are also defined. For second-rank tensors A and

B, the following notation is used: (A � B)ij ¼ Aij � Bij, A : B ¼ AijBij, (A �
B)ijkl ¼ AijBkl. For fourth-rank tensors C and D, the following notation is used:

(C � D)ijkl ¼ Cijkl � Dijkl, (C : D)ijkl ¼ CijmnDmnkl. For second-rank tensor A and

fourth-rank tensor C, the following notation is used: (C : A)ij ¼ CijklAkl. For

damage tensors, fabric tensors, and identity tensors, a superscript with braces is

used to indicate the order of the tensor. For all other tensors, the order of the tensor

is clear from the text and equations.

Review of Fabric Tensors and the Mesoscopic Theory

In this section, a solid with micro-cracks is investigated and a representative

volume element (RVE) is considered as shown in Fig. 1a. In addition, the assump-

tions of the mesoscopic theory of micro-cracks of Papenfuss et al. (2003) are

adopted and summarized as follows:

1. The micro-cracks are assumed to have a linear cross section as shown in

Fig. 1b. This assumption arises due to the fact that the opening of the micro-

crack does not have an effect on the elastic stiffness in this theory. This also

means that the opening and closing of micro-cracks are not considered in this

theory.

2. The diameter of each micro-crack is much smaller than the linear dimension of

the RVE. Therefore, the micro-cracks may be considered as part of the micro-

structure of the RVE. It is assumed that the micro-cracks are small enough such

that there is a whole distribution of micro-crack sizes and orientations in

the RVE.

a b

Fig. 1 A typical micro-crack

distribution (Reprinted with

permission from

G. Voyiadjis, P. Kattan,

Mech. Res. Commun.

34, 2 (2007))
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3. The micro-cracks are fixed to the material. This means that the motion of micro-

cracks is directly linked to the motion of the RVE.

4. All micro-cracks within the RVE move and rotate with the same velocity. The

micro-cracks cannot rotate independently of the material.

5. The behavior of the material of the RVE is linear elastic. Furthermore, small

elastic strains are assumed throughout the RVE.

Consider a typical penny-shaped micro-crack “i” as shown in Fig. 2a. Utilizing

assumption 1 above, one can reduce the geometry of the micro-crack as shown in

Fig. 2b. Let n(i) be a unit vector normal to the surface of the micro-crack. Then, the

vector n(i) represents the orientation of micro-crack “i.” Let the length of the micro-

crack be denoted by ri which is considered to be a scalar quantity. Note that in

Fig. 2, the relation ni
(+) ¼ �ni

(�) holds.

The above definition is a typical definition for a micro-crack. However, Oda

(1982) considered ri to be defined as follows:

1. Consider a flat micro-crack “i” with an occupied area Ai as shown in Fig. 3a.

2. The micro-crack consists of two micro-crack surfaces, each of which has a unit

normal vector n(i) or �n(i).

3. Replace the micro-crack with an equivalent circle with the same occupied area

Ai as shown in Fig. 3b.

4. The radius of the equivalent circle ri is calculated by the relation ri ¼
ffiffiffiffiffiffiffiffiffiffi
Ai=π

p
.

Consider again the RVE of the micro-crack distribution. The micro-crack

density distribution function f(n) varies in all direction and is an orientation

distribution function (Qiang et al. 2001). Let θ and ϕ be the spherical coordinates

n(i)+

a b

n(i)+

n(i)− n(i)−

ri
ri

βi(x)

Fig. 2 Geometry of a micro-crack (Reprinted with permission from G. Voyiadjis, P. Kattan,

Mech. Res. Commun. 34, 2 (2007))
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of the unit sphere as shown in Fig. 4. Then, any possible direction n may be

represented by one point on the surface of the unit sphere where

n1 ¼ sin θ cosϕ (1:1)

n2 ¼ sin θ sinϕ (1:2)

n3 ¼ cos θ (1:3)

Consider an infinitesimal area on the unit sphere denoted by dn where dn ¼
sin θdθdϕ. This small area represents a bundle of directions about the unit

vector n. The number of micro-cracks in this infinitesimal area is given by

n(i)

a b

n(i)

ri

Si

Ai
Ai

Fig. 3 Concept of a micro-crack when compared to a spherical void (Reprinted with permission

from G. Voyiadjis, P. Kattan, Mech. Res. Commun. 34, 2 (2007))

unit sphere

θ

φ
Fig. 4 Spherical coordinates

on the unit sphere (Reprinted

with permission from

G. Voyiadjis, P. Kattan,

Mech. Res. Commun.

34, 2 (2007))
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f(n)dn/(4π). Therefore, the micro-crack volumetric density fo in the RVE is

given by

f o ¼
1

4π

þ
f nð Þdn ¼ 1

4π

ðπ
0

ð2π
0

f nð Þ sin θdθdϕ (2)

If the micro-crack distribution is uniform, then f(n) ¼ fo. Next, the definition of

the fabric tensor for this micro-crack distribution is considered. In the definition of

the fabric tensor, both the orientation ni and length ri of each micro-crack are

included. Therefore, the zero-rank, second-rank, and fourth-rank fabric tensors are

defined by (Qiang et al. 2001; Yang et al. 2004)

G 0ð Þ ¼ 1

V

þ
i

r3i dn (3:1)

G 2ð Þ ¼ 1

V

þ
i

r3i n
ið Þn ið Þdn (3:2)

G 4ð Þ ¼ 1

V

þ
i

r3i n
ið Þn ið Þn ið Þn ið Þdn (3:3)

(no sum over i)

where V is the volume of the RVE.

It is clear from Eq. 3.1 thatG(0) is a scalar. Using indicial notation, one may write

the components of the second-rank and fourth-rank fabric tensors G(2) and G
(4),

respectively, as follows:

G 2ð Þ
mn ¼ 1

V

þ
i

r3i n
ið Þ
m n ið Þ

n dn (4:1)

G
4ð Þ
mnkl ¼

1

V

þ
i

r3i n
ið Þ
m n ið Þ

n n
ið Þ
k n

ið Þ
l dn (4:2)

It is noted that the fabric tensors G(α) (α ¼ 0, 2, 4) are exactly the fabric tensors

of the first kind of Kanatani (1984a, b). However, Kanatani considered only the

orientation vectors without the length parameter. It should be noted that the fabric

tensors are not independent. For example, a second-rank fabric tensor may be fully

determined by a fourth-rank fabric tensor (Qiang et al. 2001; Yang et al. 2004). In

using fabric tensors in constitutive equations, it is essential that the state variables

be independent with each other in the constitutive equations (He and Curnier 1995;

Voyiadjis and Kattan, 2006).
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Next, the evolution equations of fabric tensors using thermodynamic principles

of Coleman and Gurtin (1967) and Doghri (2000) derived. Consider a general even-

rank fabric tensor G(α) where α ¼ 0, 2, 4, . . . as defined in equations (3). Let ψ be

the Helmholtz free energy density function. Define a generalized even-rank

tensorial thermodynamic force H(α), (α ¼ 0, 2, 4, . . .) that is associated with the

fabric tensor G(α) as follows:

H αð Þ ¼ @ψ

@G αð Þ (5)

where ψ � ψ(G(α)). Using indicial notation, Eq. 5 may be written explicitly as

follows for α ¼ 0, 2, 4:

H 0ð Þ ¼ @ψ

@G 0ð Þ (6:1)

H
2ð Þ
ij ¼ @ψ

@G
2ð Þ
ij

(6:2)

H
4ð Þ
ijkl ¼

@ψ

@G
4ð Þ
ijkl

(6:3)

Next, one assumes the existence of m damage surfaces where each surface is

denoted by the scalar-valued function g(α), where α ¼ 0, 2, 4, . . ., m. The damage

criterion g(α) is defined as follows:

g αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
H αð Þ : J αð Þ : H αð Þ

r
� l αð Þ

o � L αð Þ l αð Þ
� �

¼ 0 (7)

where J(α) is a constant tensor represented by the following 6 � 6 matrix:

J½ � �

1 μ μ 0 0 0

μ 1 μ 0 0 0

μ μ 1 0 0 0

0 0 0 2 1� μð Þ 0 0

0 0 0 0 2 1� μð Þ 0

0 0 0 0 0 2 1� μð Þ

2
6666664

3
7777775

(8)

where μ is a material constant satisfying �1
2
� μ � 1. In Eq. 7, the scalar function

L(α) is a damage strengthening criterion that is a function of the overall damage

parameter l(α). For the case α ¼ 0, Eq. 7 is rewritten as follows:

g 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
H 0ð Þ : J 0ð Þ : H 0ð Þ

r
� l 0ð Þ

o � L 0ð Þ l 0ð Þ
� �

¼ 0 (9)

where J(0) is a scalar parameter given as the first term in Eq. 8, i.e., J(0) ¼ 1.

Therefore, Eq. 8 reduces to
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g 0ð Þ ¼ H 0ð Þffiffiffi
2

p � l 0ð Þ
o � L 0ð Þ l 0ð Þ

� �
¼ 0 (10)

To simplify the generated expressions for g(α) given in Eq. 7, one may assume

that L(α)(l(α)) ¼ L(l ) where l(0) ¼ l(2) ¼ l(4) ¼ . . . ¼ l(α) ¼ l.
Next, consider the power of dissipation function Π given as follows:

Π ¼ �
X

α¼0, 2, 4, ...
H αð Þ : dG αð Þ �

X
α¼0, 2, 4, ...

L αð Þdl αð Þ (11)

Define the objective functions Ψ such that

Ψ ¼ Π�
X

α¼0, 2, 4, ...
dλ αð Þ 	 g αð Þ (12)

where dλ(α), (α ¼ 0, 2, 4, . . .) are scalar Lagrange multipliers. In order to

extremize the objective function Ψ, the following conditions are applied:

@Ψ
@H αð Þ ¼ 0 (13:1)

@Ψ
@L αð Þ ¼ 0 (13:2)

Substituting Eqs. 11 and 12 into Eq. 13, one obtains

X
α¼0, 2, 4, ...

dG αð Þ ¼ �
X

α¼0, 2, 4, ...
dλ αð Þ @g

αð Þ

@H αð Þ (14)

Equation 14 represents a sum of the evolutions of all fabric tensors of rank α,
(α ¼ 0, 2, 4, . . .). At this stage, one needs to make the assumption of decoupled

evolution of these fabric tensors. Based on this assumption, the summation signs in

Eq. 14 may be dropped to obtain

dG αð Þ ¼ �dλ αð Þ @g
αð Þ

@H αð Þ , α ¼ 0, 2, 4, . . . (15)

Equation 15 represents an elementary form of the evolution of the fabric tensor

of rank α. Next, the scalar Lagrange multiplier dλ(α) is evaluated. Substituting

Eqs. 11 and 12 into Eq. 13.2 and simplifying, one obtains

X
α¼0, 2, 4, ...

dl αð Þ ¼ �
X

α¼0, 2, 4, ...
dλ αð Þ @g

αð Þ

@L αð Þ (16)

Again, the assumption of decoupling of all the dl(α) is made, (α ¼ 0, 2, 4, . . .).
Therefore, one may drop the summation signs in Eq. 16 to obtain
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dl αð Þ ¼ �dλ αð Þ @g
αð Þ

@L αð Þ , α ¼ 0, 2, 4, . . . (17)

Using Eq. 7, it is noted that @g(α)/@L(α) ¼ �1. Substituting this result into

Eq. 17, one obtains

dl αð Þ ¼ dλ αð Þ, α ¼ 0, 2, 4, . . . (18)

Actually, the general form of Eq. 18 is

X
α¼0, 2, 4, ...

dl αð Þ ¼
X

α¼0, 2, 4, ...
dλ αð Þ (19)

However, by employing the assumption of the independence of Lagrange mul-

tipliers, one may arrive at Eq. 18. Next, the Lagrange multiplier dλ(α) is evaluated.
Using the consistency condition dg(α) ¼ 0 where g(α) � g(α)(H(α), L(α)) as given

in Eq. 7, one obtains

@g αð Þ

@H αð Þ : dH
αð Þ þ @g αð Þ

@L αð Þ dL
αð Þ ¼ 0 (20)

Using the chain rule, one may write

dL αð Þ ¼ dL αð Þ

dl αð Þ dl
αð Þ (21)

Substituting the result that @g(α)/@L(α) ¼ �1 along with Eq. 21 into Eq. 20, one

obtains

@g αð Þ

@H αð Þ : dH
αð Þ � dL αð Þ

dl αð Þ dl
αð Þ ¼ 0 (22)

Using Eq. 7, one may write the following derivative:

@g αð Þ

@H αð Þ ¼
J αð Þ : H αð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2H αð Þ : J αð Þ : H αð Þ
p (23)

Substituting Eq. 23 into Eq. 22, simplifying, and using Eq. 18, one obtains

dλ αð Þ ¼ dl αð Þ ¼ J αð Þ : H αð Þ : dH αð Þ

dL αð Þ

dl αð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H αð Þ : J αð Þ : H αð Þ

q (24)

Substituting the expression of the Lagrange multiplier of Eq. 24 into Eq. 14,

while also using Eq. 23, one obtains
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dG αð Þ ¼ � 2J αð Þ : H αð Þ : dH αð Þ : J αð Þ : H αð Þ

dL αð Þ

dl αð Þ H
αð Þ : J αð Þ : H αð Þ

, α ¼ 0, 2, 4, . . . (25)

where dL(α)/dl(α) is considered to be the material damage parameter. For more

details on the evaluation of this parameter and its physical significance, the reader

is referred to the book by Voyiadjis and Kattan (1999). Equation 25 represents the

evolution of the fabric tensor dG(α) in terms of the evolution of its associated

thermodynamic tensorial function dH(α). In order to proceed further, the evaluation

of the tensor H(α) and the derivation of an appropriate expression for its evolution

dH(α) need more elaboration. The generalized thermodynamic tensorial force

function H(α) that is associated with the fabric tensor G(α) is assumed here to be a

function of the Cauchy stress tensor σ in the deformed and damaged configuration

of the material, i.e., H(α) � H(α)(G(α), σ). Therefore, one obtains the following by

evaluating the differential dH(α):

dH αð Þ ¼ @H αð Þ

@G αð Þ : dG
αð Þ þ @H αð Þ

@σ
: dσ (26)

Substituting Eq. 25 for dG(α) into Eq. 26, simplifying, and solving for dH(α), one

obtains

dH αð Þ ¼ I 2αð Þ � @H αð Þ

@G αð Þ : P
2αð Þ

 !�1

:
@H αð Þ

@σ
: dσ (27)

where P(2α) is an even-rank tensor of rank 2α given by

P 2αð Þ ¼ � 2J αð Þ : H αð Þ : J αð Þ : H αð Þ

dL αð Þ

dl αð Þ H
αð Þ : J αð Þ : H αð Þ

(28)

and I(2α) is the identity tensor of rank 2α.
It should be noted that the tensor P(2α) may be directly derived from Eq. 25 such

that

dG αð Þ ¼ P 2αð Þ : dH αð Þ (29)

Finally, substituting Eq. 27 into Eq. 29, one obtains

dG αð Þ ¼ L αþ2ð Þ : dσ (30)

where the tensor L(α+2) is of rank (α + 2) and is given by
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L αþ2ð Þ ¼ P 2αð Þ : I 2αð Þ � @H αð Þ

@G að Þ : P
2αð Þ

 !�1

:
@H αð Þ

@σ
(31)

Equation 30 represents the general evaluation law for the fabric tensor G(α) of

rank α. It is clear from this equation that once the loading evolution dσ is deter-

mined, one may evaluate the evolution of the fabric tensor using Eqs. 30 and 31.

However, in this case, the tensor L(α+2) needs to be evaluated from Eq. 31, which is

not an easy task. Finally, it should be noted that the evolution of fabric tensors of

micro-cracks based on thermodynamic principles has been addressed by Yang

et al. (1999, 2005) and Swoboda and Yang (1999). However, they employed a

different approach than the one used here.

Evolution of Fabric Tensors for the Case of Uniaxial Tension

In this section, the evolution equation derived in section “Review of Fabric Tensors

and the Mesoscopic Theory” for the special case of uniaxial tension is evaluated. In

this case, the stress tensor and the stress increment tensor are presented as 3 � 1

vectors as follows:

σ � σ11 0 0½ �T (32:1)

dσ � dσ11 0 0½ �T (32:2)

where σ11 is the uniaxial stress and is the only nonzero component of the stress

tensor σ.
The evolution of the zero-rank fabric tensor G(0) is evaluated first. For this case,

one sets α ¼ 0 in Eq. 30 to obtain

dG 0ð Þ ¼ L 2ð Þ : dσ (33)

where L(2) is a second-rank tensor. Substituting Eq. 1.2 into Eq. 33, one obtains

dG 0ð Þ ¼ L
2ð Þ
11 dσ11 (34)

Next, the component L11
(2) is evaluated by using Eq. 31 to obtain

L
2ð Þ
11 ¼ P 0ð Þ

1� P 0ð Þ @H
0ð Þ

@G 0ð Þ

@H 0ð Þ

@σ11
(35)

where P(0) is a scalar variable evaluated using Eq. 28 as follows:
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P 0ð Þ ¼ � 2

dL 0ð Þ

dl 0ð Þ

� � (36)

Substituting Eq. 36 into Eq. 35 and then substituting the result into Eq. 34, one

finally obtains

dG 0ð Þ ¼ �2

dL 0ð Þ

dl 0ð Þ þ 2
@H 0ð Þ

@G 0ð Þ

0
BB@

1
CCA @H 0ð Þ

@σ11
dσ11 (37)

Equation 37 represents the general evolution law for the zero-rank fabric tensor

G(0) for the case of uniaxial tension. It is clear that for the special case whenG(0) is a

constant, one obtains dG(0) ¼ 0 from Eq. 37.

Next, the evolution of the second-rank fabric tensor G(2) for the case of uniaxial

tension is evaluated. In this case, one sets α ¼ 2 and substitutes Eq. 1.2 into Eq. 30

to obtain

dG
2ð Þ
ij ¼ L

4ð Þ
ij11 dσ11 (38)

where the component Lij11
(4) is obtained from Eq. 31 as follows:

L
4ð Þ
ij11 ¼ P

4ð Þ
ijmn I 4ð Þ

mnpq �
@H 2ð Þ

mn

@H 2ð Þ
rs

P 4ð Þ
rspq

 !�1
@H 2ð Þ

pq

@σ11
(39)

where Imnpq
(4) is given by

I 4ð Þ
mnpq ¼ 1

2
δmpδnq þ δmqδnp
� �

(40)

and δij is the Kronecker delta.
Substituting for P(4) from Eq. 28 into Eq. 39, and simplifying, and substituting

the result into Eq. 38, one obtains

dG
2ð Þ
ij ¼ P

4ð Þ
ijγα

@H 2ð Þ
γα

@G 2ð Þ
mn

P
4ð Þ
mnab �

@H
2ð Þ
ab

@G
2ð Þ
ef

P
4ð Þ
efcd

 !�1
@H

2ð Þ
cd

@σ11
þ @H 2ð Þ

γα

@σ11

2
4

3
5dσ11 (41)

where the component Pijkl
(4) may be readily obtained from Eq. 28. Equation 41

represents the general law of evolution of the second-rank fabric tensor G(2) for

the special case of uniaxial tension.

Next, it is reasonable to discuss how to evaluate the expression @Hij
(2)/@σ11

appearing in Eq. 41. In order to evaluate the partial derivative @Hij
(2)/@σ11, one

needs an explicit expression for the tensor H(2) in terms of the stress. This may be
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done using the concept of effective stress in damage mechanics. For the case of

uniaxial tension, the effective stress σ11 is given as follows:

σ11 ¼ σ11
1� ϕ

(42)

where ϕ is the scalar damage variable in one dimension. LetM ¼ 1/(1 � ϕ) where
M is a scalar variable. Therefore, one will write Eq. 42 as follows:

σ11 ¼ Mσ11 (43)

It has been shown by Voyiadjis and Kattan (2006) that there is a relationship

between the damage tensor (a scalar variable in this case) and fabric tensors.

Specifically, the damage variable ϕ is a function of the second-rank fabric tensor

G(2), i.e., ϕ � ϕ(Gij
(2)) – see Eq. 53.

Using the hypothesis of elastic energy equivalence, one can write the

following relation between the elastic strain components e11 and its effective

counterpart e11:

e11 ¼ Ne11 (44)

where N is a scalar variable given as N ¼ 1 � ϕ (see Voyiadjis and Kattan (1999)

for details of this derivation). Based on the above discussion, it should be noted that

bothM and N are functions of the second-rank fabric tensorG(2), i.e.,M � M(Gij
(2))

and N � N(Gij
(2)).

Let U be the elastic strain energy in the deformed and damaged configuration

and letU be its effective counterpart. This leads toU ¼ 1
2
σijeij andU ¼ 1

2
σijeij. For the

case of uniaxial tension, these relations reduce to the following expressions:

U ¼ 1

2
σ11e11 (45:1)

U ¼ 1

2
σ11e11 (45:2)

Substituting Eqs. 43 and 44 into Eq. 45.2, one obtains

U ¼ 1

2
MNσ11e11 (46)

where the product MN ¼ 1 in this case. This confirms the assumption of the

hypothesis of elastic energy equivalence that U ¼ U.

Next, use is made of the elastic constitutive relation (Hooke’s law) written as

follows in both configurations:

σ11 ¼ Ee11 (47:1)
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σ11 ¼ Ee11 (47:2)

where E is Young’s modulus andE is its effective counterpart. Using the hypothesis

of elastic energy equivalence, i.e., U ¼ U, substituting equations (163) along with

Eqs. 43 and 44 and Eq. 16, and solving for E, one obtains

E ¼ N

M
E (48)

where E is the constant Young’s modulus of the undamaged material. It is clear

from Eq. 48 that E � E(Gij
(2)).

Next, Eq. 47.1 is substituted into Eq. 45.1 and written in terms of σ11 to

obtain

U ¼ 1

2E
σ211 (49)

Substituting for E using Eq. 48 into Eq. 49, one obtains

U ¼ M

2NE
σ211 (50)

Since M � M(Gij
(2)) and N � N(Gij

(2)), it is concluded from Eq. 50 that U � U
(Gij

(2), σ11).
Using Eq. 6.2 and substituting Eq. 50, one obtains

H
2ð Þ
ij ¼ α

σ211
2NE

@M

@G
2ð Þ
ij

� α
Mσ211
2EN2

@N

@G
2ð Þ
ij

(51)

where α is a scalar variable that is a function of the density ρ of the material. Taking

the derivative of Eq. 51, one finally obtains

@H
2ð Þ
ij

@σ11
¼ α

σ11
NE

@M

@G
2ð Þ
ij

�M

N

@N

@G
2ð Þ
ij

 !
(52)

where it is clear that both @M/@Gij
(2) and @N/@Gij

(2) are functions of Gij
(2).

Utilizing the relation between the damage tensor and fabric tensors that is

formulated by Voyiadjis and Kattan (2006), it is possible to derive the following

expression for the scalar damage variable ϕ:

4 Evolution of Fabric Tensors in Continuum Damage Mechanics of Solids with. . . 125



ϕ ¼ �G
2ð Þ
11 �

1þ G
2ð Þ
11

� �
1� νð ÞG 2ð Þ

11 � ν2G 2ð Þ
22 � ν2G 2ð Þ

33

h i
1þ νð Þ 1� 2νð Þ

þ ν

1þ ν
G

2ð Þ
12

� �2
þ G

2ð Þ
13

� �2� �
(53)

where ν is Poisson’s ratio. Equation 53 represents an explicit relation between the

scalar damage variable ϕ and the components of the second-rank fabric tensor Gij
(2)

for the case of uniaxial tension.

Next, use is made of the expression for M and N in terms of ϕ, i.e., M ¼ 1/

(1 � ϕ) and N ¼ (1 � ϕ), and the partial derivatives @M/@Gij
(2) and @N/@Gij

(2) are

evaluated using Eq. 53. Once these derivatives are evaluated, one substitutes the

results into Eq. 52. Finally, the resulting expression for the partial derivative @Hij
(2)/

@σ11 is substituted into Eq. 41 in order to obtain an explicit expression for the

evolution of the second-rank fabric tensorG(2). At this stage, use should be made of

a computer algebra package like MAPLE or MATHEMATICA to obtain the final

result.

Evolution of Length and Orientation of Micro-cracks

In this section, explicit expressions are developed for the evolution of the length and

orientation of micro-cracks in terms of the evolution of the fabric tensors. In this

regard, one may obtain some interesting results as shown below.

Consider first the zero-rank (scalar) fabric tensor G(0) given in Eq. 3.1. This

relation may be rewritten in the following equivalent form:

G 0ð Þ ¼ γ

ð
V

r3dV (54)

where γ is function of the volume V of the RVE. Taking the time derivative of both

sides of Eq. 3.1, one obtains

_G
0ð Þ ¼ 3γ

ð
V

r2 _rdV (55)

where a superimposed dot indicates the time derivative. Differentiating Eq. 55 with

respect to V and solving for _r, one obtains

_r ¼ 1

3γr2
d _G

0ð Þ

dV
(56)

Equation 56 represents the evolution law of the length of micro-cracks in terms

of d _G
0ð Þ
, which may be obtained from Eq. 30. There is no evolution of the
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orientation of micro-cracks in this case as this case deals with an isotropic distri-

bution of micro-cracks with no anisotropy.

Next, the second-rank fabric tensor G(2) as defined in Eq. 3.2 is considered. This

expression may be rewritten in the following equivalent form:

G
2ð Þ
ij ¼ γ

ð
V

r3ninjdV (57)

Taking the time derivative of both sides of Eq. 57, one obtains

_G
2ð Þ
ij ¼ γ

ð
V

3r2 _r ninj þ r3 _ninj þ r3ni _nj
� �

dV (58)

Differentiating Eq. 58 with respect to V and simplifying, one obtains

3r2 _r ninj þ r3 _ninj þ r3ni _nj ¼ 1

γ

d _G
2ð Þ
ij

dV
(59)

Multiply both sides of Eq. 59 by _nj and use the relations nj _nj ¼ 0 (obtained by

taking the time derivative of njnj ¼ 1) such that

r3ni _nj _nj � 1

γ
_nj
d _G

2ð Þ
ij

dV
¼ 0 (60)

Equation 60 may be rewritten as follows:

r3ni _nj � 1

γ

d _G
2ð Þ
ij

dV

0
@

1
A _nj ¼ 0 (61)

It is clear from Eq. 61 that two different solutions are possible. For the first

solution of Eq. 61, one would have

r3ni _nj ¼ 1

γ

d _G
2ð Þ
ij

dV
(62)

Multiply both sides of Eq. 62 by ni and solve for _nj to obtain

_nj ¼ 1

γr3
ni
d _G

2ð Þ
ij

dV
(63)

Equation 63 represents the evolution law for the orientation of micro-cracks in

this case. Substituting Eq. 63 into Eq. 59 while using the relations nini ¼ njnj ¼ 1

and simplifying, one obtains
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3r2 _r ni nj ¼ � 1

γ

d _G
2ð Þ
ij

dV
(64)

Multiply both sides of Eq. 64 by ninj and solve for _r to obtain

_r ¼ � 1

3γr2
ni nj

d _G
2ð Þ
ij

dV
(65)

Equation 65 represents the evolution law for the length of micro-cracks in this

case. It can be shown that Eq. 65 reduces identically to zero. Substitute for the

expression _nj of Eq. 63 into Eq. 65, and use the relation nj _nj ¼ 0 to obtain _r ¼ 0.

Thus, the micro-crack lengths do not evolve in this case.

Next, one obtains the second solution of Eq. 61. In this case,

_nj ¼ 0 (66)

Thus, the orientation of micro-cracks does not change in this solution. Substitut-

ing Eq. 66 into Eq. 59, we obtain

3r2 _r ni nj ¼ 1

γ

d _G
2ð Þ
ij

dV
(67)

Multiply both sides of Eq. 67 by ninj and solve for _r to obtain

_r ¼ 1

3γr2
ni nj

d _G
2ð Þ
ij

dV
(68)

We summarize the two solutions obtained as follows:

First Solution

_nj ¼ 1

γr3
ni
d _G

2ð Þ
ij

dV

_r ¼ 0

Second Solution
_nj ¼ 0

_r ¼ 1

3γr2
ni nj

d _G
2ð Þ
ij

dV

Thus, it is clear from the above results that we obtain two completely different

solutions. The distribution of micro-cracks may evolve according to one of these

solutions. Alternatively, both solutions may apply to the same distribution but

affect two different sets of micro-cracks. It is also clear from the first solution
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that if the change in micro-crack orientation is nonzero, then the change in micro-

crack length will be zero. This is a very interesting result. Also, it is noticed that if

the change in micro-crack orientation is zero, then the change in micro-crack length

will be nonzero. These results apply for a system of micro-cracks embedded within

an RVE as a whole, not for a single micro-crack.

Next, we investigate the case of the fourth-rank fabric tensor G(4) given in

Eq. 3.3. This equation may be rewritten in the following equivalent form:

G
4ð Þ
ijkl ¼ γ

ð
V

r3 ninjnknldV (69)

Taking the time derivative of both sides of Eq. 69, one obtains

_G
4ð Þ
ijkl ¼ γ

ð
V

3r2 _r ninjnknl þ r3 _ninjnknl þ r3 ni _njnknl þ r3 ninj _nknl þ r3 ninjnk _nl
� �

dV

(70)

Differentiating Eq. 70 with respect to V and rearranging the terms, one obtains

3r2 _r ninjnknl þ r3 _ninjnknl þ r3 ni _njnknl þ r3 ninj _nknl þ r3 ninjnk _nl ¼ 1

γ

d _G
4ð Þ
ijkl

dV
(71)

Multiply both sides of Eq. 71 by _nj and use nj _nj ¼ 0 to obtain

r3 ni _nj _njnknl ¼ 1

γ

d _G
4ð Þ
ijkl

dV
(72)

Equation 72 may be rewritten as follows:

r3 ni _njnknl � 1

γ

d _G
4ð Þ
ijkl

dV

0
@

1
A _nj ¼ 0 (73)

It is clear that Eq. 73 has two solutions. For the first solution, one obtains

r3 ni _njnknl ¼ 1

γ

d _G
4ð Þ
ijkl

dV
(74)

Multiply both sides of Eq. 74 by ninknl and solve for _nj to obtain

4 Evolution of Fabric Tensors in Continuum Damage Mechanics of Solids with. . . 129



_nj ¼ 1

γr3
ninknl

d _G
4ð Þ
ijkl

dV
(75)

Equation 75 represents the evolution of the micro-crack orientation according to

the first solution. Substituting Eq. 75 into Eq. 71 and using the relations nini ¼ njnj
¼ nknk ¼ nlnl ¼ 1, one obtains

3r2 _r ninjnknl ¼ � 3

γ

d _G
4ð Þ
ijkl

dV
(76)

Multiply both sides of Eq. 76 by ninjnknl and solve for _r to obtain

_r ¼ � 1

γr2
ninjnknl

d _G
4ð Þ
ijkl

dV
(77)

Equation 77 represents the evolution of micro-crack length according to the first

solution. In deriving Eq. 77, the following symmetry of the fourth-rank fabric tensor

is assumed:Gijkl
(4) ¼ Gjikl

(4) ¼ Gikjl
(4) ¼ Giljk

(4) . If the symmetry assumption does not hold,

then Eq. 77 should be replaced by the following general expression for _r:

_r ¼ � 1

3γ r2
ninjnknl

d _G
4ð Þ
jikl

dV
þ d _G

4ð Þ
ikjl

dV
þ d _G

4ð Þ
iljk

dV

0
@

1
A (78)

It can be shown that Eqs. 77 and 78 reduce identically to zero. Substitute for the

expression _nj of Eq. 75 into Eqs. 77 and 78, and use the relation nj _nj ¼ 0 to obtain

_r ¼ 0. Thus, the micro-crack lengths do not evolve in this case.

For the second solution of Eq. 73, one obtains

_nj ¼ 0 (79)

Substituting Eq. 79 into Eq. 71, simplifying, and solving for _r, one obtains

_r ¼ 1

3γ r2
ninjnknl

d _G
4ð Þ
ijkl

dV
(80)

Finally, a summary of the results of the two solutions for the fourth-rank fabric

tensor is presented as follows:

First Solution

_nj ¼ 1

γr3
ninknl

d _G
4ð Þ
ijkl

dV

_r ¼ 0

130 G.Z. Voyiadjis et al.



Second Solution

_nj ¼ 0

_r ¼ 1

3γr2
ni njnk nl

d _G
4ð Þ
ijkl

dV

Thus, it is clear from the above results that one obtains two completely

different solutions. Alternatively, both solutions may apply to the same distri-

bution but affect two different sets of micro-cracks. It is also clear from the

first solution that if the change in micro-crack orientation is nonzero, then the

change in micro-crack length will be zero. This is a very interesting result.

Furthermore, it is noted that if the change in micro-crack orientation is zero,

then the change in micro-crack length will be nonzero. These results apply for

a system of micro-cracks embedded within an RVE as a whole, not for a

single micro-crack.

Based on the above solutions, one makes the following observations:

1. The evolution of micro-crack orientation _n is proportional to 1/r3. Thus, longer
micro-cracks undergo smaller rotations, while shorter micro-cracks undergo

larger rotations.

2. The evolution of micro-crack length _r is proportional to 1/r2. Thus, longer micro-

cracks undergo smaller increases in length, while shorter micro-cracks undergo

larger increases in length.

3. In a system of micro-cracks where micro-crack rotations vanish, the following

conditions must be satisfied:

_G
2ð Þ
ij ni ¼ 0, all j (81:1)

_G
4ð Þ
ijklninknl ¼ 0, all j (81:2)

4. In a system of micro-cracks where the changes in micro-crack lengths vanish,

the following condition must be satisfied:

_G
2ð Þ
ij ninj ¼ 0 (82:1)

_G
4ð Þ
ijklninjnknl ¼ 0 (82:2)

5. In a system of micro-cracks, one may have a set of micro-cracks with _r ¼ 0,
_n 6¼ 0, while another set of micro-cracks has _r 6¼ 0, _n ¼ 0. These two sets of

micro-cracks should not be overlapping as shown in Fig. 5.
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Summary and Conclusions

This work presents an exposition of thermodynamic concepts and derivation of the

equations of damage evolution. This is performed in a mathematically consistent

manner that is based on sound thermodynamic principles. This work is very

important in forming the basis for future work in this area including visualization

and finite element implementation with application to composite materials.

The fabric tensors used represent a system of micro-cracks which is embedded

into an RVE. Both the orientation and length of micro-cracks are included in the

definition of the fabric tensors. Explicit evolution equations are derived for both the

micro-crack orientation and micro-crack length. It is concluded that micro-crack

orientations and lengths cannot evolve simultaneously. However, two sets of micro-

cracks may be considered where each parameter (length or orientation) evolves

separately, while the other parameter’s evolution vanishes.
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Abstract

Geomaterials represent an important class of dissipative materials whose

mechanical behavior is pressure, density, and fabric dependent. This constitutive

characteristic together with the discrete particulate nature of the material leads to

the manifestation of a rich variety of failure modes whose precise understanding

is elusive within standard failure theories. The present chapter attempts to clarify

this issue by invoking plasticity/damage phenomena in geomaterials and

exploits their non-associated character in relation to rate-independent irrevers-

ible strains. The second-order work criterion provides a basic framework within

which failure can be systematically treated as a divergence instability that leads

to various forms, including localized and diffuse modes. This new interpretation

considers the existence of a bifurcation domain and so-called instability cones

whose generators denote the range of loading directions in stress space along

which the material response is potentially unstable. As additional important

characteristics, macroscopic failure is found to occur with an outburst of kinetic

energy with the proper load control parameter in place, as demonstrated in

discrete element computations. Finally, the failure analysis of in situ boundary

value problems as in a rock and a soil slope is presented using the second-

order work.

Introduction: Main Features of Failure in Geomaterials

Failure in geomaterials (soil, rock, and concrete) is a very intricate question in

comparison to other solid materials, probably because for geomaterials the plastic

limit condition, yield surface, and plastic potential are all mean pressure dependent.

All these surfaces have indeed a conical shape in the stress space. In relation with

this mean pressure dependency, the plastic strains have a non-associated character.

Thus, the yield surface (characterized roughly speaking by a cohesion and a friction

angle) does not coincide with the plastic potential (characterized by a dilatancy

angle). For an associated material, both friction and dilatancy angles must be equal,

while these differ usually by 25–30� for granular media.

As a first approximation, geomaterial behavior can be considered as largely rate

independent, which means that this behavior is described by an elastoplastic or

elasto-damageable constitutive relation represented by a fourth-order constitutive

tensor linking incremental strains (or strain rates) and incremental stresses (or stress

rates). Then, by considering the six-dimensional associated stress and strain spaces,
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a 6-by-6 constitutive matrix is used to relate incremental strains and stresses. A

direct consequence of non-associativity of plasticity is the nonsymmetry of the

above constitutive matrix. As such, the possible singularities of this matrix (linked

to failure as it will be seen later on) can be of very different kinds in comparison

with the case of a symmetric matrix corresponding to the associated plasticity case.

A typical aspect of failure in geomaterials appears here as a direct consequence of

this nonsymmetry: there is indeed a rich variety of failure modes each differing in

character involving either localized or diffuse deformation fields, among others.

An important but fundamental question has to be asked: what is failure? The

usual definition is that a failure state is reached when a limit stress state is reached

by the material. If some mixed stress–strain loading paths are considered, this

definition has to be extended to include other types of limit states such as those

constituted by a limiting volume expansion for dilatant materials in the so-called

triaxial loading paths with a constant deviatoric stress in geomechanics (Darve

et al. 2007; Daouadji et al. 2010, 2011; Laouafa et al. 2011). More precisely, when a

failure state is reached, the failure can be effective or not depending on the current

control parameter. As a classical example, when the control parameter is a strain

rate, the limit stress state can be overcome without any specific change for the body,

while if the control parameter is a stress rate, the body suddenly enters into a

dynamic regime with a burst of kinetic energy and large uncontrollable strains.

From a theoretical point of view, it is possible to say that an effective failure

corresponds to a bifurcation point, because of the sudden change in the strain

regime from quasi-static deformations to dynamic ones. It is also characterized

by a loss of uniqueness, since the deformations are no more defined in a unique way

and depend on some imperfections. Eventually effective failure is also an unstable

state, since a small perturbation of the body in a failure state induces large material

responses. Of course, the converse of the above argument is not generally true:

bifurcations, losses of uniqueness, or instabilities are not always related to an

effective failure in solid mechanics. However, an efficient way to investigate the

failure states and the failure modes of a given geomaterial is to first consider its

unstable states, and then check if these instabilities can lead to effective failures

and, if yes, for which conditions. This methodology to analyze failure will be the

central theme of this chapter.

Indeed, a general criterion for all types of divergence instabilities has been

proposed by Hill (1958), the so-called second-order work criterion, which corre-

sponds to the loss of positive definitiveness of the constitutive matrix and is a

necessary condition for instability. This can be reworded as to there is at least one

stress direction where the scalar product of the incremental stress by the incremen-

tal strain is nil or negative. For a nonsymmetric matrix, the loss of positive

definitiveness (linked to the vanishing value of the determinant of the symmetric

part of the constitutive matrix) appears before the singularity of the matrix itself

(linked to the vanishing value of the determinant of the matrix itself). Thus, there is

a whole failure domain in the stress space (Darve et al. 2004) and not only a single

plastic limit surface as for associated plastic materials. More recently, two new

developments have allowed clarifying two important physical aspects of the
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second-order work. First, the link between bursts of kinetic energy and negative

values of second-order work has been established (Nicot and Darve 2007, 2011;

Nicot et al. 2009, 2012a). Second, for elastic nonconservative systems, the second-

order work appears as the lower envelope of all possible instability curves (Lerbet

et al. 2012; Nicot et al. 2011), corresponding to all types of divergence instabilities.

This chapter is organized as follows. First the link between second-order work

criterion and burst of kinetic energy is recalled. At the grain level, the second-order

work takes a discrete form linking increment of force and increment of displace-

ment at the contact point. The relation between the sum of all discrete second-order

works calculated at every intergranular contact and the macroscopic second-order

work is established and discussed. Then, the features of second-order work as a

quadratic form associated to the current incremental stress or the current incremen-

tal strain are illustrated by phenomenological rate-independent constitutive rela-

tions for the general 3D multiaxial-loading case. The bifurcation domain is plotted

as well as the “instability cones” for two elastoplastic relations (one is incremen-

tally piecewise linear and the other fully incrementally nonlinear). In the third part,

a careful check of these various aspects (link between second-order work and

kinetic energy, bifurcation domain, instability cones, features of the effective

failure, influence of the control mode, influence of a perturbation) is performed

by considering direct numerical simulations using a discrete element method. Then

this methodology is applied in the fourth section to the question of the stability of

rock joints. A rate-independent relation for rock joints is introduced and a specific

expression of second-order work is considered to analyze failure. Eventually, the

finite element method is employed to simulate triaxial tests, exhibiting localized

and diffuse failure modes. An example of modeling of an in situ landslide in Italy

(Petacciato landslide) is finally presented to illustrate the ability of the second-order

work criterion to describe a failure mode of the diffuse type using the finite element

method.

A General Criterion for Failure by Divergence Instabilities

Kinetic Energy and Second-Order Work

Let us consider a material system, subjected to external forces. The mechanical

(stress–strain) state of this system, after a given loading history, is reputed (mechan-

ically) unstable if the kinetic energy of the system may increase under the effects of

infinitesimal loading (disturbance). In particular, if the system is initially at rest, in

equilibrium under external forces, an increase in kinetic energy means that there is a

transition from a quasi-static regime towards a dynamical regime. This transition is

basically a bifurcation and is clearly associated to a failure that can be either

localized or diffuse, according to the pattern of the kinematic field developing

during this transition. The failure is localized when a localization pattern develops

or is diffuse if the kinematic field remains chaotic, without specific localization

(Nicot and Darve 2011).
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In what follows, the conditions and the growth mode of the kinetic energy are

studied. For a material system made up of a volume V0, initially in a configuration

C0 of boundary (Γ0), in equilibrium at time t under a prescribed external loading, it
was established that the second-order time differentiation of the kinetic energy

(at time t) written in Lagrangian formulation (Nicot et al. 2007; Nicot and Darve

2007; Nicot et al. 2012a, b) is

δ2Ec tð Þ ¼ Wext
2 �Wint

2

Wext
2 ¼

ð
Γo

δf j δui dSo; Wint
2 ¼

ð
Vo

δΠij
@ δuið Þ
@Xj

dVo
(1)

where Wext
2 and Wint

2 denote the external second-order work and internal second-

order work, respectively. In these expressions,Π denotes the Piola–Kirchhoff stress

tensor of the first kind and f
!

the current forces applied to the initial (reference)

configuration. δu
!

denotes the current incremental displacement of the material

points initially located at the position X
!
. In addition, the second-order Taylor’s

expansion of kinetic energy reads

Ec tþ Δtð Þ ¼ Ec tð Þ þ Δt _Ec tð Þ þ Δtð Þ2
2

€Ec tð Þ þ 0 Δtð Þ3 (2)

Noting that Ec tð Þ ¼
ð
Vo

ρo
_
u
!��� ���2 dVo and _Ec tð Þ ¼

ð
Vo

ρo
_
u
! � u!€ dVo , where ρo is

the density of the material in the initial configuration at pointM X
!� �

, and since the

system is in an equilibrium state at time t, then _Ec tð Þ ¼ 0. Thus, ignoring third-order

terms, Eq. 2 reads

δ2Ec tð Þ ¼ 2 Ec tþ δtð Þ � Ec tð Þð Þ (3)

Combining Eqs. 1 and 3 gives

Ec tþ δtð Þ � Ec tð Þ ¼ 1

2
Wext

2 �Wint
2

� �
(4)

Consequently, the increase in kinetic energy for a material system initially in

equilibrium (at rest) equals to the difference between the external second-order

work (that involves the displacements and the forces acting on the boundary) and

the so-called internal second-order work (built from the internal stress and strain

acting at each point of the system). Finally, the external second-order work is

related to the external loading and can be controlled by an external user. In contrast,

the internal second-order work is intimately related to the constitutive behavior of

the material and is imposed by the material independently of the external user
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(Nicot et al. 2012a). As a result, any increase in kinetic energy of the system stems

from a conflict between the internal forces (resulting from the internal stress)

applying to the internal side of the boundary and the external forces (imposed by

the operator or any other external action) applying to the external side of the

boundary (Nicot et al. 2012a).

According to Eq. 4, both external and internal second-order works are equal in

quasi-static conditions, since Ec(t + δt) � Ec(t) ¼ 0 (there is no increase in kinetic

energy). Particularly of interest is the situation where the loading applied gives rise

to a negative value of the internal second-order work. It can be shown that such a

situation corresponds to the existence of a limit state (possibly in a generalized

strain–stress space; Nicot et al. 2009, 2011, 2012a). Some components of the

internal loading pass through a peak and then follow a descending branch, which

prevent these components from taking higher values. On the contrary, higher values

of the external loads applied to the system can be imposed. The resulting conflict

between both internal and external loads induces an increase in kinetic energy,

indicating a transition from a quasi-static to a dynamical regime. It is worth noting

that this situation is closely related to the existence of a generalized limit state,

detected by the vanishing of the internal second-order work. After the peak, along

the descending branch, the internal second-order work takes negative values.

As a conclusion, as far as divergence instabilities are concerned, detecting

whether the internal second-order work can vanish makes sense. The existence of

nil or negative values of the second-order works stands as one of the basic

conditions giving rise to the occurrence of a divergence instability.

Micromechanically Based Formulation

The problem is now specialized to granular materials, with an attempt to relate the

macroscopic formulation of the internal second-order work to microstructural vari-

ables. For this purpose, a homogeneous volume of granular material is comprised of

N grains. “p” will denote indiscriminately the grain (as a body) or enumerate a

particular grain within the assembly such that 1 � p � N. The shape of each grain

“p” is arbitrary. The total number of contacts at time t within the assembly is

denoted Nc. The system is assumed to be in equilibrium at a given time t under a
prescribed external loading. Depending on the type of loading control, each grain

“p” belonging to the boundary @V of the considered volume is subjected to either a

displacement (kinematic control) or an external force f
!
ext, p (static control),

possibly zero.

The second-order work, in its basic formulation, involves both incremental stress

and strain. The stress within a granular assembly expresses the transmission of

forces in granular materials. The transmission of forces in granular materials

operates at contacts of adjoining grains, thereby resulting in a macroscopic average

stress at the grain assembly level. The stress tensor in such a body of volume V in

equilibrium under external forces f
!
ext, p applied to the boundary particles “p” of
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position x
!p can be defined by the classical Love–Weber formula (Love 1927;

Mehrabadi et al. 1982), i.e.,

σij ¼ 1

V

X
p � @V

f ext, pi xpj (5)

The above expression can be transformed as follows, by accounting for the

interparticle contact forces f
!
c (Nicot et al. 2012c):

σij ¼ 1

V

XNc

c¼1

f ci lcj þ
1

V

X
p � V

f pi xpj (6)

where l
!

c is the branch vector relating the centers of contacting particles and f
!

p

denotes the resultant force applied to the particle “p.” In the absence of inertial

effects or when all particles are in static equilibrium, the second term in Eq. 6

vanishes. However, this term may subsist in the presence of internal dynamical

effects that arise from local force imbalances, even if the whole granular body may

be in equilibrium macroscopically.

In the Eulerian formulation represented in Eq. 6, the contact forces, the branch

vectors, the location of each particle, and the volume of the specimen are bound to

evolve over a given loading history from an initial configuration C0 (f
!
c
0, l

!
c
0, x

!c
0,V0).

Thus, referring to the initial configuration, the analogous form of the stress tensor in

Lagrangian description is

Πij ¼ 1

V0

X
p, q

f ci lc0, j þ
1

V0

X
p � V0

f pi xp0, j (7)

The Lagrangian formulation given in Eq. 7 can be readily differentiated, then

providing the following expression of the internal second-order work (see Nicot

et al. 2012c, for more details):

W2 ¼
X
p, q

δf ci δlci þ
X
p � V

δf pi δxpi (8)

As specified in Nicot et al. (2012c), the creation or the deletion of contacts is

accounted for in this approach. The symbol
X
p, q

denotes the summation over p and

q varying over [1, N] with q � p, and c refers to the contacting pair ( p, q).
It is worth noting that in the absence of incremental unbalanced force and in

quasi-static regime, Eq. 8 simplifies into

W2 ¼
X
p, q

δf ci δlci (9)

Equation 9 expresses the internal second-order work from micromechanical

variables, namely, the contact forces existing between contacting granules and
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the branch vectors joining these granules. The attempt of such a formulation is to go

down to the microscopic scale and to try to elucidate what are the basic micro-

structural origins giving rise to the vanishing of the internal second-order work and

therefore what are the microstructural contexts prone to instabilities.

The Second-Order Work Criterion, Features, and Illustrative 3D
Examples (Multiaxial Loading)

As mentioned in the previous section, determining the sign of the second-order

work allows the detection of material instability by divergence. Neglecting geo-

metrical effects and assuming small strains, the internal second-order work takes

the following expression:

W2 ¼
ð
Vo

δσijδeijdVo (10)

where δσij is the incremental Cauchy stress tensor and δeij the incremental small

strain tensor. In a local form the stability criterion is expressed as

8 δσij, δeij
� �

δW2 ¼ δσijδeij > 0: (11)

In other words, when δW2 is positive, the specimen is stable, else potentially

unstable. It will be seen further that instability occurrence (or the kinetic energy

growth) depends on the control loading parameter when δW2 is negative or zero.

General Equation of Local Second-Order Work Criterion

In the following of this section, only rate-independent materials are considered. In

this case the constitutive relation takes the general following form:

Fh
ijkl δσij, δekl
� � ¼ 0 (12)

where Fh is a nonlinear function and h a memory parameter like a hardening

parameter. Along the actual loading direction function Fh can be linearized

(“directional linearization”), and Eq. 12 can take the simple form:

δeij ¼ Nijklδσkl (13)

Using dual representations of tensors where a second-order tensor can be a

six-dimensional vector and a fourth-order tensor, a matrix of rank six, the matrix

N denoting the tangent elastoplastic operator along the current loading direction is

introduced. As such, when substituting Eq. 13 into Eq. 11, the boundary between

positive and negative values of δW2 is given by
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δσiNijδσj ¼ δσiN
s
ijδσj ¼ 0 (14)

where Ns is the symmetrical part of N. Developing Eq. 14 in the case of orthotropic
incrementally piecewise linear relation leads to the general equation of an elliptical

cone in the three-dimensional space of principal incremental stress.

δσ21
E1

þ δσ22
E2

þ δσ23
E3

� ν21
E1

þ ν12
E2

� �
δσ1δσ2 � ν23

E3

þ ν32
E2

� �
δσ2δσ3 � ν31

E1

þ ν13
E3

� �
δσ3δσ1 ¼ 0

(15)

Geometrical representations of the solutions of Eq. 15 in terms of loading

directions are displayed in Fig. 1.

If the solution of Eq. 15 is empty, no instability can develop. In the other cases,

instability can develop if the loading path has a direction included inside directions

given by the solution of Eq. 15. It is to be noted that Eq. 15 can be used practically

only with an incrementally piecewise linear model, and solutions have to be

truncated in parts of the space where the constitutive relation is linear. These

particular parts of the space are also denoted as tensorial zones (Darve and

Labanieh 1982). Nevertheless, most of rate-independent models are piecewise

linear. In the case of fully incrementally nonlinear models, nonempty solutions of

Eq. 15 reduce necessarily to a nonelliptical cone gathering straight lines. An
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Fig. 1 Graphical representation of solutions of Eq. 15: empty solution, straight line, elliptical

cone, and two planes intersection
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illustration of this proposal is given in the next subsection using the octo-linear

model (8L model) and incrementally nonlinear model of Darve (INL2 model)

(Darve and Labanieh 1982).

Illustration of Instability Cones Using Darve Model

Constitutive relations developed by Darve do not rely on classical concepts of

elastoplasticity and therefore assumptions of (a) strain decomposition into an elastic

and a plastic part, (b) existence of an elastic limit, and (c) existence of a flow rule

are not needed.

In order to describe the nonlinear behavior of geomaterials, an incrementally

nonlinear relation of second order is used and written in principal axes as follows:

δe1
δe2
δe3

8<
:

9=
; ¼ 1

2
Nþ þ N�
h i δσ1

δσ2
δσ3

8<
:

9=
;þ 1

2 δσk k Nþ þ N�
h i δσ21

δσ22

δσ23

8><
>:

9>=
>; (16)

with

N� ¼

1

E�
1

� ν�21
E�
2

� ν�31
E�
3

� ν�12
E�
1

1

E�
2

� ν�32
E�
3

� ν�13
E�
1

� ν�23
E�
2

1

E�
3

2
66666664

3
77777775

(17)

Coefficients Ei
+ and νij

+ are defined on generalized triaxial loading paths

when δσi > 0 and, respectively, Ei
� and νij

� when δσi < 0. For δσi ¼ 0 it can be

verified that the relation is continuous (Gudehus 1979). More detailed information

about this constitutive model and, in particular, how the tangent moduli and

Poisson’s ratios evolve with stress–strain history can be found in Darve

et al. (1995). In one dimension, this relationship is piecewise linear. By extension,

the octo-linear model (eight tensorial zones) is defined in the following with the

previous notations:

δe1
δe2
δe3

8<
:

9=
; ¼ 1

2
Nþ þ N�
h i δσ1

δσ2
δσ3

8<
:

9=
;þ 1

2
Nþ þ N�
h i δσ1j j

δσ2j j
δσ3j j

8<
:

9=
; (18)

It can be seen that the eight tensorial zones are bounded by the intersection of the

three planes of respective expression: (δσ1 ¼ 0, δσ2 ¼ 0, δσ3 ¼ 0). Figure 2 shows

instability cones obtained along a drained triaxial path with both models (octo-

linear and incrementally nonlinear) of Darve on a dense Hostun sand. According to

the incrementally nonlinear model, a numerical procedure has been used (Prunier
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et al. 2009a; Darve et al. 2004). For the octo-linear model, solutions are displayed

using analytical form of Eq. 15 as well as the numerical procedure.

In the stress space, the set of stress states for which instability cones exist

constitutes the bifurcation domain. When the cones are reduced to a single direc-

tion, the latter gives the limit of the bifurcation domain. For non-associated

materials this bifurcation limit is located strictly inside the plasticity limit, whereas

for associated materials, the limits coincide. The limit of bifurcation domain has

been plotted for Darve models and compared to Mohr–Coulomb limit (Prunier

et al. 2009a, b, c); see Fig. 3.

Conditions of Effective Failure

Previously, conditions that lead to negative values of second-order work have been

seen, i.e., the stress–strain state has to be included inside the bifurcation domain,

and the loading path should follow a direction inside an instability cone. When

second-order work is negative or zero, effective instability which leads to a burst of

kinetic energy is conditioned by the control parameter chosen by the experimenter

(or natural boundary loading occurring according to in situ conditions). From a

basic point of view, when pulling on steel sample if the axial strain is controlled, the

Fig. 2 3D instability cones given by octo-linear model of Darve (left side) and by the nonlinear

model of Darve (right side). p0 is the initial confinement pressure, q the actual stress deviator, and
η ¼ q/p
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test can be continued after reaching the limit state given by the maximum axial

stress, while if the axial stress is controlled, a sudden failure occurs. In fact the

vanishing of the second-order work corresponds to a generalized limit state

achieved strictly inside the plasticity limit. Let us consider proportional stress

path as follows:

δσ1 ¼ cst cst � R

δσ1 þ Rδσ3 ¼ 0 R � R�

δσ2 � R0δσ3 ¼ 0 R0 � R

8<
: (19)

where R denotes the set of real numbers and R* the set of real numbers excluding

zero. For such loading paths, it is possible to write a generalized constitutive

relation:

δe1 � δe3
R

� R0

R
δe2

δσ1 þ Rδσ3
δσ2 � R0δσ3

2
64

3
75 ¼ S

δσ1
δe3
R

þ R0

R
δe2

δe2

2
64

3
75 (20)

where R and R0 are variables that allow the description of all possible loading

directions. Particular values of R and R0 which describe directions included in an

instability cone can be found, such that e1�e3/R�R0/R.e2 reaches an extremum.

Hence, because of the statical constraint in Eq. 20, at the e1�e3/R�R0/R.e2 peak,

det(S) vanishes for nontrivial solutions of Eq. 20 and a generalized failure rule can

be defined. Furthermore, knowing that the second-order work can be rewritten as in

Eq. 21,

δW2 ¼ δe1 � δe3
R

� R0

R
δe2

� �
dσ1 þ δσ1 þ Rδσ3ð Þ δe3

R
þ R0

R
δe2

� �

þ δσ2 � R0δσ3ð Þδe2, (21)

the second-order work vanishes as well at this extremum. Figure 4 illustrates

previous discussions on a particular stress path. First, a drained triaxial path is

followed until reaching a stress deviator just before the bifurcation domain limit.

non-linear

Bifurcation
domain

s1/po

s2/po s3/po

Mohr-Coulomb
octo-linear

Fig. 3 Limit of bifurcation domain plotted according Darve models calibrated on a dense sand of

Hostun plotted in the deviatoric plane

148 F. Prunier et al.



Then, a proportional stress path is imposed with values of R ¼ 0.85 and R0 ¼ 1
(Laouafa et al. 2011; Daouadji et al. 2011).

Based on Fig. 4, the following observations can be made. The first cone (reduced

to a single direction) gives the bifurcation domain limit, whereas the limit state

described by the extremum is reached whenever the loading path is tangent to a

cone andW2¼ 0. As such, the loading path is strictly inside a cone whenW2< 0. As

concluding remarks, in the present case, the limit state is defined by a strain state.

Similar studies can be made with proportional strain paths in which case limit states

are defined by stress states instead.

Failure Analysis in Granular Materials by the Discrete Element
Method

The Discrete Element Method (DEM) is a direct numerical simulation of granular

media (Cundall and Strack 1979). In the granular assembly each grain is described

as an elastic body interacting with a Coulombian friction with the neighboring

grains in contact. Thus, pre-failure, failure state, and post-failure regime can be

simulated in a very natural and realistic way without addressing the numerical

difficulties usually encountered in continuum mechanics with the finite element
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Fig. 4 Simulation of proportional stress path using INL model. First a drained triaxial path is

applied until q ¼ 35 kPa, and then a proportional stress path has been followed with R ¼ 0.85 and

R0 ¼ 1. At the e1�e3/R�R0/R.e2 extremum, second-order work vanishes and a limit state is reached
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method. This is the main reason why the DEM approach is chosen here to validate

numerically the features of diffuse failure as exhibited previously in sections “A

General Criterion for Failure by Divergence Instabilities” and “The Second-Order

Work Criterion, Features, and Illustrative 3D Examples (Multiaxial Loading)” by

the second-order work criterion. A numerical cubical specimen of about 10,000

spheres of various radii is prepared, then some loading paths can be applied at the

boundaries of the cube. For a more detailed description of the numerical method,

the reader can refer to Nicot et al. (2012a) and Sibille et al. (2008).

The first point to be investigated now is the link between second-order work and

kinetic energy as established theoretically in section “Introduction: Main Features

of Failure in Geomaterials.” To this end, an axisymmetric undrained triaxial path is

simulated by applying numerically to the specimen, in a loose density state, an

axisymmetric isochoric loading path. As observed experimentally (Daouadji

et al. 2010), the deviatoric stress q (q is equal to the axial stress minus the lateral

stress) passes through a maximum value. In Fig. 5, the peak of q can be observed as

well as the ultimate vanishing of the intergranular stresses when the effective stress

path reaches the origin of the q-p plane (p is the intergranular mean effective

pressure). In addition to the above plot, a comparison is presented between the

externally applied stresses at the boundary of the sample (noted by qs and ps) and
the internal stresses qσ and pσ obtained from the internal intergranular force field by

applying Love–Weber relation (Love 1927). The observed excellent agreement is

an indicator of the consistency of the numerical computations. At stress state MB,

just after the peak in q, a small additional axial deviatoric stress is applied,

i.e., Δqs ¼ 1.6 kPa. According to section “A General Criterion for Failure by

Divergence Instabilities,” the sample cannot sustain this additional force. This is

illustrated in Fig. 6, where the applied external load qs is no more equal to the

internal stress qσ. The failure induced by this additional load produces a burst of

kinetic energy, which is equal for a small time increment (here, on Fig. 7, about

0.08 s) to half the difference between the external applied second-order work (noted

by [V.ΔSi.ΔFi]Δt on Fig. 7) and the internal second-order work (noted by [W2]Δt), as

Fig. 5 Undrained (isochoric) triaxial compression of a loose particle assembly. qs and ps are
computed from the stress state at the boundary of the sample, and qσ and pσ are computed from the

internal stress state (Nicot et al. 2012a)
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established in section “A General Criterion for Failure by Divergence Instabilities.”

The kinetic energy is obtained by adding both the translational and rotational

kinetic energies of each grain, whereas the external second-order is the product of

the small additional axial surface force and the axial strain (multiplied by the

sample volume V ). On the other hand, the internal second-order work is simply

calculated as the inner product of the Love macroscopic stress tensor and the

macroscopic strain tensor (multiplied by V).
A second aspect (shown in section “The Second-Order Work Criterion, Features,

and Illustrative 3D Examples (Multiaxial Loading)”) is the fact that the second-

order work is a quadratic form of incremental stresses or strains, which means –

according to linear algebra – that there are some instability cones capturing all

stress directions for which the second-order work is negative. Figure 8 shows such a

cone for different values of the deviatoric stress η ¼ q/p by plotting the polar

Fig. 6 Stress increments

resulting from the application

of Δqs ¼ 1.6 kPa from the

state MB defined in Fig. 5

(Nicot et al. 2012a)

Fig. 7 Time series of the kinetic energy and terms [W2]Δt, [V.ΔSi.ΔFi]Δt, and [V(ΔSi.ΔFi�W2)/2]Δt
during and after the application of Δqs ¼ 1.6 kPa from the state MB (a). Focus on shorter time

increments (b) (Nicot et al. 2012a)
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variations of the normalized second-order work with respect to stress directions in

axisymmetric conditions. The normalized second-order work is obtained by divid-

ing the second-order work by the norms of the incremental stress and the incre-

mental strain. As such, the normalized second-order work represents the cosine of

the angle between both the stress and strain vectors in the axisymmetric plane and

varies between �1 and +1. The second-order work takes negative values inside the

dashed circle of Fig. 8. The fact that inside the instability cone an effective failure is

possible (with a proper control variable) while outside no failure can occur is

checked in Fig. 5. For both stress directions outside of the cone (alpha angle ¼
200� and 240�), stresses and strains remain constant under a small additional load.

For both directions inside the cone (220� and 215.3�), the failure is characterized by
suddenly and strongly growing strains with decreasing stresses. Eventually for both

directions at the boundary of the cone (210� and 230�), some erratic responses from

the sample are obtained (Fig. 9).

The question of the control variable is investigated in Fig. 10 for a q constant

axisymmetric drained loading path (which is indeed an isotropic unloading from a

deviatoric stress–strain state, corresponding to a stress direction of 215.3�). Exper-
imentally, it has been observed (Daouadji et al. 2010) that the volume changes go

through a maximum dilation along this path. Thus, if this loading path is fully stress

controlled, no effective failure is expected according to the theory described in

section “The Second-Order Work Criterion, Features, and Illustrative 3D Examples

(Multiaxial Loading).” On the other hand, if this loading is partially volume

variations controlled (mixed loading), an effective failure must be observed as

given by the theory. These phenomena are well illustrated in Fig. 10, where both

kinds of control are compared.

Finally, Fig. 11 establishes the important observation that an effective failure

can be indeed induced by a perturbation close to the failure state. Because failure

Fig. 8 Polar diagram of the

normalized second-order

work for a loose granular

assembly at confinement

pressure of 100 kPa. The

dashed circles represent zero

value of the second-order

work; η ¼ q/p represents the

mobilized deviatoric stress

(Sibille et al. 2008)
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states are essentially unstable states, they are naturally sensitive to perturbations.

Experimentally, it is well known that failure can be triggered by a proper pertur-

bation. Here, the numerical perturbation is constituted by a small “injection” of

kinetic energy to the sample. Since all the computations are performed without

gravity forces, at each computation step few grains are floating inside the specimen.

To perturb the sample’s state, a small additional velocity is numerically imparted to

these grains. An effective failure is clearly observed in Fig. 11 just after the

perturbation of the q constant axisymmetric path through a burst of kinetic energy

with strongly growing strains and decreasing stresses.

Rock Joint Failure Modeling

In the following rocks as another example of geomaterials are considered. In order

to assess rock slopes stability, a focus is made on rock joints whose failure can

trigger rock falls. Among the possible different types of defects that can occur in

Fig. 9 (a) Polarplotof thenormalizedsecond-orderwork for a loosegranular assemblyat a confinement

pressureof100kPa,with someparticular stressdirectionshighlighted. (b)Simulated responses in termsof

strains (b) and stresses (c) to loading paths defined by δσ1�δσ3/R¼ 0 and δε1 + 2R δε3< 0, for a loose

granular assembly at a confinement pressure of 100 kPa and for η ¼ q/p¼ 0.46
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rock slopes at different scales, the discontinuities in mechanical properties that exist

at a macroscopic scale are called “rock joints.” In a fractured rock slope, it can be

assumed that the stability of the slope is mainly governed by the mechanical

behavior of existing rock joints. Compared to the geomaterials covered in the

previous sections, these rock joints constitute an interface medium (material).

Thus, their mechanical behavior can be described using only four scalar variables

as obtained from two vectors. The first vector relates to stress with σ as its

component normal to the joint (positive in compression) and τ its tangential one.

The second vector refers to relative displacement mobilized between the two rock

blocks in contact along the joint, with u being the normal component (positive in

compression) and γ the tangential component.

An internal second-order work is in this case defined as

δW2 ¼ δσ
!
δ l
! ¼ δσ δuþ δτ δγ (22)

As explained in section “A General Criterion for Failure by Divergence Insta-

bilities,” a negative second-order work can lead to failure by divergence

Fig. 10 Comparison of a loose granular assembly responses along a q-constant path for a full

stress control (δσ1¼ δσ3< 0) and a control with δq¼ 0 and δeV< 0; kinetic energy (a), axial strain

(b), and radial stress (c) versus time of simulation (Sibille et al. 2008)
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instabilities. In this context, relative displacements along the joint will increase

towards a dynamic regime, ultimately triggering a rockfall. Since the second-order

work is governed by the material properties of the joint, two given rock joint are

studied with a focus on their constitutive relations.

Two Rock Joint Constitutive Relations

In the following, the rock joint relations are derived from the soils relations

presented in section “Illustration of Instability Cones Using Darve Model.” An

INL2 relation, with an infinity of tensorial zones, and a quadri-linear relation with

four tensorial zones for rock joints were recently proposed in Duriez et al. (2011a, b).

The development of these models relies on calibration paths along which the

behavior of the joint is known, i.e.,

• A constant normal displacement (CND) path, with (δu ¼ 0; δγ ¼ cst). Four
moduli are thus defined from this path:

Fig. 11 Simulation of loss of sustainability for loose granular assembly at a mechanical state

governed by the control parameters δq ¼ 0 and δeV ¼ 0; the arrows in the diagrams represent the

time where perturbation was applied (Sibille et al. 2008)
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Gþ
γ ¼ @τ

@γu cst, dγ>0

G�
γ ¼ @τ

@γu cst, dγ<0

Nþ
γ ¼ @σ

@γu cst, dγ>0

N�
γ ¼ @σ

@γu cst, dγ<0

Moduli Gγ
+/� correspond to tangential stiffnesses, while moduli Nγ

+/� take into

account the dilatant (or contractant) feature of the joint.

• A constant tangential displacement (CTD) path, with (δu ¼ cst; δγ ¼ 0). This
corresponds to an oedometric compression. Four other moduli are herein defined:

Gþ
u ¼ @τ

@uγ cst, du>0
G�

u ¼ @τ

@uγ cst, du<0

Nþ
u ¼ @σ

@uγ cst, du>0
N�

u ¼ @σ

@uγ cst, du<0

Moduli Nu
+/� are normal stiffnesses. Changes in τ during compression can be

described through moduli Gu
+/�. Indeed, numerical and experimental data revealed

such variations, depending on the state of shearing in the joint (Duriez et al. 2011a;

see Fig. 12).

Along any other loading path, the behavior of the joint is computed as an

interpolation between the behavior of these two calibration paths. For a piecewise

linear interpolation, a quadri-linear relation, with four tensorial zones is derived.

For constant signs of du and dγ, a linear relation with a constant matrix links in this

case δσ
!
to δ l

!
. For example, if δu > 0 and δγ < 0, it comes

Fig. 12 Changes in τ during
different oedometrical

compressions on a rock joint

in gneiss, since different

initial states in shearing

(Duriez et al. 2011a). The

slopes of the curves

correspond to moduli Gu
+/�
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δσ
! ¼ δτ

δσ

� �
¼ G�

γ Gþ
u

N�
γ Nþ

u

� �
δl
! ¼ G�

γ Gþ
u

N�
γ Nþ

u

� �
δγ
δu

� �
(23)

Using a quadratic interpolation leads to the INL2 relation. The expression (not

presented here) involves matrices depending on the eight moduli and the direction

of δ l
!
, leading to an infinite number of tensorial zones, meaning that for each

direction, there is a different constitutive matrix. Predictions of the INL2 relation

are generally more efficient than the quadri-linear relation, but both are generally

close. Furthermore, the quadri-linear relation allows analytical derivations, as it

will be seen in section “The Use of the Second-Order Work Criterion.”

Appropriate expressions of the moduli were proposed in (Duriez et al. 2011b).

They depend on the state of shearing in the joint, expressed by the ratio τ/σ. Due to
the nature of the expressions used in the model, a plastic limit criterion is intrinsi-

cally defined in the relations. The stress states they predict do not exceed a

Mohr–Coulomb-like criterion. Both models describe a non-associated behavior

(Duriez et al. 2011b), which justifies the use of the second-order work criterion.

The Use of the Second-Order Work Criterion

For any rock joint constitutive relation in one tensorial zone, e.g., for the quadri-

linear relation with constant signs of δu and δγ, it is easy to show (Duriez

et al. 2012) that the sign of the second-order work is given by a second-order

polynomial P, with respect to the loading direction δu/δγ: P(δu/δγ). Under the

assumption of positive normal stiffnesses Nu
+/� – this could be untrue in high-

porosity rocks showing compaction bands (Mollema and Antonellini 1996) –

directions of instability exist under the following condition:

Gþ=�
u þ Nþ=�

γ

� �2

� 4Nþ=�
u Gþ=�

γ (24)

The above equation involves a comparison between “diagonal” stiffnesses, Nu
+/�

and Gγ
+/�, and coupled stiffnesses, Gu

+/� and Nγ
+/�. Applying Eq. 24 to the four

tensorial zones of the quadri-linear relation allows determining directly its bifur-

cation domain in the stress space (Fig. 13). Directions of instability exist under

sheared states of the joint, but before the Mohr–Coulomb criterion. Shearing

reduces indeed diagonal (e.g., normal) stiffnesses (Bandis et al. 1983) and increases

coupled ones, allowing Eq. 23 to be verified. For the INL2 relation, the bifurcation

domain is obtained using a numerical procedure. It is reduced in the INL2 case,

compared to the quadri-linear case (see Fig. 13) (as for soils, see previous Fig. 3).

Directions of instability are determined analytically for the quadri-linear rela-

tion, by solving the inequality P(δu/δγ) � 0. A cone of directions is found; see

Fig. 14. The two branches of the cone are the roots of polynomial P, and

all directions δu/δγ between the two roots trigger P(δu/δγ) < 0 , δW2 <
0. The cone is more and more open as the rock joint is sheared, i.e., as the ratio
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τ/σ ¼ tan(Фmob) increases. Once on the plastic limit criterion, for τ/σ ¼ tan(φ), one
branch of the cone in the displacement space corresponds to the flow rule of the

joint. Indeed, for a loading δ l
!
corresponding to the flow rule, δσ

! ¼ f δ l
!� �

¼ 0
!
(the

unstable direction in stress space is then not defined), and obviously δW2 ¼ 0.

For the INL2 relation, similar results are obtained with a numerical procedure

(Duriez et al. 2012). For both relations, in stress space, both normal and shear

stresses decrease for unstable loadings, as for soils in axisymmetric conditions,

considering mean and deviatoric stresses. It was shown in Duriez et al. (2012) that

the orientation in the stress space of the directions of instability is given by a

comparison between the coupled stiffnesses of the joint: the moduli Gu and Nγ.
These coupled stiffnesses govern the instability of a rock joint, since they appear in

the equation of the bifurcation domain.
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Fig. 13 Bifurcation domains

of quadri and INL2 rock joint

constitutive relations

(Duriez et al. 2012). A

Mohr–Coulomb (M–C)

criterion gathers the

admissible stress states

Fig. 14 Cones of directions of instability for the quadri-linear relation, in the displacement space

(left) or the stress space (right) (Duriez et al. 2012). The cones get more and more open while the

shearing increases
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Application

An existing rock slope, in south of France, is studied using this approach (Merrien-

Soukatchoff et al. 2011). A numerical model of the cliff was proposed, in two

dimensions, with eight blocks of intact matrix and several rock joints inbetween.

The INL2 constitutive relation is used to describe rock joint behavior. A continuous

increase in gravity is applied to the cliff, as a loading. Another loading could be

chosen by excavating the top of the cliff, in order to better reproduce the geological

history of the slope.

During the simulated loading, negative values of the second-order work are

obtained in some joints (Fig. 15). It is noteworthy that this is the case for one joint

which has not yet reached its plastic limit criterion, between blocks B2 and B8. No

rockfall is obtained here; this would probably be the case if the concerned joints

surround a set of blocks. A global second-order work, taking into account the local

values along all joints, is required to deal with such cases.

Failure Modeling by Finite Element Method: Homogeneous Cases
and Boundary Value Problems

Material Instabilities in the Triaxial Test

The preceding sections delved into the description of failure in geomaterials as a

bifurcation problem with the second-order work criterion acting as a general

framework within which various forms of instabilities can be captured such as

diffuse and localized modes. Examples of diffuse and localized failure are manifest

B2

B8

0 100 m

640 m

840 m

Rock joints
with δW2 ≤ 0

Fig. 15 Numerical model of

the slope with the rock joints

where δW2 � 0 during the

simulated loading (Merrien-

Soukatchoff et al. 2011)
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in conventional triaxial testing of soils where both stress and strain are axisymmet-

ric. The most well-known manifestation of diffuse failure is in the consolidated

undrained (CU) shearing of a loose sand when the effective stress path passes through

a peak where the second-order work is violated. With the proper operative control

parameters, herein load control mode, a diffuse failure emerges in a CU test on loose

sand with spontaneous release of kinetic energy. While this peak point lies within the

bifurcation domain, it is most importantly associated with a loading direction that is

inside the bifurcation cone. The above two conditions together with the proper

control parameters are required for an effective failure to occur. Figure 16 shows

how diffuse material instability occurs in several types of triaxial tests, all having a

common feature of violating the second-order work well below the plastic limit.

In the so-called CSD test where the specimen is sheared at constant deviatoric

stress with decreasing mean effective stress in drained conditions, controllability is

lost at some point during the test. The ensuing diffuse failure is governed by the

same phenomenon as in the CU test, provided that all of the proper conditions

discussed previously are in place. The QCSU test, a variant of the CSD test where

drainage is prevented while the deviatoric stress fluctuates about a constant value,

also shows the same instability phenomenon. All tests exhibited unstable material

response by loss of controllability, and hence collapse, roughly at the same stress

ratio defined by a reference bifurcation line with slope of η ¼ q/p ¼ 0.6 in the p-q

space, which is reminiscent of the well-known instability line introduced by (Lade

1992). However, in the framework described in this chapter, a wider scope using

bifurcation theory provides theoretical and physical insights in explaining the

collapse behavior of sands.

Finite Element Analysis of Diffuse Failure
In the next diffuse failure with respect to control parameters as evidenced in the

triaxial tests described in the previous subsection is numerically captured.

Fig. 16 Experimental evidence of material instabilities in various triaxial tests on Hostun S28

sand (Darve et al. 2007)
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Two initial densities are examined, namely, void ratios e0 ¼ 0.7 and 0.8,
referring to medium–loose to loose sand, respectively. An elastoplastic model

having all the essential ingredients that are prerequisites for capturing unstable

material behavior is employed (see Wan and Guo 2004). These include density,

stress, and anisotropy dependencies through a micromechanical enrichment of

Rowe’s stress dilatancy equations. As additional important properties, they account

for plastic-strain softening and non-associativity of plastic yield and flow that

provide sources of material instability, as discussed in the beginning of this chapter.

Loading Direction, Control Parameters, and Bifurcation Domain
The numerical triaxial tests are herein modeled as an initial boundary value

problem involving coupled solid–fluid interaction to mimic the actual triaxial test

with drainage conditions. As such, a three-dimensional finite element mesh with

5,220 linear elements representing a cylindrical sand sample is used in the

simulations.

Figure 17 summarizes the numerical results of CSD, CU, and QCSU tests

performed on a loose sand specimen, e0 ¼ 0.8 with a focus on second-order work

evolution. The undrained (CU) test was run in both displacement control and stress

control in order to highlight the role of the load control parameters on the resulting

failure mode. Figure 17a shows that the points at which the second-order work first

vanishes for all tests fall almost on a straight line with a slope η ¼ 0.56. This line
actually lies above the lower limit of the bifurcation domain where the second-order

Fig. 17 Simulation of

various triaxial tests together

with identification of

bifurcation and ultimate

failure points
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work first vanishes with all but only one possible loading direction for material

instability to occur. When compared with the Mohr–Coulomb failure line at a slope

M¼ 1.29 in the p-q space, it is evident that the second-order work first vanishes at a
stress state well below the classic plastic limit.

The evolution of the non-normalized second-order work with mean effective

stress for these tests is presented in Fig. 17b. It is interesting to observe that the

second-order work becomes zero approximately at the same point B for the two

q-constant tests, but with different evolution due to the loading history. It is

noteworthy to point out that contrary to the QCSU test, the CSD test carried past

the bifurcation point B but finally failed at point D near the plastic limit surface. For

the QCSU test, failure as a loss of controllability occurred much earlier at the

bifurcation point B, due to the proper load control parameters.

Also of particular interest are the numerical results obtained for the consolidated

undrained compression test case where it is found that the second-order work

vanishes at the same stress point B0 irrespective of the load control parameters.

However, in the force-controlled case, as the second-order work vanishes, the test

cannot be controlled further and the computations break down, meaning collapse of

the specimen. The undrained test performed under strain-controlled mode carries

on past the peak B0 until it fails at point D0 for lack of numerical convergence. Since,

by contrast, the same test stops at the very same peak point B0 under stress

controlled mode, this observation conveys two important results. First, to obtain

diffuse failure with collapse, it is not solely sufficient to have the second-order work

criterion violated, but it is also necessary to have the proper control variables in

place, here a force-controlled loading program. Second, the direction of the loading

matters, and here it appears to be a horizontal direction which is necessarily

contained within the instability cone in the p-q plot. The instability cone essentially

defines the range of loading directions in the p-q space for which the second-order

work is violated.

Second-Order Work, Relevance to Loss of Uniqueness, and Localization
It is recalled that the vanishing of the second-order work locally and globally

signals the possibility of instability and the loss of uniqueness of solutions of the

boundary value problem. This numerical aspect is checked in the subsection

whereby two or more solutions can emerge starting from the same base state. As

an illustration, the undrained test simulations for medium–loose sand (e0 ¼ 0.7) are
considered.

Figure 18a shows the branching of effective stress paths after the peak was

reached where second-order work vanished. For clarity of illustration, only four

strategic gauss points where choosen as indicated in Fig. 18b showing the final

nonhomogeneous deformed configuration when localization of deviatoric plastic

strain occurred. As expected, inside this shearing zone (#078), the deviatoric

plastic strains are higher than in other parts (#004, #068, #059) of the specimen.

In Fig. 18, these are reflected into distinctly different paths followed by the four
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strategic nodes, with unloading occurring at nodes #068 and #59 found outside

the shear band.

The loss in homogeneity arising from bifurcation is reflected in all field vari-

ables, for example, excess pore water pressure, void ratio, and deviatoric plastic-

strain fields as illustrated in Fig. 19a–c for the same four nodes mentioned above.

As seen in Fig. 19a, there is a steady and uniform increase in pore pressures until

when bifurcation is first met. Thereafter, a distinct region of localized deformations

eventually appears. Material points inside this region experience escalating pore

water pressures while points outside this shear zone undergo a decrease in pore

pressures. In line with the pore pressure field response, Fig. 19b indicates that the

localized zones compact, leading to a decrease in void ratio and an increase in pore

pressures. Such local compactive response is expected since the sample is

medium–loose even though the sample is globally undrained.

Fig. 18 Loss of homogeneity after diffuse failure with ensuing localization mode when reaching

plastic limit
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Figure 20 shows a transverse section of the sample at various stages during the

undrained compression test. The pore pressure field is still uniform at the peak (t ¼
0.41 s), where the second-order work first becomes zero (Fig. 19a). A departure

from homogeneity is only observed at t ¼ 0.52 s when a bifurcated response

eventually emerges (Fig. 19b). The pore pressure increases throughout the speci-

men in a somewhat heterogeneous manner. Moving further along loading history,

the pore pressure field develops into a more organized state as shown in Fig. 19c

where a well-defined band is revealed with concentrated high values of pore

pressures.

The numerical results demonstrate that the vanishing of the second-order work

refers to a failure mode which is diffuse in the absence of any localization or

organized displacement pattern. Localized deformations distinctly appear crossing

through the sand specimen diagonally only when reaching close to the plastic limit

surface in the stress space and well after diffuse failure has occurred at the peak,

confirming that diffuse failure precedes here localization during loading history.

The hierarchy of failure modes and other issues were discussed inWan et al. (2012).

Fig. 19 Evolution of (a) excess pore water pressure, (b) void ratio, and (c) deviatoric plastic strain

at four selected nodes in the FE mesh

Fig. 20 Snapshots of the excess of pore water pressure field at (a) t¼ 0.41 s, (b) t¼ 0.52 s, and (c)

t ¼ 1.00s (1	 magnification)
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FEM Modeling of the Petacciato Landslide

The area of Petacciato is located along the Adriatic coast of Italy. The landslide

occurred in 1996, after an intense rainy period. The landslide covers an area of 2 km

wide, 7 km long, and over 200 m of difference in elevation. Geological and

geotechnical surveys have been carried out by the “Studio Geotecnico Italiano”

(SGI) (SGI 2004). The failure surface was found to be between 70 and 90 m in

depth. The mean slope of the site was only 6�. The soil underlying the first 5–6 m of

the slope is assumed to be homogeneous and composed of blue clayey silt.

To conduct the numerical modeling of this landslide, the finite element code

LAGAMINE developed at Technical University of Liège (Belgium) is used. A

constitutive model describing the behavior of unsaturated soils has been used. It is

based on a frictional non-associative elastoplastic relation for the solid phase, and a

water retention description for the fluid phase. The elastoplastic model uses the

Van-Eekelen (Van-Eekelen 1980) surface as elastic and plastic limit. The harden-

ing parameter chosen here is the equivalent plastic shear strain that makes the

elastic limit evolve isotropically until the plastic limit is ultimately reached. The

non-associative flow rule is described using a plastic potential surface with the same

form as the yield surface, except that the friction angle is replaced with a dilation

angle. The evolution of the dilation angle follows the same rule as for the friction

angle during hardening. As for describing the water retention behavior of the soil,

the empirical relation of Van-Genuchten (1980) is used. Hydromechanical coupling

is established using Bishop’s effective stress principle (Bishop 1959) in which the

parameter χ is assumed to be the current degree of saturation. Finally, fluid flow is

described by the generalized Darcy’s law, the so-called Richards equation

(Richards 1931). In this expression, the permeability is proportional to the degree

of saturation degree with the proportionality coefficient being the permeability at

the current saturation state.

The finite element mesh with associated boundary conditions that are used to

model the Petacciato slope are shown in Fig. 21.

According to the mechanical boundary conditions, vertical displacements are

fixed at the bottom edge, while horizontal displacements are fixed on left and right

edges. Gravity loads are then applied to the whole body. For hydraulic boundary

conditions, the bottom edge is impervious, whereas the upper edge is permeable

with water pressure equal to zero. Water pressures are imposed on both left and

Fig. 21 Finite element mesh and boundary conditions of the Petacciato slope
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right boundaries so that they can evolve at each computation step in order to impose

a chosen water table level in the steady-state regime. Fully saturated conditions are

considered below the water table, while the above soil is partially saturated. The

numerical simulation involves computing the degree of saturation as well as suction

by integrating Richard’s equation.

The soil parameters have been determined by calibrating SGI’s laboratory tests

(SGI 2004), mainly oedometer and triaxial tests. In particular, calibration has been

based on the more representative CD and CU tests. Results of this calibration

exercise are summarized in Table 1.

The numerical simulation of the Petacciato slope is as follows (Lignon

et al. 2009). Initially, the whole soil medium is dry with the water table located at

the bottom boundary. In subsequent steps, hydrostatic water pressures are imposed

in view of mimicking a rise in the water table. This was achieved in a total number

of 100 loading steps, whereby hydrostatic water pressures were imposed at eleva-

tions between 0 and 425 m on the left boundary and between 0 and 200 m on the

right boundary; see Fig. 21. As such, the water table is roughly parallel to the slope.

To evaluate any instability at every loading step, the second-order work is com-

puted at each integration point throughout the whole body. In order to enhance the

contrast of isovalues of the second-order work maps and to have a proper interpre-

tation of the stability evolution of a given material point during the loading process,

the second-order work has been normalized as follows:

δWn
2 ¼

δW2

δσik k δeik k (25)

This quantity, as seen previously, corresponds to the cosine of the angle between

vectors δσi and δei and varies between �1 and 1. Values less or equal to zero signal

unstable states, while positive values refer to stable states. Furthermore, states with

Table 1 Mechanical and retention parameters of the Petacciato soils

Soil parameters Symbols Unit Blue-gray clay

Grain-specific weight ρs kN/m3 27.40

Young modulus E MPa 95.0

Poisson’s ratio ν – 0.21

Porosity n – 0.3

Intrinsic permeability kw m2 10�17

Friction angle φ � 19.0

Cohesion C kPa 171

Dilatancy angle ψ � 0

Maximal saturation degree Sw – 1

Residual saturation degree Srw – 0.1

First retention parameter (Van-Genuchten) α Pa
�1 1.10�5

Second retention parameter (Van-Genuchten) β – 1.35
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values near one can be considered as being further away from instability than those

near zero. Hence, δW2
n can be used in the same manner as the local safety factor

centered around the value of zero instead of one. Figure 22 illustrates the evolution

of the normalized second-order work with loading history.

When the water table approaches the free surface, the results of loading step

85 plotted in Fig. 22, show that the area of low δW2
n values develops extensively

along the slope surface. As soon as the slope reaches 95 % saturation, the region of

low or negative δW2
n extends further deep into the slope as shown for loading step

96 in Fig. 22. At the same time, a slip surface located at a depth between 80 and

90 m is clearly visible. These numerical results are in close agreement with

borehole and inclinometer measurements made in the field. It is worth noting that

the natural inclination of the slope is around 6� and consequently the failure, which
is in the diffuse mode, cannot be explained using either classical empirical methods

or limit analyses.

Conclusion

In this chapter, an attempt to demonstrate why and how plasticity and damage

phenomena in geomaterials are fundamentally different from classical interpreta-

tion was made. The main reason is the non-associated character of the rate-

independent irreversible strains in these materials. The second-order work criterion

has been introduced as a general and necessary condition for all types of divergence

instabilities to occur and to give rise to localized or diffuse failure modes. This

criterion has been analyzed in relation to granular microstructure and the charac-

teristic expression of macroscopic failure through the phenomenon of bursts of

kinetic energy. Its main features have been investigated (i.e., existence of a bifur-

cation domain and of instability cones) and they have been carefully checked using

a discrete element model. Eventually some examples were presented using the

finite element method to show the applicability of this criterion to in situ boundary

value problems implicating both soil and rock slopes.
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Fig. 22 Unstable domain of

the Petacciato slope during

saturation process
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Abstract

Classical mechanics including mechanics of fracture is often unsatisfactory

when a solution predicts a singularity and the need arises to interpret the

underlying physical meaning or lack thereof. A customary practice to deal

with the singularity problem is to exclude a small region near the singular

point, for which a different constitutive law – usually nonelastic – is postulated.

This approach is adequate provided that the stress field outside the singular

region is dominated by the elastic behavior. An alternative approach that suc-

cessfully resolves problems involving singularities is the averaging process, also

known as the quantization procedure – or – equivalently, discretization of the

condition of the minimum of the potential energy of the system. In addition to

the constitutive law, a certain “rule of decohesion” must be incorporated into the

theory of fracture. An example of such a rule is the δCOD or the so-called “final

stretch” criterion employed to describe the onset and the stable growth of a crack
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contained in a ductile solid. This criterion generalizes the well-known criteria of

Griffith, Irwin–Orowan, Rice, and Wells.

Success of the novel approaches is particularly remarkable in the nanoscale

domain, where the fractal geometry of cracks and the quantization rules need to

be combined in order to describe adequately fracture processes at the lattice

and/or atomistic level. Discrete cohesive crack representation with the fractal

geometry incorporated into the mathematical model appears to produce most

straightforward and useful results. Application of the Wnuk–Yavari correspon-

dence principle relating the fractal and smooth blunt cracks demonstrates that

even a minute amount of roughness of the crack surface is sufficient to cause a

drop in the maximum stress measured at the tip of the crack from infinity to a

well-defined finite value.

Early stages of fracture and the pre-fracture deformation states associated

with a stable propagation of a subcritical crack in viscoelastic and/or ductile

solids are described in some detail. The initial stable growth of crack manifests

itself as a sequence of the local instability points, while the onset of catastrophic

fracture corresponds to attainment of the global instability. The locus of

these critical states supplants the Griffith result. Only in the limit of ideally

brittle material behavior that both results, the present one and the classic one,

coincide.

In the present review, introductory concepts of fractal and quantized fracture

mechanics followed by the studies of delayed fracture in viscoelastic solids and

the instabilities occurring in the process of ductile fracture are discussed.

Introduction

In the seminal paper (Mandelbrot et al. 1984) entitled Fractal character of fracture
surfaces in metals and published in 1984 in the prestigious British journal Nature,
Mandelbrot, Passoja, and Paullay wrote:

When a piece of metal is fractured either by tensile or impact loading the fracture surface

that is formed is rough and irregular. Its shape is affected by the metal’s microstructure

(such as grains, inclusions and precipitates where characteristic length is large relative to

the atomic scale), as well as by ‘macrostructural’ influences (such as the size, the shape of

the specimen, and the notch from which the fracture begins). However, repeated observa-

tions at various magnifications also reveal a variety of additional structures that fall

between ‘micro’ and ‘macro’ and have not yet been described satisfactorily in a systematic

manner. The experiments reported here reveal the existence of broad and clearly distinct

zone of intermediate scales in which the fracture is modeled very well by a fractal surface.

The purpose of this review is to show how the concept of fractal geometry can be

incorporated into the mathematical analysis underlying the existing mechanics of

fracture. Some progress has been achieved and certain novel ideas pertinent to this

goal have been developed by Carpinteri (1994), Carpinteri et al. (2002), Carpinteri

and Spagnoli (2004), Spagnoli (2005), Balankin (1997), and Cherepanov

et al. (1995). From the text of Mandelbrot et al. (1984) quoted above, it follows
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that fracture is not only of fractal character, but it is also of multi-scale nature.

To fill the gap between the “micro” and “macro” scale levels, the group of

Panin (Pugno and Ruoff 2004) in Siberia, Russia, has developed an entirely new

branch of mechanics, named “Mesomechanics.” In the second part of this review,

certain theoretical considerations are presented, which are based on the experimen-

tal observations of the Siberian group.

For several past decades, the linear elastic fracture mechanics (LEFM) has been

subject to multiple attempts to eliminate or alter the singularities present in the

stress and strain fields generated by a crack contained in a brittle solid. As the

singular point is approached and the distance measured from the crack tip shrinks to

zero, certain new fields derived on the basis of nonelastic constitutive laws are

embedded within the known asymptotic K-field. An example is described in Fig. 1,

where a nonlinear stress and strain fields proposed by Hutchinson–Rice–Rosengren

(the HRR fields) are based on the constitutive law of Ramberg and Osgood and –

strictly speaking – valid for a nonlinearly elastic power strain-hardening material.

In these studies, the hardening exponent n present in the Ramberg–Osgood

FRACTAL CRACK

y

x

Δ

Jf-dominated Field

Crack

a

b

~

K-dominated Field
σ ~ KIr−1/2

~

Kf - dominated Field
σ ~ KI

f r−α

~

J-dominated Field
σ ~ (J/r)1/n+1

y

x

Δ

Remote Elastic Field, σ~

Remote Elastic Field due to Fractal Crack, σ~

Fig. 1 (a) Singular asymptotic fields for a smooth crack: J-dominated HRR field and the K-field.

Embedded inside the J-controlled field is the process zone, Δ. (b) Singular asymptotic fields for a

fractal crack: Jf -dominated HRR field and Kf -field. Embedded inside the Jf -controlled field is the

process zone, Δ
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constitutive law σ � en enters the expressions for the HRR stress and strain near-tip

asymptotic fields, as follows:
~
σ � J=rð Þ 1

nþ1 and
~
e � J=rð Þ n

nþ1 . Subsequently, such a

representation has been shown to be valid for elastic–plastic fields, too; and thus,

the concept of Rice’s path-independent integral has been extended to elastic–plastic

problems including large-scale yielding cases. Note that the product of stress and

strain is inversely proportional to r, thus making all the energy integrals finite –

analogous to the integrals involved in the problem solved by Griffith. Since the

theory underlying the HRR field is the deformation theory of plasticity, the results

are not valid whenever unloading occurs, meaning that the J-controlled field

described here is valid only for stationary cracks. As soon as the crack begins to

propagate, the HRR fields are no longer pertinent. New solutions valid for a moving

crack remain to be found.

An interesting alternative is offered in the form of the cohesive forces crack

model, for which a certain cohesion mechanism of separation is considered (either

Wells’ CTOD criterion for stationary cracks or Wnuk’s δCOD criterion for moving

cracks); see Fig. 2. This model has produced very useful results, especially

when equipped with an additional element – the Neuber particle, known also as

“unit step growth,” “fracture quantum,” or “process zone.” Incorporation of the

Neuber particle into the mathematical analysis leads to the quantization procedure;

cf. Pugno and Ruoff (2004) and also in Wnuk and Yavari (2008, 2009). This type of

cohesive forces model, which includes the Neuber-type zone, is known as “discrete

cohesive crack model” and it works well both for the stationary and quasi-statically

moving cracks.

In addition to the basic equations of mechanics of solids, such as the equilibrium

equations and the constitutive law, certain additional relations are needed in order

Crack front

Process zone

a(τ)

x1(τ)

x1,ξ

Δ

R(τ)

Plastic zone

η
End of plastic zone

Control point (P)

˙ ˙a+Rȧ

y1

Fig. 2 Discrete cohesive zone crack model of Wnuk (1974). Note that of the two length

parameters Δ and R in addition, the time-dependent crack length “a” is needed to describe

quasi-static crack motion. While both “a” and R are time dependent, the process zone size Δ is

the material property and it remains constant during the crack growth. Ratio R/Δ serves as a

measure of material ductility; for R/Δ >> 1, material is ductile, while for R/Δ ! 1, material is

brittle. An increasing R due to the subcritical crack extension in the early stages of fracture

demonstrates the toughening phenomenon in ductile fracture, often described in terms of the

material R-curve
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to predict the onset of fracture, which is, of course, considered as propagation of the

discontinuity in displacements. A certain postulate regarding the final act of

decohesion is required. Many physical concepts have been added to the list of

this kind of postulates, beginning with the Griffith energy criterion and then the

“driving force” criterion of Irwin–Orowan and the by-product of it in the form of

the critical stress intensity factor (SIF) criterion. As shown by Rice (1968), all of

these criteria are equivalent – even though they have different physical interpreta-

tions. They can also be shown to be equivalent to Rice’s J-integral criterion, which

uses the rate of energy release as the controlling factor in the process of cracking

(decohesion). Based on the notions associated with the cohesive crack model, the

“CTOD criterion” or δ-criterion was proposed by Wells and then several other

conceptually related conditions followed, and they now form the well-established

foundation of the contemporary mechanics of fracture. One such criterion will be

discussed here in more detail, and it is the δCOD criterion of Wnuk (1974). This

“incremental displacement” criterion implies quantization of the relevant calculus,

and it is used when instabilities of ductile fracture preceded by a slow crack growth

are analyzed. In its essence it is a critical strain criterion for the onset and stable

growth of a subcritical crack.

Success of the existing continuum mechanics solutions is only partial, as

the singularity still persists. The problem is resolved if the cohesive forces model of

the crack with the Neuber particle built into it is employed. Surprisingly, the essential

results derived by the use of the structured cohesive crack model are very similar to

those obtained by the approximate technique of Irwin’s “plasticity correction.”

In recent years some new approaches such as quantized fracture mechanics and

fractal fracture mechanics have been developed. These techniques necessitate

implementation of certain mathematical tools, which are novel to mechanics of

fracture such as the root-mean-square averaging and a finite difference formula

replacing Newton’s expression for the derivative. These techniques are briefly

reviewed in the present work.

Basic Concepts in Fractal Fracture Mechanics

In hope of removing the singularities in stress and strain fields generated in the

vicinity of crack tip, it has been postulated that fractal geometry can be used to

better represent a stationary or a propagating crack than the smooth Euclidean crack

considered in the classic theory of Griffith–Irwin–Orowan; cf. Mandelbrot

et al. (1984). Unfortunately, the singularity does not disappear; it acquires a new

order; instead of r�1/2 in the LEFM domain valid for the smooth crack representa-

tion, it becomes r�α where the fractal exponent α is related to other measures of

roughness of the crack surface, namely, the fractal dimension D or the Hurst fractal

measure H. One has

α ¼ 2� D

2
, 1 � D � 2 (1)
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for a self-similar crack, and

α ¼
2H � 1

2H
,

1

2
� H � 1

0 0 � H � 1

2

8><
>: (2)

for a self-affine crack. Variation of the fractal dimension D within the range

(Pugno and Ruoff 2004; Wnuk and Yavari 2008) corresponds to α changing

from ½ when D ¼ 1 (a smooth crack case) to zero when D ¼ 2. Only for this

particular case of α ¼ 0 the singularity in the near-tip stress field associated with a

fractal crack
~
σ � r�α disappears. This is an interesting limit when the fractal crack

“fills the plane” as it becomes a two-dimensional object. However, when the fractal

geometry is taken into account, even the basic concepts of calculus such as line or

area integrals are not defined (Harrison and Norton 1991; Harrison 1994).

The “embedded crack model” of Wnuk and Yavari bypasses this problem, since

it assumes a smooth crack contained within the stress field generated by a

fractal crack. Thus, the basic mathematical manipulations are enabled. The price

paid when this model is employed is a rather substantial limitation imposed on the

range of crack surface roughness, which is not supposed to differ significantly from

the case of the smooth crack. Somewhat unexpectedly Yavari and Khezrzadeh

have recently shown (Khezrzadeh et al. 2011) that reaching a high level of crack

surface roughness is physically impossible. Using a branching argument,

these authors have shown that there exists a limiting roughness estimated at

about α ¼ 0.25.

Indeed, it is expected that the model of an embedded crack can provide reliable

results only for the limited range of crack roughness. In what follows influence of

the fractal geometry for only moderately rough cracks has been studied, say for the

exponent α not dropping below 0.4, which is not significantly different from the

case of smooth crack, for which α ¼ 0.5. The model of embedded crack assumes

that a smooth crack is placed within a field generated by a fractal crack, so it is sort

of “putting cart in front of a horse.” In designing this model, one first considers a

specific stress field associated with a fractal crack, and then a smooth crack is

embedded in this field. Of course, a better model would be desirable. Despite of

these limitations, the study does provide a valuable insight into behavior of the

fractal cracks.

Wnuk and Yavari (2003) were the first to use the model of embedded crack in

order to estimate the stress intensity factor. Their result was

Kf
WY ¼ C a, αð Þ

πað Þα
ða
0

p xð Þ a� xð Þ2α þ aþ xð Þ2α
a2 � x2ð Þα dx (3)

With p(x) identified with the applied stress σ and “a” denoting the crack length and
with certain dimensional considerations, the constant C was chosen as

C ¼ a=
ffiffiffi
π

pð Þ2α�1
in order to extend validity of the formula in Eq. 3 to a “true fractal
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crack” range, which implies surpassing the limits of the embedded crack model.

For the fractal dimension D contained in the interval (Pugno and Ruoff 2004;

Wnuk and Yavari 2008), the final result is

Kf
WY ¼ aα�1σ

π2α�1=2

ða
0

a� xð Þ2α þ aþ xð Þ2α
a2 � x2ð Þα dx ¼ χ0 αð Þσ

ffiffiffiffiffiffiffiffiffi
πa2α

p

χ0 αð Þ ¼ 1

π2α

ð1
0

1� zð Þ2α þ 1þ zð Þ2α
1� z2ð Þα dz

χ0 αð Þ ’ �3:28α3 þ 6:475α2 � 4:42αþ 2

(4)

This result was later corrected in Khezrzadeh et al. (2011), and the correct

K-factor for a fractal crack represented by the embedded crack model was

expressed as

Kf
I ¼

a

π

� �1�α
ða
0

2σ

a2 � x2ð Þ1�αdx (5)

or

Kf
I ¼ χ αð Þσ

ffiffiffiffiffiffiffiffiffi
πa2α

p

χ αð Þ ¼ 2

π1�α

ð1
0

dz

1� z2ð Þ1�α

(6)

where the function χ(α) can be expressed in a closed form by the use of the Euler

gamma function Г, namely,

χ αð Þ ¼ πα�1Γ αð Þ
Γ αþ 1=2ð Þ

χ αð Þ ’ �10:37α3 þ 15:679α2 � 8:234αþ 2:493 for 0:25 � α � 0:5

(7)

For the admissible range of crack roughness, both results in Eqs. 4 and 6 are

identical, and for smaller α, when the fractal dimension D approaches 2, they

diverge (see Fig. 3) suggesting that the range of surface roughness beyond the

limits of validity of the embedded crack model remains yet to be studied. Since the

basic manipulations of the calculus are not yet defined along the fractal, a better

mathematical model is needed to deal with fractals and their somewhat whimsical

mathematical nature.

Once the stress intensity factor for a fractal crack is known, one may write the

equations for the asymptotic near-tip stress field; cf. Wnuk and Yavari (2003) and

Khezrzadeh et al. (2011). The opening stress for a fractal crack reads

σyy r, θ, αð Þ ¼ Kf
I

2πrð Þα sin α π � θð Þ½ � � α sin θð Þ cos αþ 1ð Þ π � θð Þ½ �f g (8)
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where the polar coordinates (r, θ) are anchored at the crack tip and the other two

stresses are

σxx r, θ, αð Þ ¼ Kf
I

2πrð Þα sin α π � θð Þ½ � þ α sin θð Þ cos αþ 1ð Þ π � θð Þ½ �f g

σxy r, θ, αð Þ ¼ Kf
I

2πrð Þα α sin
�
θ
�
sin αþ 1ð Þ π � θð Þ½ �

(9)

It is understood that the absolute value of θ in Eqs. 8 and 9 should be taken.

These formulae resulted from the Westergaard stress function; cf. Khezrzadeh

et al. (2011):

Z z, αð Þ ¼ Kf
I

eiSign θð Þ 1=2�αð Þπ 2πzð Þα
z ¼ xþ iy

(10)

To obtain Eqs. 8 and 9, the well-known equations of Westergaard (1939) were

used. It is noted that the Westergaard equations represent a special case of a more

general formulation of the complex potential functions of Kolosov–Muskhelishvili

(1933), namely,

σxx ¼ ReZ z, αð Þ � yImZ0�z, α�
σyy ¼ ReZ z, αð Þ þ yImZ0�z, α�
σxy ¼ �yReZ0 z, αð Þ

(11)

The origin of the Cartesian system (x,y) is placed at the center of the crack.

An alternative mathematical approach was offered by Williams (1957),

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5

χ(
α)

, χ
0(

α)
χ (a) =

s pa2a
KI

f

χ0(a) =
s pa2a

KWY
f

a

Fig. 3 Comparison between the estimate of the fractal stress intensity factor proposed by Wnuk

and Yavari, KWY
f (cf. Wnuk and Yavari 2003), and the solution resulting from the embedded crack

model, KI
f (cf. Khezrzadeh et al. 2011). It appears that within the interval of limited crack surface

roughnesses 0.3 � α � 0.4, both solutions are identical
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who decomposed the Airy stress potential into the radial and angular functions

and then obtained an exact solution for the angular part while seeking the

solution for the radial part in the form of a generalized Laurent power series.

He found the dominant term in this series to be proportional to r�1/2 and thus fully

confirmed the K-controlled near-tip stress field solutions found by the other

researchers such as Kolosov–Muskhelishvili (1933), Westergaard (1939), and

Irwin (1956).

In 2005 Wnuk and Yavari (2005) described a transformation, which made

possible converting any fractal crack to an equivalent blunt crack or a notch with

a finite crack tip radius. This approach not only predicts a finite stress at the root of

the notch, but it also shows that the three mathematical representations of discon-

tinuities in the displacement field, a notch, a classic Griffith crack, and a fractal

crack, are mathematically related and can be treated interchangeably. The proposed

rule was named “a correspondence principle,” according to which any fractal crack

(not excluding the classic Griffith crack when the fractal dimension reduces to

D ¼ 1) can be treated as an equivalent blunt crack of a given root radius, say ρα,
which is a function of the fractal exponent α. The value of this root radius is

determined from a condition that the stress certain distance away from the tip of

a fractal crack r� equals the maximum stress σmax generated at the circumference of

the blunt crack. Therefore, one needs to compare the opening stresses ahead of the

blunt crack

σbcyy ¼
KIffiffiffiffiffiffiffi
2πr

p ρ

2r
cos

3θ

2

� �
þ KIffiffiffiffiffiffiffi

2πr
p ρ

2r
cos

θ

2

� �
1þ sin

θ

2
sin

3θ

2

	 

þ . . . (12)

with the one valid for a fractal crack

σfyy ¼
KI

2πrð Þα cos
�
αθ þ α sin θ sin αþ 1ð Þθ½ �� �

(13)

When the plane of crack is considered, θ ¼ 0, the equations above reduce:

σbcyy ¼
KIffiffiffiffiffiffiffi
2πr

p 1þ ρ

2r

� �

σfyy ¼
Kf

I

2πrð Þα
(14)

The stress expressed by the first expression in the above equations refers to a

blunted crack (hence the superscript “bc”), while the second formula gives the

stress in front of a fractal crack. Now, one requires that the first of these quantities is

evaluated at the circumference of the blunt crack, while the second is evaluated at a

certain distance from the crack tip r ¼ r�. From the first formula in Eq. 14, the

stress at the circumference of the blunt crack is evaluated when the radius r is set
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equal ρ/2. Next, according to the correspondence principle, one needs to put r ¼ r�

in the second expression in Eq. 14, yielding

σbcyy

h i
max

¼ 2KIffiffiffiffiffi
πρ

p ¼ 2

ffiffiffiffiffi
a

ρα

r
σ

σfyy

h i
max

¼ Kf
I

2πr�ð Þα ¼
χ0 αð Þσ

ffiffiffiffiffiffiffiffiffi
πa2α

p

2πr�ð Þα
(15)

According to the correspondence principle, these two stresses should equal if the

distance r� is chosen to scale down with ρα, say r� ¼ e ρα, and then the requirement

of equivalency of the two objects considered is expressed by the following

equation:

2KIffiffiffiffiffiffiffiffi
πρα

p ¼ Kf
I

2πeραð Þα (16)

Hence, one can evaluate the required root radius of the equivalent blunt crack:

ρα ¼
a

π

χ0 αð Þ
2αþ1eα

	 
 2
2α�1

(17)

With e ¼ 0.05, chosen after a careful parametric study (cf. Wnuk and Yavari

2005), this equation provides the function shown in Fig. 4. When the stress Eq. 15 is

evaluated, the predicted maximum stress of the equivalent blunt crack becomes the

following function of the fractal exponent:

σmax ¼ 2
ffiffiffi
π

p
σ

χ0 αð Þ
2αþ1eα

	 
 1
1�2α

(18)

The function is shown in Fig. 5. It is seen that with the exception of the

classic Griffith crack (α ¼ 0.5), the stress is finite. It is noteworthy that the

Fig. 4 Root radius of a blunt

crack equivalent to a fractal

crack obtained from the

Wnuk–Yavari

correspondence principle and

defined by the fractal

exponent α. Note that for α
approaching ½, the radius ρα
shrinks to zero rendering the

Griffith crack case

180 M.P. Wnuk



maximum stress given in Eqs. 15 and 18 also satisfies the Inglis (Inglis 1913)

formula for a notch when a >> ρα, namely,

σInglismax ¼ 2σ

ffiffiffiffiffi
a

ρα

r
(19)

This feature of the basic concept underlying the correspondence formula for

fractal cracks appears to close the train of thought, which from Inglis (1913) to

Griffith (1921a) led to the present-day foundations of the fracture mechanics. When

molecular theory of fracture is pondered, then Eq. 19 corresponds to the molecular

strength, which is believed to be one order of magnitude smaller than the Young

modulus.

Similarly, the Irwin plastic correction to the LEFM model, say ry
f for a fractal

crack (cf. Wnuk and Yavari 2005), has been evaluated. Using the statically equiv-

alent elastic–plastic stress field, the entity ry
f has been estimated as follows:

ðrfy
0

Kf
I

2πrð Þα dr � rfyσY ¼ rfp � rfy

� �
σY (20)

Following Irwin the stress generated by a fractal crack is required to equal the

yield stress σY at the distance ry
f from the crack tip. It has been found that

rfy ¼
1

2π

Kf
I

σY

 !1
α

(21)

Fig. 5 Maximum stress at

the root of a fractal crack

equivalent to a certain smooth

blunt crack, according to the

correspondence principle of

Wnuk and Yavari (2005), is

shown to be finite for all

values of the fractal exponent

αwith exception of the classic
Griffith crack, when α ¼ ½.

The graph illustrates that even

a minute amount of roughness

of the crack surface is

sufficient to cause a drop in

the maximum stress from

infinity to a well-defined finite

value
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The size of the plastic zone (in the form of a disc adjacent to the crack front and

inserted into the elastic stress field) is calculated from Eq. 20 as follows:

rfp ¼
1

2π 1� αð Þ
Kf

I

σY

 !1
α

(22)

The opening stress within the plastic zone 0 � r � rp
f is constant and equals the

yield stress σY, while for distances larger than rp
f, the stress obeys the elastic fractal

law and decays as KI
f/(2πr)α.

In quantized mechanics of fracture, one assumes that a crack propagates in a

continuum but in discrete steps. Therefore, a modification of the mathematical

analysis is needed. Such quantization procedures applied to the structured cohesive

stress crack model have been described in Wnuk and Yavari (2008, 2009).

Employing the concept of the configurational force, these authors proposed that

the energy release per unit of fractal measure of the crack surface is defined in the

following way:

Gf ¼
Kf

I

� �2
E0 ¼ χ0 αð Þ2σ2πa2α

E0 (23)

With the help of an auxiliary smooth crack (cf. “embedded crack model”),

integration of this expression with respect to the crack length yields

�Πf ¼
ða
0

Gf σ, að Þd 2að Þ ¼ 2χ0 αð Þ2σ2πa2αþ1

2αþ 1ð ÞE0 (24)

Discontinuous nature of crack extension calls for replacement of the notion of

the derivative expressed in terms of infinitesimals dΠf and da (or d‘) by the finite

quantities ΔΠf and Δa (or Δ‘). The derivative dΠf/d‘, which defines the crack

driving force (or a configurational force), is thus replaced by the following entity

involving finite differences ΔΔΠf and Δ‘, namely,

Gf ¼ �ΔΔΠf

Δ‘
¼ �Πf aþ Δð Þ � Πf að Þ

2Δ
(25)

Symbol Δ denotes the fracture quantum and for a two-ended crack, Δ‘ ¼ 2Δ,
while E0 equals the Young modulus E for a plane stress case and E/(1�ν2) for the
plane strain; ν is the Poisson ratio. Substituting Eq. 24 into Eq. 25 generates

Gf ¼ χ0 αð Þ2σ2π
Δ 2αþ 1ð ÞE0 aþ Δð Þ2αþ1 � a2αþ1

h i
(26)

At the onset of fracture, it has been postulated Gf ¼ Gc
f, where the

critical energy release rate Gc
f ¼ (Kc

f)2/E0 has the dimensions of stress x length2α;
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hence the critical stress for a fractal quantized fracture obtained from the

equality Gf ¼ Gc
f

σfcrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αþ 1ð ÞE0Gf

c

π

s ffiffiffiffi
Δ

p

χ0 αð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ Δð Þ2αþ1 � a2αþ1

q (27)

does indeed have the dimension of stress. For the zero crack length “a,” this formula

predicts a finite critical stress identified as an inherent material strength, namely,

σf0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αþ 1ð ÞE0Gf

c

π

s
1

χ0 αð ÞΔα

� �
¼ Kf

c

Kc
σ0Δ

1�2α
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ 1=2

p
χ0 αð Þ (28)

As can be readily verified for α approaching ½, this equation reduces to the

inherent strength σ0 predicted earlier for a solid containing a smooth crack.

When the expression Eq. 28 is used as a normalizing constant for the critical

stress, Eq. 27 assumes the form

sfcrit ¼
σfcrit
σf0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

Δ

� �2αþ1 � a
Δ

� �2αþ1
h ir (29)

This result is illustrated in Fig. 6. For α approaching ½, this formula reduces to

that given by Pugno and Ruoff in their treatise (Pugno and Ruoff 2004) of the

quantum fracture mechanics (QFM), namely,

sQFMcrit ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

a

Δ

� �r (30)
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σf cr
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Fig. 6 Critical stress

predicted by the fractal

fracture mechanics for three

levels of the crack surface

roughness compared to that

obtained from the Griffith

theory. All stresses in this

graph have been normalized

by the inherent strength of an

undamaged material, for

which crack length is

assumed zero
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Using those equations, Wnuk and Yavari (2008) predict the relationship of the

surface energy on the fractal exponent and the crack length

γα
γ
¼ 2αþ 1ð Þ a=Δð Þ2α

1þ a
Δ

� �2αþ1 � a
Δ

� �2αþ1
(31)

The surface energy for a fractal crack γs is normalized by the LEFM surface

energy γ.
The curve resulting from Eq. 31 shows a rapid increase of γ from zero at a ¼ 0 to

one over a distance on the order of magnitude of fracture quantum Δ; this trend is in
good agreement with the experimental results of Ippolito et al. (2006); see Fig. 7.

Even though for cracks of size orders of magnitude greater than the fracture quantum

Δ (X >> 1), the surface energy is a material constant, it is not necessarily so in the

realm of nanostructured brittle materials, for which the crack length is comparable to

the atomistic characteristic length or to the size of the Neuber particle. In this domain

the quantized fracture mechanics is superior to the classic mechanics as it provides a

correct representation of the basic lattice features at the atomistic level. In this way

the domain of the continuum mechanics has been enlarged to include the atomistic

structure of a solid. Comparison of the curves shown in Fig. 7 proves that at

nanoscale the fractal geometry of cracks leads to an enhancement of the fracture

resistance γ. Therefore, one may speak about a “toughening effect” due to an

increased material resistance to crack propagation; this statement is in complete

agreement with the experimental findings of Ippolito et al. (2006) in their studies of

onset and spread of fracture in a silicon carbide matrix.

X=a/Δ

γ α
/γ
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α=0.5

α=0.4
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0.6

0.4

0.2

0.0
0.0 1.0 2.0 3.0 4.0 5.0

Fig. 7 Surface energy for small fractal cracks appears to be the function of the crack length – at

least for the nanoscale range, where the crack lengths are on the order of magnitude of the size of

Neuber particle. The surface energy is also affected by the fractal exponent α, showing higher

specific surface energy for rougher cracks. This effect is referred to as “toughening phenomenon”

ascribed to the influence of the fractal geometry
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Similar “toughening effect” is observed if the characteristic lengths

Rcoh and Rcoh
discrete are compared. As it follows from Wnuk and Yavari (2009) for

the case of R << a, the relation between the two measures of inherent material

resistance to crack propagation is

Rdiscrete
coh ¼ πK2

I

8σ2Y
1þ 1

2a=Δ

� �
(32)

The expression in front of the parentheses stands for theRcoh, while the correction

factor results from the quantization process, and it becomes significant only for very

small cracks, when the crack length and the fracture quantum are comparable in size.

It is noteworthy that for α approaching ½ (a smooth crack case), the formula in

Eq. 28 predicts the inherent strength of an undamaged solid as

σ0 ¼
ffiffiffiffiffiffiffi
2

πΔ

r
Kc (33)

while Eq. 29 reduces to

σQFMcrit ¼ σ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

a

Δ

r (34)

One of the curves depicted in Fig. 4 represents this equation; see the case of

α ¼ ½. As expected this result coincides exactly with the curve obtained from the

quantized fracture mechanics.

The same can be said about the last two results in Eqs. 33 and 34, which are in

complete agreement with the equations derived by Pugno and Ruoff (2004) for the

case of quantized fracture. It is noted that these authors have used the method of

averages over the length Δ, while here the finite difference technique is applied in

conjunction with the potential Πf of a body containing a fractal crack. The results

are the same. An example of a root-mean-square averaging of the stress intensity

factor is given as follows:

Kh i ¼ 1

Δ

ðaþΔ

a

K2
I að Þda

0
@

1
A

1
2

¼ σ
ffiffiffi
π

p 1

Δ

ðaþΔ

a

ada

0
@

1
A

1
2

¼ σ
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffiffi
aþ Δ

2

r
(35)

When this is set equal to Kc, the quantized fracture mechanics results in Eqs. 33

and 34 are recovered. This shows again that our finite difference approach and the

root-mean-square averaging technique proposed by Pugno et al. (2004) for

K-factors are mathematically equivalent. It is noteworthy that these recent theoret-

ical developments and the ensuing progress in the contemporary mechanics of

fracture are continuations of the early intuitive concepts suggested by Neuber

(1958) and Novozhilov (1969).
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In Wnuk and Yavari (2005) have using the averaging technique to quantize the

classic cohesive crack model extended the quantized mechanics analysis onto the

fractal cracks as explained in (Wnuk and Yavari 2008, 2009). Valuable contribu-

tions to fractal fracture mechanics are due to the Russian scientists Borodich (1992,

1997, 1999), Mosolov (1991), and Goldstein and Mosolov (1992). Two recent

works of Wnuk et al. (2012, 2013) illustrate the applications of Wnuk’s final stretch

criterion (or δCOD criterion) to the problems of time-dependent fracture in visco-

elastic and ductile solids. Noteworthy results were also obtained by Balankin

(1997) and reviewed by Cherepanov et al. (1995).

The fracture criterion of Wells (1961) has been shown to be equivalent to

the criterion based on the Rice path-independent J-integral; cf. Shih (1981).

Shih (1981) and also Wnuk et al. (1997, 1998) have studied the relation between

the two criteria, related by a simple expression J ¼ dn(CTOD/σY). Numerical

solutions for the coefficient dn, based on the analysis of the HHR J-controlled

asymptotic stress field, were given in the form of tables (Shih 1981) and certain

approximate closed form formulae in Wnuk and Omidvar (1997) and Wnuk

et al. (1998).

An essential conclusion of these considerations is the fact that the fractal

geometry presents a new and useful tool in describing fracture of brittle and

quasi-brittle solids. When combined with the quantized mechanics of fracture, it

allows one to reach into the realm of atomistic modeling of the fracture process.

This feature is especially valuable when the objective of one’s research is the study

of the lattice effects on deformation and fracture. In this way the range of validity

of the classical mechanics of fracture has been extended into the nanoscale

domain.

Delayed Fracture in Viscoelastic Solids for Euclidian and Fractal
Geometries: Motion of a Smooth Crack in a Viscoelastic Medium

Effects of two parameters on the time-dependent fracture manifested by a slow

stable crack propagation that precedes catastrophic failure in viscoelastic and in

ductile materials have been studied. One of these parameters is related to the

material ductility (ρ), and the other describes the geometry (roughness) of crack

surface and is measured by the degree of fractality represented by the fractal

exponent α or – equivalently – by the Hausdorff fractal dimension D for a self-

similar crack.

Within a certain range of the applied load, there are two distinct stages of

deformation process and the ensuing fracture. These are the incubation stage,

when the crack remains stationary, followed by the onset of slow crack growth

that eventually ends up with a transition to the catastrophic fracture. Comparison of

the results pertaining to smooth and rough cracks demonstrates that the roughness

of the crack surfaces slows down the growth of such “creeping cracks” observed in

polymers. This phenomenon enhances the lifetime of the specimen and increases
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the crack length, at which the critical point is reached. Interestingly, the incubation

time was found to be independent of the fractal geometry.

These studies of early stages of the delayed fracture in polymeric materials,

sometimes referred to as “creep rupture,” are then compared to the slow stable

crack growth in the ductile solids. Despite different physical mechanisms involved

in the preliminary stable crack extension and despite different mathematical repre-

sentations, a remarkable similarity of the end results pertaining to the two phenom-

ena of slow crack growth (SCG) that occur either in viscoelastic or in ductile media

has been demonstrated.

In the late 1960s and the early 1970s of the past century, a number of physical

models and mathematical theories have been developed to provide a better insight

and a quantitative description of the early stages of fracture in polymeric materials.

In particular two phases of fracture initiation and subsequent growth have been

considered: (1) the incubation phase during which the displacements of the crack

surfaces are subject to creep process but the crack remains dormant and (2) slow

propagation of a crack embedded in a viscoelastic medium. According to the linear

theory of viscoelastic solids, the material response to the deformation process obeys

the following constitutive relations:

sij t, xð Þ ¼
ðt
0

G1 t� τð Þ @eij τ, xð Þ
@τ

dτ

s t, xð Þ ¼
ðt
0

G2 t� τð Þ @e τ, xð Þ
@τ

dτ

(36)

Here sij is the deviatoric part of the stress tensor, s denotes the spherical stress

tensor, while G1(t) and G2(t) are time-dependent relaxation moduli for shear and

dilatation, respectively. The inverse relations read

eij t, xð Þ ¼
ðt
0

J1 t� τð Þ @sij τ, xð Þ
@τ

dτ

e t, xð Þ ¼
ðt
0

J2 t� τð Þ @s τ, xð Þ
@τ

dτ

(37)

Symbols eij and e are used to denote the deviatoric and spherical strain tensors

and J1(t) and J2(t) are the two creep compliance functions. For a uniaxial state of

stress, these last two equations reduce to a simple form

e tð Þ ¼
ðt
0

J t� τð Þ @σ τð Þ
@τ

dτ (38)
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The relaxation moduli G1(t) and G2(t) and the creep compliance functions J1(t)
and J2(t) satisfy the following integral equations:

ðt
0

G1 t� τð ÞJ1 τð Þdτ ¼ t

ðt
0

G2 t� τð ÞJ2 τð Þdτ ¼ t

(39)

For a uniaxial state of stress, these equations reduce to a single relation between

the relaxation modulus Erel(t) and the creep compliance function J(t)

ðt
0

Erel t� τð ÞJ τð Þdτ ¼ t (40)

Atomistic model of delayed fracture was considered by Zhurkov (1965),

but this molecular theory had no great impact on the further development of the

theories based in the continuummechanics approaches. Inspired byMaxWilliams,

W. G. Knauss of Caltech in his doctoral thesis considered time-dependent

fracture of viscoelastic materials (Knauss 1965). Similar research was done by

Willis (1967) followed by simultaneous researches of Williams (1967, 1968,

1969b), Wnuk and Knauss (1970), Field (1971), Wnuk (1968a, 1969, 1971,

1972), and also by Knauss and Dietmann (1970), Mueller and Knauss (1971a, b),

Graham (1968), Kostrov and Nikitin (1970), Mueller (1971), Knauss (1973) and

Schapery (1973).

What follows in this section is an attempt to present a brief summary of the

essential results, which have had a permanent impact on the development of the

mechanics of time-dependent fracture. After this review is completed, an interest-

ing analogy of delayed fracture in polymers will be indicated (a material property

intricately related to the ability to creep) with the “slow crack growth” (SCG)

occurring in ductile solids due to the redistribution of strains within the yielded

zone preceding the front of a propagating crack.

Two stages of delayed fracture in viscoelastic media, incubation and propaga-

tion, are described, respectively, by two governing equations: (1) Wnuk–Knauss

equation and (2) Mueller–Knauss–Schapery equation. The duration of the incuba-

tion stage can be predicted from the Wnuk–Knauss equation:

Ψ t1ð Þ ¼ J t1ð Þ
J 0ð Þ ¼ KG

K0

� �2

a¼a0¼const

(41)

Mueller–Knauss–Schapery equation relates the rate of crack growth a
o

to the applied constant load σ0 and the material properties such as the unit
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step growth Δ, usually identified with the process zone size, and the Griffith stress

σG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eγ=πa0

q
, namely,

Ψ
Δ

a
�

� �
¼

J Δ= a
�� �

J 0ð Þ ¼ KG

K0

� �2

(42)

For a constant crack length equal to the length of the initial crack a0, the right-
hand side in Eq. 41 reduces to the square of the ratio of the Griffith stress to the

applied stress

n ¼ σG
σ0

� �2

(43)

This quantity is sometimes referred to as “crack length quotient” – it determines

how many times the actual crack is smaller than the critical Griffith crack.

Therefore, the larger is the number “n,” the further away is the initial defect

from the critical point of unstable propagation predicted for a Griffith crack

embedded in a brittle solid. For large “n” the crack is too short to initiate the

delayed fracture process; see expression in Eq. 50 for the definition of the nmax.

Beyond nmax growth of the crack cannot take place. For n > nmax one can assume

that these are stable cracks, which – according to the theory presented here – will

never propagate. These are so-called dormant cracks that belong to a “no-growth”

domain; see Appendix.

When crack length “a” is not constant, but it can vary with time a ¼ a(t), then
the right side in Eq. 42 reads

σG
σ0

� �2 a0
a
¼ n

ς
(44)

Here ζ denotes the nondimensional crack length, ς ¼ a/a0. It is noteworthy that

the physical meaning of the argument Δ= a
o
appearing in Eq. 42 is the time interval

needed for the tip of a moving crack to traverse the process zone adjacent to the

crack tip, say

δt ¼ Δ= a
o

(45)

The location of the process zone with respect to the cohesive zone which

precedes a propagating crack is shown in Fig. 8.

To illustrate applications of Eqs. 41 and 43, the constitutive equations valid for

the standard linear solid (see Fig. 9) will be used. With β1 denoting the ratio of the

moduli E1/E2, the creep compliance function for this solid is given as

J tð Þ ¼ 1

E1

1þ β1 1� exp �t=τ2ð Þ½ �f g (46)
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Fig. 8 (a) Microcrack

preceded by a craze in

Solithane 50/50 mimicking

mechanical response of the

solid rocket fuel and (b)

details of the discrete

cohesive crack model. When

employed to glassy polymers,

the cohesive zone coincides

with the craze preceding the

crack, and the Neuber particle

Δ is incorporated into the

equation of crack motion

pertinent to the delayed

fracture phenomenon in

polymers as proposed by

Knauss–Mueller–Dietmann

(Borodich 1997, 1999;

Mosolov 1991) and also by

Schapery (Zhurkov 1965)

E1

E2
τ2

Fig. 9 Schematic diagram of

the standard linear model of a

viscoelastic solid. Despite its

simplicity, the model is able

to explain the instantaneous

elastic response, creep, and

stress relaxation
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Therefore, the nondimensional creep compliance function Ψ (t) ¼ J(t)/J(0)
reads

Ψ tð Þ ¼ 1þ β1 1� exp �t=τ2ð Þ½ � (47)

Substituting this expression into Eq. 41, one obtains

1þ β1 1� exp �t1=τ2ð Þ½ � ¼ n (48)

Solving for t1 one obtains the following prediction for the incubation time valid

for a material represented by standard linear solid:

t1 ¼ τ2ln
β1

1þ β1 � n

� �
(49)

Inspection of Eq. 49 reveals that the quotient “n” should not exceed a certain

limiting level

nmax ¼ 1þ β1

smin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β1

p (50)

Physical interpretation of this relation can be stated as follows: for short cracks,

when n > nmax, there is no danger of initiating the delayed fracture process. These

subcritical cracks are permanently dormant and they do not propagate. Perhaps, this

is easier to understand when the variable s ¼ σ0/σG is used instead of n. For
s < smin the preexisting cracks contained in a viscoelastic medium do not

propagate.

Figure 10a illustrates the relationship between the incubation time and the

loading parameter given either as n or s (¼ 1=
ffiffiffi
n

p ¼ σ0/σG). Figure 10b shows an

analogous relation between the time used in the process of crack propagation and

the loading parameter s. Note that the incubation time is expressed in units of the

relaxation time τ2, while the time measured during the crack propagation phase of

the delayed fracture is expressed in units of (τ2/δ), wherein the constant δ contains
the initial crack length a0 and the characteristic material lengthΔ; cf. Eq. 53.When

the variable s is used on the vertical axis and the pertinent function is plotted

against the logarithm of time, then it is seen that a substantial portion of the curve

appears as a straight line. This confirms the experimental results of Knauss and

Dietmann (1970) used also by Schapery (1973) and Mohanty (1972).

To describe motion of a crack embedded in viscoelastic solid represented by the

standard linear model, one needs to insert Eq. 46 into the governing Eq. 42. The

equation of motion reads then

1þ β1 1� exp �δt=τ2ð Þ½ � ¼ n

ς
(51)
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Fig. 10 (a) Logarithm of the incubation time in units of τ2 shown as a function of the loading

parameter s for two different values of the material constant β1 ¼ E1/E2. (b) Logarithm of the time

to failure used during the crack propagation phase, in units of τ2/δ, shown as a function of the

loading parameter s ¼ σ0/σG for two different values of the material constant β1 ¼ E1/E2
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Solving it for the time interval δt/τ2 (¼ Δ= a
�
τ2) yields

Δ

τ2 a
o ¼ ln

β1

1þ β1 �
n

ς

0
B@

1
CA (52)

It is seen from Eq. 52 that for the motion to exist, the quotient n should not

exceed the maximum value defined by Eq. 50. For n > nmax the cracks are too

small to propagate.

If nondimensional notation for the length and time variables is introduced

δ ¼ Δ=a0
θ ¼ t=τ2

(53)

the left-hand side of Eq. 52 can be reduced as follows:

δt

τ2
¼ Δ

τ2 a
¼ Δ

d ςa0ð Þ
d θτ2ð Þ τ2

¼
Δ a0

.
dς dθ

. (54)

When this is inserted into Eq. 52 and with δ ¼ Δ/a0, the following differential

equation results:

dς

dθ
¼ δ ln

β1
1þ β1 � n

ς

 !" #�1

(55)

or, after separation of variables,

δð Þdθ ¼ ln
β1

1þ β1 �
n

ς

0
B@

1
CAdς (56)

Motion begins at the first critical time t1, which designates the end of the

incubation period. Therefore, the lower limit for the integral applied to the left-

hand side of Eq. 56 should be θ1 ¼ t1/τ2, while the upper limit is the current

nondimensional time θ ¼ t/τ2. The corresponding upper limit to the integral on

the right-hand side of Eq. 56 is the current crack length ζ ¼ a/a0, while the lower
limit is one. Upon integration one obtains

ðt=τ2
t1=τ2

dθ ¼ 1

δ

� �ðς
1

ln
β1

1þ β1 �
n

z

0
B@

1
CAdz (57)
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The resulting expression relates the crack length x to time t, namely,

t� t1 ¼ τ2
δ

� �ðς
1

ln
β1

1þ β1 �
n

z

0
B@

1
CAdz (58)

If the closed form solution for the integral in Eq. 58 is used, then this formula can

be cast in the following final form:

t ¼ t1 þ τ2
δ

� �
ςln

ςβ1
1þ β1ð Þς� n

	 

þ n

1þ β1
ln

1þ β1ð Þς� n

1þ β1 � n

	 

þ ln

1þ β1 � n

β1

� � �
(59)

This equation has been used in constructing the graphs shown in Fig. 11. At

β1 ¼ 10 three values of n have been used (4.00, 6.25, and 8.16, which corresponds

to the following values of s: 0.5, 0.4, and 0.35). It can be observed that at

x approaching n, the phase of the slow crack propagation is transformed into
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Fig. 11 Slow crack propagation occurring in a linear viscoelastic solid represented by the

standard linear model depicted in Fig. 2 at β1 ¼ 10. Crack length is shown as a function of

time; points marked on the negative time axis designate the incubation times corresponding to the

given level of the applied constant load n and expressed in units of τ2. The time interval between

the specific point t1 and the origin of the coordinates provides the duration of the incubation period.
Crack propagation begins at t ¼ 0. Symbol t2 denotes time to failure, which is the time used during

the quasi-static phase of crack extension, and it is expressed in units of (τ2/δ). Constant δ is related
to the characteristic material length, the so-called unit growth step Δ
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unrestrained crack extension tantamount to the catastrophic fracture. The point in

time, at which this transition occurs, can be easily seen on the horizontal axis of

Fig. 11. This point of transition into unstable propagation can also be predicted

from Eq. 59; substituting n for ζ, one obtains the time to fracture

t2 ¼ τ2
δ

� � n

1þ β1
ln

β1n

1þ β1 � n

	 

þ ln

1þ β1 � n

β1

	 
 �
(60)

If the incubation time t1 given by Eq. 49 is now added to Eq. 60, one obtains the

total lifetime of the component, namely,

Tcr ¼ t1 þ t2 ¼ τ2ln
β1

1þ β1 � n

� �
þ τ2

δ

� � n

1þ β1
ln

β1n

1þ β1 � n

	 

þ ln

1þ β1 � n

β1

	 
 �
(61)

Summarizing the results of this section, one can state that the delayed fracture in

a viscoelastic solid can be mathematically represented by four expressions:

– Time of incubation t1 given by Eq. 49 for standard linear model.

– Equation of motion given by Eq. 59 for the same material model and defining ζ
as a function of time, ζ ¼ ζ (t).

– Time to fracture t2 due to crack propagation given by Eq. 60.

– Lifetime Tcr equal to the sum t1 + t2, as given by Eq. 61. It is noted that while the
first term in the expression Eq. 61 involves the relaxation time, material constant

β1, and the quotient n, the second term in Eq. 61 contains also the internal

structural constant δ. It is also noted that for the quotient n approaching one, both
terms in Eq. 61 are zero, while for n exceeding nmax, the expression looses the

physical sense (since in that case there is no propagation). With the constant δ
being on the order of magnitude varying within the range 10�3–10�6, the second

term in Eq. 61 is substantially greater than the first term which represents the

incubation time; see also Appendix.

For β1 ¼ 10 and three different levels of n, the resulting functional relationships
between the crack length x and time t are shown in Fig. 11 along with the values of
the incubation times, expressed in units of (τ2), and the times-to-failure expressed in

units of (τ2/δ). A numerical example is given in the Appendix.

Example described here, involving the standard linear solid, serves as an illus-

tration of the mathematical procedures necessary in predicting the delayed fracture

in polymeric materials. Knauss and Dietmann (1969) and Schapery (1973) have

shown how the real viscoelastic materials, for which the relaxation modulus G(t)
and the creep compliance function J(t) are measured (or calculated from Eq. 4) and

then used in the governing equations of motion discussed above, can provide a good

approximation of the experimental data.
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Growth of Fractal Cracks in Viscoelastic Media

To extend the theory of creeping cracks into the domain of fractal geometry, one needs

to redefine entities of the critical stress intensity factor and the applied stress intensity

stress factorK0, denoted, respectively, byKG andK0 in the governing Eq. 42. The new

definitions accounting for the fractal geometry of a crack are as follows:

KG ! Kf
crit ¼ χ0 αð Þσcrit

ffiffiffiffiffiffiffiffiffi
πa2α

p

K0 ! Kf
0 ¼ χ0 αð Þσ0

ffiffiffiffiffiffiffiffiffiffiffi
πa02α

p (62)

For glassy polymers, the critical stress σcrit is very closely approximated by the

Griffith stress σG. Thus, the ratio (KG/K0)
2 will reduce to an expression

Kf
crit

Kf
0

 !2

¼ σG
σ0

� �2 a0
a

� �2α
¼ n

ζ2α
(63)

When substituted into Eqs. 55 or 56, this leads to the following ordinary

differential equation describing the slow motion of a fractal crack:

dθ ¼ δ�1ln
β1

1þ β1 �
n

ς2α

0
B@

1
CAdς (64)

The solution of this equation is readily obtained as

t ¼ t1 þ τ2
δ

� �ðζ
1

ln
β1

1þ β1 �
n

z2α

2
64

3
75dz (65)

In here t1 denotes the incubation time, which is given by Eq. 49 – the same

formula which was found valid for a smooth crack. However, the motion of a rough

crack differs from that of a smooth crack in a rather distinct way; see Fig. 12.

Fractal crack moves slower than the smooth crack and it arrives at the critical length

significantly greater than the critical length attained by a smooth crack of same

initial size and subjected to the same loading configuration and the same load.

To substantiate this statement, let us compare the delayed fracture of a rough

crack defined by the fractal exponent α ¼ 0.3 (or the fractal dimension D ¼ 1.4) to

that of a smooth crack, for which α ¼ 0.5 and D ¼ 1. For the input data

β1 ¼ 10, n ¼ 4, δ ¼ 10�3 (66)
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and using Eq. 65 (see also Fig. 12a), one obtains the values of the terminal crack

lengths and the times of propagation up to the point of catastrophic fracture for the

fractal and smooth crack as follows:

afcrit ¼ 10a0 and asmooth
crit ¼ 4a0, tf2 ¼ 659:34τ2 and tsmooth

2 ¼ 485:04τ2 (67)

This clearly shows that roughness of the crack surfaces has a significant influ-

ence on the process of delayed fracture. For the data specified in Eq. 66, one

observes 2.5-fold increase in the critical crack length attained at the terminal

instability point (150 % enhancement over the smooth crack case) and 1.36-fold

increase in the time of propagation, which is 36 % above the result valid for a

smooth crack. These numbers illustrate the strong influence of fractal geometry on

the outcome of the delayed fracture tests.
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Fig. 12 The graphs in (a)

and (b) show the effects of the

roughness of the crack

surfaces on the quasi-static

propagation of crack

contained in the viscoelastic

medium. An increased degree

of crack fractality is

tantamount to an enhanced

roughness of the crack

surfaces and to a more

pronounced phenomenon of

time-dependent fracture,

which precedes the

catastrophic failure
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Some Fundamental Concepts

Delayed fracture occurring in a linearly viscoelastic solid such as the one discussed

in section “Basic Concepts in Fractal Fracture Mechanics” consists of two distinct

stages: (1) incubation phase, during which the opening displacement associated

with the crack increases in time, but the crack remains stationary, and (2) propaga-

tion phase, when the crack advances up to the critical length (Griffith length), at

which transition to unstable crack extension takes place. Stage I (incubation) is

described by the Wnuk–Knauss equation in Eq. 41, and for the standard linear solid

(see Fig. 9), the predicted duration of the incubation phase t1 is given as

t1 ¼ τ2ln
β1

1þ β1 � n

� �
(68)

The phase II (crack propagation) is governed by the Mueller–Knauss–Schapery

equation (42). For the nondimensional creep compliance function Ψ(t) defined

by Eq. 47, the resulting equation of motion, which relates crack length ζ to time t,
is given by Eq. 59, while the duration of the propagation phase is predicted as

follows:

t2 ¼ τ2
δ

� � n

1þ β1
ln

β1n

1þ β1 � n

	 

þ ln

1þ β1 � n

β1

	 
 �
(69)

The total lifetime Tcr of the component manufactured of a polymeric material

that obeys the constitutive equations described in section “Basic Concepts in

Fractal Fracture Mechanics” is obtained as the sum of Eqs. 68 and 69, namely,

Tcr ¼ t1 þ t2 ¼ τ2ln
β1

1þ β1 � n

� �
þ τ2

δ

� � n

1þ β1
ln

β1n

1þ β1 � n

	 

þ ln

1þ β1 � n

β1

	 
 �
(70)

For Solithane 50/50, a polymer which is used to model mechanical properties of

the solid rocket fuel, the times t1, t2, and Tcr were evaluated by Knauss (1969) and

Mohanty (1972). The moduli E1 and E2 and the viscosity η2 involved in the standard
linear solid that was applied in these studies are as follows:

E1 ¼ 6:65�103 lb=in2

E2 ¼ 3:69�103 lb=in2

η2 ¼ 1:36�103 slb=in2
(71)

This leads to β1 ¼ 1.8, the relaxation time τ2 ¼ η2/E2 ¼ 0.368 s, and the

maximum crack length quotient nmax ¼ 1+ β1 ¼ 2.8. The structural length Δ was

estimated as 4.5 � 10�4 in., while the precut cracks used in the experiments were

on the order of 0.225 in. This yielded the inner structural constant δ ¼ 2 � 10�3.
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From Eq. 71 the “glassy” and the “rubbery” values of the creep compliance function

can be readily calculated, namely,

Jglassy ¼ J 0ð Þ ¼ 1:50�10�4 in2=lb
Jrubbery ¼ J 1ð Þ ¼ 4:22�10�4 in2=lb

(72)

For detailed calculations, the reader is referred to Knauss (1969) and

Mohanty (1972).

The glassy (instantaneous) and rubbery (upon complete relaxation) compliance

function values, as given in Eq. 72, allow one to establish the domains of the

delayed fracture, such as “no-growth,” incubation, or propagation domains. It

should be noted that the creep compliance functions involved in these experimental

investigations were obtained by use of the method.

In general, the propagation of a crack embedded in the viscoelastic medium will

occur within a certain range of applied load. The two limiting values are (1) the

Griffith stress evaluated for the initial crack size a0, which is

σG ¼

ffiffiffiffiffiffiffiffi
2Eγ

πa0

r
KICffiffiffiffiffiffiffi
πa0

p

8>>><
>>>:

(73)

and (2) the propagation threshold stress

σthreshold ¼
ffiffiffiffiffiffiffiffiffiffiffi
J 0ð Þ
J 1ð Þ

s
σG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jglassy
Jrubbery

s
σG (74)

For the standard linear solid expression, Eq. 74 reads

σthreshold ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β1

p σG (75)

Using these relations one can predict the range of the applied loads for a

successful delayed fracture test performed on Solithane 50/50 as being between

6/10 of the Griffith stress and the Griffith stress itself.

Summarizing, for the loads below the threshold stress given in Eqs. 74 and 75, one

enters the “no-growth” domain, where propagation does not take place and the cracks

in this region remain dormant. The other extreme is attainedwhen the applied constant

stress σ0 reaches the Griffith level σG. When σ0 approaches the Griffith stress, one

observes an instantaneous fracture as in a brittle medium with no delay effects.

Therefore, one may conclude that the delayed fracture occurs only in the range

σthreshold � σ0 � σG
σGffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β1

p � σ0 � σG
(76)

The second expression in Eq. 76 pertains to the standard linear model.
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Let us now consider a numerical example for a polymer characterized by the

following properties β1 ¼ 10, τ2 ¼ 1 s, and δ ¼ 10�4. Pertinent calculations are

performed for three levels of the applied load, measured either by the crack length

quotient n (¼σG
2/σ0

2) or by the load ratio s ¼ σ0/σG, namely, n ¼ 8.16 (s ¼ 0.35),

n ¼ 6.25 (s ¼ 0.40), and n ¼ 4 (s ¼ 0.50). Applying Eqs. 68 and 69, one obtains

the following incubation (t1) and time-to-failure (t2) values:

n ¼ 8:16; s ¼ 0:35
t1 ¼ 1:26 s; t2 ¼ 1=10�4

� ��
0:277

�
s ¼ 46:2 min

n ¼ 6:25; s ¼ 0:40
t1 ¼ 0:744 s; t2 ¼ 1=10�4

� ��
0:720

�
s ¼ 120 min

n ¼ 4; s ¼ :50
t1 ¼ 0:375 s; t2 ¼ 1=10�4

� ��
1:232

�
s ¼ 205 min

(77)

It is noted that for this material, the range of the applied stress for the delayed

fracture to occur is contained within the interval [0.3 σG, σG]. For applied stress less
than the threshold stress of 0.3σG, the phenomenon of delayed fracture vanishes,

and the crack remains stationary.

An interesting study of the interaction between the damage zone, governed by

the modified Kachanov’s law, and the dominant crack has been described in Wnuk

and Kriz (1985). There it has been shown that the existence of the damage zone

adjacent to the crack leading edge accelerates motion of the subcritical crack.

Conclusions

From the considerations presented above, it follows that fracture is not only of

fractal character, but it is also of multi-scale nature. To fill the gap between the

“micro” and “macro” scale levels, the group of Panin (Pugno and Ruoff 2004) in

Siberia, Russia, has developed an entirely new branch of mechanics, named

“Mesomechanics.” The primary objective of this and the following chapter is to

construct a theory that explains and supports the findings based on the experimental

observations of the Siberian group.
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Abstract

Lattice (spring network) models offer a powerful way of simulating mechanics

of materials as a coarse scale cousin to molecular dynamics and, hence, an

alternative to finite element models. In general, lattice nodes are endowed with

masses, thus resulting in a quasiparticle model. These models, having their

origins in spatial trusses and frameworks, work best when the material may
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naturally be represented by a system of discrete units interacting via springs or,

more generally, rheological elements. This chapter begins with basic concepts

and applications of spring networks, in particular the anti-plane elasticity,

planar classical elasticity, and planar nonclassical elasticity. One can easily

map a specific morphology of a composite material onto a particle lattice and

conduct a range of parametric studies; these result in the so-called damage

maps. Considered next is a generalization from statics to dynamics, with nodes

truly acting as quasiparticles, application being the comminution of minerals.

The chapter closes with a discussion of scaling and stochastic evolution

in damage phenomena as stepping-stone to stochastic continuum damage

mechanics.

Introduction

The need to simultaneously model elastic, plastic, and fracture responses in het-

erogeneous materials necessitates the introduction of techniques outside the realm

of conventional continuum solid mechanics and finite element analysis. One tech-

nique that can meet the challenge, especially, when complicated microstructures

need to be considered goes under the heading “lattice models.” This chapter out-

lines the basics of lattice (or spring network) models and quasiparticle models in

studies of damage phenomena. These models have their origin in spatial trusses and

frameworks (from the engineering mechanics side) as well as in crystal structures

(from the physics side). They offer a powerful way of simulating mechanics of

materials with either periodic or random microstructures and, hence, offer an

attractive alternative to finite element models. When dealing with a dynamic

problem, nodes of the lattice may be endowed with masses, thus resulting in a

quasiparticle model, which is then a coarse scale cousin of molecular dynamics.

Lattice models work best when the material may naturally be represented by a

system of discrete units interacting via springs or, more generally, rheological

elements – examples are fibrous or granular systems. In the latter case, the lattice

model turns into the discrete element model.

In this chapter, first, an introduction to basic concepts and applications of spring

networks is given and, in particular, to the anti-plane elasticity, planar classical

elasticity, and planar nonclassical elasticity. It is shown that one can easily map a

specific morphology of a composite material onto a particle lattice and conduct a

range of parametric studies; such studies result in the so-called damage maps. Here

we discuss the elastic–plastic, elastic–brittle, and elastic–plastic–brittle materials.

Considered next is a generalization from statics to dynamics (i.e., to a quasiparticle

model), with nodes truly acting as quasiparticles, one application being the com-

minution of minerals. The chapter closes with a discussion of scaling and stochastic

evolution in damage phenomena as stepping-stone to stochastic continuum damage

mechanics.
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Basic Idea of a Spring Network Representation

The basic idea in setting up lattice spring network (or lattice) models in d (¼1, 2, or 3)

dimensions is based on the equivalence of potential energies (U) stored in the unit cell

of a given network. In the case of static problems, with which this chapter begins, for a

cell of volume V (Fig. 1), there holds

Ucell ¼ Ucontinuum: (1)

x2

x1

a

b

c

a2

a3

a4

a1

Fig. 1 Three periodic planar

lattices: honeycomb, square,

and triangular. In each case, a

possible periodic unit cell is

shown
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The unit cell is a periodically repeating part of the network, and it is important

to note that:

(i) The choice of the unit cell may be nonunique (see Fig. 1a).

(ii) The microstructure of the unit cell is not necessarily “nicely” ordered – it may

be of a disordered microgeometry, with an understanding that it repeats itself

in space such as the periodic Poisson–Delaunay network, e.g., Fig. 4.7 in

Ostoja-Starzewski (2002a, 2008).

In Eq. 1 the energies of the cell (Ucell) and its equivalent continuum (Ucontinuum),

respectively, are

Ucell ¼
X
b

Eb ¼
XNb

b

ðu
0

F u0ð Þdu0 Ucontinuum ¼
ð
V

σ eð ÞdV: (2)

The superscript b in Eq. 21 stands for the bth spring (bond) and Nb for the total

number of bonds. The discussion is set in the d ¼ 2 setting so that the volume

actually means the area of unit thickness. Here, and in the sequel, the discussion is

restricted to linear elastic springs and spatially linear displacement fields u (i.e.,

uniform strain fields e), implying that Eq. 2 becomes

Ucell ¼ 1

2

Xbj j

b

ku � uð Þ bð Þ Ucontinuum ¼ V

2
e : C : e: (3)

In Eq. 3 u is a generalized spring displacement and k its corresponding spring

constant. The next step, depending on the particular geometry of the unit element

and on the particular model of interactions, will involve making a connection

between u and e and then deriving C from Eq. 1. The corresponding procedures

and resulting formulas are given below for several elasticity problems set in the

square and triangular network geometries.

Anti-plane Elasticity on Square Lattice

Of all the elasticity problems, the anti-plane is the simplest one on which to

illustrate the spring network idea. In the continuum setting, the constitutive law is

σi ¼ Cijej i, j ¼ 1, 2, (4)

where σ ¼ (σ1, σ2) � (σ31, σ32), e ¼ (e1, e2) � (e31, e32) and Cij � C3i3j. Upon the

substitution of Eq. 4 into the equilibrium equation

σi, i ¼ 0, (5)

these result to

Ciju, j
� �

, i ¼ 0: (6)
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Henceforth, with interest focused on approximations of locally homogeneous

media, the governing equation Eq. 6 becomes

Ciju, ij ¼ 0: (7)

In the special case of an isotropic medium, Eq. 7 simplifies to the Laplace equation

Cu, ii ¼ 0: (8)

Next, discretize the material with a square lattice network, Fig. 1b, whereby each

node has one degree of freedom (anti-plane displacement u), and the nearest-

neighbor nodes are connected by springs of constant k. It follows that the strain

energy of the unit cell of such a lattice is

U ¼ 1

2
k
X4
b¼1

l
bð Þ
i l

bð Þ
j eiej: (9)

Here the uniform strain e ¼ (e1, e2) is employed, while l(b) ¼ (l1
(b), l2

(b)) is the

vector of half-length of bond b. In view of Eq. 1, the stiffness tensor is obtained as

Cij ¼ k

V

X4
b¼1

l
bð Þ
i l

bð Þ
j i, j ¼ 1, 2, (10)

where V ¼ 4 if all the bonds are of unit length (|l(b)| ¼ 1). This leads to a relation

between the bond spring constant k and the Cij tensor

C11 ¼ C22 ¼ k

2
C12 ¼ C21 ¼ 0: (11)

In order to model an orthotropic medium, different bonds are applied in the x1
and x2 directions: k

(1) and k(2). The strain energy of the unit cell is now

U ¼ 1

2

X4
b¼1

k bð Þl bð Þ
i l

bð Þ
j eiej, (12)

so that the stiffness tensor is

Cij ¼ 1

V

X4
b¼1

k bð Þl bð Þ
i l

bð Þ
j , (13)

which leads to relations

C11 ¼ k 1ð Þ

2
C22 ¼ k 2ð Þ

2
C12 ¼ C21 ¼ 0: (14)

If one wants to model an anisotropic medium (i.e., with C12 6¼ 0), one may either

choose to rotate its principal axes to coincide with those of the square lattice and use
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the network model just described or introduce diagonal bonds. In the latter case, the

unit cell energy is given by the formula (Eq. 12) with Nb ¼ 8. The expressions for

Cijs are

C11 ¼ k 1ð Þ

2
þ k 5ð Þ C22 ¼ k 2ð Þ

2
þ k 6ð Þ C12 ¼ C21 ¼ k 5ð Þ � k 6ð Þ: (15)

It will become clear in the next section how this model can be modified to a

triangular spring network geometry.

In-Plane Elasticity: Triangular Lattice with Central Interactions

In the planar continuum setting, assuming linear elastic behavior, Hooke’s law

σij ¼ Cijkmekm i, j, k,m ¼ 1, 2, (16)

upon substitution into the balance law

σij, j ¼ 0, (17)

results in a planar Navier equation for the displacement ui:

μui, jj þ κuj, ji ¼ 0: (18)

In Eq. 18 μ is defined by σ12 ¼ μe12, which makes it the same as the classical 3D

shear modulus. On the other hand, κ is the (planar) 2D bulk modulus that is defined

by σii ¼ κeii.
As in the foregoing section, approximations of locally homogeneous media are

of interest. Consider the regular triangular network of Fig. 1c with central-force

interactions, which are described, for each bond b, by

Fi ¼ Φ bð Þ
ij uj where Φ bð Þ

ij uj ¼ α bð Þn bð Þ
i n

bð Þ
j : (19)

Similar to the case of anti-plane elasticity, α(b) is the spring constant of half-

lengths of such central (normal) interactions – i.e., of those parts of the springs that

fall within the given unit cell (Fig. 2a). The unit vectors n(b) at respective angles of

the first three α-springs are

θ 1ð Þ ¼ 00 n
1ð Þ
1 ¼ 1 n

1ð Þ
2 ¼ 0

θ 2ð Þ ¼ 600 n
2ð Þ
1 ¼ 1

2
n

2ð Þ
2 ¼ ffiffi

3
p
2

θ 3ð Þ ¼ 1200 n
3ð Þ
1 ¼ �1

2
n

3ð Þ
2 ¼ ffiffi

3
p
2
:

(20)

The other three springs (b ¼ 4, 5, 6) must, by the requirement of symmetry with

respect to the center of the unit cell, have the same properties as b ¼ 1, 2, 3,
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respectively. All the α-springs are of length l, that is, the spacing of the triangular

mesh is s ¼ 2l. The cell area is V ¼ 2
ffiffiffi
3

p
l2.

Every node has two degrees of freedom, and it follows that the strain energy of a unit

hexagonal cell of this lattice, under conditions of uniform strain « ¼ (e11, e22, e12), is

U ¼ l2

2

X6
b¼1

α bð Þn bð Þ
i n

bð Þ
j n

bð Þ
k n bð Þ

m eijekm, (21)

so that, again by Eq. 1, the stiffness tensor becomes

Cijkm ¼ l2

V

X6
b¼1

α bð Þn bð Þ
i n

bð Þ
j n

bð Þ
k n bð Þ

m : (22)

In particular, taking all α(b) the same, one finds

C1111 ¼ C2222 ¼ 9

8
ffiffiffi
3

p α C1122 ¼ C2211 ¼ 3

8
ffiffiffi
3

p α C1212 ¼ 3

8
ffiffiffi
3

p α, (23)

so that there is only one independent elastic modulus, and the modeled continuum is

isotropic.

5 6

1 α(1)

23
α(3)

β(3)

β(2)

β(1)

β(6)

β(5)

β(4)

α(2)

α(6)
α(5)

α(4) 4

a

b x2

bb + 1

θ(b + 1)

θ(b)

φ

x1

Fig. 2 Unit cell of a

triangular lattice model;

α(1), . . . , α(6) are the normal

spring constants; β(1), . . . , β(6)

are the angular spring

constants; in the isotropic

Kirkwood model α(b) ¼ α(b+3)

and β(b) ¼ β(b+3), b ¼ 1, 2, 3;

(b) details of the angular

spring model

7 Lattice and Particle Modeling of Damage Phenomena 209



It is important to note here that the isotropy follows from the triangular lattice

having an axis of symmetry of the sixth order. This, combined with the fact that

Eq. 22 satisfies the conditions of Cauchy symmetry (Love 1934) with respect to the

permutations of all the four indices (which is the last equality)

Cijkm ¼ Cijmk ¼ Cjikm ¼ Ckmij ¼ Cikjm, (24)

implies that Cijkm is of the form

Cijkm ¼ λ δijδkm þ δikδjm þ δimδjk
� �

: (25)

In view of Eq. 23, there result the classical Lamé constants

λ ¼ μ ¼ 3

4
ffiffiffi
3

p α: (26)

The above is a paradigm from the crystal lattice theory that the Cauchy symme-

try occurs when:

(i) The interaction forces between the atoms (or molecules) of a crystal are of a

central-force type.

(ii) Each atom (or molecule) is a center of symmetry.

(iii) The interaction potential in a crystal can be approximated by a harmonic one.

Note: The Cauchy symmetry reduces the number of independent constants in

general 3D anisotropy from 21 to 15. The first case has been called the multi-
constant theory, while the second one the rari-constant theory (Trovalusci

et al. 2009; Capecchi et al. 2010). Basically, there is a decomposition of the

stiffness tensor into two irreducible parts with 15 and 6 independent components,

respectively; see Hehl and Itin (2002) for a group-theoretical study of these issues.

Note: One might try to model anisotropy by considering three different αs in
Eqs. 21 and 22, but such an approach would be limited given the fact that only three

of those can be varied: one needs to have six parameters in order to freely adjust any

planar anisotropy which involves six independent Cijkms. This can be achieved by

introducing the additional angular springs as discussed below. In fact, angular

springs are also the device to vary the Poisson ratio.

In-Plane Elasticity: Triangular Lattice with Central and Angular
Interactions

The triangular network is now enriched by the addition of angular springs acting

between the contiguous bonds incident onto the same node. These are assigned
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spring constants β(b), and, again by the argument of symmetry with respect to the

center of the unit cell, only three of those can be independent. This leads to six

spring constants: {α(1), α(2), α(3), β(1), β(2), β(3)}. With reference to Fig. 2b, let Δθ(b)

be the (infinitesimal) angle change of the bth spring orientation from the

undeformed position. On account of n � n ¼ lΔθ,

Δθ bð Þ ¼ ekijejpninp, (27)

where ekij is the Levi-Civita permutation tensor. The angle change between two

contiguous α-springs (b and b + 1) is measured by Δϕ¼ Δθ(b+1)�Δθ(b), so that the
energy stored in the spring β(b) is

E bð Þ ¼ 1

2
β bð Þ Δϕj j2 ¼ 1

2
β bð Þ ekijejp n

bþ1ð Þ
i n bþ1ð Þ

p � n
bð Þ
i n bð Þ

p

� �n o2

: (28)

By superposing the energies of all the angular bonds with the energy (Eq. 21),

the elastic moduli are derived after Kirkwood (1939) as

Cijkm ¼ l2

V

X6

b¼1
α bð Þn bð Þ

i n
bð Þ
j n

bð Þ
k n bð Þ

m þ 1

V

X6

b¼1
β bð Þ þ β b�1ð Þ
h i

δikn
bð Þ
p n

bð Þ
j n bð Þ

p n bð Þ
m

n
� β bð Þ þ β b�1ð Þ� �

n
bð Þ
i n

bð Þ
j n

bð Þ
k n bð Þ

m �β bð Þδikn
bð Þ
p n

bþ1ð Þ
j n

bþ1ð Þ
p n bð Þ

m

þ β bð Þn bð Þ
i n

bþ1ð Þ
j n

bþ1ð Þ
k n bð Þ

m � β bð Þδikn
bð Þ
p n

bð Þ
j n

bþ1ð Þ
p n bþ1ð Þ

m

þ β bð Þn bþ1ð Þ
i n

bð Þ
j n

bð Þ
k n bþ1ð Þ

m

o
,

(29)

where b ¼ 0 is the same as b ¼ 6.

This provides the basis for a spring network representation of an anisotropic

material; it also forms a generalization of the so-called Kirkwood model (Keating

1966) of an isotropic material. The latter is obtained by assigning the same α to all

the normal and the same β to all the angular springs

Cijkm ¼ α

2
ffiffiffi
3

p
X6
b¼1

n
bð Þ
i n

bð Þ
j n

bð Þ
k n bð Þ

m þ β

2
ffiffiffi
3

p
l2

X6
b¼1

2δikn
bð Þ
j n bð Þ

m � 2n
bð Þ
i n

bð Þ
j n

bð Þ
k n bð Þ

m

n

� δikn
bð Þ
p n

bþ1ð Þ
j n

bþ1ð Þ
p n bð Þ

m þ n
bð Þ
i n

bþ1ð Þ
j n

bþ1ð Þ
k n bð Þ

m

� δikn
bð Þ
p n

bð Þ
j n

bþ1ð Þ
p n bþ1ð Þ

m þ n
bþ1ð Þ
i n

bð Þ
j n

bð Þ
k n bþ1ð Þ

m

o :

(30)
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In accordance with the above,

C1111 ¼ C2222 ¼ 1

2
ffiffiffi
3

p 9

4
αþ 1

l2
β

	 


C1122 ¼ C2211 ¼ 1

2
ffiffiffi
3

p 3

4
αþ 1

l2
9

4
β

	 


C1212 ¼ 1

2
ffiffiffi
3

p 3

4
αþ 1

l2
9

4
β

	 

:

(31)

Condition C1212 ¼ (C1111 � C1122)/2 is satisfied, so that there are only two

independent elastic moduli.

From Eq. 31, the α and β constants are related to the planar bulk and shear

moduli by

κ ¼ 1

2
ffiffiffi
3

p 3

2
α

	 

μ ¼ 1

2
ffiffiffi
3

p 3

4
αþ 1

l2
9

4
β

	 

: (32)

It is noted here that the angular springs have no effect on κ, i.e., the presence of
angular springs does not affect the dilatational response. The formula for planar

Poisson’s ratio (Ostoja-Starzewski 2008) gives

ν ¼ κ � μ

κ þ μ
¼ C1111 � 2C1212

C1111

¼ 1� 3β=l2α

3þ 3β=l2α
: (33)

From Eq. 33, there follows the full range of Poisson’s ratio which can be covered

with this model. It has two limiting cases:

ν ¼ 1

3
if

β

α
! 0, α�model

ν ¼ �1 if
β

α
! 1, β �model:

(34)

For the subrange of Poisson’s ratio between �1/3 and 1/3, one may also use a

Keating model (Keating 1966) which employs a different calculation of the energy

stored in angular bonds.

Triple Honeycomb Lattice

Since 1/3 is the highest Poisson’s ratio of central-force triangular lattices with one

spring constant, an interesting model permitting higher values, from 1/3 up to

1, was introduced (Garboczi et al. 1991; Buxton et al. 2001). The model sets up

three honeycomb lattices, having spring constants α, β, and γ, respectively,

overlapping in such a way that they form a single triangular lattice (Fig. 3). The

planar bulk and shear moduli of a single phase are
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κ ¼ 1ffiffiffiffiffi
12

p αþ β þ γð Þ μ ¼
ffiffiffiffi
27

16

r
1

α
þ 1

β
þ 1

γ

	 
�1

: (35)

In the case of two (or more) phases, a spring that crosses a boundary between

any two phases (1 and 2) is assigned a spring constant according to a series rule

α ¼ [(2α1)
�1 + (2α2)

�1], where αι, i ¼ 1, 2, (i. e. α, β, or γ), is a spring constant of

the respective phase.

Note: While this chapter is focused on planar lattice models of elastic solids,

there also exist extensions of the lattice approach to 3D and inelastic materials (e.g.,

Buxton et al. 2001).

Spring Network Models

Representation by a Fine Mesh

With reference to section “Basic Idea of a Spring Network Representation,” one

may employ the square mesh of Fig. 2a in the (x1, x2)-plane for discretization of an
anti-plane elasticity problem. Indeed, this approach may be applied to model

multiphase composites treated as planar, piecewise-constant continua, providing a

lattice or mesh (very) much finer than a single inclusion is involved (Fig. 4b). How

much finer should actually be assessed on a reference problem according to a preset

error criterion? The governing equations for the displacement field u � u3 are

u i, jð Þ kr þ kl þ ku þ kd½ � � u iþ 1, jð Þkr � u
�
i� 1, j

�
kl � u

�
i, jþ 1

�
ku

� u
�
i, j� 1

�
kd¼ f

�
i, j
�
, (36)

where f(i, j) is the body force (or source) at node (i, j), while i and j are the

coordinates of mesh points, and kr (right), kl (left), ku (up), and kd (down) are

defined from the series spring model

Fig. 3 (a) A triple honeycomb lattice made of three different spring types α, β, and γ belonging,
respectively, to three sublattices A, B, and C; (b) a 42 � 42 unit cell of a triangular lattice of

hexagonal pixels, with 11 pixel diameter circular inclusions centered on pixels and randomly

placed with periodic boundary conditions; from (Snyder, K.A., Garboczi E.J. & Day, A.R. (1992)
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Fig. 4 (a) Parameter plane: aspect ratio of inclusions and the contrast; (b) spring network as a

basis for resolution of round disks, ellipses, pixels, and needles in the parameter plane; (c) another

interpretation of the parameter plane: from pixels to needles
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kr ¼ 1
C i, jð Þ þ 1

C iþ1, jð Þ
h i�1

kl ¼ 1
C i, jð Þ þ 1

C i�1, jð Þ
h i�1

ku ¼ 1
C i, jð Þ þ 1

C i, jþ1ð Þ
h i�1

kd ¼ 1
C i, jð Þ þ 1

C i, j�1ð Þ
h i�1

:

(37)

In Eq. 37, C(i, j) is the material property at node (i, j).
This type of a discretization is equivalent to a finite difference method that

would be derived by considering the expansions

u i� 1, jð Þ ¼ u i, jð Þ � s @u i, jð Þ
@x1

���
i, j
þ s2

2!
@2u i, jð Þ
@x2

1

���
i, j

u i, j� 1ð Þ ¼ u i, jð Þ � s @u i, jð Þ
@x2

���
i, j
þ s2

2!
@2u i, jð Þ
@x2

2

���
i, j

(38)

in the governing equation (recall Eq. 8)

C
@2u

@x21
þ @2u

@x22

	 

¼ 0: (39)

However, in the case of in-plane elasticity problems, the spring network

approach is not identical to the finite difference method, because the node–node

connections of a spring network do really have a meaning of springs, whereas the

finite difference connections do not.

In the case of a composite made of two locally isotropic phases, matrix (m) and
inclusions (i), anti-plane Hooke’s law is

σi ¼ Ci, jej i, j ¼ 1, 2 Cij ¼ C mð Þδij or C ið Þδij: (40)

The above leads to a so-called contrast (or mismatch) C(i)/C(m). It is clear that,

with very high contrast, materials with rigid inclusions can approximately be

modeled. Similarly, by decreasing the contrast, systems with very soft inclusions

(nearly holes) can be simulated.

While the disk is the most basic inclusion shape when dealing with composites, a

departure from this is of interest. Thus, another basic parameter specifying the

composite is the aspect ratio of ellipses a/b, where a (b) is the ellipse’s major

(minor) semiaxis. By varying the aspect ratio from 1 up through higher values,

systems having disk-type, ellipse-type, through needle-type inclusions are simu-

lated. This leads to the concept of a parameter plane shown in Fig. 4a.

Resolution of several different types of inclusions by the spring network is

shown in Fig. 4b. Admittedly, this type of modeling is approximate so that a

somewhat different interpretation of a parameter plane is given in Fig. 4c. It is

seen that disks may most simply be modeled as single pixels or more accurately as

finite regions; in the latter case, arbitrary anisotropies can be modeled. The former
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case allows one to deal with very large-scale systems, while the latter allows a much

better resolution of local stress–strain fields within and around inclusions. By

decreasing the spring network mesh size, an increasingly better accuracy can be

achieved. Depending on the shape functions employed in finite element models,

somewhat more accurate results may be obtained, but this comes at a higher price of

costly and cumbersome remeshing for each and every new configuration B(ω) from
the ensemble ℬ, which is required in statistical (Monte Carlo) studies.

It is noteworthy that, in contradistinction to the finite element method, no need

for remeshing and constructing of a stiffness matrix exists in the spring network

method: spring constants are very easily assigned throughout the mesh, and the

conjugate gradient method finds the solution of the equilibrium displacement field

u(i, j). In that manner, a system having 106 million degrees of freedom (1,000 �
1,000 nodes) can readily be handled on a computer with 90 MB of random access

memory. For 2,000 � 2,000 nodes, one requires some 360 MB, and so on, because

of the linear scaling of memory requirements with the number of degrees of

freedom.

The quality of approximation of ellipses and needle-type cracks/inclusions can

be varied according to the number of nodes chosen to represent such objects. Local

fields cannot be perfectly resolved, but the solution by the spring network is

sufficient to rapidly establish the elastic moduli of a number of different B (ω)
realizations from the random medium ℬ, and the corresponding statistics with a

sufficient accuracy. As indicated below, spring networks are used to study scaling

laws of various planar composites.

Note: Interestingly, the computational method for determining effective moduli

of composite materials with circular inclusions due to Bird and Steele (1992) would

be very well suited for analysis of this type of stationarity and isotropy.

Damage in Macro-Homogeneous Materials

Spring Network for Inelastic Materials
The spring network model can also be used in studies assessing the effect of small

disorder on the formation and evolution of damage in elastic–inelastic macro-

homogeneous materials under quasi-static assumption. Such damage models are

characterized by local constitutive law influenced by an appropriate probability

distribution to account for the spatial material disorder. Representation of micro-

cracks by removal of the springs from the lattice and accounting for elastic

interactions of the micro-cracks are the key advantages. Disorder-induced statistical

effects such as crack surface roughness, acoustic emission avalanches, damage

localization, and strength-size scaling are well addressed using such damage

models (Alava et al. 2006; see also Krajcinovic 1996; Rinaldi et al. 2008).

The random fuse model (RFM) (De Arcangelis et al. (1985)) is the simplest form

of a quasi-static lattice damage model. In RFM, monotonically increasing voltage is

applied across a network of resistors with randomly assigned maximum current

thresholds, exceeding which the resistor burns. The failure of fuse network modeled
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using RFM can be mapped onto an anti-plane elastic–brittle transition problem on a

spring lattice with randomly assigned spring failure thresholds.

In order to admit plasticity followed by brittle failure, the equations of spring

network model need to be modified from what has been presented in section

“Introduction.” This is done as follows:

elastic : F ¼ ku u < uY
plastic : F ¼ kP u� uYð Þ þ kuY uY � u < uF
brittle : F ¼ 0 u 	 uF

elasticunloading : F ¼ ku� k � kP
� ��

uunload þ uY
�
,

(41)

where uY, uunload, and uF are the magnitudes of the change in length of a given

spring at yield, at unloading, and at failure, respectively, whereas u is the magnitude

of change in length of a given spring at the current loading step. The spring

stiffnesses before and after yielding are denoted as k and kP, respectively, and
correspond to the elastic and plastic tangent moduli of the given material. The

disorder is introduced in the model by constraining the yield and failure thresholds

of the springs to follow desired probability distribution.

The simulation progresses by incrementing the boundary conditions in very

small steps. It is assumed that the stress redistribution within the system followed

by the yielding or failure event is much faster than the load incrementing rate.

After a spring is yielded or failed, stiffness matrix of the system is modified

and the system of equations is solved again to account for local stress

redistribution. This process is repeated until the lattice falls apart in the case of an

elastic–brittle transition or until the fully plastic state is reached for elastic–plastic

transition.

Hill–Mandel Macrohomogeneity Condition
Any disordered body Bδ(ω) with a given (deterministic) microstructure is loaded by

either one of two different types of boundary conditions:

Uniform displacement (also called kinematic, essential, or Dirichlet) boundary

condition (d )

u xð Þ ¼ e0 � x 8x � @Bδ (42)

Uniform traction (also called static, natural, or Neumann) boundary condition (t)

t xð Þ ¼ σ0 � n 8x � @Bδ (43)

Here e0 and σ0 are employed to denote constant tensors, prescribed a priori,

whereby the average strain and stress theorems imply e0 ¼ e and σ0 ¼ σ. Each of

these loadings is consistent with the Hill–Mandel macrohomogeneity condition

σ : e ¼ σ : e ,
ð
@Bδ

t� σ � nð Þ � u� e � xð ÞdS ¼ 0, (44)
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which means that the volume-averaged scalar product of stress and strain fields

should equal the product of their volume averages (Hill 1963; Mandel 1963; Huet

1982, 1990; Sab 1991, 1992). While the Hill–Mandel condition is written above for

elastic materials, it also holds for plastic material behavior in the incremental setting.

Each of these boundary conditions results in a different mesoscale (or apparent)

stiffness, or compliance tensor, and generally different from the macroscale

(or effective, global, overall, etc.) properties that are typically denoted by eff. So

as to distinguish from the effective, Huet introduced the term apparent.
For a given realization Bδ(ω) of the random medium ℬδ, taken as a linear

elastic body (σ ¼ C(ω, x) : e), on some mesoscale δ, condition Eq. 42 yields an

apparent random stiffness tensor Cδ
d(ω) – sometimes denoted Cδ

e(ω) – with the

constitutive law

σ ¼ Cd
δ ωð Þ : e0, (45)

while the boundary condition (Eq. 43) results in an apparent random compliance

tensor Sδ
t (ω) (sometimes denoted Sδ

n(ω)) with the constitutive law being stated as

e ¼ Stδ ωð Þ : σ0: (46)

For anti-plane loading, the boundary conditions (Eqs. 42 and 43) are

implemented through

uniformdisplacement : e031 ¼ e, e032 ¼ 0 (47)

uniformtraction : σ031 ¼ σ, σ032 ¼ 0: (48)

Modeling Elastic–Brittle Materials
The elastic–brittle transition is modeled using a constitutive law with linear elastic

behavior up to a failure threshold.

Simulation Setup. A spring lattice network based on discussion in section

“Basic Idea of a Spring Network Representation” is considered to represent a

homogeneous anti-plane elastic medium. The bond strength (t) is defined as the

maximum strain the spring can sustain (for RFM, t is equivalent to the maximum

current a fuse can take before burning out). Bond strength is assigned to all the

bonds in the lattice from a distribution p(t) between [0, tmax]. Monotonically

increasing displacement boundary conditions are applied on the vertical edges of

the lattice, while periodic boundary conditions are applied on the horizontal edges

to avoid any boundary effects. At each loading step, a spring having the maximum

value of ϵspring/t is removed from the lattice and the modified system of linear

equations is solved again to allow stress redistribution. As stress redistribution may

cause other springs in the lattice to fail, the removal process at a given loading step

is continued until all possible springs are failed or the macroscopic failure with

sudden drop in load-carrying capacity is observed (Fig. 5).
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Diffusive Fracture and Brittle Fracture. The evolution of damage is governed

by the competition between disorder and stress concentrations at the micro-crack

tips. The effect of stress concentrations trying to localize the damage is opposed by

the disorder trying to delocalize the damage. For strong disorder case, disorder

dominates the stress concentrations leading to distribution of spatially uncorrelated

cracks in the initial stages of loading. As the loading increases, stress concentrations

are high enough to overcome the barrier due to disorder, whereas for weak disorder,

stress concentrations dominate the disorder in the initial stages itself leading to the

formation of a crack originating from the weakest zone.

Kahng et al. (1988) have demonstrated using the electrical breakdown process in

RFM that the elastic–brittle transition depends on two factors: the amount of

disorder and the length scale of the medium under consideration. The schematic

phase diagram of the elastic–brittle transition suggested in Kahng et al. (1988) is

shown in Fig. 10. The strength of disorder is controlled by the factor w such that p(t)
is a uniform distribution on the support [1 � w/2, 1 + w/2]tmax. Thus, w ¼ 2

corresponds to maximum disorder, i.e., a uniform distribution over [0, 2tmax].

Two fundamentally different crack formation trends observed are termed as diffu-

sive fracture [ductile fracture in Kahng et al. (1988)] and brittle fracture. The diffusive

fracture is characterized by the appearance of spatially uncorrelated micro-cracks

prior to the final catastrophic failure, which is observed generally for the systems with

strong disorder. For systems with weak disorder, brittle fracture is observed. In brittle

fracture, the weakest element within the domain dominates the final crack formation

process. Crack nucleates from the weakest element and proceeds in the spanwise

direction due to high stress concentration near the crack tip, leading to final failure.
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Fig. 5 Evolution of strain localization in an elastic–brittle material
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Themain idea proposed by the authors in the phase diagram (Fig. 10) is that for a given

length scale (L), there exists a critical level of disorder for which transition frombrittle

to diffusive fracture behavior is observed for increasing disorder strength, whereas, for

a fixed disorder strength (w), the brittle fracturing is observed for increasing macro-

scopic length scale (L), except for w ¼ 2 which according to the authors (Kahng

et al. 1988) approaches the percolation limit as L! 1.

Fractal Nature of Fracture Surfaces. That fracture surfaces of metals are self-

affine fractals was first pointed out in the seminal paper by Mandelbrot and Paullay

(1984). Their work has initiated a new research area dealing with the roughness

coefficient (ζ) of the fracture. It is now confirmed through experiments that ζ ’ 0.8

(out of plane or 3D) is observed (Lapasset and Planes 1990), in a material dependent

scaling domain (~down to μm length scales and high crack propagation speeds) for

many ductile as well as brittle materials (Bouchad 1997). At smaller length scales

(~down to nm) and quasi-static conditions (low crack propagation speeds), another ζ
in the range of 0.4–0.6 is reported which is often associated with the fracture process

zone (FPZ). In the case of 2D fracture surface, ζ is obtained to be in the range of

0.6–0.7 by experiments (mainly on paper samples) (Bonamy and Bouchad 2011).

The universality of ζ (at larger length scales at least) suggests that the fracture

surface roughening process is governed by a typical physical phenomenon indepen-

dent of the material properties, much like the existence of Kolmogorov scaling in the

inertial subrange of isotropic turbulence (Hansen et al. 1991). Thus, the topic of crack

surface roughness has attracted significant attention over the last 20 years. While the

formation of fractal cracks may be observed in Figs. 5–9, the topic of fracture

mechanics with fractal cracks is treated byWnuk (2014a, b) in this handbook (Fig. 10).
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Modeling Elastic–Plastic Materials
Elastic–plastic response is obtained allowing a hardening slope in the spring

constitutive behavior. In the anti-plane elastic setting, the elastic–plastic response

(flow rule) follows these equations at the grain level:

Fig. 7 Schematic of the

elastic–plastic–brittle model

of an anti-plane spring lattice

Fig. 8 Normalized strain contour plots for ET/E values: (a) 0.8, (b) 0.4, (c) 0.2, (d) 0.1, (e) 0.05,

and (f) (perfectly plastic). Shear bands due to strain localization of increasing strength are

observed for decreasing ET/E
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dσ3i ¼ C3i3jde3i when f P < 0 or f P ¼ 0 and df P < 0

dσ3i ¼ CP
3i3jde

P
3i when f P ¼ 0 and df P ¼ 0:

(49)

Here de3i
P is the plastic strain increment and C3i3j

P represents the hardening

modulus of the material. The Tresca criterion is used to define the yield

function ( fP):

Fig. 9 Damage accumulation and localization leading to formation of the final macroscopic crack

in (f) with increasing number of failed springs np.

Fig. 10 Schematic phase

diagram of elastic–brittle

transition (Kahng et al. 1988)
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f P ¼ max σ31, σ32ð Þ � σs, (50)

where σs is the yield stress in shear of the given grain. In the simulations, disorder

is introduced by assigning yield thresholds to the springs following desired

probability distribution. The simulation is performed similar to the elastic–brittle

one, with loading increasing monotonically in small steps. After each loading step,

all the springs exceeding the yield criteria are modified to follow the hardening

slope and the system of equations is solved after each modification so as to account

for stress redistributions. The simulation progresses until a fully plastic state is

reached.

The elastic–plastic transition is essentially different than elastic–brittle one as

the stress concentrations near the yielded zones are not as strong. Thus, no

damage localization is observed. But, strain localization zones are observed for

low-hardening materials due to weak post-yielding material response (Fig. 6).

Modeling Elastic–Plastic–Brittle Materials
The entire process of failure of plastic hardening disordered materials can be

captured by implementing the complete bilinear response as shown in Fig. 7. The

elastic unloading behavior is an essential part of the model and is explicitly

accounted for as the formation of micro-cracks may result into local unloading of

a yielded zone. In the simulations, at each loading step after a failure or yielding

event, every yielded spring that is unloading is modified to follow the elastic

unloading response.

The effective model response is now controlled by three parameters: hardening

ratio, strength of disorder in yield, and failure limits. Based on observations from

elastic–brittle and elastic–plastic responses, some results can be intuitively

expected from the elastic–plastic–brittle model. For high hardening ratio, signifi-

cant post-yield load-carrying capacity of the material avoids the formation of strain

localization zones and hence the system closely follows elastic–brittle behavior.

Otherwise, for low hardening ratio, the formation of micro-cracks within the strain-

localized zones accelerates the failure process leading to lower effective strength of

the lattice. The strength of disorder plays the important role of mitigating the effect

of crack-tip stress concentrations by delocalizing the micro-cracks. Thus, a wide

spectrum of material responses can be modeled by modifying the disorder distri-

bution and the constitutive spring responses.

A similar idea is studied in the realm of fiber bundle model (FBM) by Rinaldi

(2011) using a bilinear fiber response and independent yield and failure threshold

probability distributions.

Damage Patterns andMaps of Disordered Elastic–Brittle Composites

As mentioned in section “Introduction,” the lattice method can also be used to

simulate damage of heterogeneous materials. This works particularly well in the

case of elastic–brittle failure of composites, where one uses a mesh (much) finer
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than the typical size of the microstructure. In principle, one needs to determine

which lattice spacing ensures mesh independence or nearly so. Such a study has

been conducted for a thin aluminum polycrystalline sheet discussed (Ostoja-

Starzewski 2008).

With reference to Alzebdeh et al. (1998), the attention is focused on two-phase

composites in anti-plane shear, under periodic boundary conditions and (necessar-

ily) periodic geometries. Now, since both phases (inclusion i and matrix m) are
isotropic and elastic–brittle (Fig. 11a), the composite can be characterized by two

dimensionless parameters:

eicr=e
m
cr Ci=Cm, (51)

where ecr
i (ecr

m) is the strain-to-failure of the inclusion (resp. matrix) phase and Ci

(Cm) are the corresponding stiffnesses. This leads to the concept of a damage
plane (Fig. 11b) showing various combinations of strengths and stiffnesses.

While the response in the first and third quarters of damage plane is quite

intuitive, this is not so for the second and fourth quarters. In those two quarters,

there is a competition of either high stiffness with low strength of the inclusions

with the reverse properties of the matrix or the opposite of that. The damage plane

is useful for displaying effective damage patterns of any particular geometric

realization of the random composite while varying its physical properties

(Fig. 12) as well as other characteristics, say, statistics of response in the ensemble

sense (Fig. 13).

A number of other issues are studied in the referenced papers:

– Stress and strain concentrations

– Finite size scaling of response

Fig. 11 (a) Elastic–brittle stress–strain curves for matrix and inclusion phases; (b) sketch of the

damage plane
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– Function fitting of statistics (where it turns out that the beta probability distri-

bution offers a more universal fit than either Weibull or Gumbel)

– Effects of disorder versus periodicity

Also, see Ostoja-Starzewski and Lee (1996) for a similar study under in-plane

loading; computer movies of evolving damage can be obtained from the author.

Fig. 12 Crack patterns in the damage plane on a scale 4.5 times larger than that of the inclusion

diameter. The center figure of a homogeneous body is not shown as it corresponds to all the bonds

failing simultaneously
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Particle Models

Governing Equations

Basic Concepts
Particle models are a generalization of lattice models to include dynamic effects

and can also be viewed as an offshoot of molecular dynamics (MD). The latter field

has developed over the past few decades in parallel with the growth of computers

and computational techniques. Its objective has been to simulate many interacting

atoms or molecules in order to derive macroscopic properties of liquid or solid

materials (Greenspan 1997, 2002; Hockney and Eastwood 1999). The governing

Hamiltonian differential equations of motion need to be integrated over long time

intervals so as to extract the relevant statistical information about the system from

the computed trajectories.

Fig. 13 Damage maps of statistics of constitutive responses for twenty realizations of the random

composite, such as that in Fig. 12
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Techniques of that type have been adapted over the past two decades to simulate

materials at larger length scales, whereby the role of a particle is played by a larger-

than-molecular piece of material, a so-called particle or quasiparticle. The need to

reduce the number of degrees of freedom in complex systems has also driven models

of galaxies as systems of quasiparticles, each representing lumps of large numbers of

stars. In all these so-called particle models (PMs), the material is discretized into

particles arranged in a periodic lattice, just like in spring network models studied in

earlier sections, yet interacting through nonlinear potentials, and accounting for inertial

effects, i.e., full dynamics. With reference to Fig. 14, the lattice may be in 2D or in 3D.

Note that, by comparison with finite elements (FE) which indeed also involve a

quite artificial spatial partitioning, PMs are naturally suited to involve interparticle

potentials of the same functional form as the interatomic potentials, providing one

uses the same type of lattice. The PM can therefore take advantage of the same

numerical techniques as those of MD and rather easily deal with various highly

complex motions. Thus, the key issue is how to pass from a given molecular potential

in MD to an interparticle potential in PM. In the case when the molecular interactions

are not well known, the PMmay still turn out to be superior relative to the FE. Among

others, this indeed is the case with comminution of minerals where scales up to

meters are involved (Wang and Ostoja-Starzewski 2005; Wang et al. 2006).

In MD, the motion of a system of atoms or molecules is governed by classical

molecular potentials and Newtonian mechanics. As an example, let us consider

copper. Following Greenspan (1997), its 6–12 Lennard–Jones potential is

ϕ rð Þ ¼ � 1:398068

r6
10�10 þ 1:55104

r12
10�8erg: (52)

Here r is measured in Å. It follows that the interaction force between two copper

atoms is

F rð Þ ¼ � dϕ rð Þ
dr

¼ � 8:388408

r7
10�2 þ 18:61248

r13
dyn: (53)

In Eq. 52 F(r) ¼ 0 occurs at r0 ¼ 2:46Å, and ϕ then attains the minimum: ϕ(r0)
¼ �3.15045 · 10�13 erg.
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Fig. 14 Particle models and intermediate stages of fracture in (a) 2D and (b) 3D; after Wang

et al. (2006)
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Using a simple methodology from basic materials science (Ashby and Jones

1980), Young’s modulus E of the material can be found from ϕ(r) as follows:

E ¼ S0
r0

where S0 ¼ d2ϕ rð Þ
dr2

jr0 : (54)

With this method, Young’s modulus of copper 152.942 GPa is found, a number

that closely matches the physical property of copper and copper alloys valued at

120~150 GPa. Then, the continuum-type tensile stress

σ rð Þ ¼ NF rð Þ, (55)

where N is the number of bonds/unit area, equals to 1/r0
2. Tensile strength, σTS,

results when dF(r)/dr¼ 0, that is, at rd ¼ 2:73Å (bond damage spacing), and yields

σTS ¼ NF rdð Þ ¼ 462:84MN=m2: (56)

This value is quite consistent with data for the actual copper and copper-based

alloys reported at 250–1,000 Mpa.

In the PM, the interaction force is also considered only between nearest-

neighbor (quasi)particles and assumed to be of the same form as in MD:

ϕ rð Þ ¼ �G

rp
þ H

rq
: (57)

Here G, H, p, and q, all positive constants, are yet to be determined, and this will

be done below. Inequality q> pmust hold so as to obtain the repulsive effect that is

necessarily (much) stronger than the attractive one. Three examples of interaction

force for three pairs of p and q are displayed in Fig. 15a. The dependence of

Young’s modulus for a wide range of p and q is shown in Fig. 15b.

The conventional approach in PM, just as in MD, is to take the equation of

motion for each particle Pi of the system as

mi
d2ri
dt2

¼ α
X
j

�Gi

rpij
þ Hi

rqij

 !
rji

rij
i 6¼ j, (58)

wheremi is the mass of Pi and rji is the vector from Pj to Pi; summation is taken over

all the neighbors of Pi. Also, α is a normalizing constant obtained by requiring that

the force between two particles must be small in the presence of gravity:

α � Gi

Dp þ
Hi

Dq

����
���� < 0:001 � 980mi: (59)

Here D is the distance of local interaction (1.7r0 cm in this particular example),

where r0 is the equilibrium spacing of the particle structure. The reason for
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introducing the parameter α by Greenspan (1997) was to define the interaction force

between two particles as local in the presence of gravity. However, since setting α
according to Eq. 49 would result in a “pseudo-dynamic” solution, α ¼ 1 is set.

According to Eq. 47, different ( p, q) pairs result in different continuum-type

material properties, such as Young’s modulus E. Clearly, changing r0 and volume

of the simulated material V (¼ A � B � C) will additionally influence Young’s

modulus. Therefore, in general, there is some functional dependence:

E ¼ E p, q, r0,Vð Þ: (60)

One can formulate four conditions to determine continuum-level Young’s mod-

ulus and tensile strength while maintaining the conservation of mass and energy of

the particle system and satisfying the interaction laws between all the particles in

the PM model for a given MD model (Wang and Ostoja-Starzewski 2005).

Leapfrog Method
Just like in MD, there are two commonly used numerical schemes in particle

modeling: completely conservative method and leapfrog method. The first scheme

is exact in that it perfectly conserves energy and linear and angular momentum, but

requires a very costly solution of a large algebraic problem. The second scheme is

approximate. Since in most problems one needs large numbers of particles to

adequately represent a simulated body, the completely conservative method is

unwieldy and, therefore, usually abandoned in favor of the leapfrog method

(Ostoja-Starzewski and Wang 2006). That method is derived by considering

Taylor expansions of positions ri,k+1 and ri,k of the particle Pi(i ¼ 1, 2, . . . , N ) at

Fig. 15 (a) The interaction force for pairs of (p,q) exponents, at r0¼ 0.2 cm. (b) The variability of

Young’s modulus in the (p,q) � plane
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times tk ¼ kΔt and tk+1 ¼ (k+1)Δt, respectively, about time tk+1/2 ¼ (k+1/2)Δt (with
Δt being the time step):

ri, k ¼ ri, kþ1=2 � Δt
2
vi, kþ1=2þΔt2

4
ai, kþ1=2 � Δt3

48
_ai, kþ1=2 þ O Δt4

� �
ri, kþ1 ¼ ri, kþ1=2 þ Δt

2
vi, kþ1=2 þ Δt2

4
ai, kþ1=2 þ Δt3

48
_ai, kþ1=2 þ O Δt4

� �
:

(61)

Here vi and ai denote velocity and acceleration. Upon addition and subtraction of

these, the new position and velocity are found:

ri, kþ1 ¼ 2ri, kþ1=2 � ri, k þ Δt2

4
ai, kþ1=2 þ O Δt4

� �
vi, kþ1=2 ¼ ri, kþ1 þ ri, k

� �
=Δtþ O

�
Δt2
�
,

(62)

showing that the position calculation is two orders of magnitude more accurate than

the velocity calculation. However, the error in computation of velocity accumulates

only as fast as that in position because it is really being calculated from positions. It

is easy to see that the leapfrog method is more accurate than the conventional Euler

integration based on vi,k+1 ¼ vi,k + (Δt)ai,k and ri,k+1 ¼ ri,k + (Δt)vi,k.
Oftentimes, the leapfrog formulas relating position ri, velocity vi, and accelera-

tion ai for all the particles Pi(i ¼ 1, 2, . . . , N ) are written as

vi, 1=2 ¼ vi, 0 þ Δt
2
ai, 0 starter formulað Þ

vi, kþ1=2 ¼ vi, k�1=2 þ Δtð Þai, k k ¼ 0, 1, 2, . . .
ri, kþ1 ¼ ri, k þ Δtð Þvi, kþ1=2 k ¼ 0, 1, 2, . . .

(63)

Clearly, the name of the method comes from taking velocities at intermediate time

steps relative to positions and accelerations; it is also known as a Verlet algorithm.
It can be shown that the global (cumulative) error in position going from ri,k to

ri,k+n (i.e., over T ¼ nΔt) of Pi is

error ri, kþn � ri, k
� � ¼ O Δt2

� �
, (64)

which is also the global error in velocity.

Stability is concerned with the propagation of errors. Even if the truncation and

roundoff errors are very small, a scheme would be of little value if the effects of small

errors were to grow rapidly with time. Thus, instability arises from the nonphysical

solution of the discretized equations. If the discrete equations have solutions which

grow much more rapidly than the correct solution of the differential equations, then

even a very small roundoff error is certain to eventually seed that solution and render

the numerical results meaningless. By the root locus method for an atomistic unit of

time, the safe time step used in the leapfrog method meeting this requirement is

ΩΔt 
 2 Ω ¼ 1

m

dF

dr

����
����
max

	 
1=2

: (65)

Thus, as r! 0, dF/dr!1, which results in Δt! 0. Since this may well cause

problems in computation, it is advisable to introduce the smallest distance between

two particles according to these conditions:
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(i) For a stretching problem of a plate/beam, take dF=drð Þmax ’ dF=drjr¼r0
, which

with () dictates Δt ’ 10�7 � 10�6s.
(ii) For an impact problem, one often needs to set up a minimum distance limiting

the spacing between two nearest particles, e.g., rmin ¼ 0.1r0. It is easy to see

from Fig. 15a that, in this case, this suitable time increment is greatly reduced

because of a rapid increase in Ω. This leads to Δt ’ 10�8s.

Following the MDmethodology (Napier-Munn et al. 1999), one can also set up a

criterion for convergence: Δt < 2
ffiffiffiffiffiffiffiffiffi
m=k

p
, where m is the smallest mass to be

considered and k is the same stiffness as S0 in Eq. 442. An examination of these

two criteria shows there is not much quantitative difference between them in the

case of elastic or elastic–brittle, but not plastic, materials.

Examples

The maximum entropy formalism is much better suited to deal with quasi-static

rather than dynamic fracture. The dynamic character of fracture in these experi-

ments, combined with the presence of multiple incipient spots, was also a big

challenge in several computational mechanics models reviewed in Al-Ostaz and

Jasiuk (1997) employing commercial finite element programs, as well as in an

independent study using a meshless element program (Belytschko et al. 1995).

Upon trying various failure criteria and subjective choices (such as being forced to

initialize the cracking process in the meshless model), the simulations have run into

uncertainty as to which modeling aspect is more critical and whether there is a way

to clarify it. A more recent study (Ostoja-Starzewski and Wang 2006) was moti-

vated by that challenge and offered a way to test the PM vis-à-vis experiments.

The same experiments on crack patterns in epoxy plates perforated by holes

were also treated by two analyses – one based on the minimum potential energy

formulation and another based on the maximum entropy method; they both relied

on the assumption of quasi-static response. Strictly speaking, while the loading was

static, the fragmentation event was dynamic. Clearly, the preparation of mineral

specimens – involving measurement of highly heterogeneous and multiphase

microstructures – for a direct comparison with the model prediction is very hard.

Thus, the model is applied to the experimentally tested plate with 31 holes

according to this strategy:

• Decrease the lattice spacing until mesh-independent crack patterns are attained.

• Find whether the lattice of (i) will also result in the most dominant crack pattern

of Fig. 16. Indeed, the crack patterns “stabilize” as the mesh is refined.

• Assuming the answer to (ii) is positive, introduce weak perturbations in the

material properties – either stiffness or strength – to determine which one of

these has a stronger effect on the deviation away from the dominant crack

pattern, i.e., on the scatter in Fig. 16.
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Other Models

The PM is but one of the variations on the theme of MD. Here are some other

possibilities:

• Molecular statics (MS) – by disregarding the inertia forces, it involves a static

solution of the system of atoms (Vinogradov 2006, 2009, 2010). While the MD

allows simulations of large systems with a constraint to very short time scales

(transient phenomena of the order of nanoseconds), the MS allows large (mac-

roscopic type) time scales albeit with a limitation by the size of a (nonlinear)

algebraic system one is able to solve and a restriction to 0�K.

Fig. 16 From (Ostoja-Starzewski and Wang 2006) final crack patterns for four mesh configura-

tions at ever finer lattice spacings: (a) r0 ¼ 0.1 cm, (b) r0 ¼ 0.05 cm, (c) r0 ¼ 0.02 cm, and (d)

r0 ¼ 0.01 cm
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• Derivation of a continuum model from a microscopic model based on the

assumption that the displacements on the macroscopic level are the same as

those on the molecular level (Blanc et al. 2002).

• Introduction of a finite extension and spin for continuum-type particles

(Yserentant 1997).

• Direct incorporation of interatomic potentials into a continuum analysis on the

atomic scale (Zhang et al. 2002).

Scaling and Stochastic Evolution in Damage Phenomena

Consider a material whose elasticity is coupled to damage state, as described by the

constitutive equation (Lemaitre and Chaboche 1994)

σij ¼ 1� Dð ÞCijklekl: (66)

Here Cijki is isotropic, and which must be coupled with a law of isotropic

damage, that is,

_D ¼ @Φ�

@Y
, (67)

with Y ¼ �@Ψ/@e, being the Helmholtz free energy. This formulation is set within

the TIV (thermomechanics with internal variables) framework. In particular, the

scalar D evolves with the elastic strain e ¼ eii, which is taken as a time-like

parameter, according to

@D

@e
¼ e=e0ð Þs� when e ¼ eD and de ¼ deD > 0,

0 when e < eD and de < 0:

�
(68)

Integration from the initial conditionsD¼ eD¼ 0 up to the total damage,D¼ 1, gives

D ¼ e=e0ð Þs�þ1 eR ¼ 1þ s�ð Þes�D
� �s�þ1

σ ¼ 1� e=eRð Þs�þ1
h i

Ee, (69)

where σ ¼ σii.
This formulation is understood as the effective law for the RVE, that is,

Ceff
ijkl ¼ Cijkl δ!1j Deff ¼ Djδ!1 Ψeff ¼ Ψjδ!1 Φeff ¼ Φjδ!1, (70)

as well as a guidance for adopting the form of apparent responses on mesoscales.

Thus, assuming that the same types of formulas hold for any mesoscale δ, the
apparent response for any specimen Bδ (ω) is

σ ¼ 1� Dd
δ

� �
Cd

δ ωð Þ : e0 (71)

under uniform displacement boundary condition. The notation Dδ
d expresses the fact

that the material damage is dependent on the mesoscale δ and the type of boundary
conditions applied (d). In fact, while one could formally write another apparent
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response e ¼ 1Dd
δ

� ��1
Stδ ωð Þ : σ0, this is not done because the damage process under

the traction boundary condition (t) would be unstable.

It is now possible to obtain scale-dependent bounds on Dδ
d through a procedure

analogous to that for linear elastic materials, providing one assumes a WSS and

ergodic microstructure. One then obtains a hierarchy of bounds on hD1
d i � Deff

from above (Ostoja-Starzewski 2002b):

Dd
δ0

 � � Dd
δ

 � � . . . � Dd
1

 � 8δ0 ¼ δ=2: (72)

These inequalities are consistent with the much more phenomenological Weibull

model of scaling of brittle solids saying that the larger is the specimen, the more

likely it is to fail.

Next of interest is the formulation of a stochastic model of evolution of Dδ
d with

e to replace Eq. 731. Said differently, a stochastic process Dδ
d ¼ {Dδ

d(ω, e); ω � Ω,
e � [0, eR]} is needed. Assuming, for simplicity of discussion, just as in Lemaitre

and Caboche (1994) that s* ¼ 2, this setup may be considered:

dDd
δ ω, eð Þ ¼ Dd

δ ω, eð Þ þ 3e2 1þ rδ ωð Þ½ �dt, (73)

where rδ (ω) is a zero-mean random variable taking values from [�aδ, aδ], 1/δ ¼ aδ
< 1. This process has the following properties:

(i) Its sample realizations display scatterω-by-ω for δ<1, i.e., for finite body sizes.

(ii) It becomes deterministic as the body size goes to infinity in the RVE limit

(δ ! 1)

(iii) Its sample realizations are weakly monotonically increasing functions of e
(iv) Its sample realizations are continuous.

(v) The scale effect inequality (Eq. 73) is satisfied, providing eR is taken as a

function of δ with a property

eR δð Þ < eR δ0ð Þ 8δ0 ¼ δ=2: (74)

Let us observe, however, that, given the presence of a random microstructure,

mesoscale damage should be considered as a sequence of microscopic events –

shown as impulses in Fig. 17a – thus rendering the apparent damage process Dδ
d one

with discontinuous sample paths, having increments dDδ
d occurring at discrete time

instants (Fig. 17c). To satisfy this requirement, one should, in place of the above,

take aMarkov jump processwhose range is a subset [0,1] of real line (i.e., where Dδ
d

takes values). This process would be specified by an evolution propagator or, more

precisely, by a next-jump probability density function defined as follows:

p(e0, Dδ
d0|e, Dδ

d)de0dDδ
d0 ¼ probability that, given the process is in state Dδ

d at time

e, its next jump will occur between times e + e0 and e + e0 + de0 and will carry the

process to some state between Dδ
d + Dδ

d0 and Dδ
d + Dδ

d0 + dDδ
d0.
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Fig. 17 Constitutive behavior of a material with elasticity coupled to damage where e/eR plays the
role of a controllable, time-like parameter of the stochastic process. (a) Stress–strain response of a

single specimen ℬδ from ℬ having a zigzag realization, (b) deterioration of stiffness, and (c)

evolution of the damage variable. Curves shown in (a–c) indicate the scatter in stress, stiffness, and

damage at finite scale δ. Assuming spatial ergodicity, this scatter would vanish in the limit δ!1,

whereby unique response curves of continuum damage mechanics would be recovered
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Figure 17b shows one realization Cδ
d(ω, e); ω � Ω, e � [0, eR], of the apparent,

mesoscale stiffness, corresponding to the realizationDδ
d(ω, e); ω � Ω, e � [0, eR],

of Fig. 17c. The resulting constitutive response σδ(ω, e); ω � Ω, e � [0, eR] is
depicted in Fig. 17a.

Calibration of this model (just as the simpler one above) – that is, the specifica-

tion of p(e0, Dδ
d0|e, Dδ

d)de0dDδ
d0 – may be conducted by either laboratory or computer

experiments such as those discussed earlier in this chapter. Note that in the

macroscopic picture (δ!1), the zigzag character and randomness of an effective

stress–strain response vanish. However, many studies in mechanics/physics of

fracture of random media (e.g., Herrmann and Roux 1990) indicate that the

homogenization with δ ! 1 is generally very slow and hence that the assumption

of WSS and ergodic random fields may be too strong for many applications; see

Rinaldi (2013) for related work.

Extension of the above model from isotropic to (much more realistic) anisotropic

damage will require tensor rather than scalar random fields and Markov processes.

This will lead to a greater mathematical complexity which may be balanced by

choosing the first model of this subsection rather than the latter. These issues, while

technically challenging and offering rich harvest for theoreticians, are quite sec-

ondary relative to the underlying goal to outline a stochastic continuum damage

mechanics that (i) is based on, and consistent with, micromechanics of random

media as well as the classical thermomechanics formalism and (ii) reduces to the

classical continuum damage mechanics in the infinite volume limit.

Concluding Remarks

The motivation for lattice models in damage mechanics has been the need to

simultaneously model elastic, plastic, and fracture responses in heterogeneous

materials, something that cannot easily be delivered by conventional continuum

solid mechanics and finite element analysis. Following a review of basic concepts

of lattice models in anti-plane, planar classical, and planar nonclassical elasticity

settings, various applications to damage mechanics (including fractal characteris-

tics of fracture) have been given. The discussion has then been expanded from

statics to dynamics (i.e., to a quasiparticle model). The chapter closes with a

discussion of scaling and stochastic evolution in damage phenomena as stepping-

stone to stochastic continuum damage mechanics.
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Abstract

Basic concept underlying Griffith’s theory of fracture of solids was that, similar

to liquids, solids possess surface energy and, in order to propagate a crack by

increasing its surface area, the corresponding surface energy must be compen-

sated through the externally added or internally released energy. This assump-

tion works well for brittle solids, but is not sufficient for quasi-brittle and ductile

solids.

Here some new forms of energy components must be incorporated into the

energy balance equation, from which the input of energy needed to propagate

the crack and subsequently the stress at the onset of fracture can be determined.

The additional energy that significantly dominates over the surface energy is the

irreversible energy dissipated by the way of the plastic strains that precede the

leading edge of a moving crack. For stationary cracks, the additional terms

within the energy balance equation were introduced by Irwin and Orowan.
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An extension of these concepts is found in the experimental work of Panin, who

showed that the irreversible deformation is primarily confined to the pre-fracture

zones associated with a stationary or a slowly growing crack.

The present study is based on the structured cohesive crack model equipped

with the “unit step growth” or “fracture quantum.” This model is capable to

encompass all the essential issues such as stability of subcritical cracks, quan-

tization of the fracture process, and fractal geometry of crack surfaces and

incorporate them into one consistent theoretical representation.

Introduction

Inspiration for writing this paper was provided by the experimental work of Panin

and his group (Panin 1995) relevant to the better understanding of the phenomenon

of pre-fracture strain accumulation, concentration, and redistribution, which occurs

within the small pre-fracture zone adjacent to the leading edge of crack and being of

paramount importance in determining the early stages of fracture, point of fracture

onset – followed at first by the stable crack growth – and then by a terminal

instability, which when the positive stress intensity factor K-gradient is maintained

leads to a catastrophic propagation.

In order to be able to construct a mathematical model of these nonlinear

deformation and fracture processes, it is necessary to introduce the “quantized

model” of fracture or QFM for “quantized fracture mechanics.” One shall be

working here with a structured cohesive model of crack equipped with the “unit

growth step” or, equivalently, the Neuber’s particle (Neuber 1958) or Novozhilov’s

“fracture quantum” (Novozhilov 1969). Such an approach represents a substantial

departure from the classic theory of Griffith who predicts no subcritical cracks.

Griffith crack is either stationary or catastrophic under the positive K-gradient

loading configuration. What visibly is missing in the classic theory is the transition

period from a stationary state to a moving crack, which is accomplished by the

insertion of the period of slow stable crack growth (SCG) and made possible by

accounting for the highly nonlinear deformation processes preceding fracture.

To this end similar works have been done in recent past by Khezrzadeh

et al. (2011) and by Wnuk et al. (2012), but none of these investigations have

succeeded in presenting a mathematically complete theory departing from the

continuum-based approximations and consistent with the latest trends in the com-

putational fracture mechanics; cf. Prawoto and Tamin (2013). It is noteworthy that

the mathematical model of “structured cohesive crack” has been successfully

applied to the studies of the effects of specimen geometry and loading configuration

on occurrence of instabilities in ductile fracture (cf. Wnuk and Rouzbehani 2005),

in modeling the fatigue phenomenon at nanoscale levels; see Wnuk and

Rouzbehani (2008).

To follow this line of approach, the quantization of the fracture process is

needed, and it was implemented via the δCOD criterion of Wnuk. The notions of

Neuber’s particle and Novozhilov’s fracture quantum are invoked in order to
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accomplish the quantization procedure. A prior knowledge of the strain distribution

within the Panin zones is required. The governing differential equations of slow

stable crack growth based on the Panin’s study and on the theoretical model

proposed by Wnuk et al. (2012) have been refined. It has been demonstrated that

the nature provides certain mechanisms of enhancing or reducing the material

resistance to fracture. The first one is related to material ductility and energy

dissipation that precedes the final act of decohesion, while the other factor is purely

geometrical as it derives from the roughness of the crack surfaces (not accounted

for by the Euclidean geometry of a smooth classic crack). The conclusion is that

while ductility significantly improves the fracture toughness, the increased rough-

ness of crack surface suppresses the subcritical crack growth and it tends to induce a

more brittle-like fracture. This feature is described in our model by the fractal

fracture mechanics. The theory developed here is based on certain key equations

involving the fractal representation of stationary and growing cracks due to the

fundamental research of Wnuk and Yavari (2003), (2009) and Khezrzadeh

et al. (2011).

Displacements and Strains Associated with a Discrete Cohesive
Crack Model

For many years, one of the primary subjects of V. Panin’s research (Panin 1995)

were the experimental studies and recording of the strains at micro- and meso-levels

as well as observation of their subsequent build up and redistribution occurring

within a certain small process zone adjacent to the leading edge of the crack. Here

the primary purpose is to construct a simple mathematical model describing such a

phenomenon of pre-fracture strain accumulation and concentration within the

regions close to the crack front – in what follows referred to as “pre-fracture” or

“Panin zones.” The intention is to study both the stationary and slowly moving

cracks. For this purpose, one shall employ the structured cohesive crack model

equipped with a Neuber’s particle or fracture quantum Δ. An assumption regarding

existence of such particle embedded within the cohesive zone is necessary if the

quantization of the fracture process is anticipated and necessary to provide a

complete mathematical representation of the fracture process for a ductile

(or quasi-brittle) solid. It is noted that the terms “pre-fracture zone,” “Panin

zone,” or “cohesive zone” are to be understood as synonyms.

Material ductility will be one of the parameters of primary concern. For the

structured cohesive crack model (see Figs. 1 and 2), the following quantity will be

used as a measure of the ductility:

ρ ¼ Rini

Δ
¼ ef

eY
¼ eY þ efpl

eY
(1)

Here Δ denotes the fracture quantum, while the length of the cohesive zone

measured at the onset of fracture (usually occurring in form of slow stable crack
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Fig. 1 Examples of quasi-brittle and ductile material behavior. Two materials with identical

yield strain eY and similar yield points σY but with widely different ductility are compared:

Material 1 (quasi-brittle) shows the ratio ef/eY close to one, while for the Material 2 (ductile)

the ratio e2
f /eY � 1. In the discrete cohesive crack model, the ductility index Rini/Δ is identified

with ef/eY. The length of the cohesive zone at the onset of fracture Rini equals (π/8)(Kc/σY)
2, whileΔ

is the size of the Neuber’s particle

Fig. 2 Distribution of the COD within the cohesive zone corresponding to two subsequent states

represented by instants “t- δt” and “t” in the course of quasi-static crack extension as required in

Wnuk’s criterion of delta COD; [v2(t) – v1(t� δt)]P ¼ final stretch
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growth that in ductile media precedes the catastrophic propagation) is denoted by

Rini and this quantity is related to the yield stress σY, Young modulus E, and the

fracture toughness measured by Kc or Rice’s integral Jc in a familiar fashion

Rini ¼ π

8

Kc

σY

� �2

¼ π

8

EJc
σY

� �2

(2)

This quantity is often identified with the material characteristic length, say Lch;
cf. Taylor (2008). In order to estimate the size of the other important length

parameter, the fracture quantum Δ, it suffices at this point to say that in brittle

and quasi-brittle materials, Δ and Lch are of the same order of magnitude, while

for the ductile materials, Δ is much smaller than the characteristic length given

by Eq. 2.

Roughness of the crack surfaces represented via fractal geometry will be treated

as a secondary variable that influences the early stages of fracture, i.e., the stable

crack extension and the onset of the unstable propagation. For comparison, both the

Euclidean and the fractal geometries of a crack will be considered. An approximate

model proposed by Wnuk and Yavari (2003) known as the “embedded fractal

crack,” whose fractal dimension D may differ from one, will be employed; see

Fig. 2. Prior to the addition of the cohesive zones, an embedded fractal crack

exhibits a singular near tip stress field proportional to r�α, where r is the distance
measured from the crack tip and the so-called fractal exponent α is related to the

dimension D and the roughness measure H as follows:

α ¼ 2� D

2
, 1 � D � 2

α ¼ 2H � 1

2H
, 0 � H � 1=2

(3)

Using the fractal crack model, Wnuk and Yavari (2003) and also Khezrzadeh

et al. (2011) have estimated the stress intensity factor as

Kf
I ¼ χ αð Þ

ffiffiffiffiffiffiffiffiffi
πa2α

p
σ (4)

where σ is the applied stress, a denotes the crack length, and the function χ(α) is
defined by the integral

χ αð Þ ¼ 2

π1�α

ð1
0

dz

1� z2ð Þ1�α ¼
πα�1Γ αð Þ
Γ αþ 1

2

� � (5)

Here Γ is the Euler gamma function. One notices that for 1 � D � 2 the fractal

exponent α varies within the range [0.5, 0]. According to the principle of corre-

spondence, all quantities describing a fractal crack reduce to the classic expressions

valid for a smooth crack when α ! ½. As shown by Khezrzadeh et al. (2011), the
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Wnuk–Yavari model of a fractal crack holds only for cracks with relatively small

roughness, and thus in the considerations that follow the range of α will be limited

to [0.5, 0.4].

First the case of a smooth Euclidean crack will be represented by a structured

cohesive crack model as shown in Fig. 3. Two sets of coordinates are used: the

dimensional coordinates are shown in Fig. 3a, while the nondimensional are

COD

COD

R

R

½ CCOD

½ CCOD

½ CTOD

½ CTOD

a

a1

Cohesive Zone

Cohesive Zone

Physical Crack

Physical Crack

x

x

s

x1

s

1
k

1

P

P

Δ

Δ

λ

1

a

b

Fig. 3 (a) Dimensional coordinates associated with an extended structured cohesive crack. Note

the location of the “fracture quantum” Δ, which is adjacent to the crack leading edge and is

embedded within the cohesive zone. According to our model, the brittle behavior is observed when

Δ and R are of approximately same size, while for the ductile behavior, Δ is deeply embedded

within the cohesive zone, and therefore, it is much smaller than R. P denotes the control point for

measuring the increment of the COD for a slowly moving crack during the early stages of fracture.

Symbols CCOD and CTOD designate the “crack center opening displacement” and the “crack tip

opening displacement,” respectively. (b) Nondimensional coordinates s ¼ x/a and λ ¼ x1/R. Note
that when these coordinates are used, the tip of the extended crack falls at s ¼ 1/k, where k is

related to the nondimensional loading parameter Q ¼ (π/2)(σ/σY) by this formula: k ¼ cosQ
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explained in Fig. 3b. The distance measured from the origin of coordinates is

denoted by x (or s ¼ x/a), while the distance measured from the tip of the physical

crack is denoted by x1 (or λ ¼ x1/R) and the ratio a/a1 ¼ k. The crack length is “a,”
the length of the extended crack is a1 ¼ a + R, and the profile of the entire crack is

described (cf. Anderson 2004; Khezrzadeh et al. 2011) by the following expression

involving the inverse hyperbolic functions

uy ¼ 4σYa

πE
Re coth�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2s2

1� k2

s
� s coth�1 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2s2

1� k2

s2
4

3
5

8<
:

9=
; (6)

At s ¼ 0 one obtains the expression for the crack center opening displacement

(CCOD), namely,

ucentery ¼ 4σYa

πE
coth�1 1

1� k2

� �1=2

¼ 4σYa

πE
coth�1 1

sinQ

� �
(7)

The nondimensional loading parameter Q ¼ πσ/2σY enters the last equation due

to the known Dugdale formula valid for our model:

k ¼ cosQ (8)

At s ¼ 1 one obtains the crack tip opening displacement (CTOD), namely,

utipy ¼ 4σYa

πE
ln

1

k

� �
¼ 4σYa

πE
ln

1

cosQ

� �
(9)

Figure 4a shows the dependence of the tip displacement and the center displace-

ment on the applied load Q, while Fig. 4b illustrates the fact that the ratio of these

two quantities CTOD/CCOD remains constant almost throughout the entire range

of loading. The constant is 0.504, which provides a good rule of thumb: the tip

displacement of the cohesive crack is roughly one half of the mouth displacement

measured at the crack center. This observation provides helpful information for an

experimentalist, who utilizing various clip gages can access the center of the crack

much easier than the tip of the physical crack. Thus, once the CCOD is measured,

the tip displacement, the CTOD, can be estimated with a good accuracy.

The profile of the entire extended crack, normalized by the constant C ¼ 4σYa
πE , is

shown in Fig. 5a, while Fig. 5b shows the same profile normalized by the CTOD. In

constructing these figures, the following equations were used:

u ¼ uy
C

¼ Re coth�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2s2

1� k2

s
� s coth�1 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2s2

1� k2

s2
4

3
5

8<
:

9=
; (10)

and
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v ¼ uy

utipy
¼ 1

ln
1

k

� �Re coth�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2s2

1� k2

s
� s coth�1 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2s2

1� k2

s2
4

3
5

8<
:

9=
; (11)

Due to this normalization procedure, all v-profiles pass through one at the tip of

the physical crack, x ¼ a or s ¼ 1. Figure 6a shows the graphs resulting from the

expression in Eq. 11 drawn for three values of load Q and plotted within the range

of x that corresponds to the “cusp” of the cohesive crack, i.e., for a � x � a1 or 1 �
s � 1/k.

Fig. 4 (a) Shows the opening

displacements at the center of

a cohesive crack and at the tip

of the physical crack as

functions of the applied load

Q. (b) Shows the ratio of the

CTOD (crack tip opening

displacement) to the CCOD

(crack center opening

displacement). Despite the

nonlinear nature of the

problem, these results show

that the CTOD is roughly one

half of the CCOD through the

entire range of the loading

parameter Q. The ratio
depicted in the figure can be

very closely approximated by

the simple equation CTOD ¼
0.504CCOD
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Fig. 5 Profiles of the cusp region of the cohesive crack: (a) when the crack opening displacements

are normalized by the constant C ¼ 4σY/πE, see Eq. 10, and (b) when half of the CTOD is used as

the normalization constant, see Eq. 11. Nondimensional loading parameter, proportional to σ/σY, is
denoted by Q
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Finally, in Fig. 6b, these v-graphs representing the cusp are compared to the

curves that result from a known (cf. Rice 1968 or Wnuk 1974) approximate formula

valid under the Barenblatt’s restriction of R being much smaller than the crack

length

Fig. 6 (a) Profiles of the cusp of the cohesive crack plotted for three values of the loading

parameter Q according to Eq. 11. (b) Comparison of the profiles shown in (a) with those that result

from simplified formula (dashed lines) valid under Barenblatt’s restriction of R being much

smaller than the crack length; cf. Eq. 14
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vcuspcoh ¼ 4σYR

πE

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x1

R

r
� x1
2R

ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x1

R

r

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x1

R

r
2
6664

3
7775 (12)

It is not difficult to show that for R�a, the expression for the tip displacement in

Eq. 9 reduces to the constant shown in front of the square bracket in Eq. 12, namely,

utipy ¼ 4σYa

πE
ln

1

k

� �
¼ 4σYa

πE
ln

a1
a

� �
¼ 4σYa

πE
ln

aþ R

a

� �� �
R�a

’ 4σY
πE

R (13)

When this constant is used to normalize the displacement in Eq. 12, one obtains

vcoh ¼ vcuspcoh

utipy
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x1

R

r
� x1

R
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x1

R

r

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x1

R

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� λ

p
� λ

2
ln
1þ ffiffiffiffiffiffiffiffiffiffiffi

1� λ
p

1� ffiffiffiffiffiffiffiffiffiffiffi
1� λ

p (14)

Figure 6b shows that the agreement between the exact and the approximate

formulae for the cohesive crack opening displacements within the cusp region is

indeed good for all values of the loading parameter Q. Therefore, to simplify all

further calculations, the formula in Eq. 14 will be employed. Of particular interest

will be the strains within the Panin zone, which are defined by the derivative

ecohy ¼ dvcuspcoh

dx1
¼ 1

R

dvcuspcoh

dλ
¼ 1

R

4σYR

πE

dvcoh
dλ

¼ 4σY
πE

dvcoh
dλ

(15)

Applying Eq. 14 and carrying out the derivative yields the closed form expres-

sion for the strains within the pre-fracture zone. For convenience the strains are

expressed in terms of the variable s, related to the variable λ as follows:

λ ¼ s� 1

m� 1
m ¼ 1=k
k ¼ cosQ

(16)

Thus, the expression for strains within the pre-fracture zone associated with the

structured cohesive crack model reads

ecohy ¼ 4σY
πE

1

2
ln
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� λ s,mð Þp
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� λ s,mð Þp
( )

¼ 4σY
πE

1

2
ln

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ks

pffiffiffiffiffiffiffiffiffiffiffi
1� k

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ks

p
" #( )

λ s,mð Þ ¼ s� 1

m� 1
¼ s� 1ð Þ cosQ

1� cosQ

(17)

The graphs showing the strains as functions of the loading parameter Q and the

coordinate s are shown in Fig. 7.
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Quantization of the Panin Strain and the Criterion for Subcritical
Crack Growth

Closer examination of the expression in Eq. 17 reveals that the strains within the

pre-fracture zone are infinite at the tip of the physical crack. Therefore, any use of

this entity for the purpose of predicting the onset of fracture propagation will fail,

unless it is preceded by the quantization procedure, which in essence is tantamount

to evaluation of the strain averaged over the Neuber length Δ, namely,

eh ia, aþΔ ¼ 1

Δ

ðΔ
0

ecohy dx1 ¼ 1

Δ

ðstate 2

state1

dvcuspcoh

dx1
dx1 ¼ 1

Δ
vcuspcoh state 2ð Þ � vcuspcoh state 1ð Þ	 


(18)
When this quantity is set equal the average critical strain ecrit ¼ û=Δ, one obtains

the following criterion defining the onset of fracture propagation:

eh ia, aþΔ ¼ ecrit ¼ û=Δ
vcuspcoh state 2ð Þ � vcuspcoh

�
state1

� ¼ û
(19)

Let us define the two neighboring states using the time “t” and the time-like

variable x1(t) ¼ x – a(t) for a slowly progressing crack; these states are defined as

follows:

Fig. 7 Strains within the pre-fracture zone obtained as gradient of the crack opening displace-

ment; see Eq. 17
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State 1, t� δt, x1 ¼ Δð Þ
State 2, t, x1 ¼ 0ð Þ (20)

This means that at instant “t�δt” defining state 1, the front of the advancing

crack is a distance Δ away from the control point P (see Fig. 3), while at the instant

“t” describing state 2, the tip of the physical crack has reached the control point P.
This is indicative that the crack has advanced the “unit growth step” or “fracture

quantum” Δ between the two states considered. The constancy of the increment of

the crack opening displacement û (the so-called final stretch) measured at the

control point P constitutes the necessary condition for the stable crack to propagate.

In essence this requirement is tantamount to stating Wnuk’s criterion of the final

stretch or the δ(COD) criterion for subcritical crack extension; cf. Wnuk (1974). It

is noteworthy that the physical foundation for the criterion is the same as the one

postulated by McClintock (1965), which is the critical strain. As Eqs. 18 and 19

demonstrate, the quantization technique and the attributes of the cohesive crack

model allow one to bypass the long expression for pre-fracture strains and to reduce

all the essential considerations to the displacements only, namely, the function

vcoh
cusp(λ) given by Eq. 14. Similar techniques of the “quantized fracture mechanics”

(QFM) were employed by Pugno and Ruoff (2004), Taylor et al. (2005), and Wnuk

and Yavari (2009).

Using Eq. 12, one may express the opening displacements for both considered

states as follows:

vcuspcoh state 1ð Þ ¼ 4σYR Δð Þ
πE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

R Δð Þ

s
� Δ
2R Δð Þ ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

R Δð Þ
r

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

R Δð Þ
r

2
6664

3
7775 (21)

and

vcuspcoh state 2ð Þ ¼ 4σYR 0ð Þ
πE

¼ 4σY
πE

R Δð Þ þ Δ
dR

da

� �
(22)

Subtracting Eq. 21 from Eq. 22 yields the left hand of the second equation in

Eq. 19, which now reads

R Δð Þ þ Δ
dR

da
� R Δð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

R Δð Þ

s
� Δ
2R Δð Þ ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

R Δð Þ
r

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

R Δð Þ
r

2
6664

3
7775 ¼ û

4σY
πE

(23)
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For Δ�R this expression readily reduces to

dR

da
¼ πE

4σY

û

Δ

� �
� 1

2
� 1

2
ln

4 Rini=Δð ÞR
Rini

� �
(24)

With the notation

M ¼ πE

4σY

û

Δ

� �
ρ ¼ Rini=Δ

(25)

this becomes the ordinary differential equation which governs the motion of a stable

crack in the early stages of fracture

dR

da
¼ M � 1

2
� 1

2
ln

4ρR

Rini

� �
(26)

Two constants which enter the equation above are (1) the tearing modulusM and

(2) the material ductility ρ. For a smooth crack, this is the result of Wnuk (1974) and

Rice et al. (1980). In the next section, certain modifications of this equation

extending the range of its validity into the fractal geometry domain will be

investigated. The rate dR/da reflects the rate of material energy demand; and

since R and the integral J differ by just a constant, and J ¼ � dΠ
2da, thus the left-

hand side of Eq. 26 also represents the second derivative � d2Π
2da2 where Π denotes

the potential energy of the loaded body containing a crack. The “R vs. a” curve

defined by the differential in Eq. 26 is often referred to as the material resistance

curve. On the other hand, the rate of the energy supply due to external applied stress

field is measured by the quantity R hidden in Eq. 8. For the case of R�a, one may

expand both sides of this equation in the corresponding power series:

aþ R

a
¼ 1þ R

a
þ . . .

1

cosQ
¼ 1þ Q2

2
þ . . .

(27)

Setting both expression equal to each other, one obtains for R�a

R ¼ aQ2

2

Q ¼
ffiffiffiffiffiffi
2R

a

r (28)

The “R” in Eq. 28 represents the rate of energy supplied by the external effort.

For the terminal instability to occur, the second derivatives of the energy terms or

the rates dRMAT/da and @RAPPL/@a must equal. The rate dRMAT/da is given by

Eq. 26, while differentiation of the first equation in Eq. 28 leads to
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@R

@a

� �
Q¼const

¼ Q2

2
¼ R

a
(29)

This quantity represents the external effort, and thus the conditions for the

occurrence of the terminal instability are met when

dRMAT

da
¼ @RAPPL

@a

� �
Q¼const

(30)

or when

M � 1

2
� 1

2
ln

4ρR

Rini

� �
¼ R

a
(31)

It is noted that R which appears on the left-hand side of Eq. 31 represents the

material resistance to an extending crack, so really it should be read as RMAT, while

the R shown on the right-hand side of Eq. 31 symbolizes the driving force applied to

the crack and truly it should be denoted by RAPPL. Since at all points of the stable

crack growth including the point of terminal instability described by Eq. 31 both

these quantities remain in equilibrium, RMAT ¼ RAPPL; when the subscripts are

skipped, the equation defining the critical state can be written in form of Eq. 31. An

alternative way to write Eq. 31 is to define the difference between the energy

demand and energy supply. A suitable name for such a difference is “stability

index” S, namely,

S ¼ dRMAT

da
� @RAPPL

@a

� �
Q¼const

¼ M � 1

2
� 1

2
ln

4ρR

Rini

� �
� R

a
(32)

To solve for the parameters characterizing the critical state, i.e., the parameter

Rc, the critical load Qc, and the critical crack length ac, one needs to integrate Eq. 26
and then inspect the results and eventually solve Eq. 31 and/or Eq. 32. This is best

done in two steps: first one separates the variables in Eq. 26 obtaining the solution

for R ¼ R(a), or X ¼ X(Y), in this implicit form

a Rð Þ ¼ a0 þ
ðR
1

dz

M � 1

2
� 1

2
ln 4ρzð Þ

X Yð Þ ¼ X0 þ
ðY
1

dz

M � 1

2
� 1

2
ln 4ρzð Þ

(33)

The value of the tearing modulus M must be chosen to be somewhat above the

value of the minimum modulus Mmin, below which no stable crack growth may

8 Toughening and Instability Phenomena in Quantized Fracture Process:. . . 253



occur. In this case M is chosen to be 20 % above the minimum value, so the

modulus M is determined by this expression

M ¼ 1:2
1

2
þ 1

2
ln 4ρð Þ

� �
(34)

Next one needs to calculate the loading parameter Q ¼ ffiffiffiffiffiffiffiffiffi
2Y=X

p
and plot it

against the nondimensional crack length X ¼ a/Rini. The symbol Y denotes

the nondimensional length of the pre-fracture zone R, namely, Y ¼ R/Rini, and

X¼ a/Rini denotes the nondimensional length of the crack, while the initial length is

X0 ¼ a0/Rini. Figure 8 shows the R-curves plotted vs. X for ρ ¼ 10, 20, and 60 and

obtained for the initial crack size of 10Rini. Figure 9 shows the Q-curves obtained

for the same input data. It is noted that the attainment of the maximum on the

Q-curve is equivalent to reaching the terminal instability. The point at which the

derivative dQ/da approaches zero is best located when the rates of energy demand

and energy supply are compared as it is done in Fig. 10a. The intersection of

these curves determines the critical state (Qc, Xc). In addition to these critical

parameters, the apparent material fracture toughness encountered at the critical

point Yc ¼ Rc/Rini can readily be evaluated. A convenient way to determine these

intersection points numerically is to inspect the stability indices graphs shown in

Fig. 10b. The critical states for ρ ¼ 10, 20, and 60 and X0 ¼ 10 were established as

follows:

3.0

2.5

2.0Y

1.5

1.0
10 11 12 13

ρ = 10

ρ = 20

ρ = 60

X

14 15

Fig. 8 Apparent material resistance to cracking Y ¼ R/Rini at various levels of material ductility

shown as functions of the current crack length during the stable growth process up to the points of

terminal instability marked by little circles. All R-curves shown here were obtained from the

governing differential in Eq. 26 subject to the initial condition Y ¼ 1 at X0 ¼ 10
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Critical parameter

Critical values

ρ ¼ 10 ρ ¼ 20 ρ ¼ 60

Fracture toughness, Yc 1.925 2.159 2.581

Crack length, Xc 13.605 14.086 14.842

Load, Qc 0.532 0.554 0.590

It is readily seen that when the Qc values are compared with the load prevailing

at the onset of fracture, Qini ¼
ffiffiffiffiffiffiffiffiffi
2

X0
=

p
, one comes to a conclusion that for each case

represented in the Table shown above, the loading parameter is enhanced during the

process of slow crack growth and the percentage increases of the load are as

follows: 19 % for ρ ¼ 10, 24 % for ρ ¼ 20, and 32 % for ρ ¼ 60. These are

significant numbers.

Stability of Fractal Cracks

In this section, attention will be focused on the cusp region of the cohesive crack.

Following Khezrzadeh et al. (2011), the crack opening displacements at the center

of the crack and at the crack tip will be redefined to accommodate the fractal

geometry. First let us define four auxiliary functions:

Fig. 9 Loading parameter Q shown during the stable crack growth phase for various material

ductility indices. The functions shown pass through the maxima denoted by little circles. These
points define the critical states (Xc, Qc)
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p αð Þ ¼ 4π
1
2α�2ð Þ αΓ αð Þ

Γ 1
2
þ α

� �
" #1

α

(35)

and

κ αð Þ ¼ 1þ α� 1ð Þ sin παð Þ
2α 1� αð Þ (36)

and

Fig. 10 (a) Curves representing the rates of the energy demand (nearly straight lines) and the

energy supply intersect each other at the points defining the terminal instability (critical states). (b)

Stability indices shown as functions of the crack length. Zeros of these functions determine the

critical states attained at the end of the stable crack growth. Both (a) and (b) were obtained for the

initial crack of length X0 ¼ 10
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N α,Xð Þ ¼ p
�
α
�

2
π

ffiffiffiffi
2R
a

qh i1�2α
α

(37)

Yf ¼ Rf =Rini ¼ R

Rini
N α,Xð Þ ¼ p αð ÞY 2

π

ffiffiffiffiffiffi
2Y

X

r" #1�2α
α

(38)

The subscript “f” designates the entities pertinent to the fractal geometry of the

crack. The present considerations will be limited to the R�a range, and rough

cracks described by the fractality parameters such as fractal dimension D, fractal

exponent α, and the roughness measure H will be considered. These roughness

parameters are related as defined by Eq. 3.

Since the limitations of the Wnuk–Yavari “embedded crack” representation of a

fractal crack need to be accounted for, only the limited range of the fractal exponent

will be considered, namely, α will be contained within the interval [0.5, 0.4] and it

will not fall below 0.4. When this notation is applied, one can cast the results of

Khezrzadeh et al. (2011) in the following form:

utipf ¼ κ αð Þ 4σY
πE

R ¼ κ
�
α
�
utipy

Rf ¼ N α,Xð ÞR ¼ 4π
1
2α�2ð Þ αΓ αð Þ

Γ 1
2
þαð Þ

� �1
α

2
π

ffiffiffiffi
2Y
X

qh i1�2α
α

R
(39)

Upon inspection of the latter expression, it is seen that before the length Rf can be

determined (and before the profiles of a fractal crack can be sketched), a prior

knowledge of the resistance curve Yf (X) is necessary. Therefore, one must at first

establish the differential equation that defines Yf as a function of the

nondimensional crack length X. Let us return to Eq. 23, which in view of the first

expression in Eq. 39 has to be rewritten as follows:

κ αð Þ 4σY
πE

Rf Δð Þ þ Δ
dRf

da
� Rf Δð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

Rf Δð Þ

s
� Δ
2Rf Δð Þ ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

Rf Δð Þ

s

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

Rf Δð Þ

s
2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ û

(40)

This expression reduces to the ordinary differential equation of the kind similar

to Eq. 24. When the ductile behavior of the material (Δ�R) is considered, Eq. 40
reads
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dRf

da
¼ 1

κ αð Þ
πE

4σY

û

Δ

� �
� 1

2
� 1

2
ln

4 Rini=Δð ÞRf

Rini

� �
dYf

dX
¼ Mf � 1

2
� 1

2
ln 4ρYf

� �
Mf ¼ 1

κ αð Þ
πE

4σY

û

Δ

� �
¼ M

κ αð Þ

(41)

The second expression in Eq. 37 defines the function Rf – or its nondimensional

equivalent Yf – namely,

Rf ¼ N α,Xð ÞR ¼ p
�
α
�

2
π

ffiffiffiffi
2R
a

qh i1�2α
α

R

Yf ¼ N α,Xð ÞY ¼ p
�
α
�

2
π

ffiffiffiffi
2Y
X

qh i1�2α
α

Y

(42)

Substituting this into Eq. 40 yields

d

dX
p αð Þ 2

π

ffiffiffiffiffiffi
2Y

X

r" #1�2α
α

Y

2
4

3
5 ¼ Mf � 1

2
� 1

2
ln 4ρp αð Þ 2

π

ffiffiffiffiffiffi
2Y

X

r" #1�2α
α

Y

0
@

1
A (43)

Carrying out the differentiation in the left-hand side of this equation gives

d

dX
p αð Þ 2

π

ffiffiffiffiffiffi
2Y

X

r" #1�2α
α

Y

2
4

3
5 ¼ p αð Þ Y

d

dX

2

π

ffiffiffiffiffiffi
2Y

X

r" #1�2α
α

þ 2

π

ffiffiffiffiffiffi
2Y

X

r" #1�2α
α
dY

dX

8<
:

9=
; (44)

When this expression is substituted back into Eq. 43 and after some simple

algebraic manipulations (see the Appendix), one obtains the desired governing

differential equation

dY

dX
¼

2α Mf � 1

2
� 1

2
ln 4ρp αð Þ 2

π

ffiffiffiffiffiffi
2Y

X

r" #1�2α
α

Y

0
@

1
A

2
4

3
5

p αð Þ 2
π

ffiffiffiffi
2Y
X

qh i1�2α
α

þ 1� 2αð Þ Y
X

(45)

The fractal tearing modulus Mf will be assumed to be somewhat higher

(say by 20 %) than the minimum value of the modulus, at which the

stable growth is still possible. The minimum value of the fractal tearing modulus

Mmin
f is readily established by setting the rate dY/dX equal zero at the point of

fracture onset, X ¼ X0 and Y ¼ 1, and then evaluating the corresponding modulus.

The result is
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Mf
min ¼

1

2
þ 1

2
ln 4ρN0 α,X0ð Þð Þ � 1� 2α

2α

N0 α,X0ð Þ
X0

N0 α,X0ð Þ ¼ p
�
α
�

2
π

ffiffiffiffi
2
X0

qh i1�2α
α

(46)

With the modulusMf assumed to be 1.2Mmin
f , solutions of Eq. 45 are generated in

form Y ¼ Y(X, α), and they are shown in Fig. 11. Three curves shown were drawn

for alphas equal to 0.5 (smooth crack) and 0.45 and 0.40, which correspond to the

rough cracks of increasing degree of surface roughness. Inspection of Fig. 11 leads

to a conclusion that an increased roughness of the crack surface reduces the

apparent material fracture toughness attained during the subcritical crack growth.

Little circles on the Y-curves in Fig. 11 show the terminal instability points. The

location of these points was evaluated by seeking maxima on the Q-curves shown in

Fig. 12 or evaluating zeros in the graph representing the stability index Eq. 32 – this

has been demonstrated in Fig. 13b. Figure 13a also shows an alternative way of

determining the terminal instability points by comparing the rate of energy demand

with the rate of energy supplied to the system.

Once the function Y(X, α) has been determined from Eq. 45, one can proceed to

evaluate the profiles of the fractal crack within the pre-fracture zone. The equations

used for these evaluations read.

Fig. 11 The resistance curves for stable cracks with the fractal geometry accounted for. The top
curve corresponds to the case of smooth crack, while the lower curves pertain to the rough cracks

with the fractal exponent α designated in the figure. Fractal exponent little circles denote the

critical states (Yc, Xc). Input data ρ ¼ 10 and X0 ¼ 100
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vcuspf ¼ 4σYR

πE
Nκ αð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� λ

N

r
� λ

2N
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� λ
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r

1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� λ

N

r
2
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3
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8>>><
>>>:

9>>>=
>>>;

N ¼ N α,Xð Þ ¼ αΓ αð Þ
Γ 1

2
þαð Þ

� �1
α

2
π

ffiffiffiffi
2Y
X

qh i1�2α
α

vtipf ¼ 4σYR

πE
N α,Xð Þκ�α�

(47)

Figure 14 shows the profiles of the cusp Eq. 47 normalized by the tip displace-

ment vf
tip. It is now seen that for the enhanced roughness of crack surfaces

(diminishing fractal exponent α), the pre-fracture zones diminish and the entire

pre-fracture zones shrink. This phenomenon reflects on the earlier attainment of the

critical state at the end of stable crack growth phase. To document this fact, all three

parameters – apparent fracture toughness Yc established from the available

R-curves, critical nondimensional crack length Xc, and the loading parameter at

the terminal instability Qc – characterizing the critical state (terminal instability)

have been grouped in sets (Yc, Xc, Qc) and collected in Table 1. The numbers shown

in Table 1 were obtained for different initial inputs of the pertinent parameters

characterizing a cracked body such as material ductility index ρ, the initial crack

length X0, and the fractal exponent α.
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Fig. 12 Loading parameter Q plotted for the rough cracks (two lower curves) and for a smooth

crack (top curve) as a function of the current crack length. It is noted that an increasing roughness

of the crack surface reduces the effects of stable crack extension
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Conclusions

It has been established that the unstable (catastrophic) fracture propagation in the

Griffith sense is almost always preceded by slow stable crack extension that is

associated with accumulation and redistribution of strains within the pre-fracture

Fig. 13 (a) Rates of energy demand (dY/dX) and energy supply (Y/X) for rough cracks, α ¼ 0.45

and α¼ 0.40. The curve drawn for α¼ 0.5 corresponds to a smooth crack. Initial crack length is set

as X0 ¼ 100, and the material ductility index is ρ ¼ 10. (b) Stability index S sketched for the same

input data as in (a). Little circles on both graphs indicate the terminal instability points
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zone adjacent to the front of the propagating crack; cf. Panin (1995). Solutions for

advancing cracks significantly differ from those for stationary cracks. Exact solu-

tions address only few loading configurations such as anti-plane mode of loading

considered by Hult and McClintock (1956), McClintock (1958), and McClintock

and Irwin (1965). By analogy with anti-plane case, the crack advance under a

tensile loading has been researched by Krafft et al. (1961), who reformulated the

problem and restated it in terms of a universal resistance curve. This view is

supported by the studies at the microstructural level of ductile fracture occurring

in metals and metallic alloys, where it was found that certain mechanisms exist that

facilitate slow crack growth by a sequence of debonding of hard inclusions

followed by the formation of voids and their growth and coalescence (Rice

1968). It is noteworthy that due to high strain levels and the redistribution associ-

ated with crack motion, the deformation theory of plasticity is not sufficient as a

mathematical tool. Perhaps the path-dependent relations between stresses and

strains, as those described by the incremental theory of plasticity of Prandtl and

Reuss, would be more appropriate to construct a theoretical model based on

continuum mechanics.

With exception of Prandtl’s slip lines field suggested by Rice et al. (1980), no

theory has been proposed that would provide exact mathematical treatment of the

problem at hand. Therefore, in this research, one has employed an approximation

based on the cohesive crack model equipped with the “unit step growth” or

“fracture quantum” combined with an “embedded crack” model of Wnuk and

Yavari (2003, 2009), which accounts for a non-Euclidean geometry of a crack

represented by a certain fractal. The fractal dimension D for such a crack can vary

between 1 (straight line) and 2 (a two-dimensional object). It has been shown that

the present “structured cohesive crack model” yields the same essential result as

that of Rice et al. (1980), namely, the governing equation which defines the

universal R-curve. This statement is true for a smooth crack only. For fractal
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/V

fti
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Fig. 14 Profiles of the cusp

of the cohesive fractal crack

drawn according to Eq. 47.

All curves have been

normalized by the tip

displacement vf
tip ¼ N(α, X)κ

(α)(4σY/πE). An increased

crack surface roughness

(smaller values of the fractal

exponent α) causes the
cohesive zone to shrink,

which is indicative of a more

brittle material behavior
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geometry, there have been two papers published that address the slow crack

advancement, namely, Khezrzadeh et al. (2011) and Wnuk et al. (2012). When

the stability of the fractal cracks is reconsidered in the context of the present model,

the pertinent results somewhat diverge from the previous findings. Specifically, the

relation between the extent of the slow cracking and the fractal exponent α is

opposite to what was suggested earlier.

Table 1 Characteristic parameters of the critical states resulting for various input data (r, a, X0)

ρ α X0 ¼ 3 X0 ¼ 10 X0 ¼ 20 X0 ¼ 60 X0 ¼ 100 X0 ¼ 200

2 0.50 Yc Unstable 1.462 1.619 1.757 1.791 1.820

Xc 12.407 24.153 67.358 108.998 211.334

Qc 0.486 0.366 0.228 0.181 0.131

ΔQ 8.569 15.785 25.109 28.200 31.228

0.45 Yc 1.410 1.515 1.569 1.570 1.559

Xc 12.096 23.328 65.092 105.801 206.626

Qc 0.483 0.360 0.220 0.172 0.123

ΔQ 7.958 13.972 20.255 21.797 22.851

0.40 Yc 1.348 1.399 1.383 1.360 1.326

Xc 11.734 22.453 63.090 103.207 203.228

Qc 0.479 0.353 0.209 0.162 0.114

ΔQ 7.912 11.637 14.676 14.805 14.223

4 0.50 Yc 1.088 1.648 1.835 2.006 2.049 2.085

Xc 3.249 12.945 24.851 68.420 110.269 212.919

Qc 0.818 0.505 0.384 0.242 0.193 0.140

ΔQ 0.205 12.848 21.513 32.616 36.315 39.957

0.45 Yc 1.059 1.580 1.704 1.773 1.775 1.765

Xc 3.170 12.575 23.911 65.880 106.684 207.629

Qc 0.817 0.501 0.378 0.232 0.182 0.130

ΔQ 0.051 12.102 19.401 27.066 29.006 30.401

0.40 Yc 1.037 1.501 1.560 1.545 1.52 1.481

Xc 3.110 12.143 22.912 63.619 103.754 203.782

Qc 0.817 0.497 0.369 0.220 0.171 0.121

ΔQ 0.0 11.184 16.705 20.697 21.034 20.579

8 0.50 Yc 1.123 1.854 2.076 2.287 2.342 2.389

Xc 3.591 13.447 25.530 69.503 111.587 214.590

Qc 0.828 0.525 0.403 0.257 0.205 0.149

ΔQ 1.403 17.422 27.531 40.516 44.885 49.218

0.45 Yc 1.197 1.768 1.915 2.002 2.008 1.998

Xc 3.514 13.020 24.478 66.682 107.597 208.681

Qc 0.825 0.521 0.396 0.245 0.193 0.138

ΔQ 1.095 16.517 25.095 34.227 36.607 38.391

0.40 Yc 1.172 1.668 1.739 1.725 1.698 1.655

Xc 3.454 12.521 23.357 64.153 104.312 204.352

Qc 0.824 0.516 0.386 0.232 0.180 0.127

ΔQ 0.903 15.419 22.012 27.020 27.587 27.280

(continued)
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Perhaps the best way to explain the essential conclusions of this paper is to take a

look at Figs. 15 and 16, and also to examine the summary of the results collected in

Table 1. From all the pertinent parameters used in the theoretical considerations,

one needs to choose just one: the increase in the nondimensional loading parameter

ΔQ due to the slow cracking process that precedes the critical point of terminal

Table 1 (continued)

ρ α X0 ¼ 3 X0 ¼ 10 X0 ¼ 20 X0 ¼ 60 X0 ¼ 100 X0 ¼ 200

10 0.50 Yc 1.278 1.925 2.160 2.386 2.445 2.496

Xc 3.692 13.604 25.748 69.859 112.023 215.150

Qc 0.832 0.532 0.410 0.261 0.209 0.152

ΔQ 1.908 18.946 29.524 43.142 47.741 52.313

0.45 Yc 1.243 1.832 1.988 2.082 2.089 2.080

Xc 3.615 13.159 24.660 66.946 107.900 209.036

Qc 0.829 0.528 0.402 0.249 0.197 0.141

ΔQ 1.549 17.984 26.978 36.606 39.139 41.059

0.40 Yc 1.216 1.725 1.800 1.787 1.760 1.715

Xc 3.554 12.640 23.499 64.328 104.497 204.542

Qc 0.827 0.522 0.391 0.236 0.184 0.130

ΔQ 1.325 16.823 23.766 29.119 29.766 29.513

100 0.50 Yc 1.827 2.800 3.218 3.666 3.794 3.908

Xc 4.590 15.194 28.060 73.871 117.052 221.752

Qc 0.892 0.607 0.479 0.315 0.255 0.188

ΔQ 9.929 35.755 51.460 72.553 80.040 87.743

0.45 Yc 1.762 2.620 2.901 3.107 3.135 3.135

Xc 4.495 14.575 26.610 69.955 111.430 213.241

Qc 0.886 0.600 0.467 0.298 0.237 0.171

ΔQ 8.452 34.085 47.671 63.243 67.736 71.487

0.40 Yc 1.708 2.419 2.561 2.575 2.540 2.479

Xc 4.402 13.852 25.044 66.349 106.665 206.819

Qc 0.881 0.591 0.452 0.279 0.218 0.155

ΔQ 7.887 32.162 43.016 52.600 54.326 54.841

200 0.50 Yc 2.017 3.122 3.617 4.163 4.324 4.468

Xc 4.832 15.678 28.796 75.224 118.784 224.082

Qc 0.914 0.631 0.501 0.333 0.270 0.200

ΔQ 11.921 41.123 58.501 82.223 90.788 99.705

0.45 Yc 1.940 2.909 3.243 3.500 3.540 3.546

Xc 4.728 15.010 27.240 70.984 112.665 214.748

Qc 0.906 0.623 0.488 0.314 0.251 0.182

ΔQ 10.964 39.204 54.304 72.008 77.253 81.739

0.40 Yc 1.874 2.671 2.843 2.873 2.837 2.770

Xc 4.623 14.229 25.551 67.051 107.435 207.646

Qc 0.900 0.613 0.472 0.293 0.230 0.163

ΔQ 10.274 37.019 42.186 60.329 62.488 63.334
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instability. This quantity is represented on the vertical axes in Figs. 15 and 16. It is

seen that material ductility (ρ) significantly enhances the slow stable crack growth,

leading to an increase in the applied load measured as a difference between the load

at the point of catastrophic fracture (Qc) and the load at the onset of stable crack

growth (Qini):

Fig. 15 Enhancement of the load measured at the terminal instability (see Eq. 48) shown as a

function of material ductility. Case denoted by α ¼ 0. 5 corresponds to a smooth crack, while the

other curves describe the rough cracks represented by the fractal geometry. The initial crack length

for all three curves is X0 ¼ 100

Fig. 16 Load increase

attained during the subcritical

crack extension at X0 ¼ 100

and various levels of the

ductility index shown as a

function of the increasing

crack surface roughness. It is

seen that an increase in

roughness causes a reduction

of ΔQ
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ΔQ ¼ Qc � Qini

Qini

Qini ¼
ffiffiffiffiffi
2

X0

r (48)

This observation is entirely in agreement with the previous researches

(Khezrzadeh et al. 2011; Wnuk et al. 2012). However, accounting for the fractal

geometry leads to an opposite conclusion: higher roughness of crack surface (α less

than 0.5) reduces the slow crack growth and results in a decrease of the observed

load increase ΔQ; see Fig. 16. In other words, the roughness of the crack surface is
conducive to a more brittle material response. Closer examination of the data

gathered in Table 1 reveals an interesting phenomenon. It indicates that for a very

small crack, X0¼ 3, and for low material ductility, ρ¼ 2, the stable growth does not

exist at all. It is noted that in this particular case, the initial crack is of the size on the

order of magnitude of the characteristic length Rini. For such a small crack, a new

effect of “overstressing” comes to light, similar to the phenomenon known in

Physics of Fluids as “supercooled” liquid. The effect can be explained as follows:

despite the sufficient energy accumulated within the immediate surroundings of the

small crack, the crack does not begin to propagate until a certain hypercritical load

level is reached. What happens then is a sudden transition from a stationary to a

dynamically propagating crack; compare Mott (1948) and Cotterell (1968).

Whether or not the phenomenon of stable crack extension may exist strongly

depends on (1) material ductility and (2) tearing modulus of Paris, proportional to

the initial slope of the R-curve, and to a much lesser degree on the level of crack

surface roughness. If the tearing modulus in the governing Eq. 26 for a smooth

crack and Eq. 45 for a rough crack does not meet the condition of being greater than

the minimum modulus calculated in sections “Quantization of the Panin Strain and

the Criterion for Subcritical Crack Growth” and “Stability of Fractal Cracks,” i.e.,

πE

4σY

û

Δ

� �
� Mmin ¼ 1

2
þ 1

2
ln 4ρð Þ (49)

for a smooth crack, and

1

κ αð Þ
πE

4σY

û

Δ

� �
� Mf

min ¼
1

2
þ 1

2
ln 4ρN0 α,X0ð Þð Þ � 1� 2α

2α

N0 α,X0ð Þ
X0

N0 α,X0ð Þ ¼ p
�
α
�

2
π

ffiffiffiffi
2
X0

qh i1�2α
α

(50)

for a rough crack, the stable crack growth will vanish.

It is seen that while the tearing modulus for a smooth crack in Eq. 49 depends

only on the material property such as the ductility index ρ, the tearing modulus for a

fractal crack, as given by Eq. 50, depends also on the purely geometrical parameters

such as the measure of the crack surface roughness α and the initial crack length X0.

It is noteworthy that in the case when the conditions stated by the inequalities in
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Eqs. 49 and 50 are not met, slow stable crack growth does not exist. Indeed, for a

certain combination of the input parameters such as the material ductility, initial

crack length, and the fractal exponent, it can be shown that the transition period of

slow stable crack growth is missing and one returns to the rules valid for ideally

brittle fracture. This may be compared with the experimental data of Alves

et al. (2010). Further research of this type is needed to fully understand the Physics

behind the present model.

For readers interested in a more advanced (or more detailed) studies of the

subject of linear and nonlinear fracture mechanics, the following textbooks are

recommended:

1. H. Liebowitz (ed.), 1968, “Fracture. An advanced Treatise”, editor

H. Liebowitz, Vol. 2: Mathematical fundamentals, Academic Press 1968.

2. D. Broek, 1986, “Elementary engineering fracture mechanics”, 4th revised

edition, Martinus Nijhoff Publishers, Dordrecht 1986.

3. M. F. Kanninen and C. H. Popelar, 1985, “Advanced fracture mechanics”,

Oxford University Press, New York and Clarendon Press, Oxford, UK.

4. M. P. Wnuk (ed.), 1990, “Nonlinear fracture mechanics”, International Centre

for Mechanical Sciences, CISM Course No. 314, Udine 1990, Springer

Verlag 1990.

5. T. L. Anderson, 1991, “Fracture mechanics. Fundamentals and Applications”,

CRC Press 1991.

6. C. T. Sun and Z. H. Jin, 2012, “Fracture mechanics”, Elsevier 2012.

Appendix A

Let us recall Eq. 43

d

dX
p αð Þ 2

π

ffiffiffiffiffiffi
2Y

X

r" #1�2α
α
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2
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3
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Y

0
@

1
A (51)

When the product of 2
π

� �1�2α
α and p(α) is denoted by f(α), then the left-hand side

(LHS) of Eq. 51 can be written as f αð Þ d
dX

2Y
X

� �1�2α
2α Y

h i
. Now one proceeds with the

differentiation

LHS ¼ f αð Þ 2Y

X

� �1�2α
2α dY

dX
þ 1

2α
� 1

� �
Y

2Y

X

� � 1
2α�2

2
X
dY

dX
� Y

X2

2
64

3
75 (52)

hence
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LHS ¼ f αð Þ 2Y

X

� � 1
2α�1

1þ 1
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" #
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(53)

With G denoting the RHS of Eq. 51, one has

f αð Þ 2Y

X

� � 1
2α�1

1

2α

dY

dX

� �
� f αð Þ 1

α
� 2

� �
Y

X

� �2
2Y

X

� � 1
2α�2

¼ G X,Y, αð Þ (54)

This reduces to

dY

dX
¼ 2αG

f αð Þ 2Y
X

� � 1
2α�1

þ 2α
1

α
� 2

� �
Y

X

� �2 X

2Y
(55)

With 2
π

� �1�2α
α p αð Þ ¼ f αð Þn, this equation becomes identical with Eq. 45.

Appendix B

Fracture in an ideally brittle solid (and for the fractal exponent α ¼ ½) occurs when

the ductility index ρ ¼ R/Δ ! 1. It would be worthwhile to prove that in this case

the differential equation governing motion of the subcritical crack in Eq. 23 predicts

no stable crack growth and that the δCOD criterion reduces then to the classic case

of Griffith. In order to prove this point, let us write the governing equation derived

from the δCOD criterion, Eq. 23, in this form:

dR

da
¼ M � R

Δ
þ R

Δ
F Δ=Rð Þ

M ¼ πE

4σY

û

Δ

� � (56)

where M is the tearing modulus and the function F is defined as follows:

F Δ=Rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

R

r
� Δ
2R

ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

R

r

1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

R

r (57)

For ductile solids,Δ is much smaller than R, and thus ρ�1. Under this condition,

the function F reduces as follows:

F
Δ
R

� �
ρ�1

¼ 1� Δ
2R

þ Δ
2R

ln
Δ
4R

� �
(58)

This form leads to the differential in Eq. 24 considered in the last section. To

obtain the ideally brittle limit, one needs to expand the function F into a power

series for ρ approaching one. The results is
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F
Δ
R

� �
ρ!1

¼ � 2

3
1� Δ

R

� �3=2

(59)

When this is substituted into Eq. 56, one obtains the differential equation

governing an R-curve for quasi-brittle solids, namely,

dR

da
¼ M � R

Δ
� 2

3

R

Δ
1� Δ

R

� �3=2

(60)

For the ideally brittle solid, two things happen, first, one has R ¼ Δ and, second,

the slope of the R-curve defined by Eq. 60 equals zero (the R-curve reduces now to

a horizontal line drawn at the level R ¼ Rini). Therefore, Eq. 60 reduces to

dR

da
¼ 0 or, M ¼ 1 (61)

It is also known that for an ideally brittle solid, the size of the Neuber particle Δ
can be identified with the length of the cohesive zone

Δ ¼ R ¼ πE

8σY
CTOD (62)

Here symbol CTOD stands for the crack tip opening displacement. The final

stretch û is now equal half of the CTOD, namely,

û ¼ 1

2
CTOD (63)

When Eqs. 62 and 63 are substituted into the definition of the tearing modulus

shown in Eq. 56, one gets

M ¼ πE

4σY

û

Δ

� �
¼ πE

4σY

1=2ð ÞCTOD
πE=8σYð ÞCTOD

� �
¼ 1 (64)

In this way it is confirmed that the requirement of zero slope of the R-curve in

the limiting case of an ideally brittle solid, expressed by Eq. 61, is satisfied when

û � 1=2ð ÞCTOD and Δ � R. In other words, the δCOD criterion for the onset of

fracture reduces to the CTOD criterion of Wells or – equivalently – to the J-integral

criterion of Rice. The latter is in full accord with the Irwin driving force criterion

G ¼ Gc, and this yields the result identical to the ubiquitous Griffith expression for

the critical stress

σG ¼
ffiffiffiffiffiffiffiffi
2Eγ

πa

r
¼

ffiffiffiffiffiffiffiffiffi
GcE

πa

r
¼ Kcffiffiffiffiffi

πa
p (65)

Similar conclusion may be obtained directly from the fact that the R-curve is

given as a horizontal line (of zero slope) drawn at the level of Rini. Setting the
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equilibrium length of the cohesive zone R equal to its critical value Rc leads to

Eq. 65, as expected. To complete this consideration, one is reminded that the

quantities R and KI are related as follows:

R ¼ π

8

KI

σY

� �2

¼ Rc ¼ π

8

Kc

σY

� �2

or, KI ¼ Kc or, σcrit ¼ σG (66)

Therefore, it has been demonstrated that the nonlinear theory described in the

preceding sections encompasses the classic theory of fracture, which becomes now

a special case of a more general mathematical representation.
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properties that allow their assemblies to approximate phenomenological

response of abstracted materials. The contacts are endowed with energy dissi-

pation mechanisms and cohesive strength, which enables representation of

damage-evolution phenomena such as crack nucleation and growth. By the

way of dynamic interactions among particles, DEM are capable of coping with

the complexity of fracture events in a simple and natural manner. On the other

hand, the particle models are, in principle, offshoots of molecular dynamics

(MD) adapted to simulation of materials at coarser scales. The role of atom is

taken over by a continuum particle or quasi-particle, a basic constitutive unit that

can represent, for example, a grain of ceramics, a concrete aggregate, and a

particle of a composite. The computation domain is discretized into regular or

random network of such particles generally interacting through nonlinear poten-

tials within the realm of Newtonian dynamics. The model parameters should be

identifiable with the macroscopic elastic, inelastic, and fracture properties of the

material they aspire to represent, and the model should be structured in accor-

dance with its morphology. Finally, a succinct survey of the percolation theory

and fractal scaling laws of damage in discrete models is offered.

Introduction

DEM refer to a Lagrangian simulation technique in which the computational

domain consists of discrete rigid or deformable elements interacting by the way

of contact algorithms. The material is viewed as a Voronoi assembly of discrete

particles, representative of the material heterogeneity, with macroscopic continuum

behavior determined by dynamic interparticle interactions. The contact

algorithms are at the core of a set of numerical techniques designed to solve the

applied mechanics problems characterized by strong discontinuities in material or

geometric behavior. Consequently, DEM models are most naturally applied to

media that have the same topology as the underlying particle network. Recent

DEM surveys are presented by Bicanic (2004), Donzé et al. (2008), and Munjiza

et al. (2011).

DEM was introduced by Cundall (1971) for the analysis of the discontinuous

progressive failure of rock slopes and then implemented to soils by Cundall and

Strack (1979). Cundall and Hart (1992) described it as a method that allows finite

displacements and rotations of discrete solid macroscopic bodies, which can over-

lap and detach and recognize new contacts automatically as the simulation pro-

gresses. Thus, the mechanical behavior of the abstracted medium results from

collective effect of movements of the individual particles within conglomerate,

which is governed by the specified interparticle force–displacement law or contact

forces. DEM provides detailed time evolution of particle systems by solving

Newton’s equations of motion of individual particles, which includes complex

damage mechanisms that naturally emanate during simulations.
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It is convenient to classify DEMwith respect to the load transfer mechanism into

the models with:

• Central interactions (generalization of the α models briefly overviewed in the

preceding essay of this handbook; Fig. 1b with ka � 0)

• Central and angular interactions (generalization of the α–β models; Fig. 1b)

• Central, shear, and bending interactions (generalization of the beam interaction

models; Fig. 1c)

• Central, shear, bending, and angular interactions (Fig. 1d)

The DEM computer-implementation techniques utilize an explicit finite differ-

ence scheme and alternate in each calculation cycle between application of New-

ton’s second law of motion and conditions of moment equilibrium and a

force–displacement contact law at each interparticle contact. New contacts can be

made in the course of deformation and – in the case of cohesive materials – some

contacts between particles can break. Because of this, the global stiffness matrix of

the complete particle assembly has to be updated constantly. The process of

developing a continuum description from the microscopic state parameters of

individual elements comprising an assembly is called homogenization. The initial

point of that approach is the introduction of representative volume elements that

serve as averaging volumes for the macroscopic quantities.

DEM Implementation for Non-cohesive Materials

The difference between cohesive and non-cohesive particular materials is based on

existence or nonexistence of normal-direction tension carrying capability. The

entire behavior of non-cohesive materials can be described as a multi-body contact

Fig. 1 A cluster of three grains with mutual interaction lines (a) and corresponding load transfer

mechanisms based on (b) central (kn) and angular (ka) interactions; (c) central, shear, and bending
interactions (a typical DEM that can be termed as “locally inhomogeneous micropolar continuum”

(Ostoja-Starzewski 2007) with inhomogeneity varying on the grain scale); (d) central, shear,

bending, and angular interactions (Redrawn from Ostoja-Starzewski 2007)
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problem, which makes them naturally suitable for DEM. The numerical techniques

for modeling the flow of non-cohesive materials are based on the pioneering work

of Cundall and Strack (1979). Since granular materials are large conglomerations of

individual macroscopic particles that can translate and rotate, this model was based

on the basic elements of these materials – granules themselves – and their mutual

interactions. Three main aspects of DEM are as follows: (i) particle shape and

particle size distribution (physical parameters), (ii) interparticle contact constitutive

behavior (mechanical parameters, e.g., contact friction coefficient, contact normal

stiffness, contact tensile strength), and (iii) numerical technique for solving equa-

tions of motion. A slip feature of the DEM model accounts for a limited shear

resistance that the contact, bounded by a friction law, can offer before sliding.

As granular systems evolve, collision, sliding, and rolling contacts produce

forces and torques that DEM aspires to evaluate. The DEM model building blocks

are randomly generated circles (Cundall and Strack 1979), ellipses (Ting 1992),

convex polygons (Cundall 1988), or clusters (Jensen et al. 1999) whose size

distributions (the lognormal is a frequent choice) reflect inherent heterogeneity of

the system. The circular particles are the simplest since a single parameter defines

the particle geometry and there is only one possible type of contact, easy to detect.

They are often chosen due to their simplicity; however, they underestimate rolling

resistance and cannot capture particle interlock. Consequently, circular granules

fail earlier than granules of more complex shape.

The particles are frequently assumed to be rigid, but overlap is permitted in order

for relative displacement to occur (soft or smooth contact). (The contact dynamics

methods based on “non-smooth” formulation, which exclude possibility of overlaps

among particles, are not reviewed herein; the interested reader is referred to Donze

et al. 2008.) The assumption of particle rigidity is reasonable when movements

along interfaces account for most of the deformation in a particle assembly, which

is typically the case for a non-cohesive assembly such as sand.

The following abbreviated overview of the DEM slip model with rolling friction

is largely after Xiang et al. (2009).

DEM Slip Model with Rolling Friction

Dry granular media are characterized by dominance of short-range, non-cohesive

intergranular interactions: elastic or inelastic contact forces and friction at contact

between particles. Thus, each interparticle contact can be rheologically represented

by an axial (normal-direction) spring–dashpot element (Kelvin element) and a

spring–dashpot–slider element in the tangential direction (Fig. 2d). The contact

behavior in normal direction is elastic with no tension limit (tensile strength). A

generalized interparticle contact behavior of the simple central and angular inter-

action type accounts for the normal interaction, shear interaction, and slip.

In general, forces acting on particles i include the following: the gravitational

force (mig) and normal and tangential elastic contact forces between particles i and
j (fij

n and fij
t), respectively. Regarding notation, the bold symbols refer to vector or
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tensor quantities. According to Newton’s second law, the translational and rota-

tional motions of particle are defined by

dpi
dt

¼ migþ
XNi

j¼1

f n
ij þ f t

ij

� �
,

dLi

dt
¼
XNi

j¼1

T t
ij þ T r

ij

� �
(1)

where pi ¼ mivi and Li ¼ Iiωi are linear and angular momenta of particle i, defined
in a usual way in terms of the mass, moment of inertia (I), translational (v), and
rotational (ω) velocities, while Tij

t and Tij
r are torques due to the tangential contact

force and the rolling friction, respectively (Xiang et al. 2009). For multiple inter-

actions, the interparticle forces and torques are summed for Ni particles interacting

with particle i. In calculating contact forces, the contact of particles is modeled by a

pair of linear spring–dashpot–slider contact model (Cundall and Strack 1979) in

both the normal and tangential directions. The contact force vector that represents

the action of particle j on particle i may be decomposed into a normal and a shear

vector fij ¼ fij
n + fij

t where

f n
ij ¼ � knunij þ ηn vij � nij

� �
nij

h i
, f t

ij ¼ min �ktutij � ηtvtij, μf f
n
ij

��� ���tijn o
(2)

and both force components include dissipative terms. The relative velocities of

particle i with respect to particle j in Eq. 2 are defined as

vij ¼ vi � vj þ ωi � Ri � ωj � Rj

� �
vnij ¼ vij � nij

� �
nij, vtij ¼ vij � vnij (3)

In Eqs. 2 and 3, uij
n and uij

t are normal and tangential displacement vectors

between particles i and j; vij is the relative velocity vector of the contact point; nij

Fig. 2 Two circular particles in contact. (a) Definition of microparameters; (b) decomposition of

the contact force; (c) basic model of the contact interface – bonded contact without damping; and

(d) frictional contact with viscous damping
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is the center-to-center unit vector; tij is the unit vector perpendicular to nij, vij
n and vij

t

are the relative velocities of contact point in normal and tangential directions,

respectively; μf is coefficient of sliding friction; and kn and kt are the normal and

tangential spring constants, respectively. For cohesive materials, kn is constant, but
for non-cohesive materials, it is not because it depends on the normal displacement,

kn / ffiffiffiffiffi
unij

p
(Van Baars 1996). The dissipative damping contact coefficients ηn and ηt

refer to the normal and tangential directions, respectively. The local viscous

damping is often included into the DEM model to dissipate kinetic energy together

with frictional sliding in order to reach equilibrium configuration more efficiently.

It is important to note that the shear force in Eq. 22 is computed in an incremental

fashion: when contact is formed, fij
t is set to zero and each subsequent relative

shear–displacement (and, generally, velocity) increment uij
t results in a

corresponding shear force increment. Thus, kt is a tangent stiffness since it relates
incremental displacement and force, while kn is a secant stiffness since it relates

total displacement and force.

The torque due to tangential contact force is Tij
t ¼ fij

t � Ri, while the rolling

friction torque is calculated using a particular friction model.

For the frictional contact, the normal-direction spring acting in compression

results in a shear force limited by a Coulomb friction law. Consequently, when the

computed shear force reaches the Coulomb limit, the contact undergoes sliding and

slip occurs, Eq. 22.

Alonso-Marroquin and Herrmann (2005) present a similar approach with parti-

cles represented by convex polygons.

Expressions for stress and strain tensors in terms of the microscopic contact

parameters are given by Kruyt and Rothenburg (1996). The same authors also

developed statistical theories for the elastic moduli of 2D particle assemblies (1998).

DEM Application for Non-cohesive Granular Materials

The deformation of non-cohesive granular materials, such as sand, is described well

by the particle rigidity assumption since the deformation results primarily from the

sliding and rotation of the particles as rigid bodies and the opening and interlocking

at interfaces while the individual particle deformation is comparably small. Addi-

tionally, an interparticle friction coefficient is introduced to describe the ratio

between shear and normal force when the interparticle overlap vanishes.

(The mechanical structure of cohesive soils is much more complex compared to

the dry soils (e.g., Yang and Hsiau 2001) due to the presence of water, which results

in cohesion between soil particles. In addition to inelastic contact forces and friction

at interparticle contacts, the mechanical response of cohesive soil is influenced also

by the capillary and the dynamic viscous forces produced by the discrete liquid

bridges between particles (Zhang and Li 2006). Prunier et al. examine the DEM

applications in geomechanics in this handbook.)

Jensen et al. (1999, 2001) enhanced DEM for modeling non-cohesive granular

materials by introducing particles of complex shape obtained by combining several
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smaller circular particles of various sizes into a cluster that acts as a single granule.

Numerical simulations of the ring shear test, with varying normal loads, void

ratio, and surface roughness, were performed to compare effects of complex

particle shape with the circular particles. As expected, the computer simulations

indicated the shear strength increase of the complex shape particle assemblies

due to the reduction of particle rotations compared to the circular particle

counterparts. The opportunity to model explicitly grain damage was another

important feature of this clustering approach. The grain damage was included by

allowing cluster particles to break apart according to a failure criterion based

upon sliding work. The particle would become separated from the cluster as

soon as the cumulative work done on an individual cluster particle reached a

certain threshold. The computer simulations that included this feature revealed

very distinct shear zones without significant reduction of the maximum shear

strength of the particle assembly. It was demonstrated that the damage level was

related to the angularity of clusters.

DEM modeling with the crushable clusters was successfully compared to the

salient experimental trends reported in literature. Simulations revealed in detail

response mechanisms on the particle level. Cheng et al. (2003) used a similar

approach for 3D simulations.

DEM Implementation for Cohesive Materials

The defining characteristic of cohesive materials is the ability to transfer tensile

normal force between bonded particles. Thus, Cundall’s approach is extended to

account for the interfacial tensile strength (Zubelewicz and Mroz 1983; Plesha and

Aifantis 1983). In order to do so, DEM models are usually adapted to cohesive

materials by adding a bond at the contact between two particles mimicking the

presence of a matrix sticking to the particles, which “endows cemented granular

materials with cohesion” Topin et al. (2007). This approach is used to model wide

class of cemented granulates forming heterogeneous macroscopic materials such as

sedimentary rocks, concrete, ceramics, grouted soils, solid propellants and high

explosives, and some biomaterials. These materials can be also represented, in

principle, by a simple model outlined in section “DEM Implementation for

Non-cohesive Materials” (Fig. 2) with an important proviso that for a bonded

contact, the normal-direction spring offers resistance in both compression and

tension. In the course of deformation process, if the bonded contact between two

particles fails in accordance with some prescribed failure criterion, the contact

becomes frictional if two particles are still pressed against each other. Damage

modes emanate naturally through a process of progressive debonding of particles

when the strength, the critical strain, or the fracture energy of a bond between

particles is exceeded due to external action.

Two different approaches to account for cohesive interactions between edges

of two contiguous particles are the following: (i) the beam-enhanced DEM

(beam element between particle centers; Kun and Herrmann (1996), D’Addetta
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et al. (2001) and (ii) the interface-enhanced DEM (interface elements defined at

particle edges; Kun et al. 1999).

DEM Application for Rocks

DEM originated from rock mechanics. Although rocks may not look like granular

materials, they can be viewed as assemblies of distinct units bonded together by

different models of cohesive forces or cementation effects. Thus, the overall

mechanical behavior evolves in a simple and natural way, in the course of loading,

through collective contribution of these distinct units where their debonding mimics

elementary micro-damage events – basic building blocks of complex damage-

evolution phenomena. A comprehensive review article by Jing (2003) presented

the techniques, advances, problems, and likely future work in numerical modeling

of rocks.

In 2D DEM rock simulations, particles can be randomly generated circles or

convex polygons cemented together by insertion of a parallel bond in the contact

region. Shapes and packings of particles have a profound effect on the distribution

and intensity of interaction forces. The bond strengths are permitted to vary from

contact to contact, representing another source of heterogeneity in the simulated

material. The most representative explicit DEM method in rock mechanics is

Cundall’s (1980, 1988) distinct element method with polygonal/polyhedral blocks

developed in the commercial computer codes UDEC and 3DEC (ITASCATM). A

simpler DEM – the bonded particle method – based on the circular/spherical rigid

particles is presented herein following closely Potyondy and Cundall (2004). This

modeling approach is used in the commercial programs PFC2D and PFC3D

(ITASCATM).

The bonded particle model (also referred to as the parallel-bond model) simu-

lates rock as a densely packed assembly of nonuniformly sized circular particles

glued together at contact points by insertion of parallel bonds representing the

cohesive effects of cement. The model is fully dynamic and hence capable of

describing complex phenomena of damage evolution such as nucleation, growth,

and coalescence of microcracks resulting in damage-induced anisotropy, hysteresis,

dilation, and softening.

The particle diameters are sampled from a uniform distribution bounded by Dmin

and Dmax, and dense packing is obtained by following appropriate material-genesis

procedure. The rigid particles can independently translate and rotate and interact at

the soft contacts defined by normal and shear stiffness (Fig. 3). The particle

overlaps are assumed to be small compared to their size to ensure that contacts

occur “at a point.” The set of microproperties consist of stiffness and strength

parameters of the particles and the bonds. The modulus–stiffness scaling rela-

tions of grain and cement, which include particle size, ensure that the macro-

scopic elastic constants are independent of the particle size. The

force–displacement laws at each contact relate relative particle movements to

force and moment exerted on each particle.
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Cundall and Hart (1992) described an explicit finite difference algorithm used to

numerically evaluate dynamics of the simulated material. The DEM simulation

technique is based on the assumption that time step is so small that, within one

calculation step, disturbances cannot propagate from any particle further than its

nearest neighbors. Advantages of explicit numerical scheme are discussed by

Potyondy and Cundall (2004).

The bonded particle model mimics the mechanical behavior of an assembly of

grains (particles) linked by cement (parallel bond) as illustrated in Fig. 3. The total

force and moment acting on each contact consists of contact force fij resulting from
the particle overlap and representing grain behavior (Eq. 2 with or without

damping) and a force and moment, fij and Mij, carried by the parallel bond.

These quantities contribute to the resultant force and moment acting on both

particles that are input into Newton’s second law numerically integrated to obtain

particle trajectories.

The force–displacement behavior of the grain–cement system is outlined in

Fig. 3. The grain behavior is the same as non-cohesive frictional interaction (section

“DEM Slip Model with Rolling Friction” without contact dumping) described by

the normal and shear stiffness, kn and ks, and friction coefficient, μ, per each

particle. This contact is formed as soon as two particles overlap and the contact

stiffness is determined by serial connections of the individual particle stiffnesses.

The overlap, though physically inadmissible, mimics to some extent the local

deformation of grains (especially when surfaces are not smooth and have asperi-

ties). The contact force vector can be decomposed into a normal and a shear vector

as previously in Eq. 2.

Fig. 3 Force–displacement behavior of bonded particle model of the grain–cement system

(Reprinted from Potyondy and Cundall (2004) with permission from Elsevier)
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The grain (contact) behavior is already discussed in section “DEM Slip Model

with Rolling Friction”: if a gap exists, both normal and shear forces are zero;

otherwise, slip is accommodated in the usual manner by using Coulomb’s law.

It should be noted that the existence of parallel bond does not prevent slip since

the bond elastic interaction acts in parallel with grain contact portion of

force–displacement interaction.

The cement behavior is represented by the total force and moment, fij and Mij,

carried by the parallel bond (action on particle B, i.e., j). The force and moment can

be projected on the normal and tangential directions

fij ¼ f
n

ijnij þ f
t

ijtij, Mij ¼ M
n
ijnij þM

t
ijtij (4)

When a parallel bond is initialized, fij and Mij are set to zero. Each subsequent

relative translation and rotation increment, Δuijn, Δuijt and Δθij ¼ (ωj � ωi)Δt,
produces an increment in elastic force and moment (given in Fig. 3) that is added

to the current values in manner described by Potyondy and Cundall (2004).

The parameters in Fig. 3, A, I, and J, are the area, the centroidal moment of

inertia, and the polar moment of inertia of the parallel-bond cross section,

respectively.

The maximum normal and shear stresses acting on the parallel bond are

calculated from beam theory and also presented in Fig. 3. If the maximum normal

stress exceeds the tensile strength σmax � σcð Þ or the maximum shear stress exceeds

the shear strength τmax � τcð Þ, the parallel bond ruptures and is removed from the

network, which reduces the contact to the basic non-cohesive frictional interaction.

Potyondy and Cundall (2004) used this DEMmodel for simulation of biaxial and

Brazilian tests of granite and demonstrated its capability to reproduce numerous

features of rock behavior such as fracturing, damage-induced anisotropy, dilation,

softening, and confinement-driven strengthening. Damage evolution was obtained

explicitly as a process of progressive accumulation of broken bonds; “no empirical

relations are needed to define damage or to quantify its effect on material behavior.”

The damage patterns, such as those reprinted in Fig. 4, agreed well with experi-

mental observations with respect to dynamics of the damage accumulation and

revealed effects of the lateral confinement. They suggested that the effect of

confinement on damage accumulation process was more pronounced in the soften-

ing region than in the hardening region. The authors argued that lateral confinement

reduced the tensile forces that developed in a direction perpendicular to the sample

axis and thereby favored formation of shear microcracks.

Potyondy and Cundall (2004) discussed in detail the effect of particle size on

macroscopic properties. Specifically, they explored the role of Dmin (a model

parameter that controls mesh resolution and the length scale of the material) as an

intrinsic part of material characterization. The elastic constants were independent of

the particle size due to the scaling of the parallel-bond stiffnesses as a function of

particle size. The unconfined compressive strength appeared to be particle size

independent as well, but the simulation results were inconclusive regarding the
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particle size effect on the friction angle and cohesion. The Brazilian strength

exhibited clear particle size dependence as well as the mode-I fracture toughness

KIc ¼ σ0
t

ffiffiffiffiffiffi
πR

p
, σ0

t ¼
sn
2Rt

(5)

where σt
0 is the tensile strength of the model, sn the bond tensile strength, R the

particle size, and t � 1 for 2D models. Consequently, it appeared that the particle

size, controlling the model resolution, could not be chosen arbitrarily since it was

related to the material fracture toughness as well. Instead, when modeling damage

processes, the particle size and model properties should be selected to match both

the material fracture toughness and the unconfined compressive strength.

The most pronounced shortcoming of the bonded particle model observed in

these simulations was that material strength matched the granite strength only for

stresses near the uniaxial state. Otherwise, the tensile strength was too high, and the

slope of the strength envelope as a function of confining stress was too low. The

authors attributed this limitation to oversimplified particle shape.

D’Addetta et al. (2001, 2002) developed a 2D model of heterogeneous cohesive

frictional solids with material structure represented by an assembly of discrete

convex polygons joined together by simple beams accounting for cohesive effects.

Depending on the selection of model parameters, it can represent a range of

different materials from non-cohesive dry soils to a variety of cohesive materials.

This DEM model is an extension of the models used to simulate mechanical

response of randomly shaped granular materials (Kun and Herrmann 1996).

The process of model development enveloped three major steps. First, compu-

tational domain was discretized into a froth of convex polygons (mimicking grains

of the material) by a random Voronoi tessellation. Second, the global mechanical

response of the sample was defined by proper interactions among contiguous rigid

polygons. The failure criterion necessary to define the element rupture on the

microscale was the final model ingredient. The definition of microparameters,

contact forces, and torques reduced to a particle center was conceptually similar

Fig. 4 Biaxial test simulation of granite: (a) axial stress versus axial strain and damage patterns

in the softening region for three levels of lateral confinement: (b) 0.1 MPa, (c) 10 MPa, and

(d) 70 MPa (Reprinted from Potyondy and Cundall (2004) with permission from Elsevier)
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to that discussed previously for the circular particles (Fig. 2). Suffice it to mention

that in the absence of analytical solution for the real deformational behavior of

contacting polygons of arbitrary shape, an approximate technique must be devised

instead.

The beam rupture criterion took into account the stretching and bending break-

ing modes

p
bð Þ
ij ¼ e bð Þ

ij

e bð Þ
max

 !2

þmax φij j, φj

�� ��� �
φmax

¼ 1, e bð Þ
ij � 0 (6)

where eij
(b) was the longitudinal beam strain, φi and φj were the rotation angles at the

beam ends, and emax
(b) and φmax were the threshold values for the two breaking

modes. Varying the two threshold values could control the relative importance of

the two breaking modes. The time evolution of the system was obtained by solving

numerically Newton’s equations of motion Eq. 1 for each individual polygon in the

assembly.

The model parameters were identifiable with properties of cohesive granular

materials up to some extent, but it remained uncertain whether the quality of this

identification depended on the rupture criterion or if it was influenced “by the

special combination of beam and particle elements within the model” (D’Addetta

et al. 2002).

The simulation results of the uniaxial compression test (Fig. 5) and the simple

shear test demonstrated the model’s ability to capture salient effects of brittle

deformation and damage evolution. Polar plots of damage fabric (Fig. 5d) provided

a handy description of damage distribution and revealed the tendency of anisotropic

damage accumulation in the softening phase.

The authors also used this model to study dynamic fragmentation of heteroge-

neous brittle solids in various loading configurations: the explosion of a disk-shaped

solid, the impact of a projectile into a solid block, and the collision of macroscopic

bodies. The simulation results were found to be in reasonable qualitative agreement

with experimental observations bearing in mind the limitations of the 2D simulation

setup.

DEM Application for Concrete

Kim and Buttler (2009) developed a DEM cohesive fracture model of a disk-shaped

compact tension specimen to investigate various aspects of mode-I fracture of

asphalt concrete. Their objective was to use DEM to integrate experimental,

analytical, and numerical approaches based on the image-based microstructure

(high-resolution image analysis mapped into a clustered mesh as illustrated in

Fig. 6). The material properties were identified based on experimental bulk and

fracture tests and comprehensive inverse analyses and assigned to all DEM model

contacts (the phase contact rule schematics is indicated in Fig. 6).
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Fig. 5 Simulation of the compression test: fractured configurations with (a) and without (b) lateral

confinement; (c) stress–strain curves for the two compression cases, and (d) damage distribution of

evolving compressive failure for the setup with lateral confinement (D’Addetta et al. 2002)

Fig. 6 Digitized images of three-phase geometry of asphalt concrete with indicated phase contact

models and DEMmesh of compact tension specimen (Reprinted from Kim and Buttlar (2009) with

permission from Elsevier)
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The DEM simulations of mode-I loading of the specimen were performed with

different nominal maximum aggregate sizes, temperatures, and aggregate types to

gain understanding of various fracture mechanisms. The simulation results showed

a very good agreement with experimental results at different temperatures and with

different mixture types (e.g., Fig. 7). It was demonstrated that, in addition to global

fracture response, the heterogeneous DEM model could potentially capture the

stress and damage distributions as well. The authors concluded that the DEM

modeling approach “appears to have significant potential to aid in the understand-

ing of fracture behavior in asphalt concrete.”

Particle Models

Particle models are a generalization of spring networks that includes dynamic

effects and can be also viewed as an engineering MD offspring on a coarser

scale. As such, they take advantage of the time-honored MD techniques to cope

in a straightforward manner with various highly complex motions and physics of

extremes. MD is a method frequently used in various branches of computational

physics to analyze motion of large ensembles of atoms or molecules. Hence, the

MD computer simulation techniques have been treated extensively in literature.

Traditional references for particle modeling include Allen and Tildesley (1987) and

Greenspan (1997), while Wang et al. (2010) and Munjiza et al. (2011) may be

consulted for more recent developments. Overviews of the basic concepts of

particle modeling of damage have been presented by Ostoja-Starzewski (2007)

and Kale and Ostoja-Starzewski in an abridged form in this handbook.

A particle model consists of N particles of known masses mi and positions ri
arranged in a lattice. (Hereinafter, the lower case alphabetic indices (i, j) designate
particles, while the lower case Greek letter indices (α, β, γ, δ) are reserved for tensor
components.) The continuum particles often interact according to the central-force

law that completely defines the strain energy density function in terms of particle

Fig. 7 A selection of comparisons of experimental and DEM simulation results: (a) two different

nominal maximum aggregate sizes (9.5 mm and 19 mm) at �10 �C, (b) nominal maximum

aggregate size 19 mm at two temperatures (0 and �10 �C) (Reprinted from Kim and Buttlar

(2009) with permission from Elsevier)

286 S. Mastilovic and A. Rinaldi



positions. Ignoring many-body interactions, the system energy can be approximated

by the sum of isolated empirical pair potentials φ (pairwise additivity assumption).

The system of Newton’s equations of motion

dpi
dt

¼ Fi ¼ �
X
j 6¼i

dφ

drij

rij

rij
(7)

is approximated by corresponding finite difference equations and subsequently

solved using one of several mature MD techniques at our disposal for that purpose.

Assuming that interparticle forces are conservative, the intensity of central force

exerted on the particle i by the particle j and the total force exerted on the particle

i by all nearest neighbors are

fij ¼ fij
�� �� ¼ � dφ rij

� �
drij

, Fi ¼ �
X
j

fij
rij

rij
(8)

where rij ¼ │rj-ri│ is the interparticle distance equal to r0ij at equilibrium.

An example of pairwise interparticle potential frequently used in particle models

for mesoscale simulations of brittle materials is a combination of the Born–Mayer

(Eq. 91) and Hookean (Eq. 92) interatomic potentials

φr rij
� � ¼ kijr

2
0ij

B� 2ð Þ
1

B
eB 1�rijð Þ � r�1

ij

� 	
, rij < 1

φa rij
� � ¼ 1

2
kijr

2
0ij r2ij � 2rij

� �
, rij � 1 (9)

where kij is link stiffness in tension, rij ¼ rij=r0ij, while the fitting parameter B defines

the slope (steepness) of the repulsive wall and can be deduced, for example, from the

equation of state. The potential Eq. 92 has a tension cutoff to simulate elastic-perfectly

brittle behavior. This interparticle potential was developed by Mastilovic and

Krajcinovic (1999a) to capture several important features of the deformation process

typical of quasibrittle materials, namely, brittle behavior in tension, increase of shock

wave velocity, and the decrease of compressibility with increasing pressure.

The critical modeling problem is how to pass from a given atomic/molecular

potential or a set of continuum properties to an interparticle potential, which is

common key issue of all numerical approaches in computational mechanics of

discontinua.

The quenched disorder can be introduced into the particle model to describe

brittle materials with random microstructure. The particle network disorder may be

topological (unequal coordination number), geometrical (unequal length of bonds),

or structural (unequal stiffness and/or strength of bonds). The disorder is further

enhanced by damage evolution. Due to the initial randomness of the microstructure,

the nature of the damage evolution is stochastic.
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Evaluation of Stress, Strain, and Stiffness Components

The general expression for the stress and stiffness tensors at a given particle in a

system in equilibrium can be obtained by expanding the elastic strain energy

density of the discrete system into a Taylor series with respect to strain eαβ. In
equilibrium state, when the total force Eq. 82 acting on any particle is zero, the

system must be stable with respect to the application of a small, homogeneous strain

tensor eαβ. The linear term in the Taylor series for the elastic strain energy

represents the stress tensor, which is a general relation of thermodynamics. The

quadratic term defines the elastic stiffness tensor. If the interaction of a system of

particles can be approximated by the central-force potential, φ¼ φ(rij), expressions
for stress and stiffness tensors can be obtained (Vitek 1996) in the following forms:

σαβ ¼ 1

2V

X
i, j
j 6¼ i

dφ

drij

rαij r
β
ij

rij
�� �� , Cαβγδ ¼ 1

2V

X
i, j
j 6¼ i

d2φ

dr2ij
� 1

rij

dφ

drij

 !
rαij r

β
ij r

γ
ij r

δ
ij

r2ij
(10)

where V is an averaging area, rij
α an appropriate α projection of rij, etc.

The strain is calculated by comparing particle positions in the current and the

reference (initial) configuration. The components of the left Cauchy–Green strain

tensor of ith particle are commonly defined by

bαβ ¼ 1

3

X6
j¼1

rαij r
β
ij

r20ij
(11)

It should be noted that, unlike the stress Eq. 101, the virial strain Eq. 11 is valid

instantaneously in time and space (Buehler et al. 2003).

Examples of Applications of Particle Models

Krajcinovic and Vujosevic (1998) used a particle model to simulate quasi-static

biaxial compression test in order to investigate localization phenomena in hetero-

geneous quasibrittle materials. The experimental basis for the particle model

application was provided by physical test data reported in this chapter. A topolog-

ically ordered central-force particle network dual to the Voronoi tessellation of

grain boundaries represented a generic rock sample of appropriate aspect ratio. The

quenched disorder was introduced by sampling the equilibrium interparticle dis-

tances r0ij and rupture strengths from the Gaussian and uniform probability distri-

butions, respectively. The interparticle forces were derived from the Hookean

potential Eq. 92 for the entire interaction domain.

The particle network loading mimicked the actual physical experimental proce-

dure: “the sample” was subjected initially to the hydrostatic pressure, kept fixed at
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certain level defined by the desired lateral confinement, and followed by the

monotonically applied displacement-controlled uniaxial compression. After each

application of the contraction increment, the local viscous damping was used to

dissipate kinetic energy in order to reach equilibrium state more efficiently. The

elementary damage events took place by progressive link ruptures whenever the

interparticle forces satisfied the link-rupture criterion (microscale tensile strength).

The kinetics of the localization process was related to the rate of increase of the

correlation length by recording the distance λi,j
min between two consecutive link

ruptures (mimicking acoustic emission signals). The response of the random system

was initially homogeneous as the damage originated by defect nucleation. The

preponderance of small distances λi,j
min at the load peak and the post-peak snapshots

(t3 and t5) indicate clustering illustrated by Fig. 8c. The authors concluded that “the
softening is related to the growing role of the auto-catalytic growth of the largest

cluster.”

Krajcinovic and Vujosevic (1998) discussed various aspects of the localization

fault geometry. The angle at which the acoustic tensor for the given state was

minimum (�34�) was in excellent agreement with continuum prediction, which

was underlined by a series of simulation-generated damage patterns. The particle

simulations agreed well with experimental results in indicating that faults in rock

specimen were characterized by irregular shapes and blurred boundaries.

Fig. 8 (a) Dimensionless load–displacement curve in the loading direction, (b) the damage

pattern in state t5 (remaining and broken links, respectively), (c) strain distributions in states t3
and t5 (Reprinted from Krajcinovic and Vujosevic (1998) with permission from Elsevier)
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The elusive fault width was determined to depend strongly on observation

details and, hence, offered but a partial description of the fault size. Thus, instead

of measuring the geometry – almost always hidden within the specimen – the

authors concluded that it was more reasonable to determine the fault “width” by

measuring its effect on the effective transport properties of the specimen. This

approach was demonstrated by using propagation of elastic primary (pressure, p-)
waves through a specimen spanned by a fault to estimate the fault width. The gist

was that the p-wave imparted at the top of faulted specimen would need more time

to arrive to the bottom than in the case of pristine specimen (“ant in the labyrinth”

concept) and that the time lag was proportional to the fault width. The authors

suggested that the fault width, which was proportional to the time lag, admitted the

scaling law

w / _e 0:35 (12)

where _ewas the rate of the imparted strain pulse. The scaling relation Eq. 12 implied

that the fault width would vanish in the static case, which was justified by the static

treatment of the dynamic phenomenon.

Mastilovic and Krajcinovic (1999a) used a particle model to simulate the

dynamic cavity expansion in a heterogeneous brittle material to obtain mesoscale

data for analytical modeling of high-velocity expansion of a cylindrical cavity. The

particle assembly was topologically ordered but geometrically and structurally

disordered in the way just described with regard to the model used by Krajcinovic

and Vujosevic (1998). On the other hand, each bulk particle was linked to six

nearest neighbors by a nonlinear force–displacement relation obtained from the

hybrid potential Eq. 9. The link-rupture criterion was defined in terms of the critical

link elongation. The healing of a microcrack was prevented by ruling out the

establishment of the cohesive interaction between two particles that were not linked

initially or were separated earlier in the course of deformation by the rupture of the

link that kept them together. However, the repulsive contact force could be

established between the two particles that were originally not connected “not

being nearest neighbors” or were at one point separated by stretching the link

beyond the rupture limit. The cavity was nucleated by removal of a single particle

from the middle of the random particle network of circular shape (Fig. 9).

The nearest neighbors of the removed particle defined the cavity rim, which was

driven radially outward in a displacement-controlled manner at a desired constant

expansion rate _a.
The typical damage patterns (Fig. 9) depended on the magnitude of the exter-

nally imparted energy. The damage map corresponding to the highest expansion

rate (Fig. 9a) was axially symmetric with damage front propagating with the

velocity (0.8–0.9)CL, which agreed well with experimental results (Mastilovic

and Krajcinovic 1999a and references therein). With reference to Fig. 10a, the

circumferential stiffness degraded more rapidly than the radial stiffness since

initially most of the damage in the process zone is attributable to the radial

microcracks.
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The reduction of the radial stiffness rate depended on the radial distance from the

cavity, while the degradation of the effective circumferential stiffness was charac-

terized by two distinctive rates that appear to be independent of the radial coordi-

nate. The peak radial traction at the cavity rim, crucial for penetration mechanics

modeling, was found to be approximately equal to the radial stress at the elastic

wave front for which the analytical solution was available. The parabolic and

bilinear simulation data fits of radial traction at the cavity surface as functions of

Fig. 9 Typical damage patterns for three cavity expansion rates: (a) _a ¼ 0:135CL, (b) _a ¼ 0:00135
CL, and (c) _a ¼ 0:000135CL, where CL is the velocity of longitudinal elastic waves and each short

line represents a ruptured link (Reprinted from Mastilovic and Krajcinovic (1999a) with permission

from Elsevier)

Fig. 10 Time history of the effective material properties: (a) stiffness tensor components in

annular averaging regions B and C and (b) modulus of elasticity in annular regions A, B, and C.
The computation domain is divided into five annular regions of equal width, marked by A to E,
over which the field parameters or properties are averaged. E0 is modulus of elasticity of pristine

material. Indices r and θ mark the radial and circumferential directions, respectively (Reprinted

from Mastilovic and Krajcinovic (1999a) with permission from Elsevier)
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the cavity expansion velocity were used successfully by Mastilovic and Krajcinovic

(1999b) to model penetration depth of an ogive-nosed projectile into limestone and

concrete targets.

Wang and Ostoja-Starzewski (2005) and Wang et al. (2010) adopted particle

modeling to simulation of dynamic fracture phenomena in homogeneous and

heterogeneous materials. The lattice-type particle model had the same functional

as traditional MDmodels, including the use of the interparticle potential inspired by

the classic Lennard–Jones type, yet on centimeter length scales (refer to Kale and

Ostoja–Starzewski in this handbook). The typical particle modeling issue – cru-

cially important for the appropriateness of this model to simulate the complex

mechanical response of the material – was the transition from a given empirical

interatomic potential to an interparticle potential. In order to determine four

unknown variables of the interparticle potential, Wang and Ostoja-Starzewski

(2005) established four equality conditions (of mass, elastic strain energy, modulus

of elasticity, and tensile strength) between the particle model and the MD model.

They derived the equations for four unknown variables and carried out a parametric

study to investigate the differing effects they had on mechanics response.

This particle model was applied in a series of papers to simulate dynamic

fragmentation, thermal effects on ore breakage, random crack growth in epoxy plates

(Fig. 11), polymeric material indentation, wave propagation-induced fracture, and

impact of a rigid indenter (refer to Wang et al. (2010) for a list of references).

Mastilovic et al. (2008) and Mastilovic (2011, 2013) used particle modeling for

simulation of dynamic uniaxial tensile test of disordered material with a low

fracture energy. The hybrid interparticle potential Eq. 9 governed interaction

of continuum particles with their nearest neighbors. The model was geometrically

and structurally disordered. The link-rupture criterion was defined in terms of

the critical link elongation ecr ¼ const. The problems of the loading at extremely

high rates, including the uniform load distribution, were solved by

imposing an instantaneous initial velocity field to all particles in the loading

direction, _x1 t ¼ 0ð Þ ¼ _e1 x1 , and perpendicular to it, _x2 t ¼ 0ð Þ ¼ �υ eð Þ
0 _e1 x2 ,

Fig. 11 Experimental and computational simulation fracture patterns in a randomly perforated

epoxy plate loaded in tension: (a) experiment, (b) finite element method, and (c) particle method

(Reprinted from Wang et al. (2010) with permission from the authors)
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defined in terms of the prescribed strain rate, _e1 ¼ _L=L. (The coordinates refer to the
centroidal coordinate system and υ0

(e) is the apparent plane-strain Poisson’s ratio).

Subsequently, at t > 0, only velocity of the particles located at longitudinal

boundaries was controlled, _x1 ¼ 	 _e1 L=2 , while motions of all other particles

were governed by Newton’s equation of motion Eq. 7.

The shaded areas in Fig. 12a depicted schematically the scatter of strength data.

The large scatter, characteristic of the low strain rates, was reduced to a single line

at the extreme rates (roughly, _e � 1 � 107 s�1), which was indicative of the

substantial reduction of the tensile-strength scatter close to the “upper-plateau”

loading-rate range. The evident transition from the stochastic to the deterministic

behavior – reflected by the reduction of the strength dispersion and change of

damage-evolution patterns discussed by Mastilovic et al. (2008) – was more pro-

nounced in the case of the large disorder. Figure 12b illustrates an empirical expres-

sion proposed by Mastilovic (2013) to model the strain rate effect on the dynamic

tensile strength including the dependence upon the representative sample size.

The observed linearity of the rate dependence of the stress-peakmacroscopic response

parameters, time-to-failure, and damage energy rate (tm, _EDm) was expressed as follows:

tm _e ¼ Const:, _EDm _e�1 ¼ Const: (13)

Furthermore, the computer simulation results obtained from this particle model

offered connection between the macroscopic response parameters at the stress peak

(tm, _EDm) and the microscopic failure criterion (ecr)

tm _e / e�1
cr ,

_EDm _e�1 ¼ e�1=6
cr (14)

for loadingwithin thewide range of the strain rates that encompasses variety of damage

mechanisms. As noted byMastilovic (2011), the scaling relation Eq. 131 is identical to

Fig. 12 (a) The tensile strength (σm) dependence on the strain rate indicating the ordering effect

of kinetic energy and the effect of geometrical and structural disorder (SD and LD stand for small

and large disorder, respectively; typical damage patterns are illustrated at the top) (Mastilovic

2011); and (b) schematic representation of the tensile strength dependence on the strain rate and

the representative sample size (L ) (Mastilovic 2013)
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the empirical relation between creep rate and time to rupture for the constant-

stress quasi-static loading and the strain-controlled brittle creep fracture. It is also

similar to the time-to-failure derived by Mishnaevsky (1998) by combining the main

ideas of continuum damage mechanics and statistical and kinetic theories of strength.

Failure Size Effects and Fractal Theories

Brittle (or embrittled) and quasibrittle microstructural systems have the tendency to

fail catastrophically with little or no early warning. Failure modeling and prediction

for these systems is of utmost importance and has proven to be a formidable task of

damage mechanics. A major complication is the sample size dependence of both the

onset of strain localization and the consequent damage evolution. Consequently, it

is hard to predict behavior of large structures based on laboratory tests on similarly

shaped samples unless a size effect model (scaling law) can be established. If a

scaling law is available, knowledge of the statistics of a process on one scale allows

inferring the statistics of the same process on any other scale.

The problem has been under investigation for centuries and many researchers

have attempted a number of different strategies. Some modern approaches have

originated from fractal theory and lattice models. While this remains an open and

promising research topic, current models are prone to criticism and are far from

design codes in structural engineering.

Within the context of continuummodels, several research groups attempted to prove

the fractal nature of the random failure patterns and the self-affine roughness on crack

mechanics in elastic solids. For instance,Mishnaevsky, Jr., (1996)monitored the surface

roughness of crack and the specific surface energy needed to form a crack by the

mechanism of microcrack coalescence and concluded that the fractal dimension of

crack may be monitored during the crack formation process to compute the time-to-

fracture in heterogeneous solids. Also, in a number of papers, another group

(Cherepanov et al. 1995; Balankin et al. 1996) suggested that the usual LEFM expres-

sions for stress concentration at the crack tip could be replaced by a fractal version based

on a roughness-related power law exponent α and a fractal stress intensity factor Kf as

σij / K r�0:5 ) σij / Kf
r�α

l0
(15)

when crack length l falls between a lower cut off l0 and a self-affine correlation

length ς, l0 < l < ς. Similar continuum-based approaches have followed (Borodich

1997) with some noteworthy contributions that include, for example, the quantized

fracture mechanics for fractal cracks (Pugno and Ruoff 2004; Wnuk and Yavari

2008) or the fractional continuum framework of fracture and damage discussed by

Tarassov (2013) and Ostoja-Starzewski et al. (2013). Wnuk treats in this handbook

the topic of fracture mechanics with fractal cracks.

On the other hand, the scope of this section is restricted to discrete damage

models, succinct commentaries of some finite-size scaling ideas, and relevant
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literature. For quite a few decades, lattice models have been focused on the

investigation of finite-size scaling and on the formulation of physical/rational

models of damage. They have appealed specially to the community of physicists

and mathematicians active in statistical physics who have seized the opportunity to

investigate failure in heterogeneous systems by the same approaches developed for

phase transitions and chaos.

Percolation Theory of Damage in Discrete Models

Percolation theory is one simple approach to investigate phase transitions in

statistical physics (e.g., Stauffer and Aharony 1994) and has been applied with

some success to geometrical and transport properties of mechanical lattices. Since a

damaged lattice can be regarded as a random graph of connected clusters, it can be

studied by means of percolation theory. In that view failure is treated as a phase

transition that occurs at percolation condition, i.e., when the correlation length ξ,
associated to the connected/interacting clusters of microcracks, spans the entire

finite-size lattice L (or diverges for an infinite lattice as L ! 1). The percolation

threshold pc is defined as the occupation probability p at which an infinite cluster

appears in the lattice according to a power law fractal exponent ν

ξ / pc � pj j�ν
(16)

For a mechanical network, p roughly corresponds to the density of unbroken

springs and pc is critical point associated to failure. The threshold pc is defined with
respect to an infinite lattice and approached asymptotically in the limit of L ! 1.

The application of the results to finite-size systems happens by renormalization

group approaches, such as coarse graining techniques (e.g., Christensen 2002).

Similar scaling laws were sought for many other and diverse parameters (e.g.,

connectivity, number of microcracks, etc.) and network transport properties (e.g.,

conductivity, stiffness, etc.) related to the “failure transition” and thereby exhibiting

a singularity.

As an example, Sen et al. (1985) studied the percolation model for the central-

force elastic lattice, finding that bulk modulus (K ) and shear modulus (G) scaled as

K, G / p� pcð Þβ (17)

with the following numerical estimates:

pc ¼ 0:58, β ¼ 2:4	 0:4 2D triangular lattices

pc ¼ 0:42, β ¼ 4:4	 0:6 3D FCC lattices (18)

The same group proposed an effective medium theory of α models, mapping the

percolation property of the central-force lattice to a continuum scale, also exploring

importance of the coordination number of lattice sites on the scaling (Feng

et al. 1985).
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Many authors (Chelidze 1982; Roux and Guyon 1985; Ostoja-Starzewski 1989,

etc.) have reported similar results, but, despite the apparent simplicity, the appli-

cation of percolation ideas to damage has proved to be not straightforward.

Krajcinovic (1996) offered a clear and detailed essay on this subject, stressing

the importance of percolation theory in damage mechanics and its limitations.

Percolation theory ought to be regarded as complementary to mean-field theories

of continuum mechanics (e.g., dilute concentration models of damage), offering

a way to approach size-scaling issues by means of relations that are universal

and supposedly independent of microstructural details. Hansen et al. (1989),

among others, investigated the universality problem for central-force lattices.

However, one main problem is the estimation of fractal exponents associated to

asymptotic behaviors, which require large computations. In time, successive

reports have modified earlier accounts, and larger simulations have indicated

that fracture damage may not comply with basic (uncorrelated) percolation

process (Nukala et al. 2006). Another drawback inherent to some percolation

studies resides in the preservation of isotropy during the percolation process that

proceeds by either random suppression or strengthening of links (e.g., Garcia-

Molina et al. 1988), which makes them ill posed to study damage-induced

anisotropy that immediately arises in quasibrittle (vectorial) systems (Rinaldi

2009). A critical review by Guyon et al. (1990) represents a relevant and

insightful reading on the subject.

Fractal Scaling Laws of Damage in Discrete Models

Besides percolation models, lattice models represent a fertile playground for the

application of many other methods of statistical physics. The fuse lattice by De

Arcangelis et al. (1985) illustrated in Fig. 13 is one of the first attempts to depart

from percolation ideas and introduce damage by a more realist mechanism of fuse

burnout caused by quenched or annealed disorder as opposed to random link

suppression (Krajcinovic 1996).

These fuse models drew great attention immediately (e.g., Duxbury et al. 1986;

Alava et al. 2006) as simple scalar models of failure in heterogeneous solids, but

Fig. 13 Example of fuse

lattice at the onset of failure,

where the suppression of the

last fuse pointed by the arrow
leads to failure (zero

conductance) (Redrawn from

De Arcangelis et al. 1985)
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were sided by actual “vectorial” mechanical models such as beam and central–force

lattices. The latter are indeed significantly more complex and realistic, especially as

far as the damage-induced elastic anisotropy and failure patterns are concerned.

The research scope also expanded to consider not just the scaling of one critical

point corresponding to the failure threshold, like in percolation, but the entire

response of the system during the damage process, particularly after strain locali-

zation. The objective was to establish fractal-based transformations that succeed in

reconciling the mechanical response of samples of any size by mapping their

mechanical response into one scale invariant curve, thus yielding a scaling law

for the given damage process.

This idea is illustrated here for one specific method called the Family–Vicsek

scaling (Family and Vicsek 1991; Barabasi and Stanley 1995), which was first used

for growth of advancing solidification fronts at the liquid–solid interface. Let us

consider the generic function y(x, L) as dependent on a variable x defined over a

network domain but also on the sizeL of the network itself, as depicted in Fig. 14a. The
knee shape typically marks a phase transition at the critical point location (x
, y
).

If the Family–Vicsek scaling holds, then the data y(x, L ) shall map onto one

universal scale invariant curve such that f x=Lβ, L
� � ¼ y=Lα for any L, as indicated

in Fig. 14b, according to the following scaling relation:

y x, Lð Þ ¼ Lα f
x

Lβ

� 	
(19)

Three conditions must be met for this scaling procedure to be feasible:

1. At the transition the y value must be a fractal such that y x
,Lð Þ / Lα.

2. The location of the transition must be a fractal such that x
 / Lβ.
3. Before the transition the data must follow a power law y(x, L ) / xγ.

Consequently only two out of the three exponents {α, β, γ} are independent due
to the constraint γ ¼ α/β.

Fig. 14 Illustration of the scaling procedure applicable to some nonlinear systems that experience

a transition governed by a universal law. The response y depends on the controlled variable x but
also on the system size L, which controls the occurrence of the transition. A scaling law exists if y
(x, L) maps into a scale invariant curve upon normalizing y and x by Lα and Lβ, respectively
(Rinaldi 2011)
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This empirical scaling procedure, borrowed from phase transitions and clusters

theory, has proved useful to investigate microcracks cooperation and damage

localization in multisite cracking and fracture processes, where lattice models had

already revealed the existence of several fractals quantities. Hermann, Hansen, and

Roux sought to apply the scaling to data from numerical experiments on

central–force lattice (Hansen et al. 1989) and beam lattice (Hermann et al. 1989),

finding satisfactory results only over certain portions of the damage process.

Figure 15 displays original force–displacement data F(u) for the beam lattice versus

scaled data F¼ Lαf (λL�β) with scaling exponents α¼ β ¼ 0.75. They also sought a

scaling relation for other quantities, such as the number of broken links n ¼ Lγ Ψ
(λL�β). The results of the scaling displayed in Fig. 15 exemplify that the scaling

could be used only up to the force peak.

Krajcinovic and coworkers (Krajcinovic and Basista 1989; Krajcinovic and

Rinaldi 2005a) reexamined that approach, resolved some discrepancies, and

reattempted the procedure on larger simulation data. More importantly, they intro-

duced a significant modification to the original approach in two respects:

1. The force peak was acknowledged to be a transition point (distinct from failure)

between two different damage mechanism (i.e., microcrack nucleation versus

crack propagation) controlled by different fractal quantities.

2. The Family–Vicsek scaling was applied to the number of microcracks versus

displacement, as opposed to force versus displacement.

Hence, in what is called here the “Krajcinovic approach,” the Family–Vicsek is

essentially applied twice, according to a two-step scheme entailing the sequential

application of Eq. 19 to the number of ruptured links in hardening and softening

regime (i.e., after the force peak) separately.

The procedure was developed for the α model (Krajcinovic and Rinaldi 2005b;

Rinaldi et al. 2006) and was fully described in its final form by Rinaldi (2011),

containing the resulting scaling relations. Figure 16 reports the comparison between

the established scaling and the original simulation data over a large size range,

Fig. 15 Results of Family–Vicsek scaling (Data from Herrmann et al. 1989)
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demonstrating a remarkable agreement throughout the stochastic damage process,

also after the force peak.

The selection of results in this overview is by no means comprehensive and ever-

growing body of literature is available to expand on the topic. Several other groups

(e.g., Meisner and Frantziskonis 1996) contributed significant effort in this area and

addressed the possibility to use also multifractal framework (i.e., beyond the simple

fractal exponent obtained from a “box counting” procedure) to cast scaling relations

for failure in quasibrittle lattice. The detailed overviews by Hansen and Roux (2000)

Fig. 16 Responses of scaling relations from the “Krajcinovic approach” ( full line) versus original
simulation data (dotted line) for six random replicates over a large size range L ¼ {24, 48, 96,

120, 192} (L ¼ N ¼ number nodes per side)
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and Alava et al. (2006) on statistical methods of fracture in heterogeneous lattices

remain precious references for the interested audience.

It is noteworthy that although physical models of fractures are considered a

favorite research tool for physicists and mathematicians, the subject has appealed

significantly to the engineering community (Ince et al. 2003; Rinaldi et al. 2007).

Conclusion

With the advent of affordable computers of ever-increasing power and feasibility of

experimental observation at smaller spatial and temporal scales, discrete element

models have already offered powerful solutions to many complex problems

addressing both research and industry needs. The computational mechanics of

discontinua has emerged in the process as an important and fast-growing branch

of computational mechanics, firmly established, nowadays, as an integral part of

cutting edge research in diverse fields such as nanotechnology, stem cell research,

medical engineering, space propulsion, mining, milling, pharmaceuticals, powders,

ceramics, composites, blasting, and construction.

The concise survey of 2D discrete damage models featured in the two chapters of

this handbook represents a selection of topics and contributions – as representative

as possible yet incomplete – in boasting a diverse range of research areas and a list

of many influential references. While attempting to be as comprehensive and

objective as possible, the overview admittedly and unavoidably suffers from

usual shortcomings of similar endeavors such as an unintentional bias of authors

from their personal interests, research backgrounds, and limited possibilities to

abridge a vast amount of relevant work in the allotted space. Nonetheless, it may,

hopefully, serve equally well as a critical compendium to the experienced scientist

and as a primer to beginners.
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Many materials exhibit a discontinuous and inhomogeneous nature on various

spatial scales that can lead to complex mechanical behaviors difficult to repro-

duce with continuum-based models. “Among these complex phenomena is
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of cracks that can result in a plethora of macroscale deformation forms.”

Discontinua-based models are computational methods that represent material

as an assemblage of distinct elements interacting with one another. The meso-

scale methods of computational mechanics of discontinua presented in this our

two essays can be, arguably, divided into three broad and intervening categories:

spring network (lattice) models, discrete/distinct-element methods (DEM), and

particle models. The distinct-element computational methods such as molecular

dynamics and smoothed-particle hydrodynamics are outside the scope of the

present overview. The objective of this chapter is to briefly survey the spring

network models and their main applications. The discrete-based models have

been extensively applied in the last decade to three-dimensional configurations.

However, since the scope of this article is limited to two-dimensional

(2D) models for practical purposes, these important advances are ignored.

Likewise, one-dimensional (1D) fiber bundle models are also excluded from

this account.

Introduction

During the 1970s, the remarkably rapid growth of computer capabilities and the

corresponding advance of numerical algorithms enabled researchers to start develop-

ing computational methods that used distinct elements such as molecules, particles, or

trusses to model various problems of scientific or engineering interest. Computer

simulation modeling is more flexible in application than analytical modeling and has

that advantage over experimental modeling of having data accessible at any stage of

the “virtual experiment.” This flexibility extends to loading configurations andmodel-

ing of topological, geometrical, and structural disorder of material texture (Fig. 1).

Furthermore, all discrete-element models offer some common advantages in damage

analyses when compared with conventional continuum-based counterparts. Damage

and its evolution are represented explicitly as broken bonds or disengaged contacts; no

empirical relations are needed to define damage or to quantify its effect on material

behavior. Microcracks nucleate, propagate, and coalesce into macroscopic fractures

without the need for numerical artifices such as re-meshing or grid reformulation. It is

unnecessary to develop constitutive laws to represent complex nonlinear behaviors

since they emerge naturally through collective behavior of discrete elements governed

by simple constitutive rules.

The lattice (spring network) models are the simplest models of discontinua used

to simulate complex response features and fracture phenomenology of various

classes of materials. As the name suggests, they are comprised of 1D discrete

rheological or structural elements given geometrical, structural, and failure prop-

erties that enable them to mimic the elastic, inelastic, and failure behavior of certain

class of materials. Their comparative advantages are exhibited with most distinc-

tion when the material may be naturally represented by a system of discrete

elements interacting by way of rheological elements (in its basic form – springs).
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Hence, it is not unexpected that spatial trusses and frameworks have been the

primary material systems thus modeled – in engineering-mechanics applications

the idea dates back, at least, to the pioneering work of Hrennikoff (1941). Com-

prehensive reviews of lattice models in micromechanics are presented by

Ostoja-Starzewski (2002, 2007).

Lattices with Central Interactions (a-Models)

In the development of a lattice model, it is necessary to establish relationships

between lattice parameters and material properties. Various approaches were pro-

posed in that regard. Cusatis et al. (2003, 2006) used Delaunay triangulation to

determine lattice connections and assign their effective cross-sectional areas.

Kozicki and Tejchman (2008) derived normal and shear stiffness by using exper-

imental coefficients. However, the prevailing approach, used herein to obtain the

lattice parameters, is based on equivalence of strain energies of the unit lattice cell

and its continuum counterpart (Ostoja-Starzewski 2002; Wang et al. 2009a). This

approach is also presented by Kale and Ostoja-Starzewski in this handbook.

The basic idea is to ensure equivalence of the strain energy stored in a unit cell of

the lattice with its associated continuum structure:

Ucell ¼ Ucontinuum: (1)

The energy of spatially linear displacements of the effective continuum system

is given by the familiar expression

Ucontinuum ¼ V

2
«:C:« ¼ V

2
Cijkm eij ekm: (2)

Fig. 1 (a) Regular and (b) irregular triangular Delaney network dual to the Voronoi (Wigner-

Seitz) tessellation of grain boundaries. (c) Mesostructure of a three-phase composite projected

onto a regular triangular lattice
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In order to obtain the strain energy stored in the lattice unit cell, it is necessary to

take into account its specific periodic particle arrangements and interactions

(Ostoja-Starzewski 2002).

Triangular Lattice with Central Interactions

The first lattice to be considered for its simplicity is the α-model comprised of

equilateral triangular lattice with central-force interactions among first-neighbor

particles. The mesh illustrated in Fig. 2a is based on a spring of length l, equal to the
half-length of the equilibrium interparticle distance r0, which defines the equilib-

rium lattice spacing. The area of the hexagonal unit cell is V ¼ 2
ffiffiffi
3

p
l2. Each bond

b that belongs to the given unit cell is characterized by a spring constant α(b) and
bond unit vectors n(b) along respective directions θ(b) ¼ (b � 1)π/3.

The elastic strain energy stored in the hexagonal unit cell that consists of six

uniformly stretched bonds that transmit only axial forces is

Ucell ¼ 1

2

X6
b�1

αu � uð Þ bð Þ ¼ l2

2

X6
b¼1

α bð Þ n bð Þ
i n

bð Þ
j n

bð Þ
k n bð Þ

m eij ekm: (3)

The crucial step in this procedure is making a connection between u and «,
which, in general, depends on the particular geometry of the lattice cell and

particular model of interparticular interaction.

By Eq. 1, the stiffness tensor component can be derived as

Cijkm ¼ 1

2
ffiffiffi
3

p
X6
b¼1

α bð Þ n bð Þ
i n

bð Þ
j n

bð Þ
k n bð Þ

m (4)

which in the case of equal spring constants, α(b) ¼ α (b ¼ 1, . . ., 6), results in

Fig. 2 An ideal triangular lattice with central interactions among (a) first and (b) first and second

neighbors
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C1111 ¼ C2222 ¼ 9

8
ffiffiffi
3

p α ¼ E

1� υ2
, C1122 ¼ C2211 ¼ 3

8
ffiffiffi
3

p α ¼ Eυ

1� υ2
,

C1212 ¼ 3

8
ffiffiffi
3

p α ¼ E

2 1þ υð Þ : (5)

It should be noticed that the condition for material isotropy

C1212 ¼ C1111 � C1122ð Þ=2 (6)

is satisfied. Since the Poisson’s ratio is fixed, the spring constant α defines only the

planar modulus of elasticity of the unit cell of this lattice model

E ¼ α=
ffiffiffi
3

p
, υ ¼ C1122=C1111 ¼ 1=3: (7)

Triangular Lattice with First and Second Neighbor Central Interactions
The previous triangular central-force lattice can be upgraded by superposing an

additional central-force structure (Fig. 2b). The original structure (I) is now

represented by three triangular networks with unit defined as

αI bð Þ ¼ αI, θI bð Þ ¼ b� 1ð Þ π
3
, nI bð Þ ¼ cos θI bð Þ, sin θI bð Þ

� �
b ¼ 1, 2, 3 (8)

and the lattice spacing r0
I ¼ 2l. The superposed structure (II) is represented by

three triangular networks with the following spring constants:

αII bð Þ ¼ αII, θII bð Þ ¼ 2b� 1ð Þ π
6
, nII bð Þ ¼ cos θII bð Þ, sin θII bð Þ

� �
, b ¼ 1, 2, 3 (9)

and the lattice spacing rII0 ¼ 2
ffiffiffi
3

p
l. In the resulting system, each particle commu-

nicates with six first neighbors by means of structure I and with six second

neighbors by means of structure II. The unit cell area is V ¼ 2
ffiffiffi
3

p
l2.

Under the condition of uniform strain, the equivalence of the strain energy stored

in the lattice unit cell and the corresponding effective continuum model results in

Cijkm ¼ 2ffiffiffi
3

p αI
X3
b¼1

n
I bð Þ
i n

I bð Þ
j n

I bð Þ
k nI bð Þ

m þ 6ffiffiffi
3

p αII
X3
b¼1

n
II bð Þ
i n

II bð Þ
j n

II bð Þ
k nII bð Þ

m : (10)

Thus, the nonzero stiffness components are

C1111 ¼ C2222 ¼ 3

4
ffiffiffi
3

p 3αI þ 9αII
� � ¼ E

1� υ2
, C1212 ¼ 3

4
ffiffiffi
3

p αI þ 3αII
� � ¼ E

2 1þ υð Þ

C1122 ¼ C2211 ¼ 3

4
ffiffiffi
3

p αI þ 3αII
� � ¼ Eυ

1� υ2
: (11)

The Poisson’s ratio is again independent of the spring constant
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E ¼ 2 αI þ 3αII
� �

=
ffiffiffi
3

p
, υ ¼ C1122=C1111 ¼ 1=3: (12)

The expression (12)1 is reduced to E ¼ 8α=
ffiffiffi
3

p
if αI ¼ αII ¼ α.

Examples of Applications of a-Model

Bažant et al. (1990) employed a random α-model for brittle heterogeneous mate-

rials with the aim to study the effects of specimen size on the maximum load, the

post-peak softening behavior, and the progressive damage spread of the

microcracking zone. The model, accounting for particle interactions and random

geometry, may be classified as a particle model, but since the shear and bending

interaction among particles in contact are neglected, it represents an illustrative

example of an application of random lattice with central interactions. This model

was very influential for further developments of DEM techniques for this class of

materials. A more refined model of Zubelewicz and Bažant (1987) accounted for

shear interactions as well.

The model was based on the central interaction of elastic circular particles

(aggregates) embedded randomly in a softer matrix (cement paste). The matrix

was initially elastic with modulus of elasticity Em, while the modulus of elasticity of

the aggregates was designated by Ea. The particles (denoted as i and j) interacted by
means of a truss connecting particle centers whose stiffness, S ¼ (Si

�1 + Sm
�1 +

Sj
�1)�1, was defined by the serial connection of the three truss segments (Fig. 3a).

The individual segment stiffness was determined by the standard truss theory (e.g.,

Sm ¼ EmAm/Lm) taking into account the empirically modifies truss segment lengths

corresponding to aggregate particles in contacts. The middle truss segment (mim-

icking cement paste), Lm, represented the contact region of the matrix and was

assumed to exhibit softening behavior depicted by the triangular constitutive law

(Fig. 3b). This softening behavior

Es ¼ � f mt
ef � ep

, ef ¼
2Gm

f

Lm f mt
(13)

was determined based on the fracture energy of the interparticle layer, Gf
m, which

was assumed to be an intrinsic material property. The geometrical lattice disorder

(random Lm) necessitated corresponding changes of the softening modulus Es in

order to preserve the fracture energy.

The simulation results of this model revealed pronounced size effect on the

failure load, which is a salient consequence of heterogeneity that has both fracture

mechanics and probabilistic aspects. The load–displacement curves, representing

the response of unnotched samples under uniaxial tension, revealed that the soft-

ening was captured realistically since the slope got steeper with the sample size

increase. In addition to pronounced size effect, the simulation results exhibited

substantial data scatter as well. The revealed size effect on the maximum normal
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stress (nominal strength) was in contrast to predictions of local continuum models.

The corresponding simulation data were fitted with the sample diameter, d, in
accordance with size effect law proposed by Bažant, σN / d�1/2. The same effect

was observed for notched specimen as well. It was also demonstrated that the size

effect observed in simulations is intermediate between the strength criterion and the

linear elastic fracture mechanics. In agreement with laboratory tests, the results of

uniaxial tension simulations revealed development of asymmetric response in the

softening region. The spread of cracking and its localization observed experimen-

tally in quasibrittle materials was captured reasonably well.

The extension of this simulation technique was used by Jirásek and Bažant

(1995) to determine relationship between the macroscopic failure properties (the

fracture energy and the size of the effective process zone) and the statistics of

microscopic properties (such as microstrength, microductility, and average

interparticle distance of particle links). These simulation results revealed that

realistic modeling, especially under far-field compression loading conditions,

required the lattice elements to be capable of not only central interactions but

also shear (angular) interactions.

Vogel et al. (2005) utilized a topologically and geometrically ordered lattice

with the interparticle interactions based on Hookean springs with randomly sam-

pled finite tensile strength. Thus, each node of triangular lattice was connected to all

six first neighbors (the coordination number z ¼ 6), each link had an equal equi-

librium length and spring constant, while the microstrength was defined by random

sampling of the link rupture strains from a normal distribution. The model aimed to

capture the underlying physical processes involved in the clay soil crack formation

in the course of desiccation. The corresponding load was due to slow contraction of

the sample as a result of water evaporation.

The shrinkage of a pseudo 2D clay surface due to desiccation was simulated by

successive reduction of the natural spring length that caused contracting forces and

increase of total energy in the lattice. As soon as the strain between two consecutive

Fig. 3 The α-model of Bažant et al. (1990): (a) Particles and truss parameters and (b) constitutive

law for the binding matrix
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nodes reached the critical value, the spring ruptured and the corresponding released

strain energy had to be redistributed among the adjacent links in the system

transition toward the new equilibrium state. The change in nodal position depended

on the total force exerted on the node but the node moved only if the nodal force

exceeded a static adhesion limit. Heterogeneity was introduced into the system

through the random sampling of the spring rupture strain from a Gaussian proba-

bility distribution N ecr, σ2ð Þ . Thus, the model parameters were the mean critical

strain ecr, its variance σ
2, and the friction μ.

An additional parameter results from iterative relaxation of the lattice, which

was the maximum number of iterations, nit, performed after each spring rupture.

Depending on the nit, the lattice might not be relaxed completely prior to the

breakage of the next spring. Thus, the relaxation parameter was more than just an

arbitrarily selected simulation parameter since it may be related to the speed of

desiccation. Vogel et al. (2005) claimed that nit might be interpreted as a dimen-

sionless quantity relating the characteristic times of external forcing, text, to the

characteristic times of the internal dynamics tint by nit ¼ text/tint.
The presented triangular α-model reproduced prominent features of the

nonlinear dynamics of the desiccated clay crack network development observable

in nature such as characteristic aggregate shapes and angles of bifurcations (Fig. 4).

The authors quantitatively verified that the model reproduced both the characteris-

tic features of natural crack patterns and the characteristic pattern evolution

dynamics. The model parameters could be related to physical properties of the

material and to the boundary conditions during shrinkage by desiccation and crack

formation.

Topin et al. (2007) used discretization based on a sub-particle triangular α-model

to analyze strength and damage behavior of cemented granular materials as a

function of the matrix volume fraction (structural parameter) and the

particle–matrix adhesion (material parameter). The objective was to elucidate

roles of those parameters for breaking characteristics (stiffness, tensile strength),

damage growth (stiffness degradation, particle fracture), and stress transmission

(statistical distributions, phase stresses).

This α-model consisted of linear elastic–brittle springs defined by a spring

constant and a rupture-force threshold. The high connectivity of the lattice nodes

ensured global resistance in shear and distortion since the springs transmitted only

normal forces. There were five distinct link types representing three bulk phases

(granule, matrix, and void) and two interface phases (granule–granule and

granule–matrix). The lattice with free lateral boundaries was loaded alternatively

in uniaxial tension and compression by displacement application on the upper

sample edge.

The stress–strain curves revealed the expected asymmetry between tension and

compression, related to existence of preexisting “fabrication” damage (reflected by

non-cohesive interparticle contacts – bare contacts). The post-peak behavior was

characterized by nonlinear propagation of the main crack and the progressive

reduction of the effective stiffness due to the damage accumulation in the
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heterogeneous material. Maps of vertical stress fields in tension and compression

were used to study the effect of jamming of the particles that resulted in stress

concentration along particle chains (jammed backbone). Influence of the volume

fraction of binding matrix on the effective stiffness in tension and compression was

discussed and the model results were compared with the Mori–Tanaka theoretical

predictions for the effective stiffness of three-phase composite. It was shown that

effective stiffness in tension increases linearly with the matrix volume fraction due

to the space-filling role and disappearance of bare contacts (voids). The surface and

bulk effects of binding matrix (reflecting the reduction of bare contacts and

porosity, respectively) were discussed.

The crack patterns in tension and compression (Fig. 5) in the neighborhood of

the homogeneous–heterogeneous damage phase transition revealed diffuse and

localized cracking occurring mostly in pre-peak and post-peak regimes, respec-

tively. Since the particle–matrix interfacial strength was inferior in comparison

with the individual particle and matrix strengths, the cracking almost traced particle

Fig. 4 Damage patterns obtained for various critical microstrain data dispersions (σ2), nodal
frictions (μ), and relaxation intensities (nit) (Reprinted from Vogel et al. 2005 with permission

from Elsevier)
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contours. The evolution of the main crack was abrupt in tension and practically

perpendicular to the applied load direction; in compression the main cracking paths

were inclined and thicker and involve secondary crack branches. It can be observed

in Fig. 5 that the lattice geometry controlled crack propagation and the damage

maps reflected the regular structure of the underlying lattice. The damage evolution

was accompanied by stiffness degradation that could be observed in stress–strain

curves.

The abrupt effective stiffness degradation in tension was vividly contrasted to

the more progressive nature of damage evolution in compression, which reflected

distinction in the nature of damage accumulation and cracking patterns. The authors

found that the matrix volume fraction and the particle–matrix adherence played

nearly the same role in the tensile strength of cemented granular materials. On the

other hand, the two parameters controlled differently the damage characteristics as

reflected by the fraction of broken bonds in the particle phase just after the sample

failure (Fig. 6).

Fig. 5 Damage pattern: (a) tension and (b) compression (Topin et al. 2007)

Fig. 6 Evolution of the

fraction of broken bonds in

the particle phase for (1) σpm/
σ[p] ¼ 0.6 and ρm ¼ 0.08; (2)
σpm/σ[p] ¼ 1and ρm ¼ 0.08;

and (3) σpm/σ[p] ¼ 1 and

ρm ¼ 0.18 (Topin et al. 2007)
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The authors observed that a bilinear boundary limited the parametric space in

which particle damage occurred. Thus, for that range of parametric values, the

cracks propagated either in matrix or along interface. According to Fig. 7b, the

particle damage was more sensitive to interphase strength than to the matrix volume

fraction. It was also noted that that the matrix volume fraction ρm ¼ 0.12,

representing the limit of influence on nb, reflected the percolation threshold of the

binding matrix, with particles covered entirely except at the bare contacts. Finally,

the authors suggested that the particle damage limit was controlled by a single

parameter: the relative toughness of the particle–matrix interface.

Hou (2007) improved the triangular spring network with central interactions and

hexagonal unit cell by introducing large-strain elasticity into the modeling frame-

work. The large-strain α-model was used to simulate several representative prob-

lems of large-strain elasticity: a square planar sample under uniform uniaxial

tension, a wedge loaded in tension by a force, and a planar sample with a

preexisting crack under mode I loading. The comparison between analytical and

lattice simulation results revealed an exceptional agreement and also demonstrated

that the large-strain lattice model can capture large deformation singularity

rather well.

Assumed failure criterion was used to describe the fracture process of large-

strain elasticity and large-strain composite. As the lattice deformation increased,

the individual bond extensions increased as well until rupture criterion was met in

one or a few springs, which was/were then removed from the network. The spring

rupture criterion could be defined in many ways, e.g., in terms of the critical values

fb ¼ fcr, eb ¼ ecr, Eb ¼ Ecr (14)

of spring: force, extension, and strain energy, respectively. The author opted for the

link strength criterion (14)1. This process progressed until the lattice loosed

completely the load carrying capability (cracked percolation). Two edge-crack

mode I loading configurations were simulated until global large-strain failure.

Fig. 7 Parametric maps of: (a) tensile strength and (b) fraction of broken particle bonds at

macrofailure in the particle–matrix adherence versus the matrix volume fraction space (Topin

et al. 2007)
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Rational Models of Brittle Materials
Rational models of damage that connect microstructural material properties to

overall macroscale properties by means of “exact” constitutive models (as closed-

form solutions, where possible) are very desirable for scientific and technological

purposes, albeit usually available only for 1D mechanical systems such as fiber

bundle models (e.g., Rinaldi 2011a; Phoenix and Beyerlein 2000). Lattices provide

a powerful option to address rational approaches to damage in real materials with

heterogeneous microstructures, which represent an inherently more complex and

higher-dimensional problem. One such 2D α-model lattice is discussed next in

some details (after Rinaldi and Lai (2007) and Rinaldi (2009)).

Let us consider the perfect central-force triangular lattice (Fig. 2a) with links

of equal stiffness k and length ‘o. To introduce some mechanical disorder, suppose

further that each b-th link breaks irreversibly at a tensile critical strain e�(b) ¼ u(b)/‘o
(Eq. 14)2. For the results reported herein, simulation parameters were k ¼ 100, ‘o ¼ 1,

and e�(b) randomly sampled from a uniform distribution in the interval [0, 10�2].

On the macroscale, the stress–strain response of this quasibrittle system under

tensile loading (or equivalently uniaxial compression) is expressed after

L. Kachanov’s relation in scalar form as

σ ¼ K0 1� D eMAXð Þ� �
e (15)

which accounts for the (permanent) loss of secant stiffnessΔK0 ¼ K0 � D associated

with the cracking process. The parameter K0 is the secant stiffness in the pristine

state and the damage process is measured by the scalar macroscopic damage

parameter D ranging from 0 (pristine state) to 1 (failure). Assuming no damage

healing, D is a nondecreasing function of applied strain and, thus, depends on the

maximum tensile strain eMAX tð Þ reached at time t, such that

eMAX tð Þ ¼ max e t0ð Þ, 8t0 � tf g and D ¼
ðeMAX

0

dD eð Þ: (16)

Correspondingly, the strain energy computed from the “top” is

U eð Þ ¼ 1

2
σ e ¼ 1

2
K0 1� D eMAXð Þ� �

e2: (17)

To solve this problem for a given loading history,Dmust be computed and linked

to the microcracking process in the microstructure. From the knowledge of micro-

structure and full field microstrains, the strain energy of the lattice can in fact be

recomputed from the “bottom” by summing all unbroken links over all unit cells as

U eð Þ ¼
XCells 1

2

XNb

b

ku � uð Þ bð Þ
 !

: (18)

Brittle damage evolves from two types of dissipative events, either an individual

rupture or an avalanche, i.e., a cascade of distinct individual ruptures initiated at a
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random value e (Rinaldi and Lai 2007). When one spring is suppressed, it entirely

releases its stored energy ΔU1

ΔU1 ¼ 1

2
k e�ð Þ2 (19)

and causes a macroscale loss of strain energy

ΔU eð Þ ¼ 1

2
K0ΔD eð Þe2 ¼ 1

2
ΔK eð Þe2 (20)

that is equal or greater than ΔU1 and reflects cooperative phenomena, snapback

instability (for an avalanche), and load redistribution within the lattice. Such an

effect can be conveyed by a “redistribution parameter”

ηp ¼
ΔU � ΔU1

ΔU1

(21)

which is always ηp > �1 and is null only when there is no redistribution effect

(as in many 1D models). Then D eð Þ is obtained from Eqs. 16, 17, 18, 19, and 20 by

summing normalized stiffness decrements ΔKp from each microcrack

D eð Þ ¼

Xn eð Þ

p¼1

ΔKp

K0

¼ k

K0

‘0
L

	 
2Xn eð Þ

p¼1

1þ ηp
� � e�p

e�

	 
2

: (22)

This stochastic model requires the three random input parameters {ep�, ηp, np} –
three distinct sources of variability:

• e�p eð Þ , the critical strain of the spring failing at e , linking the macroscale

kinematics to the microscale kinematics and depending on the chosen sampling

distribution

• ηp eð Þ, the redistribution parameter related to the local load redistribution capa-

bility of the microstructure and to snapback effects (for an avalanche)

• np eð Þ, the number of broken links

This rational model renders an “exact” estimate of the lattice response to a

uniaxial loading but requires {e�p , ηp , np} to be known.

If the springs are partitioned by orientation θ ¼ {0, 60�, �60�}, damage can be

conveniently broken down in a “spectral form”

D eð Þ ¼ D1 eð Þ þ D2 eð Þ þ D3 eð Þ ¼ k

K0

‘0
L

	 
2X3
j¼1

Xnj eð Þ

p¼1

1þ ηp
� � e�p

e�

	 
2

: (23)

For validation sake, Fig. 8 displays input and output data, i.e., {e�p , ηp , np } and

σ;D
� �

respectively, from the simulation of a random lattice under tensile test,
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making self-evident the random nature of input data in Eq. 23. The data markers

{�, O, ∇} for θ ¼ {0, 60�,�60�} highlight differences in damage process between

different orientations.

The output data plotted aside on the right-hand side display the stress response

estimated from Eq. 15 marked by “�”, which overlaps the actual stress–strain curve
from simulation (solid bold line) such that the two data series are indeed indistin-

guishable (i.e., zero error as expected in a rational theory). The “staircase” damage

function D eð Þ (solid bold line) with components Di eð Þ from solid line with markers

is also shown.

Fig. 8 Input (left) and output (right) data from a lattice simulation under tension (Rinaldi and

Placidi 2013)
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This example clarifies thatD eð Þ (the measure of the global effect of microcracks)
and n eð Þ (the number of microcracks) are related in an intricate manner in the lattice

and most real materials, such that their increments are linked as

ΔDp eð Þ ¼ wp eð ÞΔn eð Þ read Δn ¼ 1ð Þ (24)

by means of a stochastic weight function

wp eð Þ ¼ c 1þ ηp
� � e�p

e�

	 
2

, c ¼ k=K0 ‘0=Lð Þ2: (25)

When comparing the 2D lattice to the corresponding 1D parallel fiber bundle

model, the constitutive model differs only in the definition of D eð Þ

D eð Þ ¼
ðe
0

pf eð Þde ¼ n eð Þ
N

(26)

where D / n eð Þ and the weight function (25)1 reduces to a constant wp ¼ 1=N due

to the absence of between-links interaction that allows analytical computation of

D from the sole knowledge of the distribution of critical strains pf (e) (Rinaldi
2011a, b).

In the lattice case, the knowledge of its rational damagemodel (22) is a significant

advance as it enables the derivation of several physically based approximate con-

tinuum solutions from the analysis of the input random fields. The potential of this

bottom-up approach has been discussed in the original papers as well as in subse-

quent work dedicated to equivalent continuum models, both of first order (Rinaldi

2013) and second order (Misra and Chang 1993; Alibert et al. 2003; Rinaldi and

Placidi 2013). Figure 9 displays the first-order continuum model for the case in

Fig. 8, obtained by estimating the damage parameter with regression functions and

deducing the (macro) Helmholtz function matching the microscale physics.

Fig. 9 (left) Regression approximation of exact damage components from spectral decomposition

in Fig. 8 (right). Comparison of resulting equivalent first-order damage model versus simulation

data (Rinaldi 2013)
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The theory can be generalized from the 2D α-model to real quasibrittle materials

as it fully captures the fundamental physics of the damage nucleation and evolution

of real systems. Statistical models such as Eq. 22 have the potential for engineering

application, for example, in conjunction to acoustic emission tests for health

monitoring. A connection with the diverse approaches to deal with size effects

(e.g., Rinaldi et al. 2006, 2007) from the next chapter also has to be developed for

this purpose.

Lattices with Central and Angular Interactions (a–b Models)

The lattice with central and angular interactions is developed by augmenting of the

α-model by angular springs acting between contiguous bonds incident into the same

particle (Ostoja-Starzewski 2002; Wang et al. 2009a).

Triangular α–β model is discussed in detail by Kale and Ostoja-Starzewski in

this handbook.

Square Lattice with Central and Angular Interactions

For the square α–β model, the particle at the center of the square unit cell interacts

with four first neighbors and four second (diagonal) neighbors, whose half-length

spring constants are αI and αII, respectively. The volume of square unit cell is

V ¼ 4l2. The bond angles θ(b) and corresponding unit vectors n(b) are

αI bð Þ ¼ αI, θI bð Þ ¼ b� 1ð Þ π
2
, nI bð Þ ¼ cos θI bð Þ, sin θI bð Þ

� �
, b ¼ 1, 2, 3, 4

αI bð Þ ¼ αI, θII bð Þ ¼ 2b� 9ð Þ π
4
, nII bð Þ ¼ cos θII bð Þ, sin θII bð Þ

� �
, b ¼ 5, 6, 7, 8: (27)

For the sake of simplicity the spring constants of all bonds are, henceforth,

assumed to be αI(b) ¼ αI, αII(b) ¼ αII, and β(b) ¼ β.
After performing the derivation process analogous to the one outlined in section

“Triangular Lattice with First and Second Neighbor Central Interactions,” the

nonzero components of the effective stiffness tensor are obtained as follows:

C1111 ¼ C2222 ¼ 1

2
αI þ αII ¼ E

1� υ2

C1122 ¼ C2211 ¼ αII ¼ Eυ

1� υ2
, C1212 ¼ αII þ β

l2
¼ E

2 1þ υð Þ : (28)

Expressions (28) indicate that the angular interactions affect only the shear

modulus (C1212). The Poisson’s ratio range is, consequently, extended due to the

effect of angular springs on the shear modulus. Thus, the spring constants are
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αI ¼ 2E

1þ υ
, αII ¼ Eυ

1� υ2
, β ¼ 1� 3υð ÞEl2

2 1� υ2ð Þ : (29)

By definition, the plane-strain elasticity coefficients are

E ¼ αI

2

αI þ 4αII

αI þ 2αII

	 

, υ ¼ C1122

C1111

¼ 2αII

αI þ 2αII
: (30)

Expressions (28) and (29) indicate the complete range of Poisson’s ratio �1 <
υ � 1/3 is identical to that obtained for the triangular α–β model. Substitution of

Eqs. 29 and 23 into the preceding inequality yields a restricted range of the axial

and diagonal α-spring ratios αII/αI � 1/4, which is an extension of the

corresponding requirement physically imposed on the rectangular lattices with

central interactions.

Examples of Applications of Lattices with Central and Angular
Interactions

Grah et al. (1996) provided an illustrative example of thoughtful application of the

triangular lattice with central and angular interactions by simulating brittle

intergranular fracture of gallium embrittled sheets of polycrystalline aluminum.

The authors both manufactured aluminum sheets and performed quasistatic biaxial

tension test in order to have experimental data for lattice model validation. The

computation domain was discretized by a geometrically ordered triangular lattice

on the sub-grain scale. The axial-spring constants and strengths were assigned

depending on their location within the sample, that is, according to the grain that

given bonds were associated with in comparison with actual micrographs. The

interface bonds (that straddle the boundary of two crystals) have their axial-spring

constants assigned in accordance with the serial spring connection rule, weighted

by their respective partial lengths

α ¼ l1
lα1

þ l2
lα2

	 
�1

, l ¼ l1 þ l2: (31)

The strength reduction factor of 0.01 was applied to each interface α-spring to

account for the preferential gallium embrittlement along the grain boundaries.

Assignment of angular spring constants naturally did not present such complexities.

The rectangular lattices was loaded quasistatically in biaxial tension by applying

the controlled displacement ui ¼ eij xj ¼ eδij xj on each boundary node, defined in

terms of macroscopic strain eij ¼ eδij (δ is the Kronecker symbol). Thus, all

boundaries experienced only mode I loading prior to sample failure. As the lattice

deformation increased, the individual link extensions increased as well until critical

link force criterion (14)1 was met in some link, which was then removed from the

network. The load increase by Δeij was conducted first by unloading the entire
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lattice and then reloading it by eij þ Δeij. The process was repeated until the damage

percolated the lattice and global failure took place (cracked percolation).

Computer simulations of biaxial loading of 2D sample of a brittle polycrystal

with inferior grain boundary strength produced cracking patterns that matched very

well to the one obtained from the actual experiments. The departures from the

experimental results were discussed in detail.

Tsubota et al. (2006) used computer simulations of discontinua to investigate the

red blood cell (RBC) microcirculation in viscous plasma. The triangular spring

network with central and angular interactions was used to model deformable RBC

membrane. The α–βmodel (extended subsequently to 3D problems by Tsubota and

Wada (2010)) consisted of RBC membrane particles with central and angular

interaction representing elastic response of the membrane structure during incom-

pressible viscous flow. The relevant parameter whose effect on the blood flow in

microcirculation was investigated was hematocrit (Hct), defined as the volumetric

ratio of RBCs to whole blood, which influences greatly the blood rheological

characteristics. The Hct effect on blood flow resistance was of obvious interest as

well as the mechanical factors, such as the deformation and shape of RBC, and

mechanical interaction of RBCs and plasma.

The total elastic strain energy of the RBC membrane was

E ¼ Eα þ Eβ ¼ 1

2
α
X

λ� 1ð Þ2 þ 1

2
β
X

tan 2 θ � θ0
2

	 

(32)

where α and β were the axial and angular spring constants, respectively, λ ¼ l/l0 the
bond stretch ratio, and θ and θ0 the current and initial angles between consecutive

bonds. Based on the principle of virtual work, the force acting on the RBC mem-

brane particle i was Fi ¼ �@E/@ri where ri designated the particle position vector.

Figure 10a presents the definition of a deformation index, e, and schematics of

time history of its mean value, eM, for four different Hct values. The curves show

Fig. 10 Schematics of change of (a) the deformation index in middle part of flow channel, eM, for
four Hct values (0.1, 0.3, 0.4, 0.49), and (b) the average value of deformation index, εM, over the time

interval t/T0� [1, 3] (i.e., the upper plateau) as function of Hct (Sketched after Tsubota et al. 2006).

The characteristic time used for normalization was T0 ¼ v0/L, where v0 ¼ 0.011 m/s was a constant

uniform velocity at the capillary channel inlet, while L ¼ 90 μm was the capillary length
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that eM monotonically increased until an upper plateau was reached at a

Hct-dependent saturation time. The effect of Hct on the average eM value over

the time interval t/T0� [1, 3] (illustrated schematically by the upper plateaus in

Fig. 10a) is depicted by Fig. 10b. The results obtained by the spring network model

agreed very well with in vitro experimental observation. The authors illustrated the

time history of RBC membrane shape change as function of Hct.

A similar elastic spring model was applied by Wang et al. (2009b) to investigate

the skeletal structure of the RBC membrane and to study the dynamical behaviors

of the RBC aggregates in microchannels.

Lattices with Beam Interactions

The beam network model is an upgrade of the spring network α-model obtained

by substituting 1D structural elements capable of transferring only axial force

with structural elements that can also transfer shear forces and bending moments.

The following abbreviated discussion of beam networks is based primarily

on papers by Ostoja-Starzewski (2002), Karihaloo et al. (2003), and Liu

et al. (2008).

Triangular Bernoulli–Euler Beam Lattice

Bernoulli–Euler beams that transfer normal forces, shear forces, and bending

moments are employed conventionally in beam lattice models to simulate the

fracture process in concrete (e.g., Schlangen and Garboczi 1997; van Mier 1997;

Lilliu and van Mier 2003). The kinematics of a beam network is described by three

linear functions defining two displacement components and rotations at the network

nodes. Highlights of the detailed analysis available in Ostoja-Starzewski (2002) are

presented herein.

The elementary beam theory implies that the force–displacement and

moment–rotation relations for each beam (b) are

F bð Þ ¼ E bð ÞA bð Þγ bð Þ, Q bð Þ ¼ 12E bð ÞI bð Þ

L bð Þ� �2 eγ bð Þ, M bð Þ ¼ E bð ÞI bð Þκ bð Þ (33)

where the unit cell beams have the same geometrical properties: length L(b) and
rectangular cross section h(b) � t(b), characterized by the area A(b) and the

centroidal moment of inertia I(b). The average axial strain, γ(b), and the difference

between the rotation angle of the beam chord and the rotation of its end node, eγ bð Þ,
are kinematic parameters defined with respect to the average axial strain in the half-

beam in the lattice cell. The difference between the angles of rotation of beam ends,

κ(b), is defined by its curvature.
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This triangular Bernoulli–Euler beam lattice is an isotropic micropolar contin-

uum with strain energy

Ucontinuum ¼ V

2
γij Cijkl γkl þ

V

2
κi Dij κj: (34)

The equivalence of the strain energies in Eq. 1 for the triangular beam lattice

made of equal beams (L(b) ¼ L, t(b) ¼ t, h(b) ¼ h, A(b) ¼ A, I(b) ¼ I) leads to

C1111 ¼ C2222 ¼ 3

8
3Rþ ~R
� �

, C1122 ¼ C2211 ¼ 3

8
R� ~R
� �

, C1212 ¼ 3

8
Rþ 3~R
� �

,

C1221 ¼ C2112 ¼ 3

8
R� ~R
� �

, C2121 ¼ 3

8
Rþ 3~R
� �

, D11 ¼ D22 ¼ 3

8
S

(35)

where zero stiffness components are omitted while

R ¼ 2E bð ÞA
L
ffiffiffi
3

p , ~R ¼ 24E bð ÞI
L3

ffiffiffi
3

p , S ¼ 2E bð ÞI
L
ffiffiffi
3

p : (36)

Consequently, the effective modulus of elasticity and Poisson’s ratio are

written as

E ¼ 2
ffiffiffi
3

p
E bð Þ t bð Þ h

L

	 

1þ h=Lð Þ2
3þ h=Lð Þ2
" #

, υ ¼ 1� h=Lð Þ2
3þ h=Lð Þ2 (37)

The similar derivation for the square Bernoulli–Euler beam lattice reveals that it

represents an orthotropic micropolar continuum unsuitable to model isotropic

continuum (Ostoja-Starzewski 2002).

Triangular Timoshenko Beam Lattice

In the Timoshenko beam theory only the shear force

Q bð Þ ¼ 12E bð ÞI bð Þ

1þ ςð Þ L bð Þ� �3 L bð Þeγ bð Þ, ς ¼ 12E bð ÞI bð Þ

G bð Þ ~A bð Þ
L bð Þ� �2 ¼ E bð Þ

G bð Þ h (38)

and the corresponding displacement L bð Þeγ bð Þ differ from the Bernoulli–Euler

formulation, while the normal force–displacement and moment–rotation relations

(33)1,3 are identical. In Eq. 38, ζ is the dimensionless parameter defined by the ratio

of bending to shear stiffness. Bernoulli–Euler beam is recovered for very large

shear stiffness and the slender beam since ζ ! 0.
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The equivalence of the strain energies in Eq. 1 for the triangular lattice yields the

same Bernoulli–Euler beam expressions (35, 36) except that

~R
bð Þ ¼ 24E bð ÞI

L3
ffiffiffi
3

p 1

1þ ςð Þ (39)

assuming all unit cell beams have the same dimensions (L(b) ¼ L, etc.).
Following the same steps, the nonzero stiffness components are

C1111 ¼ C2222 ¼ 3

8
3Rþ ~R
� �

, C1212 ¼ 3

8
Rþ 3~R
� �

, C1122 ¼ C2211 ¼ 3

8
R� ~R
� �

,

C1221 ¼ C2112 ¼ 3

8
R� ~R
� �

, C2121 ¼ 3

8
Rþ 3~R
� �

, D11 ¼ D22 ¼ 3

8
S (40)

while the effective modulus of elasticity and the Poisson’s ratio are

E ¼ 2
ffiffiffi
3

p
E bð Þ t bð Þ h

L

	 

1þ h=Lð Þ2= 1þ ζð Þ
3þ h=Lð Þ2= 1þ ζð Þ

 !
, υ ¼ 1� h=Lð Þ2= 1þ ζð Þ

3þ h=Lð Þ2= 1þ ζð Þ : (41)

Computer Implementation Procedure for Beam Lattices

Fracture process in beam lattice models is simulated by performing a linear elastic

analysis under prescribed loading and removing from the network all beam ele-

ments that satisfy a predefined rupture criterion. Normal forces, shear forces, and

moments are calculated using one of the beam theories. The global stiffness matrix

is constructed for the entire lattice; its inverse matrix is calculated and then

multiplied with the load vector to obtain the displacement vector. The heterogeneity

of the material is taken into account by assigning different strengths to beams (e.g.,

using a Gaussian or Weibull distribution) or by assuming random dimensions of

beams and random geometry of the lattice mesh or by mapping of different material

properties to beams corresponding to the cement matrix, aggregate, and interface

zones, respectively, in the case of concrete. To obtain aggregate overlay in the

lattice, a Fuller curve is usually chosen for the distribution of grains. The beam

length in concrete should be less than lb < dmin (where dmin is the minimum

aggregate diameter).

Beam models can reproduce complex macroscopic damage patterns by cumu-

lative effect of microcracking, crack branching, crack tortuosity, and bridging.

They can also capture a size effect (e.g., Vidya Sagar 2004). The advantages of

this approach are simplicity and a direct insight in the fracture process on the level

of the microstructure. By applying an elastic-purely brittle local fracture law at the

beam level, global softening behavior is observed. The main disadvantages of the

conventional beam lattice model are the following: the results depend on the beam
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size and direction of loading, the response of the material is too brittle (due to the

assumed brittleness of single beams), the compressed beam elements overlap each

other, and an extreme computational effort on the macrostructural level is needed.

The first disadvantage can be removed by assuming a heterogeneous structure

(Schlangen and Garboczi 1997). In turn, the second drawback can be mollified by

3D calculations and consideration of very small particles (Lilliu and vanMier 2003)

and by applying a nonlocal approach in calculations of beam deformations

(Schlangen and Garboczi 1997).

Examples of Applications of Lattices with Beam Interactions

Schlangen and Garboczi (1996, 1997) compared model techniques used in lattice

simulations of random heterogeneous materials. The crack patterns obtained from a

double-edge-crack concrete specimen loaded in shear (Fig. 11a) were compared to

those obtained by numerical simulations with various lattice interaction types and

lattice orientations. A selection of results is reproduced in Fig. 11b–d.

It is important to note that geometrical disorder (heterogeneity) was not

implemented in the lattice models to emphasize the ability of the particular element

type to describe continuum fracture. With reference to Fig. 11, the beam elements

(Fig. 11d) were clearly superior to the two spring network interactions in capturing

the experimentally observed complex crack pattern (Fig. 11a) in the absence of the
model geometrical disorder. Nonetheless, it was obvious that the cracked patterns

even in this case (Fig. 11d) revealed the mesh bias unavoidable in geometrically

ordered lattices.

The comparison of simulated crack patterns, with four homogeneous lattices

developed with square mesh, two differently oriented triangular meshes, and

random triangular mesh, demonstrated expected superiority of the last type to

capture the crack shape. These results, as well as those of Jirásek and Bažant

(1995), emphasized the importance of lattice geometrical disorder for realistic

simulation of crack propagation. However, geometrically disordered lattices were

generally not homogeneous under uniform straining (Jagota and Bennison 1994).

Schlangen and Garboczi (1996) suggested an approach to obtain an elastically

uniform random network, which involved the iterative refinement of the lattice

element properties. However, the authors expressed the expectation that for the

problems characterized with inherent material randomness directly implemented in

the lattice, the geometrically ordered lattice should exhibit similar crack pattern

resemblance as long as the beam length was small compared to the textural length

scale. The effect of the lattice resolution was also investigated and it was found that

while the crack pattern was not strongly affected by the size of the beams, the

load–crack opening curve was affected in much the same way as the effect of mesh

refinement in local strain-softening models: the finer the lattice, the smaller the

inelastic displacement and the dissipated energy (Cusatis et al. 2003).
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Schlangen and Garboczi proposed a new fracture law that used the maximum

tensile stress in each node – instead of each beam – to address the problem of the

directionality dependence of the lattice fracture stress. The nodal stress was deter-

mined based on the axial and shear contributions of each nodal bond and then used

to determine the maximum normal force plane and corresponding beam area pro-

jections. The effective nodal stress was then determined as this normal force

divided by the projected area and then used as a fracture criterion for each beam.

The methodology had been developed in the same study to implement the

material heterogeneity in a direct way by using scanning electron micrographs

and digital image processing of the microstructure to map different properties to

lattice elements. The beam lattice in which this methodology was applied was

subjected to a few basic loading configurations and realistic crack patterns were

obtained.

Bolander and co-workers (1998, 2000, Bolander and Sukumar 2005) developed

an elastically homogeneous lattice of random geometry to address the cracking

direction bias caused by element-breaking low-energy pathways of regular lattices.

Lattice elements were defined on the edges of the Delaunay tessellation of an

irregular set of points generated in the material domain (Fig. 12a). The dual

Voronoi tessellation was used to scale the elemental stiffness terms, in a manner

that rendered the lattice model elastically homogeneous. This random lattice model

could be viewed as an assemblage of rigid polygonal particles interconnected along

their boundaries by a flexible interface inspired by the rigid-body-spring network

developed by Kawai (1978).

The flexible interface, modeled by a set of discrete springs positioned midway

along each boundary segment, is illustrated in Fig. 12b. Each spring set consisted of

normal, tangential, and rotational springs with their respective stiffness kn, kt, and
kϕ assigned in such a way to approximate the elastic properties of uniform

continuum

Fig. 11 (a) Geometry and crack pattern of concrete plate loaded in shear; crack patterns obtained

by simulation on geometrically ordered triangular lattices with (b) central interactions (see section

on “Triangular Lattice with Central Interactions”), (c) central and angular interaction (see

section on “Square Lattice with Central and Angular Interactions”), and (d) beam interactions

(see section on “Triangular Bernoulli–Euler Beam Lattice”) (Reprinted from Schlangen and

Garboczi (1996) with permission from Elsevier)
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kn ¼ EAIJ=hIJ , kt ¼ kn, kϕ ¼ kn s
2
IJ=12 (42)

where AIJ ¼ sIJt, with t being the thickness of the planar model and E the modulus

of elasticity of material. The assignment of spring constants Eq. 42 was uniquely

defined by the Voronoi diagram to ensure elastically uniform lattice response since

beam cross-sectional areas were scaled in proportion to the length of the common

boundary segment. Notably, the equality of normal and tangential stiffness,

Eq. (42)2, necessary to ensure elastically uniform lattice response (Bolander and

Sukumar 2005), resulted in unrealistic Poisson’s effect.

The elastic formulation of the model and the mesh generation techniques were

described in detail in original papers as well as a number of different fracture

models. The use of fracture model based on the Bažant’s crack-band approach (e.g.,

Bažant and Oh 1983) involved an incremental softening of the lattice elements in

accordance to a predefined traction–displacement rule. Consequently, in contrast to

conventional lattice approach, element rupture was gradual and governed by rules

that provided an energy-conserving representation of fracture through the irregular

lattice. This fracture model was objective with respect to the irregular lattice

geometry: uniform fracture energy was consumed along the crack path regardless

of the mesh geometry (Bolander and Sukumar 2005).

The irregular lattice models of Bolander and co-workers demonstrated ability to

capture cracking patterns quite realistically. The distributed flexural cracking, the

mixed-mode cracking of double-edge-notched plate, the bridge pier cracking under

various design loads, and the fracture of three-point bend specimen were notable

examples of successful applications of this modeling approach as illustrated by a

selection of crack patters presented in Fig. 13. The ability of the model to simulate

load–deformation response in fracture-sensitive simulations (challenging because

of their complex cracks pathways) is illustrated in Fig. 14.

Fig. 12 (a) Irregular Voronoi tessellation of multiphase material and related nodes of dual

Delaney network. (b) Two rigid particles joint by a flexible interface
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Van Mier et al. (2002) investigated the effect of material’s microstructural

stochasticity on load–deformation response and crack patterns under uniaxial

tension. They used the regular triangular lattice comprised of Bernoulli–Euler

beams and the particle overlay method to mimic geometry of three-phase concrete

to estimate the effect of strength and stiffness contrast in the composite.

The particle overlay method appeared to be very successful in realistically captur-

ing complex crack patterns. The progressive damage accumulation was simulated

by subsequent removal of beam elements that satisfy a tensile-strength fracture

criterion

Fig. 13 (a) Experimentally and numerically obtained crack patterns in a bridge pear (Reprinted

from Bolander et al. (2000) with permission from John Wiley and Sons). (b) Crack pattern for

double-edge-notched plate loaded in shear (Reprinted from Bolander and Saito (1998) with

permission from Elsevier). (c) Irregular mesh for simulation fracture in three-point bending test

(reprinted figure with permission from Bolander and Sukumar (2005). Copyright (2005) by the

American Physical Society. http://prb.aps.org/abstract/PRB/v71/i9/e094106)

Fig. 14 Experimentally and numerically obtained (a) load–displacement curves for the bridge

pear test (Fig. 13a) (Reprinted from Bolander et al. (2000) with permission from John Wiley and

Sons) and (b) load–CMOD curves for the three-point bending test (Fig. 13c) (Reprinted figure with

permission from Bolander and Sukumar (2005). Copyright (2005) by the American Physical

Society. http://prb.aps.org/abstract/PRB/v71/i9/e094106)
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σ bð Þ
eff ¼ F bð Þ

A bð Þ � ζ
M

bð Þ
i

 , M bð Þ
j

 � �
max

W bð Þ ¼ fcr (43)

where F(b) was the normal force in the considered beam, M(b) was the bending

moments in the beam element nodes, and A(b) and W(b) were the area of cross

section and the section modulus of the beam, respectively. The scaling coefficient ζ
(selected in their study to be 0.05) was a fitting parameter that regulated which part

of the bending moment was considered (effectively to match the experimentally

observed response). This implied that an energy packageUe
(b) ¼ fcr

2/2Ewas released

at each bond rupture, which resembled the dissipated energy measured by acoustic

emission monitoring. Three different tensile strengths were specified for the three

material phases (aggregate, matrix, and interface; Fig. 1c) whose relative values

were of importance.

The numerical simulation results had been compared to the outcome of simula-

tions where the effects of microstructure were mimicked by assigning random

strength values drawn from Weibull or Gaussian distribution to the regular trian-

gular lattice. The results indicated that strength contrast was more pronounced than

stiffness contrast when the maximum global force was considered and that global

behavior was dominantly driven by damage percolation in the weakest material

phase. The strength of the aggregate–matrix bonding interface and the connectivity

of elements belonging to that phase were determined to be the decisive factor for

the global strength under uniaxial tension. The results from the different Weibull

distribution simulations resembled to a certain extent the failure mode observed in

the more realistic three-phase particle overlay (notably the salient bridging phe-

nomenon). In contrast, the correct cracking response could not be achieved with

Gaussian strength distribution. The failure modes from Gaussian distribution sim-

ulations did not resemble the real fracture behavior observed experimentally in

concrete, regardless of the fact that a large variety in force–deformation curves

could be simulated depending on the choice of the distribution parameters.

In conclusion, the authors advised against the use of statistical strength distri-

butions for simulating concrete response. They also cautioned that the

force–deformation curves cannot be used as a single indicator to judge ability of

a model to capture the fracture behavior of heterogeneous materials. The crack

mechanisms and the ensuing crack patterns were considered salient elements in

such judgments.

Arslan et al. (2002) and Karihaloo et al. (2003) improved in several ways the

regular triangular beam lattice aimed at modeling fracture in particle composites.

First, the aggregate phase remained linearly elastic–ideally brittle, but tension

softening was allowed for the matrix and interface bonds by following the Bažant’s

bilinear stress–strain model outlined in section “Examples of Applications of α
Model” (Fig. 3b). Second, the Timoshenko beam formulation was used to improve

accuracy of interparticle interactions. Finally, the displacement-control simulation

setup, able to account for finite deformations, was applied in attempt to capture the

large deformations and rotations involved in the damage evolution. These changes
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were introduced in effort to address the primary deficiency of the beam lattice

modeling of concrete at that time: the tendency of load–displacement (P–δ) curve to
deviate substantially – regardless of the quite realistic crack patterns – from the

experimentally observed response. Specifically, numerically simulated response

was too discontinuous and brittle as shown in Fig. 15a. (Lilliu and van Mier

(2003) developed a 3D lattice model for concrete to address these outstanding

issues, which resulted in substantial increase of computational effort even for a

relatively small model with pronounced boundary effects.)

Karihaloo and co-workers used an incremental iterative procedure based on the

current secant modulus to account for the tension softening and other nonlinearities.

The longitudinal strain of each beam element was calculated from nodal displace-

ment and checked against the corresponding limit strain

e ¼ 1=Lð Þ uj
1 � ui1

� �
cos θ þ uj

2 � ui2

� �
sin θ þ ϕj � ϕi

 αs h=2ð Þ
h i

¼ ecr (44)

where u1, u2, and ϕ correspond to three nodal degrees of freedom, h is the depth of

nodal element, and αs is the scaling parameter. If a phase is ideally brittle, the

Fig. 15 (a) Experimental and numerical P–δ curves for four-point-shear beams of three different

sizes (Reprinted from Schlangen and van Mier (1992) with permission from Elsevier). (b) P–δ
curves for three cases: (1) no tension softening phase, (2) only matrix is tension softening, and (3)
both matrix and interface are tension softening. (c) Crack patterns corresponding to the end of

softening for the three curves above (1–3), respectively (Reprinted from Karihaloo et al. (2003)

with permission from Elsevier)
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critical strain ecr corresponds to the tensile strength. When a bilinear constitutive

relation is adopted for a phase (e.g., Fig. 3b), ecr ¼ ef.
The typical simulation observations suggested that the difference between phase

properties reduced steepness of load–displacement curve in the softening region. If

the interface was the weakest phase, the deviation from the initially linear P–δ
response marked the onset of substantial interface debonding, commonly related to

stress concentrations. The softening threshold corresponded to the onset of matrix

failure and the dominant macrocrack(s) formation as demonstrated experimentally

by Van Mier and Nooru-Mohamed (1990) by using photoelastic coating.

The introduction of tension softening in the matrix and interface constitutive

laws lead to more diffuse crack patterns (Fig. 15c) and, accordingly, to the more

ductile response (Fig. 15b) in better agreement to the experimental observation for

particle composites.

The inclusion of shear deformation based on Timoshenko beam theory

apparently affected the P–δ response only slightly in contrast to the marked

influence on the crack patterns. The finite deformations influenced substantially

both softening behavior and the crack patterns. It exhibited a tendency of reduction

of the softening response steepness as well as the number of the ruptured beam

element.

Liu and co-workers (2007, 2008) developed a generalized-beam (GB) lattice

model to mollify the problem of computational effort in the standard beam lattice

approaches. The three-phase material structure was projected directly on top of the

regular GB triangular lattice (Fig. 16a) with aggregate centers lying on lattice nodes

and GB elements being a two-node and three-phase elements as depicted in Fig. 16.

Every phase of the GB element is represented by a Timoshenko beam of equivalent

properties; if a hexagonal unit cell did not contain an aggregate, it was still formally

composed of three beam types with identical equivalent properties. The three

beams of the GB element were assumed to cling firmly together so that the

Fig. 16 The geometry of a GB lattice representing three-phase composite structure: (a) an

particle overlay on GB lattice and a hexagonal unit cell of a triangular aggregate/matrix GB

lattice, and (b) a composite GB element formed by the aggregate beam (i–I), the interface beam

(I–J), and the matrix beam (J–j)
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displacements of two ends of the middle beam were completely determined by the

two nodes of the GB element.

Matrix and aggregate beams were described by Timoshenko beam theory while

the interface beams were defined in accordance with Appendix A of Bolander and

Saito (1998). The composition of stiffness matrix of the GB element and parameter

calibration of the corresponding lattice were presented in detail by Liu et al. (2007,

2008). The algorithm of quasistatic problem solution was essentially unchanged:

fracture was simulated by subsequent removal of GB elements that satisfied the

rupture criterion bearing in mind that rupture criticalities of three beams in each

element were judged independently.

The rupture criterion used by Liu et al. (2007, 2008) was based on the maximum

tensile stress. On the other hand, numerical representation of element rupture events

in planar networks simulating the failure of paper (Liu et al. 2010) included also the

maximum shearing stress criterion:

τj j ¼ qj j=Ab ¼ τcr (45)

where Ab is the intersecting (bond) area of two consecutive fibers and q is the

corresponding sheering interaction.

Fig. 17 (a) The P–δ curve and (b) the cumulative number of failed beams versus dimensionless

displacement. (c) Three post-peak crack patterns at points c, d, and f, respectively (Reprinted from
Liu et al. (2007) with permission from Elsevier)
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The representative set of simulation results corresponding to the uniaxial tension

test were presented in Fig. 17. The P–δ curve revealed two response regimes and a

number of typical states along the loading path. The corresponding time histories of

ruptured matrix and interface beams were depicted in Fig. 17b, while two charac-

teristic snapshots corresponding to softening phase were illustrated in Fig. 17c, d.

Liu et al. (2008) were among first to propose dynamic beam lattice analysis

using the central difference technique. The corresponding dynamic approach to the

brittle fracture simulation was described and illustrated for four loading rates in the

range log _e� �3, 0½ 	 and compared with the quasistatic simulation results. This

fracture process simulation by the dynamic procedure required a substantial

increase of computational effort. The obtained simulation results demonstrated

that while the inertial effects abated progressively with the loading rate reduction,

the inertial effects due to the unstable crack propagation remained considerable

even at the lowest loading rates. This observation raised the issue of the appropri-

ateness of the common disregard of inertial effects in quasistatic analyses.

Khoei and Pourmatin (2011) developed a dynamic mesoscale model based on

Timoshenko beam theory to investigate the dynamic response of three-phase inho-

mogeneous material. The dynamic analysis was performed using the Newmark’s

average acceleration technique. The aggregate distribution within the lattice

model was generated based on their distribution within the network in a

decelerating manner. The axial strain criterion, Eq. 44, was utilized for the beam

element rupture.

Two experiments were used to illustrate the model capabilities in simulating the

crack propagation in concrete: the simple uniaxial tensile (mode I) test and the

double-edge-notched (mixed I and II modes) panel specimen. The crack patterns

and P–δ curves were presented and discussed.

Conclusion

The survey of about 30 years of work, from the mid-1980s to present, highlights that

lattice and DEMmodels (the later reviewed briefly in the next essay of this handbook)

have evolved into a significant companion, if not alternative, to continuummodels and

traditional micromechanics. There is no reason to believe that this trend will stop

anytime soon considering an increasing reliance on large computations to perform

“virtual experiments” in structural and materials research and engineering.

These types of “discontinua-based models” enable the investigation of fracture

problems by a unique bottom-up perspective, i.e., starting from physical behavior on

a finer scale, to deduce the macroscale response as an outcome. In this regard, they

do not supersede top-down continuum approaches or analytical modeling, but rather

offer a complementary strategy to be used in a synergy with them for the purpose of

controlling complex behaviors and complexmaterials. The rational model presented

for the spring lattice is emblematic in this respect, with potentially far reaching

consequences in addressing random fracture initiation and self-organized propaga-

tion problems typical of ceramics and ceramic matrix composites.
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The possibility to use springs, trusses, beams or any special and fancy elements

makes lattice models a tool to be customized at will and in virtually unlimited ways.

Such tailorability is an unparalleled advantage for modeling and designing exotic

and complex systems necessitated by modern engineering. Sure enough, discrete

models have yet a long path ahead to become full-blown quantitative engineering

tools but will certainly benefit from the boost due to innovative experimental

techniques (discussed in detailed elsewhere in this handbook) and emerging novel

size-confined materials for nanotechnology.
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Damage in Crystalline Metals and Alloys
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Abstract

This chapter provides the basic and necessary elements concerning the anisot-

ropy induced by damage. Moreover, local mechanism effect on the damaged

behavior will be demonstrated leading to exceed the scope of this chapter. So, it

is convenient to present, discuss, and analyze these subjects. Understanding

some physical phenomena related to plasticity and damage is important in

modeling. Hence, the main objective is to describe accurately the overall cyclic

plasticity behavior coupled with damage via constitutive relations.

A. Abdul-Latif (*)
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A micromechanical model of damage initiation in low-cycle fatigue will be

presented for describing notably the damage deactivation effect. Actually, it is

considered that the damage is active only if microcracks are open, while damage

affects the mechanical properties of polycrystals during its closure (inactive

phase) differently. With the small strain assumption, the plastic strain and

local damage variables are examined at the crystallographic slip system scale.

The anisotropic damaged behavior, induced by activation/deactivation phenom-

enon, is modeled using a fourth-order damage tensor at the overall scale.

Accordingly, the overall nonlinear behavior, notably the deactivation phase

due to the microcrack closure under complex cyclic loadings, is of particular

interest in this chapter.

Introduction

The excellent knowledge of used polycrystalline materials is always required.

Consequently, it is necessary to understand their mechanical behavior through the

related microstructures and their impact on such a behavior. The nonlinearity of

material behavior is generally induced by plasticity and damage mechanics. Ductile

polycrystalline materials usually fail as a result of nucleation, growth, and coales-

cence of microcracks and/or microvoids. Experimental observations show that the

accumulation of microcracks and/or microvoids has a tendency to form a localized

damage, due to plastic strain localization up to the final failure of structure. In fact,

in several metallic materials, the kinematic plastic strengthening is related to the

creation of slip bands. The setting of these bands in the material induces undoubt-

edly an internal back stress in grains leading accordingly to an anisotropic behavior.

In mechanical engineering applications, fatigue is one of the major consider-

ations in engineering structures and machine design since numerous of the constit-

uent parts, in-service, are generally subjected to various complex loading paths.

Metallurgical changes in deformation behavior are directly involved in the initia-

tion and accumulation of fatigue damage. These occur at highly stressed

(or deformed) and localized weak areas (e.g., slip bands, grain boundaries,

second-phase particles, inclusions, and other local heterogeneities). Fatigue dam-

age is basically associated with these regions where the plastic deformation is

highly localized due to the inhomogeneous nature of polycrystalline metals at the

local level. This consequently gives local heterogeneous deterioration in their

deformation resistance. Some connections between local and global responses

represent an appropriate context to thoroughly understand the importance of the

substructure heterogeneity and its effect on the strain field and then on the fatigue

life. Besides, the effects of principal parameters (plastic strain amplitude and

accumulative plastic strain dependence of the cyclic plasticity behavior) represent

key issues for the multiaxial fatigue behavior.

In general, fatigue damage consists of two main stages: microcrack initiation and

their subsequent propagation. Actually, the microcrack initiation is an important

stage in fatigue life. Several studies show that the complexity of the local
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mechanisms of this stage has an important impact on the fatigue life. In fact, the

initiation of microcracks of an intragranular type takes place in the intensive slip

bands which are the natural site for this type. TEM (transmission electron micros-

copy) observations demonstrated by several research programs reveal strain local-

ization in slip bands taking place during loading in which an important dislocation

density occurs. Microstructural observations show that crack initiation occurs in

some slip bands as in Waspaloy. Thus, these slip bands together with microcracks

seem to be important factors inducing an anisotropic behavior.

From the local fatigue damage point of view, one can summarize the following

key points:

• Intragranular fatigue crack initiation is a local phenomenon localizing on the

free surfaces of the structure components.

• The site of intragranular fatigue crack initiation varies depending on the

involved material microstructure as well as the applied loading condition.

• For relatively pure metals subjected to low cyclic straining, intragranular fatigue

crack initiation takes place preferentially at sites of surface roughness associated

with emerging planar slip bands called persistent slip bands (PSB). Generally,

this roughness is due to extrusion and intrusion mechanisms.

• Whatever the metallic materials, intragranular fatigue crack initiation is

governed by strain localization inside narrow bands due to local heterogeneities

related to the material microstructure such as inclusions, porosities, second

phases, precipitates, heterogeneous distribution of dislocations, etc.

• In the case of FCC and BCC crystalline materials, there is a widespread belief

that fatigue crack nuclei are strongly governed by a continuous irreversible slip

within PSB. All microcrack nuclei (less than 5 μm deep) are almost parallel to

the primary slip plane.

In LCF, it has been observed that the resulting lives are highly sensitive to cyclic

plastic deformation governed by the applied loading amplitude and also to loading

path complexity. Due to these factors, metallurgical changes arise at locally high

deformed regions leading naturally to the fatigue failure.

Under constant cyclic amplitude, metallic single-phase, especially FCC, poly-

crystals show distinct substructural behavior evolutions. Moreover, under out-of-

phase or nonproportional cyclic loading paths, it has been shown that the principal

stress and strain axes rotate during loading, often inducing, in general, additional

cyclic hardening for many metallic materials such as stainless steel 316L,

Waspaloy, aluminum alloy 2024, etc. The reason that low-cycle out-of-phase

loading is more damaging than low-cycle in-phase loading is attributed to this

additional cyclic hardening.

Concerning the modeling issue, most of the proposed models based on the formu-

lation of extrusions and/or intrusion use the concept of dislocation movement along

different paths on the slip band forward and reverse loading. The typical example is the

one-dimensional model proposed by Mura and his co-workers (Mura 1982; Tanaka

and Mura 1981). This model adopts the concept of dislocation dipole by considering
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two adjacent layers of dislocation pileups of opposite sign. Thus, the forward and

reverse plastic flows within the slip band are modeled by dislocations with different

signs moving on two closely located layers under the assumption of the irreversible

dislocation motion. Another modeling approach has also been developed for fatigue

life of materials and structures subjected to various multiaxial loading paths. This

research led to the development of several models for high- and low-cycle fatigue

lives. The widely used approach for modeling these two subjects is the macroscopic

one based on some physical considerations or on purely phenomenological ones using

a thermodynamic framework of the continuum damage mechanics (CDM) describing

the isotropic and anisotropic damaged-plastic (or viscoplastic) behavior of materials.

The phenomenological (macroscopic) approach is extensively used in many research

laboratories and industrial developments.

Moreover, ductile damage, due to microvoids evolution, occurs especially in

well plastically deformed zones where the stress triaxiality is high. The latter has a

significant effect on the voids growth rate. Voids initiation and growth have been

extensively studied by means of micromechanics analysis. In 1977, Gurson pro-

posed a pioneered model of damage by cavitation based on an approximation

analysis of spherical voids with only one yield function for porous ductile perfectly

plastic matrix. The initial Gurson’s model shows some limitations. In fact, it

overpredicts the evolution of microvoids under monotonic loading conditions.

Any type of ratcheting under cyclic loading paths cannot be predicted since the

yield function depends only on a single yield function. Therefore, several exten-

sions have been made. The most important ones are either based on improving

predictions at low volume fraction of voids (Tvergaard 1982) or the modification of

its yield function in order to describe the rate sensitivity, necking instabilities, and

better description of the final voids coalescence.

Alternatively, the micromechanical approach is currently considered one of the

approaches progressively used due to the enormous progress in computer science.

Fewer assumptions are required and the elegance of the solutions makes

micromechanical models interesting. They use almost some “physical variables”

in order to appropriately reproduce the principle cyclic features. These models are

based on localization–homogenization method (Germain et al. 1983) as initially

developed by Dang Van (1973) since many years ago. In the case of LCF, the

micromechanical approaches describe appropriately the principle cyclic features

such as Bauschinger effect, additional hardening, and many other phenomena under

different cyclic loading paths without damage effect. Moreover, as a theoretical

attempt, an elasto-inelastic-damage model has been already proposed within the

team work of the author since 20 years ago. It describes the cyclic behavior of

polycrystals under complex loading paths. This model assumes that the microcracks

initiate at the crystallographic slip system level neglecting all types of damaging

related to grain boundaries. It has correctly predicted the fatigue life emphasizing

the advantages to demonstrate the loading path complexity effect on such a life, i.e.,

the greater the complexity of the loading path, the greater is the additional harden-

ing and the shorter the fatigue life. Recently, two theoretical issues have been

developed as an important extension to this mode. The first one relates to the
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damage induced-oriented anisotropy behavior of the material due to damage deac-

tivation. In fact, the microcracks may open or close depending on the loading path

types, thus giving different responses in compression and tension. The second point

concerns the predicted difference in fatigue lives for a given polycrystal under

several cyclic loading situations having the same equivalent strain. As a fundamen-

tal development, these two extensions will largely be presented in this chapter.

The problem of damage deactivation seems to be incompletely resolved, even

though numerous approaches have been developed since the end of the last century.

It is well known that anisotropy induced by damage deactivation in polycrystals is

highly complex notably when it is coupled with plasticity leading to a solution that

is not straightforward. One of the principal difficulties is the discontinuous

stress–strain relation when the damage deactivation condition takes place. To

remedy this theoretical difficulty, several solutions were given. Among these,

three solutions are cited here. The first one considers the so-called principal

directions of damage. The damage deactivation condition only modifies the diag-

onal principal terms of the stiffness or compliance operators (Chaboche 1993).

These were evaluated in a system consistent with respect to the principal direction

of damage. Moreover, this solution also describes the anisotropy induced by

damage. Another possible answer is to express the damage deactivation character

in terms of energy rather than to distinguish between the tension and compression

behaviors using stresses and strains. These two approaches consider that the

damage kinematics is limited to the case of the elastic behavior, i.e., neglected

the inelastic strain behavior. Concerning the third one, discontinuities in the

response are avoided by introducing smooth functions to guarantee properly the

transition from the active to the inactive state (Hansen and Schreyer 1995). This one

describes likewise either the damaged-elastic or damaged-elastoplastic behavior.

The above-suggested approaches are of macroscopic nature.

In this chapter, a micromechanical model of damage-inelastic behavior, which

has been initially proposed for polycrystalline structures and recently extended by

Abdul-Latif and Mounounga (2009), will be presented, describing the damage

deactivation effect in plastic fatigue with the small strain assumption. The damage

activation/deactivation is formulated and treated only at the macroscopic scale

using the mathematical projection operators. These operators allow to define a

fourth-order damage tensor which is capable to take into account the damage

deactivation effect in the case of multiaxial cyclic loading paths and to naturally

describe the related phenomenon of the anisotropy induced by damage.

Some Physical Considerations Related to Fatigue Failure

Reliable prediction of fatigue failure can be obtained only by thorough understand-

ing of physical mechanisms involved. Three main stages of low-cycle fatigue are

experimentally observed. These are accommodation, crack initiation, and crack

growth. Since the developed model can describe the first two stages, only the

accommodation and crack initiation stages will be presented.
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In LCF, the first stage (accommodation) which can represent from 10% to 50% of

the fatigue life attaints a stabilized regime when the structure of the material evolves

in a manner to fit the imposed cyclic strain (in strain-controlled situation) and to reach

stress saturation. The dislocation mechanisms are responsible for the stress saturation.

In fact, either the same dislocations move to and fro or a dynamic equilibrium

between dislocation multiplication and annihilation can interpret the existence of a

cycle saturation regime (steady state). Generally, fatigue properties of pure metals

show an enormous change of cyclic hardening with respect to critical shear stress to

the saturation stress. Fatigue phenomena depend strongly on how fast the cyclic

hardening is taking place. Due to the Bauschinger effect (partial reversibility of

plastic strain), the cyclic hardening is much slower than the hardening obtained via

a monotonic tensile test. Because of the absence of long-range internal stresses in the

fatigued state, the differences between the cyclically and unidirectionally hardened

states are impressive. The important phenomenon related to this stage is the intensive

slip band formation. It can be expressed by a heterogeneous and localized strain on

the slip bands. In these bands, it is observed that the understructure of dislocations is

different to that of the matrix. In the case of low strains, the dislocations form certain

arrangements (bands) in the matrix. One of the most commonly intensive slip bands

is the persistent slip bands (PSB). Such bands develop parallel to the primary slip

plane across the whole cross section in lamellae, which are softer than the cyclically

hardened matrix. Pure single and polycrystalline FCC structures exhibit a consider-

able cyclic hardening due to the dislocation multiplication on primary slip system

producing strong latent hardening for the secondary slip system. The dislocation

structure, after fatigue, can be defined by regions of high dislocation density (veins)

separated by almost dislocation-poor area (channels). The veins consist predomi-

nantly of primary edge dislocations. This primary slip system remains the most

highly stressed slip throughout the history. Channel’s size is comparable to that of

the veins. The dislocation density in the channels is about three orders of magnitude

smaller than the dislocation density in the veins. It is obvious that during cyclic

loading, the continuous forward and reverse plastic flow is governed by dislocations

with different signs. The dislocations trap each other and stop moving over large

distances forming dislocation dipole. Moreover, in the case of FCCmetals and alloys,

the stacking fault energy plays an important role on the cyclic behavior of materials

(e.g., copper alloys). In general, alloying leads to smaller cyclic hardening rate when

the stacking fault energy is low.

It is well known that the definition of the microcrack initiation in LCF depends

on the measurement device. This means that there is not yet a well precise and

unified definition of this phenomenon (generally measured by a number of cycles).

Moreover, several microcrack sites can usually be observed in LCF. Note that this

phenomenon can be determined when a microcrack reaches a certain size compa-

rable to grain size (a length of 100 μm). In fact, this dimension can easily be

detected. In many fatigue cases, as soon as a microcrack reaches a depth not far

from the above dimension, its propagation takes place across the section. The

number of cycles needed to reach such a length represents a non-neglected propor-

tion of the fatigue life. Consequently, the damage deactivation effect is quite clear
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at the end of stage I of fatigue and becomes clearer during the microcrack propa-

gation (stage II) when the microcracks are open.

The nature of microcrack sites seems to be similar to both fatigue types (low-

and high-cycle fatigues). Thus, it is observed that the microcrack nucleates, in

general, in some grains located at the free surface or at the interfaces

(matrix–inclusion interfaces, grain boundaries). As a matter of fact, the grain

boundaries can constitute substantial sites of microcrack initiation. For high strain

amplitudes, the initiation mechanism can, in fact, be purely geometric. Under these

conditions, slip bands invade completely the grains and the free surface of the

specimen taking a tormented aspect with form changes, especially in the grain

boundary level cutting the free surface. Hence, deep intrusions develop at grain

boundaries consequently leading to microcrack initiation as in the case of Cu

and Al.

When the initiation is of an intragranular type, the intensive slip bands represent

a natural site of microcrack nucleation. The nucleation mechanisms are highly

complicated; therefore, they are not yet perfectly defined. In the case of alloys

containing a second phase, the interaction nature between dislocations and the

particles is important. However, intragranular cracks initiate most commonly at

sites of surface roughness associated with planar slip bands or PSB for pure metals

and alloys. This roughness is related to extrusions and intrusions. The plastic strain

concentration in these bands gives the formation of extrusions and intrusions

(Fig. 1). Hence, the microcrack initiation “embryo” takes place in the bands or at

the interfaces between these plastic bands and the matrix.

Favorably 
oriented grain

Free surface

Extrusion

Intrusion

Favorably
oriented grain

Fig. 1 Schematic plot of the

extrusion and intrusion

phenomenon occurring

during cyclic loading at the

free surface of polycrystalline

metals (From Abdul-Latif

et al. (1999), with permission

from ASME Publications)
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Concentrated on the intragranular cracking, Fig. 2 points out via scanning

electron microscope that crack initiation occurs in some slip bands of specimen

outer surfaces (case of Waspaloy). These results are in accordance with those of

austenitic stainless steel (AISI304) (Parsons and Pascoe 1976) and of Waspaloy

(Lerch et al. 1984). It appears that cracking does not occur simultaneously along the

entire length of a slip band, but may be confined to one part of the band. After

initiation in slip bands, cracks zigzag from one slip band to another within a grain.

This observation (cracks zigzagging) could therefore be interpreted by the interac-

tion phenomenon among these microcracks within the same grain. This gives

certain validity to introducing the damage interaction matrix Drs in presented

model as it will be shown later.

Modeling Motivation

In the fatigue of a smooth structure of polycrystalline materials, damages at the slip

band level are expected to be nucleated in some grains located at the free surface

having a high value of resolved cyclic shear stress τs on the slip plane in the slip

Fig. 2 Waspaloy

(under aged state)

under tension–compression

(specimen axis is vertical),

SEM showing the microcrack

initiation on the

crystallographic slip bands

(From Abdul-Latif

et al. (1999), with permission

from ASME Publications)
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direction. The forward and reverse plastic flows within the slip band are supposed to

be governed by dislocations with different signs moving irreversibly in two closely

located layers. Instead of modeling explicitly the dislocation movement to describe

the formation of extrusions and intrusions as in Mura’s model, the micromechanical

approach is used to represent the extrusions and intrusions by an internal variable.

This variable aims to describe the damage initiated due to the formation of these

extrusions and intrusions and their accumulations during cyclic loading. The

schematic plot of this idea is given in Fig. 3, where a smooth specimen is subjected

to an overall uniaxial cyclic stress (Σ). This figure shows also a section perpendic-

ular to the specimen surface with a most favorably oriented grain. The slip is

consequently submitted to resolved cyclic shear stress τs.
Since the lowest level of the microstructure considered in the presented model is

the crystallographic slip system (CSS), it is suggested here that all phenomena

related to those levels lower than the CSS (i.e., dislocations, molecules, lattice

defects, atoms) are globally modeled on the CSS level. Hence, the crack “embryo”

represented by the intrusions, extrusions, or vacancy dipoles is globally described

by a damage internal state variable (ds) at the CSS level. So, for a system s, the
internal state variable ds represents these microdefects localized on the system, i.e.,

vacancy dipoles and extrusions, or interstitial dipoles and intrusions which are due

to the dislocation motions as indicated above.

On the other hand, modeling of the spatial localization of cyclic fatigue damage

on the free surface of the structure is not a trivial task. This difficult problem is not

explicitly treated in the present chapter, but one can indicate hereafter an approx-

imate numerical method to model this phenomenon through the finite elements

I
τ

I
II

II

GrainFree
surface

Σ

Σ

Σ

t t

I
τs

I
II

II

GrainFree
surface

Σ

Σ

Σ
τs

t t

Fig. 3 Principle of the intragranular fatigue crack initiation (From Abdul-Latif et al. (1999), with

permission from ASME Publications)
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method. Actually, Fig. 4 illustrates the numerical modeling of the quarter of the

specimen defined above (Fig. 3). Two zones are introduced: the first one is a thin

layer located at the surface of the specimen having constitutive equations coupled

with intragranular damage. The second zone is the remaining (volumic) part of the

specimen having constitutive equations without damage effect. This allows the

localization of the fatigue damage on the finite elements within the zone 1 (near to

the specimen free surface). Naturally, this method of spatial localization modeling

of the fatigue damage at the free surface is approximate, and a more straightforward

approach should be used in the framework of the nonlocal mechanics. In fact,

modeling the fatigue damage localization at the free surface via the finite elements

methodology can suitably be performed by this framework where the internal

length concept is incorporated to solve the problem of mesh dependency and then

to model suitably the damaging process. From the computational point of view, the

nonlocal models appear to be straightforward to implement. Until now, the nonlocal

formulation is separately used either in brittle damage models or in ductile plastic

damage models.

The present model which will be considered in this chapter does not take

into account any surface effect, and particularly, it does not give σg11 ¼ σg22 ¼
σg33 ¼ 0 at the free surface. The model is then devoted to describe the low-cycle

fatigue crack initiation. In fatigue, microcracks may open or close depending on the

applied loading direction. Thus, different responses can experimentally be observed

under compression and tension loads, which lead to damage deactivation behavior for

an aluminum alloy (Fig. 5). This leads consequently to an induced-oriented anisot-

ropy phenomenon. It is important to keep inmind that fatigue damage behaves almost

Zone 1
with damage

Zone 2 without
damage

Thin layer
width

Fig. 4 Schematic

representation of the quarter

of a round tensile specimen

(From Abdul-Latif

et al. (1999), with permission

from ASME Publications)
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in a partial deactivation fashion (see Fig. 6). It is well known that this phenomenon is

quite clear at the end of stage I of fatigue. But, it becomes remarkable during the

microcrack propagation (stage II) when the microcracks are open.

An attempt is made to model such a phenomenon, especially at the end of stage I

of the fatigue. Generally speaking, if the loading path reverses, the effect of damage
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Fig. 5 Cyclic experimental response of aluminum 2024 under tension–compression (Abdul-Latif

and Chadli 2007) (From Abdul-Latif et al. (1999), with permission from ASME Publications)

Damage behavior is identical
in tension and compression

Damage behavior evolves
only in tension

Damage behavior is not identical
in tension and compression

Fig. 6 Schematic representation of damage activation/deactivation (From Abdul-Latif

et al. (1999), with permission from ASME Publications)
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may become inactive (microcrack closing), and with a further evolution along the

original loading path, the effect of damage may become reactive (microcrack

opening). This means that the damage is active only if microcracks are open,

while damage affects the mechanical properties of polycrystals during its closure

(inactive phase) differently. To model this induced anisotropy due to damage under

multiaxial cyclic loading conditions, a fourth-order damage tensor is proposed at

the overall level.

Formulation of Micromechanical Modeling

A micromechanical model of the early fatigue damage initiation has been pro-

posed by the author and his co-workers. Then, several applications have been

conducted under different loading situations. This model considers that the

intragranular damage evolves in bilateral manner whatever the applied loading

direction (i.e., tension and compression). Its rate is exclusively governed by the

inelastic part of the energy at the CSS level. Therefore, there is no damage if there

is no intragranular isotropic hardening. Phenomena observed at these levels lower

than the CSS are globally modeled at the CSS level. Moreover, the inelastic

deformation of single crystal is defined by the motion of dislocations. Hence,

for each single crystal, there is a set of slip systems, which can be activated

depending on the loading condition as well as on the grain orientation with respect

to the overall loading reference. As a starting point, slip is considered as a

dominant deformation mechanism, and other mechanisms like twinning, grain

boundary sliding, etc., are neglected. The constitutive equations of the inelastic

strain are examined at the slip system scale. It is well known that the crystal

plasticity deals with different material unit cells such as body-centered cubic

(BCC), face-centered cubic (FCC), hexagonal close packed (HCP), etc. This

means that mechanical properties of crystals depend on the crystal structure via

the crystallographic planes and directions of a given grain containing a large

concentration of atoms. The type of the unit cell should be defined to determine

the number of slip systems that can be activated in plasticity. In this chapter, the

FCC metallic structure will be considered only. Therefore, these slip systems are

defined by {111} crystallographic planes and <110> directions. Only 12 octahe-

dral slips are present, while, for other materials like nickel-base single crystal at

elevated temperature, both cube and octahedral slips are taken into account. Due

to the heterogeneous deformation pattern at this scale, the microstructure hetero-

geneities profoundly affect the overall material strength response. The resolved

shear stresses τs are essentially defined by the resistance to dislocation motion due

to the presence of microstructural inhomogeneities. Locally, in addition to the

intragranular damage variables, only the intragranular isotopic hardening is

defined. Two sources of kinematics hardening are physically observed at two

different levels; the first one (intergranular) comes from the plastic strain incom-

patibility between grains giving nonuniform distribution of stresses at granular
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level. The second source (intragranular) represents the long-range interactions

inside the grain. In general, the intergranular kinematic hardening is rather

predominant compared to the intragranular one for several materials. Thus, only

the intergranular kinematic hardening variable is considered, i.e., neglecting the

intragranular one. The granular inelastic strain rate is deduced as the sum of the

contribution from all activated slip systems. The elastic part is supposed to be

homogenous and isotropic and kept at the macroscopic level.

Recently, a new extension of the above approach has been developed by the

author and his co-workers for describing the damage activation/deactivation effect

in plastic fatigue with the small strain assumption. The definition of a microcrack

initiation in LCF is still without a consensus answer; however, there is a general

trend which considers that as soon as a microcrack attains a depth around 100 μm
(i.e., comparable to the usual grain size), its propagation occurs across the section.

Hence, the effect of damage activation/deactivation is quite clear at the end of stage

I of fatigue and becomes clearer during the microcrack propagation (stage II) with

crack opening phenomenon. It is worth emphasizing that the damage activation/

deactivation effect is assumed to be described only at the RVE level. The model can

therefore take into account the damage deactivation effect on the behavior of

polycrystals under uniaxial and multiaxial cyclic loading conditions. As a final

goal, the related phenomenon of the anisotropy induced by damage will be naturally

described.

Choice of State Variables

The small strain assumption is adopted in this theoretical development. Thus, the

overall total strain tensor E is classically partitioned into elastic E
e
and inelastic

E
in

parts:

E ¼ E
e
þ E

in
(1)

At the macroscopic level (RVE, representative volume element), the elastic

strain tensor E
e
represents an internal state variable associated with the Cauchy

stress tensor Σ. It is assumed that the overall elastic deformation is homogenous.

This assumption considers that all the grains of the RVE have the same

elastic properties. The overall inelastic tensor E
in

is obtained through the

localization–homogenization concept, i.e., micro–macro methodology.

At the granular level, the nonlinear intergranular kinematic hardening tensor βg

is proposed as an internal state variable associated with the internal stress tensor xg.

It is worth noting that there is no damage variable associated to the grain boundaries

(no creep damage) in this model.

As far as the CSS level is concerned, an internal state variable of isotropic

hardening is introduced by the couple (qs, Rs) for each octahedral slip system. This
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variable describes the expansion of the elastic domain on the system(s). The

intragranular damage variable (ds, Ys) is also proposed at this level. In fact, the

intragranular damage will initiate and then evolve when the accumulated slip

reaches a certain critical value. The dual variable (Ys) is the thermodynamic

force associated to the damage internal variable (ds).

Based on the local damages, a scalar damage parameter (DT) at the RVE level is

determined by averaging procedure. It varies from zero for a virgin material to one

for a totally damaged one (zero macro-stress). As a matter of fact, when DT ¼1, the

macroscopic crack initiation stage is terminated (end of the stage I). Based on this

parameter, a fourth-order damage tensor is defined to describe the concept of

induced-oriented anisotropy.

Throughout this chapter, the index s � {1,2,. . ..,n} is associated to the system

rank, with n being the maximum number of octahedral systems in the grain

(e.g., n ¼ 12 for FCC and n ¼ 24 for BCC). Similarly, the index g � {1,2,. . ..,Ng}

describes the grain rank, with Ng being the maximum number of grains contained in

the RVE. It is important to note that slip which is the main phenomenon in plastic

deformation usually occurs on these planes and directions with highest density of

atoms. For FCCmetallic materials, 24 possible slip systems can be activated. Based on

the symmetry, only 12 possible slip systems could be activated, while in BCC case,

48 possible slip systems can be activated. Due to the symmetry, only 24 possibilities

are defined. Note that the same concept can be entirely applicable for other different

material unit cells such as hexagonal close packed.

Effective State Variables

Damage can be defined as the progressive deterioration of material prior to

failure. From the modeling point of view, it is supposed that damage occurs at

the CSS level where the plastic deformation is highly localized. When a local

plastic strain attains a certain value (criterion depends explicitly on the accumu-

lated slip as well as on the applied loading), the intragranular damage is therefore

initiated (ds > 0). The final stage of microcrack occurs when ds has a critical

value dcr
s .

The effective state variables are defined by using the hypothesis of energy

equivalence.

At the CSS level

~R
s ¼ Rsffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ds
p and ~qs ¼ qs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ds

p
(2)

For the overall effective state variables, the damage activation and

deactivation phases are modeled only at the macroscopic level through a

tensorial approach. Hence, the effective overall stress and elastic strain tensors

are defined by
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eEe ¼ E
e
: I � D

� �1
2

and eΣ ¼ δ
� �1

2

: Σ (3a)

with

δ ¼ I � D

� ��1

(3b)

where I and D are, respectively, the fourth-order identity and overall damage

tensors. D will be defined later in Eq. 14 depending on the overall scalar damage

measure DT (determined by the contribution of all intragranular damages in the

RVE) and I .

Localization Process

The interaction law of a polycrystalline structure has its own role in defining the

relation between the variables in each grain of the aggregate (RVE) and the overall

variables. It is assumed that a polycrystalline metallic material is viewed as an

aggregate of single crystals having various orientations. In the actual model, an

appropriate self-consistent approach is used representing the grain-to-grain inter-

action. When the macroscopic Cauchy stress tensor Σ is applied to the RVE, the

granular Cauchy stress tensor σg is consequently determined through the well-

known self-consistent approach of Berveiller and Zaoui (1979) modified by Pilvin

(1990). Thus, the used interaction law is given by

σg ¼ Σ þ Cg
XNg
h¼1

vhβh � βg
( )

(4)

where Cg is the material coefficient representing the intergranular hardening mod-

ulus and vh the volume fraction of the same oriented grains.

The nonlinear accommodation can be obtained by means of Pilvin’s modifica-

tion, where Kröner solution with the difference of the local and global plastic strains

is replaced by the difference between a local and a global nonlinear hardening

variable. The concept of introducing the intergranular kinematic hardening variable

(βg) and its volume average on the whole aggregate presents a nonlinear evolution

with respect to plastic strain.

Two important points require further discussion. The first one is related to the

uniformity of the plastic strain concept within a grain. It represents one of the

theoretical hypotheses related to the interaction laws (Eq. 4). The second point

concerns the damage and its effect on the interaction law. In fact, the adopted
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assumption considers that there is no damage variable associated to the grain

boundaries in this model. An examination of Eq. 4 shows that the intergranular

kinematic hardening variable (βg) is implicitly affected by damage. As a matter of

fact, since this variable is function of granular strain rate ( _εg
in
), therefore a direct

coupling will be illustrated between εg
in
and the local damage ds in Eq. 42. Thus,βg is

implicitly affected by the local damage within a given grain. In spite of these two

theoretical remarks, impressive capacities of the self-consistent approach are

obtained where several cyclic hardening phenomena coupled with damage are

faithfully described. Therefore, it is considered that the present approach is a

pragmatic solution justified by the quality of recorded predictions.

After determining the stress tensor at each grain (Eq. 4), the resolved shear stress

τs on each system for each grain can be expressed as a function of the granular stress

σg by means of the Schmid orientation tensor ms, i.e., by the twice-contracted

tensorial product between σg and ms:

τs ¼ σg : ms (5)

ms ¼ 1

2
ns � gs þ gs � ns½ � (6)

where gs is the unit vector in the slip direction and ns being the vector normal to the

slip plane.

Anisotropic Damage Modeling

The state of the system can be described by its free energy (state potential). This

free energy (ψ) represents the sum of the reversible (ψe) and irreversible (ψin)

energies per unit volume under small strains and isothermal conditions:

ρψ ¼ ρψe þ ρψin (7)

where ρ is the density of the material.

To model the elastic behavior coupled with damage for a given metallic poly-

crystalline material, the following approach is developed. Actually, the attention is

focused on the formulation of the elastic part which is regarded by two potentials at

the RVE level. One corresponds to virgin (undamaged) state ψo
e and the other to

damaged state ψd
e. The undamaged state potential is classically defined by

ρψe
o ¼

1

2
Σ : E

e
¼ 1

2
R o : E

e
: E

e
(8)

where R o is the classical fourth-order rigidity tensor.

In the damaged state, the elastic potential is expressed by
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ρψe
d ¼

1

2
R d : E

e
: E

e
(9)

where R d represents the rigidity tensor for damaged material, defined by

R d ¼ I � D

� �
: R o (10)

Thus, Eq. 9 can be rewritten as follows:

ρψe
d ¼

1

2
I � D

� �
: R o : E

e
: E

e
(11)

To determine the overall fourth-order damage tensor D, the projection operators

are used. In the present formulation, stress-based (or strain-based) projection

operators are adopted. This concept has been proposed to introduce a mode I

microcrack opening and closure model based on a strain-based projection operator

(Ju 1989). By considering the spectral decomposition of all macroscopic stress

(or strain) tensors, one can consequently obtain

Σ ¼
X3
i¼1

Σ�
i pi � p

i
(12)

where Σi
* is the ith principal stress and p

i
the corresponding ith to eigenvalue and

eigenvector of Σ*, and the symbol� represents the tensor product. The fourth-order

positive spectral projection tensor is thereafter expressed as follows:

Pþijkl ¼ Qþ
ia Q

þ
jb Qka Qlb (13)

The operator Pþ allows verifying naturally the complex phenomenon of activa-

tion/deactivation of damage and the active/passive passage criterion, especially

under multiaxial loading. Indeed, it is capable to select the damage activation and

deactivation phases in a given loading axis whatever the loading path complexity.

Taking into account the remarks made previously, the definition of the damage

tensor D can be deduced by the following equation:

D ¼ DTPþ (14)

where DT is the macroscopic damage measurement which will be determined later

via the homogenization process of the local damages. By substituting the new form

of the damage tensor in the overall elastic potential expression of damaged state

given in Eq. 11, one thus gets
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ρψe
d ¼

1

2
I � DTPþ

� �
: R o : E

e
: E

e
(15)

This equation shows in the absence of damage that the potential of virgin

material is effectively retrieved. This situation is also found when the damage is

completely deactivated, i.e., Pþ ¼ 0 .

Based on the thermodynamic concept, the overall stress tensor can be deter-

mined via the overall elastic potential function of E
e
. In fact, this can be defined by

deriving the overall stress tensor from the overall elastic potential with respect to

the overall elastic strain tensor E
e
as shown by

eE:eE:oR:
E

P
TD

2
1E:oR:)PTDI(

E

e
dψ

ρΣ
e

e
e ∂

+∂
−+−=

∂

∂
=

� �

ð16Þ

The components of the tensor Pþ are functions of the eigenvectors. The second

term in the right hand of Eq. 16 depends explicitly on the eigenvectors variation in

the course of loading. In fact, when the loading is applied according to laboratory

reference axes, the principal vectors coincide with the latter. In this case, these

vectors are constant, i.e., their characteristics vary neither with respect to time nor

with deformation. Thus, the second term in the right hand of Eq. 16 vanishes.

Consequently, the constitutive equation of overall stress can be deduced as follows:

Σ ¼ I � DTPþ
� �

: R o : E
e

(17)

The rigidity tensor coupled with damage (Eqs. 10 and 14) is written by

Σ ¼ R d : E
e

(18)

The overall stress tensor can be rewritten in a tensorial manner as

Σij ¼ Rd
ijkl Eekl (19)

However, when the eigenvectors vary with respect to time (e.g., loading condi-

tion having a shearing component), the two terms of Eq. 16 should completely be

taken into account; thus

Σ ¼ Rd : E
e
þ M (20)
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where

M ¼ � 1

2
DT

@Pþ

@E
e

: R o : E
e
: E

e
(21)

In this case, the components of the overall stress tensor are defined by

Σij ¼ Rd
ijkl Eekl þMij (22)

It is clear that with the new term (Mij), the determination of the overall stress is

not standard. The presence of this term is undoubtedly due to the fact that, in the

general loading case (especially with shear components), the principal vectors do

not coincide with the laboratory reference axes. Therefore, its characteristics vary

with time and deformation. Hence, the second term in the right hand of Eq. 16

becomes important to define correctly the overall constitutive equations of stress

coupled with damage.

Now, Eq. 22 constitutes obviously a nonlinear transformation which can be

physically interpreted by the nonlinearity effect induced by damage.

The rate of change of the overall stress tensor is described by

_Σ ¼ _R
d
: E

e
þ Rd : _E

e
þ _M (23)

with

_R
d ¼ _D

T
Pþ þ DT _P

þ
� �

: R o (24)

and

_M ¼ �1

2
_D
T
@Pþ

@E
e

: Ro : E
e
: E

e
� 1

2
DT

@ _P
þ

@E
e

2
64

3
75 : R o : E

e
: E

e
� DT

@Pþ

@E
e

: R o : _E
e
: E

e
(25)

Equation 23 emphasizes the fact that the presence of the damage and loading

path complexity induces a high nonlinearity in the material behavior. This tensorial

equation, although complex, has the advantage of generalizing for multiaxial

loading paths.

Plastic State Potential

For a metallic polycrystalline material, the inelastic part of the macroscopic specific

free energy ψin can be written as a sum of all granular inelastic potentials ψin
g in the

aggregate given by
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ψin ¼
XNg
g¼1

ψg
in (26)

The granular inelastic part of the state potential ρψin
g is expressed as a quadratic

function of the internal state variables of intergranular kinematic hardening and

intragranular isotropic hardening:

ρψg
in ¼

1

3
Cgβgβg þ 1

2

Xn
r¼1

Xn
s¼1

HrsQ
s~qr~qs (27)

where Qs is the intragranular isotropic hardening modulus of the crystallographic

slip system. The hardening interaction matrix Hrs is supposed to describe

dislocation–dislocation interaction allowing the introduction of the cross influence

of the slip of the system s on the hardening of the system r, belonging to the same

family or not. Furthermore, for some metallic materials of FCC, only the octahedral

slips (12 � 12 matrix) are taken into account. However, for other materials like

nickel-base single crystals at elevated temperature, both cube and octahedral slips

should be considered, i.e., 18 � 18 matrix. On the other hand, in the case of BCC,

the Hrs matrix is of 24� 24 as discussed above. All the presented applications of the

model will be illustrated later considering only the FCC metallic polycrystalline

materials. Therefore, a simple 12 � 12 matrix is chosen, neglecting the cube slips.

The dual variables (thermodynamic associated force variables) xg , Rs, and Yin
s

(state laws) can be derived from Eq. 27 as follows:

xg ¼ ρ
@ψg

in

@βg
¼ 2

3
Cgβg (28)

Note that in the actual micromechanical model, the internal variable βg is not

directly affected by damage as discussed above.

The intragranular isotropic hardening variable coupled with damage can be

deuced as follows:

Rs ¼ ρ
@ψg

in

@qs
¼ Qs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ds

p Xn
r¼1

Hrsq
r

ffiffiffiffiffiffiffiffiffiffiffiffi
1� dr

p
(29)

The thermodynamic force Yin
s (local damage inelastic energy) associated with

the damage variable ds at the CSS level is defined, considering only the

intragranular isotropic hardening effect:

Y
s

in ¼ �Ys
in ¼ ρ

@ψg
in

@ds
¼

~R
s
~qs

2 1� dsð Þ (30)
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New Local Damage Criterion

In this paragraph, a new formulation of local damage criterion is presented to describe

the influence of the loading path complexity upon the fatigue life of metallic poly-

crystals. It is assumed that the damage initiation occurs at the local level when the

accumulated slip attained a certain threshold value. Some of our numerical simula-

tions performed previously display a certain limitation of the model in describing the

loading path effect on the fatigue life for several random crystal distributions (grain

aggregates), except a special distribution of 48 grains generated in a particular

manner respecting the cubic symmetry, i.e., their grains are situated in the position

of simple slip. It demonstrates, during loading, a phenomenon of competition

between the damage inelastic energy release rate Yin
s , accumulated slip for each

system λs, and the interaction damage matrix Drs. Thus, the loading path complexity

has a considerable incidence on the hardening and Yin
s evolutions. In other words,

when the applied loading path becomes more complex, the intragranular isotropic

hardening increases proportionally with the damage energy Yin
s . Nevertheless, an

obvious reduction in the accumulated slip λs occurs since the material is further work-

hardened. In this case, the threshold concept γths already proposed is not enough to

correctly take into account the influence of the loading path complexity on the fatigue

lives. As a typical example, the difference in predicted fatigue lives for several

random crystal distributions (grain aggregates) in tension–compression (uniaxial

loading) and in tension–torsion with 90� out-of-phase angle (biaxial loading) is

about 25 %. However, experimentally it is more than 600 % in the Waspaloy case.

In order to overcome such a theoretical shortcoming, a new definition of

intragranular damage initiation is thus required. To accomplish this task, a new

intragranular damage criterion is developed. It depends explicitly on λs as well as
on the applied loading complexity. Therefore, the number of activated slip systems

within a given aggregate of grains is considered. To give certain legitimacy to this

development, it is experimentally recognized that the number of activated slip

systems increases proportionally with loading path complexity for many engineer-

ing metals and alloys used in diverse industries like the nickel-based alloy, stainless

steel 316L, etc. As a result, a new ratio (Nsp/Nst) is introduced, where Nsp is the

number of activated slip systems and Nst represents the total number of systems

likely to be activated (e.g., for BCC, Nst ¼ 24� number of grains in the RVE; in the

case of FCC, Nst¼ 12� number of grains in the RVE). This leads to the fact that the

new intragranular damage nucleation ds in fatigue can be started up by applying

the following condition:

1� Nsp

Nst

� ��α

γso � λs (31)

It can be also written as

γsth � λs (32)
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with

γsth ¼ 1� Nsp

Nst

� ��α

γso (33)

where γths is the new damage criterion depending on the accumulated slip as well as

on the applied loading path complexity, under which the local damage does not take

place. γos is the slip reference supposed to be the same for all slip systems within the

aggregate. α is a model characteristic parameter ensuring the coherence of the

variations of recorded fatigue lives among the different applied loading paths. It is

important to underline once again that all types of damage occurring at grain

boundaries are totally neglected in this approach.

For a given aggregate of grains and loading type (x), the identification of the

parameter α can be conducted by the following procedure: the intragranular damage

within a grain initiates as soon as the accumulated plastic strain γs(x) attains its

threshold value γths defined by

γs xð Þ ¼ 1� Nsp xð Þ
Nst

� ��α

γso (34)

where Nsp(x) is the number of activated slip systems within the aggregate under

loading type x. By linearizing the Eq. 34, the following relation is thus deduced:

ln γs xð Þð Þ ¼ �αln 1� Nsp xð Þ
Nst

� �
þ ln γso xð Þ (35)

The number of cycles needed to initiate the ds is an important issue. Based on the

experimental observation, this question can accordingly be determined. After

identification of the parameters related to the elasto-inelastic behavior, some

numerical simulations should be performed using the available experimental data.

Such simulations permit to evaluate the accumulated slip γs(x) and Nsp (x) for each

cyclic loading at the moment of the damage initiation. The values of γs(x), associ-
ated to each loading x, are therefore defined. The coefficient α is thus determined

directly as the slope of the linear relationship of a set of points where the coordi-

nates of each point are given by ln 1� Nsp xð Þ
Nst

� �
, ln γso xð Þ

� �
and ln γos(x) is the

ordinate into 0 of this line.

Dissipation Potential

After determining the associated force variables of the intergranular kinematic (xg)

and intragranular isotropic hardening (Rs) and damage inelastic energy release

(Yin
s ), the formulation is completed by the rate equations of these internal state

variables _βg, _qs and _ds, respectively. From the local inelastic flow point of view, the

determination of the local inelastic flow is made by adopting a threshold concept.
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Hence, the rate of change of these state variables can be obtained by the introduc-

tion of an elastic domain ~f
s
(local yield surface) for each slip system as well as a

dissipation potential ~F
s
considering the non-associated plasticity case. Note that the

nonlinearity of the intergranular kinematic and intragranular isotropic hardening

can be introduced by the inelastic potential ~F
s
. For the local inelastic flow, a slip

system becomes active, once the absolute value of its resolved shear stress |τs| is
greater than the actual flow surface radius (~R

s þ kso). The slip rate can be determined

provided that the stress and the hardening variables are known. Thus, the local yield

surface for each slip system with the presence of damage can be expressed as

follows:

~f
s ¼ τsj j � ~R

s � kso (36)

where ko
s is the initial value of the critical resolved shear stress (friction stress).

The intragranular damage-inelastic dissipation potential can be written for each

system as

~F
s ¼ ~f

s þ 3 ag

4 Cg xg : xg þ bsqs ~R
s

þ
Xn
r¼1

Drs

Ss

Sso þ 1

Y
s

Ss

� �SS0þ1
H λs � γsth
� �
1� dsð Þws

Y
r

Sr

� �ssoþ1
H λr � γrth
� �
1� drð Þws (37)

where ag and bs are material parameters describing the nonlinearity of the

intergranular kinematic and intragranular isotropic hardenings, respectively. The

coefficients Ss, So
s, ws and γths are material constants characterizing the damage

mechanism at the CSS level. H(λs� γths ) is the Heaviside function. It is equal to zero
if λs < γths and equal to 1 if λs 	 γths . The parameter γths represents, as discussed

above, the new damage criterion given in Eq. 33. It measures the accumulation of

the dislocation pileups on the CSS. The cross influence of the damage state of the

system s on the damage evolution of the neighboring systems s of the same grain is

described by the damage interaction matrix Drs. In the case of FCC, this damage

matrix is of 12 � 12, as in the hardening interaction matrix Hrs. Concentrated only

on the intragranular cracking observed in Fig. 2 (case of Waspaloy) using scanning

electron microscope and replicas observations of specimen outer surfaces, crack

initiation occurs in some slip bands. It appears that a microcrack does not occur

simultaneously along the entire length of a slip band, but may be confined to one

part of the band. After initiation in slip bands, cracks zigzag from one slip band to

another within a grain. This observation (cracks zigzagging) could be interpreted by

microcrack interaction phenomenon. This gives legitimacy to introduce the damage

interaction matrix Drs in the intragranular damage evolution. For the sake of

simplicity, it is assumed that Drs has only two different parameters: the diagonal

terms representing the self-damage interaction (equal to 1) and the non-diagonal
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terms describing the interaction between the damage evolutions at the different

system levels in the same grain.

The 12 � 12 damage interaction matrix Drs is defined as follows:

Drs ¼

d1 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2
d2 d1 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2
d2 d2 d1 d2 d2 d2 d2 d2 d2 d2 d2 d2
d2 d2 d2 d1 d2 d2 d2 d2 d2 d2 d2 d2
d2 d2 d2 d2 d1 d2 d2 d2 d2 d2 d2 d2
d2 d2 d2 d2 d2 d1 d2 d2 d2 d2 d2 d2
d2 d2 d2 d2 d2 d2 d1 d2 d2 d2 d2 d2
d2 d2 d2 d2 d2 d2 d2 d1 d2 d2 d2 d2
d2 d2 d2 d2 d2 d2 d2 d2 d1 d2 d2 d2
d2 d2 d2 d2 d2 d2 d2 d2 d2 d1 d2 d2
d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d1 d2
d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d1

2
6666666666666666664

3
7777777777777777775

(38)

Using the generalized normality rule, the evolution laws are given:

• At the granular level

The granular inelastic strain can be deduced as follows:

_ε g
in ¼

Xn
s¼1

_λs
@Fs

@σg
¼

Xn
s¼1

_λsffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ds

p sign τsð Þms (39)

with

_γs ¼ _λssign τsð Þ (40)

_ε g
in ¼

Xn
s¼1

_γsffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ds

p ms (41)

The intergranular kinematic hardening is expressed by

_βg ¼ �
Xn
r¼1

_λs
@Fs

@xg
¼ _εg

in
� agβg

Xn
s¼1

_λs (42)

where _γs is the slip rate. Note that when ag 6¼ 0 Eq. 42, this gives a nonlinear

evolution rule of βg; however when ag ¼ 0, i.e., _βg ¼ _εg
in
, this leads to the Kröner

rule interaction laws:

• At the CSS level

The rate of change of the intragranular isotropic hardening variable coupled with

damage is derived as follows:
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_qs ¼ �
Xn
r¼1

_λr
@ ~F

r

@Rr ¼
_λsffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ds
p 1� bsqsð Þ (43)

The intragranular damage evolution is derived as shown by

_d
s ¼ _λs

@ ~F
s

@Ys
in

¼ _λS
Y

s

in

Ss

� �SS0 H λs � γsth
� �
1� dsð Þws

Xn
r¼1

Drs

Y
r

in

Sr

� �ssoþ1
H λr � γrth
� �
1� drð Þws (44)

In the framework of viscoplasticity, the value of pseudo-multiplier _λs for each
slip system is a power function of the distance to the yield point defined by the

criterion ~f
s
:

_λs ¼
~f
s

Ks

* +zs

¼ τsj j � ~R
s � ko

Ks

* +zs

(45)

where Ks and zs are material constants describing the local viscous effect of the

material. It is worth emphasizing that since the rate-independent (plastic) models

(considering that plastic flow at the slip system level is a rate independent) do not

possess the uniqueness in the numerical applications, rate-dependent slip is thus

adopted to resolve such numerical difficulties used previously by several

researchers. Although the developed model is a rate-dependent (viscoplastic)

type, the rate-independent case can be practically obtained by choosing a high

value of viscous exponent zs and a low value of the coefficient Ks. The viscosity

effect can be minimized, i.e., a low and constant viscous stress σvs can be obtained

by this relation:

σsv ¼ Ks _γsj j1=Zs

(46)

Positivity of the Intrinsic Dissipation

The volumetric intrinsic dissipation ℑDis
s for each activated slip system should be

positive according to the second law of thermodynamics. By assuming the

partitioning between the damage dissipation ℑd
s and the inelastic one ℑin

s , thus the

two quantities ℑDis
s ¼ ℑd

s + ℑin
s can be expressed as follows:

ℑsd ¼ Y
s

in
_d
s 	 0 (47)

ℑsin ¼ τs _γs þ Rs _qs 	 0 (48)

According to the fact that Y
s

in is always positive, the inequality Eq. 47 implies

that _d
s 	 0, which means that the intragranular damage _d

s
cannot decrease.

The second inequality Eq. 48 is verified as long as the constants bs Qs and ko
s are

positive.
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Homogenization

It is obvious that the overall properties are function of grain properties. Thus, each

grain is assumed to be heterogeneous embedded in a homogenous equivalent

medium having an average response of all grains. In this context, the overall

inelastic strain rate tensor is obtained through the micro–macro methodology, i.e.,

there are no state variables at this level. Hence, the macroscopic Cauchy stress

tensor Σ is also deduced by the homogenization process. After determining the

granular inelastic strain rate as the sum of the contribution from all activated slip

systems, the transition from the single to polycrystal response is performed by the

well-known averaging procedure depending on the granular inelastic strain rate. It

is worth noting that, for homogenous elastic media, it has been demonstrated

(Mandel 1965; Bui 1969) that the overall stresses Σ are simple averages of granular

stresses σg. However, this is not the case for the overall inelastic strain where the

averaging procedure is usually not simple but involves localization tensors (Mandel

1971). Nevertheless, in the case of elasto-inelastic behavior with homogeneous

elasticity, the overall inelastic strain rate _E
in
can be calculated as an average of the

granular inelastic strain rate _εg
in
(Bui 1969). In a more precise manner, in the special

case of a single-phase polycrystal, as in this chapter, the overall inelastic strain rate

is equal to the average of granular rate _εg
in
(Mandel 1971). The rate of change of the

overall inelastic strain is therefore determined by the following homogenization

procedure:

_E
in
¼

XNg
g¼1

vg _εg
in

(49)

where vg represents the volume fraction of the same oriented grains.

On the other hand, the macroscopic measure of the damage DT should be used,

since the coupled elastic behavior is calculated at the overall level as mentioned

above. This can be achieved by using the notion of damaged grains N
g0
D and

their volume fraction of the same oriented damaged grains v
g0
D. This leads always

to v
g0
D � vg. The same concept is also used over only these slip systems n0 where the

local damage takes place at their level:

_D
T ¼

XNg0
D

g¼1

v
g0
D

Xn0
s¼1

_d
s

n
0 (50)

The complexity of the overall damage initiation criterion (i.e., totally damaged

aggregate) is undeniable, particularly in the case of micromechanical approach.

Hence, the notion of damaged grains and damaged system seems to be a reasonable

manner to define a macrocrack initiation criterion.
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Conclusion

The anisotropy-induced behavior motivated by damage is of particular interest in

this chapter. Based on the low-cycle fatigue description, the micromechanical

model is expressed in the rate-independent plasticity with the small strain assump-

tion. A new criterion depending on the accumulated slips as well as on the applied

loading path is demonstrated. After introducing the damage variable at the slip

level, the coupling elasto-inelastic damage is then accomplished using the concept

of the effective state variables defined by the hypothesis of energy equivalence. The

damage activation/deactivation phenomenon is formulated and treated at the mac-

roscopic scale using the mathematical operators of projection. These operators

allow defining a fourth-order damage tensor. These operators are capable to take

into account the damage deactivation effect in the case of the multiaxial cyclic

loadings describing naturally the oriented anisotropy phenomenon induced by

damage.
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Abstract

This chapter provides a brief overview of the different continuum

mechanics approaches used to describe the deformation behavior of either

single crystals or individual grains in polycrystalline metallic materials. The

crucial role that physics-based crystal plasticity approaches may play in

understanding the mechanisms of damage initiation and growth is addressed.

This includes a discussion of the main strain gradient constitutive approaches

used to describe size effects in crystalline solids. Finally, representative

examples are given about the effect of the local stress and strain fields in

the mechanisms of intergranular damage initiation and growth in FCC poly-

crystal materials.
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Introduction

It is well understood that the macroscopic phenomena which control the physical

and mechanical properties of materials originate from the underlying microstruc-

ture. The chemical and phase compositions, microstructural morphology, and

characteristic length scales, such as grain size or mean dislocation spacing, have

a significant effect on the material’s properties and behavior. Furthermore, the

evolution of the material’s microstructure subject to thermal and mechanical

loads typical of service is equally important as it determines its long-term proper-

ties. This includes the development and growth of internal defects (or damage) such

as voids, intergranular or transgranular cracks which generally lead to a life-

limiting microstructural state. The identification of physics-based relationships

between microstructure and macroscopic behavior is one of the crucial issues

which engineers, materials scientists, and physicists alike face and which have

been at the center of most recent research efforts. A common goal is the develop-

ment of physics-based analytical and computational material modelling tools to

underpin scientific investigations and complement traditional theoretical and exper-

imental approaches. The power of analytical theories lies in their ability to reduce

the complex collective behavior of the basic ingredients of a solid (e.g., electrons,

atoms, lattice defects, single crystal grains) into insightful relationships between

cause and effect. Computational approaches such as those based on multiscale

material modelling techniques are required to complement continuum and atomistic

analysis methods. At transitional (or microstructural) scales, such as those

in-between continuum and atomistic, continuum approaches begin to break down,

and atomistic methods reach inherent time and length-scale limitations (Ghoniem

et al. 2003).

Transitional theoretical frameworks and modelling techniques are being devel-

oped to bridge the gap between length-scale extremes. For example, the description

of deformation beyond the elastic regime is usually described by appropriate

constitutive equations, and the implementation of such relationships within contin-

uum mechanics generally relies on the inherent assumption that material properties

vary continuously throughout the solid. However, certain heterogeneities linked to

either the microstructure, such as dislocation patterns or the deformation per se

cannot be readily described within the framework provided by continuum mechan-

ics. New promising application areas require novel and sophisticated physically

based approaches for design and performance prediction. Thus, theory and model-

ling are playing an ever increasing role to reduce development costs and

manufacturing times as well as to underpin computational material design. In the

last decade or so, there has been a shift away from reproducing known properties of

known materials and toward simulating the behavior of possible alloys as a

forerunner to finding real materials with these properties.

In high-payoff, high-risk technologies such as those required in the design of

large structures in the aerospace and nuclear industries, the effects of aging and

environment on failure mechanisms cannot be left to conservative approaches.

Increasing efforts are now focused on developing multiscale materials modelling
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approaches to develop new alloys and material systems in these areas. Appropriate

validation experiments are also crucial to verify that the models predict the correct

behavior at each length scale, ensuring that the linkages between approaches are

directly enforced.

As the material dimensions become smaller, its resistance to deformation is

increasingly determined by internal or external discontinuities (e.g., surfaces, grain

boundaries, dislocation cell walls). The Hall–Petch relationship has been widely

used to explain grain size effects, although the basis of the relationship is strictly

related to dislocation pileups at grain boundaries. Recent experimental observations

on nanocrystalline materials with grains of the order of 10–70 nm indicate that the

material is weaker than what would be expected from the Hall–Petch relationship.

Thus, the interplay between interfacial or grain boundary effects and slip mecha-

nisms within a single crystal grain may result in either strength or weakness,

depending on their relative sizes. Although experimental observations of plastic

deformation heterogeneities are not new, the significance of these observations has

not been addressed till very recently. The length scales associated with these

deformation patterns (e.g., typically the size of dislocation cells, the ladder spacing

in persistent slip bands (PSBs), or the spacing between coarse shear bands) control

the material strength and ductility. As it may not be possible to homogenize such

types of microstructures in an average sense using either atomistic simulations or

continuum theories, new intermediate approaches are needed.

The issues discussed above, in addition to the ever increasingly powerful and

sophisticated computer hardware and software available, are driving the develop-

ment of materials modelling approaches. New concepts, theories, and computa-

tional tools are being continuously developed to enable the prediction of

deformation phenomena at different microstructural scales to be linked. This

chapter is aimed at providing a brief overview of the different approaches that are

being used to deal with the continuum mechanics modelling of plasticity at the

grain/single crystal level. Special emphasis is placed on highlighting the crucial

role that physics-based crystal plasticity approaches play in developing an under-

standing of the local stress and strain fields known to be the precursors to damage

initiation and growth at the scale of the grain in polycrystal metallic materials.

Some representative examples are also given about the use of single crystal theories

to predict polycrystal behavior.

Continuum Discretization of a Boundary Value Problem

In this section, an overview will first be given of the main continuum mechanics-

based framework used to describe the nonlinear deformation behavior of materials

at the local (e.g., single phase or grain level) scale. Emphasis will be placed on

recent progress made in crystal plasticity and strain gradient plasticity.

Standard tensorial notation will be used throughout. Unless otherwise specified,

vectors will be described by boldface lowercase letters, second-order tensors by

boldface uppercase letters, and fourth-order tensors by italic uppercase letters.
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In a generic boundary value problem (BVP), the deformation of a body subjected

to external forces and prescribed displacements is governed by the (i) equilibrium

equations, (ii) constitutive equations, (iii) boundary conditions, and (iv) initial

conditions. The “weak” form of the boundary value problem is obtained when the

equilibrium equations and the boundary conditions are combined into the “principle

of virtual work.” Such “weak form” constitutes the basis for obtaining a numerical

solution of the deformation problem via, e.g., the finite element method. Thus, in a

continuum mechanics Lagrangian formulation of a quasi-static BVP, the principle

of virtual work is the vehicle by which the global equilibrium equations are

obtained.

The basic features of a generic Galerkin-type discretization framework are given

next. Consider a structure occupying a domain V in the deformed configuration

which is subjected to external forces and displacements on its boundary, Γb. In the

absence of body forces and inertial effects, the principle of virtual work for the

structure, in its rate form, satisfies the following equation:

ð
V

σ : δ _edV �
ð
Γb

t � δvdΓb ¼ 0 (1)

for any arbitrary virtual velocity vector field δv compatible with all kinematics

constraints. In the above equation, t ¼ σns represents the boundary traction forces;

σ, the Cauchy stress; ns, the normal to the surface on which the tractions act; and, δv
the virtual strain rate associated with the velocity field.

To solve a complex BVP numerically, the discretization of the principle of

virtual work is generally performed using the finite element method. Let v be

approximated at a material point within an element by

v ¼
XNmax

i¼1

Ni v̂i � N v̂ (2)

where v̂ denotes the nodal values of the element velocity field and N are the

isoparametric shape functions. Substituting Eq. 2 into Eq. 1 leads to the discretized

version of the principle of virtual work on the finite element, Ve:

r v̂f g � fint � fext ¼ 0, (3)

where

f int ¼
ð
Ve

BTσdVe, fext ¼
ð
Γe

NTt dΓe (4)

are the internal and external global force vectors, respectively, and B relates the

symmetric strain rate tensor with v̂ . The global equilibrium relations (Eq. 3)

represent a set of implicit nonlinear equations which may be solved incrementally
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using a Newton-type algorithm. In a Newton–Raphson iterative scheme, the

nonlinear system (Eq. 3) is typically expanded using Taylor series in the neighbor-

hood of v̂:

r v̂k � δv̂k
� � ¼ r v̂k

� �þ @r v̂k
� �
@v̂k

δv̂k þ O v̂k
2

n o
, (5)

where k represents a generic iteration and @r=@v̂ is the global tangent stiffness or

Jacobian matrix of the nonlinear system of equations. The formulation of accurate

estimates of the global Jacobian is at the heart of most numerical schemes devel-

oped to provide robust algorithms for the use of complex constitutive models with

continuum approaches (e.g., see Crisfield (1997), Busso et al. (2000), and

Meissonnier et al. (2001)).

Single Crystal Plasticity

Constitutive models developed to predict the anisotropic behavior of single crystal

materials generally follow either a Hill-type or a crystallographic approach. As a

common feature, they treat the material as a continuum in order to describe properly

plastic or viscoplastic effects. Hill-type approaches (e.g., Schubert et al. 2000) are

based on a generalization of the Mises yield criterion proposed by Hill (1950) to

account for the non-smooth yield or flow potential surface required to describe the

anisotropic flow stress behavior of single crystals. By modelling polycrystal struc-

tures with an appropriate crystallographic formulation based on microstructural

internal state variables (e.g., dislocation densities), greater insight into the grain

interaction and deformation behavior of polycrystals can be achieved. In constitu-

tive formulations based on crystallographic slip, the macroscopic stress state is

resolved onto each slip system following the Schmid law. Internal state variables

are generally introduced in both formulations to represent the evolution of the

microstructural state during the deformation process. Although recent develop-

ments in these two approaches have now reached an advanced stage, the major

improvements have been made by crystallographic models due to their ability to

incorporate complex micromechanisms of slip within the flow and evolutionary

equations of the single crystal models. Typically, in dislocation density-based

models, the evolution of the dislocation structure is described by processes of

dislocation multiplication and annihilation as well as by the trapping of dislocations

(Peeters et al. 2001; Zikry and Kao 1996). Further discretization into pure edge and

screw types enables their individual roles to be more clearly distinguished (Arselins

and Parks 2001). For example, edge and screw dislocations are associated with

different dynamic recovery processes (i.e., climb for edges and cross-slip for

screws), combining to influence the evolving dislocation structure of a deforming

material. Moreover, it is now possible through X-ray profile analyses to quantify the

edge and screw dislocation densities in deformed metals (Kysar et al. 2010; Dunne

et al. 2012). Therefore, the ability to make quantitative rather than just qualitative
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comparisons between predicted and measured dislocation densities constitutes a

powerful tool. However, the roles of edge and screw dislocations in determining the

nonuniform distribution of plastic strain in polycrystals as a result of intergranular

and intragranular interactions are still not well understood.

A brief outline of the salient features of local and nonlocal crystal plasticity

approaches is given below.

Local Single Crystal Approaches

A generic internal variable-based crystallographic framework is said to be a local

one when the evolution of its internal variables can be fully determined by the local

microstructural state at the material point. The description of the kinematics of most

crystal plasticity theories follows that originally proposed in Asaro and Rice (1977),

which has been widely reported in the computational mechanics literature (e.g.,

Kalidindi et al. 1992; Busso and McClintock 1996; Hatem and Zikry 2009; Busso

et al. 2000; Abrivard et al. 2012). It relies on the multiplicative decomposition of

the total deformation gradient, F, into an inelastic, Fp, and an elastic, Fe component.

Thus, under isothermal conditions,

F ¼ Fe Fp: (6)

Although single crystal laws can be formulated in a corrotational frame, i.e., the

stress evolution is computed on axes which rotate with the crystallographic lattice,

the most widely used approach is to assume that the material’s response is

hyperelastic, that is, its behavior can be derived from a potential (i.e., free energy)

function. Such potential function may be expressed in terms of the elastic

Green–Lagrange tensorial strain measure,

Ee ¼ 1

2
FeTFe � 1
� �

, (7)

and the corresponding objective work conjugate (symmetric) stress, or second

Piola–Kirchhoff stress, T. Note that the Cauchy stress is related to T by

σ ¼ det Fef g�1
FeT FeT : (8)

The hyperelastic response of the single crystal is governed by

T ¼ @Φ Eef g
@Ee , (9)

where @Φ/@Ee represents the Helmholtz potential energy of the lattice per unit

reference volume. Differentiation of Eq. 9, and assuming small elastic stretches,

yields

374 E.P. Busso



T ffi L:Ee, (10)

where L is the anisotropic linear elastic moduli. In rate-dependent formulations, the

time rate of change of the inelastic deformation gradient, Fp, is related to the

slipping rates on each slip system (Asaro and Rice 1977) as

_F
p ¼

Xnα
α¼1

_γαPα

 !
Fp, with Pα � mα � nα: (11)

Here, mα and nα are unit vectors defining the slip direction and the slip plane

normal to the slip system.

In rate-independent formulations, in contrast, flow rules are based on the well-

known Schmid law and a critical resolved shear stress, τcα, whereby the rate of slip is
related to the time rate of change of the resolved shear stress, τα(¼ T:Pα). Then,

_τα ¼ _ταc ¼
Xnα
β¼1

hαβ _γα, if _γα > 0: (12)

In the above equation, hαβ, the slip hardening matrix coefficients, incorporate

latent hardening effects. Due to the severe restrictions placed on material proper-

ties, such as latent hardening, to ensure uniqueness in the mode of slip (e.g., Anand

and Kothari 1996; Busso and Cailletaud 2005), and the associated difficulties in its

numerical implementation, the use of rate-independent formulations has been

somehow restricted and much more limited than rate-dependent ones. This has

been compounded by the fact that, by calibrating their strain rate sensitivity

response accordingly, rate-dependent models have been successfully used in

quasi-rate-independent regimes. Thus, the focus of the discussions will henceforth

be on rate-dependent approaches.

The slip rate in Eq. 11 can functionally be expressed as

_γα ¼ _̂γ
α

τα, Sα1, . . . , S
α
ms
,θ

n o
, (13)

where Si
α (for i ¼ 1,. . .,ms) denotes a set of internal state variables for the slip

system α and θ is the absolute temperature. A useful and generic expression for the

overall flow stress in the slip system can be conveniently found by inverting Eq. 13.

Let us, for instance, consider a case with three slip resistances (ms ¼ 3). Then,

τα ¼ �f̂
α
v _γα, Sα3, θ
� � � cdisS

α
1 � cssS

α
2, (14)

where cdis and css are scaling parameters, S1
α and S2

α represent additive slip resis-

tances, and S3
α represents a multiplicative component. Here the distinction between

the additive (S1
α and S2

α) and the multiplicative (S3
α) slip resistances is motivated by

the additive and multiplicative use of nondirectional hardening variables rather than

on mechanistic considerations. By expressing the flow stress in the slip system α, as
in Eq. 14, the contributions from viscous effects (first term in Eq. 14), and
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dissipative (e.g., hardening, recovery) mechanisms arising from, for instance, forest

dislocation and solid solution strengthening (second and third terms), can be clearly

identified. The majority of formulations rely on power law functions for Eq. 13,

where the resolved shear stress is normalized by a slip resistance or hardening

function, which corresponds to S3
α 6¼ 0 and S1

α ¼ S2
α ¼ 0 in Eq. 14. This introduces

a coupling between the viscous term and microstructure which is inconsistent with

most strengthening mechanisms. Works such as that of Busso and McClintock

(1996) and Cheong and Busso (2004) have proposed flow stress relations with

S1
α 6¼ 0 and S2

α ¼ S3
α ¼ 0 which allows a more physically meaningful interpretation

of strengthening phenomena controlled by the dislocation structure. The particular

application for FCC polycrystals to be discussed in the next section assumes that

S1
α 6¼ 0, S2

α 6¼ 0, and S3
α ¼ 0. For a more detailed discussion of these issues, see also

Busso and Cailletaud (2005).

The relation between the overall slip resistance associated with statistically

stored dislocation forest type of obstacles and the individual dislocation densities

is defined by

Sαi ¼ λ μ bα
X
β
hαβρβi

( )1=2

for i ¼ 1, . . . , nsð Þ (15)

Here, λ is a statistical coefficient which accounts for the deviation from regular

spatial arrangements of the dislocations, bα represents the magnitude of the Burgers

vector, and hαβ is a dislocation interaction matrix defined as

hαβ ¼ ω1 þ 1� ω2ð Þδαβ (16)

The terms ω1 and ω2 in Eq. 16 are the interaction coefficients and δαβ is the

Kronecker delta. The corresponding total athermal slip resistance due to forest

dislocations can then be expressed according to

Sαdis ¼ Sα1
� �r þ Sα2

� �r þ ::::þ Sαns

� �rn o1=r

(17)

with r ¼ 1 being used when a linear sum of the slip resistances is desired and r ¼ 2

for a mean square value.

To complete the set of constitutive relations, separate evolutionary equations

need to be formulated for the individual dislocation densities, with dislocation

multiplication and annihilation forming the bases of their evolutionary behavior.

The time rate of change of each internal slip system variable can, in its most general

form, be expressed as

_ρα1 ¼ _̂ρα1 _γα, ρα1, ρα2, ::::, ραns , θ
n o

, _ρα2 ¼ _̂ρα2 _γα, ρα1, ρα2, ::::, ραns , θ
n o

,

::
::
::
_ραns

¼ _̂ραns _γα, ρα1, ρα2, ::::, ραns , θ
n o

:

(18)
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An Application of Crystal Plasticity to the Study of Intergranular
Damage in an FCC Alloy
In this section, the typical single crystal framework described in the previous

section will be applied to the study of intergranular cracking in a typical FCC Al

alloy. The work to be described here is based on that by Pouillier et al. (2012) which

studied the effects of plasticity on the mechanism of intergranular cracking assisted

by hydrogen-induced embrittlement in an Al-5%Mg alloy. As one of the main

strengthening mechanism arises from the presence of Mg in solid solution, it is a

suitable example for the use of crystal plasticity to study intergranular cracking

phenomena.

Aluminum alloys, strengthened by elements in solid solution, can be sensitive to

intergranular stress corrosion cracking in some specific microstructural states. In

such alloys, precipitation of the Al3Mg2 phase at grain boundaries strongly favors

intergranular fracture. When hydrogen is absorbed from the environment into the

material, it diffuses along grain boundaries, weakening the matrix-precipitate

interfaces which may, under high local stress–strain conditions, lead to a true

intergranular decohesion mechanism. The main objective of this work was thus to

study the effects of plasticity on the mechanism of intergranular cracking assisted

by hydrogen-induced embrittlement in an Al-5%Mg alloy.

Single Crystal Formulation for the FCC Material
The single crystal model is based on the original formulation proposed by Cheong

and Busso (2004) for Cu and on the recent work by Pouillier et al. (2012). The

generic form of the slip rate, _γα, given in Eq. 13, is assumed to be dominated by the

thermally activated glide of dislocations over obstacles (i.e., mainly forest disloca-

tions as the heat treatment used in the alloy of interest did not lead to full

precipitation of Mg within the grains). The slip rate is related to the resolved

shear stress, τα, through the exponential function proposed by Busso and McClin-

tock (1996) and Busso et al. (2000):

_γα ¼ _γo exp �Fo

kθ
1� ταj j � SαTμ=μo

τ̂
i
p� 	q
 �

sign ταð Þ,
�

(19)

which accounts for the absolute temperature (θ, K) and the stress dependence of the
activation energy. In Eq. 19, F0 represents the Helmholtz free energy of activation

at 0 K, k the Boltzmann constant, _γαo a reference slip rate, and τ̂ the maximum glide

resistance at which dislocations can be mobilized without thermal activation.

Furthermore, μ and μ0 are the shear moduli at θ and 0 K, respectively. The

exponents p and q describe the shape of the energy barrier vs. stress profile

associated with interactions between dislocations and obstacles.

The main contributions to the overall slip resistance to plastic flow, ST
α, are due to

the friction stress induced by the Mg atoms in solid solution, Sss
α , and to the athermal

slip resistance, Sdis
α . As the slip resistance contributions are assumed to be additive

(see Eq. 14), then
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SαT ¼ Sαdis þ Sαss: (20)

Note that the scaling parameters cdis and css in the general expression given by

Eq. 14 are, for this particular application, taken to be equal to one. Since only a very

small part of the Mg atoms precipitate during the heat treatment, the concentration

of Mg in solid solution is set to be equal to the average concentration in the material.

Thus, the friction stress due to Mg atoms in solid solution, Sss
α , is calculated based

on the atomic size and concentration of Mg in the alloy (see Pouillier et al. 2012 for

details), as proposed by Saada (1968). The athermal slip resistance is expressed as

Sαdis ¼ λμbα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
β¼1

hαβρβT

 !vuut , (21)

where the overall dislocation density for a given slip system β, ρTβ, is obtained from
a discretization of the dislocation structure into pure edge and pure screw types, of

densities ρeβ and ρsβ, respectively. Thus,

ρβT ¼ ρβe þ ρβs : (22)

In Eq. 21, λ and hαβ were as previously defined in Eqs. 15 and 16. The

evolutionary equations of the individual dislocation densities account for the

competing dislocation storage-dynamic recovery processes in FCC metals. They

can be expressed as (Cheong et al. 2004; Cheong and Busso 2006)

_ραe ¼
Ce

bα
Ke

ffiffiffiffiffiffiffiffiffiffiffiffiffiXN
β¼1

ρβT

vuut � 2deραe

2
4

3
5 _γαj j, (23)

and

_ραs ¼
Cs

bα
Ks

ffiffiffiffiffiffiffiffiffiffiffiffiffiXN
β¼1

ρβT

vuut � ραs πd2sKs

ffiffiffiffiffiffiffiffiffiffiffiffiffiXN
β¼1

ρβT

vuut þ 2ds

0
@

1
A

2
4

3
5 _γαj j: (24)

Here, the parameters Ce and Cs describe the relative contributions to the overall

slip from edge and screw dislocations, while Ke and Ks are mobility constants

associated with their respective mean free paths. Recovery processes are associated

with the parameters de and ds, which represent critical annihilation distances

between dislocations of opposite Burgers vectors for both edge and screw types.

The calibration of the model’s parameters was inspired by those reported for

pure aluminum by Cheong and Busso (2006), except for the additional term which

accounts for the Mg solid solution effect. A comparison between the uniaxial

stress–strain tensile curve obtained from a smooth uniaxial specimen of the poly-

crystal and that predicted using a 100 grain aggregate and the single crystal model
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was relied upon as a polycrystal validation. Details of the implicit numerical

implementation of the above constitutive theory into the finite element method

can be seen in Busso et al. (2000).

Intergranular Crack Observations, Strain Field Measurements, and Predicted
Local Stress and Strain Fields
Here, tensile specimens charged with hydrogen were used to investigate quantita-

tively the effect of plastic deformation on the mechanism of intergranular crack

initiation at the scale of the individual grains. An experimental procedure was set up

to monitor the evolution of surface strain fields on in situ tested SEM notched

specimens using digital image correlation techniques. In addition, measurements of

the associated crystal orientation evolution at the micron scale were carried out

using electron backscatter diffraction (EBSD). These measurements were then

compared with finite element predictions of the local strain fields on the observed

regions of the in situ specimen. The crystallographic grain orientations of the region

of interest were discretized for the finite element analyses from EBSD maps.

Figure 1 shows the surface of one of the specimens tested in tension up to a 10 %

elongation. It can be seen that intergranular cracking occurred on grain boundaries

perpendicular to the tensile direction after a few percent of plastic strain only on the

half of the specimen which had been previously charged with hydrogen.

An optimized digital image correlation technique was used to compute surface

strain fields from the recorded images. The field of view for the different regions

Fig. 1 Optical micrograph of intergranular fracture after 10 % axial strain along the x-axis

(Pouillier et al. 2011)
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analyzed was chosen so that it provided a range of fine-scale strain field measure-

ments as well as the boundary conditions applied to the crystal aggregate region

used in the modelling part of the study.

Figure 2a, b shows typically measured and predicted strain fields after 0.45 %

applied macroscopic strain, respectively. Figure 2c is a SEM micrograph of

Fig. 2a’s region, and Fig. 2d gives the predicted Mises stresses at the time when

the first grain boundary failure was observed. It should be noted that at the cracked

locations 1, 2, and 3 indicated in Fig. 2, the high levels of axial strain measured are

to a great extent different from the real values due to the distortion introduced by the

opening of the cracks during the digital image correlation measurements.

In this study, it was found that grain boundary cracking occurs on boundaries

normally oriented to the applied tensile stress when the average local axial strain is

as low as 0.45 %. In addition, failed grain boundaries were found to be between

Fig. 2 (a) Measured and (b) predicted axial strain fields after 0.45 % applied macroscopic strain,

(c) micrograph of the same region as (a) and (b) at the end of the test (4.5 % applied strain), and (d)

predicted Mises stresses after 0.45 % applied strain. Arrows 1, 2, and 3 indicate cracked grain

boundaries (loading direction is parallel to the x-axis; Pouillier et al. 2011)
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grains that undergo very limited plastic deformation despite being embedded in

large localized deformation regions. Local grain boundary tractions were predicted

analytically from an Eshelby-type model and compared to the local normal trac-

tions obtained from the finite element simulations of the polycrystal aggregate

specimen region using crystal plasticity. The analytical traction of 175 MPa was

consistent with the numerical predictions of 170 � 35 MPa obtained from the finite

element model of the polycrystal.

From this work, it can be seen that crystal plasticity concepts can provide an

accurate insight into the local stress and strain fields responsible for intergranular

damage.

Nonlocal Single Crystal Approaches

The study of experimentally observed size effects in a wide range of mechanics and

materials problems has received a great deal of attention recently. Most continuum

approaches and formulations dealing with these problems are based on strain

gradient concepts and are known as nonlocal theories since the material behavior

at a given material point depends not only on the local state but also on the

deformation of neighboring regions. Examples of such phenomena include particle

size effects on composite behavior (e.g., Nan and Clarke 1996), precipitate size in

two-phase single crystal materials (Busso et al. 2000), increase in measured

microhardness with decreasing indentor size (e.g., Swadener et al. 2002), and

decreasing film thickness (e.g., Huber and Tsakmakis 1999), among others. The

dependence of mechanical properties on length scales can in most cases be linked to

features of either the microstructure, boundary conditions, or type of loading, which

give rise to localized strain gradients. In general, the local material flow stress is

controlled by the actual gradients of strain when the dominant geometric or

microstructural length scales force the deformation to develop within regions of

less than approximately 5–10 μm wide in polycrystalline materials and of the order

of 0.1–1.0 μm in single crystal materials. Thus, gradient-dependent behavior is

expected to become important once the length scale associated with the local

deformation gradients becomes sufficiently large when compared with the control-

ling microstructural feature (e.g., average grain size in polycrystal materials). In

such cases, the conventional crystallographic framework discussed in the previous

sections will be unable to predict properly the evolution of the local material flow

stress.

The modelling of size effects observed in crystalline solids has been addressed

by adding strain gradient variables into the constitutive framework, either in an

explicit way in the flow rule (e.g., Aifantis 1984, 1987), or in the evolutionary

equations of the internal slip system variables (e.g., Acharya and Beaudoin 2000;

Busso et al. 2000; Bassani 2001), or by means of additional degrees of freedom

associated with higher-order boundary and interface conditions (e.g., Shu 1998).

Motivations for introducing strain gradients in continuum modelling stem from

the multiscale analysis of micromechanics, as reviewed in Ghoniem et al. (2003).
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The resulting strain gradient components are related to the dislocation density

tensor introduced by Nye (1953). As it will be shown later in the text, the

dislocation density tensor is computed from the rotational part of the gradient of

plastic deformation so that the resulting partial differential equations to be solved

are generally of higher order than those used in classical mechanics.

Nonlocal Models Based on Internal Strain Gradient Variables
The more physically intuitive continuum approaches to describe strain gradient

effects are constitutive theories (e.g., Arsenlis and Parks 2001; Busso et al. 2000;

Acharya and Bassani 2000; Bassani 2001; Cheong et al. 2004; Dunne et al. 2007)

which rely on internal state variables to describe the evolution of the obstacle or

dislocation network within the material and generally introduce the strain gradient

effects directly in the evolutionary laws of the slip system internal variables without

the need for higher-order stresses. This requires that the overall slip resistance

arising from the dislocation network, Sdis
α (see Eq. 21), incorporates contributions

from both statistically stored (SS) and geometrically necessary (GN) forest

dislocations.

The general form for the functional dependency of the evolutionary laws slip

system internal variables given in Eq. 18, extended to include the additional

dependency on the GNDs and the gradient of the slip rates, ∇ _γα, is

_ρα1 ¼ _̂ρ
α
1

_γα, ρα1, . . . , ραnsþnG
, θ

n o
,

⋮
_ραns ¼ _̂ρ

α
ns

_γα, ρα1, . . . , ραnsþnG
, θ

n o
,

_ραnsþ1 ¼ _̂ρ
α
nsþ1

_γα, ραnsþ1, . . . , ραnsþnG
,∇ _γα, θ

n o
,

⋮
_ραnsþnG

¼ _̂ρ
α
nsþnG

_γα, ραnsþ1, . . . , ραnsþnG
,∇ _γα, θ

n o
,

(25)

where ns and nG denote the number of SSD and GND types, respectively.

Consider the particular case where ns ¼2 and nG ¼3 in Eq. 25. Then, the total

dislocation density on an arbitrary slip system can be defined by

ραT ¼ ραe þ ραs
� �þ ραGs þ ραGet þ ραGen

� �
, (26)

where (ρeα, ρsα) are the SS densities introduced in Eq. 22 and (ρGsα , ρGetα , ρGenα ) the

GND densities. Here, the GNDs have, in addition, been discretized into pure edge

and screw components based on a mathematically equivalent GND vector, ρGα ,
projected into a local orthogonal reference system where ρGsα represents a set of

screw GNDs parallel to the slip direction, ma, and ρGenα and ρGetα edge GND

components oriented parallel to the slip system normal, na, and to ta ¼ ma � na,

respectively.

The evolution of the GNDs can be expressed in terms of a mathematically

equivalent GND density vector, _ραG , defined so that its projection into the local
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(mα, nα, tα) orthogonal reference system is as follows (Busso et al. 2000; Cheong

et al. 2004):

_ραG ¼ _ραGsm
α þ _ραGett

α þ _ραGenn
α: (27)

Subsequently, the evolutionary law for each set of GNDs is determined from

Nye’s dislocation density tensor, Γ (Nye 1953), in terms of the spatial gradient of

the slip rate:

_Γ ¼ curl _γαnαFpð Þ ¼ bα _ραGsm
α þ _ραGett

α þ _ραGenn
α� �
: (28)

Under small strains and rotations, Eq. 28 simplifies to

_ραGs ¼
1

bα
∇ _γα � tα, _ραGet ¼

1

bα
∇ _γα � mα, _ραGen ¼ 0: (29)

The slip resistance contributions from the SSDs and GNDs can then be deter-

mined from Eq. 21 using the definition of the overall dislocation density given by

Eq. 26.

This class of theories has been shown capable of providing great physical insight

into the effects of microstructure on the observed macroscopic phenomena, includ-

ing rate-independent plastic deformation and viscoplasticity in both single crystal

and polycrystalline materials (e.g., Arsenlis and Parks 2001; Busso et al. 2000;

Acharya and Bassani 2000). One additional attractive aspect of these theories is that

they are relatively easy to implement numerically and do not require higher-order

stresses and additional boundary conditions or independent degrees of freedom.

However, some of the limitations of these types of theories is that they are unable to

describe problems which may require nonstandard boundary conditions, as

discussed in Cheong et al. (2004), such as the boundary layer problem modeled

by Shu et al. (2001), and that they may exhibit a mesh sensitivity in cases where

there is a predominance of geometrically necessary dislocations relative to statis-

tically stored dislocations (Cheong et al. 2004).

Nonlocal Models Based on the Mechanics of Generalized Continua
Approaches based on the so-called mechanics of generalized continua incorporate

as a common feature extra-hardening effects associated with the dislocation density

tensor. Generalized crystal plasticity models developed in the past 40 years can be

classified into two main groups.

In the first one, strain gradient plasticity models involve either the rotational part

of the plastic distortion (i.e., the plastic rotation), its full gradient, or just the

gradient of its symmetric part (Steinmann 1996; Fleck and Hutchinson 1997; Gurtin

2002; Gurtin and Anand 2009).

The second group involves generalized continuum theories with additional

degrees of freedom accounting for either the rotation or the full deformation of a

triad of crystal directors, and the effect of their gradients on hardening, such as
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Cosserat-type models (Forest et al. 2001; Clayton et al. 2006), and those based on

the micromorphic theory (Eringen and Claus 1970; Bammann 2001; Cordero

et al. 2010, 2012a, b).

Most of these theories have been shown to capture size effects, at least in a

qualitative way. However, a clear demonstration that they can reproduce the scaling

laws expected in precipitate hardening or grain size effect has not been fully

provided yet. The additional hardening effects inherent in generalized continuum

crystal plasticity models can be summarized by the main features identified in

Fig. 3. Here, the effect of the dominant microstructural length scale, l, such as

grain or precipitate size, on the material flow stress is shown schematically in a

log–log diagram. The curve can be characterized by three main features: the stress

range, ΔΣ; the characteristic length, lc; and the slope of the intermediate region,

defined by a scaling law of the form, Σ / ln at l ¼ lc. Here, ΔΣ corresponds to the

maximum increase in strength due to size effects relative to the size-independent

level. Figure 3 shows that when the characteristic size of the microstructure

decreases, the material strengthens. For large values of l, the asymptotic behavior

corresponds to the size-independent response of conventional crystal plasticity

models reviewed in the previous section. In contrast, for small values of l, a

Fig. 3 Effect of the dominant microstructural length scale, l, on the material flow stress, Σ,
predicted by different types of models such as those exhibiting two asymptotic regimes (solid line),
and others which exhibited an unbounded flow stress for small length scales (dotted line). Also
included is the scaling law in the transition domain (dot-dashed line) (Cordero et al. 2010)
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bounded or unbounded asymptotic behavior can be obtained, depending on the type

of model considered. Cosserat-type crystal plasticity models (e.g., Forest

et al. 2001), for instance, predict an asymptotically saturated overstress ΔΣ as in

Fig. 3. In the intermediate region, when l is closed to the characteristic length, lc, the
size-dependent response is characterized by the scaling law, Σ / ln. The parame-

ters ΔΣ, lc, and n can be derived explicitly for the different classes of generalized

material models described above. However, an analytic description of the size-

dependent behavior of materials is possible only for some specially simplified

geometrical situations. Examples are the shearing of a single crystal layer under

single (or double) slip for strain gradient plasticity models considered in Shu

et al. (2001), Bittencourt et al. (2003), Hunter and Koslowski (2008), and Cordero

et al. (2010, 2012a, b) and the single slip in a two-phase laminate microstructure by

Forest and Sedlacek (2003). The plastic slip distributions were compared with those

obtained from the reference continuous dislocation line tension model, Cosserat,

and strain gradient plasticity models.

When crystal plasticity is considered under small strain assumptions, the gradi-

ent of the velocity field can be decomposed into the elastic and plastic distortion

rates:

_H ¼ _u�∇ ¼ _H
e þ _H

p
, (30)

where

_H
p ¼

X
α

_γαP
α
, (31)

with u, the displacement field; α, the number of slip systems; _γα, the slip rate for the
slip system α; and Pα as defined in Eq. 11. The elastic distortion tensor, He, which

represents the stretch and rotation of the lattice, links the compatible total defor-

mation,H, with the incompatible plastic deformation,Hp, which describes the local

lattice deformation due to the flow of dislocations. On account of Eq. 30 and since

applying the curl operator to the compatible field represented by H is equal to zero,

it follows that

curl _H ¼ 0 ¼ curl _H
e þ curl _H

p
: (32)

The incompatibility of the plastic distortion is characterized by its curl part, also

known as the dislocation density tensor or Nye’s tensor, Γ (Nye 1953; Steinmann

1996; Acharya and Bassani 2000), defined as

Γ ¼ �curl Hp ¼ curl He: (33)

The tensors H, He, and Hp are generally nonsymmetric; thus, they can be

decomposed into their symmetric and skew-symmetric parts:
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H ¼ EþW, He ¼ Ee þWe,Hp ¼ Ep þWp, (34)

Combining Eqs. 32 and 34 leaves

0 ¼ curl Ee þ curl We þ curl Hp: (35)

Neglecting the curl part of the elastic strain, Ee, leads to the following approx-

imation to the dislocation density tensor derived by Nye:

Γ ¼ curl He ¼ curl Ee þ curl We 	 curl We: (36)

Thus, Nye’s formula sets a linear relationship between the dislocation density

tensor and the lattice curvature defined by We. The Cosserat crystal plasticity

theory accounts for the effect of lattice curvature on the crystal hardening behavior

by incorporating the three additional independent degrees of freedom associated

with the components of the lattice rotation, We. In contrast, theories such as those

proposed by Gurtin (2002) and Svendsen (2002), for example, include the full curl

of the plastic distortion, Hp, as an independent internal variable of the constitutive

model. This requires in general nine additional degrees of freedom associated with

the generally nonsymmetric plastic distortion tensor,Hp. This subclass of models is

sometimes referred to as “curl Hp” type (Cordero et al. 2010).

A consequence of neglecting the curl of the elastic strain tensor in Cosserat-type

models is that Cosserat effects can arise even in the elastic regime as soon as a

gradient of “elastic” rotation exists (i.e., curl We 6¼ 0). This implies that as soon as

the curl Ee 6¼ 0, the curl We 6¼ 0. In contrast, in the curl Hp-type theories, strain

gradient effects can only arise when plastic deformation has developed. As has been

shown in Cordero et al. (2010), this can lead to discontinuities in the generalized

tractions at the interface between elastic and plastic regions. For the curl Hp-type

models, it is necessary to identify numerically higher-order boundary conditions at

the elastoplastic boundaries which poses difficulties in the numerical implementa-

tion of this type of formulations, as discussed in Cordero et al. (2010).

To overcome the limitations of both the Cosserat and curl Hp-type theories, a

new regularization method has recently been proposed by Cordero et al. (2010) (see

also Cordero et al. 2012a, b). Their model, which they have called microcurl, falls
into the class of generalized continua with additional degrees of freedom. Here, the

effect of the dislocation density tensor is introduced into the classical crystal

plasticity framework by means of the micromorphic theory of single crystals. It

relies on the introduction of an additional plastic micro-deformation variable, χp, a
second-rank generally nonsymmetric tensor. It is distinct from the plastic distortion

tensor Hp, which is still treated as an internal variable of the problem in the same

way as in curl Hp-type theories. For the general three-dimension case, the nine

components of χp are introduced as independent degrees of freedom. The microcurl
theory will be briefly summarized next.
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Microcurl Model: Balance and Constitutive Equations
If it is assumed that only the curl part of the gradient of plastic micro-deformation

plays a role in the power of internal forces, p(i), then

p ið Þ ¼ σ : _H
e þ s : _χp þM : curl _χp, (37)

where s and M are the generally asymmetric micro-stress and double or hyper-

stress tensors, respectively, work conjugates to the plastic micro-deformation and

its curl. The curl operator is defined in a Cartesian basis as

curl χpð Þij ¼ ejklχpik, l: (38)

Using the method of virtual power to derive the generalized balance of momen-

tum equations and assuming no volume forces for simplicity, one finds the follow-

ing balance equations:

div σ ¼ 0, curl Mþ s ¼ 0: (39)

The corresponding boundary conditions are

t ¼ σ � ne, me ¼ M � «^ �ne, (40)

where t and me are the simple and double tractions at the boundary and «
^

is the

third-order permutation tensor.

The free energy function is assumed to depend on the elastic strain tensor, Ee, the

curl of χp, and on a relative plastic strain, ep, defined as the difference between the

plastic distortion and the plastic micro-variable, ep ¼ Hp � χp. Then,

ψ ¼ ψ̂ Ee, curl χp, epð Þ: (41)

Furthermore, considering the following state laws,

σ ¼ ρ
@ψ
@Ee , s ¼ �ρ

@ψ
@ep

, M ¼ ρ
@ψ
@Γχ

, (42)

where Γχ ¼ curl χp and assuming a quadratic function for the potential function ψ
in Eq. 42, one obtains

σ ¼ L Ee, s ¼ �Hχ e
p, M ¼ A Γχ: (43)

Here, Hχ and A are the generalized moduli, which define an intrinsic length scale

associated with the size effect exhibited by the solution of the boundary value

problem,
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lw ¼
ffiffiffiffiffiffi
A

Hχ

s
: (44)

The flow rule can be derived from a viscoplastic potential, Ω(σ + s), expressed

in terms of the effective stress, (σ + s), that intervenes in the dissipation rate

equation. Then,

_H
p ¼ @Ω

@ σþ sð Þ : (45)

For a single crystal having N potentially active slip systems, the kinematics of

plastic deformation is dictated by Eq. 31. It is worth mentioning that, in a similar

way as in the Cosserat- and curl Hp-type theories, a back stress component arises

naturally from the formulation. Here, the back stress is x ¼ � s : (l � n).

Note also that the modulus Hχ in Eq. 43 introduces a coupling between the

macro- and micro-variables. This can be interpreted as a penalty factor that

constrains the relative plastic deformation, ep, to remain sufficiently small. Equiv-

alently, a high value of Hχ forces the plastic micro-deformation to be as close as

possible to the macroscopic plastic distortion tensor, Hp. In the limit, the use of a

Lagrange multiplier instead of the penalty factor, Hχ, is necessary to enforce the

following internal constraint:

χp � Hp: (46)

When Eq. 46 is satisfied, then

curl χp � curl Hp ¼ Γχ: (47)

Note also that when the internal constraint (Eq. 46) is enforced, the microcurl
model reduces to the curl Hp-type theories (e.g., Gurtin 2002). As a general case,

the selection of Hχ should be made so that the micro-deformation χp does not depart
too much from Hp and retains the physical meaning of the dislocation density

tensor.

Application of the Microcurl Model to Study the Deformation Behavior of a
Polycrystalline Aggregate
The microcurl model was applied to study the global and local responses of

two-dimensional polycrystalline aggregates with grain sizes ranging from 1 to

200 microns. (For full details about this work, refer to Cordero et al. 2012b.) A

typical result concerning the effect of grain size on the way plastic deformation in

polycrystals evolves is shown in Fig. 4 for a 52-grain aggregate. These contour plots

show the field of equivalent plastic deformation, eεp, defined as the time-integrated

value of
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_eεp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_H
p
: _H

p

r
(48)

From Fig. 4a, b, it can be seen that, at the onset of plastic deformation, plasticity

starts in the same grains and at the same locations in 100-μm grains as in 1-μm
grains. This is due to the fact that the same critical resolved shear stress is adopted

for both grain sizes, that is, the same initial dislocation densities are assumed in

both cases. In contrast, at higher mean plastic strain levels, the strongly different

values of the plastic micro-deformation gradients lead to significantly different

plastic strain fields. Two main features are evidenced in Fig. 4c–f. Firstly, a
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Fig. 4 (a–f) Contour plots of the accumulated plastic strain eep for two grain sizes, d ¼ 100 and

4 μm, and different mean values of the plastic strain: χ12ps 	 0.0, 0.01, and 0.02, obtained with a 2D
55-grain aggregate under simple shear, (g) macroscopic stress–strain response of the

corresponding aggregate, with the letters indicating the different loading steps corresponding to

the (a–f) contour plots (Cordero et al. 2010)
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tendency to strain localization in bands is observed for small grain sizes. The strain

localization bands cross several grains, whereas plastic strain becomes more diffuse

at larger grain sizes, something which had already been seen in the simulations

presented in Cordero et al. (2012a). Secondly, a consequence of this localization is

that some small grains are significantly less deformed than the larger ones. These

features are also visible on the plastic deformation maps of Fig. 5 for the same

aggregate but different grain sizes. This figure also shows the field of the norm of

the dislocation density tensor:

Γχ
�� �� :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γχ : Γχ
p

: (49)

This scalar quantity indicates the presence of GNDs and has the physical

dimension of lattice curvature (mm�1). For large grains, GNDs are mainly located

close to grain boundaries. At smaller grain sizes, the GND densities become

significantly greater and spread over larger zones within the grains. Note also that

pileups-like structures close to grain boundaries are clearly visible in the 10-μm
grain aggregate. It should be noted that strain gradient plasticity models may be

Fig. 5 Grain size effect on the accumulated plastic strain,eep (top figures), and on the norm of the

dislocation density tensor, kΓk (bottom figures). These contour plots are obtained with the 2D

55-grain aggregate for the same mean value of χ12ps ¼ 0.01. The color scale for the plastic strain

field of the top figures is the same as that of Fig. 4 on the right. The color scale at the bottom is that

for the dislocation density tensor fields (Cordero et al. 2010)
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prone to strain localization when plasticity is confined in small regions. The reason

for such behavior is that acute slip bands that exhibit a strong gradient of plastic slip

perpendicular to the slip plane are not associated with GND formation. In contrast,

regions of high lattice curvature or kink bands lead to an energy increase. This

explains why, at small scales, intense slip bands are preferred to strongly curved

regions and pileups. This has been confirmed by the observation of the equivalent

plastic deformation contour plots in Cordero et al. (2012b)’s Fig. 8 for three

aggregates with different mean grain sizes. Here, the zones of intense plastic

deformation were found to be systematically parallel to slip plane traces, thus

indicating the formation of slip bands during deformation.

In summary, the microcurl model was found to naturally predict a size-

dependent kinematic hardening behavior which is responsible for the observed

strong size effects. Furthermore, the results showed that the flow stress attained at

a given averaged plastic strain follows a power law scaling relation with the grain

size, for grain sizes larger than a critical value. Likewise, the predicted plastic

deformation fields were found to be strongly affected by grain size, with micron-

size grain regions exhibiting the formation of intense slip bands crossing several

grains. Finally, the dislocation density tensor, Γχ, was found to not only impact the

overall polycrystal behavior but also control the way plastic deformation develops

within the grains.

In Cordero et al. (2010), it was shown that the microcurl approach could also be

successfully used to predict experimentally observed precipitate size effects in

two-phase single crystal nickel-based superalloys. The results are shown in

Fig. 6, where a comparison between experimental data, in the form of precipitate

size vs. size effect strengthening from a two-phase superalloy material (γ phase

matrix with an embedded 68 % γ’ precipitates), the predictions of Busso

et al. (2000), and that obtained using the microcurl model (Cordero et al. 2012b)

are shown. It can be seen that the microcurl model is able to simulate a precipitate

size effect naturally. Moreover, the identified characteristic length, lc ¼ 200 nm, is

approximately the matrix channel width in Ni-based superalloys.

Concluding Remarks

The different constitutive modelling approaches which address a broad range of

phenomena at either the single crystal or the polycrystalline levels have been

critically discussed. This review has also highlighted the rich variety of physical,

computational, and technological issues within the broad area of micromechanics

which have been successfully addressed and has identified some theoretical and

computational difficulties and challenges for future developments. In the future,

crystallographic approaches for single crystal behavior which rely on internal slip

system variables will continue to provide the most powerful framework to incor-

porate basic mechanistic understanding in continuum models. However, further

development of 3D measurement and microstructure characterization techniques,

such as X-ray tomography and high-resolution EBSD, will require new challenges
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to be overcome. Novel and more efficient computational techniques for processing

and visualizing the enormous amount of data generated when studying real 3D

polycrystalline materials will be required. The ever increasing need to address

coupled multi-physics phenomena, such as the microstructural evolution driven

by diffusion processes, is driving new multidisciplinary research and providing

crystal plasticity with new and exciting challenges.
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Abstract

There are two well-established theories in micromechanics for analytical esti-

mation of overall property of a heterogeneous material, instead of experimental

estimation; a heterogeneous material includes a partially damaged or plastically

deformed material. These two theories, namely, the average field theory and the

homogenization theory, are explained in this article. The average field theory is

based on physical treatment of the heterogeneous material in the sense that it

mimics a material sample test, and it derives a closed-form expression of the

overall property in terms of the average strain and stress. The homogenization

theory is based on mathematical treatment in the sense that it applies the singular

perturbation expansion to the governing equations and obtains numerical solu-

tion for the overall property. In this article, the following three advanced topics

are also explained: (1) strain energy consideration to obtain the consistent

overall property, (2) the Hashin–Shtrikman variational principle to obtain

bounds for the overall property, and (3) the extension to the overall property

estimation at dynamic state from that at quasi-static state.

Introduction

Overall Property of Heterogeneous Material

It is intuitively clear that there is a certain overall property for a heterogeneous

material. The overall property is understood as the property of a material sample the

size of which is sufficiently larger than the size of the heterogeneity that is included

in the heterogeneous material. When a structure which consists of a heterogeneous

material is analyzed, it is a standard practice to model the structure as being made of

a fictitious but uniform material that has the overall property of the heterogeneous

material. The presence of heterogeneities in the original material is ignored in such

analysis of the structure.

The overall property is usually considered for a heterogeneous material which is

in elastic regime. The overall property could be considered even when the hetero-

geneous material reaches a plastic elastoplastic regime. In particular, when a

uniform material is damaged and numerous cracks of small sizes are initiated, the

overall property of the material at this damaged state could be considered by

regarding these cracks as material heterogeneities.

Average Field Theory and Homogenization Theory

For a given heterogeneous material, its overall property is usually measured by

carrying out a material sample test. However, it is sometimes necessary to analyt-

ically (or numerically) estimate the overall property, in particular, for an expensive
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material such as composites or metal alloy. In this case, micromechanics plays a

key role in estimating the overall property based on the microstructure of the

material. It provides two fundamental theories of analytically estimating the overall

properties, namely, the average field theory (or the mean field theory) and the

homogenization theory. The basic characteristics of these two theories are summa-

rized as follows:

Average Field Theory: The average field theory is based on the fact that what is

measured in a material sample test is the volume average of field variables in the

sample. It seeks to compute the volume average of the field variables, consid-

ering a microstructure of a target heterogeneous material, and to estimate the

overall property as the relation between the volume average of the field

variables.

Homogenization Theory: The homogenization theory solves a governing

equation for displacement in a heterogeneous material by applying a singular

perturbation expansion (or often called a multi-scale or two-scale analysis).

Hence, this theory is purely mathematical. The overall property naturally

emerges as the consequences of numerically solving the expanded term of the

displacement.

Nemat-Nasser and Hori (1993) presents a concise list of references related to the

average field theory and the homogenization theory; see also Hill (1963), Mura

(1987) for the average field theory and Sanchez-Palencia (1981), Bakhvalov and

Panasenko (1984), Francfort and Murat (1986) for the homogenization theory. For

relatively recent works, recommended are Hornung (1996), Kevorkina and Cole

(1996), Ammari et al. (2006), Gao and Ma (2012), Le Quang et al. (2008), Liu

(2008), Wang and Xu (2005), Wang and Gao (2011), Zheng and Du (2001), Zou

et al. (2010) and Terada et al. (1996).

The average field theory and the homogenization theory deal with the overall

property in an utterly different manner. For instance, modeling the microstructure

of a heterogeneous material is different. The average field theory uses a simple

model of an isolated inclusion which is embedded in an infinitely extended body,

whereas the homogenization theory usually uses a periodic microstructure. It gives

an impression that the two theories are basically different. However, it is possible to

establish a common platform on which both the theories are explained in a unified

manner.

This article is primarily concerned with explaining the average field theory and

the homogenization theory in a unified manner, so that the applicability of these two

theories to damaged materials can be seen. As advanced topics, brief explanation is

given on the average strain energy consideration and the Hashin–Shtrikman vari-

ational principle Hashin and Shtrikman (1962); these two are interesting subjects of

the average field theory. The two theories are easily extended to estimate the overall

property at dynamic state, and the analytic estimation of dynamic overall property

is explained in the end of this article.
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Field Equations

Symbolic and index notations are used in this article; for instance, stress tensor is

denoted by either σ or σij (the index corresponds to the Cartesian coordinate system,

xi for i ¼ 1, 2, 3). In the symbolic notation, � and: stand for the first- and second-

order contractions and � for the tensor product. In the index notation, summation

convention is employed. For simplicity, assumed are linear elasticity, infinitesi-

mally small deformation, and quasi-static state with the absence of body forces.

This setting is easily extended to nonlinear elastoplasticity or finite deformation

state if incremental behavior is considered. The variable elasticity tensor is denoted

by c, and displacement, strain, and stress fields are denoted by u, «, and σ,
respectively. These fields satisfy

« xð Þ ¼ sym ∇u xð Þf g, (1)

∇ � σ xð Þ ¼ 0, (2)

σ xð Þ ¼ c xð Þ : « xð Þ, (3)

where sym stands for the symmetric part (sym{()ij} ¼ (()ij + ()ji)/2), and ∇ is the

differential operator ((∇u)ij ¼ @uj/@xi). Note that x stands for a point. This set of

the three equations lead to

∇ � c xð Þ : ∇u xð Þð Þ ¼ 0: (4)

This is the governing equation for u.

Average Field Theory

Averaging Scheme

The average field theory starts by introducing a representative volume element
(RVE), denoted by V, as a body which models the microstructure of a given

heterogeneous material; see Fig. 1. While various definitions can be made in this

chapter, the RVE is regarded as a model of a material test sample which is used to

actually estimate the overall property.

In a material sample test, the overall property is estimated by assuming the

uniform distribution of strain and stress in the sample, and the strain and stress are

measured from the sample’s surface displacement and traction. For instance, when

a cubic sample is subjected to the uniform loading of T and the resulting displace-

ment is U, the uniaxial strain and stress are computed as

ε ¼ U

A
, and σ ¼ T

A2
,
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where A is the edge length of the cubic sample. It is easily shown that the strain and

stress measured in this way are actually the volume average of strain and stress

within the sample, which, of course, are not uniform. Indeed, the volume average of

strain and stress, denoted by h«iV and hσiV, respectively, is given as

«h iV ¼ 1

V

ð
@V

sym ν� uf gds, (5)

σh iV ¼ 1

V

ð
@V

t� xf gds, (6)

where ν is the outer unit normal on the boundary @V and u and t are the surface

displacement and traction, respectively. The sample strain and stress, ε ¼ U
A and

σ ¼ T
A2, are easily derived from these two equations. In this article, evaluation of the

volume average in terms of the surface integration is called the averaging scheme;

the averaging schemes presented in this article are readily proved by applying the

integral by part and the Gauss theorem to the computation of the volume average of

field variables. The averaging scheme is the consequences of Eqs. 1 and 2, and hence

Fig. 1 Representative

volume element for

estimating overall property of

heterogeneous material

13 Micromechanics for Heterogeneous Material Property Estimation 399



it holds for any arbitrary material with any constitutive properties. Note that the

symmetry of σ (σij ¼ σji) is related to the moment equilibrium, and the averaging

scheme leads to the symmetry of
Ð
{t � x}ds (

Ð
{t � x}ds ¼ Ð

{x � t}ds).

Average Field

In view of Eqs. 5 and 6, the average field theory introduces average fields, which are

defined as the weighted average of the corresponding field variables. The weight

function, denoted by φV, satisfies
Ð
φV dv ¼ 1 and takes on a constant value of 1/V

within V, except for a thin layer near @Vwhere it decays smoothly from 1/V to 0 and

vanishes on @V. Now, a body B which is larger than V is considered. The same

symbols, {u, «, σ}, are used for the field variables of B, and the average fields are

expressed in terms of φV and {u, «, σ} as

U
Ε
Σ

8<
:

9=
; Xð Þ ¼

ð
B

φV X� xð Þ
u
«
σ

8<
:

9=
; xð Þdv: (7)

Here, X is a point in B. Due to the nature of φV, {U, Ε, Σ} is smoother than the

original {u, «, σ}. Furthermore, it is seen that taking weighted average of φV is

commutable with operating ∇, and hence the average fields satisfy

Ε Xð Þ ¼ sym ∇U Xð Þf g, (8)

∇ � Σ Xð Þ ¼ 0, (9)

These two equations are the consequence of Eqs. 1 and 2.

As is seen, Eqs. 8 and 9 serve as field equations for {U, Ε, Σ}, just as Eqs. 1 and 2
do for {u, «, σ}. If there is another equation which corresponds to Eq. 3, a

governing equation for U can be derived. For instance, if this equation is given as

Σ Xð Þ ¼ C : Ε Xð Þ,

then it follows that∇ � C : ∇U
� � ¼ 0 is derived as the governing equation forU. Note

that C is assumed to be uniform in B. Or it can be assumed that B consists of the

fictitious but homogeneous material ofC. If suitable boundary conditions are posed on
the boundary @B, the averaged displacementU can be obtained by solving the resulting

boundary value problem. As expected, this C is the overall elasticity of the heter-

ogeneousmaterial. By definition,Ε andΣ correspond to h«iV and hσiV, i.e., the volume

average « and σ taken over the RVE, V, of the target heterogeneous modulus. The

average field theory, therefore, seeks to estimate C, which is now given as

σh iV ¼ C : «h iV : (10)
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Note that whileC is defined in terms of h«iV and hσiV, it does not guarantee that the
presence of the unique C that precisely relates Ε to Σ as Σ ¼ C : Ε for any point in

B. However, it is naively understood that Σ ¼ C : Ε approximately holds if C is

computed for a sufficiently large V, and such V is used to define the average strain

and stress fields, Ε and Σ, of B. As will be explained later, it is indeed true that

Σ ¼ C : Ε approximately holds since C of V changes depending on the boundary

conditions.

Explicit Expression of Overall Elasticity in Terms of Strain
Concentration Tensor

The average field theory provides several schemes to estimateC defined by Eq. 10.

The simplest example of a two-phase composite (consisting of a matrix phase and

an inclusion phase) is considered in order to explain these schemes. A common

target of these schemes is the estimate of strain concentration tensor, denote by A,
which is defined as

«h iI ¼ A : «h iV : (11)

Here, hiI is the volume average of the inclusion phase of the composite. If the

volume fraction of the inclusion phase is f, it holds hiV ¼ fhiI + (1 � f )hiM, where
hiM is the volume average of the matrix phase. After simple manipulations, hσiV is

evaluated as

σh iV ¼ f σh iI þ 1� fð Þ σh iM ¼ fCI : A : «h iV þ CM : I� fAð Þ : «h iV ,
where CM and CI are the elasticity of the matrix and inclusion phases, and I is the

identity tensor. In terms of A, therefore, C is expressed as

C ¼ CM þ f CI � CM
� �

: A: (12)

Note that no assumption is made in deriving this equation, except for the presence

of the strain concentration tensor A of Eq. 11.

Use of Eshelby’s Tensor for Evaluation of Strain Concentration
Tensor

A model of an infinitely extended body which includes one inclusion is

usually used, since a closed-form analytic solution, called Eshelby’s solution, is

available for this model when the inclusion is ellipsoidal form. There are

various schemes which take advantage of Eshelby’s solution (Eshelby 1957)

to A and to estimate C using Eq. 12. Representative schemes are the dilute
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distribution assumption, the self-consistent method, and the differential scheme;

see Nemat-Nasser and Hori (1993).

The original problem to which Eshelby’s solution is found is an infinitely

extended body problem; the body is homogeneous and linearly elastic and includes

a certain uniform strain distributed in an ellipsoidal domain (Eshelby 1957). The

strain is due to phase transition or thermal deformation and is usually called eigen-
strain. It is shown that this uniform eigen-strain produces uniform strain in the

ellipsoidal domain, although the strain due to the eigen-strain smoothly decays to

zero outside of the ellipsoidal domain. Moreover, the strain in the ellipsoidal

domain is analytically computed for the given elastic tensor of the infinite body

and the configuration of the ellipsoidal domain. This is Eshelby’s solution. The

strain in the ellipsoidal domain is expressed as the second-order contraction of a

certain fourth-order tensor and the eigen-tensor, and this fourth-order tensor is

called Eshelby’s tensor.

Since a closed-form expression is available for Eshelby’s tensor, it is easy to

analytically compute the strain concentration tensor, A, in terms of Eshelby’s

solution. This is the reason that numerous researches have been made to evaluate

the overall elasticity tensor in a closed form, using Eshelby’s tensor; see

Kachanov et al. (1994), Markenscoff (1998), Nozaki and Taya (2001), Kawashita

and Nozaki (2001), Onaka et al. (2002), and Ru (2003). It is remarkable to note

that eigen-strain which is uniformly generated in an ellipsoidal domain generates

a uniform strain in the domain. This is because it implies that when an ellipsoidal

inclusion of a different material is embedded in an infinitely extended and

homogeneous body and the body is subjected to far-field loading, strain and stress

of the inclusion become uniform; see Tanaka and Mori (1972) and Hori and

Nemat-Nasser (1993).

Homogenization Theory

Singular Perturbation Expansion

The homogenization theory focuses the governing equation for u, Eq. 4, by

considering the nature of c in it. That is, c changes spatially in the length scale of

material heterogeneity. To this end, the homogenization theory introduces two

length scales, the one for the material heterogeneity and the other for a target

structure, denoted by l and L, respectively. For simplicity, l and L are called the

micro- and macro-length scales. The ratio of l and L is denoted by

ϵ ¼ l

L
: (13)

An insight is given to the length scale, if a finite element method analysis is

considered. The dimension of a target body is in the order of L, and the dimension

of an element is in the order of l. When the number of elements is (103)3, the ratio is
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ϵ ~ 10�3. In terms of this small ϵ, it is natural to define a slowly changing spatial

coordinates, X, by

X ¼ ϵx: (14)

By definition, X is the coordinate in the macro-length scale, if x is regarded as the

coordinate in the micro-length scale.

The homogenization theory takes the following singular perturbation expansion

of u:

u xð Þ ¼ u0 X,xð Þ þ ϵu1 X,xð Þ þ � � �: (15)

This expansion is called singular since the terms in the right side are a function of X
and x. Note that ϵ defined by Eq. 14 appears as the coefficient of u1 as well as the
slow spatial variable X. A regular perturbation expansion considers the change in

c only. That is, c is expressed as c¼ c0 + ϵc1 with c0 being constant and c1 spatially
varying, and this ϵc1 is regarded as the small change in c from the uniform state of

c0. In view of this c, the regular perturbation expansion is readily applied to u, as

u xð Þ ¼ u0 xð Þ þ ϵu1 xð Þ þ � � �,
and the first term u0 is the solution of the homogeneous body problem, and the later

terms correct u0; u0 + ϵu1 is a good approximate solution of a body which consists

of c0 + ϵc1 if ϵ is small.

The target of the singular perturbation expansion is the first term and hence ∇x

for x is replaced with ∇X for X, which is now evaluated in terms of X and x as

∇x ¼ ∇x þ 1

ϵ
∇X,

where subscript X or x emphasizes the operator for X or x, respectively. Substitution
of Eq. 15 into Eq. 4 together with the above differential operator, the homogeniza-

tion theory yields

ϵ�2 ∇x � c : ∇xu
0ð Þ� �

þ ϵ�1 ∇X � c : ∇xu
0ð Þ þ∇x � c :

�
∇Xu

0 þ∇xu
1

� �� �
þ ϵ0 ∇X � c : ∇Xu

0 þ∇xu
1ð Þð Þ þ � � �� �þ � � � ¼ 0:

(16)

For the term of ϵ�2 to vanish, ∇xu
0 must be 0. That is, u0 is a function of X only.

For the terms of ϵ�1 to vanish, the form of u1 is assumed as

u1 X,xð Þ ¼ χ xð Þ : ∇Xu
0 Xð Þ� �

,

and the term becomes∇x � (c : (∇xχ + I) : (∇Xu
0)). This term vanishes if χ satisfies

∇x � c xð Þ : ∇xχ xð Þ þ Ið Þð Þ ¼ 0: (17)
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The term of ϵ0 is now rewritten as∇X � (c : (∇xχ + I) :∇Xu
0). It is this c : (∇xχ + I)

that plays a role of an overall elasticity for u0, even though it is a function of x, not
X. Hence, the homogenization theory replaces c : (∇xχ + I) with its volume average

taken over a suitable volume, i.e.,

C ¼ c : ∇xχ xð Þ þ Ið ÞU: (18)

Here, U is a certain domain in which the average is taken; this U must be in the

micro-length scale so that hiU is independent from x.

Use of Periodic Structure as Microstructure Model

The two tasks remain to estimate C by computing Eq. 18. Namely, solving Eq. 17

for χ and determining U. As shown in Fig. 2, the homogenization theory usually

uses a periodic structure, assuming the microstructure of the target heterogeneous

material is more or less the same; see, for instance, Nuna and Keller (1984) and

Walker et al. (1991); Oleinik et al. (1992) for the homogenization theory of

nonperiodic media. χ is thus computed for this periodic structure, and a unit cell

of the periodic structure is chosen for U.
Unlike the average field theory, the homogenization theory is based on the

mathematical approach of the singular perturbation expansion, in solving the

governing equation of u when c changes in the micro-length scale of l. An

advantage of this theory is to analyze only the leading term in the expansion, u0,
which is a function of X or changes in the macro-length scale of L. Note that u0

accompanies strain given by

sym ∇xχþ Ið Þ : ∇Xu
0

� �� � ¼ sym ∇xχ : ∇Xu
0

� �þ sym ∇Xu
0

� �
:

It is the first term of the right side that reflects the spatial change in c in the micro-

length scale, while the second term is strain which changes in the macro-length

scale. By definition, Eq. 18, the effect of the first term on stress which changes in the

macro-length scale is included in C by taking volume average over U.
It is of interest to take the limit as ϵ goes to 0 in the homogenization theory.

Numerous researches have been made for this limit. On the viewpoint of the

perturbation expansion, however, it is standard to use a finite value for ϵ, using
the definition of Eq. 13. It is thus possible to separately treat the homogenization

theory from the singular perturbation expansion when the theory focuses on the

special case of ϵ approaches 0.

Comparison of Average Field Theory and Homogenization Theory

In Table 1, the comparison of the average field theory and the homogenization

theory is summarized. The field variables used in these theories are different; the
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displacement function is different, and hence the strain and stress become different.

The overall field variables are defined as the volume average of the field variables,

even though the domain in which the average is taken is different.

It is of interest to note that while the homogenization theory is based on the

singular perturbation, the first term, u0, is actually computed by taking the volume

Fig. 2 Periodic structure for

estimating overall property of

heterogeneous material

Table 1 Comparison of average field theory and homogenization theory

Average field theory Homogenization theory

Displacement u u0 + ϵχ : (∇u0)

Strain « ¼ sym{∇u} «0 ¼ (∇χ + I) : (∇u0)

Stress σ ¼ c : « σ0 ¼ c : «0

Overall displacement U ¼ Ð
φVudv u0

Overall strain Ε ¼ sym{∇U} h«0i ¼ sym{∇u0}

Overall stress Σ ¼ C : Ε σ0
� � ¼ C : «0

� �
Overall elasticity C ¼ CM þ f CI � CM

� �
: A C ¼ c : ∇χ þ Ið Þh i
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average of the strain due to the second term, u1, even though the domain in which

the average is taken is a unit cell. While a certain similarity is found for the two

theories, there are two major differences between them. The first difference is the

modeling of the microstructure: the homogenization theory uses a unit cell of the

periodic structure, while the average field theory considers an RVE. The second

difference is that the homogenization theory is able to compute higher-order terms,

if necessary, but the average field theory does not have systematic procedures to

increase the accuracy of the estimation.

The abovementioned differences are not essential. And these two theories are

unified to construct a theory of analytically estimating overall property; the singular

perturbation expansion that is employed by the homogenization theory is applied to

a nonperiodic microstructure, and higher-order terms are computed by taking the

volume average that is a core concept of the average field theory. Indeed, the

essential procedures of the unified theory are stated as follows: (1) to use an RVE

instead of the periodic structure, (2) to apply the singular perturbation expansion to

the field in the RVE, and (3) to take the volume average of the terms in the

expansion to compute the overall elasticity.

In the unified theory, setting of the boundary conditions of the target RVE needs

some consideration. As will be explained later, it is sufficient to choose either linear

displacement boundary conditions or uniform traction boundary conditions, respec-

tively, if the resulting boundary tractions or displacement do not change wildly. A

natural choice of the RVE configuration is cubic, and a cubic RVE is regarded as a

unit cell if periodic boundary conditions are used instead of linear displacement

boundary conditions or uniform traction boundary conditions. As will be explained

later again, least dependence of the overall property on the boundary conditions is

important to make the property consistent (i.e., the overall property is able to relate

strain and stress as well as strain and strain energy density).

Strain Energy Consideration

Consistency of Overall Elasticity

Besides relating strain to stress, elasticity relates strain to strain energy density. The

average field theory extensively studies this dual role of the elasticity; see Hill

(1963). That is, an overall elasticity of an RVE is required to relate the average

strain to the average strain energy density as follows:

eh iV ¼ 1

2
«h iV : C : «h iV , (19)

where e ¼ 1
2
« : c : « or e ¼ 1

2
σ : « is strain energy density. A question arises

regarding the dual role of the overall elasticity, i.e., whether the two C ’s of

Eqs. 10 and 19 are the same or whether the overall property that relates the average
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strain to the average stress does relate the average strain to the average strain

energy density. This is called the consistency of C in this article. It is easily

understood that the condition for C to be consistent is that the average of strain

energy density coincides half of the product of the average stress and the average

strain, eh iV ¼ 1
2
σh iV : «h iV or 1

2
σ : «h iV ¼ 1

2
σh iV : «h iV .

An averaging scheme for the product of strain and stress is readily derived from

the two field equations, Eqs. 1 and 2, as

σ : «h iV ¼ 1

V

ð
@V

t � u ds; (20)

recall that t is the surface traction. Using the averaging schemes for strain and stress,

Eqs. 5 and 6, the following equation is derived from Eq. 20:

σ : «h iV � σh iV : «h iV ¼ 1

V

ð
@V

t� ν � σh iV
� � � u� x � «h iV

� �
ds: (21)

As is seen, the left side, the difference between the average of strain and stress

product, hσ : «iV and the product of average strain and stress, hσiV : h«iV, is given as
the surface integration of the product of t � ν � hσiV and u � x � h«iV, which are the
deviation of the traction from that computed in terms of the average stress (ν � hσiV)
and the deviation of the displacement from that computed in terms of the average

strain (x � h«iV), respectively.

Condition for Consistent Overall Elasticity

In view of Eq. 20, it is clear that C’s of Eqs. 10 and 19 are the same if the RVE is

subjected to either uniform traction boundary conditions or linear displacement

boundary conditions, so that t � ν � hσiV or u � x � h«iV identically vanishes on @V,
respectively. Furthermore, if boundary conditions are chosen so that

t� ν � σh iV
� � � u� x � «h iV

� ��� �� < w

with w being a constant, then, Eq. 20 leads to

σ : «h iV � σh iV : «h iV
�� �� < 1

V

ð
@V

t� ν � σVð Þ � u� x � «Vð Þj jds < Sw

V
,

where S and V are the area of @V and the volume of V; the same symbol is used

for the volume of V. If Sw/V is sufficiently small, C ’s of Eqs. 10 and 19 are

regarded as being approximately consistent. Note that when w is fixed, Sw/V
decreases as the size of RVE increases since S/V is of the order of the inverse of

the RVE’s size.
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Dependence of Overall Elasticity on Loading Condition

Another question arises regarding the property of C . The consistent overall

elasticity of C is defined by using field variables of an RVE which is subjected to

certain boundary conditions, namely, linear displacement boundary conditions or

uniform traction boundary conditions (which are typical examples of boundary

conditions satisfying |(t� ν � hσiV) � (u� x � h«iV)|< w). So, the question is whether

C is independent from the boundary conditions or from the loading conditions of the

RVE. The answer is negative. C changes depending on the boundary conditions.

Putting superscripts S, G, and E for field variables due to uniform traction, general,

linear displacement boundary conditions, respectively, the following averaging

scheme holds for the average strain energy density of the RVE subjected to

different boundary conditions:

eS
� �

V
� eG

� �
V

for «G
� �

V
¼ «S

� �
V
,

eEh iV � eG
� �

V
for σG

� �
V
¼ σEh iV ;

	
(22)

see Fig. 3 (Nemat-Nasser and Hori 1995). The proof is simple, just by computing

the right side of the following inequalities:

0 � «G � «S
� �

: c : «G � «S
� �� �

V
and 0 � «G � «E

� �
: c : «G � «E

� �� �
V
:

The meaning of Eq. 22 is clear, if it is interpreted that the average strain energy

density is increased by putting more wildly varying surface displacement or traction

on the RVE’s boundary and that the average strain energy density attains the lowest

value if there is no varying surface displacement or traction. While not proved, it is

intuitively clear that if surface displacement or traction does not change wildly (just

as an inequality of |(t � ν � hσiV) � (u � x � h«iV)| < w holds), heGiV would be close

to both heSiV and heEiV; the difference, heGiV � heSiV or heGiV � heEiV, would

Fig. 3 Dependence of strain

energy on boundary

conditions

408 M. Hori



vanish as the size of the RVE increases. Therefore, the dependence of C on the

boundary conditions would be negligible for a sufficiently large RVE.

It is of interest to note that Eq. 22, the inequalities of the average strain energy

density, can be derived from following functional:

IE u; tð Þ ¼ 1

2
« : c : «


 �
V

þ 1

V

ð
@V

λ xð Þ � ν xð Þ � σ xð Þ � t xð Þð Þdsþ μ : σh iV � σ
� �

:

Here, t andσ are the traction described onσ and a given average stress, respectively,
and σ is a stress field which is associated with u; λ and μ are the Lagrange

multipliers enforcing the boundary condition, ν xð Þ � σ xð Þ ¼ t xð Þ, and the average

stress condition, σh iV ¼ σ (λ is a vector function defined on @V, and μ is a second-

order tensor defined on @V ). A stationary value of IE or 1
2
« : c : «

� � ¼ eh iV is found
by taking the variation with respect to both u and u. For instance, the variation of IE

with respect to u is

δIE u; tð Þ ¼ 1

V

ð
@V

δt xð Þ � u xð Þ � x � μð Þds,

Since μ is a constant second-order tensor, the Euler equation shown in the

above means that IE is stationarized for t that makes the associated displacement

u on @V linear with respect to x. That is, the linear displacement boundary

conditions minimize IE, and the inequality heEiV � heGiV holds for any uG which

accompanies σG that satisfies hσGiV ¼ hσEiV. It is similarly shown that the

inequality heSiV � heGiV holds for any displacement field uG which accompanies

«G that satisfies h«GiV ¼ h«SiV from the following functional:

IS u; uð Þ ¼ 1

2
« : c : «


 �
V

þ 1

V

ð
@V

λ xð Þ � u xð Þ � u xð Þð Þdsþ μ : «h iV � «
� �

,

where u and « are a displacement field which is defined on @V and a given average

strain and « is a strain field associated with u.

Hashin–Shtrikman Variational Principle

Fictitious Uniform RVE

A unique approach of estimating the overall property of an RVE is the use of the

variational principle. This is called the Hashin–Shtrikman variational principle

(Hashin and Shtrikman 1962); see Walpole (1969), Willis (1977), Milton and

Kohn (1988), Torquato (1991), and Munashinghe et al. (1996). It uses a fictitious

but homogeneous RVE and seeks to find a distribution of eigen-stress so that the

field variables in the homogeneous RVE coincide with those in the original

heterogeneous RVE. Even if the exact distribution is not found, a suitable
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distribution of the eigen-stress provides an upper or lower bound for the strain

energy of the original heterogeneous RVE.

The formulation of the Hashin–Shtrikman variational principle starts from

eigen-stress, denoted by σ�, and the following stress–strain relation holds in the

homogeneous RVE, denoted by Vo:

σ xð Þ ¼ co : « xð Þ þ σ� xð Þ, (23)

where co is the elasticity of the homogeneous RVE. The other two field equations,

Eqs. 1 and 2, hold in the homogeneous RVE. The governing equation for u is thus

given as

∇ � co : ∇u xð Þð Þ þ∇ � σ� xð Þ ¼ 0: (24)

Regarding ∇ � σ� as a body force, Eq. 24 can be solved for u by using the

fundamental solution of the homogeneous body, Go; this Go is often called Green’s

function of an infinitely extended body, instead of the fundamental solution of the

partial differential equation. The contribution of σ� on u is given as
Ð
Go(x � y) �

(∇ � σ�(y))dv, where the integration is taken with respect to y.
Now, suppose the linear displacement boundary conditions of the original RVE

are posed for the homogeneous RVE. If σ� satisfies

co : « xð Þ þ σ� xð Þ ¼ c xð Þ : « xð Þ, (25)

the field variables of the homogeneous RVE coincide with those of the original

RVE. Note that « in both sides of Eq. 25 are the strain in the homogeneous RVE.

Hashin–Shtrikman Functional for Eigen-stress

A functional for σ� is readily defined so that its Euler equation becomes Eq. 25.

That is,

JE σ�ð Þ ¼
ð
Vo

1

2
σ� xð Þ : c xð Þ � coð Þ�1 : σ� xð Þ � 1

2
σ� xð Þ : «d xð Þ � σ� xð Þ : «o xð Þdv;

(26)

«d is strain caused by σ� and can be expressed in terms of Go, and «o is a strain field
caused by the given displacement boundary conditions in the absence of σ�. Since
«d and σ� satisfy

ð
Vo

σ� xð Þ : «d xð Þdv ¼ �
ð
Vo

«d xð Þ : co : «d xð Þdv,
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and hence the variation of JE leads to Eq. 25; note that the above equation is derived
from a condition of ud ¼ 0 on @Vo.

When co is chosen so that c � co becomes negative definite in Vo, the stationary

value of JE is actually the minimum value. That is, for any σ�, the following

inequality holds:

JE σ�ð Þ >
ð
Vo

� 1

2
c xð Þ � coð Þ : « xð Þð Þ : « xð Þdv ¼ 1

2
« : co : «


 �
Vo

� eh iV :

Here, « is the strain of the strain in the original RVE subjected to the same

displacement boundary conditions (or the strain that is computed for σ� satisfying
Eq. 25), and heiV is the average strain energy density that corresponds to this «.
Hence, a lower bound is obtained for heiV.

eh iV >
1

2
« : co : «


 �
Vo

� JE σ�ð Þ: (27)

The first term in the right side of this inequality is 1
2
«h iV : co : «h iV , since « is that

strain which corresponds to the linear displacement boundary conditions. The

second term is evaluated by using a piecewise constant distribution of σ� and

Eshelby’s solution. Thus, the lower bound for heiV provides a lower bound for

the overall property.

In the above discussion, linear displacement boundary conditions are assumed in

computing the lower bound for heiV of V. However, the principle holds if any

displacement boundary conditions are posed on for @V. This is because a key

condition of the principle is
Ð
σ� : «ddv ¼ � Ð

«d : co : «ddv, which is derived

from the condition that displacement caused by σ� vanishes on @V.
In a similar manner, an upper bound for the overall property can be computed by

considering the case when traction boundary conditions are given, and co is chosen
so that c � co becomes positive definite. That is, the following functional is

considered:

JS σ�ð Þ ¼
ð
Vo

1

2
«� xð Þ : d xð Þ � doð Þ�1 : «� xð Þ � 1

2
«� xð Þ : σd xð Þ � «� xð Þ : σo xð Þdv;

where «�(x) is defined as «�(x)¼ (co)�1 : σ�(x); do and d are the inverse tensor of co

and c (usually called compliance tensor), respectively; σd is the stress caused by σ�;
and σo is a stress field caused by the given traction boundary conditions in the

absence of σ�. Note that just like
Ð
σ� : «ddv in JE is negative definite,

Ð
«� : σddv in

JS is negative definite and that the traction boundary conditions do not have to be

uniform; the principle holds for any traction boundary conditions.
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Application of Hashin–Shtrikman Variational Principle
to Periodic Structure

A homogeneous RVE is introduced for the original heterogeneous RVE, in order to

formulate the Hashin–Shtrikman variational principle. It gives an impression that

this principle holds only in the framework of the average field theory. However, the

principle can be applied to a periodic structure of the homogenization theory, if the

following identity holds:

ð
σ� xð Þ : «d xð Þdv ¼ �

ð
«d xð Þ : co : «d xð Þdv:

Here, «d is a strain field produced in the unit cell U when σ� is given to the

homogeneous periodic structure. Actually, the periodic boundary conditions

which are posed for U satisfy the above equality; σ� and «d are the eigen-stress

and the strain caused by σ� in U.

Overall Property at Dynamics State

Averaging Scheme at Dynamic State

In this article, quasi-static state has been assumed in analyzing field variables to

estimate overall property of a heterogeneous material. It is of interest to consider

the estimation of overall property at dynamic state, applying the two

micromechanics theories. At dynamic state, Eq. 2 is replaced by

∇ � σ x, tð Þ � Dp x, tð Þ ¼ 0, (28)

where t is time, D is the differential operator (D( ) ¼ @( )/@t), and p is momentum

which is defined as

p x, tð Þ ¼ ρ xð Þv x, tð Þ: (29)

Here, ρ is density and v is velocity given as v ¼ Du.
According to the average field theory, an RVE at dynamic state is considered to

estimate the overall property at dynamic state, and the volume average of field

variables is computed. While the averaging scheme of strain, Eq. 5, holds, that of

stress, Eq. 6, is replaced by

σh i ¼ 1

V

ð
@V

sym t� xf gds� p� xh i, (30)
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together with

Dph i ¼ 1

V

ð
@V

t ds: (31)

Here, for simplicity, subscript V is excluded in hi, which is a function of t. Note that
Eq. 30 includes hp � xi; unlike Eq. 6 at quasi-static state, the average stress at

dynamic state is not determined by the surface integration only. It is important to

know that the average strain and stress of a material sample are measurable at

quasi-static state. However, only the average strain is measurable at dynamic state;

computing the average stress of the sample needs a distribution of p � x within the

sample.

Fictitious Uniform RVE at Dynamic State

In order to estimate the overall property, the average field theory seeks to relate the

volume averages which are computed by the averaging schemes. It is useful to analyze

a homogeneous RVE, Vo, to which the fundamental solution at dynamic state is

applicable, as explained in the previous section. Eigen-stress and eigen-momentum,

denoted by σ� and p�, respectively, disturb stress and momentum in Vo as

σ x, tð Þ ¼ co : « x, tð Þ þ σ� x, tð Þ, (32)

p x, tð Þ ¼ ρov x, tð Þ þ p� x, tð Þ, (33)

from which the governing equation of u at dynamic state is derived as

∇ � co : ∇u x, tð Þð Þ � ρoD2u x, tð Þ þ∇ � σ� x, tð Þ � Dp� x, tð Þ ¼ 0: (34)

As is seen, ∇ � σ� � Dp� plays a role of body force, and its contribution on u is

computed by the spatial and temporal integration of the fundamental solution,

which is expressed as the convolution form

ðð
Go x� y, t� sð Þ � �∇ � σ� y, sð Þ þ Dp� y, sð Þð Þdvds ¼ Go � �∇ � σ� þ D�ð Þ,

where Go is the fundamental solution at dynamic state, and differentiation and

integration are taken with respect to y and s. After careful manipulations are carried

out in substituting of Go � (�∇ � σ� + Dp�) into Eqs. 30 and 31, the volume average

of stress and momentum is estimated as follows:

σh i ¼ C � «h i þ S � vh i, (35)

ph i ¼ S
t � «h i þ Υ � vh i, (36)
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where C , Υ , and S are convolution operators and superscript t stands for the

transpose; there is symmetry for Eqs. 35 and 36 in the sense that S and S
t
express

the contribution of hvi and h«i to hσi and hpi, respectively. The presence of these
operators is proved, but the explicit form of the operators in terms of Go is not

obtained.

It is of interest to note that the presence of the average velocity, hvi, in Eqs. 35

and 36 appears odd. The identical material properties ought to be measured by two

observers who move in constant but different speed. However, hvi would be

different for these two observers, and hence the presence of hvi in Eqs. 35 and 36

appears odd. Actually, contribution of hvi would be replaced by hD«i, without
breaking the symmetry of the operators and the averages, if temporal average is

taken for Eqs. 35 and 36.

In closing the average field theory for dynamic state, the averaging scheme for

strain energy is summarized as follows:

σ : «h i ¼ 1

V

ð
@V

t x, tð Þ � u x, tð Þds� Dp � ph i, (37)

σ : «h i � σh i : «h i ¼ 1

V

ð
@V

t x, tð Þ � ν � hσið Þ � u x, tð Þ � x � «h ið Þds� Dp � uh i
þ x� Dph i : «h i:

(38)

These two equations are the dynamic version of Eqs. 20 and 21. Just like the quasi-

static version, Eqs. 37 and 38 are the consequences of the two field equations, Eqs. 1

and 28, and hold for any arbitrary materials. Note that unlike quasi-static state,

hσ : «i and hσ : «i � hσi : h«i are not determined by the surface integral only, which

implies that measurement of field variables within V will be needed to evaluate

these terms exactly.

Application of Singular Perturbation Expansion

Like the quasi-static state, the homogenization theory seeks to apply the singular

perturbation expansion to the governing equation of u at dynamic state, i.e.,

D ρ xð ÞDu x, tð Þð Þ �∇ � c xð Þ : ∇u x, tð Þð Þ ¼ 0:

If the expansion of u is made in the same manner as Eq. 15, i.e.,

u x, tð Þ ¼ u0 X,x, tð Þ þ ϵu1 X, x, tð Þ þ � � �,
then assuming that u0 is a function of X and t and that u1 is the form of u1 ¼ χ : u0

with χ being a function of x only, the overall elasticity is identical withC of Eq. 18,
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and the overall density, Υ , is the volume average of ρ taken over a unit cell U.
That is,

C ¼ c xð Þ : χ xð Þ þ Ih iU and Υ ¼ ρh iU:

This estimate of C and Υ is intuitively acceptable.

While the dynamic overall property estimated by the average field theory is

different from the quasi-static overall property, the homogenization theory pro-

duces the same estimate of the overall elasticity and a well-expected estimate of the

overall density. This difference comes from the form of the expansion. The

different phases will have different elastic wave velocity (which is determined by

the ratio of the elasticity and the density). At dynamic state, therefore, each phase

will have a different timescale for its elastic wave to travel in the phase, provided

that all phases have more or less the same spatial size. Thus, an alternative

(probably more realistic) expansion of u will be

u x, tð Þ ¼ u0 X, x,T, tð Þ þ ϵu1 X, x,T, tð Þ þ � � �,
where

T ¼ 1

ϵ
t

is a temporal variable slower than t, just as X is a spatial variable changing more

slowly than x. The results of estimating the overall elasticity and density will be

different if the alternative expansion is taken.

Conclusion

The two micromechanics theories explained in this article are well established. It is

not difficult at all to derive a closed-form expression or a numerical solution for the

overall property according to these theories. The accuracy of the estimation is, in

general, limited; the analytical estimation does not reach the level of an alternative

of the experimental estimation, and the numerical solution, which is better than the

closed-form solution, is not often used in practice. However, due to its suppleness,

the analytical estimation could be useful to obtain a rough estimate of the overall

property.

Besides practical use, the two theories of micromechanics give a clear concept of

modeling the microstructure of a heterogeneous material. We can take advantage of

this concept in order to estimate nonmechanical properties, such as electromagnetic

property, thermal conductivity property, or coupling property among them. The

Hashin–Shtrikman variational principle is worth being extended for this purpose,

since it provides both upper and lower bounds for the overall property.
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grain-boundary (GB) interaction scheme, which is based on dislocation-density

transmission and blockage at variant boundaries, are developed and used to predict

stress accumulation or relaxation at the variant interfaces. A microstructural

failure criterion, which is based on resolving these stresses on martensitic cleavage

planes, and specialized finite-element (FE) methodologies using overlapping

elements to represent evolving fracture surfaces are used for a detailed analysis

of fracture nucleation and intergranular and transgranular crack growth in mar-

tensitic steels. The effects of block and packet boundaries are investigated, and the

results indicate that the orientation of the cleavage planes in relation to the slip

planes and the lath morphology are the dominant factors that characterize specific

failure modes. The block and packet sizes along the lath long direction are the key

microstructural features that affect toughening mechanisms, such as crack arrest

and deflection, and these mechanisms can be used to control the nucleation and

propagation of different failure modes.

Introduction

In this chapter, a recently developed dislocation-density crystalline plasticity for-

mulation is coupled with a new fracture methodology to investigate large strain

inelastic modes and associated ductile crack nucleation and evolution in crystalline

materials. The methodology is applied to martensitic steels. Fracture behavior in

crystalline materials is inherently complex due to the microstructural effects, which

can affect behavior on scales that range from the nano to the macro. The overarch-

ing challenge is to identify dominant microstructural effects on behavior, such as

failure initiation and evolution in ductile crystalline materials. Lath martensitic

steels offer a unique system, since the microstructure at different scales can include

different crystalline structures (b.c.c. and f.c.c.), dislocation-density evolution and

interactions, variant orientations and distributions, grain morphologies, grain-

boundary distributions and orientations, and dispersed particles and precipitates.

Lath martensitic steels have a myriad of military and civilian applications due to

their high strength wear resistance and toughness. These properties are a result of

the unique microstructure inherent to martensitic steels, which have been charac-

terized extensively as lath, block, and packet substructures (Morito et al. 2003,

2006). Depending on the processing and chemical composition, martensitic steels

can offer a variety of microstructures and properties (Takaki et al. 2001; Tsuji

et al. 2004; Song et al. 2005). Superior combinations of mechanical properties have

been achieved through microalloying elements and thermomechanical treatment

followed by tempering and aging (Ayada et al. 1998; Barani et al. 2007; Kimura

et al. 2008). Failure in martensitic steels and its relation to the microstructure has

been experimentally studied, and various failure modes, such as the formation of

intensely localized shear bands (Minaar and Zhou 1998) and transgranular and

intergranular fracture (Krauss 1999; Inoue et al. 1970; Matsuda et al. 1972), evolve

as a function of the interrelated effects of martensitic structure, the ORs, and

strain rate.
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The size of cleavage facets in transgranular fracture modes has been related to

the packet size (Inoue et al. 1970; Matsuda et al. 1972) and the block size (Hughes

et al. 2011). Refinement of the block and packet sizes can reduce the coherence

interface length on the {110} and {112} slip planes, which improves strength by

resisting dislocation motion, and on the {100} cleavage planes, which improves

toughness by suppressing crack propagation modes (Morris 2011; Guo et al. 2004;

Morris et al. 2011). While block and packet size refinement through intercritical

heat treatments (Jin et al. 1975; Kim et al. 1998) and tempforming (Kimura

et al. 2008) has been used to obtain high strength and toughness, it has generally

been observed to result in high strength with a significant loss in ductility (Howe

2000; Tsuji et al. 2002). The relative roles of the block and packet boundaries in the

strengthening and toughening mechanisms are unclear in these investigations, as

the effect of processing on the refinement of both packet and block sizes is not

considered, which can be significant as noted by Kawata et al. (2006) who have

observed that block sizes can be increased by packet size refinement by changing

the processing conditions. Using microbending experiments, Shibata et al. (2010)

have shown the significant contribution of block boundaries relative to that of

subblock boundaries to strengthening, which has been attributed to dislocation

pileups at high-angle block boundaries. Ohmura et al. (2004) have observed

dislocation absorption into the block boundary with no indication of pileups, and

the observed hardening due to block size refinement has been attributed to the

decoration of the boundary with carbides (Ohmura and Tsuzaki 2007).

All of these investigations clearly indicate that themorphology and crystallography

of the blocks and packets have a significant influence on the strength and toughness of

martensitic microstructures, through the complex interactions of the prior austenite

grain boundaries, the packet and the block boundaries with the evolving dislocation

microstructure, and propagating cracks. However, what is lacking is a systematic

investigation of the relationship between themicrostructure and thematerial behavior,

which is not well established. The objective of the present work, therefore, is to

develop an integrated framework that incorporates material descriptions, which are

sensitive to dominant martensitic microstructural features, with specialized computa-

tional representations of evolving failure surfaces and microstructurally based failure

criteria, to accuratelymodel the initiation and evolution of failure inmartensitic steels.

A physically based dislocation-density GB interaction scheme that is representative of

the resistance to dislocation-density transmission across block and packet boundaries

is developed, and it is incorporated into a multiple-slip dislocation-density-based

constitutive formulation. The formulation accounts for variant morphologies and

ORs that are uniquely inherent to lath martensitic microstructures. The disadvantages

of existing crack propagation methods are overcome through the use of a specialized

FEmethodology using overlapping elements to represent failure surfaces (Hansbo and

Hansbo 2004), and a failure criterion based on the evolving orientation of the cleavage

planes in different martensitic variants is developed. This framework is then used to

perform large-scale FE simulations to characterize the dominant dislocation-density

mechanisms for the localization of plastic strains and the initiation and propagation of

failure in martensitic microstructures.
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This chapter is organized as follows: the dislocation-density crystalline plasticity

formulation, the derivation of the dislocation-density GB scheme, and the martens-

itic microstructure representation are presented in section “Dislocation-Density-

Based Multiple Slip Formulation”; the numerical implementation of the failure

surface representation and microstructural failure criterion, which is based on

resolving stresses along fracture planes, is outlined in section “Computational

Representation of Failure Surfaces and Microstructural Failure Criterion”; the

results are presented and discussed in section “Results and Discussion”; and a

summary of the results and conclusions are given in section “Conclusion.”

Dislocation-Density-Based Multiple Slip Formulation

In this section, the multiple-slip crystal plasticity rate-dependent constitutive for-

mulation and the derivation of the evolution equations for the mobile and immobile

dislocation densities, which are coupled to the constitutive formulation, are

presented.

Multiple-Slip Crystal Plasticity Formulation

The crystal plasticity constitutive framework used in this study is based on the

formulation developed by Asaro and Rice (1977) and Zikry (1994). It is assumed

that the velocity gradient is decomposed into a symmetric deformation rate tensor

Dij and an antisymmetric spin tensor Wij. Dij and Wij are then additively

decomposed into elastic and inelastic components as

Dij ¼ D�
ij þ Dp

ij,Wij ¼ W�
ij þWp

ij (1)

The inelastic components are defined in terms of the crystallographic slip rates

as

Dp
ij ¼

X
P

αð Þ
ij _γ αð Þ,Wp

ij ¼
X

ω αð Þ
ij _γ αð Þ (2)

where α is summed over all slip systems and Pij
(α) and ωij

(α) are the symmetric and

antisymmetric parts of the Schmid tensor in the current configuration, respectively.

A power law relation can characterize the rate-dependent constitutive descrip-

tion on each slip system as

_γ αð Þ ¼ _γ αð Þ
ref

τ αð Þ

τ αð Þ
ref

" #
τ αð Þ

τ αð Þ
ref

" #1
m�1

(3)

where _γ αð Þ
ref is the reference shear strain rate which corresponds to a reference shear

stress τref
(α) and m is the rate sensitivity parameter. τ(α) is the resolved shear stress on
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slip system α. The reference stress used is a modification of widely used classical

forms (Franciosi et al. 1980) that relate reference stress to immobile dislocation

density ρim
(α) as

τ αð Þ
ref ¼ τ αð Þ

y þ G
Xnss
β¼1

b βð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aαβρ

βð Þ
im

q !
T

T0

� ��ξ

(4)

where τy
(α) is the static yield stress on slip system α, G is the shear modulus, nss is

the number of slip systems, b(β) is the magnitude of the Burgers vector, and aαβ are
Taylor coefficients which are related to the strength of interactions between slip

systems (Devincre et al. 2008; Kubin et al. 2008a, b). T is the temperature, T0 is the
reference temperature, and ξ is the thermal softening exponent.

Mobile and Immobile Dislocation-Density Evolution Equations

Following the approach of Zikry and Kao (1996), it is assumed that, for a given

deformed state of the material, the total dislocation density, ρ(α), can be additively

decomposed into a mobile and an immobile dislocation density, ρm
(α) and ρim

(α),

respectively. During an increment of strain on a slip system, a mobile

dislocation-density rate is generated and an immobile dislocation-density rate is

annihilated. Furthermore, the mobile and immobile dislocation-density rates can be

coupled through the formation and destruction of junctions as the stored immobile

dislocations act as obstacles for evolving mobile dislocations. This is the basis for

taking the evolution of mobile and immobile dislocation densities as

dρ αð Þ
m

dt
¼ _γ αð Þ�� �� gαsour

b αð Þ2
ρ αð Þ
im

ρ αð Þ
m

� gαmnter�ρ
αð Þ
m � gαimmob�

b αð Þ

ffiffiffiffiffiffiffiffi
ρ αð Þ
im

q !
(5)

dρ αð Þ
im

dt
¼ _γ αð Þ�� �� gαmnterþρ

αð Þ
m þ gαimmobþ

b αð Þ

ffiffiffiffiffiffiffiffi
ρ αð Þ
im

q
� gαrecovρ

αð Þ
im

� �
(6)

where gsour is a coefficient pertaining to an increase in the mobile dislocation

density due to dislocation sources; gmnter are coefficients related to the trapping of

mobile dislocations due to forest intersections, cross-slip around obstacles, or

dislocation interactions; grecov is a coefficient related to the rearrangement and

annihilation of immobile dislocations; and gimmob are coefficients related to the

immobilization of mobile dislocations.

Determination of Dislocation-Density Evolution Coefficients

To couple the evolution equations for mobile and immobile dislocation densities to

the crystal plasticity formulation, the nondimensional coefficients in Eqs. 5 and 6
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were determined as functions of the crystallography and deformation mode of the

material, by considering the generation, interaction, and recovery of dislocation

densities in Shanthraj and Zikry (2011). These expressions are summarized in

Table 1, where f0 and ϕ are geometric parameters. H0 is the reference activation

enthalpy, ρs is the saturation density and the average junction length, lc, can be

approximated as

lc ¼ 1X
β

ffiffiffiffiffiffiffi
ρ βð Þ
im

q (7)

The interaction tensor, nα
βγ, is defined as having a value of 1 if dislocations on slip

systems β and γ interact to form an energetically favorable junction on slip system α
and a value of 0 if there are no interactions.

The Taylor interaction coefficients, aαβ, for the slip-system interactions in

BCC crystalline materials, which are required to determine the reference shear

stress (Eq. 4) and the evolution of mobile and immobile dislocation densities

(Eqs. 5 and 6), have been calculated in Shanthraj and Zikry (2012a, b) and listed

in Table 2.

Dislocation-Density GB Interaction Scheme

In this section, a dislocation-density GB interaction scheme is presented. It is

assumed that the dislocation-density interactions occur between slip systems on

each side of the GB. Following Ma et al. (2006), the dislocation-density transmission

Table 1 g coefficients in

Eqs. 5 and 6
g coefficient Expression

gsour
α

bαφ
X
β

ffiffiffiffiffiffiffi
ρβim

q

gmnter
α

lcf 0
X
β

ffiffiffiffiffiffiffi
aαβ

p ρβm
ραmb

α þ
_γβ

_γαbβ

� �

gimmob�
α lcf 0ffiffiffiffiffi

ρα
im

p X
β

ffiffiffiffiffiffiffi
aαβ

p
ρβim

gmnter+
α

lcf 0
_γαρα

im

X
β, γ

nβγα
ffiffiffiffiffiffi
aβγ

p ργm _γ
β

bβ
þ ρβm _γ

γ

bγ

� �

gimmob+
α lcf 0

_γα
ffiffiffiffiffi
ρα
im

p X
β, γ

nβγα
ffiffiffiffiffiffi
aβγ

p
ργim _γ

β

grecov
α

lc f 0
_γα

X
β

ffiffiffiffiffiffiffi
aαβ

p _γβ

bβ

 !
e

�H0 1�

ffiffiffiffiffi
ρα
im
ρs

q� �
kT

0
BB@

1
CCA
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is modeled as an activational event, and the constitutive relation (Eq. 3) has been

modified at the GB through the introduction of a transmission factor P(α):

_γ αð Þ ¼ _γ αð Þ
ref

τ αð Þ�� ��
τ αð Þ
ref

" #
τ αð Þ

τ αð Þ
ref

" #1
m�1

P αð Þ ¼ _γ αð Þ
ref

τ αð Þ�� ��
τ αð Þ
ref

" #
τ αð Þ

τ αð Þ
ref

" #1
m�1

e

�U
αð Þ
GB

kT

� 	
(8)

where the line tension model for the activation of a Frank–Read source in the

presence of a GB developed in de Koning et al. (2002) is used to obtain the energy

required for dislocation-density transmission across a GB, UGB
(α) . The energy of such

a dislocation configuration (Fig. 1), for incoming and outgoing slip systems α and β,
is given by

U
αβð Þ
GB ¼ 2Gb αð Þ2l1 þ 2Gb βð Þ2l2 þ Gb αð Þ2 Δ1 � Δ2ð Þ þ GΔb2effΔ2

� τ αð Þb αð ÞAsw, 1 � τ βð Þb βð ÞAsw, 2
(9)

The magnitude of the effective residual Burger’s vector, Δbeff, is related to the

residual Burger’s vector, Δb
! ¼ b

!
αð Þ � b

!
βð Þ, by

Δbeff
Δb

� �2

¼ 1þ ψ2 � 2ψ cos υþ 1

 �1

2 (10)

where

ψ ¼ Δ2

Δ1

¼ cos υ� sin υ

tanB
, and B ¼ cos�1 Δb2

2b αð Þ2

� �
(11)

For the critical configuration of a Frank–Read source, it is assumed that the

geometric parameters are constant. The energy required to drive the system to the

critical configuration, and thus initiate dislocation-density glide across a GB, which

is taken here to be the energy required for dislocation-density transmission across a

GB, for incoming and outgoing slip systems α and β, can then be simplified as

U
αβð Þ
GB ¼ c1Gb

3 1þ c2 1� ψð Þ þ c2ψ
Δbeff
b

� �2

� c3
τ αð Þ

τ αð Þ
ref

� c4
τ βð Þ

τ βð Þ
ref

" #
(12)

Table 2 Interaction coefficient values for the types of reactions between slip systems in

b.c.c. crystals and comparison with values from literature (Madec and Kubin 2008; Queyreau

et al. 2009)

Interaction type Dissipation / ffiffiffiffiffi
aij

p� 	
aij aij from literature

Self, colinear 1.5 kGb2 0.6 0.550.72

Binary junction 0.5 kGb2 0.067 0.0450.09

Ternary junction kGb2 0.267 0.12250.3364
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where c1c4 are constants related to the geometric parameters at the critical config-

uration. They are given by c1b ¼ 2l1 + l2 and c1c2b ¼ Δ2, and using the condition

that for activated boundaries with no misorientation, UGB
(αβ) ¼ 0, c3 ¼ 0.5 and

c4 ¼ 0.5 is obtained. Dislocation-density transmission is assumed to be for the

most energetically favorable outgoing slip system

U
αð Þ
GB ¼ min

β
U

αβð Þ
GB (13)

In the FE implementation, the modified constitutive relation (Eq. 8) is used

for elements in the vicinity of the GB, which implies that the motion of disloca-

tion densities within the element width, Le, is constrained by the GB. However,

only the motion of dislocation densities within the GB region, LGB << Le, should
be affected by the GB, and the dislocation-density motion in the FE implemen-

tation at the GB is overconstrained. To overcome this spurious constraint, the

activation energy for dislocation-density transmission UGB
(α) is relaxed by a scaling

factor LGB/Le, which is absorbed into the constant c1. Through this formulation,

Fig. 1 (a) GB schematic and (b) dislocation configuration of a Frank–Read source in the vicinity

of a GB viewed along the GB plane
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the criteria for dislocation-density transmission proposed by (Lee et al. 1990)

have been incorporated into a physical model for dislocation-density GB

interaction:

1. The misorientation between the slip planes must be minimum.

2. The magnitude of the residual Burger’s vector at the GB must be minimum.

3. The shear stress on the outgoing slip system must be maximum.

Furthermore, the flux of dislocation densities across the GB is given by

_ρ βð Þ
flux ¼

_γ αð Þ�� ��
wb αð Þ (14)

where β is the most favorable outgoing slip system and w is the boundary width, and

the accumulation of residual GB dislocation densities is given by

_ρ αð Þ
GB ¼

ffiffiffiffiffiffiffiffi
Δb
b αð Þ

r
_γ αð Þ�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ αð Þ
m b αð Þ

q (15)

Martensitic Microstructural Representation

Following Hatem and Zikry (2009) the martensitic lath structure is related to the

global coordinates through the parent austenite grain orientation and variant orien-

tations. Commonly accepted ORs for lath martensitic steels are Kurdjumov–Sachs

(KS) and Nishiyama–Wassermann (NW) ORs. KS ORs are based on a γ to α0

martensitic transformation as 111ð Þγjj 011ð Þα0, 101
� 

γ
jj 1 11� 

α0. The NW OR is a KS

OR with a 5.12� rotation around the [011]γ direction. The 24 variants obtained from
a KS OR are tabulated in Table 3.

To relate the martensitic local orientation to the global orientation, three trans-

formations are needed. The first transformation, [T]1, relates an observed OR to a

theoretical OR, such as KS and NWORs. The second transformation, [T]2, relates a
martensite OR to the parent austenite grain orientation. The third transformation,

[T]3, relates the austenite grain orientation to the global coordinates. These trans-

formations are given by X½ �Global ¼ T½ �3 T½ �2 T½ �1 X½ �α0 .
To classify the martensitic microstructure, the characterization scheme of

Morito et al. (2003) is followed. We designate a block as a group of laths with

low-angle misorientation and a packet as a collection of blocks with the same

habit plane. The lath long directions are oriented along [011]γ as shown in Fig. 2.

Blocks will have the largest dimension aligned with the constituent lath long

direction. Using this methodology, the ORs and original austenite orientations are

used to model different variant orientations for different block and packet

arrangements.
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Computational Representation of Failure Surfaces
and Microstructural Failure Criterion

In this section, a method for the representation of the initiation and evolution of

failure surfaces using overlapping elements is presented. Following the work by

Hansbo and Hansbo (2004), an element e in an FE mesh with area A0 is considered,

which is crossed by a crack, dividing the element domain into two subdomains:

elements e1 and e2 having areas Ae1 and Ae2, respectively (Fig. 3). Adding an

overlapping element on top of the existing element represents the displacement

discontinuity due to the crack surface. The connectivity of the overlapping element

is defined such that the two elements do not share nodes and therefore have

independent displacement fields. This method can address some of the shortcom-

ings associated with the application of cohesive fracture and extended finite-

elements (XFEM) techniques to ductile fracture. The proposed fracture criteria do

not assume a priori a fracture criteria through enrichment functions (XFEM) or on

assumed fracture energies curve for unloaded surface (cohesive fracture). The

proposed fracture approach resolves and nucleates cracks on cleavage planes

based on the evolving inelastic microstructural behavior due to effects, such as

dislocation-density evolution and interaction and different variant distributions.

The approach is general in that it can be applied to a broad class of elements.

For a 4-node quadrilateral element with reduced integration and hourglass

control, the internal nodal force vector of the cracked element is given by (Song

et al. 2006)

f
!
int
e ¼ f

!
int
e1 þ f

!
int
e2 (16)

where f
!
int
e1 and f

!
int
e2 are the internal nodal force vectors of the overlapping elements

representing the cracked element, which is given by

f
!

int
e1=e2ð Þ ¼

A e1=e2ð Þ
A0

ð
BTσ e1=e2ð Þ
� 

dAe (17)

To improve numerical performance, a penalty force, which decays with time,

is added to resist large initial relative displacements between overlapping

Fig. 2 The alignment of lath

long directions of variants

V1-24 in Table 3
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elements due to the sudden loss in stiffness of a cracked element. The penalty force

is given by

f
!penalty

e1=e2ð Þ ¼ α 0:995ð Þnstep u
!
e1 � u

!
e2

h i
(18)

where α is a penalty parameter, which is taken to be of the order of the material

stiffness. A simulation time-step size is chosen, based on convergence studies, so

that the penalty force decays at faster timescale than the crack opening

displacement.

The inherent fracture mode in martensitic steel is cleavage on 100f gα0 planes in
the microstructure (Guo et al. 2004). To formulate this into a microstructural failure

criterion, the orientation of the cleavage planes for each variant in the global

coordinate system is obtained by applying the series of transformations outlined

in section “Martensitic Microstructural Representation”:

ncleave ¼ T½ �3 T½ �2 T½ �1ncleave, α0 (19)

The global orientation of the cleavage planes in the current configuration

is then obtained by updating at every time-step due to the lattice rotations as

_ncleave ¼ W�ncleave. The normal component of the traction acting on each cleavage

plane has a direct influence on fracture along that plane. The maximum, over all

the 100f gα0 cleavage planes, of the normal component of the traction on these

planes is, therefore, used as the failure criterion for mode I fracture loading

conditions

Fig. 3 Representation of a crack using overlapping elements

430 P. Shanthraj and M.A. Zikry



tcleave ¼ max
100f gα0planes

nTcleave σ½ �ncleave
� �

(20)

A crack is assumed to nucleate when tcleave > σfrac, and the crack is orientated

along the most favorable cleavage plane. The 3D cleavage model is implemented in

a 2D setting by projecting the 3D crack path onto the 2D plane.

The total deformation rate tensor, Dij, and the plastic deformation rate tensor,

Dij
p, are needed to update the material stress state. The method used here is the one

developed by Zikry (1994) for rate-dependent crystalline plasticity formulations.

Results and Discussion

The multiple-slip dislocation-density-based crystal plasticity formulation, the

dislocation-density GB interaction scheme, and the representation of cracks using

overlapping elements were used to investigate the microstructural failure behavior

of martensitic steel.

Martensitic Block Size

The microstructure morphology associated with a single parent austenite grain of

dimensions 3 � 6 mm2 in low- and high-carbon martensitic steels on the (100)γ
plane is shown in Fig. 4, where the block morphology is obtained by projecting the

constituent lath variant long direction (Fig. 2) onto the plane. For the low-carbon

steel microstructure, 19 blocks are distributed within three packets with an average

packet size of 250 μm (Fig. 4a). For the high-carbon steel microstructure, due to the

packet and block size refinement (Maki et al. 1980), for the same parent austenite

grain, 48 blocks are distributed within eight packets resulting in an average packet

size of 100 μm (Fig. 4b). The parent austenite grain was assumed to have a cube

orientation, and the KS relation was adopted as the martensite OR with {111}γ as

the habit plane. A convergent plane strain FE mesh with approximately 9,000

elements was subjected to tensile loading along the (001) direction at nominal

strain rates of 10�4 s�1, 500 s�1, and 2,500 s�1 with symmetry boundary conditions

applied on the left and bottom edges. The material properties (Table 4) that are used

for the constituent crystals are representative of low nickel alloy steel (Hatem and

Zikry 2009).

Low-Carbon Steel
The normalized mobile dislocation densities corresponding to the two most active

slip systems at a nominal strain of 9.1 %, which is just before the onset of crack

nucleation, are shown in Fig. 5a, b. The maximum normalized mobile dislocation

densities are 0.47 for slip system 101

 �

111
� 

and 0.49 for slip system 101ð Þ 111
� 

.

The normalized interaction density, which is the increase in immobile dislocation

density due to junction formation relative to the decrease of mobile dislocation
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density, is shown in Fig. 5c. Negative values, with a minimum of �0.35, indicate

that the annihilation of dislocation junctions through self and colinear dislocation

interactions is dominant. Positive values, with a maximum of 0.5, indicate that the

formation of dislocation junctions through binary and ternary dislocation interac-

tions is dominant (Table 2). The dominant interaction type is determined by the

Fig. 4 Block and packet distribution in (a) low-carbon steel with an average packet size of

250 μm and (b) high-carbon steel with an average packet size of 100 μm. Packets are represented

by distinct colors, and numbers in blocks indicate the constituent lath variant (Table 3)

Table 4 Material

properties
Properties Value

Young’s modulus, E 228 GPa

Static yield stress, τy 517 MPa

Poisson’s ratio, ν 0.3

Rate sensitivity parameter, m 0.01

Reference strain rate, _γref 0.001 s�1

Burger’s vector, b 3.0 � 10�10 m

Fracture stress, σfrac 7τy
c1 0.15

c2 0.9
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active slip systems in each variant and using the interaction tensor (section

“Determination of Dislocation-Density Evolution Coefficients”).

The accumulated plastic slip at a nominal strain of 9.1 % is shown in Fig. 6a. The

maximum accumulated slip is 0.14. The loading is aligned along the [001]γ
direction, which results in a maximum resolved shear stress along the [011]γ
directions. The [011]γ directions are also parallel to the long direction of the laths

and blocks and to the slip direction 111½ �α0 based on the KS OR. This configuration,

which aligns the slip systems with the maximum resolved shear stress, along with

local material softening mechanisms due to the annihilation of dislocations in the

blocks corresponding to a negative interaction density (Fig. 5c), results in the

localization of shear strain. Mobile dislocation densities are transmitted across the

block boundaries between the active 101

 �

111
� 

and 101ð Þ 111
� 

slip systems

through the compatibility of the slip systems, which is associated with a low

activation energy (Eqs. 12 and 13), and result in shear pipes for the formation of

shear bands (Hatem and Zikry 2009). While no special coherency exists across

packet boundaries, slip transmission can be observed, and therefore, these

packet boundaries can behave similarly to block boundaries (Shanthraj and Zikry

2012a, b). The accumulation of plastic slip is observed along high-angle boundaries

as a result of dislocation-density blockage due to slip-system incompatibility,

which is exacerbated by lattice rotations (Fig. 6b), and is also observed experimen-

tally (Morito et al. 2003).

The total normalized GB dislocation density due to all active slip systems at a

nominal strain of 9.1 % is shown in Fig. 6c. The normalized GB dislocation density

attains a maximum value of 0.8, which is due to the pileup of dislocation densities at

the block and packet boundaries. This happens along block and packet boundaries
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Fig. 5 Normalized mobile dislocation densities at a nominal strain of 9.1 % on (a) slip system

101

 �

111
� 

, (b) slip system 101ð Þ 111
� 

, and (c) normalized interaction density at a strain rate of

10�4 s�1
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between variant pairs having large incompatibilities between the active slip systems

and results in large local stress concentrations along high-angle block and packet

boundaries, with a maximum normalized stress (by static yield stress) of 8.0, as

shown in Fig. 7a. The nucleation of a crack occurs at 9.2 % nominal strain at a triple

junction between variants 11, 20, and 21 (Fig. 7b), which is separated by a packet

boundary, as a result of the local stress concentrations (Fig. 7a) due to GB

dislocation-density accumulation at the triple junction (Fig. 6c). The crack initially

grows across the packet boundary (Fig. 7c), as dislocation-density transmission

relaxes the stress concentrations along the packet boundary and the favorable

orientation of the cleavage planes in contiguous blocks, which is accommodated

by the lattice rotations (Fig. 6b). The neighboring block morphologies are such that

the lath long directions are normal to the crack propagation path, which results in

resistance to crack propagation, defection of the crack path, and debonding along

the variant boundaries due to the GB dislocation-density accumulation and cleav-

age plane incompatibilities (Fig. 7d). These intergranular and transgranular fracture

modes are consistent with experimental observations (Krauss 1999; Inoue

et al. 1970; Matsuda et al. 1972), as well as crack path deflection, crack arrest,

and debonding (Hughes et al. 2011).

High-Carbon Steel
To further elucidate the role of block and packet morphology in failure, the results

are compared with the failure behavior of a refined variant distribution,

corresponding to high-carbon steels (Fig. 4b). The normalized mobile dislocation

densities corresponding to the two most active slip systems at a nominal strain of

5.9 %, which is just before the onset of crack nucleation, are shown in Fig. 8a, b.
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Fig. 6 (a) Plastic slip, (b) lattice rotations, and (b) GB dislocation density at 9.1 % nominal strain

indicating dislocation-density pileup and plastic slip accumulation at a strain rate of 10�4 s�1
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The maximum normalized mobile dislocation densities are 0.24 for slip system

101

 �

111
� 

and 0.20 for slip system 101ð Þ 111
� 

. The mobile dislocation-density

activity on these slip systems corresponds to a negative interaction density with a

minimum value of �0.2 (Fig. 8c). The accumulated plastic slip, and the resulting

lattice rotation at a nominal strain of 5.9 %, is shown in Fig. 9a, b. The maximum

accumulated slip is 0.1, with lattice rotations ranging from �8�. The localization of
shear strain in relation to the lath orientation, interaction density, and lattice

rotations (Fig. 9b) occurs as discussed in section “Martensitic Block Size.” The

plastic slip is constrained to flow along the lath long directions, and the low
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Fig. 7 Axial stress at (a) 9.1 % nominal strain, (b) 9.2 % nominal strain showing crack nucleation

and (c) 9.3 % nominal strain, and (d) 9.6 % nominal strain showing crack propagation at a strain

rate of 10�4 s�1
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activation energy associated with the transmission of dislocation densities between

the active slip systems in neighboring blocks results in a dominant shear band,

which is of comparable size to the coarser microstructure. The accumulation of

shear slip is observed when there is a blockage of dislocation densities, with a

maximum normalized GB dislocation density of 0.8 (Fig. 9c).

The refinement of the block and packet sizes increases the number of incompat-

ible variant interfaces, which serve as sites for stress concentrations due to the

accumulation of GB dislocation densities, with a maximum normalized stress of 6.5

(Fig. 10a). This results in the nucleation of a crack at a nominal strain of 6.1 %,

which is lower than that corresponding to the coarse block and packet microstruc-

ture, at a triple junction between variants 9, 11, and 12 (Fig. 10b). Variants 11 and

12 belong to different Bain groups and thus have a large misorientation in {100}

cleavage planes (Guo et al. 2004). This results in a resistance to the crack propa-

gation across the variant boundary and forces the crack path to deflect along the lath

long direction (Fig. 10c). On encountering the neighboring packet boundary, the

crack is arrested as a result of the incompatibility in cleavage planes and a change in

the neighboring block morphology. A new crack is then nucleated in the neighbor-

ing block ahead of the arrested crack tip, which is constrained to propagate along

the neighboring block morphology (Fig. 10d).

In contrast to coarse blocks, where the crack propagates across the block width

(Fig. 7b–d), block size refinement in high-carbon steels constrains crack propaga-

tion along the block morphology resulting in greater fracture resistance, with an

increase in load-bearing capacity after crack nucleation of a nominal strain of

0.4 %. However, the stress–strain curve indicates that there is no increase in

strength due to refinement (Fig. 11). Block size refinement is more effective in
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Fig. 9 (a) Plastic slip, (b) lattice rotations, and (c) GB dislocation density for a refined variant

arrangement at 5.9 % nominal strain indicating dislocation-density pileup and plastic slip

accumulation at a strain rate of 10�4 s�1
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improving fracture resistance than strength as the variant boundaries offer relatively

less resistance to slip transmission onto the 24 possible slip systems, on the {110}

and {112} crystallographic planes, compared to the transmission of cracks onto

only three possible {100} cleavage planes. This results in the formation of shear

bands of comparable sizes and in both microstructures and similar strengths since
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Fig. 10 Axial stress for a refined variant arrangement at (a) 5.9 % nominal strain, (b) 6.1 %

nominal strain showing crack nucleation and (c) 6.4 % nominal strain, and (d) 6.75 % nominal

strain showing crack propagation at a strain rate of 10�4 s�1

Fig. 11 Nominal stress–strain curves at strain rates of 10�4 s�1, 500 s�1, and 2,500 s�1
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the microstructural strength is associated with the resistance to plastic slip. As the

plastic slip is constrained to flow along the lath long directions, block refinement in

this dimension is most effective in strengthening, while refinement of the block

width is most effective in improving fracture resistance by constraining the crack to

propagate along the lath long direction. However, refinement also increases the

number of incompatible triple junctions, which can be sites for crack nucleation,

and therefore also reduces the ductility. Therefore, the effects of both block and

packet refinement should be considered in relation to the lath morphology in

determining fracture behavior.

Dynamic Behavior
In this section, the dynamic fracture of low-carbon martensitic steels at loading

rates of 500–2,500 s�1 is investigated. The nominal stress–strain curves over the

range of loading conditions are shown in Fig. 11. The oscillations at high strain

rates occur due to stress wave reflections along the free and fixed boundary, which

is dampened due to plasticity. The lower failure strains of 6.2 % at a strain rate of

500 s�1 6.0 % at a strain rate of 2,500 s�1 are a result of dynamic strain-rate

hardening (Fig. 11). The accumulated plastic slip at a nominal strain of 5.9 % and

strain rate of 2,500 s�1 is shown in Fig. 12a. The maximum accumulated slip is

0.09, and the shear strain localization is narrower at higher strain rates, which is a

result of material and thermal softening mechanisms, with a maximum temperature

of 458 K, as well as the dynamic strain rates, which prevent the accumulation of

shear strains over wide regions. This is consistent with the experimental observa-

tions of Dodd and Bai (1985). At this strain rate, crack nucleation is at a nominal

strain of 6.0 %, as shown in Fig. 12c. Crack deviation is observed at block

boundaries with large incompatibilities in the cleavage planes (Fig. 12d). However,

a lower resistance to the crack propagation path across block boundaries due to

lower accumulation of GB dislocation densities, with a maximum value of 0.7, and

stress concentrations along the variant boundary is observed, as a result of the

strain-rate hardening at high strain rates. Block size refinement is less effective in
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Fig. 12 (a) Plastic slip and (b) temperature at 6.0 % nominal strain. Normal stress at (c) 6.1 %

nominal strain showing crack nucleation and (d) 6.4 % nominal strain at a strain rate of 2,500 s�1
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improving fracture resistance at high strain rates, and these high strain-rate char-

acteristics result in fracture modes that are different from quasi-static strain rates.

Martensitic Block Distribution

Ductility in martensitic steels is directly related to the transmission of plastic slip

across variant boundaries (Tsuji et al. 2008; Guo et al. 2004; Morito et al. 2006).

The slip transmission factor (section “Dislocation-Density GB Interaction

Scheme”)

P αβð Þ ¼ e

�U
αβð Þ
GB
kT

� 	
(21)

between the most active slip systems α and β across a variant boundary can

therefore be used as a measure of the ductility. The activation energy, UGB
(αβ), is

given by Eq. 12. Taking τ/τref as approximate unity for the most active slip systems,

the transmission factor can then be reduced to a function of the orientation of the

interaction slip planes, slip directions, and GB. The orientation of the slip plane and

slip direction of the most active slip system in a variant are determined from the

variant OR (Table 3) for a cube-oriented parent austenite grain. The transmission

factor across the variant boundaries for the 24 KS variants is calculated using Eq. 12

for different GB orientations. The variants are grouped based on the transmission

factors in Table 5. The boundaries between variants belonging to group I and II

have large transmission factors (>0.26), which is desirable for ductility, while

variant boundaries in group III and IV have low transmission factors (<0.01),

which can result in slip blockage, stress accumulation, and crack nucleation. In

addition, fracture resistance in martensitic steels is related to the misorientation

between the cleavage planes across variant boundaries (section “Computational

Representation of Failure Surfaces and Microstructural Failure Criterion”). The KS

variants can be categorized into three Bain groups – A, B, and C, – as indicated in

Table 5, where variants belonging to each Bain group have low misorientations in

the {100} cleavage planes. Boundaries between variants belonging to different

Bain groups can have large misorientations in the {100} cleavage planes (Guo

et al. 2004), which can be desirable for fracture resistance as it can result in crack

deflection and crack arrest. A microstructural distribution, which increases the

boundaries between variants belonging to different Bain groups and having large

slip transmission factors (Table 5), therefore optimizes ductility and fracture tough-

ness in martensitic steels.

Based on these guidelines, the microstructure associated with a single parent

austenite grain for a random and optimized variant distribution on the (100)γ plane

is shown in Fig. 13, where 68 blocks are distributed within two packets and the

block morphology is obtained by projecting the constituent lath variant long

direction (Fig. 2) onto the plane. For the optimized variant distribution, only variant

boundaries belonging to group I are used, and the use of boundaries between
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variants belonging to the same Bain group is restricted to be along the less effective

lath lateral direction (Fig. 13b). The variant orientation is represented as outlined in

section “Martensitic Microstructural Representation.” The parent austenite grain is

assumed to have a cube orientation, and the KS relation is adopted as the martensite

OR with {111}γ as the habit plane.

A convergent plane strain FE mesh with approximately 9,000 elements

was subjected to tensile loading along the (001) direction at nominal strain rate of

10�4 s�1 and 5,000 s�1. The material properties (Table 4) are used for the constit-

uent crystals.

Random Variant Distribution
The normalized (by the saturation dislocation density) mobile dislocation densities

corresponding to the two most active slip systems at a nominal strain of 4.8 %,

which is just before the onset of crack nucleation, are shown in Fig. 14a, b.

Table 5 Slip transmission factor across variant boundaries indicating Bain groups A, B, and C

Variant group Slip transmission factor

Group I: V1(C), V3(B), V4(C), V6(B), V13(C), V14(B),

V16(C), V17(B)

0.26–1.0

Group II: V8(C), V9(B), V11(C), V12(B), V19(B), V21(C),

V22(B), V24(C)

0.26–1.0

Group III: V2(A), V7(A), V5(A), V10(A) 0.00–0.01

Group IV: V15(A), V18(A), V20(A), V23(A) 0.00–0.01

Fig. 13 Block and packet distribution in (a) random variant distribution and (b) optimized variant

distribution. Packets are represented by distinct colors, and numbers in blocks indicate the

constituent lath variant (Table 3)
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The maximum normalized mobile dislocation densities are 0.30 for slip system

112

 �

111
� 

and 0.38 for slip system 112ð Þ 111
� 

. The normalized interaction

density

ρint ¼
X
α

ð
_γα gαmnterþρ

α
m þ gαmnterþ

b

ffiffiffiffiffiffiffi
ραim

p � gαmnter�ρ
α
m � gαmnter�

b

ffiffiffiffiffiffiffi
ραim

p� �
dt (22)

which is the increase in immobile dislocation density due to junction formation

relative to the decrease of mobile dislocation density, is shown in Fig. 14c. Negative

values, with a minimum of �0.35, indicate that the annihilation of dislocation

junctions through self and colinear dislocation interactions is dominant. Positive

values, with a maximum of 0.12, indicate that the formation of dislocation junctions

through binary and ternary dislocation interactions is dominant (Table 2). The

dominant interaction type is determined by the active slip systems in each variant

and using the interaction tensor (section “Determination of Dislocation-Density

Evolution Coefficients”).
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Fig. 14 Mobile dislocation densities, normalized by the saturation density, for a random variant

distribution at a nominal strain of 4.8 % on (a) slip system 112

 �

111
� 

, (b) slip system 112ð Þ 111
� 

,

and (c) normalized interaction density at a strain rate of 10�4 s�1
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The accumulated plastic slip at a nominal strain of 4.8 % is shown in Fig. 15a.

The maximum accumulated slip is 0.13. The loading is aligned along the [001]γ
direction, which results in a maximum resolved shear stress along the [011]γ
directions. The [011]γ directions are also parallel to the long direction of the laths

and blocks and to the slip direction [111]α0 based on the KS OR. This configuration,

which aligns the slip systems with the maximum resolved shear stress, along with

local material softening mechanisms due to the annihilation of dislocations in the

blocks corresponding to a negative interaction density (Fig. 14c), results in the

localization of shear strain. Mobile dislocation densities are transmitted across the

block boundaries between the active 112

 �

111
� 

and 112ð Þ 111
� 

slip systems

through the compatibility of the slip systems, which is associated with a low

activation energy (Eq. 12), and result in shear pipes for the formation of shear

bands (Hatem and Zikry 2009). The accumulation of plastic slip is observed along

high-angle boundaries as a result of dislocation-density blockage due to slip-system
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Fig. 15 (a) Plastic slip, (b) lattice rotations (in degrees), (c) GB dislocation density, normalized

by the saturated density, and (d) normal stress, normalized by the yield stress for a random variant

distribution at 4.8 % nominal strain indicating dislocation-density pileup and plastic slip accumu-

lation at a strain rate of 10�4 s�1
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incompatibility, which is exacerbated by lattice rotations (Fig. 15b), and is also

observed experimentally (Morito et al. 2003).

The total normalized GB dislocation density due to all active slip systems at a

nominal strain of 4.8 % is shown in Fig. 15c. The normalized GB dislocation

density attains a maximum value of 0.95, which is due to the pileup of dislocation

densities at the block and packet boundaries. This occurs along block boundaries

between variant pairs belonging to group III and IV in Table 5, which have large

incompatibilities between the active slip systems and low slip transmission factors.

This results in large local stress concentrations along high-angle block and packet

boundaries, with a maximum normalized stress (by static yield stress) of 8.0, as

shown in Fig. 15d. The nucleation of a crack occurs at 5.0 % nominal strain at a

triple junction between variants 13, 17, and 18 (Fig. 16a), as a result of the local

stress concentrations (Fig. 15d) due to GB dislocation-density accumulation at the

triple junction (Fig. 15c). The crack initially grows across the block width in variant

13, but is deflected at the boundaries with variant 17 and is constrained to propagate

along the block morphology (Fig. 16b), because variant 17 is not favorably oriented

for fracture as it belongs to a different Bain group resulting in a large misorientation

in the cleavage planes along which the crack propagates. A new crack is then

nucleated in a neighboring block due to the large stress buildup ahead of the

arrested crack tip (Fig. 16b). The neighboring block morphologies are such that

the lath long directions are normal to the crack propagation path, which results in

resistance to crack propagation, defection of the crack path along the variant

boundaries due to the GB dislocation-density accumulation and cleavage plane

incompatibilities, and the nucleation of microcracks ahead of the arrested crack tip

(Fig. 16c, d). These intergranular and transgranular fracture modes are consistent

with experimental observations (Inoue et al. 1970; Matsuda et al. 1972; Krauss

1999) as well as crack path deflection and crack arrest (Hughes et al. 2011). The

nominal stress (normalized by the static yield stress)–strain curve indicating the

toughening due to crack arrest and deflection at incompatible variant boundaries,

and the stress drop due to the subsequent nucleation of secondary cracks during the

different stages of crack propagation (Fig. 16a–d), is shown in Fig. 17.

Optimized Variant Distribution
These results are compared with the failure behavior of a variant distribution,

optimized for slip transmission (Fig. 14b). The normalized mobile dislocation

densities corresponding to the two most active slip systems at a nominal strain of

20 % are shown in Fig. 18a, b. The maximum normalized mobile dislocation

density is 0.7 for slip system 112

 �

111
� 

and 0.75 for slip system 112ð Þ 111
� 

,

compared to 0.3 and 0.38, respectively, for the random variant distribution. The

mobile dislocation-density activity on these slip systems corresponds to a negative

interaction density with a minimum value of �0.55 (Fig. 18c) compared to �0.35

for the random variant distribution, indicating a greater degree of dislocation

annihilation activity. The accumulated plastic slip and the resulting lattice rotation

at a nominal strain of 20 % are shown in Fig. 19a, b. Larger accumulated slip is
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observed, with a maximum of 0.19 compared to 0.13 for the random variant

distribution, with lattice rotations ranging from �11� to 6�. The localization of

shear strain in relation to the lath orientation, interaction density, and lattice

rotations (Fig. 19b) occurs as discussed in section “Random Variant Distribution.”

The plastic slip is not constrained to flow along the lath long directions as in the

random variant distribution, as the low activation energy associated with the

transmission of dislocation densities between the active slip systems in neighboring

blocks results in extensive plastic deformation, and lower accumulated GB dislo-

cation densities with a maximum normalized GB dislocation density of 0.5

(Fig. 19c) compared to 0.95 in the random variant distribution. This also results

in a more homogeneous normal stress distribution (Fig. 19d), with a maximum

normal stress level of 6.5, as a result of the relaxation of stress concentrations at the

block and packet boundaries due to dislocation transmission.

In contrast to the random variant distribution, where the refinement of the block

and packet sizes increases the number of incompatible variant triple junctions,
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Fig. 16 Normal stress for a random variant distribution at (a) 5.0 % nominal strain, (b) 6.8 %

nominal strain showing crack nucleation and (c) 8.0 % nominal strain, and (d) 8.8 % nominal

strain showing crack propagation at a strain rate of 10�4 s�1
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which serve as sites for stress concentrations due to the accumulation of GB

dislocations, and results in the nucleation of a crack at a lower nominal strain of

5 %, the large slip transmission factors associated with boundaries between variants

belonging to group I in the optimized variant distribution decrease the number of

incompatible variant triple junctions and result in the delayed nucleation of cracks,

at a nominal strain of 21 %, and increased ductility. The dislocation-density

transmission and relaxation of stress at the boundaries also result in a reduction in

strength of approximately 350 MPa (Fig. 17), since the microstructural strength is

associated with the resistance to plastic slip. Block size refinement is effective in

improving fracture resistance by arresting the crack to propagation across variants

belonging to different Bain groups. Since the crack propagation path is constrained

along the lath long direction, the effects of both block and packet refinement should

be considered in relation to the lath morphology in determining fracture behavior.

Dynamic Behavior
In this section, the dynamic fracture of the optimized microstructure at a loading

rate of 5,000 s�1 is investigated. The nominal stress–strain curves over the range

of loading conditions are shown in Fig. 17. The oscillations at high strain rates

occur due to stress wave reflections along the free and fixed boundary, which is

dampened due to the dissipative plastic mechanisms. The lower failure strain of

16 % at a strain rate of 5,000 s�1 is a result of dynamic strain-rate hardening

(Fig. 17). The accumulated plastic slip at a nominal strain of 16 % at a strain rate

of 5,000 s�1 is shown in Fig. 20a. The maximum accumulated slip is 0.175

compared to 0.19 under quasi-static loading, and the shear strain localization is

narrower at higher strain rates, which is a result of material and thermal softening

mechanisms, with a maximum temperature of 518 K, which is approximately

Fig. 17 Nominal

stress–strain curves
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0.5Tsolidus, as well as the dynamic strain rates, which prevent the accumulation of

shear strains over wide regions. Narrow shear strain localization at higher strain

rates is consistent with the experimental observations of Dodd and Bai (1985). A

lower accumulation of GB dislocation densities, with a maximum value of 0.45

compared to 0.5 under quasi-static loading, occurs as a result of the strain-rate

hardening at high strain rates (Fig. 20c). At this strain rate, crack nucleation

occurs at a nominal strain of 16 %, as shown in Fig. 21a. Crack deviation,

crack arrest, and secondary crack nucleation occur due to boundaries between

variants belonging to different Bain groups, with large incompatibilities in the

cleavage planes, along the variant long directions (Fig. 21b–d). This results in a
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greater fracture resistance upon block size refinement. The high strain-rate char-

acteristics result in fracture modes that are different from quasi-static strain rates.

Conclusion

A physically based dislocation-density GB interaction scheme that is representative

of the resistance to dislocation-density transmission across block and packet

boundaries in martensitic steel has been developed and was incorporated into a

dislocation-density-based multiple-slip crystalline plasticity framework, which
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Fig. 19 (a) Plastic slip, (b) lattice rotations, (c) GB dislocation density, and (d) normal stress for

an optimized variant distribution at 20 % nominal strain indicating dislocation-density pileup and

plastic slip accumulation at a strain rate of 10�4 s�1
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accounts for variant morphologies and orientation relationships that are uniquely

inherent to lath martensitic microstructures.

Specialized FE methodologies to represent evolving failure surfaces and a

microstructurally based failure criterion for cleavage were then used to perform

large-scale FE simulations to characterize and predict the dominant dislocation-

density mechanisms for the localization of plastic strains and the initiation and

propagation of failure in martensitic microstructures over a range of loading condi-

tions. The proposed fracture criteria do not assume a priori fracture criteria but are

based on incorporating inelastic effects such as variant boundaries and dislocation-

density evolution and interactions to resolve and nucleate cracks on cleavage planes

based on evolving microstructural behavior at different physical scales.
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Fig. 20 (a) Plastic slip, (b) temperature, and (c) GB dislocation density for an optimized

variant distribution at 16 % nominal strain indicating dislocation-density pileup and plastic slip

accumulation at a strain rate of 2,500 s�1
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The role of packet and block boundaries in the failure behavior of low- and

high-carbon steels was investigated, and the results indicated that variant interfaces

along the lath long direction were dominant. Shear strain localization was

constrained by these interfaces to be along the lath long direction, and slip trans-

mission to neighboring blocks was accommodated through compatible slip systems

or the formation of low-energy residual GB dislocations. The effective block size

refinement for strengthening is along the lath long direction. These interfaces also

result in resistance to crack propagation and deviation of the crack path along the

variant boundaries due to the GB dislocation-density accumulation and cleavage

6.5
10
9
8
7
6
5
4
3
2
1
0

10
9
8
7
6
5
4
3
2
1
0

10
9
8
7
6
5
4
3
2
1
0

6
5.5
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

a b

c d

Fig. 21 Normal stress for an optimized variant distribution at (a) 16 % nominal strain, (b) 17 %

nominal strain showing crack nucleation and (c) 18 % nominal strain, and (d) 19 % nominal strain

showing crack propagation at a strain rate of 5,000 s�1
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plane incompatibilities, resulting in an effective block size for fracture resistance

along the block width. It was observed that refinement is more effective in improv-

ing the fracture resistance than in improving the strength as the variant boundaries

offer relatively less resistance to slip transmission onto the 24 possible slip systems,

on the {110} and {112} crystallographic planes, compared to crack propagation

onto only three possible {100} cleavage planes. However, refinement also increases

the number of incompatible triple junctions, which serve as sites for stress concen-

trations, and results in the nucleation of a crack at a lower nominal strain. At high

strain rates, and as a result of increased strain-rate hardening, thermal softening and

dynamic interactions resulted in crack formation that was different from quasi-

static loading conditions in that the failure surfaces nucleate earlier and form in

regions where strain-hardening has been surmounted by thermal and geometrical

softening. These validated approaches offer a predictive framework that can be

used to tailor heterogeneous crystalline systems for failure-resistant and damage-

tolerant applications.
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community to help understand how new materials can be made that have

targeted mechanical properties.

Introduction and Historical Perspective

Presented in this chapter is a relatively brief overview of molecular dynamics

simulation (MDS) as applied to modeling damage in metals along with some

examples that illustrate how this technique is being used in the engineering

community to help understand how new materials can be made that have targeted

mechanical properties. MDS is a relatively straightforward computational

method in which atom trajectories are calculated and analyzed for different sets

of conditions (Allen and Tildesley 1989). The fundamental assumption in MDS is

that atom motion can be adequately treated by classical mechanics and therefore

their trajectories can be calculated by numerically integrating a set of classical

equations of motion that are coupled through the interatomic forces. For MDS

there are no expressions such as constitutive relations that are typical to modeling

methods at higher length scales. Instead all of the properties of a material are set

by the expression used to model the interatomic forces.

Interpreting an MDS typically starts by following the atom motion and then

using different techniques to analyze structures, potential energies, and forces as a

simulation progresses. As discussed in the following section, deriving and fitting

the mathematical expressions used for the interatomic forces that accurately

describe particular systems and analyzing simulations to both obtain detailed

information and glean new understandings of materials properties at the atomic

level are part science (Brenner et al. 1998) and also often part art (Brenner 2000).

In contrast to its relatively recent emergence as an engineering tool, MDS has a

long history in the physical sciences. The first study of a chemical process using

classical trajectories was published in 1936 by Hirschfelder, Eyring, and Topley,

who followed one trajectory associated with the reaction H + H2 ! H2 + H

(Hirschfelder et al. 1936). Unfortunately the potential energy surface that they

used was flawed in that it yielded a stable H3 molecule. A consequence of this

flaw (and the resources that were limited to hand calculation) is that the reaction

never completed. In the following two decades, classical trajectories were used to

probe some of the fundamental principles of statistical mechanics, including the

rate at which equilibrium is established for relatively simple systems, and the

conditions under which ensemble and time averages agree with one another

(Alder and Wainwright 1957; Berman and Izrailev 2005). Some of the conclusions

from these simulations are that some small and simple systems (e.g., short harmonic

chains with weak anharmonic interactions) may never fully equilibrate to any

practical degree and that approximations that are inherent to numerically solving

classical equations of motion in other systems can ensure an approach to equilib-

rium in a manner that is similar to how a small disturbance to a physical system can

help drive the system to equilibrium.
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In 1959, Vineyard and coworkers at Brookhaven National Laboratory arguably

carried out first contribution of MDS to materials science. They reported on a study

that used classical dynamics to model ion irradiation and damage in metals (Gibson

et al. 1960). In subsequent work by Rahman at Argonne National Laboratory,

classical trajectories were used to characterize properties of liquids (Rahman

1964). Over the following decades, computing power continued to increased,

which allowed Rahman and others to extend the initial work to more complicated

fluids (including water) and biological systems (McCammon et al. 1977; Stillinger

1974).

Several common themes emerged from these early MDS studies. First, the

development of MDS and the systems that could be studied paralleled the avail-

ability of increasingly powerful computing resources, particularly those at the

U.S. National Laboratories. Second, MDS was rapidly becoming a powerful tool

in chemistry and physics that could complement both experiment and theory. For

example, not only could MDS provide data but it could also be used to test (and

refine when needed) theories under exceedingly well-controlled conditions. Finally,

it became clear that the requirements put on a potential energy function (from which

interatomic forces are obtained) are very strongly dependent on the application. In

chemistry applications, for example, typically well-refined potential energy sur-

faces are needed to provide qualitative data, but even highly approximate or generic

forces can yield useful data for examining general phenomena. Similarly simple

potentials can yield very useful information in statistical mechanics. In the case of

materials, modeling simplified interatomic force expressions can be used to model

defects such a grain boundaries and dislocations; however, these expressions must

be detailed enough with regard to particular materials to yield useful,

quantitative data.

The increasing importance of MDS as an engineering tool can be correlated to

several factors. First, an exponential increase in the speed of computer processors

together with relatively inexpensive platforms for parallel computing, visualization,

and data storage has significantly decreased the cost of resources needed to carry

out large-scale simulations. Consequently computing platforms have come to the

point that MDS is affordable for research groups with even modest modeling

budgets. Second, due to advances in experimental processing and characterization

techniques, the structure of some materials can be manipulated to scales

approaching the atomic level. This is well below the scales where traditional

continuum modeling approaches like finite element analysis are appropriate.

Finally, interatomic potential energy functions, which as mentioned above play a

central role in MDS, have become available that provide good descriptions of the

structure and elastic and mechanical properties of a wide range of materials while at

the same time being sufficiently efficient from a computing viewpoint that they can

be used in large-scale simulations. These advances in potential energy functions

have resulted from new theoretical analyses that results in mathematical expres-

sions that can more accurately capture quantum bonding effects, a better under-

standing of how to fit these expressions to the properties of specific materials, and

readily available simulation codes that allow researchers outside of the original
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developers to vet and improve interatomic potentials as they are used (Brenner

et al. 1998; Sinnott and Brenner 2012).

Given in the following section are brief details presented at a tutorial level on

some of the assumptions, numerical methods, and potential energy functions that

are essential parts of an MDS to study damage in materials. Also mentioned are

some currently available codes and user communities that are useful for carrying

out MDS. This is followed by a section in which some applications of MDS for

understanding damage in crystalline metals are discussed. This is not a compre-

hensive literature review but rather a survey of results that illustrate the various

ways in which MDS is contributing to this area. The final section includes a brief

discussion of new capabilities being developed for MDS of metals and the chal-

lenges facing this field in the short and long term.

Molecular Dynamics Simulations

In comparison to other modeling techniques, carrying out an MDS is relatively

straight forward. The initial step is to initialize coordinates and the velocities for

each atom and to establish any system conditions such as periodic boundaries.

Using these positions, the interatomic forces are calculated, followed by the

determination of constraints from thermostats or other conditions imposed on the

system. As discussed more below, these constraints can be in form of additional

forces, velocity rescaling, changes in periodic box size and shape, application of

shock waves, etc. Atom positions are then moved ahead one time step according to

forces, velocities, and accelerations (and higher derivatives of position with time

depending on the numerical integration) using one of many possible numerical

integration schemes. The atom positions, velocities, and forces can be analyzed

during the course of a simulation, and post-simulation analysis can be carried out.

The former can be done at the same time that the simulation is carried out or done

on a file that saves atomic properties at some specific interval. The choice depends

on considerations like system size, the total number of time steps, computing and

visualization facilities, and whether there are user constraints applied to a system as

a simulation progresses, including terminating a simulation if desired. The process

is then repeated with a new set of forces and constraints calculated from the updated

atom positions. These steps are described in more detail in the following

subsections.

Initial Conditions

For crystals, atom positions are usually generated from a given lattice and basis. To

mitigate edge effects when modeling a bulk material, periodic boundaries can be

applied to the system such that an atom leaving from one side of the simulations

reenters from the complementary side, and pairs of atoms interact with their nearest

image in the repeating boxes. Figure 1, for example, illustrates a two-dimensional
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computational box surrounded by eight replicas, where the circles represent atoms.

For localized defects, represented by the cluster of red atoms in Fig. 1, periodic

boundaries create a periodic array of the defect. For an extended defect that passes

over the cell boundaries, which is represented by the yellow atoms in Fig. 1, the

periodic boundaries create an infinite structure that is constrained to a super-

periodicity defined by that of the periodic boundaries. This can constrain the

types and number of extended defects that can be formed in a simulated lattice.

Similarly, periodic boundaries can constrain stress fields that would otherwise be

larger than a box dimension, which can influence plastic dynamics in a nonphysical

manner.

Coordinates for initial point defects like voids and interstitial atoms are gener-

ally trivial to generate; however, creating coordinates for more complicated micro-

structure elements like grain boundaries and dislocations can be a challenge. There

are presently commercial codes that can generate structures for a number of

common defects and free tools like the gosam website that can generate coordinates

for bicrystals with periodic boundaries based on coincident site lattices (Wojdyr

et al. 2010). To generate velocities for what is supposed to be an initially equilib-

rium simulation, initial velocities can be generated randomly from a Boltzmann

distribution that corresponds to a particle temperature. Other possible initial

velocity choices may be based on attempting to mimic particular nonequilibrium

situations such as an applied shock, a collision with a surface, or the initiation of a

collision cascade.

Interatomic Force Expressions

The atom dynamics that mimic the behavior of a particular material are mainly

determined from the expression used to describe the interatomic forces. This expres-

sion is therefore a key feature of the simulation in terms of reproducing properties

Fig. 1 Illustration of a localized defect (cluster of red spheres representing atoms) and an

extended defect (line of yellow spheres representing atoms) in a central box surrounded by eight

replicas that are defined by the periodic boundaries
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that would correspond to an experiment on the true system. Calculating the

interatomic forces is also typically the most computationally expensive part of an

MDS and the feature that is least well known in terms of the appropriate equations.

In principle interatomic forces can be obtained from the quantum forces due to

the electrons for a given set of atom positions and then adding these forces to those

from the internuclear repulsions. This is done in an especially efficient manner

through Car–Parrinello dynamics, a method that defines an extended Lagrangian

containing nuclear and electronic degrees of freedom from which a set of coupled

equations of motion are derived for both the ions and electrons (Car and Parrinello

1985). While mitigating much of the uncertainty associated with deriving and

fitting analytic force expressions like those discussed below, this method remains

computationally expensive in terms of evaluating the expression. In addition,

because electrons are explicitly treated, the time steps are typically smaller when

numerically integrating the electron–ion equations of motion compared to those for

atoms only. Furthermore, the electronic degrees of freedom should be periodically

“quenched” to the Born–Oppenheimer surface, which adds some additional com-

putational overhead. There are also simplified electronic structure methods (e.g.,

tight binding Hamiltonians) that can be used to include electronic degrees of

freedom into MDS forces. These approaches have significantly reduced computa-

tional demands compared to, e.g., the Car–Parrinello method, but they remain

computationally burdensome for large systems and can require a significant degree

of parameterization compared to fully first-principles methods.

Because of the desire to treat systems that are sufficiently large to model

extended defects such as dislocations, an analytic expression that gives the potential

energy of a collection of atoms as a function of the relative coordinates is typically

used to mimic explicit electronic degrees of freedom (Sinnott and Brenner 2012).

The interatomic forces are then calculated as the gradient of this potential energy

function (PEF). The challenge with this approach of using an effective PEF is to

come up with a function that not only accurately reproduces some set of fitting data

but is also capable of producing physically reasonable (if not accurate) energies for

atomic arrangements that are not considered in a database used to fit the PEF

parameters. This property of a PEF is called the transferability. Currently there is

no single standard functional form that is used for all systems; instead there are a

plethora of forms and approaches that work to varying degrees of success. Devel-

oping a PEF requires both developing a convenient mathematical expression and

parameterizing that expression to a particular system.

Probably the simplest approach to developing a PEF with continuous forces is to

assume that the atoms interact in pairs, with other neighboring atoms not having any

influence on the interactions between an atom pair. With this approximation, the

total potential energy U is given by

U ¼ Σn�1
i¼1 Σ

n
j¼iþ1V rij

� �
(1)

where n is the number of atoms, rij is the scalar distance between atom i and atom j,

and V(r) is a function such as a Morse or Lennard-Jones potential that has
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parameters that can be fit to a set of physical properties (Brenner and Garrison

1989). For a pair interaction with a single well, pair potentials tend to produce

stable close-packed lattices as lowest energy structures, so for metals pair potentials

can sometimes produce acceptable results depending on the collection of properties

that are trying to be reproduced. The pair potential approximation, however, is

limited for reproducing elastic properties, and in general, it does not produce

accurate energies for defects such as surfaces and vacancies.

One way to build on the pair potential approximation is to use it as the lead term

in a Taylor series expansion of potential energy in relative atomic coordinates. The

many-body expansion can be given as

U ¼ Σn�1
i¼1 Σ

n
j¼iþ1V2 rij

� �þ Σn
i¼1Σ

n
j 6¼i, kð Þ¼1Σ

n
k 6¼i, jð Þ¼1V2 rij

� �þ . . . (2)

where the subscripts give the order of the interaction. The first term in Eq. 2

represents a bond stretch, the second term represents a bond bend, and higher-

order terms correspond to dihedral angles and combinations of bends and stretches.

This expansion combined with electrostatic and other nonbonded interactions has

been extensively used in biological and polymeric systems. This form of potential

function, however, has found limited use for simulating metals.

Experience suggests that the most transferable PEFs are those that are based on

expressions derived from principles of quantum mechanical bonding. There are

several classes of PEFs that fall under this category that are widely used for

modeling metals. These are the embedded-atom method (EAM) (Daw and Baskes

1984; Daw et al. 1993), effective medium theory (Jacobsen et al. 1987), the glue

model (Ercolessi et al. 1986), and the Finnis–Sinclair (Finnis and Sinclair 1984)

potential. While the functional forms of each of these classes of PEFs are similar,

the derivation of each is different. The first three models come from the concept of

“embedding” atoms into an electron gas so that the energy of an atom depends on

the density of the electron gas near the embedded atom plus a pair interaction

between the atomic cores. In the glue and EAM models, the electron density is

modeled as a pairwise sum of densities from surrounding atoms at the site of the

atom whose energy is being determined. This leads to three central components of

these PEFs: the contribution of the electron density from a neighboring atom to a

given site (which depends on the distance between the atom and site), a pairwise-

additive interatomic force, and an embedding function that relates the electron

density at a given site to the energy of an atom at that site. Each contribution can be

adjusted by fitting to properties such as the crystal cohesive energy, lattice constant,

elastic moduli, and vacancy formation energy. Effective medium theory, in con-

trast, averages the electron density in the vicinity of an atom whose energy is being

calculated and uses a less empirical relationship between this electron density and

the energy of an atom (Jacobsen et al. 1987).

The Finnis–Sinclair form of the PEF is similar to other metal PEFs. However,

the derivation of these expressions from quantum bonding principles is different.

The Finnis–Sinclair functional expression is derived from a “second moment”

approximation that relates the spread in the local electronic density of states due
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to bonding to the potential energy of an atom and to its local coordination. The

derivation is too long to be included here (Brenner et al. 1998), but the result is that

the Finnis–Sinclair embedded energy is a square root of the coordination, while the

form of the EAM embedding function is part of the parameter fitting process.

Another historical difference is that the EAM and related potentials were originally

developed for face-centered cubic metals, while the Finnis–Sinclair potentials

originally focused on describing body-centered cubic metals.

A major strength of these PEFs is that by using pair terms for the interatomic

repulsion and for the electron densities, their evaluation scales like a pair potential

while a many-body aspect of the PEF is introduced by an embedding function.

There have been many attempts to go beyond these basic PEFs; higher moments

of the electrons and angular interactions in the electron densities can be intro-

duced, for example (Dongare et al. 2012; Lee and Baskes 2000). These

approaches, however, typically add computational burden that must be balanced

against any improved accuracy in reproducing the fitting database and in the

overall PEF transferability.

Incorporation of charge transfer terms into a PEF that allow for different degrees

of ionic bonding is a development that has produced good results for modeling

metal oxides and metal interfaces. The two leading formalisms for metals that

include charge transfer are the ReaxFF (Van Duin et al. 2001) and charge-

optimized many-body (COMB) expressions (Shan et al. 2010). Both of these

PEFs take advantage of a bond-order formalism that includes angular terms to

model local bonding interactions plus Coulomb terms that use atom-centered partial

charges in the form of a Gaussian function. The magnitude and sign of the charge on

each atom are determined by minimizing the electrostatic energy with respect to the

potential energy from the Coulomb interactions between partially charged atoms

and energy associated with forming the charges. The latter can be expressed as a

Taylor series in charge with coefficients determined from the atomic ionization and

electron affinity energies. In practice, however, these coefficients are typically

taken as parameters that can be fit along with parameters in the short-range bonding

interactions.

In addition to the functional form of the PEF, the training set and the method

used to parameterize the function are also important. A minimum database for

parameter fitting for metals traditionally includes cohesive energy, lattice constant,

elastic properties, and vacancy formation energy of the lowest energy crystal

structure. It should also include the difference in cohesive energies between the

lowest energy structure and other competing crystal structures. With this type of

fitting database, a PEF can be validated against quantities such as melting points

and surface energies. In the past, a fitting database was usually developed from

experimental measurements. However, first-principles data is increasingly being

used to fit parameters in PEFs. This approach has the major advantage that very

large data sets can be generated (e.g., transition states for activated processes) with

comparable levels of error for each quantity evaluated. A related approach is to

carry out a simulation with quantum forces, for example, Car–Parrinello dynamics,

and use the atomic configurations that are generated to create a best-fit set of
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parameters (and even the functional form) for an analytic PEF (Ercolessi and

Adams 1994). As the number of configurations increases, the analytic PEF can be

substituted for the quantum forces for larger systems and longer time simulations.

Classical Equations of Motion, Numerical Integrators,
and Thermostats

Calculating atomic trajectories involves approximating differential classical equa-

tions of motion by finite difference approximations that are solved stepwise using

one of several standard methods employed in MDS. These numerical integration

methods include Gear, predictor–corrector, and leapfrog algorithms. Which is used

depends on whether constraints are operating on the system, the desired accuracy of

the solution, and whether time steps with varying sizes are used. The time step size

depends on the integration method and the magnitude of the forces acting on the

atoms. A general rule of thumb is that the time step should be no larger than about

1/20 of the shortest vibrational period in the system. For systems with hydrogen, an

appropriate time step is roughly one femtosecond or less; for metals a larger time

step can typically be used. An initial determination of the largest allowable time

step can be done by monitoring energy conservation both step-to-step and over a

given period of time. The latter evaluates energy drift, which is a measure of the

accumulation rather than cancellation of errors.

Solving classical equations of motion without additional constraints leads to

constant energy trajectories; at equilibrium this should yield properties that corre-

spond to a microcanonical ensemble. The Nosé thermo- and barostats add con-

straints to the equations of motion that produce trajectories consistent with other

thermodynamic ensembles (Nosé 1984). Similar methods have also been intro-

duced for describing other system states. Hugoniostats, for example, produce

equilibrium states for shocked matter (Ravelo et al. 2004).

Two other common ways used to control temperature are the Langevin and

Berendsen thermostats. Both methods couple system dynamics to an external bath,

although with different coupling methods. The Langevin approach, which comes

from Brownian dynamics, adds to the interatomic force, friction, and random force

terms that balance one another to produce a desired temperature. In the Berendsen

approach, only a friction term is added, but the friction coefficient is proportional to

the difference between the current and desired temperatures so that the friction

coefficient can be positive or negative (Berendsen et al. 1984). The Langevin

thermostat therefore couples each atom locally to a system bath, while the Berendsen

thermostat is a global coupling between the total and desired temperatures.

Although not thermostats in the same sense as those discussed above, Zhigilei

and coworkers and Brenner and coworkers introduced methods that modulate

temperature in an MDS by coupling atom dynamics to a continuum reservoir

(Schall et al. 2005; Padgett and Brenner 2005; Schäfer et al. 2002). In the Zhigilei

approach, the reservoir represents an electron gas that exchanges energy with the

nuclear degrees of freedom. With the two-temperature model, processes such as the
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interaction of lasers with metals can be modeled. In this case, the laser initially

excites the electronic degrees of freedom, and this energy is then appropriately

channeled into the atom motion. The Brenner approach coarse grains a simulation

into regions for which a temperature is defined from the average velocities of the

atoms in each region. A continuum heat transport equation with parameters fit to the

thermal conductivity and heat capacity of the bulk material is numerically solved

for one time step on the grid defined by the coarse graining, and the atom velocities

are scaled to match the resulting grid temperatures. This ad hoc coupling between

grid temperatures and the atom velocities is continued as the MDS continues.

In addition to controlling heat flow (and not just temperature), this approach has

been extended to include electrical current flow and associated Joule heating

(Crill et al. 2010; Irving et al. 2009a, b; Padgett and Brenner 2005).

The thermostats discussed here require some parameterization. For example, the

Berendsen thermostat requires a decay constant between the temperature gradient

and the difference between the desired and current temperature. The Nosé thermo-

stat requires a thermal inertia parameter that determines the rate of the heat transfer

in the system.

Parrinello and Rahman introduced a classical Lagrangian that allows a repeating

periodic cell to change shape in response to the stress state (Parrinello and Rahman

1981). With this method, solid phase transitions can be conveniently simulated as a

function of stress state and temperature. Other constraints have also been applied to

classical equations of motion that produce rigid bond distances and angles, although

these are more commonly applied to polymers and biological molecules (Ryckaert

et al. 1977).

Other constraints can be added to simulations to model particular conditions.

Compressive shock loading, for example, can be modeled with a flyer plate

impacting an open end of a material. Shocks can also be generated by shrinking

the periodic boundaries at each step of a simulation. Similarly, a constant tensile

strain can be applied by expanding the periodic box dimensions in one or more

directions, or shear strain can be applied by shearing the periodic box. As another

example, heat flow can be modeled by creating hot and cold regions of a system,

and quantities such as thermal diffusivity can be estimated by monitoring the

temperature distribution as it evolves during the dynamics (M€uller-Plathe 1997).
A recent creative example of an ad hoc condition driving simulation dynamics is

the work of Foiles and coworkers, who introduced a way to drive a grain boundary

to move through a crystal (Janssens et al. 2006). A parameter is defined in this

method for each atom that is determined by the orientation of surrounding atoms

(see Fig. 2a). If the atom orientation does not match some given reference structure,

a relatively small potential energy is added to the cohesive energy of that atom. This

procedure drives the system toward a particular grain orientation, which at suffi-

ciently high temperatures can drive a grain boundary from a preferred to a

non-preferred grain orientation. Similarly, an applied shear strain can induce

motion of particular grain boundaries and dislocations depending on the lattice

orientation with respect to the shear. Simulations using these driving conditions are

discussed in more detail below.
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Analyzing Atomic Simulations

An MDS provides only atom motion, and therefore, extracting useful data and

insights from a simulation requires further analysis of the trajectories. For many

equilibrium properties, Green–Kubo correlation functions of statistical mechanics

can be used to extract important data. For example, vibrational modes, thermal

conductivity, and dispersion relations for longitudinal vibrational modes can be

evaluated in this way. Similar methods have also been suggested for determining

grain boundary mobilities from position fluctuations (Fig. 2c) (Trautt et al. 2006).

Other methods are needed to identify and understand the origin of damage. One of

the simplest methods is to represent atoms as spheres and create movies of the

trajectories (Figs. 3 and 4). Codes that produce visualizations of this type are freely

available as given below. While powerful, experience shows that additional data

beyond atom positions are often needed to analyze complex dynamics and to identify

structures such as dislocations that correspond to well-established damage elements.

With a PEF like one of those discussed above, each atom can be assigned a cohesive

energy and this cohesive energy can often be used to discern structures and understand

the atomic-scale origin of the energy of a particular defect. Although strictly speaking

Fig. 2 Methods for

determining grain boundary

mobilities. (a) An extra

energy term is added to atoms

with an orientation that does

not match that of the preferred

grain orientation. (b) Grain

boundary motion driven by a

shear forces. (c) Using

fluctuations in position to

calculated grain boundary

mobility
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stress is a continuum concept, stresses can be derived from the interatomic forces. Like

the cohesive energy, stresses can be assigned to atoms to understand subtle contribu-

tions to the stability of various defects. There are also other complementary quantities

that have been proposed that are valuable for damage characterization in crystals. For

example, a centrosymmetry parameter is a quantitative measure of the local bonding

structure of a given atom (Kelchner et al. 1998). It has values that can be traced to

particular damage configurations such as bulk crystals, dislocation cores, stacking

faults, and surfaces. Similarly, a common-neighbor analysis assigns a set of four

integers to each bond that is unique for certain bonding structures (Honeycutt and

Andersen 1987). There are also more automated methods that not only identify

dislocations but also characterize Burger’s vector (Stukowski and Albe 2010).

These methods greatly enhance the ability to fully analyze simulated damage, espe-

cially when a system is so large that post-simulation analysis becomes burdensome

compared to analysis as simulation configurations are generated.

Multiscale Modeling

The small time step size used in MDS (~10�15 s) and system sizes of typically

thousands to billions of atoms (depending on available computing resources) are

Fig. 3 Atomic system with

481,680 atoms at a

temperature of 300 K

containing two tilt grain

boundaries and stacking

faults created by dislocation

motion during an applied

strain. An embedded-atom

method potential for copper

was used. Periodic boundaries

were applied and the virtual

atoms are visualized as

spheres. (a) All atoms the

same color; (b) atoms colored

by kinetic energy; (c) atoms

colored by potential energy;

(d) atoms colored according

to local hydrostatic stress;

(e) atoms colored according

to their centrosymmetry

parameter; (f) atoms colored

according to a common-

neighbor analysis
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both major constraints for applying MDS to engineering-scale materials phenom-

ena. The increasing number of processors available through different computing

resources that can be dedicated to a single simulation is able to overcome some of

the size limitations. However, because the trajectories are determined stepwise, the

number of time steps that can be processed is more closely tied to processor speeds,

which are predicted to deviate substantially from the exponential increase given by

Moore’s law curve over the past decades.

Different multiscale modeling approaches have been developed to overcome

some of the discrepancy between the time and size scales inherent to MDS and

engineering applications. These approaches can be conveniently separated into

concurrent and serial methods. The former refers to approaches in which different

scales are treated simultaneously in a given simulation. Serial multiscale modeling

refers to approaches in which parameters and modeling conditions are passed

between modeling methods that treat different scales of a given system. Brenner

has recently reviewed some of the challenges and opportunities in multiscale

modeling of these types (Brenner 2013).

Fig. 4 Same system as

depicted in Fig. 3e, f except

that atoms with a bulk

centrosymmetry parameter

(top panel) and bulk

common-neighbor analysis

(bottom panel) are removed.

The grain boundaries and

stacking faults are now

apparent in the figures
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Concurrent multiscale modeling approaches typically look to embed a region in

which atoms are explicitly treated into a set of continuum boundary conditions. The

problem that has been the most examined with this approach is the propagation of

cracks in brittle solids, where dynamics at the crack tip are resolved to the atom

scale, while surrounding stresses are modeled with finite element or other contin-

uum approaches. These types of simulations can be partitioned to even finer scales.

For example, in a region that includes a crack tip, the interatomic forces can be

calculated from explicit electronic states. A region further from the tip can be

modeled with an analytic PEF, and further regions can be treated as a continuum.

Miller and Tadmor have compiled a detailed comparison of the accuracy and

efficiency of 14 concurrent atom–continuum approaches (which they call “partition-

domain multiscale modeling”) for an example problem of dislocation dipole motion

in a face-centered cubic aluminum lattice (Miller and Tadmor 2009). Challenges to

this approach, which are discussed in detail in the Miller–Tadmor and Brenner

reviews (Brenner 2013), include matching forces at the atom–continuum boundaries

(and the boundaries where different interatomic forces are used), phonon motion

across boundaries, and being able to switch between continuum and atomistic

descriptions of a region of the system as damage evolves and stresses change.

Voter and others have proposed different schemes to overcome the time limita-

tions of MDS when modeling rare events. In a straightforward and elegant scheme

called parallel replica dynamics, multiple trajectories are followed from the same

initial atomic positions but with sufficiently different initial equilibrium velocities

that they explore different phase space (Voter 1998). When a rare event reaction is

detected in any of the systems, all of the runs are discontinued. For first-order

kinetics, the total time between reactions can be taken as the sum of the times for

each system replica. The systems for which no reactions were observed are elim-

inated, and the process is started again using the one system that did show a

reaction. Because no communication is needed between replicas as they run in

parallel, this approach is highly parallel in time.

In a different approach developed by Voter called hyper-dynamics (Voter 1997),

a bias potential is used to raise the potential energy in regions of the potential

energy hypersurface between saddle points that correspond to various reactions.

With this approach, an effective time step can be defined that depends on the bias

potential and that can be orders of magnitude larger than the actual time step used

for following the trajectory on the new potential surface. When the system

approaches a configuration corresponding to a reaction, the bias potentials are

removed, and the dynamics of the system is followed using the small time step

typical of an MDS. As a system moves away from the region of the reaction barrier,

the bias potential and effective time step are reestablished. One drawback to this

approach is that it does not scale well with system size. This is because multiple rare

events can occur that bring the time step for the entire system to the small size

inherent to systems with non-biased potentials. Because they are based on acceler-

ating rare event dynamics, these types of time-scaling approaches are not generally

used to model large damage in crystalline solids, which typically involve creation

of extended defect structures.
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Available Codes

Several freely available codes for executing and analyzing MDS of damage in

crystalline metals are summarized in Table 1. Probably the most widely used at this

point is LAMMPS (the acronym for Large-scale Atomic/Molecular Massively

Parallel Simulator) (Plimpton 1995). Maintained by researchers at Sandia National

Laboratories, this code has a large and still growing number of capabilities that are

often contributed by an active user base. This code’s capabilities include a high

degree of parallelism, multiple types of interatomic potentials and thermostats,

advanced multiscale modeling capabilities, and different ways of post-processing

and analyzing simulations.

Another very useful suite of MDS codes is maintained by the Theoretical and

Computational Biophysics Group at the University of Illinois at Urbana-

Champaign. Although the capabilities of this code emphasize biological systems,

the visualizer VMD can be useful for analyzing damage in crystalline metals

generated from an MDS, especially when used in combination with one of the

methods mentioned above (e.g., the Central Symmetry Parameter) to color atoms

during visualization (Huang and Humphreys 2000). Other examples of available

and very useful codes for MDS and analysis include GULP(Gale and Rohl 2003)

and AtomEye (Li 2003).

Example Simulations of Metal Dynamics

Examples from the literature and from work within our research group are

discussed below in which MDS was used to characterize damage in crystalline

metals and their alloys. The discussion is not intended as an extensive literature

review; instead these were chosen as examples because they demonstrate new

insights and unique data that can be obtained from MDS in this area.

Table 1 Summary of some useful MDS and related codes for metal simulations

Code name

System

emphasis Example capabilities Website

LAMMPS All MDS and serial multiscale

dynamics; efficient processor

scaling; large number of

routines for thermostating, etc.

lammps.sandia.gov

NAMD/VMD Biological Molecular mechanics; efficient

processor scaling; independent

MDS visualization code

www.ks.uiuc.edu

GULP All Lattice dynamics projects.ivec.org/gulp/

AtomEye All Advanced MDS visualization http://li.mit.edu/Archive/

Graphics/A/
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Simulations of Shock-Loaded Crystals

Shock fronts travel at speeds that exceed the sound speed of the medium through

which they are traveling. For metals, the sound speed is typically 1–6 km per

second, or in molecular terms ~1–6 nm/ps. While the transient properties of

shock fronts make them difficult to study experimentally, this is an ideal time and

length regime for MDS. MDS has therefore been used extensively to study shock

phenomena in solids.

Early MDS by Holian of close-packed solids subject to shock loading suggested

that for strong shocks, shear damage (e.g., dislocation motion) can occur very near

the shock front, while for intermediate-strength shocks, an elastic compression at

the front is a precursor to a steady plastic wave in which shear stress is relaxed

(Holian 1998). At lower shock strengths, only an elastic wave was observed, with

the transition between the two occurring when the ratio of the piston speed to the

long wavelength sound speed exceeds about 0.25. This is roughly the point at which

the shear pressure equals the theoretical shear strength of the solid (~1/10 of the

shear modulus for slippage of close-packed planes).

Holian’s study used periodic boundaries and was restricted to thousands of

atoms. These restrictions can influence the plastic damage observed in an MDS

because any line and planar defects that are formed must repeat within the boundary

box in the two directions perpendicular to the shock propagation (see Fig. 1). For

Holian’s MDS, this resulted in slip being restricted to a limited number of close-

packed planes with spacing between shear bands dictated by the periodic bound-

aries. Whether this influenced the observed sudden onset of plastic damage is not

clear. Because of this and related considerations, Holian and Lomdahl examined

shock loading of larger systems containing up to 10 million atoms in a close-packed

crystal lattice (Holian and Lomdahl 1998). In the larger system, significant slippage

along multiple planes was observed, and the interaction between active slip systems

reduced the planarity of the shock front. Distinct patterns of plastic damage (termed

“randomly placed plaid pattern”) were observed in the MDS. This observation

suggested that the periodic boundaries did not significantly influence plastic dam-

age mechanisms, which included a sudden onset of plastic damage depending on

the shock loading strength. To examine the influence of extended defects on the

onset of plastic damage, the planar front driving the shock was replaced with a

curved interface that fit within the periodic boundaries. This curved interface was

intended to model the influence of existing extended defects on an initially planar

shock fronts as it moves through a crystal. Plastic damage at significantly lower

shock loadings was observed in the MDS compared to the driving force comparable

to a flat piston (e.g., heterogeneous versus homogeneous nucleation of plastic

damage under shock loading).

Holian and coworkers also used MDS to characterize shock-induced transfor-

mation of iron from a body-centered cubic to a hexagonal close-packed structure

(Kadau et al. 2002). At low piston velocities, there was no evidence for plastic

deformation in the initial structure. Instead a split shock structure was observed that

was composed of an elastic precursor under uniaxial compression followed by a

468 S. Lu et al.



slower phase-transition front to the close-packed structure. At higher pressures the

strain within the compressed precursor was relieved by a homogeneous nucleation

of close-packed grains. Because only a few grains were initially formed, the

transformation front was rough. Increasing the velocity of the piston driving

the shock loading increased the nucleation rate of close-packed grains. This in

turn produced a smoother transition front until at very high shock loadings a single

front was observed that separated the body-centered cubic from the close-packed

structure (which contained multiple twins and related defects).

In a following study, diffraction signals were generated from the structures

created in the MDS and compared to in situ experimental x-ray measurements of

laser-driven shocked iron. The observation in the MDS of a transformation to a

hexagonal close-packed structure was confirmed by the experiments. The presence

of a uniaxially compressed precursor to a phase transformation was also confirmed.

A large number of other MDS studies of shocked single-crystal metals have been

carried out that are similar to the work of Holian and coworkers. For example,

Bringa et al. reported results from a combined experimental and MDS study of the

shock loading of single-crystal copper (Bringa et al. 2005). The MDS used sample

sizes of two million atoms and two different EAM potentials that differed in their

stacking fault energies. A light-gas gun was used in the experimental studies to

shock load the samples. The relationship between shock velocity and the velocity of

the driving piston (the Hugoniot relation) was found to depend strongly on the

orientation of the shock loading, as did the agreement between the experiment and

MDS. Consistent with Holian’s studies, an elastic precursor followed by plastic

deformation was observed in the simulations, as well as melting at high shock

loading pressures. Dupont and Germann simulated the uniaxial strain of single-

crystal copper at different strain rates and temperatures along different orientations

(Dupont and Germann 2012). The yield strength and its dependence on strain rate

were found to be a function of orientation but not temperature. With increasing

strain rate, the plastic dynamics progressed from dislocation nucleation to atom

disordering/dislocation nucleation to creation of an amorphous structure.

Shehadeh et al. used the results of an MDS of shock-loaded copper to validate

and parameterize a larger length-scale model involving discrete dislocation dynam-

ics coupled to finite element analysis (Shehadeh et al. 2006). This concurrent

multiscale approach allowed the analysis of dislocation loop formation and related

plastic damage to be carried out to much longer time and length scales than would

be possible with MDS alone. This approach also provides a more accurate repre-

sentation of the damage dynamics than might otherwise be used in the finite

element or discrete dislocation approach.

A steady-state two-zone elastic–plastic model was proposed based on the results

of MDS studies of the shock loading of single crystals by White and coworkers. In

this model, the wave establishing the elastic precursor and the wave front at which

shear stress is relieved via plastic deformation travel at the same speed

(Zhakhovsky et al. 2011). The coordination of the speed of the two fronts occurs

via local elastic pulses that originate from plastic deformation through the elastic

precursor to the leading shock front. The ability to observe this rich dynamics and
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its influence on reaching steady-state shock fronts was the result of a modeling

technique in which the dynamics of the shocked material is followed in a window

that travels with the shock front. The window allows long timescale phenomena to

be observed compared to a simulation in which the reference frame is the

undisturbed material in front of the initial shock compression.

Using the same simulation methodology, White and coworkers examined the

evolution of plastic dynamics behind the second shock front in single-crystal

aluminum that was shocked along different orientations (Zhakhovsky et al. 2012).

It was found that despite direction-dependent properties such as melting dynamics,

the systems evolved to the same point on the Hugoniot relations. This result helped

to clarify what had been an apparent discrepancy between MDS, which was

predicting orientation-dependent plastic dynamics, and experiment which was

measuring Hugoniot relations that are orientation independent. Together with the

other papers mentioned above, this work is an excellent example of how when

properly set up and interpreted a modeling technique as basic as MDS can explain

and predict a wider range of phenomena. It also provides an example of where

insight and data generated by one technique can help inform other models.

The influence of preexisting defects on plastic deformation mechanisms and

mechanical properties of metals under extremely high loading rates have been

examined by numerous MDS. For example, in nanocrystalline solids, grain sizes

are of the order of nanometers so that they contain a very large density of grain

boundaries. This results in unique plastic deformation mechanisms (compared to

systems with conventional grain sizes) in which grain boundary sliding and grain

rotation accompanied by diffusion can play roles comparable to dislocation slip

(this is discussed more below). The rapid temperature and pressure rise associated

with a shock front can effectively remove deformation mechanisms requiring

diffusion while at the same time increasing the shear modulus. This increases the

threshold stress for inter-planar sliding. In addition, increasing pressure increases

the threshold for dislocation plasticity. Considering these effects together with the

assumption that the maximum in hardness as a function of grain size occurs where

stress for sliding and dislocation plasticity become equal, Bringa and coworkers

suggested that ultrahigh hardness can be achieved by shock loading nanostructured

crystals (Bringa et al. 2005).

Bringa et al. modeled the shock loading of nanostructured copper with different

grain sizes using MDS to validate their analysis (Bringa et al. 2005). At low shock

loadings, grain boundary sliding occurred, which leads to a relatively low value of

hardness that increases with increasing grain size. For intermediate shock loadings,

they observed that hardness increased with increasing shock strength for each grain

size, with the maximum hardness shifting toward smaller grain sizes compared to

lower strain rate deformation. This results in an increase in the overall maximum

hardness of the metal. At still higher shock loadings, the MDS produced a drop in

strength due to an increase in the rate of dislocation nucleation and motion resulting

from a temperature increase. At the highest shock pressures used in the MDS

(150–220 GPa), shock-induced melting was observed with an associated low

shear stress and further reduction in hardness.
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In a recent set of studies, Dongare and coworkers modeled high strain rate

deformation of nanocrystalline copper using MDS (Dongare et al. 2009, 2010).

Copper with an average grain size of 6 nm was subject to uni- and triaxial tensile

strain at a strain rate of 108 s�1 (Dongare et al. 2009) Random nucleation of

nonspherical voids occurred at grain boundaries and/or triple junctions by creation

of a shell of disordered atoms that surround the voids rather than by dislocation

nucleation from the void surfaces. Void coalescence as the system was further strained

was observed to occur by shearing of the disordered regions between individual voids.

The fraction of voids was found to vary linearly with plastic strain in two distinct

stages. In the first region, voids formed along the grain boundaries and triple junctions.

In the second stage, which began after a minimum in tensile stress was reached, the

disordered regions around the voids begin to recrystallize due to the higher temper-

atures compared to the first stage that is accompanied by void coalescence.

In another study, Dongare and coworkers used MDS to simulate shock loading

of nanocrystalline copper with the same grain size containing a free surface. The

system was initially compressed with an impact piston traveling with velocities

ranging from 0.25 to 1 km/s (Dongare et al. 2010). This was followed in the

simulation by unloading and spalls as the compression wave met the free surface.

The same two regions of void growth and coalescence behavior were observed as in

the high tensile strain rate studies. The first region where voids initially nucleate at

grain boundaries and triple junctions was found to be strongly dependent on the

initial sample structure and the piston impact velocity. Higher strain rates lead to

creation of a greater number of voids that nucleate over a shorter time. In contrast,

dynamics associated with the second regime depended only on the number of voids

created during the first regime.

In another recent study, MDS was used to characterize the influence of twin

spacing on shock-induced plasticity and spall behavior for twin boundaries inserted

into single-crystal copper and twin boundaries inserted into nanocrystalline copper

with an average grain size of 10 nm (Yuan and Wu 2012). Twin spacings between

0.6 and about 4 nm were used. It was found for the nanocrystalline system that the

average flow stress increased with increasing twin spacing up until about 1 nm, after

which the flow stress decreased with increasing spacing between the twins. This

trend resulted from two competing mechanisms of dislocation dynamics under

shock loading. The first mechanism involves the intersection of the dislocation–twin

boundary by inclined dislocations; the second mechanism was twin-boundary

migration via parallel dislocations. In contrast, the twins were not found to influence

the spall behavior of the nanocrystalline system. This is because voids nucleate and

grow along the grain boundaries, while for the other system the twins provide void

nucleation sites so that twinning density influences spall behavior.

Deformed Nanocrystalline Metals

Discussed in this subsection are representative MDS of the homogenous deforma-

tion (instead of shock loading) of metals with grain sizes on the nanometer scale.
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In metals that have conventional grain sizes, plastic deformation involves primarily

the motion of collections of dislocations (i.e., slip). Because in a given lattice slip

systems will change orientation across a grain boundary, these boundaries tend to

inhibited dislocation motion. This leads to an increase in strength with decreasing

grain size. Both experiment and modeling suggest, however, that there is a grain

size below which materials begin to get softer with decreasing grain size. This

“inverse Hall–Petch” behavior can be attributed to a change from dislocation

mediated plasticity to grain boundary sliding. Such a transition has been observed

in MDS, which predict a critical grain size of about 10–15 nm in good agreement

with experimental results. While agreeing with experiment, the MDS have also

revealed rich and unanticipated dynamics near the threshold region that can appar-

ently be related to the inherent properties of the bulk material. This dynamics

includes an enhanced role of grain rotation, cooperative inter-grain dynamics, and

stacking fault formation across grains that occurs by motion of partial dislocations.

MDS of strained nanoscrystalline copper with average grain sizes of ~5 nm was

carried out by Jacobsen and coworkers. There studies showed softening for small

grain sizes, in qualitative agreement with experimental results (Schiøtz et al. 1999).
These MDS studies revealed that in the inverse Hall–Petch regime, plastic defor-

mation can be chiefly attributed to grain boundary sliding and a reduced influence

of dislocation motion on the deformation. In related MDS carried out by Van

Swygenhoven and coworkers, the deformation mechanisms of nanostructured

nickel and copper with grain sizes ranging between 3.5 and 12 nm were character-

ized (Van Swygenhoven et al. 1999). For grain sizes less than ~10 nm, deformation

occurred mainly by grain boundary sliding, while at larger grain sizes, deformation

occurred by a combined sliding and dislocation motion. Mechanisms of strain

accommodation later identified by MDS included single atom motion and corre-

lated motion of several atoms, as well as stress-assisted free volume migration.

Similar studies of the deformation of nanocrystalline aluminum with a columnar

structure carried out by Wolf and coworkers showed the emission of partial

dislocations originating from grain boundaries and triple junctions (Yamakov

et al. 2001). An interesting observation from these simulations is that partial

dislocations may be reabsorbed by a grain boundary after the applied stress is

removed. It was suggested that this may be responsible for the lack of dislocations

observed in experiments after release of external stresses.

Based on MDS studies, Van Swygenhoven and coworkers suggested that atom

rearrangements at grain boundaries at points where nucleation and emission of

partial dislocation occur lower the grain boundary energy. Emission of a trailing

partial dislocation is therefore not always needed for further relaxation. Based on

MDS of aluminum with a columnar nanostructure, Yamakov et al. suggested that

the width of stacking faults (hence the intrinsic stacking fault energy) determined

by the distance separating two partial dislocations is the main quantity defining the

transition from full to partial dislocation emission as grain sizes approach the

critical size where inverse Hall–Petch behavior is first observed (Haslam

et al. 2004). In subsequent work, Van Swygenhoven and coworkers pointed out

that stacking fault energies for nickel, copper, and aluminum do not show a strong
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correlation with partial dislocation emission (Van Swygenhoven et al. 2004). It was

instead suggested that full dynamics associated with partial dislocation nucleation

from a grain boundary should be considered. This further suggests that the full

planar fault energy, including the stable and unstable stacking fault energy and twin

fault energies, must be considered to understand and predict relations between grain

size and plastic deformation.

Using MDS, Farkas and Curtin characterized detailed mechanisms for the

emission of dislocations within a columnar nickel nanostructure with grain sizes

of 4–20 nm (Farkas and Curtin 2005). Apparent from these simulations were

dislocations being emitted from grain boundaries. The simulations also indicated

that the number of emitted dislocations per unit length of grain boundary saturates

with increasing grain sizes. Assuming that dislocation emission occurs only at some

small distance from triple junctions, they reproduced the dislocation densities

observed in the MDS. Complicating these observations with respect to experiment

is the timescale of the mechanisms needed to nucleate dislocation emission relative

to the short timescale of the simulations.

“Dimples” have been observed experimentally on the fracture surfaces of nano-

crystalline metals that have grain sizes less than about 100 nm (Wang et al. 2002).

This observation is somewhat surprising because they appear to be fully compact

materials and hence the dimples are not the result of voids or similar structural

artifacts. The scale of the dimples is the size of multiple grains, which suggests that

their formation mechanism involves inter-grain cooperative motion. Derlet et al. used

MDS to characterize the fracture dynamics of nanostructured nickel with a mean

grain size of 6 nm and a narrow grain size distribution (Derlet et al. 2003). The MDS

was carried out at almost one half of the melting temperature of pure nickel to

accelerate grain boundary sliding and diffusion, and a tensile load of 1.5 GPa was

applied for 350 ps. Formation of local shear bands was observed. These shear bands

extended through multiple grains and accounted for the cooperative dynamics. Three

mechanisms were identified that contributed to the shear band formation. These were

reorientation of neighboring grains separated by low-angle grain boundaries, migra-

tion of grains by boundary sliding that lined up complementary shear planes, and

intragranular slip. Distributed within the microstructure were interfaces such as twins

that are particularly resistant to sliding. These interfaces created pinning points

around which surrounding grains deform and form the shear bands. This was

proposed as the mechanism that leads to the dimples observed experimentally.

Different groups have used MDS to characterize the possible role of dopants at

grain boundaries on plastic deformation mechanisms. Saxens and coworkers, for

example, modeled the influence of antimony dopants in nanocrystalline copper on

plastic dynamics under uniaxial load (Rajgarhia et al. 2010). The simulations

revealed that relatively small amounts of antimony can increase the flow stress;

this was attributed to an increase in the stress needed for grain boundary sliding. It

was also observed that antimony does not appear to have a large influence on

dislocation nucleation at grain boundaries. In contrast, results from MDS by Jang

et al. suggested that lead atoms that segregate to grain boundaries in nanostructured

aluminum can suppress the nucleation of partial dislocations from grain boundaries
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that are under uniaxial tension (Jang et al. 2008a, b). In the pure system, disloca-

tions were observed to nucleate from sites at which aluminum atoms are already

under tensile stress. Segregation to grain boundaries for this system arises mainly

from stress effects that drive the larger lead atoms (compared to aluminum) to atom

sites that in pure aluminum would be under tensile stress. Hence, the Pb relieves the

stress that contributes to dislocation emission. It was also observed that lead

addition disordered the atoms at the grain boundaries. This allowed more strain to

be accommodated by the grain boundaries compared to the pure system that had

dislocations travel through the grains.

In ductile materials, crack propagation involves dislocation emission from the

crack tip. This emission can increase the tip radius and decrease the stress concen-

tration that drives the tip forward under an applied load. While the stresses away

from the crack can be well modeled by continuum-based methods, atomic theory

and modeling is needed to understand the processes occurring at the crack tip. In

principle MDS can be effectively used for this purpose. In practice, however,

modeling the scale of the plastic dynamics leading to ductile fracture and its

coupling to the surrounding stress field has many challenges (Brenner 2013).

Holian and coworkers used MDS to simulate crack propagation in a copper

crystal that had interatomic forces modeled by Morse or EAM potentials (Zhou

et al. 1997). An initial crack was introduced into the material, and it was strained to

just below the Griffith criterion for crack propagation. The long-range character of

the various stress and strain fields was incorporated into the simulation using

periodic boundaries in two directions. Atoms were displaced according to the

continuum elastic solution for a finite crack in an unbounded solid. This large

MDS simulation – it involved up to 35 million atoms – was the first to unambig-

uously observe dislocation loops emitting from a crack tip that lead to blunting and

jogging. The MDS revealed crack tip propagation of about two lattice spacings that

was followed by distinct elastic rounding of the tip just prior to dislocation

emission. Interestingly, the initial partial dislocation was emitted backward from

the crack tip. This was followed by a second forward emission. This behavior can

be explained by the orientation of Burger’s vectors for the dislocations with respect

to the surrounding lattice and stresses. The details of crack blunting and plasticity

revealed by this MDS simulation are beyond what typically comes from analytic

theory and continuum-based modeling.

Hess et al. subsequently used MDS to examine the role of temperature,

interatomic potential, strain rate, system size, and boundary conditions on disloca-

tion nucleation from a crack tip in a system modeling nickel (Hess et al. 2005). The

primary factor in the mechanism of dislocation emission revealed by the MDS is

the crack orientation with respect to the surrounding lattice and temperature, and

the interatomic force expression played a relatively minor role in terms of the

qualitative behavior of plastic dynamics. Dislocation nucleation in response to local

stresses that is thermally activated was observed, which explains the temperature

dependence of the results.

MDS has also been used to characterize mechanisms associated with mode I

crack propagation from a notch placed in a nanostructured system with grain sizes
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between 5 and 12 nm and an interatomic PEF intended to model nickel (Farkas

et al. 2002). Incremental loading of the system normal to the notch orientation

followed by relaxation resulted in propagation of the notch through the nanostruc-

ture. For the smaller grain size, the crack propagated almost exclusively along the

grain boundaries before being blocked at a triple junction. Adding strain resulted in

blunting but not crack propagation. Nanovoids also formed along the grain bound-

aries in front of the crack tip. The voids eventually coalesced with the crack, which

resulted in the crack front moving to the next triple junction, where this process was

repeated. The same general behavior occurred for the larger grain sizes, except that

the simulation was initiated with part of the crack tip located in a grain. In this

simulation, the tip propagation through the grains was accompanied by emission of

dislocations similar to crystalline materials, with the exception that the dislocations

could be re-adsorbed by surrounding grain boundaries. After the crack tip went

through an initial grain, the propagation mechanism was the same as that for the

smaller-grained system. Comparison of the energy released to the Griffith criterion

for fracture suggested that this dynamics corresponded to a brittle material.

Simulations of Grain Boundary Migration

Grain boundary motion plays a critical role in processes such as grain growth during

recrystallization after a metal has been work hardened. How complex atomic

dynamics is coupled to stresses and external applied strains as grain boundaries

move remains one of the major unresolved problems in materials science (Molodov

et al. 2007) (Gottstein and Molodov 1998). In most annealing experiments, grain

growth represents an average behavior of many types of grain boundaries. How-

ever, different grain boundaries can behave very differently, and therefore, grain

growth experiments are limited in terms of characterizing the dynamics of individ-

ual grain boundaries. Even in bicrystals it is a formidable task to characterize

migration over a wide range of interface structure (Furtkamp et al. 1998; Gorkaya

et al. 2009). Within the scale and interatomic potential constraints discussed above,

MDS can provide unique insight and atom-resolved properties of specific grain

boundaries that complement experimental capabilities (Olmsted et al. 2009).

Mobility is a fundamental property of interest in characterizing grain boundary

dynamics. Mobility is defined as the linear coefficient relating the grain boundary

normal velocity vGB to the driving force (pressure) P, i.e., M � vGB/P. For

low-angle tilt grain boundaries, the mobility can be analytically approximated by

the number of dislocations per unit length times the Peach–Koehler force associated

with each dislocation. This results in an analytic mobility expression that is

inversely proportional to tilt angle and that has an Arrhenius temperature depen-

dence. While activated mobility is typically observed, the inverse relation between

mobility and tilt angle is not a feature of typical experimental or MDS results. At

higher tilt angles, assuming that grain boundary motion is closely related to atom

diffusion leads to the Burke–Turnbull expression for grain boundary velocity of

the form

15 Molecular Dynamics Simulations of Plastic Damage in Metals 475



v ¼ Ω
a2

ηe�
Q
kT � ηe

QþpΩ
kT

h i
(3)

In this expression, a is the lattice spacing, η is an attempt frequency, Ω is the

volume per atom, Q is an activation energy, k is the Boltzmann constant, T is

temperature, and p is pressure. In the limit that pΩ >> kT, velocity and pressure

are proportional to one another with proportionality constant (i.e., mobility):

M ¼ ηa4

kT
e�

Q
kT (4)

In this expression, the mobility is an activated process but is independent of tilt

angle.

Based on results from MDS and experiment, it appears that grain boundary

mobilities can depend on many factors, but with a dependence that is not well

understood. However, several trends have become apparent. First, mobility typically

shows Arrhenius behavior with respect to temperature; this agrees with the expres-

sion above. Second, low-angle grain boundaries tend to be less mobile compared to

high-angle structures, a trend that in general appears valid for both twist and tilt

structures (Huang and Humphreys 2000). In addition, in contrast to the analytic

theory mentioned above, the mobility of low-angle grain boundaries tends to increase

with increasing misorientation angle in a power law relationship M ¼ kθα (Huang

and Humphreys 2000). Third, the mobility of twist structures tends to be higher than

tilt grain boundaries, while activation energies are similar (Godiksen et al. 2008).

Finally, mobilities are different for planar and curved grain boundaries and very

sensitive to impurity and vacancy concentrations (Gottstein 2009).

Foiles and coworkers used the artificial driving force method mentioned above

in an MDS (Janssens et al. 2006) to calculate energies and mobilities for 388 grain

boundaries in nickel. The interfaces included h111i, h100i twist and h110i, h111i,
h100i symmetric tilt and coherent twin grain boundaries (Olmsted et al. 2009).

Greater than 25 % of the grain boundaries were reported to migrate using a

mechanism that couples shear stress to motion. This mechanism included most of

the non- Σ3 structures with the highest mobilities. Among the rest of the structures,

the incoherent Σ3 twins had an anomalously high mobility, while other boundaries

remained static on the timescale of the simulations. Thermal activation energies

also varied widely, with some migration mechanisms being temperature indepen-

dent. Thermal roughening of the grain boundaries was also reported, which resulted

in relatively large increases in grain boundary mobility above the roughening

temperatures. Despite the large number of structures studied and the wide range

of different properties examined, no correlations were uncovered between mobility

and scalar quantities such as grain boundary energy, misorientation angle, Σ value,

or excess volume.

The definition of grain boundary mobility given above assumes a linear rela-

tionship between the normal velocity of a grain boundary and the driving force.

However, both MDS and analytic theory (cf. Eq. 3) predict nonlinear behavior
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(Zhou and Mohles 2011). Various authors have different explanations for this

dependence. Godiksen et al. (2008) found in MDS that grain boundary velocity

and driving force (vGB / P) are proportional for twist grain boundary dynamics,

but nonlinear (vGB / P2) for tilt grain boundaries. It was proposed that this result is

due to local interactions between the grain boundaries and nearby dislocations.

Another explanation proposed by Zhang et al. (2004) attributed the nonlinearity to

an increase in effective activation barrier with increasing applied driving force.

Zhou and Mohles (2011) proposed a mechanism based on Eq. 3 that the

approximation leading to Eq. 4 is invalid for high driving forces needed to observe

grain boundary motion in MDS. They proposed that a low driving force limit can be

achieved by extrapolating data from high driving force simulations. Zhou and

Mohles used this idea to determine misorientation-angle-dependent grain boundary

mobilities and migration activation energies by MDS with the artificial driving

force method (Janssens et al. 2006). These simulations used a series of flat twist

h110i grain boundaries with different Σ values and misorientations. The resultant

mobilities of small- (�25�) and large-angle misorientation grain boundaries were

reported to be about 10�9m4J�1s�1 and 10�8m4J�1s�1, respectively.

To avoid the nonlinearity resulting from a high driving force, Trautt

et al. performed equilibrium MDS and obtained the mobility according to the

fluctuation dissipation theorem by assuming that mobility is linearly dependent

on the fluctuation of the mean interface position (Fig. 2c) (Trautt et al. 2006). Based

on their results, they concluded that mobilities of planar grain boundaries at the low

driving force limit (i.e., true mobilities) are an order of magnitude higher than the

mobilities measured with high driving force.

Like mobility, there is no simple rule to determine grain boundary migration

activation energies because the energies depend on too many variables (e.g., grain

boundary type, impurity concentration, and shape). For example, activation ener-

gies computed from MDS are often lower than those determined from experiment

(Schönfelder et al. 2006; Zhou and Mohles 2011). One factor contributing to this

observation is likely the impurities in the experimental systems that are not present

in the simulations (Olmsted et al. 2009).

A distinct change in activation energy between low-angle and high-angle grain

boundaries (irrespective of planar or curved type) was detected numerically (Zhou

and Mohles 2011) and experimentally (Winning and Gottstein 2002) at approxi-

mately the same misorientation. The transition angle measured is about 15� for both
h110i twist (Zhou and Mohles 2011) and h100i twist boundaries (Schönfelder

et al. 2006), 14.1� for h111i symmetric tilt boundaries (Winning amd Gottstein

2002), 8.6� for h100i symmetric tilt boundaries (Winning 2003), and 13.6� for

h112i symmetric tilt (Winning and Rollett 2005) grain boundaries. The former two

transition angles were determined from MDS, while the latter three were measured

experimentally. The agreement suggests that MDS is able to capture the important

aspects of this transition.

Equation 3 assumes that activation energies for grain boundary migration in the

high-angle regime does not depend on misorientation angle (Winning and Rollett

2005; Winning 2003). This is different from grain boundary energies, which show a
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distinct dependence on angle. This includes energy cusps at low sigma structures in

symmetric tilt boundaries. Plotted in Fig. 5 are grain boundary energy and migra-

tion activation energy as a function of tilt angle from MDS using an embedded-

atom potential for copper. In this unpublished study, a correlation between grain

boundary energy and activation energy is apparent, especially with respect to the

cusps. However, whether cusps are local maxima or minima does not appear to

correlate. More work to try to understand this relationship is underway.

Fig. 5 Dependence of

various grain boundary

properties on tilt angle from

an MDS of h100i symmetric

tilt grain boundaries in copper

at temperature �800 K and a

virtual driving force of 108

Pa. In each plot the dashed

line indicates grain boundary

energy at 0 K (the scale is

indicated by the label along

the right ordinate of each

plot). (a) mobility; (b)

activation energy; (c) shear

strain. There appear to be

correlations between energy

and the dynamic properties of

the grain boundaries, but the

origin of the correlations is

unknown
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A recent experiment indicated that that grain boundary migration in nanocrys-

talline aluminum thin films is governed by shear stresses that produce distortion

work. This is in contrast to the normal stresses assumed in conventional theory

(Rupert et al. 2009). Shear stress driving grain boundary motion has also been

reported in other experimental work (Molodov et al. 2007; Winning and Rollett

2005; Winning 2003). MDS results agree with these experimental studies (Cahn

et al. 2006; Cahn and Taylor 2004). MDS for symmetric h100i tilt grain boundary

systems in copper by Cahn et al. confirmed that normal motion of planar grain

boundaries can be driven by shear stress (Fig. 2b). This work also showed that the

ratio of normal to tangential translation of a grain boundary is a constant that is

independent of temperature or of the magnitude of the applied shear stress.

Olmsted et al. (2009) reported that they found that even under a normal driving

force significant shear can be built up during normal motion of planar grain

boundaries. They further suggested that a traditional diffusion-controlled mecha-

nism exists in all grain boundaries, but this mechanism can be overshadowed by the

faster shear-coupled mechanism if the latter is allowed geometrically (e.g., lateral

translation is unconstrained).

A subset of atoms near a tilt grain boundary from an unpublished MDS study is

illustrated in Fig. 6. An embedded-atom potential for copper was used, and

the interface is a symmetric tilt grain boundary with a tilt angle of 22.62�.
The position of the grain boundary is indicated by the red arrows. The left panel

Fig. 6 Illustration of atom motion from an unpublished MDS of a tilt grain boundary migration.

The image on the left is the initial atom configuration. The right-side two images illustrate the final

atom configurations when the grain boundary is driven to move downward (indicated by the red
arrows) by shear stress (b) or normal direction driving force (c). The black arrows indicate the

shear direction and the black crosses imply that shear motion on the two ends is prohibited. Blue
and red colors specify atoms on (100) and (200) planes, respectively
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illustrates the grain boundary region before a driving force for migration is

applied. The middle panel illustrates the same subset of atoms after the grain

boundary has moved due to a shear stress that is applied at the boundaries with an

orientation given by the black arrows. Applying this stress precludes the use of

periodic boundaries in the direction normal to the grain boundary interface (but

they are used in the other two directions). The right panel illustrates the same

atoms after the grain boundary has moved due to a driving force normal to the

interface from the application of an artificial energy term as illustrated by Fig. 1a

(Janssens et al. 2006). For this case, periodic boundaries are applied in all

directions. In both cases, a shear strain in the plane of the grain boundary is

created during the grain boundary migration. For the conditions corresponding to

Fig. 6b, this shear strain is smoothly and continuously accommodated by

nonperiodic boundary condition, and the grain boundary moves continuously

(Cahn et al. 2006). For Fig. 6c where the boundary conditions do not allow

shear strain accumulation (indicated by the black crosses), shear strain starts to

build up as the grain boundary begins to move. The grain boundary motion,

however, is stopped after about 100 time steps due to the accumulation of shear

stress in the direction opposite of the strain. This corresponds to the inflection

point of the strain in panel c. If the normal direction driving force is large enough,

the grain boundary can overcome this shear stress accumulation and continue

moving, but through a different mechanism involving a combination of disloca-

tion glide and climb. Further analysis of this mechanism is ongoing.

Current Challenges

Given in this chapter was an overview of MDS at a tutorial level, followed by some

examples where MDS is providing new insights into the formation, stability, and

structure of various types of damage in metals. The intent of this chapter was not to be

a comprehensive review, but rather a snapshot of the scientific literature in this area.

Within these limited goals, it should be clear that MDS has been used successfully to

study a wide variety of different types of damage in crystalline metals. Even with the

advances in computing resources and methodology, however, challenges remain to

using MDS to fully understand plastic damage. Some of these challenges, and steps

toward meeting these challenges, are briefly described in this section.

Interatomic Forces

PEFs commonly used in MDS were briefly discussed above. The most successful

functional forms for large-scale MDS are generally derived from approximations to

quantum mechanical bonding, with parameters in the functions fit to a set of

physical properties. In some cases, researchers favor functional forms with many

parameters and then fit these parameters to as many properties as they can. The

other extreme is to create a PEF with as much physics as possible built into a
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functional form that has fewer parameters and then fit these parameters to a fewer,

carefully chosen properties. Both approaches have advantages and limitations that

can become apparent in analyzing simulation results and comparing these results to

experimental observations.

There are currently improvements being made to the derivation, fitting, and

implementation of PEFs. For example, one active area is incorporating effects

related to charge transfer (Mathieu 2007; Nistor et al. 2006; Nistor and M€user
2009). While unimportant for pure metals for most situations, including charge

transfer improves the description of bonding for intermetallic phases and for

interfaces between metals and other types of materials (e.g., oxides). There have

also been recent advances in incorporating magnetic effects into PEFs, although

much more work is needed (Ackland 2006; Dudarev and Derlet 2005; Ma

et al. 2012). Replacing predefined functions with neural networks and similar

approaches is showing promise in enhancing the accuracy of interatomic forces

for MDS (Behler 2011; Jos et al. 2012).

In the longer term, the preferred approach from a fundamental science viewpoint

is to calculate interatomic forces directly from quantum mechanics. Depending on

the approximations made within density functional theory, for example, a single

calculation that includes electrons can be carried out for between tens and millions

of atoms with the current level of computing resources. With better approximations

within quantum mechanics, increasingly clever scaling algorithms, and simply

larger and faster computers, the system sizes for which forces can be calculated

with explicit electronic states will continue to dramatically increase. In addition to

interatomic forces that are transferable compared to analytic PEFs, using forces

directly from quantum mechanics should provide an efficient pathway for relating

plastic damage in metals to the properties and behavior of the electrons.

Length Scales

System sizes scale naturally with the number of processors (rather than processor

speed) dedicated to a simulation. In the last two decades the size scales that can be

attained in an MDS have increased by orders of magnitude. This is especially true

for researchers with access to large computers like those at the national laboratories.

In addition, the cost of parallel processors has decreased to the point where research

groups with modest resources can model damage of the size associated with

extended structures like grain boundaries and dislocations. More researchers work-

ing on this scale ensure more studies that can probe behavior and structure with

atomic resolution.

Timescales

Because the classical equations of motion are numerically solved stepwise in a

serial fashion, the prospects for simulating significantly longer times from a
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computational resources viewpoint are strongly coupled to increases in processor

speed. Maintaining Moore’s law far into the future is unclear, and so other methods

will be needed to increase accessible timescales. For rare events or well-defined

kinetics, the methods mentioned above have been successful in this regard, and

various ways of combining kinetic Monte Carlo and molecular dynamics simula-

tions will also contribute to increased accessible timescales. Overall this remains a

major challenge to connecting atomic and engineering scales.

Quantum Dynamics

Using classical mechanics to model atommotion is a more reasonable approximation

for heavy atoms (i.e., most metals) than light atoms like hydrogen, which would have

a much higher probability for quantum tunneling and larger zero point energies. For

metals accurate heat capacities and thermal transport is inhibited by the assumption

of classical mechanics as well as the inability to explicitly treat of electronic degrees

of freedom that can carry heat. Compared to other challenges, this remains an unmet

but otherwise low priority challenge for MDS as applied to metal damage.

Interpretation of MDS Results

New algorithms have recently been proposed with which damage in crystalline

lattices can be easily identified. This includes dislocations and Burger’s vectors

(Stukowski and Albe 2010). There still remains, however, a crucial need for

automating the detection and interpretation of damage mechanisms in MDS and

passing this information to larger length-scale analyses. As an example, the

methods of advanced statistics (Bayesian analysis) could be used to analyze

simulations so that different types of damage gleaned from multiple simulations

can be passed to higher scale analyses. Other critical and innovative thinking is

needed in this area.

Conclusion

This chapter provided an overview of MDS as applied to modeling plastic damage

in metals. This overview included a tutorial-level explanation of how a traditional

MDS is implemented and analyzed and some examples of where MDS had pro-

vided new insights into the dynamics of damage that cannot typically be obtained

from continuum modeling that is more traditionally used by engineers. This chapter

concluded with a list of challenges that remain in expanding the use of MDS for

modeling damage. These challenges included improved interatomic force expres-

sions, numerical and computational routes for increasing time and length scales,

incorporating quantum dynamics where needed, and new methods for interpreting

MDS, including using modern tools of statistical analysis.
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Abstract

Qualitative and quantitative studies are made emphasizing the concept of

damage-induced anisotropy using the micromechanical model proposed shown

in ▶Chap. 11, “Ductile Damage Behavior in Low-Cycle Fatigue for Polycrys

talline Metallic Materials.” The model deals with the plastic strain and local

damage variables. In fact, they are examined at the crystallographic slip scale for

FCC metallic polycrystals. The elastic behavior is initially assumed to be

compressible and isotropic determined at the macroscopic scale. Due to the

activation/deactivation concept, the anisotropic damaged behavior is adopted

using a fourth-order damage tensor at the overall scale. Consequently, the
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overall nonlinear behavior, notably the deactivation phase due to microcracks

closure under complex cyclic loadings, is of particular interest in this chapter.

The model ability is demonstrated by a host of plastic predicted damaged

behaviors of metallic polycrystals focusing on the unilateral damage and loading

path effects on the multiaxial low-cycle fatigue (LCF) behavior. Actually, the

model is tested under strain- and stress-controlled conditions describing the

effects of the loading path complexity and the mean stress on the polycrystal

LCF behavior. Finally, the model can successfully describe the LCF behavior of

the Waspaloy at room temperature.

Introduction

Cyclic behavior of polycrystals is one of the major considerations in engineering

structures and machine design since many of the constituent parts are subjected to

repeated loading. Machine components are generally subjected to various complex

cyclic loading paths leading to many research investigations. Currently, the elasto-

inelastic behavior of metals shows an increasing maturity especially in the engi-

neering theory of plasticity. Damage mechanics notably under cyclic loading with

the self-consistent approaches represents a field of challenging for several theoret-

ical developments. Some attempts have been conducted in describing the damaged-

elasto-inelastic behavior of material under different loading paths (simple and

complex) using micromechanical approach (Abdul-Latif and Saanouni 1994,

1996; Saanouni and Abdul-Latif 1996; Abdul-Latif et al. 1999; Chadli and

Abdul-Latif 2005; Abdul-Latif and Chadli 2007). As given previously in

▶Chap. 11, “Ductile Damage Behavior in Low-Cycle Fatigue for Polycrystalline

Metallic Materials,” various damage categories have been described in the litera-

ture, such as creep damage, low-cycle fatigue, high-cycle fatigue, and brittle

damage (Kachanov 1986; Lemaitre and Chaboche 1990; Lemaitre 1992; Voyiadjis

and Kattan 1999 and many others). For polycrystalline metals, metallographic

studies demonstrate that the damage is basically characterized by a progressive

degradation due to the initiation and coalescence of microcracks.

The nonlinearity of material behavior is generally induced by plasticity and

damage mechanics. It is well known that ductile polycrystalline metals usually fail

as a result of nucleation, growth, and coalescence of microdamages. It is experi-

mentally shown that the accumulation of microdamages has a tendency to form a

localized damage due to plastic strain localization up to final structure failure. As

shown in ▶Chap. 11, “Ductile Damage Behavior in Low-Cycle Fatigue for Poly

crystalline Metallic Materials,” in several metallic materials, the kinematic

strengthening is related to the creation of slipbands. The setting of these bands in

the material induces undoubtedly an internal back stress in the grains leading

accordingly to anisotropic behavior. Besides, TEM observations reveal strain

localized in slipbands during cycling leading to an important dislocations density

in these bands. Microstructural observations related to specimen outer surfaces

show that crack initiation occurs in some slipbands as in Waspaloy. Thus, these
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slipbands together with microcracks seem to be important factors leading to

anisotropic behavior concerning the elastic and plastic strains.

An induced-oriented anisotropy phenomenon can experimentally be observed,

in fatigue. In fact, microcracks may open or close depending on the applied loading

direction. Thus, different responses can be observed for compression and tension

loads which lead to damage deactivation behavior as in aluminum alloy (see Fig. 5,

▶Chap. 11, “Ductile Damage Behavior in Low-Cycle Fatigue for Polycrystalline

Metallic Materials”). Theoretically, many approaches have been proposed since the

last decade (e.g., Krajcinovic and Fonseka 1981; Ladevèze and Lemaitre 1984;

Ortiz 1985; Yazdani and Schreyer 1990; Mazars and Pijaudier-Cabot 1989; Ju

1989; Ramtani 1990; Chaboche 1992, 1993; Hansen and Schreyer 1995; Halm

and Dragon 1996; Yazdani and Karnawat 1997; Abdul-Latif and Mounounga

2009). Based on the discussion in ▶Chap. 11, “Ductile Damage Behavior in

Low-Cycle Fatigue for Polycrystalline Metallic Materials,” the micromechanical

model of damaged-elasto-inelastic behavior for FCC polycrystals will be tested.

Using the small strains assumption, the damage activation/deactivation effect on

polycrystalline metals behavior in LCF will be described.

The aim of this chapter is to show the model ability in describing the deactiva-

tion phenomenon due to microcracks closure and its effect on the metals behavior.

Hence, a host of cyclic plastic damaged behavior of polycrystalline metals is

predicted illustrating the damage activation/deactivation and loading path effects

on the multiaxial LCF behavior under different strain- and stress-controlled condi-

tions. The corresponding nonlinearity is appropriately described by the model. Note

that special emphasis will be focused on the biaxial cyclic loading paths especially

the nonproportional ones such as tension-torsion with different out-of-phase angles

showing the additional hardening and damage evolution. Quantitatively, the model

can successfully describe the LCF behavior of the Waspaloy at room temperature.

Identification of the Model

This paragraph deals with the identification of the model constitutive equations.

The model identification can be conducted based on two main steps: (i) determining

the model constants and (ii) determining the choice of the microstructure. In this

chapter, all the numerical simulations made use a random orientation distribution of

300 grains. Figure 1 demonstrates the standard inverse pole figure of this 300-grain

aggregate with two preselected grains (No. 17 and 218). The choice of these two

gains is based on their reasonable plastic deformation and then their damage.

Moreover, their behavior points out a local heterogeneity which is, in general, far

from the representative behavior of the polycrystal. Such heterogeneity is consid-

ered as an important and interesting feature of this type of modeling. The 12 octa-

hedral slip systems with their number are presented in Table 1. Assumed to be a

single-phase FCC type, the microstructure of this aggregate (i.e., the number and

the orientation of the grains) is determined by the well-known Euler angles.

Macroscopically, the initial isotropic elastic behavior of this distribution is proved
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by the model response (Fig. 2). This aggregate is actually an appropriate compro-

mise between minimizing the calculation and acceptable description of the dam-

aged polycrystalline microstructure.

In order to minimize the model complexity as well as the number of model

constants, all the grains as well as all the slip systems are assumed to have the same

material properties. Consequently, this gives that all the grains have the same

constants (Cg and ag) and all the slip systems have also the same plasticity and

damage constants (zs, Ks, ko
s, Qs, bs, Ss, so

s , ws, and γos). The hardening interaction

matrix Hrs (considering only the octahedral slips) is defined by its constants. As

shown above, only two different parameters (d1 and d2) define the damage interac-

tion matrix Drs (▶Chap. 11, “Ductile Damage Behavior in Low-Cycle Fatigue for

Polycrystalline Metallic Materials,” Eq. 38); the diagonal terms (d1) determine the

self-damage interaction (equal to 1) and the non-diagonal terms (d2) describe the

interaction between the local damage at the different slip systems within the same

grain. Afterward, the qualitative simulations will be carried out using the identified

constants summed up in Table 2 (Mounounga et al. 2011).

Various possibilities offered by the model are shown to describe the LCF

behavior of FCC polycrystals, at the local and global scales. Thus, the model ability

is demonstrated via the description of several phenomena concerning cyclic plas-

ticity coupled with damage such as cyclic hardening evolution, fatigue life, damage

deactivation effect, etc. Among these fundamental phenomena, the loading path

complexity and mean stress effects on the damage evolution are particularly

111

100 110

218
17

Fig. 1 Standard inverse pole

figure of the used 300-grain

aggregate (representative

volume element) showing the

two selected grains: 17 and

218 (From Mounounga

et al. (2011), with permission

from Elsevier)

Table 1 Definition of the 12 slip systems for FCC structure

Slip system 1 2 3 4 5 6 7 8 9 10 11 12ffiffiffi
3

p
n1 1 1 1 1 1 1 �1 �1 �1 1 1 1ffiffiffi

3
p

n2 1 1 1 �1 �1 �1 1 1 1 1 1 1ffiffiffi
3

p
n3 1 1 1 1 1 1 1 1 1 �1 �1 �1ffiffiffi

2
p

g1 �1 0 �1 �1 0 1 0 1 1 �1 1 0ffiffiffi
2

p
g2 0 �1 1 0 1 1 �1 1 0 1 0 1ffiffiffi

2
p

g3 1 1 0 1 1 0 1 0 1 0 1 1
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considered. Numerical tests show the damage deactivation effect (anisotropy

induced by damage) especially under multiaxial loadings.

Various cyclic loadings (symmetrical and triangular) are used in this investiga-

tion under strain-controlled condition, namely, uniaxial tension-compression (TC);

biaxial tension-torsion with various out-of-phase angles: Φ ¼ 0� (TT00), Φ ¼ 30�

(TT30), Φ ¼ 45� (TT45), Φ ¼ 60� (TT60), Φ ¼ 90� (TT90); and another biaxial

cyclic loading of butterfly (Fly) (Fig. 3). Besides, several predictions are conducted

under uniaxial tension-compression cyclic loading with stress-controlled condition

of different positive mean stresses. They describe the ratcheting phenomenon

coupled with damage. A quantitative study is also carried out by comparing the

model predictions with experimental data for Waspaloy.

Loading Complexity Effect on the Damaged Behavior

Cyclic loading path effect on the LCF behavior is now examined. Many experi-

mental results reveal the loading effect on the overall and local material behaviors

especially for those metallic materials having low stacking fault energy. Indeed,

cyclic hardening under nonproportional loading conditions becomes stronger than

that under proportional ones. This is due to the rotation of the principal stress and

Table 2 Constants of the

model
Eg (MPa) 215,000 ν 0.3

Cg (MPa) 95,100 ag 8.9

ko
s (MPa) 240 zs 20

Ks 40 Qs (MPa) 260

bs 12 h3 0.8

h2 0.8 h5 1.0

h4 1.5 h6 3.5

w 1.0 α 3.0

γos 5.8 d1 1.0

so
s 0.9 d2 1.4

S11, MPaS 1
2, 

M
Pa

Fig. 2 Initial overall yield

surface in the Σ11–Σ12 space

(From Mounounga

et al. (2011), with permission

from Elsevier)
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strain axes during nonproportional loading. This phenomenon is the so-called

additional hardening. For many metallic materials, such as Waspaloy, different

experimental studies show that this phenomenon is the result of slip system

multiplication. Interactions between these activated slip systems induce, as a

consequence, this additional hardening. Another example concerns to the austenitic

stainless steel. In fact, the hardening rate increases significantly, when the material

is submitted to multiaxial loading due to the slip multiplication. In cyclic tests of

tension-torsion, it has been observed that additional hardening increases propor-

tionally with the out-of-phase angle. This means that TT90 cyclic loading path

(circular path with sinusoidal form) gives the maximum cyclic hardening. How-

ever, in the butterfly test, Waspaloy has experimentally pointed out that the induced

additional hardening is more important than that in TT90 (Clavel et al. 1989).

Overall Behavior

LCF predictions under simple and complex loading paths are recorded and ana-

lyzed at both macroscopic and local levels. Numerical simulations are performed to

justify the new intragranular damage initiation criterion proposed in Abdul-Latif

and Mounounga (2009). This can be performed considering the significant differ-

ences between various fatigue lives observed experimentally in some materials. In

fact, the main parameters α and γos of the new intragranular damage criterion

(▶Chap. 11, “Ductile Damage Behavior in Low-Cycle Fatigue for Polycrystalline

Metallic Materials,” Eq. 33) and their effect on the fatigue life are numerically

investigated varying these two parameters as summarized in Table 3, where α is

varied from 1 to 15 and γos from 10 to 120. Three different loading paths are used:
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uniaxial TC withΔE11 ¼ 0.85 %, biaxial TT90, and butterfly withΔE11 ¼ 0.736 %

and ΔE12 ¼ 0.37 % having the same maximum equivalent total strain of

ΔEeq-vM ¼ 0.85 %.

Fatigue life simulations are carried out with the two parameters variation. By

means of this damage criterion, the model shows a strong dependency of polycrys-

tal fatigue life on these parameters and their interaction (Fig. 4). This figure reveals

that the fatigue life decreases when α increases and γos decreases. In fact, whatever

the loading path for a given α, for example, α ¼ 1 in TC, the fatigue life changes

remarkably between 356 cycles for γos ¼ 10 up to 2,430 cycles when γos ¼ 120. It is

also recognized that for a fixed value of γos ¼ 10, the reported fatigue lives in TT90

with α ¼ 1, 3, 6, 9, 12, and 15 are 94, 22, 12, 12, 12, and 12 cycles, respectively.

Moreover, in Fly test, these are 52, 11, 9, 9, 9, and 9 cycles, respectively. None-

theless, the model cannot converge, for multiaxial loading paths, for 6 � α � 15

for this value of γos. This means that the fatigue life is not sensitive in the range of

α � 6 whatever the value of γos. However, the model response becomes remarkably

sensitive to α and γ and their interaction in the range of α � 6 whatever the used

value of γos as shown in Fig. 4.

An examination of Fig. 5 shows the dependence of the polycrystal fatigue life on

the loading complexity. By analyzing the maximum von-Mises stress evolution

versus the overall accumulated plastic strain up to macroscopic crack initiation, it is

obvious that the model can suitably describe the three plastic fatigue stages:

accommodation, stabilization, and softening due to damage. The intragranular

damage rate _d
s
(▶Chap. 11, “Ductile Damage Behavior in Low-Cycle Fatigue for

Polycrystalline Metallic Materials,” Eq. 44) is principally the function of Yin
s , λs,

and Drs. Hence, a kind of interaction among these three elements is considered. It

plays a decisive role on the local and then on the overall fatigue behavior. Indeed,

the greater the complexity of the loading path (increasing the number of activated

plastic systems), the greater is the additional hardening (due to the evolution of Rs)

and the shorter the fatigue life.

However, this rate is attenuated by the slip evolution λs due to the increase in the
cyclic hardening which obstructs the damage evolution. It is clear that the butterfly

loading (Fly) involves the shortest fatigue life (Nf ¼ 45 cycles), because it is the

most complex one giving therefore the highest overall cyclic stress (Fig. 5). Its

steady state (stabilization) is the shortest due to the highest damage evolution

Table 3 Adopted

scenario in studying

the new intragranular

damage criterion

parameters and their

interaction

γos

10 30 60 90 120

α 1 X X X X X

3 X X X X X

6 X X X X X

9 X X X X X

12 X X X X X

15 X X X X X
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controlled by the greatest additional hardening (i.e., a strong competition between

the damage and hardening occurring).

On the other hand, the highest fatigue lives are obtained in TC and then in TT00

giving fatigue lives Nf of 839 cycles and 689 cycles, respectively. This observation

is confirmed by the overall damage evolution analysis with respect to the overall

accumulated plastic strain (Fig. 6). Qualitatively, these predictions are in accor-

dance with several published experimental data for many materials.

Local Behaviors

One of the principal advantages of a micromechanical modeling is its ability to

produce the principal cyclic plasticity phenomena through local considerations. In

this paragraph, some recorded local responses for the different loading paths are

illustrated. In fact, responses of the average number of activated slip systems per

grain are illustrated in Fig. 7 emphasizing its dependency on the loading complex-

ity. Note that this number is numerically determined by using a threshold in terms

of slip (γs ¼ 10�4) before which counting of activated slip systems is no longer
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Fig. 4 Influence of α and γos parameters and their interaction on the evolution of the polycrystal

fatigue life under different cyclic loading paths (From Mounounga et al. (2011), with permission

from Elsevier)
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made. An important conclusion regarding these numbers is the trend of their

evolution as a function of cyclic loading complexity. In fact, it is in a perfect

accordance with several experimental results such as in the case of Waspaloy.

However, these values are not always in perfect agreement with the experimental

data. For example, the recorded average number of activated slips for the simplest

load (TC) and for the most complex one (Fly) are respectively of 1.8 and 4.3.
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Figure 8 shows distributions of the average number of intragranular damages

(NID) per grain for different fatigue life intervals just before the macrocrack

initiation. The selected intervals are:

(i) 0.1 � ds < 0.2

(ii) 0.2 � ds < 0.4

(iii) 0.4 � ds < 0.6

In a given fatigue life stage, this figure reveals that the NID varies according to

applied loading path whatever the selected damage interval. Obviously, the NID in

TC is always dominant with respect to the other loadings. For example, in the

damage range of [0.1, 0.2], the NID is approximately 0.13 in TC, while it is 0.02 for

Fly (Fig. 8b). This tendency is confirmed for the damage range between 0.2 and 0.4

during which this number becomes almost 0.08 in TC and 0.01 for Fly.

Under biaxial tension-torsion loading, an important variation of the NID with

respect to the out-of-phase angle is recorded. It is shown that TT00 has the highest

NID. This is due to the fact that, under this loading type (as in TC), almost the same

number of grains is systematically loaded within the grain aggregate. This load

provokes thus more local damaging zones than in the other more complex loading

types. However, a small number of damages reach critical values. As discussed

above, the plastic strain localization is governed by the orientation of grains for a

given loading path. Therefore, this element has a key role on the variation of

damage distribution with respect to the cyclic loading type. Theoretically, a poly-

crystal is regarded as completely damaged when one or more grains are totally

damaged giving at the end DT � 1 (▶Chap. 11, “Ductile Damage Behavior in

Low-Cycle Fatigue for Polycrystalline Metallic Materials,” Eq. 50). This is
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exclusively controlled by the concept of damaged grains ND
g 0 and their volume

fraction vD
g 0.

Figure 9 shows the variation of the fully damaged systems within the polycrystal

under different loading types. Thus, one gets 13 in TC, 9 in TT00, 1 in TT30, 3 in

TT45, 5 in TT60, 6 in TT90, and finally 3 for Fly test. By analyzing the polycrystal

behavior, the important disparities can find their explanation by the concept of

favorably oriented grains with respect to the applied loading direction together with

the competition phenomenon of the principal mentioned factors Yin
s , λs, and Drs.

Besides, it is recognized that the actual micromechanical approach is unable to take

into account the spatial distribution of the grains in the RVE. Thus, the concept of the

extrusion-intrusion mechanism cannot be explicitly described as discussed earlier

with the initiation of microcracks in these grains at the specimen free surface.

Therefore, Fig. 10 shows a proposed scenario interpreting the distribution of

microcracks and its influence by the loading path complexity. As given in Fig. 9, it

is concluded that the greater the complexity of the loading path, the lower the

microcracks and the shorter the fatigue life. For example, in TC, 13 damaged grains

are recorded against three grains in butterfly test. Under TC, this scenario is applied

to interpret the obtained results as follows: an important part of these microcracks at

the free surface cannot propagate toward their neighbors which have unfavorable

orientations where they block consequently themselves at the grain boundaries of

the neighbors, except a few ones having a favorably orientation pushing the

microcrack propagation easier inside the specimen via neighboring gains. However,

under the highest loading complexity as in Fly, microcracks are localized beginning

from the free surface toward the interior of the polycrystal initiating therefore a

macrocrack (Fig. 10).

To thoroughly understand the local polycrystal behavior described by the model,

evolutions of certain local variables are studied. These variables have a key role on

the LCF polycrystal behavior. Under different cyclic loading paths, some grains
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and slip systems are previously selected. In fact, Figs. 11 and 12 show some typical

examples of local behavior under TC and Fly. In TC, the focus is made on the

behavior of the reasonably damaged grain No. 218 (among the 13 damaged grains

in TC) with the slip system No. 5, while the system No. 6 of the grain No. 17 is

selected in Fly. The intragranular isotropic hardening (Rs) evolution is recorded up

to the final grain damaging under TC and Fly (Fig. 11). It is observed that Rs

increases relatively slowly during the hardening phase in TC (Fig. 11a). As soon as

ds becomes important, a significant decrease of Rs takes place during the last cycles.

However, another scenario is recorded in the case of Fly (Fig. 11b). In fact, Rs

evolves rapidly to attain its steady state. In this stage, no damage evolution is

observed. Then, the damage initiates and evolves abruptly, as illustrated by the

figure, provoking a sudden fall of Rs. This is due to the loading complexity which

induces consequently a considerable reduction in fatigue life of the polycrystal.

By comparing the isotropic hardening Rs evolutions in TC and Fly, the highest

value is obtained in Fly with almost a value of 110 MPa, whereas it is about 52 MPa

in TC. This result is completely foreseeable since the butterfly loading is much

more complex than TC.

Predicted evolution of slips within the same grains (i.e., No. 17 and 218) under

the same loading paths is considered as typical examples (Fig. 12). In TC, four well

activated slip systems are recorded: 1, 3, 5, 7, and 8 (Fig. 12a). Before damaging, it

is found that the slip varies in a quasi-linear manner during loading. The accumu-

lated slip (λs) is particularly localized on the system no. 5 confirming the strain

heterogeneity described by the model. A high increase in the accumulated slip on

the system no. 5 (and slower for the system no. 8) induces a significant acceleration

of the corresponding damage rate up to the final rupture (Fig. 11a). However, when

the latter is completely damaged, the slip within the system no. 7 shows certain

acceleration in its rate but without obtaining a totally damaged situation. This can

be interpreted by the fact that the energy generated by the external applied loading
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surface

Blocked
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Principal
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Fig. 10 Scenario showing the microcracks distribution and their influence by the loading path

complexity in tension-compression and butterfly showing several microcracks blocked by the

grain boundary in TC (From Mounounga et al. (2011), with permission from Elsevier)
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is transmitted to another activated slip system at the same grain, provoking there-

fore this acceleration. When the damage reaches an important value, the slip rate

undergoes a continuous deceleration up to zero at the instant ds ¼ dcr
s .

In Fly, a large number of activated slip systems are observed with important values

for the systems 6, 7, 9, and 10 at the grain No. 17. The most activated slip system, in

this case, is the system No. 6. The influence of the new criterion on the slip activation

is highlighted via Figs. 11 and 12. Hence, various critical slip values are pointed out

(corresponding to intragranular damage initiation) for different applied loading paths.

Hence, this damage initiation criterion (▶Chap. 11, “Ductile Damage Behavior in

Low-Cycle Fatigue for Polycrystalline Metallic Materials,” Eq. 33) delays the dam-

age in TC (with an almost threshold accumulated slip value of 23), whereas this

0

10

20

30

40

50

60

0 5 10 15 20 25 30

λs 

R
s

0

0.25

0.5

0.75

1

ds

Grain No. 218  - System No. 5

TC

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5

λs

R
s

0

0.25

0.5

0.75

1

ds

Grain No. 17  - System No. 6

Fly

a

b

Fig. 11 Predicted evolution of the intragranular isotropic hardening and local damage up to its

final value (ds � 1) versus accumulated slip in (a) TC for the slip system No. 5 for the grain

No. 218 and (b) Fly for the slip system No. 6 for the grain No. 17 (From Mounounga et al. (2011),

with permission from Elsevier)

500 A. Abdul-Latif

http://dx.doi.org/10.1007/978-1-4614-5589-9_5#Equ34
http://dx.doi.org/10.1007/978-1-4614-5589-9_5#Equ34


threshold slip value γths is approximately 2.1 in Fly (Fig. 11). The effect of the key

parameters used in this new criterion (particularly α and γo) shows that only one

system per grain can activate damage whatever the type of used loading is.

Influence of the Loading Amplitude

In general, the damaged behavior of the metallic polycrystalline materials in LCF

has a remarkable sensitivity to the imposed loading amplitude under either strain-

or stress-controlled situations. In order to investigate its effect on the fatigue life,

Fig. 12 Predicted evolution of the slip versus number of cycles in (a) TC for the grain

No. 218 and (b) Fly for grain No. 17 (From Mounounga et al. (2011), with permission from

Elsevier)
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the grain aggregate behavior is simulated under tension-compression using six

different strain amplitudes varying from 0.6 % to 2.4 %.

A careful examination of the data in Fig. 13a reveals a clear decrease in fatigue

life with the increase of the imposed strain amplitude. Since this theoretical study is

focused on LCF behavior of a polycrystal, it can easily consider the Manson-Coffin

relation in which the cyclic damage is a function of the stabilized plastic strain

amplitude ΔEp defined by

Nf ¼ ΔEp

C

� �m

(48)

where C and m are material parameters.
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Figure 13b displays the variations of overall axial plastic strain during the

stabilized phase versus the number of cycles up to final polycrystal damage (Log

Ep-Log Nf). A linearization of the predicted results presents a slope of m ¼ �0.68.

This prediction appears acceptable compared to the usual slope of Manson-Coffin

of�0.5. Thus, it can be concluded that the model parameters describe quite well the

Manson-Coffin relation. Note that with correctly identified model parameters, a

slope of �0.52 is obtained as it will be demonstrated later.

Damage Deactivation Effect

Microcracks open and close especially at the end of the first fatigue stage of

polycrystals. The damage activation/deactivation phenomenon translates the influ-

ence of these two phases on the overall material behavior during cyclic loading.

This model faithfully describes this phenomenon through (Eq. 23, ▶Chap. 11,

“Ductile Damage Behavior in Low-Cycle Fatigue for Polycrystalline Metallic

Materials”), particularly in the case of the complex loading, based on the projection

operator technique. Numerical simulations are carried out describing this phenom-

enon under strain- and stress-controlled conditions.

Damage Deactivation Effect Under Strain-Controlled Condition

Contrary to TC and TT00, the complex cyclic loading path, such as TT60, repre-

sents a case in which the eigenvectors do not coincide with the laboratory reference

axes. Thus, the eigenvectors vary with respect to time; thus, the three terms of

equation (25, ▶Chap. 11, “Ductile Damage Behavior in Low-Cycle Fatigue for

Polycrystalline Metallic Materials”) should be entirely taken into account due to the

existence of the shear component. Numerically, the strain amplitudes of

ΔΕ11 ¼ 1.52 % (axial strain) and ΔΕ12 ¼ 1.32 % (shear strain) are used. An

examination of Fig. 14 shows some selected cycles in the overall stress space

(Σ11–Σ12) corresponding to the first three cycles, the stabilized one, and the last

cycles of fatigue life. The anisotropy induced by damage is clearly described by the

nonsymmetrical evolution of the overall stresses in tension, compression, and

torsion phases notably during the softening (damaging) stage. In fact, an important

overall nonsymmetrical response is illustrated through the evolution of the two

stress fields. This depends exclusively on the damage activation/deactivation and

the active/passive passage criterion. Therefore, the operator Pþ (▶Chap. 11,

“Ductile Damage Behavior in Low-Cycle Fatigue for Polycrystalline Metallic

Materials,” Eq. 13) verifies it naturally, i.e., it is capable to select the damage

activation and deactivation phases even for a complex cyclic loading path such as

TT60. In fact, the overall response, in the stress space Σ11–Σ12, is affected in the

first quadrant in which Σ11 and Σ12 are positive (Fig. 14) especially for a significant
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damage value, whereas the sound material behavior is partially retrieved in the third

quadrant, since the components 11 and 12 are negative. The particular trend of the

overall response in the second and fourth quadrants can be explained by the

combination effect of the two overall stress components Σ11 and Σ12. They have

opposed signs because of the applied loading nature. The damage is thus active in a

direction and passive in the other.

The most complex cyclic loading path of butterfly gives another evolution

related to damage deactivation which has an explicit relation with the eigenvectors

and its coincidence with the laboratory reference axes (Fig. 15). As in TT60, the

same strain amplitudes (ΔΕ11 andΔΕ12) are also employed. The anisotropy induced

by damage is also described by the nonsymmetrical overall stress evolution notably

during the last cycles (i.e., softening stage). In fact, an important overall distortion

of the response is entirely due to the activation and deactivation of the damage

controlled by the operator Pþ verifying naturally the two damage phases.

To further demonstrate the anisotropy induced by damage, the evolution of some

components of the damage and rigidity tensors is recorded under TT90. Several

important features of the induced-oriented anisotropy behavior under TT90 are

shown in Fig. 16. In fact, the evolutions of two chosen damage tensor components

(D1111 and D1212) are studied; one can observe that they do not have the same rate of

change. Indeed, D1111 evolves up to a value close to 1, while D1212 reaches almost a

value of 0.25. This anisotropy is clearly confirmed by the rigidities and damage

variations for the two given orientations.

Let us examine now the evolution of the two chosen components (R1111 and

R1212) of the stiffness tensor coupled with damage during fatigue life. It is first

noticed that the damage effect in 11 direction is stronger (a11+) than that of
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12 direction (b12+). Note that the points a..+, b..+, c.. + correspond to the damage

deactivation phases. The activation damage stages are noted by the points a..�,

b..�, c..�. For an adequate damage value, the damage activation and deactivation

phases are clearly emphasized. For the damaged material at the stage c, an attention

is made related to the points c12+ and c11�. These two points correspond both to the
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Fig. 15 Evolution of the overall axial stress Σ11 versus overall shear stress Σ12 in Fly (From

Mounounga et al. (2011), with permission from Elsevier)
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same instant. Note that the damage is passive in 12 direction (c12+), whereas it is

active in 11 (c11�). The total rigidity drop phenomenon, in TT90, is almost

captured in 11 direction, whereas it is partial in 12 direction.

Damage Deactivation Effect Under Stress-Controlled Condition

As shown above, the metallic polycrystal behavior in LCF is mainly influenced by

the imposed strain amplitude. However, this paragraph deals with the cyclic

behavior of polycrystals in a stress-controlled condition with symmetrical and

notably nonsymmetrical cases. Numerically, a tension-compression loading is

tested under stress-controlled condition having an amplitude of ΔΣ11 ¼ 1,760

MPa. Three different mean stresses of Σ11 ¼ 0, 50 and 100 MPa are used. Hence,

the effect of mean stress on the uniaxial ratcheting phenomenon coupled with

damage is investigated.

The increasing of damage affects significantly the material rigidity as illustrated

in Fig. 17. This figure also emphasizes the effect of mean stress on the number of

cycles up to damage initiation. Actually, in the nonsymmetrical case of Σ11 ¼ 50

MPa, the damage initiates earlier than that in the symmetrical case: one has

230 cycles for Σ11 ¼ 50 MPa and 250 cycles whenΣ11 ¼ 0 MPa. Also, the damage

rate in the case ofΣ11 ¼ 50 MPa is more important than that ofΣ11 ¼ 0 MPa. When

the damage becomes important, the phenomenon of damage activation/deactivation

becomes evident as illustrated in Figs. 18 and 20. These results given in Figs. 17,

18, 19, and 20 show the capacity of the model to describe the mean stress effect on

the cyclic plasticity and the corresponding damage evolutions with the possibilities

to reproduce the ratcheting phenomenon coupled with damage.
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Quantitative Study

A quantitative study is carried out to compare the model predictions with those

experimental data given in Abdul-Latif et al. (1999) for Waspaloy under TC and

TT90. The model coefficients already identified are employed. Besides, the model

coefficients of the new intragranular damage initiation criterion (α and γos) are

identified based on these available experimental data as well as on the approach
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given above (▶Chap. 11, “Ductile Damage Behavior in Low-Cycle Fatigue for

Polycrystalline Metallic Materials,” Eqs. 34 and 35). In order to conduct this

process, the employed databases are tension-compression (ΔE11
p ¼ 1 %,

Nf ¼ 1,442 cycles) and out-of-phase tension-torsion (ΔE11
p ¼ 0.8 % and ΔE11

p

¼ 0.52 %, Nf ¼ 136 cycles) with a sinusoidal waveform and a phase lag of 90�

between the two sinusoidal signals. In each case, the maximum von-Mises equiv-

alent plastic strain was maintained constant at 0.5 % during the test expressed as

follows:

For uniaxial tension-compression test:

Ep
eq�max ¼

E
p
11max � E

p
11min

2
¼ 0:5 %

For biaxial tension-torsion test:

Ep
eq�max ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
p2

11 þ
γp2

3

r !
¼ 0:5 %

with γp ¼ 2E12
p

Note that the used experimental data have been conducted using a thin-walled

tube. It is well known that the optimized material coefficients are specified as a best

fit between the predicted and experimental results. The identified model coefficients

are the same as in (Table 2) except for α and γos values which are respectively 5 and
400. For the fatigue life, the micromechanical model can suitably describe the

fatigue lives under these cyclic loading conditions (Nf (theo) ¼ 1,497 cycles and

Nf (theo) ¼ 148 in TT90). These results are not surprising since the identification

procedure is conducted using the same experimental data.
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To validate the calibrated coefficients, several numerical simulations are thus

realized showing the model capacity in describing the Waspaloy cyclic behavior.

Actually, three TC numerical tests are conducted under plastic strain-controlled

situation of different amplitudes: ΔE11
p ¼ 1 %, 1.5 %, and 2.2 % simulating

the LCF behavior of Waspaloy using solid circular section specimens. Table 4

shows various experimental and predicted fatigue lives obtained under TC and

TT90 for two categories of specimens, tubes with solid section (ST) and thin-walled

one (HT).

The TC experimental fatigue lives are 2,328, 790, and 419 cycles for ΔE11
p ¼ 1

%, 1.5 %, and 2.2 %, respectively. The predicted fatigue lives are 1,479, 803, and

356 cycles, respectively (Table 4). In fact, the identification procedure is performed

employing an experimental data of TC and TT90 conducted on a thin-walled tube.

Since the employed model cannot take into account the geometrical aspect, there-

fore, these theoretical predictions are not surprising. As a matter of fact, for a

relatively large imposed strain, the numerical and experimental responses are rather

close. This phenomenon could be interpreted by the fact that with strain amplitude

increasing, the specimen geometry effect (free surface phenomenon) becomes less

important compared to the lower strain amplitude, for example, ΔE11
p ¼ 1 %, the

fatigue lives are 1,442 cycles for a thin-walled tube and 2,328 cycles for a solid one.

An examination of the results given in Fig. 21 confirms that the model can

suitably predict the Manson-Coffin relation with a theoretical slope of msim ¼
�0.52 which is almost close to that recorded experimentally mexp ¼ �0.45. This

difference can be explained by the important difference between the fatigue lives

obtained in TC in the case of ΔE11
p ¼ 1 % for a specimen having solid section. It is

recognized that the sensitivity of this phenomenon decreases considerably once the

loading amplitude increases.

Conclusion

Using concept of anisotropy induced by damage, the impact of the new

intragranular damage initiation criterion on the fatigue life is obviously demon-

strated at the overall and local levels. Hence, a parametric study is conducted

Table 4 Experimental and predicted fatigue lives for Waspaloy under TC and TT90 loading

paths

Type of loading path

Experimental fatigue life

(Nf), cycles

Theoretical fatigue life

(Nf), cycles

TC (ΔE11 ¼ 1 % – HT) 1,442 1,479

TC (ΔE11 ¼ 1 % – ST) 2,328 1,479

TC (ΔE11 ¼ 1.5 % – ST) 790 803

TC (ΔE11 ¼ 2.2 % – ST) 419 356

TT90 (HT) 136 148

HT, thin-walled tube; ST, solid circular section specimen

16 Numerical Applications in Damage Induced Anisotropy in Low-Cycle Fatigue. . . 509



showing the influence of the two new model parameters (α and γos) on the LCF

behavior. As a conclusion, that the fatigue life decreases when α increases and γos

decreases. Moreover, the effect of the magnitude and complexity of loading path on

the cyclic hardening and on the fatigue life evolutions is numerically studied.

Therefore, different complex cyclic loading situations are used under strain-

controlled condition showing the ability of the model to describe this induced

anisotropy. Indeed, the nonsymmetrical evolution of the overall stresses in tension,

compression, and torsion phases especially during the softening stage is correctly

described. This depends exclusively on the activation and deactivation of the

damage and the active/passive passage criterion governed by the positive spectral

projection tensor Pþ notably for complex cyclic loadings.

Under stress-controlled condition, the obtained results illustrate that the pro-

posed model is able to describe the ratcheting phenomenon coupled to damage.

Finally, a quantitative analysis is conducted to compare the results from numer-

ical simulations of the model to the experimental data recorded for Waspaloy.
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Z.P. Bažant (*)

Department of Civil and Environmental Engineering, Northwestern University, Evanston

IL, USA

e-mail: z-bazant@northwestern.edu

M.H. Hubler

Department of Civil, Environmental, and Architectural Engineering, University of Colorado,

Boulder, CO, USA

e-mail: hubler@mit.edu

Q. Yu

Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of

Engineering, Pittsburgh, PA, USA

e-mail: qiy15@pitt.edu

# Springer Science+Business Media New York 2015

G. Z. Voyiadjis (ed.), Handbook of Damage Mechanics,
DOI 10.1007/978-1-4614-5589-9_49

515

mailto:z-bazant@northwestern.edu
mailto:hubler@mit.edu
mailto:qiy15@pitt.edu


Prestress Relaxation at Variable Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

Comparison with Existing Commercial Software for Creep Effects in Bridges . . . . . . . . . . 552

Development of the B4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Expanded Database of Laboratory Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Optimization Using Joint Laboratory and Structural Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

Bayesian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Uncertainty Quantification in Creep and Shrinkage Prediction and Calculation

of Confidence Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

Abstract

The theory of concrete creep and shrinkage has not been regarded as part of what

has been understood as damage mechanics. However, these inelastic phenomena

do result in significant damages to structures, including not only distributed

cracking, which is damage in classical sense, but also damage in the form of

excessive deflection which puts the structure out of service. It is for this reason

that a chapter on creep and shrinkage is included in this handbook. The theory of

creep and shrinkage of concrete has become a vast field. In what follows, only a

rather brief exposition of this subject will be included. The emphasis will be on

the topics of wide recent interest, triggered by the revelation of practical

problems that have been synthesized into a coherent picture only during the

last few years. The creep effects are particularly important for super-tall build-

ings and prestressed concrete structures, because of their slenderness and high

flexibility, and are paramount for nuclear reactor containments and vessels. At

high-temperature exposure, as in fire in tunnels or tall buildings or in postulated

nuclear reactor accidents, creep is very large and plays a major role.

Introduction

Creep and shrinkage can cause diverse types of damage in concrete structure,

whether prestressed or simply reinforced or unreinforced. Long-term creep may

lead to excessive deflections of bridges and other structures which can severely

curtail the life span. This is a widespread problem of a magnitude not appreciated

until recently, and this chapter will be focused on it.

Nonuniformity of the creep properties and of restrained shrinkage is another

phenomenon which leads to redistributions of stresses and bending moments, which

in turn may cause deleterious cracking in bridges, buildings, nuclear reactor

containments, and other structures. It may promote other processes endangering

durability and sustainability, such as corrosion. Creep nonuniformity is caused by

differences in the histories of pore humidity and temperature at various points or

cross sections of a structure, by differences in age and in concrete type, and by

interaction of concrete with steel parts which do not creep. Aside from prestressing

steel relaxation, concrete creep is one major cause of the longtime loss of prestress.
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Rare though not unheard of, creep in slender structures such as columns, shells,

or compressed plates may cause collapse due to longtime creep buckling. Transfer

of compressive stresses from creeping and shrinking concrete to steel bars, cables,

girders, or other non-creeping parts (e.g., stone cladding or masonry liner) may

induce their buckling or compression failure.

Except for leak-tightness endangerment by cracking induced by shrinkage and

creep in nuclear containment, creep and shrinkage do not have any significant effect

on safety under overload of structures. The main effect of creep and shrinkage is to

compromise serviceability and durability of structures and thus sustainability of

concrete infrastructure.

Material Models for Creep and Shrinkage of Concrete Structures

To introduce the subject, a brief description of concrete creep and shrinkage

behavior is first presented by updating the 2001 exposition in Encyclopedia of

Materials on the topic (Bažant 2001). The term creep represents a continued

deformation of a material under sustained load. Since concrete also exhibits shrink-

age due to the diffusion process of drying or to chemical processes due to hydration,

causing a decrease of volume at no external load, the creep, together with the

instantaneous (or initial elastic) strain, is defined as the strain difference between

identical loaded and load-free specimens. The drying shrinkage strain typically

reaches 0.0002–0.0004 and in poor concretes even 0.0008. The shrinkage due to

chemical processes is called the autogenous shrinkage, which is negligible for

normal concretes with higher water/cement ratios and negligible self-desiccation

but large for modern high-strength concretes with very low water/cement ratios

(<0.35) and pronounced self-desiccation. After many years, the creep strain typi-

cally attains values 2–6 times larger than the initial elastic strain. After unloading,

one observes a partial creep recovery. The creep of concrete was discovered by Hatt

(1907) at Purdue University, while the shrinkage was discovered much earlier by Le

Chatelier at Ecole des Mines in Paris (1905).

The creep during drying normally greatly exceeds the sum of the shrinkage and

creep of a sealed specimen. The excess strain, called the drying creep or the Pickett

effect, represents a hygro-mechanical coupling between strain and water content

changes. Imbibition of water causes swelling which is normally much less than the

drying shrinkage or, if concrete has dried, a hysteretic partial reversal of shrinkage.

The drying shrinkage (Fig. 1 bottom) is caused by compressive stresses in the

microstructure which balance changes in the capillary tension and surface tension

on pore walls as well as changes in the disjoining pressure in hindered adsorbed

water layers in nanopores.

Creep is caused by slips due to bond ruptures (with bond restorations at adjacent

sites) in the atomic nanostructure of the hardened Portland cement paste. The paste

is strongly hydrophilic, having a disordered colloidal microstructure, a porosity of

about 0.4–0.55, and an enormous internal surface area – about 500 m2/cm3. The

main component of the paste, in which the creep mechanism resides, is the
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tricalcium silicate hydrate gel (3 CaO · 2 SiO3 · H20, in short C–S–H). This solid

forms crystalline sheets and needles of colloidal dimensions, weakly bound by van

der Waals forces. The physical mechanism and modeling are still being debated.

The model in Eqs. 1, 2, 3, 4, and 5 which follow is not the only one available but has

the deepest theoretical support and fits the test data best.

Constitutive Law: In the absence of cracking and at service stresses in struc-

tures (which are generally less than 40 % or 45 % of concrete strength), the creep

strain depends on the stress linearly. It may be fully characterized by the compli-

ance function J(t, t0) (Fig. 1 top), defined as the strain ϵ at time (or age) t caused by a
unit uniaxial stress σ¼ 1 applied at age t0. As t0 increases, the creep diminishes. This

phenomenon, called aging, causes that J depends not only on the time lag t-t0 but
also on t0. At variable stress σ(t), each stress increment dσ(t0) applied at time t0
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Fig. 1 Typical creep compliance and shrinkage strain curves given by the B3 model (With kind

permission from Springer Science+Business Media: Materials and Structures, Creep and shrink-

age prediction model for analysis and design of concrete structure – model B3, 28, 1995, 1–83,

Bažant, Z.P. and Baweja, S., 1.1)
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produces strain history dϵ(t) ¼ J(t, t0)dσ(t0). By superposition principle (introduced

by Boltzmann and, with aging, by Volterra), one gets the linear (uniaxial) creep law

of aging viscoelasticity:

ϵ tð Þ ¼
Zt
t1

J t, t0ð Þdσ t0ð Þ þ ϵ0 tð Þ (1)

where ϵ0 denotes the sum of shrinkage strain ϵsh and thermal expansion (and

smeared cracking strain, if any). The integral is the Stieltjes integral, which admits

histories σ(t) with jumps; for time intervals with no jump, one may set dσ(t0) ¼
[dσ(t0)/dt0]/dt0. When history ϵ(t) is prescribed, then Eq. 1 represents a Volterra integral
equation for σ(t) which, for realistic forms of J(t, t0), is not integrable analytically,

although numerical integration is easy. The solution σ(t) for strain ϵ ¼ 1 imposed at

age t0 (and for ϵ0 ¼ 0) is called the relaxation function. Generalizing Eq. 1 according

to the principle of superposition and taking isotropy into account yields a triaxial

stress–strain relation, in which the shear and bulk compliance functions are JG(t, t
0)¼

2(1 + υ)J(t, t0) and JK(t, t0)¼ 3(1� 2υ)J(t, t0) (ν� 0.18¼ Poisson ratio, considered as

approximately constant). At high stress, the creep law appears to be nonlinear (Fig. 2).

Equation 1 remains valid if the strain due to time-dependent growth of distributed

microcracks is eluded in ϵ0(t).
The value J(t0, t0)¼ q1 corresponding to extrapolation of creep curves to zero load

duration may be considered as age independent. The conventional Young’s elastic

modulus, implied as E(t0) ¼ 1/J(t0 + δ, t0) where usually δ � (0.0001 s, 10 min.),

increases with age t0. A realistic form of J(t0, t0) (Bazant et al. 1997; bold curves in

Fig. 1 top) may conveniently be expressed by its rate:

_J t0, t0ð Þ ¼ υ�1 tð Þ _Cg θð Þ þ 1=ηf (2)

υ�1 tð Þ ¼ q2 λ0=tð Þm þ q3 (3)

Fig. 2 Typical isochrones of

concrete creep at various ages

of loading
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_Cg θð Þ ¼ nθn�1

λn0 þ θn
, θ ¼ t� t0 (4)

Here _o ¼ @o=@t; θ ¼ load duration; λ0 ¼ 1 day, m ¼ 0.5, n ¼ 0.1; q2, q3 ¼
dimensionless constants; Cg(θ) ¼ (age-independent) compliance function for

delayed elasticity of the cement gel (hardened cement paste without its pores);

υ(t)¼ volume of gel per unit volume of concrete, growing in time due to hydration;

and ηf ¼ effective viscosity for the flow of concrete. By integration, Cg(θ) ¼ ln[1 +

(θ/λ0)
n]. As for J(t, t0), it can be obtained only by numerical integration (however,

for computer structural analysis in short time steps, the rate _J t0, t0ð Þ suffices and in

fact allows a simpler algorithm). For creep of sealed specimens, called the basic

creep,

1=ηf ¼ q4=t (5)

where q4¼ dimensionless constant. Then the flow part of J(t, t0) is simply q4 ln(t/t
0).

Equations 3, 4, and 5 are the simplest formulas satisfying the asymptotic conditions

that _J for both short and long times θ the aging rate (given by dυ� 1(t)/dt), must be

power functions (due to self-similarity conditions, ensuing from the absence of any

characteristic time).

Variable Environment: At variable w (mass of water per unit volume of

concrete), a physically realistic constitutive relation may be based on the idea of

microprestress S, considered to be a dimensionless measure of the stress peaks at

the creep sites in the nanostructure. The microprestress is produced by chemical

volume changes and by changes in the disjoining pressures in the hindered adsorbed

water layers (which can be up to ten water molecules, or 2.7 nm, in thickness)

confined between sheets of calcium silicate hydrates. The disjoining pressures must

vary with the relative humidity h in the capillary pores, as well as with temperature

T, so as to maintain thermodynamic equilibrium (equality of chemical potentials).

The rate of bond breakages may be assumed to be a quadratic function of the level

of microprestress, which leads to the expression

1=ηf ¼ q4S (6)

The microprestress is not appreciably affected by the applied load. It relaxes in

time and its evolution at each point of a concrete structure may be solved from the

differential equation:

_Sþ c0S
2 ¼ c1 _Tlnhþ T _h=h

�� �� (7)

where c0, c1 ¼ positive constants (the absolute value ensures that it should never be

negative and reflects the fact that not only drying and cooling but also wetting and

heating accelerate creep, the latter activating different creep sites than the former).

The fact that changes of w or h produce new microprestress peaks and thus activate

new creep sites explains the drying creep effect (or Pickett effect). A part of this
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effect, however, is caused by the fact that microcracking in a companion load-free

specimen causes its overall shrinkage to be less than the shrinkage in an uncracked

(compressed) specimen, thus increasing the difference between the two (which is

what defines creep).

The concept of microprestress is also needed to explain the stiffening due to

aging. One physical cause of aging is that the hydration products gradually fill the

pores of hardened cement paste, as reflected in function v(t) in Eq. 3. But hydration
ceases after about 1 year, yet the effect of age at loading t0 is strong even after many

years, even decades. The explanation is that the peak microstress relaxes with age,

which reduces the number of creep sites and thus the rate of bond breakages.

At variable environment, time t in Eq. 3 must be replaced by equivalent

hydration time te ¼
Ð
βhβTdt where βh ¼ decreasing function of h (0 if h < about

0.85) and βh / e�QhT=R, Qh/R � 2, 700 K. In Eq. 4, θ ¼ t � t0 must be replaced by

tr� tr
0 where tr¼

Ð
ψhψTdt¼ reduced time, capturing the effect of h and T on creep

viscosity; ψh ¼ function of h decreasing from 1 at h ¼ 1 to about 0.1 at h ¼ 0; and

ψT / e�QhT=R, Qh/R � 5,000 K. The evolution of distributions h(x, t) (x ¼ coordi-

nate vector) may be considered uncoupled from the stress and deformation

problem and may be solved numerically from the diffusion equation
_h ¼ div C hð Þgrad h½ � þ _hs teð Þ where hs(te) ¼ self-desiccation caused by hydration

(which is mild in normal concretes but strong in high-strength concretes) and C(h)
¼ diffusivity, which decreases about 20 times as h drops from 100 % to 60 %. The

field of free (unrestrained) shrinkage strain rates

_ϵsh ¼ ksh _h (8)

where ksh ¼ shrinkage coefficient. Since _ϵsh at various points are incompatible, the

calculation of the overall shrinkage of structures as well as test specimens is a stress

analysis problem, in which creep and cracking must be taken into account.

For finite element structural analysis in time steps, it is advantageous to convert

the constitutive law to a rate-type form. This may be achieved by approximating

Cg(θ) with a Kelvin chain model (or the associated relaxation function with a

Maxwell chain model). The history integrals such as Eq. 1 then disappear from

the constitutive law, the history being characterized by the current values of the

internal state variables, representing the partial strains or stresses of the Maxwell or

Kelvin chain.

Conversion to a rate-type form is also convenient for introducing the effect of

variable temperature, which affects the Kelvin chain viscosities (according to the

Arrhenius law) and also the rate of hydration, as captured by te. For a three-dimensional

tensorial generalization of Eqs. 2, 3, 4, 5, 6, 7, and 8, see Bazant et al. (1997).

Approximate Cross-Sectional Response at Drying: Although multidimensional

finite element calculations of creep and moisture diffusion are nowadays feasible,

simplified one-dimensional analysis of concrete beams or girders still reigns in

practice. In that approach, one needs to input the average cross-sectional compliance

function J t, t0, t0ð Þ (Fig. 1 top, light lines) and average shrinkage function ϵsh t, t0ð Þ of
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the cross section (Fig. 1 bottom) (t0 ¼ age at start of drying). The algebraic expres-

sions for such average characteristics are considerably more complicated and inac-

curate than the constitutive law for a material point because of ignoring the

differences due to cross-sectional geometry, reinforcement, and loading (compressive

or tensile axial force, bending moment, shear, torque, etc.).

The following approximations (Bažant and Baweja 2000), partly based (under

strong simplifications) on the foregoing constitutive relations, have been derived

and their coefficients optimized by fitting a large test data bank; for environmental

humidity he below 98 %,

ϵsh t, t0ð Þ ¼ �ϵsh1khS tð Þ, kh ¼ 1� h3e (9)

S tð Þ ¼ tanh

ffiffiffiffiffiffiffiffiffiffiffi
t� t0
τsh

r
, τsh ¼ kt ksDð Þ2 (10)

where D ¼ 2 V/S ¼ effective thickness, V/S ¼ volume-to-surface ratio, kt ¼ 1 for

normal (type I) cement, ks ¼ shape factor (e.g., 1.0 for a slab, 1.15 for a cylinder),

ϵsh 1 � ϵs 1E(607)/(E(t0 + τsh), ϵs 1 ¼ constant, and E tð Þ � E 28ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 0:85t
p ¼

age dependence of Young’s modulus (all times are in days). Equations 2, 3, and 4

apply except that 1/ηf must be replaced by

1

ηf
¼ q4

t
þ q5

@

@t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F tð Þ � F t00

� �q
(11)

where F(t) ¼ exp{�8[1 � (1 � he)S(t)]} and t0
0 ¼ max(t0, t0). The form of the

expression for shrinkage halftime τsh is based on the diffusion theory. The hyper-

bolic tangent function in Eq. 9 is the simplest function satisfying two asymptotic

conditions ensuing from the diffusion theory: (1) for short times ϵsh / ffiffiffiffiffiffiffiffiffiffiffi
t� t0
p

, and

(2) the final shrinkage must be approached exponentially. Generalizations for the

temperature effect have also been made.

In preliminary design of structures, simplified calculations feasible by hand use

the creep coefficient:

φ t, t0ð Þ ¼ E t0ð ÞJ t, t0ð Þ � 1 ¼ ϵcreep
ϵinitial

(12)

The change of structure deformation from time t1 of initial loading to time t can
be estimated by elastic analysis in which Young’s modulus E is replaced by the

so-called age-adjusted effective modulus E00(t, t1) ¼ [E(t1) � R(t, t1)]/φ(t, t1).

Practical Creep and Shrinkage Prediction Model

Analysis and design of structures necessitates a realistic model for predicting the

compliance function and shrinkage function of a given concrete. Such a prediction

calls for analysis of extensive data from long-term tests conducted on different

522 Z.P. Bažant et al.



concretes and in different environments, generally introducing statistical scatter. A

number of prediction models exist which will be briefly introduced here.

Since concrete creep and shrinkage formulations require a prediction of

environmental effects, it is natural to begin by considering models for concrete

drying. The effects of drying can be taken into account at two different levels of

accuracy: the sectional approach only takes into account the mean effects of drying

averaged over the cross section of the beam or slab, and the material approach takes

into account the time evolution of the distribution of pore humidity point-wise

throughout the structure (Jirásek and Bažant 2002). While the material approach

allows the researcher to capture the effect of the drying mechanisms on the

constitutive behavior of the material, it is too detailed for engineering calculations.

For multi-decade predictions of the degradation of structures, a cross-sectional

model that incorporates the influence of cross-sectional size and shape on the kinetics

of drying in an approximate manner, through semiempirical coefficients, is typically

employed.

The prediction models with the deepest theoretical basis are the B3 (Bažant

and Baweja 1995, 2000) and the B4 (Bažant et al. 2014) models. They are based

on the same theoretical foundation, but the B4 model was developed recently

to extend the formulation for modern concretes with autogenous shrinkage

and for more accurate multi-decade estimates (see section “Rate-Type Creep” for

details). The sectional approach generally defines the compliance function of

concrete in the form

J t, t0ð Þ ¼ q1 þ C0 t, t0ð Þ þ Cd t, t0, toð Þ (13)

where q1¼ 1/E0 is the inverse of the asymptotic elastic modulus, C0(t,t
0) is the basic

creep compliance, and Cd(t,t
0,t0) is the drying creep compliance, which is

influenced by the time the specimen begins to dry, t0. The average longitudinal

drying shrinkage of a cross section for a long beam or plate may be approximately

calculated as

esh tð Þ ¼ �esh1khS t� t0ð Þ (14)

where esh1 is the magnitude of the final shrinkage strain, kh is a coefficient

depending on the average environmental humidity h (relative vapor pressure),

and S t̂ð Þ is an increasing function of the duration of drying. This function describes

the evolution of normalized shrinkage strain in a perfectly dry environment. A

suitable formula is

S t̂ð Þ ¼ tanh

ffiffiffiffiffiffi
t

τsh

r
(15)

where τsh is called the shrinkage halftime, because it roughly describes the time at

which esh reaches one-half of its final value. The shrinkage halftime can be

estimated as
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τsh ¼ kt ksDð Þ2 (16)

in which ks is a cross-sectional shape factor based on solutions of the nonlinear

diffusion equation for drying of concrete (Bažant and Najjar 1972) andD¼ 2 V/S¼
effective cross-sectional thickness. Factor kt is approximately the normalized dif-

fusivity of pore water in saturated concrete. The fact that τsh is proportional to the

square of the thickness is a basic property of diffusion processes in general. Another

consequence of the diffusion origin of drying shrinkage is that the initial shrinkage

curve must evolve as a square root function of time. The final shrinkage value can

be estimated empirically in terms of intrinsic and extrinsic parameters of each

particular concrete.

According to the B3 model, the basic creep compliance is most conveniently

expressed by its time rate

@C0 t, t0ð Þ
@t

¼ n q2t
�m þ q3ð Þ

t� t0ð Þ þ t� t0ð Þ1�n þ
q4
t

(17)

in which t and t0 must be in days andm and n are empirical parameters whose values

can be taken the same for all normal concretes; q2, q3, and q4 represent empirical

relations for constitutive parameters. The total creep compliance is obtained by

integrating this rate equation with the initial condition that the compliance after

zero duration is zero. Since this integration leads to a binomial integral, the result

must be expressed approximately as

C0 ¼ q2Q t, t0ð Þ þ q3ln 1þ t� t0ð Þn� �þ q4ln
t

t0
� 	

(18)

where Q(t,t0) is a function that can be obtained by numerical integration or by

interpolation from a table computed in Bažant and Baweja (1995, 2000). The terms

in this form represent the aging viscoelastic compliance, nonaging viscoelastic

compliance, and flow compliance, respectively, based on the solidification theory

(Bažant and Prasannan 1989; Carol and Bažant 1993; Bažant et al. 1997a, b). The

additional mean cross-sectional compliance caused by simultaneous drying,

expressing a coupling between creep and shrinkage, can be estimated from the

formula (Bažant and Baweja 1995)

Cd t, t0, t0ð Þ ¼ q5 e�g t�t0ð Þ � e�g t0�t0ð Þ
� 	

(19)

Prediction Models of Engineering Societies

A number of other concrete creep and shrinkage prediction equations are available

in practice. However, these are not typically derived from theory, but developed

empirically. They include the American Concrete Institute’s model (ACI 2008), the
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European Model Code (FIB 1999, 2010), and the GL model, developed by Gardner

in Canada (Gardner 2000; Gardner and Lockman 2001). Design codes in most

countries require a prediction model that is based on one of these more empirical

equations. Table 1 illustrates how their time functions relate to those of the B3

model that was presented above.

Limitations of Current Practical Creep and Shrinkage Models

The existing linear creep models have a number of limitations that were brought to

attention with the release of data from the 1996 collapse of the Koror–Babeldaob

prestressed concrete bridge in Palau. Bažant et al. (2012c) have demonstrated that

theoretically incorrect and out-of-date prediction equations were responsible for

underestimations of the concrete bridge’s long-term creep and shrinkage (Bažant

et al. 2012c). The standardized compliance functions traditionally approach a final

asymptotic bound which no bound actually exists, since the long-term creep is

logarithmic. Another problem is that in the ACI (ACI 2008), MC99 (FIB 1999,

2010), and other formulations, the compliance function does not separate the basic

and drying creep which have a different dependence on cross-sectional size.

Generally, creep and shrinkage data for concrete is too scattered to empirically

extract a time function as seen in Fig. 3. Additionally, the effect of the specimen

Table 1 Summary of creep and shrinkage model time functions

(a) Creep model

Creep model Time function

B4 Eqs. 6 and 7

B3 Eqs. 6 and 7

MC10 t
βþt

� 	γ

MC99 t
βþt

� 	0:3

GL00
β t0:3

14þt0:3
� 	

þ γ t
7þt

� 	0:5

þ t
γþt

� 	0:5

ACI92 1
β 1þ tφ

dþtφ
� 	

(b) Shrinkage model

Shrinkage model Time function Autogenous time function

B4 tanh
ffiffiffiffiffiffiffiffiffiffi
t=τsh

p
1þ τau

t

� �α� �rt
B3 tanh

ffiffiffiffiffiffiffiffiffiffi
t=τsh

p
–

MC10
ffiffiffiffiffiffi
t

αþt
q

1� e�α
ffi
t
p

MC99
ffiffiffiffiffiffi
t

αþt
q

1� e�α
ffi
t
p

GL00
ffiffiffiffiffiffi
t

αþt
q

–

ACI92 tα

fþtα –
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size is described by vertical scaling, while in reality the change of size causes a

horizontal shift in log-time. Only the B3 (Bažant and Baweja 1995) and GL

(Gardner 2000; Gardner and Lockman 2001) formulas (as well as the new model

B4) do not have this weakness. The new model B4 which is presented in section

“Development of the B4” overcomes a number of these limitations.

Study of Excessive Deflections of Collapsed World-Record K–B
Bridge in Palau

K–B Bridge Description and Modeling

The Koror–Babelthuap Bridge (K–B Bridge) was built to connect the islands of

Koror and Babelthuap (now Babeldaob) in the Republic of Palau, an island country

located in the West Pacific Ocean. This two-lane segmentally constructed bridge

had a main span of 241 m (791 ft.), which set a world record for prestressed

concrete box girder when it was completed in April 1977 (Yee 1979).

The main span of K–B Bridge consisted of two symmetric cantilevers, each of

which consisted of 25 cast-in-place segments, with their depths varying from 14.17

m (46.5 ft.) at the main piers to 3.66 m (12 ft.) at the midspan. The main span was

flanked by two side spans, which were partially filled with rock ballast to balance

the overturning moment at the main pier. The dimensions of cross sections of the

segments can be found in a number of technical reports and post-collapse investi-

gations (Yee 1979; Pilz 1997; McDonald et al. 2003; Bažant et al. 2012a). For the

superstructure, type I Portland cement was used. The mix design and the 28-day

mean compressive strength were reported in a recent investigation based on the

information obtained from the resident engineer at the K–B Bridge construction

Fig. 3 Creep compliance and shrinkage strain data points from tests taken within a narrow range

of composition parameters. The scatter in the data is too large to distinguish between the B3 and

ACI functional forms (Wendner et al. 2014a)
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(Bažant et al. 2012a). Although the original measurements of the 28-day Young’s

modulus are not available in literature, estimates can be made based on the core

sample tests and truck load tests by two independent investigation teams (JICA

1990; Berger/ABAM Engineers 1995; Bažant et al. 2012a).

There were 316 prestressing tendons above the main pier, densely packed in four

layers within the top slab. The jacking force of each tendon was about 0.60 MN, or

135 kips (DRC 1996). Their combined initial prestressing force was about 190 MN,

or 42606 kips (Yee 1979; Pilz 1997; McDonald et al. 2003). The same Dywidag

threaded alloy bars were used to provide vertical prestress in the webs and

horizontal transverse prestress in the top slab. In addition to prestressing tendons,

there was also normal (non-prestressed) steel reinforcement (ABAM 1993) in webs

and bottom slabs. None of the slabs had cross ties.

The segmental construction of the opposite symmetric cantilevers was almost

simultaneous (T. Y. Lin International 1996). Although the construction was closely

monitored, the camber planned to offset the anticipated long-term deflections was

not met. The creep and shrinkage during the segmental erection caused an initial

sag equal to 229 mm (9 in.) at midspan. This initial sag before installation of the

midspan hinge is not included in the reported deflection measurements, neither

considered in numerical simulations.

The initial deflections for the first 2 years were benign. However, the long-term

deflections came as a surprise. In 1990, the midspan deflection since span closing

increased to 1.22 m, or 48 in. (JICA 1990), which caused noticeable pavement

degradation and partial serviceability loss. By 1993 (ABAM 1993), the deflection

grew to 1.32 m (52 in.). In 1995, just before the removal of roadway pavement for

the planned retrofit, the midspan deflection reached 1.39 m (54.7 in.) (which

represented a deflection of 1.61 m or 63.3 in. compared to the design camber)

and was still growing (Berger/ABAM 1995).

To recover the serviceability severely impaired by the unexpectedly excessive

deflection, a retrofit was made and completed in 1996, during which remedial

prestressing lifted the midspan to the expected level. Unfortunately, 3 months

later, the whole bridge suddenly collapsed in a catastrophic manner and with

fatalities (Pilz 1997; McDonald et al. 2003).

The collapse was apparently triggered by creep buckling of a slice of previously

delaminated top slab subjected to compression by newly added prestressing ten-

dons. This buckling released a huge portion of the prestressing force and emitted a

shock wave which overloaded the corner between the pier and the bottom slab and

thus triggered a compression shear failure of the box girder (which is a type of

failure subject to size effect). In the post-collapse examination, neither the

prestressed nor the non-prestressed steel showed any signs of significant corrosion,

despite the tropical marine environment (some of the ducts, though, showed mild,

yet inconsequential, degradation by corrosion).

Despite its tragic failure, the K–B Bridge provides a real and informative

example to study the long-term deflection of the prestressed concrete box girders.

Taking advantage of symmetry, only one-half of the bridge needs to be

modeled by three-dimensional (3D) finite element (FE) analysis. The modeling
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demands a suitable program of the requisite geometric and material modeling

features to mimic the construction and service of the K–B Bridge. In the present

investigation, the software ABAQUS (SIMULIA, Providence, Rhode Island) has

been selected.

Together with the pier, the concrete members are subdivided into 5,036

hexahedral elements. The prestressing tendons and the non-prestressed steel bars

are subdivided into further 6,764 bar elements connected rigidly (with no slip) to

the nodes of the three-dimensional elements of concrete. The meshed structure is

shown in Fig. 4. Since the creep is essentially viscoelastic, not suffering from strain

localization instabilities, the sufficiency of the mesh fineness could be, and was,

validated by demonstrating a negligible difference in the elastic deflection when

compared with a finer mesh of 20,144 hexahedral elements (Bažant et al. 2012b).

As an adequate approximation under service conditions, concrete can be assumed

to follow aging linear viscoelasticity with corrections for tensile cracking, variations

of humidity and temperature, and drying creep (or Pickett effect). The concrete time-

dependent deformation is then fully characterized by one of the existing prediction

models for the shrinkage strain and the creep compliance function. The primary

prediction models used in practice around the world, namely, the ACI model (ACI

1971, 2008), the CEB (or CEB-FIP, fib) model (FIB 1999), the JSCE model (JSCE

1991), the GL model (Gardner 2000; Gardner and Lockman 2001), and the B3 model

(Bažant and Baweja 1995, 1996, 2000; Bažant and Prasannan 1988, 1989a, b; Jirásek
and Bažant 2002), have been considered in the K–B Bridge analysis.

In the creep prediction models, two types of parameters are employed: extrinsic

and intrinsic. The extrinsic parameters characterize the geometry and construction

procedures such as the construction sequence, loading, curing, age at loading,

relative humidity, and volume–surface ratio, while the intrinsic parameters define

the material properties, particularly the compliance and shrinkage functions. For

ACI, CEB, and GL models, which are purely empirical, the only important intrinsic

parameter is the standard 28-day compressive strength. Contrarily, the B3 model,

based on solidification theory, uses more than one intrinsic parameter to capture the

main aspects of the concrete properties. In the B3 model, these intrinsic parameters

are qi (i ¼ 1, 2,. . . 5) in the compliance function.

Fig. 4 3D FEM model of K–B Bridge in ABAQUS (With permission from ASCE, Bažant

et al. 2012b)
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Since the concrete strength in the K–B Bridge is known based on cylinder tests,

the input parameters for ACI, CEB, and GL models are almost fixed. Therefore,

only one set of input parameters (Set 1) is available for the analysis with these

models (Bažant et al. 2012a). On the other hand, for model B3, there are two sets of

input parameters, Set 1 and Set 2. In Set 1, the default formulas for predicting

material parameters by various models are used (Bažant et al. 2012a).

The purpose of Set 2 is to check whether the observations can be explained with

model B3, i.e., whether the observed deflection data and prestress loss data can be

fitted with realistic intrinsic parameters of the model. The answer was affirmative,

and the fitting parameters were almost the same as those fitting the Brook’s (1984,

2005) long-term test data. This showed there was no need to seek the explanation of

the excessive deflections in some extraneous hypothetical causes, such as poor-

quality control during construction. A successful fit by Set 2 also means that the

model is not fundamentally flawed. If it were, it could not capture the long-term

deflection curve and its asymptote, no matter how the intrinsic parameters are

adjusted.

Computed Deflections and Prestress Loss, Compared
to Measurements

The creep models are incorporated in an improved rate-type algorithm to run the

three-dimensional (3D) simulations (Yu et al. 2012). Before the creep analysis, the

validity of the computational model established in ABAQUS is first examined by

making comparison with the in situ truck load test in 1990 (Bažant et al. 2010,

2012a). Under the load exerted by two fully loaded trucks at the cantilever tips, the

average downward deflection obtained by the present numerical model agrees well

with the recorded measurements.

By utilizing the features provided by ABAQUS, the effects of the

prestressing and the construction sequence get reproduced automatically in the

simulations. The results of the predicted 19-year deflections are shown in Fig. 5,

in both linear and logarithmic time scales. One benefit of plotting the deflection

history in the logarithmic time scale is to highlight the asymptotic trend of the

long-term deflection, which would be obscured in the linear scale. This long-term

asymptote is an essential aspect in creep model evaluation. Indeed, if a creep

model cannot capture this asymptotic trend, it means that there is fundamental

inadequacy in the model and that the long-term prediction is likely to be

misleading.

The predictions based on ACI, CEB, JSCE, GL, and B3 models are plotted in

Fig. 5 and compared with the measured deflection, represented by diamond points.

After 19 years, the measured deflection at midspan is roughly three times larger than

that calculated (by rate-type 3D FEM analysis) with the ACI or CEB model and

approximately double of the deflection calculated with the GL model. Furthermore,

the ACI, CEB, JSCE, and GL deflection curves have shapes that are rather different

from those of the B3 model, as well as that of the observed deflection history. Their
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long-term asymptotes, which level off in logarithmic time scale, deviate substantially

from the inclined straight line shown in Fig. 5. As for model B3, although its

prediction based on the default parameters (Set 1) underestimates the midspan

deflection, its long-term asymptote agrees with the measured asymptote. According

to the updated Set 2, model B3 not only gives a good estimate of the final deflection

but also closely approximates the shape of the recorded deflection curve.

The prestress loss predicted by different models is shown in Fig. 6, also in both

linear and logarithmic time scales. The 19-year prestress loss was predicted (by -

rate-type 3D FEM analysis) to be only 22 % and 24 % when the ACI and CEB

models were used, which is substantially lower than the 46 % loss when the model

B3, Set 2, was employed (Bažant et al. 2012a). The correctness of the prestress loss

predicted by the B3 model is confirmed by the stress relief tests that were made by

ABAM on three tendons just before the retrofit (Berger/ABAM 1995). The average

residual stress obtained from nine measurements on the tendons was 377 MPa (54.7

ksi), indicating that the average prestress loss over 19 years was approximately

50 %. The prediction of model B3, Set 2, deviates from the measured mean by only

4 %, less than the coefficient of variation of these measurements, which is 12.3 %.

Similar tests were also conducted by another investigating company (Wiss, Janney

and Elstner, Highland Park, Illinois), and the average measured prestress loss was

almost the same.

Creep and shrinkage are notorious for their relatively high random scatter,

resulting from fluctuation of the material properties as well as variation of envi-

ronmental conditions. Therefore, it is more appropriate to design the bridge based

on some suitable confidence limits rather than the deterministic mean deflection

(Bažant and Liu 1985; Bažant et al. 2010). An efficient way to generate the

deflection statistics is to use Latin hypercube sampling of the input parameters

(Bažant and Liu 1985; Bažant and Kim 1989). The confidence limits can easily be

Fig. 5 19-year deflections of K–B Bridge based on different creep models (with permission from

ASCE, Bažant et al. 2012a)

530 Z.P. Bažant et al.



obtained by repeating the deterministic FEM analysis of a bridge according to the

samples of input parameters generated randomly by Latin hypercube sampling

(Bažant et al. 2010, 2012a).

The numerical investigation of the K–B Bridge shows that 3D simulations, based

on a realistic creep and shrinkage model and utilizing efficient rate-type approach, are

crucial for creep structural analysis. Among themodels used in practice, the B3model

is demonstrably capable of capturing the long-term asymptote of concrete creep and

thus is able to approximate the multi-decade deflection of prestressed concrete

bridges, although an update of the intrinsic parameters based on long-term creep

tests may be needed. For example, the measured deflections of four Japanese bridges

and one bridge in Czech Republic can be closely approximated by 3D simulations

based on model B3 with updated intrinsic parameters (Bažant et al. 2012a).

Wake-Up Call: Excessive Long-Term Bridge Deflections

Collection of Excessive Deflection Histories

Prompted by the release of data on the K–B Bridge in Palau and their analysis, an

effort to collect data on other bridges was conducted in the Infrastructure Technol-

ogy Institute of Northwestern University in collaboration with the RILEM Com-

mittee TC-MDC. Private communications from other construction firms and the

scanning of various papers and reports (Manjure 2001–2002; Burdet and Muttoni

2006; Pfeil 1981; Fernie and Leslie 1975; JICA 1990; Patron-Solares et al. 1996)

led to a collection of histories of deflections, excessive or nearly excessive, of

69 bridge spans, of which 56 are shown in Fig. 7. It is likely that hundreds of such

cases exist around the world. All the bridges in Fig. 7, except one (the Gladesville

Arch), are long-span, segmental prestressed box girders, mostly with midspan

Fig. 6 19-year prestress loss of K–B Bridge based on different creep models (with permission

from ASCE, Bažant et al. 2012a)
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Fig. 7 Histories of excessive deflections of the first 28 among 56 large bridge spans (reprinted

with permission from the American Concrete Institute, Bažant et al. 2011)
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hinges; however, at least six of them (the Parrotts Ferry, Grubbenvorst, Wessem,

Empel, Hetern, and Ravenstein Bridges) are continuous. The elimination of a

midspan hinge reduces deflection, but often not enough, as documented in detail

by the Labe Bridge in Děčı́n. Many of the listed sources on bridge deflections

provide, unfortunately, only sketches and limited cross-sectional information that

does not suffice for finite element modeling.

What is most interesting is that all these deflection histories terminate with an

inclined straight line in the logarithmic time scale, which corresponds to a loga-

rithmic curve in the actual time scale. This feature, which was introduced in 1975 in

an analysis of nuclear containment (refer to Fig. 4 in Bažant 1975) on the basis of

L’Hermite et al.’s (1965, 1969) and L’Hermite and Mamillan’s (1968) test data,

agrees with the prediction of the theoretically based model B3 and is also supported

by other existing longtime laboratory tests (Brooks 1984, 2005; Burg and Orst

1994, Russell and Larson 1989; Browne and Bamforth 1975; Hanson 1953; Harboe

1958, Troxell et al. 1958; Pirtz 1968) (e.g., refer to Figs. 2.2, 2.7, 2.10, 2.24, and

2.28 in RILEM 1988 or Figs. 1, 2, 3, and 4 in Part 2 and Figs. 1, 3, and 4 in Part 2 of

the paper by Bažant et al. 1992). Note that, similar to the aforementioned laboratory

creep tests, there is no sign of the deflection curves approaching a finite bound.

By contrast (and despite the fact that logarithm terminal curve was proposed to

ACI Committee 209 in 1974), the ACI and other existing creep prediction models

of engineering societies, including the ACI Committee 209, CEB-FIP, GL, JSCE,

and JRA models (CEB-FIP 1990; ACI 1971; ACI 2008; CEB-FIB 1990, 2010;

Gardner and Lockman 2001; JSCE 1991; JRA 2002), except the 2012 update of fib
Model Code 2010, have a form that implies a horizontal asymptote or a finite upper

bound on creep. This erroneous assumption has doubtlessly been caused by the

habit in most of the engineering literature to plot the creep curve only in the actual

time scale with an elongated time axis. When plotted that way, even the logarithmic

curve gives an illusion of approaching a bound, although none exists.

The horizontal dashed lines in Fig. 9 represent the deflection equal to 1/800 of the

span, which is considered to be the acceptable limit in bridge design specifications

(AASHTO 2004). This limit is exceeded within the time range of available measure-

ments by 16 of the 56 analyzed bridge deflection histories and by 26 of them if the

straight-line extrapolations to 100 years are considered (100 year lifetime is nowadays

the generally required design lifetime). Note that 56 bridges were analyzed but only

35 could be shown in the figure. Based on the data in Fig. 7 and their straight-line

extrapolations, the limit of 1/800 is exceeded by 36 spans within 24 years, 39 spans

within 40 years, and 50 spans within 100 years among the 56 spans in Fig. 7.

Approximate Multi-Decade Extrapolation of Deflection

According to model B3 (Bažant and Baweja 2000) and the preceding 1991 BPKX

model (Bažant et al.1992) developed at Northwestern University, the longtime

asymptote of the compliance curve at fixed t0 is logarithmic. This feature is

supported by the aforementioned laboratory data. The time at which the creep
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curve becomes a straight line in the logarithmic time scale depends on many

factors – on average, it is approximately 3 years.

It is interesting that, after several years, the bridge deflection curve also becomes a

straight line in the logarithmic time scale (Fig. 7). The reason for this must be that the

effects of the age differences between segments, the variation of the self-weight

bending moment during cantilever construction, the differences in the slab thickness,

and the change of the structural system at span closing nearly die out. Also, the

transient processes, particularly the drying effect on creep and shrinkage, the gradual

filling of capillary pores by cement hydration products, the acceleration of creep by

drying, and the prestressing steel relaxation rate, greatly attenuate within a few years.

At earlier times, the drying effects greatly distort the deflection curve. Because the

top slab of a segmental box girder ismuch thinner near the support than the bottomslab,

its shrinkage and drying creep become accelerated. This reduces themidspan deflection

and may even cause a temporary upward deflection (Bažant 1972). Further complica-

tions of the short-term deflection history are caused by the gradual rise of the bending

moment at the pier during the segmental erection and the age differences among the

segments of the box girder. Therefore, the prediction of deflections during the first few

years requires sophisticated FE creep analysis (Bažant et al. 2010, 2012a, b).

Nevertheless, the straight-line trends of longtime deflections in the logarithmic

scale suggest that if deflection wm at time tm, such as 1,000 days, is known, it could

be simply extrapolated to long times by assuming similarity to J(t,t0). To keep the

extrapolation easy, two simplifications of the regime prior to span closing are

needed to be introduced: (1) the age differences among the box girder segments

must be ignored, and the age of the concrete must be characterized by one

common effective (or average) age tc at the span closing; (2) instead of the gradual

increase of the bending moment in the cantilever segments during the erection, one

common effective (or average) age ta at which the self-weight bending moments are

introduced in the erected cantilever must be considered. In the following, the values

tc ¼ 120 days and ta ¼ 60 days are considered for all the bridges.

Because of these simplifications and the complexity of the drying and hydration

process in the early years, the long-term deflections cannot be assumed to grow in

proportion to J(t,ta). Nevertheless, for the additional deflection w that develops after

the span closing time tc, the errors in approximating the early loading history by ta
and tc must decay with time and eventually become negligible when t >> tc – that

is, after the lapse of a sufficient time tm. As shown in the following, the aforemen-

tioned time tm ¼ 1,000 days (measured from span closing) seems appropriate.

Before the span closing and for a few years afterward, the drying process and the

differences in concrete age make the box girder response very complicated. After

these effects nearly die out, however – that is, for t > tm – the box girder begins to

behave as a nearly homogenous structure, for which the growth of deflectionw should

be approximately proportional to the increment of the compliance function that has

developed since the closing time tc – that is, w ¼ C [J(t,ta) – J(tc,ta)], where C is a

certain stiffness constant. The values ofC orwm can vary widely, and their calculation

would require a detailed finite element analysis, considering creep with drying and the

construction sequence.Unfortunately, formost of the bridge deflection curves in Fig. 8,
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Fig. 8 Histories of excessive deflections of the remaining 28 among 56 large bridge spans

(reprinted with permission from the American Concrete Institute, Bažant et al. 2011)
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it turned out to be impossible to obtain the data necessary to calculate C from the

material properties, geometry, and construction sequence. Therefore, only the extrap-

olation from tm can be examined, assuming that wm is known.

Therefore, C can be calibrated experimentally from wm using C¼ wm/ [J(tm, ta) –
J(tc, ta)]. For the extrapolation of deflection after time tm, the following approximate

formula has thus been obtained (Bažant et al. 2011):

w tð Þ ¼ wm
J t, tað Þ � J tc, tað Þ
J tm, tað Þ � J tc, tað Þ (20)

To check how good this formula is, the deflection curves accurately calculated

by finite elements for the K–B Bridge using the B3, ACI Committee 209, and

CEB-FIP material models can be used to an advantage. For each curve, Eq. 20 can

be used to extrapolate wm at 1,000 days from the computed deflection using the

same compliance function J(t,t0) as that from which the curve was computed. The

resulting extrapolations are shown in Fig. 9. It is astonishing how close each

extrapolation is to the computed curve for the corresponding model; therefore, it

makes sense to compare the extrapolations according to this formula to the

observed long-term deflection curves of various bridges.

In theory, Eq. 13 should be applied only if the bending moments caused in the

girder after time ta by the self-weight and the prestress are approximately constant.

Because the additional prestress loss after time tm ¼ 1,000 days is very small,

assuming the constancy of the bending moments should be a very good approxi-

mation for bridges with a midspan hinge. For a segmental bridge that was made

continuous through the midspan, the internal forces redistribute so as to approach

the bending moment distribution for an elastic continuous bridge. This redistribu-

tion after time tm could be taken into account by generalizing Eq. 20 according to

the age-adjusted effective modulus method; for example, see (Jirásek and Bažant

2002) and (Bažant 1972). However, complete information on the bridge geometry

and prestress would be needed for this purpose. It is, unfortunately, unavailable for

Fig. 9 Comparison of extrapolation formula using the correct concrete strength and composition

with the K–B bridge deflections accurately calculated by finite element creep analysis (reprinted

with permission from the American Concrete Institute, Bažant et al. 2011)
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most of the bridges with no hinge in Fig. 7, except the Děčı́n and Vepřek Bridges.

Even for these two bridges, however, the degree of redistribution after 1,000 days

must have been very small; this can be explained by the relative shallowness and

high flexibility of the cross section at the midspan.

Comparison with Deflections Extrapolated from Creep
and Shrinkage Models

The input characteristics required by all the creep prediction models are the average

compressive strength of concrete f c, the environmental relative humidity H, and the
effective cross-sectional thickness D. In addition, RILEMmodel B3 uses the water/

cement ratio (w/c), the specific cement content c, and the aggregate/cement ratio

(a/c) (the a/c value is implied by the specific weight ρ of concrete) as input, and if

these additional input values are unknown, the recommended default values are

used. Although the drying creep term of model B3 has little effect on the deflection

rate after time tc, it affects the creep from to to tc; therefore, it must be included in

calculating J(t,t0) from model B3. Because Eq. 20 cannot take into account the

effect of the variation of the slab thickness within box girders, an approximation in

which a single average or effective thickness D is used to calculate J(t,t0) must be

used (D¼ 2V/S, where V/S is the volume–surface ratio of an average cross section).

To apply Eq. 20, the mean concrete strength f c and w/c, c, and ρ for model B3

must be specified. Unfortunately, these parameters are only known for six bridges

among the 36 that were analyzed. Therefore, individual comparisons for each

bridge are impossible. Nevertheless, a useful comparison, at least in the mean

sense for all the bridges combined, can be made.

It is assumed that the concrete design strength in these older bridges was, on

average, 31 MPa (4,500 psi), which implies (according to CEB-FIP) (FIB 1999)

that the mean strength was at least 39 MPa (5,660 psi). Furthermore, the average

effective cross-sectional thickness of D ¼ 0.25 m (10 in.) and the environmental

humidity of 70 % for the Scandinavian bridges (the NorsundBru, Tunstabron, and

Alnöbron Bridges) and 65 % for the other bridges are assumed. For the other

parameters, it is assumed that w/c ¼ 0.5, c ¼ 400 kg/m3 (25 lb/ft3), and ρ ¼
2,300 kg/m3 (143 lb/ft3). Of course, the deflection curve extrapolated in this way

from wm will likely be incorrect for each particular bridge. Nevertheless, because

the errors should be of alternating signs, compensating each other, the mean of the

extrapolations for all the bridges should still be approximately equal to the mean of

the correct extrapolated long-term trend of the deflection curve that would be

obtained if the properties of each individual concrete were known.

The last 19 of the 56 bridge spans in Figs. 7 and 8 (counted from the bottom) were

omitted from the extrapolation exercise for three reasons: (1) not enough measure-

ments were made, (2) the deflections were not too excessive, and (3) the straight-

line regime has not yet been entered at 1,000 days, which means that the drying

effects still continued. This occurred for the Konaru, Tsukiyono, Stenungsbron,

Želivka, and Victoria Bridges. Moreover, one more figure had to be omitted to
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obtain in Fig. 7 a rectangular array, and it was the Savines Bridge span b because its

plot is essentially identical to span c. This reduced the number of extrapolations

according to Eqs. 8–36.

The extrapolations obtained with the B3, ACI Committee 209, CEB-FIP, and GL

models are shown in Fig. 10 by different lines – continuous for model B3; light,

dashed lines for the ACI Committee 209 model; dash-dot lines for the CEB-FIP model;

and dark, dashed lines for the GL model. None of these models is considered

satisfactory because they all systematically and significantly underestimate the mea-

sured longtime deflections. Nevertheless, RILEMmodel B3 does not perform as poorly

as the others.

Updating Long-Term Prediction Capabilities

RILEM model B3 has two important advantages:

• The longtime form of model B3 is a logarithmic curve (shown as straight line in

the figures), which agrees with the longtime trend of the deflection data, whereas

the longtime curves for the ACI Committee 209, CEB-FIP, and GL models (ACI

1971, 2008; FIB 1999; Gardner 2000; Gardner and Lockman 2001) (as well as

the JSCE and JRA models from 1996 to 2002, respectively) level off as they

approach a horizontal asymptote, and

• Model B3 is the only model that can be updated without compromising the short-

time performance because the slope of the straight longtime asymptote can be

separately controlled.

From Fig. 8, one can determine for each bridge span i (i¼ 1, 2,. . . N, N¼ 36) the

ratio of the actual observed terminal slope ri to the deflection slope extrapolated

with model B3. The mean ratio

r ¼
XN

i¼1ri=N (21)

may then be applied to modify model B3 such that it would not systematically

underestimate the longtime extrapolation of creep deflections.

According to RILEM model B3 by (Bažant and Baweja 1995), the terminal

asymptotic deflection slope in the log(t-tc) scale is proportional to q4 + nq3, where
n is an exponent of the viscoelastic term equal to 0.1 and q3 and q4 are model B3

parameters obtained from empirical formulas as a function of w/c, c, a/c, and mean

concrete strength f c , for which the aforementioned default values are used.

The parameter values resulting from these formulas have been proposed (Bažant

et al. 2011) to be updated by the factor r, yielding corrected parameters

q3  rq3, q4  rq4 with r ¼ 1:6 (22)
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Fig. 10 Extrapolations of creep data for 36 bridges based on formula (Eq. 3) using the estimated

average strength and composition of concrete (reprinted with permission from the American

Concrete Institute, Bažant et al. 2011)
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The coefficient of variation of r is ωr ¼ 0.45 %, but only the average value of r
can be considered to be realistic because the same mean properties had to be

assumed for all the bridges.

Figure 11 compares the lines of the corrected extrapolations with the terminal

series of deflection data points. Note that the extrapolation errors are significantly

reduced and that the deviations from the measurements now lie nearly equally

below and above the measured data point series. An improved model B3 is thus

obtained. The other parameters of model B3 have no effect on the longtime bridge

deflection slope and thus cannot be improved in this way.

It would hardly be possible to obtain such an improvement of longtime perfor-

mance by model calibration with the laboratory database alone. Because the

database is biased toward short creep durations (Bažant and Panula 1978), large

changes in q3 and q4 cause only a very small change in the sum of squared deviation

from the laboratory data. This causes high uncertainty in the q3 and q4 values

obtained solely by minimizing the database errors.

Rate-Type Creep Formulation

Coupling Finite Element Analysis with Rate-Type Creep Formulation

A realistic detailed analysis of creep and shrinkage effects necessitates a rate-type

formulation consisting of differential rather than integral equations. However,

based on the prediction models of engineering societies, concrete creep is charac-

terized by the compliance function J(t,t0), which represents the strain at time

t induced by a unit sustained uniaxial stress applied at age t0. For time-dependent

stress history σ(t), the principle of superposition in time is applied to obtain from J
(t,t0) an integral-type creep formulation (while the cracking model suffices to

capture all the nonlinearities, which are due mainly to drying). Thus, the creep is

characterized by a Volterra-type integral equation of aging viscoelasticity, having a

kernel that, because of aging, is of non-convolution type.

For step-by-step finite element analysis, this integral equation is inadequate. The

inadequacies are two: (1) a high computational cost due to memory-demanding

history integrals and (2) incompatibility with variable environments as well as the

influencing phenomena, such as cracking, causing deviations from linearity, or the

principle of superposition. As a result, the integral-type approach is unusable or

inaccurate for large-scale structural analysis. It is also inadequate physically, as it is

incapable of capturing the concrete cracking, eventual bond slip, and prestressing

steel relaxation which is a highly nonlinear phenomenon affected by concrete creep

evolution. Inevitably, for realistic analysis of large creep-sensitive structures, the

integral-type creep law must be converted to a rate-type formulation with internal

variables whose current values account for the previous history of viscoelastic strain.

The key property enabling the rate-type analysis is the fact that any realistic

integral-type stress–strain relation of aging viscoelasticity can be approximated

with any desired accuracy by a rate-type creep law visualized by a rheological
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model, e.g., Kelvin chain model or Maxwell chain model. For creep, the Kelvin

chain model is more convenient because its parameters can be related to creep

experiments more directly. This model consists of a series of Kelvin units μ ¼ 1, 2,

3, . . . , N (Fig. 12), each of which involves a spring of stiffness Eμ(t) coupled in
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Fig. 11 The long-term extrapolations (solid lines) of the deflections of 36 bridges based on the

original model B3 and on its update with long-term factor (dashed lines) (reprinted with permis-

sion from the American Concrete Institute, Bažant et al. 2011)
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parallel with a dashpot of viscosity ημ(t)¼ Eμ(t)τμwhere τμ are the suitably selected
retardation times. For the time step Δt, the internal variable of the Kevin unit is

defined as γμ ¼ τμdeμ/dt. The plot of compliances A(τμ) ¼ 1/Eμ versus log(τμ) is
called the discrete retardation spectrum.

Based on the previous experience (Bažant and Prasannan 1989a, b, Bažant and

Baweja 2000; Bažant et al. 2012b; Yu et al. 2012), the retardation times for concrete

creep are best chosen to be spaced by decades in the logarithmic time scale – that is,

τμ + 1 ¼ 10τμ. For a sparser spacing of τμ the representation of the compliance

function by the discrete spectrum becomes bumpy and inaccurate, while a denser

spacing gives no significant gain in accuracy. For τμ � Δt (time increment), the

Kevin units will behave like elastic springs, and the dashpot has no effect, while for

τμ� Δt, the Kevin units will perform like rigid connections.

When the rate-type creep law is used, the structural creep problem can be

reduced to a system of first-order ordinary differential equations in time, with

age-dependent coefficients. However, there is no need to solve this differential

equation system in FEM simulation. It is more efficient to convert the incremental

stress–strain relation for each time step Δt to a quasi-elastic incremental

stress–strain relation. Thus, the structural creep problem gets reduced to a sequence

of elasticity problems with initial strains (Bažant 1971, 1975, 1982; Bažant and Wu

1973; RILEM 1988; Jirásek and Bažant 2002).

Continuous Retardation Spectrum

Because of the aging, the spectrum is different for each subsequent time step,

although it can be assumed to be constant within each time step that is not too

long. Indeed, for the stress changes within a short enough time step, the concrete

may be considered to behave as a nonaging, linearly viscoelastic material charac-

terized by the Kelvin chain moduli and viscosities corresponding to age t(n�1/2) at
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the middle of the time step (in the logarithmic scale). Therefore, one must identify a

nonaging retardation spectrum for the corresponding compliance function (e.g., the

ACI, CEB, or GL function) at the average age t(n�1/2) for every time step.

In the original rate-type creep analysis (Bažant and Wu 1973), the discrete

spectrum A(τμ) was determined on the basis of least-squares fitting of the compli-

ance function. However, this approach was found to give nonunique results for A
(τμ) and to be oversensitive to small changes in the compliance. More seriously, the

spectrum identified in this way violates, for some periods of time, the thermody-

namic constraint, e.g., the moduli of Kelvin units did not increase monotonically as

required by aging. Furthermore, implementing the least-squares fitting in each time

step makes the FEM programming cumbersome.

As shown in Bažant et al. (2012a), this obstacle can be overcome by calculating the

current continuous retardation spectrum of Kelvin chain. A continuous retardation

spectrum corresponds to infinitely many Kelvin units with retardation times τμ of

infinitely close spacing. Thus, it represents a smoothed-out plot of 1/Eμ versus log(τμ).
Its advantage is that it is unique and can be identified from the given compliance

function analytically by means of Laplace transform inversion utilizing Widder’s

approximate inversion formula (Bažant and Xi 1995; Bažant et al. 2010, 2012a, b).

In Fig. 12, two continuous spectra, one for basic creep of model B3 and the other

for ACI model, are demonstrated. The spectrum of ACI model is age dependent,

with A(τ) decreasing with age. In the case of model B3, which is based on the

solidification theory (Bažant and Prasannan 1988; Jirásek and Bažant 2002), the

aging is taken into account by means of volume growth of the solidifying compo-

nent and by a gradual increase with age of the flow term viscosity. Thus, it is

possible to use a nonaging compliance function for the solidification component.

Consequently, the spectrum for that component is nonaging (i.e., age independent),

as shown in Fig. 12.

Numerical Procedure

After the Kelvin chain moduli for the current time step Δt and the current integra-

tion point are obtained by the continuous spectrum method, the exponential algo-

rithm is implemented to incorporate the creep model into FEM programs. This

algorithm, derived as the exact solution for stress varying linearly within the time

step, is unconditionally stable (Jirásek and Bažant 2002; Bažant 1971, Bažant and

Wu 1973).

In this algorithm, one first calculates the incremental modulus at the middle of

the time step:

1=E00 tn�1=2
� � ¼ 1=E0 þ

XN

μ¼1 D
�1
μ ¼ 1=E0 þ

XN

μ¼1 A τμ
� �

1� λμ
� �

(23)

where E0 is the instantaneous modulus, λμ ¼ τμ 1� e�Δt=τμ
� �

=Δt. Then the inelastic
strain increment, also called the eigenstrain, is obtained as
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Δe00 ¼
XN

μ¼1 1� e�Δt=τμ
� 	

γ n�1ð Þ
μ (24)

where γμ
(n�1) are the internal variables at the last time step tn�1. In the numerical

implementation, the matrix of eigenstrains can now be augmented by the other

inelastic strains (e.g., shrinkage and thermal strains), as well as the cracking or

damage, and eventually also the cyclic creep eigenstrain. Note that the last three

terms in the matrix Δε00 represent the shear creep, which is important for the shear

lag in box girders, although normally neglected in the integral-type approach.

Based on the isotropic quasi-elastic stress–strain relation, the stress increment at

the end of the current step is

Δσ ¼ E00 tn�1=2
� �

D Δe� Δe00ð Þ (25)

where D is the elastic stiffness matrix with a unit value of Young’s modulus and Δe
is the total strain increment. Taking advantage of this stress–strain relation, the

structural creep problem gets reduced to a sequence of incremental elasticity

problems, which can be easily solved by FEM programs. After the stress increment

is obtained, the internal variables are updated as follows:

γ nð Þ
μ ¼ λμΔσD�1μ þ e�Δt=τμγ n�1ð Þ

μ (26)

Unlike the integral-type approach, here the previous history need not be stored

because it is fully characterized by the current values of γμ. In FEM, the number

N of Kelvin units could actually be reduced to approximately 5, with the first one

being computed as the integrated area under the spectrum up to � 1 in the

logarithmic time scale (the reason is that when τμ � Δt, the Kelvin units behave

as elastic springs). However, the direct use of N ¼ 22 for the B3 model and N ¼ 13

for other models, though wasting computer time, made the programming simpler

(which was more important).

Unlike the other purely empirical models, the B3 model is based on the solid-

ification theory. In this model, the creep consists of two components: the basic

creep and the drying creep. For drying creep, the implementation of its compliance

function into FEM is similar to other models, whereas for the basic creep, it

includes a nonaging volume constituent and a viscous flow component. Therefore,

a simpler exponential algorithm exists for model B3. The spectrum that accounts

for the nonaging constituent, which is used to calculate the Kelvin unit stiffness Dμ,

is expressed as

Ab τμ
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=tn�1=2
q

þ q3=q2

� 	
A τμ
� � ¼ κA τμ

� �
(27)
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Consequently, the total inelastic creep strain is modified as

Δe00 ¼ Δe001 þ Δe002 ¼
XNb

μ¼1 κ 1� e�Δt=τμ
� 	

γ n�1ð Þ
μ þ

XNd

μ¼1 1� e�Δt=τμ
� 	

γ n�1ð Þ
μ


 �

þ q4σ
n�1ð ÞΔt=tn�1=2

h i
(28)

where Nb and Nd refer to the number of Kelvin units in basic creep and drying creep,

respectively. Here only the key steps of numerical implementation are listed; for the

detailed information and examples, consult Bažant et al. (2012a, b) andYu et al. (2012).

Generalization for Cyclic Creep

As demonstrated in Bažant and Hubler (2014), the cyclic creep cannot cause

appreciable deflections of concrete bridges, but can cause major inelastic tensile

strain on the top face or the bottom face, or both, of the box girder, especially for

shorter spans in which the live load is not a negligible portion of the total load. To

limit tensile cracking, this effect of cyclic creep needs to be calculated.

Unlike metals and fine-grained ceramics, the microstructure of concrete is disor-

dered on all the scales, from the nanoscale to the macroscale of an RVE, whose size is

typically 0.1 m (assuming normal size aggregates). On all scales, the material is full of

flaws and preexisting cracks. The growth of cracks larger than the RVE is blocked by

reinforcing bars, and cracks much smaller than the RVE are not important for safety.

Under fatigue loading, such cracks must be expected to grow but affect only inelastic

deformation rather than safety since they are much smaller than the RVE. Experi-

mental results for cyclic compressive loading of concrete within the service stress

range (i.e., for stresses less than 40 % of the strength) indicate no degradation of

material strength for subsequent short-time loading up to failure and at most only a

slight decrease of concrete stiffness (Hellesland and Green 1971).

Within a single RVE of length lc, the strain increment, ΔeN, of a single penny-
shaped microcrack of radius a0 can be calculated using fracture mechanics (Bažant

and Hubler 2014) in terms of the crack size increment after N cycles, ΔaN:

ΔϵN ¼ 3γ0
σ

E

a0
lc

� 3 ΔaN
a0

(29)

where γ0 is a nondimensional geometry factor. If the Paris law is applied locally at

the RVE level, the increment in crack size may be expressed in terms of the

remotely applied stress amplitude Δσ:

aN � a0 ¼ λ
cΔσ ffiffiffiffiffi

a0
p

Kc

� m

N (30)
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Note that the prefactor λ and the exponent m are empirical constants that must be

obtained through test data fitting. The full relation between the cyclic creep strains

per cycle as a function of applied stress is then given as

ϵN ¼ C1σ
Δσ
f 0c

� m

N where C1 ¼ 3γ0
E

λ

a0

ca0
f 0c

� 3 f 0c
ffiffiffiffiffi
a0
p
Kc

� m

(31)

Here fc
0 is the standard compressive strength of concrete. It is noteworthy that eN

is predicted to depend on both σ and N linearly. This agrees with the available

cyclic creep measurements within the service stress range and is convenient for

structural analysis. Through dimensional analysis and similitude, it can be

shown that this functional form applies to all compressive cyclic crack types

including crushing band propagating transversely to compression (Suresh 1998;

Suresh et al. 1989; Eliáš and Le 2012), wedge-splitting cracks (Bažant and Xiang

1997) at hard inclusions, parallel to compression, interface cracks at inclusions,

and pore-opening cracks parallel to compression (Sammis and Ashby 1986;

Kemeny and Cook 1987; Fairhurst and Coment 1981). Because cyclic stress is

linearly related to cyclic strain, it is possible to define the cyclic creep compliance

ΔJN ¼ ΔϵN/σ, i.e.,

ΔJN ¼ C1σ
Δσ
f 0c

� m

N (32)

Within a limited time range, this compliance can be applied as an acceleration of

basic creep for short-term test data:

ΔtN ¼ Ct
Δσ
f 0c

� m

N where Ct ¼ C1

Δ lnJNð Þ
JN

(33)

In this case, the factor Ct and exponent m can be obtained by fitting of existing

tests. Values of Ct¼ 46� 10�6 and m¼ 4 were obtained using data by Whaley and

Neville (1973), Kern and Mehmel (1962), and Hirst and Neville (1977).

However, interpreting the cyclic creep as time acceleration gives gross under-

estimation of cyclic creep strain for multi-decade duration. Correctly, the cyclic

creep strain should be considered as additive to other strains.

To estimate the magnitude of cyclic creep effects in structures, the responses

of cross sections at the pier of a series of box girder bridges were considered

(Bažant and Hubler 2014). The theory of bending may be used to calculate the

required residual strain and residual stress ratios at any level in the cross

section produced by the cyclic creep, as illustrated in Fig. 13. To evaluate the

severity of effects, two dimensionless measures, namely, the inelastic residual

strain ratio and the inelastic residual curvature ratio produced by load cycling,

have been introduced:
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ρ ¼ emax
τ

f 0t=E
, r ¼ κτ

κel
(34)

Here ϵr
max ¼ max[ϵr(cb), ϵr(ct)] ¼ maximum strain produced in the pier cross

section by stress cycling (occurring at either top or bottom at pier), and κel κ ¼
minimum possible elastic curvature in the pier section.

To appraise the cyclic creep effects in large prestressed segmental box girders,

a collection of designs of six large-span bridges has been obtained through the

courtesy of Y. Watanabe, Shimizu Construction Co., Tokyo (Japanese bridges

Koshirazu, Tsukiyono, Konaru, and Urado); of I. Robert-son, University of

Hawaii, Manoa (North Halawa Valley Viaduct); and of G. Klein, WJE, Highland

Park, Illinois (the ill-fated world-record bridge in Palau. The data on these

bridges are used in Figs. 14 and 15, and for details of these bridges, see Bažant

et al. 2012a, b).

For the sake of easier comparability, it is assumed that, in all these bridges, the

load and dead load moment values were the maximum allowable for each

cross section. Based on the dimensions of each bridge, the live and dead loads

Fig. 13 An example of one of the scaled bridge cross sections at the pier for which the

prestressing eccentricity and bridge span have been designed to reach allowable limits.

Section profiles of the applied stresses due to dead load, cyclic live load, and prestress, of the

computed creep compliance, of the corresponding (free) cyclic creep strain, and of the resulting

residual inelastic strain (or eigenstrain) required by cross-sectional planarity (Reprinted from

Bažant and Hubler 2014 with permission from Elsevier)
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(including the self-weight) are determined, and the bending moments at the pier

are calculated assuming the girder to be rather flexible at midspan, in which case

the moment at the pier is almost as large as it would be for a hinge at midspan. The

results for the residual strain ratio ρ at N ¼ 2 million are plotted in Fig. 14 (top).

The results for these bridges are rather scattered, which is obviously explained

by variability in the cross-sectional shapes. Therefore, another set of scaled bridge

cross sections is generated by interpolating and extrapolating trend between the

cross sections of the Hawaii bridge (span 110 m) and of the K–B Bridge in

Palau (span 241 m). A similar calculation procedure leads to the diagrams for ρ
in Fig. 14b.

Much stronger effects of cyclic creep are seen in the plots of the maximum

residual strain ratio ρ in Fig. 15. They reveal that, for spans between about 80 and

200 m, the cyclic creep can produce significant tensile strains. These strains can

approach or even exceed the maximum elastic strain at the top or bottom faces of

the box girder. This strain superposed on strains from differential shrinkage, drying

creep and temperature, obviously aggravate distributed tensile cracking, which may

in turn lead to corrosion of reinforcement.

Note that whereas the static longtime creep deflections grow in time logarith-

mically (Bažant et al. 2011, 2012a), the cyclic creep deflections grow linearly
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(provided that the traffic load frequency and amplitude remain constant). This

property is verified by experiments and, theoretically, is a consequence of Paris

law (Eq. 18), which states that the crack extension is proportional to the number of

cycles, N. Consequently, even if the cyclic creep effects are insignificant within the
first 20 years of service, they may become significant, compared to creep, for a

100-year lifetime; see Fig. 15 (bottom).

Prestress Relaxation at Variable Strain

In addition to concrete creep and shrinkage, the relaxation of prestressing steel can

make a major contribution to the long-term deflection of prestressed box girders.

Currently, the practice has been to calculate the stress relaxation from simple

empirical formulas that estimate the steel relaxation at constant initial strain

e0 and constant temperature T0 (normally the room temperature). However, this is

Fig. 15 (Top) The calculated curvature ratios for the actual bridge cross sections. The left figure
shows systematically varying cross sections that reveal a transition from negative to positive

curvature after a span of 80 m is reached. The right figures illustrate the values that the actual

bridge cross sections may reach. (Bottom) Schematic comparison of the evolution of creep

deflection and of the residual cyclic strain (Reprinted from Bažant and Hubler 2014 with

permission from Elsevier)
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valid only when the strain variation in the steel bonded to concrete is negligible,

which is not the case for creep-sensitive structures. Also, exposure of the pavement

to sun can cause significant heating of tendons embedded in the top slab, especially

in tropical areas. Therefore, one needs a general uniaxial viscoplastic constitutive

law for prestressing steel.

Based on a Bingham-type viscoplastic model (Jirásek and Bažant 2002), the

simplest form of the constitutive equation is to treat the strain increment as the sum

of the instantaneous strain increment, the viscoplastic strain increment, and the

thermal strain increment due to temperature change. The initial strain e0 introduced
at the time of prestressing is an initial condition for the differential equation of

stress relaxation but does not belong into this differential equation itself. To

eliminate e0, a realistic hypothesis to be checked by experiment must be made.

For a variable strain history, the stress-relaxation increment Δσ occurring at

strain e during time interval dt (line 12 in Fig. 16) may be calculated as if the current

strain were maintained constant from the beginning. In other words, the hypothesis
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means that a small increment (Δe, Δσ) [line 13 in Fig. 16] may be decomposed into

stress-relaxation increment Δσ [line 12 in Fig. 16, imagined to occur at constant

strain e], followed by an instantaneous jump up or down [line 23 in Fig. 16] from the

relaxation curve for constant e [line 12 in Fig. 16] to the relaxation curve for

constant e + Δe [line 34 in Fig. 16].

Using this hypothesis, the current relaxation formula used in the CEB-FIP code

can be generalized to a rate-type formula to take into account strain variation

(Bažant and Yu 2013). The same generalization can be applied to the formula

used in the American practice, although this formula cannot be used in general

since even at constant strain it is not realistic for short-term relaxation.

On the other hand, the rate-type formula based on the CEB-FIP Model Code,

which is realistic for the short-time range at constant strain, has two other limita-

tions: (1) it misses a relaxation threshold that is used in the formula of American

practice, and (2) for the same steel, the relaxation curves for different constant

strains can cross each other after a long enough period. To remedy these problems,

an improvement of the CEB-FIP formula for constant strain has been proposed

(Bažant and Yu 2013):

σ ¼ min γf 0y, σ0
� 	

þ f 0y σ0=f 0y � γ
D E

1þ ρtk
� �

= cλk
� �� ��c

(35)

Based on the foregoing hypothesis, and an assumption of viscoplastic behavior,

the generalization to variable strain is

e• ¼ σ
•
=Et þ

F eð Þ � γf 0c
� �

Et

kρ1=kc1�1=k

λζ1þ1=c
ξ1=c � 1

� 	1�1=k
(36)

where ξ¼ [F(e)� γfy0 ]/[σ � γfy0 ], γ indicates the relaxation threshold, and ρ¼ ρ0e
hξ;

k, c, ρ0, h¼ positive constants for a given steel. Usually, h is a very small value and

can be set as 0, thus ensuring that the relaxation curves for different σ0 would never
cross each other. Figure 16b shows the comparisons between the simulation results

based on Eq. 36 and the relaxation tests by Buckler and Scribner (1985), in which a

sudden load drop (strain change) was introduced. It can be seen that Eq. 36 agrees

with the tests satisfactorily.

To take into account an elevated temperature, which accelerates the steel

relaxation, the real time may be replaced with the effective time based on the

activation-energy theory. The effective time is defined as dt ¼ ATdτ, where τ is the
real time and AT ¼ exp(Q0/RT0 � Q0/RT) is the Arrhenius factor (Cottrell 1964),

which is equal to 1 at room temperature T0 ¼ 20 �C; here kB ¼ Boltzmann’s

constant and Q0 ¼ activation energy. By doing this, Eq. 36 is extended to time-

variable temperature. Furthermore, the thermal strain rate must be added on the

right side of Eq. 36.

Figure 16c shows the simulation results compared to Rostasy and Thienel tests

(1991). Note that the relaxation parameters are determined by fitting first the data

for 20 �C and then predicting the data for higher temperatures. In addition to the
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case of constant temperature, the proposed relaxation formula is also compared

with the tests of relaxation under stepwise heating (Rostasy and Thienel 1991). The

temperature history used in tests is reproduced in Fig. 16d, and the comparison of

the prediction with the tests appears to be acceptable.

Comparison with Existing Commercial Software for Creep Effects
in Bridges

The existing programs for creep design and creep structural analysis were mostly

developed around 1980. The material creep and shrinkage model, typically the CEB

model, is embedded in these programs. Neither the nonlinear effects of cracking

and cyclic creep nor the effects of drying and diffusion are usually considered.

Neither are the environmental variation, heating of tendons, and relaxation under

varying strain.

For one-dimensional analysis, these programs, exemplified by SOFiSTik (dis-

tributed by the Ingenieur-Software Dlubal GmbH, Germany), usually model the

box girder by beam elements, and the creep is represented by linear aging visco-

elasticity in the primitive form of an integral-type approach. To avoid the demands

on computer time and storage resulting from the memory integrals in the case for

2D and 3D analysis, the software uses a simple quasi-elastic algebraic analysis

based on a one-step incremental elastic relation proposed by Trost (1967). This

relation uses Trost’s coefficient ρ, called the relaxation coefficient, to calculate the

incremental Young’s modulus for the entire period. Trost’s empirical method,

however, neglects the major effect of creep aging, an error that was eliminated in

1972 by the development of the age-adjusted effective modulus (AAEM) method

(Bažant 1972, 1975; RILEM 1988, endorsed by ACI-209 as well as CEB-FIP).

However, even if the programs like SOFiSTiK switched to AAEM, much larger

errors due to the use of quasi-elastic analysis for multidimensional finite elements and

of pure linear viscoelasticity for one-dimensional beam elements would still remain.

A good example showing the inadequacy of these programs is their application

to the ill-fated K–B Bridge. By applying the present rate-type algorithm to 3D

analysis, the long-term deflections of the K–B Bridge have been computed for

different creep and shrinkage models, as plotted in Fig. 17. Although it is clear from

the plot that the CEB creep model performs poorly in predicting the long-term

deflections, one must accept this model here to isolate the errors due to numerical

algorithm.

Unlike the rate-type analysis using 3D elements, the K–B Bridge deflections are

now recalculated by SOFiSTiK using a simplified approach with 45 nodes and

44 beam elements corresponding to the segmental construction; see Fig. 17. In

addition to concrete creep, the CEB model is also used for the prestressing steel

relaxation (under the assumption of constant strain). The evolution of steel relax-

ation is handled in SOFiSTiK either by a fixed 1,000-hour relaxation factor or, as

used in this example, by the stress-dependent quadratic function prescribed by CEB

model (1990). The temperature effect is ignored.
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The linear viscoelastic analysis of the K–B Bridge based on SOFiSTiK predicts

far smaller deflections than the recorded measurements, as can be seen in Fig. 17.

Furthermore, when compared with the present rate-type 3D analysis, which uses the

same CEB model, SOFiSTiK still substantially underestimates the creep deflection.

The integral-type algorithm used in this calculation gives a deflection that repre-

sents 79 % of the deflection predicted by the rate-type 3D analysis, which itself

underestimates the measured creep deflection by a factor of approximately 1/3.

Furthermore, the commercial programs using beam elements with a simplified

quasi-elastic analysis similar to SOFiSTik cannot realistically simulate the

nonlinear evolution of viscoplastic steel relaxation at variable strain, the effects

of variations of temperature and humidity, the nonlinear cyclic creep effects, and

the nonlinear effects of cracking and cyclic loading. Neither are they able to capture

the effect of differential drying in slabs and webs of different thicknesses and

environmental exposures. Therefore, the creep structural analyses for large creep-

sensitive structures necessitate rate-type 3D analysis, as described in the preceding

sections.

Development of the B4 Model

Expanded Database of Laboratory Tests

The new collection of 69 bridge spans from around the world, presented in section

“Wake-up Call: Excessive Long-Term Bridge Deflections,” confirms the linear

behavior in logarithmic time observed in the K–B Bridge in Palau (Table 3). The

slope of the deflection curve in the range of the typical structural design life is

consistently underestimated in each of these spans. This result provides further

evidence that a new creep and shrinkage prediction equation is needed. A prelim-

inary update of the long-term slope of model B3 proves the feasibility of using the

shape of deflection records to improve the design equation. The new model B4

makes use of this concept. First, a collection of up-to-date short-term laboratory

tests is developed to allow for the calibration of such a model.
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The first large worldwide database of creep and shrinkage tests was published at

Northwestern University (NU) in 1978. It was followed by several improvements, the

last one in 2008. A major expansion, completely restructured and verified, named the

NU Database, is presented in Hubler et al. (2014a). It represents by far the most

comprehensive collection of creep and shrinkage curves that has ever been published.

It covers longer measurement periods and high-strength concretes and encompasses

the effects of admixtures in modern concrete mixes. It contains roughly 1,400 creep

and 1,800 shrinkage curves, of which approximately 800 creep and 1,050 shrinkage

curves contain admixtures. In addition to mix proportions, testing conditions, and

specimen geometries, the admixture contents and aggregate types are also indicated.

The data are categorized by type – autogenous shrinkage, drying shrinkage, basic

creep, drying creep, and total creep. Based on extensive data analyses, various data

corrections and curve classifications are proposed.

The new database makes it possible to calibrate and verify improved creep and

shrinkage prediction models. Additionally, the statistics of the mix parameters,

strength distributions, and scatter of the compliance curves have been extracted for

applications in reliability engineering and probabilistic performance assessment.

Data analysis brings to light various recommendations and suggests corrections of

various oversights to avoid or minimize in the future the testing of concrete creep

and shrinkage and improve the reporting of test data. This should make future test

data more useful, consistent, complete, and reliable. The NU database is now

available for free download at http://www.civil.northwestern.edu/people/bazant/

and http://www.baunat.boku.ac.at/creep.html.

Optimization Using Joint Laboratory and Structural Data

The actual calibration of prediction models ultimately can be reduced to a standard

optimization problem if appropriate metrics to counteract the heteroscedastic nature

of the data and adequately represent the quality of fit are used. Further complica-

tions are introduced by the combination of different data sources (represented here

by the shrinkage strains e, creep compliances J, and bridge deflections δ) (Bažant
et al. 2014; Hubler 2014b, Wendner et al. 2014a, b). The data range through

different orders of magnitude, exhibit inconsistent sensitivities to environmental

and intrinsic material properties, and are associated with varying levels of inherent

uncertainty.

On top of that, every data collection shows a certain bias toward specific testing

conditions or material compositions, depending on the experimenters’ preferences,

the ease of sample generation and testing, or simply the preferences given by the

engineering design viewpoints. Structural measurements are biased depending on

their type and field of application and may lead to conclusions that do not apply to

other applications. The bridge deflection data available for this investigation are

generally biased toward compositions used in bridge engineering and comparably

humid and hot environments that differ significantly from concretes applied in

modern high-rise buildings and that are located within a climate-controlled envelope.
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One way to deal with this database inherent bias is a multistage optimization

strategy where only certain parameters, e.g., those determining the long-term behav-

ior in case of bridge deflection data, are recalibrated. More information on updating

strategies based on the Bayesian theorem (Bayes 1964) is given in the following.

Although subjective and biased data are generally not advised, a bias toward certain

compositions or environmental conditions might actually be intended in the sense of

an importance weight. If a perfect model is out of reach, a model that is better

representing conditions of practical relevance can be considered preferable over an

objective model that introduces the same amount of error in all cases.

One way to deal with heteroscedastic data as well as the inherent bias in the input

information is weighting. Although, in a strict statistical sense, weighting intro-

duces bias, it represents a way to counteract the unwanted preexisting biases, e.g.,

toward short-term data. Li introduces the concept of hyper-box weighting (Bažant

and Li 2008) for the calibration of shrinkage and creep models, respectively. The

term hyper-box refers to the n-dimensional nature of the optimization problem in

which all parameters (time, composition, geometry, environmental conditions, etc.)

should be uniformly distributed in order to ensure an unbiased evaluation. The

individual weights wij of curve i and half-decade j counteract any bias stemming

from the data point density or preference toward certain data ranges, particularly

short ones. The weights Wi (a) remove any bias due to material composition, or

preferred testing conditions, and (b) allow the introduction of importance weight for

either experimenters that are known to be particularly thorough or types of tests that

are particularly relevant for the model development and its future application.

Additionally, weights may be assigned due to the smoothness and consistency of

the dataset, the quality of the data reporting, and the data completeness (e.g.,

whether a full curve from the onset of drying creep to its completion is shown).

As discussed in Hubler et al. (2014a), a shrinkage strain or creep compliance curve

that was re-digitized from a paper where the curve was reported in linear scale may

introduce unacceptably high short-term errors of up to 100 %.

Suitable statistics to describe the quality of fit for data of heteroscedastic nature,

and thus the basis for the formulation of an objective function, is the coefficient of

variation, ω, of the root mean square error, RMSE (Wendner et al. 2014a):

ω ¼ RMSE=y (37)

Through the normalization by y, the dimensionality of the data is removed, and

all data are brought to the same order of magnitude. The total contribution of a

single data source to the objective function thus is

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNy

i¼1 Wi

Xm

j¼1 wij

Xn

k¼1
yijk � ŷijk

y

� 2
s

(38)

where yijk¼ the kth measured value of half-decade j and curve i, ŷijk¼ the predicted

value of point ijk, and yi ¼ the mean of the measurement data of curve i. It is
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important that the total sum of weights of all Ny curves with N points be normalized

to 1, as follows:

XNy

i¼1 Wi

Xm

j¼1
Xn

k¼1 wij ¼ 1 ¼
XN

k¼1 wk (39)

For convenience, the weights Wi and wij may be transformed to independent

weights wk assigned directly to all N data points of any given data source. The

optimization problem finally reads

X̂ ¼ min Weω2
e

� �
min WJω2

J þWδω2
δ

� ��
(40)

withWe ¼ 1 ¼ total weight of the shrinkage laboratory database,WJ ¼ total weight

of the creep laboratory database, and Wδ ¼ 1 � WJ ¼ total weight of the bridge

deflection database. During optimization of the creep model, the total contributions

of the laboratory database and the collection of bridge deflections were weighted

2:1. That means that with NJ laboratory datasets and Nδ bridge deflection records,

WJ

XNJ

k¼1 wk ¼ 2Wδ

XNδ

k¼1 wk ¼ 2=3 (41)

The use of bridge deflection records jointly with laboratory compliance data

unfortunately is not straightforward. Either the deflections δ(t)must be converted to

compliance J(t) or the predicted compliance function transformed to an evolution of

deflections. Only then, residuals can be calculated, and a consistent contribution to

the objective function can be formulated. For an accurate conversion, a complicated

inverse analysis using 3D finite element simulations is required.

However, if the deflection δ(t) is known at a certain long enough reference time

t¼ tref, then the deflection trend can be simply extrapolated to long times by assuming

similarity to the compliance function. To apply this extrapolation, the age differences

among the box girder segments must be ignored, and the age of the concrete must be

characterized by one common effective (or average) age tclose at the span closing.

Further necessary simplifications include the definition of one common effective age

ta at which the self-weight bending moments are introduced in the erected cantilever,

instead of considering the gradual increase of the bending moment during erection.

For the purpose of this investigation, the values tclose ¼ 120 days and ta ¼ 60 days

were used. This approximation yields acceptable results only for sufficiently large

reference times, tref� 1,000 days, that ensure that the complex initial behavior due to

the effects of drying, the construction sequence, and differences in age has almost

died out. The extrapolation formula of the deflection from tref thus reads

ΔJ t, tað Þ
ΔJ tref , tað Þ �

J t, tað Þ � J tclose, tað Þ
J tref , tað Þ � J tclose, tað Þ �

δ tð Þ
δ trefð Þ (42)
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This formula was verified using the finite element solution for the deflection of

the K–B Bridge.

For statistical comparisons between models, the total unbiased coefficient of

variation of the root mean square error of N data points should be correctly written as

C:o:V: ¼ 1XN

k¼1 wkyk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1 wkXN

k¼1 wk

� 	2

�
XN

k¼1 w
2
k

XN

k¼1 wk yk � ŷkð Þ2
vuuut (43)

Although in a strict sense not suitable as indicator for the quality of fit of

nonlinear models, the coefficient of correlation (or determination) is still widely

used and, thus, introduced for comparison:

R2 ¼ 1�
XN

k¼1 wk yk � ŷkð Þ2XN

k¼1 wk yk � ykð Þ2
(44)

Bayesian Method

The creep and shrinkage are affected by amultitude of influence factors, which include

the effects of different mix proportions, cement types, admixtures, aggregate types,

environmental conditions, curing and loading times, and geometries. These effects can

be studied only under carefully controlled laboratory conditions. The extensive new

laboratory databases for creep and shrinkage provide this type of information and

ensure a well-calibrated prediction model. Nonetheless, a series of problems remain:

the adaptation of a general prediction to a specific concrete mix; the updating of

predictions based on, e.g., structural, observations; and the calibration of multi-decade

prediction models in the absence of sufficiently long experimental test data. The

framework of Bayesian updating provides an answer to these. Assume that a state

S occurs with a probability P(S) before any observationM is taken. The probability P
(S) is called the prior probability in this context. The posterior probabilityP(S|M) given

an observation can be calculated according to Bayes’ rule (Bayes 1964) by:

P SjMð Þ ¼ P MjSð ÞP Sð Þ
P Mð Þ (45)

The probability of observing M given a certain state S is often referred to as the

“likelihood”; P(M ) is also called “model evidence” or “marginal likelihood.”

The concept of Bayesian updating can be applied to the problem of calibrating a

multi-decade prediction model for concrete creep in the absence of long-term
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laboratory data using bridge deflection data δ as evidence. Recall the functional

form of B4 (or B3): the creep compliance function is given by the sum of

instantaneous compliance (prefactor q1), the aging viscoelastic compliance

(prefactor q2), the nonaging viscoelastic compliance (prefactor q3), the aging flow

compliance (prefactor q4), and the drying creep compliance (prefactor q5).
As a result of the laboratory database fitting and uncertainty quantification, the

prior distributions of q1 to q5 can be obtained. Since the long-term behavior and in

particular the terminal slope are governed by q3 and q4, a simplified procedure of

updating solely these two parameters is suggested. In this case, the informed

posterior distribution is fQ(q3, q4jU ¼ δ). The prior fQ(q3, q4) is taken from the

uncertainty quantification.

Uncertainty Quantification in Creep and Shrinkage Prediction
and Calculation of Confidence Limits

A proper understanding of the uncertainties involved in modeling creep and shrinkage

is quintessential for safe and sustainable construction. The gap between the duration

of available laboratory data (<<10 years) and typical design service lives of at least

50 years and often more than 100 years further aggravates the situation. As a first step,

stochastic models for all required input parameters as well as correlation fields are

needed in order to properly calibrate partial safety factors for creep and shrinkage as

well as provide the basis for a realistic full probabilistic reliability assessment.

Stochastic models for environmental conditions, variability in the structural system,

and cross-sectional geometry can add the missing information to provide sensitivity

factors between model inputs and prediction of creep and shrinkage and thus serve for

the determination of reliability profiles at various times.

The broad scope of composition, mechanical, and environmental parameters

associated with each creep and shrinkage test in the database allows for a full fit of

stochastic models for each. However, the parameters of highest interest are those

incorporated in the existing prediction models: the water/cement ratio (w/c), cement

content (c), aggregate-to-cement ratio (a/c), 28-day Young’s modulus (Eq. 28), and

28-day compressive strength ( f28). This parameter set has the most consistent effect

on the measured response of the concrete and also represents the most consistently

reported values. Gaussian stochastic models were developed for each of these

parameters in a subset of all shrinkage tests consisting of midrange 28-day com-

pressive strengths from 30 to 60 MPa. The results are tabulated in Table 2.

To develop a full stochastic framework for creep and shrinkage models of the

experimental test data, additional stochastic models are needed for all the input param-

eters including the test setup parameters such as test duration and age at loading. These

values have specific recommendations in the testing guidelines and strong biases toward

times that allow for workable consistencies of the mix. As a result, a nonsymmetric

distribution such as the lognormal may better capture such input parameters.

Table 3 lists the linear Pearson correlation coefficients between the composition

and 28-day measured strength and modulus. While the sign and relative magnitude
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of the composition correlations may be estimated from typical requirements for

hydration and workability, these values reflect a set of representative distributions

across a full spectrum of recent and older cements that may be used to capture

standard relationships for design. As is typically assumed, the correlations also

reflect a prominent correlation between the water/cement ratio, the resulting

strength, and Young’s modulus.

The environmental conditions, temperature T, and relative humidity h depend on
the geographical zone but also the microclimate. For the purpose of this investiga-

tion, a fictitious construction in Central Europe is assumed. The respective stochas-

tic models are listed in Table 2. The variability of the cross section is considered

with a Gaussian distribution of 5 % coefficient of variation. The derived stochastic

models may be used to determine the scatter in shrinkage strain and creep compli-

ance predictions for concrete members.

Conclusion

The preceding exposition in this chapter attempts to provide a modern overview of

the problems of creep and shrinkage which can cause various types of damage to

concrete structures, including excessive deflections, excessive cracking, and long-

term deterioration. The magnitude and severity of these problems have for a long

time been underestimated but recently came to the forefront of attention, partly

because of systematic revelation of various long-term damages such as excessive

deflections and partly because of the recent nationwide and worldwide emphasis on

sustainability of concrete infrastructure.

Table 2 Stochastic model

Variable PDF Mean C.o.V. Datasets

Cement content c[kg] LN 377 0.39 1,019

Water/cement ratio w/c LN 0.486 0.35 1,101

Aggregate/cement ratio a/c LN 5.44 0.43 1,056

Compressive strength fc [MPa] LN 27.4 0.04 617

Young’s modulus cs[MPa] LN 28,773 0.12 622

Relative humidity h [�] Norm 0.75 0.05

Temperature T [�C] Norm 20 0.05

Table 3 Correlation

matrix (Hubler et al. 2014a)
w/c a/c c f28 E28

w/c 1 0.83 �0.73 �0.19 0.34

a/c – 1 �0.91 �0.13 0.38

c – – 1 0.30 �0.41
f28 – – – 1 0.06

E28 – – – – 1
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To mitigate these damages, the design procedure will have to be improved, and

this will require modernization of the design codes of engineering societies. Any

changes in concrete design codes that have a theoretical underpinning have been

notoriously difficult to implement. For example, the ACI-209 design recommen-

dation for creep and shrinkage still features an obsolete 1971 model, whose over-

simplifications have been repeatedly pointed out since 1973. One problem is that

the code-making committees are dominated by practitioners, many of whom do not

seem to worry about structural problems that will not occur during the first 20 years

of lifetime.

Another, more serious, problem has been that the information from damages that

were legally litigated in courts often ends up sealed in perpetuity. This causes an

enormous break on progress, since structural engineering advances occur mainly as

a result of clear identification of the damages in structures and their causes.

What is striking is the contrast with commercial aviation where the release of

information on any failure, or potential damage that could lead to failure, is required

by law as well as international treaties. Attempts to introduce a similar law for

structural engineering, or at least to incorporate an article labeling the concealment

of such data as unethical into the professional ethical codes of engineering societies,

have been met with vehement opposition from engineering consultants and lawyers

of engineering firms. Until this opposition is overcome, progress will be difficult.
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Z.P. Bažant, Creep of concrete, in Encyclopedia of Materials: Science and Technology, ed. by
K.H.J. Buschow, vol. 2C (Elsevier, Amsterdam, 2001), pp. 1797–1800

560 Z.P. Bažant et al.
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Z.P. Bažant, S. Prasannan, Solidification theory for concrete creep: II. Verification and application.

J. Eng. Mech. ASCE 115(8), 1704–1725 (1989b)
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J. Eliáš, J.L. Le, Modeling of mode-I fatigue crack growth in quasibrittle structures under cyclic

compression. Eng. Fract. Mech. 96, 26–36 (2012)

C. Fairhurst, F. Comet, Rock fracture and fragmentation, in Rock Mechanics: from Research to
Application. Proceedings of the 22nd U.S. Symposium on Rock Mechanics, ed. by

H.H. Einstein (MIT Press, Cambridge, MA, 1981), pp. 21–46.

G.N. Fernie, J.A. Leslie, Vertical and longitudinal deflections of major prestressed concrete

bridges, in Institution of Engineers, Australia, No. 7516, Symposium of Serviceability of
Concrete, Melbourne, 19 Aug 1975

FIB, Structural Concrete: Textbook on Behaviour, Design and Performance, Updated Knowledge
of the CEB/FIP Model Code 1990. Bulletin No. 2, vol. 1 (Fédération internationale du béton
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Abstract

Ship structures are subjected to various deteriorating mechanisms throughout their

service life. This deterioration is highly uncertain and can adversely affect the

performance and safety of the vessel, and if not addressed properly, catastrophic

failures may occur. In this chapter, deteriorating mechanisms affecting ship

structures and their prediction models under uncertainty are discussed. In addition,

the integration of these models into a general evaluation and management

framework is introduced. This integration can support the optimal decision-

making process regarding future structural interventions and, eventually, may
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lead to safe and efficient service life extension. The role of structural health

monitoring and nondestructive evaluation techniques in damage identification,

assessment, and prediction is also discussed.

Introduction

Ships are often subjected to sudden and/or gradual (i.e., time-dependent) damage

mechanisms throughout their service life. Sudden structural failures due to extreme

events include collision, grounding, fire, and explosions, while time-dependent

deterioration mechanisms include fatigue and corrosion. Each damage mechanism

requires its own assessment methods suitable to support intervention decisions

related to this damage type. Sudden structural damage requires fast damage quan-

tification and assessment of the structural residual strength in order to make

effective decisions regarding the future use of the ship. Although the occurrence

of such events may be unpredictable, their effects can be correctly managed through

the proper emergency response protocols imposed by the ship owners, in addition to

various active and passive safety measures. For sudden structural damage, multiple

methods can be used to assess the degree of damage and determine the residual

structural strength ranging from complex nonlinear finite element analysis (FEA) to

simplified formulae (Wang et al. 2002). Reliability and risk of failure due to

insufficient residual longitudinal strength of ships damaged by collision or ground-

ing have been also topics of active research (e.g., Fang and Das 2005; Hussein and

Guedes Soares 2009; Saydam and Frangopol 2013).

Damage due to time-dependent deterioration, on the other hand, can be predicted

through the appropriate modeling of the deterioration phenomena. This prediction

process involves multiple sources of uncertainties; thus, it has to be performed

probabilistically (Frangopol 2011; Frangopol et al. 2012; Soliman and Frangopol

2013b). Part of these uncertainties is associated with the natural randomness (i.e.,

aleatory uncertainties) and the other part is associated with inaccuracies in the

adopted prediction models (i.e., epistemic uncertainties) (Ang and Tang 2007). The

proper modeling of such uncertainties is a key factor affecting the effectiveness and

accuracy of the prediction process.

Inspection actions provide valuable information on the actual damage level

found at the time of inspection. This assists in the damage evaluation and enables

updating the damage propagation model in order to achieve a better damage

prognosis process (Soliman and Frangopol 2013a). Various nondestructive testing

(NDT) methods can be employed to assess the time-dependent damage of ships.

Some of these methods, such as the acoustic emission technique, received notice-

able attention within the last decades. The acoustic emission technique was found to

provide useful results regarding the damage identification and localization in ship

structures.

Structural health monitoring (SHM) systems used to record the ship response are

employed to study the structural performance of the ship under normal operational

conditions and to validate the assumptions placed during the design phase.

566 D.M. Frangopol and M. Soliman



SHM techniques have the potential for the detection and localization of structural

damage occurring under severe operational conditions or slam impacts (Salvino and

Collette 2009). Multiple approaches have been recently proposed to fulfill this

task. However, most of these approaches, which have demonstrated their feasibility

in laboratories and controlled environments, still require additional research before

they are widely implemented on large and complex structures such as ships

(Salvino and Brady 2008).

This chapter presents a brief overview of the damage evaluation and prediction

techniques for ship structures, with emphasis on time-dependent damage prediction

models. The probabilistic performance evaluation methods suitable to consider the

uncertainties associated with these models are emphasized. The role of SHM and

NDT in the damage identification process and the recent developments in the service

life prediction and extension methodologies for ship structures are also presented.

Time-Based Structural Deterioration Under Fatigue
and Corrosion

Time-based damage deterioration mechanisms, such as fatigue and corrosion, are

among the major threats affecting ship performance and safety. Due to this deteri-

oration, ship structures require frequent inspections and repairs. Ship deterioration

occurs progressively as a result of normal ship operation in the surrounding

environment (ISSC 2009). Corrosion can lead to thickness reduction in the affected

areas which can ultimately reduce the hull bending capacity. Fatigue, on the other

hand, results in cracks that may cause sudden fracture and drastically reduce the

structural reliability. These aging effects, when combined with rough sea condi-

tions, may lead to catastrophic ship failures. Generally, time-dependent deteriora-

tion initiation and propagation processes are highly uncertain. This adds challenges

to the performance assessment and service life estimation. The time-dependent

damage level with the effect of uncertainties is shown schematically in Fig. 1. As

shown, at any point in time, the damage level can be described by its probability

density function (PDF). Additionally, the time required to reach certain damage

level carries significant uncertainty.

Maintenance actions applied throughout the service life of ships can either

reduce the damage level (e.g., by replacing the damaged component), or prevent

further damage propagation for a certain period of time (e.g., by applying corrosion

coatings) (Kim et al. 2013). Both maintenance types, denoted as M1 and M2,

respectively, result in an extension in the service life. The effect of both mainte-

nance types on the time-dependent damage level is shown in Fig. 2.

Predicting fatigue and corrosion damage initiation and propagation has been an

active research topic for decades. As a result, several analytical models have been

proposed for predicting the structural capacity and service life. The next sections

present the commonly used fatigue and corrosion damage prediction models. Later

in this chapter, probabilistic performance assessment considering uncertainties

associated with these models will be discussed.
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Corrosion in Ships

Several types of corrosion wastage in mild and low alloy steels in marine environ-

ments exist, such as uniform (general), pitting, stress, and galvanic corrosion. For

corrosion management and control, both localized and general corrosion must be

considered. The former can cause oil or gas leaks, while the latter, which spreads

over the surface of the affected area, is more likely to lead to structural strength

problems. Stress corrosion occurs in some alloys when exposed to corrosive

environments while mechanically stressed. Furthermore, when two different metals

are physically connected, galvanic accelerated corrosion occurs in the less noble

metal (ISSC 2009). Factors affecting marine immersion corrosion include

the type of structural material, corrosion protection method (e.g., coating, cathodic

Fig. 1 Damage initiation and propagation under uncertainty

Fig. 2 Effect of maintenance on the damage level and service life
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protection), type of cargo or stored material, cycles of loading/unloading of cargo or

stored material, humidity, and temperature (ISSC 2006).

In recent years, extensive work has been performed to investigate different

parameters affecting general corrosion wastage and to formulate corrosion wastage

prediction models (Paik et al. 2003a, b; Melchers 2002, 2003a, b, 2004c, 2006;

Guedes Soares and Garbatov 1999; Guedes Soares et al. 2005). For example,

Guedes Soares et al. (2005) investigated the influence of salt content, water

temperature, dissolved oxygen, PH value, and water velocity on the general corro-

sion rate and included these effects in the nonlinear corrosion wastage model

proposed in Guedes Soares and Garbatov (1999). Their model consists of three

corrosion loss stages. The first is penetration of the water particles through the

corrosion coating, the second is the formation of the two-dimensional monolayer

oxide film, and the third is the start and growth of the three-dimensional oxide

nuclei. In this model, the first two stages represent the coating effectiveness period

where the corrosion depth at any time t can be found as (Guedes Soares et al. 2005)

d tð Þ ¼ d1 1� e
� t�τcð Þ

τt

� �
for t > τc (1a)

d tð Þ ¼ 0 for t � τc (1b)

where d(t) is the time-dependent corrosion depth and d1, τc, and τt are model

parameters depending on the coating type and operational and environmental

conditions.

Melchers (2003a, b, 2006) developed a corrosion wastage prediction model

consisting of the following phases of average corrosion loss: (a) short-term initial

phase in which the corrosion is governed by the chemical kinetics,

(b) approximated linear function dependent on the oxygen diffusion from surround-

ing water, (c) nonlinear function governed by oxygen diffusion through corrosion

product layer, (d) anaerobic bacterial corrosion phase, and (e) linearly approxi-

mated long-term anaerobic bacterial corrosion phase.

Research work has also been performed to model pitting corrosion. However, the

scarcity of corrosion depth measurements for this type of corrosion compared to the

general corrosion poses additional challenges. In this context, Melchers (2004a, b)

proposed a multiphase model for pitting corrosion loss as a function of exposure time.

Due to the importance of the corrosion assessment and repair topic, multiple

classification societies issued recommendations and regulations for corrosion coat-

ing, prevention, inspection, and repair of corroded steel ships (e.g., DNV 1998,

1999; IACS 2003). Corrosion wastage prediction is a process covered by various

uncertainties; thus, it has to be conducted probabilistically. Although many corro-

sion models are available, these models are based on statistical data collected from

different vessels; as new construction techniques and materials emerge, these

models should be updated and refined.

Time-dependent corrosion losses have an effect on the structural resistance of a

ship and should be considered in its life-cycle performance assessment (Kwon and

Frangopol 2012a). Corrosion losses may cause reduction in the hull structural
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resistance, reduction in the local strength, and increase in the fatigue crack propa-

gation within the affected areas. Considering general corrosion, multiple studies

have been performed to predict the time-variant hull structural resistance by

estimating the loss in the hull girder section modulus due to corrosion (e.g.,

Ayyub et al. 2000; Paik and Wang 2003; Okasha et al. 2010; Decò et al. 2011,

2012). Figure 3 shows the time-variant reliability index of a steel ship studied in

Frangopol and Okasha (2010). As shown, the performance of the ship drops

significantly due to corrosion. It is observed that most of the analytical studies

tend to overestimate the effect of corrosion on the hull girder strength. In an attempt

to address this point, Wang et al. (2008) presented a statistical study showing the

loss in the hull girder section modulus in a database of 222 steel ships. This type of

analysis can support the verification and calibration of the hull resistance prediction

models.

Aluminum alloys used in ship construction, mainly 5xxx-series alloys, have

excellent corrosion resistance in marine environments. Part of the corrosion resis-

tance of aluminum is attributed to the formation of a thin oxide layer which

prevents the core metal from any further corrosion. This layer is hard and renews

itself almost instantly in case of any mechanical abrasion. It is very stable under

most conditions except for extreme PH values where it may lose its stability;

additionally, the self-renewal may not be fast enough to prevent further corrosion.

However, since aluminum is a very active metal, it is highly prone to galvanic

corrosion if not properly isolated. Galvanic action, especially at areas where both

steel and aluminum are connected, makes the aluminum vulnerable to corrosion.

The corrosion damage in this case may be very fast (ISSC 2009). An example of

this type of problem was observed in the USS Independence LCS-2, a 127.4 m,

high-speed trimaran capable of speeds up to 44 knots, in which corrosion initiated at

the locations where the aluminum hull was in contact with the steel propulsion

system (O’Rourke 2012). However, this mode of corrosion can be easily prevented

by the use of appropriate isolations or cathodic protection systems.

Another mode of deterioration of aluminum ships is sensitization, which is a

degradation mode that occurs in high-magnesium aluminum alloys (e.g., 5083,

Fig. 3 Effect of corrosion on

the time-variant performance

(Adapted from Frangopol and

Okasha (2010))
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5086, 5456, and 5383) when exposed to elevated temperatures (Sielski 2007).

Under certain conditions, these alloys may suffer intergranular corrosion due to

the precipitation of the beta-phase (Mg2Al3) on the grain boundaries. This precip-

itate is electromechanically more active than the aluminum matrix and can cause

further intergranular corrosion with the continued grain boundary migration. Fur-

thermore, this process increases the material susceptibility to stress corrosion

cracking, exfoliation, and decreased ductility. Recent studies were carried out to

find the time required to sensitize the material based on the thermal profile of the

ship. However, this is directly related to the location of the plate within the ship as it

is heavily dependent on the stress profile acting on the studied location (Sielski

et al. 2012).

Fatigue in Steel and Aluminum Ships

Fatigue is one of the major stressors affecting ship structures. Although many

classification societies issued codes and regulations for the proper fatigue design

and assessment, ship structures still suffer fatigue cracking. Fatigue is the process of

damage accumulation caused by repeated fluctuating loads. Fatigue damage can

exist in mild environments as well as aggressive ones (i.e., corrosion-induced

fatigue). For a component subjected to elastic stress fluctuations, fatigue damage

may accumulate at regions of stress concentration, where the local stress exceeds

the yield limit of the material (Barsom and Rolfe 1999). Stress concentrations can

occur in a component due to the presence of initial flaws in the material, welding

process, or fabrication. Initiation and propagation of cracks in the plastic localized

region occur due to the cumulative damage acting over a certain number of stress

fluctuations. These cracks can eventually cause the fracture of the component. This

process can be minimized by adopting better details, avoiding stress concentrations,

and decreasing the number of welded attachments, among others. Currently, design

specifications give the guidelines for maximizing the fatigue life and offer the

means for selecting details associated with high fatigue resistance (Fisher

et al. 1998).

Fatigue for ship structures can generally be assessed by the S-N (i.e., stress-life)

approach and the fracture mechanics approach (also known as the crack growth

approach). The former gives the relationship between the stress acting on the detail

and the predicted number of stress cycles to failure, while the latter provides a

theoretical model to calculate the crack size in relation to the number of cycles

acting on the detail. A brief discussion on both approaches is provided in the next

subsections.

The S-N Approach
In the S-N approach, the fatigue life of a certain detail is determined in a laboratory

test by applying constant or variable amplitude stress cycles to the detail until a

crack with predefined size grows through the detail. The test is repeated for several

specimens and for different stress amplitudes. Next, the stress-range amplitude is
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plotted versus the number of cycles to failure in a logarithmic scale plot, as shown

in Fig. 4, and a linear or multi-linear fitting of the data is performed yielding the

mean S-N lines. Due to the variability in test results, a design line is usually defined

by codes in which the mean line is shifted to the left by a certain amount sufficient

to achieve a satisfactory probability of survival for designed structures. For exam-

ple, the AASHTO LRFD design specifications (AASHTO 2010) shift the mean line

to the left by two standard deviations indicating that approximately 95 % of the

specimens would survive the associated number of cycles (Fisher et al. 1998). The

resulting S-N relationship of a detail can be expressed, for a single-slope S-N
relation, as

S ¼ A

N

� �1
m

(2)

in which S is the stress range (i.e., fatigue resistance), A is a fatigue detail coefficient

for each category, N is the number of cycles, and m is a material constant defining

the value of the slope of the S-N line.

Ship details are normally subjected to variable amplitude stress-range cycles;

hence, an equivalent constant amplitude stress range is needed for fatigue assess-

ment. Miner’s rule (Miner 1945) is widely used for ship structures to quantify the

fatigue damage accumulation at details subjected to variable amplitude loading

with a known stress-range histogram. By assuming a linear damage accumulation,

Miner’s damage accumulation index D is

D ¼
Xnss
i¼1

ni
Ni

(3)

where nss is the number of stress-range bins in a stress-range histogram, ni is the
number of stress cycles in the ith bin with stress range Si, and Ni is the number of

cycles to failure under the stress range Si. According to Miner’s damage

Fig. 4 S-N mean and design

lines
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accumulation rule, the failure of the detail occurs when D¼ 1.0. However, research

showed that this value is subjected to significant variability, and, up to date, no

value is widely accepted by all research communities.

Based on Miner’s damage accumulation rule, an equivalent constant amplitude

stress range can be defined as

Sre ¼
Xnss
i¼1

ni
NT

� Sim
" #1

m

(4)

where NT ¼ Pnss
i¼1

ni � Sre can be alternatively calculated using the PDF fS(s) of the

stress range S as

Sre ¼
ð1
0

sm1 � f S sð Þ � ds
2
4

3
5

1
m1

(5)

For ship details, the stress range can follow lognormal, Rayleigh, or Weibull

distributions. The three-parameter PDFs of these distributions, including the cutoff

threshold sc, are expressed, respectively, as

f S sð Þ ¼ 1

s� scð Þ � ζ � ffiffiffiffiffi
2π

p � exp � 1

2
� ln s� scð Þ � λ

ζ

� �2
" #

(6)

f S sð Þ ¼ s� sc

S2ro

� �
� exp � 1

2

s� sc
Sro

� �2
" #

(7)

f S sð Þ ¼ κ

α
� s� sc

α

� �κ�1

� exp � s� sc
α

� �κh i
(8)

where s > sc, α, and κ are the scale and shape parameters of the Weibull distribu-

tion, respectively; λ and ζ are the location parameter and scale parameters for the

lognormal distribution, respectively; and Sro is the mode of the Rayleigh distribu-

tion. Needless to say, depending on the stress-range bin histogram, a two-parameter

PDF can also be used considering sc ¼ 0.

Using the equivalent constant amplitude stress range, fatigue life, measured as

the number of cycles to failure, is calculated as

N ¼ A

Smre
(9)

This number of cycles can be used in conjunction with the average annual

number of cycles Navg to estimate the fatigue life in years using the following

equation:
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t yearsð Þ ¼ N

Navg
(10)

The S-N approach has been widely used for fatigue assessment of steel and

aluminum ship details. Multiple design specifications and research reports are

available for fatigue design and assessment of ship details (e.g., BS 5400 1980;

ABS 2010; DNV 1997, 2010; Eurocode 3 2010; Eurocode 9 2009). Since the

estimation of the resistance and demand terms in the S-N approach is straightfor-

ward, this approach has been successfully used for the reliability-based fatigue

assessment of ships. In this context, Ayyub et al. (2002) proposed reliability-based

design guidelines for fatigue of ship details. They briefly discussed the available

fatigue assessment methods for ship structures and their associated parameters.

Kwon et al. (2013) conducted fatigue reliability assessment, based on SHM data, by

estimating the probabilistic lifetime sea loads for high-speed ship structures. The

British Standards S-N relationships (BS 5400 1980) were used in their approach.

The Fracture Mechanics Approach
Although the S-N approach is widely used for the fatigue assessment of ships, it

cannot be used to study the crack condition at a given detail since it does not

provide a direct relation between the crack size and the number of cycles affecting

the detail. The approach based on fracture mechanics, on the other hand, can be

used to study the crack conditions and stability in a damaged detail. In this method,

the stresses near the crack tip, which are responsible for the crack propagation, are

related to the stress intensity factor K. Linear elastic fracture mechanics (LEFM)

can be applied through Paris’ equation (Paris and Erdogan 1963) for assessing

fatigue behavior of steel details. This equation relates the crack growth rate to the

range of the stress intensity factor as follows:

da

dN
¼ C � ΔKð Þm (11)

where a is the crack size, N is the number of cycles, andΔK is the range of the stress

intensity factor. C and m are material parameters. The values for C and m can be

found through experimental reports or code specifications. For example, the British

Standards BS 7910 (2005) provides the values for C and m of 2.3 � 10�12 and 3.0,

respectively, using the units of mm/cycle for da/dN and N/mm3/2 for ΔK, for
simplified assessment of steel details operating in marine environment. The range

of the stress intensity factor can be expressed as

ΔK ¼ Y að Þ � S � ffiffiffiffiffi
πa

p
(12)

where S is the stress range and Y(a) is a correction factor which depends on the

crack orientation and shape. This correction factor takes into account the effects of

the elliptical crack shape, free surface, finite width (or thickness), and nonuniform

stress acting on the crack. More detailed empirical and exact solutions for these

correction factors can be found in Tada et al. (2000).
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Using Eqs. 11 and 12, the number of cycles associated with a growth in the crack

size from an initial size of ao to a size of at can be calculated as

N ¼ 1

C � Sm �
ðat
ao

1

Y að Þ � ffiffiffiffiffi
πa

pð Þm da (13)

By setting at in Eq. 13 to be equal to the critical crack size af, the number of

cycles to failure of the detail is obtained. This approach can also be implemented in

the probabilistic fatigue life assessment and inspection and monitoring planning of

ships. For instance, Kim and Frangopol (2011c) used this approach to find the

optimum inspection times which minimize the damage detection delay in steel ship

details.

Probabilistic Performance Assessment and Prediction

Probabilistic performance assessment methods are suitable for ships due to the

presence of various uncertainties associated with sea loading, ship operation,

damage initiation and propagation, and their impact on the structural resistance.

Several probabilistic approaches are available to assess the structural performance

(e.g., Ayyub et al. 2000; Okasha and Frangopol 2010b; Okasha et al. 2011; Kim and

Frangopol 2011a, b, c; Kwon and Frangopol 2012b; Decò and Frangopol 2013).

Some of them use solely the time-variant damage level, quantified by simulation

techniques, to assess the performance, while others use probabilistic performance

indicators such as reliability, redundancy, and risk. Each of these probabilistic

performance indicators represents a distinctive structural feature that can be useful

for performance assessment and life-cycle management under uncertainty. In the

next example, probabilistic fatigue life estimation for a steel ship detail is

performed using Monte Carlo simulation. Later in this section, structural reliability

analysis is briefly discussed and an example of the reliability assessment and

maintenance scheduling is presented.

Example 1 Fatigue cracking is a major safety concern for ship structures. Proba-

bilistic simulation methods can be used to predict the fatigue damage propagation

and provide an indication about the expected service life of the investigated

location. As an example, a welded joint between the bottom plate and longitudinal

stiffener in the hull structure of a steel ship, shown in Fig. 5, is considered. During

the routine inspection, a crack with a mean size of 2.0 mm was found to initiate

from the stiffener to bottom plate weld and was propagating transversally as shown

in Fig. 5.

Crack propagation for such detail can be studied using Eq. 13 after determining

the parameters C, m, ao, and S. Moreover, if the average annual number of cycles

Navg is known, the crack length over time can be found. For this example, the

fatigue crack growth parameters C, m, and ao are assumed to follow lognormal

distributions, whereas the stress range is treated as a random variable following a
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Weibull distribution. The mean value of the parameter C is assumed 3.54 � 10�11,

using units of MPa for stress range and mm for crack size (this translates to 1.77 �
10�9 using units of ksi for stress and in for crack size), and m is assumed 2.54

(Dobson et al. 1983). The descriptors of the variables associated with the crack

growth are given in Table 1. In this example, the geometric function Y(a) is

assumed to be one (Akpan et al. 2002).

For this detail, knowing the average number of cycles enables calculating the

time associated with crack growth from the initial size ao to a given size at as

t yearsð Þ ¼ 1

Navg � C � Sm �
ðat
ao

1

Y að Þ � ffiffiffiffiffi
πa

pð Þm da (14)

Considering the final crack size to be 50 mm, the time associated with the growth

from 2.0 to 50 mm can be found using Monte Carlo simulation in which the random

variables are represented by their respective PDFs. For this example, a Monte Carlo

simulation with 100,000 samples yields the histogram shown in Fig. 6 for the time

Fig. 5 Critical fatigue detail

Table 1 Random variables and deterministic parameters associated with the crack growth model

Variable

Notation

(units) Mean value

Coefficient of

variation

Distribution

type

Material crack growth

parameter

C 3.54 � 10�11 0.3 Lognormal

Material crack growth

exponent

m 2.54 – Deterministic

Initial crack size ao (mm) 2.0 0.2 Lognormal

Daily number of cycles Navg (cycles/

year)

1.0 � 106 0.3 Lognormal

Stress range S (MPa) 30 0.1 Weibull
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to reach the final crack size. Additionally, as shown in Fig. 7, the simulation can be

used to find the mean time for the crack to grow from the initial size to various crack

sizes. Inspection and repair actions can be subsequently planned based on the

required target safety levels.

Probabilistic performance indicators, such as the reliability index, provide mea-

sures for the structural reliability while considering the aforementioned uncertainties.

Thus, they can be used to predict the service life and plan for future inspection,

maintenance, and monitoring actions (Frangopol and Messervey 2009a, b; Frangopol

and Kim 2011). Figure 8 shows schematically the probabilistic performance profile of

a structure including effects of aging, sudden damage, and repair actions. Two

maintenance types can be defined based on their application time and the performance

Fig. 6 Histogram of time

required to reach a crack size

of 50 mm

Fig. 7 Mean time to reach

various crack sizes
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level at this time, namely, essential maintenance (EM) and preventive maintenance

(PM). EM is performance based, in which the maintenance is performed when the

performance indicator reaches its allowable threshold. In contrast, PM is usually time

based in that it is typically applied at prescribed instants over the life cycle of the

structure. PM can be performed either to delay the damage propagation for an

effective period of time or to slightly improve the performance of the structure.

EM, on the other hand, should significantly improve the performance of the structure

in order to produce a substantial extension in the service life.

Structural Reliability Analysis
In general, the reliability of a structural component can be related to the probability

of failure, defined as the probability of violating a certain limit state g(X) ¼ 0. The

performance function g(X) may be defined as the safety margin

g Xð Þ ¼ R� S (15)

where R and S are the random capacity and demand of the structure, respectively,

and X is the random variable vector. Based on the considered limit state, the

probability of failure Pf can be defined as

Pf ¼ P g Xð Þ � 0ð Þ (16)

The PDFs of R, S, and safety margin (i.e., R � S) as well as the probability of

failure Pf are represented in Fig. 9. Thus, the reliability index β can be defined as

β ¼ Φ�1 1� Pf

� �
(17)

where Φ�1(∙) denotes the inverse standard normal cumulative distribution function

(CDF).

For cases where R and S are statistically independent normally or lognormally

distributed random variables, exact expressions for calculating the probability of

failure can be formulated (see, e.g., Ang and Tang 1984). For more complex

Fig. 8 Probabilistic performance index profile including effects aging, maintenance, and sudden

damage
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problems, where R and/or S follow a PDF other than normal or lognormal, efficient

reliability techniques can be used to evaluate the component reliability, such as the

first-order reliability method (FORM), second-order reliability method (SORM),

and Monte Carlo simulation. FORM and SORM have been widely employed

in many structural reliability problems and various software packages, such as

RELSYS (Estes and Frangopol 1998), to calculate the reliability indices of structural

components and systems.

Example 2 To illustrate the reliability concepts for fatigue assessment of steel ship

details, consider a steel ship detail subjected to the stress-range distribution shown

in Fig. 10 with an average annual number of cycles of 1.5 � 106. Based on the S-N
approach of the BS 5400 (1980) specifications, the detail is classified under fatigue

category F of this code.

Fig. 9 PDFs of resistance, demand, and safety margin

Fig. 10 Probability density

of the stress range affecting

the ship detail

18 Damage to Ship Structures Under Uncertainty: Evaluation and Prediction 579



The material constant m for this detail is 3.0, while the constant A (see Eq. 2) is

assumed to follow a lognormal distribution with mean of 6.29 � 1011 MPa3 and a

coefficient of variation of 0.54 (Kwon et al. 2013). Based on Eqs. 5 and 8, the

equivalent constant amplitude stress range Sre is 17.64 MPa. To account for

uncertainty in this value, Sre is assumed to follow a lognormal distribution with

mean 17.64 MPa and coefficient of variation 0.1.

To study the fatigue reliability of the detail, a performance function can be

defined as the safety margin

g tð Þ ¼ Δ� D tð Þ (18)

where Δ ¼ Miner’s critical damage accumulation index, indicating the allowable

accumulated damage and assumed lognormal distributed with mean 1.0 and coef-

ficient of variation (COV) 0.3 (Wirsching 1984); D(t) ¼ Miner’s damage accumu-

lation index, which can be expressed as

D tð Þ ¼ N tð Þ
A

� Smre (19)

Based on Eqs. 18 and 19 and assuming that the random variables Sre, A, and Δ
are also lognormally distributed, the fatigue reliability index β can be derived as

(Kwon and Frangopol 2010)

β tð Þ ¼ λΔ þ λA � m � λSre � ln N tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2Δ þ ζ2A þ m � ζSre

� �2q (20)

where λ and ζ are the parameters associated with different random variables. Using

Eq. 20, the reliability profile of the detail can be found as shown in Fig. 11. The

fatigue life of the detail can be calculated by setting a threshold for the reliability

index. For ship details subjected to fatigue, a reliability index threshold ranging

Fig. 11 Reliability index

without maintenance
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from 2.0 to 4.0 is appropriate (Mansour et al. 1996). For this example, this threshold

is set to be 3.0 yielding a fatigue life without maintenance of 9.4 years.

Threshold-based EM, in which the performance is restored to the initial level,

can be applied to extend the service life. As shown in Fig. 12, essential maintenance

can be performed at 9.4 and 18.8 years yielding a total service life of 28.2 years

(i.e., life extension of 18.8 years).

Although the maintenance planning provided in this example is straightforward,

other cases of maintenance optimization are not as simple. This is especially true if

multiple maintenance actions of varying types are applied to the structure specif-

ically when each of them yields its own service life extension. In this case,

probabilistic optimization techniques can be used efficiently to solve such prob-

lems. The topic of maintenance optimization is discussed in Okasha and Frangopol

(2010a) and Kim et al. (2013).

Damage Evaluation Using NDT and SHM

NDT-based inspection plays a great role in the damage identification and assess-

ment of ship structures. Up to date, the most widely adopted damage evaluation

method is visual inspection. This is mainly due to the cost-effectiveness and the

ease of application. However, successful visual inspection is challenged by multiple

factors including the level of inspector’s experience and accessibility problems due

to fire protection and corrosion coating. On the other hand, NDT methods, such as

ultrasonic inspection, face more challenges arising from the large scale of the

structure and number of locations requiring inspection. In addition, the exact

location of damage is generally required to apply these inspection methods,

which is generally not the case. Research in the field of NDT methods that can

identify the location and damage level is very active. These methods mostly rely on

installing sensors that continuously record the structural response or emissions and

attempt to identify and localize the damage based on the recorded data. These

systems include regular strain gages, accelerometers, and acoustic emission sen-

sors. Information from such systems can also be used to update and calibrate

Fig. 12 Service life with EM

maintenance
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performance prediction and damage propagation models to achieve more reliable

and accurate performance assessment process (Zhu and Frangopol 2013a, b). In the

next subsection, the recent developments in damage identification using the acous-

tic emissions and SHM are briefly discussed.

Damage Identification Using Acoustic Emission Technique

Within the last decade, acoustic emission technique has received considerable

attention for its use in the fatigue and corrosion damage detection and localization

in ships. In this approach, stress waves emitted by the material during

sudden changes in the internal structure are recorded using special sensors and

used to detect structural damage such as crack initiation and growth, fracture,

plastic deformation, corrosion, and stress corrosion cracking, among others

(Anastasopoulos et al. 2009). In general, a uniform steel specimen with no stress

raisers will start emitting acoustic emissions when stressed to a level of 60 % of its

yield stress (Anastasopoulos et al. 2009). During normal operation of the ship, these

emissions can be continuously detected and recorded such that structural damage

can be monitored. This approach has been successfully applied to different types of

structures such as bridges, pressure vessels, and pipelines. Recently, research pro-

grams in Europe (see, e.g., Baran et al. 2012; Tscheliesnig 2006) and the United

States (see, e.g., Wang et al. 2010) have shown the feasibility of such an approach in

detecting corrosion and crack damage in ship structures. In these research pro-

grams, the results of controlled laboratory testing of specimens subjected to fatigue

and accelerated corrosion, as well as oil tankers showed the feasibility of the

approach. Since acoustic emission signals can be very weak, especially for corro-

sion detection, damage detection may be significantly affected by the noise arising

from the normal ship operation. The research in this area also aimed to evaluate and

isolate the noise under real operation conditions. Special pattern recognition tech-

niques can be used to filter the noise (Baran et al. 2012). Multiple damage detection

approaches have been developed, along with their necessary hardware. Some

approaches use immersed sensors to detect the acoustic waves travelling through

liquids in tankers, while others use sensors attached directly to the structure.

The results of such research programs show that using acoustic emissions for the

continuous real-time monitoring of damage due to fatigue or corrosion is a prom-

ising approach.

Application of SHM for Damage Identification in Ships

A parallel effort has been running to develop approaches which can support the use

of SHM systems for damage detection in ships. SHM systems employ various types

of sensors, accelerometers, and strain gages to record the structural response during

normal ship operation. These systems can be used on multiple fronts such as the

validation of design assumptions, monitoring the structural response under normal

582 D.M. Frangopol and M. Soliman



operation, damage detection and diagnosis, prognosis, and useful life estimation

(Salvino and Brady 2008). Validation of the design assumptions is performed

typically after the ship is constructed. In this process, the ship is operated through

predesigned seakeeping trial runs subjecting the ship to various combinations of

operational conditions in terms of speed, sea state, and heading angles to ensure that

the actual structural responses are within the design and allowable limits. Informa-

tion from seakeeping trials may also be used to adjust the safe operational profile by

removing some restrictive operational condition if the monitoring shows an accept-

able response under these conditions (Salvino and Collette 2009). On the other

hand, seakeeping trial data can be used to reduce the likelihood of the ship damage

under conditions that were not shown to cause damage during design phase.

Additionally, SHM systems can be also used to evaluate the integrity and vibration

levels of the propulsion systems of ships (Brady 2004).

After the initial seakeeping trials, the monitoring system can be used for the

continuous health assessment of the ship systems. Various high-speed ships are

equipped with accelerometers that are always online and can warn the crew

when the acceleration levels exceed the allowable threshold. Exceedance can

occur due to slamming events and the crew can reduce the speed accordingly

(Salvino and Collette 2009). The current research in this area aims to develop

monitoring systems, acquisition systems, and the supporting software that is

capable of providing real-time information to the ship crew regarding the structural

system integrity and response under ship operation (Hess 2007; Salvino and

Brady 2008; Swartz et al. 2012). Moreover, such a system should be able to enhance

the ability for damage diagnosis and prognosis. These systems provide the

possibility to identify damage at its early stages and support the scheduling of

inspection and maintenance activities. SHM information can be used to aid in the

detection of damage in the areas difficult to access. Moreover, it can be performed

while the ship is in service; this minimizes the disturbance of ship operation and

extends the operational time of the vessel. Up to date, the most common damage

prognosis based on SHM data is applied in order to quantify fatigue damage in ship

structures. This is performed by recording the strains at the monitored locations and

converting those strains to stresses, and by using the appropriate classification

guidelines, the fatigue life can be found using Miner’s damage accumulation rule

(Hess 2007). In this approach, the stresses and the cycle count are used to find

the percentage of the consumed life under the vessel operational profile and

find the remaining fatigue life. However, these prognosis methods cannot be

directly used to study the crack conditions at a damaged location. Additionally,

they cannot be used to assess other damage mechanisms such as corrosion or

damage due to slamming.

Damage detection techniques based on SHM such as the vibration-based

methods are under continuous development for use in ship structures. Vibration-

based methods use advanced signal processing techniques such as the empirical

mode decomposition and Hilbert-Huang transform to detect the damage by deter-

mining the change in the dynamic properties of the structure. This is based on the

fact that a change in the mode shapes or frequencies would suggest that a change
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has occurred to the physical properties of the structure (Salvino and Brady 2008).

Due to the inherent randomness associated with the monitoring outcomes, it is

necessary to integrate those uncertainties in the damage detection technique

(Okasha et al. 2011). Methods such as vector autoregressive modeling can be

used for the detection and localization of damage in high-speed naval vessels.

In this method, the vibration signal obtained from the structure as a reference

signal is modeled and this model is fitted to the measured structural response.

The parameters of this model are the damage-sensitive features (Okasha

et al. 2011). The model is assumed to provide an accurate prediction of the

structural response; thus, an increase in the difference between the model data

and the data measured in the future is interpreted as an indication of structural

damage. Mattson and Pandit (2006) proposed a vector-based model which allows a

signal to be described in terms of its own past values as well as the past values of

other sensors.

A measure of the goodness of fit can be used to select the order of the

autoregressive model which is a function of the predicted signal and the

measured one. An application of such method was conducted by Mattson and

Pandit (2006) on an experimental setup. Additionally, the feasibility of applying

this model to ships has been tested in Okasha et al. (2011). Although the damage

detection using vibration-based statistical methods is found to be a promising

approach, more research is still required for verification, validation, and statistical

quantification of such models in order to be reliably applied to SHM of ship

structures.

Conclusions

This chapter briefly discussed the damage mechanisms affecting steel and alumi-

num ships with emphasis on time-dependent effects such as fatigue and corrosion.

Different damage prediction models for fatigue and corrosion were briefly

presented in addition to various sources of uncertainty associated with these

deteriorating mechanisms. Additionally, damage identification through NDE

methods and SHM was discussed.

The presence of uncertainties associated with the ship loading, operational

conditions, and damage prediction models calls for the use of probabilistic perfor-

mance indicators in the damage prediction process. Such indicators provide rational

quantification of the ship performance and safety while considering various sources

of randomness. Moreover, those performance indicators can be effectively inte-

grated within the life-cycle management framework to support decision making

regarding future inspection and maintenance activities.

Many of the damage evaluation and prediction techniques for marine structures,

as well as life-cycle estimation, prediction, and extension, are also used for civil

structures such as bridges and buildings (Frangopol and Liu 2007; Frangopol

et al. 2008a, b; Frangopol and Okasha 2009; Kwon and Frangopol 2011; Strauss

et al. 2008; Soliman et al. 2013; Okasha and Frangopol 2012).
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Abstract

This chapter introduces two elasto-dynamic damage evaluation methods for

bridge structures without traffic blocking. The first method identifies damage

parameters from natural frequencies and mode shapes. Since this is an ill-posed

problem, the identified damage parameters from all measurements could be
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unreliable due to measurement noises. A feasible solution to this problem is using

only part of natural frequencies and mode shape points in damage identification.

For this purpose, an algorithm based on well-posedness analysis is proposed to

select the optimal combination of natural frequencies and mode shape points.

Another method is called the Tap-scan damage detection method, which is

featured by extracting bridge damage information from the acceleration of a

passing vehicle mounted with a well-controlled tapping device. The theoretical

basis and hardware setup are presented in detail. In addition, several on-site

experiments are given to illustrate its application potential to real bridge

structures.

The main advantage of these two methods is not requiring traffic blocking

during bridge evaluation. Besides, since they extract damage information from

the self-comparison of bridge properties among different sections, they do not

require the reference state of the intact bridge. These two features are crucial to

their practical implementations.

Introduction

The health condition of bridge structures is the basis of their maintenance and

prognosis (Okasha and Frangopol 2012). Besides visual inspection, the bridge

condition is usually obtained from the structural dynamic properties, which are

easy to acquire in practice (Farrar et al. 2001). However, traditional bridge evalu-

ation methods, such as forced vibration tests by truck loadings or shakers and free

vibration tests (Cunha et al. 2013), etc., require traffic blocking during bridge

testing. This greatly limits their application to bridges that require real-time mon-

itoring or are located at busy transportation links. For example, among 1,855 urban

bridges in Beijing City (EPS Net 2010), only very few of them are filtered out for

detailed testing and rehabilitation each year. The filtering work is mainly conducted

by visual inspection because it is not permitted to stop the traffic flow in such a city

suffered from severe traffic jam. Under this circumstance, efficient bridge evalua-

tion methods free of traffic blocking are highly desired to reduce the labor cost and

improve the inspection quality.

How to deal with the traffic loading is a key point to the success of such a

method. The general answer could be very simple: either takes advantage of it or

just avoids it. But the detailed strategy needs more consideration. To address this

point, this chapter will introduce two relevant methods.

The first method detects the damage from structural dynamic properties, such as

natural frequencies and mode shapes, which can be obtained by the output-only

modal identification methods based on ambient excitations, such as wind and traffic

flow (Deraemaeker et al. 2008; Gentile and Saisi 2011; Cunha et al. 2013). This

method assumes the excitation input is a zero-mean Gaussian white noise and the

bridge structure acts like a signal filter. From the output of this filter, one can
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extract the structural dynamic properties that are related with damage, such as

the change of stiffness, mass, or damping. Then, the occurrence of damage can be

inferred from the difference between the dynamic properties of current state and

those of the intact state (Salawu 1997; Farrar et al. 2001; Carden and Fanning 2004;

Fan and Qiao 2011). However, since natural frequencies and mode shapes are

global properties of a structure, while damage is a local phenomenon, lower natural

frequencies and mode shapes could not be sensitive to damage (Farrar and Jauregui

1998; Chang et al. 2003; Carden and Fanning 2004; Xiang and Zhang 2009; Fan

and Qiao 2011), so that the damage information obtained from these properties

could be unreliable when measurement noises were presented. To ensure the

success of damage identification, it was recommended to introduce some local

information (Chang et al. 2003; Carden and Fanning 2004; Xiang and Zhang 2009).

For example, the method introduced in section “Damage Detection from Selected

Frequencies and Mode Shape Points” of this chapter just takes the effective

stiffness of a bridge subdivision as the damage parameter, which is identified by

selected natural frequencies and part of mode shape points (Xiang et al. 2012). The

criterion of how to select the proper natural frequencies and mode shape points is

established from the well-posedness analysis of the parameter identification

procedure.

Another method is inspired by the hunting behavior of woodpeckers who detect

worms under the bark by tapping trunks with their beaks. This sounds like the very

traditional tap test, which can detect near-surface voids, debounding, and signifi-

cant cracks even in noisy environment. However, tap test results based on sound

difference could be very subjective and imprecise (Chang et al. 2003). This is

probably because every strike of the hammer is different and the feeling of sound is

operator dependent. Therefore, people tried to improve this method based on

theoretical investigations. The first theory was given by Cawley and Adams

(1988), who concluded that the local impedance of structures determines the impact

force between the hammer and the structure surface, so that the change of impact

force is the reason for the different tapping sounds when good and flawed regions

are tested. Based on this theory, damage can be identified by comparing either the

duration of the impact force or the area information of the force spectrum with

intact ones. Recently, Xiang et al. (2010) pointed out that the acceleration of the

passing vehicle with a tapping device contains the information of the structural

local impedance of a bridge. Thus, the damage can be represented by its spectrum

pattern. From the sensitivity analysis, it is recommended that the most favorable

frequency of tapping force should be close to bridge natural frequencies. If this

frequency was higher than the frequency band of environment noises, the vehicle

acceleration spectrum at the interested frequency band could be free of environ-

mental interference. In this way, the bridge condition can be efficiently evaluated

without traffic blocking. This method is called the Tap-scan damage detection

method, which will be introduced in section “The Tap-Scan Damage Detection

Method” of this chapter.
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Damage Detection from Selected Frequencies and Mode Shape
Points

The Damage Detection Method

Although any change of stiffness, mass, damping, strength, etc., can be regarded as

damage, here concerns only the first two factors, which cover most damage

scenarios and are easy to evaluate. Since the stiffness and the mass cannot be

simultaneously identified through natural frequencies and mode shapes (Baruch

1997), one can represent the damage as the change of the effective stiffness while

keeping the density and geometry unchanged.

To increase the sensitivity of dynamic properties to local damage, the bridge is

subdivided into several regions and the effective stiffness of each region is identi-

fied from a few selected frequencies and a portion of mode shape points. This

approach can be formulated as a least-squares estimation problem:

Minimize RTR
Subject to : K pð Þ � ω2

i pð ÞM� �
Xi pð Þ ¼ 0 i ¼ 1, 2, . . .

(1)

where p is the effective stiffness parameter, which determines the ith natural

angular frequency ωi and the corresponding mode shape Xi; K and M are stiffness

and mass matrices, respectively; the residual vector is defined as R ¼ Sω 0

0 SX

� �
ω� ω
X� X

� �
, with ω and ω be the calculated and measured natural frequency

vectors, X ¼ (X1
T, X2

T, . . ., XN
T)T and X be the calculated and measured vectors of

all mode shapes, respectively; Sω and SX are selective matrices that determine the

interested natural frequencies and mode shape points, respectively.

Equation 1 can be efficiently solved by Gauss-Newton method (Haber

et al. 2000) iteratively:

pk ¼ G pk�1
� 	 � pk�1 � Jk�1

� 	T
Jk�1

h i�1

Jk�1
� 	T

Rk�1 k ¼ 1, 2, � � � (2)

where the Jacobian matrix is defined as

J pð Þ ¼ @R

@p
¼ � Sω 0

0 SX

� � @ω
@p
@X

@p

8>><
>>:

9>>=
>>; (3)
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Usually, the convergence criterion of Eq. 2 can be taken as

Max
pki � pk�1

i

pki












� �
< 1� 10�3 i ¼ 1, 2, � � �,Np

Sω ωk � ωk�1
� 	�� ��

2

Sωωkk k2
< 5� 10�2 and

SX Xk � Xk�1
� 	�� ��

2

SXX
k

�� ��
2

< 5� 10�2 (4)

where k � k2 is the Euclidian norm and Np is the total number of parameters.

The Criterion of Optimal Measurements

The selected natural frequencies and mode shape points should ensure a unique and

stable solution of Eq. 2. That means the parameter identification procedure should

be well posed (Engl et al. 1996).

Since p is usually within a continuous interval Dp, according to the Brouwer’s
fixed-point theorem (Griffel 2002), if the mapping functionG in Eq. 2 is continuous,

there certainly exists at least one solution. This can be satisfied when the number of

measurements is not less than Np and the interested natural frequencies and mode

shape points are very sensitive to p, so that the Jacobian matrix J is continuous and

the Fisher information matrix JTJ is nonsingular.

Assuming x and y be arbitrary two parameters, one can use the mean value

theorem to obtain

G xð Þ � G yð Þ ¼ @G ζð Þ
@p

x� yð Þ x, y � Dp (5)

where ζ ¼ y + η(x � y), 0 < η < 1 and

@G pð Þ
@p

¼ Ω pð Þ � JTJ
� 	�1 @ JTJ

� 	
@p

JTJ
� 	�1

JTR� JTJ
� 	�1 @JT

@p
R (6)

Applying the norm of infinity k � k 1 to both sides of Eq. 5 yields

G xð Þ � G yð Þk k1 � Ω ζð Þk k1 x� yk k1 � LΩ x� yk k1 (7)

where

LΩ � Max Ω pð Þk k1 (8)

Since G(p) � Dp, if LΩ < 1 the iteration procedure (Eq. 2) will converge to a

unique solution, according to the contraction mapping theorem (Griffel 2002).

To study the stability of the solution, one can suppose the measurement contains

absolute noises «ω and «X to true values ω� and X�, respectively,
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ω
X

� �
¼ ω�

X�

� �
þ «ω

«X

� �
(9)

These small measurement noises may result in large identification errors because

Eq. 2 is a nonlinear procedure. To trace the propagation of measurement noises

through the damage identification procedure, one can examine the difference between

the identified parameters and the true parameters p� at the kth iteration step:

hk ¼ pk � p� (10)

Substituting Eqs. 2 and 6 into Eq. 10 yields

hk � hk�15 Ω pξk�1 ,«ξk�1
� 	� I

� �
hk�1 þ A pξk�1 , «ξk�1

� 	
(11)

where I is the identity matrix and

A p,«ð Þ ¼ @G p,«ð Þ
@«

« ¼ � JTJ
� 	�1

JTS« (12)

pξk�1 ¼ p� þ γ pk�1 � p�
� 	

, 0 < γ < 1, S ¼ Sω 0

0 SX

� �
,« ¼ («ω

T, «X
T)T, and«ξk�1

¼ ψ«, 0 < ψ < 1.

Applying the norm of infinity k � k 1 to both sides of Eq. 11 yields

hk
�� ��

1 � LΩ hk�1
�� ��

1 þ LA � � � � � LkΩ δpk k1 þ 1þ LΩ þ . . . Lk�1
Ω

� 	
LA (13)

where

LA � Max A p,«ð Þk k1 (14)

If LΩ < 1, one can get the estimation of damage identification error:

B � lim
k!1

hk
�� ��

1 � 1

1� LΩ
LA � 1þ LΩð ÞLA (15)

The above analyses reveal that the selected natural frequencies and mode shape

points should minimize the estimation of identification error B while ensure LΩ < 1.

The Calculation of the Jacobian Matrix and Its Derivative

In above sections, the Jacobian matrix J and its derivative @J/@p are crucial to

identifying damage parameters and estimating identification errors.

These values can certainly be obtained by finite difference method. From Eq. (3),

it is easy to calculate the ith items in J as
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Ji pð Þ � � Sω 0

0 SX

� � Δω
Δpi
ΔX
Δpi

8>><
>>:

9>>=
>>; i ¼ 1, 2, � � �,Np (16)

where Δω and ΔX are the difference of natural frequencies and mode shapes

when the ith parameter pi changes to pi + Δpi, while fixing other parameters.

Generally, Ji would be more accurate when Δpi was smaller. However, owing to

numerical truncation errors, etc., extremely small Δpi could introduce large errors

into Ji (Engl et al. 1996). Since it is very difficult to find the optimal Δpi, it is
recommended to try several times to ensure the best accuracy of Ji. In addition, this
method requires Np + 1 times direct modal analyses to obtain J and Np

2 + 1 times

direct modal analyses to obtain @J/@p. This could be very time-consuming for

large problems.
Besides using the aforementioned finite difference method, J and @J/@p can

be directly obtained if following a modified Nelson’s method (Nelson 1976) to

calculate @ω/@p, @X/@p, @2ω/@p2, and @2X/@p2 analytically. This is much more

time efficient and accurate than the finite deference method with the expense of

additional programming work.

In this method, each mode shape is firstly normalized into unity:

XT
i Xi ¼ 1 i ¼ 1, 2, . . . (17)

From this relation, it is easy to obtain

XT
i

@Xi

@pj
¼ 0 (18)

Then, assuming @Xi/@pj is a linear combination of an unknown vector Vi and Xi,

@Xi

@pj
¼ Vi þ cjXi (19)

where cj is an unknown coefficient.

Substituting Eq. 19 into Eq. 18 and noticing Eq. 17, it is easy to obtain the

relation between Vi and cj as

cj ¼ �XT
i Vi (20)

The partial derivative of the equation (K � ωi
2M)Xi ¼ 0 in Eq. 1 over pj is

K� ω2
iM

� 	 @Xi

@pj
¼ � @K

@pj
� 2ωi

@ωi

@pj
M� ω2

i

@M

@pj

 !
Xi (21)

19 Elasto-dynamic Damage Evaluation of Bridges 595



Substituting Eq. 19 into Eq. 21 and noticing (K � ωi
2M)Xi ¼ 0 yield

K� ω2
iM

� 	
Vi ¼ � @K

@pj
� 2ωi

@ωi

@pj
M� ω2

i

@M

@pj

 !
Xi (22)

If left multiplying Xi
T on both sides of Eq. 22 and using the symmetric properties

of K and M, one can obtain

@ωi

@pj
¼

XT
i

@K

@pj
� ω2

i

@M

@pj

 !
Xi

2ωiX
T
i MXi

(23)

Then, Vi can be solved by substituting Eq. 23 into Eq. 22. Together with Eq. 20,

one can obtain @Xi/@pj from Eq. 19.

Similarly, to calculate @2ω/@p2 and @2X/@p2, one can differentiate Eq. 18 with

respect to the kth parameter pk to obtain

XT
i

@2Xi

@pj@pk
þ @XT

i

@pk

@Xi

@pj
¼ 0 (24)

And assume

@2Xi

@pj@pk
¼ Vi þ cjkXi (25)

where Vi is an unknown vector and cjk is an unknown coefficient, which can be

obtained by substituting Eq. 25 into Eq. 24 as

cjk ¼ �XT
i Vi � @XT

i

@pk

@Xi

@pj
(26)

Differentiating Eq. 21 with respect to pk obtains

K�ω2
iM

� 	 @2Xi

@pj@pk
¼� @2K

@pj@pk
�2

@ωi

@pj

@ωi

@pk
þωi

@2ωi

@pj@pk

 !
M

"

�2ωi
@ωi

@pj

@M

@pk
þ@ωi

@pk

@M

@pj

 !
�ω2

i

@2M

@pj@pk
	Xi

� @K

@pj
�2ωi

@ωi

@pj
M�ω2

i

@M

@pj

 !
@Xi

@pk

� @K

@pk
�2ωi

@ωi

@pk
M�ω2

i

@M

@pk

� 
@Xi

@pj

(27)
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Substituting Eq. 25 into Eq. 27 and noticing (K � ωi
2M)Xi ¼ 0 obtain

K�ω2
iM

� 	
Vi ¼

� @2K

@pj@pk
�2

@ωi

@pj

@ωi

@pk
þωi

@2ωi

@pj@pk

 !
M�2ωi

@ωi

@pj

@M

@pk
þ@ωi

@pk

@M

@pj

 !
�ω2

i

@2M

@pj@pk

" #
Xi

� @K

@pj
�2ωi

@ωi

@pj
M�ω2

i

@M

@pj

 !
@Xi

@pk
� @K

@pk
�2ωi

@ωi

@pk
M�ω2

i

@M

@pk

� 
@Xi

@pj

(28)

If left multiplying Xi
T on both sides of Eq. 28 and using the symmetric properties

of K and M, one can obtain

@2ω

@pj@pk
¼

XT
i

@2K

@pj@pk
�2

@ωi

@pj

@ωi

@pk
M�2ωi

@ωi

@pj

@M

@pk
þ@ωi

@pk

@M

@pj

 !
�ω2

i

@2M

@pj@pk

" #
Xi

(

þ @K

@pj
�2ωi

@ωi

@pj
M�ω2

i

@M

@pj

 !
@Xi

@pk
þ @K

@pk
�2ωi

@ωi

@pk
M�ω2

i

@M

@pk

� 
@Xi

@pj

)
=2ωiX

T
i MXi

(29)

Then,Vi can be solved by substituting Eq. 29 into Eq. 28. Together with Eq. 26,

one can obtain @2Xi

@pj@pk
from Eq. 25.

The Integrated Algorithm

With the criterion presented in section “The Criterion of Optimal Measurements,” it is

possible to find optimal measurement set S by certain combinatorial optimization

method, if «, LΩ, and LA are known. However, the values of LΩ and LA depend on

parameter p, which is unknown before parameter identification. This sounds like a

chicken or the egg causality dilemma. In addition, it is also difficult to get a precise

estimation of measurement noises. To solve this problem, an iterative algorithm (see

Fig. 1) that integrates measurement set selection and parameter identification

is needed. In this way, all parameters are adaptively updated with the minimum a

priori information, i.e., only the guess of the initial parameter p0 and measurement

noise «0.
Many combinatorial optimization methods, such as the genetic algorithm, etc.,

can be used to find the optimal measurement set S from possible candidates (Padula

and Kincaid 1999). Since this time-consuming process is iteratively conducted in

the integrated algorithm (see Fig. 1), a trade-off should be made between the

solution quality and the computational expense. A possible balanced heuristic is

presented in Fig. 2 that consists of:
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Fig. 1 The flow chart of the

integrated algorithm

Fig. 2 The flow chart of the

heuristic to optimize S
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• A simple process to construct the initial solution that tries to evenly distribute all

possible natural frequencies and mode shape points into several feasible subsets

that contain at least Np measurements.

• An intensification mechanism that tries to find the optimal measurement set

Sopt(B), which meets the primary objective of minimizing the identification error

B while keeping LΩ < 1 in a local solution region.

• A diversification mechanism that tries to find the optimal measurement set

S0opt(LΩ), which meets the secondary objective of minimizing LΩ. Since this

objective is slightly different from the primary objective, the optimization process

can temporarily accept worse solutions. However, this gives a chance to jump out

from local optimum to find better solutions in adjacent new local solution regions.

Both intensification and diversification operations iteratively use Exchange,
Move1, Exchange, and Move2 elemental local searches to explore solution regions

(Xiang et al. 2012) until there is no improvement of solutions. These elemental

local searches are defined as:

• Exchange tries to exchange a pair of points between measurement sets S1 and S2.
If either B(S1) or B(S2) (or LΩ(S1) or LΩ(S2)) is reduced and the corresponding

LΩ < 1, keep this move and stop; otherwise, recover S1, S2 and continue this

process until each pair of points between S1 and S2 has been tested. This

operation should apply to each pair of measurement sets S1 and S2 from all

candidate measurement sets. During this process, update the best measurement

set Sopt(B) (or S
0
opt(LΩ)).

• Move1 tries to move one point from a measurement set S1 into another measure-

ment set S2. If either B(S1) or B(S2) (or LΩ(S1) or LΩ(S2)) is reduced and the

corresponding LΩ < 1, keep this move and stop; otherwise, recover S1, S2 and

continue this process until every point in S1 has been tested. This operation should
apply to each pair of measurement sets S1 and S2 from all candidate measurement

sets. During this process, update the best measurement set Sopt(B) (or S
0
opt(LΩ)).

• Move2 tries to move two points from a measurement set S1 into another

measurement set S2. If either B(S1) or B(S2) (or LΩ(S1) or LΩ(S2)) is reduced
and the corresponding LΩ < 1, keep this move and stop; otherwise, recover S1,
S2 and continue this process until every two points in S1 has been tested. This

operation should apply to each pair of measurement sets S1 and S2 from all

candidate measurement sets. During this process, update the best measurement

set Sopt(B) (or S
0
opt(LΩ)).

Examples

Simply Supported Beam
The main idea of using selected frequencies and mode shape points to identify

damage parameters can be well demonstrated by a simple example depicted in

Fig. 3. This is a simply supported beam with a uniform rectangular cross section of
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20 � 10 cm and the density of 2,400 kg/m3. To introduce an artificial damage, the

Young’s modulus of the center region is set as E3 ¼ 25GPa, which is smaller than

those in other regions with E1 ¼ E2 ¼ E4 ¼ E5 ¼ 30GPa. In the following simu-

lation, the Finite Element Method (FEM) is used to calculate all dynamic proper-

ties, which are regarded as the “true” values of measurements. For this purpose,

20 plane beam elements are uniformly distributed along the beam length, so that

there are 21 nodes in total.

Firstly, use the noise free first four natural frequencies and the first mode shape

“measured” at all 21 points to identify the Young’s modulus of each region. As Fig. 4

shows, using the Gauss-Newton iteration method given in Eq. 2, the Young’s moduli

of all five regions can be successfully identified in a few steps even the initial values

are far away from the true values. Since it is not easy to place dense sensors on

structures in practice, another parameter identification is conducted by using only the

noise free first four natural frequencies and the first mode shape “measured” at points

of 1, 5, 9, 13, 17, and 21 (see Fig. 3). Not surprising, all parameters can be accurately

identified through almost the same iteration procedure as that depicted in Fig. 4.

However, if add only 1% noise into the first four natural frequencies and 10%noise,

which is evaluated as the mean square root error between the true and contaminated

mode shapes, into the first mode shape at all 21 points, the parameter identification

cannot converge, even if the initial parameters are taken as true values (see Fig. 5). This

demonstrates that natural frequencies and mode shapes just have weak sensitivity to

local damage. Based on thesemeasurements, the identified damage parameters could be

very unreliable due to the unavoidable measurement noises in practice.

If still use the measurements of the first four natural frequencies with 1 % noise

and the first mode shape at all 21 points with 10 % noise, and set the initial

Fig. 3 A simply supported beam with damage

Fig. 4 Parameter

identification without noise
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parameters as true values, the algorithm proposed in Fig. 2 (without measurement

noise updating since noises are known) cannot find a good measurement set

to ensure a converged parameter identification procedure. The failure continues

even if the first four mode shapes at 21 points with 10 % noises are used or even the

noises in natural frequencies are reduced to 0.5 %. This is probably because natural

frequencies are very insensitive to local damage. Unfortunately, it is difficult to

introduce local information into natural frequencies to increase the sensitivity.

However, natural frequencies are still required to work together with mode shapes

to ensure the unique identification of stiffness. This can be easily understood from

the equation (K � ωi
2M)Xi ¼ 0 in Eq. 1. Therefore, since natural frequencies can

be measured very precisely in practice, it is recommended to ignore their measure-

ment noises in damage parameter identification.

Table 1 compares the damage parameter identification results from different

measurements. Besides the first four clean natural frequencies, the candidate

measurements of case 1 through case 4 have additional 21 polluted mode shape

points with 10 % noise, and case 5 contains all the first four polluted mode shapes.

To check the validity of the criterion given in section “The Criterion of Optimal

Measurements,” the initial values of all parameters are all set as true values. Two

scenarios are tested for each case in Table 1. One scenario just uses all candidate

measurements and another scenario uses selected measurements obtained by the

algorithm given in Fig. 2, which are listed in the 2nd through the 6th rows in

Table 1. From the comparison of the estimated identification error B, the index LΩ
and identified parameters of each scenario, one can observe that:

• If feasible measurements with LΩ < 1 could be found, the identified parameters

would have errors very close to the estimation B (see case 3, case 4, and case 5).

However, feasible measurements with LΩ < 1 could not always be found (see

case 1 and case 2).

Fig. 5 Parameter identification with noise
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• If LΩ < 1 is satisfied, the parameter identification procedure will converge.

However, as indicated in section “The Criterion of Optimal Measurements,”

this is just a sufficient but not necessary condition of convergence.

For example, case 2 still converges with LΩ ¼ 2.272 when using all

candidate measurements. But in this case, the identified parameters have very

large errors.

• The results of case 5 are worse than those of case 4. This implies the

algorithm can only find better solutions instead of the best one and using more

measurements could result in worse solution when the measurements contain

noises. The second point is further confirmed with the observation that if use all

candidate measurements, the identification procedure either diverges or con-

verges to the results with larger errors than those from selected measurements.

This is mainly because more contaminated measurements would bring more

errors into the final results.

Table 1 Damage identification with polluted measurements and known noises

Case 1 Case 2 Case 3 Case 4 Case 5

Selected

frequency

/ / 1, 2, 4 1, 2, 3 1, 2, 4

Selected mode

1 points

/ / / / 3, 7, 13

Selected mode

2 points

/ / / / 3, 13, 17, 19

Selected mode

3 points

/ / 3, 5, 7, 11, 15,

17, 19

/ 9, 11, 15,

17, 19

Selected mode

4 points

/ / / 3, 5, 9,

13, 15, 19

3, 5, 7, 9, 13,

17, 19

B (GPa) S / / 0.00480 0.85833 0.02514

A 1.71250 50.69158 0.02565 2.97000 3.02505

LΩ S / / 0.098 0.168 0.053

A 33.634 2.272 0.470 0.343 0.317

E1 (GPa) S / / 30.00136 29.33297 30.02349a

A / 34.33958 29.99318 28.14913a 30.60870

E2 (GPa) S / / 29.99585 30.71625a 29.97784

A / 16.99820 29.99682 30.08291 27.81328

E3 (GPa) S / / 25.00436a 24.99584 25.00284

A / 30.76546 25.01743a 25.10786 25.01764

E4 (GPa) S / / 29.99585 29.31186 30.00484

A / 59.78787a 29.99682 30.00000 32.35985a

E5 (GPa) S / / 30.00136 30.71081 29.98789

A / 23.57690 29.99318 31.81542 29.46059

S use selected measurements, A use all measurements
aWith the maximum error
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• As case 5 shows, the selected measurements could contain points from different

mode shapes. In this manner, the local information is introduced to increase the

sensitivity.

In practice, it is very difficult to have accurate estimations of measurement

noises. Therefore, it is necessary to update them with the integrated algorithm

proposed in Fig. 2.

In the following tests, the initial values of all Young’s moduli are set to be

20GPa. The candidate measurements are the first four natural frequencies with 1 %

positive noises and the first four mode shapes at 21 points with 10 % noise. Since

natural frequencies are very insensitive to local damage, it just assumes that they

are noise free at the first iteration step of parameter identification procedure, i.e.,

«ω
0 ¼ 0, so that good measurement sets can be found. In addition, the initial

estimations of the measurement noises in mode shapes can be obtained from «0X
¼ X� ~X�, whereX is the “measured” mode shapes and ~X� is the guess of true mode

shapes. Since there are 10 % noises in “measured” mode shapes, ~X� can be

estimated by solvingX ¼ ~X�þ0:1
~X�þ0:1k k

2

with the Gauss-Newton method similar to Eq. 2.

As Table 2 shows, if use all candidate measurements, the resultant parameters

will have very large identification errors compared with the results in Table 1. The

parameter identification procedure does not converge when there is no measure-

ment noises updating or updates the measurement noises both in natural frequencies

and mode shapes. The best identification results are obtained when updates only the

measurement noises in mode shapes. All these tests illustrate that natural frequen-

cies are very insensitive to local damage so that the damage parameter identification

result is very sensitive to the measurement noise in natural frequencies.

Table 2 Damage identification with polluted measurements and unknown noises

All

measurements

No noise

updating

Update «ω and

«X Update «ω

Selected frequency All / / 1, 2

Selected mode

1 points

All / / 3, 5, 13, 15

Selected mode

2 points

All / / 5, 7, 15,

17, 19

Selected mode

3 points

All / / All

Selected mode

4 points

All / / All

E1 (GPa) 31.22372 / / 30.01390

E2 (GPa) 28.37269 / / 32.73441a

E3 (GPa) 25.52086 / / 25.59989

E4 (GPa) 33.01066a / / 28.67603

E5 (GPa) 30.05202 / / 31.07655

aWith the maximum error
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Shi Kong Shan Bridge
Besides the above academic example, the integrated algorithm was implemented to

the right line of the Shi Kong Shan Bridge (see Fig. 6), a prestressed continuum

bridge located in Fujian province, China. Because the mode shapes of spans ①
through ⑤ and spans ⑥ and ⑦ were separately measured, only the effective

Young’s moduli of spans ① through ⑤ (E1 to E5) were identified based on the

natural frequencies and mode shapes of the first two vertical modes. The FEM

model of 226 beam elements was used in the identification. At the first step, all

Young’s moduli were set as 32GPa and it assumed that the natural frequencies were

noise free and the mode shapes had 10 % noises, since exact measurement noises

were not clear. These uncertain data were updated during the iterations of the

integrated algorithm (see Fig. 1).

The identified parameters are E1 ¼ 31.9GPa, E2 ¼ 25.5GPa, E3 ¼ 30.0GPa,

E4 ¼ 26.0GPa, and E5 ¼ 35.9GPa with the selected first two frequencies, 2, 3,

5, 10, 12, 19 points of mode 1 and 3, 9, 12, 13, 15, 20 points of mode 2. The

apparent small stiffness coincides with the on-site visual observation, where some

cracks were found in span ② and span ④. In addition, the identification could not

converge if used all measurements.

The Tap-Scan Damage Detection Method

Theory

Although the aforementioned damage detection method tries hard to remove the

influence of measurement noises, its success is still heavily dependent on the

quality of modal testing. If traffic blocking was prohibited, frequencies and mode

shapes could only be obtained by output-only methods. These methods assume that

input environmental excitations are stationary white signals. However, this basic

assumption is not easy to be satisfied in practice, which brings much trouble in

preconditioning signals to remove the environmental influences (Deraemaeker

et al. 2008; Gentile and Saisi 2011; Cunha et al. 2013). In addition, modal testing

methods usually require the dense placement of transducers on the bridge. This

could be time-consuming and expensive.

If 24 h’ monitoring is not necessary, the Tap-scan damage detection

method (Xiang et al. 2010) can be used to efficiently filter out damaged bridges

Fig. 6 The Shi Kong Shan Bridge
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from large amount of candidates. The theoretic basis of this method can be illustrated

by a vehicle-bridge interaction model shown in Fig. 7. In this model, a vehicle of

mass M passes through the bridge at speed v with a tapping force F. The bridge is

modeled as a simply supported beam with bending stiffness EI and mass per unit

length m. The kinematic equations of the vehicle and the bridge are

M €yV þ k yV � yBjx¼vt

� 	 ¼ F tð Þ (30)

m €yB þ EI
@4yB
@x4

¼ f tð Þδ x� vtð Þ (31)

where head dot denotes the partial derivative over time t; yV and yB are the vehicle

and bridge displacements measured from the static equilibrium position, respec-

tively. The stiffness k is an effective value contributed by the series connection of

vehicle suspension system of stiffness kV and the bridge local stiffness of kB at a

position x. It could simply take k ¼ kVkB/(kV + kB), which varies along the bridge

length because kB(x) can be evaluated as the inverse of bridge deflection subjected

to a unit load at position x.
The function f in Eq. 31 is the vehicle-bridge interaction force:

f tð Þδ x� vtð Þ ¼ k yV � yBjx¼vt

� 	�Mg (32)

where δ is the Dirac symbol that defines the contact position x ¼ vt. Since the local
impedance Z(x) ¼ f(t)δ(x – vt)/yB(t) contains the information of stiffness, mass, and

damping, the abrupt change of Z can indicate the occurrence of damage. From

Eq. 30 through Eq. 32, one can easily find out that the vehicle acceleration

(VA) contains the damage information:

€yV xð Þ ¼ � yB x=vð Þ
M

Z xð Þ þ F x=vð Þ �Mg

M
(33)

In addition, in the spectrum of VA the contributions of the last term of Eq. 33 are

constant static values that have nothing to do with damage. This means the change of

the VA spectrum is only related with Z. This is good news for damage identification.

The analytical solution of VA can be obtained by applying the modal superpo-

sition method over Eqs. 30 and 31 (Xiang et al. 2010):

Fig. 7 The passing vehicle

subject to tapping force
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where ωV ¼
ffiffiffi
k
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q
, ΔW ¼ a
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and Tj ¼ jπv/L.
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If transform Eq. 34 into frequency domain, one can find seven peaks at ωV, ωi,

ωi þ 2Tj , ωi � 2Tj , ωBj + Tj, ωBj – Tj, and 2Tj, respectively, in the spectrum.

Usually, the vehicle speed v is not very high during bridge inspection. Therefore,

Tj could be neglected compared with other frequencies and consequently only the

peaks at ωV, ωi and ωBj are dominant in the spectrum. It notices that the Frequency

of Tapping Force (FTF) ωi dose not contain damage information and the bridge

lower natural frequency ωBj is not sensitive to damage (Farrar and Jauregui 1998;

Chang et al. 2003; Carden and Fanning 2004; Xiang and Zhang 2009; Fan and Qiao

2011), but ωV has direct connection with the bridge stiffness kB, which could have a
great change with the presence of damage. In addition, from Eq. 34 through Eq. 36

one can observe that the change of ωV has great impact on the amplitudes of peaks

at ωV, ωi and ωBj in the spectrum of VA. This means that the spectrum contour of

the VA can be used as a damage feature and accordingly, one can define the

Tap-scan damage detection method that consists of following steps:

1. Uniformly subdivide the VA in time domain into n segments.

2. Transform each segment into frequency domain to obtain its spectrum, which is

expected to contain the damage information.

3. Record the contour of each spectrum at the interested frequency interval into a

damage vector Yi, i ¼ 1, 2, . . . n.
4. Plot the damage index that is the difference between each pair of damage vectors

Yi and Yj. For example, the MAC value (Allemang and Brown 1982) defined as

Yi·Yj/(||Yi||2 � ||Yj||2) is commonly used for comparison. Since the local imped-

ance of a healthy bridge should smoothly distributed, the abrupt change in the

MAC value indicates the location of damage or structural discontinuities.

To fine-tune the controlling parameters in the Tap-scan damage detection

method, such as the FTF ωi , the vehicle speed v, the vehicle mass M, and the

stiffness of vehicle suspension system kV, one can conduct the sensitivity analysis

of VA to damage. Since only ωV is sensitive to damage, the sensitivity of VA to

damage can be evaluated as
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where
@ €P

i

j

@ωV
and

@ €Qj

@ωV
can be easily obtained from Eqs. 35 and 36.

In practice, the vehicle speed usually satisfies Sj << 1; ωV is different from

interested bridge frequencies; and the tapping force is prohibited to cause the

vehicle resonance. Therefore, Eqs. 35 through 37 reveal that if Rj
i � 1, i.e., the
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FTF is close to the bridge natural frequencies, the VA will have high sensitivity to

damage. In addition, if the FTF was higher than the frequency band of environ-

mental noises, the VA at the frequency around the FTF could be free of environ-

mental interference.

If remove the tapping force, the model in Fig. 7 becomes the classical passing

vehicle model, which has been extensively discussed by Yang et al. (Yang

et al. 2004; Yang and Chang 2009a, b; Yang et al. 2013). Based on the passing

vehicle model, it can easily extract bridge natural frequencies from the spectrum of

the vehicle acceleration signal (Lin and Yang 2005). However, this method could

not be very effective for damage identification in noisy environment, because in this

case the VA could not be very sensitive to damage due to the small
@€yV
@ωV

when Rj
i ¼ 0

and ωi ¼ 0 (see Eq. 37).

If the vehicle dose not move, v ¼ 0, Sj ¼ 0, €P
i

j ¼ 0 and €Qj ¼ 0, which could be

regarded as a traditional tap test. In this case, one can easily find from Eq. 34 that

the peaks in the spectrum of VA could be sharply located at ωV andωi. Therefore, it

is possible to extract the damage information from the change of spectrum contour.

In addition, Eq. 37 implies that the vehicle acceleration is not very sensitive to

damage ifωi << ωV. Therefore, it requiresωi > ωV to getting a better performance,

which could be easily satisfied in practice. Owing to the controlled tapping force

with the constant amplitude and the sensitive tapping frequency, this method is

more reliable than the traditional tap test (Cawley and Adams 1988). This static

inspection could be used complementarily to the Tap-scan method, if one wants to

recheck the detected damage.

Numerical Examples

Numerical simulations on that vehicle-bridge interaction model shown in Fig. 7 are

conducted to illustrate the validity of the theoretical basis of the Tap-scan method

presented in section “Theory.” All simulations are solved by ABAQUS implicit

finite element package with time step of 0.001 s. And 5 % damping and smooth

contact between the vehicle and the bridge are adopted.

The properties of the simply supported beam are length L ¼ 25 m, cross-

sectional area A ¼ 2.0 m2, moment of inertia I ¼ 0.12 m4, Young’s modulus

E ¼ 2.75 � 1010N/m2, and mass per unit length m ¼ 4,800 kg/m. In the following

simulations, this beam is discretized into 2-node plane beam elements in length of

0.01 m. And the damage is introduced as 10 % reduction of Young’s modules in the

region between 12.5 and 13 m. The vehicle of mass M ¼ 1,200 kg and the

suspension stiffness kV ¼ 5,000 kN/m passes through the beam at a constant

speed v ¼ 1 m/s. And the amplitude of tapping force is set as a ¼ 0.5 kgm.

Following the Tap-scan method presented in section “Theory,” the time series of

VA is subdivided into 25 segments, i.e., 1 s or 1 m per segment. Then, the power

spectrum of each segment is obtained by applying the short time Fourier transfor-

mation method. The contour of each power spectrum is compared with each other to
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get the MAC matrix based on Eq. 28, from which one can justify the damage

information.

Since the natural frequency of this beam is i2 � 2.08 Hz (i ¼ 1, 2, . . .),
according to the sensitivity analysis in section “Theory,” the FTFs are firstly set

as 2.0Hz and 8.0Hz, which are very close to the first two natural frequencies of this

beam (2.08 and 8.34 Hz). As Fig. 8a shows, besides these two frequencies one can

clearly identify another peak close to ωV (about 10.27 Hz) in the spectrum. Then,

MAC values are calculated from the damage feature vectors Yi, which are extracted

Fig. 8 Damage identification results of a simple beam (FTFs ¼ 2.0, 8.0 Hz). (a) the spectrum of

VA (b) SFs ¼ [1, 4] Hz (c) SFs ¼ [6, 9] Hz (d) SFs ¼ [9, 12] Hz
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from the spectrum contour at different Sampling Frequencies (SFs). Since the MAC

values are evaluated from each pair of damage vectors, one can obtain a symmetric

MAC matrix. This matrix can be plotted as a surface (e.g., the left part of Fig. 8c) or

a contour (e.g., the right part of Fig. 8c). Both abscissa and ordinates of these plots

are the same traveling times along the beam, which can be easily converted into

distances, since the vehicle speed is constant. Deep grooves on the MAC surface or

dark strips on the contour indicate the abrupt change of MAC values, which

correspond to the locations of damage.

As Fig. 8b shows, if SFs locate at the interval of 1–4 Hz, which covers the

fundamental natural frequency of the beam, it is impossible to find the damage

location from the MAC matrix. However, if the SFs locate at the interval of

6–9 Hz (covers the second natural frequency) or the interval of 9–12 Hz (covers

the ωV), the correct damage location can be clearly identified (see Fig. 8c, d). It

seems that the damage feature vector around ωV is more sensitive to damage than

that around the beam natural frequencies, because compared with those in Fig. 8d

the MAC surface in Fig. 8c is smoother and the MAC value at damage location is

larger. This can be explained by Eq. 36, in which the coefficients at ωV are more

dominant to the coefficients at ωBj. In addition, the larger ωBj, the larger

coefficients at ωBj, when ωBj < ωV. Therefore, it is not difficult to understand

why it fails to identify the damage when SFs locate around the fundamental

natural frequency.

In practice, ωV is usually larger than the fundamental natural frequency of the

bridge but still in the range of environmental noises. In this case, the damage

feature vectors usually do not cover ωV, because the FTFs should be larger than

the frequencies of environmental noises. This implies the resultant MAC surface

could be smooth but less sensitive to damage. Sure, ωV could be increased beyond

the frequencies of environmental noises, if one can reduce the mass of the

vehicle. So that one can still include ωV into the damage feature vectors to

increase the sensitivity. However, the designer should get the caution that the

vehicle should be heavy enough to ensure the firm contact on the bridge under

large tapping forces.

To illustrate the importance of the FTF, another simulation is conducted by

setting the FTFs as 1.0 Hz, 2.5 Hz, 4.0 Hz, and 5.5 Hz. In this case, Rj
i are far from

1 and Sj, Tj, ΔBj, and ΔW are very small. Therefore, the contributions of €P
i

j and
€Qj are

very small in VA (see Eq. 34 through Eq. 36). Consequently, only the peaks at the

given FTFs (1.0Hz peak can hardly be identified) and ωV can be identified in the

corresponding spectrum shown in Fig. 9a. In addition, the amplitudes of the peaks

at FTFs are approximately proportional to the square of ωi , which coincides with

the F(t) shown in Fig. 7. This is different from the observation from Fig. 8a, where

certain resonances occur due to the small gaps between the FTFs and the natural

frequencies.

The MAC matrices for different SFs are shown in Fig. 9b through Fig. 9d. Not

surprising, none of them can correctly identify the damage. This illustrates the

importance of the FTFs to damage identification.
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The Setup of the Tap-Scan Damage Detection Vehicle

The physical realization of the Tap-scan damage detection method could be a

tractor-trailer system shown in Fig. 10. The trailer acts as that moving sprung

mass shown in Fig. 7. And the tapping force is generated by an electromagnetic

shaker mounted on the trailer. The trailer is made from pure steel so that it can

completely transfer the tapping force to the bridge surface and receives its

responses by an accelerator fixed on the axle shaft. A laptop computer runs an

integrated program that controls the tapping force, receives acceleration signals,

and calculates damage indices. This computer together with a power amplifier, a

charge conditioner as well as a power supply system are all loaded in a minivan that

tows the trailer to scan each lane of a bridge.

This Tap-scan vehicle system takes the advantage of the passing vehicle

(Yang et al. 2004; Lin and Yang 2005; Yang and Chang 2009a, b; Yang

et al. 2013) and the controlled tapping force that is essential to damage

detection (Xiang et al. 2010). Since the bridge responses are indirectly collected

from only one accelerator mounted on the trailer, it is much more efficient and

economic than traditional bridge inspection methods that install many sensors on

the bridge.

Fig. 9 Damage identification results of a simple beam (FTFs ¼ 1.0, 2.5, 4.0, 5.5 Hz) (a) the

spectrum of VA (b) SFs ¼ [1, 4] Hz (c) SFs ¼ [6, 9] Hz (d) SFs ¼ [9, 12] Hz
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On-Site Experiments

According to the sensitivity analysis in section “Theory” and the numerical exam-

ples in section “Numerical Examples,” the information of natural frequencies of a

bridge is crucial to the success of the Tap-scan damage detection method. In on-site

experiments, this information can be easily obtained from the spectrum of the

acceleration signals when applying swept band exciting force. Then, the FTFs

can be determined around certain bridge natural frequencies that are away from

the frequency band of environmental noises. As discussed in section “Numerical

Examples,” these frequencies usually do not include the vehicle frequencies, which

are mixed into the frequencies of environmental noises. Empirically, most traffic

noises are lower than 70 Hz, so that the frequency band from 70 Hz through 110 Hz

is a good choice for bridges with short spans about 20–50 m. This frequency band

was adopted in the following bridge inspection experiments conducted by China

Road & Bridge Corporation and Tsinghua University.

The Hong Shi Kan Bridge
The Hong Shi Kan Bridge is a 10 years old arch bridge located in Ping Gu district,

Beijing, China (see Fig. 11a). The Tap-scan inspection test on this bridge was

conducted on September 4th, 2012. For this short bridge of 50 m long, it took about

one minute to scan a single lane with the inspection vehicle, without stopping the

traffic flow (see Fig. 11b).

The inspection result is plotted in Fig. 12, which is the sharpened contour of the

MACmatrix. Since the MAC value is calculated from each pair of spectrum vectors

Yi and Yj, the resultant MAC matrix is symmetric. So that in Fig. 12, both abscissa

and ordinates are traveling times along the bridge length and the dark strips are

outliers of MAC values. Comparing with the photos shown in Fig. 13, it is clear that

Fig. 10 The Tap-scan damage detection system
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the regularly distributed dark strips in Fig. 12 correspond to the transverse dia-

phragms under the deck of this bridge. Because it was difficult to keep a precisely

constant driving speed, the time spacing is not completely proportional to distance.

In addition, since there is no significant abnormal sign in Fig. 12 except for these

dark strips, it can conclude that this young bridge is in good condition.

Fig. 11 The Hong Shi Kan Bridge (a) elevation (b) on-site inspection

Fig. 12 Damage identification results of the Hong Shi Kan Bridge

Fig. 13 The distribution of diaphragms of the Hong Shi Kan Bridge
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This example demonstrates the ability of the Tap-scan method to find slight

structural discontinuities of a bridge under the interference of other passing

vehicles.

The Chao He Bridge
The Chao He Bridge is a 45 years old simply supported bridge located in Mi Yun

district, Beijing, China (see Fig. 14). This bridge has eight spans. Each span is about

20 m long. The Tap-scan inspection test on this bridge was conducted on September

19th, 2012. It took about 4 min to scan a single lane without stopping the traffic

flow. In addition, a heavy bridge inspection crane of 45 t also worked on the bridge

during the inspection.

The inspection result is plotted in Fig. 15, in which seven piers can be clearly

identified. In addition, one can also find two abnormal strips. One strip is between

pier 2 and pier 3, which is just the location of that heavy inspection crane. Another

strip is near pier 5. With the help of the inspection crane, examiners found two clear

repair marks on the girder close to pier 5 (see Fig.16). Although the detailed record

of these repairs was missing, one can imagine the severity of the damage from the

photos and Fig. 15.

This example demonstrates that the Tap-scan method can not only identify

pier discontinuities but also small damage even the bridge surface is very rugged

(see Fig. 14b). At the same time, it warns us that some static heavy trucks with

running engine could also have some impact on inspection results. In addition,

this also shows the power of using the Tap-scan vehicle to detect hidden damages

on such bridges, in which people may not have easy access to conduct visual

inspections.

Fig. 14 The Chao He Bridge (a) elevation (b) on-site inspection
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The Yu Lin Bridge
The Yu Lin Bridge is located on S227 Road between Xinxiang City and Yanjin

County, Henan Province, China (see Fig. 17). The Tap-scan inspection test on this

bridge was conducted onMarch 16, 2013. For such a short bridge of 20 m long, only

half a minute was needed to scan a single lane with the Tap-scan inspection vehicle

free of traffic blocking.

The inspection result is plotted in Fig. 18, which clearly shows the left and right

expansion joints as well as two damaged regions. Visual inspection verified that

there were two severe seepage damages along with a few very small longitudinal

cracks (see Fig. 17). In addition, from the darkness of the strips shown in Fig. 18,

one can guess that Damage 2 is more severe than Damage 1, although this can

hardly be justified only from the visual inspection result.

Fig. 15 Damage identification result of the Chao He Bridge

Fig. 16 The damages on the Chao He Bridge
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Actually, the seepage damage and longitudinal cracks have little contribution to

the reduction of local stiffness. The success of identifying these kinds of damage

from the Yu Lin Bridge demonstrate that the Tap-scan method actually uses the

change of local impedance to detect damage, although the theoretical model in

section “Theory” just discusses the change of local stiffness.

Fig. 17 The damage inspection of Yu Lin Bridge

Fig. 18 Damage identification result of the Yu Lin Bridge
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Summaries

Dynamic signals are good choices for damage detection, because they can be easily

acquired from bridges in normal service. If the quality of modal testing can be

guaranteed, reliable damage detection can be conducted from the selected frequen-

cies and mode shape points. On the other hand, the Tap-scan method gives a

possibility of very robust and efficient bridge inspection without traffic blocking.

Both of these two methods do not require the reference state of intact bridges,

because they assume that the bridge properties, such as stiffness, mass, and

damping, should be smoothly distributed over a healthy bridge and the abrupt

change of these properties indicates the structural discontinuity or the occurrence

of local damage. This greatly facilitates their practical implementations.

As Fig. 19 illustrates, bridge evaluation methods could be classified into three

levels according to their accuracies and applying intervals. The method that uses the

selected frequencies and mode shape points is promising for real-time health

monitoring on some very important bridges. While for large amount of common

bridges, one can use the Tap-scan inspection vehicle to quickly filter out a few

suspects for further detailed examinations. This could help big cities to efficiently

manage their bridge networks. Since these two kinds of methods just regard the

damage as the change of some effective properties, off-line local inspections are

still needed to give detailed reports of damage.
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Abstract

Mechanical damages in structures, in structural components of plants and in

industrial products usually imply changes of parameters which have central roles

in computational modelling apt to assess safety margins with respect to service

loading. Such parameters may depend also on the production processes in

industrial environments.

In this chapter, the parameter identification methodology by inverse analyses

is dealt with under the following limitations: experiments at macroscale level,

deterministic approaches, statical external actions and time independence in

material behaviours. Semiempirical approaches frequently adopted in codes of

practice are not dealt with here.

The inverse analysis methods outlined here are centered on computational

simulations of tests (namely, direct analyses), sensitivity analyses for the opti-

mal design of experiments, model reduction procedures and other provisions apt

to make fast and economical the parameter estimation in engineering practice.

The applications summarized here as examples concern structural diagnoses

based on indentation tests, in situ diagnostic experiments on concrete dams

and laboratory mechanical characterization of membranes and laminates.

Introductory Remarks

The “inverse analysis” methodology is an area of applied sciences which at present

is still growing as for improvements of procedures and as for variety of engineering

applications. Inverse analysis is based on information concerning the response of a

“system” to external actions and leads to the identification of some features of the

system, usually parameters included in its modelling and, hence, in the computer

simulation of the system response to those actions.

In the present context of applied mechanics, the features to assess are usually

either parameters contained in material constitutive models or stresses present in

the system and included in the set of “parameters” to estimate or “identify.” The

system may be a laboratory specimen or a structural component as industrial

product; however, frequently, it consists of a structure possibly affected by damages

due to deterioration in service. Therefore, inverse analysis is becoming central to

“structural diagnosis” intended to provide a reliable basis for the subsequent “direct

analyses” apt to assess “margins of safety” with respect to collapses or to substan-

tial further structural damages (“admissible stress” criteria being superseded now in

more and more industrial codes).

Inverse analysis with the above purposes clearly requires synergistic conver-

gence of experimental, structural and computational mechanics and applied math-

ematics. References to such synergy can be attributed to Richard Feynman’s

symbolic warning to ensure reliability of computer inputs (“garbage in, garbage

out”) after the 1986 disaster of the Space Shuttle Challenger (Gribbin and Gribbin

(1997)). Several stimuli to structural diagnosis improvements arose from other
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tragic events in engineering history (see, e.g., Levy and Salvadori (1992), such as

Vajont Dam (1963), Alexander Kielland platform (1980) and Gulf of Mexico

disaster (2010)).

Classifications of the inverse analysis procedures now presented in a broad

literature (e.g., Bui 1994, 2006; Tarantola 2005; Mróz and Stavroulakis 2005) can

be based on diverse standpoints. According to a meaningful methodological crite-

rion, the following categories can be considered.

(a) Deterministic approaches which lead to estimates of the parameters to identify

without quantification of their uncertainties. Randomness, such as experimental

noise, can be possibly quantified by the covariance matrix of the experimental

data. The inverse of this matrix is employed in the formulation of the “discrep-

ancy function” to be minimized with respect to the sought parameters. Such

formulation is motivated by advantages reasonably expected in estimation

accuracy when “more weight” is conferred to more reliable experimental

measurements. Clearly, repeated inverse analyses starting from measurable

quantities obtained by random perturbations of experimental

(or “pseudoexperimental”) data may lead to parameter sets which can provide

a quantification of the consequences on the estimates (e.g., standard deviations)

of those perturbations in input. However, such approach based on deterministic

inverse analysis may be clearly uneconomical since it may require many

repeated inverse analyses.

(b) Stochastic approaches which provide assessments both of estimates and of

estimation uncertainties due to random errors of experimental data. Among

stochastic methods (which include popular techniques like Monte Carlo, Bayes,

et alia), particular versatility and usefulness can at present be attributed to

Kalman filters. Such “filtering” starts from the experimental data and their

covariance matrix which quantifies random noise and, after a sequence of

steps sequentially exploiting experimental data for estimation updates

(by sequential “sensitivity” and “gain” matrices), provides both final parameter

estimates and their covariance matrix.

In this chapter only deterministic approaches (a) are considered.

Other limitations, adopted in view of the contents of other chapters in this

handbook, are pointed out in what follows.

Even if the inverse analysis methodology is clearly applicable at both macro-

and microscales, only industrial applications at macroscale are here briefly

discussed as illustrative examples. Particularly worth pointing out is that attention

will be paid elsewhere to dynamical external actions (e.g., for structural diagnosis

of possibly damaged bridges) and to time-dependent material models (e.g.,

visco–elastic–plastic modelling of prestressed concrete bridges damaged by

creep, high-strain rates in structures exposed to impacts or explosions).

The purposes pursued in this chapter and its contents can be outlined as follows.

Section “A Survey of a Practical Methodology for Damage Assessment in Struc-

tures” is devoted to a brief description, stage by stage, of the, partially innovative,

20 Materials Mechanical Characterizations and Structural Diagnoses by Inverse. . . 621



methodology of inverse analysis for mechanical characterizations of materials or

for diagnoses of structures or structural components, in the industrial engineering

context. Detailed information on mathematical developments, computational tools

and engineering praxis can be found in the publications specified in the reference

list. Section “Parameter Identifications by Indentation Tests” presents primarily

recent research results on inverse analysis procedures based on “quasi-nondestruc-

tive” tests centered on indentations (originally “hardness tests”) and devised pri-

marily for damage assessments in metallic industrial products. The applications of

inverse analysis dealt with as informative examples in sections “Damage Assess-

ment in Dam Engineering” and “Inverse Analysis Procedures for Mechanical

Characterizations of Foil Products” concern a variety of engineering areas, such

as concrete dams, food-container productions and tension structure design. The

remarks presented in section “Conclusion” aim at underlining the potential practi-

cal usefulness of recent results and current research developments for assessments

of possibly deteriorated material properties and of mechanical damages in

structures.

A Survey of a Practical Methodology for Damage Assessment
in Structures

With the limitations specified in the preceding section, a rather general inverse

analysis method is here outlined in operative terms, namely, stage by stage, with

generality in view of its practical applications to be exemplified with some peculiar

features in the subsequent sections.

Stage 1. Preliminary examinations of the structure to be investigated “in situ” or

of the specimen to be tested in a laboratory are obviously required for the selection

of the parameters to identify by inverse analysis, within constitutive models of

materials (e.g., Lubliner 1990; Jirásek and Bažant 2001) and/or within a stress state.
Clearly, related to such examinations are the experiment to be performed and its

design. The design of experiments has to be performed in terms of external actions

(“loads”) and of quantities to measure in the system response to them, taking

account (if possible through a covariance matrix) of expected experimental errors

with randomness.

Stage 2. A conjecture to be exploited later has to be formulated by an “expert” on

the following subject: a lower and upper bound should be specified for each one of

the sought parameters, in order to define an interval over which the estimate search

will later be confined. Thus, a “search domain” is defined in the parameter space. If

“correlation” is predicted among parameters (namely, if one parameter is expected

to be large if another will turn out to be so), some guess on correlation ratio might

be requested from the “expert.”

Stage 3. Computer modelling of the preselected tests is a crucial step. Even if a

popular finite element (FE) commercial code is adopted to the present purposes,

attention should obviously be paid to computational features: mesh generation, bound-

ary conditions and interfaces, possible large-strain requirements, implementation of the
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selected constitutive model, etc. A compromise has to be reached between accuracy of

results and computational time for multiple test simulations.

Stage 4. Sensitivity analysis is a need which arises from the obvious remark that

it is particularly worthwhile to measure, among test response quantities, those

which are most influenced by the parameters to estimate through test simulations

(see, e.g., Kleiber et al. 1997). Consequently, sensitivities are assessed by comput-

ing derivatives (of course usually approximated by finite differences) of the rela-

tionships by means of which measurable quantities depend on sought parameters

through the system model and test simulations.

However, another criterion turns out to be useful in the present inverse analysis

context, namely, larger (say by two orders of magnitude) than relevant experimen-

tal error should be the difference between the values of measurable quantities,

which are computed by attributing the conjectured upper and lower bound to each

parameter to identify. Both the above sensitivity assessments require merely direct

analyses and may be meaningful for the design of the experiment (see the next stage

and section “Parameter Identifications by Indentation Tests”).

Stage 5. The design of the experiments, in order to accurately estimate parameters,

obviously within basic constraints on the available resources, has to be carried out

frequently, on the basis of sensitivity analysis (Stage 4), to the following purposes:

(a) selection of the quantities to be measured, in the response of the examined

system to the test loading;

(b) “a priori” optimization of some features of the experiment (e.g., of the indenter

shape in indentation tests, as pointed out in section “Parameter Identifications

by Indentation Tests”).

Purpose (a) is usually reached by the former approach mentioned above for

sensitivity analyses (Stage 4) and purpose (b) by the latter approach as well.

Stage 6. Computer simulations of the test which has been designed in what

precedes can lead from any vector p of P sought parameters to the M-vector

u (usually called “snapshot”) of measurable quantities; these quantities are called

here “pseudoexperimental” data when they are merely computed as functions of p.

Inverse analysis is mathematically formulated as minimization, with respect to

the variable P-vector p, of a “discrepancy function” ω(p) defined as a norm of the

differences between experimental or pseudoexperimental data gathered inM-vector

u and their corresponding counterparts gathered in “snapshot”M-vector u, which is

a function of the parameters contained in p. Formally,

min
p

ω pð Þ ¼ ωmin (1)

ω pð Þ ¼ u� u pð Þ½ �TC�1 u� u pð Þ½ � (2)

where C represents the covariance matrix of the data. When such quantification

of the random noise affecting measurements is not available, the identity

matrix replaces C without any qualitative change in the subsequent computations.
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As mentioned in section “Introductory Remarks,” in deterministic approaches to

inverse analyses, covariance matrix in Eq. 2 merely implies useful attribution of

“more weight” to more reliable data.

Stage 7. The above mathematical minimization problem, Eqs. 1 and 2, may

exhibit lack of convexity in the objective function ω (hence, possible local minima),

“non-smoothness” in the constraints and “ill-posedness.” In order to reach the

absolute minimum, the following kinds of algorithms can at present be adopted in

practical applications: mathematical programming and particularly Trust Region

Algorithms (TRA), e.g., Conn et al. (2000) and Coleman and Li (1996); Genetic

Algorithms (GA), e.g., Koh and Perry (2009); Artificial Neural Networks (ANN),

e.g., Haykin (1998), Hagan et al. (1996) and Waszczyszyn (1999). Such computa-

tional methods are implemented in software available on the market and described

in the literature, but herein, they are only mentioned and later employed in problems

outlined in the subsequent sections.

The following computational–mathematical circumstances have meaningful

consequences to the present purposes of inverse analyses in engineering

environments:

(i) TRA often requires diverse initializations in order to possibly avoid ending up

at a local minimum and at each step, first-order derivatives are needed in order

to approximate the Hessian (by gradient of Jacobian) in the step problem of

quadratic programming in two variables;

(ii) in GA applications, each “member” p of each sequential “population” over the

“search domain” defined in Stage 2 requires a test simulation;

(iii) in order to exhibit efficiency and stability, ANNs require a balance between

the number of inputs and the number of outputs.

The above and other computational circumstances make highly desirable, for

routine practical applications of inverse analyses, to reduce computational efforts

by recourse to some procedure of “model reduction” like the one applied here as

subsequent stages.

Stage 8. Over the “search domain,” defined at Stage 2, within the space of

parameters to identify (by means of the bounds suggested by the “expert”), a

“grid of N nodes” (pi, i ¼ 1 . . . N ) is now to be constructed. The simplest way of

grid generation rests obviously on a subdivision of the search interval conjectured

for each sought parameter in an equal number of equal subintervals and on the

assumption as “nodes” pi of the vertices of all cells thus generated. Clearly, with

such grid generation (adopted in the inverse analysis problems presented in this

chapter), the number of nodes grows exponentially with the number of the param-

eters to identify. When an “a priori” choice of the node number N becomes useful,

the node distribution can be performed by alternative methods, not described here

for brevity (see, e.g., Viana et al. 2010; Bates et al. 2004).

Stage 9. The “model reduction” procedure called “Proper Orthogonal Decompo-

sition” (POD) is adopted here below and in the innovative inverse analysis procedures

applied in the subsequent sections. It has remote origins in mathematics oriented to
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economics and can be outlined, as follows, to the present purposes. Details can be

found in Ruckelynck et al. (2006), Ostrowski et al. (2008), Nouy (2010), and Buljak

(2012). By assuming the parameters pi at each node of the grid generated in the

preceding stage, the test simulation is carried out leading to the vector ui containing

the pseudoexperimental data as “snapshot” corresponding to pi, through direct anal-

ysis by the (say FE) discretization model elaborated at Stage 3. Let a M � N matrix

U gather all such “snapshots.” The number M of quantities measurable in the test is

usually smaller than N, which grows exponentially with the parameter number.

In most real-life problems, the responses ui of the tested system to the same

given external actions, but with diverse parameters pi internal to the “search

domain,” turn out to be “correlated,” namely, “almost parallel” in their space.

Such correlation, often physically motivated, can be easily checked on matrix

U and computationally exploited by the procedure at Stage 10. Attention should

be paid to “correlation” of test responses also because it may not hold in some

situations (e.g., a small change in Young modulus may cause the transit from

stability to instability in a structural component under dominant compression).

Stage 10. In the M-dimensional space of the snapshots ui (i ¼ 1 . . . N), a new

reference axis is singled out by maximizing, with respect to all directions, a Euclidean

norm of the projections on it of all N snapshots ui. Then, another axis is found by

similar maximization over the set of all directions orthogonal to the one above singled

out. A sequence of such optimizations leads to a new reference system, or “new

basis,” analytically described by an orthonormal matrix Φ of order M such that

ΦTΦ ¼ I, U ¼ ΦA, A ¼ ΦTU (3)

where theM � Nmatrix A gathers, as columns, the vectors (called “amplitudes” ai
in the POD jargon) which describe the snapshots ui in the “new basis.” The

abovementioned (Stage 9) “correlation” among test responses with various parame-

ters varying within their “search domain” naturally motivates large differences among

amplitude components and suggests simplifications based on removal of axes with

negligible components in the new basis. Such “truncation,” intuitively very natural

and clear, had been investigated decades ago in economics-oriented mathematics. To

the present purposes, some operative details can be found in Chatterjee (2000). Here,

only the main features are mentioned, namely, the above “truncation” is based on

computation of the eigenvalues λi (i ¼ 1 . . . N) of matrix D ¼ UTU (of order N,
symmetric positive definite or semidefinite) and on preservation of the axes

corresponding to the λi larger by orders of magnitude than the smallest eigenvalues.

Thus, a “truncated basis” (matrix Φ̂ of order M � K with K � M ) is generated

for approximations of the test responses ui through their dependence on “reduced

amplitudes” âi, namely:

ui ffi Φ̂ âi i ¼ 1 . . .Nð Þ or U ffi Φ̂ Â (4)

An assessment of errors implied by the recourse to the truncated POD basis

can be easily evaluated by comparing the sum of the eigenvalues λi (i ¼ 1 . . . K )
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related to the K preserved directions (or “modes”) to the sum of all the original ones

λi (i ¼ 1 . . . N).

The truncated basis Φ̂ exhibits the mathematical features of the original basis Φ
expressed by Eq. 3; therefore, the reduced “amplitude” âi of any snapshot ui can be

computed with the approximation as in Eq. 4, namely:

âi ffi Φ̂T
ui i ¼ 1 . . .Nð Þ or Â ffi Φ̂T

U (5)

The model reduction procedure outlined in what precedes concerns the set of the

N parameter vectors pi preselected as grid nodes in the “search domain” and can be

done once for all in view of repeated practical applications of inverse analyses,

which can be made fast by the computational provisions outlined in the next stage.

Stage 11. The minimization of the discrepancy function ω(p), Eqs. 1 and 2,

requires a high number of test simulations, as underlined earlier, both if a GA is

employed and if an algorithm of mathematical programming as TRA is adopted.

Such practical difficulty can be overcome by means of the computational provisions

summarized in what follows (see, e.g., Buhmann 2003; Kansa 2001).

For each parameter grid node pi (i ¼ 1 . . . N ), a Radial Basis Function (RBF) is

considered, namely:

gi pð Þ ¼ p� pið ÞT p� pið Þ þ r2
h i�1

2

i ¼ 1 . . .Nð Þ (6)

with the “smoothing coefficient” r to be calibrated, once for all, for each kind of

application. Each component âkj (k ¼ 1 . . . K, j ¼ 1 . . . N ) of the “reduced ampli-

tude” vector âj corresponding to node parameters pj defined in Stage 10 and by Eq. 5

is expressed as a linear combination of the values acquired there by the RBFs Eq. 6:

âkj ¼
XN
i¼1

bki gi pj

� �
k ¼ 1 . . .K, j ¼ 1 . . .Nð Þ or Â ¼ BG (7)

This Eq. 7 consists of K � N linear equations in K � N unknowns bi
k, gathered

in matrix B, whereas matrix G contains the known values gi(pj) of all functions
RBF in all N parameter nodes pi of the grid over the search domain.

The simple solution of Eq. 7 provides the coefficients bi
k for the linear combi-

nation which leads from any “new” parameter vector p out of the grid nodes to the

reduced amplitudes â of the “snapshot” u; this vector u quantifies the pseudoex-

perimental data resulting from the test simulation based on the parameters

contained in that vector p. In matrix formulae,

u pð Þ ¼ Φ̂ â ¼ Φ̂Bg pð Þ (8)

where vector g gathers the N values of gi(p) (i ¼ 1 . . . N ) acquired by the RBF

centered on p in all grid nodes (Eq. 6). When matrix B is available since it was
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provided by the solution once for all of Eq. 7, any “direct analysis,” i.e. any test

simulation leading to the measurable quantities, can be carried out by Eq. 8, instead

of by FEM or by other methods, with computing times by various orders of

magnitude shorter, at comparable accuracy. Clearly, the practical benefits for

parameter identifications by means of either TRA or GA are significant. This

circumstance implies substantial computational advantages also when an ANN is

adopted for fast inverse analyses, since the ANN input may consist of amplitude

vector â which represents the snapshot u with much lesser number of components.

Stage 12. A question which arises in engineering applications of inverse analysis

concerns the consequences of experimental errors on the parameters estimates.

Within the deterministic methodology considered in this chapter, by exploiting

the computational efficiency acquired by POD, an answer to the above question can

be achieved as follows: many parameter identifications are performed starting from

randomly perturbed experimental data (such randomness quantifies the measure-

ment accuracy); the consequent “perturbations” in the estimates is quantified, say,

by mean value and standard deviation of their probability density distribution.

The inverse analysis procedure outlined stage by stage in what precedes can be

regarded as a methodological platform for the contents of the sections which

follow. The sequels in this chapter are aimed to illustrate potentialities and limita-

tions of such methodology by means of research results achieved by the authors and

oriented to improvements, in the present state of the art, for the assessment of

structural damages and of mechanical properties of materials in engineering and

industrial environments. Clearly, diverse technological areas and other approaches

and research results far from those dealt with in this chapter may contribute to the

above purposes, also through other chapters of this handbook.

A possible future methodological development based on what was outlined in

this section, but with substantial diversity as well, is briefly presented here below.

Several prestressed concrete structures, primarily bridges, are at present damaged

by creep occurred along decades since their construction. Two circumstances can

be supposed to affect the relevant engineering situation: experimental data have

been accumulated on such structure along decades of its long life because of alarms

in view of evident damaging processes due to concrete creep; diverse material

models, say A and B, have been proposed in order to reliably predict the residual

time of service of that bridge before collapse, if no interventions occur, and/or in

order to design repairing provisions. Let the structural behaviour in time under the

known loads be modelled, first by using time-dependent constitutive model A for

concrete; subsequently, the same modelling work is done (same FEM code, same

FE mesh and boundary conditions, same external actions, etc.), but using material

model B. A discrepancy function ωA(pA) is defined and minimized with respect to

the parameters which are not accurately known a priori in model A, by an inverse

analysis according to the computational technique described in this chapter (but not

necessarily by carrying out the POD and subsequent use of it, since repeated routine

applications are not required by the present engineering problem). A second inverse

analysis is done with a single change which concerns the constitutive model B of
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concrete mechanical behaviour with emphasis on time dependence. Clearly, mean-

ingful is a comparison between the minimized discrepancies ωmin
A and ωmin

B : the

model leading to a lower minimum turns out objectively to be preferable for reliable

predictions on the future of the structure considered (and of other structures

similarly affected by phenomena long lasting in time, hence seldom susceptible

of new repeated reliable tests).

The above hints to unusual comparative applications of the inverse analysis

method dealt with in this chapter may have conceptual connections and practical

links with the contents of the chapter concerning prestressed bridges in this

handbook.

Parameter Identifications by Indentation Tests

Calibration of Tensorial and Fracture Models on the Basis
of Indentation Curves Alone

Penetration of a stiff tip into a structural component, possibly “in situ” (without

extracting any specimen), superficially (say less than one millimeter) and,

hence, as “non-destructive” test, has been since decades a popular experiment

in engineering mechanics and a subject of an abundant literature; see, e.g.,

Oliver and Pharr (1992), Dao et al. (2001), Kucharski and Mróz (2004), and

Bolzon et al. (2004).

Originally, “hardness” was the material parameter to be achieved in view of its

metallurgical meaning. Later parameters in elastic–plastic constitutive models

became the targets of estimation by means of indentation tests and empirical or

semi-empirical formulae.

Recent developments are centered on inverse analysis methods. In what follows,

“indentation curves” alone are sources of measured data; both indentation curves

and imprint profiles will be considered in the subsequent subsections.

Diagnostic analyses of possibly deteriorated structures (e.g., pipelines, offshore

platforms, ships, power plant components, tall steel buildings) frequently require a

high number of tests which implies high costs if performed on specimens extracted,

with obvious consequent damages, and taken to laboratories. Instrumented

indenters can be easily employed “in situ,” but the following problem arises in

engineering practice: can damage parameters be identified fast and repeatedly “in

situ”? Clearly, such a problem becomes more challenging if the sought parameters

govern direction-dependent (tensorial) properties.

The following practical situations with the above difficulties for diagnosis have

been subjects of recent research:

(A) residual stresses, particularly due to defective welding processes;

(B) anisotropy in elastic and/or plastic material behavior, e.g., sometimes due to

lamination or other production treatments.
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The above parameter estimation problems can be tackled by the following novel

operative procedures:

(i) the geometrical shape of the indenter is preliminarily optimized by sensitivity

analyses for each kind of practical situation, on the basis of the “search

domain” suggested by an expert (see Stages 2, 4 and 5 in section “A Survey

of a Practical Methodology for Damage Assessment in Structures”);

(ii) the indenter with optimized cross section no longer axisymmetric (but, e.g.,

elliptical) is employed for two or three indentations in near locations, but

rotated by 90 or twice by 45 around the axis.

In both practical problems (A) and (B), the stage sequence of inverse analysis

turned out to be productive of reliable estimates and accelerated by POD-RBF-TRA

(Stages 7, 8, 9, 10, 11) procedures, susceptible to be performed routinely “in situ”

by a small computer.

A numerical exercise apt to illustrate residual stress assessment, namely, method

(A), is concisely presented in what follows. Details are available in Buljak

et al. (2012). A traditional spherical Brinell-type indenter with diameter Ds is

considered in what follows. If the coordinate x along the indenter axis has its origin
on the indenter tip, the two diameters of the ellipse generated as new cross section

by shape modification (Fig. 1a) can be described by the following formulae:

D0 xð Þ ¼ 2 Ds x� x2
� �1=2

, Dmax ¼ βD0 xð Þ, Dmin ¼ 1=βð ÞD0 xð Þ (9)

where β > 1 governs the sharpness of the new shape.

For preliminary computational exercises, the classical isotropic

elastic–perfectly–plastic “associative” Huber–Hencky–Mises model has been

adopted in Buljak et al. (2012). The reference values which characterize, in terms of

principal stresses and directions, the residual stress state to identify are σI ¼ 500 MPa

and σII ¼ �500MPa, φ ¼ 20∘ being the angle between axis 1 and direction of σI. The
indenter which turned out to be preferable in comparative computations is ellipsoidal

with shape defined by Ds ¼ 0.5 mm and β ¼ 2, Eq. 9; its geometry is specified in

Fig. 1a. Figure 1b visualizes the influence on indentation curves of this indenter when

indentations are performed three times by rotating it 45∘ each time. The adopted FE

model for test simulations (a) and the indentation sequence (b) are shown in Fig. 2. The

POD procedure was started by adopting in the parameter space a regular grid with

125 nodes by varying the three parameters within the following ranges: �600 < σI
< 600 MPa, �600 < σII < 600 MPa; 0 < φ < 90∘.

Figure 3 visualizes the TRA step sequences up to convergence of discrepancy

function minimization. The same optimization procedures were repeated three

additional times starting from different initialization vectors. The averages

resulting from all the inverse analyses exhibit the following values: σI ¼ 503

MPa, σII ¼ �499 MPa and φ ¼ 21.9∘. These values turn out to be satisfactory if

compared to their counterparts earlier assumed as “targets” (500 MPa, �500 MPa
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and 20�, respectively). When residual stresses to be estimated exhibit principal

directions known a priori, a third indentation (at 45�) is useless in view of the small

sensitivities of its experimental data.

Details on a novel method (B) for calibration of anisotropic plasticity models,

again by exploiting indentation curve only, can be found in Buljak et al. (2013a).

Fig. 1 (a) Generation of ellipsoidal indenter from a spherical one. (b) Indentation curves provided

by three tests, rotated by 45� one from the other, in the presence of residual stresses

Fig. 2 (a) Finite element mesh for test simulation of an indentation test. (b) Three indentation

tests rotated by 45� for the estimation of a residual stress state

Fig. 3 Sequence of steps of a TRA procedure applied to the estimation of the three parameters

which define a residual stress state (σI ¼ 500 MPa, σII ¼ �500 MPa, φ ¼ 20∘)
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Common features with method (A) are repeated indentations by means of

elliptical or bicircular indenters.

A third kind of structural diagnosis can suitably be mentioned here as (C):

identification of brittle fracture parameters.

Whereas residual stress states can be estimated also by non-destructive radiation

or acoustic (supersonic) tests, identifications of fracture parameters so far are

usually performed in laboratories on specimens.

Recently, it has been shown in Buljak et al. (2013b) that the two parameters

governing a simple mode-I model of brittle fracture can be estimated economically

“in situ” by means of “non-destructive” indentation curves alone, provided that,

like in methods (A) and (B), the shape of the instrumented indenter has been

optimized again by sensitivity analyses (Stage 4).

The purpose here pursued in the indenter design is to make a crack generation

“dominant” among the consequences (elastic and inelastic strains) of the loading

process. The novel geometry, which turned out to be suitable for the calibration of a

brittle fracture model in glass, is visualized in Fig. 4: the “double bicircular blade”

has been designed starting from the conical shape of a classical indenter and

modifying the geometry governed by three parameters (one is the distance γ
between the two axes, Fig. 4) in order to maximize the difference between

pseudoexperimental indentation curves computed on the basis of parameter values

at lower and upper bounds suggested by “experts” on the material (Stage 2 in

section “A Survey of a Practical Methodology for Damage Assessment in

Structures”).

For preliminary computational validation of this innovative diagnostic proce-

dure, the piecewise-linear relationship of Fig. 5a (tensile stress t versus crack

opening displacement w) has been assumed, namely, the sought parameters are

tensile strength tY and softening parameter H (or fracture energy Gf).

The discrepancy function ω(tY, H ) defined according to Eqs. 1 and 2, Stage 6 in

section “A Survey of a Practical Methodology for Damage Assessment in Struc-

tures,” is graphically shown in Fig. 5b, which visualizes also the itineraries of step-

by-step TRA solutions from two initializations to the absolute minimum within the

“search domain” (Stages 8–10 in section “A Survey of a Practical Methodology for

Damage Assessment in Structures”).

It is worth noting that the piecewise-linear (PWL) approximation of Fig. 5a

adopted in Buljak et al. (2013b) implies its mathematical representation as “linear

Fig. 4 (a) Shape of double sharp indenter. (b) The three geometrical parameters to be optimized

in the fracture test design
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complementarity problem” (LCP), and therefore, the discrepancy minimization

becomes “mathematical programming under equilibrium constraints” (MPEC),

namely, a classical mathematical problem of minimization with possible lack of

convexity due to its general formulation.

However, the following advantages emerge from PWL approximation in prac-

tical applications: algorithm software available on the market; same mathematical

features of direct and inverse analyses when more general and accurate PWL brittle

mechanics (or “cohesive crack”) models are employed (e.g., more than one straight

segment for the approximation of the softening branch; mixed-mode fracture),

either with holonomic (“path independent”) or non-holonomic assumptions.

Structure Model Calibrations Based on Measurements by both
Instrumented Indenter and Imprint Profilometer

A recent development, started in Bolzon et al. (2004), in the structural diagnostic

methodology centered on indentation tests is based on the employment of an

instrument additional to the instrumented indenter and apt to provide digitalized

data on the geometry of the generated residual imprint. Such instrument is a “laser

profilometer” for macroscale experiment or an “atomic force microscope” at

micro- or nanoscale.

The consequent availability of additional experimental data may provide the

following possible advantages to parameter identification by inverse analysis: well-

posedness of the minimization problem and convexity of the discrepancy function

to minimize, faster computer solutions of the inverse problem and larger numbers

of identifiable parameters.

The imprint visualized in Fig. 6a was generated by indentation on copper. Its

average profile is compared in Fig. 6b to profiles computed by FE simulations on

Fig. 5 (a) Mode-I cohesive crack model with two parameters to estimate. (b) Itineraries of two

identification procedures by TRA
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the experiment based on parameter estimates achieved by TRA with four different

initializations. The inverse analyses concern here Young modulus E, yield stress σy
and hardening exponent n contained in the classical Ramberg–Osgood elastoplastic

isotropic model (e.g., Lubliner (1990)).

Figure 7 (from Bolzon et al. (2011)) provides some comparisons among three

diagnostic procedures centered on indentation and on Ramberg–Osgood model, but

based on (A) curves only, (B) curves and imprint profiles, and (C) imprint only.

Comparisons with the procedures, outlined in the preceding subsection “Cali-

bration of Tensorial and Fracture Models on the Basis of Indentation Curves

Alone,” lead, e.g., to the following remarks: residual stresses and anisotropy are

reflected by the geometry of the imprint which generally does not exhibit axial

symmetry after extraction of popular usual axisymmetric indenters (e.g., Brinell or

Rockwell); therefore, the parameter identification may occur on the basis of a single

indentation, without repeated rotated tests as specified here earlier. Two instru-

ments obviously mean more costs, and, as for laser profilometers, confinement to

laboratories is expected (no longer “in situ”). However, the following prospect turns

out to be promising and might be realized in the near future: indentions are

performed “in situ” and the imprint shape is carried by a mold to the profilometer

in a laboratory. Anyway, the employment of laser profilometers after indentations is

potentially useful and practically advantageous in many situations of materials and

structural engineering.

Fig. 6 (a) Imprint due to an indentation on copper and relevant radial profile. (b) Averaged

imprint of profiles achieved by laser compared to those computed by parameter estimates resulting

from diverse TRA inverse analyses
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Damage Assessment in Dam Engineering

Diagnostic Analyses in Elasticity Ranges

At present there are about 45,000 “large” dams in the world (conventionally, “large”

means higher than 15 m and/or with reservoir larger than 106 m3). Most of them have

been built up in the last century, particularly in decades after the Second World War.

Besides possible damages, like in other categories of civil engineering structures

(particularly, e.g., due to exceptional external actions like earthquakes), two sources

of damages may occur specifically in dams as a slow but irremediable

statical deterioration (see, e.g., Ahmed et al. (2003) and Comi et al. (2009)):

Fig. 7 Error distributions in estimates of Young modulus E, yield limit σy and hardening exponent
n, achieved by the ANN-centered procedure with approaches A, B, and C: figures (a), (b), and (c),

respectively
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(i) “Alkali–Silica Reaction” (ASR) in concrete, namely, a physical–chemical

phenomenon due to original wrong choices of ingredients and implying, after a

“dormant stage” of years, drastic strength reduction and residual stresses due to

local expansions; (ii) slowmotions (say half centimeter per year) and possibly eventual

instabilities (e.g., like in Vajont disaster) in the surrounding geological formation.

A frequently adopted criterion for diagnosis of concrete dams is based on overall

estimations of elastic stiffness: the distribution of Young modulus over the whole

dam is reasonably regarded as representative of possible deterioration (including

those consisting of diffused cracks). Dynamical excitation by vibrodynes and

response measurements by accelerometers provide a context suitable to inverse

analyses apt to assess zonewise distribution of present average Young modulus.

An alternative diagnostic method leading to the same estimates (i.e. average

local elastic stiffness), but based on statical (instead of dynamical) excitation, has

been proposed in Ardito et al. (2008) and is outlined here below.

In most hydroelectrical systems, a substantial change of water level occurs

between summer and winter. Such annual fluctuation in the reservoir can be

exploited as economical, accurately quantifiable statical loading. The structural

response of the dam, obviously in the elastic range, can at present be assessed by a

radar instrumentation placed downstream. Many measurements are taken in order

to provide displacements at preselected points of the dam surface and are exploited

as input of inverse analysis. The parameters to identify are the values of the elastic

Young modulus in preselected regions of the dam volume. Clearly, contributions to

these displacements arise also from changes of the temperature in the environment

and must be assessed by thermal analyses, which can hardly be performed very

accurately (Ardito et al. 2008). Simplification and increase of accuracy, but obvi-

ously with higher costs, can be achieved by a fast (in a few days) “ad hoc”-designed

change of reservoir level (see, e.g., Ardito and Cocchetti (2006)).

Superficial Structural Diagnoses Based on Flat-Jack Tests and
“Full-Field” Displacement Measurements

The limitations to the elasticity range of the overall diagnostic methods on concrete

dams can be overcome by the local parameter identification procedures outlined in

what follows.

“Flat-jack” tests are employed since several decades for estimation of stress

states and of stiffness in concrete dams superficially and in masonry structures.

Besides the parameter identification methodology presented in this chapter, the

main novelties with respect to the current flat-jack practice consist of “full-field”

measurements of displacements by “Digital Image Correlation” (DIC), see, e.g.,

Avril et al. (2008) and Hild and Roux (2006). This modern experimental technique

is described in chapters of this handbook.

Recent developments for more effective and fruitful “routine” applications of

flat-jack experiments are presented in and outlined here by a list of operative stages

on a concrete dam, with reference to Fig. 8.
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(α) On the dam surface, the geometry of two future orthogonal slots is marked and a

first photograph is taken over the “Region of Interest” (ROI), shown by a gray

rectangle in Fig. 8.

(β) The two slots are generated (Fig. 8b) and a second photo is taken by means of

the DIC equipment: thus, the displacements due to the release of the stresses in

the cuts are measured at all grid nodes.

(γ) Two flat-jacks are inserted and pressurized (Fig. 8c) and DIC photos are taken

again in order to measure the “full field” of new displacements.

(δ) The horizontal jack is removed and the vertical one is depressurized. A

reference photo is taken of a (ROI) zone located near the upper end of the

vertical slot, in which inelastic deformations are expected to develop in the

subsequent step.

(e) The vertical flat-jack is pressurized in order to generate inelastic strains first

(plastic primarily) and later a quasi-brittle-fracturing process near the tips of the

loaded slot. A sequence of DIC photos is taken to capture the nonlinear evolution

of the displacements due to such loading by further jack pressurization.

Fig. 8 Sequence of steps in the novel flat-jack tests combined with parameter identification by

inverse analysis
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The estimation of parameters is performed according to the following sequence:

elastic moduli, on the basis of experimental data concerning transition from stage

(β) to (γ); stresses, on the basis of the elastic moduli estimates and of data acquired

at stages (α) and (β); inelastic parameters, on the basis of data concerning the

transition from stage (δ) to the various deformation stages represented in the

sequence of DIC photos taken in phase (e).
The above novel procedure resting on inverse analyses exhibits the following

advantages with respect to the present flat-jack practice: more information is

provided, including inelastic parameters; more accurate are the estimates; less

“destructivity” occurs due to simpler slot geometry. Operatively, the main difficulty

consists in the design and realization of supports apt to carry the cameras by

avoiding disturbances due to the slot drilling.

Since orthotropy with “transversal” isotropy in the horizontal plane is

frequently generated in roller-compacted concrete, the identification procedure

presented in Garbowski et al. (2011) concerns the three parameters which play the

main role in the system response, namely horizontal EH and vertical EV Young

modulus and the shear stiffness GV. The preexisting stress state is assumed

plane on the free surface of the dam and uniform over the volume involved in

the test; therefore, parameters to identify are three stress components σH, σV,
and τHV. As for inelastic behaviour, the classical Drucker–Prager model has

been adopted (perfect plasticity with nonassociated flow rule) governed by

three parameters.

Structural Diagnoses In Depth by Drilling and Dilatometric Tests

In order to compute safety factors of possibly deteriorated concrete dams, with

respect to various kinds of failures, assessments of present concrete properties and

of self-equilibrated stress states (due to ASR expansion or to slow motions of

surrounding geological formations) are necessary also in depth, not only near the

free surfaces. The in-depth material characterization is a well-developed topic in

rock mechanics (see, e.g., Wittke (1990)). A diagnostic method, proposed in Zirpoli

et al. (2008), can be outlined as follows.

(α) A perforation is performed by a traditional drilling equipment up to a

preselected depth.

(β) A device called “dilatometer” is inserted; it consists of two sleeves equipped

with radial displacement gauges and, between them, two movable steel “arches.”

(γ) The drilling goes ahead, while the gauges measure the displacements due to the

consequent stress relief.

(δ) Hydraulic jacks inside the equipment apply two growing radial forces to the two

rigid steel “arches” and the gauges measure their displacements as linear-elastic

response of the region surrounding the hole.

(e) The elastic limit is overcome by increasing the jack pressure and plastic

deformation occurs while monitoring goes on.

20 Materials Mechanical Characterizations and Structural Diagnoses by Inverse. . . 637



(ζ) Another instrumental equipment is inserted in the hole with blades instead of

“arches”: again small jacks push these sharp indenters against the cylindrical

wall in order to promote dominant quasi-brittle fractures to be exploited in a

procedure similar to that mentioned in section “Parameter Identifications by

Indentation Tests” with reference to glass.

The sought parameters can be estimated in the following sequence: Young mod-

ulus and Poisson ratio, using the experimental data collected during phase (δ); the
initial stresses, two normal and one tangential, in the plane orthogonal to the hole axis,

by employing the estimated elasticity parameters and data coming from phase (γ);
parameters governing a plastic constitutive model and/or a quasi-brittle fracture

model, using the previous estimates and measurements in phase (e) and/or (ζ).
With respect to the state-of-the-art diagnosis of concrete dams, the above

diagnostic procedure is motivated by the following advantages:

(i) no specimen is extracted from the borehole to be tested in laboratory;

(ii) displacements are measured, not strains which are sensitive to local material

properties (quite different from mortar to aggregate);

(iii) inelastic properties can be assessed “in situ” and in depth;

(iv) a portable computer, containing software elaborated “a priori” (by POD outlined

in section “A Survey of a Practical Methodology for Damage Assessment in

Structures”) through FE simulations of the mechanical test, performs inverse

analyses on the basis of the displacement data coming from the gauges.

The above outlined mechanical characterization procedures of material behav-

iours in depth provide obvious practical advantages if compared to the present

techniques of “coring” and “overcoring,” traditional and still fashionable in geo-

technical engineering. Reliable quantitative assessment provided by inverse ana-

lyses on geological formations might contribute in the near future to predict

earthquake in some areas, to avoid damage events like Vajont disaster (1963) and

Macondo borehole collapse in Gulf of Mexico (2010). The latter historical event

has led to a gigantic 10-year research project (starting in 2013, coordinated by the

two National Academies in the USA). In this project, one of many purposes might

be the realization of experimental equipment apt to mechanically characterize the

crossed geological layers, in addition to the multiple instrumentation employed at

present by the offshore industries for deep perforations (which at present sometimes

exceed 12 km depth in some areas).

Inverse Analysis Procedures for Mechanical Characterizations
of Foil Products

Industrial products consisting of thin layers in a plane, like textile membranes and

laminates, are at present often mechanically characterized by means of laboratory

experiments with the following features: cruciform specimen with branches on
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which axial elongations are imposed by clamps and consequent “loads” are mea-

sured; measurements of two-dimensional displacements in the nodes of a grid by

digital image correlation (DIC). “Full-field” assessment of displacements may

confer well-posedness, particularly if combined with their inhomogeneity gener-

ated by a central hole shown in Fig. 9.

An elastic–plastic hardening associative constitutive model has been elaborated

for paper and paperboard foils at MIT (Xia et al. 2002). A simplification of this

material model proposed in Garbowski et al. (2012) reduces from 27 to 17 the

number of parameters. In view of routine applications in an industrial environment,

“feed-forward” artificial neural networks (ANNs) have been considered in

Garbowski et al. (2012). Generally, for the design and the computational behavior

of ANN, a balance is desirable between the dimensionalities of parameter vector

p and of measurable quantities vector u. In the present context, the number of

experimental data, i.e., the dimensionality of vector u containing displacement

measurements by DIC, turns out to be by orders of magnitude larger than the

dimension of the parameter vector p. Therefore, the role of ANN input is attributed

here again, like in section “Parameter Identifications by Indentation Tests,” to

“amplitude” vector a which approximates the information contained in the “snap-

shot” u by compressing it through the POD procedure employed in the preceding

section. The role of vector a is twofold: the preliminary generation of the ANN by

means of the “patterns” (pi, ai) and the input of the ANN for the estimation of the

parameters p on the basis of a test on cruciform specimen with DIC measurements.

An obvious difficulty intrinsic to the POD + ANN method is that the growth of

the parameter space dimensionality implies exponential growth of the number of

grid nodes over the search domain. With reasonable snapshot number in the

preliminary POD computations, the density of nodes over the search domain may

become low and this can jeopardize the accuracy of the estimates provided by the

trained ANN. However, as already underlined in the preceding sections, the

Fig. 9 Cruciform test on a membrane with full-field measurements of inhomogeneous

displacements
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increase of snapshot number N concerns only the preparatory computations to be

done once for all and, hence, is quite possible in real-life applications.

The mechanical characterization of free foils by experiments with compression

in their planes is required by the following circumstances: walls of food containers

are often significantly compressed during transportation; anisotropic constitutive

models like the ones considered in what precedes involve parameters which cannot

be identified by tests with dominant tension. A novel experimental equipment

(“sandwich system”) and inverse analysis procedure have been proposed in

Cocchetti et al. (2012). A rectangular specimen of the foil is inserted between

two stabilizing elastic “blocks.” The external actions consist of rotations imposed

by two rigid clamps, apt to generate a chosen combination of compression and

bending. At each step of the planned rotations, many displacements are measured

by the DIC technique, both on the blocks and on the emerging specimen. FE

computer simulations are performed, first for sensitivity analyses apt to design

and optimize the procedure; subsequently, the POD + RBF + TRA procedure is

applied to the estimation of parameters. A “fictitious homogeneous material” is

attributed to the foil (even if it is a layered laminate) and its behaviour is described

by an anisotropic elastic–plastic model. Homogeneity assumption is suggested by

unpredictable changes in local properties of layers and interfaces due to the

production processes.

Conclusion

The damages considered in this chapter primarily consist of unexpected changes in

mechanical properties of materials and structures, changes which may reduce the

margins of safety in service of industrial products, of structural components in

power plants and civil engineering buildings and of structures in a variety of other

engineering areas.

Such changes concern parameters which are included in the input of each

structural “direct analysis” apt to assess the above safety margins. Clearly, back-

analyses are needed in many other technical contexts without damages like assess-

ment of conductivity in thermal problems.

Identifications of these damage parameters, usually contained in material

models, by means of suitable experiments and “inverse analyses” based on them,

can be at present considered as a growing area of applied mechanics. Within this

area, the procedures outlined in the present chapter, by numerical examples as well,

concern the damage assessments (or “structural diagnosis”) by experiments listed

here as conclusions: nondestructive indentation tests, with or without profilometric

measurements as additional sources of data; flat-jack tests and dilatometric tests

with drilling, superficially and in depth, respectively, for mechanical characteriza-

tions of concrete dams and of geomaterial or geological formation crossed by

perforation instruments; calibration of anisotropic constitutive models for multi-

layer laminates by cruciform tests.
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The inverse analysis methodology and the above listed applications have been

confined to the following features in view of contents of other chapters in this

handbook: deterministic approaches, macroscale modelling, and statical loads.

However, the methodological features outlined in section “A Survey of a

Practical Methodology for Damage Assessment in Structures” (sensitivity analyses

for test design, “full-field” measurements, model reduction by “Proper Orthogonal

Decomposition,” repeated interpolations instead of finite element simulations)

and exemplified by the few abovementioned applications in the other sections can

be regarded as innovative and potentially advantageous in a much broader

engineering field.
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Abstract

This chapter focuses on polymer/metal interfaces. Attention is given to two

common aspects of tremendous practical interest, namely, surface roughness and

moisture. Debonding of polymer/metal interfaces often involves both interfacial

and cohesive failure. Since the cohesive strength of polymers is usually much

greater than the polymer/metal interfacial strength, cohesive failure near the

interface is usually desired to enhance the interfacial adhesion. Roughened sur-

faces generally produce more cohesive failure and, therefore, are used commonly

in practice to obtain better adhesion. In this chapter, a fracture mechanics model is

developed that can be used to quantitatively predict the amount of cohesive failure

once the surface roughness data are given. Moisture, on the other hand, tends to
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degrade the interfacial strength. To quantify such degradation, a systematic and

multidisciplinary study is conducted to better understand the fundamental science

of moisture-induced degradation of interfacial adhesion. The approach is com-

prised of both experimental and modeling components of analysis and addresses

some of the key issues needed to advance the understanding of the effect of

moisture on interfacial adhesion.

Introduction

Polymer/metal interfaces are ubiquitous. They can be found in numerous engineering

applications. For example, polymers are used as adhesives and coatings for metals in

aircrafts, automobiles, microelectronics, MEMS, etc., and polymer composites are

routinely used for retrofitting damaged structures. The need for the miniaturization of

microelectronic devices has led to the emerging technology of 3D packaging, in

which numerous metal layers are bonded together by polymer dielectric adhesives.

The reliability of microelectronics devices (cell phone, computers, etc.), to a large

extent, depends on the integrity of these material interfaces, because they are often the

“weakest links” and their failure often leads to the malfunction of the entire electronic

device. Therefore, understanding the structure–performance relationship of polymer/

metal interfaces is critical in designing, building, and operating various structures,

components, and devices.

Bonding of a polymer to a metal may invoke several mechanisms. Some are

chemical, others are physical andmechanical. At intimate contact between the polymer

molecules and metal atoms, chemical bonding is generated through charge transfer

processes, such as the hydrogen bonding, the acid–base interactions, and the electron

pair donor–acceptor interactions which may involve both covalent and ionic forces.

Chemical bonding can be significantly improved by coupling agents at the interface.

The van der Waals faces originated from the molecular dipole interactions give

rise to physical adsorption in which wetting is necessary and essential. When

integrated over the two mating surfaces, van der Waals faces turn out to be a

weak but long range interaction, decreasing as r�2 or r�3 beyond 10 nm. Since

adsorption is believed to be one of the most important mechanisms in achieving

adhesion, diffusion and wetting are critical to attain good bonding.

Dissipation is the major mechanical adhesion mechanism at the microscopic

scale. The two main dissipation mechanisms are the viscoelastic energy loss due to

the translational motion of the polymer chains, and the plastic deformation near the

delamination crack tip. The latter plays a major role in interfacial fracture mechan-

ics, which is a subject studied extensively in many engineering applications.

Chemical and physical adhesion provides the molecular scale bonding forces

between the polymer and the metal. The macroscopic strength of the interface,

however, depends on not only the molecular scale bonding forces but also flaws and

defects on the interface. Such flaws and defects cause stress concentration which

greatly reduces the macroscopic interfacial strength. Fracture mechanics is then

needed to assess the integrity of the interface.
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For many polymer/metal interfaces of practical interest, their fracture behavior

can be captured by the linear elastic fracture mechanics or small-scale yielding

elastic-plastic fracture mechanics. In both cases, the crack-tip stress field is scaled

by a mixed mode stress intensity factor (SIF). The critical value of the SIF at which

the crack starts to propagate defines the interfacial fracture toughness, which may

also depend on the load mixity. In engineering applications today, the only way to

obtain such mixed mode fracture toughness is through experimental measurements.

In other words, there is no methodology that is capable of predicting the interfacial

fracture toughness from the material’s atomistic structure.

At the mesoscopic scale, mechanical interlocking may significantly improve

interfacial strength, which can be achieved by various surface treatments of the

metals to provide desired surface roughness and topologies (e.g., Lee and Qu 2003).

It is to be noted that mechanical interlocking, strictly speaking, is not one of the

adhesion mechanisms, at least not at the molecular level. It is only a technological

means in achieving adhesive bonding.

This chapter focuses on two issues that are most critical to the strength of

polymer/metal interfaces, namely, surface roughness and moisture.

Effects of Surface Roughness

Metal surfaces are microscopically rough. When a liquid state or gelatinous adhe-

sive is applied to a rough surface, it conforms to the rough surface and tends to fill

up the irregularities of the substrate surface such as microgroves, holes, or dips.

Consequently, mechanical interlock forms after the adhesive is cured. For example,

the anodization of aluminum alloys produces a deeply porous topography with

many open porous structures, the adhesive typically penetrates to virtually the

bottom of the pores, and so a “composite” interfacial region is created (Kinloch

1987). This composite region will have a modulus and strength intermediate

between those of the polymeric adhesive and the aluminum oxide, and this would

be expected to be beneficial from the viewpoint of joint strength and toughness.

Such adhesion enhancement due to surface roughness has been demonstrated by

many studies in the literature.

For polymer/metal interfaces, the mechanism of adhesion enhancement due to

roughness is associated with the fact that separation of the interface does not occur

completely along the interface line. Due to surface roughness, cohesive failure of the

polymer adhesive occurs near the interface as the adhesive is peeled away from the

substrate, resulting in the crack path deviating from the interface. Such deviation of

crack path away from the interface usually requires additional energy associated with

the crack propagation within the polymer adhesive. Therefore, in order to quantify the

adhesion enhancement, this additional energy needs to be evaluated.

To this end, consider a polymer/metal interface with an idealized interface

profile as shown in Fig. 1. The relevant dimensions are the height 2R and the

half-wavelength λ. Furthermore, it is necessary to introduce a nondimensional

parameter η so that
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S0 ¼ ηλ: (1)

Obviously, η is limited by 0 < η < 1. These three parameters, R, λ, and η, are
sufficient to describe the interface profile uniquely.

In reality, rough surfaces are random and can only be characterized by statistical

averages. In this case, theparametersR,λ canbechosenas themeanvaluesof the random

variable. Techniques tomeasure and evaluate thesemeans are discussed in Yao andQu.

Using the idealized interface profile described above, one may assume that

interfacial failure first occurs in the flat area due to relatively weak interfacial

adhesion. As the crack propagates along the interface (Fig. 2a), the driving force

at the crack tip changes due to different mode mixity. Consequently, the interfacial

crack may be deflected into the polymer material (Fig. 2b). This crack deflection

results in the cohesive failure of the polymer material (Fig. 2c). Therefore, the

objective here is to identify the conditions for crack deflection.

Let the fracture toughness of the interface be Gic and that of the polymer be Gpc.

Then, based on the linear elastic fracture mechanics, the crack is likely to continue

along the interface if the condition Gi � Gic is met, where Gi is the crack-tip energy

release rate for a crack along the interface (Fig. 2a). On the other hand, the crack is

likely to be deflected into the polymer material if the condition Gp � Gpc is met,

where Gp is the crack-tip energy release rate for the crack shown in Fig. 2b. Since

the fracture toughness of the metal is much higher than that of the polymers and the

interface, the possibility of the crack kinking into the metal may be ruled out.

To formulate the above discussion into a mathematical form convenient for

quantitative analysis, let us define the energy release rate ratio

GR ¼ Gi

Gp
: (2)

Then, the conditions for the crack to select its paths can be formulated as

GR ¼ Gi

Gp
>

Gic

Gpc
) cracking along the interface, (3)

GR ¼ Gi

Gp
<

Gic

Gpc
) cracking into the polymer: (4)

2R

a

λ

S0

Polymer

Metal

Fig. 1 An idealized interface

profile
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So, the condition for impending crack branching is

GR ¼ Gic

Gpc
: (5)

The point for crack kinking into the adhesive can then be determined from Eq. 5

once the quantities on both sides of Eq. 5 are determined.

Note that Gic and Gpc are material properties. AlthoughGic is usually a function of

loading phase angle, it is nevertheless given for a specified interface. In other words,

the right-hand sides of Eq. 5 are known for a given interface. The energy release rate

ratio,GR, on the other hand, is a function of loads. In linear elastic fracture mechanics,

the energy release rate represents the amount of energy available at the crack tip for

crack growth. In general, for a given geometry and material pair, the energy release

rate ratio GR can be computed for any given loading. Yao and Qu developed an

approximate formula for GR

Polymer

a

Metal

Polymer

Metal

b

Polymer

Metal

2b

2λ

Nominal Area

c

Fig. 2 Interfacial and cohesive failure
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GR ¼ λ2

2γR λ� b� S0ð Þ
gi
gp

, (6)

where γ is a nondimensional fitting parameter,

gi ¼
1� ν1
μ1

þ 1� ν2
μ2

� �
1

4cosh2 πeð Þ , gp ¼ 1:25π
1� ν2
2μ2

, (7)

where νn and μn are the Poisson’s ratio and shear moduli of the polymer

(n ¼ 1) and the metal (n ¼ 2), respectively. The nondimensional parameter e is
given by

e ¼ 1

2π
ln

1� β

1þ β

� �
(8)

with β being the second Dundur’s bimaterial constant:

β ¼ 1

2

1� 2ν2ð Þ=μ2 � 1� 2ν1ð Þ=μ1
1� ν2ð Þ=μ2 þ 1� ν1ð Þ=μ1

: (9)

Substituting Eq. 6 into Eq. 5 and rearranging the terms yield

1� b

λ
¼ F

2γ

λ

R
þ η, (10)

with

F ¼ giGpc

gpGic
: (11)

It is seen from Fig. 2c that b/λ is the percent of area covered by the residual

polymer as a result of local cohesive failure relative to the total nominal area

(horizontal projection of the actual surface area). Consequently, 1 � b/λ represents
interfacial failure as a percent of the nominal area.

Furthermore, it is easy to see that Eq. 10 has a solution for b in the range of

0 � b < λ only if
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R � Fλ

2γ 1� ηð Þ : (12)

When Eq. 12 is not satisfied,

GR ¼ λ2

2γR λ� b� S0ð Þ
gi
gp

>
Gic

Gpc
,

which means that the crack does not kink into the polymer material. Instead, it will

continue to grow along the interface leading to pure interfacial failure. Thus, the

area of interfacial failure as a percentage of the nominal interface area is given by

S R, λ,F, η, γð Þ ¼
1� b

λ

� �
¼ F

2γ

λ

R
þ η,R � Fλ

2γ 1� ηð Þ
1 ,R � Fλ

2γ 1� ηð Þ

8>><
>>: (13)

Since the roughness is random, the profile height 2R and the half-wavelength λ
are random variables. Assume the surface is Gaussian and the probability distribu-

tions for R and λ are given, respectively, by

pR Rð Þ ¼ 1

σR
ffiffiffiffiffi
2π

p exp � R� R
� �2
2σR2

" #
, (14)

pλ Rð Þ ¼ 1

σλ
ffiffiffiffiffi
2π

p exp � λ� λ
� �2
2σλ2

" #
, (15)

where the means R, λ are discussed in the Appendix and σR, σλ are the standard

deviations from the means.

The statistical average of the percent of interfacial failure is thus given by

S ¼
ð1

�1

ð1
�1

S R, λ,F, η, λð ÞpR Rð Þpλ λð ÞdλdR: (16)

Substituting Eq. 13 into Eq. 16 and carrying out the integration with respect to λ
yields

S R; λ,F, η, γ
� � ¼ ð1

�1
S R; λ,F, η, γ
� �

pR Rð ÞdR: (17)

This is the mean (average) percent of interfacial failure on a rough polymer/

metal interface.
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It is seen that the S given by Eq. 17 depends on several parameters. First, it is a

function of the material parameter F defined in Eq. 11. This parameter is a

combination of elastic stiffness and fracture toughness of both materials and the

fracture toughness of their interface. In principle, all these properties are measur-

able for given materials and their interfaces. Since Gic is a function of the phase

angle, F varies with the crack-tip phase loading angle as well. For example, for

epoxy and aluminum, gi � 0.015/GPa and gp � 1.064/GPa, respectively. The

cohesive fracture toughness of the epoxy is Gpc � 7.55kJ/m2 and Gic ranges

between 20 ~ 40 J/m2 for the epoxy–aluminum interface used in this study. Thus,

F ranges approximately from 2.7 to 5.3 for aluminum–epoxy interfaces depending

upon the loading phase angle.

Second, S depends on the interface roughness profile described by R, λ, and η.
Among them,R and λ can be easily measured using conventional profilometers. The

nondimensional parameter η is a consequence of the idealization of the random

surface profile. Generally, it needs to be determined indirectly.

Finally, S is also a function of γ, an ad hoc parameter introduced in the

approximate solution of the energy release rate for the interface crack problem. It

should be pointed out that if an “exact” numerical solution were used for the

interface crack problem, it would be unnecessary to introduce γ.
Based on the above discussion, it may be concluded that once the material and

interface properties (including the interface profile) are given, the percent of

nominal area having purely interfacial failure can be predicted by Eq. 33. In this

simple model, two parameters (γ and η) need to be determined empirically.

Experimental work was also carried out for various degrees of surface rough-

ness. Figure 3 shows the experimental data together with the theoretically predicted

values using Eq. 17. It is seen that the agreement is excellent. The parameters used

in the theoretical analysis are also indicated in the figure.

It is interesting to notice the two extreme values of the roughness. For very

roughness surface (R � 1), it follows from Eq. 13 that the curve approaches its

asymptote of S ! η ¼ S0=λ, which is the ratio of the plateau area and the entire

f (φ) = 4.0
γ = 200
η = 0.44

Nondimensional Roughness, R /l
0.0 0.1 0.2 0.3

S

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Theoretical
Experimental

-

- -

Fig. 3 Comparison between

experimental and theoretical

results
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nominal area. This means that interfacial failure occurs only in the plateau area. On

the other hand, for extremely smooth surfaces (R � 1), it follows from Eq. 13 that

S ¼ 1. This means that for very smooth surfaces, interfacial failure occurs over the

entire surface. In this case, there is no adhesion enhancement. The roughness

threshold for any adhesion enhancement is Rth ¼ Fλ/2λ(1 � η), according to

Eq. 13. As a design guideline, it is interesting to note that the adhesion enhancement

increases very rapidly once the roughness exceeds the threshold value. The increase

tapers off quickly as the roughness further increases. The maximum adhesion

enhancement from roughness is limited by the parameter η. The smaller the η, the
better. Physically, this means shape asperities on the roughness surface may yield

greater adhesion enhancement.

Effects of Moisture

A significant problem in the microelectronic packaging industry is the presence of

moisture-induced failure mechanisms. Moisture is a multidimensional concern in

packaging, having an adverse effect on package reliability by introducing corro-

sion, development of hygro-stresses, and degradation of polymers present in the

package. Moisture can also accelerate delamination by deteriorating the polymer

interfaces within the package. As the interfacial adhesion between the chip,

underfill, and substrate decreases, the likelihood of delamination at each

encapsulant interface increases. Once the package delaminates, the solder joints

in the delaminated area are exposed to high stress concentrations, resulting in a

reduction of overall package life.

Moisture can affect interfacial adhesion through two primary mechanisms. The

first mechanism is the direct presence of moisture at the interface altering the

interfacial integrity of the adhesive joint. The second mechanism is the absorbed

moisture in either the adhesive or substrate altering the mechanical properties of

those materials, which changes the response of the adhesive structure in the

presence of an externally applied load. Inevitably, the effect of moisture on the

adhesion and fracture of interfaces entails a multidisciplinary study, and several

aspects should be considered. From a global perspective, the primary aspects

include moisture transport behavior, changes in bulk material properties from

moisture absorption, effect of moisture on interfacial adhesion, and recovery from

moisture upon fully drying, although several subsections within each major group

occur due to the complexity of the problem.

In this chapter, a systematic and multidisciplinary study is presented to address the

fundamental science of moisture-induced degradation of interfacial adhesion. First,

the moisture transport behavior within underfill adhesives is experimentally charac-

terized. The results are incorporated into a finite element model to depict the moisture

ingress and interfacial moisture concentration after moisture preconditioning. Second,

the effect of moisture on the variation of the adhesive elastic modulus is demonstrated

and the physical mechanisms for the change identified. Third, the aggregate effect of

moisture on the interfacial fracture toughness is determined. This includes the primary
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effect of moisture being physically present at the interface and the secondary effect of

moisture changing the elastic modulus of the adhesive when absorbed. Both revers-

ible and irreversible components of the interfacial moisture degradation are evaluated.

Using adsorption theory in conjunction with fracture mechanics, an analytical model

is developed that predicts the loss in interfacial fracture toughness as a function of

moisture content. The model incorporates key parameters relevant to the problem of

moisture in epoxy joints identified from the experimental portion of this research,

including the interfacial hydrophobicity, active nanopore density, saturation concen-

tration, and density of water.

The effect of moisture on interfacial adhesion is governed by two fundamental

mechanisms. The first is the rate at which moisture is delivered to the interface, and

the second is the change in adhesion performance as a consequence of moisture

being present in the adhesive structure. This includes not only the primary effect of

moisture being directly present at the interface itself but also the secondary effect of

moisture altering the mechanical performance of the two materials that constitute

the bimaterial interface. Having previously quantified both the rate at which

moisture is delivered to the interface and the degrading effect of moisture on the

elastic modulus of the materials that constitute the bimaterial interface, a model

depicting the intrinsic change in interfacial adhesion as a function of moisture

concentration is developed. Interfacial fracture mechanics is used to characterize

this change to develop relationships that are independent of test specimen

geometry.

Interfacial Fracture Testing

Interfacial fracture toughness is defined as the critical value of the energy release

rate,Gc, at which a bimaterial interface will begin to delaminate. It is a property that

characterizes the adhesion of a bimaterial interface, independent of the size and

geometry of the cracked body. For a bimaterial interface loaded in four-point

bending under plane strain conditions, it can be shown that the critical value of

the energy release rate, Gc, can be determined using the following equation

(Hutchinson and Suo 1992):

G ¼ 1

2E1

12M2

h3

� �
� 1

2E2

M2

Ih3

� �
(18)

where

Ei � Ei

1� ν2i
(19)

M is the moment, ν is Poisson’s ratio, E is the elastic modulus, subscript 1 refers

to material 1, subscript 2 refers to material 2, h is the height of material 1, and I is
the dimensionless moment of inertia.
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Since the interfacial fracture toughness only specifies the magnitude of the

crack-tip singularity, the mode mixity, ψ , must be determined from the complex

stress intensity factor K. For a two-dimensional system, the complex stress intensity

factor, K, is given by

K ¼ K1 þ iK2 (20)

For four-point loading conditions, it can be shown that (Hutchinson and Suo

1992)

K ¼ h�ie

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α

1� β2

s
Pffiffiffiffiffiffiffiffiffi
2hU

p � ieiγ
Mffiffiffiffiffiffiffiffiffiffi
2h3V

p
� �

eiω (21)

with the mode mixity given by

K1 þ iK2ð ÞLie ¼ K1 þ iK2ð Þj jeiψ (22)

ψ ¼ tan�1 Im KLie
� �

Re KLie
� �

 !
(23)

where L is the characteristic length and e is a dimensionless quantity given by

Hutchinson and Suo (1992). As shown in Eq. 23, the mode mixity for a test

specimen requires the specification of some length quantity, L. The choice for

L is arbitrary, but it should be selected as a fixed length and reported with the

calculated values for the mode mixity.

The flexural beam test for interfacial fracture testing has three primary benefits.

First, it yields intermediate values for mode mixity, which is representative of the

values experienced by electronic devices during actual application. Second, it

provides a means for successful interfacial fracture test specimen construction

utilizing substrates and adhesives common to microelectronic packaging. Last,

the flexural beam test configuration yields an open-faced test specimen design,

which allows saturated, steady-state conditions to be reached in the test specimens

in a relatively short amount of time. This is due to the large surface area for

moisture uptake relative to the short diffusion path to the interface.

Effect of Moisture Preconditioning on Adhesion

Interfacial fracture mechanics was used to characterize the intrinsic effect of

moisture on adhesion. The adhesive used was an epoxy-based underfill developed

for no-flow assembly, designated as UR-B in this research. This particular underfill

was determined to be ideal for studying the fundamental effect of moisture on

interfacial adhesion due to its moisture diffusion kinetics and saturation behavior

established from the moisture absorption portion of this research. The substrate
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used was oxygen-free electronic grade copper, alloy 101. The copper substrates

were polished to a mirror finish and cleaned using the routine procedure given by

Shi and Wong (1998) prior to bonding. This was done to isolate the intrinsic effect

of moisture on adhesion without mechanical interlocking and/or surface contami-

nation from influencing the results. Symmetric interface cracks were introduced

into the underfill/copper bilayer test specimens by using a molding compound

release agent (Ferguson and Qu 2004).

Based on the results from the moisture absorption analysis, a waterproof perim-

eter was applied to the interfacial fracture test specimens during moisture

preconditioning and removed before fracture testing. This perimeter served two

purposes. First, the application of the perimeter forced 1D diffusion through the top,

open surface of the underfill, yielding uniform concentrations of moisture spatially

across the entire interface for the full duration of exposure to the humid

preconditioning environment. Second, the waterproof perimeter prevented moisture

wicking at the interface, which allowed identification of the test specimen moisture

concentration by utilizing the inherent moisture absorption characteristics of the

adhesive. Completed specimens were tested in a four-point bend test at room

temperature to measure the critical load of fracture for the interface. A completed

representative interfacial fracture toughness test specimen is shown in Fig. 4.

Test specimens were divided into five test groups and subjected to four different

levels of moisture preconditioning to ascertain the effect of moisture on interfacial

fracture toughness. The test groups included fully dry, 85 	C only, 85 	C/50 %RH,

85 	C/65 %RH, and 85 	C/85 %RH, with the latter four test groups being environ-

mentally preconditioned for 168 h. All test specimens were baked at 115 	C for at

least 12 h to remove any moisture that may have been introduced during sample

preparation prior to environmental aging, which was performed in a humidity

Underfill

Underfill

Substrate

Substrate

Fig. 4 Interfacial fracture

toughness test specimen
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chamber in an atmosphere maintained at a constant temperature (
1 	C), humidity

(
1 	C), and pressure (Patm). All interface fracture tests were performed with both

the surrounding environment and test specimens being at room temperature after

environmental preconditioning. No measurable loss in moisture uptake occurred in

the test specimens from the time they were removed from the environmental

chamber, allowed to cool to room temperature, and experimentally tested.

Using the experimentally measured value for the critical load of fracture in

conjunction with previously identified elastic modulus results, the interfacial frac-

ture toughness of the underfill/copper test specimens was determined using Eq. (18)

for each particular level of moisture preconditioning. Figure 5 provides a graphical

depiction of the results depicting the effect of environmental preconditioning on the

underfill/copper interfacial fracture toughness.

The entire range of mode mixity for all interfacial test specimens fell between

�37.41o and �37.64o. The substrate height was used to define the characteristic

length for all reported toughness values when evaluating the mode mixity. Since the

variation in mode mixity was negligible, the effect of this variation affecting

interfacial fracture toughness results between different test groups is insignificant.

Consequently, interfacial fracture toughness results for different moisture

preconditioned test groups can be compared to one another to ascertain the effect

of increasing moisture content on toughness values. In addition, saturation was

reached in each moisture preconditioning environment prior to fracture testing. As a

result, a gradient of moisture concentration did not exist in the interfacial fracture

toughness test specimens during testing. As shown in Fig. 5, it is clear that the

contribution of thermal aging at 85 	C did not significantly affect the interfacial

fracture toughness of the underfill/copper interface. It is important to remember that

8.97
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Control 85C only 85C/50%RH 85C/65%RH 85C/85%RH

Fig. 5 Effect of environmental preconditioning on the interfacial fracture toughness of the

underfill/copper interface
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all tests were performed at room temperature; hence, only the effects of thermal

aging were evaluated rather than the effect of testing at higher temperatures. Since

all environmental preconditioned test groups were exposed to the same temperature

component of 85 	C and duration of 168 h, any observed changes in the fracture

toughness after moisture preconditioning can be attributed to the contribution of

moisture. Moisture preconditioning at 85 	C/50 %RH, 85 	C/65 %RH, and 85 	C/
85 %RH had a substantial effect on the interfacial fracture toughness and yielded

decreases of 41.4 %, 49.1 %, and 58.1 %, respectively. A summary of the effect of

moisture preconditioning on the interfacial fracture toughness is provided in

Table 1, where Csat represents the saturation concentration of moisture for each

respective level of moisture preconditioning and given as a percent weight change

(wt%).

Figures 6 and 7 depict the inherent change in the underfill/copper interfacial

fracture toughness as a function of moisture concentration. It is seen that the change

in the interfacial fracture toughness is sensitive to small amounts of moisture. A

significant reduction in interfacial adhesion was observed for concentrations as low

as 0.65 wt%. Since the moisture did not significantly alter the elastic modulus of the

underfill adhesive for the moisture conditions evaluated for the interfacial fracture

toughness, plasticization of the underfill from moisture contributed little to the

change in the interfacial fracture toughness. As a result, the reduction in toughness

is primarily attributed to the weakening of the underfill/copper interface due to the

direct presence of moisture at the interface. The moisture at the interface could

decrease the adhesion through displacement of the underfill reducing van der Waals

forces as well as possible chemical degradation of adhesive bonds. Further inves-

tigations into the exact failure mechanism from moisture at the interface are

provided in detail in subsequent sections of this chapter.

Moisture-Induced Swelling

In addition to the mechanical load applied to test specimens during interfacial

fracture testing, the interface is also subjected to hygro-swelling and thermal

contraction mismatch effects between the adhesive and substrate. These two effects

Table 1 Change in the underfill/copper test specimen interfacial fracture toughness from

moisture uptake

T (C) RH (%) Csat (wt%) Csat (mg H2O/mm3) Gc (J/m
2)

Toughness

change (%)

Control – 0 0.0000 8.97 
 0.91 –

85 50 0.65 0.0075 5.26 
 0.47 41.4

85 65 0.77 0.0089 4.57 
 0.58 49.1

85 85 1.02 0.0118 3.76 
 0.36 58.1
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have opposite outcomes on the interface, as the contribution from the hygro-

swelling mismatch will cause the underfill to be in compression, while the contri-

bution from the thermal contraction mismatch will cause the underfill to be in

tension. This is attributed to the different stress-free environments for each case.

For the case of the hygro-swelling mismatch, fully dry conditions represent a stress-

free state for the interface. As moisture is absorbed in the underfill, it will cause the

underfill to expand, while the moisture impermeable substrate will retain its orig-

inal dimensions. Since the moisture expansion in the underfill will be constrained

by the substrate, the expansion in the underfill will yield compressive stresses

within the underfill. For the case of the thermal contraction mismatch, the curing

temperature of the underfill represents a stress-free state for the interface. Once test

specimens are removed from the oven and allowed to cool to room temperature, the

thermal mismatch between the copper and the underfill will cause the underfill to be

in tension due to it wanting to shrink more than the copper substrate (CTE of

experimental materials: underfill ¼ 75 ppm/	C, copper ¼ 17 ppm/	C). Whether the

interface is dominated by the hygro-swelling mismatch, thermal contraction

mismatch, or possibly neither due to the effects of one another canceling each

other out for a particular moisture saturation level will depend on the characteristics

of the materials that constitute each bimaterial interface relative to their moisture

preconditioning environment.

To investigate the effect of hygro-swelling on interfacial fracture test results, the

moisture swelling coefficient, β, of the underfill was experimentally determined for

each moisture preconditioning environment. The moisture swelling coefficient is

defined as

β ¼ Δ‘=‘o
Csat

(24)

where Δ‘ is the change in length of the specimen due to moisture absorption, ‘o is
the initial dry length of the specimen, and Csat is the saturation moisture concentra-

tion. Using Eq. 24 with experimental test data, the moisture swelling coefficient was

determined for conditions of 85 	C/50 %RH (β ¼ 1,987 ppm/wt %), 85 	C/65 %RH

(β ¼ 1,907 ppm/wt %), and 85 	C/85 %RH (β ¼ 1,808 ppm/wt %). Having identified

the moisture swelling coefficient for each moisture preconditioning environment, a

comparison can bemade between the hygro-swelling and thermal mismatch strains for

the underfill/copper interface. The hygro-swelling mismatch strain, eh, and thermal

mismatch strain, et, are defined as follows:

eh ¼ β1Csat, 1 � β2Csat, 2 (25)

et ¼ α1 � α2ð Þ Tf � Ti

� �
(26)

where β is the moisture swelling coefficient, Csat is the equilibrium moisture

saturation concentration, α is the coefficient of thermal expansion, T is the temper-

ature, and subscripts 1 and 2 refer to the two materials that constitute the bimaterial
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interface. The hygro-swelling mismatch strain and thermal expansion mismatch

strain were calculated using Eqs. 25 and 26 respectively for each moisture

preconditioning environment. Since the cooling of the interfacial fracture test

specimens from the cure temperature to room temperature will result in a thermal

contraction, while the uptake of moisture will result in an expansion from swelling,

it should be noted that the hygro-swelling and thermal expansion mismatch strains

act in opposite directions. The results are given in Table 2.

As shown in Table 2, the thermal mismatch strains were significantly greater

than the hygro-swelling mismatch strains for all moisture preconditioning environ-

ments by roughly an order of magnitude. It is clear that the thermal mismatch strain

dominated the interaction at the interface and was only slightly offset by a small

contribution from the hygro-swelling mismatch strain for this particular bimaterial

interface. As a result, the underfill will be in tension during interfacial fracture

testing, effectively preloading the interface and requiring a lower critical load of

fracture, Pc, from mechanical testing to advance the interface crack. Consequently,

interfacial fracture toughness values will represent a conservative estimate of the

interfacial fracture toughness of the interface. In addition, it is clear that increasing

the saturation concentration did not significantly increase the hygro-swelling

mismatch strain. All interfaces for all environments experienced similar hygro-

swelling mismatch strains for the materials and moisture preconditioning environ-

ments tested in this study. Consequently, the trends exhibited in the interfacial

fracture toughness as moisture concentration increases are essentially independent

of the hygro-swelling mismatch relative to one another, and the observed changes

between the different moisture preconditioning environments can be predominately

attributed to more moisture being present at the interface resulting in a greater loss

of adhesion.

Interfacial Hydrophobicity

The polarity of the water molecule will affect its behavior at the interface, which can

influence the extent of environmental degradation of an adhesive joint due to the

presence of moisture (Luo 2003). The polar behavior of water arises from its structure,

which is composed of a single oxygen atom bonded to two hydrogen atoms.

The hydrogen atoms are covalently bonded to the oxygen atom through shared

Table 2 Comparison of hygro-swelling and thermal mismatch strains for the underfill/copper

interfacial fracture test specimens

Environment

β (ppm/

wt%)

Csat

(wt%) eh
αuf
(ppm/C)

αCu
(ppm/C)

Ti
(C)

Tf
(C) et

85C/50%RH 1,987 0.65 0.0013 75 17 190 25 0.0096

85C/65%RH 1,907 0.77 0.0015 75 17 190 25 0.0096

85C/85%RH 1,808 1.02 0.0018 75 17 190 25 0.0096
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electrons. Two pairs of electrons surrounding the oxygen atom are involved in

covalent bonds with hydrogen; however, there are also two unshared pairs of electrons

(lone pair) on the other side of the oxygen atom, which shift the electron cloud of the

water molecule over to the oxygen atom as shown in Fig. 8.

This uneven distribution of electron density in the water molecule yields a partial

negative charge (δ�) on the oxygen atom and a partial positive charge (δ+) on the

hydrogen atoms, giving rise to the polarity of the water molecule. Polarity allows

water molecules to bond with each other, and hydrogen bonds will form between

two oppositely charged ends of a water molecule as shown in Fig. 9.

The hydrogen bonds have about a tenth of the strength of an average covalent bond

and are being constantly broken and reformed in liquid water. The polarity will also

allow water to molecules to bond with other polar molecules, which will affect how

the water will wet on different surfaces. Surfaces that contain polar molecules are

hydrophilic. They interact with the water molecules to enhance wetting, causing the

water to smear flat. If a surface contains alcohols, O, or N, it will probably be

hydrophilic. Conversely, surfaces that contain nonpolar substances are hydrophobic.

They cannot interact with the water molecules, causing it to form a bubble on the

surface. In general, if a surface contains C, H, or F, it will probably be hydrophobic.

Most materials will not be purely hydrophobic or hydrophilic, but will have

varying degrees to which they are considered one or the other. This is addressed in

hydrophobicity, which is the study of the wetting characteristics of water on

O

H

H

e−cloudFig. 8 Electron cloud

distribution on a water

molecule

H-bond

δ+ δ−

δ+

δ− δ+

δ+
Fig. 9 Hydrogen bonding

between water molecules
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surfaces. One method used to test the hydrophobicity of a surface is through

measurement of the contact angle, θ, using water as the probe liquid. The contact

angle represents a balance between the adhesive forces between the liquid and solid

and cohesive forces in the liquid. The adhesive forces cause the liquid drop to

spread, while the cohesive forces cause the liquid drop to retain the shape of a

sphere. The contact angle is a direct measure of wettability and provides an

effective means to evaluate many surface properties such as surface contamination,

surface hydrophobicity, surface energetics, and surface heterogeneity. When θ > 0,

the liquid is nonspreading and reaches an equilibrium position between the

liquid–fluid and solid–liquid interfaces. When θ ¼ 0 the liquid wets without limit

and spontaneously spreads freely over the surface. Hydrophobic surfaces repel

water and produce high contact angles. Hydrophilic surfaces attract water and

produce low contact angles. Figure 10 illustrates the contact angle behavior of

water on both hydrophobic and hydrophilic surfaces.

By utilizing water as the probe liquid, the interfacial hydrophobicity can be

ascertained by measuring the water contact angle of both the adhesive and sub-

strate. To determine the hydrophobicity of interfacial fracture test specimens,

contact angle measurements were made for the adhesive and substrate evaluated

in this study. Both the clean copper substrate and underfill adhesive exhibited fairly

hydrophobic behavior with contact angles of 74o and 83o respectively. Having

established the hydrophobicity of the substrate and adhesive, the interfacial hydro-

phobicity of the underfill/copper interfacial fracture test specimens can be evalu-

ated. When addressing the relative hydrophobicity of the substrate and adhesive to

moisture behavior at the interface, the interaction can become complex. The surface

with the most dominant degree of hydrophobicity will govern the shape and

response of the water at the interface. For example, if a hydrophobic substrate is

bonded with a hydrophilic adhesive, then the water at the interface will want to

minimize contact with the substrate and maximize contact with the adhesive.

Depending on imperfections in the bonding, surface roughness, and the relative

degree of hydrophobicity of the substrate to the adhesive, water at the interface will

more or less form a somewhat hemispherical shape at the interface, with the

spherical end minimizing contact on the substrate and the open end maximizing

contact on the adhesive. Naturally, the shape of the water at the interface can have

various permutations of the aforementioned shape depending on the degree of

hydrophobic behavior of the substrate relative to the hydrophilic behavior of the

adhesive, but the general idea remains the same. For other systems with varying

Zero contact angleq > 90 q = 90 q < 90

Hydrophoblic Hydrophoblic

Fig. 10 Hydrophobic and hydrophilic water contact angle behavior
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degrees of hydrophobicity, the shape of the water at the interface relative to the

hydrophobicity of the substrate and adhesive can be extremely difficult to charac-

terize; however, qualitative conclusions can be made. For the case of the underfill/

copper interfacial fracture test specimens, the relative hydrophobicity of the adhe-

sive to the substrate was similar; consequently, the wetting behavior of the moisture

at the interface would not be significantly dominated by either the adhesive or

substrate.

An additional consideration unique to environmental preconditioning is the

growth of oxides affecting the interfacial hydrophobicity. Copper has a strong

affinity to oxygen, and the development of an oxidation layer between the

substrate and adhesive after bonding is inevitable. Initially, cuprous oxide, Cu2O,

will form followed by the formation of a layer of cupric oxide, CuO (Cho and Cho

2000). The oxidation of copper substrates can be significant, and previous studies

have shown that the water contact angle on copper is affected by oxidation (Cho and

Cho 2000; Yi et al. 1999; Hong et al. 1994; Kim 1991). Due to oxidation growth on

the copper substrates, contact angle measurements were made for each

preconditioning environment to monitor any change in the hydrophobicity of the

copper surface.

Since the copper bonding surface of the interfacial fracture test specimen will be

shielded by the underfill adhesive, the oxidation growth rate will be different than

for bare copper environmentally aged for a similar duration of time. Therefore,

water contact angles for each environmental test group were measured using special

test specimens that mimicked the exposure of the copper bonding surface to similar

amounts of oxygen and moisture as the interfacial fracture test specimens. These

specimens used the same geometry as the interfacial fracture test specimens, but the

underfill adhesive was cured separately in an individual mold. After curing the

adhesive, the underfill was placed on top of the copper substrate and held in place

by c-clamps. Similar to the interfacial fracture test specimens, a waterproof sealant

was applied around the perimeter of the test specimen to eliminate wicking of

moisture at the interface and force 1D diffusion through the top surface of the

underfill. After environmental preconditioning, the waterproof perimeter, c-clamps,

and underfill were removed from the test specimen for contact angle measurement

of the copper surface.

Experimentally measured water contact angle results were as follows: 76o for

85 	C thermal aging, 76o for 85 	C/50 %RH moisture preconditioning, 77o for

85 	C/65 %RH moisture preconditioning, and 77o for 85 	C/85 %RH moisture

preconditioning. All test groups were preconditioning for the same duration of

168 h, which was the same criteria used in the evaluation of the effect of moisture

on interfacial adhesion. Based on these results, it is evident that all levels of

environmental preconditioning did not significantly alter the water contact angle

and associated hydrophobicity of the interface. As a result, similar interfacial

wetting characteristics of moisture at the interface will occur for all preconditioning

environments.

Although the contact angle did not significantly change, there did appear to be

a slight increase in the water contact angle with moisture preconditioning.
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Previous studies have shown both an increase (Yi et al. 1999; Kim 1991) and

decrease (Cho and Cho 2000; Hong et al. 1994) in the water contact angle of copper

with oxidation. The oxidation–reduction chemistry occurring at the interface rela-

tive to environmental preconditioning is complex, and the differences in trends

could be attributed to the degree of oxidation altering the surface chemistry (Cho

and Cho 2000), change in surface roughness of the substrate from oxidation growth

(Hong et al. 1994), and contamination of the surface by hydrocarbons from the

environment (Luo 2003). In addition, Yi et al. (1999) have provided data correlat-

ing the oxide layer thickness on copper leadframes to water contact angles. These

data shows a slow, gradual increase in oxide thickness from water contact angles

ranging from 72o to 78o but depicts a sharp increase in oxide layer thickness for

contact angles exceeding 80o. Based on results for the water contact angle on

copper in this study, all measurements yielded average contact angles less than

78o with very little variation with each other. This indicates a similar level of

interfacial hydrophobicity and oxide layer thickness for all environmentally

preconditioned test groups. Both Mino et al. (1998) and Chong et al. (1995) have

shown that the development of the copper oxide layer thickness is significantly

slower and minimal for temperatures below 100 	C and 120 	C. Since the test

specimens in this study had a temperature component of only 85 	C, it is anticipated
that the oxide layer thickness that developed on test specimens would have a minimal

effect on toughness results. This is also supported by X-ray photoelectron spectros-

copy (XPS) results. XPS showed the presence of cupric oxide not only in the 85 	C/50
%RH, 85 	C/65 %RH, and 85 	C/85 %RH test groups but also in the 85 	C thermal

aging test group. As a result, identical oxide chemical formations existed at the

interface for all environmentally preconditioned test groups. In addition, similar

atomic percentages of cupric oxide were obtained when comparing thermal aging at

85 	C to the moisture preconditioning environments of 85 	C/50 %RH, 85 	C/65 %

RH, and 85 	C/85 %RH, indicating that the moisture component had a minimal

contribution to oxidation growth rates on the copper compared to the available

oxygen in the air common to all environmental preconditioned environments.

Consequently, a similar level of oxidation thickness existed on all environmentally

preconditioned test specimens, which supports the results from the water contact

angle measurements.

Since oxides were removed from the copper surface before adhesive bonding

and the flux present in the no-flow underfill would have removed any oxides that

developed during adhesive curing, it is possible that the oxidation growth from

environmental preconditioning would have an effect on the interfacial fracture

toughness results. This oxide growth could displace the underfill from the copper

substrate after bonding to contribute to the observed loss in adhesion after moisture

preconditioning shown in Fig. 5. Since both water contact angle measurements and

XPS results demonstrate a similar oxidation thickness existed on all environmen-

tally preconditioned test specimens, the 85 	C thermal aging results can be com-

pared to the control test results to ascertain the effect of oxidation growth on the loss

in adhesion without the contribution from moisture. As shown in Fig. 5, thermal

aging at 85 	C produced little to no effect on interfacial fracture toughness results,

21 Adhesion and Failure of Polymer-Metal Interfaces in Microelectronic Packaging 665



thus oxidation growth displacing the underfill after adhesive bonding had an

insignificant effect on the adhesion loss compared to the effect of moisture from

moisture preconditioning.

Interfacial Fracture Toughness Recovery from Moisture Uptake

The underfill/copper interface was found to be very sensitive to moisture, with large

decreases in interfacial fracture toughness occurring for moisture preconditioning

environments of 85 	C/50 %RH, 85 	C/65 %RH, and 85 	C/85 %RH (Fig. 5). To

further investigate the reversible and irreversible nature of moisture on the interfa-

cial adhesion of the underfill/copper interface, additional test specimens were

moisture preconditioned for each condition for 168 h followed by baking at 95 	C
until fully dry. A fully dried state was established when there was no measurable

change in the weight of a specimen for a period of 24 h. Upon reaching a dry state,

specimens were fracture tested to ascertain the interfacial fracture toughness. The

entire range of mode mixity for all interfacial test specimens fell between �37.43o

and�37.48o. The substrate height was used to define the characteristic length for all

reported toughness values when evaluating the mode mixity. Since the variation in

mode mixity was negligible, the effect of this variation influencing interfacial

fracture toughness results between different test groups is insignificant. Conse-

quently, toughness recovery results for different moisture preconditioned test

groups can be compared to one another to ascertain the effect of increasing moisture

content on toughness values. Figure 11 provides a graphical depiction of the effect

of environmental preconditioning and recovery of the underfill/copper interfacial

fracture toughness.

As shown in Fig. 11, most of the loss in interfacial fracture toughness from

moisture was not recovered upon fully drying. Since the small change in the

underfill elastic modulus from moisture was recoverable upon fully drying, the

permanent reduction in the toughness of the underfill/copper interface is attributed

to the direct presence of moisture at the interface debonding the underfill adhesive

to the copper substrate. Similar in form to the recoverability of the elastic modulus

given by Eq. 26, the recoverability for the interfacial fracture toughness will be

defined as follows:

Recoverability %ð Þ ¼ Gc, recovery � Gc, sat

Gc, dry � Gc, sat
� 100 (27)

where Gc,recovery is value of the interfacial fracture toughness upon fully drying

from the moisture saturated state, Gc,sat is the saturated value of the interfacial

fracture toughness after moisture absorption, and Gc,dry is the unaged, control value

of the interfacial fracture toughness. Equation 27 only applies when the mode

mixity of the interfacial fracture toughness before and after moisture

preconditioning remains relatively unchanged, otherwise changes in the toughness

due to a contribution from a change in the mode mixity will introduce error in the

666 J. Qu



recoverability results. The recoverability of the underfill/copper interfacial fracture

toughness is given in Table 3.

As shown by Table 3, the irreversible damage on interfacial fracture toughness

from exposure to moisture was substantial for the underfill/copper interface. Very

little of the underfill/copper interfacial fracture toughness was recoverable after

fully drying, with recoverability values for all moisture preconditioning environ-

ments less than 7 %. It is also evident that a relatively small amount of moisture

reaching the interface causes the structural integrity of the adhesive bond to be

noticeably, permanently compromised.

Interfacial Fracture Toughness Moisture Degradation Model

Having implemented an extensive experimental program to ascertain the role of

moisture in adhesion degradation and the physical mechanisms responsible for the

change in interfacial adhesion, the focus now shifts to developing a model depicting

the intrinsic loss in interfacial fracture toughness as a function of the critical
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Fig. 11 Recovery of the underfill/copper interfacial fracture toughness on removal of moisture

Table 3 Recoverability of the underfill/copper interfacial fracture toughness from moisture

uptake after subsequent drying

T (	C) RH (%) Csat (wt%) Gc,sat (J/m
2) Gc,recovery (J/m

2) Recoverability (%)

Control – 0.00 8.97 
 0.91 – –

85 50 0.65 5.26 
 0.47 5.52 
 0.38 7.0

85 65 0.77 4.57 
 0.58 4.81 
 0.47 5.5

85 85 1.02 3.76 
 0.36 3.88 
 0.50 2.3
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parameters relevant to moisture. At the root of this model is characterizing the

dominant mechanism for adhesion between the adhesive and substrate. There are

four primary mechanisms for adhesion which have been proposed. They include

mechanical interlocking, diffusion theory, electronic theory, and adsorption theory

(Kinloch 1987). For the underfill/copper interface, the contributions of interfacial

diffusion and electrostatic forces between the adhesive and substrate causing

adhesion are far lower than the effects of mechanical interlocking and adsorption.

Since the copper substrates in this study were polished to a mirror finish, the effects

from mechanical interlocking of the adhesive into irregularities present on the

substrate surface will be small compared to the effects from intermolecular sec-

ondary forces (i.e., van der Waals) between the atoms and molecules in the surfaces

of the adhesive and substrate. Consequently, adsorption theory will dominate the

adhesive bonding at the underfill/copper interface.

Provided adsorption theory governs adhesion and only secondary forces are acting

across an interface; the stability of an adhesive/substrate interface in the presence of

moisture can be ascertained from thermodynamic arguments. The thermodynamic

work of adhesion, WA, in an inert medium is given by (Kinloch 1987)

WA ¼ γa þ γs � γas (28)

where γa is the surface-free energy of the adhesive, γs is the surface-free energy of

the substrate, and γas is the interfacial free energy. In the presence of a liquid, the

thermodynamic work of adhesion, WAl, is given by

WAl ¼ γal þ γsl � γas (29)

where γal and γsl are the interfacial free energies between the adhesive/liquid and

substrate/liquid interfaces, respectively. Typically the thermodynamic work of

adhesion of an adhesive/substrate interface in an inert medium, WA, is positive,

which indicates the amount of energy required to separate a unit area of the

interface. However, the thermodynamic work of adhesion in the presence of a

liquid, WAl, can be negative, which indicates the interface is unstable and will

separate when it comes in contact with the liquid. Thus, the calculation of WA and

WAl can indicate the environmental stability of the adhesive/substrate interface.

Kinloch (1987) has shown that WA and WAl may be calculated from the following

expressions:

WA ¼ 2

ffiffiffiffiffiffiffiffiffiffi
γDa γ

D
s

q
þ 2

ffiffiffiffiffiffiffiffiffi
γPa γ

P
s

q
(30)

WAl ¼ 2 γlv �
ffiffiffiffiffiffiffiffiffiffi
γDa γ

D
lv

q
�

ffiffiffiffiffiffiffiffiffiffi
γPa γ

P
lv

q
�

ffiffiffiffiffiffiffiffiffiffi
γDs γ

D
lv

q
�

ffiffiffiffiffiffiffiffiffiffi
γPs γ

P
lv

q
þ

ffiffiffiffiffiffiffiffiffiffi
γDa γ

D
s

q
þ

ffiffiffiffiffiffiffiffiffi
γPa γ

P
s

q� �
(31)

where γD is the dispersion component of surface-free energy, γP is the polar

component of surface-free energy, and γlv is the surface-free energy of the
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liquid. Table 4 gives the polar and dispersion surface-free energies of epoxy,

copper, and water.

Using the values given in Table 4 and substituting into Eq. 30, the thermody-

namic work of adhesion of the epoxy/copper interface is 260.7 mJ/m2. If water is

present at the epoxy/copper interface, the thermodynamic work of adhesion given

by Eq. 31 is�270.4 mJ/m2. Therefore, since the work of adhesion is positive before

exposure to moisture and negative after exposure, all adhesion of the epoxy/copper

interface is lost if water comes in contact with the interface. This is supported by the

fact that virtually none of the observed loss in adhesion from moisture exposure was

recovered upon fully drying.

Using adsorption theory as the physical basis for the loss in adhesion from

moisture, expressions are now developed depicting the amount of moisture deliv-

ered to the underfill/copper interface. Since the interfacial fracture test specimens

were designed to prevent wicking of moisture at the interface and the copper

substrate provides a barrier for moisture transport, the moisture transport to the

interface is governed by the epoxy network of the underfill. Soles and Yee (2000)

have shown that water traverses within the epoxy through the network of nanopores

inherent in the epoxy structure. A typical nanopore ranges from 5.0 to 6.1 Å in

diameter. Figure 12 illustrates the transport of moisture through the bulk epoxy of

an interfacial fracture test specimen.

Assuming that the nanopore channels are the only mechanism by which moisture

can be delivered to the interface, the saturation concentration in the epoxy

expressed in mg H2O/mm3 is given by

Csat ¼ ρ NVð Þ
Vtot

(32)

where ρ is the density of water measured in milligram per cubic millimeter

(mg/mm3), N is the number of nanopores actively participating within the epoxy

network, V is the volume occupied by a single nanopore in the epoxy network, and

Vtot is the total volume of the epoxy. After rearrangement of Eq. 32, the number of

nanopores actively participating within an epoxy system for a given saturation

concentration is as follows:

N ¼ 4ACsat

πρD2
(33)

where A is the total area of the interface and D is the nanopore diameter. Assuming

adsorption theory holds, the adhesive bond area, Abond, that remains intact after

Table 4 Polar and

dispersion surface-free

energies of epoxy, copper,

and water (Kinloch 1987)

Substance γ (mJ/m2) γD (mJ/m2) γP (mJ/m2)

Epoxy 46.2 41.2 5.0

Copper 1,360 60 1,300

Water 72.2 22.0 50.2
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exposure to moisture will depend on the area occupied by the moisture at the

interface, AH2O:

Abond ¼ A� AH2O (34)

Relating this adhesive bond area to the number of nanopores actively partici-

pating in transport yields

Abond ¼ A� πNr2debond (35)

where rdebond represents the debond radius of moisture at the interface that occurs at

each nanopore. The debond radius must be greater or equal to the nanopore radius

and is governed by the interfacial hydrophobicity of the adhesive/substrate inter-

face. Figure 13 provides a graphical depiction of the parameter, rdebond, at the
interface.

Substituting Eq. 32 into Eq. 35 provides an expression for the adhesive bond area

that remains intact after exposure to a particular moisture saturation concentration:

Fig. 12 Moisture transport

through the bulk epoxy of an

interfacial fracture test

specimen
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Abond ¼ A� 4ACsatr
2
debond

ρD2
(36)

A fracture mechanics development may be employed to relate the change in

bond area due to the presence of moisture at the interface to the interfacial moisture

concentration. Recall from fracture mechanics the general form of the stress

intensity factor:

K ¼ Sσ
ffiffiffiffiffi
πa

p
(37)

where S is a dimensionless constant that depends on the geometry and mode of

loading, σ is the remotely applied stress, and a is the crack length. The stress

intensity factor is related to the fracture toughness, Gc, by the following expression:

Gc ¼ Zσ2 (38)

where

Z ¼ πaS2 1� υ2ð Þ
E

Based on the thermodynamic work of adhesion for the epoxy/copper interface,

the interface will become unstable and debond in the presence of moisture; how-

ever, since interfacial fracture toughness is a material property that characterizes

the adhesion of the interface, the toughness must be the same in all areas that remain

bonded after exposure to moisture. Using mode I loading and making the following

three assumptions – (1) adsorption theory dominates the interfacial bonding, (2) the

change in the mechanical properties of both the adhesive and substrate from moisture

is small relative to the change in bond area from moisture, and (3) the relative

change in fracture toughness from moisture remains constant irrespective to the

rdebond

Fig. 13 Graphical illustration of the parameter, rdebond, at the interface
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means of measuring the toughness for a given moisture saturation concentration – an

expression is obtained relating the change in bond area due to the presence of

moisture to the change in the critical load of fracture:

Pwet

A� πNr2debond
¼ Pdry

A
(39)

Rearranging Eq. 39 to obtain an expression for Pwet and substituting that value

into Eq. 38 for the wet, saturated case yields the following expression:

Gc, wet ¼ 1� πNr2debond
A

� �2

Gc, dry (40)

As the saturation moisture concentration increases, so will the number of active

nanopores participating. The incremental change in fracture toughness due to the

participation of a single additional nanopore, N + 1, is given by

Gc, wet ¼ 1� π N þ 1ð Þr2debond
A

� �2

Gc, dry (41)

For convenience, define f such that for N nanopores participating

f N ¼ πNr2debond
A

(42)

For N + 1 nanopores participating,

f Nþ1 ¼
πr2debond

A
N þ 1ð Þ (43)

Restating Eqs. 40 and 41 in terms of f,

Gc, wet f Nð Þ ¼ 1� πNr2debond
A

� �2

Gc, dry (44)

Gc, wet f Nþ1

� � ¼ 1� πr2debond
A

� �2

Gc, wet f NN

� �
(45)

Subtracting Eq. 44 from Eq. 45 and dividing by fN+1 – fN give

Gc, wet f Nþ1

� �� Gc, wet f Nð Þ
f Nþ1 � f N

¼
1� πr2

debond

A

h i2
Gc, wet f Nð Þ � Gc, wet f Nð Þ
f Nþ1 � f N

(46)

Utilizing a Taylor series expansion of fN with first-order accuracy and substitut-

ing Eqs. 42 and 35 into Eq. 46 yield
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dGc, wet f Nð Þ
df N

¼
1� πr2

debond

A

h i2
Gc, wet f Nð Þ � Gc, wet f Nð Þ
πr2debond

A

(47)

Simplification and elimination of higher-order terms gives the following differ-

ential equation characterizing the loss in interfacial fracture toughness due to

moisture:

dGc, wet f Nð Þ
df N

¼ �2Gc, wet f Nð Þ (48)

subject to the boundary condition

Gc, wet f N ¼ 0ð Þ ¼ Gc, dry (49)

Solution of Eq. 48 gives

Gc, wet ¼ Gc, dryexp
�8Csatr

2
debond

ρD2

� �
(50)

Equation 50 characterizes the loss in interfacial fracture toughness from moisture

in terms of key parameters relevant to moisture. Using the value for the density of

water at room temperature (0.998 mg/mm3), an average nanopore diameter of 5.5 Å,

and the saturation concentration determined from the experimental portion of

this study in conjunction with Eqs. 32 and 50, the number of active nanopores

participating, N, and value of rdebond can be determined by the intrinsic response of

the material system to each level of moisture preconditioning. The results are shown

in Table 5.

As shown in Table 5, the number of nanopores participating increases with

saturation concentration. This is expected since an increase in saturation concentra-

tion would increase the available moisture for transport through the nanopores. In

addition, the values for rdebond were similar for each moisture preconditioning envi-

ronment for both respective interfaces, which is also expected since X-ray photoelec-

tron spectroscopy and water contact angle results did not indicate a change in the

interfacial hydrophobicity of the copper surface from moisture preconditioning. The

slight variation in the values for rdebond could in part be attributed to experimental

scatter. Since the results were similar, they were averaged to obtain a representative

value for rdebond in the presence of moisture for each interface.

Using the moisture parameters identified for each interfacial material system,

Eq. 50 was used to predict the interfacial fracture toughness for the underfill/copper

interface as a function of increasing saturation concentration.

As shown in Fig. 14, Eq. 50 accurately predicted the loss in interfacial fracture

toughness as a function of increasing moisture concentration. Since Eq. 50 was

based on the physics of adsorption theory, it will yield a loss in interfacial fracture

toughness provided there is moisture at the interface, no matter how small the
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concentration. This contradicts the results of previous studies, who have reported

that a critical concentration of water may exist below which there is no measurable

loss in adhesion (Comyn et al. 1994; Gledhill et al. 1980; Kinloch 1979). Based on

the results of adsorption theory, it does not appear possible that a critical concen-

tration of water could exist in theory. It is possible in those studies that other

mechanisms for adhesion in addition to adsorption theory governed the adhesion at

the interface, which could explain why a critical concentration of water was

observed. An additional consideration is the method of testing used to obtain

adhesion results. The aforementioned studies used lap shear test specimens to

determine the interfacial strength after moisture preconditioning. Due to lacking a

precrack at the interface and the applied load being distributed over the entire

bonding area, these test specimens are not as sensitive to interfacial failure,

consequently, possibly also explaining why in part a critical concentration of

water appeared to exist for low concentrations of moisture. Conversely, interfacial

fracture toughness test specimens are designed for interfacial failure through the

Table 5 Key parameters relevant to moisture for the underfill/copper interface

Environment Substrate Adhesive Csat (mg H2O/mm3) N rdebond (mm)

85C/50 %RH Copper Underfill 0.0075 1.006E+13 1.640E-06

85C/65 %RH Copper Underfill 0.0089 1.194E+13 1.692E-06

85C/85 %RH Copper Underfill 0.0118 1.583E+13 1.669E-06
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Fig. 14 Analytical prediction of the loss in interfacial fracture toughness from moisture for the

underfill/copper interface
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use of a precrack at the interface, making them more sensitive to subtle changes in

adhesion at the interface. The work of Wylde and Spelt (1998) supports this

observation. Using interfacial fracture toughness test specimens with a similar

material system previously reported to exhibit a critical concentration of water

from lap shear results, they found a decrease in the interfacial toughness from

moisture for all concentrations of moisture, including those lower than the previ-

ously reported critical concentration of water. Consequently, provided adsorption

theory dominates the adhesive bonding at the adhesive/substrate interface and the

assumptions in the development of the model as satisfied, Eq. 50 should accurately

predict the loss in interfacial fracture toughness for a given moisture concentration.

Conclusion

This chapter consists of two major contributions. First, a mechanics- and physics-

based model has been developed to determine the amount of interfacial failure

versus cohesive failure of polymer–metal interfaces. Based on this model, the

amount of cohesive failure near the adhesion interface can be predicted, and

therefore, the adhesion enhancement can be quantitatively determined. Because

the cohesive failure strength of the adhesive is usually much greater than the

polymer–metal interfacial strength, the cohesive failure near the interface due to

surface roughness can yield significant improvement of the apparent interface

fracture toughness.

It should be mentioned that the model development here assumes perfect linear

elastic crack-tip fields. When significant plasticity takes place near the crack tip,

some modifications are needed to include the plastic deformation. Furthermore, it is

clear that the other adhesion mechanisms including physical and chemical adhesion

play significant roles in the adhesion enhancement.

Second, effects of moisture on the interfacial fracture toughness are investigated

in great details. Two epoxy-based, no-flow underfills, designated UR-A and UR-B

in this research, were examined for moisture transport behavior. Based on the

results of the diffusion analysis, it was clear that very different behavior was

exhibited by each underfill. Although UR-A absorbed more aggregate moisture

than UR-B, the moisture diffused more easily through UR-B than UR-A. This

behavior is attributed to the different chemistry in each underfill, where the

presence of amine functional groups in UR-A retarded moisture transport, while

the absence of amine function groups in UR-B yielded enhanced diffusion rates. A

finite element model was developed to analytically and visually depict the moisture

transport characteristics of UR-A and UR-B. The model shows that moisture will

initially reach the interface for microelectronic assemblies that use UR-B before

comparably sized assemblies utilizing UR-A; however, due to the higher saturation

concentration of UR-A, more moisture will arrive at the interface for UR-A

assemblies if exposed to the moist environment for longer durations. This presents

an interesting scenario for microelectronic applications when considered with

interfacial fracture toughness results. Based on interfacial fracture toughness
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results, it was found that the critical aspect in the loss in interfacial adhesion is not

the degradation of the adhesive from moisture uptake, but the amount of moisture

that arrives at the interface for the adhesives and substrates evaluated in this study.

With that in mind, depending on the service environment and duration of exposure

to that environment, one underfill may yield significantly better interfacial adhesion

than the other. For instance, if the microelectronic package is exposed to a moist

environment for a long duration of time and assuming similar adhesion character-

istics for both underfills, the non-amine containing resin UR-B would be a better

choice in terms of reliability. This is a result of the lower saturation concentration of

UR-B to UR-A; consequently, the total amount of moisture that arrives to the

interface is limited by the inherent moisture saturation behavior of the underfill.

Conversely, if the microelectronic package is going to be exposed to a moist

environment for a short period of time and again assuming similar adhesion

characteristics of both underfills, the amine containing resin UR-A would be a

better choice for reliability. This is a result of the amine functional groups present in

UR-A retarding moisture transport through the resin; consequently, it will take

longer for moisture to reach the interface for assemblies using UR-A than compa-

rably sized assemblies encapsulated with UR-B. Naturally both of these scenarios

assume that the only means for moisture transport to the interface is by bulk

diffusion through the underfill and caution should be implemented to insure

moisture does not wick at the interface in addition to the bulk diffusion.

Another consideration when evaluating the problem of moisture is the effect of

moisture on the bulk properties of the adhesive and substrate. Absorbed moisture

can alter the mechanical characteristics of the adhesive and substrate, which can

indirectly affect interfacial adhesion. A change in the elastic modulus can alter

interfacial fracture toughness results considerably. Since the substrates evaluated in

this research were metallic and impermeable to moisture, only the variation in the

underfill elastic modulus due to moisture uptake was considered. The elastic

modulus was measured for several different moisture preconditioning environ-

ments and subsequent saturation concentrations. It is important to note that spec-

imens were fully saturated with moisture at the time of testing; thus, a gradient of

moisture did not exist within the specimens at the time of testing and the inherent,

wet modulus was identified for each condition. In addition, thermal aging test

results showed no change in the elastic modulus from the temperature component

of the moisture preconditioning environment; consequently, all observed losses can

be attributed to the presence of moisture. Results show a gradual decrease in the

elastic modulus for concentrations <1.02 wt% (0.0118 mg H2O/mm3) with a more

noticeable decrease (17 %) occurring at concentrations of 1.19 wt% (0.0138 mg

H2O/mm3). Since the inherent wet modulus was identified for several different

saturation concentrations, results depict the inherent change in elastic modulus of

the underfill as a function of increasing moisture concentration, which can be used

to model the transient change in the underfill elastic modulus as moisture is

absorbed. To evaluate the recovery of the underfill elastic modulus from moisture

uptake, specimens were allowed to reach saturation followed by baking in a

convection oven until fully dry. The recovery results indicate that the majority of
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the loss in underfill elastic modulus was recovered upon fully drying, although

some permanent loss did occur. Since plasticization from moisture is the only

known reversible mechanism for the change in mechanical characteristics due to

moisture uptake, the recovery results demonstrate that plasticization was the dom-

inant mechanism responsible for the loss in the elastic modulus. The slight irre-

versible effect from moisture uptake can be attributed in part to hydrolysis, which

was supported by a slight, net permanent weight gain in the underfill after fully

drying. It should be noted that DSC results demonstrated that the underfill was fully

cured before moisture preconditioning, so the contribution of incomplete curing in

the underfill reacting with moisture is unlikely. Since moisture did not significantly

alter the elastic modulus of the underfill and bearing in mind that the majority of

change in the elastic modulus was recovered upon drying, the long-term reliability

of the underfill in microelectronic applications is not a primary concern when

considering the effect of moisture. Since plasticization from moisture was found

to be the dominant mechanism responsible for the change in the underfill modulus,

variations in the underfill chemistry can be addressed to yield products that are

intentionally more resistant to plasticization from moisture if known to be exposed

to moist environments.

Having established the moisture absorption kinetics and change in properties of

the adhesive and substrate from moisture, the final aspect considered is the effect of

moisture on interfacial adhesion. Underfill/copper and undefill/FR-4 board interfa-

cial fracture toughness test specimens were made to evaluate this effect. By

implementing several different moisture preconditioning environments and by

using the critical load of fracture determined from the test specimens in conjunction

with the moisture concentration and elastic modulus variation for each environ-

ment, the interfacial fracture toughness was determined as function of increasing

moisture concentration. Failures occurred at the underfill/copper interface for the

underfill/copper interfacial test specimens and at the solder mask/copper interface

for the underfill/FR-4 board test specimens for all environments. Moisture

preconditioning results demonstrate that both interfaces were very sensitive to

moisture, with significant changes in interfacial toughness for concentrations as

lows as 0.65 wt% (0.0089 mg H2O/mm3). Since there is both a temperature and

moisture component to moisture preconditioning, thermal aging tests were

performed to delineate the contributions from both on interfacial fracture results.

The thermal aging test results showed no significant change in the toughness from

the temperature component of the moisture preconditioning environment; conse-

quently, all observed losses can be attributed to the presence of moisture. In

addition, since the moisture did not significantly change the elastic modulus of

the underfill adhesive for the moisture conditions evaluated for the interfacial

fracture toughness, plasticization of the underfill from moisture contributed little

to the change in the interfacial fracture toughness. As a result, the reduction in the

toughness is primarily attributed to the weakening of the interface due to the direct

presence of moisture at the interface. This has a very significant implication for

practical application, demonstrating that the critical aspect to consider when min-

imizing the loss in interfacial adhesion from moisture is preventing moisture from
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physically reaching the interface. Using adsorption theory, the stability of an

adhesive/substrate interface in the presence of moisture can be ascertained from

thermodynamic arguments. The work of adhesion was determined to be positive

before exposure to moisture and negative after exposure, indicating all adhesion of

the epoxy/copper interface is lost if water comes in contact with the interface. This

is supported by recovery results, which showed very little if any of the interfacial

fracture toughness is recovered upon fully drying. Consequently, the results indi-

cate that the adsorption theory of bonding is the dominant bonding mechanism for

the epoxy/metal interfaces studied in this research. Using adsorption theory in

conjunction with fracture mechanics, an analytical model was developed that pre-

dicts the loss in interfacial fracture toughness as a function of moisture content. The

model incorporates key parameters relevant to the problem of moisture in epoxy

joints identified in this research, including the interfacial hydrophobicity, active

nanopore density, saturation concentration, and the density of water. The model

correlated well with experimental results, suggesting that if adsorption theory

dominates the adhesive bonding at the adhesive/substrate interface, the model

should accurately predict the loss in interfacial fracture toughness for a given

moisture concentration. The predictive model provides a useful tool for developing

new adhesives, innovative surface treatment methods, and effective protection

methodologies for enhancing interfacial adhesion.
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Abstract

Adequacy of a material model that is based on isothermal properties becomes

questionable for non-isothermal cases such as polymer processing which includes

continuous change in temperature and rate. For true prediction of thermome-

chanical response of amorphous polymers under non-isothermal conditions, it is

necessary to formulate temperature-dependent material properties and flow rules

to provide a smooth transition around glass transition temperature.

An improved version of dual-mechanism viscoplastic constitutive model is

presented that is used to describe thermomechanical response of amorphous

polymers below and above glass transition temperature. Material property

definitions, evolution of internal state variables, and plastic flow rules were

revisited to provide a smooth and continuous transition in material response
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around glass transition temperature, θg. The elastic-viscoplastic constitutive

model is developed based on a thermodynamics framework. For damage

evolution in complex thermomechanical problems such as polymer processing,

irreversible entropy production rate is used as a damage metric [a.k.a Basaran

Damage Evolution Model].

Introduction

Particle-filled acrylics are widely used in domestic and industrial applications due

to their aesthetic quality, high heat and weather resistance. Applications of

acrylic particulate composites focus on solid surface industry in place of

traditional materials such as natural stone, wood, laminate products. In addition,

a new trend for designers and architects is to use acrylic sheets for artistic works

such as wall panels, furniture, and sculptures. Thermoforming is the typical

manufacturing method of acrylic products during which desired structural

design is achieved by stretching heated panels over or into molds by manual or

pneumatic methods. Large deformation of particle reinforced acrylics at elevated

temperatures followed by cooling of material under fixed configuration may

create several problems in parts both during and after thermoforming procedure.

Stress whitening is one of the major problems observed in thermoformed

particle acrylics.

Computational mechanic models can be used for simulation of the manu-

facturing processes. However, this requires sophisticated constitutive models

that can simulate the material behavior accurately. The applicability of material

models developed for large deformation behavior of amorphous polymers over a

wide range of temperatures and strain rates has only been verified so far under

completely controlled cases (constant strain rate, constant temperature). How-

ever, in actual polymer processing operations, temperature drop from tempera-

tures above to temperatures below causes a transition from rubbery state to solid

state and a significant change in material response. In order to resolve problems

associated with material response predictions around glass transition tempera-

ture, an improved version of dual-mechanism elastic-viscoplastic material model

is presented in this chapter. Evolution of state variables and flow rules that control

viscoplastic characteristics in the model and material property definitions

is carefully formulated to ensure smooth transition in response around glass

transition temperature. Since material state continuously changes with tempera-

ture during non-isothermal cases, experimental measures cannot be used for

continuous monitoring of damage evolution. A new method for damage quanti-

fication and evolution in polymer processing technique has been proposed based

on irreversible entropy production during the process. An entropy based damage

model is used to predict the material degradation and failure in polymer

processing operations.
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Large Deformation Concept

For studying large deformation behavior of polymeric materials, it is necessary

to describe kinematics of constitutive model based on finite deformation tensors.

Consider a body with a volume of Vo in undeformed (original or initial) configu-

ration (Σo) at time to which deforms into a volume V in current (deformed)

configuration (Σ) at time t, as depicted in Fig. 1. Motion of a point in the body

can be uniquely defined with a continuous one-to-one mapping (χ) of position

vectors X and x in original configuration and current configuration, respectively

(Fig. 1).

Gradient of deformation (F) describes transformation of a line element (dX) at

position ofX in original configuration to a deformed line element (dx) at position of

x in current configuration (Eq. 1). Unique transformation ensures a non-singular,

nonnegative determinant of deformation gradient or Jacobian (J ) (Eq. 3). Velocity
gradient (L) is the gradient of velocity field (v) and relates deformation gradient to

its material time derivative _F
� �

(Eqs. 4–6):

x ¼ χ X, tð Þ (1)

F ¼ ∇X χð Þ ¼ @χ
@X

(2)

J ¼ det Fð Þ > 0 (3)

v x, tð Þ ¼ _x x, tð Þ (4)

L ¼ grad vð Þ ¼ @ _x

@X
(5)

_F ¼ LF (6)

Deformation gradient (F) is assumed to multiplicatively decompose into elastic

part (Fe) and plastic part (Fp) (Ames et al. 2009; Anand 1986), and information

related to thermal deformation is included in the elastic part of deformation gradient

(Eq. 7). Plastic deformation gradient (Fp) defines a deformation from initial

configuration (Σo) to an intermediate, “relaxed,” or “natural” configuration (Σ0)
which is followed by an elastic transformation (Fe) to the final configuration (Σ).
Symmetric part of velocity gradient (L) is defined as stretching rate tensor (D), and

asymmetric part of velocity gradient is defined as spin tensor (W) (Eq. 10):

F ¼ FeFp; J ¼ JeJp (7)

Je ¼ det Feð Þ > 0 (8)

Jp ¼ det Fpð Þ > 0 (9)
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sym Lð Þ ¼ D; asym Lð Þ ¼ W;L ¼ DþW (10)

Using Eq. 7, elastic and plastic part of velocity gradient can be found as

L ¼ Le þ FeLpFe�1 (11)

where

Le ¼ _F
e
Fe�1 (12)

Lp ¼ _F
p
Fp�1 (13)

Stretching rate tensor (D) and spin tensor (W) for elastic and plastic parts can be

derived similarly from Eq. 10 where superscripts “e” and “p” represent elastic and
plastic parts of corresponding quantity, respectively (Eqs. 14 and 15):

sym Leð Þ ¼ De; asym Leð Þ ¼ We;Le ¼ De þWe (14)

sym Lpð Þ ¼ Dp; asym Lpð Þ ¼ Wp;Lp ¼ Dp þWp (15)

Right and left stretch tensors (U, V) and rotation tensor (R) can be found from

right and left polar decompositions of deformation gradient as follows:

F ¼ RU (16)

F ¼ VR (17)

U andV stretch tensors are positive-definite symmetric tensors, andR is a proper

orthogonal tensor. Cauchy (C) and Almansi (B) tensors can be formulated as

follows:

C ¼ FTF ¼ UU (18)

B�1 ¼ F�TF�1 ¼ V�1V�1 (19)

Σo

Σ

Vo

V
xX

F
dx

dX

Fig. 1 Deformation from

original configuration to

current configuration
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Similarly, from Eqs. 16–19, the following relations can be written for elastic and

plastic part of deformation gradient:

Fe ¼ ReUe (20)

Fe ¼ VeRe (21)

Ce ¼ FeTFe ¼ UeUe (22)

Be�1 ¼ Fe�T
Fe�1 ¼ Ve�1

Ve�1 (23)

Fp ¼ RpUp (24)

Fp ¼ VpRp (25)

Cp ¼ FpTFp ¼ UpUp (26)

Bp�1 ¼ Fp�T
Fp�1 ¼ Vp�1

Vp�1 (27)

Multiplicative split of deformation gradient produces nonunique, locally

defined intermediate (relaxed) configurations (Anand and On 1979). One

convenient way to solve this problem is to introduce corotational rate definitions

of elastic and plastic deformation gradients based on (director) orthonormal

vectors which was proposed by Mandel (Anand et al. 2009). Resulting elastic

and plastic parts of rate deformation tensors are invariant upon superposed rigid

body rotations (Aravas 1994; Arruda and Boyce 1993; Arruda et al. 1995).

However, arbitrariness of intermediate configuration can be also removed by

setting plastic spin tensor equal to zero (Eq. 28; Basaran and Lin 2007; Basaran

and Nie 2007; Basaran and Yan 1998; Bauwens-Crowet et al. 1969). In this case,

elastic and plastic deformation gradients will include rotations which can

be handled with proper selection of stress and rate measures establishing a

frame-indifferent model:

Wp ¼ 0 (28)

Jp ¼ 1 (29)

Assuming that plastic flow is irrotational (Eq. 28) and incompressible (Eq. 29),

Jacobian of total deformation gradient (J) and material time derivative of plastic

deformation gradient _F
p

� �
will become

J ¼ Je (30)

_F
p ¼ DpFp (31)

As a result of incompressible plastic flow and irrotational plastic flow assumptions,
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Lp ¼ Dp (32)

tr Lpð Þ ¼ tr Dpð Þ ¼ 0 (33)

L ¼ Le þ FeDpFe�1 (34)

System is assumed to be at rest originally (t ¼ 0) which provides the following

initial conditions for elastic and plastic deformation gradient:

Fp X, 0ð Þ ¼ I (35)

Fe X, 0ð Þ ¼ I (36)

Frame Indifference of Kinematic Descriptors

According to Eringen (1967), material constitutive relations must be invariant

to changes of current reference frame (Bergström and Boyce 1998). Therefore,

a quantity or an equation is frame indifferent or objective if it is invariant to

changes of reference frame. Let rigid body motion of any material point χ(X, t)
be defined by a proper orthogonal rotation tensor Ω(t) and a vector Xo(t) for any
time frame t as

χ X, tð Þ ¼ Ω tð Þ χ X, tð Þ �O½ � þ Xo tð Þ (37)

where orthogonal characteristic of rotation tensor is defined as

ΩTΩ ¼ I (38)

In Eq. 37, Ω(t) represents rigid body rotation and Xo(t) represents rigid body

translation. In this context, frame indifference of a vector (a) and a 2nd-order tensor

(A) are defined in terms of transformation rules (Bergström and Boyce 1998;

Boltzmann 1995) as follows:

a ¼ Ωa (39)

A ¼ ΩAΩT (40)

Transformation of deformation gradient with respect to a change in reference

frame can be obtained from Eq. 1 as

F ¼ ΩF (41)

Therefore, deformation gradient is not objective (frame indifferent) according

to Eq. 40. Using Eq. 41, Cauchy tensor (C) in transformed configuration can be

obtained as
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C ¼ F
T
F ¼ FTΩTΩF ¼ FTF ¼ C (42)

Since Cauchy tensor is a Lagrangian tensor referring to original reference frame,

Cauchy tensor should not be expected to change with current reference frame

according to Eq. 40. Therefore, Cauchy tensor (C) is not objective, but still

invariant to changes in current reference frame in deformed configuration. Using

Eq. 41 and right polar decomposition rule in Eq. 16,

F ¼ RU ¼ ΩF ¼ ΩRU (43)

Since right polar decomposition is unique, Eq. 43 implies that

R ¼ ΩR (44)

U ¼ U (45)

Therefore, right stretch tensor (U) and rotation tensor (R) are not objective.

However, similar to Cauchy tensor, right stretch tensor refers to original reference

frame, and hence right stretch tensor is invariant to changes in current reference

frame. Similarly, using Eq. 19, Almansi tensor (B) in the transformed configuration

can be obtained as

B ¼ F F
T ¼ ΩFFTΩT ¼ ΩBΩT (46)

Therefore, Almansi tensor (B) is objective. Using Eq. 41 and left polar decom-

position rule in Eq. 17,

F ¼ VR ¼ ΩF ¼ ΩVR (47)

According to transformation of rotation tensor in Eqs. 44, and 47 can be

rewritten as

F ¼ VR ¼ ΩVΩTΩR (48)

Since left polar decomposition is also unique, Eq. 48 implies that

V ¼ ΩVΩT (49)

Therefore, left stretch tensor (V) is objective. Taking time derivative of Eq. 41, it

can be shown that material time derivative of deformation gradient is not objective

(Eq. 50):

F: ¼ _ΩFþΩ _F (50)

Using Eq. 50 and the definition of velocity gradient in Eq. 6,
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F: ¼ L F ¼ _ΩFþΩ _F ¼ _ΩFF�1ΩT þΩ _FF�1ΩT
� �

ΩF (51)

Equation 51 implies that velocity gradient is not objective as shown in Eq. 52:

L ¼ ΩLΩT þ _ΩΩT (52)

Using definitions of stretch rate tensor and spin tensor in Eq. 10,

L ¼ DþW ¼ Ω DþWð ÞΩT þ _ΩΩT (53)

which implies that

D ¼ ΩDΩT (54)

W ¼ ΩWΩT þ _ΩΩT (55)

Therefore, stretch rate tensor (D) is objective, while spin tensor (W) is not

objective. Using multiplicative decomposition definition of deformation gradient

in Eq. 7,

F ¼ Fe Fp ¼ ΩFeFp (56)

Equation 56 implies that

Fe ¼ ΩFe (57)

Fp ¼ Fp (58)

Therefore, elastic and plastic deformation gradients are not objective. Since

plastic deformation gradient refers to original and intermediate reference frames,

plastic deformation gradient is not objective but invariant to changes in current

reference frame. Using definitions for elastic and plastic rotation tensors, left stretch

tensor, right stretch tensor, Cauchy tensor, and Almansi tensor in Eqs. 20–27, the

following relations can be derived:

Fe ¼ Re Ue ¼ ΩReUe (59)

Re ¼ ΩRe (60)

Ue ¼ Ue (61)

Fe ¼ Ve Re ¼ ΩVeΩTΩRe (62)

Ve ¼ ΩVeΩT (63)
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Ce ¼ Ue Ue ¼ UeUe ¼ Ce (64)

Be ¼ Ve Ve ¼ ΩVeΩTΩVeΩT ¼ ΩBeΩT (65)

Fp ¼ Rp Up ¼ ΩRpUp (66)

Rp ¼ ΩRp (67)

Up ¼ Up (68)

Fp ¼ Vp Rp ¼ ΩVpΩTΩRp (69)

Vp ¼ ΩVpΩT (70)

Cp ¼ Up Up ¼ UpUp ¼ Cp (71)

Bp ¼ Vp Vp ¼ ΩVpΩTΩVpΩT ¼ ΩBpΩT (72)

Therefore, elastic and plastic rotation tensors (Re, Rp) are not objective. Elastic

and plastic right stretch tensors and Cauchy tensors (Ce, Cp, Ue, Up) are not

objective, but invariant under changes in current reference frame. Elastic and

plastic left stretch tensors and Almansi tensors (Be, Bp, Ve, Vp) are objective.

Using elastic and plastic velocity gradient definitions in Eqs. 12 and 13 with

transformation rules for elastic and plastic deformation gradient in Eqs. 57 and 58,

Le ¼ _
Fe Fe�1 ¼ ΩFe þ _ΩFe

� �
Fe�1ΩT
� � ¼ ΩLeΩT þ _ΩΩT (73)

Lp ¼ _
Fp Fp�1 ¼ _F

p
Fp�1 ¼ Lp (74)

Equation 73 shows that elastic velocity gradient is not objective. According to

Eq. 74, plastic velocity gradient is not objective but invariant to changes in current

reference frame, since plastic velocity gradient refers to original and intermediate

reference frames, but does not refer to current reference frame. Using definitions of

elastic stretch rate tensor and spin tensor in Eq. 14,

Le ¼ De þWe ¼ Ω De þWeð ÞΩT þ _ΩΩT (75)

which implies that

De ¼ ΩDeΩT (76)

We ¼ ΩWeΩT þ _ΩΩT (77)

Therefore, elastic stretch rate tensor (De) is objective, while elastic spin tensor

(We) is not objective. Similarly, using plastic stretch rate definition in Eq. 15 and

applying irrotational plastic flow assumption in Eq. 28,
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Lp ¼ Dp ¼ Dp (78)

which implies that

Dp ¼ Dp (79)

Therefore, plastic stretch rate tensor (Dp) is not objective but invariant to

changes in current reference frame. To summarize, it has been shown that F,R, _F,
L,W,Fe,Re,Rp,Le,We are not objective; C, U, Fp, Ue, Ce, Up, Cp, Lp, Dp are not

objective but invariant to changes in current reference frame and B, V, D, Ve, Be,

Vp, Bp, De are objective.

Thermodynamic Framework

Definition of a thermodynamic potential which is concave with respect to temper-

ature (θ) and convex with respect to other internal state variables will provide a

basis for satisfying conditions of thermodynamic stability imposed by Clausius-

Duhem inequality. Specific Helmholtz free energy (ψ) forms such a basis which is

defined as difference between specific internal energy (u) and product of absolute

temperature (θ) and specific entropy (s) (Eq. 80):

ψ ¼ u� θs (80)

The first law of thermodynamics states that energy can be transported, or

converted from one form to another, but cannot be destroyed or created. Accord-

ingly, internal energy of a system can be increased by heat flow into the system

(δq), heat generated within the system by external agencies (e.g., inductive

heating) (r), mechanical work done on the system by external pressure (δw),
or all other kinds of work done on the system (δw0) during any process.

Considering only thermomechanical effects, rate of change in internal energy

can be stated as

_u ¼ Qþ lþ r (81)

In Eq. 81, Q is rate of net heat flow into the system and l is rate of net work done
on the system. Second law of thermodynamics states that there exists a state

function, entropy, which increases in universe for all types of processes due to

entropy production. Unlike energy, entropy (s) is not only transferred across

boundaries of system, but it may be created in the system which is called as entropy

production (η). Clausius-Duhem inequality describes second law of thermodynam-

ics in terms of a nonnegative entropy production rate (γ) per unit volume for any

kind of irreversible process which is defined as

γ ¼ ρ _sþ div Jsð Þ > 0 (82)

690 C. Basaran and E. Gunel



Js in Eq. 82 is net entropy flux into system. Heat flow into body can be defined in

terms of heat flux as shown in Eq. 83.

ρQ ¼ �div Jq
� �

(83)

Substituting time derivative of Eq. 80, internal energy definition in Eq. 81, and

heat flow equation in Eq. 83 into Eq. 82, internal entropy production density rate

can be rewritten as

γ ¼ div Jsð Þ � div Jq
� �
θ

þ ρr

θ
þ ρ

θ
l� _ψ � _θs
� �

> 0 (84)

r in Eq. 84 is internal heat source strength.

Thermodynamic Restrictions

In dual-mechanism viscoplastic constitutive model, material response is resolved

into two components which necessitate multi-mechanism generalization of multi-

plicative decomposition in Eq. 7 and description of different Helmholtz free energy

functions and associated entropy functions assuming that linear addition is appli-

cable for Eq. 80. Accordingly, Eqs. 12–15, 20–27, and 31–36 hold true for each

component of resistance. Subscripts “I” and “M” will be used henceforth to

designate the component of a quantity in intermolecular mechanism and molecular

network mechanism, respectively. For description of dissipation inequality, total

Helmholtz free energy density in (original) reference configuration is written as

summation of defect energy (ΨD) and elastic energy stored in intermolecular

structure (ΨI) and molecular network structure (ΨM):

Ψ Ce
I ,C

e
M,A, θ

� � ¼ ΨI Ee
I , θ

� �þ ΨM Ce
M, θ

� �þ ΨD A, θð Þ (85)

In Eq. 85, defect energy (ΨD) is assumed to depend on a stretch-like tensor (A)

and temperature (θ), elastic energy in intermolecular structure (ΨI) is assumed to

depend on logarithmic elastic strain in intermolecular structure (EI
e) and tempera-

ture (θ), and elastic energy in molecular network structure (ΨM) is assumed to

depend on elastic Cauchy tensor in molecular network structure (CM
e ) and temper-

ature (θ). Assuming that a similar decomposition also holds for specific entropy and

specific Helmholtz free energy,

s Ce
I ,C

e
M,A, θ

� � ¼ sI Ee
I , θ

� �þ sM Ce
M, θ

� �þ sD A, θð Þ (86)

ψ Ce
I ,C

e
M,A, θ

� � ¼ ψ I Ee
I , θ

� �þ ψM Ce
M, θ

� �þ ψD A, θð Þ (87)

Helmholtz free energy density in reference configuration (Ψ) can be simply

related to specific Helmholtz free energy function (ψ) through Eq. 88 and in rate

form through Eq. 89:
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ρoψ Ce
I ,C

e
M,A, θ

� � ¼ Ψ Ce
I ,C

e
M,A, θ

� �
(88)

ρ _ψ Ce
I ,C

e
M,A, θ

� � ¼ J�1 _Ψ Ce
I ,C

e
M,A, θ

� �
(89)

In Eqs. 88 and 89, ρo and ρ are densities in reference configuration and deformed

configuration, respectively. Note that since eigenvalues of elastic Cauchy tensor

(CI
e) and logarithmic elastic strain tensor (EI

e) corresponding to intermolecular

structure are related through Eq. 90 and eigenvectors of these tensors are identical,

it is possible to consider Helmholtz free energy density (ΨI) and specific entropy

(sI) associated with intermolecular structure as functions of temperature (θ) and
elastic Cauchy tensor (CI

e) (Eqs. 91 and 92):

eigenval Ee
I

� � ¼ 1

2
ln eigenval Ce

I

� �� �
(90)

ΨI Ee
I , θ

� � � ΨI Ce
I , θ

� �
(91)

sI Ee
I , θ

� � � sI Ce
I , θ

� �
(92)

Time derivative of Helmholtz free energy can be formulated as

_Ψ Ce
I ,C

e
M,A, θ

� � ¼ @ΨI Ee
I , θ

� �
@Ce

I

: _C
e

I þ
@ΨM Ce

M, θ
� �
@Ce

M

: _C
e

M þ @ΨD A, θð Þ
@A

: _A

�

þ @ΨI Ee
I , θ

� �
@θ

: _θ þ @ΨM Ce
M, θ

� �
@θ

: _θ þ @ΨD A, θð Þ
@θ

: _θ

� (93)

According to principle of virtual work (power), rate of work done per unit

volume of deformed body (external work power) is balanced with internal work

power (Eq. 94), while total work done on the system is stored as elastic strain

energy (represented with the first two terms in Eq. 95) and plastically dissipated

(represented with the last two terms in Eq. 95):

ρl ¼ _wint (94)

_wint ¼ Γe
I : L

e
I þ Γe

M : Le
M þ J�1Γp

I : L
p
I þ J�1Γp

M : Lp
M (95)

In Eq. 95, ΓI
e, ΓM

e , ΓI
p, and ΓM

p are stress measures conjugate to rate of deforma-

tion measures LI
e,LM

e ,LI
p, and LM

p which were defined in Eqs. 12 and 13. Noting that

J�1 ¼ Je�1 (Eq. 30), the J�1 multiplier in front of the last two terms of Eq. 95

recovers work power definitions from intermediate configuration to deformed

configuration. Requirement of frame indifference of internal work power definition

can be described as

_wint ¼ _wint (96)
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which implies that

Γe
I :L

e
I þΓe

M :Le
M

þ J�1Γp
I :L

p
I þ J�1Γp

M :Lp
M

� 	
¼ Γe

I :L
e

I þΓe

M :L
e

M þ J�1Γp

I :L
p

I þ J�1Γp

M :L
p

MÞ
�

(97)

Using transformation rules for elastic and plastic velocity gradients in Eqs. 73

and 74,

Γe
I : L

e
I þ J�1Γp

I : L
p
I

þΓe
M : Le

M þ J�1Γp
M : Lp

M

 !
¼ Γe

I : ΩLe
IΩ

T þ _ΩΩT
� �þ J�1Γp

I : L
p
I þ Γe

M :

ΩLe
MΩ

T þ _ΩΩT
� �þ J�1Γp

M : Lp
M

" #

(98)

or

Γe
I : L

e
I þ J�1Γp

I : L
p
I

þΓe
M : Le

M þ J�1Γp
M : Lp

M

 !
¼ ΩTΓe

IΩÞ : Le
I þ ΩTΓe

MΩÞ : Le
M þ J�1Γp

I : L
p
I

��
þ J�1Γp

M : Lp
M þ Γe

I :
_ΩΩT þþΓe

M : _ΩΩT

� �

(99)

The first two terms on right-hand side of Eq. 99 indicate that stress measures

corresponding elastic work (ΓI
e, ΓM

e ) are objective as shown in Eqs. 100 and 101.

Since _ΩΩT is a skew symmetric tensor (Eqs. 55 and 77), the last two terms on right-

hand side of Eq. 99 imply that stress measures corresponding elastic work (ΓI
e, ΓM

e ) are

symmetric (Eqs. 102 and 103). The third and fourth terms on right-hand side of Eq. 99

show that stress measures corresponding plastic work (ΓI
p, ΓM

p ) are not objective but

invariant to changes in current reference frame as shown in Eqs. 104 and 105:

Γe

I ¼ ΩΓe
IΩ

T (100)

Γe

M ¼ ΩΓe
MΩ

T (101)

Γe

I ¼ Γe

I

T
;Γe

I ¼ Γe
I
T (102)

Γe

M ¼ ΓeT

M ;Γe
M ¼ ΓeT

M (103)

Γp

I ¼ Γp
I (104)

Γp

M ¼ Γp
M (105)

Using symmetry property of stress measures in Eqs. 102 and 103, irrotational

plastic flow definition in Eq. 28, total internal work power over whole volume of

system can be written as

_Wint ¼
ð
V

_wintdV ¼
ð
V

Γe
I : D

e
I þ Γe

M : De
M þ J�1Γp

I : D
p
I þ J�1Γp

M : Dp
M


 �
dV (106)

22 Damage Mechanics Unified Constitutive Modeling for Polymers 693



Total external work power on the system can be described in terms of surface

tractions on boundaries of the system and body force acting on the system as

_Wext ¼
ð
V

ρldV ¼
ð
S

t• _χdSþ
ð
V

b• _χdV (107)

Consider principal of virtual power for a special case defined from Eq. 34 as

L ¼ grad _χð Þ ¼ Le
I ¼ Le

M (108)

where it is assumed that

D
p
I ¼ D

p
M ¼ 0 (109)

Principal of virtual power can be rewritten for this special case from Eqs. 106

and 107 as

ð
S

t• _χdSþ
ð
V

b• _χdV ¼
ð
V

Γe
I : D

e
I þ Γe

M : De
M


 �
dV (110)

ð
S

t• _χdSþ
ð
V

b • _χdV ¼
ð
V

Γe
I þ Γe

M

� �
: grad _χð Þ
 �

dV (111)

ð
S

t• _χdSþ
ð
V

b • _χdV ¼
ð
V

div _χ • Γe
I þ Γe

M

� �
 �
dV �

ð
V

div Γe
I þ Γe

M

� �
• _χdV (112)

Since Eq. 112 is true for any choice of V and grad _χð Þ, from the first terms on left-

and right-hand side of Eq. 112,

t ¼ Γe
I þ Γe

M

� �
n (113)

which is essentially Cauchy’s stress theorem describing the relation between stress

tensor and surface tractions. From the second terms on left- and right-hand side of

Eq. 112,

div Γe
I þ Γe

M

� �þ b ¼ 0 (114)

which represents Cauchy’s equation of motion for stationary systems. Therefore, stress

measures in Eqs. 113 and 114 identically correspond to Cauchy stress (T) components

in intermolecular mechanism (TI) and molecular network mechanism (TM):

T ¼ Γe
I þ Γe

M (115)
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Γe
I ¼ TI ¼ TI

T (116)

Γe
M ¼ TM ¼ TM

T (117)

Consider principal of virtual power for a second special case defined from Eq. 34

such that

L ¼ grad _χð Þ ¼ Le
I þ Fe

ID
p
IF

e�1

I ¼ Le
M þ Fe

MD
p
MF

e�1

M ¼ 0 (118)

or

Le
I ¼ �Fe

ID
p
IF

e�1

I (119)

Le
M ¼ �Fe

MD
p
MF

e�1

M (120)

Accordingly, principal of virtual power can be rewritten for this special case

from Eqs. 106 and 107 as

_Wint ¼
ð
V

Γe
I : �Fe

ID
p
IF

e�1

I

� �
þ J�1Γp

I : D
p
I

þΓe
M : �Fe

MD
p
MF

e�1

M

� �
þ J�1Γp

M : Dp
M

2
4

3
5dV (121)

or

_Wint ¼
ð
V

J�1Γp
I � FeT

I Γe
IF

e�T

I

� �
: Dp

I þ J�1Γp
M � FeT

MΓe
MF

e�T

M

� �
: Dp

M

h i
dV (122)

Since velocity gradient is assumed as zero for this special case, velocity field will

be also equal to zero. Therefore, external power work will be equal to zero
_Wext ¼ 0

� �
. As a result, individual terms inside parenthesis in Eq. 122 should be

equal to zero for arbitrary selection of V, DI
p, and DM

p :

J�1Γp
I � FeT

I Γe
IF

e�T

I ¼ 0 (123)

J�1Γp
M � FeT

MΓe
MF

e�T

M ¼ 0 (124)

Using definitions of stress measures in Eqs. 116 and 117, it can be shown that

Γp
I ¼ JFeT

I TIF
e�T

I (125)

Γp
M ¼ JFeT

MTMF
e�T

M (126)

which form definition of elastic symmetric Mandel stress in intermolecular struc-

ture and molecular network structure as
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Me
I ¼ JFeT

I TIF
e�T

I (127)

Me
M ¼ JFeT

MTMF
e�T

M (128)

whereas since trace of plastic stretch rate is equal to zero due to incompressible

plastic flow assumption (Eq. 33), stress conjugate to plastic stretch rate should be a

deviatoric tensor. Therefore,

Γp
I ¼ dev Me

I

� �
(129)

Γp
M ¼ dev Me

M

� �
(130)

Finally, elastic 2nd Piola-Kirchhoff stress tensor in intermolecular structure and

molecular network structure can be defined as

SeI ¼ JFe�1

I TIF
e�T

I (131)

SeM ¼ JFe�1

M TMF
e�T

M (132)

Using definitions of elastic Mandel stress (Eqs. 127 and 128) and symmetric 2nd

Piola-Kirchhoff stress (Eqs. 131 and 132),

Me
I ¼ Ce

IS
e
I (133)

Me
M ¼ Ce

MS
e
M (134)

Therefore, it has been shown that stress measures (ΓI
e, ΓM

e , ΓI
p, ΓM

p ) or (ΤI, ΤM,

MI
e, MM

e ) with deformation rate conjugates of (DI
e, DM

e , DI
p, DM

p ) form a frame-

indifferent framework for dual-mechanism elastic-viscoplastic constitutive model.

The thermodynamic restrictions on constitutive relations can be obtained by

substituting Eqs. 86, 89, and 93 into Eq. 84, as follows:

div Jsð Þ � div
Jq

θ

� 	
¼ 0 (135)

Js ¼ Jq

θ
(136)

γther ¼ � 1

θ2
div Jq
� �

•∇x θð Þ þ ρr

θ
> 0 (137)

J�1 @ΨI Ee
I , θ

� �
@θ

þ @ΨM Ce
M, θ

� �
@θ

þ @ΨD A, θð Þ
@θ

� 	
þ ρs

� �
_θ ¼ 0 (138)

ρs Ee
I ,C

e
M,A, θ

� � ¼ �J�1 @Ψ Ee
I ,C

e
M,A, θ

� �
@θ

(139)
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s Ee
I ,C

e
M,A, θ

� � ¼ � @ψ Ee
I ,C

e
M,A, θ

� �
@θ

(140)

1

θ
Γe
I : L

e
I � J�1 @ΨI Ee

I , θ
� �
@Ce

I

: _C
e

I

� 	
¼ (141)

Γe
I : L

e
I ¼ TI : L

e
I ¼ TI : D

e
I ¼ J�1 @ΨI Ee

I , θ
� �
@Ce

I

: _C
e

I (142)

TI : D
e
I ¼

1

2
Fe�1

I TIF
e�T

I

� �
: _C

e

I ¼ J�1 @ΨI Ee
I , θ

� �
@Ce

I

: _C
e

I (143)

J Fe�1

I TIF
e�T

I

� �
¼ SeI ¼ 2

@ΨI Ee
I , θ

� �
@Ce

I

(144)

1

θ
Γe
M : Le

M � J�1 @ΨM Ce
M, θ

� �
@Ce

M

: _C
e

M

� 	
¼ (145)

Γe
M : Le

M ¼ TM : Le
M ¼ TM : De

M ¼ J�1 @ΨM Ce
M, θ

� �
@Ce

M

: _C
e

M (146)

TM : De
M ¼ 1

2
Fe�1

M TMF
e�T

M

� �
: _C

e

M ¼ J�1 @ΨM Ce
M, θ

� �
@Ce

M

: _C
e

M (147)

J Fe�1

M TMF
e�T

M

� �
¼ SeM ¼ 2

@ΨM Ce
M, θ

� �
@Ce

M

(148)

γmech ¼
1

θ
J�1Γp

I : L
p
I þ J�1Γp

M : Lp
M � J�1 @ΨD A, θð Þ

@A
: _A

� 	
> 0 (149)

Equation 136 relates entropy flux to heat flux, and Eq. 137 defines irreversible

entropy production per unit volume in deformed configuration associated with heat

conduction which is always positive according to Fourier’s law (Eq. 150). Equation

140 provides the relation between specific entropy and specific Helmholtz energy,

while Eqs. 144 and 148 describe stress measures derived from Helmholtz free

energy functions. Equation 149 defines irreversible entropy production due to

mechanical dissipation per unit volume in deformed configuration. The reason for

appearance of J�1 term in front of Eq. 149 is that all stress measures and their

conjugate rate measures refer to intermediate (relaxed configuration), while irre-

versible entropy production rate density refers to deformed configuration:

Jq ¼ �k∇x θð Þ (150)

In Eq. 150, k is temperature-dependent thermal conductivity of material. Specific

heat can be expressed in terms of specific entropy (Eq. 151) and in terms of Helmholtz
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free energy (Eq. 153) by exploiting the relation in Eq. 139. Using linear decomposi-

tion assumption in Eqs. 85 and 86, specific heat can be rewritten in terms of separate

component of specific entropy (Eq. 152) and Helmholtz free energy (Eq. 154):

c ¼ θ
@s Ee

I ,C
e
M,A, θ

� �
@θ

(151)

c ¼ θ
@sI Ee

I , θ
� �
@θ

þ @sM Ce
M, θ

� �
@θ

þ @sD A, θð Þ
@θ

� 	
(152)

c ¼ �θ
@

@θ

J�1

ρ

@Ψ Ee
I ,C

e
M,A, θ

� �
@θ

� �
(153)

c ¼ �θ
@

@θ

J�1

ρ

@ΨI Ee
I , θ

� �
@θ

þ @ΨM Ce
M, θ

� �
@θ

þ @ΨD A, θð Þ
@θ

� 	� �
(154)

Constitutive Relations and Flow Rules

In viscoplastic constitutive modeling of amorphous polymers at large deformations,

dual decomposition of material response into two parallel working mechanisms of

intermolecular structure and molecular network structure is widely used (Basaran

and Lin 2007; Basaran and Yan 1998; Bauwens-Crowet et al. 1969; Boyce

et al. 2000; Chudnovsky et al. 1973). More recently, a trial-mechanism has been

also proposed to include a secondary mechanism for molecular network structure

(Eringen 1967). Both dual- and trial-mechanism models are proven to be successful

in describing large deformation behavior of amorphous polymers at different

isothermal test conditions. In order to extend applicability of such models to

non-isothermal conditions, several refinements on material property definitions

and viscoplastic flow rule definitions are necessary.

In dual-mechanism constitutive models, material response is assumed to be

controlled by states of two parallel working mechanisms (intermolecular structure

and molecular network structure), as depicted in Fig. 2. Since intermolecular

mechanism (I) and molecular network mechanism (M ) are working in parallel,

deformation in both mechanisms is equal to each other and equal to total deforma-

tion (Eq. 155), while total stress is the summation of stresses due to intermolecular

interactions (I) and molecular network interactions (M ) (Eq. 156). Subscripts “I”
and “M” represent intermolecular and molecular network components of associated

quantity, respectively:

F ¼ FI ¼ FM (155)

T ¼ TI þ TM (156)
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Intermolecular Resistance (I)
Initial elastic response to deformation due to intermolecular resistance is governed

by van der Waals interactions with surrounding molecules. A Helmholtz free

energy per unit volume in reference configuration is considered for constitutive

relation describing intermolecular resistance which was developed by Anand

(Fotheringham and Cherry 1978; Fotheringham et al. 1976):

ΨI Ee
I , θ

� � ¼ G dev Ee
I

� ��� ��2 þ 1

2
K � 2

3
G tr Ee

I

� �
 �2� 	
�3Kα θ � θoð Þtr Ee

I

� �
8<
:

9=
; (157)

In Eq. 157, θo is initial temperature, θo ¼ θ(X, to); G, K, α are temperature-

dependent shear modulus, bulk modulus, and coefficient of thermal expansion,

respectively. Elastic logarithmic strain (EI
e) in Eq. 157 is related to right elastic

stretch tensor (CI
e) and elastic deformation gradient (FI

e) through Eqs. 158 and 159:

Ee
I ¼

1

2
lnCe

I (158)

Ee
I ¼

1

2
ln FeT

I Fe
I Þ

�
(159)

According to state laws (Eq. 144), symmetric second Piola-Kirchhoff stress (SI
e)

and Cauchy stress (TI) can be obtained from Helmholtz free energy density

function corresponding to intermolecular resistance as

SeI ¼ 2
@ΨI Ee

I , θ
� �
@Ce

I

(160)

TI ¼ J�1Fe
IS

e
IF

eT

I (161)

Molecular Network Resistance, M

Intermolecular Resistance, I

hM

cI

hI

mI

mM

Fig. 2 Schematic

representation of material

model
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Since Helmholtz free energy density corresponding to macroscopic elastic

energy stored (ΨI) is an isotropic function of elastic right Cauchy tensor (CI
e), CI

e

and @ΨI/@CI
e are coaxial, and their product is a symmetric tensor, elastic Mandel

stress (MI
e) (Eq. 162) is defined as

Me
I ¼ Ce

IS
e
I (162)

Relation between elastic Mandel stress (MI
e) and elastic logarithmic strain (EI

e)

can be obtained from Helmholtz free energy function (Eq. 157) and second Piola-

Kirchhoff stress (SI
e) definition (Eq. 160) as

Me
I ¼ 2Gdev Ee

I

� �þ K tr Ee
I

� �� 3α θ � θoð Þ
 �
I (163)

Kinematic hardening characteristics in intermolecular structure are modeled by a

defect energy function per unit volume in intermediate (relaxed) configuration which

was developed by Anand (Boyce et al. 2000; Eringen 1967; Francisco et al. 1996):

ΨD A, θð Þ ¼ 1

4
B ln a1ð Þ2 þ ln a2ð Þ2 þ ln a3ð Þ2
h i

(164)

ai in Eq. 164 represents eigenvalues of a stretch-like internal variable (A) which
is a symmetric unimodular tensor, det(A(x, t)) ¼ 1. Since defect energy (ΨD) is an

isotropic function of symmetric unimodular stretch-like tensor (A), A and @ΨD/@A
are coaxial and their product is symmetric deviatoric back stress tensor (Mback).

Back stress (Eq. 165) and evolution equation for (A) (Eq. 166) with initial condition

in Eq. 167 are defined as

Mback ¼ 2dev
@Ψ A, θð Þ

@A
A

� 	
¼ Bln Að Þ (165)

_A ¼ D
p
IAþ AD

p
I � γAln Að Þνp

I (166)

A X, 0ð Þ ¼ I (167)

In Eq. 166, γ represent the dynamic recovery, B is temperature-dependent back

stress modulus, and νI
p is equivalent plastic stretch rate in intermolecular structure.

Driving stress for plastic flow in intermolecular structure is defined as

Meff ¼ dev Me
I �Mback

� �
(168)

Equivalent plastic stretch rate (Eq. 169), effective equivalent shear stress

(Eq. 170), and mean normal pressure (Eq. 171) are defined in terms of tensorial

variables as follows:

νp
I ¼

ffiffiffi
2

p
D

p
I

�� �� (169)
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τI ¼ 1ffiffiffi
2

p Meff

�� �� (170)

pI ¼ � 1

3
tr Me

I

� �
(171)

Evolution of plastic deformation gradient in intermolecular mechanism can be

rewritten from Eq. 31 as

_F
p

I ¼ D
p
IF

p
I (172)

F
p
I X, 0ð Þ ¼ I (173)

Effective equivalent shear stress is the part of stress that drives plastic flow, and

it is the source of plastic dissipation, while some significant amount of plastic work

is stored as energy during large deformation of amorphous polymers associated

with back stress (Bauwens-Crowet et al. 1969; Gent 1996). Once effective shear

stress level reaches a critical level so that energy barrier to molecular chain segment

rotation is exceeded, plastic flow takes place. According to cooperative model,

viscous flow in a solid amorphous polymer may take place only when a number of

polymer segments move cooperatively which also account for the significance of

activation volume during yield process. The flow rule for amorphous polymers is

essentially based on the energy distribution statistics of individual segments

(Gomez and Basaran 2006). In simple terms, cooperative model flow rule is

based on average probability of simultaneous occurrence of n thermally activated

transitions across an energy barrier (activation energy, Q) inducing a macroscopic

strain increment of νo (Gomez and Basaran 2006; Kachanov 1986). Yield charac-

teristics of amorphous polymers are strongly temperature and rate dependent.

According to strain rate-temperature superposition principle, an increase in tem-

perature will have the same effect on the yield stress as a decrease in strain rate

(Kontou and Spathis 2006; Kröner 1959; Lee 1969). Equivalence of time and

temperature basically describes that yielding of amorphous polymers at low tem-

peratures is comparable to that at high strain rates. Therefore, Eyring plots (yield

stress-temperature ratio versus plastic strain rate curves) for various temperatures

can be shifted vertically and horizontally with respect to a reference temperature

(θref) in order to obtain a master curve describing yield stress behavior over a wide

range of temperatures and strain rates.

Recently, Richeton (Chudnovsky et al. 1973) has proposed that both horizontal

shift (ΔHh) and vertical shift (ΔHv) should follow Arrhenius-type temperature

dependence. Resulting yield stress definition relates yield behavior of polymer

with β mechanical loss peak at temperatures below θg through introducing

activation energy at β-transition temperature, i.e., yield behavior is controlled by

segmental motions of polymer chains and reference state for yielding is chosen as

β-transition. Increase in yield stress due to an increase in strain rate is attributed to

decrease in molecular mobility of polymer chains, while a slow deformation rate

allows polymer chains to slip past each other, resulting in a lower resistance to flow.
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At low temperatures near secondary transition temperature (θβ), secondary molec-

ular motions are restricted and chains become stiffer which also increase yield

stress, while increase in temperature provides more energy to polymer chains

facilitating relative motion between polymer chains. For temperatures above θg,
characteristic plastic strain rate equation was modified by Williams-Landel-Ferry

(WLF) parameters (c1, c2) (Bauwens-Crowet et al. 1969; Mandel 1972). Although

characteristic plastic strain rate definitions at temperatures below and above θg are
continuous functions of temperature in separate domains, piecewise definition with

respect to glass transition (θg) results in unrealistic change in plastic flow behavior

around glass transition, i.e., derivative of plastic strain rate equation is discontinu-

ous at θg. Recently, Anand (Eringen 1967) proposed a modified version of flow rule

in intermolecular structure which incorporates different values of activation energy

for glassy region and rubbery region, yet abrupt change in activation energies at θg
still creates problem in material response. In order to provide a smoother transition

in flow characteristics around θg, characteristic plastic strain rate (Eq. 174) and

equivalent shear plastic stretch rate (Eq. 175) are proposed in following forms:

ν� ¼ νoI exp � QI

kBθ

� 	
1þ exp

ln 10ð Þc1 θ � θg
� �

c2 þ θ � θg
� �

 !" #
(174)

νpI ¼ ν� sinh
τIV

2kBθ

� 	� �nI
(175)

In Eqs. 174 and 175, νI
o is pre-exponential factor,QI is activation energy for plastic

flow in intermolecular structure, kB is the Boltzmann’s constant, c1 and c2 are WLF

parameters, nI number of thermally activated transitions necessary for plastic flow,

V activation volume, and τI net effective stress which is defined in Eq. 176:

τI ¼ τI � SI � αPpI (176)

In Eq. 176, αp is pressure sensitivity parameter and SI is plastic flow resistance in

intermolecular structure. Evolution of intermolecular resistance to plastic flow is

defined in Eq. 177 with initial condition in Eq. 178:

_SI ¼ hI S�I � SI
� �

νpI (177)

SoI ¼ SI X, 0ð Þ (178)

In Eq. 177, hI is a parameter characterizing hardening-softening, and SI
� is

saturation value for plastic flow resistance in intermolecular structure which is

defined in Eq. 179:

S�I ¼ b φ� � φð Þ (179)

b in Eq. 179 is a temperature- and rate-dependent parameter which relates

saturation value of plastic flow resistance to an order function (φ� � φ). Resistance
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to plastic flow (SI) increases with disorder in the material and becomes constant (SI
�)

when order parameter (φ) reaches a critical value (φ�) which is also a temperature-

and rate-dependent variable. When intermolecular resistance reaches saturation

value, steady-state plastic flow occurs and plastic flow rate becomes equal to

applied strain rate. Evolution equation for order parameter is defined as

_φ ¼ g φ� � φð ÞνpI (180)

φo ¼ φ X, 0ð Þ (181)

g in Eq. 180 is a temperature-dependent parameter. Evolution equation for

plastic deformation gradient in Eqs. 172 and 173 completes definition of material

behavior in intermolecular structure. Strain hardening becomes insignificant as

temperatures approach θg and completely vanishes above θg (Chudnovsky

et al. 1973). Definition of a vanishing internal resistance right at θg causes also

discontinuity in yield behavior of polymer. Since annealing at high temperatures

well-above θg clears past thermomechanical history of materials by providing an

alternative stationary molecular configuration at a higher energy level, internal

resistance is bound to vanish above or around θg. Therefore, underlying problem

is essentially on the assumption that glass transition takes place at a single temper-

ature and internal resistance becomes zero abruptly at θg (Chudnovsky et al. 1973).
Similarly, variables (b, g, SI

�, φ�, hI) that characterize hardening-softening behavior
in post-yield region shall also provide a smooth transition from temperatures below

θg to temperatures above θg.
It should be noted that viscoplastic models currently available in literature are all

phenomenological and serve as a mathematical tool to fit experimentally observed

behavior into a curve. Measure of applicability of such formulations is the accuracy

of representing physical reality. These models can provide reasonably accurate

predictions for yield characteristics of amorphous polymers for only isothermal

cases. In the case of non-isothermal tests which include temperature change in

the material concurrently with loading, most material models in literature by

Anand (Boyce et al. 2000; Eringen 1967; Francisco et al. 1996) or Richeton

(Bauwens-Crowet et al. 1969; Mandel 1972) would predict unrealistic results.

A comparison of viscoplastic models for amorphous polymers from literature

and improved version of dual-mechanism model in this research is presented

in Fig. 3.

Temperature variations of characteristic viscoplastic shear strain rates in differ-

ent models are presented by normalizing with respect to characteristic viscoplastic

strain rate at reference glass transition temperature for PMMA (387 K). Material

properties were assumed to be the same and taken from Eringen (1967), while WLF

parameters in this research and Richeton’s work (Bauwens-Crowet et al. 1969)

were taken as their original values. Viscoplastic models presented in Eringen

(1967) and Bauwens-Crowet et al. (1969) and this research are applicable for

temperatures both above and below glass transition, while viscoplastic model in

Boyce et al. (2000) is only applicable for temperatures below glass transition and
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presented only for comparison. In Anand’s model (Eringen 1967), temperature

dependence is conveyed through temperature dependence of activation energy

term included in equivalent viscoplastic stretch rate equation. In Richeton’s

model (Bauwens-Crowet et al. 1969), a piecewise definition of viscoplastic stretch

rate is employed to describe temperature and rate dependence of yield strength. On

the other hand, in this research, temperature dependence of viscoplastic stretch rate

is directly employed utilizing physically motivated Williams-Landel-Ferry param-

eters in a completely new form expression as presented in Eq. 174. It is clear that

temperature-dependent activation energy approach in Anand’s model (Eringen

1967) predicts not a gradual change in behavior in intermolecular mechanism but

an abrupt increase in viscoplastic strain rate over a relatively short temperature

range. Therefore, according to this model, there is actually no rubbery region, but

material response is liquid-like as viscoplastic strain rate increases by six orders in a

narrow temperature interval (2 �C) around glass transition temperature. On the

other hand, in Richeton’s model (Bauwens-Crowet et al. 1969), there is also a

remarkable change in viscoplastic strain rate due to the piecewise definition with

respect to glass transition temperature, but it also causes discontinuous derivative of

viscoplastic rate at glass transition. Accordingly material response predicted by

Anand’s or Richeton’s viscoplastic model will present a significant (abrupt) change

in stress. Improved version of dual-mechanism model in this research predicts

definitely a more gradual transition in material response with respect to temperature

around glass transition. Though Anand’s model has a continuous definition of

activation energy in temperature domain, remarkable difference between activation
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Fig. 3 Comparison of different viscoplastic models in literature in terms of temperature depen-

dence of normalized characteristic viscoplastic shear strain rate νp=νp θ¼θgð Þ
� �
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energies in glassy and rubbery region still produces an abrupt change in response.

According to Fig. 3, Anand’s viscoplastic model is invariant of temperature above

glass transition temperature, while Richeton’s model provides relatively gentler

transition in response. As a result of this rapid change in viscoplastic response in

Anand’s model, it cannot predict material behavior accurately under non-isothermal

conditions. These models were further studied in terms of predictions for creep strain

rate in a creep test with a stress level of 0.6 MPa which is conducted at different

temperatures as depicted in Fig. 4.

Figure 4 definitely supports previous observations on different models. All

models yield same predictions for creep strain rate at temperatures below glass

transition. However, according to Anand’s model (Eringen 1967), influence of

glassy-to-rubbery transition on creep strain rate will take place over only “3C”

temperature range with a five-order increase in creep strain rate. This means that if a

sample is tested at 112C, creep strain rate will be predicted as 3.7� 10�3 s�1, while

for another sample tested at 115 �C, creep strain rate from Anand’s model (Eringen

1967) will be predicted as 1.3� 103 s�1. A 5-order increase in creep strain rate for a

3C difference in temperature is completely unrealistic. Moreover, according to

Anand’s model, creep strain rate is invariant of temperature right above glass

transition temperature which is completely inaccurate and contradicts experimental

studies in the literature (Chudnovsky et al. 1973; Mandel 1972). On the other hand,

Richeton model (Bauwens-Crowet et al. 1969) predicts a more gradual change in

creep strain rate over temperature, yet piecewise definition at glass transition

temperature is still problematic for transient thermal conditions. Variation of

creep strain rate with temperature predicted by Eq. 174 in this research provides a
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Fig. 4 Comparison of different viscoplastic models in literature in terms of creep strain rates at

different temperatures in response to an applied stress of 0.6 MPa
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smoother transition around glass transition and a more gradual change in creep

strain rate at temperatures above glass transition temperature.

For assurance of accurate and realistic modeling of material response around

glass transition, every aspect of material property definitions that describe

hardening-softening behavior and flow characteristics should be continuous in

temperature domain and should have continuous (at least) first derivatives with

respect to temperature. It is clear that Anand’s model and other available

viscoplastic models do not fulfill this crucial and fundamental necessity, while

temperature dependence of all material characteristics presented in this research

conforms to the abovementioned criteria.

Molecular Network Resistance (M)
Resistance in molecular network to deformation is based on molecular orientation

and relaxation process. If there is enough stretch in polymer chains, network resists

relaxation and resistance increases with increasing stretch. In literature, there is a

general consensus on modeling of plastic flow behavior in intermolecular structure

based on Eyring cooperative model, but there is still some debate on modeling of

molecular network structure. Arruda and Boyce (Palm et al. 2006) modeled molec-

ular network resistance with rubber elasticity model based on eight-chain network

of non-Gaussian chains similar to transient response of elastomers which represents

nonlinear rate-dependent deviation from equilibrium state (Basaran and Nie 2007).

However, network resistance described by 8-chain model is not accurate enough to

be a physically consistent model describing orientational hardening behavior in

amorphous polymers, since temperature dependence of rubbery modulus and num-

ber of rigid links between polymer chain segments which essentially control

response does not match with experimental observations. Therefore, molecular

network description based on 8-chain model (Basaran and Lin 2007; Bauwens-

Crowet et al. 1969; Gent 1996; Palm et al. 2006) becomes merely a numerical tool

to match experimentally observed stress-strain response. Instead, a simpler

two-constant constitutive relation for rubber networks developed by Gent (Povolo

and Élida 1995) was shown to describe strain hardening due to polymer chain

stretching better than statistical-mechanical entropic rubber elasticity models

(8-chain model) while resulting a similar stress-strain response (Boyce

et al. 2000; Eringen 1967). Gent free energy per unit volume in reference config-

uration (Povolo and Élida 1995) describes elastic energy stored in molecular

network structure in terms of first invariant of stretch in polymer chains as

ΨM Ce
M, θ

� � ¼ � 1

2
μMIMln 1� I1 � 3

Im

� 	
(182)

μM and IM in Eq. 182 are temperature-dependent rubbery shear modulus and limit

on extensibility of polymer chains, respectively. Since volume change in material is

considered in elastic deformation gradient associated with intermolecular structure, it

is essential to define Gent free energy in terms of distortional elastic deformation

gradient in network structure (FM
e )d (Eq. 183) which produces no change in volume
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(Eq. 184). I1 is first invariant (Eq. 186) of elastic distortional Cauchy tensor in

network structure, (CM
e )d (Eq. 185):

Fe
M

� �
d
¼ J

�1=3Fe
M (183)

det Fe
M

� �
d

� �
¼ 1 (184)

Ce
M

� �
d
¼ Fe

M

� �T
d
Fe
M

� �
d

(185)

I1 ¼ tr Ce
M

� �
d

h i
(186)

Second Piola-Kirchhoff stress (SM
e ) and Cauchy stress (TM) can be derived from

Gent free energy as follows:

SeM ¼ 2
@ΨM Ce

M, θ
� �
@Ce

M

(187)

TM ¼ J�1Fe
MS

e
MF

eT

M (188)

Using Gent free energy definition in Eq. 182 and stress definitions in Eqs. 187

and 188,

SeM ¼ J�
2=3μM 1� I1 � 3

IM

� 	�1

I� 1

3
tr Ce

M

� �
d

� �
Ce

M

� �
d

�1

� �
(189)

TM ¼ J�1μM 1� I1 � 3

IM

� 	�1

dev Be
M

� �
d

� �
(190)

Elastic distortional Almansi tensor (BM
e )d in Eq. 191 is defined in terms of

distortional elastic deformation gradient ((FM
e )d) as

Be
M

� �
d
¼ Fe

M

� �
d
Fe
M

� �T
d

(191)

Elastic Mandel stress (Eqs. 192 and 193) and equivalent shear stress (Eq. 194)

and equivalent plastic shear strain rate (Eq. 195) for molecular relaxation in

network structure can be found as

Me
M ¼ Ce

MS
e
M (192)

Me
M ¼ μM 1� I1 � 3

IM

� 	�1

dev Ce
M

� �
d

� �
(193)

τM ¼ 1ffiffiffi
2

p Me
M

�� �� (194)
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νpM ¼
ffiffiffi
2

p
D

p
M

�� �� (195)

Evolution of plastic deformation gradient in molecular network mechanism can

be rewritten from Eq. 31 as

_F
p

M ¼ D
p
MF

p
M (196)

F
p
M X, 0ð Þ ¼ I (197)

Molecular network is responsible for resistance to chain alignment which resists

relaxation as stretch in network increases (Basaran and Lin 2007; Gent 1996). A

similar observation for elastomers also found that plastic chain stretch is inversely

proportional to effective creep rate (Basaran and Nie 2007). In experimental and

numerical studies, it was observed that in post-yield region (at large deformations),

controlling mechanism is molecular network mechanism. Molecular network

mechanism had a dominant contribution to stress change in post-yield region,

while amount elastic recovery upon unloading is associated with plastic strain in

molecular network mechanism. Temperature dependence of molecular relaxation

in network structure is characterized with a classical Arrhenius term, and flow rule

is completed with a simple power law as follows:

νpM ¼ νoMexp �QM

kBθ

� 	
τM
SM

� 	nM

(198)

In Eq. 198, νM
o is pre-exponential factor, QM is activation energy for molecular

relaxation in network structure, nM is a strain-rate sensitivity parameter, and SM is a

stress measure describing resistance of network structure to relaxation which

increases with increasing plastic stretch rate as defined in Eq. 199 with initial

condition in Eq. 200:

_SM ¼ hM λpM � 1ð Þ S�M � SM
� �

νpM (199)

SoM ¼ SM X, 0ð Þ (200)

In Eq. 199, hM is a parameter characterizing molecular relaxation in material, SM
�

is temperature-rate-dependent saturation value for network resistance, and λM
p is

plastic stretch which is related to plastic Almansi tensor in network structure (BM
p )

as follows:

λM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tr B

p
Mð Þ

3

r
(201)

B
p
M ¼ F

p
MF

pT

M (202)
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Evolution equation for plastic deformation gradient in Eqs. 196 and 197 com-

pletes definition of material behavior in molecular network structure. According to

Eq. 199, network resistance will increase continuously as plastic stretch (λM
p ) in

polymer chains increases and reaches a constant value (SM
� ) which depends on

temperature and stretch rate. Plastic stretch-dependent evolution of resistance to

plastic flow also ensures correct prediction of elastic recovery in unloading path

(Eringen 1967). In Anand’s model (Boyce et al. 2000; Eringen 1967), net driving

stress for plastic flow in intermolecular mechanism includes an additional resis-

tance term accounting for dissipative resistance to plastic flow (Sb or S2) taking
place at large deformations. According to Anand’s model, this dissipative resis-

tance evolves with plastic stretch in intermolecular mechanism (Boyce et al. 2000)

or total stretch in intermolecular mechanism (Eringen 1967). In this research,

dissipative resistance (SM) at large deformations in molecular network mechanism

evolves with plastic stretch in molecular network branch which actually controls

material response at large deformations (post-yield region). Anand et al. (Eringen

1967) attribute necessity of introducing a third mechanism for true prediction of

elastic recovery during unloading and cooling of a preheated sample. It was argued

that a second mechanism for molecular network structure was introduced due to a

necessity driven by an experimentally observed complex response, yet source of

this observation was neither referred from any other work nor included in their

work. However, experimental framework in this research involves non-isothermal

condition mentioned in Anand’s work. It is clear that Anand’s models (Boyce

et al. 2000; Eringen 1967) do not properly employ a locking mechanism that will

truly predict elastic recovery and necessitate an additional mechanism. In Anand’s

recent model (Eringen 1967), resistance to plastic flow associated with first molecular

network mechanism (activated at low temperatures) assumed to be constant, and

resistance to plastic flow associated with second molecular network mechanism

(activated at high temperatures) evolves with increasing plastic stretch in

intermolecular structure. It is their argument that this new additional mechanism

depending on plastic stretch controls elastic recovery. In improved version of dual-

mechanism viscoplastic model, molecular network mechanism dominates large defor-

mation behavior (post-yield region) and stress level, while resistance to plastic flow in

this regime is controlled by plastic stretch in molecular network. As plastic stretch in

molecular network at large deformations is retained upon unloading, there was no

problem observed in elastic recovery as mentioned. Therefore, elastic recovery can be

truly predicted without artificially introducing an additional third mechanism.

Finally, from relation in Eq. 80 and specific Helmholtz free energy definitions in

Eqs. 157, 164, and 182, governing equation for temperature can derived as

ρc _θ ¼ ∇x k∇x θð Þð Þ þ r þ J�1 τI þ 1

2
γB ln Að Þj j2

� 	
νpI þ τMν

p
M

� 	

þ J�1θ
1

2

@SeI
@θ

: _C
e

I þ
1

2

@SeM
@θ

: _C
e

M þ 1

2

@ MbackA
�1

� �
@θ

: _A

 ! (203)
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The first two terms in Eq. 203 are heat conduction representing heat transfer

within material during transient state and heat source due to passive heating

(external heating) or active heating (internally generated heat). The last two terms

in Eq. 203 represent heat induced due to intrinsic dissipation and thermoelastic

effect representing conversion between mechanical and thermal energy in elastic

range. In the case of coupled thermomechanical loading, temperature increase due

to mechanical work and temperature change due to heat transfer between material

and surroundings are mixed together. Based on descriptions of stress components

and strain rate measures, irreversible entropy production due to mechanical dissi-

pation per unit volume in deformed configuration can be rewritten from Eq. 149 as

γmech ¼
J�1

θ

dev Me
I

� �� 2dev
@ΨD A, θð Þ

@A
A

� 	� 	
: Dp

I

þγ
@ΨD A,θð Þ

@A
A

� 	
: ln Að ÞνpI þ dev Me

M

� �
: Dp

M

2
664

3
775 > 0 (204)

γmech ¼
J�1

θ
τI þ 1

2
γB ln Að Þj j2

� 	
νpI þ τMν

p
M

� �
> 0 (205)

Due to associated plastic flow assumption described in Eqs. 206 and 207,

irreversible mechanical entropy production (γmech) is always positive:

N
p
I ¼

D
p
I

D
p
I

�� �� ¼ Meff

Meff

�� �� (206)

N
p
M ¼ D

p
M

D
p
M

�� �� ¼ Me
M

Me
M

�� �� (207)

Damage Evolution

Damage characterization of non-isothermal stretching of PMMA necessitates alter-

native methods due to complex form of testing. Traditional experimental damage

quantification methods such as elastic modulus degradation cannot be directly used

for prediction of damage evolution under transient thermal conditions. Damage

evolution during non-isothermal stretching of amorphous polymers is modeled with

isotropic damage evolution function which was originally proposed by Ye

et al. (2003) (Richeton et al. 2005a, b, 2006, 2007; Srivastava et al. 2010).

From thermodynamics point of view, degradation of a material is the result of

irreversible thermodynamic processes that create disorder in matter. Since entropy

is a thermodynamic indicator of disorder, it is a natural measure of material

degradation. In local form of entropy change at a material point, entropy production

is associated with irreversibility of a process (Eq. 84) and entropy flow describes

reversible component of the process (Eq. 136). Entropy production can be further
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decomposed into thermal dissipation (Eq. 137) due to heat exchange between

system and surroundings and mechanical dissipation (Eq. 205) as a result of

permanent changes in material structure. Critical entropy production (ηcr) is a

characteristic value for a material which is independent of loading conditions and

geometry of specimen and only depends on mode of failure. Link between irre-

versible material degradation (damage) and amount of heat generated due to some

nonconservative forces (plastic dissipation and friction forces) or entropy produc-

tion due to mechanical dissipation was observed in several studies. Heat conduction

within a metal will be very fast leading to negligible thermal gradients and thermal

dissipation due to high thermal diffusivity of metals. In the case of materials with

low thermal diffusivity such as polymers, heat transfer may take place over a

prolonged period of time with significant thermal gradients. However, thermal

gradients cannot be responsible for failure of chemical bonds since material deg-

radation or damage is a consequence of formation of small voids or cracks at

microscale by breakage of chemical bonds between molecules. Thermal dissipation

may result in deterioration of material properties (e.g., thermal fatigue) which is

insignificant compared to degradation by mechanical dissipation. Damage induced

by temperature reversals will take much longer time to produce an equivalent

damage effect created by mechanical work in a finite period of time.

According to Boltzmann (Sweeney et al. 1997), entropy of a micro-system (S)
can be related to probability of existence of the system at a microstate with respect

to all other possible microstates (Ω) as

S ¼ kB ln Ωð Þ (208)

where kB is Boltzmann’s constant. Let that probability of a material being in a

completely ordered ground state be equal to Ωo. In an alternative configuration,

material deviates from this perfectly ordered reference state under action of some

external effects (mechanical, thermal, chemical, environmental, or a combination

of these effects) to another disordered state with a probability of Ω. These changes
in material with respect to reference (ground) state can be recoverable, and material

may return to its original state with removal of external effects for a (hypothetical)

reversible process. In the case of an irreversible process, external effects will create

permanent changes in structure of material described as a positive entropy produc-

tion or an overall net increase in entropy of material. In terms of statistical

interpretation of entropy, such irreversible changes are described as an increase in

probability of the microstate in new configuration which also indicates tendency of

a system to attain a less ordered state (Sweeney et al. 1997). Since a disordered state

is formed from an ordered state through introduction of damage (change) in system,

damage (the measure of changes) and entropy (the measure of disorder) are

naturally related. In final stage, material reaches a critical state such that disorder

in the system is maximized (Ωmax) and material integrity no longer preserved (D¼ 1).

At this stage, entropy will also reach a critical level (ηcr) which is a characteristic

of material (Truesdell 2004). Since material in ground (reference) state is free

of any possible defects, imperfections, i.e., damage, it can be assumed that damage
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in material is equal to zero (D ¼ 0). Kachanov similarly relates continuity of a

material as an alternative definition to damage (Wallin and Ristinmaa 2005). In this

case, continuity in material (ζ) at ground state is considered to be equal to “1,”

while continuity function (ζ) in a completely damaged material approaches to “0”

since material integrity (continuity) is vanished when failure takes place in the

material. Therefore, relation between continuity function and damage function can

be established as

D ¼ 1� ξ (209)

In order to relate entropy and damage, consider a system in ground state

(D ¼ 0) with a total entropy of So and an associated probability of Ωo. In an

alternative disordered (damaged) state, S is total entropy of the same system

(matter) with an associated probability of Ω and a damage level of D.
At failure, entropy reaches a critical level (Scr) and damage approaches

to 1, while probability of this particular state will be maximum (Ωmax) with

respect to all other possible states. It is possible to develop a relation between

entropy and damage in terms of probabilities of damaged state and ground state as

defined in Eq. 210:

D ¼ f Ω,Ωoð Þ (210)

Furthermore, it is assumed that damage can be related to the difference of

damaged state probability from ground state probability (Eq. 211):

D ¼ f Ω� Ωoð Þ (211)

Equation 211 interprets damage associated with different states in terms of

deviation from reference state which is also the principal approach in all damage

mechanic models and experimental damage measures. In Eq. 211, however, prob-

abilities of states are taken as basis for comparison. Damage evolution does not only

depend on deviation from original state, but it also depends on damage in current

state. Therefore, Eq. 211 is revised as

D ¼ f
Ω� Ωo

Ω

� 	
(212)

Finally, damage at any possibility is defined in terms of probabilities of damaged

state and ground state as

D ¼ Dcr

Ω�Ωo

Ω

� 	
(213)

whereDcr is critical damage parameter which essentially controls damage evolution

in system. Damage evolution depends on several factors such as frequency of
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external disturbances, temperature of system, and other possible factors that

directly influence state of the system. Therefore, damage evolution under different

irreversible process paths will not be identical. Using Eq. 208, Eq. 213 can be

rewritten as

D ¼ Dcr

exp S=kB
� �� exp So=kB

� �
exp S=kB
� �

 !
(214)

which can be simplified as

D ¼ Dcr 1� exp
So � S

kB

� 	� �
(215)

It is clear from Eq. 215 that when material is ground state (S ¼ So), damage is

equal to zero (D ¼ 0). For the case when entropy in system reaches a critical

entropy level (Scr) at failure (D ¼ 1), critical damage parameter (Dcr) can be

formulated as shown in Eq. 216. Since critical damage parameter (Dcr) depends

on critical entropy level (Scr), it is also a characteristic of material and should be

estimated for different types of materials separately:

Dcr ¼ 1� exp
So � Scr

kB

� 	� ��1

(216)

Damage evolution function in Eq. 217 is a refinement of Eq. 215 for a single

material point for which specific entropy production definition is used instead of

total entropy definition in whole volume of system. In derivation of damage

evolution function in Eq. 215, source of entropy was assumed to be both entropy

flow into system and entropy generation in the system. Equation 217 describes the

damage evolution in a solid material in terms of only irreversible processes which

create permanent changes in material:

D ¼ Dcr 1� exp �ms

R
η

� �h i
(217)

where η is internal entropy production due to mechanical and thermal dissipation

(Eqs. 137 and/or 205),ms is specific mass, R is gas constant, and Dcr is temperature-

dependent critical damage parameter. During any irreversible process inducing

degradation in microstructure, internal entropy production increases according to

second law of thermodynamics. Total entropy production due to mechanical and

thermal dissipation can be calculated at any time step using Eqs. 218–222:

ηmech ¼ ηmechjt¼to
þ
ðt
to

γmechdt (218)
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ηmech ¼ ηmechjt¼to
þ
ðt
to

J�1

θ
τI þ 1

2
γB ln Að Þj j2

� 	
νpI þ τMν

p
M

� �� �
dt (219)

ηther ¼ ηtherjt¼to
þ
ðt
to

γtherdt (220)

ηther ¼ ηtherjt¼to
þ
ðt
to

� 1

θ2
div Jq
� �

•∇x θð Þ þ ρr

θ

� �
dt (221)

ηmechjt¼to
¼ ηtherjt¼to

¼ 0 (222)

Since a virgin material is at ground (undamaged) state (t ¼ to), both mechanical

and thermal entropy production can be taken as zero (Eq. 222). It is proposed that at

failure internal entropy production reaches a critical value (ηcr) which depends on

only temperature. Unlike metals, temperature dependence of critical entropy pro-

duction is essential for the case of stretching of polymers due to change in failure

mode of amorphous polymers. Amorphous polymers display a brittle failure at low

temperatures (θ << θg) without any significant plastic dissipation, while at high

temperatures (θ> θg) ductile failure occurs after significant amount of plastic work.

Critical damage parameter (Dcr) is defined in such a way that at constant temper-

atures as η ! ηcr(θ), D ! 1. Nonnegative entropy production assures that D � 0,

while for an undamaged material (η ¼ 0), damage is equal to zero (D ¼ 0):

Dcr θð Þ ¼ 1� exp �ms

R
ηcr θð Þ

� �h i�1

(223)

According to incremental form of damage evolution in Eq. 224, damage will

increase at a much faster rate at low temperatures (sudden brittle failure), while

increase in damage will be relatively smaller at high temperatures (prolonged ductile

failure). The power of damage evolution function (Eq. 217) lies in definition of

critical damage parameter which exponentially decreases with increasing tempera-

ture. Damage evolution merely depends on evolution of a state function (entropy)

which incorporates all aspects of material response to thermomechanical loading, and

it can represent damage accumulation prior to different types of failure:

ΔD ¼ Dcr

ms

R
exp �ms

R
ηmech

� �
Δη (224)

Material Property Definitions

Material property definitions are keystones for complete and accurate material

constitutive models. A proper definition for material property over a large

temperature range should be continuous and smooth over transition region
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(Bauwens-Crowet et al. 1969) and should include rate dependency of the property.

It is important to note that selection of material property formulation is completely

based on researchers’ decision and can be substituted by other forms. Expressions for

material properties presented herein are indeed mathematical tools to describe

influence of temperature and rate on material behavior in a continuous form.

Formulations for these material properties representing temperature dependence are

completely in a form that provides continuity in temperature domain and has contin-

uous first derivative with respect to temperature. A significant part of material

properties can be obtained by conducting isothermal tests at different temperatures

(both above and below glass transition temperature) and at different rates such as

{E, ν, Im, νI
o, QI, nI, Bg, XB, V, αp, γ}. Though the number of parameters is quite large,

actual number of material properties is quite small. There is no direct way of

observing some material parameters such as {hI, b, g, νM
o , QM, hM, nM, μM, ϕ�, SM

� },
yet these properties/parameters can be easily obtained by trial-error method in a

simple version of numerical algorithm of material model developed in MATLAB®.

According to free-volume theory of William et al. (1955), plastic flow rule can

be constructed for equivalent plastic shear strain rate at temperatures above θg using
Williams-Landel-Ferry (WLF) equations. Similarly, rate dependence of glass tran-

sition temperature can be considered in terms of temperature-time equivalence of

glass transition (Eq. 225):

θg ¼ θrefg þ cg2log
ν=νrefð Þ

cg1 � log ν=νrefð Þ ν > νref

θrefg ν 	 νref

8<
: (225)

c1
g and c2

g in Eq. 225 are WLF parameters associated with θg, ν
ref is reference

stretch rate, and ν is equivalent stretch rate which is defined in Eq. 226:

ν ¼
ffiffiffi
2

p
Dj j (226)

Temperature and rate dependence of elastic modulus (E) is considered as

E ¼
1

2
Eg þ Er

� �� 1

2
Eg � Er

� �
tanh

θ� θg þ θE
� �
ΔE

� 	
þXE θ� θg þ θE

� �
 �
2
4

3
5 1þ sE log

ν

νref

� �h i

(227)

XE ¼ XE
g θ 	 θg þ θE

XE
r θ > θg þ θE

�
(228)

In Eq. 227, Eg and Er are ground glassy and rubbery elastic modulus

corresponding to temperatures confining glass-rubber transition region. XE
g and XE

r

in Eq. 228 represent rate of change of elastic modulus with respect to temperature in

glassy and rubbery domains, respectively. sE is rate sensitivity of elastic modulus,

while θE and ΔE define origin temperature and width of glass-rubber transition,

respectively. Experimental studies on temperature and rate dependence of storage
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modulus and elastic modulus of PMMA indicate that PMMA is highly sensitive to

rate and temperature. Modulus of PMMA continuously decreases with increasing

temperature with a remarkable drop around θg over a 10–20 �C temperature domain

depending on frequency of loading (Ye et al. 2003). Poisson’s ration νð Þ is assumed

to be only temperature dependent as defined in Eq. 229:

ν ¼ 1

2
νg þ νr
� �� 1

2
νg � νr
� �

tanh
θ � θg þ θE

� �
ΔE

� 	
(229)

νg and νr in Eq. 229 are ground glassy and rubbery Poisson’s ratio, respectively.

Shear modulus (G) and bulk modulus (K ) are defined in Eqs. 230 and 231:

G ¼ E

2 1þ νð Þ (230)

K ¼ E

3 1� 2νð Þ (231)

Temperature and rate dependence of rubbery modulus (μM) is modeled similar to

elastic modulus (Eq. 233):

μM ¼
1

2
μgM þ μrM
� �� 1

2
μgM � μrM
� �

tanh
θ � θg þ θμ

� �
Δμ

� 	
þXμ θ � θg þ θμ

� �
 �
2
4

3
5 1þ sμlog

ν

νref

� �h i

(232)

Xμ ¼ Xg
μ θ 	 θg þ θμ

Xr
μ θ > θg þ θμ

�
(233)

Definitions of rubbery shear modulus parameters in Eq. 233 are identical to those

for elastic modulus. Temperature dependence of critical value of order parameter

(φ�), limit of polymer chain extensibility (IM), and saturation value of plastic flow

resistance of molecular network (SM
� ) are defined in Eqs. 234–239:

φ� ¼ 1

2
φ�
gþφ�

r

� �
�1

2
φ�
g�φ�

r

� �
tanh

θ� θgþ θφ
� �
Δφ

� 	
þXφ θ� θgþ θφ

� �
 �
(234)

Xφ ¼ Xg
φ θ 	 θg þ θφ

Xr
φ θ > θg þ θφ

�
(235)

IM ¼ 1

2
IgMþ IrM
� ��1

2
IgM� IrM
� �

tanh
θ� θgþθM
� �
ΔM

� 	
þXM θ� θgþθM

� �
 �
(236)

XM ¼ X
g
M θ 	 θg þ θμ

Xr
M θ > θg þ θμ

�
(237)
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S�M ¼ 1

2
SgMþSrM
� �� 1

2
SgM�SrM
� �

tanh
θ� θgþ θS

� �
ΔS

� 	
þXS θ� θgþ θS

� �
 �
(238)

XS ¼ X
g
S θ 	 θg þ θS

Xr
S θ > θg þ θS

�
(239)

Definitions of parameters in Eqs. 234–239 are identical to those for elastic

modulus. Saturation value for network resistance (SM
� ) and critical value of disorder

parameter (φ�) were assumed to decrease with increasing temperature, while limited

chain extensibility (IM) increases with increasing temperature based on observations

in experiments. Similar to models of Richeton (Bauwens-Crowet et al. 1969) and

Anand (Boyce et al. 2000), back stress is assumed to vanish above θg, but decrease in
back stress modulus (B) with increasing temperature is finalized with asymptotical

approach to zero at temperature around θg, as defined in Eqs. 240–241:

B ¼ Bg 1� tanh
θ � θg
ΔB

� 	� 	
þ XB θg � θ

� �
(240)

XB ¼ X
g
B θ 	 θg
0 θ > θg

�
(241)

Parameters b and g characterizing hardening-softening behavior in

intermolecular structure are defined in Eqs. 242–244, respectively:

g ¼ 1

2
gg þ gr

� �
� 1

2
gg � gr

� �
tanh

θ� θg þ θg
� �
Δg

� 	
þ Xg θ� θg þ θg

� �
 �
(242)

Xg ¼ Xg
g θ 	 θg þ θg

0 θ > θg þ θg

�
(243)

b ¼ b1exp b2θð Þ νpI
νpref

 !b3

(244)

Other parameters involved inmaterialmodel {νI
o,QI,V,αp, nI, hI, γ, νM

o ,QM, hM, nM}
are assumed to be constant.

Conclusions

An improved version of dual-mechanism viscoplastic material model is presented

to predict thermomechanical behavior of PMMA under non-isothermal conditions.

In order to resolve problems associated with material response predictions around

glass transition temperature in non-isothermal conditions similar to actual polymer

processing operations which includes a temperature drop from temperatures

above to temperatures below inducing a transition from rubbery state to solid
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state, evolution of state variables and flow rules that control viscoplastic character-

istics in the model and material property definitions is carefully formulated to

ensure smooth transition in response around.

In order to successfully simulate material response under isothermal and

non-isothermal conditions, material parameters for the model were determined from

isothermal tests on PMMA. Since PMMA response is highly sensitive to time

and temperature, tests at different loading rates and different temperatures were

conducted. In numerical simulations of isothermal and non-isothermal stretching of

PMMA, dual-mechanism viscoplastic model is implemented in ABAQUS® through

user-defined material subroutine. Simulation and experimental results are reasonably

in good agreement for both isothermal and non-isothermal cases, and simulations can

correctly predict rate and temperature dependence of material response. The accuracy

of numerical simulation of non-isothermal simulations depends on the description of

heat transfer model which requires extensive preliminary studies.

Non-isothermal simulation results corresponding to forming step were espe-

cially accurate describing all possible salient features of PMMA under all test

conditions (non-isothermal H series, near-isothermal M series, and isothermal L

series). Unified formulation of plastic flow rule for intermolecular structure and

appropriate material property definitions ensure smooth transition of response

around which is bound to take place at some stage of all non-isothermal simula-

tions. Simulation results are reasonably good in predicting some important features

observed in dwell step such as molecular relaxation and increase in axial force with

thermal shrinkage at fixed deformation. Softening/hardening behavior of PMMA

was also predicted accurately to certain extent in most of the cases.

Since material state continuously changes with temperature during

non-isothermal cases, experimental measures cannot be used for continuous mon-

itoring of damage evolution. Entropy based damage model that is used for damage

quantification in polymer processing technique was used to predict the material

degradation and failure in polymer processing operations. Thermal part of irrevers-

ible entropy production is shown to be unrelated to mechanical damage, while

damage evolution based on irreversible mechanical entropy production was able to

predict the failure in non-isothermal tests for low forming temperatures. It is shown

that in damage induced by polymer processing operations, a sample increases with

decreasing forming rate and forming temperature.
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shown that when entropy production rate is used as a damage metric, damage

due to numerous related and unrelated external and internal sources can be

combined into a single universal damage term, which is not possible with any

phenomenological damage evolution model.

Introduction

The science of thermodynamics, which began by treating the relations among heat,

work, and the intrinsic properties of the systems in equilibrium, has developed into

a very general science of energetics for all types of systems: mechanical, chemical,

and electrical, whether in equilibrium or not (De Groot and Mazur 1962; Yourgrau

et al. 1966; Haase 1969; Germain et al. 1983; Ericksen 1998). Irreversible thermo-

dynamics provides a general framework for the macroscopic description of irre-

versible processes. In irreversible thermodynamics, the so-called balance equation

for the entropy plays a central role. This equation expresses the fact that the entropy

of a volume element changes with time for two reasons. First, it changes because

entropy flows into the controlled volume, and second, it changes because there is an

entropy source due to irreversible phenomena inside the volume element. The

entropy source is always a nonnegative quantity, since entropy can only be created,

never destroyed. For reversible transformations the entropy source vanishes.

Entropy is a measure of how much energy is unavailable for work.

The entropy of the universe increases or remains constant in all natural pro-

cesses. It is possible to find a system for which entropy decreases but only due to a

net increase in a related system. For example, the originally hot objects and cooler

objects reaching thermal equilibrium in an isolated system may be separated and

some of them put in a refrigerator. The objects would again have different temper-

atures after a period of time, but now the system of the refrigerator would have to be

included in the analysis of the complete system. No net decrease in entropy of all

the related system occurs. This is yet another way of stating the second law of

thermodynamics (DeHoff 1993).

The concept of entropy has far-reaching implications that tie the order of our

universe to probability and statistics. Imagine a new deck of cards in order by suits,

with each unit in numerical order. As the deck is shuffled, no one would expect the

original order to return. There is a probability that the randomized order of the

shuffled deck would return to the original format, but it is exceedingly small. An ice

cube melts, and the molecules in the liquid form have less order than in the frozen

form. An infinitesimally small probability exists that all of the slower moving

molecules will aggregate in one space so that the ice cube will reform in the exactly

same lattice formation. The entropy, or disorder, of the universe increases as hot

bodies cool and cold bodies warm. Eventually, the entire universe will be at the

same temperature so the energy will be no longer usable (DeHoff 1993).

To relate the entropy source explicitly to the various irreversible processes that

occur in a system, one needs the macroscopic conservation laws of mass, momentum,

and energy in local, i.e., differential form. These conservation laws contain a number
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of quantities such as the diffusion flows, the heat flow, and the stress tensor, which are

related to the transport of mass, energy, and momentum. The entropy source may then

be calculated by using the thermodynamic Gibbs relation, which connects the rate of

the change in entropy in the medium to the rate of the change in energy and work. “It

turns out that the entropy source has a very simple appearance: it is a sum of terms

each being a product of a flux characterizing an irreversible process, and a quantity

called thermodynamic force which is related to the non-uniformity of the

system”(Groot and Mazur 1962). The entropy source strength can thus serve as a

basis for the systematic description of the irreversible processes occurring in a system.

“As yet the set of conservation laws, together with the entropy balance equation

and the equations of state are to a certain extent empty, since this set of equations

contain the irreversible fluxes as unknown parameters and can therefore not be solved

with the given initial and boundary conditions for the state of the system.” At this

point we must therefore supplement the equations by an additional set of relation-

ships, which relate the irreversible fluxes and the thermodynamic forces appearing in

the entropy source strength. Irreversible thermodynamics, in its present form, is

mainly restricted to the study of the linear relationship between the fluxes and the

thermodynamic forces as well as possible cross-effects between various phenomena.

This is not a very serious restriction however, since even rather extreme physical

situations are still described by linear laws” (Groot and Mazur 1962).

Conservation Laws

Thermodynamics is based on two fundamental laws: the first law of thermodynam-

ics (law of conservation of energy) and the second law of thermodynamics (entropy

law). A systematic macroscopic scheme for the description of irreversible processes

must also be built upon these two laws. However, it is necessary to formulate these

laws in a suitable way. Since we wish to develop a theory applicable to systems of

which the properties are continuous functions of space coordinates and time, we

shall give a local formulation of the law of conservation of energy. As the local

momentum and mass densities may change in time, we will also need local

formulations of the laws of conservation of momentum and mass. For general

purposes in solid mechanics, the thermodynamic system will usually be chosen as

a given collection of continuous matter.

Conservation of Mass

Consider an arbitrary volume V fixed in space, bounded by surface Ω. The rate of
change of the mass within the volume V is (Malvern 1969)

d

dt

ðV
ρdV ¼

ðV
@ρ

@t
dV (1)
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where ρ is the density (mass per unit volume). If no mass is created or destroyed

inside V, this quantity must be equal to the rate of the material flow into the volume

V through its surface Ω (Malvern 1969):

ðV
@ρ

@t
dV ¼ �

ðΩ
ρυ � dΩ (2)

where υ is the velocity and dΩ is a vector with magnitude dΩ normal to the surface

and counted positive from the inside to the outside. The quantities ρ and υ are all

functions of time and of space coordinates. Applying Gauss’s theorem to the

surface integral in Eq. 2, we obtain

@ρ

@t
¼ �divρυ (3)

Equation 3 is valid for an arbitrary volume V, which expresses the fact that the
total mass is conserved, i.e., that the total mass in any volume element of

the system can only change if matter flows into (or out of) the volume element.

This equation has the form of a so-called balanced equation: the local change of

the density is equal to the negative divergence of the flow of mass. The continuity

equation in the vector form of Eq. 3 is independent of any choice of coordinate

system.

The conservation of mass equation can also be written in an alternative form by

introducing the substantial time derivative (Groot and Mazur 1962):

d

dt
¼ @

@t
þ υ � grad (4)

With the help of Eqs. 4 and 3, it becomes (Groot and Mazur 1962)

dρ

dt
¼ �ρdivυ (5)

With the specific volume v ¼ ρ�1, the formula (5) may also be written as (Groot

and Mazur 1962)

ρ
dv

dt
¼ divυ (6)

Finally the following relation is valid for an arbitrary local property a that may

be a scalar or a component of a vector or tensor (Groot and Mazur 1962):

ρ
da

dt
¼ @aρ

@t
þ divaρυ (7)

which is a consequence of Eqs. 3 and 4. We can verify Eq. 7 directly. According to

Eq. 4, the left-hand side of Eq. 7 is
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ρ
da

dt
¼ ρ

@a

@t
þ ρυ � grad a

According to Eq. 3, the right side of Eq. 7 is

@aρ

@t
þ divaρυ ¼ a

@ρ

@t
þ ρ

@a

@t
þ adivρυþ ρυ � grad a

¼ a �divρυð Þ þ ρ
@a

@t
þ adivρυþ ρυ � grad a

¼ ρ
@a

@t
þ ρυ � grad a

So Eq. 7 is true.

Momentum Principle

The momentum principle for a collection of particles states that the time rate of the

change in the total momentum for a given set of particles equals to the vector sum of

all the external forces acting on the particles of the set, provided Newton’s third law

of action and reaction governs the initial forces (Malvern 1969). Consider a given

mass of the medium, instantaneously occupying a volume V bounded by surface Ω
and acted upon by external surface t and body force b. Then the momentum

principle can be expressed as (Malvern 1969)

ðΩ
tdΩþ

ðV
ρbdV ¼ d

dt

ðV
ρυdV (8)

or in rectangular coordinates

ðΩ
tidΩþ

ðV
ρbidV ¼ d

dt

ðV
ρυidV (9)

Substituting ti ¼ σjinj and transforming the surface integral by using the diver-

gence theorem, we obtain (Malvern 1969)

ðV
@σji
@xj

þ ρbi � ρ
dυi
dt

� �
dV ¼ 0 (10)

for an arbitrary volume V. Whence at each point we have (Malvern 1969)

ρ
dυi
dt

¼ @σji
@xj

þ ρbi (11)
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where nj is the component of the normal unit vector n, υi(i ¼ 1, 2, 3) is a

Cartesian component of υ, and xj( j ¼ 1, 2, 3) is the Cartesian coordinates. The

quantities σji(i, j ¼ 1, 2, 3) and bi(i ¼ 1, 2, 3) are the Cartesian components of

the stress tensor σ and body force b, respectively. For a nonpolar case the stress

tensor σ is symmetric, namely,

σij ¼ σji i, j ¼ 1, 2, 3ð Þ (12)

In tensor notation Eq. 11 is written as (Groot and Mazur 1962)

ρ
dυ
dt

¼ Divσþ ρb (13)

From a microscopic point of view, the stress tensor σ results from the short-range

interactions between the particles of the system, whereas b contains the external

forces as well as a possible contribution from long-range interactions in the system.

Using relation (7), the equation of motion (13) can also be written as

@ρυ
@t

¼ �Div ρυυ� σð Þ þ ρb (14)

where υυ¼ υ� υ is an ordered (dyadic) product. This equation also has the form of

a balance equation for the momentum density ρυ. In fact one can interpret the

quantity (ρυυ � σ) as a momentum flow with a convective part ρυυ and the

quantity ρb as a source of momentum.

It is also possible to derive from Eq. 11 a balance equation for the kinetic energy

of the center of gravity motion by multiplying both members with the component υi
of υ and summing over i

ρ
d
1

2
υ2

dt
¼
X3
i, j¼1

@

@xj

�
σjiυi

�� X3
i, j¼1

σji
@

@xj
υi þ ρbiυi i ¼ 1, 2, 3ð Þ (15)

or in tensor notation

ρ
d
1

2
υ2

dt
¼ div σ � υð Þ � σ : Lþ ρb � υ (16)

where L¼Grad υ is the spatial gradient of the velocity. L can be written as the sum

of a symmetric tensor D called the rate of deformation tensor or the stretch tensor

and a skew symmetric tensor W called the spin tensor or the vorticity tensor as

follows (Malvern 1969):

L ¼ DþW (17)

where D ¼ 1
2
Lþ LT
� �

, W ¼ 1
2
L� LT
� �

.
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Since W is skew symmetric, while σ is symmetric, it follows that

σ : Grad υ ¼ σijLij ¼ σijDij ¼ σ : D (18)

We can also establish the relationship between the strain rate d«/dt and the rate

of the deformation tensor D (Malvern 1969):

d«

dt
¼ FT � D � F (19)

where F is the deformation gradient referred to the undeformed configuration.

When the displacement gradient components are small compared to unity, Eq. 19

is reduced to (Malvern 1969)

d«

dt
� D (20)

With the help of Eq. 7, Eq. 16 becomes

@
1

2
ρυ2

@t
¼ �div

1

2
ρυ2 � υ� σ � υ

� �
� σ : Dþ ρb � υ (21)

For the conservative body forces which can be derived from a potential ψ
independent of time (Groot and Mazur 1962),

b ¼ �grad ψ ,
@ψ

@t
¼ 0 (22)

We can now establish an equation for the rate of change of the potential energy

density ρψ . In fact it follows from Eqs. 3 and 22 that

@ρψ

@t
¼ ψ

@ρ

@t
þ ρ

@ψ

@t
¼ ψ �divρυð Þ

¼ �divρψυþ ρυ � grad ψ ¼ �divρψυ� ρb � υ
(23)

Adding Eqs. 22 and 23 for the rate of change of the kinetic energy 1
2
ρυ2 and the

potential energy ρψ ,

@ρ
1

2
υ2 þ ψ

� �
@t

¼ �div ρ
1

2
υ2 þ ψ

� �
υ� σ � υ

� �
� σ : D (24)

This equation shows that the sum of kinetic and potential energy is not con-

served, since a sink term appears at the right-hand side.
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Conservation of Energy

The first law of thermodynamics relates the work done on the system and the heat

transfer into the system to the change in energy of the system. Suppose that the only

energy transferred to the system is by mechanical work done on the system by

surface tractions and body forces, by heat exchange through the boundary, and by

the heat generated within the system by external agencies (inductive heating).

According to the principle of conservation of energy, the total energy content

within an arbitrary volume V in the system can only change if energy flows into

(out of) the volume considered through its boundary Ω, which can be expressed as

(Malvern 1969)

d

dt

ðV
ρedV ¼

ðV
@ρe

@t
dV ¼�

ðS
Je � dΩþ

ðV
ρrdV (25)

where e is the energy per unit mass, Je is the energy flux per unit surface and unit time,

and r is the strength of the distributed internal heat source per unit mass. We shall

refer to e as the total specific energy, because it includes all forms of energy in the

system. Similarly we shall call Je the total energy flux. With the help of Gauss’s

theorem, we obtain the differential or local form of the law of conservation of energy:

@ρe

@t
¼ �divJe þ ρr (26)

In order to relate this equation to the previously obtained Eq. 24 for the kinetic

and potential energy, we must specify what are the various contributions to the

energy e and the flux Je. The total specific energy e includes the specific kinetic

energy 1
2
υ2, the specific potential energy ψ , and the specific internal energy u (Groot

and Mazur 1962):

e ¼ 1

2
υ2 þ ψ þ u (27)

From a macroscopic point of view, this relation can be considered as the

definition of internal energy, u. From a microscopic point of view, u represents

the energy of thermal agitation as well as the energy due to the short-range

molecular interactions.

Similarly, the total energy flux includes a convective term ρeυ, an energy flux

σ � υ due to the mechanical work performed on the system, and finally a heat flux Jq
(Groot and Mazur 1962):

Je ¼ ρeυ� σ � υþ Jq (28)

This equation may be also considered as defining the heat flux Jq. Then the heat

flowing rate per unit mass is
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ρ
dq

dt
¼ �divJq (29)

where q is the heat flowing into the system per unit mass. If we subtract Eq. 24 from

Eq. 26, we obtain, using also Eqs. 27 and 28, the balance equation for the internal

energy u:

@ρu

@t
¼ �div ρuυþ Jq

� 	þ σ : Dþ ρr (30)

It is apparent from Eq. 30 that the internal energy u is not conserved. In fact a

source term appears which is equal but of opposite sign to the source term of the

balance Eq. 24 for kinetic and potential energy.

With the help of Eqs. 7 and 30, it may be written in an alternative form:

ρ
du

dt
¼ �divJq þ σ : Dþ ρr (31)

The total stress tensor σ can be split into a scalar hydrostatic pressure part p and a
deviatoric stress tensor σ0 (Malvern 1969):

σ ¼ �pIþ σ0 (32)

where I is the unit matrix with element δij(δij¼ 1, if i¼ j; δij¼ 0, if i 6¼ j),p ¼ � 1
3
σkk.

With the help of Eqs. 32 and 31, it becomes

ρ
du

dt
¼ �divJq � pdivυþ σ0 : Dþ ρr (33)

where use has been made of the equality

I : D ¼ I : Grad υ ¼
X3
i, j¼1

δij
@

@xj
υi ¼

X3
i¼1

@

@xi
υi ¼ div υ

With Eq. 6, the first law of thermodynamics can finally be written in the form

du

dt
¼ �v divJq � p

dv

dt
þ vσ0 : Dþ r (34)

where v � ρ�1 is the specific volume.

Entropy Production and Entropy Balance

Thermodynamics in the traditional sense is concerned with the study of reversible

process. For an irreversible process in which the thermodynamic state of a solid

changes from some initial state to a current state, it can be assumed that such a
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process can occur along an imaginary reversible isothermal path. The processes

defined in this way will be thermodynamically admissible if the Clausius-Duhem

inequality is satisfied.

According to the principles of thermodynamics, two more new variables –

temperature T and entropy S – are introduced for any macroscopic system. The

entropy of the universe, taken as a system plus whatever surroundings are involved

in producing the change within the system, can only increase. Entropy changes in

the solids are always irreversible processes because of friction, which results in the

production of entropy and thus a permanent change in the universe (Dehoff 1993).

The variation of the entropy dS may be written as the sum of two and only two

terms for a closed system (Groot and Mazur 1962):

dS ¼ dSe þ dSi (35)

where dSe is the entropy derived from the transfer of heat from external sources

across the boundary of the system and dSi is the entropy produced inside the system.

The second law of thermodynamics states that dSi must be zero for any reversible

(or equilibrium) process and positive for irreversible process of the system, namely

(Groot and Mazur 1962),

dSi � 0 (36)

The entropy supplied, dSe, on the other hand may be positive, zero, or negative,

depending on the interaction of the system with its surroundings.

As we know, thermodynamics in the traditional sense is concerned with the study

of the reversible transformation for which the equality in Eq. 36 holds. For an

irreversible process in which the thermodynamic state of a solid changes from

some initial state to a current state, it is assumed that such a process can occur

along an imaginary reversible isothermal path which consists of a two-step sequence

(Krajcinovic 1996). This is the so-called local equilibrium assumption, which postu-

lates that the thermodynamic state of a material medium at a given point and instant is

completely defined by the knowledge of the values of a certain number of variables at

that instant. The method of local state implies that the laws which are valid for the

macroscopic system remain valid for infinitesimally small parts of it. This method

also implies, on a microscopic model, that the local macroscopic measurements

performed on the system are really measurements of the properties of small parts of

the system, which still contain a large number of the constituting particles. This

hypothesis of “local equilibrium” can, from a macroscopic point of view, only be

justified by virtue of the validity of the conclusions derived from it. Ultrarapid

phenomena for which the timescale of the evolutions is at the same order as the

relaxation time for a return to thermodynamic equilibrium are excluded from this

theory’s field of application (Lemaitre and Chaboche 1990). The physical phenomena

that can be described with a precision depend on the choice of the number of state

variables if the Clausius-Duhem inequality is satisfied.

In irreversible thermodynamics, one of the important objectives is to relate the

dSi, the internal entropy production, to the various irreversible phenomena which
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may occur inside the system. Before calculating the entropy production in terms of

quantities which characterize the irreversible phenomena, we shall rewrite Eqs. 35

and 36 in a form which is more suitable for the description of the systems in which

the densities of the extensive properties (such as mass and energy considered in

conservation laws) are continuous functions of spatial coordinates (Groot and

Mazur 1962):

S ¼
ðV
ρsdV (37)

dSe
dt

¼ �
ðΩ
JS, tot � dΩ (38)

dSi
dt

¼
ðV
γdV (39)

where s is the entropy per unit mass, JS,tot is the total entropy flux which is a

vector that coincides with the direction of entropy flow and has a magnitude equal

to the entropy crossing unit area perpendicular to the direction of flow per unit time,

and γ is the entropy source strength or entropy production per unit volume and

unit time.

With Eqs. 37, 38, and 39, the formula (35) may be written, using Gauss’s

theorem, in the form (Groot and Mazur 1962)

ðV
@ρs

@t
þ div JS, tot � γ

� �
dV ¼ 0 (40)

where the divergence of JS,tot simply represents the net entropy leaving unit volume

per unit time. From this relation, it follows, since Eq. 40 must be hold for an

arbitrary volume V, that

@ρs

@t
¼ �div JS, tot þ γ (41)

γ � 0 (42)

These two formulations are the local forms of Eqs. 35 and 36, i.e., the local

mathematical expressions for the second law of thermodynamics. Equation 41 is

formally a balance equation for the entropy density ρs with a source γ which

satisfies the important inequality (42). With the help of Eqs. 7 and 41, it can be

rewritten in a slightly different form:

ρ
ds

dt
¼ �div JS þ γ (43)
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where the entropy flux JS is the difference between the total entropy flux JS,tot and a

convective term ρsυ:

JS ¼ JS, tot � ρsυ (44)

For application in continuum mechanics, we must relate the changes in the

properties of the system to the rate of change in entropy, which will enable us to

obtain more explicit expressions for the entropy flux JS and the entropy source

strength γ that appears in Eq. 43.

We postulate the existence of a thermodynamic potential from which the state

laws can be derived. Without entering the details, let us say that the specification of

a function with a scalar value, concave with respect to T and convex with respect to

other variables, allows us to satisfy a priori the conditions of thermodynamic

stability imposed by Clausius-Duhem inequality. Here we choose the specific

Helmholtz free energy φ, which is defined as the difference between the specific

internal energy density u and the product between the absolute temperature T and

specific entropy s:

φ ¼ u� Ts (45)

Differentiating this and with the help of the law of conservation of energy, we

have

dφ ¼ du� Tds� sdT
¼ δqþ δw� Tds� sdT
¼ δqþ δwd þ δwe

� �� Tds� sdT
¼ δqþ δwd � Tds
� �þ �δwe � sdT

�
where q is the total heat flowing into the system per unit mass, including the

conduction through the surface and the distributed internal heat source; w is the

total work done on the system per unit mass by external pressure and body force; wd

is the lost energy associated with the total work, which is generally dissipated in the

form of heat; and we is the elastic energy associated with the total work. For the

quantitative treatment of entropy for irreversible processes, let us introduce the

definition of entropy for irreversible processes:

ds ¼ δqþ δwd

T
(46)

With the help of Eq. 46, we have

Tds ¼ du� dwe (47)

This is the Gibbs relation which combines the first and second laws. From the

definition of the entropy, we also have
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dwe ¼ dφþ sdT (48)

The Helmholtz free energy is the isothermal recoverable elastic energy. It should

be pointed out that the specific elastic energy we, namely, the work stored in the

system per unit mass during a process, is path independent. The elastic energy is the

maximum amount of work that could be produced by a device between any given

two states. If the device is work absorbing, the elastic energy work of the process is

the minimum amount of work that must be supplied (Li 1989).

In order to find the explicit form of the entropy balance Eq. 43, we insert the

expressions (34) for du/dt into Eq. 47 with the time derivatives given by Eq. 4:

ρ
ds

dt
¼ � div Jq

T
þ 1

T
σ : D� ρ

T

dwe

dt
þ ρr

T
(49)

Noting that

div Jq

T
¼ div

Jq

T
þ 1

T2
Jq � grad T

it is easy to cast Eq. 49 into the form of a balance Eq. 43:

ρ
ds

dt
¼ �div

Jq

T
� 1

T2
Jq � grad T þ 1

T
σ : D� ρ

T

dwe

dt
þ ρr

T
(50)

From comparison with Eq. 43, it follows that the expressions for the entropy flux

and the entropy production rate are given by

JS ¼ Jq

T
(51)

γ ¼ 1

T
σ : D� ρ

T

dwe

dt
� 1

T2
Jq � grad T þ ρr

T
(52)

Equation 51 shows that for the closed systems, the entropy flow consists of only

one part: the “reduced” heat flow Jq/T. Equation 52 represents the entropy produc-

tion by the internal dissipations. The sum of the first two terms is called the intrinsic

dissipation or mechanical dissipation. It consists of plastic dissipation plus the

dissipation associated with the evolution of other internal variables; it is generally

dissipated by the volume element in the form of heat. The last two terms are the

thermal dissipation due to the conduction of heat and the internal heat source. The

structure of the expression for γ is that of a bilinear form: it consists of a sum of

products of two factors. One of these factors in each term is a flow quantity (heat

flow Jq, momentum flow or pressure tensor σ) already introduced in the conserva-

tion of laws. The other factor in each term is related to a gradient of an intensive

state variable (gradients of temperature and velocity). These quantities which

multiply the fluxes in the expression for the entropy production are called thermo-

dynamic forces.
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The way in which the separation of the right-hand side of Eq. 49 into the

divergence of a flux and a source term has been achieved may at first sight seem

to be to some extent arbitrary. The two parts of Eq. 50 must, however, satisfy a

number of requirements which determine this separation uniquely (Groot and

Mazur 1962). The entropy source strength γ must be zero if the thermodynamic

equilibrium conditions are satisfied within the system. Another requirement which

Eq. 52 must satisfy is that it be invariant under the transformation of different

reference frames, since the notions of reversible and irreversible behavior must be

invariant under such a transformation. It can be seen that Eq. 52 satisfies these

requirements. Finally, it may be noted that Eq. 50 also satisfies the Clausius-Duhem

inequality:

σ : D� ρ
dφ

dt
þ s

dT

dt

� �
� Jq � grad T

T
� 0 (53)

Between two particles of a solid body which are at different temperatures, heat is

transferred only by conduction, a process which takes place at the molecular and

atomic levels. The law of heat conduction for isotropic bodies may be stated as

follows (Boley and Weiner 1988):

Jq ¼ �kgrad T (54)

where k, with typical units of Btu/ft · hr · �F, is termed the thermal conductivity of

the solid and where Jq is the heat flux.

This law of heat conduction was stated first by Fourier who based it on exper-

imental observation. Fourier’s law expresses a linear relation between the heat flux

vector Jq and its dual variable grad T. Since solid, opaque bodies are of primary

interest here, heat is transferred from point to point within this body solely by

conduction. The field equation of the boundary-value problem will, therefore,

always be some form of the Fourier heat conduction equation. Of course, heat

may be transferred to the surface of the body by other modes of heat transfer which

correspond to various thermal boundary conditions.

Then the expression for the internal entropy production can be simplified as

γ ¼ 1

T
σ : D� ρ

T

dwava

dt
þ k

T2
grad Tj j2 þ ρr

T
(55)

Fully Coupled Thermomechanical Equations

The formalism of continuummechanics and thermodynamics requires the existence

of a certain number of state variables. We limit ourselves to two observable vari-

ables – the temperature T and the total strain « – as they are the only ones which

occur in elasticity. For dissipative phenomena the current state also depends on the

past history and path followed. Plasticity and viscoplasticity require the
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introduction of the plastic (or viscoplastic) strain «p as a variable. Other phenom-

ena, such as hardening, damage, and fracture, require the introduction of other

internal variables of less obvious in nature. These variables represent the internal

state of matter (density of dislocations, crystalline of microstructures, configuration

of microcracks and cavities, etc.) (Lemaitre and Chaboche 1990). There is no

objective way to choose the nature of the internal variables best suited to the

study of a phenomenon. For general study, here these variables will be denoted

by Vk(k ¼ 1, 2 . . .) representing either a scalar or a tensorial variable.

For small strains, the plastic strain is the permanent strain associated with the

relaxed configuration which is obtained by elastic unloading, leading to the additive

strain decomposition:

« ¼ «e þ «p (56)

The relations existing between the energy, stress tensor, and strain tensor can be

obtained using the formalism of thermodynamics with internal variables. Here we

choose the specific Helmholtz free energy φ, which depends on observable

variables and internal variables:

φ ¼ «,T,«e, «p,Vkð Þ (57)

For small strains, the strains appear only in the form of their additive decompo-

sition, so that

φ «� «pð Þ,T,Vkð Þ ¼ φ «e,T,Vkð Þ (58)

which shows that (Lemaitre and Chaboche 1990)

@φ

@«e
¼ @φ

@«
¼ � @φ

@«p
(59)

and the following expressions define the thermodynamic laws (Lemaitre and

Chaboche 1990):

σ ¼ ρ
@φ

@«e
(60)

s ¼ � @φ

@T
(61)

Ak ¼ ρ
@φ

@Vk
(62)

where Ak is the thermodynamic force associated with the internal variables Vk, s, σ
and Ak constitute the associated variables. The vector formed by the variables is the

gradient of the function φ in the space of the variables T, «e, and Vk. This vector is

normal to the surface φ ¼ constant.
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The equation of the conservation of energy for small strains (from Eqs. 20 and

31) can be written as

ρ _u ¼ �div Jq þ σ : _«þ ρr (63)

and replace ρ _u by the expression derived from Eq. 45

ρ _u ¼ ρ _φþ ρ _sT þ ρs _T (64)

and _φ and _s by its expression as a function of the state variables with the help of

Eqs. 60, 61, and 62:

_φ ¼ @φ

@«e
: _«e þ @φ

@T
_T þ @φ

@Vk

_Vk ¼ 1

ρ
σ : _«e � s _T þ Ak

_Vk (65)

_s ¼ � @2φ

@«e@T
: _«e � @2φ

@T2
_T � @2φ

@Vk@T
_Vk ¼ � 1

ρ

@σ
@T

: _«e þ @s

@T
_T � 1

ρ

@Ak

@T
_Vk (66)

We obtain

�div Jq ¼ ρT
@s

@T
_T � σ : _«� _«eð Þ þ AkVk � ρr � T

@σ
@T

: _«e þ @Ak

@T
_Vk

� �
(67)

by introducing the specific heat defined by

C ¼ T
@s

@T
(68)

and taking into account Fourier’s law for isotropic materials

div Jq ¼ �k div grad Tð Þ ¼ �k∇2T (69)

where ∇2 denotes the Laplacian operator.

We obtain, using _«p ¼ _«� _«e,

k∇2T ¼ ρC _T � σ : _«p þ AkVk � ρr � T
@σ
@T

: _«e þ @Ak

@T
_Vk

� �
(70)

This is the fully coupled thermomechanical equation, which can simulate the

evolution of temperature influenced by the mechanical work with properly imposed

boundary conditions. Ak
_Vk represents the non-recoverable energy stored in the

materials corresponding to other dissipated phenomena such as hardening, damage,

and fracture. It represents only 5–10 % of the term σ : _«p and is often negligible

(Lemaitre 1992; Lemaitre and Chaboche 1990; Chaboche and Lesne 1988):

Ak
_Vk � 0 (71)
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which results in the fully coupled elastoplastic thermomechanical equation

k∇2T ¼ ρC _T � σ : _«p � ρr � T
@σ
@T

: _«e (72)

which has been used to simulate the thermal effects on the material behavior by

many researchers (Sluzalec et al. 1988; Hong 1999). Equation 72 also allows us to

calculate heat flux Jq generated due to elastic and/or inelastic work in a solid body.

For the isotropic linear thermoelastic materials, the stress-strain relationship is

σij ¼ λδijekk þ 2μeij � 3λþ 2μð Þδijα T � T0ð Þ (73)

where T0 is the reference temperature, α is the isotropic thermal expansion coefficient,

and λ and μ are the Lame’s coefficients:

λ ¼ νE

1þ νð Þ 1� 2νð Þ ; μ ¼ E

2 1þ νð Þ (74)

If the internal generation of heat created by external sources is neglected, Eq. 70

becomes for isotropic linear thermoelastic materials

k∇2T ¼ ρC _T þ 3λþ 2μð ÞαT _ekk (75)

The last term represents the interconvertibility of the thermal andmechanical energy.

Thermodynamic Damage Evolution Function

Changes are always irreversible processes because of friction, which results in the

production of entropy and thus a permanent change in the universe (Dehoff 1993).

Damage is the progressive deterioration which occurs in materials prior to failure.

Cumulative damage analysis plays a key role in the life prediction of components

and structures subjected to load histories. As a result, many damage models have

been proposed in the literature, such as linear damage models, nonlinear damage

models, linear elastic fracture mechanics models, continuum damage mechanics

models, and energy-based damage models (Bazant 1991; Bonora and Newaz 1998;

Chaboche 1981, 1988; Chow and Chen 1992; Ju 1989, 1990; Kachanov 1986, 1986;

Krajcinovic 1989; Lemaitre 1992; Murakami 1988; Murakami and Kamiya 1997;

Rabotnov 1969a; Shi and Voyiadjis 1997; Voyiadjis and Thiagarajan 1996). Dam-

age evolution function based on thermodynamics and statistical mechanics was first

introduced in the literature by Basaran and Yan (1998), who established a relation-

ship between entropy and damage for solids undergoing plastic deformations. Yet

their model is not general enough to account for elastic deformations and to relate

entropy production with material stiffness degradation. Basaran et al. (2003);

Gomez and Basaran (2005); Li and Basaran (2009); Gunel and Basaran (2011);

Yao and Basaran (2013); and Basaran et al. (2004) developed a generalized version

of this damage evolution model.
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There are many metrics to measure degradation in materials, such as direct

measurements of the total crack areas lying on a surface, degradation of the elastic

modulus, degradation of ultrasonic wave propagation speed, degradation of the

microhardness, change in density, increase in electrical resistance, variation in the

cyclic plastic response, change in creep properties, change in acoustic emission

properties, remaining life, and cumulative hysteresis dissipation. The damage

process corresponding to the degradation of microstructure is, in general, irrevers-

ible. During the cumulative damage process, the internal entropy production, which

is a measure of disorder in the system, must increase according to the second law of

thermodynamics, so that internal entropy production can be used as a criterion for

quantification of damage. Entropy in statistical physics and in the thermodynamic

sense is really the same thing (Malvern 1969). The statistical physics interpretation

in terms of probability and tendency toward disordered microstates furnishes a

physical significance for the otherwise rather abstract thermodynamic concept of

entropy. Boltzmann (1898) first used statistical mechanics to give a precise mean-

ing to disorder and established a connection between disorder and entropy for the

whole system:

S ¼ k0 ln W (76)

where k0 is Boltzmann constant and W is the disorder parameter which is the

probability that the system will exist in the state relative to all the possible states

it could be in. Statistical mechanics assigns an exact meaning to the probability of a

state and supplies a general expression for W that employs the idea of the distribu-

tion function of a system. This function measures the probability for the coordinates

and velocities of the molecules of the system to have specified values at a given

time. The relation between the entropy per unit mass and the disorder parameter is

given by Basaran and Yan (1998):

s ¼ R

ms
ln W (77)

where s is the entropy per unit mass, ms is the specific mass, and R is the gas constant.

According to Eq. 77 we have the disorder function as follows:

W ¼ e
sms
R (78)

Select an initial reference state of the continuous medium with disorderW0; then

the change in disorder at any arbitrary time with respect to the initial reference state

is given by

ΔW ¼ W �W0 ¼ e
sms
R � e

s0ms
R (79)

where s0 is the entropy for the initial reference state. According to Basaran and Nie
(2004), the isotropic damage variable D is defined as the ratio of the change in
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disorder parameter to the current state disorder parameter with a proportional

critical disorder coefficient Dcr:

D ¼ Dcr
ΔW
W

(80)

where Dcr allows us to correlate the value of entropy production-based damage

D with other material coordinates, such as degradation of material stiffness. Dcr is

easy to determine from experimental data, but it can vary for different loading

profiles such as monotonic and cyclic loading.

With the help of Eqs. 78 and 79, the relation between the damage parameter

D and the change in entropy can be written as

D ¼ Dcr 1� e�
ms
R s�s0ð Þ

h i
(81)

With the help of Eqs. 49 and 70, the rate of total specific entropy change under

the condition of small strains is given by

ds

dt
¼ c

T

@T

@t
� 1

ρ

@σ
@T

: _«e þ @Ak

@T
: Vk

� �
(82)

where the identity σ : _«� ρ _we ¼ σ : _«p � Ak
_Vk is used, which represents the total

mechanical dissipation rate. Equation 82 can also be obtained by its expression as a

function of the state variables the same as Eq. 66.

With the help of Eq. 55, the specific entropy production rate for small strains

becomes

dsi
dt

¼ γ

ρ
¼ σ : _ep

Tρ
þ k

T2ρ
gradTj j2 þ r

T
(83)

where the identity σ : _«� ρ _we ¼ σ : _«p � Ak
_Vk is also used and Ak

_Vk is omitted.

The fundamental equations governing the temperature, stresses, deformation,

and the entropy production rate in a continuum medium have been derived in the

previous section. From a strict viewpoint, these quantities are all interrelated and

must be determined simultaneously. However, for most practical problems, the

effect of the stresses and deformations upon the temperature distribution is quite

small and can be neglected. This procedure allows the determination of the

temperature distribution in the solid resulting from prescribed thermal conditions

to become the first and independent step of a thermal-stress analysis; the second

step of such an analysis is then the determination of the stresses, deformations,

and damage in the body due to this temperature distribution (Boley and Weiner

1988). Because the entropy change caused by the heat transfer between systems

and surroundings has no influence on the degradation of the materials, only the

entropy source strength, namely, the entropy created in the system, should

be used as a basis for the systematic description of the irreversible processes.
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So the damage evolution Eq. 73 can be implemented in a numerical analysis

procedure, where

Δs ¼ Δsi ¼
ðt
t0

σ : _«p

Tρ
dtþ

ðt0
t

k

T2ρ
gradTj j2

� �
dtþ

ðt
t0

r

T
dt (84)

According to Eq. 84, it is obvious that D � 0 is always satisfied because of the

nonnegative entropy source strength.D¼ 0 whenΔs¼ 0 andD¼DcrwhenΔs!1.

Equation 84 shows that the damage is a function not only of the loading or straining

process but also of the temperature. However, a uniform increase in temperature in a

stress-free field does not cause any damage.

The advantage of the proposed procedure is quite obvious. Instead of separate

formulations of constitutive and damage evolution equations in the continuum

damage mechanics (CDM) theory, a unified description of CDM is possible only

by establishing the constitutive relationship. So the whole problem of modeling the

damage phenomenon lies in the determination of the analytical expressions for the

constitutive relationship and its identification in characteristic experiments. The

specific functional form of the constitutive relationship depends on the damage

mechanism and the deformation itself. Moreover, this unified approach nullifies the

need for a damage potential surface.

Damage Evolution and Entropy Production Under
Electrical Current

When there is no mechanical load (in the form of a surface traction or a point load)

acting on the system, according to Eq. 55 irreversible entropy rate production would

be zero. However, if only electrical current is present and if the electrical current

constitutes high current density, it will lead to significant irreversible entropy

production. In the following section, this special case is formulated.

Modeling Electromigration Process in Thermodynamics

Electromigration is an electron flow-assisted diffusion process that takes place in

conductor solids under high current density. The process can be assumed to be

controlled by a vacancy diffusion mechanism, in which the diffusion takes place by

vacancies switching lattice sites with adjacent atoms. In isothermal condition, the

process is driven by electrical current-caused mass diffusion, stress gradient-

induced diffusion, and diffusion due to atomic vacancy concentration. In the

presence of electrical current, due to electrical resistance, there is always heat

production (joule heating) that leads to thermomigration, which interacts with

other diffusive forces. Under the presence of these four forces, the atomic vacancy

flux equation can be given by combining Huntington [14] and Kirchheim [16] flux
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definitions, adding the influence of temperature gradient and vacancy concentra-

tion, which yields

@Cv

@t
¼ �Δ

! � q! þ G (85)

q
! ¼ �Dv ∇

!
Cv þ CvZ

	e
kT

�ρ j
!
 �

� Cv

kT
�fΩð Þ∇! σ þ CvQ

	

kT

∇
!

T

T

" #
(86)

Combining these two equations yields

@Cv

@t
¼ Dv ∇2Cv � Z	eρ

kT
∇
!

• Cv j
!
 �

þ fΩ

kT
∇
!

• Cv ∇
⇀
σ


 �
þ Q	

kT2
∇
!

Cv∇Tð Þ
� 

þ G

(87)

where

Cv, vacancy concentration

Dv, vacancy diffusivity

q
!
, vacancy flux vector

Z*, vacancy effective charge number

e, electron charge

ρ, metal resistivity

j
!
, current density vector

f, vacancy relaxation ratio, the ratio of the volume of an atom and the volume of a

vacancy

Ω, atomic volume

Q* heat of transport, the isothermal heat transmitted by moving the atom in the

process of jumping a lattice site less the intrinsic enthalpy

k, Boltzmann’s constant

T, absolute temperature

σ ¼ trace(σij)/3, hydrostatic or spherical part of the stress tensor, Sarychev and

Zhinikov [23]

G, vacancy generation rate,

G ¼ �Cv � Cve

τs
, (88a)

Cev, thermodynamic equilibrium vacancy concentration

Cve ¼ Cv0e
1�fð ÞΩσ
kT (88b)
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Cv0, equilibrium vacancy concentration in the absence of stress

τs, characteristic vacancy generation/annihilation time

If we define C � Cv/Cv0 as the normalized concentration, then the vacancy

diffusion equation could be rewritten as

@Cv

@t
¼ Dv ∇2C� Z	eρ

kT
∇
!

• C j
!
 �

þ fΩ
kT

∇
!

• C ∇
⇀
σ


 �
þ Q	

kT2
∇
!

C∇
!

T

 �� 

þ G

Cvo

(89)

where, initially, C ¼ 1(or Cv ¼ Cv0).

Using the conservation of energy equation in the form derived in previous

sections, we can write the rate of change of entropy density as follows:

ρ
ds

dt
¼ 1

T
� divJq þ σ : Grad vð Þ

þ
X
k

Jk •Fk � ρ
@Ψ
@ee

:
dee

dt
þ @Ψ

@T
:
dT

dt
þ @Ψ
@Vk

:
dVk

dt
� s

dT

dt

� � (90)

where

σ : Grad vð Þ ¼ σ : DþWð Þ (91)

and D (symmetric) andW (skew symmetric) are the rate of deformation tensor and

spin tensor, respectively.

Due to the symmetry of σ,

σ : DþWð Þ ¼ σ : D (92)

For small deformation, we can make the following assumption:

σ : D ¼ σ :
de
dt

¼ σ :
de
dt

e

þ dep

dt

� �
(93)

Rearranging Eq. 90 and comparing with Eq. 27, we can get Js ¼ 1
T Jq and the

following entropy production rate term:

γ ¼ � 1

T2
Jq •Grad Tð Þ þ 1

T

X
k

Jk •Fk þ 1

T
σ :

dep

dt
þ 1

T
σ :

dee

dt
;�ρ

@Ψ
@ee

; :
dee

dt

� �

þ ρ

T
sþ @Ψ

@T

� �
dT

t
� ρ

T

@Ψ
@Vk

:
dVk

dt

(94)
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In solids with internal friction, all deformations cause positive entropy produc-

tion rate γ � 0 (which is also referred to as the Clausius-Duhem inequality,

Malvern [22]).

Using the following relations,

σ ¼ ρ @Ψ=@eeð Þ (95)

s ¼ � @Ψ
@T

(96)

we can simplify Eq. 94 as follows:

γ ¼ � 1

T2
Jq •Grad Tð Þ þ 1

T

X
k

Jk •Fk þ 1

T
σ : ep

• � ρ

T

@Ψ
@Vk

:
dVk

dt
(97)

or if the heat flux term Jq is replaced by

Jq ¼ 1

T2
C Grad Tð Þj j2 (98)

where C is the thermal conductivity tensor, the entropy production rate can be given

by

γ ¼ � 1

T2
C Grad Tð Þj j2 þ 1

T

X
k

Jk •Fk þ 1

T
σ : ep

• � ρ

T

@Ψ
@Vk

:
dVk

dt
(99)

We identify Jk in Eq. 99 as q
!
in Eq. 86 and the effective driving force terms Fk as

Fk ¼ Z	ejρþ �fΩð Þ∇! σ � Q

T
∇
!

T � kT

C
∇
!

C

� 
(100)

From Eq. 99, we can see that the irreversible dissipation includes two parts: the

first term is called heat dissipation caused by conduction inside the system, while

the second, third, and fourth terms account for other irreversible processes in the

system; we will call it intrinsic dissipation.

According to second law of thermodynamics, all systems must fail when entropy

is at maximum and the production rate is at minimum. Based on this law,

entropy production rate given in the form shown in Eq. 99 allows accounting for

electromigration-induced entropy production in the system. Because electromigration

is an irreversible process and leads to failure of the system, we assume that it must fall

within the laws of thermodynamics. Entropy production rate given in Eq. 99 could be

written in many different forms, but this form of this equation is the most appropriate

for our purpose.
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With the help of Eqs. 99 and 100, we can write Eq. 16 as

Δs ¼
ðt
t0

 
1

T2
C Grad Tð Þj j2 þ CvDeffective

kT2
Z	
l eρj� fΩ∇σ þ Q∇

!
T

T
þ kT

C
∇
!

C

 !2

þ 1

T
σ : ep � ρ

T

@Ψ

@Vk
:
dVk

dt

!
dt

(101)

If we only consider the damage caused by electrical driving forces and disregard

other factors such as stress gradient, temperature gradient, and atomic vacancy

concentration, the damage evolution formula can be given by

D ¼ Dcr 1� e

ðt
t0

�CvDeffective

kT2
Z	eρjð Þ2dt

N0k

2
66666664

3
77777775

(102)

If we assume that the solder joint has failed when the degradation reaches some

critical value (e.g., it is 5 % drop in electrical resistance of a solder joint in the US

microelectronics industry), defined as Dcr, the time required to reach the failure can

be obtained from Eq. 102 as

t ¼ N0T
2k2

CvDeffective Z	eκjð Þ2 ln
1

1� Dcrð Þ (103)

From Eq. 102, we observe that the dependence on temperature is to the power of

two. One may wonder why the time to failure is larger when the temperature is

larger. The fact is that the diffusivity is going to change with temperature too. The

relationship between the temperature and the diffusivity is represented by Arrhe-

nius function,

Deffective ¼ D0e
�Q

kT (104)

Inserting Eq. 104 into Eq. 102, we can get

t ¼ N0T
2k2

NlD0 Z	
l eκj

� �2 ln
1

1� Dcrð Þ
� �

e
Q
kT (105)

The last term (exponent) dominates the temperature effect so the time to failure

decreases with temperature as expected.
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Damage-Coupled Viscoplasticity

The damage-coupled material constitutive model is ideally suited to characterize

the mutual interaction between the macro-level mechanical properties and material

damage due to microstructure degradation. The damage variable can be directly

used as the fatigue damage criterion for the numerical model, from which the

number of cycles to failure can be determined. Furthermore, the damage distribu-

tion and progressive damage evolution can be obtained.

Effective Stress and Strain Equivalence Principle

Lemaitre and Chaboche (1990) considered a certain section of the representative

volume element (RVE) under uniaxial force F as shown in Fig. 1, where δS is the

initial area of the undamaged section and δSD denotes the lost area as result of

damage. δS � δSD can be interpreted as the actual area of the section. The values

δS and δSD are to be understood in the sense of appropriate averaging.

The nominal stress can be defined as

σ ¼ F

δS
(106)

Rabotnov (1969) introduced the concept of effective stress eσ , which relates

to the surface that effectively resists the load, namely, (δS � δSD),

eσ ¼ F

δS� δSD
(107)

Kachanov (1986) gave the definition of damage at microscale as the creation of

microsurface discontinuities: breaking of atomic bonds and plastic enlargement of

microcavities. This isotropic damage variable is defined as

D ¼ δSD
δS

(108)

So, we have

eσ ¼ σ
1� D

(109)

Lemaitre and Chaboche (1990) assumed that the strain response of the body is

modified by damage only through the actual stress. Thus, the stress-strain behavior

of the damaged material can be represented by the constitutive equation of the

virgin material (without damage) with the stress in it replaced by the effective

stress. And this is the strain equivalence principle: “Any strain constitutive equation

for a damaged material may be derived in the same way as for a virgin material

except that the usual stress is replaced by the effective stress.”
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The strain equivalent principle demonstrates the major role of the concept of

actual stress. According to the strain equivalence principle, the elastic strain of a

damaged material is

«e ¼ eσ
~E
¼ 1

E

σ
1� D

(110)

So, the Hook’s law here has its usual form with the Young’s modulus E being

replaced by ~E, where ~E is the Young’s modulus associated with the damaged status.

In the case of an elastic-plastic deformation when the damage is a result of a large

strain, it is natural to assume that damage does not depend on the elastic strain; hence

dD

d«e
¼ 0 (111)

This condition leads to the relation

D ¼ 1�
~E

E
(112)

Hence, the damage may be estimated by measuring the elastic response. Note

that ~E can be identified with the unloading modulus. So the change in modulus with

strain was considered by the damage parameter D, which reflects the decrease in

load carrying ability of particles in particulate composites as they crack or debond.

Damage-Coupled Isotropic Viscoplasticity

In order to simulate damage behavior of solid materials, there is a need for a

progressive constitutive degradation model. Damage mechanics provides basic

framework to develop damage evolution models at small strains.

Damage-Coupled Constitutive Equations
In accordance with the strain equivalence principle and Hook’s law, the elasticity

constitutive relationship may be written as

F
δSD

δS

Fig. 1 Schematic illustration

of definition of damage

(Lemaitre and Chaboche

1990)
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dσ ¼ 1� Dð ÞCed«e (113)

where d«e is the elastic strain increment vector, Ce is the elastic constitutive matrix,

dσ is the total stress increment vector, and D is the isotropic damage parameter.

Assuming deformations of small strain, the total strain increment can be sepa-

rated into three components,

d«f g ¼ d«th
� 	þ d«ef g þ d«vpf g (114)

where d«th, d«e, and d«vp are the incremental thermal, elastic, and viscoplastic

strains, respectively.

The thermal strain increment is

d«th ¼ αTdTI (115)

where αT is the coefficient of thermal expansion, dT is the temperature increment,

and I is the second-order unit tensor. {d«vp} is viscoplastic strain increment, which

can be determined using the viscoplasticity theory.

So the total stress increment can be obtained by

dσ ¼ 1� Dð ÞCe d«� d«vp � d«th
� �

(116)

Damage-Coupled Yield Surface
Von Mises-type yield surface with isotropic and kinematic hardening is used in the

constitutive model here. Von Mises criterion states that the viscoplastic strain is

governed by the elastic shear (or deviatoric) energy density, the so-called J2 theory:

F ¼ q� σ (117)

where the Mises equivalent stress q is

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
S� αð Þ : S� αð Þ

r
(118)

S is the deviatoric stress tensor defined by

S ¼ σ� 1

3
σkkI (119)

α is the deviatoric stress component of back stress tensor corresponding to

kinematic hardening.

σ is the equivalent yield stress:

σ ¼ Rþ σy (120)
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R is the evolution of the size of the yield surface corresponding to isotropic

hardening; σy is the initial size of the yield surface. Figure 2 shows the yield surface
in the principal stress space.

The kinematic hardening represents an approximation of accounting for the

Bauschinger effect. The corresponding deviatoric back stress represents the trans-

lation of the center of the yield surface in the deviatoric space. Isotropic hardening

stress R measures the increase in radius of the yield cylinder in the stress space.

Damage has significant effects on the yield surface. In order to model the

behavior of a damaged material, the strain equivalence principle is needed.

According to the strain equivalence principle, the normal stress is replaced

by the effective stress in the yield function, and all other variables remain

unchanged. So the yield function has the same form with the modified Mises

equivalent stress:

q	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

S

1� D
� α

� �
:

S

1� D
� α

� �s
(121)

If the nominal stress σ is used, instead of the effective stress eσ, the yield surface

can be written as

F ¼ qd � σd (122)

with the damage-coupled back stress, Mises equivalent stress, and yield stress as

follows:

αd ¼ 1� Dð Þα (123)

Initial yield
surface 0

2/3 (σy + R)

2/3 σy

Yield surface after
isotropic and kinematic
hardenings

σ2

σy

σy

σy

σ1
σ3

Fig. 2 Yield locus in the principal stress space (Lemaitre and Chaboche 1990)
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σd ¼ 1� Dð Þσ (124)

qd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
S� αdð Þ : S� αdð Þ

r
(125)

It shows that the damage equally decreases the yield stress, the isotropic strain

hardening stress, and the back stress.

It is emphasized that the fully coupled elastoplastic thermomechanical Eq. 70,

the damage evolution function (81), the entropy production Eq. 84, and the consti-

tutive Eq. 116 completely characterize the progressive damage behavior of any

material.

Examples

Damage-coupled plasticity is ideal for the damage-coupled plasticity calculations,

either as a rate-dependent or as a rate-independent model. Damage-coupled linear

kinematic hardening plasticity and damage-coupled isotropic hardening plasticity

have particularly simple forms. Because of this simplicity, the algebraic equations

associated with integrating this model are easily developed in terms of a single

variable, and the material stiffness matrix can be written explicitly. For simplicity

of notation, all quantities not explicitly associated with a time point are assumed to

be evaluated at the end of the increment.

Damage-Coupled Plasticity with Isotropic Hardening

The Mises yield function with associated flow means that there is no volumetric

plastic strain, and since the elastic bulk modulus is quite large, the volume change

will be small, so that we can define the volume strain as

evol ¼ I : « ¼ trace «ð Þ (126)

where I is the second-order unit tensor.

The deviatoric strain is

e ¼ «� 1

3
evolI ¼ «� 1

3
II : « ¼ Π� 1

3
I� I

� �
: « (127)

where Π is the fourth-order unit tensor.

The equivalent pressure stress

p ¼ � 1

3
trace σð Þ ¼ � 1

3
I : σ (128)
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The deviatoric stress is defined as

S ¼ σþ pI (129)

The Mises equivalent stress

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
S : Sð Þ

r
(130)

where

3

2
S : Sð Þ ¼ 1

2
σ11 � σ22ð Þ2 þ σ22 � σ33ð Þ2 þ σ33 � σ11ð Þ2 þ 6 σ212 þ σ223 þ σ213

� �h i
(131)

Strain-rate decomposition is

d« ¼ d«el þ d«pl (132)

Using the standard definition of corotational measures, this can be written in the

integrated form as

« ¼ «el þ «pl (133)

The elasticity is linear and isotropic and may therefore be written in terms of two

temperature-dependent material parameters bulk modulus K and shear modulus G,
which are readily computed from Young’s modulus E and Poisson ratio v as

K ¼ E

3 1� 2vð Þ (134)

and

G ¼ E

2 1þ vð Þ (135)

The elasticity coupled with isotropic damage may then be written in volumetric

and deviatoric components as follows:

p ¼ � 1� Dð ÞKevol ¼ � 1� Dð ÞKI : « (136)

S ¼ 2 1� Dð ÞGeel (137)

The flow rule is

depl ¼ depln (138)

where

n ¼ 3

2

S

q
(139)
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depl is the scalar equivalent plastic-strain rate. The evolution of the equivalent

plastic strain is obtained from the following equivalent plastic work expression:

σy _e
pl ¼ σ : _«pl (140)

which yields

_e
pl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_epl : _epl

r
(141)

for isotropic Mises plasticity. Using Eqs. 138 and 139, we can prove this result as

follows:

σy _e
pl ¼ σ : _«pl ¼ S� pIð Þ : _«pl ¼ S : _«pl

Then,

_e
pl ¼ S

σy
: _«pl ¼ 2

3
n : _«pl ¼ 2

3

_epl

_e
pl
: _«pl ¼ 2

3

_«pl

_e
pl
: _«pl

Therefore, we have

_e
pl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_«pl : _«pl

r

The plasticity requires that the material satisfy a uniaxial-stress, plastic-strain, and

strain-rate relationship. If the material is rate independent, this is the yield condition:

q ¼ 1� Dð Þσ0 epl,T
� �

(142)

If the material is rate dependent, the relationship is the uniaxial flow rate

definition:

_e
pl ¼ h

q

1� D
, epl, T


 �
(143)

where h is a known function.

Integrating this relationship by the backward Euler method gives

Δepl ¼ h
q

1� D
, epl,T


 �
Δt (144)

The backward Euler method is an unconditional stable and second-order accu-

rate algorithm. This equation can be inverted (numerically, if necessary) to give q as

a function of epl at the end of the increment. Thus both the rate-independent model

and the integrated rate-dependent model give the general uniaxial form
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q ¼ 1� Dð Þσ epl,T
� �

(145)

where σ ¼ σ0 for the rate-independent model and σ is obtained by the inversion of

Eq. 144 for the rate-dependent model.

In any increment when plastic flow is occurring (which is determined by

evaluating q based on purely elastic response and finding that its value exceeds

1� Dð Þσ), these equations must be integrated and solved for the state at the end of

the increment. The integration is done by applying the backward Euler method to

the flow rule (138), giving

Δepl ¼ Δepln (146)

Combining this with the deviatoric elasticity (137) and the integrated strain-rate

decomposition (133) gives

S ¼ 2 1� Dð ÞG eel t þ Δe� Δepln
��� �

(147)

Then using the integrated flow rule (146), together with the Mises definition of

the flow direction n, this becomes

1þ 3 1� Dð ÞG
q
Δepl

� �
S ¼ Spr (148)

where

Spr ¼ 2 1� Dð ÞGê (149)

ê ¼ eel t þ Δej (150)

With the help of Eq. 130, taking the inner product of Eq. 148 with itself gives

qþ 3 1� Dð ÞGΔepl ¼ qpr (151)

where

qpr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
Spr : Sprð Þ

r
(152)

where qpr is the elastic predictor based on purely elastic behavior.

The Mises equivalent stress q must satisfy the uniaxial form defined in Eq. 145,

so that, from Eq. 151,

qpr � 3 1� Dð ÞGΔepl � 1� Dð Þσ ¼ 0 (153)

This is a nonlinear equation for Δepl in the general case, which can be solved

iteratively by Newton’s method (xn+1 ¼ xn + f(xn)/f
0(xn)):
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cpl kj ¼ qpr � 3 1� Dð ÞGΔepl kj � 1� Dð Þσ kj
1þ Dð Þ 3Gþ Hð Þ (154)

Δepl kþ1 ¼ Δepl k þ cpl kj
���� (155)

where

H ¼ 1� Dð Þ @σ

@epl
kj (156)

and we iterate until convergence is achieved. Once Δepl is known, the solution is

fully defined.

Using Eq. 145,

q ¼ 1� Dð Þσ epl,T
� �

(157)

Using Eqs. 148 and 151,

S ¼ Spr

1þ 3 1� Dð ÞG
q
Δepl

¼ q

qpr
Spr (158)

Using Eq. 139,

n ¼ 3

2

S

q
(159)

Using Eq. 146,

Δepl ¼ Δepln (160)

For cases where three direct strain components are provided by the kinematic

solution, Eq. 136 defines

p ¼ � 1� Dð ÞKevol ¼ � 1

3
σprkk (161)

so that the solution is then fully defined, and the material stiffness matrix can be

derived without the need for matrix inversion as follows. Taking the variation of

Eq. 158 with respect to all quantities at the end of the increment gives

@S ¼ q@
Spr

qpr

� �
þ S

q
@q (162)
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From Eq. 149,

@Spr ¼ 2 1� Dð ÞG@ê (163)

And from Eq. 152,

@qpr ¼ 3 1� Dð ÞG Spr

qpr
: @ê ¼ 3 1� Dð ÞG

q
S : @ê (164)

where Eqs. 158 and 163 have been used.

So,

@
Spr

qpr

� �
¼ qpr@Spr � Spr@qpr

qprð Þ2 ¼ 2 1� Dð ÞG
qpr

@ê� 3 1� Dð ÞG
q2qpr

S� S : @ê (165)

where Eqs. 158 and 164 have been used.

From Eq. 145,

@q ¼ 1� Dð ÞH@epl (166)

and from Eq. 151,

@qþ 3 1� Dð ÞG@epl ¼ @qpr (167)

Combining Eqs. 166, 167, and 164,

@epl ¼ @qpr

3Gþ Hð Þ ¼
3G

3Gþ Hð Þq S : @ê (168)

So,

@q ¼ 3 1� Dð ÞGH
3Gþ Hð Þq S : @ê (169)

Combining these results with Eq. 162 gives

@S ¼ 2 1� Dð ÞG q

qpr
@ê� 3 1� Dð ÞG

q2
q

qpr
� H

3Gþ Hð Þ
� 

S� S : @ê (170)

So we have

@S ¼ QΠ� RS� S½ 
 : @ê (171)

where

Q ¼ 2 1� Dð ÞG q

qpr
(172)

754 C. Basaran et al.



R ¼ 3 1� Dð ÞG
q2

q

qpr
� H

3Gþ H

� 
¼ 9 1� Dð ÞG2 q� 1� Dð ÞHΔepl� �

q2qpr 3Gþ Hð Þ (173)

For all cases where three direct strains are defined by the kinematic solution, the

material stiffness is completed by (from Eq. 136)

@p ¼ � 1� Dð ÞKI : @« (174)

so that (from Eq. 129)

σ ¼ S� pI (175)

and (from Eq. 127)

@ê ¼ @e ¼ Π� 1

3
I� I

� �
: @« (176)

Because

e ¼ êþ epl tj (177)

we have

@σ ¼ 1� Dð ÞK � 1

3
Q

� �
I� Iþ QΠ� RS� S

� 
: @« (178)

Equation 178 can also be written in an alternate form:

Δ _σij ¼ λ	δijΔ _ekk þ 2μ	Δ _eij þ 1� Dð ÞH
1þ H=3G

� 3μ	
� �

ηijηklΔ _ekl (179)

where

μ	 ¼ 1� Dð ÞGq=qpr (180)

λ	 ¼ 1� Dð ÞK � 2

3
μ	 (181)

ηij ¼ Sprij =q
pr (182)

Using Eqs. 158, 161, and 175, we have

σij ¼ ηijqþ
1

3
δijσ

pr
kk (183)
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Damage-Coupled Plasticity with Linear Kinematic Hardening

The Mises equivalent stress is defined as

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
S� αð Þ : S� αð Þ

r
(184)

where α is the back stress, which gives the center of the yield surface in deviatoric

stress space.

The flow rule is

depl ¼ depln (185)

where

n ¼ 3

2

S� αð Þ
q

(186)

and depl is the scalar equivalent plastic-strain rate.

Prager-Ziegler (linear) kinematic hardening model is

dα ¼ 2

3
1� Dð ÞCdepl ¼ 2

3
1� Dð ÞCdepln (187)

The plasticity requires that the material satisfy a uniaxial-stress, plastic-strain,

and strain-rate relationship:

q ¼ 1� Dð Þσy (188)

In any increment when plastic flow is occurring (which is determined by

evaluating q based on the purely elastic response and finding that its value exceeds

(1 � D)σy), these equations must be integrated and solved for the state at the end of

the increment. The integration is done by applying the backward Euler method to

the flow rule (185) and hardening law (187), giving

Δepl ¼ Δepln (189)

Δα ¼ 2

3
1� Dð ÞCΔepl ¼ 2

3
1� Dð ÞCΔepln (190)

The backward Euler method is an unconditional stable and second-order accu-

rate algorithm. Combining Eq. 189 with the deviatoric elasticity (137) and the

integrated strain-rate decomposition (133) gives

S ¼ 2 1� Dð ÞG eel t þ Δe� Δepln
��� �

(191)
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Rearranging Eq. 191, together with subtracting α|t from both sides, this becomes

S� αð Þ þ Δαþ 2 1� Dð ÞGΔepln ¼ 2 1� Dð ÞGê� α tj (192)

where

ê ¼ eel t þ Δej (193)

α tj ¼ α� Δα (194)

Then using the integrated hardening law together with the Mises definition of the

flow direction n, this becomes

1þ 1� Dð Þ 3Gþ C

q
Δepl

� �
S� αð Þ ¼ Spr � α tj (195)

where

Spr ¼ 2 1� Dð ÞGê (196)

With the help of Eq. 184, taking the inner product of Eq. 195 with itself gives

qþ 1� Dð Þ 3Gþ Cð ÞΔepl ¼ qpr (197)

where qpr is the elastic predictor based on purely elastic behavior:

qpr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
Spr � α tjð Þ : Spr � α tjð Þ

r
(198)

The Mises equivalent stress q must satisfy the uniaxial form defined in Eq. 188,

so that, from Eq. 197,

qpr � 1� Dð Þ 3Gþ Cð ÞΔepl � 1� Dð Þσy ¼ 0 (199)

where Δepl can be solved by

Δepl ¼ qpr � 1� Dð Þσy
1� Dð Þ 3Gþ Cð Þ (200)

Once Δepl is known, the solution is fully defined.

Using Eq. 188,

q ¼ 1� Dð Þσy (201)

Using Eqs. 195, 197, and 201,

S� α ¼ Spr � α tj
1þ 3Gþ C

σy
Δepl

¼ 1� Dð Þ σy
qpr

Spr � α tjð Þ (202)
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Using Eqs. 186 and 202,

n ¼ 3

2

S� α
1� Dð Þσy ¼

3

2

Spr � α tj
qpr

(203)

Using Eq. 189,

Δepl ¼ Δepln (204)

Using Eq. 190,

Δα ¼ 2

3
1� Dð ÞCΔepl (205)

So, the back stress and deviatoric stress tensor can be determined as

α ¼ α tj þ Δα (206)

S ¼ 1� Dð Þ σy
qpr

Spr � α tjð Þ þ α (206)

For cases where three direct strain components are provided by the kinematic

solution, Eq. 136 defines

p ¼ � 1� Dð ÞKevol ¼ � 1� Dð ÞKI : « (207)

so that the solution is then fully defined and the material stiffness matrix can be

derived without the need for matrix inversion as follows. Taking the variation of

Eq. 197 with respect to all quantities at the end of the increment gives

@S ¼ 1� Dð Þσy@ Spr � α tj
qpr

� �
þ @α (208)

From Eq. 196,

@Spr ¼ 2 1� Dð ÞG@ê (209)

and from Eq. 198,

@qpr ¼ 3 1� Dð ÞG Spr � α tjð Þ
qpr

: @ê ¼ 3G

σy
S� αð Þ : @ê (210)

where Eq. 206 has been used.

Then

@
Spr � α tj

qpr

� �
¼ 2 1� Dð ÞG

qpr
@ê� 3G

1� Dð Þσ2yqpr
S� αð Þ � S� αð Þ : @ê (211)

where Eq. 206 has been used.

758 C. Basaran et al.



From Eq. 200,

@epl ¼ @qpr

1� Dð Þ 3Gþ Cð Þ ¼
3G

1� Dð Þ 3Gþ Cð Þσy S� αð Þ : @ê (212)

From Eqs. 203 and 204,

@epl ¼ 3

2

3G

1� Dð Þ2 3Gþ Cð Þσ2y
S� αð Þ � S� αð Þ : @êþ Δepl@

Spr � α tj
qpr

� �" #

(213)

where Eqs. 206 and 212 have been used.

From Eqs. 205 and 213,

@α ¼ 3GC

1� Dð Þ 3Gþ Cð Þσ2y
S� αð Þ � S� αð Þ : @ê

þ 1� Dð ÞCΔepl@ Spr � α tj
qpr

� � (214)

Combining these results with Eq. 208 gives

@S ¼ 2 1� Dð Þ2G σy þ CΔepl
� �
qpr

@ê

� 3G

σ2y

σy þ CΔepl
� �

qpr
� C

1� Dð Þ 3Gþ Cð Þ
� 

S� αð Þ � S� αð Þ : @ê
(216)

So, we have

@S ¼ QΠ� R S� αð Þ � S� αð Þ½ 
 : @ê (217)

where

Q ¼ 1� Dð Þ2 2G σy þ CΔepl
� �

qpr
(218)

R ¼ 3G

σ2y

σy þ CΔepl

qpr
� C

1� Dð Þ 3Gþ Cð Þ
� 

¼ 9G2

3Gþ Cð Þqprσy (219)

For all cases where three direct strains are defined by the kinematic solution, the

material stiffness is completed by (from Eq. 136)
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@p ¼ � 1� Dð ÞKI : @« (220)

so that (from Eq. 129)

σ ¼ S� pI (221)

and (from Eq. 127)

@ê ¼ @e ¼ Π� 1

3
I� I

� �
: @« (222)

Because

e ¼ êþ epl tj (223)

we have

@σ ¼ 1� Dð ÞK � 1

3
Q

� �
I� Iþ QΠ� R S� αð Þ � S� αð Þ

� 
: @« (224)

Equation 224 can also be written in alternate form:

Δ _σij ¼ λ	δijΔ _ekk þ 2μ	Δ _eij þ 1� Dð ÞC
1þ C=3G

� 3μ	
� �

ηijηklΔ _ekl (225)

where

μ	 ¼ 1� Dð Þ2 G σy þ CΔepl
� �

qpr
(226)

λ	 ¼ 1� Dð ÞK � 2

3
μ	 (227)

ηij ¼ Sprij � αij tj

 �

=qpr (228)

From Eqs. 196, 206, 207, and 221, we have

σij ¼ αij þ ηijσy þ
1

3
δijσ

pr
kk (229)

Conclusions

In this chapter a thermodynamic theory of damage mechanics has been presented.

This physics-based damage evolution theory avoids using phenomenological dam-

age surfaces. Damage evolution is modeled by irreversible entropy production rate

in the system. It is shown that only the irreversible portion of the entropy production

contributes to damage in solids.

760 C. Basaran et al.



References

M.E. arychev, Zhinikov, General model for mechanical stress evolution during electromigration.

Journal of Applied Physics, 86(6), p.3068–3075 (1999)

C. Basaran, S. Nie, An irreversible thermodynamics theory for damage mechanics of solids. Int.

J. Damage Mech. 13(3), 205–223 (2004)

C. Basaran, C.Y. Yan, A thermodynamic framework for damage mechanics of solder joints.

ASME J. Electron. Pack. 120, 379–384 (1998)

C. Basaran, M. Lin, H. Ye, A thermodynamic model for electrical current induced damage. Int.

J. Solids Struct. 40(26), 7315–7327 (2003)

C. Basaran, H. Tang, S. Nie, Experimental damage mechanics of microelectronics solder joints

under fatigue loading. Mech. Mater. 36, 1111–1121 (2004)

Z.P. Bazant, Why continuum damage is nonlocal: micromechanics arguments. J. Eng. Mech.

ASCE 117(5), 1070–1087 (1991)

B.A. Boley, J.H. Weiner, Theory of Thermal Stress (Dover Publications, New York, 1988)

I. Boltzmann, Lectures on Gas Theory (University of California Press, Berkeley, 1898) (Transla-

tion by S. Brush, 1964)

N. Bonora, G.M. Newaz, Low cycle fatigue life estimation for ductile metals using a nonlinear

continuum damage mechanics model. Int. J. Solids Struct. 35(16), 1881–1894 (1998)

J.L. Chaboche, Continuum damage mechanics – a tool to describe phenomena before crack

initiation. Nucl. Eng. Design 64, 233–267 (1981)

J.L. Chaboche, Continuum damage mechanics: parts І& II. ASME J. Appl. Mech. 55, 59–72 (1988)

J.L. Chaboche, P.M. Lesne, A non-linear continuous fatigue damage model. Fatigue Fract. Eng.

Mater. Struct. II, 1–17 (1988)

S.R. De Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962)

R.T. DeHoff, McGraw-Hill Series in Materials Science and Engineering: Thermodynamics in
Materials Science (McGraw-Hill, Boston, 1993)

J.L. Ericksen, Introduction to the Thermodynamics of Solids. Applied Mathematical Sciences, vol.

131 (Springer, New York, 1998)

P. Germain, Q.S. Nguyen, P. Suquet, Continuum thermodynamics. J. Appl. Mech. Trans. ASME

50(4b), 1010–1020 (1983)

J. Gomez, C. Basaran, A thermodynamics based damage mechanics constitutive model for low

cycle fatigue analysis of microelectronics solder joints incorporating size effect. Int. J. Solids

Struct. 42(13), 3744–3772 (2005)

E.M. Gunel, C. Basaran, Damage characterization in non-isothermal stretching of acrylics: part I

theory. Mech. Mater. 43(12), 979–991 (2011)

R. Haase, Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, 1969)

B.Z. Hong, Analysis of thermomechanical interactions in a miniature solder system under cyclic

fatigue loading. J. Electron. Mater. 28(9), 1071–1077 (1999)

H.B. Huntington, A.R. Grone, Current-induced marker motion in gold wires. Journal of Physics

and Chemistry of Solids, 1961. 20(1–2)76–87

J.W. Ju, On energy-based coupled elastoplastic damage theories: constitutive modeling and

computational aspects. Int. J. Solids Struct. 25(7), 803–833 (1989)

J.W. Ju, Isotropic and anisotropic damage variables in continuum damage mechanics. J. Eng.

Mech. 116(12), 2764–2770 (1990)

L.M. Kachanov, Introduction to Continuum Damage Mechanics (Martinus Nijhoff, Boston, 1986)

R. Kircheim, Stress and Electromigration in Al-lines of Integrated Circuits” Acta Mettallurgica et

Materilia. 40(2), 309–323 (1992)

D. Krajcinovic, Damage mechanics. J. Mech. Mater. 8, 117–197 (1989)

D. Krajcinovic, North-Holland Series in Applied Mathematics and Mechanics, Elsevier, Amster-

dam (1996)

S. Li, C. Basaran, A computational damage mechanics model for thermomigration. Mech. Mater.

41(3), 271–278 (2009)

23 Thermodynamics Theory for Damage Evolution in Solids 761



J. Lemaitre, A Course on Damage Mechanics (Springer, Berlin, 1992)
J. Lemaitre, J.-L. Chaboche, Mechanics of Solid Materials (University Press, Cambridge, UK,

1990)

K.W. Li, Applied Thermodynamics: Availability Method and Energy Conversion (Taylor &

Francis, New York, 1989)

L.E. Malvern, Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood

Cliffs, 1969)

S. Murakami, Mechanical modeling of material damage. ASME J. Appl. Mech. 55, 280–286

(1988)

S. Murakami, K. Kamiya, Constitutive and damage evolution equations of elastic-brittle materials

based on irreversible thermodynamics. Int. J. Solids Struct. 39(4), 473–486 (1997)

Y.N. Rabotnov, Creep Problems in Structural members (North-Holland, Amsterdam, 1969a)

Y.N. Rabotnov, Fundamental problems in visco-plasticity, in Recent Advances in Applied
Mechanics (Academic, New York, 1969b)

G.Y. Shi, G.Z. Voyiadjis, A new free energy for plastic damage analysis. Mech. Res. Commun. 24

(4), 377–383 (1997)

A. Sluzalec, An analysis of the thermal effects of coupled thermo-plasticity in metal forming

processes. Commun. Appl. Numer. Methods 4, 675–685 (1988)

G.Z. Voyiadjis, G. Thiagarajan, Cyclic anisotropic-plasticity model for metal matrix composites.

Int. J. Plast. 12(1), 69–91 (1996)

W. Yao, C. Basaran, Computational damage mechanics of electromigration and thermomigration.

J. Appl. Phys. 114, 103708 (2013)

W. Yourgrau, A.V.D. Merwe, G. Raw, Treatise on Irreversible and Statistical Thermophysics: An
Introduction to Nonclassical Thermodynamics (Macmillan, New York, 1966)

762 C. Basaran et al.



Section VI

Damage Mechanics in Metal Forming



Damage Prediction in Metal Forming
Process Modeling and Optimization:
Simplified Approaches

24

Ying-Qiao Guo, Yuming Li, Boussad Abbès, Hakim Naceur, and
Ali Halouani

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

Inverse Approach for Sheet Forming Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

Basic Concept of the Inverse Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

Formulation of the Inverse Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

Initial Solution Using Geometric Mapping Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

Application: Hydroforming of an Aluminum Alloy Conical Tube . . . . . . . . . . . . . . . . . . . . . . . . 776

Pseudo-inverse Approach for Forming Process Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778

Creation of Intermediate Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778

Calculation of Large Strain Increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

Direct Integration of Plasticity and Damage for Large Strain Increments . . . . . . . . . . . . . . . . 783

Numerical Results: Simulation of a Three-Stage Stamping Process . . . . . . . . . . . . . . . . . . . . . . 784

Simplified Plastic Ductile Damage Models and Direct Integration Algorithms . . . . . . . . . . . . . . 788

Strain-Based Damage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788

Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

Integrated Constitutive Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790

Classical Return Mapping Algorithm for Plasticity–Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

Direct Scalar Algorithm of Plasticity (DSAP) for Fast Plastic Integration . . . . . . . . . . . . . . . 792

Numerical Results of Damage Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794

Y.-Q. Guo (*) • Y. Li • B. Abbès • A. Halouani
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Abstract

Some simplified numerical methods for damage predictions in metal forming

process modeling and optimization are presented in this chapter. The incremen-

tal approaches including advanced damage models lead to accurate results, but

the simulations are tedious and time-consuming. An efficient solving algorithm

called inverse approach (IA) allows the fast modeling of forming processes in

only one step between the known final part and the initial blank, avoiding the

contact treatment and the incremental plastic integration. To improve the stress

estimation in the IA, the so-called pseudo-inverse approach (PIA) has been

developed. Some intermediate configurations are geometrically created and

corrected by a free surface method to consider the deformation path, and the

plastic integration based on the flow theory is carried out incrementally to

consider the loading history. A simplified 3D strain-based damage model is

coupled with the plasticity and implemented into a direct scalar integration

algorithm of plasticity (without local iterations), which makes the plastic inte-

gration very fast and robust even for very large strain increments. These simpli-

fied approaches lead to very fast and useful numerical tools in the preliminary

design and optimization.

Introduction

Nowadays, the forming industry needs to increase the product quality and to reduce

the production costs and delay. The preliminary design of forming processes

implies expensive trials-corrections on forming tools. The actual tendency is to

use the numerical simulations in order to predict the forming feasibility (material

flow, stresses, damage, etc.) and to optimize the process parameters and the tool

geometry.

The numerical process modeling is a difficult task due to the involved complex

phenomena: large strains, viscoplasticity, damage, contact-friction, thermal effects,

etc. The incremental approaches with advanced damage models can give accurate

results, but the simulation remains tedious and time-consuming; hence, it quickly

becomes unfeasible in an optimization process. In this chapter, some simplified

methods for damage modeling in metal forming process and optimization will be

presented: (1) the fast forming algorithm IA which allows the calculation in only

one step between the known final part and the initial blank, (2) the PIA which

considers the loading path and improves significantly the stress estimation of the
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IA, (3) a simplified 3D strain-based damage model and an efficient direct scalar

integration algorithm of plasticity, and (4) the fast and robust forming process

optimization using the above simplified approaches.

Two main approaches are widely used for the metal forming simulation: the

incremental approach and the inverse approach (IA or one-step approach). The first

one simulates the real multi-physic phenomena step by step, which makes it fairly

accurate but very time-consuming. The second one exploits at maximum the

knowledge of the final part shape; it performs the calculation from the known

final configuration to the initial one in only one step to determine the strain and

stress fields satisfying the equilibrium (Guo et al. 1990; Lee and Huh 1998, among

others). The IA is based on two main assumptions: the tool actions are replaced by

simplified nodal forces to avoid the contact-friction treatment, and the loading is

supposed proportional to avoid the incremental plastic integration procedure. The

strains and stresses are calculated by directly comparing the initial and final

configurations. The IA is very fast and gives fairly good strain estimation. Nowa-

days, it is largely used as a valuable numerical tool in the preliminary design stages

in various forming processes (stamping, hydroforming, etc.), in order to optimize

the tool geometry and process parameters, such as the shape of initial metal sheet,

the addendum surfaces, the drawbead sizes and positions, the holding forces, the

springback compensation, etc. (Naceur et al. 2006; Dong et al. 2007; Azaouzi

et al. 2008).

However, the IA cannot consider the loading history, leading to poor stress state

estimation. The PIA has been developed to improve the stress estimation (Guo

et al. 2004; Halouani et al. 2012a). Some intermediate configurations are geomet-

rically created and mechanically corrected to take into account the deformation

paths. The coupled damage–plasticity model is based on the flow theory of plas-

ticity, and the plastic integration is carried out in an incremental form. The fast

direct scalar algorithm of plasticity (DSAP) is used to speed up the procedure and

avoid divergence problems in case of large strain increments. The PIA possesses

not only the advantages of the IA (simple and fast), but also the advantages of the

incremental approach (loading history, good stress estimation). Many research

works based on the forward or backward methods have investigated the tool

preform optimization (Kobayashi et al. 1989; Kim and Kobayashi 1990; Fourment

et al. 1996), but too much computation time is required to carry out an optimization

procedure. The PIA has been used for the automatic design and optimization of tool

preforms. Genetic optimization algorithms and surrogate meta-models are adopted

for the multi-objective optimization process in order to obtain the Pareto front

(Halouani et al. 2012b).

Two main theories are extensively used to describe the ductile damage occur-

rence and its effect on the metal behavior. The first one was pioneered by Gurson

(1977) and improved later by other researchers (Rousselier 1987, etc.). It is based

on the micro-mechanisms of void nucleation, growth, and coalescence. It uses the

void volume fraction as a “scalar” damage variable in the plastic potential in order

to model the void effect on the plastic flow. The second one ignores the micro-

defect mechanisms; it represents the damage effect on the overall elastoplastic
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behavior of the material. The continuum damage mechanics (CDM) (Chaboche

1988; Lemaı̂tre and Chaboche 1990) uses a scalar or tensorial damage variables to

represent the ductile defect evolution and their consequences on the other

thermomechanical fields. This kind of CDM-based phenomenological approach

has been widely applied to various metal forming and machining processes

(Saanouni and Chaboche 2003).

There are two principal methods for the damage modeling: the uncoupled

approach and the fully coupled one. The first one calculates the damage distribution

with the stress and strain fields at the end of a FE analysis without taking into

account its effect on other mechanical fields. It has been used by many authors to

analyze damaged zones in the final workpiece (Hartley et al. 1989, among others).

In some other works, the damage is used to find the forming limit strains in metal

forming (Gelin et al. 1985; Cordebois and Ladevèze 1985). On the other hand, in

the fully coupled approach, the damage effect is introduced directly into the

constitutive equations, so it affects the other thermomechanical fields. The widely

used models are based on the Gurson damage theory considering the void volume

fraction evolution (Aravas 1986; Onate and Kleiber 1988; Picart et al. 1998). Other

works are based on the continuum damage mechanics theory (CDM) (Lee

et al. 1985; Zhu et al. 1992; Saanouni et al. 2000). A simplified approach based

on Prandtl–Reuss plasticity model with nonlinear isotropic hardening is proposed in

Mathur and Dawson (1987) and Brunet et al. (1996); the damage effect is taken into

account by using the damage factor (1 � D) on the stress vectors. Based on the

thermodynamics of irreversible processes with state variables, an advanced

approach aims to model the multi-physics coupling between the main thermome-

chanical phenomena including the isotropic and anisotropic damage (Mariage

et al. 2002; Saanouni 2012, see also ▶Chap. 25, “Ductile Damage in Metal

Forming: Advanced Macroscopic Modeling and Numerical Simulation” of this

volume).

In this chapter, a simplified model called 3D strain-based damage model

(Lemaı̂tre and Chaboche 1990) and its applications in the IA and PIA will be

presented. This ductile damage model is based on the dissipation potential and

dedicated to the isotropic damage and hardening materials. The assumptions of the

hardening saturation after the damage threshold and the constant triaxiality under

proportional loading lead to a damage expression in terms of the equivalent plastic

strain in a rate form, even in an integrated form. In the IA, an integrated constitutive

equation is used to avoid the incremental plastic integration; the total damage

expression is used to determine the damage distribution in the final workpiece

(Cherouat et al. 2004). In the PIA, the damage effect is coupled with the plasticity

by introducing the damage variable into the plasticity criterion; the damage rate

expression is used to take account for their reciprocal effects (Guo et al. 2004).

In the PIA, the plastic strain increments are very large, so the classical iterative

plastic integration based on the return mapping algorithm (Simo and Taylor 1986)

requires much CPU time and may lead to divergence problems. A direct scalar

algorithm of plasticity (DSAP) enables to directly performing the plastic integration

without iterations (Li et al. 2007). The basic idea is to transform the unknown stress
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vectors into the equivalent stresses which can be determined by using the tensile

curve; then, the plastic multiplier λ can be directly calculated. The numerical results

have shown very good agreement between the two algorithms, as well as the

rapidity and robustness of the new DSAP.

Several examples will be presented to show the efficiency and limitations of the

IA and PIA. The results are compared with those obtained by the classical incre-

mental approach ABAQUS®/Explicit.

Inverse Approach for Sheet Forming Modeling

Basic Concept of the Inverse Approach

The IA has been proposed initially by Guo et al. (1990), for the estimation of the

large elastoplastic strains encountered in the sheet forming process. The calculation

is carried out from the known final workpiece to obtain the positions of material

points in the initial blank (Fig. 1). Two main assumptions are adopted: the simpli-

fied tool action assumption to avoid the contact treatment and the proportional

loading assumption to avoid the incremental plastic integration. This basic concept

makes the IA very fast.

Since then, the IA has known numerous improvements, allowing the simulation

of more complex 3D workpieces, including the friction, drawbeads, 3D anisotropy,

rotation-free shell model, initial target solutions, spares solvers, etc. An important

extension of the method has been done in order to deal with the tube hydroforming

(Chebbah et al. 2011) and the cold forging (Halouani et al. 2010).

Formulation of the Inverse Approach

The IA formulation is presented below for the sheet forming and tube hydroforming

by using a shell element. The FE formulation for axisymmetric cold forging can be

found in Halouani et al. (2010).

The IA using the deformation theory of plasticity has different features compar-

ing to the classical incremental approach: the known quantities are the final

workpiece shape C, the FE mesh on C, and the thickness of the initial blank

C0, while the unknowns are the horizontal coordinates of the nodes in the initial

tools actions

Workpiece
(3D surface)

P
h, e, s ?

W

initial flat blank

h0P0

u

u,v

n

A0 B0

A B

Fig. 1 Basic concept of the

inverse approach
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flat blank and the thickness distribution in the final workpiece (Fig. 1). These

unknowns are obtained by directly comparing C and C0 in an iterative manner to

satisfy the equilibrium conditions on C.

3D Shell Kinematics
Figure 2 illustrates the movement of a thin shell from its initial configuration C0 to

its final configuration C. p0 is a material point on the shell mid-surface on C0, q0 is a
point on the surface normal at p0, and p and q are their final positions on C. Using
the Kirchhoff assumption on the normal conservation, the following kinematic

relations are obtained:

X 0
q ¼ X 0

p þ z0 n0 ¼ Xp �Up þ z

λ3
n0;� h0

2
� z0 � h0

2
; z0 ¼ z

λ3
(1)

Xq ¼ Xp þ zn;� h

2
� z � h

2
(2)

where Xp
0 and Xp are the position vectors of p

0 and p, Up is the displacement vector

between them, h0 and h are the initial and final thicknesses, z0 and z are the

coordinates of q0 and q through the thickness, λ3 is the thickness stretch, and n0

and n are the unit normal vectors at p0 and p, respectively. It is noted that the final

configuration is known and taken as reference.

Large Strain Measurement
Using two tangent vectors and the normal vector (t1, t2, n) in p on the mid-surface of

C, a local reference (x, y, z) is established:

Z

X p

X q

h

n, z

q

q0
n0,z0

t 0
2

t 0
1

h0

Uq

p

p0

t2

t1

0

X

C

C0

Y

Fig. 2 Kinematics of 3D thin

shell
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t1 ¼ Xp,x

Xp,x
�� �� ; t2 ¼ Xp, y

Xp, y
�� �� ; n ¼ t1 ^ t2 (3)

The differentiation of Eqs. 1 and 2 gives the deformation gradient tensors with

respect to the local reference (x, y, z):

dX 0
q5 F 0

x

� ��1
dx with F 0

x

� ��1 ¼ Xp, x �Up, x⋮Xp, y �Up, y⋮n0=λ3
� �

(4)

dXq ¼ Fx dx with Fx ¼ Xp, x þ z n, x⋮Xp, y þ z n, y⋮n
� �

(5)

The above two equations enable to obtain the inverse of deformation gradient

tensor (F�1) between dXq
0 and dXq and then the inverse of Cauchy–Green left tensor:

B�15F �TF �1 (6)

The eigenvalues (λ1�2, λ2�2) of the tensor B�1 give the two in-plane principal

stretches; the eigenvectors give their directions. The thickness elongation can be

obtained by the incompressibility condition λ1λ2λ3 ¼ 1. The logarithmic principal

strains in the final configuration C are given by

< e1 e2 e3 >¼< lnλ1 lnλ2 lnλ3 > (7)

Integrated Constitutive Law
In the IA, the proportional loading assumption is adopted to obtain an integrated

constitutive law between the initial and final configurations. The loading history is

ignored, leading to a total strain-stress law (see section “Simplified Plastic Ductile

Damage Models and Direct Integration Algorithms” for more details):

σ ¼ H�1 þ 1

ES
� 1

E

� �
P

	 
�1

« (8)

where « is the total strain vector, H is Hooke’s elastic constitutive matrix, Es is the

secant modulus, E is Young’s modulus, and P is the matrix defined by the von

Mises isotropic criterion or Hill anisotropic criterion. The damage effect is

uncoupled with the plasticity and evaluated as post-processing.

A non-quadratic anisotropic yield surface was proposed by Barlat et al. (2003) to

deal with aluminum-based material parts:

f ¼ Φ0 þΦ00 � 2σmf ¼ X0
1 � X0

2

�� ��m þ 2X00
2 � X00

1

�� ��m þ 2X00
1 � X00

2

�� ��m � 2σmf ¼ 0 (9)

where σmf is the updated effective yielding stress and the exponent m is mainly

associated with the crystal structure of the material: a great m value corresponds

to a small curvature radius at the rounded vertices of the yield surface. Typically,

m ¼ 6 and 8 are recommended, and X1
0 , X2

0 , X1
00, X2

00 are the principal values of the

transformed deviatoric stresses S:
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X05C0 S
X005C00 S

�
(10)

where C0 C00 are the tensors of material parameters given in Barlat et al. (2003) and

σ is the Cauchy stress tensor.

Using the normality law and the proportional loading assumption of the IA, the

plastic strain rate can be integrated analytically, leading to a direct relationship

between the total plastic strains and deviatoric stresses:

S ¼ Hp «p (11)

Initial Solution Using Geometric Mapping Method

Several initial geometric guess techniques have been introduced by Naceur et al. (2002)

to speed up the convergence of the static implicit solver in the IA. The authors proposed

also other techniques for the treatment of vertical walls (balancing, opening, matrix

condensing) which have been proven essential for complex 3D industrial parts.

To explain the basic concept of the initial solution, the geometric mapping

method is described for the hydroforming of cylindrical tubes. The final

mid-surface is discretized into triangular shell elements and mapped onto the initial

cylindrical tube surface (Fig. 3).

Knowing the positions of the element nodes in the final configuration, the first

guess can be achieved by radial projection of the nodes onto the initial cylindrical

tube surface. These positions will be modified iteratively to meet the equilibrium in

the final workpiece.

Final configuration C

Initial configuration C0

Initial guess

x, u z, w

y, vY, V

n

z, w

U1U2
U3

t2

t1

P2

P3

P3
0

P2
0

P1
P

P1
0

P3
P

P2
P

P1

j

k

i
O

R

Fig. 3 3D mesh mapping onto the initial cylindrical tube surface
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Since the mapping is made onto the known initial cylindrical surface, the radial

displacement Ur of each node is known. The two other unknown displacements are

axial and circumferential ones. The circumferential displacement is dependent on

the unknown rotation angle Δφ. Its Cartesian components can be calculated as

follows (Fig. 4):

Ui
p ¼ Ur cosφ� ΔUi

p

Vi
p ¼ Ur sinφþ ΔVi

p

with
ΔUi

p ¼ R0

�
cos φ� Δφið Þ � cosφ

�
ΔVi

p ¼ R0

�
sin φ� Δφið Þ � sinφ

� (12)

where R0 is the radius of the tube mid-surface.

Variational Formulation

The discretization of the final shape of the desired workpiece is done by using a

rotation-free shell element called DKTRF (Guo et al. 2002). This element is based

on the membrane element CST and the plate element DKT6 (Batoz and Dhatt

1990). The DKTRF formulation involves the three neighboring elements in order to

define the bending curvatures and build the element stiffness matrix without

Y

XZ

Fr

Ft

F
ir

Ur

PP

P i

P0

Up

R0

U i
p

ΔU i
p

ϕ

Δϕi

ΔV ip

iϕ

P

Fig. 4 Radial projection of

point P and its movement on

the tube surface
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rotation degrees of freedom (Fig. 5). The resulting element has only three trans-

lations DOF per node.

Approximation of Strain Displacements
In the local reference of an element, the virtual membrane strains are expressed in

terms of the two in-plane displacements along x and y:

e� ¼ < u�, x v�, y u�, yþv�, x > (13)

Linear approximations are used for u* and v* (constant strain triangle membrane

element, CST) to obtain a constant membrane strain operator:

e� ¼ Bm δ u�n
� �

m
; unð Þm ¼ u1 v1 u2 v2 u3 v3h i (14)

For the bending part, the rotations around the three element sides (θ4, θ5, θ6) are
expressed in terms of the transverse displacements of the six nodes (w1, w2, w3, wi,

wj, wk, Fig. 5), the rotations normal to the three sides are expressed in terms of the

transverse displacements of the three nodes (w1, w2, w3, Fig. 5). Finally, a constant

bending curvature operator is obtained, which is free from rotation degrees of

freedom (Guo et al. 2002).

χ � ¼ Bf u�n
� �

f
; unð Þf ¼< w1 w2 w3 wi wj wk > (15)

Internal Force Vector
The principle of virtual work is used to establish the equilibrium on the final

workpiece. The transverse shear effects are neglected for the thin sheet forming

process. The virtual work of internal forces in an element is given by:

Fig. 5 DKT rotation-free triangular shell element
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We
int ¼

ð
Ve

«�T σ dV ¼ u�Tn f e
int (16)

By using the above FE approximation, the internal force vector in the global

coordinate system is obtained:

We
int ¼U�T

n F e
int (17)

F e
int ¼ TT

ð
Ve

Bm
T þ z Bf

T
� �

σ dV ¼ Ae TT Bm
TNþ Bf

TM
� �

(18)

where T is the transformation matrix between the local and global references, N is

the internal membrane force vector, and M is the internal bending–torsion moment

vector.

External Force Vector
In the IA, the tool actions are simply represented by some external nodal forces to

avoid the contact treatment. At a node, the resultant tool force F is composed of a

normal pressure force Fn and a tangential friction force Ft. F is situated on the

friction cone surface defined by β ¼ arc tan μ (μ is friction coefficient, Fig. 6). Its

direction nf can be determined by the friction cone and the slide direction:

F ¼ Fnn� Ftt ¼ Fffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p n� μtð Þ ¼ Fnf (19)

where n is the unit normal vector of the contour and t is the unit vector of the node
displacement on the tangent direction.

F

Fn

Ft
Part

Tool

n

t

nf

b

Fig. 6 Determination of the

tool contact force by the

friction cone
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The value of F can be determined by the equilibrium condition at the contour.

The following equilibrium equation can be established on a node k:

F k
ext F

k
� �� Fi

int ¼
FknkX
FknkY
FknkZ

8<
:

9=
;

ext

�
Fk
X

Fk
Y

Fk
Z

8<
:

9=
;

int

¼
0

0

0

8<
:

9=
; (20)

where nkr nkZ
� �T ¼ nkf represents the resultant force direction at the node k. Then,

the value of Fk and the nodal external force vector are obtained:

Fk ¼ nkX nkY nkZ
� � Fk

X

Fk
Y

Fk
Z

8<
:

9=
;

int

; Fk
ext ¼ Fk

Fk
X

Fk
Y

Fk
Z

8<
:

9=
;

ext

(21)

Application: Hydroforming of an Aluminum Alloy Conical Tube

The hydroforming of a conical tube has been studied by Jansson et al. (2008)

(Fig. 7). The circumferential expansion attains 47.5 % from its original position.

This is a difficult process because it requires a massive metal feeding into the

expansion zone in order to avoid a burst fracture.

A6-axis hydraulic press of 75 tons is used for the tube hydroforming.The axial feeding

is provided on both sides of the tube. Thewhole device is instrumentedwith encoders and

pressure sensors which allow the application of the axial feeding and pressure at any time

during forming. Figure 8 shows the evolutions of the normalized pressure and feeding.

The tube is made of an aluminum alloy AA6063-T4. Both Hill (1948) and Barlat
(2000) criteria are used. R00, R45, and R90 are the anisotropic coefficients; F, G, H, N,
L are material parameters forHill criterion; α1–α8 are the material parameters for Barlat
criterion; they enable to consider the anisotropy in the evolution of the plastic

flow surface for the case of uniaxial stress or biaxial stress state. The material data

are as follows: E¼ 68300MPa, ν ¼ 0.3, σ00¼ 78 MPa, σ45¼ 76MPa, σ90¼ 74MPa,

σ11¼ 23.4MPa, σ22¼ 85MPa, R00¼ 0.47, R45¼ 0.12, R90¼ 1.5, F¼ 0.43,G¼ 1.36,

H¼ 0.64,N¼ 1.11, L¼ 0.43, and α1–α8¼ 0.72, 1.29, 0.99, 0.97, 1.03, 0.98, 0.16, 1.23.

The curves of the pressure and feeding in function of time (Fig. 8) allow

controlling the strain path, leading to a fully formed tube without bursting

(Fig. 9). Firstly, the pressure is increased to 10 MPa with a moderate feeding in

Die

Tube 50

31.10

Feeding direction100

Axis of revolution

Fig. 7 Tube geometry and conical die
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order to obtain a good compromise between the expansion and shortening; then, it is

maintained constant while the axial feeding is increased until its maximum value of

33 mm. Secondly, the pressure is increased from 10 to 33 MPa to finish the

expansion of the tube in the die.

In the numerical simulation, a quarter of the tube is discretized into 4536

DKTRF shell elements for the IA (Fig. 10). The same mesh is used for S3 shell

elements in ABAQUS. The IA calculation uses only 38.7 s of CPU time, whereas

the ABAQUS/Explicit calculation uses 275 s.

Figure 11 shows the thickness variation along the tube axis. The result obtained

by the IA using the Barlat (2000) yielding criteria is in good agreement with that of

ABAQUS using the same criterion.

It is noted that the thickness variation obtained by ABAQUS is closer to the

experimental result than that by IA, especially at the die corner radius (at 80 and

210 mm). This can be explained by the fact that friction in the corner radii plays an

important role, whereas the IA uses a simplified tooling action without loading

history consideration.

Fig. 8 Evolutions of the

stroke (maximal value

33 mm) and pressure

(maximal value 33 MPa)

during forming

Fig. 9 Entirely formed conical tube
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Pseudo-inverse Approach for Forming Process Modeling

In the IA, only the initial and final configurations are considered to calculate the

total strains and then the total stresses by using the deformation theory of plasticity.

This allows obtaining good strain estimation, but poor stress estimation. In the PIA,

some realistic intermediate configurations are introduced to consider the deforma-

tion paths, and the incremental flow theory of plasticity with the damage is adopted

to take into account the loading history.

Creation of Intermediate Configurations

Creation of Intermediate Configurations for Sheet Forming Modeling
In a 3D sheet forming process, since the final part shape and the tools are known, the

intermediate configurations can be approximately generated by a geometrical

Fig. 11 Comparison of

thickness variations along the

tube axis

Fig. 10 Finite element mesh

used for the IA calculation
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method before the mechanical calculation (Guo et al. 2004). Considering a sheet as

a stretched membrane in accordance with the tools (Fig. 12), its shape can be

determined by minimizing its total surface:

J ¼ Min
X
e

Ae; zP, i � zS, i � zD, i (22)

where Ae is an element area and zP, zS, and zD are the nodal vertical positions of a

point on the punch, sheet, and die, respectively.

For a 2D or axisymmetric part, the minimization of the sheet surfaces can be

done by using its profile. In a 3D case, the workpiece is divided into several sectors,

and each of them is treated as a 2D case; all sectors are assembled together by linear

interpolation (Fig. 13).

It is noted that the nodes having the same number in the intermediate and final

meshes do not represent the same material point; a transfer of the strain and stress

fields should be done between these two independent meshes.

Free Surface Method for Axisymmetric Cold Forging
In the axisymmetric cold forging process, some intermediate configurations are

generated to consider the deformation history. An intermediate configuration is

Z

zD,i

zP,i

zS,i

punch

die

blank

r

Fig. 12 Creation of an

intermediate configuration by

minimizing sheet surface

Fig. 13 Generation of the 3D mesh of an intermediate sheet configuration
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created geometrically and then corrected by using a free surface method (Halouani

et al. 2012), in order to obtain the free surface shape satisfying the equilibrium

conditions.

Geometric Proportional Intermediate Configurations
In the PIA, the FE meshM2 is created on the known final part C2. The contour of the

initial billet C0 is also known. For a two-step forging process, a geometric propor-

tional configuration is generated as follows (Fig. 14):

1. The contour nodes ofM2 are mapped onto the contour of C0, and the positions of

the interior nodes on C0 are determined by a linear solution on M2 with the

imposed contour node displacements from C2 to C0 as boundary conditions.

2. The intermediate mesh Mp
1 is created by using a geometric proportional

interpolation:

X 1
p ¼ X0 þ 0:5 X 2 � X 0

� �
(23)

where X0, Xp
1, and X2 are the nodal position vectors of the meshes on the initial,

intermediate, and final configurations.

3. The kinematic conditions of the mesh Mp
1 are checked. If some nodes penetrate

into the tool, they are mapped back on the tool contour (Fig. 15).

Determination of the Free Surface of an Intermediate Configuration
Once the kinematically admissible intermediate mesh is obtained, an inverse

calculation is carried out between Mp
1 and M0. The mesh M0 is fixed, the mesh Mp

1

is taken as a reference to calculate the strains and stresses;Mp
1 is modified iteratively

in order to satisfy the equilibrium and contact conditions. Thus, the free surface

Fig. 14 Proportional intermediate mesh for PIA in a two-stage forging
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shape is determined at the end of the equilibrium loop. The boundary conditions of

Mp
1 are defined as follows (Fig. 15):

• If the nodal force points outward from the billet (Fn > 0, false), the node

should be on a free surface having the boundary conditions: U 6¼ 0, V 6¼ 0,

σn ¼ 0, τn ¼ 0.

• If the nodal force points toward inside (Fn < 0), the contact conditions

between the billet and tool give the tangent displacement Ui
0 6¼ 0 and the normal

one Vi
0 ¼ 0 on the tool contour.

• Then, the IA calculation is performed and the nodal positions are updated in the

intermediate configuration Mp
1.

The above operations are repeated in the equilibrium iteration loop until the

convergence. The incompressibility condition, the contact condition, and the equi-

librium at the free surface enable to obtain the mesh M1
1 (superscript means step 1,

subscript means configuration C1) representing the real shape of the free surface.

Figure 16 shows the intermediate configurations obtained by the geometric

proportional method, the PIA free surface method and ABAQUS® at the sixth

step for a PIA calculation. It is noted that the proportional mesh is a good initial

mesh but has a notable difference compared to the ABAQUSmesh (zones A and B).

The realistic mesh obtained by the free surface method is very close to the

ABAQUS® mesh.

Calculation of Large Strain Increments

The calculation of the large logarithmic strains in the IA is done in one step by

directly comparing the initial billet and the final part (Halouani et al. 2010).

A similar calculation is kept in the PIA but between two successive configurations.

For an axisymmetric problem, each material point moves in its meridian plane;

the displacement field is therefore independent of the circumferential coordinate.

The movement of a material point between two successive configurations Cn�1 and

Mapping back the nodes
penetrating in the  tool
into the tool’s cavity

Tool’s contour

Free surface

Fig. 15 Kinematically

admissible free surface
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Cn is expressed by rn�1 ¼ r � Δu where rn�1 and r are the position vectors in Cn�1

and Cn and Δu is the displacement increment vector in the radial plane.

Taking the known configurations Cn as reference, the inverse deformation

gradient tensor is defined in the reference (r, z) as follows:

drn�1 ¼ @rn�1

@r
dr ¼ I� @Δu

@r

� �
dr ¼ F�1

L dr (24)

with

F�1
L ¼

1� Δu, r 0 �Δu, z
0 1� Δu

r
0

�Δw, r 0 1� Δw, z

2
64

3
75 (25)

The inverse of the Cauchy–Green left tensor is defined by:

drnð ÞTdrn ¼ drTF�T
L F�1

L dr ¼ drTB�1dr (26)

B�1 ¼
1� Δu, r
� �2 þ �Δw, r�2

0

�Δu, z 1� Δu, r
� �� Δw, r

�
1� Δw, z

�
2
4 0 �Δu, z 1� Δu, r

� �� Δw, r
�
1� Δw, z

�
1� Δu

r

� �2
0

0 1� Δw, z
� �2 þ �Δu, z�2

3
75

(27)

The eigenvalues (Δλ1�2, Δλ2�2, Δλ3�2) of the tensor B�1 give the three principal

elongations (Δλ1, Δλ2, Δλ3), and the eigenvectors define the directions of these

principal elongations:

Fig. 16 Proportional mesh, PIA free surface mesh, and ABAQUS® mesh at step 6
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B�1 ¼ M
λ�2
1 0 0

0 λ�2
2 0

0 0 λ�2
3

2
4

3
5MT (28)

Then, the principal logarithmic strain increment is given by

Δ« ¼
Δe1
Δe2
Δe3

8<
:

9=
; ¼

lnΔλ1
lnΔλ2
lnΔλ3

8<
:

9=
; (29)

The large logarithmic strains in the reference (r, z) can be obtained by the

following transformation (Batoz and Dhatt 1990):

Δ« ¼
Δer
Δeθ
Δez
Δγrz

8>><
>>:

9>>=
>>; ¼

cos 2 φ
0

sin 2 φ
2 sinφ cosφ

0

1

0

0

sin 2 φ
0

cos 2 φ
�2 sinφ cosφ

2
664

3
775

Δe1
Δe2
Δe3

8<
:

9=
; (30)

where φ is the angle from the r axis to the first principal strain axis.

In the PIA, the inverse calculation is carried out between two successive

configurations using the strains and stresses obtained in the previous step. At the

step n-1, the FE mesh is created on Cn–1 and modified by the free surface method; at

the step n, the mesh is created on Cn and mapped on Cn–1 for the inverse calculation.

These two meshes on Cn–1 are completely independent, so a transfer of the strain

and stress fields should be done between them.

Direct Integration of Plasticity and Damage for Large Strain
Increments

The return mapping algorithm (RMA) (Simo and Taylor 1986) is the most widely

used iterative scheme. It is considered as an efficient method for the plastic

integration, but it consumes much computation time because of numerous integra-

tion points in whole structure and numerous iterations in the global equilibrium

loop. Moreover, this iterative scheme may cause divergence problems for large

strain increments. The new algorithm called direct scalar algorithm of plasticity

(DSAP) proposed by Li et al. (2007) is very fast and robust without local iterative

loop. The basic idea of the DSAP is to transform the constitutive equations with

unknown stress vectors into a scalar equation in terms of equivalent stresses which

can be obtained by using the tensile curve, leading to a direct solution to obtain the

plastic multiplierΔλ (see section “▶ Simplified Plastic Ductile DamageModels and

Direct Integration Algorithms”).
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Numerical Results: Simulation of a Three-Stage Stamping Process

An axisymmetric pot is realized by three successive stamping stages (Fig. 17). The

stamping is carried out continuously on a sheet band. The geometrical dimensions

are given in Fig. 18. The first two stages are designed to obtain the biaxial strain

states below the FLC curve.

The sheet is cut by six arc knives before the stamping to facilitate the sheet draw-

in. In the third stage, the pot with a large diameter should be pushed by the punch

into the die of smaller diameter; this implies the bending–unbending effect. The

intermediate shape of the part is determined by the geometrical relations between

the sheet and the tools (Fig. 19).

The material of the sheet is the steel DC04, its thickness is 1 mm. The part

heights at the three stages are 13, 15 and 15 mm, respectively. The friction

coefficient is 0.144 between the sheet and die.

In stage 1, a good agreement of the thickness distributions is obtained between

the numerical results of the PIA and the experimental results of CETIM. It is found

that the maximal thickness thinning is 13.2 % for CETIM and 10.6 % for PIA. The

comparison of the FLD (forming limit diagram) shows also a good coherence

between the numerical and experimental strain states.

In stage 2, the thickness distributions obtained by CETIM and PIA are also very

similar. The maximal thinning is situated at the upper radius of the part. The

maximal values are 17.4 % by CETIM and 15.3 % by PIA (Fig. 20). The experi-

mental FLD points correspond well to those obtained by the PIA (Fig. 21). It is

noted that only a small zone on the part has been measured in the experimental test.

In stage 3, the difference of the thickness distributions becomes notable between

the numerical and experimental results: 30.3 % of thinning for PIA but 40.7 %

for CETIM (Fig. 22). The reason of this error is due to the assumption on the

Fig. 17 Photo of an axisymmetric pot stamping in three stages
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Stage 1

H = 13
Rp = 14 Rd = 6

A B

Rd = 5

A

H = 15
Rp = 6

C

A(21, 0)

B(22.5, 0)

Stage 2

A(16.7, 0)

B(22.5, 0)

C(4.5, 15)

Stage 3

A(13.2, 0)

B(22.5, 0)

C(4.5, 15)

B

Rd = 3.5

A

H = 15 Rp = 4

C

B

Fig. 18 Part geometry at the three stamping stages

Fig. 19 Determination of the intermediate sheet shape in the third stage
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Percent True Valuesa Part  DC04
step 2

Thickness Strain

maillarddc 04

−17.4
−17.2
−16.9
−16.6
−16.4
−16.1
−15.8
−15.6
−15.3
−15.1
−14.8
−14.5
−14.3
−14.0
−13.7
−13.5
−13.2
−12.9
−12.7
−12.4
−12.1
−11.9

b
THICK VARIATION

14.377
11.083
7.7893
4.4954
1.2016
−2.0923
−5.3861

−11.974
−15.267

−8.68

Fig. 20 Thickness variation (%) obtained by PIA and by test in stage 2. (a) Experimental test of

CETIM. (b) Numerical simulation of PIA
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Fig. 21 FLC and FLD diagrams in stage 2
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contact-friction effects. Despite this difference, PIA is able to find correctly the

maximal thinning zone.

In stage 3, the FLD numerical and experimental results are also fairly coherent

(Fig. 23). In a “good part” just before the rupture, the points are very close to the

FLC in both cases.

Percent True Values
a

b

Part  DC04
step 3 

Thickness Strain

maillarddc04

−40.7
−39.6
−38.5
−37.4
−36.3
−35.2
−34.1
−33.0
−32.0
−30.9
−29.8
−28.7
−27.6
−26.5
−25.4
−24.3
−23.2
−22.1
−21.0
−19.9
−18.8
−17.7

THICK VARIATION

8.775

4.4345

−4.2466

−8.5871

−12.928

−17.268

−21.609

−25.949
−30.289

0.093938

Fig. 22 Thickness variation (%) obtained by PIA and by test in stage 3. (a) Experimental test of

CETIM. (b) Numerical simulation of PIA
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Simplified Plastic Ductile Damage Models and Direct Integration
Algorithms

Strain-Based Damage Model

The damage models based on the continuum damage mechanics (CDM) were

presented by (Chaboche 1988; Lemaı̂tre and Chaboche 1990). The damage effect

is represented on the overall elastoplastic behavior of the material. This phenom-

enological model uses a scalar damage variable to describe the ductile defect

evolution and thermomechanical behaviors. Advanced models on the CDM ductile

damages and their strong couplings with elasto-viscoplastic behaviors are presented

in ▶Chap. 25, “Ductile Damage in Metal Forming: Advanced Macroscopic Model

ing and Numerical Simulation”. In the present chapter, a simplified damage model

called “3D strain-based damage model” (Lemaı̂tre and Chaboche 1990) is used.

This model partially ignores the loading history and is weakly coupled with the

plastic behavior. It makes the formulation very simple and well adapted to the PIA,

leading to an efficient numerical damage modeling.

The damage potential φ�
D is chosen as the function of the strain energy density

release rate (�Y ), so the damage rate _D for a material with the isotropic hardening

and damage can be written as follows:

_D ¼ � _λD
@φ�

D

@Y
¼ �Y

S0

� �s0
_e
p

(31)

�Y ¼ σ2eq

2E 1� Dð Þ2
2

3
1þ νð Þ þ 3 1� 2νð Þ σH

σeq

� �2
" #

(32)

where _λD is the damage multiplier rate, s0 and S0 are material coefficients in function

of the temperature, σeq is the equivalent stress, σH is the hydrostatic stress, _e
p
is the

equivalent plastic strain rate, E is Young’s modulus, and ν is Poisson’s coefficient.

−40 −30 −20 −10 0

Minor strain Minor strain

M
aj

or
 s

tr
ai

n

M
aj

or
 s

tr
ai

n

10 20 30

10
20
30

40
50

60
70

80

10

0

20

30

40

50

60
curve FLC
PIA

40 −40 −30 −20 −10 0 10 20 30 40

Fig. 23 FLC and FLD diagrams in stage 3
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Two assumptions are made to obtain a strain-based damagemodel: the assumption

of hardening saturation after the damage threshold giving a perfect plasticity behavior

and the assumption of proportional loading giving a constant triaxiality ratio σH/σeq.
Introducing the damage threshold eD, the equivalent plastic strain eR at the

rupture, and the damage value at the rupture Dc (experimentally available, Zhu

et al. 1992), a simplified strain-based damage model can be obtained in a rate form

or in an integrated form:

_D ¼ Dc

eR � eD

2

3
1þ νð Þ þ 3 1� 2νð Þ σH

σeq

� �2
" #

_e
p
; if e p > eD and σH > 0ð Þ

(33)

D ¼ Dc

eR � eD
ep

2

3
1þ νð Þ þ 3 1� 2νð Þ σH

σeq

� �2
" #

� eD

 !
(34)

where _e
p
is the equivalent plastic strain rate, a compressive stress state (σH < 0)

cannot induce the damage, giving _D ¼ 0.

Constitutive Equations

In this chapter, the material is supposed to obey von Mises isotropic yield criterion

(for cold forging) or Hill anisotropic yield criterion (for sheet forming). These

criteria of plasticity with the damage consideration are given by

f ¼ σeq
1� D

� σ epð Þ ¼ 0 (35)

with
σeq ¼ σTP σ

� �1=2
(36)

where σ ¼ σ epð Þ represents the uniaxial tensile curve, σeq is the equivalent stress,

and P is isotropic or anisotropic matrix defined below.

The plastic normality rule is used as the flow rule to obtain the plastic strain rate:

_«p ¼ _λ
@f

@σ
¼ _λ

@f

@σeq

@σeq
@σ

¼ _λ
P σ

1� Dð Þσeq (37)

Using the equivalent plastic work _e
p
σeq ¼ _«pð ÞTσ , the relation between the

equivalent plastic strain rate and the plastic multiplier rate _λ is obtained:

_e
p ¼ 1

σeq

_λ σTPT

1� Dð Þσeq σ ¼
_λ

1� D
(38)

The equivalent plastic strain is defined by
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_e
p ¼ _«pð ÞTA _«p (39)

For the axisymmetrical cold forging, the isotropic material gives

σf g ¼

σr

σθ

σz

σrz

8>>><
>>>:

9>>>=
>>>;
; ef g ¼

er
eθ
ez
erz

8>>><
>>>:

9>>>=
>>>;
; P ¼

1

�0:5

�0:5

0

�0:5

1

�0:5

0

�0:5

�0:5

1

0

0

0

0

3

2
6664

3
7775;

A ¼ 2

3

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0:5

2
6664

3
7775

For the thin sheet forming, the assumptions of plane stress, transverse anisotropy,

and isotropic hardening are adopted. Using the equivalent plastic work _e
p
σeq ¼ _«pð ÞT

σ and Eqs. 33, 35, the following relations in a local reference are obtained:

σf g ¼
σx
σy
σxy

8<
:

9=
;; _epf g ¼

_epx
_epy
_epxy

8><
>:

9>=
>;; A ¼ P�1 ¼

1 �r
1þr 0

�r
1þr 1 0

0 0
2 1þ2rð Þ
1þr

2
64

3
75
�1

with the average transverse anisotropy coefficient r ¼ 1
4
r0 þ 2r45 þ r90ð Þ.

Integrated Constitutive Law

In the IA, the proportional loading assumption postulates that the stress tensor at a

point is proportional to an initial tensor independent of the time:

σ x, tð Þ ¼ α tð Þσ x, t0ð Þ (40)

so the term σ/σeq is independent of the time and Eq. 37 can be analytically integrated:

«p ¼ ep

σeq
P σ ¼ 1

ES
� 1

E

� �
P σ (41)

where the relation _«
p ¼ _λ in Eq. 38 has been used (but without the damage

consideration). Adding the elastic strain vector in Eq. 40, the total strain–stress

relation is obtained:

σ ¼ H�1 þ 1

ES
� 1

E

� �
P

	 
�1

« (42)
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where H is the elastic constitutive matrix. The damage effect is uncoupled with the

plasticity and evaluated in the post-processing using Eq. 34.

Classical Return Mapping Algorithm for Plasticity–Damage

The elastic law coupled with damage can be written in a total or rate form:

σ ¼ 1� Dð ÞH«e (43)

_σ ¼ 1� Dð ÞH _«� _«pð Þ �
_Dσ

1� D
(44)

While from Eqs. 33 and 38, the damage rate can be defined by

_D ¼ Ŷ

1� D
_λ (45)

with

Ŷ ¼ Dc

eR � eD

2

3
1þ νð Þ þ 3 1� 2νð Þ σH

σeq

� �2
" #

(46)

Using Eqs. 37 and 44, 45, and 46, the stress rate can be expressed in function of

the plastic multiplier rate _λ:

_σ ¼ 1� Dð ÞH _«� _λ
HP

σeq
þ Ŷ

1� Dð Þ2 I
 !

σ (47)

Thus, the stress vector at the step n can be expressed in an incremental form:

σn � σn�1 ¼ 1� Dnð ÞHΔ«� Δλ
HP

σeq, n
þ Ŷ

1� Dnð Þ2 I
 !

σn (48)

where an implicit scheme is taken to ensure the numerical stability. Equation 44 can

be rewritten as

Iþ Δλ
HP

σeq, n
þ Ŷ

1� Dnð Þ2 I
 ! !

σn ¼ σn�1 þ 1� Dnð ÞHΔ« (49)

where the stress vector σn can be determined by using an elastic prediction then a

plastic correction. The elastic prediction gives a trial stress state as follows:

σen ¼ σn�1 þ 1� Dnð ÞHΔ« (50)

The above elastic stress vector is substituted into the plastic criterion (Eq. 35),

noted as f e. f e< 0 means the stress state inside the flow surface (elastic prediction is

true), giving Δλ ¼ 0; f e > 0 means the plasticity occurrence; a plastic correction
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should be used to determine a new stress state on the flow surface ( f ¼ 0). In the

Simo’s return mapping method, one substitutes σn (in Eq. 49) into the plastic

criterion (Eq. 35) and solves the nonlinear equation f(Δλ) ¼ 0 by using the

Newton–Raphson iterative method to obtain Δλ. It is noted that a weak coupling

method between the damage and plasticity is often adopted by using the damage

value Dn at the previous equilibrium iteration.

Direct Scalar Algorithm of Plasticity (DSAP) for Fast Plastic
Integration

In this direct algorithm, using the equivalent stress operator, Eq. 45 with unknown

stress vectors is transformed into a scalar equation in terms of the equivalent

stresses which can be determined by using the tensile curve. Thus, a quadratic

equation with an unique unknown Δλ is obtained, leading to a direct solution.

Calculation of Approximate Ratio of the Elastic Strain Part in a Strain
Increment
For a given strain increment, if the elastic and plastic parts can be separated

(even approximately), the equivalent plastic strain epn ¼ epn�1 þ Δep can be

obtained, and then the equivalent stress can be calculated by using the tensile

curve σn ¼ σ epn
� �

.

In a loading increment, a material point may undergo an elastic unloading (AD in

Fig. 24) and reloading (DA), and then an elastoplastic loading (AC) which is

modeled numerically by an elastic prediction (AB) and plastic correction (BC).
How can we determine the ratios of the elastic and plastic parts in a strain increment

(γΔ« and (1–γ)Δ«)?
Supposing that the elastic part γΔ« enables the stress state to reach the flow

surface, the criterion of plasticity should be satisfied, leading to the following

equations (Eq. 35):

Fig. 24 Elastic unloading

(AD), reloading (DA), and
elastoplastic loading (AC)
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σγn ¼ σn�1 þ γ 1� Dnð ÞHΔ« (51)

f σγ
n γð Þ� � ¼ 0 (52)

Equation 52 can be solved by the Newton–Raphson method. In order to avoid the

iterative solution, the notion of the equivalent stress is adopted to transform Eq. 51

into a scalar equation by using the operation σTPσ at the two sides of Eq. 51:

σγeq, n

� �2
¼ σeq, n�1

� �2 þ 2 1� Dnð ÞγσTn�1PHΔ«

þ γ2 1� Dnð Þ2Δ«THPHΔ« (53)

In the above equation, σeq,n
γ and σeq,n�1 are determined by using the tensile curve,

so γ can be obtained directly without iterations. The elastic ratio γ should be

between 0 and 1. γ > 1 means that the total strain increment is insufficient to

bring the stresses state back to the flow surface, so γ ¼ 1 should be taken.

Once the elastic percentage γ is obtained, the equivalent plastic strain and

equivalent stress at the step n can be calculated by

epn ¼ epn�1 þ 1� γð ÞΔen (54)

σeq, n ¼ 1� Dnð Þσ epn
� �

(55)

The stress σeq,n will be used in Eq. 57 to calculate the plastic multiplier Δλ.

Direct Calculation of the Plastic Multiplier Dl
In the plastic correction phase, Eqs. 49 and 50 can be rewritten as follows:

σen ¼ Iþ Δλ
HP

σeq, n
þ Ŷ

1� Dnð Þ2 I
 ! !

σn (56)

By using the equivalent stress notion, the operation σTPσ is done on the two

sides of the above equation, leading to an equation of second degree in Δλ:

σeeq, n

� �2
¼ �σeq, n�2 þ 2Δλ σTn

HP

σeq, n
þ Ŷ

1� Dnð Þ2 I
 !

Pσn

þ Δλ2σTn
HP

σeq, n
þ Ŷ

1� Dnð Þ2I
 !T

P
HP

σeq, n
þ Ŷ

1� Dnð Þ2 I
 !

σn

(57)

Normally, this nonlinear equation requires an iterative solution. However, if one

uses the equivalent stress obtained by Eq. 55, the damage value Dn at the previous

equilibrium iteration, and an approximate stress normal direction, then Δλ can be

directly obtained by solving Eq. 57 without iterations. Using the criterion of

plasticity (Eq. 35) and the plastic normality flow rule, the normal of the flow surface

can be determined by
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n ¼ @f

@σ
¼ Pσ

1� Dð Þσeq ! n ¼ Pσn
1� Dnð Þσeq, n ¼

Pσn
1� Dnð Þ2σn

(58)

where the last known stress normal direction can be used. Finally, Eq. 57 can be

simplified to a second-order equation of Δλ:

Δλ2 1� Dnð Þ2nTHPHnþ Ŷ
1�Dnð Þ2

� �2
σeq, n
� �2 þ 2σeq, nŶnTHn

	 


þ2Δλ 1� Dnð Þ2σeq, nnTHnþ Ŷ

1� Dnð Þ2 σeq, n
� �2#"

þ σeq, n
� �2 � σeeq, n

� �2
¼ 0

(59)

It is noted that some quantities such as γ, n, and Dn have been calculated

approximately, an improvement can be done by replacing 1� γð ÞΔen in Eq. 54

by Δλ/(1�D) (Eq. 38) and repeat the operations of Eqs. 55 and 57 once again. But

the numerical tests have shown a good agreement with the classical return mapping

method even without this improvement.

This direct scalar algorithm to obtain Δλ is very fast and robust; it enables to use
large strain increments without divergence problems.

Numerical Results of Damage Prediction

Sheet Forming of a Square Box
An advanced fully coupled damage model is developed and implemented in

ABAQUS/Explicit (Saanouni et al. 2000; Cherouat et al. 2004). This program is

used to simulate the damage evolution in the sheet forming of a square box and to

validate the PIA with the damage consideration.

The geometric data are as follows: initial blank 200 � 200 � 0.82 mm3, punch

section of 100 � 100 mm2 with a round radius of 8 mm, and die cavity of 102.5 �
102.5 mm2 with a round radius of 5 mm. The punch travel is 36 mm. The material

properties are as follows: friction coefficient μ ¼ 0.144, Young’s modulus

E ¼ 210 GPa, Poisson’s coefficient ν ¼ 0.3, yield stress σy ¼ 400 MPa, and

isotropic plasticity law σ ¼ Q 1� e�be
� � ¼ 1000 1� e�5e

� �
MPa. In the PIA, the

used damage parameters (Dc ¼ 0.95, eR ¼ 0.7, eD ¼ 0) give a similar damage

behavior with that of Cherouat et al. (2004), but PIA damage model is not able to

describe very large damage until the rupture. Figure 25 shows the damage distri-

butions obtained by ABAQUS with coupled or uncoupled plasticity–damage

models. It is found that the damage is always located in the same zone, but the

damage value given by the coupled model is more concentrated and much bigger

(Dmax ¼ 90.5 %) in the coupled case than in the uncoupled case (Dmax ¼ 53.48 %).

In Fig. 26, the damage distributions obtained by PIA are presented for the

coupled and uncoupled cases. A similar phenomenon is observed, but the damage

evolutions show some difference due to the different damage models: the rigidity in

the ABAQUS simulation decreases more rapidly after the ultimate load.
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SWIFT Stamping Simulation (Steel DC04)
This example is treated experimentally by CETIM and numerically by using the

commercial code STAMPACK and the simplified PIA. Only eight steps are used

for the PIA calculations. The geometry is presented in Fig. 27, and the material

and process parameters are as follows: punch diameter D ¼ 33 mm; die diameter

DM ¼ 35.2 mm; friction coefficient μ ¼ 0.144; blank-holding force 500 daN;

damage parameters for PIA Dc ¼ 0.4, eR ¼ 0.7, eD ¼0.2; punch travel 14 mm;

initial sheet diameter 74 mm; sheet thickness t¼ 1 mm; fillet radii rP¼ 5 mm, rM¼
4 mm; Young’s modulus E ¼ 82.377 GPa; anisotropic coefficients r0 ¼ 1.87, r45 ¼
1.12, r90 ¼ 2.02; and plastic behavior law σ ¼ 559:66 ep þ 0:0057

� �0:226
:

In Fig. 28, the FLC curves and FLD diagrams obtained by PIA and STAMPACK

(without damage consideration) are presented. It is observed that these two codes

give very similar FLD.
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Fig. 25 Damage distributions by ABAQUS with advanced damage model. (a) Coupled

damage–plasticity. (b) Non-coupled damage–plasticity
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Fig. 26 Damage distributions by PIA with simplified strain-based damage model. (a) Coupled

damage–plasticity. (b) Uncoupled damage–plasticity

24 Damage Prediction in Metal Forming Process Modeling and Optimization:. . . 795



The damage distribution obtained by PIA is presented in Fig. 29. The strong

damage zones are situated on the punch radius and on the die’s entrance. The

numerical results are in good agreement with the experimental results of CETIM.

The rupture on the punch’s radius and the necking on the die’s entrance are clearly

shown in the photo of CETIM.

Cold Forging of a Wheel
In this section, the cold forging modeling of a wheel is presented to show the

efficiency and limitations of the PIA for the forging process. The results of the PIA

including the strain-based damage model are compared to those obtained by the

incremental approach ABAQUS/Explicit.

The geometry of the billet and punch is shown in Fig. 30. Due to the symmetry of

the wheel, only a quarter of the part section is considered. The symmetric boundary

conditions are imposed on the vertical axis and horizontal plane. To compare the

two approaches, the final mesh obtained by ABAQUS® is taken for the PIA

modeling, containing 1,402 nodes and 1,324 axisymmetric quadrangle elements.

The tools are supposed rigid and modeled by analytic rigid wires.

Fsf
FP Fsf

punch

blank-holder

die

sheet

D0

h0

DM

rP

rM

D

Fig. 27 Geometry of SWIFT stamping test
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The material properties of the billet in lead are Young’s modulus E ¼ 17 GPa,

Poisson’s ratio ν ¼ 0.42, friction coefficient μ ¼ 0.05, mass density ρ ¼ 11.35

g/cm3, and Hollomon strain–stress curve σ ¼ 65:8 εpð Þ0:27 MPa. The vertical punch

travel is 38.8 mm. The damage parameters are Dc ¼ 0.5, eR ¼ 0.315 and eD ¼ 0.05.

Only 14 steps are needed for the PIA simulation, the results obtained by using more

steps are almost unchanged.

Figure 31 shows the distributions of the equivalent plastic strain obtained by the

PIA and ABAQUS®/Explicit. It is observed that the distributions are very similar and

the maximal and minimal values are in good agreement between the two approaches.

The distributions of the equivalent stress obtained by the PIA and ABAQUS®

are shown in Fig. 32. It is observed that the stress distributions are quantitatively

very similar to each other. The maximum equivalent stresses are 57.59 MPa (PIA)

and 57.49 MPa (ABAQUS®), respectively, giving an error of 0.2 %.

The damage distributions obtained by PIA and ABAQUS®/Explicit are

presented in Fig. 33. It is found that the two approaches give very close damage

values in the same zone: Dmax ¼ 20.9 % by the PIA and Dmax ¼ 19.7 % by

ABAQUS®.

The PIA leads to a considerable gain of the CPU time compared to ABAQUS®.

The ABAQUS®/Explicit uses 2,126 s, but the PIA uses only 460 s, saving 79 % of

CPU time.

endo h/2

0.44236
0.38928
0.33621
0.28313
0.23005
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0.017737
–0.035336
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Fig. 29 Damage distribution obtained by PIA and rupture obtained by CETIM test. (a) Damage

obtained by PIA. (b) Rupture in an experimental test

Fig. 30 Geometry of the

billet and punch
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Fig. 31 Equivalent plastic strain distribution obtained by PIA and ABAQUS®. (a) Pseudo-

inverse approach (14 steps). (b) ABAQUS® (339268 increments)
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Fig. 32 Equivalent stress distribution obtained by PIA and ABAQUS®. (a) Pseudo-inverse

approach (14 steps). (b) ABAQUS® (339268 increments)
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Fig. 33 Damage distributions obtained by PIA and ABAQUS®. (a) Pseudo-inverse approach

(14 steps). (b) ABAQUS® (339268 increments)
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Forming Process Optimization Using IA and PIA

General Aspects of the Forming Process Optimization

In a forming process, the original problem is usually a design or optimization

problem. Firstly, its solution requires an accurate and efficient simulation of the

process in multistages by an incremental or inverse method, taking into account the

uncertainties, the affecting parameters, and the fine identification of material

behaviors and interfaces. Secondly, the process and part geometry must be param-

eterized to reduce at maximum the computation time. Thirdly, global, robust, multi-

objective, and parallel optimization algorithms should be used to find the optimal

process and shape parameters.

The process optimization can largely improve the formability of the material and

the robustness of the process. The combination of a numerical forming solver with

an optimization algorithm allows an automatic design and control of process

parameters, such as the material properties, the holding forces, the punch velocity

and force, the geometry of the tools and initial billets, the addendum surfaces, the

number and shapes of the forming tools, the friction aspects, the thermal

effects, etc.

In the sheet forming field, many studies were presented on the optimization of

forming process parameters such as the blank holding forces, the drawbead

restraining forces, etc. (Jansson et al. 2005; Shim and Son 2000). Gelin

et al. (2005) presented their works on the optimal design and control strategies

for the sheet forming and tube hydroforming processes. Many works were done on

the optimization of geometrical parameters such as the initial blank shape and the

binder surface (Azaouzi et al. 2008, among others). Schenk and Hillmann (2004)

proposed an approach for the design and optimization of addendum surfaces by

changing the profile of the protection walls and the drawbead restraining forces.

More recently, Dong et al. (2007) proposed an automatic procedure for the design

and optimization of addendum surfaces by using the fast IA solver and the

OpenCascade (2006) free library.

In the forging field, Kobayashi et al. (1989) firstly developed the backward

tracing method for the preform design shape. Other groups worked on this method

later and used it for the optimization procedure (Han et al. 1993). Zhao et al. (1997)

presented an optimization method for the preform die shape design in metal

forming processes. Fourment et al. (1996) and Vieilledent and Fourment (2001)

made a great progress in this field. They developed shape sensitivity methods for

the optimization of nonsteady-state forging processes; the preform shape was

defined by B-spline curve taking the control points as design variables. Zhao

et al. (2004) presented their studies on the multiple objective preform die shape

optimal design by using the forward simulation and sensitivity analysis. Meng

et al. (2010) worked on the multi-objective optimization of multistage forging by

using advanced thermo-viscoplasticity-damage models and meta-models to opti-

mize the tool shapes. Castro et al. (2010) worked on the optimization of shape

and process parameters in metal forging using the genetic algorithms.
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Halouani et al. (2012b) developed a fast forging solver called PIA for the multi-

objective optimization of tool preform shapes.

For most of nongradient optimization algorithms (such as the response surface, the

genetic method or simulated annealing), an important step is to carefully select a

number of sampling points by a design of experiments (DOE). This selection has a

great influence on the efficiency and accuracy of the optimization procedure. The DOE

consists in selecting assessment of points in the design space. The difficulty is how to

use the minimum points to obtain the best distribution of the sampling points. Several

DOE can be found in the literature (Myers and Montgomery 2002). The well-known

methods are the factorial design, central composite design, Latin hypercube, D-optimal,

Box–Behnken, etc. A space-filling Latin hypercube design (LHD) is a good and

popular DOE strategy for constructing meta-models from deterministic computer

experiments (such as FE simulations) (McKay et al. 1979; Santner et al. 2003).

To limit the number of forming simulations, surrogate meta-models are often

used to construct an approximate response surface based on the real simulation

results for the optimal solution searching. In the literature, there are the moving

least square method (Breitkopf et al. 2005; Naceur et al. 2010), the Kriging method

(Emmerich et al. 2006), the diffuse approximation (Nayrolles et al. 1992), etc.

Since the metal forming processes involve very complicated phenomena, the

multi-objective optimization with several constraints should be considered. The

nongradient optimization algorithms are often adopted to avoid the gradient com-

putation, to have a robust searching procedure, and to find global optimal solutions.

Among the stochastic methods, the genetic algorithms and the simulated annealing

algorithms are largely used (Fourment et al. 1996; Castro et al. 2010; Meng

et al. 2010) to determine the Pareto front points and then to find the optimal solution

according to other technological constraints. However, these algorithms are time-

consuming; it is indispensible to reduce the number of design variables and to use a

fast forming solver (Halouani et al. 2012b).

Optimization Procedure for Forming Processes

An optimization procedure comprises four steps: defining the objective functions,

selecting the design variables, defining constraint functions, and finding the optimal

design variables. The first three steps are denoted as the optimization “modeling.”

The fourth step is the optimization “solving” problem.

Design Variables
In metal forming processes, the design variables can be divided into geometrical,

material and process-related variables. For the workpiece, the geometrical param-

eters are their shapes and dimensions; for the tools, the parameters are related to the

die and punch geometries, including the holding part and drawbeads. The material

parameters concern the Young’s modulus, Poison coefficient, hardening behavior,

anisotropy, damage, viscosity, etc. The process variables include the holding forces,

punch travel and velocity, temperatures, friction, etc.
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The shape optimization involves much more design variables than the process

optimization. Since the computation time strongly depends on the number of design

variables, so it is indispensible to parameterize the tools’ geometries. This parame-

terization can be made by using segments and radii for the simple geometry such as

the initial billet and final part (Meng et al. 2010). For more complicated geometry

such as preforms, the B-spline curves and surfaces are adopted (Halouani et al. 2012).

Objective Functions
The optimization targets can be defined by multi-objective functions:

min f 1 xð Þ, f 2 xð Þ, . . .½ �
x ¼< x1, x2, . . . , xn>

T ; xiL � xi � xiU; i ¼ 1, 2, . . . , n
(60)

where fi(x) are the objective functions, xi the design variables, and xiL and xiU the

lower and upper bounds of the design variables.

Metal forming processes are very complicated, so the optimization procedure

often involves several objective functions which depend on the forming process:

• Deep drawing: the objectives can be to minimize the thickness variation, reduce

the number of forming stages, improve the surface aspect, minimize the

springback, prevent the wrinkling or necking, minimize the blank weight,

control the punch force, etc. The following objective function was proposed by

Naceur et al. (2001) to minimize the thickness variation and avoid the necking

and wrinkling:

f ¼ min
1

Nelt

XNelt

e¼1

he � h0

h0

� �p

(61)

where h0 is the initial sheet thickness, he is the final thickness of an element, and p is
a positive pair integer ( p ¼ 2, 4, . . .).
• Forging: the objectives can be to optimize the grain sizes, reduce the punch force

or forging energy, minimize the strain variance, avoid the folding, etc. The

following objective function was used to minimize the strain variance (Meng

et al. 2010; Halouani et al. 2012b):

f ¼ min
1

Vt

XNelt

i¼1

Vi epi � epavg
� �2

with epavg ¼
1

Vt

XNelt

i¼1

Vie
p
i (62)

where epi is the equivalent plastic strain of the element i, epavg is the average

equivalent plastic strain, Vi is the volume of the element i, and Vt is the total volume.

Constraint Functions
The constraints and objective functions are related to each other in the sense that

they are often exchangeable. In an optimization modeling, one should decide which
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quantity is selected as objective, which as constraint. For example, to avoid

excessive thickness uniformity, the objective function (60) can be replaced by a

constraint on the thinning and thickening. The implicit constraint functions are

defined as follows:

gi xð Þ � 0 i ¼ 1, 2, . . . , n (63)

In the case of the deep drawing, it is not allowed that the strain states exceed the

forming limit curve (FLC). The constraint can be that all FLD points are situated

below the FLC curve. In the case of forging, the constraint functions can be the

conditions on the damage, wrinkling, filling, and volume (Meng et al. 2012;

Halouani et al. 2012b): the maximal damage should be inferior to the damage

threshold, the contour of the forged part should not have sudden changes (folding),

the volume should remain constant, etc.

Optimization Algorithms
Five types of algorithms are often used for the forming process optimization: iterative

algorithms, evolutionary and genetic algorithms, approximate optimization algorithms,

adaptive optimization algorithms, hybrid and combined optimization algorithms.

(a) Iterative Algorithms

Optimization of metal-forming processes can be performed by using classical

iterative algorithms (SIMPLEX, conjugate gradient, SQP, BFGS, etc.). These

algorithms usually require the sensitivities of the objective function and con-

straint functions with respect to the design variables. In the case of metal

forming, the FEM calculations are very time-consuming and may give inaccu-

rate sensitivities. Generally, the iterative algorithms are inadaptable to the

multi-objective optimization and may get trapped in local optima.

(b) Evolutionary and Genetic Algorithms

Genetic and evolutionary algorithms are promising because of their tendency

to find the global optimum and the possibility for parallel computing. Further-

more, they do not require the sensitivity computation. However, the large

number of function evaluations is a serious drawback. The non-dominated

sorting genetic algorithm NSGA-II (Deb 2000) is appealing to many authors

for the metal forming optimization.

(c) Approximate Algorithms

The response surface method (RSM) is a well-known representative of

approximate optimization algorithms. RSM is based on fitting a low-order

polynomial meta-model through real response points, which are obtained by

running FEM calculations for some chosen design variable settings. Next to the

RSM, other meta-modeling techniques are Kriging and neural networks.

Allowing the parallel computing and avoiding the sensitivity calculation, the

approximate optimization is a preferred technique for many authors. A disad-

vantage of these methods is that the result is an approximate optimum rather

than the real global optimum.
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(d) Adaptive Algorithms

Adaptive algorithms are incorporated within FEM codes and generally opti-

mize the time-dependent load paths of the metal-forming process during each

increment of the FEM calculation. For example, to optimize the time-dependent

pressure load path in hydroforming, one should keep a sufficient pressure to

avoid the wrinkling. When such risk is detected during a loading increment, the

pressure is increased in the next increment to avoid wrinkles in the final product.

The advantage of these algorithms is that the optimum is obtained in only one

FEM simulation. However, the access inside the FEM software is necessary, and

only time-dependent design variables can be considered. These disadvantages

seriously limit the general applicability of these algorithms.

(e) Hybrid and Combined Algorithms

Many researchers tried to combine the advantages of different optimization

algorithms. Within the metal forming community, most authors used approxi-

mate algorithms to establish a meta-model and adopted an iterative algorithm to

find the optimum. Some others constructed relatively noisy meta-models (i.e.,

many local optima) by using the Kriging and neural networks techniques and then

used a global genetic algorithm to solve the optimization problem. For adaptive

optimization algorithms, certain choose iterative algorithms, others genetic ones.

It is also possible to enhance an evolutionary algorithm with the information

provided by a meta-model-based approximate algorithm to make it more efficient

and to overcome the difficulty of the large number of function evaluations.

(f) Simulated Annealing Method

This stochastic optimization method was developed by Kirkpatrick

et al. 1983. This method is derived from an analogy with the slow cooling

phenomenon of a molten body, which leads to a low-energy solid state. It should

slowly lower the temperature, marking long plateaus so that the body reaches

the thermodynamic equilibrium at each temperature plateau. For materials, this

low energy manifests itself by obtaining a regular structure, such as crystals in

the steel. The analogy used by the simulated annealing is to search a physic state

p minimizing the energy function Φ( p). Simulated annealing usually exploits

the criteria defined by the algorithm of Metropolis et al. (1953) for the accep-

tance of a solution obtained by perturbation of the current solution. Theoretical

studies show that the simulated annealing algorithm converges to a global

optimum under certain conditions. The main drawback is related to the choice

of numerous annealing parameters such as the initial temperature, the decay rate

of the temperature, the stopping criteria, or the lengths of the temperature

plateaus. These parameters are often chosen empirically.

Preform Design and Optimization

The two-stage cold forging of an axisymmetric wheel is simulated and optimized.

The forging process is composed of a preforming stage using a preform tool

(Fig. 34) and forging stage using the final tool given by the desired part (Fig. 35).
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The initial billet is a cylinder (height ¼ 80 mm, radius ¼ 45 mm). The geometry

of the billet, the starting preform shape, and the final tools are shown in Figs. 34

and 35. The axisymmetric boundary conditions are imposed. The section is meshed

with 830 nodes and 774 quadrilateral elements. The tools are supposed rigid and

modeled by analytic rigid wires. The billet material is the lead: Young’s modulus

Fig. 34 Preforming stage using starting tool preform. (a) Initial billet. (b) Starting tool preform

(to be optimized)

Fig. 35 Forging stage using preformed billet and final forging tools. (a) Billet obtained by

performing stage. (b) Desired final forged part
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E ¼ 17 GPa, Poisson’s ratio ν ¼ 0.42, friction coefficient μ ¼ 0.05, and Hollomon

tensile curve σ ¼ 65:8 epð Þ0:27 MPa.

In this work, the starting preform is created as follows:

1. Mesh mapping from the final forged part Cf to the initial billet C0. A FE mesh is

created on the known Cf, and the nodes at the contour of Cf are mapped on the

contour of C0; the positions of other nodes (interior nodes) in C0 are determined

by a linear solution with the imposed displacements on the contour (Fig. 36).

2. Creation of the geometrically proportional FE mesh between C0 and Cf (Fig. 37):

Xp
1 ¼ Xf � (Xf � X0)/2.

3. Generation of a starting tool preform. The B-spline curve of this preform should

fit well the proportional mesh contour except for the free surface part (Fig. 37).

The right extremity (F) of the punch curve has the same height than that of the

left extremity (E) and the same horizontal position than the maximal radial

position (G) of the proportional preform. This choice gives a notable gap

between the punch curve and preform shape on the zone B, but this gap has a

little influence on the preform optimization. The B-spline curve of the lower die

can be obtained by the same method.

A B-spline curve of the preform is defined by a polygonal contour having

n + 1 (n + 1 � 4) control points C1 . . . Cn+1. These control points can be active or

passive. Figure 38 shows the punch shape curve with seven control points; only

their vertical displacements are taken as geometrical parameters to reduce the

number of design variables. C2 and C6 are the passive points having the same

vertical positions than C1 and C7 in order to keep the horizontal tangents at C1 and

C7; other five are active points giving only five optimization design variables. The

Fig. 36 FE mesh mapped from final part to initial billet
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die shape curve is defined in same manner. Finally, there are only ten optimization

design variables. These starting B-spline curves are then modified in the optimiza-

tion loop to minimize the objective functions.

The validation of the PIA is done by using the software ABAQUS/Explicit. The

punch travels are 23.7 mm in the preforming stage and 24.9 mm in the forming

stage. The PIA is used firstly between the preform and initial billet, and then

between the final part and preform. According to our numerical tests, the PIA

results are no longer sensitive to the number of steps, from 11 steps for the

preforming stage and from 12 for the forging stage.

Fig. 37 Generation of

proportional mesh and

B-spline curves of the starting

perform tools

Fig. 38 Control points of the

starting B-spline curves for

preform tools
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In a multi-objective optimization, the concept of the best design is replaced by

the concept of dominant design. This set of dominant designs is called Pareto

frontier. The designer should find a good compromise for all objective functions

according to other technical or economic constraints.

Two objective functions are adopted to minimize the plastic strain variation

(Eq. 62) and the maximal punch force. A simulated annealing optimization algo-

rithm called MOSA is used (ModeFRONTIER™ 4, User Manual). The initial

Pareto points for this two-objective optimization problem are obtained by using

200 PIA simulations (or 200 iterations in the MOSA optimization loop). The

distribution of these Pareto points (marked by red circles) is presented in the

objective function plan (Fobj
I and Fobj

II , Fig. 39).

The multi-objective optimization algorithms require a large amount of simula-

tions, so it will be very expensive to minimize the objective functions entirely using

real FE simulations. The Kriging method is adopted to build the surrogate meta-

model for the two objective functions. Kriging method is a nonparametric interpo-

lation model which interpolates the responses exactly at all sampling points.

Figure 40 shows the surrogated metal-models of the two objective functions Fobj
I

and Fobj
II using Gaussian Kriging method.

To get the optimal design values after building the meta-model, the genetic

optimization algorithm called NSGA-II in the software modeFRONTIER™ is used.

The distribution of the Pareto points obtained by using NSGA-II algorithm coupled

with the Gaussian Kriging model is shown in Fig. 41. During the optimization, lots

of new solutions are generated. This enables to have more optimal values on the
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Fig. 39 Initial Pareto points obtained by using the real simulation results
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Pareto front, giving the final optimal solutions (marked by red circles in Fig. 41). It

can be seen that the two objective functions largely decrease during the optimiza-

tion (Fobj
I ¼ 0.052! 0.035, Fobj

II ¼ 1842733.7! 504926.9, Fig. 41), giving 33 % of

reduction for the equivalent plastic strain and 72 % of reduction for the punch force.
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Fig. 40 Kriging surrogate meta-model of Fobj
I and Fobj

II in function of two design variables

(vertical displacements of P1 and P3 in Fig. 38)
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Fig. 41 Pareto front given by NSGA-II/Kriging
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Figure 42 shows a comparison between the initial preform shape and the optimal

one; a better result was achieved by using the proposed concept.

The CPU times for this two-stage forging simulation are also compared: the PIA

uses only 285 s, but the ABAQUS/Explicit uses 1,453 s (5.1 times). Therefore, in

the optimization procedure using 200 API simulations, the gain of the CPU time

becomes enormous.

Conclusions

In this chapter, several simplified and practical approaches for damage prediction in

metal-forming process modeling and optimization were presented.

• The IA exploits the knowledge of the final part shape and executes the calcula-

tion from the final part mesh to the initial blank or billet. The assumptions of

proportional loading and simplified tool actions make the IA calculation very

fast. This method gives fairly good strain estimation for the deep drawing,

hydroforming, and cold forging processes, but poor stress evaluation. A simpli-

fied total strain-based damage model is implemented into the IA without con-

sidering the coupling effect between the plasticity and damage. The IA can be

used as a numerical tool for the preliminary design and optimization in forming

processes.

• The PIA is a good compromise between the IA and incremental approaches. The

contact treatment is avoided by using some simplified tool actions as in the IA. In

order to consider the strain path, some intermediate configurations are deter-

mined geometrically and corrected by using a surface minimization method or a

free surface method, allowing very large strain increments. A 3D strain-based

damage model in a rate form is adopted and coupled with the plasticity. An

efficient direct scalar algorithm for damage–plasticity integration enables to take

Fig. 42 Initial and optimal

preform shapes
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into account the loading history so obtain good stress estimation. The PIA

combines the advantages of the IA and incremental approaches: it gives better

stress estimation then that of the IA and it is much faster than the incremental

approach. The PIA is an efficient numerical tool for the damage prediction and

forming processes optimization.

• The 3D strain damage model is based on the assumptions of the hardening

saturation after the damage threshold and the proportional loading condition. It

is implemented into the IA in a total form without considering its coupling with

the plasticity. In the PIA, the model coupling the damage and plasticity is

formulated and implemented in a rate form. The efficient direct scalar algorithm

of plasticity (DSAP) for the integration of coupled damage–plasticity is devel-

oped to take into account the loading history. Using the notion of the equivalent

stress, the constitutive equations in stress vectors are transformed into a scalar

equation in which the equivalent stresses can be obtained by the tensile curve.

Thus, the plastic multiplier can be obtained directly without iterations. This

DSAP enables to largely reduce the CPU time and to avoid divergence problems

even though for very large strain increments.

• Some optimization algorithms are combined with the IA using an integrated

material law or with the PIA using the DSAP. These simplified methods make

the optimization very efficient and robust, allowing to use the time-consuming

optimization algorithms (such as genetic algorithm, simulated annealing method,

etc.) in order to find globally optimal Pareto points for multi-objective functions.

Further research investigations will be devoted to continuously improve the

original approaches IA and PIA. In the future, the authors will implement an

adaptive meshing algorithm in the PIA in order to deal with complex parts under-

going very large plastic strains. In a forthcoming research, the authors will also

include viscoplastic and thermomechanical material models in the PIA for the hot

forging simulation. The fast PIA will be used to optimize tool preform shapes and

other parameters of the forging process.
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Abstract

This chapter is dedicated to the presentation of an advanced fully adaptive

numerical methodology for virtual sheet and/or bulk metal forming simulation

to predict any defects occurrence. First, the detailed formulation of thermodynam-

ically consistent fully coupled, nonlocal constitutive equations is given. Formu-

lated in the framework of the generalized micromorphic continua, the proposed

nonlocal constitutive equations account for the main material nonlinearities as the

isotropic and kinematic hardening, the thermal exchanges, and the isotropic

ductile damage under large inelastic strains. Second, the related numerical aspects

required to solve the initial and boundary value problem (IBVP) are presented in

the framework of a fully adaptive finite element method. First, the strong and weak

forms for the multifunctional IBVP are posed. The well-known static implicit

(SI) and dynamic explicit (DE) global resolution schemes are summarized,

followed by the detailed presentation of the local integration scheme of the fully

coupled constitutive equations. The numerical treatment of the contact and friction

is reviewed in the framework of master/slave surfaces method. Finally, some

typical examples of sheet and bulk metal forming processes are numerically

simulated using the proposed fully adaptive methodology.

Introduction

The main objective of modern metal forming processes is to design robust and light-

weight structural components which help reducing carbon dioxide emissions during both

the manufacturing process and the future use of the final product, in connection with the

newworldwide challenge related to the climate change. Accordingly, the rising demands

of customers concern the lightweight design in order to reduce significantly energy

consumption and cost efficiency while increasing the structures’ service life by enhanc-

ing their stability and deformation resistance under various thermomechanical loading

paths. These objectives cannot be reached without the help of an “efficient” and “robust”

numerical or virtual design methodology based on:

• “Advanced” constitutive equations to describe, as accurately as possible, the

main thermomechanical fields and their various interactions (full coupling

effects) during their evolution

• “Advanced” numerical tools to predict robustly and accurately the evolution of

the deformation processes and the possible defects occurrence during the

manufacturing processes or during the use of the final component in any

mechanical system

In fact, when formed or machined by large elasto–inelastic strains under room or

high temperature, metallic materials undergo a strong localization of inelastic flow

which is often at the origin of the initiation, growth, and coalescence of microcracks

and/or microvoids usually called the ductile damage. Depending on the geometrical

complexity of the forming tools, which define the shape of applied loading path,
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this well-known mechanism of ductile fracture may cause the loss of the quality of

the formed part by the formation of macroscopic cracks propagating inside this

formed part. This ductile damage can be seen as a natural consequence of the large

inelastic strain of the solid which itself is strongly dependent on the main

thermomechanical phenomena such as the mixed isotropic and kinematic harden-

ing, the heat flux, the various initial and induced anisotropies, and the initial

microstructure of the material and its change (texture) under the applied load.

Accordingly, the constitutive equations used to simulate and to optimize numeri-

cally these metal forming processes should account for these thermomechanical

phenomena and their mutual interactions or strong coupling.

Many published works have been devoted to the optimization of bulk and sheet

metal forming processes using various more or less simplified approaches. For

example, in the forming of thick or thin metallic sheets, the goal is to enhance the

capacity of the sheet to carry a large inelastic “homogeneous” strain without any

strong localization, giving some through thickness necking prior to a macroscopic

crack formation. In engineering practice, the material formability is usually

assessed with strain-based forming limit diagrams (FLD) in the case of linear

(or proportional) strain loading paths as pioneered by Mariciniak and coworkers

(Mariciniak and Kunczynski 1967; Mariciniak et al. 1973). These forming limit

diagrams or curves are determined from the experimental measurement of the

necking or local fracture onset under linear strain paths using the minor and

major principal strain diagram. However, it has been shown (Ghosh and Laukonis

1976; Arrieux et al. 1982; Arrieux and Boivin 1987; Graf and Hosford 1993;

Arrieux 1995; Stoughton 2001; Matin et al. 2006; Assempour et al. 2009) that

these strain-based forming limit criteria are not efficient when the applied strain

path is not linear (or is nonproportional). Unfortunately, in major forming pro-

cesses, the strain paths supported by deforming material points during the defor-

mation process have been shown neither linear nor monotonic. This is mainly due to

the complexity of the tools’ (dies, punches) geometry which cause locally reversed

strain path exhibiting non-negligible Bauschinger effect. This is clearly the case in

sheet forming processes, for which the FLD prediction underestimates the failure

strain as observed in many works (Chien et al. 2004; Yoshida et al. 2005; Yoshida

and Kuwabara 2007; Hora and Tong 2009; Carbonnière et al. 2009; Le Maout

et al. 2009 among others). To avoid these drawbacks, some authors proposed to

construct the FLD (or FLC) in the stress space instead of the strain space leading to

the so-called stress-based forming limit diagram, FLSD (Ghosh and Laukonis 1976;

Arrieux et al. 1982; Arrieux and Boivin 1987; Graf and Hosford 1993; Arrieux

1995; Stoughton 2001; Matin et al. 2006; Assempour et al. 2009). However, this

approach has been shown to be not efficient for complex combined stress paths

(mainly nonproportional loading paths exhibiting additional hardening), where the

material hardening is strongly dependent on the shape of the loading path (Yoshida

et al. 2005; Yoshida and Kuwabara 2007; Hora and Tong 2009). On the other hand,

when the necking takes place somewhere in the sheet, the plane stress assumption,

on which is based the FLSD, becomes highly questionable, and the predicted local

stress state is less accurate or simply wrong.
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Another way, proposed in many works in order to enhance the predictivity of the

forming limit curves, consists in completing the yield function, of von Mises or Hill

types, by appropriate instability criteria based on the pioneering works by Swift

(1952), Storen and Rice (1975), and Bressan and Williams (1983). Most instability

theories assume the existence of an initial imperfection with a given geometrical

definition, leading to a high sensitivity to the size of such an assumed initial

imperfection. On the other hand, the prediction of plastic strain and its value at

the final fracture is highly dependent on the used constitutive equations and whether

or not they account for nonlinear mixed isotropic and kinematic hardening as well

as the ductile damage effect on plastic flow and hardening evolution. In order to

avoid this problem, many authors proposed to replace the initial imperfection by

using an appropriate ductile damage theory, which allows catching naturally the

instability conditions due to the damage initiation without assuming the existence

of any initial imperfection (Needleman and Triantafyllidis 1980; Chu 1980; Chu

and Needleman 1980; Brunet and Morestin 2001 among many others).

An alternative approach, proposed in the recent last two decades, to predict the

localized neck prior to fracture in sheet or bulk metal forming, is the full coupling

between the material behavior and the ductile damage using either macroscopic

monoscale or micro-macro multiscale modeling approaches as can be found in the

recent books dedicated to the damage prediction in metal forming (Dixit and Dixit

2008; Saanouni 2012a, b). Two different kinds of damage theories are used in metal

forming problems: the Gurson-based damage theories (Gelin et al. 1985; Cordebois

and Ladeveze 1985; Lee et al. 1985; Mathur and Dawson 1987; Onate and Kleber

1988; Hartley et al. 1989; Gelin 1990; Bontcheva and Iankov 1991; Zhu and

Cescotto 1991; Brunet et al. 1996, 2005; Picart et al. 1998 among others) and the

continuum damage mechanics (CDM)-based theories (Zhu et al. 1992; Zhu and

Cescotto 1995; Saanouni et al. 2000, 2001; Villon et al. 2002; Cherouat et al. 2002a,

b; Cherouat and Saanouni 2003; Saanouni and Chaboche 2003; Lestriez et al. 2004,

2005; Saanouni et al. 2004, 2008, 2010, 2011; Mariage et al. 2005; Saanouni 2006,

2008, 2012a, b; Chaboche et al. 2006; Cesar de Sa et al. 2006; Badreddine

et al. 2007; Soyarslan et al. 2008; Boudifa et al. 2009; Saanouni and Lestriez

2009; Badreddine et al. 2010; Issa et al. 2011, 2012; Sornin and Saanouni 2011;

Labergère et al. 2011). The equivalence between the CDM and the Gurson-type

damage coupling has been investigated in Chaboche et al. (2006) where the

potentialities of the CDM approach compared to the Gurson-type approach have

been discussed mainly concerning the damage-induced anisotropy and its effect on

the other fields (strong coupling). This kind of fully coupled approach accounts for

the direct interactions (or strong coupling) between the inelastic flow, including

different kinds of hardening, and the ductile damage initiation and growth. This full

coupling allows the “natural” description of the strain localization modes inside the

deformed part on the basis of the effect of the ductile damage evolution in the other

mechanical fields under concern. Hence, it provides a simple and helpful way to

predict where and when the inelastic flow localizes due to the earliest stage of

ductile damage initiation without reference to any initial imperfection. The main

advantages of this fully coupled approach are (Saanouni 2012a, b):
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• It can be used, without any limitation, with advanced constitutive equations

accounting for initial and induced anisotropies described by various quadratic or

non-quadratic yield functions and plastic potentials. Many physical phenomena

related to large inelastic strain coupled with ductile isotropic or anisotropic

damage can be taken into account.

• The effect of the loading path shape in the stress or strain space

(non-proportionality) and in time (cyclic loading) is considered including the

reversibility of the load with or without compressive phase. This allows to

accounting for:

• The Bauschinger effect (kinematic hardening).

• The closure of microcracks and/or microvoids (unilateral effect) under the

compressive phase of the loading path and its effect on the recovery of some

physical properties as the micro-defects close.

• Due to the localization modes giving rise to highly varying thickness, this

approach will be used within full 3D or specific thick shell formulations in

order to avoid the weakness related mainly to the plane stress assumption.

This kind of approach leads to thermodynamically consistent constitutive equa-

tions (for elasticity, (visco)plasticity, mixed hardening, damage, friction, thermal

exchange, environment effect, etc.) with material parameters having a clear intrin-

sic character. In fact, since each main phenomenon is represented by a couple of

state variables, which in turn are governed by appropriate ordinary differential

equations, the identification procedure is decomposed in different steps, and the

material parameters are determined using an inverse numerical approach for each

phenomenon, while the other parameters are maintained fixed (Saanouni 2012a, b).

This chapter is dedicated to the presentation of an advanced fully adaptive

numerical methodology for virtual sheet and/or bulk metal forming simulation.

Section “Thermodynamically Consistent Modeling of the Behavior and Damage of

Metallic Materials” gives the detailed formulation of thermodynamically consistent

fully coupled multiphysical constitutive equations formulated in the framework of the

generalized micromorphic continua and accounting for the main material nonlinear-

ities as the isotropic and kinematic hardening, the thermal exchanges, and the

nonlocal ductile damage under large inelastic strains. After the short summary of

the main physical phenomena inherent to large inelastic strains, some modeling

schemes usually used in continuum mechanics are briefly discussed. The mathemat-

ical representation of the ductile damage and its representation by scalar or tensorial

variables is then presented. The kinematics of the homogeneous finite transformation

together with the main conservation laws leading to the derivation of appropriate

balance equations is presented. The formulation of the constitutive equations describ-

ing the thermomechanical behavior of the material is described in detail based on the

appropriate choices of the state and dissipation potentials. Finally, the modeling of

the constitutive equations for the contact interfaces is also presented.

The section “Numerical Aspects” is dedicated to the related numerical aspects.

Firstly, the strong and weak forms for the multifunctional initial and boundary

value problem (IBVP) are posed. Then the time and space discretization of the
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IBVP in the framework of the finite difference method and finite element method

respectively is discussed with the definition of some typical solid (3D) finite

elements. The well-known static implicit (SI) and dynamic explicit (DE) global

resolution schemes are summarized, followed by the detailed presentation of the

local integration scheme of the fully coupled constitutive equations. The numerical

treatment of the contact between deformable solids is reviewed in the framework of

master/slave surfaces method taking into account of the friction constitutive equa-

tions. Finally, a brief description of the fully adaptive numerical methodology for

virtual metal forming is presented.

Finally, section “Some Typical Examples of Virtual Metal Forming Processes”

shows some application of the proposed virtual metal forming methodology to

various sheet and bulk metal forming processes with damage occurrence. A short

discussion of the identification procedure in order to determine the best values of

the material parameters entering the fully coupled constitutive equations is first

given. Then, some applications to various metal forming processes are presented

and their results discussed.

Throughout this chapter, the following notations are used: x, x
!
, x, x

!
, x indicate

the zero (scalar), first (vector), second, third, and fourth rank tensors, respectively.

The usual tensorial product is indicated by the symbol �, while the contracted

(or inner) product is indicated by �, :, ∴, and :: for the simple, double, triple, and

quadruple contractions, respectively. In indicial form with respect to any orthonor-

mal Cartesian frame of basis e
!
j (e
!
1, e

!
2, and e

!
3), this gives: x

!
: y ¼ xiyij ¼ aj e

!
j ¼ a

!
,

x : y ¼ xijkl ykl ¼ aij ¼ a, x
! ∴ y ¼ xijk yijkl ¼ al e

!
l ¼ a

!
, or x :: y ¼ xijkl yijkl ¼ a.

Thermodynamically Consistent Modeling of the Behavior
and Damage of Metallic Materials

About the Main Physical Phenomena Inherent to Large Inelastic
Strains and Ductile Damage in Metallic Materials

Metallic components formed by large inelastic deformation under room or more or

less high temperatures involve time-independent (plastic) or time-dependent

(viscoplastic) large inelastic strains and very small elastic strains. When the large

inelastic strains with hardening localize inside typical narrow zones, the ductile

damage can take place according to the well-known mechanisms of nucleation,

growth, and coalescence of microvoids around specific inclusions, second-phase

particles, and other precipitates initially embedded inside the metallic matrix.

Briefly speaking, when a polycrystalline specimen containing inclusions is

loaded (e.g., in tension), the following three mechanisms are successively observed:

• Inelastic flow with strain hardening and microcracks nucleation: Creation, mul-

tiplication, interaction, and arrangement of dislocations at the origin of the
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plastic strain by the well-known slip inside the slip planes of each crystal

(or grain) favorably oriented with respect to the direction of the applied load.

If the temperature is high enough, some thermally activated (diffusional) mech-

anisms can take place at the grain boundaries. Also for the large inelastic strain,

grains can rotate (texture evolution) and new crystallographic slip systems

become active. This leads to increasing the internal stresses giving rise to the

strain hardening illustrated by the path ABC in Fig. 1. In fact during the path AB

the inelastic strain with hardening takes place and the microcracks nucleation

occurs without affecting the material behavior (neither elastic nor inelastic).

Note that at this stage, the mechanical fields are homogeneous inside a large

central part of the specimen.

• Microvoids growth and its effect on the inelastic flow with hardening: From

point B (Fig. 1), the microvoids grow enough and their effect becomes sensitive

introducing a non-negligible softening which decreases the hardening modulus

to zero (point D). Note that at point D, the tangent modulus is zero and the

maximum force is reached. During this stage, the elastic and inelastic behaviors

of a typical RVE (Representative Volume Element defined as an aggregate of

grains) are progressively influenced by the growing microcracks and microvoids

inside the zone where the inelastic strain is maximum (path BD in Fig. 1). This

zone is located at the central area of the specimen where a clear diffuse necking

is observed.

• Micro-defects (microvoids and or microcracks) coalescence and fracture of the

RVE: From point D, the force decreases quickly under the effect of the micro-

defects coalescence inside the RVE located at the intersection of the two shear

bands, where the inelastic dissipation is double, inducing a clear softening (path

Fig. 1 Schematic

representation of the ductile

damage (nucleation, growth,

and coalescence of

microvoids) effects on the

force–displacement curve

under tensile tension until

(Saanouni 2012a, b)
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DE, Fig. 1). In fact two shear bands form inside the central part of the specimen

and intersect at the center of the specimen (localized necking). The RVE located

at the intersection of the two shear bands contain the coalescing microvoids

inside the typical RVE until its final fracture (path DE in Fig. 1). This defines the

initiation of the first macroscopic crack inside the specimen.

• Macroscopic crack propagation (path EF, Fig. 1): Once the first RVE at the

center of the specimen is fully fractured, other neighboring RVEs inside one

shear band undergo the same scenario of the ductile fracture, creating the

propagation of the macroscopic crack following one among the two shear

bands previously formed. This phenomenon is very rapid (dynamic fracture)

leading to the final fracture of the specimen as shown in Fig. 1 (path EF).

Clearly, these four phenomena, very sensitive to the temperature, are highly

interrelated and interdependent. They are somewhat the consequences of each other

and must be modeled as such without neglecting their various couplings and strong

interactions. Consequently, any modeling work should account, as accurately as

possible, for not only the kinetics of evolution of each phenomenon (elastic strain,

thermal exchange, large inelastic strain, isotropic and anisotropic hardenings,

damage, etc.) but also for their mutual “strong” coupling and interactions.

On Some Modeling Schemes

In solid and structural mechanics, the modeling job requires two main aspects:

(i) the derivation of the main conservation laws (mass conservation, momentum

conservation, energy conservation, positivity of the entropy production) and (ii) the

derivation of the constitutive equations describing the evolution of the thermome-

chanical fields for each continuum under concern.

Generalized Conservation Laws
As depicted in the schematic representation of Fig. 2, the kinematics of the motion

for any RVE in continuum mechanics is based in two assumptions as can be found

in Truesdell and Noll (1965, 2004). The first one is the assumption of local action

on which is based the classical (local) continua well known under the name of

Cauchy continuum for which the knowledge of the first gradient of displacement

(or the transformation gradient) is enough to determine the overall kinematics of the

motion as well as all the variables needed to define its behavior. The second one is

the assumption of the nonlocal action based on the integral form of the conservation

laws as can be found in Eringen (1999, 2002). When transformed under local form

of partial differential equations, these conservation laws give rise to a new term

called the localization residuals together with appropriated jump conditions. This

leads to a somewhat so complicated theory not very easy to use from both

theoretical and numerical points of view.

However, the very helpful local action assumption can be used to define

extended generalized continuum theories which may be grouped on two families:
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(i) the higher-order continua (HOC) and (ii) the higher-grade continua (HGC) as

can be found in Forest (2006, 2009), Forest and Sievert (2003), Saanouni (2012a, b),

and Saanouni and Hamed (2013). Initially proposed by the Cosserat brothers

(Cosserat and Cosserat 1909, 2009), the HOC theory consists in adding new degrees

of freedom (dofs) in order to describe the kinematics of the transformation of the

RVE. These additional dofs can be limited to the rigid body rotation tensor of the

frame related to each RVE as proposed in the original Cosserat brothers’ theory.

They also can be a certain number (i � {1, 2, 3 . . . n}) of state variables here

taken as scalar-valued variables formally noted z
^
i, Z

^

i

� �
in which z

^
i are the strain-

like variables and Z
^

i are their associated stress-like variables as proposed in the

framework of the micromorphic theory (Eringen 1999, 2002; Forest and Aifantis

2010; Forest and Sievert 2003; Forest 2006, 2009; Saanouni 2012a, b; Saanouni and

Hamed 2013). The HGC theory consists in introducing higher gradients of the

displacement in addition to the transformation gradientFas the first gradient∇
!

1ð ÞF,

the second gradient ∇
!

2ð ÞF, the third ∇
!

3ð ÞF, and so on.

Applying the generalized principle of virtual power leads to the derivation of

(i + 1) balance equations: one classical balance of momentum (equilibrium equa-

tion) and i) additional micromorphic balance equations related to the i) introduced
micromorphic dofs (see the next section).

Formulation of the Constitutive Equations
The standard thermodynamics of irreversible processeswith state variables is still used

in the same way as in classical local continuum mechanics (Germain 1973; Truesdell

and Noll 1965, 2004; Besson et al. 2001; Lemaitre et al. 2009; Saanouni 2012a, b).

Fig. 2 Schematic representation of the different modeling schemes in continuum mechanics
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However, the space of the state variables is enlarged by adding the new couple of

micromorphic state variables
�
z
^
i, Z

^

i

�
as well as their first gradients

�
∇
!

z
^
i, Z

!̂
i

�
if a

first gradient theory is considered. A state potential is then constructed in the strain

space (e.g., the Helmholtz free energy) as a closed and convex scalar-valued

function of the strain-like variables from which all the classical and

the micromorphic stress-like variables are deduced. In addition, appropriate yield

functions and dissipation potentials have to be constructed in order to derive, using

the generalized normality rule, the local and micromorphic flux variables defining

the evolution of the strain-like variables associated to the local and micromorphic

phenomena (Forest 2006; Saanouni 2012a, b; Saanouni and Hamed 2013) as can be

developed in the next section.

These constitutive equations can be formulated using either the macroscopic

monoscale approach or the micro–macro, multiscale approach. Schematized in

Fig. 3, the macroscopic monoscale approach is phenomenological in nature

and consists in attaching many couples of local state variables, namely, (zi, Zi),

and the micromorphic state variables
�
z
^
i, Z

^

i

�
and

�
∇
!

z
^
i, Z

!̂
i

�
to each RVE

representing an integration or Gauss point (GP) of any finite element of the

structure. Then knowing the macroscopic stress tensor (or total strain tensor) at

each GP, compute its answer in terms of total strain tenor (or total stress tensor),

through the numerical integration of the fully coupled ordinary differential equa-

tions which are nothing but the constitutive equations describing the evolution of

the overall dissipative phenomena. In this approach each physical (local or

micromorphic) phenomenon is represented by a couple of state variables (tensor

of any rank) and each state variable is governed by an appropriate ordinary

differential equation (ODE). Note that this kind of approach is of deductive type

in such a manner that the material behavior is deduced from the behavior of the

RVE defined for representative experimental conditions, and then extrapolated for

more large conditions covering the future domain of use.

Fig. 3 Schematic representation of the macroscopic monoscale modeling approach (Saanouni

2012a, b)
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The micro–macro multiscale approach is more physically based, looking for the

fine description of each physical phenomenon (hardening, damage, etc.) at the

adequate scale (Schmid and Boas 1968; Bunge 1982; Mura 1987; Havner 1992;

Nemat-Nasser and Hori 1993; Yang and Lee 1993; Kocks et al. 1998; Raabe 1998;

Bornert et al. 2001; Gambin 2001; Nemat-Nasser 2004; Asaro and Lubarda 2006).

In this approach, each RVE is defined as a 3D aggregate of Ng grains, each one

being a single crystal of a given phase defined by its phase nature, shape, size, and

crystallographic orientations (Fig. 4). The idea is to use appropriate localization–-

homogenization methods in order to deduce the macroscopic behavior of the RVE

from the knowledge of the local behaviors of each of the elementary constituents

(grains, dislocations, atoms, etc.) at lower scales. This therefore requires recourse to

appropriate localization and homogenization methods. Briefly speaking, two fam-

ilies of inductive methods are often used: (i) full fieldsmethods, based on numerical

treatment, by, for instance, the finite elements method, of all of the microstructure

components (crystals), by assuming appropriate hypotheses of spatial and temporal

periodicity, thanks to homogenization techniques, and (ii) mean fields methods,

which rely on quasi-analytical methods to describe the various heterogeneities of

matter by using, for example, self-consistent methods based on the basic solutions

of the Eshelby inclusion problem. This approach is of inductive nature since it

consists of describing accurately the physical mechanisms at the appropriate lower

scales inducing naturally the macroscopic behavior thanks to the homogenization

methods.

In this chapter dedicated to the damage prediction in metal forming using the

macroscopic approach, only the monoscale modeling approach is used.

The multiscale localization–homogenization-based approach will be used in

▶Chap. 28 “Micromechanical Polycrystalline Damage-plasticity Modeling for

Metal Forming Processes” of the present volume.

Fig. 4 Schematic representation of the micro–macro multiscale modeling approach (Saanouni

2012a, b)
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Balance Equations and Thermodynamics of Irreversible Processes
for the Micromorphic Continua

Throughout this chapter, and unless direct specification, only isothermal processes

are considered for the sake of shortness. The consideration of anisothermal pro-

cesses, combining mechanical and thermal applied loading paths, can be found in

Saanouni (2012a, b).

The Proposed Micromorphic Balance Equations
In this section, the conservation laws for the micromorphic continua will be

derived. Consider an isothermal body with a volume Ω
�
x
!
, t
�
, surrounded by the

boundary Γ and moving with the velocity field _u
!�

x
!
, t
�
where x

!
is the spatial

position of any material point of the body at the current (deformed and damaged)

configuration. To the classical dofs, represented by the displacement field u
!
, three

new micromorphic dofs are added: the isotropic micromorphic damage D
^
(Y
^
its

associated force), the micromorphic isotropic hardening r
^
(R
^
its associated force),

and the macroscopic kinematic hardening α
^
(X
^
its associated force).

The first conservation law concerns the conservation of mass. For the sake of

simplicity, it is assumed that the micromorphic density is proportional to the

classical material density ρ
�
x
!
, t
�
. Accordingly, the conservation of mass keeps its

classical form as in local continuum mechanics leading to the following integral

and differential forms:

d

dt

ð
Ω

ρ x
!
, t

� �
dΩ ¼ 0 or

@ρ x
!
, t

� �
@t

þ div ρ x
!
, t

� �
_u
!

x
!
, t

� �� �
¼ 0 (1)

where the notation d(�)/dt stands for the material time derivatives of the scalar-

valued function (�).

The virtual power of internal forces δPint of the classical local continuum is extended

to the micromorphic continuum using the virtual dofs introduced above to have:

δPint ¼ �
ð
Ω

σ : ∇
!
δ _u
!

� �
dΩþ

ð
Ω

R
^
δ r

^
:

þ R

!̂
·∇
!
δ r
^
:

 !
dΩþ

ð
Ω

Y
^
δD
^
:

þY
!̂
:∇
!
δD
^
:

 !
dΩþ

ð
Ω

X
^
: δα

^
:

þ X

!̂
∴∇

!
δα
^
:

 !
dΩ

(2)

where δ _u
!
, δ r

^
:

, δD
^
:

and δα
^
:

are the kinematically admissible virtual velocity fields and

∇
!

stands for the spatial gradient operator. Note that the generalized forces σ

(the Cauchy stress tensor), R
!̂
, Y

!̂
(vectors), and X

!̂
(third-rank tensor) are

the thermodynamic forces associated with the total strain (or the symmetric part
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of ∇
!
u
!
), the first gradient of the micromorphic isotropic hardening ∇

!
r
^
, the first

gradient of the micromorphic damage ∇
!

D
^
, and the first gradient of the

micromorphic kinematic hardening ∇
!

α
!̂
.

On the other hand, the virtual power of external forces δPext can be written under

the additive form of the classical local term with three new terms related to the three

micromorphic phenomena under concern:

δPext ¼
ð
Ω

f
!
u : δ _u

!� �
dΩþ

ð
Γ

F
!
u : δ _u

!� �
dsþ

ð
Ω

f r
^

δ r
^
:

þ f
!
g r
^

:∇
!
δ r
^
:� �
dΩ

þ
ð
Γ

Fr
^

δ r
^
:� �
dsþ

ð
Ω

fD
^

δD
^
:

þ f
!
gD
^

:∇
!

δD
^
:

 !
dΩþ

ð
Γ

FD
^

δD
^
:

 !
ds

þ
ð
Ω

fα
^

: δα
^
:

þ f
!gα

^

∴∇
!
δα
^
:

 !
dΩþ

ð
Γ

Fα
^

: δα
^
:� �
ds

(3)

where f
!

u, f r
^

, f
!
g r
^

, fD
^

, f
!
gD
^

, f α
^

, and f
!gα

^

are the simple and generalized body forces

associated with the displacement, the micromorphic dofs, and their respective first

gradients, while F
!
u, Fα

^

, Fr
^

, and FD
^

are the simple and generalized micromorphic

forces acting on the appropriate parts of the boundary Γ.
Similarly, the virtual power of the acceleration (or inertia) forces δPa can be also

written under the additive form of the classical local inertia force enhanced by the

contribution of the three micromorphic phenomena:

δPa ¼
ð
Ω

ρ€u
!
: δ _u

!� �
dΩþ

ð
Ω

ρ ζ
r
^
€
r
^
δ r
^
:

þ ζ
D
^

€
D
^
δD

^
:

þ ζα^
€
α
^
: δα

^
:

 !
dΩ (4)

in which
€
u
!

is the classical local acceleration vector and the scalars
€
r
^
,
€
D
^
, and the

second-rank tensor
€
α
^

are the generalized micromorphic “accelerations.” The

micromorphic parameters ζ
r
,̂ ζ

D
,̂ and ζα ,̂ homogenous to square lengths, are scale

factors which map the local density ρ x
!
, t

� �
governed by Eq. 1 to the micromorphic

one related to each micromorphic phenomenon.

The generalized principle of virtual power, with respect to the virtual velocity

and micromorphic fields, takes the following form:

δPint þ δPext ¼ δPa 8 δ _u
!
, δ r

^
:

, δD
^
:

, δα
^
:

K:A: (5)

where K.A. stands for kinematically admissible fields in the usual sense, i.e.,

fulfilling the Neumann-type boundary conditions (BC). By using Eqs. 2, 3, and 4,

and with the help of the divergence theorem to transform the volume integrals,
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Eq. 5 leads to four balance equations. The first one is nothing but the classical local

balance of momentum expressed in terms of the Cauchy stress tensor:

div σð Þ þ f
!
u ¼ ρ€u

!
in Ω

σ : n
! ¼ F

!
u on Γ

(
(6)

The three additional generalized balance of micromorphic momentum equations

are given, in terms of the micromorphic forces, by:

div X

!̂
� f

!
gα
^

 !
� X

^� f α
^

� �
¼ ρζα^

€
α
^

in Ω

X
!̂
� f

!
gα
^

� �
:n
! ¼ Fα

^

on Γ

8>>><
>>>:

(7)

div R

!̂
� f

!
gr
^

 !
� R

^� f r
^� �

¼ ρζ
r
^
€
r
^

in Ω

R

!̂
� f

!
gr
^

 !
: n
! ¼ Fr

^

on Γ

8>>>>><
>>>>>:

(8)

div Y

!̂
� f

!
gD
^

 !
� Y

^� fD
^

� �
¼ ρζ

d
^

€
d
^

in Ω

Y

!̂
� f

!
gD
^

 !
: n
! ¼ FD

^

on Γ

8>>>>><
>>>>>:

(9)

The four partial differential equations (6), (7), (8), and (9) are nothing but the

strong forms associated with the micromorphic initial and boundary value problem

(IBVP) in which the body forces f
!
u , f r

^

, f
!

g r
^

, fD
^

, f
!
gD
^

, f α
^

, and f
!gα

^

as well as the

“contact” or surface forces F
!
u,Fr

^

,FD
^

, andFα
^

are known (given) quantities, while the

stress-like variables σ, R
^
, R

!̂
, X
^

, X
!̂
, Y
^
, and Y

!̂
have to be defined by the appropriated

constitutive equations developed in the framework of the generalized thermody-

namics of irreversible processes with state variables, as can described here after.

Let’s examine now the principle of energy conservation known as the first principle of

thermodynamics. By assuming that themicromorphic thermal phenomena are neglected,

it is easy to obtain, using the definition of the internal power similar to Eq. 2, the

generalized thermal equation governing the heat transfer under the following form:

σ : Dþ X
^

: α
_̂ þ X

!̂
∴∇

!
α
_̂ þ R

^
r
^
:

þ R

!̂
:∇
!
r
^
:

þ Y
^
D
^
:

þ Y

!̂
:∇
!

D
^
:

þ ξ� ρ _ψ þ T _sþ s _T
� �� div q

!� �
¼ 0 (10)
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in whichD ¼ _eeJ þ Din is the spatial total strain rate which decomposes additionally

to a sum of the Jaumann small elastic strain rate and the inelastic (plastic or

viscoplastic) strain rate; ψ ee, α, r,D, T,α
^
, r
^
, D
^
,∇
!
α
^
,∇
!
r
^
,∇
!
D
^� �

is the specific

Helmholtz free energy, a convex and closed function of the strain-like state vari-

ables, taken as a state potential; α is the kinematic hardening strain tensor conjugate

to the stress tensorX, and r is the isotropic hardening strain conjugate to the Orowan
stress R, and finally D is the isotropic damage variable conjugate to the force Y. The
variable s is the specific entropy of the material which is the force-like variable

associated with the absolute temperature T. and q
!

is the heat flux vector directly

related to the first gradient of the temperature using the well-known Fourier linear

heat transfer model. Note that if the derivatives of ψ and s with respect to time are

calculated and substituted into Eq. 10, then the final heat equation for the

micromorphic continuum is easily obtained (Saanouni 2012a, b). This heat equa-

tion, together with adequate thermal boundary conditions, may be added to Eqs. 6,

7, 8, and 9 in order to define completely the strong form of the IBVP (see later).

Before closing this section, let’s introduce the second principle of thermodynamics,

which expresses the positivity of the entropy production rate and the Clausius–Duhem

inequality that can be derived from the combination of the second and first principles

of the thermodynamics. If the micromorphic thermal phenomena are neglected, the

entropy production rate can be expressed under the following classical form:

ρ _sþ div
q
!

T

 !
� ξ

T
� 0 (11)

The combination of Eqs. 10 and 11 leads to the so-called Clausius–Duhem

(CD) inequality for the micromorphic continua:

σ : Dþ X
^

: α
_̂ þ X

!̂
∴∇

!
α
_̂ þR

^
r
^
:

þR

!̂
:∇
!
r
^
:

þY
^
D
^
:

þ Y

!̂
:∇
!

D
^
:

þ ξ� ρ _ψ þ s _T
� �� q

!

T
:
��!
grad Tð Þ � 0

(12)

This basic inequality will be used to derive both the state relations and the

residual dissipation inequality as discussed hereafter.

Thermodynamics of Irreversible Processes for the Micromorphic
Continua
The total time derivative of the state potential is given by

_ψ ¼ @ψ

@ee
: _ee þ @ψ

@α
: _αþ @ψ

@r
_r þ @ψ

@D
_Dþ @ψ

@T
_T þ @ψ

@α
^ : α

_̂ þ @ψ

@ r
^ r

^
:

þ @ψ

@D
^D

^
:

þ @ψ

@∇
!

α
^
∴∇

!
α
_̂ þ @ψ

@∇
!
r
^
:∇
!
r
^
:

þ @ψ

@∇
!
D
^ :∇

!
D
^
: (13)
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Using Eq. 13 in Eq. 12 together withD ¼ _ereJ þ Dir (see later), the CD inequality

in Eq. 12 transforms to

σ � ρ
@ψ

@ee

� �
: e_reJ þ ρ

 
sþ @ψ

@T

!
_T þ

 
X
^

� ρ
@ψ

@α
^

!
: α

_̂ þ
 
R
^�ρ

@ψ

@ r
^

!
r
^
:

þ
 
Y
^ � ρ

@ψ

@D
^

!
D
^
:

þ X

!̂
� ρ

@ψ

@∇
!

α
^

 !
∴∇

!
α
_̂ þ

 
R

!̂
� ρ

@ψ

@∇
!
r
^

!
:∇
!
r
^
:

þ
 
Y

!̂
� ρ

@ψ

@∇
!

D
^

!
:∇
!
D
^
:

þ σ : Dir � ρ
@ψ

@α
: _α� ρ

@ψ

@r
_r � ρ

@ψ

@D
_D� q

!

T
:
��!
grad Tð Þ � 0

(14)

Following the standard arguments of the rational thermodynamics (Truesdell

and Noll 1965, 2004), Eq. 14 leads to the definition of the:

• State relations: which defines the stress-like state variables associated with the

classical strain-like variables andwith themicromorphic ones classified as follows:

• State relations associated with the five local strain-like variables:

σ ¼ ρ
@ψ

@ee
, s ¼ �@ψ

@T
,X ¼ ρ

@ψ

@α
,R ¼ ρ

@ψ

@r
,Y ¼ �ρ

@ψ

@D
(15)

• State relations associated with the three micromorphic strain-like variables:

X
^¼ ρ

@ψ

@α
^, R

^¼ ρ
@ψ

@ r
^, Y

^¼ ρ
@ψ

@D
^ (16)

• State relations associated with the first gradient of each of the three

micromorphic strain-like variables:

X

!̂
¼ ρ

@ψ

@∇
!

α
^
, R

!̂
¼ ρ

@ψ

@∇
!

r
^
, Y

!̂
¼ ρ

@ψ

@∇
!

D
^ (17)

• The volumetric dissipation inequality: which is nothing but the residual terms of

the CD inequality in Eq. 14 rewritten here under the equivalent form:

℘v ¼ σ : Dir � X : _α α � R : _r þ Y _D� q
!

T
:
��!
grad Tð Þ � 0 (18)

Clearly, Eq. 18 indicates that there is no dissipation from the micromorphic

phenomena leading to a purely local volumetric dissipation. This assumed fact can

be easily avoided by decomposing all the micromorphic state variables to reversible

and irreversible parts similar to the total strain rate tensor as discussed in Saanouni

(2012a, b). However, doing this requires the complete experimental knowledge of

the micromorphic flow in order to choose the corresponding yield functions, which

is clearly out of our purpose at this time.
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Proposed Fully Coupled Micromorphic Constitutive Equations

Focusing our attention on the purely isothermal processes for the sake of the

simplicity and the shortness of the paper, all the thermal aspects are neglected

(see Saanouni (2012a, b), for more complete modeling including the strong

thermomechanical coupling). Consequently, the time-independent finite plasticity

flow is taken as the irreversible large strains (eir ¼ ep), while the small elastic strains

are considered as the reversible strains (ere ¼ ee). Accordingly, the couples of state
variables associated with the phenomena taken into account in this formulation are

ee, σð Þ , for the plastic flow, (r, R) for the isotropic hardening, α,Xð Þ for the

kinematic hardening, and (D, Y ) for the isotropic ductile damage in addition to

the following pairs of micromorphic state variables: r
^
;R
^� �

, ∇
!
r
^
, R

!̂ !
, α

^
, X
^� �

,

∇
!

α
^
, X

!̂ !
, D

^
;Y
^� �

, and ∇
!
D
^
, Y

!̂ !
.

Micromorphic
State potential and state relationships: The Helmholtz free energy is taken as a state

potential written, in the effective (damage free) actual locally rotated configuration,

as a convex closed function of the strain-like variables under the following form

(Hamed 2012; Saanouni 2012a, b; Saanouni and Hamed 2013):

ρψ ¼ 1

2
1� Dð Þ ee : Λ : ee þ 2

3
Cα : αþ Qr2

	 


þ 1

2

2

3
C
^ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dð Þ
p

α� α
^

� �
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þ

p
α� α

^
� �

þQ
^ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dð Þ
p

r � r
^

� �2
þH

^
D�D

^� �2	 


þ 1

2

3

2
C
^
g ∇

!
α
^

� �
∴ ∇

!
α
^

� �
þQ

^
g ∇

!
r
^

� �
: ∇

!
r
^

� �
þH

^
g ∇

!
D
^� �

: ∇
!
D
^� �	 


(19)

where Λ ¼ λe1� 1þ 2μe1 is the positive definite symmetric fourth-rank tensor of

elastic moduli for the isotropic solid defined by the well-known Lame’s parameters

λe and μe. C andQ are the kinematic and isotropic hardening macroscopic moduli;C
^

,

Q
^

, andH
^
are the coupling moduli with respect to the kinematic hardening, isotropic

hardening, and damage, respectively; and C
^
g,Q

^
g,H

^
g are the micromorphic moduli

relative to the micromorphic kinematic hardening, isotropic hardening, and dam-

age, respectively.

Using the state relations (15), (16), and (17), the local (macro) and nonlocal

(micromorphic) thermodynamic forces associatedwith themacro- andmicromorphic

state variables are deduced from the state potential (Hamed 2012; Saanouni 2012a, b;

Saanouni and Hamed 2013). After some, rather fastidious than difficult, algebraic

calculations, these can be put under the following forms:
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σ ¼ ρ
@ψ

@ee
¼ 1� Dð ÞΛ : ee ¼ 1� Dð Þ λetr eeð Þ1þ 2μee

e½ � ¼ σloc (20)

X ¼ ρ
@ψ

@α
¼ Xloc þ Xnloc, Xloc ¼

2

3
1� Dð ÞCα, Xnloc ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þ

p
X
^

(21)

R ¼ ρ
@ψ

@r
¼ Rloc þ Rnloc, Rloc ¼ 1� Dð ÞQr, Rnloc ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þ

p
R
^

(22)

Y ¼ �ρ
@ψ

@D
¼ Yloc þ Ynloc, Yloc ¼ 1

2
ee : Λ : ee þ 1

2
Qr2 þ 1

3
Cα : α

Ynloc ¼ Y
^� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� D

p R
^
r þ X

^
: α

h i (23)

X
^¼ ρ

@ψ

@α
^¼ � 2

3
C
^ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dð Þ
p

α� α
^

� �
, X

!̂
¼ ρ

@ψ

@∇
!

α
^
¼ C

^
g ∇

!
α
^

� �
(24)

R
^¼ ρ

@ψ

@ r
^¼ �Q

^ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þ

p
r � r

^
� �

, R

!̂
¼ ρ

@ψ

@∇
!

r
^
¼Q

^
g ∇

!
r
^

� �
(25)

Y
^¼ ρ

@ψ

@D
^¼ �H

^
D�D

^� �
, Y

!̂
¼ ρ

@ψ

@∇
!

D
^¼H

^
g ∇

!
D
^� �

(26)

Excepting the Cauchy stress tensor which is still fully local quantity as indicated

by Eq. 20, the three other stress-like variables associated respectively with the

kinematic hardening, isotropic hardening, and damage have additive contributions

of the classical local variables noted with the subscript (loc) and nonlocal contri-

butions due to the micromorphic variables noted with the subscript (nloc) as

indicated by Eqs. 21, 22, and 23. It is worth noting that if the micromorphic effects

are neglected, i.e., if C
^

¼Q
^

¼H
^¼ 0 and C

^
g ¼Q

^
g ¼H

^
g ¼ 0 , then all the

micromorphic contribution vanish and the classical fully coupled local state rela-

tions originally given in Saanouni et al. (1994) and Saanouni (2012a, b) are

integrally recovered.

Dissipations Analysis and Evolution Equations
According to the assumption taken above neglecting the micromorphic sources of

the dissipation, the classical nonassociative plasticity theory is assumed. To account

for the isotropic damage effects, and limiting ourselves to the von Mises plastic
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flow for the sake of simplicity, the yield function and dissipation potentials taken

from (Saanouni 2012a, b) are considered:

f σ,X,R,Dð Þ ¼ σ � Xk k � Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þp � σy � 0 (27)

F σ,X,R,Dð Þ ¼ f þ 1

2

a Xk k
C 1� Dð Þ þ

1

2

bR2

Q 1� Dð Þ

þ S

sþ 1

Y � Y0

S

� sþ1
1

1� Dð Þβ (28)

For any second-rank stress tensor T having Tdev as a deviator, the norm Tk k is

defined in the stress space by Tk k ¼ Tk kM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2ð ÞTdev

q
: Tdev if the von Mises

isotropic plastic flow is considered or by Tk k ¼ Tk kH ¼ ffiffiffi
T

p
: H : T if the Hill-type

anisotropic plastic flow is taken with H being the fourth-rank orthotropic operator.

Note that the kinematic stress tensor X is a purely deviatoric stress tensor. The

parameters a and b characterize the nonlinearity of the kinematic and isotropic

hardening, respectively, while S, s, β and Y0 characterize the nonlinear evolution of
the ductile damage. Applying the generalized normality rule in the framework of

the nonassociative plasticity theory yields to the following evolution equations for

all the dissipative phenomena under concern:

Dp ¼ _λ
p @F

@σ
¼ _λ

p @f

@σ
¼ _λ

p
n ¼ _λ

p enffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þp (29)

_α α ¼ � _λ
p @F

@X
¼ Dp � a _λ

p
CþC

^� �
C

α� C
^

C

α
^ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þp

0
B@

1
CA

0
B@

1
CA

¼
_λ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dð Þp en � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þ

p CþC
^� �

C
α� C

^

C
α
^

0
B@

1
CA

0
B@

1
CA (30)

_r ¼ � _λ
p @F

@R
¼

_λ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dð Þp 1� b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þ

p QþQ
^� �

Q
r � Q

^

Q
r
^

0
B@

1
CA

0
B@

1
CA (31)
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_D ¼ _λ
p @F

@Y
¼

_λ
p

1� Dð Þβ
Yloc þ Ynlocð Þ � Y0h i

S

� �s

¼ _λ
p
Y�
D (32)

where n ¼ @f=@σ is the outward normal to the yield surface in the rotated

stress space, en ¼ @f=@eσ is the same normal but expressed in the effective rotated

stress space, and YD
* is introduced in Eq. 32 for the simple convenience.

From Eq. 27, the normal to the yield surface in the rotated effective stress space

is given by

en ¼

3

2

σdev � X
� �
σ � Xk kM

if isotropic von Mises plastic flow

H : σ � Xð Þ
σ � Xk k

H

if anisotropic Hill plastic flow

8>>>>><
>>>>>:

(33)

The plastic multiplier _λ
p
appearing in all the evolution equations given above is

also deeply affected by the micromorphic variables and consequently is of a

nonlocal nature. In this case of time-independent plasticity, _λ
p
is classically deduced

from the consistency condition applied to the yield function (Eq. 30): _f σ,R,X,Dð Þ
¼ 0 if f σ,R,X,Dð Þ ¼ 0. By limiting ourselves to the corotationnel or Jaumann

frame for the sake of shortness (see Badreddine et al. (2010) for the Green–Naghdi

total or plastic frames), the plastic multiplier can be calculated. After some alge-

braic transformations through the derivatives of the stress-like variables and with

the help of the evolution equations, one can obtain

_λ
p ¼ 1

Hpd

2

3
3μe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þ

p
DþC

^

α
^
:� �

: en þQ
^

r
^
:� 

(34)

in which Hpd > 0 is the generalized elastoplastic hardening modulus defined, in the

rotated strain-like variables space, by the following additive contributions:

Hpd ¼ Hloc
pd þ Hnloc

pd (35)

where the local Hpd
loc and nonlocal Hpd

nloc contributions are given, in terms of stress-

like variables, by

Hloc
pd ¼ 3μþ Cþ Q� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dð Þp aen : Xloc þ bRlocð Þ þ Y�
Dσy

2 1� Dð Þ (36)
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Hnloc
pd ¼ C

^

þQ
^

�a
C
^

C

Xlocffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þp �

CþC
^� �

C
X
^

2
64

3
75 : en �b

Q
^

Q

Rlocffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þp �

QþQ
^� �

Q
R
^

2
64

3
75

� Y�
D

2 1� Dð Þ

C
^

C
Xlocffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þp �X

^

0
BBB@

1
CCCA : en þ Q

^

Q

Rlocffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þp �R

^

2
6664

3
7775

(37)

Finally, the equivalent (or accumulated) plastic strain rate is still related, as in a

fully local case, to the plastic multiplier by

_p ¼
ffiffiffiffiffiffiffiffiffi
2

3
Dp

r
: Dp ¼

_λ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dð Þp (38)

Clearly, the highly nonlocal character of both the plastic multiplier and the

elastoplastic hardening modulus appears from Eqs. 34 to 38. It is worth noting

that, if the micromorphic state variables are zero, the classical local constitutive

equations are fully retrieved as a particular case (Saanouni 2012a, b). Also let’s note

that the analytical expression in Eq. 34 of the plastic multiplier is purely indicative,

since _λ
p
is the main unknown to be determined numerically at each Gauss point of

each finite element when the numerical solution is performed (see section “Local

Integration Scheme: Computation of the State Variables at Each Integration

Point”).

To close this section, let’s give the final expression of the elastoplastic tangent

operators required for any implicit resolution scheme to solve the IBVP. These are

obtained from the time derivatives of the stress tensor given by Eq. 20 using the

constitutive equations and the plastic multiplier:

σ
_ ¼ 1� Dð ÞΛ : D� _λ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þ

p
Λ : en þ Y�

D

σ

1� Dð Þ
	 


¼ L
σ
: D� L^

α
:α^

: �L^r r
^
:

(39)

where L
σ
is the fourth-rank nonsymmetric elastoplastic-damage tangent operator

defined by

L
σ
¼ 1� Dð ÞΛ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þp
Hpd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þ

p en : Λ
� �T

� Λ : en� �
þ Y�

D en : Λ
� �

� σ

1� Dð Þ
	 


(40)

L
α
^ is a fourth-rank nonsymmetric tensor and L^r is a second-rank symmetric

tensor representing the micromorphic tangent operators given by
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L^
α
¼ 2

3

C
^

Hpd
en � Λ : en� �

þ Y�
D en � σ

1� Dð Þ
� �	 


(41)

Lr
^ ¼ Q

^

Hpd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þ

p
Λ : en� �

þ Y�
D

σ

1� Dð Þ
	 


(42)

Note that if these two micromorphic hardening contributions are zero

(i.e., C
^

¼Q
^

¼ 0 ), then L
α
^ ¼ 0 and Lr

^ ¼ 0 and Eq. 39 shrinks to its

well-known classical form found in Saanouni (2012a, b).

Extension to Large Irreversible Strains Framework

As indicated above, the small elastic strains and large inelastic (plastic or

viscoplastic) strains as well as the multiplicative decomposition of the transforma-

tion gradient into reversible and irreversible parts (i.e., F ¼ Fre : Fir ) assumptions

are assumed. This leads to the decomposition of the total strain rate D ¼ LSy ¼
_F : F�1
� �Sy

according to D ¼ _ere þ 2 ere :Ω
� �Sy þ D

ir ¼ e_reJ þ Dir in which the

irreversible strain rate tensor is defined by Dir ¼ Lir
� �Sy ¼ _F

ir
: Fir
� ��1

� �Sy
and

the reversible Jaumann strain rate e_reJ (Sy stands for the symmetric part). The

extension of the constitutive equations developed above to the finite irreversible

strains can be easily made in the framework of the so-called rotating frame

formulation using various rotated frames as found, for example, in Sidoroff and

Dogui (2001) or Nemat-Nasser (2004), Badreddine et al. (2010) among many

others. The idea behind this rotating frame formulation is to write the constitutive

equations on spatial deformed and damaged configuration locally rotated with the

rotation orthogonal tensor Q to have the same fixed orientation as the initial

configuration. This is the simplest way to fulfill the objectivity requirement. If the

total rotation frames using either the Jaumann or the Green–Naghdi objective

derivatives are used, the rotation tensor is governed by the following ordinary

differential equation:

_Q:QT ¼ WQ ¼ Ω� Ω

Q tð Þ ¼ 1 for t ¼ t0

(
(43)

where Ω ¼ LSk ¼ F_:F�1
� �Sk

is the usual spatial total material spin (Sk stands for

skew-symmetric part) in the actual frame and Ω is the same quantity defined in the

rotated frame. First Eq. 43 is numerically integrated to compute the rotation tensor
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Q which is used to rotate any second-rank tensor T and the fourth-rank tensor T

according to T ¼ QT : T :Q and T ¼ Q� QT
� �

: T : QT � Q
� �

, respectively.

Accordingly, all the tensorial variables have to be rotated in order to transport

them to the rotated configuration where they will be numerically integrated

(Badreddine et al. 2010; Saanouni 2012a, b). Note that since the additional degrees

of freedom are independent from the deformation gradient F, the rotating frame

formulation to be used with the micromorphic formulation is still unchanged

compared to the classical local formulation.

In what follows all the formulation and the numerical integration of the fully

coupled micromorphic constitutive equations will be performed in the total rotated

frame without any distinction in their notation for the sake of simplicity. Also the

following definitions are used: e ¼
ð
t

Ddt and eir ¼
ð
t

Dirdt. Throughout this chapter

where plastic strains are involved, irreversible quantities (�)ir transform to plastic

quantities (�)p as used in section “Proposed Fully Coupled Micromorphic Consti-

tutive Equations” above.

Back to the Micromorphic Balance Equations

By using the micromorphic state relations given by Eqs. 24, 25, and 26, the

micromorphic balance equations (7), (8), and (9) can be transformed to be rewritten

in terms of the strain-like variables to get

C
^
gLap α

^
� �

þC
^ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dð Þp
α� α

^
� �

� div f
!gα

^ !
� fα

^
 !

¼ ρζα^
€
α
^

in Ω

C
^
g ∇

!
α
^

� �
� f

!
gα
^

� �
:n
! ¼ Fα

^

on Γ
Fα

^

8>>><
>>>:

(44)

Q
^
gLap D

^� �
þQ

^ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þp

r � r
^

� �
� div f

!
g r
^

� �
� f r

^� �
¼ ρζ

r
^
€
r
^

in Ω

Q
^
g ∇

!
r
^

� �
� f

!
g r
^

� �
:n
! ¼ Fr

^

on Γ
F r
^

8<
:

(45)

H
^
gLap D

^� �
þH

^
D�D

^� �
� div f

!
gD
^� �

� fD
^� �

¼ ρζ
d
^

€
D
^

in Ω

H
^
g ∇

!
D
^� �

� f
!
gD
^� �

:n
! ¼ FD

^

on Γ
FD
^

8><
>: (46)

where the notation Lap(X) stands for the Laplacian of (X). Without any available

experimental information concerning the overall micromorphic body and contact

forces, it is very difficult to choose their values. Accordingly, and without limiting
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the generalities, these forces are neglected by tacking f
!gα

^

¼ 0
!
, f α

^ ¼ 0, f
!
gr
^ ¼ f

!

gD
^

¼ 0
!
, f r

^ ¼ fD
^

¼ 0, FD
^

¼ Fr
^ ¼ 0, and Fα

^ ¼ 0; the above micromorphic balance

equations (Eqs. 44, 45, and 46) are simplified and rearranged under the following

form:

‘2
α
^Lap α

^
� �

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þp

α� α
^

� �
¼ ρ

ζα^

C
^
€
α
^

in Ω

C
^
g ∇

!
α
^

� �� �
:n
! ¼ 0 on Γ

Fα
^

8>><
>>: (47)

‘2
r
^Lap r

^
� �

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dð Þp

r � r
^

� �
¼ ρζ

r
^

Q
^

€
r
^

in Ω

Q
^
g ∇

!
r
^

� �� �
:n
! ¼ 0 on Γ

F r
^

8>><
>>: (48)

‘2
d
^Lap D

^� �þ D�D
^� �

¼ ρ
ζ
d
^

H
^

€
D
^

in Ω

H
^
g ∇

!
D
^� �� �

:n
! ¼ 0 on Γ

FD
^

8>><
>>: (49)

where ‘α^, ‘r^, and ‘
d
^ are the internal length scales relative to the micromorphic

kinematic hardening, isotropic hardening, and damage, respectively, all defined as

the ratio of the micromorphic moduli by

‘α^ ¼

ffiffiffiffiffi
C
^

g

C
^

vuut
að Þ, ‘

r
^ ¼

ffiffiffiffiffi
Q
^

g

Q
^

vuut bð Þ, ‘
d
^ ¼

ffiffiffiffiffi
H
^
g

H
^

vuut
cð Þ (50)

Let’s mention that if the micromorphic damage inertia is neglected in Eq. 49

(i.e., ζ
d
^ ¼ 0 ), it leads to the well-known Helmholtz equation proposed in the

framework of the so-called implicit nonlocal damage formulations proposed in

Engelin et al. (2003), Geers et al. (2003), Geers (2004) and widely used in the

literature to regularize the IBVPs exhibiting damage-induced softening.

Modeling of the Contact with Friction

In sheet or bulk metal forming by large inelastic strains, the contact and friction

between the deformed part and the rigid and/or deforming tools, as well as the auto-

contact and friction between different parts of the same deforming solid, cannot be
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ignored. In fact, the thermal and mechanical phenomena occurring at the tools–part

interfaces, or even at the boundaries of the parts from the same deforming solid

coming in auto-contact, have to be modeled accurately as a constitutive equations

for the contact interfaces. On the other hand, these contact interfaces evolve during

the deformation process and are therefore among the unknowns of the evolution

problem. This introduces severe geometrical nonlinearities making the IBVP hard

to solve, especially when the contact interfaces undergo large changes during the

deformation history.

The first difficulty concerns the determination of contact interfaces during the

deformation history. Without going into details, the system of solids in

contact should fulfill additional equations, namely, (i) the impenetrability condi-

tion, (ii) the non-adhesion condition, and (iii) the contact unilaterality condition.

These three conditions lead to the formulation of Kuhn–Tucker optimality condi-

tions in terms of the local velocity and the contact force at any point of the contact

interface:

FN � 0 , _ϑN � 0 et FN
_ϑN ¼ 0 sur Γc

t (51)

in which FN is the normal component of the contact force and _ϑN is the normal

interpenetration rate in the direction of the outward normal to the contact interface

Γtc. Note simply, that the contact forces at each point of the contact interfaces should

be added to the external forces defining the virtual power of external

forces defined by Eq. 3 under the contact constraint defined by Eq. 51 above.

More details related to the formulation and numerical treatment of the contact

conditions can be found in the following recent books (Zhong 1993; Laursen 2002;

Wriggers 2002).

Concerning the friction modeling, it can be performed in the framework of the

thermodynamics of irreversible processes similar to the constitutive equations

developed above. Various time-independent and time-dependent friction constitu-

tive equations can be formulated in this framework (Zhong 1993; Laursen 2002;

Wriggers 2002; Saanouni 2012a, b). Here, only the formulation of time-

independent friction model from which the well-known Coulomb friction model

can be obtained as a particular case (Saanouni 2012a, b).

For metallic materials, contact surfaces always contain asperities, the size

(roughness) of which greatly influences friction conditions during slip between

these surfaces. Indeed, the contact between two very smooth surfaces is governed

by the asperities (state of the surface) present on each of the contacting surfaces. If

these two contact solids are loaded, the asperities are deformed during the relative

displacement between the pairs of contacting surfaces. If the imposed load does not

exceed a certain threshold, the asperities only undergo reversible (elastic) defor-

mation while remaining interlocked, so that if the solids are unloaded, then the

asperities return to their original configuration. This is referred as reversible

relative slip between the two solids. However, if the applied load exceeds a certain
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threshold, then the asperities undergo irreversible deformation so that after

unloading the solids can no longer return to their initial preload configuration

which is called irreversible slip.

Based on these observed facts, the normal ( _ϑN) and tangential ( _ϑ
!
τ) relative slip

rates at any material point lying in the contact interfaces are additively decomposed

into reversible and irreversible parts according to

_ϑN ¼ _ϑ
re

N þ _ϑ
ir

N ,
_ϑ
!
τ ¼ _ϑ

!
re
τ þ _ϑ

!
ir
τ (52)

In practice, the tangential reversible slip rate is termed the adhesion or friction

rate between two solids at the contact point ( _ϑ
!

re
τ ¼ _ϑ

!
fr
τ ), while the tangential

irreversible slip rate is the true slip rate between the surfaces ( _ϑ
!
ir
τ ¼ _ϑ

!
sl
τ ). In a

similar way to cumulative inelastic strain rate (see Eq. 38), the following cumula-

tive tangential slip rate is defined:

_ϑ
!
τ

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϑ
!

ir
τ : _ϑ

!
ir
τ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϑ
!
sl
τ : _ϑ

!
sl
τ

r
¼ _ϑτ (53)

Following the thermodynamical approach, the following couples of state vari-

ables are introduced at each point from the contact interface:

• ϑ
!
fr
τ , F

!
fr
τ

� �
: The adhesion ϑ

!
fr
τ associated with the tangential friction force F

!
fr
τ

• ϑ
!

sl
τ , F

!
sl
τ

� �
: The tangential slip ϑ

!
sl
τ associated with the irreversible part of the slip

tangential force F
!
sl
τ known as “tear” force

• (ϑτ, Fτ
w): The cumulative tangential slip ϑτ associated with the tangential wear

force Fτ
w.

The friction (or adhesion) force F
!
fr
τ and the slip (or tear) force F

!
sl
τ (vectors)

introduce a kind the friction anisotropy, i.e., dependence on directions in space

(similar to the kinematic hardening for the plastic flow), whereas the wear force Fτ
w

is a scalar which governs the size of the friction domain (similar to the isotropic

hardening in plasticity). Thus, a formal analogy can be established between the

adhesion F
!

fr
τ , tear F

!
sl
τ , and wear Fτ

w forces and the force-like state variables σ,X, and
R which are associated with plastic flow, kinematic hardening, and isotropic

hardening, respectively.

According to this analogy, a friction state potential is postulated while ignoring

the strong coupling with both temperature and damage which only act as simple

parameters:
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ρψ fr ϑ
!
fr
τ , ϑ

!
sl
τ ,ϑτ; T,D, . . .

� �
¼ 1

2
ϑ
!
fr
τ : C

fr T,D, . . .ð Þ� �
:ϑ
!
fr
τ

þ 1

2
ϑ
!
sl
τ : C

sl T,D, . . .ð Þ� �
:ϑ
!

sl
τ

þ 1

2
Qw T,D, . . .ð Þ½ � ϑτð Þ2 (54)

Hence, the relative contact–friction state relationships are simply deduced from

the friction state potential according to

F
!
fr
τ ¼ ρ

@ψ fr

@ϑ
!fr

τ

¼ Cfr T,D, . . .ð Þ� �
:ϑ
!
fr
τ (55)

F
!
sl
τ ¼ ρ

@ψ fr

@ϑ
!
sl
τ

¼ Csl T,D, . . .ð Þ� �
:ϑ
!

sl
τ (56)

Fw
τ ¼ ρ

@ψ fr

@ϑτ
¼ Qw T,D, . . .ð Þ½ �ϑτ (57)

whereCfr T,D, . . .ð Þ is the “penalty” second-rank symmetric tensor which represents

the elasticity of the asperities of contact surfaces, Csl T,D, . . .ð Þ is a “roughness”

symmetric second-rank tensor which characterizes the tear of asperities in the three

directions of the space, andQw(T, D, . . .) is a contact surface roughness “modulus.”

All of these operators are dependent on temperature and other physical phenomena,

such as, for example, damage caused by microcracking, wear, flaking, and so on

(Saanouni 2012a, b).

Similarly, complementary relationships which define the flux variables _ϑ
!
fr
τ ,

_ϑ
!

sl
τ ,

and _ϑτmay be defined from a “friction” yield criterion f f F
!
fr
τ , F

!
sl
τ ,F

w
τ ;T,D, . . .

� �
and

a “friction” potential Ff F
!
fr
τ , F

!
g
τ ,F

w
τ ; T,D, . . .

� �
in the context of a nonassociative

theory. These are chosen under the following form (Saanouni 2012a, b):

f f F
!

fr
τ , F

!
sl
τ ,F

w
τ ; T,D, . . .

� �
¼ F

!
fr
τ � F

!
sl
τ

��� ���
f
� ηFfr

N � Fw
τ � Fy � 0 (58)

Ff F
!

fr
τ , F

!
sl
τ ,F

w
τ ; T,D, . . .

� �
¼ f f þ

asl

2
F
!

sl
τ : C

sl
� ��1

:F
!

sl
τ þ bw

2Qw Fw
τ

� �2
(59)

where Fy is a threshold tangential force (yield limit force), asl is a

nonlinearity coefficient of the tear, and bw is the nonlinearity parameter of wear.

The norm of the tangential effective forces may be chosen as quadratic isotropic or

anisotropic:
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F
!
fr
τ � F

!
sl
τ

��� ���
f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
F
!

fr
τ � F

!
sl
τ

� �
: F

!
fr
τ � F

!
sl
τ

� �r
if isotropic frictionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F
!fr
τ � F

!
sl
τ

� �
:χ

r
: F

!
fr
τ � F

!
sl
τ

� �
if anisotropic friction

8>><
>>:

(60)

in which the second-rank symmetric tensor χ T,D, . . .ð Þ defines the anisotropy of the
friction “flow” depending in the absolute temperature and the ductile local

damage among other phenomena. The application of the normality rule

enables the derivation of the evolution relationships associated with friction, tear,

and wear:

_ϑ
!
fr
τ ¼ _λf

@Ff

@ F
!fr

τ

� � ¼ _λf
@f f

@ F
!fr
τ

� � ¼ _λf n
!
f (61)

_ϑ
!

sl
τ ¼ � _λf

@Ff

@ F
!
sl
τ

� � ¼ � _λf
@f f

@ F
!

sl
τ

� �þ asl C
sl

� ��1

:F
!
sl
τ

0
B@

1
CA ¼ _λf n

!
f � aslϑ

!
sl
v

� �
(62)

_ϑ ¼ � _λf
@Ff

@ Fw
τ

� � ¼ � _λf
@f f

@ Fw
τ

� �þ bw

Qw F
w
T

 !
¼ _λf 1� bwϑτð Þ (63)

where the outward normal to the friction surface is given by

n
!

f ¼
@f f

@ F
!fr
τ

� � ¼

F
!

fr
τ � F

!
sl
τ

� �
F
!fr
τ � F

!
sl
τ

��� ���
f

if isotropic friction

χ : F
!

fr
τ � F

!
sl
τ

� �
F
!fr

τ �F
!

sl
τ

�� ��
f

if anisotropic friction

8>>>>>><
>>>>>>:

(64)

Finally, the consistency condition applied to the friction criterion, _f f ¼ 0 if

ff ¼ 0, allows obtaining the analytic expression of the friction multiplier _λf as a

solution of the following equation:

@f f

@ F
!fr
τ

� � : _F!fr
τ þ @f f

@ F
!
sl
τ

� � : _F!sl
τ þ @f f

@ Fw
τ

� � _F
w

τ þ @f f

@ Ffr
N

� � _F
fr

N þ @f f
@T

_T þ @f f
@D

_Dþ . . . ¼ 0

(65)

The development of this advanced friction model is stopped here while pointing

out that the well-known Coulomb friction model can be found as a particular case of
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the present model when the “hardening” phenomena are neglected leading to

a perfect friction model described in the associative theory framework by the

following friction surface convex function of the normal FN and tangential F
!

τ

forces (Saanouni 2012a, b):

f f FN , F
!
τ; T, . . .

� �
¼ F

!
τ

��� ���
f
� η T,D, . . .ð ÞFN � Fy T,D, . . .ð Þ � 0 (66)

where η(T, D, . . .) is a material parameter which characterizes the friction of

the contact interfaces and Fy(T, D, . . .) is a material parameter which

characterizes the adhesion threshold. Both are temperature and damage dependent

among others.

Numerical Aspects

The overall balance equations (6), (47), (48), and (49) are nothing but the strong

forms of a highly nonlinear and fully coupled initial and boundary value problem

(IBVP) governing the equilibrium of the micromorphic solid. In this section, the

numerical aspects to solve the multifunctional IBVP are briefly discussed on the

framework of the finite element code ABAQUS/Explicit® based exclusively on

updated Lagrangian formulation.

Weak Form of the IBVP

LetΩ be the volume of the micromorphic solid at a typical time t and Γ its boundary

relative to the deformed configuration. The position of each particle from this

micromorphic body is depicted by the spatial Cartesian coordinates x, y, z. In the

absence of the micromorphic body and contact forces, the solid under concern is

supposed to be subject to the classical body force f
!
u, the displacement or velocity

field on the boundary Γu, and the force F
!
u on the boundary ΓF with the usual

conditions Γu [ ΓF ¼ Γ and Γu \ ΓF ¼ ∅ (all the micromorphic body and surface

forces being neglected).

By using the classical weighted residual method together with the Galerkin

assumption, and after performing the required integration by part taking into

account the Neumann boundary conditions, the weak forms of the above defined

IBVP can be easily obtained under the following forms (Hamed 2012; Saanouni

2012a, b; Saanouni and Hamed 2013):
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Ju u
!
, δ _u

!� �
¼
ð
Ω

ρ €u
!
:δ _u

!
dΩþ

ð
Ω

σ : ∇
!

δ _u
!� �sym

dΩ�
ð
Ω

f
!

u:δ _u
!
dΩ�

ð
ΓF

F
!
u:δ _u

!
dΩ�

ð
Γc

F
!
c:δ _u

!
dΩ ¼ 0 8δ _u

!
K:A: að Þ

J
D
^ D

^
, δD

^
:

 !
¼
ð
Ω

ρ
ζ
d
^

H
^

€
D
^
δD

^
:

dΩþ
ð
Ω

‘2
d
^ ∇

!
D
^� �

: ∇
!

δD
^
:

 !
dΩ�

ð
Ω

D�D
^� �

δD
^
:

dΩ ¼ 0 8δD^
:

K:A: bð Þ

J
r
^ r

^
, δ r

^
:� �

¼
ð
Ω

ρζ
r
^

Q
^

€
r
^
δ r

^
:

dΩ�
ð
Ω

l2
r
^ ∇

!
r
^

� �
: ∇

!
δ r

^
:� �
dΩ�

ð
Ω

ffiffiffiffiffiffiffiffiffiffiffiffi
1� D

p� �
r � r

^
� �

δ r
^
:

dΩ ¼ 0 8δ r
^
:

K:A: cð Þ

J
α
^ α

^
, δα

_̂
� �

¼
ð
Ω

ρζ
α
^

C
^

€
α
^
: δα

_̂
dΩþ

ð
Ω

l2
α
^∇

!
α
^
∴∇

!
δα

_̂
dΩ�

2

3

ð
Ω

ffiffiffiffiffiffiffiffiffiffiffiffi
1� D

p� �
α� α

^
� �

: δα
_̂
dΩ ¼ 0 8δα_̂ K:A: dð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(67)

where δ _u
!
, δD

^
:

, δ r
^
:

, and δα
_̂
are arbitrary kinematically admissible K. A. (i.e., fulfilling

the associated Dirichlet boundary conditions) virtual velocity, virtual

micromorphic damage rate, virtual isotropic hardening rate, and virtual kinematic

hardening rate fields, respectively, while F
!
c in the last LHS of Eq. 27 stands for the

contact force at the contact interface which is the solution of the contact–friction

model discussed above.

Time and Space Discretization

The IBVP defined by Eq. 67 has to be solved on the space and time domain

Ω 	 [t0, tf] in which t0 and tf are the initial and final times of the interval during

which the external loading path (purely mechanical) is applied.

The total time interval It ¼ [t0, tf] is thus discretized into (Nt) subintervals of

nonconstant size Δt, so that the approximation It ffi [Nt
n¼0

tn, tnþ1 ¼ tn þ Δt½ � holds.
For each of these time subintervals, one has to solve a nonlinear problem to

determine all the unknowns of the IBVP at the time tn+1 while supposing fully

known their values at tn.
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With this time discretization in hand, and considering the updated Lagrangian

formulation, the last equilibrium configuration obtained at time tn, called Ωtn , is

taken as the reference configuration while seeking to determine completely the

equilibrium configurationΩtnþ1
at time tn+1 as well as the overall kinematic variables

(u
!
nþ1,D

^

nþ1, r
^
nþ1, and α

^

nþ1) and local state variables (epnþ1, σnþ1,Xnþ1 αnþ1

� �
,Rnþ1

rnþ1ð Þ and Dn+1) in that configuration.

For the space discretization, the standard (Galerkin-type) displacement-based

finite element method is used to discretize the reference configuration Ωtn into a

finite number (Nte) of subdomains (or finite elements) with the simplest geometric

form called Ωe in such a manner that the approximation Ωtn ffi [Nte
e¼1

Ωe holds with

enough precision. In each finite element Ωe of the domain Ωtn defined by (Nen)
nodes, the main unknowns of the IBVP (here the displacement vector, the

micromorphic damage, the micromorphic isotropic hardening, and the

micromorphic kinematic hardening fields) are approximated, based on a nodal

approximation on the subdomain, using the appropriate Lagrange-type polynomial

interpolation functions. When the reference frame defined by the natural coordi-

nates ξ
!
e is used to define the reference element Ωr associated to Ωe, the nodal

unknowns (together with their associated virtual unknowns) are approximated on

Ωr using the classical matrix notation according to

ue x, tð Þf g ¼ Ne ξið Þ½ � ueI tð Þ� �
δue x, tð Þf g ¼ Ne ξið Þ½ � δueI tð Þ� ��

(68)

D
^
e x, tð Þ ¼ N

^
e

D
^ ξið Þ

h i
D
^
e
I tð Þ

n o
δD
^
e x, tð Þ ¼ N

^
e

D
^ ξið Þ

h i
δD
^
e
I tð Þ

n o
8<
: (69)

r ê x, tð Þ ¼ N
^
e

r
^ ξið Þ

h i
r êI tð Þ
n o

δr ê x, tð Þ ¼ N
^
e

r
^ ξið Þ

h i
δr êI tð Þ
n o

8<
: (70)

αê x, tð Þ
n o

¼ N
^
e
α
^ ξið Þ

h i
αêI tð Þ
n o

δαê x, tð Þ
n o

¼ N
^
e
α
^ ξið Þ

h i
δαêI tð Þ
n o

8<
: (71)

where Ne½ �, N
^
e

r
^

h i
, N

^
e

α
^

h i
and N

^
e

D
^

h i
are the matrices of the interpolation (or shape)

functions for each of the four nodal unknowns. The index I stands for the total

number of dofs for each element (i.e., the total number of nodes of the element Nen
times the number of unknowns per node). In 3D, this leads to an element having

11 unknowns for each node. The first and second derivatives of Eqs. 68, 69, 70, and

71 with respect to time allow the easy calculation of the corresponding velocity and

acceleration fields:
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_ue x, tð Þf g ¼ Ne ξið Þ½ � _ueI tð Þ� �
δ _ue x, tð Þf g ¼ Ne ξið Þ½ � δ _ueI tð Þg��

(72)

D
^
:

e x, tð Þ ¼ N
^
e

D
^ ξið Þ

h i
D
^
:

e
I tð Þ

( )

δD
^
:

e x, tð Þ ¼ N
^
e

D
^ ξið Þ

h i
δD

^
:

e
I tð Þ

( )
8>>>><
>>>>:

(73)

r
^
:
e x, tð Þ ¼ N

^
e

r
^ ξið Þ

h i
r
^
:
e
I tð Þ

� �

δr
^
:
e x, tð Þ ¼ N

^
e

r
^ ξið Þ

h i
δ _rêI tð Þ
n o

8><
>: (74)

α
^
:

e x, tð Þ
� �

¼ N
^
e
α
^ ξið Þ

h i
α
^
:
e
I tð Þ

� �

δα
^
:

e x, tð Þ
� �

¼ N
^
e

α
^ ξið Þ

h i
δ α

^
:
e
I tð Þ

� �
8>><
>>: (75)

€ue x, tð Þf g ¼ Ne ξið Þ½ � €ueI tð Þ� �
(76)

€
D
^ eð Þ x, tð Þ ¼ N

^
e

D
^ ξið Þ

h i €
D
^
e
I tð Þ

� �
(77)

€
r
^ eð Þ x, tð Þ ¼ N

^
e

r
^ ξið Þ

h i
€
r êI tð Þ
n o

(78)

€
α
^ eð Þ x, tð Þ
n o

¼ N
^
e
α
^ ξið Þ

h i
€
αêI tð Þ
n o

(79)

On the other hand, the first gradient of each real and virtual variable comes

directly from Eqs. 68 to 71:

∇
!

_ueð Þ
n o

¼ _eef g ¼ @Ne

@ x
!

	 

_ueI
� � ¼ @Ne

@ ξ
!

" #
@ ξ
!

@ x
!

" #
_ueI
� � ¼ Be½ � _ueI

� �

∇
!

δ _ueð Þ
n o

¼ δ _eef g ¼ @Ne

@ x
!
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@ ξ
!

" #
@ ξ
!

@ x
!

" #
δ _ueIg ¼ Be½ � δ _ueIg

��
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>>>>:

(80)
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(81)
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@N
^
e

r
^

@ ξ
!

2
4

3
5 @ ξ

!

@ x
!

" #
δr êI

n o
¼ B

^
e

r
^

h i
δr êI

n o

8>>>>>><
>>>>>>:

(82)

∇
!

αê
n o

¼
@N
^
e

α
^

@ x
!

2
4

3
5 αêI

n o
¼

@N
^
e

α
^

@ ξ
!

2
4

3
5 @ ξ

!

@ x
!

" #
αêI

n o
¼ B

^
e
α
^

h i
αêI

n o

∇
!

δαê
� �n o

¼
@N
^
e

α
^

@ x
!

2
4

3
5 δαêI

n o
¼

@N
^
e

α
^

@ ξ
!

2
4

3
5 @ ξ

!

@ x
!

" #
δαêI

n o
¼ B

^
e
α
^

h i
δαêI

n o

8>>>>>><
>>>>>>:

(83)

With the help of Eqs. 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, and

83, the weak forms taken from Eq. 67 can be written for, a typical finite element (e),
under the matrix notation as follows:

Jeu u
!e, δ _u

!
e

� �
¼ δ _uef gT Me½ � €ueI

� �þ Fe
int

� �� Fe
ext

� �� �
(84)

Je
D
^ D

^
e, δD

^
:

e

 !
¼ δD

^
:

e

( )T

M
^
e

D
^

h i €
D
^
e
I

� �
þ F

^
e

int D
^

n o
� F

^
e

ext D
^

n o� �
(85)

Je
r
^ r ê, δr

^
:
e

� �
¼ δr

^
:
e

� �T

M
^
e

r
^

h i
€
r êI

n o
þ F

^
e

int r
^

n o
� F

^
e

ext r
^

n o� �
(86)

Jα
ê α

^e, δ
_
αê

� �
¼ δα

^
:
e

� �T

M
^

α
ê

h i
€
αêI

n o
þ F

^
e
int α

^

n o
� F

^
e
ext α

^

n o� �
(87)

where the mass matrices and the internal and external loading vectors for the

reference element under concern are:

• The consistent mass matrices:

Me½ � ¼
ð
Ωr

ρ Ne½ �T Ne½ �JevdΩr (88)

M
^
e

D
^

h i
¼
ð
Ωr

ρζ
D
^

H
^ Ne

D
^

h iT
Ne

D
^

h i
JevdΩr (89)

M
^
e

r
^

h i
¼
ð
Ωr

ρζ
r
^

Q
^ Ne

r
^

h iT
Ne

r
^

h i
JevdΩr (90)
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M
^
e
α
^

h i
¼
ð
Ωr

ρζα^

C
^ Ne

α
^

h iT
Ne

α
^

h i
JevdΩr (91)

• The internal force’s vectors:

Fe
int

� � ¼
ð
Ωr

Be½ �T σef gJevdΩr (92)

F
^
e

intD
^

n o
¼
ð
Ωr

‘2
d
^ B

^
e

D
^

h iT
B
^
e

D
^

h i
þ N

^
e

D
^

h iT
N
^
e

D
^

h i	 

D
^
e

n o
JevdΩr (93)

F
^
e

int r
^

n o
¼
ð
Ωr

‘2
r
^ B

^
e

r
^

h iT
B
^
e

r
^

h i
þ N

^
e

r
^

h iT
N
^
e

r
^

h i	 

r ê
n o

JevdΩr (94)

F
^
e
int α

^

n o
¼
ð
Ωr

‘α^
2 B

^
e
α
^

h iT
B
^
e
α
^

h i
þ 2

3
N
^
e
α
^

h iT
N
^
e
α
^

h i	 

αê
n o

JevdΩr (95)

• The external force’s vectors:

Fe
ext

� � ¼
ð
Ωr

Ne½ �T f uf gJev dΩr þ
ð

ΓFur

Ne½ �T Fuf gJes dΓr þ
ð
ΓCr

Fcf gJesdΓr (96)

F
^
e

ext D
^

n o
¼
ð
Ωr

De N
^
e

D
^

h iT
JevdΩr (97)

F
^
e

ext r
^

n o
¼
ð
Ωr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� De

p
re N

^
e

r
^

h iT
JevdΩr (98)

F
^
e
ext, α

^

n o
¼ 2

3

ð
Ωr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� De

p
αf g N

^
e
α
^

h iT
JevdΩr (99)

Proceeding with the standard assembly over the total number (Nte) of elements

of the structure symbolized by the operator A
Nte

e¼1

� �
and keeping in mind that the

algebraic system in Eq. 67 should be fulfilled for any K.A. virtual fields δ _U
� �

,

δ r
^
:� �

, δ r
^
:� �

, and δD
^
:

( )
, the following fully discretized (in space and in time)

system in Eq. 100 is obtained (here written at tn+1 end of the current time interval

[tn, tn+1 ¼ tn+Δt]):
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Jnþ1
u ¼ A

Nte

e¼1
Jenþ1 ¼ M½ �nþ1

€U
� �

nþ1
þ Fintf gnþ1� Fextf gnþ1 ¼ 0f g að Þ

Jnþ1

D
^ ¼ A

Nte

e¼1
Je
D
^
,nþ1

¼ M
^

D
^

h i
nþ1

€
D
^
� �

nþ1

þ F
^

int D
^

n o
nþ1

� F
^

ext,D
^

n o
nþ1

¼ 0f g bð Þ

Jnþ1

r
^ ¼ A

Nte

e¼1
Je
r
^,nþ1

¼ M
^

r
^

h i
nþ1

€
r
^
n o

nþ1
þ F

^

int r
^

n o
nþ1

� F
^

ext, r^gnþ1
¼ 0f g cð Þ

n

J
α
^
nþ1 ¼ A

Nte

e¼1
Jeα^,nþ1 ¼ M

^

D
^

h i
nþ1

€
α
^
n o

nþ1
þ F

^

int, α
^

� �
nþ1

� F
^

int, α
^

� �
nþ1

¼ 0f g dð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(100)

where the global mass matrices are M½ � ¼ A
Nte

e¼1
Me½ �, M

^

D
^

h i
¼ A

Nte

e¼1
M
^
e

D
^

h i
, M

^

r
^

h i
¼ A

Nte

e¼1
M
^
e

r
^

h i
,

and M
^

α
^

h i
¼ A

Nte

e¼1
M
^
e
α
^

	 

; the global nodal accelerations vectors are €U

� � ¼ A
Nte

e¼1
€uef g, €

D
^
� �

¼ A
Nte

e¼1

€
D
^
e

� �
,

€
r
^
n o

¼ A
Nte

e¼1

€
r ê
n o

, and
€
α
^
n o

¼ A
Nte

e¼1

€
αê
n o

; the global internal forces vectors

are Fintf g ¼ A
Nte

e¼1
Fe
int

� �
, F

^

int D
^

n o
¼ A

Nte

e¼1
F
^
e

int D
^

n o
, F

^

int r
^

n o
¼ A

Nte

e¼1
F
^
e

int r
^

n o
, and F

^

int α
^

n o
¼ A

Nte

e¼1
F
^
e

intα
^

� �
; and finally the global external forces vectors are Fextf g ¼ A

Nte

e¼1
Fe
ext

� �
,

F
^

ext D
^g ¼ A

Nte

e¼1
F
^
e

ext D
^

n o�
, F

^

ext r
^

n o
¼ A

Nte

e¼1
F
^
e

ext r
^

n o
, and F

^

ext α
^

n o
¼ A

Nte

e¼1
F
^
e

ext α
^

� �
.

Many finite elements (iso-parametric or sub-parametric with or without Hour-

glass control) can be constructed with, for each node, 11 unknowns for 3D prob-

lems: three components of the displacement vector, one micromorphic damage, one

micromorphic isotropic hardening, and six components for the micromorphic

kinematic hardening second-rank tensor. For the sake of shortness of this chapter,

the description of the finite elements having additional micromorphic dofs is

skipped and the reader is referred to Hamed (2012), Saanouni (2012a, b), and

Saanouni and Hamed (2013).

Global Resolution Schemes

The fully discretized algebraic system in Eq. 100 is a hyperbolic, highly

nonlinear system to be solved numerically over each typical time increment of

size Δt ¼ tn+1 � tn as discussed in section “Time and Space Discretization.”

The solution methodology consists of assuming to be known the complete solution

n ¼ Un,D
^

n, r
^
n,α

^
n

n o
of this hyperbolic IBVP at the time tn and of seeking a

complete approximated solution nþ1 ¼ Unþ1,D
^

nþ1, r
^
nþ1, α

^
nþ1

n o
at time tn+1

that fulfill the Eq. 100 over the current time interval [tn, tn+1 ¼ tn + Δt].
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Briefly speaking, this involves the linearization of the system in Eq. 100 thanks to

appropriate time discretization and the solving of a linear or nonlinear problem over

each time interval [tn, tn+1 ¼ tn + Δt] using iterative or direct non-iterative methods.

Two resolution schemes are often used: the static implicit (SI) scheme and the

dynamic explicit (DE) or dynamic implicit (DI) schemes. Several solution schemes

can be used according to the type and severity of the nonlinearities of the IBVP and

depending on the imposed constraints, such as incompressibility conditions or

contact conditions with our without friction (Oden 1972; Zienkiewicz and Taylor

1967; Owen and Hinton 1980; Crisfield 1991, 1997; Hinton 1992; Bonnet and

Wood 1997; Ladeveze 1998; Simo and Hughes 1997; Belytschko et al. 2000;

Reddy 2004; Ibrahimbegovic 2006; De Souza et al. 2008; Wriggers 2008). In

general, the procedure of obtaining the numerical solutions of a nonlinear IBVP

such as in Eq. 100 is drawn either from explicit non-iterative schemes or from

implicit iterative schemes. However, two resolution schemes are often used: the

static implicit (SI) scheme and the dynamic explicit (DE) scheme.

Outlines of the SI Scheme
If the inertia effects are neglected (quasi-static problems), the system in Eq. 100

transforms to an elliptical nonlinear algebraic system of the form in Eq. 101, the

solution of which can be performed using the iterative Newton-Raphson scheme

(Hamed 2012; Saanouni 2012a, b; Saanouni and Hamed 2013).

ℜuf gnþ1 ¼ Fintf gnþ1 � Fextf gnþ1 ¼ 0f g að Þ
ℜ

D
^

n o
nþ1

¼ F
^

int D
^

n o
nþ1

� F
^

ext,D
^

n o
nþ1

¼ 0f g bð Þ
ℜ

r
^

� �
nþ1

¼ F
^

int r
^

n o
nþ1

� F
^

ext,r^
n o

nþ1
¼ 0f g cð Þ

ℜ^
α

n o
nþ1

¼ F
^

int,α
^

� �
nþ1

� F
^

ext,α
^

� �
nþ1

¼ 0f g dð Þ

8>>>>>>><
>>>>>>>:

(101)

When linearized using the Newton–Raphson scheme, this system can arranged

under the following formal matrix form:

ℜuf g
ℜ

D
^

n o
ℜ

r
^

� �
ℜα

^

� �

8>>><
>>>:

9>>>=
>>>;

i

nþ1

þ

@ ℜuf g
@ Uf g

@ ℜuf g
@D
^

@ ℜuf g
@r
^

@ ℜuf g
@ α

^f g
@ ℜ^

Df g
@ Uf g

@ ℜ^
Df g

@D
^

@ ℜ^
Df g

@r
^

@ ℜ^
Df g

@ α
^f g

@ ℜ^
rf g

@ Uf g
@ ℜ^

rf g
@D
^

@ ℜ^
rf g

@r
^

@ ℜ^
rf g

@ α
^f g

@ ℜ^
αf g

@ Uf g
@ ℜ^

αf g
@D
^

@ ℜ^
αf g

@r
^

@ ℜ^
αf g

@ α
^f g

2
666666664

3
777777775

i

nþ1

δU

δD
^

δ r
^

δα^

8>><
>>:

9>>=
>>;

nþ1

¼
0

0

0

0

8>><
>>:

9>>=
>>;

(102)

where (i) is the number of the current iteration and the operator δ defines the

corrections of nodal unknowns during two successive iterations according to
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δ Uf gð Þnþ1 ¼ Uf giþ1
nþ1 � Uf ginþ1

δD
^� �

nþ1
¼ D

^� �iþ1

nþ1
� D

^� �i
nþ1

δ r
^

� �
nþ1

¼ r
^
� �iþ1

nþ1
� δr

^
� �i

nþ1

δ Uf gð Þnþ1 ¼ α
^
n oiþ1

nþ1
� α

^
n oi

nþ1

8>>>>>>><
>>>>>>>:

(103)

Without going into details, the iterative solution procedure is the following:

starting from an initial solution which is the one at tn for the first iteration,

the system in Eq. 102 is solved with respect to the unknowns (δ{U})n+1, δD
^� �

nþ1
,

δ r
^

� �
nþ1

, and (δ{U})n+1. These allow the calculation of the new solution at the next

iteration thanks to Eq. 103. This new solution is checked for the system in Eq. 101

using appropriate convergence criterion until the final convergence. The convergence

rate depends on the mathematical properties of the tangent matrix in the system in

Eq. 102 (Dautray and Lions 1984). Note that each term of this tangent matrix gives

rise to several terms coming from the derivatives of the integrals found in Eqs. 92, 93,

94, 95, 96, 97, 98, and 99 in which the state variables are discretized by the time

discretization scheme (see later). For the sake of shortness, the overall terms of this

tangent matrix are not computed here and can be found in Hamed (2012), Saanouni

(2012a, b), and Saanouni and Hamed (2013). It is simply indicated that the compu-

tation of the overall terms of the tangent stiffness matrix is not so trivial under large

plastic strains (geometrical nonlinearities), plastic flow with nonlinear hardening,

damage-induced softening, and contact with friction commonly observed in metal

forming of metallic structures (see the last term of the RHS of Eq. 96).

Outlines of the DE Scheme
When the inertia effects are accounted for (dynamic problems), the nonlinear

hyperbolic system in Eq. 100 can be rewritten on the typical time increment [tn,
tn+1 ¼ tn+Δt] with the help of Eq. 101, under the following form:

M½ �nþ1
€U

� �
nþ1

þ ℜuf gnþ1 ¼ 0f g að Þ
M
^

D
^

h i
nþ1

€
D
^
� �

nþ1

þ ℜ
D
^

n o
nþ1

¼ 0f g bð Þ

M
^

r
^

h i
nþ1

€
r
^
n o

nþ1
þ ℜ

r
^

� �
nþ1

¼ 0f g cð Þ
M
^

D
^

h i
nþ1

€
α
^
n o

nþ1
þ ℜ^

α

n o
nþ1

¼ 0f g dð Þ

8>>>>>>><
>>>>>>>:

(104)

The most used DE resolution schemes of IBVP with several weak forms as

Eq. 104 consist in solving sequentially and successively, over the same typical time

increment tn tnþ1 ¼ tn þ Δt½ � , the four equations of system Eq. 104. Explicit

schemes express the solution at tn+1 exclusively in terms of the quantities entirely
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known at the preceding instants tn, tn�1, etc. This has the benefit of great simplicity

of numerical implementation and avoids the computation of the tangent stiffness

matrix. However, the size of the time step Δt is controlled by appropriate stability

and precision criteria and can be severely limited giving rise to a large CPU time. If,

in addition, the lumped mass matrices can be easily obtained, then an explicit

dynamic global resolution scheme is preferred (see Zienkiewicz and Taylor

(1967); Hughes (1987); Bathe (1996); Belytschko et al. (2000); Wriggers (2008)

for more details on the sequential solving strategy).

Briefly speaking, first the mechanical problem in Eq. 104 is solved to determine

{U}n+1 using the values of the other dofs at tn, i.e., D
^n o

n
, r

^
n o

n
, and α

^
n o

n
. The

problem in Eq. 104 is then solved with respect to D
^n o

nþ1
using {U}n+1, r

^
n o

n
, and

α
^
n o

n
. Next the problem in Eq. 104 is solved to determine r

^
n o

nþ1
using {U}n+1,

D
^n o

nþ1
, and α

^
n o

n
. Finally, the problem in Eq. 104 is solved on the same time

increment to determine α
^
n o

nþ1
knowing {U}n+1, D

^n o
nþ1

, and r
^
n o

nþ1
. To illustrate

this solving scheme, only the main steps of solving Eq. 104 are outlined hereafter.

Since the solution n ¼ Un, D
^

n, r
^
n, α

^
n

n o
is fully known at tn, the equation in

Eq. 104 written at tn takes the form ([ML] stands for the lumped mass matrix):

ML½ �n €U
� �

n
þ ℜuf gn ¼ ML½ �n €U

� �
n
þ Fintf gn � Fextf gn ¼ 0f g (105)

This equation is solved in order to compute the acceleration vector at tn:

€U
� �

n
¼ ML½ ��1

n Fextf gn � Fintf gn
� �

(106)

With the help of truncated Taylor expansion, the velocity and the middle of the

time increment defined by tn+1/2 ¼ (tn + tn+1)/2 are obtained (Δt is the current time

step, i.e., Δtn+1):
_U

� �
nþ1

2

’ _U
� �

n�1
2

þ Δtþ Δtn
2

€U
� �

n
þ . . . (107)

Finally, the displacement vector at the end of the time increment (tn+1) is also
obtained using the similar truncated Taylor expansion:

Uf gnþ1 ’ Uf gn þ Δt _U
� �

nþ1
2

þ . . . (108)

The stability condition can be approximated by (see ABAQUS User’s manual):

Δt � min he
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ

λe þ 2μe

r� �
(109)
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in which he is the size of the smallest finite element and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ= λe þ 2μeð Þp

is the

inverse of the speed of a stress wave traveling through the elastic solid.

The same type of DE solving scheme is applied to solve successively equations

Eq. 104b–d associated time steps are calculated (see Hamed 2012; Saanouni

2012a, b; Saanouni and Hamed 2013). The smallest value of the four computed

time steps is selected to increase the time and to go to the next step.

Local Integration Scheme: Computation of the State Variables at
Each Gauss Point

Regardless of the global resolution scheme (static implicit or dynamic explicit), it

requires the calculation of internal and external force vectors given by the integrals

in Eqs. 92, 93, 94, 95, 96, 97, 98, and 99. The numerical computation of these

integrals using the quadrature Gauss method and the values of some state variables

at each Gauss point of each element are required. This is the case for the stress

tensor σnþ1 in Eq. 92; the contact force vector F
!
C
nþ1 in Eq. 96; the local damage Dn+1

in Eqs. 97, 98, and 99; the local isotropic hardening strain rn+1 in Eq. 98; and the

kinematic hardening strain tensor αnþ1 in Eq. 99. The computation of these state

variables passes through the local integration of the fully coupled constitutive

equations defined by Eqs. 20, 21, 22, 23, 24, 25, 26, 27, 29, and 33 on the typical

time interval tn tnþ1 ¼ tn þ Δt½ �.
This will be performed using the well-known return-mapping algorithm based

on the elastic prediction and plastic correction method for general nonassociative

elastoplasticity models (see, e.g., Simo and Hughes 1997; Belytschko et al. 2000;

Saanouni 2012a, b). In the presence of the nonlinear isotropic and kinematic

hardenings, it has been shown in Saanouni and Chaboche (2003), Badreddine

et al. (2010), and Saanouni (2012a, b) that combining the asymptotic scheme

(Walker and Freed 1991) with the return-mapping algorithm leads to an efficient

and robust unconditionally stable integration scheme in presence of the ductile

damage.

First of all, let us mention that the first-order ordinary differential equations

(29), (30), (31), and (32) can be classified into two classes: Eqs. 29 and 32 have the

form

8t� tn , tnþ1½ � _y ¼ φ y, tð Þ
y tð Þ ¼ yn for t ¼ tn

�
(110)

while Eqs. 30 and 31 have the form

8t� tn, tnþ1½ � _y ¼ φ y, tð Þ ϕ y, tð Þ � y½ �
y tð Þ ¼ yn for t ¼ tn

�
(111)
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The solution of Eq. 110 obtained by the classical θ-method is

ynþθ ¼ yn þ Δt θ _ynþ1 þ 1� θð Þ _yn
� �

for 0 � θ � 1 (112)

while the solution of Eq. 111 has the following form:

ynþθ ¼ ynexp �θφ ynþθ

� �
Δt

� �þ 1� exp �θφ ynþθ

� �
Δt

� �� �
ϕ ynþθ

� �
for 0 � θ � 1

(113)

Applying the solutions (112) and (113) with fully implicit case (θ ¼ 1) allows

rewriting the main micromorphic fully coupled constitutive equations, at the end

of the time step (tn+1 ¼ tn + Δt), under the following discretized form (with Znþ1

¼ σdevnþ1 � Xnþ1):

epnþ1 ¼ ep
n
þ Δλp

ennþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1ð Þp where ennþ1¼

3

2

σdevnþ1 � Xnþ1

� �
σ � Xk knþ1

¼ 3

2

Znþ1

Znþ1

�� ��
nþ1

(114)

rnþ1 ¼ rnexp �bΔλp
QþQ

^

Q

 ! !

þ 1� exp �bΔλp
QþQ

^

Q

 ! ! !
1

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1ð Þp Q

QþQ
^

 ! 

þ r
^
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dnþ1ð Þp Q
^

QþQ
^

 !!
(115)

αnþ1 ¼ αnexp �Δλpa
CþC

^

C

 ! !

þ 1� exp �Δλpa
CþC

^

C

 ! ! ! ennþ1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1ð Þp C

CþC
^

 ! 

þ α
^

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1ð Þp C

^

CþC
^

 !!
(116)

Dnþ1 ¼ Dn þ Δλp

1� Dnþ1ð Þβ
Ynþ1 � Y0h i

S

� �s

¼ Dn þ ΔλpY�
Dnþ 1 (117)

where only the von Mises stress norm σ � Xk k is used to be brief (no problem to

use any other quadratic or non-quadratic stress norm). To these differential

equations should be added the yield function and the overall force-like variables

written at tn+1:
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f nþ1 ¼
σnþ1 � Xnþ1

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1

p � Rnþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1

p � σy (118)

σnþ1 ¼ 1� Dnþ1ð ÞΛ : ee
nþ1

¼ 1� Dnþ1ð ÞΛ : een þ Δe� Δλp
ennþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1ð Þp

 !

(119)

Xnþ1 ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1ð Þ

p
CþC

^� �
αnþ1 �C

^

α^n

� �
(120)

Rnþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1ð Þ

p
QþQ

^� �
rnþ1 �Q

^

r
^
n

� �
(121)

Ynþ1 ¼ 1

2
eenþ1 : Λ : eenþ1 þ

1

2
Qr2nþ1 þ

1

3
Cαnþ1

: αnþ1 þ
1

2
Q
^ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dnþ1ð Þ
p

rnþ1 � r
^
n

� � rnþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1

p

þ 1

3
C
^ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dnþ1ð Þ
p

αnþ1 � α
^

n

� �
:

αnþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnþ1

p �H
^

Dnþ1 �D
^

n

� �
(122)

In Eqs. 120, 121, and 122, αnþ1 is given by Eq. 116, rn+1 is given by Eq. 115, and

Dn+1 is given by Eq. 117, while the dofs (D
^

n, r
^
n, α

^

n) are provided by the convergent

solution of the previous loading step.

Given an applied total strain increment Δe computed from the increment of the

deformation gradient imposed over the time increment [tn, tn+1], so that the total

strain at tn+1 is known and given by enþ1 ¼ en þ Δe , and knowing all the state

variables (σn, αn, e
p
n, αn, rn, Dn) as well as the nodal variables or dofs (D

^

n, r
^
n, α

^

n) at

the beginning of the time interval tn, their values (σnþ1,αnþ1, e
p
nþ1,αnþ1, rn+1,Dn+1) at

tn+1 have to be computed so that the yield condition, i.e.,

f nþ1 σnþ1,Xnþ1,Rnþ1,Dnþ1

� � ¼ 0 (see Eq. 115), is fulfilled.

The well-known elastic prediction – plastic correction algorithm – is used to

solve the problem using a reduced number of equations as is summarized hereafter

(see Saanouni (2012a, b) for more details).

Elastic prediction: If Δe is assumed purely elastic without producing any

dissipative phenomenon (i.e., Δλp ¼ 0), then from Eq. 116 a trial stress tensor is

deduced for the isotropic elasticity (etrialnþ1 ¼ een þ Δe is the fully known assumed

elastic strain):

σtrialnþ1 ¼ 1� Dnð ÞΛ : etrialnþ1 ¼ 1� Dnð Þ λetrace etrialnþ1

� �
1þ 2μee

trial
nþ1

� �
(123)
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The trial yield function is then computed from Eq. 116 and writes:

f trialnþ1 σtrialnþ1,Xn,Rn;Dn

� � ¼ σtrialnþ1 � Xn

�� ��� Rnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dnð Þp � σy (124)

If f trialnþ1 σtrialnþ1,Xn,Rn;Dn

� �
< 0, then the elastic train assumption holds and the

solution at the end of this step is given by σnþ1 ¼ σtrialnþ1,Xnþ1 ¼ Xn, e
p
nþ1 ¼ epn,Rnþ1

¼ Rn,Ynþ1 ¼ Yn and Dn+1 ¼ Dn, and the next loading step is performed. This

happens typically when elastic unloading takes place.

Plastic correction: If f trialnþ1 σtrialnþ1,Xn,Rn;Dn

� �
> 0, then the step under concern is

plastic and the variables σtrialnþ1 etrialnþ1 or e
p
n

� �
,Xn αnð Þ,Rn rnð Þ,Dn Ynð Þ should be itera-

tively corrected in order to get their final values

σnþ1 epnþ1

� �
,Xnþ1 αnþ1

� �
,Rnþ1 rnþ1ð Þ,Dnþ1 Ynþ1ð Þ fulfilling the plastic admissibility

condition at tn+1 (i.e., f
trial
nþ1 σnþ1,Xnþ1,Rnþ1;Dnþ1

� � ¼ 0). To do that the constitutive

equations will be reduced to only two nonlinear equations with two independent

unknowns Δλp and Dn+1.

By using Eq. 123 the stress tensor, Eq. 119 can be expressed function of the trial

stress:

σnþ1 ¼ 1� Dnþ1ð Þ σtrialnþ1

1� Dn
� 2μeΔλpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dnþ1ð Þp ennþ1

 !
(125)

With the help of Eqs. 114 to 122 and 125 and after some simple algebraic

transformations, the problem is reduced to the two following nonlinear equations

(see Saanouni 2012a, b; Hamed 2012; Saanouni and Hamed 2013):

f nþ1 ¼ Z�
nþ1

�� ��� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Dnþ1

p 3μΔλpþ 1� exp �Δλpa
CþC

^

C

 ! ! !
C

a

 !
þ

Q
^

r
^
n�σy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Dnþ1

p �

QþQ
^� � rnexp �bΔλp

QþQ
^

Q

 ! !
þ 1� exp �bΔλp

QþQ
^

Q

 ! ! !
	

1

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Dnþ1ð Þp Q

QþQ
^

 !
þ r

^
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�Dnþ1ð Þp Q
^

QþQ
^

 ! !
2
666664

3
777775¼ 0

and

gnþ1 ¼Dnþ1�Dn�ΔλpY�
nþ1 ¼Dnþ1�Dn� Δλp

1�Dnþ1ð Þβ
Ynþ1 Dnþ1,Δλpð Þ�Y0

S

� s

¼ 0

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(126)

These two highly nonlinear equations are linearized and iteratively solved

thanks to the Newton-Raphson scheme according to
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f nþ1

gnþ1

� �s

þ
@f nþ1

@Δλp
@f nþ1

@Dnþ1

@gnþ1

@Δλp
@gnþ1

@Dnþ1

2
4

3
5
s

δΔλp
δDnþ1

� �
þ . . . ¼ 0 (127)

where (s) is the iteration number and δΔλp, δDn+1 stand for the correction of the two

unknowns between two successive iterations according to

δΔλp ¼ Δλpð Þsþ1 � Δλpð Þs
δD ¼ Dnþ1ð Þsþ1 � Dnþ1ð Þs

�
from which

Δλpð Þsþ1 ¼ Δλpð Þs þ δΔλp
Dnþ1ð Þsþ1 ¼ Dnþ1ð Þs þ δD

�
(128)

At each iteration, first Eq. 127 is solved with respect to the two unknowns

δΔλp, δD, and then using Eq. 128 the solution for the iteration (s+1) is deduced
and checked for Eq. 126 using the appropriate convergence criterion. When the

convergence is reached, the final values of δΔλp, δD stand for the final solution for

the current step and are used to determine all the other state variables using the

discretized equation given above. This iterative computation is performed for each

Gauss point of each finite element during each loading increment (see Saanouni

(2012a, b) for more details).

Finally let us mention that the computation of the rotation tensor at the end of

each time increment Q
nþ1

required to rotate the overall tensorial variables (see

section “Extension to Large Irreversible Strains Framework”) is performed via the

integration of Eq. 43 using a fully implicit backward Euler scheme (Hughes and

Winget 1980) together with the assumption of constant velocity gradient over the

time increment (linear kinematics), in order to ensure the incremental objectivity

when the corotational frame is used (see Badreddine et al. 2010 for theGreen–Naghdi

total and plastic frames). For this corotational frame, one can easily obtain

Q
nþ1

¼ 1� Δt
2
Ωnþ1=2

	 
�1

: 1þ Δt
2
Ωnþ1=2

	 

:Q

n
(129)

whereΩnþ1=2 is the material rotation rate at the middle of the time increment. Once

the rotation tensor is computed using Eq. 91, it is used to rotate all the tensorial

variables according to the discussion in section “Extension to Large Irreversible

Strains Framework.” This allows rotating the actual deformed fictive configuration

in order to have the same Lagrangian orientation as the unreformed initial config-

uration in which the local integration procedure discussed above is performed.

On the Numerical Aspects of the Contact with Friction

The contact with friction is an important issue in metal forming (Kobayashi

et al. 1989; Rowe et al. 1991; Wagoner and Chenot 2001; Dixit and Dixit 2008;

Saanouni 2012a, b). The theoretical formulation (see section “Modeling of the

Contact with Friction”) and numerical treatment of the contact with friction are
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deeply discussed in the recent books and the references given there (Zhong 1993;

Laursen 2002; Wriggers 2002; Saanouni 2012a, b). Here, only the numerical

treatment of the contact/friction is shortly discussed in the framework of the penalty

method using the master/slave surfaces method, widely used in virtual metal

forming, and described in detail in the literature.

As shown by the last term of the RHS of the external forces vector Eq. 96, the

contact forces vectorsF
!

c ¼ Fc
N n
! þ F

!
c
τ at all the nodes lying in the contact interfaces

are required. In the general 3D cases, the search of the nodes concerned by the

contact (i.e., the determination of the unknown contact interface) during the typical

time interval tn tnþ1 ¼ tn þ Δt½ � is not an easy task (see Zhong (1993), Laursen

(2002), Wriggers (2002), and Saanouni (2012a, b) for more details in this field).

Once the elements (then nodes) concerned by the contact are determined, the

contact force at each contact node is determined. This necessitates the numerical

integration of the friction constitutive equations which are discussed in section

“Modeling of the Contact with Friction.” Due to the mathematical similarity

between the plastic constitutive equations (inside the material volume) and the

friction constitutive equations only valid for the material points lying in the contact

interfaces, the predictor/corrector integration scheme can be applied.

If the Coulomb model (perfect friction without hardening) defined by the fiction

yield condition in Eq. 66 with a constant friction parameter η and a constant yield limit

forceFy is considered, the friction constitutive equations can be summarized as follows:

f f ¼ F
!
c
τ

��� ���
f
� η Fc

N

� �� Fy � 0 with F
!
c
τ

��� ���
f
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
F
!

c
τ:F
!
c
τ

q
að Þ

_F
!
c
τ¼ pτ _ϑ

!
τ � _λf n

!
f

� �
bð Þ

n
!
f ¼ F

!
c
τ

F
!
c
τ

��� ���
f

cð Þ

_λf � 0 , _λf f f ¼ 0 dð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

(130)

If these equations are discretized using backward (fully implicit θ ¼ 1) Euler

scheme, they can be written at tn+1 as

f fnþ1 ¼ F
!

c
τ,nþ1

��� ���
f
� η Fc

N,nþ1

� �
�Fy � 0 with F

!
c
τ,nþ1

��� ���
f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F
!
c
τ,nþ1:F

!
c
τ,nþ1

q
að Þ

F
!

c
τ,nþ1 ¼

F
!

c
τ,n þ pτ ϑ

!
τ
nþ1 � ϑ

!
τ
n

� �
1þ pτ

Δλf
F
!

c
τ,nþ1

��� ���
f

with Δλf � 0 , Δλf f fnþ1 ¼ 0 bð Þ

8>>>>>>><
>>>>>>>:

(131)
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where Δλf is the increment of the friction Lagrange multiplier and pτ being the

regularization factor (see Saanouni 2012a, b). The “trial” state is obtained by

supposing contact with adhesion and without sliding (i.e., Δλf ¼ 0 in Eq. 130b),

which allows us to write the “trial” friction criterion as

f f , trialnþ1 ¼ F
!τ, trial

nþ1

��� ���
f
� ηFc

N, nþ1 � Fy að Þ
with

F
!τ, trial
nþ1 ¼ F

!
τ
n þ pτ ϑ

!
τ
nþ1 � ϑ

!
τ
n

� �
bð Þ

8>><
>>: (132)

Following the same approach as in isotropic plasticity (see section “Local

Integration Scheme: Computation of the State Variables at Each Gauss Point”),

there are no friction if fn+1
f,trial < 0 confirming the trial state. While if f n+1

f,trial > 0, the

friction takes place and the friction correction should be performed by imposing

that fn+1
f ¼ 0 at tn+1.

If Eq. 131a is zero (friction condition), and with the help of Eq. 130c, an

expression of the tangential force vector F
!
c
τ, nþ1 can be easily deduced. Equating

it with Eq. 131b allows to deduce the following equation which is linear with

respect to the main unknown Δλf:

F
!τ, trial

nþ1

��� ���
f
� η Fc

N, nþ1

� �
� Fy � pτΔλf ¼ f f , trialnþ1 � pτΔλf ¼ 0 (133)

Giving the simple closed form solution,

Δλf ¼
F
!
τ, essai
nþ1

����
����
f

þ ηnþ1 FN
nþ1

� �þ Fy
nþ1

pτ
¼ f f , essainþ1

pτ
(134)

Thus, the tangential friction force is calculated by replacing Eq. 134 in Eq. 131b

to get

F
!
c
τ,nþ1 ¼

F
!τ, trial
nþ1 ¼ F

!
c
τ,n þ pτ ϑ

!
τ
nþ1 �ϑ

!
τ
n

� �
if f f , trialnþ1 � 0 adhesionð Þ �

a
�

η Fc
N,nþ1

� �
þ Fy

� � F
!τ, trial

nþ1

F
!τ, trial
nþ1

��� ���
f

if f f , trialnþ1 > 0 slidingð Þ �
b
�

8>>>><
>>>>:

(135)

This simple case without “friction hardening” leads to an exact solution in Δλf,
and there is thus no need to use an iterative procedure, as in plasticity with nonlinear

hardening, to compute the friction multiplier (the case with friction hardening can

be found in Saanouni (2012a, b)).
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Implementation into ABAQUS/Explicit®

The micromorphic elastoplastic constitutive equations with nonlinear isotropic and

kinematic hardening fully coupled with ductile damage developed in section

“Proposed Fully Coupled Micromorphic Constitutive Equations” and discretized

in section “Local Integration Scheme: Computation of the State Variables at Each

Gauss Point” have been implemented into ABAQUS/Explicit® using the user’s

developed subroutine VUMAT. Also, some 2D (T3 and Q4) and 3D (T4) with

additional dofs which are the micromorphic kinematic variables have been devel-

oped using the subroutine VUEL. All the practical aspects related to this imple-

mentation can be found in Hamed (2012), Saanouni (2012a, b), and Saanouni and

Hamed (2013). Here, only some information concerning the specific treatment of

the fully damaged Gauss points and fully damaged elements are presented in order

to describe the macroscopic cracks initiation and their propagation inside the

deformed part. Also the adaptive remeshing methodology used in conjunction

with ABAQUS/Explicit® in order to perform adaptive analyses mainly in 2D

cases is shortly discussed.

During the analysis, each Gauss point of each element is checked with respect to

the critical value of the local damage Dcr � 0.99. When this condition is fulfilled,

the overall stress-like variables are near zero in that point. Accordingly, all the

stress-like variables are put to zero and D ¼ 1.0 indicating that this Gauss point is

fully damaged (microvoid) and consequently the point is excluded from the inte-

gration domain for the remaining time after the strain-like variables in that point are

stored to keep their values at the ultimate fracture. Similarly, if all the Gauss points

of an element are fully damaged, the element is excluded from the structure and a

new mesh is performed with the new geometry. This works very well if the mesh

inside the damaged zones is adequately fine or if a fully adaptive remeshing

procedure is used for which the size of elements are very small inside the area

where the damage is near Dcr. The detailed description of this fully adaptive

remeshing methodology can be found in Labergère et al. (2011) and Saanouni

(2012a, b).

Some Typical Examples of Virtual Metal Forming Processes

The advanced fully coupled constitutive equations presented above when

implemented into a general purpose finite element code lead to a helpful adaptive

numerical methodology for metal forming simulation called “virtual” metal

forming. The interested reader can find a comprehensive presentation of this kind

of numerical methodology in the recent book dedicated to damage mechanics in

metal forming (Saanouni 2012a, b) where, in addition to the modeling aspects,

many applications to sheet and bulk metal forming using various versions of the

constitutive equations either in plasticity or viscoplasticity and low or high tem-

perature can be found. In this chapter, some typical examples dealing with sheet and

bulk metal forming are briefly presented and discussed without going into the
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details of the calculations. The objective is to show how the use of constitutive

equations with high predictive capabilities which can account for multiphysical

phenomena greatly improves, both qualitatively and quantitatively, the numerical

results of calculations in industrial simulation of various metal forming processes.

Particularly, it will be shown that, using the same numerical methodology of virtual

metal forming, it is possible, thanks to a series of numerical simulations, to

optimize the technical parameters of a given process in order to:

– Minimize the occurrence of ductile damage in formed parts in order to obtain

defects-free components (i.e., without localization zones, wrinkles, cracks, etc.)

as in deep drawing of thin sheets, hydroforming tubes or sheets, or cold forging

or extrusion, etc.

– Favor the ductile damage occurrence in formed parts by controlling its intensity

and direction to reproduce various material cutting processes such as stamping

of thin or thick parts by sheering or slitting and guillotining thin sheets.

To be used in virtual metal forming, these fully coupled constitutive equations

have to be identified for each used material in order to determine the overall

material parameters present in theses equations. This can be done by using appro-

priate inverse approach which consists in minimizing the difference between the

reference experimental results and the numerically predicted results using a wide

range of applied loading paths under a representative range of loading conditions

(temperature, loading rate, etc.). A specific identification methodology is described

in Chap. 4 of Saanouni (2012a, b). Note that the identification procedure is

performed based on experimental results obtained for the material under concern

loaded with certain loading paths until the final fracture. The best values of the

material parameters should be used for the numerical simulation of any forming

process of the same material. Note that when the micromorphic variables are zero, i.

e., when the model is fully local, the identification should made using the specimens

meshed with a given mesh size. The same mesh size should be used inside the fully

damaged zone during the subsequent forming processes simulations.

Hereafter, some numerical results obtained for various sheet and bulk metal

forming exclusively under room temperature without considering thermal coupling

are given. For each example after a brief description of the forming process itself as

well as of the model used, some typical results are presented together with exper-

imental pictures if available. All the numerical solution are obtained using

ABAQUS/Explicit® together with our VUMAT and VUEL subroutines and for

some 2D examples using appropriate adaptive remeshing procedure described in

Labergère et al. (2011) and Saanouni (2012a, b).

Now, let us give an idea on the micromorphic model and its ability to regularize

the IBVP characterized by strong damage-induced softening. For that, the uniaxial

tensile test for a hypothetical metallic material is loaded in tension until the final

fracture due to ductile damage initiation, growth, and coalescence.

The specimen with 50 mm large and 150 mm length is fixed at the bottom side,

and a displacement with constant velocity is imposed on the opposite (top) side.
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The specimen is meshed using the triangular linear element (T3) using three

different mesh sizes constant inside the central part of the specimen and defined

by hmin ¼ 5.0 mm (662 elements, 372 nodes), hmin ¼2.5 mm (1,512 elements,

806 nodes), and hmin¼1.5 mm (3,242 elements, 1,705 nodes). Except for the coarse

mesh which is quasi-homogeneous throughout the specimen, the other two meshes

are refined only inside the central area (gage length) of the specimen in order to save

the CPU time.

The version of the model used contains isotropic and kinematic hardening

with only micromorphic damage defined by the following values of the

material constants: E ¼ 210.0 GPa, ν ¼ 0.29, σy ¼ 400.0 MPa, Q ¼ 1, 000.0

MPa, b ¼ 50.0, C ¼ 10, 000.0 MPa, a ¼ 100.0, β ¼ 1.0, S ¼ 1.2, s ¼ 1.0,

Y0 ¼ 0.0, H
^
g ¼H

^¼ 103 giving the internal length related to the micromorphic

damage of‘^d ¼ 1:0 mmand finallyζ
d
^ ¼ 1:0 mm2 . Note that for the local model

H
^
g ¼H

^¼ ζ
d
^ ¼ 0 hold.

Figure 5 compares the force–displacement curves predicted by the fully local

model (no micromorphic phenomena called local model) and the model with

micromorphic damage (nonlocal model). Clearly, the solution provided by the

local model is highly mesh dependent in the softening stage, while the solution

provided by the nonlocal model is much more mesh independent during the

softening stage. The nonlocal model predicts a more large softening stage giving

a displacement to fracture uf � 15.6 mm for the three mesh sizes, while the

displacement to fracture predicted with the fully local model is mesh dependent

and is uf � 5.8 mm for the fine mesh, uf � 6.7 mm for the medium mesh, and

Fig. 5 Force–displacement curves for the three mesh sizes. Comparisons between local and

nonlocal (micromorphic damage) models (‘
d
^ ¼ 1:0 mm)
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uf � 7.3 mm for the coarse mesh. Also the last stage of the softening curves

predicted by the nonlocal model has somewhat spurious aspect (Fig. 6d–f) due to

the fact that the width of the fully damaged zone contains a large number of

elements with a heterogeneous fracture, while for the local model, this stage is

clean since only one row of elements forms the fully damaged zone (Fig. 6a–c).

Fig. 6 Distribution of the local damage for the three mesh sizes for both the fully local model and

the nonlocal model (micromorphic damage only)
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Also from this figure, it is noted that the orientation of the shear band as well as

the macroscopic crack is dependent on the mesh size for the local model, while it

seems to keep the same orientation for the nonlocal model when the mesh is refined

enough, i.e., at convergence (see Fig. 6d, e).

Finally, Fig. 7 summarized the plot of the local damage distribution along the

central axis of the specimen. Clearly, the damage is more homogenized with the

nonlocal model which gives the crack thickness or width independent from

the mesh size. However, for the local model, the damage is more localized and

the crack width is clearly correlated to the mesh size.

Let us now discuss some examples concerning the damage prediction in sheet

metal forming. All the calculations were performed in 3D using the fully local

model with different version of the elastoplasticity fully coupled with isotropic

and/or anisotropic damage. The blank is meshed using C3D8R solid elements, and

the tools are meshed using rigid elements R3D4 both from the ABAQUS element

library.

The first example concerns the hydrobulging of thin anisotropic sheet using an

elliptical matrix schematized in Fig. 8 where a circular blank of 133 mm of

diameter is maintained between the matrix and the blank-holder and an increasing

pressure is injected between the blank-holder and the sheet surface. Under the

effect of internal pressure, the sheet moves through the elliptical hole contained

in the die.

Figure 9 gives the comparison between the experimentally observed crack

(Fig. 9c) and the numerically predicted cracks using the isotropic damage

Fig. 7 Damage distribution along the central axis of the specimen for the three mesh sizes for both

the fully local model and the nonlocal model (micromorphic damage only)
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(Fig. 9a) and the anisotropic damage (Fig. 9b) as can be found in Nguyen (2012).

Clearly, the anisotropic model predicts a macroscopic crack oriented along the

main axis of the ellipsoid close to the experimental crack observed for at a

displacement of the dome u ¼ 34 mm for P ¼ 225 Bar.

The second sheet metal example concerns the trimming process using a cut

rolling shear guillotine schematized in Fig. 10 and fully described in detail in

Ghozzi et al. (2012).

Figure 11 illustrates the distribution of the von Mises equivalent stress at two

different instants during the cutting operation.

The final example concerns the process dealing the assembly of a tube (25.1 mm

of external diameter and 1.5 mm thickness) with a plate containing an initial hole of

Fig. 8 Hydrobulging of a thin orthotropic sheet

SDV25 (Avg: 75%) SDV25 (Avg: 75%)
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Isotropic damage (P=248 Bar) Anisotropic damage (P=253 Bar)

Experimental crack

a b

c

Fig. 9 Predicted versus experimentally observed cracks in hydrobulging of anisotropic sheet
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25 mm diameter called tube-end forming. The distribution of the accumulated

plastic strain at the end of the assembly process is shown in Fig. 12 where the

maximum of the plastic strain (around 140 %) is, as expected, located in the core

area of the deformed tube.

Also Fig. 13 presents an experimental view zooming on the core area (Fig. 13a)

and a zoom of the same area showing the distribution of the ductile damage

(Fig. 13b) where the maximum of damage does not exceed 35 % located inside

the plastic zone.

Concerning the application to the bulk metal forming processes, two typical

examples are given here to illustrate the virtual metal forming methodology. All the

calculations were performed using the isotropic thermo-elasto-viscoplasticity

model fully coupled with isotropic damage for high-temperature bulk metal

forming.

The first example concerns the hot forging of a billet presented in Fig. 14 where

it is clearly seen that the damage localizes rapidly at the head of the billet under the

biggest die head.

The last illustrative example concerns the metal machining (orthogonal cutting)

by chip formation and segmentation. This simple orthogonal machining problem,

schematized in Fig. 15, was modeled in 2D with both the part and the tool meshed

using CPE4RT element taken from the ABAQUS library for thermomechanical

problems. The anisothermal thermo-elasto-viscoplastic constitutive equations were

used together with a specific adaptive mesh methodology described in Labergère

et al. (2011) and Saanouni (2012a, b).

Fig. 10 Schematization of the trimming process for a thin sheet (Saanouni 2012a, b)
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A typical result of this simulation is shown in Fig. 16 where the temperature

distribution is shown in Fig. 16a and the adaptive remeshing is shown in Fig. 1b. It

is worth noting that starting from the room temperature (25 �C) at the initial

configuration, the temperature increases during the chip formation and exceeds

1,000 �C with a maximum located at the primary and secondary adiabatic shear

bands. Inside the primary intensive adiabatic shear band, the accumulated plastic

strain reaches 683 %, while the strain rate exceeds 1.2 10+06 s�1 and the temper-

ature is about 1,250 �C (see Issa et al. (2012) for more details).

In conclusion, the overall presented examples show clearly the excellent

predictive capabilities of the virtual metal forming processes methodology as

long as it is based on advanced fully coupled and multiphysical constitutive

equations.

Fig. 11 Equivalent stress distribution at two different instants of the trimming process (Saanouni

2012a, b)
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SDV19 (avg: 75%)
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Fig. 12 Equivalent plastic strain distribution

Fig. 13 The final view (zoom) of the tube-end process: (a) experimental view, (b) ductile damage

distribution inside the core area

Fig. 14 Ductile damage distribution at three different instants of the forging process
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Conclusions and Main Perspectives

In this chapter, an attempt has been made in order to show how the use of

constitutive equations with high predictive capabilities greatly improves, qualita-

tively and quantitatively, the numerical prediction of the ductile damage occurrence

3
mm

12 mm

0.2 mm

V=100m/min

6˚

5̊

Fig. 15 Schematic

representation of the

orthogonal cutting problem

(initial configuration at the

first contact between the tool

and the part)

Fig. 16 Numerically predicted (a) accumulated plastic strain, (b) temperature, (c) adaptive

remeshing at the tool displacement of 6.75 mm
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in sheet and bulk metal forming processes. This necessitates not only advanced

macro or micro–macro (see ▶Chap. 4, “Evolution of Fabric Tensors in Continuum

Damage Mechanics of Solids with Micro-cracks: Studying the Effects of Length

and Orientation” of this volume) constitutive equations to describe the thermome-

chanical behavior of the deformed material in the volume and at the contact

interfaces, but also robust and adaptive numerical methods together with an appro-

priate efficient identification methodology in order to determine the pertinent

values of the overall material parameters entering those fully coupled constitutive

equations.

This kind of numerical methodology can be helpfully used to optimize any

forming or machining process in order to determine the best forming or machining

plan which minimizes the undesirable defects under a low economical cost and a

low carbon emission according to the demand of the new environmental require-

ments. Accordingly, the use of highly predictive constitutive equations representing

the “realistic” physical phenomena allows to:

– Minimize the ductile damage occurrence in formed parts in order to obtain a

save component without any defects (i.e., cracks, localization zones, wrinkle

zones, etc.) as in deep drawing of thin sheets, hydroforming tubes or sheets, hot

or cold forging or extrusion, etc.

– Maximize the occurrence of ductile damage in formed parts by controlling it in

intensity and direction to reproduce various material cutting processes such as

stamping of thin or thick parts by sheering or slitting and guillotining thin sheets

or machining by chip formation.

– Minimize various kinds of damage (wear, friction, cracks, etc.) inside forming

tools (matrices, dies, cutting tools, etc.) and at the metal/tool contact interfaces in

order to increase their life span.

These minimization and/or maximization tasks can be subjected to some con-

straints related to the reduction of the structure weight, the energy consumption, the

market cost, or the environment criteria as the minimization of the carbon emission.

More information can be found in the recent book dedicated to the ductile damage

prediction in metal forming processes (Saanouni 2012a, b).
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grandes déformations avec Endommagement. Application à la mise en forme de tôles minces.
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Abstract

In this chapter, some recent developments and proposals for improvement of

material models at the constitutive level to deal with ductile damage at large

plastic strains are addressed. Numerical tests are carried out to test their perfor-

mance on shear-dominated stress states where their main differences lie. Sub-

sequently, aspects of the use of nonlocal models for the regularization of the

numerical values associated with damage models, namely, discretization depen-

dency, are reviewed. Different approaches on the choice of the regulation

variable or variables are tested at different stress states characterized by different

values of triaxiality and third invariant of the deviatoric stress tensor. Finally, a

simple strategy on how to handle the transition from damage to fracture by

means of the extended finite element method is described.

Introduction

Metal forming processes have an enormous industrial importance as they are

involved in the manufacture of a huge variety of structural parts in a diversity of

industrial sectors, such as automotive, aeronautics, and consumption goods, to

name a few. These processes encompass significant changes in the shape of the

material in the solid state, from an initial component to the final product. The

material flow, forced by tools and very often controlled by contact and friction

against dies, generally involves large plastic strains and depends on various factors

such as load conditions; temperature; geometry of preforms, tools, and dies;

lubrication of contact zones; material properties; and forming limits, to name

only the most important ones. A crucial issue in the design, development, and

optimization of metal forming processes is to be able to control most of these

parameters. Numerical modelling plays here an important role, and in the last

decades, powerful commercial codes have become indispensable tools in the

industry. The great development and evolution on both theoretical and numerical

abilities, allied to the fast development in computing facilities, allow us today, to a

large extent, to predict deformation, strain and stresses at critical points, changes in

material properties, the influence of tools geometry, lubrication conditions, etc.

In large deformation of metals, when plastic deformation reaches a threshold

level, which may depend on the loading, the fatigue limit, and the ultimate stress, a

ductile damage process may occur concomitantly with the plastic deformation due

to the nucleation, growth, and coalescence of micro-voids. Therefore, once the

main features of large deformation modelling were mastered, the need to accurately

predict material formability, under complex loading paths, became a decisive

feature to accomplish, in order to be able to avoid defective parts in forming

processes or to describe processes in which fracture is a part of the process itself,

as in sheet blanking or metal cutting.

In the design of bulk forming processes, at the industrial level, it is still common

to utilize fracture criteria, based on the computational evaluation of functions of
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some state variables that depend on the deformation history. Those criteria may be,

generally, categorized into two groups: one based on micromechanics which

utilizes as primer state variable the total plastic work (e.g., Freudenthal 1950), the

maximum plastic shear work, or the equivalent plastic strain (e.g., Datsko 1966),

and another based on the growth of defects which includes geometric aspects (e.g.,

McClintock 1968; Rice and Tracey 1969), growth mechanisms dependent on

principal stresses (e.g., Cockcroft and Latham 1968) or hydrostatic pressure (e.g.,

Norris et al. 1978; Atkins 1981), or material behavior coupling (e.g., Oyane

et al. 1978; Tai and Yang 1987; Lemaı̂tre 1986).

However, these are, commonly, a posteriori fracture indicators that are not always

reliable. In complex deformation paths, more and more present in the production of

many components in the industry, very often they fail to give the appropriate

information. Situations in which the damage localizes away from the sites where

the maximum equivalent plastic deformation is concentrated or where damage

evolves differently for different compression or traction stress sates, different tri-

axialities or diverse shear stress states are hardly handled by these criteria.

More robust models were therefore required so that damage evolution is taken

into account through the deformation process. The pioneering work of Kachanov

(1958) and Rabotnov (Rabotnov et al. 1963) paved the way for numerous signifi-

cant contributions and new theories proposed for the description of material

progressive internal degradation. One route is based on Continuum Damage

Mechanics (CDM) and the thermodynamics of irreversible processes, mainly

coupling elastoplasticity and damage at the constitutive level (e.g., Lemaitre

1985a, b, 1996). Another direction is based on micromechanical grounds, i.e.,

coupling damage and plasticity at the constitutive level (e.g., Gurson 1977;

Tvergaard and Needleman 1984; Xue et al. 2007).

However, a large number of those models are rooted on the assumption of the

so-called local continuum. In local media, the behavior of the material is

completely represented by a point-wise constitutive law, which is independent of

the influence of surrounding material points. As a matter of fact, the local theory

assumes that the material is continuous at any scale and, therefore, size effects are

inherently neglected. Nevertheless, the softening induced by the standard imple-

mentation of those models in finite element solutions, within the local theory, leads

to mesh and orientation dependence. This fact is associated to the local change of

the underlying type of differential equations representing the problem whenever a

negative stiffness is locally included due to softening. As a consequence, localiza-

tion effects are not correctly dealt with by mesh refinement. One of the solutions for

this problem is the use of nonlocal models (e.g., Pijaudier-Cabot and Bažant 1987;

De Borst and M€uhlhaus 1992; De Vree et al. 1995; Strömberg and Ristinmaa 1996;

Polizzotto et al. 1998; Borino et al. 1999; Jirásek and Rolshoven 2003; Cesar de Sa
et al. 2006; Jirásek 2007; Andrade et al. 2009). Nonlocal models include some

length scale information, related with localization effects due to microstructure

heterogeneity, in order to average an internal variable effect associated with

dissipative process. Two types of models are usually assumed for this purpose:

integral and gradient models.
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Nowadays a lot of research is being invested on multi-scales models aiming to

gain an important insight on how the damage mechanisms at lower scales reflect

themselves at the macroscale and how that can be replicated by the phenomeno-

logical laws usually adopted at this level. Nevertheless, these models require a huge

amount of computer capabilities which, by now, limits their application at the

industry level, and therefore, in this chapter we will not address those issues.

After this small introduction, initially recent developments and proposals for

improvement of material models at the constitutive level to deal with ductile damage

at large plastic strains are addressed. Some numerical tests are accomplished to test

their performance on shear-dominated stress states where their main differences lie.

Subsequently, some aspects of the use of nonlocal models for the regularization of the

numerical values associated with damage models, namely, discretization depen-

dency, are reviewed. Different approaches on the choice of the regulation variable

or variables are tested in various situations at different stress states characterized by

the different values of triaxiality and third invariant of the deviatoric stress tensor.

Finally, a simple strategy on how to handle the transition from damage to fracture by

means of the extended finite element method is described.

Constitutive Models for Ductile Failure Under High and Low
Triaxiality

Introduction

Experimental evidence has shown that the nucleation and growth of voids and

micro-cracks, which accompany large plastic flow, cause a reduction of the elastic

modulus, induce a softening effect in the material, and can be strongly influenced

by the level of stress triaxiality (McClintock 1968; Rice and Tracey 1969; Hancock

and Mackenzie 1976). The equivalent plastic strain at fracture and the level of stress

triaxiality were initially employed to characterize material ductility in engineering

applications (Bridgman 1952; McClintock 1968; Rice and Tracey 1969; Johnson

and Cook 1985). A simple exponential expression for the evolution of the equiv-

alent strain with stress triaxiality was established by McClintock (1968) and Rice

and Tracey (1969) based on the analysis of void growth under hydrostatic loads,

which is usually referred to as the two-dimensional fracture loci. The work

performed by Mirza et al. (1996) on pure iron, mild steel, and aluminum alloy

BS1474 over a wide range of strain rates confirmed the strong dependence of the

equivalent strain to crack formation with the level of stress triaxiality.

Recently, several researchers (Kim et al. 2003, 2004; Bao and Wierzbicki 2004;

Gao et al. 2005; Gao and Kim 2006; Kim et al. 2007; Barsoum and Faleskog 2007a, b;

Bai and Wierzbicki 2008; Br€unig et al. 2008; Gao et al. 2009) have shown that the

Lode angle, which is associated to the third invariant of the deviatoric stress tensor,

is an essential parameter in the characterization of the effect of the stress state on

material yielding and on ductile fracture. In particular, Bai and Wierzbicki (2008)

have suggested a three-dimensional fracture loci on the space of equivalent strain,
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stress triaxiality, and Lode angle. This fracture surface is clearly different for

materials weakly or strongly dependent on both pressure and Lode angle and can

be calibrated by means of conventional and butterfly specimens. Mirone and

Corallo (2010) have proposed a local viewpoint for evaluating the influence of

the stress triaxiality and Lode angle on ductile failure, analyzing three theories,

namely, the Tresca criteria and two models proposed by Wierzbicki. According to

Mirone and Corallo (2010), the phenomenon of ductile failure is influenced by the

relation with the variables from the stress-strain characterization, and failure pre-

dictions are better described by plastic strain, stress triaxiality, and Lode angle

parameters. An experimental program to study the influence of the stress tensor

invariants in ductile failure was presented by Driemeier et al. (2010). This meth-

odology can be seen as an efficient tool to investigate the effects of the stress

intensity, stress triaxiality, and Lode angle. Gao et al. (2011) have proposed a new

elastoplastic model, which is a function of the hydrostatic stress as well as the

second and third invariants of the stress deviator, and carried out tests in specimens

with a high level of stress triaxiality showing the dependence of the plastic flow rule

of both stress triaxiality and Lode angle.

Some Constitutive Models for Ductile Failure

The governing equations of three constitutive models are briefly reviewed in this

section. Firstly, the Gurson–Tvergaard–Needleman (GTN) model (Gurson 1977;

Tvergaard and Needleman 1984) is presented, then the Lemaitre model (Lemaitre

1985a), and finally Bai and Wierzbicki’s model (Bai and Wierzbicki 2008). In

addition, a shear mechanism proposed by Xue (2008) is described and incorporated

in the GTN model as well as Bao’s fracture indicator (Bao et al. 2003), which is

used in conjunction with Bai and Wierzbicki’s model to allow the prediction of

damage with this model.

The Gurson–Tvergaard–Needleman Model
Inspired by the work of Gurson (1977), Tvergaard and Needleman (1984) have

proposed a model for the description of damage and fracture in ductile materials.

The original Gurson model introduces a strong coupling between plastic strain and

damage (Chaboche et al. 2006), and the presence of micro-voids in the formulation

leads to a yield surface that depends on both the hydrostatic pressure and porosity. The

material degradation is measured through a parameter called the void volume fraction,

which is represented by the variable f. This parameter is defined by the ratio between

the volume of micro-voids, Vvoids, and the representative volume element, VRVE

f ¼ Vvoids

VRVE

(1)

The Gurson–Tvergaard–Needleman (GTN) model, which is one of the most

well-known extensions of the Gurson model, assumes both isotropic hardening and
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damage. Nevertheless, the damage variable in this model is represented by an

effective porosity f�. The flow potential is generalized into the form:

Φ σ, r, f �ð Þ ¼ q� 1

3
1þ q3 f

�2 � 2q1 f
�cosh

q23p

2σy

� �� �
σ2y (2)

where q represents the von Mises equivalent stress and σy is the radius of the yield
surface function of the isotropic hardening. The parameters q1, q2, and q3 are

introduced into the yield surface definition in order to bring the model predictions

into closer agreement with full numerical analyses of a periodic array of voids and

p represents the hydrostatic pressure. The evolution of spherical voids can be

reproduced by three simultaneous or successive steps: nucleation, growth, and

coalescence of voids (Tvergaard and Needleman 1984). The effective porosity is

determined by the following bilinear function:

f � ¼
f , f < fc

fc þ
1

q1
� fc

� �
f � fcð Þ
ff � fc

� � , f � fc

8><
>: (3)

where the parameter f represents the porosity, the constant fc is the porosity to

trigger coalescence, and the parameter ff represents the porosity at fracture. The

evolution of the porosity is given by the sum of both the nucleation and growth

mechanisms, as

_f ¼ _f
N þ _f

G
(4)

The nucleation mechanism is driven by the plastic strain and can be represented

as

_f
N ¼ fN

sN
ffiffiffiffiffi
2π

p exp � 1

2

epeq � eN
sN

� �2
" #

_epeq (5)

where fN represents the volume fraction of all second-phase particles (see Fig. 1)

with potential for micro-void nucleation and eN and sN are the mean strain for void

nucleation and its standard deviation. The variable eeq
p represents the equivalent

plastic strain and _epeq is the rate of the equivalent plastic strain.
The most significant contribution to the evolution of spherical voids is the

growth mechanism, obtained from the condition of plastic incompressibility of

the matrix material, which can be expressed by

_f
G ¼ 1� fð Þtr _«pð Þ ¼ 1� fð Þ _epv (6)

where _«p represents the rate of the plastic strain tensor and _epv is the rate of the

volumetric plastic strain. In this work, the GTN model implementation includes
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both nucleation and growth of micro-voids. The coalescence effect was not

addressed since our main objective is the prediction of fracture onset.

One important limitation associated with Gurson-based models is that shear

effects are not considered in the formulation, which excludes the possibility of

predicting shear localization and fracture under conditions of low triaxiality.

Therefore, in order to improve the GTN model predictive ability, under both zero

and low levels of stress triaxialities, Xue (2008) has proposed the introduction of a

shear mechanism. The mechanism is based on geometrical considerations of a unit

cell structure, containing a circular void at the center, which is subjected to a simple

shear strain (Xue 2008). The evolution of shear damage, according to the author,

depends on the porosity, the equivalent strain, and the Lode angle. After some

straightforward algebraic manipulations, the rate of this mechanism can be math-

ematically expressed by (Xue 2008)

_f
Shear ¼ q4 f

q5goeeq _eeq (7)

where q4 and q5 are parameters related to two- or three-dimensional problems. For

two-dimensional problems, q4 ¼ 1.69 and q5 ¼ 1/2, and for three-dimensional

problems, q4 ¼ 1.86 and q5 ¼ 1/3. The variable f represents the porosity, eeq is

the equivalent strain, and go is a parameter that introduces the Lode angle

Fig. 1 Geometry of the butterfly specimen (dimensions in mm) (The specimen was reproduced

from Bai et al. (2008)). Reprinted from L. Malcher et al., An Assessment of Isotropic Constitutive

Models for Ductile Fracture under High and Low Stress Triaxiality. Int. J. Plast. 30–31, 81–115

(2012), with permission from Elsevier
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dependence in the shear mechanism. If the Lode angle function go is different from
zero, the mechanism is triggered and shear effects are taken into account. However,

if go is zero, the shear mechanism has no effect on the damage evolution, and only

the nucleation and growth mechanisms are active. The Lode angle function, go, can
be defined by

go ¼ 1� 6 θj j
π

(8)

where θ is the Lode angle that is determined according to

θ ¼ tan�1 1ffiffiffi
3

p 2
S2 � S3
S1 � S3

� �
� 1

	 
� �
: (9)

The scalars S1, S2 and S3 are the components of the deviatoric stress tensor in the

principal plane. The shear mechanism proposed by Xue (2008) can be included in

the GTN model, which already features the mechanisms of nucleation and growth

of micro-voids. Thus, the evolution of the porosity originally expressed by Eq. 8,

for this model, is redefined as

_f ¼ _f
N þ _f

G þ _f
Shear

(10)

The evolution of damage in the material inevitably reduces the overall elastic

properties. However, this effect is small when compared to the influence of damage

on the plastic behavior. Therefore, the evolution of damage due to shear effects,

employed in this work, will neglect the influence of damage on elasticity as is

usually done in this type of model. The shear damage evolution law is redefined as a

function of both the accumulated plastic strain and the rate of the accumulated

plastic strain instead of the total strain and total strain rate (see Eq. 7):

_f
Shear ¼ q4 f

q5goe
p
eq _e

p
eq (11)

The Lode angle function can also be rewritten as a function of the normalized

third invariant, such as

go ¼ 1� θ
�� �� (12)

where θ represents the normalized Lode angle that is a function of the normalized

third invariant, such as

θ ¼ 1� 6θ

π
¼ 1� 2

π
arccosξ (13)

where ξ represents the normalized third invariant that is calculated by

ξ ¼ 27

2

det«ed
3
2
«ed : «

e
d

� 3=2
(14)

where «d
e represents the deviatoric elastic strain tensor.
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Lemaitre’s Damage Model
The constitutive equations for ductile damage, described in this section, have

been proposed by Lemaitre (1985a). Based on the concept of effective stress

and the hypothesis of strain equivalence, the Lemaitre model includes the

evolution of internal damage as well as nonlinear isotropic and kinematic hardening

in the description of the behavior of ductile materials. The constitutive formulation

starts from the definition of the Helmholtz specific free energy that can be

taken as the state potential of the material and is a function of all state variables.

The free energy can be expressed as a function of the set {«e, r, D} of state

variables:

ψ ¼ ψ «e, r,Dð Þ (15)

where ψ represents the specific free energy, «e is the elastic strain tensor, r is the
isotropic hardening internal variable, and D represents the isotropic damage inter-

nal variable.

Under the hypothesis of decoupling between elasticity–damage and plastic

hardening, the specific free energy is assumed to be given by the sum:

ψ ¼ ψ ed «e,Dð Þ þ ψp rð Þ (16)

where ψed represents the elastic–damage contribution and ψp is the plastic contri-

bution to the free energy. The elastic–damage contribution for the free energy can

be postulated by the following expression (Lemaitre 1985a):

ρψ ed «e,Dð Þ ¼ 1

2
1� Dð Þ«e : De : «e (17)

where De represents the isotropic elasticity tensor. The plastic potential can be

represented by the isotropic hardening contribution as (if we disregard kinematic

hardening):

ρψp rð Þ ¼ ρψ I rð Þ (18)

The elasticity law is obtained by performing the derivative of the elastic–damage

potential (Eq. 17) in order to the elastic strain tensor, as

σ ¼ ρ
@ψ ed

@«e
¼ 1� Dð ÞDe : «e (19)

The thermodynamic forces conjugated with damage and isotropic hardening

internal variable are obtained, respectively, by performing the derivative of the

elastic–damage contribution, ρψ ed «e,Dð Þ (Eq. 17), with regard to the damage

variable, D, and by taking the derivative of the plastic potential, ρψp rð Þ (Eq. 18),
with regard to the isotropic hardening variable, R, respectively (Lemaitre and

Desmorat 2005):
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�Y � �ρ
@ψ ed

@D
¼ q2

6G 1� Dð Þ2 þ
p2

2K 1� Dð Þ2 (20)

R � �ρ
@ψ I

@r
¼ R rð Þ (21)

where Y represents the thermodynamic force associated with damage, q is the von

Mises equivalent stress, p is the hydrostatic pressure, G is the shear elasticity

modulus, K is the elastic compressibility modulus, and R represents the thermody-

namic force associated with the isotropic hardening variable.

The evolution of the internal variable can be obtained by assuming the existence

of the flow potential, Ψ, given by

Ψ ¼ Φþ S

1� Dð Þ sþ 1ð Þ
�Y

S

� �sþ1

(22)

where the parameters S and s are damage evolution constants and Φ represents the

yield function, which is defined as

Φ ¼ q

1� Dð Þ � σy0 � R rð Þ (23)

where σy0 is the initial uniaxial yield stress. According to the hypothesis of

generalized normality, the plastic flow is given by

_«p ¼ _γ
@Φ
@σ

¼ _γN (24)

N ¼
ffiffiffi
3

2

r
S

Sk k
1

1� Dð Þ (25)

where _γ is the plastic multiplier, N represents the flow vector, and S is the deviatoric

stress tensor. The evolution law for damage and for the isotropic hardening internal

variable can be established by performing, firstly, the derivative of the flow

potential (Eq. 22) with regard to the thermodynamic force associated with damage,

Y, and, secondly, with regard to the isotropic hardening variable, r, respectively:

_D � _γ
@Ψ
@Y

¼ _γ
1

1� Dð Þ
�Y

S

� �s

(26)

_γ � _γ
@Ψ
@R

¼ _γ (27)

The complementary law of the rate-independent plasticity also needs to be

fulfilled:
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_γ � 0,Φ � 0, _γΦ ¼ 0: (28)

Bai and Wierzbicki’s Model
Bai and Wierzbicki (2008) have recently proposed an elastoplastic model that

includes the effect of both the hydrostatic pressure, through the stress triaxiality,

and the effect of the third deviatoric stress invariant, through the Lode angle. These

effects are introduced in the well-established von Mises elastoplastic model by

redefining the hardening rule of the material. While in the classic von Mises model

the hardening rule is only a function of the accumulated plastic strain, σy(eeq
p ), in Bai

and Wierzbicki’s model, the hardening rule is a function of the accumulated plastic

strain, the stress triaxiality, and the parameter μ, which is a function of the Lode

angle, σy(eeq
p , η, μ). Thus, the new definition for the hardening rule can be expressed

by

σy epeq, η, μ
� �

¼ σy epeq
� �

1� Cη η� η0ð Þ� �
Cs
θ þ Cax

θ � Cs
θ

� 
μ� μmþ1

mþ 1

� �	 

(29)

where Cη, Cθ
s , Cθ

ax, and m are material constants, η0 is the reference value for the

stress triaxiality, and μ is a Lode angle function that is expressed by

μ ¼ cos π=6ð Þ
1� cos π=6ð Þ

1

cos θ � π=6ð Þ � 1

	 

(30)

The effects of the stress triaxiality and Lode angle are included on the hardening

rule through the terms [1 � Cη(η � η0)] and Cs
θ þ Cax

θ � Cs
θ

� 
μ� μmþ1

mþ1

� �h i
, respec-

tively. The new yield criterion replaces the standard hardening rule σy(eeq
p ) by

σy(eeq
p , η, μ) on the J2 theory, such that the yield function can be rewritten as

Φ ¼ q� σy epeq
� �

AB (31)

where q is the von Mises equivalent stress (see section “Constitutive Models for

Ductile Failure Under High and Low Triaxiality”), A is the function that incorpo-

rates the effect of stress triaxiality, and B is the function which includes the Lode

angle effect. They are defined according to

A ¼ 1� Cη η� η0ð Þ� �
(32)

B ¼ Cs
θ þ Cax

θ � Cs
θ

� 
μ� μmþ1

mþ 1

� �	 

(33)

The influence of the experimental parameters (Cη, Cθ
s , Cθ

ax, η0, m) on the behav-
ior of the constitutive model can be analyzed as follows. The parameter Cη

describes the hydrostatic pressure effect on the material plastic flow. If Cη is

equal to zero, then the model loses the dependence of the stress triaxiality.
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The stress triaxiality reference, η0, depends on the type of test undertaken and on the
geometry of the specimen. It can assume three different values: for a smooth bar

subjected to a tensile test, η0 takes the value equal to 1/3; for a cylindrical specimen

subjected to a compression test, η0 takes the value equal to �1/3; and finally for

both torsion and shear tests, η0 takes the value equal to zero. The experimental

parameter, Cθ
ax, which is related to the Lode angle effect, can assume one of two

forms according to the type of loading (tension/compression) applied:

Cax
θ ¼ Ct

θ for θ � 0

Cc
θ for θ < 0

�
(34)

where θ represents the normalized Lode angle (see Eq. 16). The parameter Cθ
s

(Eq. 36) also depends on the type of test. For example, if a smooth bar is used in a

tensile test, Cθ
t ¼ 0; if a torsion test is conducted, Cθ

s ¼ 1 ; and if a cylinder

specimen is used in a compressive test Cθ
c ¼ 1. The range of the parameter μ is

between 0 � μ � 1. When μ ¼ 0, it corresponds to plane strain or shear condition,

and when μ ¼ 1, it corresponds an axisymmetric problem. The introduction of the

term μm+1/m + 1 is done to ensure the smoothness of yield surface and its differ-

entiability with respect to Lode angle around 1.

Due to the fact that Bai and Wierzbicki’s model (Bai and Wierzbicki 2008) does

not include a damage variable in the constitutive formulation, we will use in our

comparisons with the previously described damage models a fracture indicator that

was proposed by Bao et al. (2003). This fracture indicator is a post-processed

variable, which was developed after conducting a thorough experimental investi-

gation on the behavior of ductile crack formation, expressed by

D ¼
ðef
0

p

q
deeq ¼ ηavef , eq _e

p

v

(35)

where eeq represents the equivalent strain, ef,eq is the equivalent strain to fracture,

and ηav is the so-called stress triaxiality average. The Lode angle average, θav, is
also a parameter widely used to represent the three-dimensional fracture locus, and

both parameters can be expressed by

ηav ¼
1

ef , eq

ðef
0

p

q
deeq θav ¼ 1

ef , eq

ðef
0

θdeeq (36)

More details about this fracture indicator can be obtained in references (Bai

et al. 2008; Bai and Wierzbicki 2008).

Numerical Implementation and Results

Solution Strategy
Stress update procedures, which are based on the so-called operator split concept

(see Simo and Hughes 1998; De Souza Neto et al. 2008), are especially suitable for

the numerical integration of the evolution problem and have been widely used in
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computational plasticity (e.g., Simo and Hughes 1998; De Souza Neto et al. 2008).

This method, which was used in our developments, consists in splitting the problem

in two parts: an elastic predictor, where the problem is assumed to be elastic, and a

plastic corrector, in which the system of residual equations comprising the elasticity

law, plastic consistency, and the rate equations is solved, taking the results of the

elastic predictor stage as initial conditions. In the case of violation of the yield

condition, the plastic corrector stage has to be initiated and the Newton–Raphson

procedure is used to solve the discretized set of equations. The Newton–Raphson

procedure was chosen motivated by the quadratic rates of the convergence

achieved, which results in computationally efficient return mapping procedures

(see Simo and Hughes 1998; De Souza Neto et al. 2008).

Geometry and Calibration
In order to compare, both qualitatively and quantitatively, the constitutive models,

based on different levels of stress triaxiality, a butterfly specimen, which was

initially proposed by Bai and Wierzbicki (see Bai et al. 2008; Bai and Wierzbicki

2008), was selected. The material properties, the stress–strain curve, and the

damage parameters employed by the constitutive models are conveniently listed

in Table 1.

The geometry of the specimen, called “butterfly specimen,” is illustrated in

Fig. 1. A three-dimensional finite element mesh of 3,392 twenty noded elements,

with eight Gauss integration points, is used amounting to 17,465 nodes (see Fig. 2).

The strategy employed to determine the undamaged stress–strain curves and the

critical damage values for the constitutive models was the following: having at

hand the displacement to fracture (uf ¼ 6.65 mm) together with the force–dis-

placement curve for a smooth bar tensile specimen, which were experimentally

obtained by Bao and Wierzbicki (2004), an inverse and iterative methodology was

conducted. The objective is to identify the stress–strain curve for each constitutive

model such that the force–displacement curve is as close as possible to the exper-

imental one. Figure 3a shows the load curves obtained for all the constitutive

models after the application of the inverse identification method. It was possible

to obtain a close agreement for all constitutive models.

The critical value for the damage variable, of each constitutive model, was also

obtained from the simulation of the stretching of the smooth bar. The value of the

critical damage variable, of each constitutive model, is set to the value of the

internal variable, which is used on the numerical simulation, when the numerical

displacement is equal to the experimental displacement to fracture. The critical

damage values obtained are listed in Table 2.

The results of the calibration procedure for the stress–strain curves of all models

can be observed in Fig. 4. The undamaged stress–strain curve obtained for the

Lemaitre model has a more pronounced hardening than the GTN model and both

are notably different. It is worth mentioning that the stress–strain curve used in

Bai and Wierzbicki’s model (Bai and Wierzbicki 2008) which is depicted in Fig. 4

and labelled as “uncoupled damage model” is the curve that includes the effect of

damage in the hardening.
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It is important to mention that the material properties, the stress–strain curve,

and the damage parameters employed by Lemaitre and GTN constitutive models

can be obtained from one single experimental test, which is the stretching of a

smooth round specimen. On the other hand, the parameters needed by the

uncoupled model proposed by Bai and Wierzbicki, which are listed in Table 1,

require four types of experimental tests (Bai and Wierzbicki 2008): a smooth round

bar tensile test, a notched round bar tensile test, a tensile test of flat grooved plate,

and an upsetting test.

It is noteworthy that the determination of the material hardening curves and

critical damage parameters was based on the stretching of a smooth bar specimen.

Table 1 Material properties for the 2024-T351 aluminum alloy

Description Symbol Value Reference

Density ρ 2.7 � 103

(Kg/m3)

Bao and Wierzbicki

(2004)

Elastic modulus E 72.400 (MPa) Bao and Wierzbicki

(2004)

Poisson’s ratio ν 0.33 Bao and Wierzbicki

(2004)

Initial yield stress σy0 352 (MPa) Bao and Wierzbicki

(2004)

Damage data (exponent) s 1 Teng (2008)

Damage data (denominator) S 6 (MPa) Teng (2008)

GTN material parameter q1 1.5 Xue et al. (2007)

GTN material parameter q2 1.0 Xue et al. (2007)

GTN material parameter q3 2.25 Xue et al. (2007)

Xue shear mechanism parameter q4 1.69 (2D)/1.86

(3D)

Xue et al. (2007)

Xue shear mechanism parameter q5 0.50 (2D)/0.33

(3D)

Xue et al. (2007)

Volume fraction of void nucleation fN 0.04 Xue et al. (2007)

Stand. dev. of the pl. strain of void

nuc.

sN 0.1 Xue et al. (2007)

Mean plas. strain of the dist. of void

nuc.

eN 0.2 Xue et al. (2007)

Bai pressure parameter Cη 0.09 Bai and Wierzbicki

(2008)

Triaxiality reference η0 0.33 Bai and Wierzbicki

(2008)

Bai tensile parameter Cθ
t 1.0 Bai and Wierzbicki

(2008)

Bai compression parameter Cθ
c 0.9 Bai and Wierzbicki

(2008)

Bai shear parameter Cθ
s 0.855 Bai and Wierzbicki

(2008)

Bai exponent parameter m 6 Bai and Wierzbicki

(2008)
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Nevertheless, different results would be obtained from the inverse method if the

calibration were carried out based on a different specimen. The authors have used

this calibration point because it is the most widely used calibration point in the

literature for damage models. The impact that the change on calibration strategy

a b

Fig. 3 (a) Force versus displacement curve for all models and experimental results. (b) Critical

damage parameter calibrated for the experimental displacement to fracture (uf ¼ 6.65 mm).

Reprinted from L. Malcher et al., An Assessment of Isotropic Constitutive Models for Ductile

Fracture under High and Low Stress Triaxiality. Int. J. Plast. 30–31, 81–115 (2012), with

permission from Elsevier

Table 2 Critical values

for damage obtained by

calibrating the models with

a smooth bar specimen

Model Critical value

Lemaitre Dc ¼ 0.26

GTN fc ¼ 0.06

Bao Dc ¼ 0.21

Fig. 2 Finite elements mesh of the butterfly specimen and shear zone to fracture. Reprinted from

L. Malcher et al., An Assessment of Isotropic Constitutive Models for Ductile Fracture under High

and Low Stress Triaxiality. Int. J. Plast. 30–31, 81–115 (2012), with permission from Elsevier
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would have on the predicted ability of the models is a topic of research that deserves

further analysis.

Numerical Results
The predictive ability of the constitutive models is assessed here using the proper-

ties listed in Table 1 together with the calibrated parameters. A summary of the

results that will serve as reference for comparison is presented in Table 3. In

particular, the displacement at fracture, uf; the initial stress triaxiality, η0; the initial
Lode angle,θ0; the averaged stress triaxiality, ηav; the averaged Lode angle, θav; and
the equivalent strain at fracture, ef,eq, are listed for each specimen. The displace-

ments to fracture of the butterfly specimen, in both pure shear and combined tensile/

shear loading conditions, were not available in the literature. The expected location

for crack formation, experimentally observed, is also included. The information

presented in Table 3 was obtained from Bao (Bao et al. 2003) and Bai (Bai

et al. 2008).

Before proceeding, it is important to describe how the reference values, which

are listed in Table 3, were obtained. The initial stress triaxiality, η0, and initial Lode
angle, θ0, values are obtained from analytical expressions, which can be derived for

Table 3 Reference values for different specimens of the 2024-T351 (Bao et al. 2003; Bai

et al. 2008)

Specimen

uf
(mm) η0 θ0 ηav θav ef,eq Fracture location

Butterfly (pure

shear)

– 0 0 0.01 0.04 0.21 Surface of shear zone

Butterfly (tension/

shear, 10�)
– 0.11 0.22 0.12 0.34 0.26 Middle of thickness on

shear zone

Fig. 4 Stress–strain curves

for all constitutive models.

Reprinted from L. Malcher

et al., An Assessment of

Isotropic Constitutive Models

for Ductile Fracture under

High and Low Stress

Triaxiality. Int. J. Plast.

30–31, 81–115 (2012), with

permission from Elsevier
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each particular specimen (Bai et al. 2008). The determination of the averaged stress

triaxiality, ηav; averaged Lode angle, θav; and equivalent strain at fracture, ef,eq, was
done using a combined experimental numerical method. After performing the

experiments, numerical simulations of all specimens were conducted by Bao

(Bao et al. 2003) and also by Bai (Bai et al. 2008) using a von Mises model. The

averaged stress triaxiality, ηav; averaged Lode angle, θav; and equivalent strain at

fracture, ef,eq, are calculated by the finite element simulation at the critical location

for the measured displacement at fracture. Since the stress triaxiality and Lode

angle parameters are variable during the loading process, Bao (Bao et al. 2003) and

Bai (Bai et al. 2008) used averaged values according to Eq. 36.

All the numerical results obtained in this work were conducted following the

same strategy. The simulation was performed until the damage variable of the

particular constitutive model, at any point in the specimen, reached the critical

value that is listed in Table 2. Therefore, the value of the displacement and effective

plastic strain variables calculated from the finite element simulation, when the

damage variable reaches its critical value, are understood as the displacement at

fracture and effective strain at fracture from the numerical simulations. After

attaining the critical damage value at a particular element, the finite element

analysis is conducted as before without changing the fully damaged element. The

focus here is to study the behavior of the constitutive models, previously described,

under a low level of stress triaxiality and verify their ability to predict the correct

fracture location. The butterfly specimen was simulated in both pure shear and

combined tension/shear (10� with the x-axis) conditions. In Table 4, the numerical

results, obtained by the finite element simulation, for the displacement at fracture,

stress triaxiality average, Lode angle average, and equivalent plastic strain at

fracture can be examined. In both loading scenarios, the prescribed displacement

Table 4 A summary of the numerical results obtained by the damage constitutive models studied

on aluminum alloy 2024-T351. Specimens subjected to a low level of stress triaxiality

Specimen Model

uf
(mm) ηav

a ηav θav
a θav ef,eq

a ef,eq
p

Fracture

location

Butterfly

(pure

shear)

Bai and

Wierzbicki

0.700 0.01 0.00 0.04 0.00 0.21 1.40 Surface of

shear zone

Lemaitre 0.464 0.08 0.04 0.64

GTN

original

– 0.02 0.06 –

GTN

modified

0.348 0.02 0.04 0.31

Butterfly

(tensile/

shear,

10�)

Bai and

Wierzbicki

0.540 0.12 0.22 0.34 0.43 0.26 0.67 Middle of

thickness

on shear

zone
Lemaitre 0.408 0.34 0.19 0.60

GTN

original

0.642 0.30 0.47 0.64

GTN

modified

0.340 0.27 0.43 0.35

aRepresents reference values
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was imposed until the damage variable of the particular constitutive model, at any

point in the specimen, reached its critical value, previously calibrated (see Table 2).

The value of the displacement and effective plastic strain variables calculated from

the finite element simulation, when the damage variable reaches its critical value,

are understood as the displacement at fracture and effective strain at fracture from

the numerical simulations.

The results obtained with the original GTN model, under shear-dominated

loading conditions, clearly emphasize the limitation of the model for predicting

fracture under conditions of low stress triaxiality. In Table 4, it is possible to see

that according to this model, the critical damage value would never be reached for

pure shear stress states. Under combined tension/shear (10� with the x-axis), the

predicted displacement to fracture is very high, when compared with the other

models, since damage evolution is only due to the volumetric growth of voids. The

displacements to fracture predicted by the Lemaitre model, uf ¼ 0.464 mm, and the

GTN modified model, uf ¼ 0.348 mm, are more or less close for pure shear. There

is a slightly better agreement between the predicted displacements to fracture for

these two models for combined tension/shear stress states: the Lemaitre model

predicts uf ¼ 0.408 mm, and the GTN modified model predicts uf ¼ 0.34

mm. Nevertheless, there is a marked difference between the levels of predicted

equivalent plastic strain obtained with the Lemaitre model and the GTN modified

model for both loading conditions, which are clearly different from the reference

value of the effective plastic strain listed in Table 3. Through the analysis of the

results obtained by Bai and Wierzbicki’s model coupled with Bao’s fracture

indicator (see Table 4), it is possible to conclude that the overall prediction is not

satisfactory. In particular, for pure shear loading conditions, the model predicts for

both parameters, displacement and equivalent plastic strain at fracture, very high

values (uf ¼ 0.7 mm; ef,eq
p ¼ 1.4) that are different from the reference values listed

in Table 3. These results clearly suggest that Bao’s damage fracture indicator

coupled with Bai and Wierzbicki’s model might not be a good parameter to predict

fracture under low level of stress triaxiality.

The evolution of the damage parameter, at the point where the damage variable

reaches the maximum value, can be examined in Fig. 5. The critical damage value

for each model, which is listed in Table 2, is reached at different levels of

displacement.

The evolution of the damage variable for the GTN original model under

shear loading illustrates its limitation to predict shear localization and

fracture under conditions of low triaxiality. After an initial increase of the damage

variable, which is due to void nucleation, there is no further evolution of damage.

Under a combined shear/tensile loading, this model predicts damage evolution.

Nevertheless, since this growth is only due to volume void growth, the

overall damage evolution is slow and the model predicts a high value for the

displacement to fracture, which is not in agreement with experimental evidence.

The inclusion of shear effects on the formulation of the model, here labelled

modified GTN model, clearly improves the ability of the model to predict

damage growth under shear and combined shear/tensile (10� with the x-axis)
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loading conditions since the distortion of voids and inter-void linking are

taken into account in the model (see Fig. 5a and b). It is important to

observe that the Lemaitre model can predict the evolution of damage under

conditions of low stress triaxiality. In addition, Bao’s damage fracture indicator

coupled with Bai and Wierzbicki’s model is also able to predict the evolution of

damage.

The damage distribution for each constitutive model, when the critical damage is

attained, can be seen on Fig. 6 for pure shear loading. Experimental evidence has

shown that the potential zone for crack formation occurs on the surface of the shear

zone. Both the Lemaitre and GTN modified models, depicted in Fig. 6b and d, have

been able to predict the correct location of fracture onset. On the other hand, Bao’s

damage fracture indicator coupled with Bai and Wierzbicki’s model, depicted in

Fig. 6a, has predicted fracture at the middle of the thickness on the critical zone,

which is wrong. The original GTNmodel predicts damage over the central region of

the critical zone, never reaching the critical value (see Fig. 6c).

The damage variable field obtained in the numerical simulation, for a combined

tensile/shear loading condition, is illustrated by the contour plots shown in Fig. 7.

For this loading condition, fracture onset is experimentally observed at the center of

the shear zone. Therefore, from the analysis of Fig. 7, it is possible to conclude that

Bao’s damage fracture indicator coupled with Bai andWierzbicki’s model is able to

predict the correct fracture location. The same happens with the GTN original

model that also predicts fracture onset at the center of the specimen. However, the

damage evolution for these two models is relatively slow and consequently they

predict a large displacement at fracture. In contrast, the Lemaitre model and the

GTN modified model have predicted fracture onset at the surface of the critical

zone, which is in disagreement with experimental evidence. Therefore, these two

models have not been able to predict the correct location of fracture under com-

bined tensile/shear loading conditions.

a b

Fig. 5 Evolution of damage in (a) pure shear and (b) combined shear/tensile loading conditions.

Reprinted from L. Malcher et al., An Assessment of Isotropic Constitutive Models for Ductile

Fracture under High and Low Stress Triaxiality. Int. J. Plast. 30–31, 81–115 (2012), with

permission from Elsevier
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The inclusion of shear effects on the GTN model has a significant impact on the

evolution of the equivalent plastic strain. Due to the strong coupling between plastic

flow and damage, which exists on the modified GTN model, an increase of overall

damage due to the combination of void growth with the distortion of voids leads to

an increase of the equivalent plastic strain. This enhances the model that predicts a

level of equivalent plastic strain at fracture close to the expected value. In order to

discuss the predictive ability of the Lemaitre model, different values for the critical

damage Dc were critically selected and the damage variable field obtained from the

numerical simulation is illustrated by the contour plots shown in Fig. 8. It is

important to remark that this is merely an exercise and the authors have not

performed any additional calibration procedure.

From the analysis of the results depicted in Fig. 8, it is possible to conclude that

if the critical value of damage is increased, the location of fracture onset moves

Fig. 6 Damage contours for the butterfly specimen under pure shear conditions. (a) Bai and

Wierzbicki’s model, (b) Lemaitre model, (c) GTN model, and (d) GTN modified model. Reprinted

from L. Malcher et al., An Assessment of Isotropic Constitutive Models for Ductile Fracture under

High and Low Stress Triaxiality. Int. J. Plast. 30–31, 81–115 (2012), with permission from Elsevier
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from the surface of the shear zone to the center of the shear zone. Therefore, for a

high value of critical damage, Dc ¼ 0.50, the prediction of fracture onset of the

Lemaitre model would be in agreement with experimental observations.

Nonlocal Models

Introduction

In local models, the behavior of the material is completely represented by a point-

wise constitutive law, which is independent of the influence of surrounding material

points assuming that the material is continuous at any scale neglecting any size

effects.

Fig. 7 Damage contours for a butterfly specimen under combined shear/tensile load. (a) Bai and

Wierzbicki, (b) Lemaitre (c) GTN original, and (d) GTN modified models. Reprinted from

L. Malcher et al., An Assessment of Isotropic Constitutive Models for Ductile Fracture under

High and Low Stress Triaxiality. Int. J. Plast. 30–31, 81–115 (2012), with permission from Elsevier
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Alternatively the nonlocal theory incorporates an intrinsic length into the tradi-

tional continuum theory, trying to mimic those size effects at the constitutive level

and as a “side effect.” If conveniently formulated, they alleviate or solve numerical

problems associated with local models, by means of either gradient-enhanced or

integral-type formulations.

In fact nonlocal models have been successfully used in the last two decades to

avoid or alleviate pathological geometrical discretization dependency of numerical

solutions. This problem is prone to occur whenever local strain-softening is triggered

by a particular constitutive model. It may be explained, for example, in a quasi-static

problem, by the fact that locally the underlying partial differential equilibrium

equations lose ellipticity, “bringing to surface” associated numerical problems.

Since the pioneering work of Pijaudier-Cabot and Bazant (Pijaudier-Cabot and

Bažant 1987), who applied the nonlocal formulation of Edelen and Laws (1971;

Fig. 8 Lemaitre’s damage contour for the butterfly specimen under combined shear/tensile

loading condition. (a) Dc ¼ 0.26, (b) Dc ¼ 0.35, and (c) Dc ¼ 0.50. Reprinted from L. Malcher

et al., An Assessment of Isotropic Constitutive Models for Ductile Fracture under High and Low

Stress Triaxiality. Int. J. Plast. 30–31, 81–115 (2012), with permission from Elsevier
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Edelen et al. 1971) in the context of an elastic–damage model, many reliable and

efficient algorithms for the implementation of the nonlocal theory have been put

forward both in an integral or differential counterparts (De Borst and M€uhlhaus
1992; Strömberg and Ristinmaa 1996; Peerlings et al. 1996; Benvenuti and Tralli

2003; Engelen et al. 2003; Cesar de Sa et al. 2006; Polizzotto 2009; Voyiadjis

et al. 2010; Andrade et al. 2011). It is noteworthy that both formulations give, in

general, equivalent solutions in similar circumstances.

The derivation of any nonlocal theory requires the choice of the variable or

variables to be enhanced by nonlocality. Typical choices are, among others, the

regularization of variables related to kinematics (such as the strain tensor), regu-

larization of internal variables (e.g., scalar measurements of the amount of plastic

strain or damage), and regularization of thermodynamic forces power-conjugated

with internal variables (for instance, the elastic energy release rate in damage

models). In fact, the choice of the nonlocal variable depends on the kind of material

to be modelled and on the nature of the problem to be solved. In the particular case

of elastoplastic damaging ductile solids, the internal degradation of the material,

which in the CDM theory is usually treated by means of some damage measurement

as an internal variable, is closely linked to the localization phenomenon. Therefore,

the choice of damage as the nonlocal variable emerges as natural in this context and

will be chosen here, using an integral approach.

A nonlocal variable can be expressed from its local counterpart, in the integral-type

formulation, by means of the spatially weighted averaging integral as in (Eq. 37):

φ xð Þ ¼
ð
V

β x, ξð Þφ ξð ÞdV ξð Þ (37)

where φ and φ are, respectively, the local and nonlocal damage variables and

β(x, ξ) is a weighted averaging operator. It is noteworthy that φ xð Þ represents the
measurement of nonlocal variable at a material point x, which has been averaged

over a finite volume V, whose size is somewhat related to a constitutive parameter,

the intrinsic length ‘r.
The averaging operator, β(x, ξ), satisfies the normalizing conditionð

V

β x, ξð ÞdV ξð Þ ¼ 1 (38)

The normalization may be accomplished by defining the operator as

β x, ξð Þ ¼ α x, ξð Þ
Ωr xð Þ (39)

where Ωr(x) is a representative volume given by

Ωr xð Þ ¼
ð
V

α x, ξð ÞdV ξð Þ (40)

and α(x, ξ) is a prescribed weighting function which depends only on the distance r.
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This weighting function should satisfy some basic characteristics in order to

obtain the diffusive effect expected from the nonlocal theory, i.e., it should have its

maximum at the origin and the decrease as the distance of neighboring points

increases. For that purpose we adopt here the bell-shaped function, which is

frequently employed in nonlocal theories of integral-type, as

α x, ξð Þ ¼ 1� x� ξk k2
‘2r xð Þ

* +2

(41)

where h	i are the Macaulay brackets.

For a material point sufficiently far from the boundary Ωr(x) is assumed to be

constant and is usually denoted by Ω1. In practice this representative volume is

computed as the area of a circle (2D problems) or the volume of a sphere

(3D problems). As illustrated in Fig. 9, near the boundaries, because the size of

the representative volume may vary, the averaging operator loses its symmetry, i.e.,

β(x, ξ) 6¼ β(ξ, x) due to the fact that

α x1,x2ð Þ
Ωr x1ð Þ 6¼ α x1,x2ð Þ

Ωr x1ð Þ (42)

The use of a nonsymmetric operator is disadvantageous from a purely compu-

tational point of view due to the additional amount of memory necessary for storage

when compared to the case of a symmetric operator (Andrade 2011).

Besides, the definition and use of a symmetric averaging operator are also

appealing for the concise theoretical elaboration of nonlocal models which are

consistent with thermodynamics (Borino et al. 1999). For this purpose, Borino

et al. (1999) have proposed a symmetric averaging operator, which is written as

β x, ξð Þ ¼ 1� Ωr xð Þ
Ω1

� �
δ x, ξð Þ þ 1

Ω1
α x, ξð Þ (43)

where δ(x, ξ) is the Dirac delta function. With other authors and for the sake of

clarity, we adopt the following notation to define a nonlocal variable:

Fig. 9 Schematic illustration

of the lack of symmetry of the

nonsymmetric averaging

operator. Reprinted from

F.X.C. Andrade et al.,

Assessment and Comparison

of Non-local Integral Models

for Ductile Damage. Int.

J. Damage Mech 23(2),

261–296 (2014), by

permission of SAGE

Publications
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R φð Þ ¼ φ xð Þ ¼
ð
V

β x, ξð Þφ ξð ÞdV ξð Þ (44)

where R(	) denotes the integral regularization operator.

The first step for the nonlocal enhancement of a previously existing local

material model is to choose where the integral operator should be incorporated in

the constitutive equations. This step can be interpreted, to some extent, as “the

choice of the nonlocal variable.”

Since every single variable of a given constitutive model can be enhanced by

nonlocality, a large number of possibilities seem to exist. Of course, some options

are at first glance more promising than others; however, a simple guess does not

guarantee a constitutive model free of spurious mesh dependence. Among the

limited number of contributions who worked in this direction, Bazant and Chang

(Chang and Bazant 1984) have concluded that the internal variables are the best

candidates for nonlocal quantities when compared to other quantities such as the

stress and the total strain tensors. However, which internal variable should be

selected among the many possibilities is, to a larger extent, uncertain for most

models. Other important contributions on the issue of the choice of the nonlocal

variable are due to Jirasek (1998) and Jirasek and Rolshoven (2003), who assessed

many different nonlocal formulations in order to verify their regularizing proper-

ties, as mentioned above. Several options have been considered and tested here for

both Lemaitre- and Gurson-based damage models.

Nonlocal Formulation of a Lemaitre-Based Damage Model

The Lemaitre-based damage model, as described above, is firmly rooted in the

Continuum Damage Mechanics and the thermodynamics of irreversible processes.

Its extension to include the derivation of the nonlocal constitutive is possible

(Andrade 2011). Nevertheless, most nonlocal theories are formulated within a

classical approach, i.e., they are merely ad hoc extensions of previously existing

local constitutive models for which one or more local variables are replaced by their

nonlocal counterparts. Although less theoretically appealing, the classical version

of the present nonlocal damage model is thermodynamically admissible, i.e., it does

not generate negative dissipations (Andrade 2011). Furthermore it has been proven

that in practical terms their implementation leads to very similar results (Andrade

2011) and therefore the classical approach in Cesar de Sa et al. (2010) was here

favored as its implementation is substantially simplified.

For the case of Lemaitre-based models, the following four options as potential

nonlocal variables have been considered:

• Regularization of damage, D
• Regularization of the isotropic hardening variable, R
• Regularization of elastic energy release rate, Y
• Simultaneous regularization of damage, D and the isotropic hardening variable, R
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The choices listed above modify the Lemaitre local model in such manner that

for each case one (or more) evolution equation of the local model needs to be

modified. The necessary modifications in the constitutive model are directly sum-

marized in Table 5.

Nonlocal Formulation of a Gurson-Based Damage Model

Some contributions have tried to tackle the issue of mesh dependence on Gurson-

based constitutive models. For instance, Tvergaard and Needleman (1995) have

proposed a nonlocal model of integral type by regularizing the porosity variable. In

their approach, they have avoided the definition of an “exact” nonlocal formulation

by only approximating the nonlocal rate equation. This approach has also been

adopted by Feucht (1999) who has also enriched the Gurson model with a gradient-

dependent theory. Reusch et al. (2003a) have also employed a gradient-enhanced

nonlocal formulation where a new damage variable, which was related to the local

porosity through a gradient equation, has been incorporated in the yield function

proposed by Tvergaard and Needleman (1984). The model was later extended to

finite strains (Reusch et al. 2003b). Hakansson et al. (2006) provided a thermome-

chanical constitutive theory for porous materials by including an additional equi-

librium equation containing the gradient of the porosity variable. In their

formulation, the local mechanical, the thermal, and the nonlocal problems were

solved in an uncoupled fashion. Enakousta et al. (2007) have considered a nonlocal

porosity rate, defined through an averaging integral, which was explicitly inte-

grated. In their numerical strategy, the nonlocal porosity was computed only after

the material problem was solved for a fixed value of porosity.

More recently, Samal et al. (2008) have enhanced Rousselier’s constitutive model

by adopting a similar approach to the one proposed by Reusch et al. (2003a), i.e., a

new damage variable has been incorporated through a gradient implicit formulation.

However, none of the aforementioned contributions has focused in developing a

Gurson-based nonlocal model within a “full” integral framework. The integral-type

nonlocal formulation has the advantage of being completely defined on the material

level, avoiding the definition of additional structural variables in the global system

of equations. In addition, many of the advantages of the constitutive modelling at

Table 5 Lemaitre-based nonlocal models

Associated variable Symbol Evolution equation Reference

Damage D _D ¼ R _D
� 

L-D

Isotropic hardening R _R ¼ R _R
� 

L-R

Energy release rate Y _D ¼ _γ
1�Dð Þ

R �Yf g
S

� �s L-Y

Damage, isotropic hardening D, R _D ¼ R _γ
1�Dð Þ

�Y
S

� sn o
L-DR

_R ¼ R _R
� 
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finite strains within the local framework can be straightforward extended to the

nonlocal case.

Similar to the case of the Lemaitre model, four candidate variables have been

chosen for the Gurson-based damage model described as follows:

• Regularization of damage, i.e., void volume fraction, f
• Regularization of the isotropic hardening variable, R
• Regularization of the equivalent plastic strain, epeq
• Simultaneous regularization of void volume fraction, f, and the isotropic hard-

ening variable, R

Again, each choice requires modifications in one or more evolution equations

that are associated with the chosen constitutive variable, where the necessary

modifications are summarized in Table 6 for convenience.

Assessment and Comparisons of Nonlocal Models

In this section different choices for nonlocal variables are numerically assessed for

different combinations of stress triaxiality ratio, η, and normalized third invariant,

ξ. As pointed out in section “Constitutive Models for Ductile Failure Under High

and Low Triaxiality,” ductile materials may have very different behavior upon fracture,

with less or more dependency on those parameters. Certain materials exhibit more

strain-driven softening than others, so the need of nonlocal modelling is, in quantitative

terms, dependent on the specific material whose behavior one aims to simulate. Our

intention is to numerically illustrate the performance of the different nonlocal models

presented rather than reproducing experimental evidence with accuracy. Therefore, we

will adopt generic material properties that very much resemble those typically observed

and calibrated from experimental testing of high strength steel alloys (see Tables 7,

8, and 9). The same material properties will be used in all simulations for consistency.

Three different mesh refinements will be used in each case, for which the

following line pattern has been adopted in the XY plots: the coarse, medium, and

fine meshes are, respectively, represented by a full (�), a dashed (� �), and a

dotted (	 	 	) line.

Table 6 Gurson-based nonlocal models

Associated variable Symbol Evolution equation Reference

Void volume fraction f _f ¼ R _f
N þ _f

G þ _f
Shear

� �
G-F

Isotropic hardening R _R ¼ R _R
� 

G-R

Equivalent plastic strain epeq _f
N ¼ fN

sN
ffiffiffiffi
2π

p exp � 1
2

epeq�eN
sN

� �2
	 


R _epeq
� � G-EP

Void volume fraction,

isotropic hardening
f ,R _f ¼ R _f

N þ _f
G þ _f

Shear
� �

G-FR

_R ¼ R _R
� 
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Analysis at High Stress Triaxiality
The predominant internal degradation mechanism for ductile materials at high

triaxialities, η > 1/3, is governed by the phenomena of nucleation, growth, and

coalescence of micro-voids.

To a major extent, the Lemaitre and Gurson ductile damage models have been

particularly conceived to capture the aforementioned phenomena. Indeed, this fact

was the main motivation for the inclusion of the additional damage mechanism in

the Gurson model in section “Constitutive Models for Ductile Failure Under High

and Low Triaxiality,” since without the adopted modification no damage evolution

would take place in shear-dominated stress states with that model. In the case of

Lemaitre, damage does evolve when subjected to both high and low stress triaxialities.

For the analysis at high triaxialities, two specimens will be considered in the

present assessment: an axisymmetric notched bar and a grooved plate under plane

strain condition (see Figs. 10, 11, and 12).

The mean values of triaxiality are, in both cases, very similar (η ffi 0.8 for the

axisymmetric case and η ffi 0.7 for the plane strain case). On the contrary, the mean

values of the normalized third invariant are quite different (ξ ¼ 1 for the axisym-

metric case and ξ ¼ 0 for the plane strain case) characterizing different stress states.

Three mesh refinements have been considered in order to capture the effects of

mesh dependency where only one quarter of the geometry has been simulated in

both cases. Different nonlocal intrinsic lengths have been assigned so that the

minimum necessary of elements (and their associated integration points) were

spanned in order to activate the effects of the nonlocal formulation (‘r ¼ 0.6 mm

for the axisymmetric case and ‘r ¼ 0.35 mm for the plane strain case).

Table 7 Basic material

properties employed in all

simulations

Property Value

Elastic modulus E ¼ 220 Gpa

Poisson’s ratio ν ¼ 0.3

Hardening function τy(R) ¼ 700 + 300R0.3 MPa

Table 8 Lemaitre-related

material properties
Property Value

Lemaitre damage exponent s ¼ 1.0

Lemaitre damage denominator S ¼ 3.0 MPa

Table 9 Gurson-related

material properties
Property Value

Micro-void volumetric fraction for nucleation fN ¼ 0.04

Mean strain for void nucleation eN ¼ 0.2

Standard deviatoric strain for nucleation sN ¼ 0.04

Critical damage fc ¼ 0.06

Damage at fracture fc ¼ 0.22

Shear-damage factor k ¼ 3.0
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Despite the fact that the underlying assumptions are very different for both

ductile damage models, mesh dependency has taken place in both cases in the

local case, albeit more pronounced in the plane strain case, as it can be observed

when the maximum value of damage evolution is plotted against the applied

displacement (see Fig. 13). Although those curves may not reveal a strong mesh

R4 mm40 mm

f 18mm

10.1 mm
R2.58 mm

50 mm5 mm

Fig. 10 Geometry for the axisymmetric (left) and plane strain (right) specimens. Reprinted from

F.X.C. Andrade et al., Assessment and Comparison of Non-local Integral Models for Ductile

Damage. Int. J. Damage Mech 23(2), 261–296 (2014), by permission of SAGE Publications
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Fig. 11 Geometry for the axisymmetric (left) and plane strain (right) specimens. Reprinted from

F.X.C. Andrade et al., Assessment and Comparison of Non-local Integral Models for Ductile

Damage. Int. J. Damage Mech 23(2), 261–296 (2014), by permission of SAGE Publications
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dependency for the axisymmetric case, the damage values and contours depicted in

Figs. 14 and 15 clearly reveal it. In the plane strain case, the damage contours show

a more evident mesh dependency (see Figs. 16 and 17).

The evolution of damage for several nonlocal Lemaitre-based formulations is

given in Fig. 18. For the axisymmetric case, the formulations L-D, L-Y, and L-DR

have provided mesh-independent solutions, but for the plane strain solution, only

L-D and L-DR have eliminated the pathological mesh dependency. The formula-

tions L-Y and L-R are far from being adequate solutions for nonlocal enhancement

of the Lemaitre-based model. In particular, the L-Y has provided slightly different

results when compared to the local case for the plane strain specimen. In fact, a

5.05

0

0
Z

Y

X
2.5

5.05

0

0
Z

Y

X
2.5

5.05

0

0
Z

Y

X
2.5

Fig. 12 Mesh refinement for the plane strain specimen. Reprinted from F.X.C. Andrade et al.,

Assessment and Comparison of Non-local Integral Models for Ductile Damage. Int. J. Damage

Mech 23(2), 261–296 (2014), by permission of SAGE Publications

Fig. 13 Evolution of damage in the local case. Results for the (a) Lemaitre- and (b) Gurson-based

models. Reprinted from F.X.C. Andrade et al., Assessment and Comparison of Non-local Integral

Models for Ductile Damage. Int. J. Damage Mech 23(2), 261–296 (2014), by permission of SAGE

Publications
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certain tendency to alleviate the pathological mesh dependency was observed.

However, such tendency was substantially small, not enough to eliminate the issues

of spurious mesh dependency. Further numerical experimentation has demonstrated

that by increasing significantly the characteristic length, the solution tended to
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Fig. 14 Damage contours for the Lemaitre-based model in the local case. Reprinted from

F.X.C. Andrade et al., Assessment and Comparison of Non-local Integral Models for Ductile

Damage. Int. J. Damage Mech 23(2), 261–296 (2014), by permission of SAGE Publications
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become mesh-independent but with the cost of triggering unwanted numerical

instabilities and over-stiff responses. Another aspect worth mentioning regarding

the conclusion that L-Y is not a good candidate for nonlocal variable in an implicit

damage model is that seems to be not the case for nonlocal explicit damage models

as reported by Jirasek and Rolshoven (Jirásek and Rolshoven 2003).
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Fig. 17 Damage contours for the Gurson-based model in the local case. Reprinted from

F.X.C. Andrade et al., Assessment and Comparison of Non-local Integral Models for Ductile

Damage. Int. J. Damage Mech 23(2), 261–296 (2014), by permission of SAGE Publications

Fig. 18 Damage evolution for the Lemaitre-based nonlocal models. Reprinted from

F.X.C. Andrade et al., Assessment and Comparison of Non-local Integral Models for Ductile

Damage. Int. J. Damage Mech 23(2), 261–296 (2014), by permission of SAGE Publications
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The evolution of damage for several Gurson-based nonlocal formulations is

given in Fig. 19. Similar to the case of the Lemaitre-based nonlocal models, the

regularization of damage (G-F) has eliminated pathological mesh dependency for

both the axisymmetric and plane strain cases. In a similar manner, the simultaneous

regularization of both damage and the hardening variables (G-FR) has clearly

provided mesh-independent results in the plane strain case; however, inspection

of Fig. 19d reveals that a slightly spurious behavior has appeared for the more

refined mesh after a certain displacement was applied in the axisymmetric case.

Unexpectedly, G-R has effectively diminished the effects of the loss of ellipticity in

the plane strain case. Nonetheless, this option has revealed itself inadequate since it

fails to avoid mesh dependency in the plane strain case. Finally, the formulation

denoted by G-EP could substantially alleviate the effects of spurious mesh depen-

dency for both tests, where in the latter case the regularization effects seem not to

have been enough. Since the choice of damage (G-F) as nonlocal variable has

presented superior results and recalling that the evolution of equivalent plastic

strain is embedded in the evolution of damage itself, these results suggest that the

evolution of volumetric plastic strain, _epv, also plays a significant role in the issue of
pathological mesh dependency. Therefore, the regularization of both evolutions

through the regularization of damage seems to be the optimal choice (Figs. 20–23).

Fig. 19 Damage evolution for the Gurson-based nonlocal models. Reprinted from

F.X.C. Andrade et al., Assessment and Comparison of Non-local Integral Models for Ductile

Damage. Int. J. Damage Mech 23(2), 261–296 (2014), by permission of SAGE Publications
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Analysis at Moderate Stress Triaxiality
In order to assess the different nonlocal models defined in this chapter under the

triaxiality of η ¼ 1/3, a perforated plate specimen under traction force is simulated

using three different meshes (see Fig. 24).
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Fig. 20 Damage contours for the Lemaitre-based model nonlocal case (L-D). Reprinted from

F.X.C. Andrade et al., Assessment and Comparison of Non-local Integral Models for Ductile

Damage. Int. J. Damage Mech 23(2), 261–296 (2014), by permission of SAGE Publications
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Firstly the plate is simulated considering the local case. Figure 25 depicts the

evolution of damage against the applied displacement for both Lemaitre- and

Gurson-based models. The contours of damage are also plotted in Figs. 26 and

27. Clearly, pathological mesh dependency has taken place in both cases.

In Figs. 28 and 29, the evolution of damage for the nonlocal case is presented.

Observing the results for the Lemaitre-based nonlocal models, we conclude that the

best results were achieved with formulations L-D and L-DR with almost no

differences between them. As expected, L-R was not able to regularize the problem,

still giving solutions that are very sensitive to spatial discretization.

In the case of the Gurson-based models, all the four nonlocal formulations, G-F,

G-R, G-EP, and G-FR, have eliminated the effects of spurious mesh dependency.

Analysis at Low Stress Triaxiality
In order to assess the different nonlocal models under low stress triaxiality, we shall

limit ourselves to observe the behavior of these models under pure shear stress
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Fig. 25 Damage evolution in the local case. Results for the (a) Lemaitre- and (b) Gurson-based

models. Reprinted from F.X.C. Andrade et al., Assessment and Comparison of Non-local Integral

Models for Ductile Damage. Int. J. Damage Mech 23(2), 261–296 (2014), by permission of SAGE
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states (i.e., η ¼ 0) and no analysis under compressive loadings will be carried out.

The shear specimen used by Brunig et al. (2008) will be adopted for the present

assessment where the geometry of the specimen and the three meshes adopted at the

critical zone are shown in Figs. 30 and 31, respectively.

Damage evolution and contours for the local models are shown for both models

in Figs. 32–34. It is clear that the same tendency of the previous cases in what regards

mesh dependence is again verified but with a lesser extent for the Gurson model, which

is perhaps due to both the facts that this model accounts for amore realistic modelling of

the material behavior under shear stress state and that experiments tend to show that, in

this case, localization is not as evident as in tension. Nevertheless, in the Gurson model

although themaximum damage value does not changemuch uponmesh refinement, the

failure zone is wrongly defined and concentrating in a very small region.

Some of the nonlocal models effectively eliminate the pathological mesh sensi-

tivity as it may be seen in the results shown in Figs. 35 and 36. For the Lemaitre

model’s case, the solutions with L-D and L-DR have been able to regularize the

solution, meanwhile L-Y has presented an enhanced solution (if compared to the

local case) but not completely free of spurious dependency on the spatial

discretization.
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It is also clear that in the case of Gurson models, only G-F and G-FR could

achieve mesh-insensitive solutions upon mesh refinement.

The contours of damage are given for the Lemaitre- (L-D) and Gurson-based

(G-F) nonlocal models in Figs. 37 and 38, respectively. Clearly, the effects of

pathological mesh dependency have been consistently eliminated since the damage

contours practically remain constant and distributed over a finite area as the mesh is

refined. Again, this undoubtedly demonstrates the effectiveness of these two

nonlocal models (L-D and G-F) where it is worth mentioning that they have been

able to tackle the issues of spurious mesh sensitivity in all cases analyzed in this

section, regardless of the stress state.

Summary of Results
The results of the previous assessment are schematically summarized in Table 10.

Reference values for the initial triaxiality and the average normalized third invari-

ant have been given for convenience. The results suggest, to some extent, that the

third invariant may have more influence in the issue of pathological mesh depen-

dency than the triaxiality. Furthermore, the solutions in which damage has been

regularized have been effective in all cases. Although L-D, L-DR, G-F, and G-FR

have resulted in most cases, from a numerical point of view, the regularization of
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damage only seems more advantageous than regularizing both damage and the

isotropic hardening variable simultaneously. In the latter case, a dual integral

averaging has to be carried out, being more computationally costly.

We remark again that the conclusion that damage is the preferred variable to be

regularized in the case of Lemaitre- and Gurson-based models is significantly

important as it seems that this is an inherent characteristic of implicit damage

Fig. 30 Geometry of the

shear specimen. Reprinted

from F.X.C. Andrade et al.,

Assessment and Comparison

of Non-local Integral Models

for Ductile Damage. Int.

J. Damage Mech 23(2),

261–296 (2014), by

permission of SAGE

Publications
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Fig. 31 Shear specimen: different mesh refinements at the critical region. Reprinted from

F.X.C. Andrade et al., Assessment and Comparison of Non-local Integral Models for Ductile

Damage. Int. J. Damage Mech 23(2), 261–296 (2014), by permission of SAGE Publications
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models. In the case of explicit damage models, often used to model quasi-brittle

materials, the conclusion is completely different. As reported by Jirasek and

Rolshoven (2003), the damage variable is a bad candidate for nonlocal variable

for such explicit damage models and should be avoided. Again, this utterly implies

that one has to be very careful when choosing the nonlocal variable for a given

constitutive model; in particular, it should be analyzed if the damage formulation of

such material model is done in an implicit or explicit fashion.

Damage to Fracture Transition

Introduction

Continuum models successfully describe most stages of material behavior. Never-

theless, when it comes to the final stages of failure, these models are not able to

represent the initiation and propagation of macro-cracks within a structure. To

correctly address surface decohesion and avoid spurious damage growth, the use

of a discontinuous approach becomes imperative.

So far, the most successful simulations of ductile fracture processes, in a finite

element method framework, lay in strategies that involve relatively fine meshes and

continuous remeshing (Vaz and Owen 2001; Mediavilla et al. 2006; Mediavilla

2005; Areias et al. 2011; Saanouni 2008; Belytschko et al. 2000; Bouchard

et al. 2000). Nevertheless, this method is still burdensome and extremely expensive

in terms of computational costs. In addition, errors may be introduced due to the

need of projecting the field variables.

Remeshing may be simplified by applying the element deletion technique (Song

et al. 2008; Beissel et al. 1998), where the elements in which the fracture criterion is

met are simply deleted from the mesh. However, this technique is highly dependent
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on the element size and orientation. Models based on the smeared crack model

(Jirasek and Zimmermann 1998), in which the effects of a discontinuity are

incorporated in the stress field and not at the displacement or strain field level,

overcome the disadvantages of remeshing but, due to poor kinematic representa-

tion, are being replaced by approaches in which displacement or strain level

discontinuities are positioned intra-element.

A large number of intra-element discontinuity models falls within the embedded

discontinuities class (Jirasek 2000). These models are in general characterized by

the introduction of new deformation modes in the standard finite element. These

deformation modes are able to represent discontinuities with an arbitrary orienta-

tion both at the strain level (weak discontinuity) (e.g., Ortiz et al. 1987) or at the

displacement level (strong discontinuity) (e.g., Belytschko et al. 1988; Simo

et al. 1993). Extensions to large strain plasticity (e.g., Armero and Garikipati

1996) and large strain isotropic damage with application to ductile fracture
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(e.g., Sanchez et al. 2008; Huespe et al. 2012) are also available. Although the

embedded discontinuity approach allows the efficient modelling of regions with

highly localized strains, the two parts of the element separated by the discontinuity

are not totally independent and often the deformation state needs to be taken to be

constant across the discontinuity band.

Another powerful technique to represent discontinuities intra-element is the

eXtended Finite Element Method (XFEM) (Belytschko and Black 1999) in which

the standard displacement field approximation is enriched with functions which are

able to capture decohesion between two surfaces. Extra degrees of freedom are

added to the nodes of the elements containing the discontinuity, allowing free

propagation through the mesh. Although most of the existing literature on the

XFEM is focused on brittle fracture, the method possesses the desired flexibility,

at reasonable computer costs, to be employed in ductile fracture. Nevertheless, the

developments in the use of the XFEM in ductile fracture problems are still limited,

especially when dealing with large strain yielding.
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Initially, the XFEM works dealing with cracks in elastic media were combined

with cohesive zone models to describe crack propagation in elastic-damageable

materials (Alfaiate et al. 2002; Simone et al. 2003; Benvenuti 2008). Cazes

et al. studied the conditions in which the transition from a continuous model to a

continuous–discontinuous model is acceptable, firstly in elastic-damageable mate-

rials (Cazes et al. 2009) and later in elastoplastic-damageable materials (Cazes

et al. 2010). However in those studies the methodology is only fully developed for

1D cases and the location of the crack has to be assumed a priori. It is also worth

mentioning the extension of these works to a thermomechanical framework by

Fagerström et al. (Fagerstrom and Larsson 2008) and the thick level set approach by

Möes et al. (2011), which incorporates the damage variable in the level set to model

the behavior of elastic-damageable solids in a new way.

The XFEM possesses interesting characteristics to develop a successful simula-

tion of ductile failure processes, and a simple strategy on how to apply it is briefly

described in this section. More sophisticated studies will be required for its full

assessment. In the remainder of this section, it will be shown how the XFEM may

be combined with continuum models, in particular the Lemaitre damage model, to

describe ductile fracture in a more realistic way. Therefore, we start by briefly
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presenting the XFEM enrichment functions used in a ductile fracture problem,

then a short description of a possible and simplified transition criterion from

damage to fracture is given and finally some numerical examples are used to test

its features.

The Extended Finite Element Method (XFEM)

In the XFEM the standard problem field approximation is enriched with additional

functions able to capture a certain desired feature. A large number of references are

available on the subject (e.g. Belytschko and Black 1999; Möes et al. 1999;

Abdelaziz and Hamouine 2008; Fries and Belytschko 2010), and therefore, this

section will focus on the essential aspects of the enrichment functions.

In the particular case of fracture, the enrichment function should represent

decohesion between the two surfaces of a crack. Discontinuous functions such as

the following Heaviside function, H η̂Þð , (Eq. 45) defined in terms of the coordinate

orthogonal to the crack plane, η̂, (Fig. 39), are particularly suitable for this purpose.
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H η̂ð Þ ¼ 1 if η̂ � 0

�1 if η̂ < 0

�
(45)

Enriching finite elements only with the Heaviside function always causes the

extension of the crack to the edge of the element. Therefore, to represent cracks

truly mesh independent, it is desirable to introduce a crack tip function. In this

work, the following function denoted by T is employed:

T ξ̂
�  ¼ 1 if ξ̂ � 0

0 if ξ̂ > 0

�
(46)

This function is particularly suitable for ductile fracture problems, where plas-

ticity is not only confined to the region around the crack tip but widely spread.

Furthermore, it vanishes outside the elements containing discontinuities, which is

not the case if other types of enrichments are employed (Fries and Belytschko 2010;

Chessa et al. 2003; Fries 2008).
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After defining the enrichment functions, the displacement field approximation

may be written as follows:

u xð Þ ¼
Xn
i¼1

Niui þ
Xnsplit
j¼1

Nj H xð Þ � H xj
� � �

aj þ
Xntip
k¼1

Nk T xð Þ � T xkð Þ½ � H xð Þ � H xkð Þ½ �bk
(47)

where Ni represents the standard element shape functions, ui represents the nodal

displacements, and aj and bk represent, respectively, the extra degrees of freedom

associated with the elements totally crossed by a crack (split elements) and the

extra degrees of freedom associated with the elements containing a crack tip
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(tip elements). The enrichment functions are shifted relatively to the nodes to

prevent them from spanning to neighbor elements.

Transition from Damage to Fracture

In a problem discretized through the finite element method, the values of the

damage variable are stored at each Gauss point, from which the damage distribution

pattern follows directly. This information is used to determine the crack character-

istics, namely, its initiation point, direction, and length.

In the numerical model, fracture is triggered when a critical damage value, Dc, is

reached and subsequently a crack is inserted in the model through the XFEM. The

crack initiation point lies in the region where damage firstly reached the critical

value. The elements in which damage is higher than the critical value are selected

and grouped into clouds. The point of a cloud with the highest damage is the crack

initiation point.

To determine the maximum damage point of the domain, it is essential to define

a strategy to calculate the damage value in an arbitrary point of the domain.

Therefore, a cubic B-spline (de Boor 1978; Piegl 1993; Cottrell et al. 2009) will

be used as interpolation function. To build this function, we will start by consider-

ing the following polynomial basis defined within a set of four control points:

N1 ¼ 1

8
1� ξð Þ3; N2 ¼ 3

8
1� ξð Þ2 1þ ξð Þ

N3 ¼ 3

8
1� ξð Þ 1þ ξð Þ2; N4 ¼ 1

8
1þ ξð Þ3

(48)

The value of function f at a point ξ may be obtained by

f ξð Þ ¼
X4
i¼1

Ni fi (49)

where fi is the value of f at the respective control point. To extend this procedure to a
2D problem, a B-spline patch may be considered (de Boor 1978), combining those

Table 10 Summary of results

Cases η0 ξavg L-D L-R L-Y L-DR G-F G-R G-EP G-FR

Axisymmetric 0.8 1.0 ++ �� ++ ++ ++ ++ ++ ++

Plane strain 0.7 0.0 ++ �� � ++ ++ �� + ++

Plate 1/3 ++ �� � ++ ++ ++ + ++

Shear 0.0 0.0 ++ �� + ++ ++ �� + ++

++ Full Regularization

+ Partial but acceptable regularization

� Poor/little regularization

�� No regularization
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B-spline functions in two different directions. In particular, the set of control points

may include points of the element in which the damage is to be determined and

points in the adjacent elements, as illustrated in Fig. 40a.

Therefore, considering a coordinate system (ξ, η), originating in the central

element of Fig. 40a, the following basis for the B-spline patch may be defined:

for ξ � 0

Nξ ¼ 1

8
1� ξð Þ3, 3

8
1� ξð Þ2 1þ ξð Þ, 3

8
1� ξð Þ 1þ ξð Þ2, 1

8
1þ ξð Þ3, 0, 0, 0

� �
for ξ > 0

Nξ ¼ 0, 0, 0,
1

8
3� ξð Þ3, 3

8
3� ξð Þ2 ξ� 1ð Þ, 3

8
3� ξð Þ ξ� 1ð Þ2, 1

8
ξ� 1ð Þ3

� �
for η � 0

Nη ¼ 1

8
1� ηð Þ3, 3

8
1� ηð Þ2 1þ ηð Þ, 3

8
1� ηð Þ 1þ ηð Þ2, 1

8
1þ ηð Þ3, 0, 0, 0

� �
for η > 0

Nη ¼ 0, 0, 0,
1

8
3� ηð Þ3, 3

8
3� ηð Þ2 η� 1ð Þ, 3

8
3� ηð Þ η� 1ð Þ2, 1

8
η� 1ð Þ3

� �
(50)

Then, the damage value at point p, Dp, may be calculated using the relation:

Dp ¼ NξDξηNη (51)

where Dξη is a matrix containing the damage values at the control points.

This methodology to determine the damage value at an arbitrary point of the

domain features several advantages. Unlikely Lagrange polynomials, B-splines do

not oscillate and therefore do not introduce new maxima in the distribution (Cottrell

et al. 2009). This insures that damage does not grow artificially due to the interpo-

lation technique. Moreover, a B-spline patch of dimension d is itself a B-spline

patch of dimension d-1, which means that a variable at point at the boundary of a

B-spline surface/volume may be interpolated with the same functions as a point

lying inside the domain.

lc

Fig. 39 Crack tip

coordinates. Reprinted from

M.R.R. Seabra, Damage

Driven Crack Initiation and

Propagation in Ductile Metals

using XFEM. Comput. Mech.

52(1), 161–179 (2013), with

kind permission from

Springer Science+Business

Media

924 J.M.A.C. de Sa et al.



After determining the crack initiation point, the maximum damage growth

direction is calculated. In terms of numerical implementation, the crack initiation

algorithm is a particular case of the crack propagation algorithm in which the

starting point of the crack is unknown.

To obtain a new segment of crack direction, a set of points is selected along a

circumference, centered at the last crack tip, which contains all the elements where

Fig. 40 (a) Set of control points for defining the interpolatory Bezier patch of the central element

(b) Selection of points to determine the crack growth direction. Reprinted from M.R.R. Seabra,

Damage Driven Crack Initiation and Propagation in Ductile Metals using XFEM. Comput. Mech.

52(1), 161–179 (2013), with kind permission from Springer Science+Business Media
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the critical damage value has been reached in at least one Gauss point, as illustrated

in Fig. 40b. As it is unlikely that the crack will snap back, the points behind the

previous crack segment are excluded, and subsequently, the point with the highest

damage value should be determined. The crack direction is then obtained by joining

the last crack tip to the point with the highest damage. Moreover, for a good accuracy,

two more circumferences, with a slightly higher and slightly smaller radius, are tested

and then the three directions are averaged. Finally, the furthest point with D ¼ Dc is

searched along the crack growth direction, using a midpoint algorithm. A detailed

description of this process may be found in reference (Seabra et al. 2012).

Having the material model, the transition from damage to fracture criterion, and

the crack representation strategy defined, the complete ductile fracture model is

tested with some numerical examples.

Numerical Examples

The efficiency of the complete model for crack initiation and propagation in ductile

metals is evaluated in this section, through some numerical examples. Material

Table 11 Material and geometrical properties

Property Value

Elastic modulus E ¼ 206.9 GPa

Poisson’s ratio υ ¼ 0.29

Damage exponent s ¼ 1.0

Damage denominator r ¼ 1.25 MPa

Hardening function τy(R) ¼ 450 + 129.24R + 265(1 � e� 16.93R) MPa

a

cb d e

Fig. 41 (a) Plane strain specimen and finite element meshes with (b) 11, (c) 21, (d) 31, and (e)

41 elements per side. Reprinted from M.R.R. Seabra, Damage Driven Crack Initiation and

Propagation in Ductile Metals using XFEM. Comput. Mech. 52(1), 161–179 (2013), with kind

permission from Springer Science+Business Media
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behavior is described by the Lemaitre model for ductile damage, which is applica-

ble to a wide range of ductile metals such as steel, aluminum, or copper (Lemaitre

1985a). In the following simulations, the chosen material is steel, whose properties

are summarized in Table 11.

The Lemaitre model is implemented according to a nonlocal formulation;

therefore, it requires a value for the nonlocal regularization length, ‘r, which is

set to 1.6 mm in the following examples.

Finally, it is necessary to prescribe a value for the critical damage, Dc, which

triggers crack initiation. Following the work of Lemaitre, (1985a), in real parts and

structures, the critical damage value is not 1, which would correspond to theoretical

fully damaged material, but is rather located between 0.2 and 0.5. In the following

examples, the value Dc ¼ 0.5 was adopted.

Plane Strain Specimen
The first example assessed is a plane strain specimen, whose geometry is

represented in Fig. 41. Vertical displacements are applied to the top and bottom

edges in order to produce traction-like loading conditions. The problem is

discretized with four different FEM meshes, with 11, 21, 31, and 41, which are

represented in Fig. 41 as well.

Fig. 42 Reaction force as a function of the applied displacement of the top nodes of the plane

strain specimen. Reprinted from M.R.R. Seabra, Damage Driven Crack Initiation and Propagation

in Ductile Metals using XFEM. Comput. Mech. 52(1), 161–179 (2013), with kind permission from

Springer Science+Business Media
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0.522

0.756a-1
0.140
0.205
0.270
0.334
0.399
0.464
0.529

0.711a-1
0.132
0.193
0.254
0.315
0.376
0.437
0.498

a b c

0.746a-1
0.138
0.202

Max.
0.5969
Min.
−0.279a-5
AceFEM

Max.
0.6049
Min.
−0.171a-5
AceFEM

AceFEM

Max.
0.5694
Min.
−0.732a-5

0.266
0.330
0.394
0.458

Fig. 43 Damage contour and final crack for mesh with (a) 11, (b) 21, and (c) 31 elements per side.

Reprinted from M.R.R. Seabra, Damage Driven Crack Initiation and Propagation in Ductile

Metals using XFEM. Comput. Mech. 52(1), 161–179 (2013), with kind permission from Springer

Science+Business Media

a=10 mm

rc=1.0 mm

r1=2.0 mm

r2=2.5 mm

rc

rc

r2

r c

r c

r 1
a

a

Fig. 44 Double-notched

specimen geometry and

boundary conditions.

Reprinted from

M.R.R. Seabra, Damage

Driven Crack Initiation and

Propagation in Ductile Metals

using XFEM. Comput. Mech.

52(1), 161–179 (2013), with

kind permission from

Springer Science+Business

Media
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In Fig. 42 the reaction force–displacement curves obtained are represented.

A crack is included via XFEM when damage reaches its critical value according

to the methodology described above. All the stages of material behavior, including

hardening and softening up to failure, are clearly represented. Results are also

convergent upon mesh refinement.

Under a plane strain condition, the nonlocal integral model also avoids patho-

logical mesh dependence and spurious damage localization, as may be observed in

the damage distribution contours illustrated in Fig. 43.

a b c

Fig. 45 FEM meshes used in the double-notched specimen with (a) 16 nodes per side, (b)

23 nodes per side, and (c) 30 nodes per side. Reprinted from M.R.R. Seabra, Damage Driven

Crack Initiation and Propagation in Ductile Metals using XFEM. Comput. Mech. 52(1), 161–179

(2013), with kind permission from Springer Science+Business Media

0.432

a b

0.618a-1
0.114
0.167
0.220
0.273
0.326
0.379

Max.

AceFEM

0.4946
Min
−0.556a-5

Fig. 46 Damage contour and final crack for mesh (a) and mesh (b). Reprinted from

M.R.R. Seabra, Damage Driven Crack Initiation and Propagation in Ductile Metals

using XFEM. Comput. Mech. 52(1), 161–179 (2013), with kind permission from Springer

Science+Business Media
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Shear Specimen
This example consists of a double-notched specimen, illustrated in Fig. 44, and has

two main objectives: on one hand, to evaluate the response of the model in the

presence of shear loadings and, on the other hand, to compare the crack path

obtained in a more challenging situation than the previous example.

The specimen is loaded in such a way that a shear-like failure mode will occur.

The analysis is performed for the three meshes represented in Fig. 45.

In Fig. 46 the crack paths obtained for the two of the FEM meshes are

represented. It can be observed that the paths are nearly the same for both cases,

i.e., the crack path can be considered as mesh independent.

The nonlocal integral model avoids spurious localization of damage, resulting in

similar damaged areas for different mesh refinements (Fig. 46). The subsequent

insertion of the crack through the XFEM respects these damage contours indepen-

dently of the mesh, indicating that this methodology is adequate to mimic failure

due to crack formation and evolution.

Nevertheless, when observing the reaction force–applied displacement curve

(Fig. 47), it is clear that the regularization effect of the nonlocal model is not as strong

in this case as in the previous example. As referred above, the Lemaitre damage model

is not the most adequate to capture material failure behavior when shear is its main

cause, and therefore, some mesh dependence is still perceptible (Andrade 2011).

Conclusions

In phenomenological terms, the initiation of a crack in ductile metals is connected

to the evolution of damage, which may be described by a continuum model.

Fig. 47 Reaction force as a function of the applied displacement of the top nodes of the double-

notched specimen. Reprinted from M.R.R. Seabra, Damage Driven Crack Initiation and Propaga-

tion in Ductile Metals using XFEM. Comput. Mech. 52(1), 161–179 (2013), with kind permission

from Springer Science+Business Media
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Nevertheless, for a complete description of the failure process, if a local post-failure

analysis is needed, once a critical damage value is met a transition to a discontin-

uous model is necessary.

This transition from a continuous to discontinuous model may be successfully

dealt with by combining the XFEM with a plastic-damageable material model.

Furthermore, the proposed methodology features the following advantages:

• Crack characteristics are determined directly from the continuous model and

therefore there is no need of identifying additional material parameters for the

fracture. Moreover, crack initiation and propagation are dealt with in a

unified way.

• The crack initiation locus does not need to be known in advance, and the crack

progresses independently from the mesh, saving computational resources when

compared with competing approaches such as remeshing.

• Results are mesh independent upon a certain mesh refinement.

By resorting to nonlocal formulations, mesh dependence pathologies, typically

associated to continuum softening models, are attenuated before and after the

insertion of a crack. This simplified model, which may be a good approximation

in practical terms to deal with the transition from a damage zone to a tension-free

crack, could be, nevertheless, enhanced by adding a cohesive law to the disconti-

nuity region so that the existing energy gap, due to the fact that the transition is

made for a damage level, the critical damage, is less than the theoretical failure

value.

Final Remarks and Some Perspectives

In a progressively more competitive industrial scenario, the need for more reliable

predictions of ductile deformation and material failure is fundamental. Only so it is

possible to substantially reduce the use of unnecessary material, thus achieving

robust designs. A precise modelling of the ductile behavior inevitably involves the

description of observed phenomena like plastic straining and strain-driven soften-

ing, often requiring highly nonlinear constitutive models. The introduction of new

effects, both in the plastic flow rule of the material and in the evolution law for

internal variables like damage, are among the topics most discussed and improved

in the last decade. These scientific developments bring to the industry, in general,

competitive gains in relation to the development of more efficient and durable

mechanical components as well as the improvement of manufacturing processes.

Thus, in this work, a study of different elastoplastic models with damage as internal

variable was undertaken. The importance of the influence of the third invariant of

the deviatoric stress tensor in the mechanical behavior of metallic materials was

assessed mainly in shear-dominated stress states.

It is well known that the use of strain-softening laws inevitably leads to patho-

logical mesh dependency if the standard local continuum theory is considered.
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To solve this issue of spurious mesh sensitivity, a nonlocal approach of integral

type was used, to a certain extent, to unfold the question of which constitutive

variable should be regularized to avoid spurious mesh dependency. In order to

properly answer this question, a comprehensive assessment of several nonlocal

models has been carried out where these models have been subjected to different

values of stress triaxiality and third invariant of the deviatoric stress tensor.

Since the stress state plays a fundamental role in the behavior and fracture of

ductile materials, it was the main concern to observe how the different nonlocal

models respond under distinct external load conditions. It has been found that

some options that are able to tackle spurious mesh sensitivity in a certain

stress state fail completely when subjected to another stress triaxiality or third

invariant. Furthermore, the conclusions reported by other authors in the

context of explicit damage models are completely different from those drawn

here, where implicit damage models have been considered. This utterly implies

that one has to be very careful when choosing the nonlocal variable of a given

constitutive model. After a very careful scrutiny, the assessment has shown that, in

the case of implicit damage models, the damage variable seems to be the

optimal choice.

A main assumption underlying this work was that the history of deformation has

no influence on the nonlocal averaging operator, meaning that the nonlocal intrinsic

length remains constant as the body undergoes deformation. However, there is no

experimental evidence neither supporting nor contradicting this hypothesis. Appar-

ently, a more realistic modelling would consider an evolving nonlocal intrinsic

length, as a function of other variables that are known to significantly influence the

dissipative fracturing process (e.g., the plastic strain, the stress state, the damage, or

the history of deformation itself). However, the consideration of a nonlocal theory

with a nonconstant intrinsic length as well as an averaging operator which is

dependent on the history of deformation (or some other constitutive quantity) is

still very challenging, both from the theoretical and the computational point of

view. Nevertheless, the development of such enhanced theories would help to better

understand material failure and also would widen the application of the nonlocal

theory to a larger number of materials.

A continuum model is adequate to describe the underlying microscopic mech-

anisms which trigger fracture initiation. Nevertheless, a discontinuous approach is

more suitable to describe the last stage of failure, which involves the propagation of

macro-cracks. To combine these advantages of both continuous and discontinuous

approaches, in order to build a model able to handle simultaneously large strains,

damage localization, and crack propagation, the XFEM was inserted in the simu-

lation model, in a simplified fashion. The damage variable distribution is used to

define the size and the orientation of the evolving crack. Though the inclusion

and propagation of a traction-free crack were governed by a critical damage

level, improvements can be made by resorting to a cohesive law at the

transition zone from damage to fracture, which should be calibrated by energetic

consistency issues.
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N. Möes, C. Stolz, P.-E. Bernard, N. Chevaugeon, A level set based model for damage growth: the

thick level set approach. Int. J. Numer. Methods Eng. 86(3), 358–380 (2011)
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Abstract

Two classes of micromechanics-based models of void enlargement are presented

succinctly with their fundamental hypotheses and synopsis of derivation

highlighted. The first class of models deals with conventional void growth, i.e.,

under conditions of generalized plastic flow within the elementary volume. The

second class of models deals with void coalescence, i.e., an accelerated void

growth process in which plastic flow is highly localized. The structure of consti-

tutive relations pertaining to either class of models is the same but their implica-

tions are different. With this as basis, two kinds of integrated models are presented

which can be implemented in a finite-element code and used in ductile fracture

simulations, in particular for metal forming processes. This chapter also describes

elements ofmaterial parameter identification and how to use the integratedmodels.

Nomenclature

Symbol Definition Components

I Second-order identity tensor δij
 (Symmetric) fourth-order identity tensor 1

2
δikδjl þ δilδjk
� �

Tm � 1/3 tr T Mean part of tensor T

T0 � T – TmI Deviator of tensor T Tij � 1
3
Tkkδij

 � � 1
3
I� I Deviatoric projector, e.g.,  : σ ¼ σ0 Iijkl � 1

3
δijδkl

||T|| � (3/2 T0 : T0)1/2 von Mises norm of tensor T

||T||H � (3/2 T0 : : T0)1/2 Hill norm of tensor T

Ω Domain occupied by RVE

ω Domain occupied by voids

f � |ω|/|Ω| Void volume fraction (porosity)

W Void aspect ratio (>1 if prolate)

e3 Common axis of aligned spheroidal voids

λ Void spacing ratio (>1 if axial spacing is

greatest)

χ Ligament parameter (¼1 if no ligament left)

Λ Plastic multiplier

σ, d Microscopic Cauchy stress and rate of

deformation

Σ, D Macroscopic Cauchy stress and rate of

deformation

Σeq � ||Σ|| von Mises equivalent stress (similar for σeq)

Deq ¼ 2/3||D|| Equivalent strain rate (similar for deq)

σ Microscopic yield stress

Hill’s anisotropy tensor

Anisotropy tensor in the space of stress

deviators

Formal inverse of

(continued)
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Symbol Definition Components

hii ¼ 1,6 Components of after Voigt’s

condensation

fN Volume fraction of void-nucleating

particles

ϵN Average nucleation strain

SN Standard deviation

Introduction

Understanding the fundamental mechanisms of fracture in metal forming is of

considerable importance, but the development of physically sound models with a

quantitative predictive ability still poses a challenge. First, the plastic strains

involved in forming are quite large, and this excludes the use of classical linear

elastic fracture mechanics concepts. In addition, nonlinear fracture mechanics has

essentially dealt with the fundamental problem of a body containing one or more

initial cracks. In metal forming, there usually are no initial cracks. Also, significant

microstructural evolutions take place at large plastic deformations. The latter include

extreme grain elongations, texture development/evolution as well as the nucleation

and growth of microvoids, either on second-phase particles or at stress risers.

The nonproportional loading paths that are inherent to forming operations make

the prediction of failure even more challenging. Engineering tools and guidelines

based on forming limit diagrams or stress-based criteria that do not embody a set of

internal variables are of limited scope. They fail to capture, even qualitatively, the

inherent path dependence of failure loci, in whichever way such loci are defined.

There is a great potential for metal forming to rely on rational material design, i.e.,

based on sound physical models that possess the ability to connect processing

parameters and microstructural variables to the mechanical properties of interest.

Of paramount importance to some forming operations is the intrinsic ductility of

the material. Ductility is often understood as the ability of a material piece to

withstand some amount of plastic or viscoplastic strain before the onset of structural

instabilities. Necking of a bar under simple tension is the classical example. Viewed

as a material property, the necking strain carries more the signature of the hardening

capacity of the material than its intrinsic ductility. Yet qualitative correlations are

commonly drawn between the two. This may be sufficient in some, but certainly not

all forming operations, especially those involving load path changes.

The fundamental mechanisms and mechanics of ductile fracture have recently

been reviewed by Benzerga and Leblond (2010); also see Besson (2010) for

models. When the microscopic mechanisms involve microvoid growth to coales-

cence, micromechanical models have the capability to deliver physically sound

predictions of structure-property relationships. Even since the last 2010 reviews,

significant developments have taken place in this area. The objective of this

chapter is to present a synthesis of ductile fracture models that are implementable
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in finite-element programs for solving metal forming initial- and boundary-value

problems. The experimental aspects of the subject are omitted and may be

consulted in the above monograph. Also, void nucleation is not addressed for

brevity. This lays the focus on the large-deformation phenomena that are void

growth and void coalescence. In all models a representative volume element (RVE)

is considered according to the classical acception in homogenization theory. The

microscale refers to that of the matrix while the macroscale refers to matrix and

voids. Situations where either scale separation does not hold or fracture is affected

by extreme statistics are not within the scope of this synthesis. The general

framework is that of porous metal plasticity with the difference in treatment

between void growth and void coalescence lying in the assumed boundary condi-

tions and propensity for microscopic localization.

Structure of Constitutive Relations

All porous metal plasticity models to be presented below share a common structure

in their derivation. The macroscopic yield surface is parametrically defined as

Σij ¼ @Π
@Dij

Dð Þ (1)

where Π(D) is the macroscopic plastic dissipation associated with D (see

“Nomenclature”):

Π Dð Þ ¼ inf
d�K Dð Þ

sup
σ��C

σ�ijdij

� �
Ω (2)

Here, C denotes the microscopic (convex) domain of reversibility (the elasticity

domain in small transformations) and K Dð Þ the set of kinematically admissible

microscopic deformations. If uniform strain-rate boundary conditions are assumed,

then

K Dð Þ ¼ dj8x � Ωnω, dkk ¼ 0 and ∃v, 8x � Ω,
�

dij ¼ 1

2
vij þ vj, i
� �

and 8x � @Ω, vi ¼ Dijxij

� (3)

and localized modes of deformation within Ω are precluded. To account for these,

other types of boundary conditions must be used. The former are typically employed

in constructing void growth models, the latter in void-coalescence models.

To obtain expressions for Π in closed form, trial velocity fields are used.

Therefore, the basic elements of a micromechanical model are:

(i) The geometry of the RVE

(ii) A microscale plasticity model, i.e., the boundary of C with the flow rule being

necessarily associative

(iii) Kinematically admissible microscale velocity fields defining a subset ofK Dð Þ
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Bounding properties of the macroscopic dissipation are available, as discussed

by Benzerga and Leblond (2010). Elimination of D from Eq. 1 leads to a macro-

scopic yield criterion of the formΦ(Σ; ISVs)¼ 0 with an associated flow rule. Here

“ISVs” refers to a collection of internal state variables with a definite microstruc-

tural significance.

Microstructural variables, e.g., the porosity f, enter Π, hence Φ, by way of

homogenization. Void growth, rotation, and coalescence result from the evolution

of these variables.

For example, the time rate of change of f results from plastic incompressibility at

the microscale:

_f ¼ 1� fð ÞDkk ¼ 1� fð ÞΛ @Φ
@Σm

, (4)

so that _f derives directly from the yield criterion by normality. For anisotropic

models with one or more void shape parameters, additional evolution equations

are required for the void shapes and orientations. Void-coalescence models are

inherently anisotropic.

Void Growth

Gurson Model

Gurson (1977) used a different method to obtain his yield function. The same yield

function can be arrived at using the approach outlined above:

(i) Geometry:

The RVE is a hollow sphere containing a concentric spherical void.

(A variant of the model exists for a cylindrical RVE.) The porosity f is the

only microstructural variable entering the model.

(ii) Plasticity model:

An associated J2 flow theory is used for the matrix with the yield criterion

and flow rule written as

σeq � σk k ¼ σ, d ¼ 3

2

deq
σ

σ0 (5)

(iii) Velocity fields:

8x � Ωnω, vi xð Þ ¼ AvAi xð Þ þ βijxj, vA xð Þ ¼ 1

r2
er (6)

where a mix of Cartesian and spherical coordinates is used for convenience. Scalar

A and symmetric tensor β are parameters (with βkk ¼ 0).

On that basis, obtain a bounding dissipation function as
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Π Dð Þ ¼ σ 2Dmsinh
�1 2Dmx

Deq

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

m þ D2
eq

x2

s2
4

3
5
x¼1=f

x¼1

(7)

Elimination ofD from Eq. 1 then leads to the well-known Gurson yield function:

ΦGurson Σ; fð Þ � Σ2
eq

σ2
þ 2f cosh

3

2

Σm

σ

� 	
� 1þ f 2
� �

(8)

In the limit f ! 0 (dense matrix) criterion (8) reduces to the von Mises yield

criterion (5)1.

Incorporating Plastic Anisotropy

Benzerga and Besson (2001) generalized the Gurson model to a class of plastically

anisotropic solids (the cylindrical case was also treated):

(i) Geometry:

The RVE is the hollow sphere model so that the porosity f is the only void-

related microstructural variable entering the model.

(ii) Plasticity model:

The matrix is taken to obey Hill’s quadratic associated yield criterion:

ð9Þ

where σ is the yield stress of the material in some reference direction and

: ˆ = ˆ : == : : , ≡ : : , ð10Þ

Fourth-rank tensors and are symmetric, positive definite.

(iii) Velocity fields:

8x � Ωnω, vi xð Þ ¼ AvAi xð Þ þ βijxj, vA xð Þ ¼ 1

r2
er (11)

where A and β (βkk ¼ 0) are parameters. These are the same velocity fields used by

Gurson; cf. Benzerga and Leblond (2010) for a discussion.
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An upper bound of the dissipation potential is then

∏ Dð Þ ¼ σ hDmsinh
�1 hDmx

Deq

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2D2

m þ D2
eq

x2

s2
4

3
5
x¼1=f

x¼1

(12)

so that Benzerga and Besson’s yield function reads

ð13Þ

h being an invariant of tensor . In axes pointing toward the principal directions

of matrix orthotropy, h admits the following expression (Benzerga and Besson

2001):

h ¼ 2
2

5

h1 þ h2 þ h3
h1h2 þ h2h3 þ h3h1

þ 1

5

1

h4
þ 1

h5
þ 1

h6

� 	� �1
2

(14)

For an isotropic matrix, ¼  and h¼ 2 so that the yield function reduces to that

of Gurson. For a dense matrix ( f ¼ 0) criterion (13) reduces to Hill’s quadratic

criterion.

Quite recently, Stewart and Cazacu (2011) generalized the above model to a

class of anisotropic materials exhibiting tension-compression asymmetry, e.g.,

hexagonal closed-packed polycrystals. The matrix was taken to obey an associated

quadratic yield criterion of a general family of non-quadratic criteria (Cazacu

et al. 2006):

σeq �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂ij j � kσ̂ið Þ σ̂ij j � kσ̂ið Þ

p
¼ σ, σ̂ 5  : σ0 (15)

where σ as above and  an invertible tensor invariant with respect to the

orthotropy group satisfying major and minor symmetries such that Liikl ¼ const

for k ¼ l. Under axisymmetric loadings, their approximate macroscopic yield

function takes the same form as Eq. 13 with the quadratic term replaced with Σeq.

defined as in Eq. 15 and a variant of coefficient h in Eq. 14 appears in the

exponential term.

Void Shape Effects: Case of Spheroids

Gologanu and coworkers incorporated the anisotropy due to void shape in a series

of models: for prolate voids (Gologanu et al. 1993) and for oblate ones (Gologanu

et al. 1994). Later, Gologanu et al. (1997) developed an improved model whose

general lines are recalled next:
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(i) Geometry:

The RVE is a hollow spheroid containing a confocal spheroidal cavity. In

addition to the porosity f, the model involves one void aspect ratio,W, and the

common void axis, e3, as microstructural variables.

(ii) Plasticity model:

The isotropic, associated J2 flow theory is used for the matrix; cf. Eq. 5.

(iii) Velocity fields:

8x � Ω=ω, vi xð Þ ¼ AvAi xð Þ þ βijxj, (16)

where vA gives rise to a nonuniform deformation field. It is given by four terms of

the axisymmetric expansion field derived by Lee and Mear (1992) involving

associated Legendre functions of the first and second kinds. As above, scalar A

and symmetric tensor β are parameters (with βkk ¼ 0).

On that basis, an estimate of the dissipation function is obtained in an implicit

form. After a series of approximations, the GLD yield functionΦGLD(Σ; f,W, e3) is

given by

ΦGLD ¼ C
Σ0 þ ηΣhQk k2

σ2
þ 2 gþ 1ð Þ gþ fð Þ cosh κ

Σ: X
σ

� 	
� gþ 1ð Þ2 � gþ fð Þ2

(17)

Here, Q and X are transversely isotropic tensors given by

X � α2 e1 � e1 þ e2 � e2ð Þ þ 1� 2α2ð Þe3 � e3 (18)

Q � � 1

3
e1 � e1 þ e2 � e2ð Þ þ 2

3
e3 � e3 (19)

Σh � Σ : X is a weighted average of the normal stresses along the principal axes

of the void and e1, e2 are arbitrarily chosen transverse unit base vectors. Also, κ, α2,
g, C and n are scalar-valued functions of microstructural parameters f andW. In the

limit of a spherical void W ! 1, Eq. 17 reduces to Gurson’s yield function (8),

whereas for W ! 1 it reduces to Gurson’s criterion for cylindrical cavities. The

von Mises yield criterion is obtained when setting f ¼ 0 for W > 1 (prolate voids).

In the case of oblate voids, the limit f ! 0 corresponds to a material with a

distribution of penny-shaped cracks.

The evolution of porosity is obtained by specializing Eq. 4 to Φ ¼ ΦGLD. Void

shape evolution is governed by

_S ¼ 3

2
1þ 9

2
� T2 þ T4

2

� 	
1�

ffiffiffi
f

p � α1 � αG1
1� 3α1

� �
e3�

D0p � e3 þ 1� 3α1
f

þ 3α2 � 1

� 	
I : Dp

(20)
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where S¼ lnW, T is the stress triaxiality ratio and α1( f,W ) and α1
G ( f,W ) are given

in Appendix A. The evolution of the void axis e3 is given by

_e3 ¼ W � e3 (21)

which assumes that the voids rotate with the material, W being the total material

spin. This is clearly an approximation. An improved representation may be found in

(Keralavarma and Benzerga 2010) on the basis of earlier work by Kailasam and

Ponte Castaneda (1998).

Void Shape Effects: Case of Ellipsoids

More recently, Madou and Leblond (2012a, b) have implemented the homogeni-

zation approach of section “Structure of Constitutive Relations” to general

ellipsoids:

(i) Geometry:

The RVE is an ellipsoidal volume containing a confocal ellipsoidal void. In

addition to the porosity f, the model involves two void aspect ratios, W1 and

W2, and the common void axes as microstructural variables.

(ii) Plasticity model:

The isotropic, associated J2 flow theory is used for the matrix; cf. Eq. 5.

(iii) Velocity fields:

The authors used the fields discovered by Leblond and Gologanu (2008)

provided in ellipsoidal coordinates and involving elliptic integrals.

The outcome of their analyses is a general yield function whose expression is

omitted here. Even more recently, Madou and Leblond (2012a, b) have developed

evolution laws for the microstructural variables of the model. They proposed

heuristic corrections to the evolution of the void strain-rate and void axes. Their

corrections are based on a large series of computationally efficient limit analyses.

Combined Plastic Anisotropy and Void Shape Effects

The homogenization problem combining the two kinds of anisotropies has been

addressed by a number of authors in recent years. Thus, Monchiet et al. (2006,

2008) developed a solution based on consideration of the velocity fields used by

Gologanu et al. (1993, 1994) in their earlier versions of the GLD model, and

Keralavarma and Benzerga (2008) developed an improved solution using the richer

Lee-Mear fields used by Gologanu et al. (1997). The latter model is, however,

restricted to axisymmetric loadings and microstructures for which the void axis is

aligned with one direction of material orthotropy.

Keralavarma and Benzerga (2010) developed a porous plasticity model for

materials containing spheroidal voids embedded in a Hill matrix thus generalizing
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the GLD model to plastically anisotropic matrices. Their model is also a general-

ization of Benzerga and Besson’s (2001) model accounting for void shape effects:

(i) Geometry:

The RVE is a hollow spheroid containing a confocal spheroidal cavity.

Porosity f, void aspect ratio,W, and void axis, e3, are microstructural variables.

(ii) Plasticity model:

The orthotropic, associated Hill flow theory is used for the matrix; cf. Eq. 9.

The orthotropy axes are not necessarily aligned with the voids, L, T, and S

referring to the principal directions.

(iii) Velocity fields:

8x � Ω=ω, vi xð Þ ¼ AvAi xð Þ þ βijxj, (22)

where the inhomogeneous part vA of Eq. 62 is replaced with four terms of the

axisymmetric expansion field due to Lee and Mear (1992) involving associated

Legendre functions of the first and second kinds. As above, scalar A and symmetric

tensor β are parameters (with βkk ¼ 0). Here, β is not necessarily axisymmetric if

one admits the ensuing approximations.

Their approximate yield function ΦKB(Σ; f, W, e3, ), applicable to non-

axisymmetric loadings, reads

ΦKB ¼ C
3

2

Σ : ℍ : Σ
σ2

þ 2 gþ 1ð Þ gþ fð Þcosh κ
Σ : X

σ

� 	
� gþ 1ð Þ2 � gþ fð Þ2

(23)

where the macroscopic anisotropy tensor ℍ is given by

≡ : : +η(X ⊗ Q + Q ⊗ X) ð24Þ

Here, X and Q are defined as in Eq. 19 and criterion parameters κ, C, and η are
scalar-valued functions of microstructural parameters ( f and W ) and of , whereas

α2 and g are only functions of f and W; cf. Appendix B.

For example, a simplified expression of κ is

κ ¼

3

h
1þ ht

h2In f
In

1� e22
1� e21

� ��1=2

pð Þ

3

h
1þ

gf � g1

 �
þ 4

5
g
5=2
f � g

5=2
1

 �
� 3

5
g5f � g51

 �
In gf =g1

 �
8<
:

9=
;

�1

oð Þ

8>>>>><
>>>>>:

(25)

where (p) and (o) stand for prolate and oblate, respectively, and gx ¼ g/(g + x).
The dependence of the criterion parameters upon anisotropy tensor enters through

one invariant, h, and two transversely isotropic invariants, ht and hq, of that tensor.
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When expressed in the basis associated with the principal directions of orthotropy

(in the context of this section, this means replacing indices 1 to 6 in Eq. 14 with L,

T, S, TS, SL, and LT, respectively.), invariant h is given by Eq. 14, while ht and hq
are given by

ht ¼ 1

5
� 13

12
ĥL þ ĥT
� �þ 8

3
ĥS þ 4 ĥTS þ ĥSL

� �� 7

2
ĥLT

� �
(26)

and

hq ≡ 2
3
Q : : Q ð27Þ

Here, the ĥi are the components of expressed using Voigt’s condensation. hq
only appears in the expressions of C and η (it was denoted ĥq in Keralavarma and

Benzerga (2010)).

In the special case of an isotropic von Mises matrix ( ¼ ¼ ), the yield

condition (23) reduces to the GLD criterion. In the case of spherical voids in a Hill

matrix, one obtains lim
W!1

α2 ¼ 1=3, C ¼ 1, η ¼ 0 and η ¼ 0. Also, Eq. 25 reduces

to κBB ¼ 3/h and the upper-bound yield criterion of Benzerga and Besson (2001) is

recovered. In particular, theGurson yield function is obtained in the limit of spherical

voids in an isotropic matrix since ¼  implies KBB ¼ 3/2. In the limit of cylindrical

voids in a Hill matrix with eS ¼ e3, we have lim
W!1

α2 ¼ 1=2, C ¼ 1, η ¼ 0 and

Eq. 25 reduces to

κcyl ¼
ffiffiffi
3

p 1

4

hL þ hT þ 4hS
hLhT þ hThS þ hShL

þ 1

2hLT

� ��1
2

(28)

which is the result obtained by Benzerga and Besson (2001). In particular, the

Gurson yield function for cylindrical cavities in a von Mises matrix is recovered

with κcyl ¼ ffiffiffi
3

p
in that case.

Keralavarma and Benzerga (2010) supplemented yield criterion (23) with evo-

lution laws for the microstructural variables f, W, and the void axis e3. The first two
are in essence similar to those used in the GLD model, but the latter one employs an

Eshelby concentration tensor for the spin following a proposal by Kailasam and

Ponte Castaneda (1998).

Void Coalescence

If void growth could proceed until failure (complete loss of stress carrying capacity)

as modeled in the previous section, then a good estimate of void coalescence would

be when the lateral void size (along x3) has reached the lateral void spacing. The

void size relative to its initial value is typically what a void growth model delivers.

The current void spacing can directly be inferred from the initial void spacing and

deformation history. This approach would lead to a considerable overestimation of
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ductility and other fracture properties. This holds even if anisotropic void growth

models are employed. To illustrate this, recall that typical values of the critical void

growth ratio needed in failure models (Beremin 1981; Johnson and Cook 1985) fall

between 1.2 and 2.0. On the other hand, typical values of the ratio of initial void

spacing to void size are within the range 10–100, possibly larger. Even

after considering the deformation-induced decrease in lateral spacing, an important

gap remains. The reason for this is that the void growth models of Section 3 assume

that plastic flow takes place in the whole RVE. It is now established that certain

modes of localized plastic deformation would deliver lower values of the plastic

dissipation Π, hence are more likely to prevail after sufficient microstructural

evolution.

In this context, microstructure evolution refers to changes in the geometrical

configuration of voids, as described by their relative size and spacing. Void

coalescence is an inherently directional void growth process. In all the models

presented below, void coalescence is assumed to take place in the x1–x2 plane with
the major applied normal stress being along the x3 direction.

Coalescence Under Predominately Tensile Loads

Thomason’s Model
Thomason (1985) posed the following limit-analysis problem:

(i) Geometry:

The RVE is a square-prismatic cell containing a cylindrical void with a

square basis, the height of the void being smaller than the cell’s height.

This geometry is determined by the void aspect ratio W (i.e., the height to

breadth ratio), the cell aspect ratio λ, and a relative ligament size χ, which is

the ratio of void breadth to cell breadth, the latter representing the void spacing

transverse to the major stress.

(ii) Plasticity model:

The isotropic, associated J2 flowmodel (5) is used for the matrix, but only in

the central region Ωlig containing the intervoid ligament. The regions above

and below the void are modeled as rigid.

(iii) Velocity fields: (in the intervoid ligaments only)

8x � Ωlig=ω, v ¼ A

2

L2

x1
� x1

� 	
e1 þ x2

L2

x21
� 1

� 	
e2 þ 2x3e3

� �
(29)

where A is a constant set by the boundary conditions. The above velocity field gives

rise to a state of uniaxial extension of the cell (D11 ¼ D22 ¼ 0 and D33 6¼ 0). As a

consequence, the dissipation is only a function of D33 so that the yield criterion

only depends on Σ33. Note that under such circumstances, the criterion will be

insensitive to variations in λ.
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Thomason did not solve the above problem in closed form. He obtained numer-

ical solutions to which he proposed an empirical fit. His yield function may be

expressed as follows:

ΦThom Σ;W, χð Þ ¼ Σ33

σ
� 1� χ2
� �

0:1
χ�1 � 1

W

� 	2

þ 1:2
ffiffiffiffiffiffiffi
χ�1

p !
� Σ33

σ
� ΣT

33

σ

(30)

In the limit χ! 1 the square void fills the ligament and criterion (30) reduces to

Σ33 ¼ 0 so that all stress-bearing capacity vanishes. In the limit W ! 0 (flat void)

Σ33
T !1 and the criterion is never met. This deficiency is believed to have limited

consequences in materials failing after some significant void growth.

Thomason did not supplement his yield criterion with evolution equations for the

microstructural variables W and χ. As a consequence, his yield criterion has

essentially been used as a criterion for the onset of void coalescence, which is

often sufficient to estimate strains to failure as a function of loading parameters,

such as the stress-state triaxiality (Lassance et al. 2007). For ductile fracture

simulations, however, criterion (30) must be supplemented with evolution laws

for W and χ. This task was undertaken by Pardoen and Hutchinson (2000) and

Benzerga (2002) who have proposed additional heuristic extensions of the above

criterion.

A Complete Void-Coalescence Model
Benzerga (2002) posed the following limit-analysis problem:

(i) Geometry:

The RVE is a cylindrical cell containing a spheroidal void. This geometry is

determined by the void aspect ratio W, the cell aspect ratio λ, and the relative

ligament size, χ, which is the ratio of void diameter to cell diameter. The latter

represents the void spacing transverse to the major stress.

(ii) Plasticity model:

The isotropic, associated J2 flowmodel (5) is used for the matrix, but only in

the central region Ωlig containing the intervoid ligament. The regions above

and below the void are modeled as rigid.

(iii) Velocity fields: (in the intervoid ligaments only)

8x � Ωlignω, vi xð Þ ¼ AvAi xð Þ þ βijxj, (31)

where vA contains the same four terms of the axisymmetric Lee-Mear field, Eq. 16.

Here, the constants A and β are in principle determined by the boundary conditions,

which are not of the homogeneous kind.

The above problem is mathematically more involved than Thomason’s.

Benzerga used some numerical solutions to which he proposed an empirical fit.
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The numerical results were taken from Gologanu (1997) who assumed the GLD

model to hold in the central porous layer. Benzerga’s approximate yield function

reads

ΦBenz Σ;W, χð Þ ¼ Σ33

σ
� 1� χ2
� �

α
χ�1 � 1

W2 þ 0:1χ�1 þ 0:02χ�2

� 	2

þ β
ffiffiffiffiffiffiffiffiffiffiffi
χ� 1

p !

� Σ33

σ
� ΣB

33

σ
(32)

with α ¼ 0.1 and β ¼ 1.3. This approximation is better than Thomason’s for

W < 0.5 and removes the deficiency in the limit W ! 0 (penny-shape crack)

since Σ33
B admits a finite limit in that case. This correction is believed to have

important consequences in materials failing after some limited void growth.

Pardoen and Hutchinson (2000) proposed another heuristic extension of criterion

(30) in which the factors α and β were taken to vary with the strain-hardening

exponent. Such a fit was based on a series of finite-element cell model calculations.

Benzerga (2002) also derived (the velocity fields used in the limit analysis were

not used to derive the evolution equations) evolution equations for the state vari-

ables W and x on the basis of matrix incompressibility, boundary conditions, and

cell model phenomenology. A shape factor γ was introduced in addition to W. The

void shape was taken to evolve from spheroidal (γ ¼ 1/2) at the onset of internal

necking (χ ¼ χc) to conical (γ ¼ 1) at complete coalescence (χ ¼ 1). The evolution

equations are as follows:

_χ ¼ 3

4

λ
W

3γ
χ2

� 1

� �
Deq þ χ

2γ
_γ, (33)

_W ¼ 9

4

λ
χ

1� γ
χ2

� �
Deq � W

2γ
_γ, (34)

_γ ¼ 1

2 1� χcð Þ _χ (35)

where λ represents the current value of the void spacing ratio, which is updated

through

_λ ¼ 3

2
λ Deq: (36)

The void and cell axes were tacitly taken to rotate with the material as per Eq. 21.

Thomason’s Model Revisited
Recently, Benzerga and Leblond (2014) have revisited Thomason’s analysis by

considering a circular cylindrical geometry and a velocity field appropriate for the

constrained plastic flow configuration. They obtained a fully analytical expression
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for the effective yield criterion. Their closed-form expression can be used instead of

Thomason’s empirical relation (30). It also constitutes a first step toward some

useful generalizations to other geometries and general loadings, which are lacking

to date.

Coalescence Under Combined Tension and Shear

Very recently, Tekoglu et al. (2012) have proposed a void-coalescence model

applicable under combined shear and tension:

(i) Geometry:

The RVE is a “sandwich” made of three superposed planar layers. Only the

central layer contains some porosity. The void shape need not be specified in

this model. This geometry is determined by the volume fraction of the porous

layer, c, and the porosity within it, fb. If the geometry is further specified as

that considered by Thomason or Benzerga and Leblond (2014), then fb ¼ χ2

and c ¼ Wχ/λ using the same notations as above.

(ii) Plasticity model:

The isotropic, associated J2 flow model (5) is used for the matrix but only in

the central region Ωlig containing the intervoid ligament. The top and bottom

layers are modeled as rigid.

(iii) Velocity fields: (in the intervoid ligaments only)

8x � Ωlignω, vi xð Þ ¼ AvAi xð Þ þ βijxj, (37)

where the second field accommodates shear deformation with β being a constant,

traceless symmetric tensor. The only nonzero components of β are

β13 ¼ 2cD13; β23 ¼ 2cD23

Above, vA is the field that would prevail under pure triaxial tension

(no shear). It is not explicitly specified but could be taken as Thomason’s

field, Eq. 29, if the geometry is made explicit. The constant A is fully

determined by the boundary conditions, which are not of the

homogeneous kind.

Under such circumstances and without specifying the field vA, Tekoglu

et al. (2012) obtain an approximate yield function of the quadratic type

ΦTLP Σ;W, χð Þ ¼ Σ33

ΣA
33

þ 3 Σ2
13 þ Σ2

23

� �
1� fbð Þ2σ2 � 1 (38)

where Σ33
A refers to either Σ33

T in Eq. 30 or Σ33
B in Eq. 32. Hence, in the absence of

any shear loading, the criterion (38) reduces to either Eqs. 30 or 32.
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Description of Two Integrated Models

GTN Model

The most widely used model of ductile damage is the Gurson-Tvergaard-

Needleman (GTN) model. It is based on the Gurson model with some heuristic,

often micromechanically motivated extensions to incorporate hardening and vis-

cous flow, void interactions, void nucleation, and void coalescence. Within a

convective representation of finite deformation viscoplasticity, additive decompo-

sition of the total rate of deformation D is assumed with the plastic part Dp obtained

from the flow potential (Gurson 1977; Pan et al. 1983)

FGTN ¼ Σ2
eq

σ2
þ 2q1 f

�cosh
3q2Σm

2σ

� 	
� 1� q1 f

�ð Þ2 ¼ 0 (39)

by assuming equality of macroscopic plastic work rate and matrix dissipation

Dp ¼ 1� fð Þσ _�

Σ :
@F
@Σ

2
64

3
75 @F
@Σ

(40)

Here, σ is the matrix flow strength and q1 and q2 are parameters introduced by

Tvergaard (1981). The function f *( f ) was introduced by Tvergaard and Needleman

(1984) to account for the effects of rapid void coalescence at failure

f � ¼ f f < f c
f c þ f �u � f c

� �
f � f cð Þ= f f � f c

� �
f � f c

�
(41)

The constant fu
* ¼ 1/q1 is the value of f

* at zero stress. As f ! ff and f * ! fu
*,

the material loses all stress carrying capacity. Equation 41 is a phenomenological

description of coalescence involving two parameters, fc and ff, which are both

material dependent and stress-state dependent (Koplik and Needleman 1988).

Appropriate values for fc and ff can be derived using predictive micromechanical

models (Benzerga et al. 1999; Benzerga 2002), which assume that coalescence

occurs through an internal necking mechanism. Strain-rate effects can be accounted

for through a relation _ϵ σ, ϵð Þ, e.g., Benzerga et al. (2002b), where _ϵ is the effective

strain rate and ϵ ¼
ð
_ϵ dt is the effective plastic strain.

To account for void nucleation, the rate of increase of the void volume fraction is

given by

_f ¼ _f growth þ _f nucleation (42)

where the first term accounts for the growth of existing voids through Eq. 4 and the

second term represents the contribution from void nucleation. For example, the

954 A.A. Benzerga



nucleation of voids by a strain controlled mechanism is modeled using (Chu and

Needleman 1980)

_f nucleation ¼ D _ϵ (43)
with

D ¼ f N
sN

ffiffiffiffiffi
2π

p exp � 1

2

ϵ�ϵN
sN

� 	2
" #

(44)

Proposed Model

Within a finite deformation framework, a corotational formulation of the constitu-

tive equations can be used (Benzerga et al. 2004). The total rate of deformation D is

written as the sum of an elastic and a plastic part:

D ¼ De þ Dp (45)

Elasticity is included through a hypoelastic law:

De ¼ ℂ�1 : _P (46)

where ℂ is the rotated tensor of elastic moduli and P is the rotated stress:

P ¼ JΩT � Σ � Ω (47)

Here, Ω is an appropriate rotation tensor; it is identified with the rotation

R resulting from the polar decomposition of the deformation gradient F if the

Green-Naghdi rate of Σ is used and _Ω �ΩT ¼ W if the Jaumann rate is used,

W being the spin tensor. Also, J ¼ det F.

To account for rate dependence, the plastic part of the rate of deformation, Dp, is

obtained by normality from the gauge function:

ϕ ¼ σ⋆ � σ eð Þ (48)

where σ is the matrix flow stress, e is the effective plastic strain, and σ⋆ is an

effective matrix stress which is implicitly defined through an equation of the type

F (Σ; ISVs, σ⋆) ¼ 0 where “ISVs” refers to a collection of internal state variables

with a definite microstructural significance. For a rate-independent material (stan-

dard plasticity), plastic flow occurs for ϕ ¼ 0 and ϕ ¼ 0. For a rate-dependent

material (viscoplasticity), one has ϕ > 0 during plastic flow.

Prior to the onset of void coalescence, the potential F admits an expression of

the type where the relevant ISVs are the porosity f, the void aspect ratio W, the

void axis e3, and Hill’s tensor , which describes the effect of the current texture.

With the KB model as reference (cf. Eq. 23), the following expression may be used:
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F c�ð Þ ¼ C
3

2

Σ : ℍ : Σ
σ2⋆

þ 2qw gþ 1ð Þ gþ fð Þcosh κ
Σ : X

σ⋆

� 	
� gþ 1ð Þ2

� q2w gþ fð Þ2 (49)

where ℍ is given by Eq. 24, X and Q by Eq. 19, κ by Eq. 25, h by Eq. 14, and ht
by Eq. 26 and the remaining criterion parameters C( f, W, ), η( f, W, ), α2( f, W ),

and g( f,W ) are given in Appendix B. Also, qW is a heuristic void-shape-dependent

factor that was determined by Gologanu et al. (1997) to fit unit-cell results:

qw ¼ 1þ q� 1ð Þ=cosh S (50)

where q¼ 1.6 is the value taken by qw for a spherical void. The evolution laws of f,
W and e3 are given by Eqs. 4, 20, and 21, respectively, where D should be replaced

with Dp and W with _Ω �ΩT , Ω being the rotation tensor used in Eq. 47.

After the onset of void coalescence, the flow potential is given by

ð51Þ

where Σ33
B is given by Eq. 32. For an arbitrary void shape between a spheroid and a

cone, χ is exactly related to the void spacing ratio, λ, through a shape factor γ as

χ ¼ 3γ f
W λ

� �1=3
Pð Þ

W 3γ f
W λ

� �1=3
Tð Þ

(
(52)

where (P) and (T) are a shorthand notation for parallel and transverse loading,

respectively. As χ! 1 the material loses all stress carrying capacity. At the onset of

coalescence, we have F (c�) ¼ F (c+) ¼ 0. The evolution laws of the microstructural

variables are given by Eqs. 33, 34, 35, and 36 along with Eq. 21.

A variant of the integrated model was implemented in a finite-element code and

used to model ductile fracture in notched bars (Benzerga et al. 2004) and slant

fracture in plane strain (Benzerga et al. 2002a). A fully implicit time integration

procedure was used for the local behavior in conjunction with an iterative Newton-

Raphson method. The consistent tangent matrix was computed as detailed in the

case of prolate voids by Benzerga et al. (2002a).

Identification of Material Parameters

GTN Model

The following parameters enter the GTN model: q1, q2, fc, ff, fN, sN and ϵN. There
is no straightforward procedure for identifying these parameters using standard

experiments. In addition, some of the above parameters play interdependent roles.
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In practice, the first four of these parameters could be fixed based on

micromechanical models or cell model calculations. Other model parameters pertain

to the elastoplastic behavior of the matrix. The hardening response of the matrix is

determined using uniaxial testing with appropriate large-strain corrections.

Proposed Model

One advantage of using the proposed model is that it involves fewer parameters,

void nucleation set aside. Examination of the constitutive equations of section

“Proposed Model” reveals actually no adjustable fracture parameter, unless the

value of q ¼ 1.6 is treated as a free parameter. When this model is used to predict

crack initiation, only deformation-related parameters need to be calibrated on

experiments. Account for plastic anisotropy may be necessary depending on the

material. Anisotropic response is common in metal forming applications although it

is often restricted to two-dimensional measurements. Within the confines of the

integrated model above, this first step will deliver the basic hardening curve σ eð Þ as
well as the anisotropy tensor .

With the basic flow properties of the matrix calibrated, the next step is to

determine the volume fraction, aspect ratio and relative spacing of damage initia-

tion sites (inclusions, precipitates, etc.) in the average sense. Practically, this can be

achieved by examining three perpendicular cross sections in optical microscopy,

carrying out the needed two-dimensional measurements using digital image anal-

ysis, and finally operating standard stereology transformations to infer their 3D

counterparts. The outcome of this step is the set of parameters f0,W0, and λ0 needed
to initialize the state of the microstructure in constitutive Eqs. 48, 49, 50, 51, 52, 33,

34, 35, and 36. Other details on how to account for 3D aspects and void nucleation

may be found in the review by Benzerga and Leblond (2010).

How to Use the Model

The proposed model as well as the GTN model may be used to model the initiation

of a crack in an initially crack-free specimen or to model crack growth. In a first

step, it is recommended to assume that void nucleation is instantaneous and occurs

at a fixed value of the effective strain. Therefore, in simulations of ductile fracture,

voids are considered to be present from the outset of plastic deformation. With all

deformation-related quantities calibrated on experiments, model predictions can be

compared with a sufficiently discriminating set of experiments (notched bars, CT

specimens, plane strain bars, etc.) If the model predicts larger than measured

fracture properties, one should attempt a threshold strain for nucleation.

The hypothesis of a delayed or continuous nucleation could then be checked by

metallographic examinations. If the latter do not corroborate the hypothesis, a

parameter sensitivity analysis should be carried out by varying the initial values

of microstructural parameters.
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When failure by void coalescence is predicted at a material point, the material

loses its stress-bearing capacity at this point. In a finite-element simulation, it is

typical to represent this in terms of an element-vanish technique whereby the

stresses and stiffness in the element are subsequently disregarded. This procedure

allows computational simulations of crack growth. Obtaining mesh-independent

predictions requires a length scale to be incorporated in the problem formulation.

Several approaches with varying levels of refinement have been developed to that

end but remain underutilized in fracture simulations for metal forming applications.

Acknowledgments This research was supported by NPRP grant No 4-1411-2-555 from the Qatar

National Research Fund (a member of Qatar Foundation). The statements made herein are solely

the responsibility of the author. Partial support from the National Science Foundation (Grant

Number DMR-0844082) is gratefully acknowledged.

Appendix A. GLD Criterion Parameters

There are six parameters which depend on the microstructural variables f and w: C,
g, K, η, and α2, listed by order of appearance in criterion (17), and α1, which mainly

appears in the evolution law of w:

g ¼ 0 pð Þ; g ¼ e32ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e22

p ¼ f
e31ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e21

p ¼ f
1� w2ð Þ32

w
oð Þ (53)

where (p) and (o) are a shorthand notation for prolate and oblate, respectively. We

recall that e1 and e2 are the eccentricities of the void and the outer boundary of the

RVE, respectively. Both are implicit functions of f and w.
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1ffiffiffi
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where

gf �
g

gþ f
, g1 �

g

gþ 1

α2 ¼

1þ e22
� �

1þ e22
� �2 þ 2 1� e22

� �2 pð Þ

1� e22
� �

1� 2e22
� �

1� 2e22
� �2 þ 2 1� e22

� � oð Þ

8>>>><
>>>>:

(55)
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η ¼ � 2

3

κQ� gþ 1ð Þ gþ fð Þsh
gþ 1ð Þ2 þ gþ fð Þ2 þ gþ 1ð Þ gþ fð Þ κH�sh� 2ch½ � ,

C ¼ � 2

3

κ gþ 1ð Þ gþ fð Þsh
Q� þ 3

2
ηH�

� 	
η

, sh � sinh κH�ð Þ, ch � cosh κH�ð Þ (56)

where H* ¼ 2(α1 – α2) and Q* � (1 – f ).

α1 ¼
e1 � 1� e21

� �
tanh�1e1

� �
= 2e31
� �

pð Þ
�e1 1� e21

� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e21

p
sin �1e1

h i
= 2e31
� �

oð Þ

(
(57)

Finally, the parameter α1
G which enters the evolution law (20) of the void shape

parameter is given by

αG1 ¼ 1= 3� e21
� �

pð Þ
1� e21
� �

= 3� 2e21
� �

oð Þ
�

(58)

Appendix B. KB Criterion Parameters

There are six parameters which depend on the microstructural variables f and w and

on the anisotropy tensor : C, g, κ, η, and α2, listed by order of appearance in

criterion (23) and α1, which appears in the evolution law of W:

g ¼ 0 pð Þ; g ¼ e32ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e22

p ¼ f
e31ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e21

p ¼ f
1� w2ð Þ32

w
oð Þ (59)

We recall that e1 and e2 are the eccentricities of the void and the outer boundary
of the RVE, respectively. Both are implicit functions of f and w. Next, the full

expression of κ was provided by Keralavarma and Benzerga (2010) but can be

simplified into

κ ¼

3

h
1þ ht

h2In f
In

1� e22
1� e21

� ��1=2

pð Þ

3
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1
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� 3

5
g5f � g51

 �
In gf =g1

 �
8<
:

9=
;

�1

oð Þ

8>>>>><
>>>>>:

(60)

where shorthand notations are used for

gf �
g

gþ f
, g1 �

g

gþ 1
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α2 ¼

1þ e22
� �

1þ e22
� �2 þ 2 1� e22

� � pð Þ

1� e22
� �

1� 2e22
� �

1� 2e22
� �2 þ 2 1� e22

� � oð Þ

8>>>><
>>>>:

(61)

η ¼ � 2

3hq

κQ� gþ 1ð Þ gþ fð Þsh
gþ 1ð Þ2 þ gþ fð Þ2 þ gþ 1ð Þ gþ fð Þ κH�sh� 2ch½ � ,

C ¼ � 2

3

κ gþ 1ð Þ gþ fð Þsh
Q� þ 3

2
hqηH

�
� 	

η

, sh � sinh κH�ð Þ, ch � cosh κH�ð Þ (62)

where H� � 2
ffiffiffiffiffi
hq

p
α1 � α2ð Þ and Q� � ffiffiffiffiffi

hq
p

1� fð Þ:

α1 ¼
e1 � 1� e21

� �
tanh�1e1

� �
= 2e31
� �

pð Þ
�e1 1� e21

� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e21

p
sin �1e1

h i
= 2e31
� �

oð Þ

(
(63)

Note that the expressions of α2 and α1 are identical to those given by Gologanu

et al. (1997) for isotropic matrices.
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microstructural evolution in terms of grain rotation and phase transformation, under

large inelastic strains. A description of the main experimental methods is proposed

and multiscale measurements are discussed. For the mesoscopic scale, diffraction

techniques are presented as well as microscopy’s results for a specific material. For

the macroscopic scale, techniques of tensile test coupled with digital image correla-

tion are described. This allows the damage measurement at different scales.

Micromechanical modeling aspects based on the thermodynamics of irreversible

processes with state variables defined at different scales are discussed. A non-

exhaustive review of several possible models is given. These models depend on the

hypothesis for the energy or strain equivalence and on the smallest scale considered.

Two particular models are then detailed with their associated constitutive equations

and the corresponding numerical aspects. Application is made to two different

materials to test the ability of the model to be used for metal forming simulations.

Abbreviations and Notations

CDM Continuous damage mechanics

CRSS Critical resolved shear stress

DIC Digital image correlation

DSS Duplex stainless steel(s)

EBSD Electron backscatter diffraction

FEA Finite element analysis

ODF (Crystalline) orientation distribution function

RVE Representative volume element

SEM Scanning electron microscopy

X Zero-rank tensor ¼ scalar variable

XRD X-ray diffraction

X
! One-rank tensor ¼ vector variable

X Second-rank tensor

X Fourth-rank tensor

X � Y Contraction between the second-rank tensors X and Y
X : Y Double contraction between the second-rank tensors X and Y
X � Y Tensorial product between the second-rank tensors X and Y
hhXii Macaulay brackets which means the positive part of a scalar X

Xð ÞT or X
� �T Transpose of X (second-rank or fourth-rank tensor)

Xk k ¼ ffiffiffiffi
X

p
: X=3 Euclidean norm of a second-rank tensor X

X
!��� ��� ¼

ffiffiffiffiffiffiffiffiffi
X
!�X!

q
Euclidean norm of a vector X

!

hxi Average of the quantity x

Capital letters are for macroscopic or part quantities,

whereas minuscule letters are for mesoscopic or

microscopic ones.
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Introduction

As described in the introduction Ductile damage in metal forming: Advanced

macroscopic modeling and numerical simulation, it is an undisputable fact that

metallic materials, when formed at room or high temperature, exhibit large inelastic

strains. These strains correspond to the observable consequence of various physical

phenomena at the origin of high material nonlinearities that strongly depend on the

microstructure of the materials. It is then necessary to consider phenomena such as

plastic flow, hardening of various types, initial and induced anisotropies, textural

evolutions, micro-defects initiation growth and coalescence (ductile damage), or

phase transformations. In most cases, forming processes are further associated to

severe environmental conditions (high temperature, important loading velocity,

severe chemical conditions, etc.). From a modeling point of view, it seems thus

essential to consider the initial microstructure of the material, its evolution under

loading conditions, as well as its effects on the inelastic flow.

The natural way to account for microstructural evolutions in relation with

material inelastic flow is the use of the so-called multiscale approach, briefly

introduced in }2.2.2 of Chapter 1 and schematized in Fig. 4 of that chapter. From

a theoretical point of view, a considerable number of articles have been dedicated to

the micromechanical description of the metallic material deformation, based on the

microstructural composition of each material. The reader may refer to several

books representative of the work done in this field (Schmid and Boas 1968;

Bunge 1982; Mura 1987; Havner 1992; Nemat-Nasser and Hori 1993; Yang and

Lee 1993; Kocks et al. 1998; Raabe 1998; Bornert et al. 2001; Gambin 2001;

Nemat-Nasser 2004; Asaro and Lubards 2006). Other references are specifically

dedicated to the modeling and simulation of metal forming processes using the

multiscale constitutive equations, for example, Sellard (1990), Chen et al. (1992),

Kalidindi et al. (1992), Shercliff and Lovatt (1999), Furu et al. (1999), Gottstein

et al. (2000), Zhu and Sellars (2000), Duan and Sheppard (2003), Grugicic and

Batchu (2002), Dawson et al. (2003), Wilkinson et al. (2006), Cho and Dawson

(2008), Boudifa et al. (2009), Hfaiedh et al. (2009), Inal et al. (2010), and

Nedoushan et al. (2012).

This chapter is dedicated to the presentation of micromechanical modeling for

transformation exhibiting large inelastic strains. The main mechanical phenomena

taken into account are ductile damage and microstructural evolution in terms of

grain rotation, while other second-order mechanisms are forsaken, for example,

phase transformation phenomena. In the first Experimental aspects of this chapter, a

description of the main experimental methods is proposed and multiscale measure-

ments are discussed. For the mesoscopic scale, diffraction techniques are presented

as well as microscopy’s results, for a specific material (UR45N). For the macro-

scopic scale, techniques of tensile test coupled with digital image correlation are

described. This allows the evaluation of damage at different scales and, thus, leads

to a damage scenario that can be used to guide the modeling approach.

The second section is devoted to the micromechanical modeling aspects. The

principles and fundamentals on which are based the formulation of constitutive

28 Micromechanical Polycrystalline Damage-Plasticity Modeling for Metal Forming. . . 965



equations for metallic materials are briefly reviewed, and assumptions on

micromechanics are given. It is worth noting that the present micromechanical

modeling is also based on thermodynamics of irreversible processes with state

variables introduced at different scales. This micromechanical approach is also

described and compared with the macroscopic approach (see Chapter 1 of this

volume). Some requirements on finite transformations are highlighted. Different

mechanical constitutive models are introduced. Simple examples are presented for

elastoplasticity, in order to illustrate the previous approach. Ductile damage is

then introduced in the framework of the Continuous Damage Mechanics (CDM)

approach. Modeling metal forming processes with a micromechanical

approach while accounting for damage is not a simple task, due to the lack of

fine experimental observations. A non-exhaustive review of several possible

models is given. These models depend on the hypothesis for the energy or strain

equivalence and on the smallest scale considered. Two particular models are then

detailed with their associated constitutive equations and the corresponding numer-

ical aspects.

Two particular materials are also considered. First, copper is studied to illustrate

the possibility offered by the proposed approach. Numerical results are also given

to test the ability of the model to be used for metal forming simulations. Second, a

duplex stainless steel (UR45N) is investigated. Such a biphasic material is inter-

esting as it allows the illustration of both the experimental and numerical

approaches.

Experimental Aspects

Multiscale Measurements

Different techniques can be used to measure mechanicals fields (strains, damages,

etc.). In the present chapter, the use of micromechanics implies that quantities have

to be considered with experiments at the appropriate scales. It is thus necessary to

define the different required scales for the considered metallic materials:

– The microscopic scale corresponds to slip systems.

– The mesoscopic scale corresponds to a grain (i.e., one crystallite).

– If an M-phase material is considered, a pseudo-macroscopic scale can be defined

that represents each group of grains of the same phase M (M is an integer).

– The macroscopic scale is a RVE, corresponding to an aggregate of grains

(generally hundreds to several thousands of grains, depending on the grain size).

– Then, taking account of the geometry of the structure, there is the part scale.

In this paragraph, both the micro-/mesoscopic scales and macroscopic/part

scales are investigated considering coupled measurements (diffraction techniques

and tensile tests). However, due to the finite strains that occur, some specific

treatments and analyses are developed.
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The presence of damage leads to difficulties, mainly related to the softening

stage that follows the hardening stage. Indeed, the measure of damage is still a

largely open problem (Montheillet and Moussy 1988; François 2004). It is first

necessary to agree on the definition of ductile damage. It is considered here that

damage corresponds to any fault/deviation from the crystallinity of the metallic

material (excluding plasticity). For example, microcracks and micro-voids will be

considered as ductile damage. Precipitates will not, as long as they retain consis-

tency and adherence with the embedded matrix. For simplicity, it is considered that

there is damage when a fracture surface occurs between the microscopic atomic

groups. This geometric definition of damage leads to consider experimentally

damage as the density of “voids” that is present in the RVE, at a given time. For

example, a qualitative geometric measure of the damage can be done simply by

electron microscopy, as shown in Fig. 1. A more direct approach in 3D is possible

thanks to the recent development of X-ray tomography applied to metallic materials

(Maire et al. 2005).

The difficulty encountered with this kind of techniques is that it gives a snapshot

of the geometry of damage, without necessarily considering the physical and/or

kinetics aspects of the damage. For example, interaction between micro-voids or

microcracks may exist but are not visible. This interaction alters the mechanical

state of the material that in turn leads to a change in the value of damage. It can be

then questioned whether this direct measure of damage leads to a representative

value. In the current state of knowledge, the answer seems to be negative. A

detailed analysis of the problem is presented in Montheillet and Moussy (1988)

and François (2004). To directly or indirectly evaluate damage, other experimental

techniques are available:

Fig. 1 Picture of the fracture surface of a DSS sample by SEM (Le Joncour et al. 2011)
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• Measurements at a microstructural scale. This may be done directly (density of

microcracks and micro-voids) or indirectly (strain evolution measured by dif-

fraction). These measures evaluate microscopic changes that can be integrated

on a RVE using mathematical techniques of homogenization. The properties of

the damaged RVE are then obtained.

• Global and physical measurements (density, electrical resistivity, acoustic emis-

sion, etc.). This requires the definition of a suitable model for converting data

into mechanical characteristics.

• Global and mechanical measurements (evolution of elasticity, plasticity, or

viscoplasticity moduli; strain fields; etc.). These measures are easier to interpret

with damage variables, using the concept of effective stress (Lemaitre and

Chaboche 2001).

Most of the time, damage is not directly accessible from experimental

measurements. Like any physical quantity, its quantitative assessment is

related to the definition of the variable chosen to represent the phenomenon.

The previous list is obviously not exhaustive. The last two types of experiments

lead to accurate results qualitatively, but are often limited quantitatively,

showing a limit in current devices. It is necessary to distinguish the scales of

measurement. At the macroscopic scale, mechanical measurements give

better results than physical ones. At the microscopic scale, to avoid relying on

a purely geometric approach, it is considered especially the diffraction methods

to obtain the damage experimentally. These two techniques will be discussed

further.

Neutron Diffraction

In this section, the methodology based on neutron diffraction in the crystalline

lattice of a metallic polycrystal is mainly presented. The “time-of-flight” method

(Santisteban 2001) is used in our tests, where neutrons cover a distance along a

beam line. The configuration of the experiment is shown in Fig. 2. The time-of-

flight tvol is directly related to the interplanar spacing dhkl, using the following

relationship:

tvol ¼ 2mNL sin θB
h

dhkl (1)

where mN is the mass of the neutron, h is the Planck’s constant, and θB is the Bragg
angle fulfilling the Bragg diffraction condition. One of the main quantities mea-

sured by neutron diffraction (also valid for the X-ray diffraction) is the interplanar

spacing dhkl. When neutron beam or X-rays encounter a material, the periodicity

properties of the crystal are the main cause of diffraction. The influence of the

mechanical behavior can be then predicted on the results obtained by diffraction

methods, listed below:
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• The homogeneous elastic strains significantly alter the distance between atoms

in the entire crystalline lattice.

• Because the structure of the lattice remains unchanged, plastic strains resulting

from a complete slip of dislocations have no direct influence on the lattice

parameter. However, multiple slides in a grain may have indirect consequences:

the rotation of subgrains, their split, and the creation of incompatibilities

between crystallites. In addition, one could expect stress relaxation due to shifts

and leading to a decrease in the elastic strains.

• Measurement by diffraction on a polycrystal is an average measure. Defects,

incompatibilities, and rotations of grains also translate the corresponding peaks,

while other associated peaks corresponding to other grains do not vary. The

consequence is a broadening of the total peak, as the sum of the diffraction of

several grains with different behaviors.

• It is difficult to predict the influence of damage on such measurements. However,

it can be assumed a priori that the formation and growth of micro-defects induce

stress relaxation, leading to a shift of the peak. This will be discussed in a next

paragraph (Fig. 3).

During neutron diffraction measurements, in situ tensile load is applied on the

sample. The loading is stopped after that a set number of neutron counts is reached,

to maximize the duration of the test while achieving satisfactory counting statistics.

The traction machine is driven by stress during the elastic domain of the curve and

then driven by displacement for the remainder of the tensile test. A greater number

of measures are made during the elastic/plastic transition in order to better account

for the microscopic mechanisms involved in the phases. After the beginning of

plasticity and to avoid breaking of the strain gauge, it was withdrawn. The imposed

Fig. 2 Schematic principle of measurement by neutron diffraction
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loading is shown in Fig. 4. It is important to note that the method was carried out up

to the rupture of the specimen. Through a calibration step, it is then possible to

extract information to relatively high strains (globally 50 %, locally 250 % in the

area of necking for a DSS). In published work, the interpretation of the measure-

ments has been performed with strains up to 10 % (Clausen et al. 1999; Dakhlaoui

et al. 2006). Several publications have achieved higher strains: 17 % for Dawson

et al. (Dawson et al. 2001) and 30 % for Neil et al. (2010).

Fig. 3 Partial diffractogram obtained on a DSS UR45N (50 % ferrite + 50 % austenite)

Fig. 4 Diagram of tensile stress imposed for measurement by neutron diffraction (Le Joncour

et al. 2011)

970 B. Panicaud et al.



Measurements of Elastic Strains
Strictly speaking, the measurements obtained by neutron diffraction are not

completely mesoscopic. Indeed, the response is obtained from a family of planes

fulfilling the diffraction conditions within the gauge volume probed by the neutron

beam. Several grains can be “switch on,” but the contribution in an angular domain

of the diffraction pattern (peak on diffractogram) is only due to one crystallographic

phase (superposition of several peaks are possible). Therefore, the advantage of

such a method is the selectivity in terms of phases. The diffractogram of each strain

state is analyzed to extract the parameters of each peak (Bragg position, line

broadening, and integrated intensity). It is first possible to identify the phases

corresponding to each peak using previous studies on similar materials. Then, one

can perform a statistical fitting (e.g., with a pseudo-Voigt function (Pecharsky and

Zavalij 2005)) to identify the parameters from the observed peaks. The positions of

the peaks are related to the elastic strain eelas (component along the loading

direction) with the following relationship:

eelas ¼ ln
dhkl
dhkl, 0

� �
(2)

To calculate the true elastic strain, the interplanar spacing of each family {hkl}
is divided by the interplanar spacing dhkl,0, corresponding to the neutral

configuration of the structure (assuming or checking that the internal residual

stresses are zero).

Calibration Procedure
For high strains, the stress is affected by the necking of the sample (geometric

change at macroscopic scale, due to plastic strain localization). An innovative

method that does not require precise knowledge of the geometry of the sample

during the test is proposed here. It allows the evaluation of the average stress that is

present in the gauge volume irradiated by neutrons. This calibration is based on a

number of assumptions detailed later and enables to expand the rank of the studied

strains, until failure of the sample (up to globally 50 %, locally 250 % on the

necking zone for a DSS).

Several methods have been proposed for the evaluation of elastic strains in the

gauge volume irradiated by neutrons (Daymond 2004). The purpose of these

investigations is to establish an average value for these elastic strains, due to the

actual macroscopic stress and the effect of intergranular interactions. However,

these methods have never been applied until failure. In order to calculate this

macroscopic stress, a calibration method is used to treat diffraction data. This

method is based on the calculation of the average of all the microscopic elastic

strains. An arithmetic mean of the elastic strains on {hkl} plans in all phases is

performed. The choice of {hkl} plans used in the arithmetic mean is delicate, the

ultimate goal being to maximize the accuracy of the results. The selection for the

peaks included in the computation of the average is done according to different

criteria:
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• It is necessary that the fit with the pseudo-Voigt functions be reliable from the

beginning to the end of the test. Therefore, the mesoscopic elastic strain curves

have to show no abnormal values.

• Only the first-order plans are taken into account to ensure that elastic strains

related to these plans are counted only once.

• It is useful to use a transition scales model for checking the representativeness of

the selected plans.

The details of the model to justify the calibration procedure are presented in the

Ph.D. thesis of Lea Le Joncour et al. (2011). The main hypotheses are next

presented that justify the proposed method.

• The threshold for which the stress heterogeneity becomes important also corre-

sponds to a more pronounced triaxiality. The modeling performed in a more

critical case than reality (the most deformed sample subjected to the maximal

true strain) can be used to determine the stresses in the transverse (TD) and

normal (ND) directions of the sample. If it does not exceed a small fraction of the

strain in the loading direction (RD), then it is possible to assume that triaxiality is

negligible.

• In the case of neutron diffraction experiments, the evolution is monitored of the

elastic constants with the knowledge of the evolution of texture (ODF). This

texture implemented in a self-consistent model shows that the elastic stiffness

has very small influence.

• In addition, according to the experimental parameters (sensors in horizontal and

vertical angular interval commonly around � 20�) and measures of the orienta-

tion distribution functions, it is also possible to quantify the proportion of the

diffracting volume used for the average calibration. The selected {hkl} plans

should at least represent 50 % of the irradiated volume. It is assumed that it

ensures sufficient representativeness for neglecting strain incompatibilities.

Therefore, a relationship of proportionality between the “true” macroscopic

stress ΣRD (i.e., corrected by the calibration method) and the average elastic

strains (in all phases) hheRDihklitot is proposed to end up as (Le Joncour

et al. 2011)

σg ¼ cg : egelas ¼ pg : Σ þ qg : Eplas � egplas
� �

(3)

) ΣRD � k eRDh ihkl
� 	

tot
(4)

where cg represents the elastic stiffness tensor at mesoscopic scale, i.e., for a grain

“g,” and p and q are fourth-rank tensors related to the microstructure of the material

(Baczmanski 2005). The subscript tot in the final average is an average over all the

M phases. The constant k is identified with the slope of the beginning of the curve

(part of the test without necking). This coefficient is generally very close to the

Young’s modulus of the material. This enables to check the representativeness of
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the selected average in the elastic range. The calibration can also be verified by

comparison with a self-consistent model. This approach enables to correct the stress

value.

Loading Tests with Digital Image Correlation

In addition to neutron diffraction, a tensile test can be performed and instrumented.

For this, a simultaneous measurement of changes in the geometry of the specimens

is carried out with two cameras positioned perpendicularly. This is a double digital

image correlation (DIC), as presented in Fig. 5.

For example, a set of pictures is obtained such as those shown in Fig. 6. These

pictures were taken at a speed of three frames per second, stored, and analyzed. To

correct the macroscopic stress from necking effect, a Matlab program allows

extracting the evolution of the section in the studied area by detecting the contour

of the specimen. Strains are evaluated from the displacements of the points of a

speckle image correlation. A toolbox of Matlab (Eberl et al. 2006) is launched in the

same software program to perform this correlation. Particular attention has been

paid to the sensitivity of the grid size as well as the initial speckle pattern, in order to

compare the strains between cameras and areas.

The use of DIC enables to extract two kinds of information in order to correct the

macroscopic geometric and kinematic effects and to have the intrinsic stress–strain

curve of the material:

1. One needs to know the evolution of the cross section over time in order to

overcome the necking effect due to the localization of plastic flow.

2. One needs to know the evolution of the true local strain with time.

This issue of this method is now common and details can be found in Le Joncour

et al. (2010).

Fig. 5 Configuration for DIC (Le Joncour et al. 2011)
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Results on a DSS

Presentation of the Material
The duplex stainless steel UR45N was chosen for several reasons. The chemical

composition of this steel is given in Table 1. On the one hand, it is a multiphase

material (M ¼ 2, ferrite 50 % and austenite 50 %), which is of obvious interest

for industrial applications in highly corrosive process, such as chemical, petro-

chemical, offshore, nuclear, or paper industries, and is yet frequently

studied. Second, it can be compared with experiments already performed on

austenitic–ferritic steels from the literature (Bugat et al. 2000, Mcirdi et al. 2000,

Dakhlaoui et al. 2006, El Bartali et al. 2007). Finally, tests performed by neutron

diffraction showed that the steel was particularly suited to the measurement of

ductile damage.

The studied material was obtained by continuous casting and then hot rolled

down to 15 mm sheet thickness. The characteristic microstructure of this

steel consists of austenitic islands elongated along the rolling direction and embed-

ded in a ferritic matrix. EBSD observations have shown that all crystallites of

ferritic phase have almost the same orientation, while austenitic islands are

divided into smaller grains with different orientations of the lattice (Wroński

et al. 2007).

Fig. 6 Pictures of the sample UR45N in tension test with the two cameras at the beginning of the

test, and at the end of the test, just before the break (Le Joncour et al. 2011)
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The sheet was annealed during 1,000 h at a temperature of 400 �C and next

cooled at ambient temperature. It is well known (Desestret and Charles 1990;

Mateo et al. 1997) that, at this temperature of aging (lower than 475 �C), the
mechanism of spinodal decomposition of ferrite occurs. Transformations in ferrite

are mainly decomposition of α/α0 (into Cr-poor α and Cr-rich α0 domains) and

precipitation of an intermetallic phase rich in Ni, Si, and Mo (named as the G

phase). The role of α0 and the G phases in hardening and embrittlement of ferrite is

widely discussed in the literature, and the majority of authors (Calonne et al. 2001)

agree that hardening is attributed essentially to the α0 phase. Indeed, the coherence
shift between the lattice parameters of α and α0 phases introduces internal

stresses reducing the dislocations mobility. The G particles have very small sizes

(between 1 and 10 nm generally and up to 50 nm occasionally), and they

precipitate, more or less uniformly, in the ferritic grains depending on the

chemical composition of the steel. The largest particles are preferentially formed

in the vicinity of a defect: the others are formed in the α/α0 and austenite/

ferrite interfaces. Some microstructural transformations may be present in the

austenitic phase, but they do not change the overall mechanical properties of the

material.

It is therefore useful to observe the mechanisms of strain and damage of a

two-phase material with the use of neutron diffraction. However, a number of

constraints must be respected in order to perform correctly the experiments, espe-

cially by neutron diffraction:

• The material chosen should not be too textured in order to have a maximum

number of peaks on the diffractograms and thus have the opportunity to observe

the elastic strains for a maximum of plans.

• The grain size of the chosen polycrystal should not be too large so that the

behavior of the irradiated gauge volume is representative.

• The distribution of stresses in both phases is investigated throughout the tensile

test. It is therefore interesting to study two phases with different plastic behavior

while taking great care to ensure that the elastic limits are sufficiently important

to decrease the measurement errors.

• The diffraction pattern of the material should not have too many superposed

peaks. Indeed, indexation would be too difficult.

• The fraction of both phases should be close to maintain sufficient peak intensity.

The selected material UR45N presents these characteristics. In addition, a

previous study to lower stress and without aging treatment has provided a number

of results on which this work can be supported (Dakhlaoui et al. 2006).

Table 1 Composition of an austenitic–ferritic steel UR45N

Designation C Mn Cr Ni Mo Cu S N Fe

X2 Cr Ni Mo 22.5.3

(UR45N)

0.015 1.6 22.4 5.4 2.9 0.12 0.001 0.17 Bal.
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Neutron Diffraction Results at Mesoscopic Scale
According to the previous methodology (paragraph 2.2), the following results are

obtained without calibration (i.e., without correction of stress from necking effect),

as shown in Figs. 7 and 8.

By using the calibration, it is possible to correct the macroscopic stress, and this

is presented in Figs. 9 and 10.

In the domain Eα, γ from 0 to about 200 MPa (in Figs. 9 and 10), the two phases

deform elastically: a linear progression is observed with a slope that is directly

related to the radiocrystallographic elastic constants. The slope difference between

different {hkl} planes results from the anisotropy of the elastic properties of the

material across the diffracting volume (intermediary between the grain scale and

the macroscopic scale). The domain EαPγ (in Figs. 9 and 10) corresponds to the

beginning of plasticity in the austenite. The yield stress of austenite is indeed lower

Fig. 7 Elastic strain of the

diffracting volume in the

loading direction as a function

of the macroscopic stress

applied to the ferrite in

different {hkl} families

(Baczmanski et al. 2011)

Fig. 8 Elastic strain of the

diffracting volume in the

loading direction as a function

of the macroscopic stress

applied to the austenite in

different {hkl} families

(Baczmanski et al. 2011)
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Fig. 9 Elastic strain of the diffracting volume in the loading direction as a function of the

corrected macroscopic stress applied to the ferrite in different {hkl} families (Baczmanski

et al. 2011)

Fig. 10 Elastic strain of the diffracting volume in the loading direction as a function of the

corrected macroscopic stress applied to the austenite in different {hkl} families (Baczmanski

et al. 2011)
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than the yield stress of ferrite, that itself continues to deform elastically. Thus, there

is a simultaneous change of slope for all austenite planes. The elastic strains in the

austenite, for the same increment of stress, increase much less than in the elastic

domain, because of the plasticity: a small slope remains due to the hardening.

Therefore, an increase of elastic strain occurs in ferrite that balances the stress, but

the linearity of the curves is preserved. This is an important observation that

justifies a linear hardening model at the microscopic scale. In the domain Pα, γ
(in Figs. 9 and 10), the two phases are plastically deformed. From that moment, the

elastic strains in ferrite are less important than in austenite for the same increment

of stress. It is interesting to note once again the linearity of the elastic strain

evolution of the two phases with respect to the stress, except in the last part of

the graph where a relaxation in ferrite is observed. These results are in good

agreement with those found by Dakhlaoui et al. (2006), for smaller strains (i.e.,

not requiring the calibration step).

Characterization of Plastic Hardening
It is difficult to obtain precise information on hardening from the previous curves,

because a direct access to plastic strain mechanisms (slip system activity) is not

possible. Only the continuous increase of stress during the test indicates a harden-

ing. Moreover, in heterogeneous materials, access to pieces of information on

heterogeneities must be done with special attention to the so-called hardening.

For example, when ferrite is still elastic at the macroscopic scale, the equivalent

homogeneous material hardens strongly but mainly because of the incompatibility

between the two phases. While at the mesoscopic scale, none of the two phases

significantly harden (in fact, ferrite remains elastic and does not hardened at all in

this domain EαPγ).
Another possibility to extract information on microscopic hardening effects is to

focus on the peak width. After normalization of the peaks, Figs. 11 and 12 are

obtained.

Fig. 11 Normalized width

integral as a function of the

corrected macroscopic stress

applied to the ferrite in

different {hkl} families

(Le Joncour et al. 2011)
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There are also curves from an undamaged elastoplastic model. These theoretical

curves represent the evolution of the shear stress limit (critical resolved shear stress)

acting on the slip systems. A good correlation between the measured and calculated

values is found. This experiment thus gives access to a measure of hardening across

the slip systems (Le Joncour et al. 2011). It is then directly possible to connect this

quantity with the dislocation density and experimentally check the evolution of the

dislocation density. This is one of the variables in the model, which will be

introduced and detailed in the following paragraphs. This hardening is limited

during the plastification of austenite, as can be seen in Fig. 13 (stage EαPγ),
which is confirmed by the model. This can be explained by considering that internal

mechanical forces are eventually balanced by the ferritic phase. This trend becomes

significant only during the plasticity of ferrite where forces are more significant in

austenite (with a higher tangent plastic modulus; Dakhlaoui et al. 2006; Fig. 14).

Fig. 13 Normalized width

integral as a function of the

corrected macroscopic stress

applied to the ferrite in

different {hkl} families

(Le Joncour et al. 2011)

Fig. 12 Critical resolved

shear stress resolved as a

function of the corrected

macroscopic stress applied to

the austenite in different

{hkl} families (Le Joncour

et al. 2011)
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Characterization of Damage
In Fig. 9, some softening in ferrite can be seen after the nominal maximal stress is

reached. This is specifically observed on some curves of elastic strain, for the

ferritic phase. This softening occurs in two stages, first the elastic strain of the

{211} plan loses its linear evolution, this step has been called D1α. Second, in the

step D2α, two other peaks exhibit a relaxation of the elastic strains. Several

hypotheses can be proposed to explain these two stages of relaxation of the elastic

strains, in several planes of the ferritic phase:

1. A loss of linearity of the hardening

2. A change in texture

3. The growth of micro-voids or microcracks corresponding to a microscopic

damage

All those hypotheses were tested by comparing the evolution of

different quantities as cumulative plastic strain, orientation distribution function,

etc., with an elastoplastic model without damage. It has been shown that

the hypothesis of damage can explain all the observed phenomena. The two

others cannot alone explain the relaxation of the elastic strain peaks at the end of

the test.

This raises a question concerning the validity of such a measure. The effect of

damage on diffraction measurements has been analyzed in Le Joncour et al. (2010),

by considering a simplified Voigt-like model. It establishes several interesting

results with a number of assumptions:

1. There is a direct influence of damage on the elastic strain, measured with a

diffraction method: damage causes a decrease in the elastic strain.

2. The average elastic strain over the gauge volume increases less at the end of the

test, for a given increment of displacement, because of damage.

Fig. 14 Critical resolved

shear stress resolved as a

function of the corrected

macroscopic stress applied to

the austenite in different

{hkl} families (Le Joncour

et al. 2011)
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The possibility to indirectly extract damage from these experiments is

therefore considered. For this, the relation is used that will be detailed later in

this work:

eeg ¼ eg
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dg

p
(5)

It compares the measured strains eeg related to the damaged material to the

calculated strains eg obtained using an elastoplastic model without damage. A curve

is obtained, the evolution of the damage versus the macroscopic stress in the rolling

direction (Le Joncour et al. 2011; Fig. 15), as shown in Fig. 16.

Fig. 15 Evolution of elastic

strain along tensile direction

in family {211} for

experimental and modeling,

as a function of corrected

stress

Statistical exponential regression
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Fig. 16 Evolution of damage

in family {211} extracted

from experimental and

modeling results
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Tensile Test with DIC Results at Macroscopic Scale
According to the previous approach, it is possible to link diffraction measurements

with instrumented tensile test. Then, Fig. 17 (for stress–strain curve) and Fig. 18

(for damage–strain curve) are obtained.

On these figures, the tests performed during neutron diffraction (ISIS) as well as

those made with laboratory goniometer are shown. A good repeatability between

the two tests can be noted. In addition, it can also be seen that the difference

between corrected curves is significant only for large strains (above 30 %). The

black solid curve of Fig. 17 allows to identify the mechanical behavior in the

necking area, from the plastification step to the damage step. Thus, in the same

way as for mesoscopic results, it is possible to extract a macroscopic damage by

Fig. 17 Macroscopic stress

versus macroscopic strain

(Le Joncour et al. 2011)

Fig. 18 Comparison of

damage at different scales

(Le Joncour et al. 2011)
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comparing the experimental curve with an undamaged elastoplastic model at

macroscopic scale, as can be seen in Fig. 18. Two kinds of hardening have been

considered. Model 1 corresponds to a nonlinear isotropic hardening, Prandtl–Reuss

type. Model 2 corresponds to a linear isotropic hardening increased by a secondary

surface (nonassociated plasticity), which describes a saturation, so a nonlinearity

(Le Joncour et al. 2010). Both models lead to almost the same trend of damage. The

representation is performed as a function of macroscopic global strain. If these

curves are converted into local strain (in the necking area where mainly damage

occurs), then the strain reaches 250 %. The damage is not activated until the very

end of the tensile test. This tends to show that the damage coupled to plasticity is

somewhat “brittle.”

Other Measurements
Micrographies may be performed to complete the previous measurements. For

example, the fracture surfaces of the samples were observed by SEM. The obser-

vations mainly show ductile damage with voids of various sizes (Fig. 1). At the

center of the sample, the roughness is more pronounced. This can be explained by

greater stress triaxiality when necking occurs. Numerous inclusions/precipitates of

different sizes have been observed in many voids or deeper holes. Despite the

presence of an X-ray fluorescence spectrometer using dispersive energy, the chem-

ical composition of these inclusions could not be determined due to lack of

sufficient signal. Indeed, the larger inclusions were located too deeply in the

sample, and the other inclusions were not large enough to be detected. The fracture

surface of the sample has also several areas similar to Fig. 19. Mapping of chemical

elements performed on these areas appears to have more chromium content in the

bottom of the voids and on the contrary an increase of the nickel content. It can be

then assumed that the most important holes observed on fracture surface have

grown in the ferritic phase.

Fig. 19 Picture and mapping of elements in the fracture surface of the UR45N sample taken SEM

equipped with an X-ray spectrometer (Le Joncour et al. 2011)
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To observe the damage following the other two planes of the part, fractographies

were made on the samples (Figs. 20 and 21). In Fig. 20, a sectional view along the

plane that is normal to the rolling direction is presented. The pictures are taken

before electropolishing to ensure that voids are not due to polishing. Moreover,

mechanical polishing has been made in different directions. Finally, fractographies

have been made using the same process without causing the same damage, while

the observed damage varies; this supports the hypothesis that the damage observed

in these pictures really comes from the tensile stress. In these figures, the phases can

be recognized to their colors: dark for ferrite and clear for austenite, because of the

electropolishing. The damage appears to be in the ferritic phase, perpendicular to

Fig. 20 SEM fractography taken along the rolling plane of the fracture surface of the UR45N

sample (Le Joncour et al. 2011)

Fig. 21 SEM fractography taken along the transverse plane of the fracture surface of the UR45N

sample (Le Joncour et al. 2011)
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the direction of traction loading. Figure 21 shows mainly an interfacial damage in

the rolling/tensile direction.

Scenario for Damage Evolution

Damage in Slip Systems
The results presented in this study show that it is possible to extract damage from

mesoscopic scale, based on an analysis performed with neutron diffraction. This

analysis must be coupled with a multiscale and undamaged elastoplastic model. In

the case of our austenitic–ferritic steel, the use of diffraction has confirmed the

presence of damage in ferrite and revealed that the damage is link with the {211}

plans. Further analysis of the samples shows more directly the effect of slip systems

damaged, as shown in Fig. 22, carried out by SEM. Even if the corresponding slip

planes are not strictly identified, the existence of this phenomenon has to be

considered at the microscopic scale, along the slip systems of ferrite.

It is also known that the defects involved in the strain of the ferritic phase are

dislocations with a Burgers vector a
2
111h i, but the slip plane can belong to several

families such as {110}, {211}, and {123} (with increasing atomic density)

(Mahajan 1975, Louchet 1979). Mechanical twinning can also occur in the ferrite.

Twinning occurs there only on {211} slip system (Christian 1970, Vitek 1970).

Whatever the expected mechanism, the damage seems strongly coupled with

elastoplastic strain of {211} slip system. The resulting microcracks are probably

intracrystalline. Local analysis with EBSD and/or transmission electron micros-

copy near microcracks would support the actual mechanism, responsible for the

damage occurrence in these steels.

Damage Scenario in UR45N
Bymerging pieces of information, a scenario of the chronology of damage can be then

built. Three kinds of damage mechanisms appear possibly in the studied material:

1. The damage due to debonding phases around inclusions. However, this mecha-

nism does not appear at an advanced stage, as it has been observed only in a few

section views.

Fig. 22 Damage observed in

ferrite along a slip system

(Baczmanski et al. 2011)
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2. The damage in ferrite due to sliding, observed by neutron diffraction. The damage

does not necessarily occur along the plane for which the relaxation is measured by

diffraction. This may be along other more “brittle” slip systems. However, when

microcracks appear along this slip system, a relaxation occurs inside the grain.

3. The interfacial debonding due to strain incompatibilities between the two phases

and the accumulation of dislocations at the interfaces. This mechanism is

certainly not the one leading to rupture because the direction of the cracks is

along the loading direction. A sample containing this kind of damage can

certainly still resist the stress loading.

Numerous publications on other aged DSS (Bugat et al. 2000, Calonne

et al. 2001, El Bartali et al. 2007, and Mcirdi et al. 2000) reported that damage in

the ferrite is quite brittle, due to the aging treatment. Figure 23 shows a synthesis of

the damage mechanisms and proposes a scenario for the development of damage in

the studied material. The timeline is deducted from damage observed on various

section views and elastic relaxations obtained by neutron diffraction. The five

stages of this reconstructed history are detailed as follows:

1. The present diagram begins after the elastic strain, when the plastic flow takes

place inside the two phases. It is supposed that (ductile) damage occurs only

after plastification of the two phases.

2. The interfacial debonding is easily observed in Fig. 21. It is widespread and

close to the fracture surface, but can also be observed in less distorted areas. This

is the reason why it could be the first appearance of damage.

Fig. 23 Scenario of damage in UR45N leading to rupture of the RVE (Le Joncour et al. 2011)
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3. Microcracks in the ferrite along the slip systems (visible in Fig. 22)

may account for the relaxation of the elastic strain in the same phase

observed by neutrons from the necking event. These microcracks can be

caused by:

– A local but very large plastic strain: it is known that austenite tends to slide

along several slip systems, while slides in the aged ferrite are fewer but more

intensive (Bugat et al. 2000).

– A decohesion around a defect in the ferrite, due to thermal aging increasing

the presence of precipitates.

– A combination of the above mechanisms is also possible.

4. The fracture surfaces consist mostly in voids with a large amount of

inclusions of different sizes. This is probably one of the main causes

in the rupture of the sample. It is chronologically positioned just before the

rupture.

5. Fracture occurs during this last step, by coalescence of different voids inside the

material. Then, the three stages of ductile fracture are found: nucleation, growth,

and coalescence of voids (François et al. 1995).

Principles and Fundaments of the Modeling

Hypotheses on Micromechanics and Thermodynamics

In order to predict the previous experimental results, different modeling approaches

may be used to take damage into account. Several assumptions have been consid-

ered to illustrate the present modeling:

• Monotonic loading

• Loading controlled by the total strain

• Isothermal conditions

Micromechanics Principles
Micromechanics consists in using microscopic description of a material

continuum to obtain information at a macroscopic scale. However, depending

on the considered behaviors, several scales can be used. For metallic

materials, the possible scales have already been detailed in section Multiscale

Measurements. However, in the present modeling, only three scales will be explic-

itly considered:

– The microscopic scale corresponds to the slip systems.

– The mesoscopic scale corresponds to a grain (i.e., one crystallite).

– The macroscopic scale is a RVE, corresponding to an aggregate of grains

(generally several thousand, depending on the grain size).
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To position the models in a solving approach, the main steps are proposed. A

general algorithm for such a micromechanical approach (only the two higher scales

are considered for the purpose of illustration) is considered below:

En ¼ En�1 þ ΔE (6)

egn ¼ Ag

n
: En (7)

σgn ¼ lg
n
egð Þ : egn þ σgn�1 (8)

Σn ¼ σgn
� 	

g
(9)

where E, e represent the strain tensor, respectively, at macroscopic and mesoscopic

scales and Σ, σ represent the stress tensor, respectively, at macroscopic and

mesoscopic scales. n corresponds to an iterative step of the calculation. “g” is the

label of the mesoscopic entity. The previous system of equations must be inserted in

a loop. These equations describe the main stages of a 2-scale transition (Bornert

et al. 2001). Interpretation of the different stages is given below:

• Localization: allows passing from the macroscopic scale to control the

mesoscopic scale, where A is the tensor of strain localization (Eq. 7)

• Description: allows giving the mesoscopic mechanical behavior of the material,

using the modulus tensor l, for example, and considering possible initial/residual

stresses (Eq. 8)

• Homogenization: allows going back to the macroscopic scale by an appropriate

average (Eq. 9)

If another scale has to be taken into account, corresponding stages of localization

and homogenization (similar to Eqs. 7 and 9) have to be added to the present

algorithm.

Thermodynamics Principles
The proposed models are also based on thermodynamics principles. It is assumed that

the medium is always in state that is close to equilibrium. Using the thermodynamics

of irreversible processes (Lemaitre and Chaboche 2001), the method is as follows:

• Definition of the internal and external state variables

• Definition of a Helmholtz-specific free energy, from which the state relations are

derived

• Definition of dissipation potentials and yield functions, from which the evolution

equations of dissipative phenomena are derived

This scheme is used for the description of both the mesoscopic and microscopic

scales. It means that the Helmholtz free energy has to be defined considering

phenomena occurring on two scales.
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Finite Transformation and Objectivity

Mechanical constitutive models have to satisfy the general principles of physics:

causality, determinism, material simplicity, Curie principle, objectivity, etc.

(Truesdell and Noll 2003). The latter is of great importance. Objectivity is a

specific constraint also named as frame indifference. However, this concept is

quite ambiguous as detailed in Frewer (2009), Panicaud et al. (2013), and

Rouhaud et al. (2013). It means that tensors and tensorial equations have to

respect several criteria depending on the tensor rank. It can be demonstrated

that such criteria correspond equivalently either to an invariance through

any observer changes or to an indifference to the rigid body motion superposition

in a three-dimensional space. In the classical approach, any Lagrangian

quantities can be used in constitutive laws, whereas Eulerian quantities have

to be tested because only some of them are objective. Derivatives also depend

on the chosen frame of reference and have to be corrected leading to

convected rates (Truesdell) or rotation rates (Jaumann, Green–Naghdi, etc.).

They do not all represent a differentiation with respect to time (Rouhaud

et al. 2013).

Frame indifference (i.e., objectivity) is of particular importance for finite trans-

formations, where strain tensor can reach high values. There are different ways to

take into account this kinematics problem, depending on the considered scale. For a

pure macroscopic method, either a rate formulation (tangent approach) or a secant

formulation can be envisaged. For a micromechanical method, the same two

formulations could be used. However, when using a tangent approach, the global

nonlinear behavior is separated in a succession of elementary linear behaviors. If

load increments are small enough, the material response can be roughly estimated

using classical kinematics tensor. When using the micromechanics approach, this

aspect has to be completed by updating the grain orientations for each step load, to

take into account the induced texture effects. This approximation is used in the

present chapter (except in the description of elastic behavior). However, two

limitations have to be kept in mind:

• First, the rate quantities should be corrected, because an objective rate is

not strictly a derivative operation, even for small transformations. A correct

derivative would give a different trend. For small but finite transformations, this

objective derivative would lead to a different response as the classical objective

rates (Jaumann), also different from the uncorrected classical derivative (con-

sidered here for presentation) (Rouhaud et al. 2013).

• Second, some modeling for finite transformation exists (Lipinski 1989). It

should be verified that the limit of such a modeling, for a small transformation

and rate formulation, is consistent with the chosen linear modeling.

Consequently, the actual presentation will be written for small transformations

(except in the next paragraph to illustrate elasticity), as it has been proven as

sufficient at first approximation. However, if another way is considered, the
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previous limitations and assumptions have to be addressed and the present meth-

odology can be adapted by replacing the corresponding quantities with

objective ones.

Mechanical Models

Three specific behaviors have to be considered while modeling metal process

forming: elasticity, plasticity, and damage. As its coupling is particular, damage

will be detailed in the last paragraph. Low temperature forming processes and

behavior will only be considered.

Elastic Constitutive Relation
Elastic behavior corresponds to reversible strain occurring at an atomic scale.

However, due to the considered scale, the approach is limited to the mesoscopic

scale (i.e., grain scale). To illustrate the micromechanical approach, the following

hypotheses valid only in the present paragraph are adopted:

• The material is isotropic at the macroscopic scale (i.e., considering a random

texture); this assumption is not of primary importance and can be updated by

changing the average in Eq. 11.

• The material is anisotropic at the microscopic scale.

• The behavior is linear elastic at the microscopic level.

In addition to Eqs. 6 and 7, Eqs. 8 and 9 have to be replaced by Eqs. 10–12:

σgn ¼ cg
n
: egn (10)

C
n
¼ cg

n
: Ag

n

D E
g

(11)

Σn ¼ Cn : En (12)

where cg and C are, respectively, the mesoscopic and macroscopic elastic

compliance tensors. Only elastic strains have to be considered and initial residual

stresses have been neglected.

To illustrate the thermodynamical approach and following the previous method

(see section “Hypotheses on Micromechanics and Thermodynamics”), state vari-

ables have to be defined. The definition for stress and elastic strain will be

considered at the mesoscopic scale. A secant formulation is chosen, so that finite

transformations have to be carefully taken into account. Using a Lagrangian

formulation, a Helmholtz-specific free energy ψ0
g can be written as follows:

ρ0
gψ0

g ¼ 1

2
egL : cg : egL (13)

where egL is the Green–Lagrange strain tensor. Because no dissipation occurs, the

dissipation functions Φ and dissipation potential are equal to zero. Using the
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Gibbs–Duhem relation, it is possible to prove classically that (Lemaitre and

Chaboche 2001)

Φg ¼ σgL : _egL � ρ0
g @ψ0

g

@t
¼ 0 ) 8 _egL, σgL ¼ ρ0

g @ψ0
g

@eLΩ
¼ cg : egE (14)

The last equality is obtained using Eq. 13. Equation 14 is similar to Eq. 10,

except that it takes into account kinematics nonlinearities. If the Cauchy (Eulerian)

stress tensor is required, it can be obtained by using the following relation:

σgE ¼ J�1Fg � σgL� : FgT ¼ J�1Fg � cg : egE� : FgT (15)

where J is the determinant of Fg, the transformation gradient tensor at mesoscopic

scale. Equation 14 or 15 should now replace Eq. 10.

It is also possible to take material nonlinearities into account. Choosing to retain

the particular assumption of material isotropy at microscopic scale, a potential of

the form can be chosen:

ρ0
gψ0

g egLð Þ ¼ ρ0
gψ0

g eI, eII, eIIIð Þ (16)

where eI, eII, eIII are the invariants of egL . Representative theorem for isotropic

functions is used to write the right terms of Eq. 17 (Boehler 1978). Using the

Gibbs–Duhem relation, it is now possible to prove that

Φg ¼ 0 ) 8 _egL, σgL ¼ ρ0
g
XIII
i¼I

@ψ0
g

@ei

@ei
@e

g

L

¼ a01þ a1e
g
L þ a2e

g
L � egL (17)

where a0, a1, a2 are three functions depending on eI, eII, eIII. An explicit free energy
is required to specify those functions. For Eulerian representation, a relation similar

to Eq. 15 can be established. It is then possible to replace Eq. 10. It can be noticed

that the Lagrangian to Eulerian transport is usually performed at macroscopic scale.

Plastic Constitutive Relations

Plasticity of Metals
Plastic strains correspond to irreversible transformations for the considered material

(Lemaitre and Chaboche 2001). This definition is based on macroscopic observa-

tions, such as those that can be performed during a monotonic tensile test. But it is

known that similar mechanisms may occur locally, such as during cyclic loading by

fatigue (Catalao et al. 2005).

The mechanisms at work are now clearly identified. It corresponds to irrevers-

ible movements of dislocations (François et al. 1995; Hull and Bacon 1995). The

literature is quite prolix on the subject, and micromechanical models based on these

phenomena are now common (Paquin et al. 2001). Dislocations are linear defects

that form within the material and able to move (essentially by sliding at low
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temperature). They interact with other microscopic components, possibly with

blocking, annihilations, etc. For example, it has been demonstrated and verified

that the change in yield stress of materials is mainly due to the work of dislocations

(François et al. 1995).

State of the Art in Micromechanical Plasticity Models
There are several approaches to describe the behavior of plastic materials (espe-

cially a metal or a metal alloy). For a detailed comparison of these different

approaches, see the Ph.D. thesis of Boudifa (Boudifa et al. 2006):

• The physical microscopic approach is based on a realistic analysis of the

behavior of each single crystal/grain in terms of dislocation density. Schmid

relationship is used to calculate the flow of active systems. However, when

considering hardening, different relationships have been proposed (Teodosiu

and Sidoro 1976; Franciosi 1985; Pilvin 1994). This approach helped to validate

the concept of interaction matrix between dislocations. Finally, to complete the

system of equations, one has to define a rate equation for the density of

dislocations. A verification of these relationships is possible in particular by

transmission electron microscopy (Keller et al. 2010). Research is currently done

with the dynamics of dislocations theory, which should enable a priori to

calculate the various quantities, such as the interaction matrix (Devincre

et al. 2001).

• The phenomenological microscopic approach is a variant of the previous one,

but with less physical content. It no longer involves the density of dislocations,

because it considers directly the mechanical quantities such as sliding. This

approach has the advantage of conveniency, but suffers from a more difficult

identification with direct microscopic observations. In addition, the coupling

between the variables is only performed by analogy with macroscopic methods,

at least historically.

• To be consistent in the previous approach requires the introduction of thermo-

dynamic concepts that ensures a correct modeling. This is the phenomenological

microscopic approach with internal variables (Boudifa et al. 2006; Hfaiedh

et al. 2009; Le Joncour et al. 2011). For this, internal state variables are

introduced that have to be linked as correctly as possible. These variables are

supposed to reflect the effects of plasticity. The advantage of such a

micromechanical approach is to be thermodynamically compatible and thus as

predictive as possible. The problem, once again, is that identification based on

experimental observations is not always straightforward. Nevertheless, this has

been chosen to describe the elastoplastic materials (from a micromechanical

approach), in the present chapter.

• The macroscopic approach neglects completely the microscopic origins of

plasticity. The most robust approach currently proposed is built using a thermo-

dynamic framework with internal variables (Lestriez et al. 2003; Mariage

et al. 2003), as it has been demonstrated in applications of metal forming

processes.
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Continuous Damage Mechanics
Before considering the detailed approaches, damage should be mathematically

defined. The definition of a mechanical damage is a difficult problem since,

macroscopically, nothing distinguishes an undamaged volume element from a

damaged volume element. Therefore, an internal variable representing the state of

deterioration of the material can be imagined. Several approaches are then possible

depending on the kind of considered damage. The CDM approach is used. To

adequately describe the overall behavior of a damaged structure, it is necessary to

introduce an internal variable of this damage, Ddam. This is the approach suggested

by Rabotnov (Lemaitre and Chaboche 2001). In a mechanically loaded RVE, the

damage using the ratio of the effective area Seff on the geometric one Sgeo (associ-

ated with normal n
!
) can be defined:

Ddam ¼ 1� Seff
Sgeo

(18)

This justifies the geometric interpretation of this phenomenon. Ddam can be

interpreted as a surface density of defects associated with the considered damage.

At first approximation, the isotropy of this parameter is assumed. This assumption

is only valid if the defects are uniformly and randomly oriented in all directions

(with normal n
!
). Montheillet and Moussy (1988) give the interpretation of different

values taken by Ddam:

• Ddam ¼ 0: undamaged state in the RVE, i.e., Seff ¼ Sgeo.
• Ddam ¼ 1: totally damaged state in the RVE, i.e., Seff ¼ 0.

• 0 < Ddam < 1: thus characterizes the progressive state of damage in the RVE.

If the force applied to the sample is constant, this implies that the stress is

affected by the presence of damage. The damage variable is thus taken into account

through the concept of effective stress. In other words, only a surface fraction

allows maintaining cohesion of the solid and resists mechanically to the solicita-

tion. This defines the effective stress by

Σeff ¼ Σgeo

Sgeo
Seff

¼ Σgeo

1� Ddam

(19)

, Ddam ¼ 1� Σgeo

Σeff

(20)

It is assumed that the damage occurs only by this single change, which demon-

strates its indirect link with the mechanical stress field. In models, it will then be

sufficient to replace the stress by the effective stress. For example, for linear

elasticity, damage coupling will eventually result in a change in Young’s modulus

of the damaged material. This technique can be applied a priori to all kinds of

behaviors. It is equivalent to replace the damaged material, featuring local
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discontinuities by using an equivalent homogeneous material, describable in the

approach of continuum mechanics: this is the CDM. The present definition corre-

sponds to the strain equivalence. There is also an energy equivalence definition that

is described in the next paragraph.

Strain Versus Energy Equivalence
Two possible definitions of the coupling between mechanical fields and damage can

be used. To illustrate the damage coupling, a pure elastic behavior is considered.

Let us first introduce a scalar damage variable ddam
g . Two configurations are

envisaged, at the mesoscopic scale: the damaged material and the equivalent

undamaged material. This equivalence is possible because the damage description

is based on the CDM approach. In the first configuration, the elastic stiffness tensorecg is damaged (noted with a ~) and the material is under loading σg, egelas

 �

. The

elastic behavior is given by

σg ¼ ecg : egelas (21)

In the second configuration, the elastic stiffness tensor cg is undamaged, but the

load is modified: eσg, egelas

 �

. The strain is the same as in the first configuration; this is

the strain equivalence. The elastic behavior is now given by

eσg ¼ cg : egelas (22)

According to the previous definition of damage, the effective stress (second

configuration) and the real/true stress (first configuration) are related by

eσg ¼ σg

1� d
g
dam

(23)

) ecg ¼ 1� d
g
dam


 �
cg (24)

For the energy equivalence, it is assumed that configuration 2 has to be modified,

with the load eσg,eegelas
 �
. Elastic work in the damaged configuration and undamaged

one is supposed to be equivalent, so equations are obtained:

eσg : eegelas ¼ σg : egelas (25)

)
eσ ¼ σg

ζ d
g
damð Þ ¼

σgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

g
dam

q

eegelas ¼ ζ dgdam

 �

egelas ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dgdam

q
egelas

8>>>><
>>>>:

(26)
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Let us now introduce a second-rank tensor damage d
g
dam. The energy equivalence

is directly considered that will be used in further derivations. To ensure the

symmetry of the elastic stiffness tensor, it is possible to define a fourth-rank

tensorial damage operator, such as

ecg ¼ ζ d
g
dam


 �
: cg : ζT d

g
dam


 �
(27)

It leads to

eσ ¼ ζ�1 dgdam

 �

: σg

eegelas ¼ egelas : ζ d
g
dam


 �
(

(28)

The last step requires to define the damage operator ζ dgdam

 �

. Different coupling

are possible. For example, a choice could be ζ d
g
dam


 � ¼ 1� d
g
dam

�� ��
 �þ1
21. With this

choice, one loses the effect of damage anisotropy at grain scale (mesoscopic),

during homogenization of the RVE scale (macroscopic). It could be also ζ d
g
dam


 �
¼ 1 � dgdam � dgdam

� �þ1
4

. Other choices can be used as detailed in Montheillet and

Moussy (1988). The energy equivalence can be also performed with elastoplastic

behavior, as it will be done for further applications.

Scale Definition of Damage for N ¼ 2 and N ¼ 3
According to experimental results (section Experimental Aspects), damage can be

defined either at mesoscopic scale and/or at microscopic scale. In the previous

paragraph, the strain and energy equivalences are presented using a damage vari-

able defined at mesoscopic scale.

The framework is based on a phenomenological microscopic approach with

internal variables, describing plasticity (using thermodynamics of irreversible pro-

cesses). Plasticity is defined over three scales: macroscopic (RVE), mesoscopic

(grain), and microscopic (slip system; although strictly speaking, this is not really a

scale of description but a projection step).

Thermodynamic state variables ds and/or dg can be defined that represent,

respectively, damage at either microscopic or mesoscopic scale. It can be wondered

how many scales have to be really considered. Indeed, there are not necessarily as

many scales as for plasticity. There are two possible modeling for damage, either at

mesoscopic scale (i.e., N¼ 2) or at microscopic scale (i.e., N¼ 3). The latter can be

interpreted as the result of these inclusions or precipitates on slip systems as shown

in Fig. 24.

Damage Coupling
The different behaviors can be linked with damage, using the total energy equiv-

alence, either directly/heuristically by considering the relations between damaged

and undamaged fields (assuming a relation such as Eq. 28) or indirectly by
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considering the thermodynamics methodology. These two approaches can be easily

compared and lead to the same results. In the present case, the thermodynamics

methodology is used.

A damage rate relation has to be added, for example, the one

proposed by Lemaı̂tre and Chaboche (Lemaitre and Chaboche 2001) (for each

slip systems):

_d
s ¼

_λ

1� dsð Þα1
ys � α2
α3

� � α4

(29)

where αi are material constants and ys is the thermodynamic damage force, dual

variable of the damage variable ds.
Other variant models are possible. In particular, an evolution of

Eq. 29 is proposed, in agreement with experimental results (e.g., as seen in

UR45N DSS).

Micromechanical Modeling of an (Elasto)plastic Model with N-Scale
Damage

General Case
Table 2 lists the chosen state variables.

Then, a Helmholtz-specific free energy should be defined, sum of an elastic

contribution and plastic contributions – an isotropic hardening and a kinematic

hardening (with damage coupling):

ρgψg ¼ 1

2
egelas : ecg : egelas þ X

s, t� g

1

2
~H
st
rsrt þ CC

3
βg : βg þ Cste (30)

where ecg is the damaged elastic stiffness tensor and ~H
st
is the damaged interaction

matrix between dislocations. In this phenomenological approach, the dislocation

Fig. 24 Damage mechanisms corresponding to the microscopic damage variable
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density is replaced by the hardening variable rs. In addition, this formulation is

currently valid for any mesoscopic constituent “g” (whatever the number of

phases).

The coupling between the elastic moduli and the damage variable is done using

Eq. 24, while plastic parameter can be coupled considering the same approach

(energy equivalence) with

~H
st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ds

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� dt

p
Hst (31)

A plasticity/yield criterion has to be established. This is now well known and can

be written as

~f
s� g ¼ j eσg � eXg

� �
: Ms

symj � ~R
s

c þ Rs
c0


 � � 0 (32)

where Ms
sym is the Schmid tensor which defines the direction of slip systems and

Rc0
s is the initial critical resolved shear stress. eσg, eXg

, ~R
s

c are coupled with damage

using equations similar to Eq. 28. It remains to define an intrinsic dissipation and

dissipation potential that can be established using the Gibbs–Duhem relation:

Φg ¼ Φg
plas þΦg

dam

¼ σg : _egplas � Xg : _β
g �

X
s� g

Rs
c _r

s

 !
þ yg : _d

g �
X
s� g

ys _d
s

 !
(33)

Fs� g ¼ F
s� g
plas þ F

s� g
dam ¼ ~f

s þ Cs
Ar

s ~R
s

c þ C
g
Bβ

g : Xg
� �

þ αs3
αs4 þ 1

 �

1� dsð Þαs1
yg �Ms

sym

� �
: M

s

sym
� ys þ ys0

 �

αs3

* +* +αs
4
þ1 (34)

Equation 33 is quite original. Usually, the dissipation due to damage is defined

additively. The damage between the two scales is then related using a

micromechanics relation that is added a posteriori (Boudifa et al. 2006). There

are two sets of state variables, but only one independent physical degree of

freedom; the link is made in an arbitrary manner (e.g., arithmetic average; Hfaiedh

Table 2 State variables of the explicit model for N ¼ 3

Scale

mesoscopic

Physical meaning elasticity in grain

Ω
Flux variable

eΩelas

Force variable

σΩ

Mesoscopic Intergranular kinematic hardening βΩ XΩ

Microscopic Intragranular isotropic hardening R5 Rc
5

Mesoscopic Damage in grains �dΩ yΩ

Microscopic Damage in slip systems d5 ys
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et al. 2009). On the contrary, with the above approach, no corresponding equations

are added. Because of the particular choice, two scales are associated but also two

damage mechanisms. One is occurring along the slip systems, while the other takes

place more broadly across the grain. This description of the damage is similar to the

one used for plasticity, meaning that an equivalent “yield damage surface” (com-

pared to the yield plasticity surface) with an “isotropic hardening” of damage is

obtained. The methodology used in plasticity to transpose to the damage is copied

on purpose, although strictly there is no flow/yield of damage.

Finally, the damage rate evolution in Eq. 33 is also original. This is a proposed

modification of the equation model of Lemaitre et Chaboche (2001). The latter is

modified also by analogy with plasticity criteria. The term in Macaulay brackets can

be seen as the damage criterion. The choice of the term yg �Ms
sym

� �
: Ms

sym rather

than an expression yg : Ms
sym will be discussed later. In this formulation, the damage

at the mesoscopic scale can be obtained directly from damage in the slip systems,

whereas this was not possible in previous studies.

The plastic multiplier can be calculated through different assumptions. Here, the

Cailletaud approach is considered for a time-dependent plastic material (i.e., with

viscoplasticity). Thus, the plastic multiplier is given by (Besson et al. 2001)

_λ
s ¼ f s

Cs
K

� � Cs
N

(35)

The case of time-independent plasticity can be obtained by a specific choice of

the material parameters in Eq. 35.

By adding the equations that govern the macroscopic scale (Eq. 7 for localiza-

tion and Eq. 9 for homogenization, which can be more or less complex (Bornert

et al. 2001)), a complete system of differential and algebraic equations is obtained.

Entering an increment of strain, the evolution of all unknown variables (at the

considered scales) is obtained. The problem lies in the number of material param-

eters used in this model that has to be experimentally identified. In addition to the

presented parameters in Eqs. 30–35, one has to define the number of grains, the

number of activated slip systems, the initial critical resolved shear stress, and the

ODF. The latter can be obtained by texture measurements (XRD or EBSD). Other

parameters can be identified either on a macroscopic mechanical loading test or

using diffraction methods coupled with loading test, as described in paragraph 2.

Model for One Phase (M ¼ 1) at Three Scale (N ¼ 3)
Using the thermodynamics methodology, state and dissipation relations can be

detailed for the case of one phase (M ¼ 1):

σg ¼ ρg
@ψg

@egelas
¼ ecg : egelas ¼ ζ dgð Þ : cg : egelas : ζ dgð Þ (36)
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Rs� g
c ¼ ρg

@ψg

@rs� g
¼
X
t

~H
st� g

rt� g ¼
X
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ds� g

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dt� g

p
Hst� grt� g (37)

Xg ¼ ρg
@ψg

@βg
¼ 2CC

3
βg (38)

_rs� g ¼ � _λ
s� g @Fs� g

@τs� g
c

¼
_λ
s� gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ds� g
p 1� C

s� g
A rs� g


 �
(39)

_β
g ¼ �

X
s

_λ
s� g @Fs� g

@Xg ¼ _egplas � Cg
Bβ

g
X
s

_λ
s� g

(40)

_egplas ¼
X
s

_λ
s� g @Fs� g

@σg
¼ ζ�1 dgdam


 �

:
X
s

_λ
s� g

Ms� g
sym sign eσg � eXg

� �
: M

s� g

sym

� �
(41)

where _λ
s� g

is the plastic multiplier. As previously, the latter can be calculated using

Eq. 35. Relations related to the damage variables are also obtained:

yg ¼ �ρg
@ψg

@dg
¼ � 1

2
egelas :

@ecg
elas

@dg
: egelasffi

1

3

dg

dk kg Ε
g, und
elas �

dg�dg1ð Þ Εg, und
elas

3
1 (42)

ys� g ¼ ρg
@ψg

@ds� g ¼ �
X
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dt� g

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ds� g

p Hst� grs� grt� g �8s, t, ds�dtð Þ �Εs� g, und
plas (43)

_d
g ¼

X
s

_λ
s�F @Fs�F

dam

@yF
¼
X
s

_d
s� g

Ms� g
sym �Ms� g

sym (44)

_d
s� g ¼ _λ

s� g @F
s� g
dam

@ys� g

¼
_λ
s� g

1� ds� gð Þαs� g
1

yg �Ms� g
sym

� �
: M

s� g

sym
� ys� g þ y

s� g
0


 �
αs� g
3

* +* +αs� g
4

(45)

�
_λ
s� g

1� ds� gð Þαs� g
1

Εg, und
elas Ms� g

sym

��� ���2 þ Εs� g, und
plas � y

s� g
0

αs� g
3

* +* +αs� g
4

(46)

where Εelas
g,und is the elastic energy in an undamaged grain and Εplas

s� g,und refers to

the energy accumulated along an undamaged slip system. In Eq. 41, as an illustra-

tion, it has been chosen to introduce the following relation for the damage operator
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ζ dgð Þ ¼ 1� dgk kð Þþ1
21. It leads to a damage force yF that depends linearly on dF on

the direction of the grain scale and is proportional to the elastic energy stored in the

grain. It corresponds to a first mechanism responsible for damage. A simple

coupling function ζ dgð Þ (e.g., with the trace) would lead to an isotropic damage

force yF , even for an anisotropic damage dF . More complicated function with

anisotropic coupling (e.g., with a tensor product) would lead to a damage force yF

that depends nonlinearly on dF, enhancing the anisotropy of damage. Our choice is

eventually based on a compromise between the complexity of the description at

grain scale and the simplicity of the effect of anisotropy at the same scale.

In Eq. 43, the damage force at the microscopic level that depends linearly on

ys� g may be identified approximately with the plastic energy stored in the system

by the slide of dislocations. This is a second mechanism responsible for damage.

Using the thermodynamics potentials, the relationship between mesoscopic and

microscopic damage is directly obtained by the thermodynamic formulation in

Eq. 44, by substituting Eq. 45. The latter corresponds to the damage evolution in

slip systems, but depends simultaneously on plastic energy (at the same scale) and

elastic energy (at the upper scale), meaning that a combined effect of the two

mechanisms has been introduced, which was not the case in existing approaches.

Model for Two Phases (M ¼ 2) at Three Scales (N ¼ 3)
The previous equations could be extended for two phases. Grains of phase A and of

B are considered. For example, it is assumed that damage can appear in one of the

phases (the phase B); it leads to the same equations as Eqs. 36–46 for the phase B,

whereas only the Eqs. 36–41 are still valid.

Numerical Aspects and Discussions

The numerical implementation of the micro–macro polycrystalline plasticity model

into FEA code follows the classical way. Each integration (or Gauss) point of each

macroscopic finite element is represented by an aggregate of a finite number of

grains. This aggregate corresponds to a typical representative volume element

(RVE) to which the macroscopic strain tensor obtained from the classical FEA is

homogeneously applied. The mechanical answer of this RVE in terms of macro-

scopic total strain tensor is computed following the self-consistent model presented

above (see, e.g., Anand 2004; Cailletaud et al. 2003; Habraken and Duchene 2004;

Miehe and Schotte 2004; Raabe and Roters 2004). In this work, the model devel-

oped above has been implemented in the Z-MAT package connected to the FE code

ZéBuLoN (ZéBuLoN 2008) according to the description given in Cailletaud

et al. (2003).

For the global resolution scheme, the ZéBuLoN solver with static implicit

resolution procedure is used. For more complex calculations (e.g., metal forming),

the dynamic explicit resolution strategy is used, with ABAQUS/explicit FE code
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connected with the material models in Z_MAT using the interface Z_ABA that

connects ABAQUS to Z_MAT (see ZéBuLoN user’s manual (ZéBuLoN 2008)). The

dynamic explicit resolution scheme is preferred since it avoids the iteration process as

well as the calculation of the consistent tangent matrix (see Saanouni 2012).

Applications and Numerical Results

Tests for a Single-Phase Material

Parametric Study of the Proposed Model
The constitutive equations developed in previous sections have been implemented

into the general purpose finite element code ZéBuLoN (2008) in order to perform

appropriate numerical simulations. In the present paper, only comments on numer-

ical results obtained with the proposed model are given. This is done through a

relatively detailed parametric study conducted on both the RVE as a material point

as well as tensile specimen modeled as 3D solid. Different number and initial

orientation of grains have been investigated.

The constitutive equations and their numerical integration, using 4th-order

Runge–Kutta integration scheme, have been implemented with a subroutine as

indicated in ZéBuLoN users’ manual (ZéBuLoN 2008). Each integration

(or Gauss) point of each finite element is modeled as an aggregate of Ng grains.

In each grain, Ns� g � 12 crystallographic slip systems can be potentially active. A

loop is performed over the total number of the aggregate grains, and the stress

tensor σg for the grain under concern is calculated using an adapted localization

equation (Hfaiedh 2009). For each of these grains, a new loop over the

12 slip systems is performed in order to calculate the resolved shear stress using

τs ¼ eσg : Ms
sym, as well as all the related mechanical fields including hardening and

damage evolution (see Eqs. 36–46). The rotation tensor of each grain is also

computed allowing the update of the texture during the loading path. For this

evolution problem with Ne elements each having NG Gauss points in the

structure, the number of unknowns to be computed at each load increment is around

Ne 
 NG 
 (7 + 45Ng).

Application to the RVE
This section is devoted to studying the effect of the number of grains Ng, as well as

their initial orientations, on the numerical results predicted by the proposed model.

Each investigated aggregate is submitted to an imposed total strain in one direction.

In other words, the macroscopic strain component E11 is imposed, and all the stress

components are fixed to zero, except the component Σ11. Results are analyzed in

terms of the evolution of the macroscopic von Mises equivalent stress

Σeq ¼
ffiffiffiffiffiffiffiffiffiffiffi
3Σdev

p
: Σdev=2 versus the macroscopic accumulated plastic strain

P ¼
ffiffiffiffiffiffiffiffiffiffiffi
3Edev

p
: Edev=2, the macroscopic damage Ddam versus P, and the Euler angles

(φ1, ϕ, φ2) versus P.
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Concerning the values of material parameters, they are supposed to be the same

for all the aggregates, and their numerical values are taken from Hfaiedh (2009)

(defined for Ng ¼ 24), as summarized in Table 3.

Let us examine the effect of Ng in both the fully coupled (i.e., with damage

effect) and uncoupled (without damage effect) calculations by highlighting the

effect of the damage on the textural evolution. For the considered material point

(or aggregate), the four values of Ng: Ng ¼ 24, 50, 100, and 500 grains are

investigated.

Figure 25 shows the comparison between the stress–strain curves for the four

values of Ng and for both the uncoupled and fully coupled solutions. From this

figure, it appears that for the uncoupled model, the solution is quasi-independent

from Ng when the hardening is fully saturated. As expected, the best solution is

obtained with the highest number of grains (Ng ¼ 500), while the lower number of

grains (Ng ¼ 24) gives the same saturated equivalent stress Σeq ¼ 550 MPa for P �
30 %. However, for the fully coupled model, the numerical solutions are highly

dependent on Ng . Indeed, the higher is the value of Ng, the lower is the value of the

material ductility (i.e., the macroscopic accumulated plastic strain at fracture). This

means that the damage rate is higher for the aggregates with higher number of

grains as clearly confirmed in Fig. 26, where the total macroscopic damage Ddam is

plotted versus the macroscopic accumulated plastic strain P.

Table 3 Elastoplastic

parameters of the steel

material for the RVE

E(MPa), v CC(MPa) CA
s� g CN

s� g

200000, 0.3 30067 26,7 25

CK
s� g(MPa) Rc0

s� g(MPa) Hst� g (MPa) CB
g

50 145 50 74.4

α3
s� g(MPa) α1

s� g α4
s� g y0

s� g(MPa)

0.84 2 60 0.001

Fig. 25 Effect of Ng on the

macroscopic equivalent

stress–equivalent plastic

strain curves, for uncoupled

and fully coupled models,

with texture evolution

(Hfaiedh et al. 2009)
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Application to a Uniaxial Tensile Test
This section is devoted to the application of the proposed model to a tensile test in

which the specimen is modeled in 3D. The specimen with dimensions of 36
 12

1 mm3 is loaded with an imposed constant displacement rate of _u1 ¼ 0 mm=s, _u2
¼ 0:1 mm=s, and _u3 ¼ 0 mm=s. It is applied to the top side of the specimen, while

its bottom side is fully clamped (u1 ¼ u2 ¼ u3 ¼ 0). The specimen is meshed with

432 elements (36 
 12 
 1) of size Δx ¼ 1 mm and type C3d20R, taken from the

ZÉBULON element library (ZéBuLoN 2008). In order to minimize the CPU time,

only one element is put through the specimen thickness. C3d20R is a 3D (solid)

quadratic hexahedral element with 20 nodes and a reduced integration with only

four quadrature or Gauss points. The values of material parameters are given in

Table 3. To illustrate the influence of the initial microstructure on the numerically

predicted results with coupled and uncoupled models, several aggregates with

respectively Ng ¼ 1, 12, 24, and 100 grains were considered. To save the CPU

time, the effect of the texture evolution has been investigated using only the

aggregate with Ng ¼ 24 grains.

Effect of the Aggregate and Texture on Plastic Localization
To investigate the effect of the polycrystalline aggregate on the mode of localiza-

tion (leading to the formation of the well-known shear bands), two different initial

orientations of grains (texture 1 and texture 2) inside three aggregates having Ng ¼
1, 24 and 100 grains are considered. The texture evolution has been taken into

account.

Figure 27 shows the distribution of the macroscopic accumulated plastic strain

inside the specimen for two different values of the imposed displacement. It

corresponds to the prediction of the uncoupled model but accounting for the texture

evolution. The plastic strain localization mode is sensitive to the number of grains

inside each aggregate as well as on the initial orientation of the grains. The width of

the shear band is smaller for the small number of grains (Ng ¼ 24) as seen from the

Fig. 26 Effect of Ng on the

macroscopic damage

evolution in fully coupled

model with texture evolution

(Hfaiedh et al. 2009)

28 Micromechanical Polycrystalline Damage-Plasticity Modeling for Metal Forming. . . 1003



comparison of the monocrystalline aggregate (Fig. 27a and b). Differences occur

also for the aggregate with Ng ¼ 24 (Fig. 27c and d) and with Ng ¼ 100 (Fig. 27e

and f). Also the localization of plastic strain seems more severe for the texture 2 as

seen from Fig. 27b, d, and f. It is worth noting that the angle made by the shear

Fig. 27 Distributions of the macroscopic plastic strain at two displacement values for various Ng

(Hfaiedh et al. 2009)
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bands with respect to the specimen axis (or the loading direction) is higher for the

high values of Ng as observed from these figures. Particularly, for Ng ¼ 100 grains,

this angle is exactly 90� for the texture 1 (Fig. 27e) and near 80� for the texture

2 (Fig. 27f).

The same remarks apply for the distribution of the macroscopic damage

presented in Fig. 28, where the localization of the damage inside the shear bands

seems more severe than the plastic strain. Note also from Fig. 28 that the final

fracture occurs early for the high values of the grain number: u2
fr � 5.0 mm for the

two initial textures of the monocrystalline aggregate (Fig. 28a and b), 3.25 � u2
fr �

3.95 mm for the aggregate with Ng¼ 24 (Fig. 28c and d), and 2.40� u2
fr� 2.58 mm

for the aggregate with Ng ¼ 100 (Fig. 28e and f).

Figure 29 shows the global specimen responses in terms of force-displacement

curves predicted by the fully coupled and the uncoupled models for the three

aggregates defined by Ng ¼ 12, 24 and 100 grains with the same initial orientation

(texture 1). Note that the force-displacement curves are approximately similar for

the uncoupled calculations for the three aggregates for which the observed soften-

ing is only due to the diffuse necking. However, for the fully coupled solution, the

final fracture occurs as early as the aggregate has a high number of grains as can be

expected. The strong softening observed in these cases is due to the combined effect

of necking and damage (macroscopic crack propagation inside the shear bands).

Now consider the important case of a “monocrystal” (defined here as the

aggregate of several grains with initially the same orientation). Taking into account,

the texture evolution enabled to highlight the transformation of a single-oriented

polycrystalline aggregate into a multiple-oriented polycrystalline aggregate as the

plastic strain increases. Indeed, if a calculation is performed starting from a single-

oriented polycrystalline aggregate, one observes that the macroscopic plastic strain

increases. Disorientations occur due to the high strain gradient inside the shear

bands where the plastic strain is highly localized as can be observed in Fig. 30. In

fact, the orientation of 24 grains located around the shear band has been determined

for different increasing values of the macroscopic plastic strain. Figure 30 summa-

rizes the poles figures for the crystallographic planes {200} and {220}. It is worth

noting how a material point with initially a single crystalline orientation (Fig. 30a

for E22 ¼ 0.0 %) is transformed into a polycrystal as the macroscopic plastic strain

increases as indicated in Fig. 30b for E22 ¼ 50.0 % and Fig. 30c for E22 ¼ 100.0 %.

Additional investigations would make it possible to see if this phenomenon is

systematic for different initial orientations of the “monocrystal” and if this mode

of transformation corresponds to the experimental observations.

Effect of the Texture Evolution
In this section, the effect of the texture evolution in comparisons with calculations

performed with a constant texture in both fully coupled and uncoupled models is

investigated. For the sake of shortness and to save the CPU time, only the aggregate

with Ng ¼ 24 is investigated.

For the uncoupled model (Figs. 31 and 32), one can note that if the texture does

not evolve (no grain rotation), then the softening induced by the necking appears
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Fig. 28 Distribution of the macroscopic damage at different displacement values of Ng (Hfaiedh

et al. 2009)
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Fig. 29 Comparison of the

total answers in terms of

force-displacement curves for

aggregates with various

numbers of grains and various

initial textures in coupled and

uncoupled models (Hfaiedh

et al. 2009)

Fig. 30 Poles figures for the two planes {200} and {220}, obtained from 24 grains with the same

initial orientation (Hfaiedh et al. 2009)
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rather early around u¼ 0.7 mm. However, when the grain rotation is accounted for,

a clear delay in the appearance of the softening stage is observed and the maximum

of the force is observed for around u ¼ 3.5 mm. This delay can be explained by the

increase of the strain hardening due to the multiplicity of active systems related to

the rotation of the grains. The same observations can be made for the fully coupled

model. It predicts a fracture occurring at the displacement u ¼ 1.5 mm when the

texture evolution is neglected, while the fracture occurs later at u ¼ 4.0 mm when

the texture evolution is taken into account. This is again due to the enhancement of

the hardening stage when the grains rotate giving the opportunity to more slip

systems to be active. These remarks are confirmed by the distribution of the

macroscopic plastic strain at fracture (or ductility) as shown in Fig. 33. It can

be clearly seen that P � 33 % when the texture evolution is accounted for and

P � 8.25 % when the rotation of the grains is neglected.

Fig. 31 Comparison of the

force-displacement curves for

an aggregate of 24 grains with

random texture, predicted by

the uncoupled model

(Hfaiedh et al. 2009)

Fig. 32 Comparison of the

force-displacement curves for

an aggregate of 24 grains with

a random texture, predicted

by the fully coupled model

(Hfaiedh et al. 2009)
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Application to Copper

In this last section, a comparison of the numerical results with experimental

(macroscopic and mesoscopic) data obtained for copper is proposed. The macro-

scopic data includes force-displacement curves obtained in uniaxial tensile tests

(see Fig. 34). The values of the material parameters for copper are summarized in

Table 4.

Figure 34 shows the global specimen responses in terms of force-displacement

curves, predicted by the fully coupled and the uncoupled models and experiment for

the copper. The results for the coupled model approximate the shape of the

experimental curve in the critical stage. The effect of α3
s� g parameter is important

to obtain the same curves.

The comparison between the experimental poles figures and the numerical

simulation at 23 % of equivalent plastic strain is presented for the two crystallo-

graphic planes {111} and {220} in Fig. 35. It leads to a relatively good agreement

between experiment and calculation, especially the numerical model presents with

a small number of grains (Ng ¼ 24).

0
a b
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0.03

0.0375
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0.0525
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ap:39.992692 tim
e:40

m
in: 0.000000 m

ax: 0.077983
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0.15
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0.24

0.27

0.3

0.33

evcum
 m

ap:149.950095 tim
e:150

m
in: 0.000000 m

ax: 0.359985

Fig. 33 Macroscopic equivalent plastic strain distribution for an initially random aggregate of

24 grains, predicted by the fully coupled model: (a) without texture evolution and (b) with texture

evolution (Hfaiedh et al. 2009)
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Test for Two-Phase Material

This section concerns the simulation of duplex stainless steel behavior. Before the

identification stage of final material parameters, a study of their influence has been

performed. The comparison between experimental results from Experimental

aspects and the following curves is only qualitative, but can show the capacity of

the previous model to represent the behavior of a two-phase material. The point of

this work is to illustrate that not only the macroscopic behavior can be reproduced,

but smaller scales may also be accurately represented with this modeling approach.

Behavior Before Damage
A study of the influence of plastic parameters on the macroscopic and mesoscopic

behaviors of an aggregate of Ng ¼ 20 grains is performed before identification with

the real material. Several material parameters have been fixed, including the

macroscopic and grain elasticity tensors that have been obtained from Le Joncour

et al. (2011).

The aggregate is composed of 50 % of each phase, and it is chosen to take

austenite (phase 1) and ferrite (phase 2) slip systems for further identifications. In

austenite, 12 slip systems (FCC: <110> {111}) are chosen and 24 in ferrite (BCC:

<111> {211}, <111> {110}).

Fig. 34 Comparison of

force-displacement curves for

the numerical and

experimental results (Hfaiedh

et al. 2009)

Table 4 Elastoplastic parameters of copper

E (MPa), v CC (MPa) CA
s� g CN

s� g

125000., 0.33 4730 15 25

CK
s� g(MPa) Rc0

s� g(MPa) Hst� g (MPa) CB
g

50 51..3 85 4.4

α3
s� g(MPa) α1

s� g α4
s� g y0

s� g(MPa)

4 7.2 60 0.001
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The elastoplastic parameters chosen for the two phases are presented in Tables 5

and 6.

CC parameter can be extracted from shear modulus μ of ferrite and austenite,

given in the work of Evrard (2008). CN
s� g and CK

s� g are taken to minimize

the influence of time dependence and calculus time of simulations. The parameter

Rc0
s� g is easily identified from mesoscopic behavior thresholds and depends on each

phase plastic transition and residual stresses (these have been measured and given

in Le Joncour et al. (2011)). To avoid damage effect, y0
s� g is firstly chosen very

important (around 1011 MPa).

Fig. 35 Comparison between experimental poles figures and coupled model at 23 % of equivalent

plastic strain (Hfaiedh et al. 2009)

Table 5 Elastoplastic parameters of austenite

Cijkl(MPa) CC(MPa) CA
s� g CN

s� g

LeJoncour (2011) Evrard (2008) 1, 2.5, and 5* 25

CK
s� g(MPa) Rc0

s� g(MPa) Hst� g (MPa) CB
g

50 75 175,225,275 0.5, 1, 2, 3, 5*
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Finally, gray parameters in Tables 5 and 6 have different values; their influence

can be observed below in Figs. 36, 37, and 38.

Plasticity Parameter Influence
The parameter CB

g controls the nonlinearity of kinematics hardening, and this

causes, for the aggregate of few grains, the frame of the macroscopic curve

(Fig. 36a). This influences the elastic strains of grains versus macroscopic stress

in the same way as Fig. 36b, increasing the nonlinearity of the curves of both

phases.

The Hst� g interaction matrix components have been taken equal to each other;

therefore, this parameter is setting the intensity of isotropic hardening. Figure 37a

shows this influence; by increasing H, the slope of macroscopic curves during

plasticity increases and saturated stress is then heightened. This influences the

mesoscopic curves (Fig. 37b) by changing their slopes after plastification and the

final stresses in both phases.

In Fig. 38, influence of CA
s� g parameters which sets the speed of saturation of

hardening can be seen. The increase of this parameter causes the decrease of final

stress in ferrite and austenite on curves at phases scale.

Table 6 Elastoplastic parameters of ferrite

Cijkl (MPa) CC (MPa) CA
s� g CN

s� g

LeJoncour(2011) Evrard (2008) 1, 2.5, and 5* 25

CK
s� g(MPa) Rc0

s� g(MPa) Hst� g (MPa) CB
g

50 350 60, 110, 260 0.5, 1, 2, 3, 5*

Fig. 36 (a) Macroscopic and (b) mesoscopic behavior for different values of CB
g ¼ 0.5, 1, 2,

3, and 5
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Fig. 37 (a) Macroscopic and (b) mesoscopic behavior for different values of Hst� g, Phase 1:

175, 225, 275, and Phase 2: 60, 110, 260

Fig. 38 (a) Macroscopic and (b) mesoscopic behavior for different values of CA
s� g ¼ 1, 2.5, 5

Table 7 Plastic

parameters for simulation

of Fig. 39a and b, for the

damage parametric study

Austemte

CB
g Hst� g (MPa) CA

s� g

30 260 1.3

Ferrite

CB
g Hst� g (MPa) CA

s� g

30 130 1.5
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Comparison with Experimental Data
After the observation of plastic parameters, values have been chosen to obtain

macroscopic local curve of UR45N presented in section II, for an aggregate of

20 grains. These parameters are given in Table 7.

Fig. 39 (a) Macroscopic and (b) mesoscopic behavior, comparison between simulation and

experimental data

Table 8 Damage parameters in ferrite

α3
s� g(MPa) α1

s� g α4
s� g y0

s� g(MPa)

0.5, 5, 25, 50, 60, 100, 1,000 1, 3, 6, 10. 60 1, 2, 3, 5, 10 5, 10, 25, 40, 50, 100

Fig. 40 (a) Macroscopic curve and (b) magnification of the behavior with different values of

damage parameter y0
s� g

1014 B. Panicaud et al.



On Fig. 39a, a good correlation between experiment and simulation for the

macroscopic behavior can be seen. Only the beginning of the curve until 70 % of

strain has been used for the comparison because of the use of plasticity without

damage. After this threshold, consequences of damage on elastic strains per lattice

plans have been observed on the experiments; therefore, a modeling of damage is

necessary after this limit.

On Fig. 39b, it is shown that correlation of experimental and simulated curves

for phase scale is not as good as for the macroscopic scale. Better material

parameters could probably be found, and calculations have to be launched on an

Fig. 41 (a) Macroscopic curve and (b) magnification of the behavior with different values of

damage parameter α3
s� g

Fig. 42 (a) Macroscopic curve and (b) magnification of the behavior with different values of

damage parameter α4
s� g
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aggregate with more grains to be representative. Still, evolutions and trends are

qualitatively the same. The balance between phases and thresholds corresponding

to yield stress is observed.

Damage Parameter Influence
In this section, a parametric study of damage is proposed. Each of the four

parameters has been changed considering the same set of elastoplastic parameters

found in the latest paragraph for UR45N duplex stainless steel. Simulation below

has been performed on an aggregate of Ng ¼ 10 grains to limit the time of

calculation. The ferrite is the only phase that can damage; therefore, y0
s� g of

austenite is fixed as before and ferrite damage parameters are changing as presented

below in Table 8.

Conclusions and Perspectives

In the present chapter, a general methodology has been presented and illustrated

with applications to different materials. It has been shown that ductile damage can

be investigated using micromechanics. However, it is necessary to emphasize the

different difficulties that have been encountered and the associated solutions.

First, to focus on the microscopic scale, experimental techniques have been

investigated through the possibility to obtain constitutive models. Diffraction

methods seem to be the most efficient when it is necessary to focus on the

microscopic scale. Indeed, it enables to determine the material behavior selectively

for each phase. However, the possibility to extract damage is not directly possible,

and specific data treatments are required. The comparison of damage at macro-

scopic scale is then necessary to elaborate some damage evolution models, through

the construction of damage scenario at several scales.

Fig. 43 (a) Macroscopic curve and (b) magnification of the behavior with different values of

damage parameter α1
s� g
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Second, to obtain efficient modeling for the simulation of virtual process forming,

it is mandatory to have a permanent exchange with experiments. The experimental

methods proposed in the present chapter have proven their usefulness. The modeling

approach is mainly based on a thermodynamics approach that enables to ensure the

validity of the physical laws. In addition to the elastic and plastic behavior, ductile

damage is introduced through intern variables, whose kinematic contributions repre-

sent the fraction of defects in the RVE. The number of scales used, as well as the

number of phases, determines the type of model that is necessary. From experimental

observations, at least three scales have to be taken into account for the modeling of

ductile damage. Moreover, it represents a coherent approach, provided the scale

transitions are properly done. The proposed modeling method extends the classical

formulation, which include some phenomenological relations, by replacing equations

with thermodynamically compatible relations. However, the restriction is limited and

several are still possible, which justify the exchange with experiments.

Third, the proposed models have been tested on several materials (monophasic

such as copper and biphasic such as duplex stainless steels). Provided the formulation

is built as objective and texture is updated through the evolution of the Eulerian

angles, it is possible to reproduce quantitatively the mechanical behavior of materials

up to failure. It can thus be applied to the simulation of metal forming processes.
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multiphasé par diffraction des rayons X et neutronique, Ph.D. thesis, Ecole Nationale Supérieur

des Arts et Métier de Paris, 2006

P. Dawson, D. Boyce, S. MacEwen, R. Rogge, On the influence of crystal elastic moduli on

computed lattice strains in aa-5182 following plastic straining. Mater. Sci. Eng. A 313,

123–144 (2001)

P.R. Dawson, S.R. MacEwen, P.D. Wu, Advances in sheetmetal forming analyses: dealing with

mechanical anisotropy from crystallographic texture. Int. Mater. Rev. 48(2), 86–122 (2003)

M.R. Daymond, The determination of a continuum mechanics equivalent elastic strain from the

analysis of multiple diffraction peaks. J. Appl. Phys. 96, 4263–4272 (2004)

A. Desestret, J. Charles, Les aciers inoxydables austéno-ferritiques. Les aciers inoxydables, Les
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ferritique moulé vieilli, Ph.D. thesis, Ecole Nationale Supérieur des Arts et Métier de Paris, 2000

C. Miehe, J. Schotte, Anisotropic finite elastoplastic analysis of shells: Simulation of earing in

deep-drawing of single- and polycrystalline sheets by Taylor-type micro-to-macro transitions.

Comput. Meth. Appl. Mech. Eng. 193(1–2), 25–57 (2004)
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evolution at finite strains and experimental verification for copper and stainless steel using in

situ neutron diffraction. Int. J. Plasticity 26(12), 1772–1791 (2010)

S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials
(Elsevier, Amsterdam, 1993)

S. Nemat-Nasser, Plasticity. A Treatise on Finite Deformation of Heterogeneous Inelastic Mate-
rials (Cambridge University Press, Cambridge, 2004)

B. Panicaud, E. Rouhaud, A frame-indifferent model for a thermo-elastic material beyond the three-

dimensional eulerian and lagrangian descriptions, Cont. Mech. Thermodyn. (2013, in press)

A. Paquin, S. Berbenni, V. Favier, X. Lemoine, M. Berveiller, Micromechanical modeling of the

elastic-viscoplastic behavior of polycrystalline steels. Int. J. Plasticity 17, 1267–1302 (2001)

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characteriza-
tion of Materials (Springer, New York, 2005)

P. Pilvin, The contribution of micromechanical approaches to the modeling of inelastic behavior of

polycrystals. Soc. Fr. Métall. Matér. 1, 31–45 (1994)

D. Raabe, Computational Material Science: The Simulation of Materials Microstructures and
Properties (Wiley-VCH, Weinheim, 1998)

D. Raabe, F. Roters, Using texture components in crystal plasticity finite element simulations. Int.

J. Plasticity 20(3), 339–361 (2004)

E. Rouhaud, B. Panicaud, R. Kerner, Canonical frame-indifferent transport operators with the

four-dimensional formalism of differential geometry, Comput. Mater. Sci. (2013, in press)

K. Saanouni, Damage Mechanics in Metal Forming. Advanced Modeling and Numerical Simula-
tion (ISTE John Wiley, London, 2012). ISBN 978-1-8482-1348-7

J. R. Santisteban, L. Edwards, A. Steuwer, P. J. Withers, Time-of-flight neutron transmission

diffraction, J. Appl. Crystallogr. (2001). ISSN 0021-8898. http://www.isis.stfc.ac.uk/instru

ments/engin-x/documents/engin-x-a-third-generation-neutron-strain-scanner10390.pdf

E. Schmid, W. Boas, Plasticity of Crystals (Chapman and Hall, London, 1968)

C.M. Sellard, Modeling microsctructural development during hot rolling. Mater. Sci. Technol. 6,

1072–1081 (1990)

H.R. Shercliff, A.M. Lovatt, Modeling of microstructure evolution in hot deformation. Philos.

Trans. R. Soc. Lond. 357, 1621–1643 (1999)

C. Teodosiu, F. Sidoro, Theory of finite elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 14,

165–176 (1976)

C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics, 3rd edn. (Springer,

New York, 2003)

V. Vitek, The core structure of 1/2[1 1 1] screw dislocations in bcc crystals. Philos. Mag. 21,

1049–1073 (1970)

D.S. Wilkinson, X. Duan, J. Kang, M. Jain, J.D. Embury, Modeling the role of microstructure on

shear instability with reference to the formability of aluminum alloys, Mater. Sci. Forum

519/521, 183–190 (2006)
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Abstract

To predict the overall transverse mechanical behavior and damage evolutions of

cylindrical fiber-reinforced ductile composites with fiber cracking, an innovative

micromechanical multi-level elastoplastic evolutionary damage framework

is proposed. Progressively cracked fibers are modeled by using the

double-inclusion theory. The effective elastic moduli of 3-phase composites,
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consisting of a matrix, randomly located yet monotonically aligned cylindrical

uncracked fibers and cracked fibers, are derived by using a micromechanical

formulation. A micromechanical effective yield criterion is derived based on the

ensemble-area averaging process and the first-order effects of eigenstrains to

characterize the homogenized elastoplastic behavior. The resulting effective

yield criterion, together with the overall associative plastic flow rule and the

hardening law, constitutes the analytical framework for the estimation of effec-

tive transverse elastoplastic damage responses of ductile composites containing

both uncracked and cracked fibers. An evolutionary fiber cracking process,

governed by the internal stresses and the fracture strength of fibers, is incorpo-

rated into the proposed work. The Weibull’s probabilistic distribution is

employed to describe the varying probability of fiber cracking. Further, system-

atic numerical simulations are presented to illustrate the potential of the pro-

posed methodology.

Introduction

Composite materials consist of two or more phases combined together on a

macroscopic scale to form specific new materials with certain desirable material

properties and enhanced performance. The “inclusions” in composites can be of

various forms such as fibers, whiskers, and particulates, which can be made of

alumina, silicon carbide, silicon nitride, boron, and graphite, etc. The other primary

phase in composites is called the “matrix.” The matrix materials usually serve as the

binder materials not only to support and protect the inclusions but also to transfer

stresses between perfectly bonded and partially debonded/broken inclusions under

three-dimensional complex loadings. The matrix materials can be made of poly-

mers, metals, ceramics, or carbons, etc. In order to enhance the material perfor-

mance and meet the demands from the aerospace (commercial or military aircraft),

automobile industries, civil infrastructures, and sporting goods, etc., extensive

research and development of improved high-performance structural materials

have been conducted over the past several decades around the world. Composite

materials can significantly improve such properties of a material as strength,

stiffness, corrosion resistance, wear resistance, attractiveness, weight, fatigue life,

temperature-dependent behavior, thermal insulation, thermal conductivity, and

acoustical insulation, etc. In general, not all of these properties can be improved

at the same time. The primary objective is to create a new heterogeneous material

that has certain desired characteristics needed to perform a particular engineering

mission or task.

There are four commonly acknowledged types of composite materials. These

include (1) fibrous composite materials that consist of fibers in a matrix; (2) lami-

nated composite materials that consist of layers of various materials; (3) particulate

composite materials that are composed of particles in a matrix; and (4) combinations

of some or all of the first three types. Composite materials can also be classified
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according to their matrix phase. There are, for example, polymer matrix composites

(PMCs), ceramic matrix composites (CMCs), and metal matrix composites

(MMCs). Materials within these categories are often called advanced composite

materials. Advanced materials combine the properties of high strength, high stiff-

ness, low weight, corrosion resistance, high temperature resistance, and in some

cases special electrical properties. This combination of properties makes advanced

composite materials very attractive in the applications of next generation aircraft

and aerospace structural parts. Advanced composite materials are originally devel-

oped primarily for the applications of aerospace and defense industry. To date, they

are also widely adopted in civil engineering applications. For example, carbon fiber

and fiberglass have been used as prestressing materials, particularly for areas where

there is concern about corrosion and stress embrittlement of conventional

prestressed steel. A considerable body of research has been conducted to establish

the effectiveness of column retrofit, using jackets of composite materials such as

fiberglass and carbon fiber, generally bonded together and to the column with epoxy

(Priestley et al. 1996).

In recent years, metal-matrix composites (MMCs) have emerged as a promising

class of new materials with excellent ductility, formability, low density, high

strength, and high thermal conductivity. Metal-matrix composites, in general,

consist of at least two components. One is the metal matrix and the other is the

reinforcement. The matrix is defined as metal in all cases, but pure metal is rarely

used as the matrix. Instead, an alloy is generally used as the matrix material. In the

production of the composites, the matrix and the reinforcements are mixed together

in a random fashion or a periodic array.

More recently, fiber-reinforced metal matrix composite materials that have high

strength-to-weight and stiffness-to-weight ratios have become important in weight-

sensitive applications such as buildings, bridges, aircraft, space vehicles, and

sporting goods, etc. For example, continuous fiber-reinforced metal matrix com-

posites (CFRMMCs) have been increasingly used in engineering due to their

improved mechanical properties. CFRMMCs are composed of at least two phases.

The matrix materials of CFRMMCs are made of ductile metals or alloys with high

strain capability, such as aluminum, steel, or titanium. The inclusions of

CFRMMCs can be made of carbon, boron, or glass fibers. The shape of inclusions

could be circular or elliptical cylinder. These unidirectional aligned and impene-

trable fibers disperse (usually randomly) in a matrix and behave in an elastic

manner.

In recent decades, fiber-reinforced metal matrix composite materials that have

high strength-to-weight and stiffness-to-weight ratios have gained importance in

weight-sensitive applications such as buildings, bridges, aircraft, space vehicles,

and sporting goods, etc. For example, continuous fiber-reinforced metal matrix

composites (CFRMMCs) have been increasingly used in engineering due to their

improved mechanical properties. CFRMMCs are composed of at least two phases.

The matrix materials of CFRMMCs are made of ductile metals or alloys with high

strain capability, such as aluminum, steel, or titanium. The inclusions of

CFRMMCs can be made of alumina, silicon carbide, silicon nitride, carbon,
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boron, or glass fibers. The shape of inclusions can be circular or elliptical cylinder.

These unidirectional aligned and impenetrable fibers disperse (usually randomly) in

a matrix and behave in an elastic manner.

In general, the filament packing array of CFRMMCs could be either a periodic
regular array or a randomly distributed one. However, during the fabrication

process, a periodic regular array of filament packing may be hard to achieve. A

randomly distributed array of filament packing is often observed.

With the increasing applications of CFRMMCs, numerous efforts have been

devoted to the theoretical prediction of mechanical and thermal responses of

CFRMMCs. To facilitate the development of the state-of-the-art theoretical frame-

works, it is important to understand the manufacturing process of MMCs. Many

physical and chemical phenomena can be observed during the fabrication process

of MMCs.

The manufacturing process of MMCs generally involves two stages: (1) the

fabrication of the composite materials from base metal and fiber reinforcement, and

(2) the subsequent fabrication of laminates from the composite materials.

The first stage involves five main processing techniques (Eluripati et al. 2003;

Kaczmar et al. 2000): (i) Liquid-State Processing; (ii) Solid-State Processing; (iii)

Physical Vapor Processing (PVD); (iv) Powder Metallurgy; and (v) Direct

Processing/Spray Deposition. The second stage involves fabrication of laminates

from the composite materials. Taking CFRMMCs as an example, the three princi-

pal lay-up processes are winding, laying, and molding. Sheet molding compound

(SMC), roll-forming process, and pultrusion process are usually used to produce

various forms and shapes of structural parts.

A short overview of Solid-State Processing method used to fabricate Titanium

Matrix Composites (TMCs)/Aluminum Matrix Composites (AMCs) is discussed

below.

The Solid-State Processing is further divided into three stages: (a) Pre-Processing

of composites; (b) Primary Processing; and (c) Secondary Processing.

Pre-Processing, in general, includes the surface treatment of ingredient materials

and preform fabrication. A preform is a shaped porous assembly of ingredient

material elements such as fibers, whiskers or particles. This is followed by the

stacking of alternate layers of matrix foils and the fiber preforms.

Primary-Processing combines ingredient materials (e.g., the matrix foils and

fibers). Diffusion bonding is the main process used for manufacturing continuous

fiber- reinforced metal matrix composites (CFRMMCs) during current process. A

typical high-temperature consolidation process called HIPing (Hot Isostatic Press-

ing) utilizes diffusion bonding for manufacturing the composites. The stacks of

matrix foils and fibers are encapsulated in an insulated chamber of a pressure vessel

inside a furnace. A cooling jacket provided with the furnace is attached to a heat

exchanger to control the temperature inside the furnace when required. A vacuum

pump connected to the insulated chamber evacuates the chamber. Argon gas is used

to apply pressure on the specimen. The required pressure levels are obtained by

using a compressor, and the required amount of gas is provided from a liquid argon

storage tank by means of a liquid pump and a vaporizer. Temperature, pressure, and
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process time are controlled by a computer controller. When the temperature inside

the chamber exceeds the matrix re-crystallization temperature, the molten matrix

material infiltrates into the porous fiber preform with application of hydrostatic

pressure by means of argon gas. However, it is not necessary to obtain a final shape

or final microstructure by primary processing.

It is noted that during the consolidation stage, the composites are cooled down to

the room temperature and the constituents of the composites contract independently

according to their Coefficient of Thermal Expansion (CTE). Residual stresses are

generated in the composites due to the CTE mismatch of the constituents. There-

fore, the “as-processed” composite materials at room temperature are actually

subjected to a state of stress without any external forces.

Secondary Processing is further divided into two steps. The first step includes

shaping and forming, and the second step involves the final composition. As the

names suggest, the first step aims to alter the shape and microstructure of the

material with processes such as forging, rolling, heat treatment, etc. The second

step involves machining and joining operations, which include grinding, drilling,

welding, etc. The final composite is obtained at this stage.

After understanding the manufacturing process of CFRMMCs, we will proceed

to discuss the factors that should be taken into account in the development of the

theoretical frameworks to model the mechanical behavior of CFRMMCs.

As a result of manufacturing process and continuous external loading, internal

defects as well as evolutionary defects within fiber-reinforced composites play a

significant role in the damage and fracture mechanism. Some of the most common

defects have been studied exclusively such as crystal defects and planar cracks.

While other forms of defects need to be investigated comprehensively such as the

fiber-matrix debonding, matrix-cracking, fiber breakage, fiber cracking, fiber pull-

out, and shear-sliding between fibers and the matrix. However, due to different

damage mechanisms of various types of defects and the tremendous difficulty in

considering them simultaneously, it is wise and reasonable to deal with the pre-

dominant defect first. It should be noted that the dominant damage mechanisms is

intimately related to the strength of reinforcement, the composite matrix and its

interface, the reinforcement shape and concentration, and the loading mode. The

present study is confined to the reinforcing fiber cracking mechanism.

In traditional continuum mechanics analysis, the study of composite material

behavior is at the level of macromechanics. The material is presumed to be

homogeneous, and the effects of the constituent materials are detected only as

averaged apparent macroscopic properties. Macroscopic theories of materials

would not give as accurate solutions as micromechanics theories do. Therefore,

the theories based upon micromechanics must be developed.

Micromechanics is a method of analytically predicting basic composite material

properties as functions of the properties of the constituent materials and their micro-

geometrical and microstructural relationships among one another, as opposed to the

analysis of members fabricated from such composites (i.e., “macromechanics”).

Traditional continuum mechanics deals with idealized materials. It assumes that:

(1) the elastic properties of a solid at a given point are the same in every direction
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(isotropy); and (2) the material property is the same at all points within the solid

(homogeneity). These two assumptions render the uniform stress and strain distri-

bution within an infinitesimal material element. However, from the microscopic

and realistic points of view, an infinitesimal material element has its own complex

microstructure. Therefore, the stress and strain field within such a material element

is not uniform at the micro-scale level. It is the major objective of micromechanics

to characterize such infinitesimal material element and its neighborhood with a

rigorous theoretical framework. Optical microscopy shows that the microscopic

structure of a solid is complex. It consists of inclusions, grains separated by grain

boundaries, microcavities, cracks, and dislocations, for example. The RVE for a

material point of a continuum mass defines a material volume which statistically

represents the infinitesimal material neighborhood of that material point (Nemat-

Nasser and Hori 1993).

In essence, the concept of RVE in classical micromechanics is a mathematical

paradigm. It has no fixed length scale associated with each level. The length scales

associated with macro-level and micro-level are relative. If one studies the effective

material properties of a heterogeneous metal, the length scale of the micro-level

may extend from a few nm to μm, and the length scale of macro-level may be from a

few mm to a centimeter. For example, in a study of the stiffness of a dam, the length

scale if micro-level could be from centimeters, whereas the length scale at macro-

level could be meters. In classical continuum mechanics, at macro-level, material

properties are always assumed to be homogeneous but unknown, whereas at micro-

level, i.e., inside the RVE, the material properties are heterogeneous but known. At

micro-level, the heterogeneous micro-structure and the physical laws are known.

Micromechanics used information of microstructure to discover homogeneous

material properties at macro-level, which are often called overall material proper-

ties or effective material properties.

The methodology to estimate the effective material properties is named “homog-

enization.” Here, the term “homogenization” means the statistical and volume

averaging within an RVE. Mathematically, such procedure is related to the

ensemble-volume averaging process, and leads to overall governing constitutive

equations.

Emanating from the eigenstrain concept (Eshelby 1957) and the

micromechanical framework (Ju and Chen 1994a, b, c; Ju and Tseng 1996, 1997;

Ju and Sun 2001; Sun and Ju 2001; Ju and Zhang 1998, 2001; Lin and Ju 2009; Feng

and Yu 2010; Ju and Yanase 2010, 2011; Ko and Ju 2012, 2013), the effective

elastoplastic damage behavior of fiber/particle-reinforced composites due to inter-

facial complete/partial debonding (Ju and Lee 2000, 2001; Sun et al. 2003a, b; Liu

et al. 2004, 2006; Ju et al. 2006, 2008, 2009; Paulino et al. 2006; Ju and Ko 2008;

Lee and Ju 2007, 2008; Ju and Yanase 2009; Okabe et al. 2010, particle-cracking

(Sun et al. 2003b), and thermal residual effect (Liu and Sun 2004; Ju and Yanase

2008; Zhang and Wang 2010) have been investigated extensively in the literature.

In addition, a number of studies regarding the effects of particle-cracking in

particle-reinforced metal matrix composites (PRMMCs) have been conducted

1028 Y.-F. Ko and J.-W.W. Ju



under the unit-cell micromechanical framework and the finite element analysis. Bao

(1992) studied the influence of damage evolution paths on the brittle particle-

reinforced metal matrix composites and the reduction in composite limit flow stress

for aligned spherical and cylindrical particles in an elastic-perfectly plastic matrix

subject to tensile loading normal to the plane of particle cracks. Brockenbrough and

Zok (1995) examined the flow response of particle-reinforced metal matrix com-

posites by employing unit cells containing either intact or cracked particles in a

plastically hardening solid with a power law hardening to determine the

corresponding asymptotic flow strengths. The effects of the hardening exponent

and the elastic mismatch between the particles and the matrix on the flow response

are also investigated. Llorca et al. (1997) introduced the Weibull statistics to

simulate the damage evolution of particle-cracking with their finite element models.

To consider composites with random reinforcement distributions, Ghosh and

Moorthy (1998) developed a microstructure-based Voronoi Cell Finite Element
Model (VCFEM) to analyze the particle-cracking and splitting effect. Moreover,

Steglich et al. (1999) reported on an investigation of crack propagation in a metal

matrix composite (MMC) where the dominant failure mechanism observed was

particle cracking. The Gurson-Tvergaard-Needleman model (Tvergaard and

Needleman 1984) was used to study crack propagation in the material; the particle

cracking was directly taken into account by means of a cohesive zone model.

Finally, Wang et al. (2008) studied the fracture of a fiber embedded in a matrix

of finite radius under the axial extension and residual temperature change of the

composite medium. The periodic array of cracks in the fiber along the central axis

of the medium is assumed. Singular integral equation technique and fracture

mechanics analysis were employed in their studies.

However, the studies on predictions of the overall elastoplastic-damage behavior

of CFRMMCs under transverse tensile loadings due to fiber cracking have been

rather limited to date. The main objective of this chapter is to micromechanically

predict the elastoplastic-damage behavior of CFRMMCs under the transverse

uniaxial tensile loading due to fiber cracking by considering the mechanical

properties of constituent phases, fiber volume fractions, random spatial distribu-

tions of fibers, and critical fracture strengths of fibers, etc.

Eshelby’s Micromechanical Theory

Based on micromechanics, when a material contains inhomogeneities of different

material properties such as voids, cracks, or precipitates, etc., it is subjected to an

internal stress (eigenstress) field even if it is free from external load. Such stress

field is caused by the eigenstrain inside the inhomogeneities due to the misfit and

phase transformation. Eshelby (1957) first pointed out that the stress perturbation in

an applied stress due to the presence of an inhomogeneity can be simulated by an

eigenstress caused by an inclusion when the eigenstrain is chosen properly.
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Let us now consider an infinitely extended material domain D (elastic modulus

C(0)) with an inclusion (inhomogeneity) domain Ω (elastic modulus C(1)). Suppose

that the applied stress at infinity is σo(x) and the corresponding strain is «o(x).
Furthermore, the perturbed stress field and perturbed strain field are denoted by

σ0(x) and «0(x), respectively. Therefore, the Hooke’s law takes the form

σoij xð Þ þ σ0
ij xð Þ ¼ C

1ð Þ
ijkl ε

o
kl xð Þ þ ε0

kl xð Þ� �
in Ω (1)

σoij xð Þ þ σ0
ij xð Þ ¼ C

0ð Þ
ijkl ε

o
kl xð Þ þ ε0

kl xð Þ� �
in D� Ω (2)

Eshelby’s equivalent eigenstrain (eigenstress) principle is a homogenization

method. It establishes the equivalency between an eigenstrain (eigenstress) field

and an inhomogeneity distribution, such that distribution of inhomogeneities may

be replaced by the eigenstrain field with the equivalent mechanical effect. This

equivalency mapping process translates the heterogeity of material into an added

non-uniform strain distribution, while making the material properties become

homogeneous again. In other words, the so-called Eshelby’s equivalent eigenstrain
(eigenstress) principle is to replace the inhomogeneity with a homogenized inclu-

sion, with which an eigenstrain field is prescribed, such that the homogenized field

is mechanically equivalent to the original inhomogeneous field.

By introducing an eigenstrain «*(x) within this inclusion domainΩ and applying

the Eshelby’s equivalence principle, the Hooke’s law yields

σoij xð Þ þ σ0ij xð Þ ¼ C
0ð Þ
ijkl ε

o
kl xð Þ þ ε0kl xð Þ � ε�kl xð Þ� �

in Ω (3)

σoij xð Þ þ σ0ij xð Þ ¼ C
0ð Þ
ijkl ε

o
kl xð Þ þ ε0kl xð Þ� �

in D� Ω (4)

Apparently, the necessary and sufficient condition for the equivalency of the

stresses and strains in Eqs. 3 and 4 is

C
1ð Þ
ijkl e

o
kl xð Þ þ e0kl xð Þ� � ¼ C

0ð Þ
ijkl e

o
kl xð Þ þ e0kl xð Þ � e�kl xð Þ� �

(5)

In the case of uniform stress σo(x) at the far field, the eigenstrain «*(x) is also
uniform within inclusion domain Ω.

Upon the solution of the local stress/strain field, one typically performs an

ensemble-averaging process (homogenization) within the aforementioned

mesoscopic representative volume element (RVE) in order to obtain overall (effec-

tive) constitutive equations and properties of the heterogeneous composites. In

present framework, to avoid the truncation errors of Green’s functions outside the
domain of an RVE, an RVE itself is embedded in an infinite and identical matrix

material within present framework. The entire assembly is subjected to specified

far-field stresses σo or strains «o. Furthermore, all inclusions are assumed to be

non-intersecting and impenetrable (Ju and Chen 1994a, b, c).

The volume-averaged stress tensor is defined as
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σ � 1

V

ð
V

σ xð Þ dx ¼ 1

V

ð
V0

σ xð Þ dxþ
Xn
r¼1

ð
Vr

σ xð Þ dx

2
64

3
75 (6)

Similarly, the volume-averaged strain tensor is defined as

« � 1

V

ð
V

« xð Þ dx ¼ 1

V

ð
V0

« xð Þ dxþ
Xn
r¼1

ð
Vr

« xð Þ dx
" #

(7)

where V is the volume of an RVE, V0 is the volume of the matrix, Vr is the volume

of the rth-phase inhomogeneities, and n denotes the number of inclusion phases of

different material properties excluding the matrix.

Based upon Eshelby’s equivalence principle and the ensemble-averaging

method, effective constitutive relations as well as elastoplastic-damage behavior

of fiber- reinforced ductile metal matrix composites are derived in the following

secgtions along with the accurate formulation of the eigenstrains.

Derivation of Two-Dimensional Interior-Point Eshelby Tensor S

Suppose that the uniform eigenstrain «*(x) is prescribed in the inhomogeneous

inclusion domain Ω and, at the same time, the entire medium is loaded by the

far-field uniform applied stress σo. Eshelby used a fourth-rank tensor S which is

traditionally termed the interior-point Eshelby’s tensor to describe the strain and

stress fields in the inclusion domain.

The two-dimensional interior-point Eshelby tensor S is defined as

S �
ð
Ωi

G x� x0ð Þdx0; x, x0 � Ωi (8)

The components of S depend upon Poisson’s ratio of the matrix (ν0) and the

shape of the fiber cross-sectional domain Ωi.

Derivations: according to the Eshelby’s solution, the elastic displacement field

due to inclusion in an isotropic infinite body reads

ui xð Þ ¼ �Cjkmne�mn

ð
Ω

Gij, k
�
x� x0

�
dx0 (9)

where the second rank plane-strain Green’s function is given by Mura (1987):

Gij x� x0ð Þ ¼ 1

8π 1� ν0ð Þμ0
xi � x0

i

� �
xj � x0

j

� �
x� x0k k2 � 3� 4ν0ð Þδijln x� x0k k

2
4

3
5 (10)

By taking the derivative of Gij(x � x0) in Eq. 10 with respect to xk and substitut-
ing the result into Eq. 9, we arrive at
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ui xð Þ ¼ � e�jk
4π 1� ν0ð Þ

ð
Ω

gijk lð Þ dx0

x� x0k k (11)

where

gijk lð Þ ¼ 1� 2ν0ð Þ δijlk þ δiklj � δjkli
� �þ 2liljlk (12)

and

l � x0 � xð Þ
x0 � xk k (13)

When the point x is located inside the inclusion, the strain and stress fields

become uniform for the interior points. Moreover, Eq. 11 can be integrated explic-

itly. The differential element dx0 can be written as

dx0 ¼ rdrdθ (14)

where r ¼ kx0 � xk and dθ is the differential angle element centered at point

x(x1, x2). Upon integration with respect to r, Eq. 11 becomes

ui xð Þ ¼ � e�jk
4π 1� ν0ð Þ

ð2π
0

r lð Þgijk lð Þdθ (15)

Here, r(l) is the positive root of the following equation

x1 þ rl1ð Þ2 þ x2 þ rl2ð Þ2 ¼ a2 (16)

where a is the radius of a single fiber. Therefore, we have

r lð Þ ¼ � f

h
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

h2
þ e

h

s
(17)

where

h ¼ l21 þ l22
a2

, f ¼ l1x1 þ l2x2
a2

, e ¼ 1� x21 þ x22
a2

(18)

Substituting Eq. 17 into Eq. 15, we find that the integration involving the term offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2=h2 þ e=h

q
vanishes because it is even in l while gijk is odd in l. Consequently,

we obtain

ui xð Þ ¼ xje�mn
4π 1� ν0ð Þ

ð2π
0

λjgimn lð Þ
h

dθ (19)

and

eij xð Þ ¼ e�kl
8π 1� ν0ð Þ

ð2π
0

λigjkl þ λjgikl
h

dθ (20)

Where
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λi � li
a2

(21)

According to the definition of Eshelby’s tensor eij ¼ Sijklekl
* , we then arrive at

Sijkl ¼ 1

8π 1� ν0ð Þ
ð2π
0

λigjkl þ λjgikl
h

dθ (22)

Finally, the plane-strain Eshelby’s tensor for a circular inclusion can be

expressed as

Sijkl ¼ 1

8 1� ν0ð Þ 4ν0 � 1ð Þδijδkl þ 3� 4ν0ð Þ δikδjl þ δilδjk
� �� �

(23)

where ν0 is the Poisson’s ratio for the matrix material.

Damage Theory of Composites

Unidirectionally aligned yet randomly distributed circular fiber-reinforced ductile

matrix composites are considered. The initially perfectly bonded two-phase com-

posites consists of an elastic matrix (phase 0) and unidirectionally aligned yet

randomly located cylindrical fibers (phase 1); see Fig. 1. Under the applied external
transverse tensile loading, some cylindrical fibers may initiate fiber cracking (phase

2) once the local principal stress within the fibers reaches certain critical fracture

strength; cf. Fig. 2.

Since our major objective is to model the overall mechanical properties of

composites through the local accurate stress/strain fields, simplification is made

that those imperfect (cracked) isotropic fibers can be modeled by the double-

0

X2

X3

X1

Matrix

Cylindrical
Fibers

Fig. 1 The schematic

drawing of unidirectionally

aligned yet randomly

distributed circular fiber-

reinforced composites
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inclusion theory (Hori and Nemat-Nasser (1993); Shodja and Sarvestani (2001); see

Fig. 3. The cracked fiber (phase 2) is modeled by an elliptical void with the aspect

ratio α ¼ a1
a2
! 1 or ρ ¼ a2

a1
! 0 , embedded in a perfectly bonded isotropic

cylindrical fiber.

The equivalent eigenstrain in a perfectly bonded isotropic cylindrical fiber is

defined as

22σ
22σ

22σ 22σ

1X

2X

Perfectly Bonded Fiber
(Phase 1)

Cracked Fiber
(Phase 2

a b

)

Matrix (Phase 0)

Fig. 2 A schematic diagram

of a fiber composite subjected

to transverse uniaxial tensile

loading along the X2-direction

only: (a) the initial state

(undamaged); (b) the

damaged state

X2

a

b c

X1

Width

( )1a

( )2a

Thickness

Fig. 3 The double-inclusion

theory: (a) a cracked fiber;

(b) an elliptical void (crack);

(c) a perfectly bonded

isotropic cylindrical fiber
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« 1ð Þ
� ¼ �K�1 : «o ¼ � S 1ð Þ þ C 1ð Þ � C 0ð Þ

� ��1

•C 0ð Þ
	 
�1

: «o (24)

The equivalent eigenstrain in an elliptical void can be derived as

« 2ð Þ
� ¼ �J��1 : «o (25)

in which,

J� � Iþ S 1ð Þ � S 2ð Þ
� �

• S 2ð Þ þ C 1ð Þ � C 0ð Þ
� ��1

•C 0ð Þ
	 
�1

( )
•E� (26)

with E* � (S(2) � I). Here, S(1) and S(2) are the interior-point Eshelby tensors for

the cylindrical fiber and the elliptical void, respectively. In addition, C(0) and C(1)

are the matrix and the fiber elasticity tensors, respectively. Therefore, the overall

(averaged) eigenstrain in a cracked cylindrical fiber can be derived as

«�h i 2ð Þ ¼ f « 2ð Þ
� þ 1� fð Þ« 1ð Þ

� ¼ ρ �J��1 þK�1
� �

: «o �K�1 : «o (27)

where

f ¼ Area of an elliptical� shaped void

Area of a cylindrical fiber
¼ π a1ð Þ a2 ¼ a1=αð Þ

π a1ð Þ2
 !

α!1

¼ 1

α

� �
α!1

¼ ρð Þρ!0 (28)

and the hi(2) denotes the overall eigenstrain in a cracked isotropic cylindrical fiber

(phase 2).

Effective Elastic-Damage Moduli of Composites

When the small strain is considered, the total macroscopic strain « consists of two

parts:

« ¼ «e þ «p (29)

where «e and «p denote the overall elastic and plastic strains of composites,

respectively. The relationship between the macroscopic stress σ and macroscopic

elastic strain «e reads

σ 5 C: «e (30)
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After lengthy derivations, the effective elastic stiffness of composite can be

determined as (cf. Ju and Chen (1994a, b); Ko and Ju 2012, 2013)

C 5 C 0ð Þ þ ϕC 0ð Þ • K� ϕS 1ð Þ � ϕ 2ð ÞS 1ð Þ • J�1 •K
h i�1

þ ϕ 2ð ÞC 0ð Þ • �ϕ 2ð ÞS 1ð Þ þ I� ϕS 1ð Þ •K�1
� �

• J
h i�1

(31)

where

K ¼ S 1ð Þ þ C 1ð Þ � C 0ð Þ
� ��1

•C 0ð Þ (32)

J ¼ J�

ρ
� Iþ S 1ð Þ � S 2ð Þ

� �
• S 2ð Þ þ C 1ð Þ � C 0ð Þ

� ��1

•C 0ð Þ
	 
�1

( )
•E (33)

Furthermore, in component form,

J ¼ J
1ð Þ
IK δijδkl þ J

2ð Þ
IJ δikδjl þ δilδjk
� �

, i, j, k, l ¼ 1, 2 (34)

with E ¼ E�
ρ ¼ limρ!0 S 2ð Þ � I

� �
=ρ. Here, I is the fourth-order identity tensor, “•”

denotes the tensor multiplication, ϕ denotes the total volume fraction of fibers in the

composites, and ϕ(2) signifies the volume fraction of the cracked fibers.

The components of the fourth-rank interior-point Eshelby tensor S(1) for a

cylindrical fiber and S(2) for an elliptical void are given by Mura (1987), Ju and

Sun (2001), Sun and Ju (2001), and Ju et al. (2009) by setting α ¼ 1 and α ! 1,

respectively. Here, α ¼ a1/a2 is defined as the aspect ratio of the elliptical void

(cf. Fig. 3).

For the overall effective orthotropic elastic materials,

σif g6x1 ¼ Cij

� �
6x6

eej
n o

6x1
, i ¼ 1 to 6, j ¼ 1 to 6 (35)

where

σif g ¼ σ11, σ22, σ33, σ12, σ23, σ31f gT, i ¼ 1 to 6 (36)

eej
n o

¼ ee11, e
e
22, e

e
33, 2e

e
12, 2e

e
23, 2e

e
31

 �T
, j ¼ 1 to 6 (37)

Therefore, there are only nine independent elastic constants for the overall

orthotropic composite. Since the composite consists of a ductile (elastoplastic)

matrix and randomly located yet unidirectionally aligned cylindrical fibers, the

plane-strain condition governs here. Furthermore,
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Cijkl ¼ C
1ð Þ
IK δijδkl þ C

2ð Þ
IJ δikδjl þ δilδjk
� �

, i, j, k, l ¼ 1, 2, 3 (38)

Moreover, for the overall orthotropic materials,

Cij

� �
6�6

¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666664

3
7777775
6�6

(39)

In other words,

Cij

� �
6�6

¼

C
1ð Þ
11 þ 2C

2ð Þ
11 C

1ð Þ
12 C

1ð Þ
13 0 0 0

C
1ð Þ
21 C

1ð Þ
22 þ 2C

2ð Þ
22 C

1ð Þ
23 0 0 0

C
1ð Þ
31 C

1ð Þ
32 C

1ð Þ
33 þ 2C

2ð Þ
33 0 0 0

0 0 0 C
2ð Þ
12 0 0

0 0 0 0 C
2ð Þ
23 0

0 0 0 0 0 C
2ð Þ
31

2
666666664

3
777777775
6�6

(40)

Overall effective elastic moduli associated with such orthotropic materials take

the form:

E11 ¼
C33C

2

12 � 2C13C23C12 þ C
2

13C22 þ C11 C
2

23 � C22C33

� �
C
2

23 � C22C33

(41)

E22 ¼
C33C

2

12 � 2C13C23C12 þ C
2

13C22 þ C11 C
2

23 � C22C33

� �
C
2

13 � C11C33

(42)

E33 ¼ C22C
2

13 � 2C12C23C13 þ C
2

23C11

C
2

12 � C11C22

þ C33 (43)

ν12 ¼ C12C33 � C13C23

C22C33 � C
2

23

, ν21 ¼ C12C33 � C13C23

C11C33 � C
2

13

, ν13 ¼ C13C22 � C12C23

C22C33 � C
2

23

(44)

ν31 ¼ C13C22 � C12C23

C11C22 � C
2

12

, ν23 ¼ C11C23 � C12C13

C11C33 � C
2

13

, ν32 ¼ C11C23 � C12C13

C11C22 � C
2

12

(45)
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μ12 ¼ C44, μ23 ¼ C55, μ31 ¼ C66 (46)

ν12
E11

¼ ν21
E22

,
ν23
E22

¼ ν32
E33

,
ν13
E11

¼ ν31
E33

(47)

Therefore, there are only nine independent elastic constants for the overall

orthotropic composite materials. Here, effective Poisson’s ratio νij is defined as

the ratio of strain shrinkage in the jth direction over the strain extension in the ith

direction when a tensile stress is applied in the ith direction.
In addition, the effective elastic compliance matrix becomes

Dij

� �
6�6

¼ Cij

� ��1

6�6
¼

1

E11

�ν21
E22

�ν31
E33

0 0 0

�ν12
E11

1

E22

�ν32
E33

0 0 0

�ν13
E11

�ν23
E22

1

E33
0 0 0

0 0 0 1
μ12

0 0

0 0 0 0 1
μ23

0

0 0 0 0 0 1
μ31

2
6666666664

3
7777777775
6�6

(48)

The stress component σ33 along the longitudinal fiber direction thus reads

σ33 ¼ η1 σ11 þ η2 σ22 (49)

where

η1 ¼
C13 C22 � C12 C23

Ξ
, η2 ¼

C11 C23 � C12 C13

Ξ
,Ξ ¼ C11 C22 � C

2

12 (50)

To illustrate the influences of the volume fraction of cracked fibers upon the

effective elastic moduli of two-phase composites under the external transverse

uniaxial tensile loading along the X2-direction, the material properties of boron

fibers and the 2024 aluminum alloy matrix are considered. The elastic moduli of the

2024 aluminum alloy matrix and boron fibers, respectively, are: E0 ¼ 8, 100 ksi,

ν0 ¼ 0.32, E1 ¼ 55,000 ksi, and ν1 ¼ 0.2. It is noted that the proposed framework

can predict the effective Young’s moduli, effective shear moduli, and effective

Poisson’s ratios with varying volume fractions of cracked fibers; see section 5.2.2

of Ko 2005, pp. 263–266) for more details. For illustration purposes, only the

effective Young’s moduli with varying volume fractions of the cracked fibers are

demonstrated here. In Fig. 4, in the undamaged state (ϕ(2) ¼ 0), the composite is

overall transversely isotropic. It is observed that the effective Young’s moduli E1
*

and E2
* are equal, while the effective Young’s modulus E3

* along the longitudinal

direction of fibers is the largest. As ϕ(2) increases, it is also noticed that both E2
* and

E3
* decrease. However, E2

* decreases drastically as ϕ(2) increases. By contrast, E1
*

increases as ϕ(2) increases due to the Poisson’s ratio effect.
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Elastoplastic-Damage Behavior of 3-Phase Composites

The multi-level overall elastoplastic-damage responses of 3-phase fiber-

reinforced composites are now considered where the cylindrical fibers are

elastic and the matrix is elastoplastic. Accordingly, at any matrix point,

the stress σ and the equivalent plastic strain ep must satisfy the following yield

function:

F σ, epð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
H σð Þ

p
� K epð Þ � 0 (51)

in which K epð Þ is the isotropic hardening function of the matrix-only material.

Furthermore, H(σ) � σ : Id : σ denotes the square of the deviatoric stress form,

where Id signifies the deviatoric part of the fourth-rank identity tensor I. To obtain

the effective (overall) elastoplastic-damage behaviors of the composites, the

homogenization procedure is usually performed within a mesoscopic representative

area element (RAE). Here, a framework is proposed in which an ensemble-

averaged yield criterion is constructed for the composites.

Following Ju and Chen (1994c), Ju and Lee (2000), and Ju and Zhang (2001),

H(x | g) denotes the square of the “current stress norm” at the local matrix point x,

which determines the plastic strain in a composite for a given phase configuration g.
hHim(x) is defined as the ensemble average of H(x| g) over all possible realization
where x is in the matrix phase. Here, the angled bracket < ∙ > signifies the

ensemble average operator. Let P(gq) be the probability density function for finding
the q-phase (q ¼ 1, 2) configuration gq in the composite. Hence, hHim (x) is

obtained as

Fig. 4 The effective

Young’s modulus versus the

cracked fiber volume fraction

(ϕ(2))
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Hh im ¼ Ho þ
ð
g1

H xj g1ð Þ � Hof g P g1ð Þdgþ
ð
g2

H xj g2ð Þ � Hof g P g2ð Þdg (52)

where Ho is the square of the far-field stress norm in the matrix:

Ho ¼ σo : Id : σo (53)

The stress perturbation due to the presence of single uncracked fiber centered at

x(1) is derived as

σ0 xjx 1ð Þ
� �

¼ C 0ð Þ •G
1ð Þ

x� x 1ð Þ
� �h i

: « 1ð Þ
� (54)

Where

« 1ð Þ
� ¼ �K�1 : «o ¼ � S 1ð Þ þ C 1ð Þ � C 0ð Þ

� ��1

•C 0ð Þ
	 
�1

: «o (55)

G
1ð Þ

x� x 1ð Þ
� �

�
ð
Ω 1ð Þ

G x� x0ð Þdx0 (56)

From the double-inclusion theory, the local perturbed stress σ0(x) due to a

cracked fiber centered at x(2) can be estimated as

σ0 xjx 2ð Þ
� �

¼ C 0ð Þ •G
1ð Þ

x� x 1ð Þ
� �h i

: « 1ð Þ
� þ C 0ð Þ •G

2ð Þ
x� x 2ð Þ
� �h i

: ρ « 2ð Þ
� � « 1ð Þ

�
� �

(57)

where

« 2ð Þ
� ¼ �J��1 : «o (58)

G
2ð Þ

x� x 2ð Þ
� �

�
ð
Ω 2ð Þ

G x� x0ð Þdx0 (59)

Here, «o is the elastic strain field induced by the far-field loading, and x
0
resides

in either an uncracked fiber or a cracked fiber. Further, A is the statistically

representative area element (RAE). It is realized that Eqs. 40 and 43 represent the

method of Green’s function. The components of the fourth-rank tensor G can be

found in Ju et al. (2006, 2008, 2009) and Ju and Ko (2008). In the first-order

approximation approach, a matrix point simply collects the perturbations from all

noninteracting fibers one by one. In the absence of actual microstructural evidences,

for simplicity, P(x1
(1)) and P(x2

(1)) are assumed to be statistically homogeneous,

isotropic and uniform. That is, it is assumed that the probability density functions
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take the form P x
1ð Þ
1

� �
¼ N1

A and P x
1ð Þ
2

� �
¼ N2

A , where N1 and N2 are the total

numbers of uncracked fibers and cracked fibers, respectively, dispersed in a repre-

sentative area A.
Using the two identities (Eqs. 34 and 35) in Ju and Zhang (1998) and the

perturbed stress given in Eqs. 38 and 41, the ensemble-averaged current stress

norm at any matrix point is obtained

Hh im xð Þ ¼ σo : T : σo (60)

The components of the positive definite fourth-rank tensor T read

Tijkl ¼ T
1ð Þ
IK δijδkl þ T

2ð Þ
IJ δikδjl þ δilδjk
� �

, i, j, k, l ¼ 1, 2 (61)

where the (current) volume fraction of the cracked fibers is defined as ϕ 2ð Þ � πa1
a2

N2

A ; see section “Overall Elastoplastic-Damage Stress–Strain Responses” for

more details.

The general relationship between the applied far-field stress σo and macroscopic

(ensemble volume averaged) stress σ is given by (cf. Ju and Chen 1994c)

σo ¼ P : σ (62)

where the fourth-rank tensor P reads

P ¼ C 0ð Þ • Iþ I� S 1ð Þ
� �

•Y
h i

•C 0ð Þ�1
n o�1

(63)

Y ¼ ϕ S 1ð Þ þ C 1ð Þ � C 0ð Þ
� ��1

•C 0ð Þ
	 
�1

(64)

Combination of Eqs. 44 and 46 leads to an alternative expression of the ensem-

ble averaged square of the current stress norm as

Hh im xð Þ ¼ σ : T : σ (65)

where the fourth-rank tensor T � PT : T : P. Furthermore, Eq. 49 reduces to the

classical J2-invariant for ϕ ¼ ϕ(2) ¼ 0; i.e., the matrix only material; see Ko

(Ko et al. 2005), Ju et al. (2006, 2008, 2009), and Ju and Ko (2008) for more details.

The ensemble-averaged “current stress norm” for any matrix point x in a 3-phase

fiber-reinforced composite can be defined as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hh i xð Þ

p
¼ 1� ϕ 1ð Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ : T : σ
p

(66)
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where ϕ(1) is the current uncracked fiber volume fraction. Therefore, the effective

yield function for the 3-phase fiber-reinforced ductile matrix composites can be

proposed as

F ¼ 1� ϕ 1ð Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ : T : σ
p

� K epð Þ (67)

with the isotropic hardening function K epð Þ for the 3-phase composite materials.

For illustration, it is assumed that the overall flow rule for the composite is

associative. Therefore, the effective ensemble-averaged plastic strain rate for the

composite reads

_«
p ¼ λ

· @F

@σ
¼ 1� ϕ 1ð Þ
� �

λ
· T : σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ : T : σ
p (68)

where λ
·
denotes the plastic consistency parameter.

The effective equivalent plastic strain rate for the composite is defined as

_e
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
__«
p
: T

�1
: _«

p

r
¼

ffiffiffi
2

3

r
1� ϕ 1ð Þ
� �

λ
·

(69)

The λ· together with the yield function Fmust obey the Kuhn-Tucker conditions:

λ
·
� 0, F � 0, λ

·
F ¼ 0, λ

· _F ¼ 0 (70)

The simple power-law type isotropic hardening function is employed as an

example:

K epð Þ ¼
ffiffiffi
2

3

r
σy þ h epð Þq �

(71)

where σy is the initial yield stress, and h and q signify the linear and exponential

isotropic hardening parameters, respectively, for the 3-phase composites.

Evolutionary Fiber Cracking

The progressive fiber cracking may occur under increasing deformations and

influence the overall stress–strain behavior of composites. After the fiber cracking,

the cracked fibers lose the load carrying capacity and are modeled by the double-
inclusion theory. Within the context of the first-order approximation, the stresses

inside fibers are uniform. For convenience, following Tohgo and Weng (1994) and

Zhao andWeng (1996, 1997), the average internal stress of a fiber as the controlling
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factor is employed. The probability of fiber cracking is modeled as a two-parameter

Weibull process. Assuming that the Weibull (1951) statistics governs, the cumula-

tive probability distribution function of fiber cracking, Pd, for the plane-strain

uniaxial tensile loading can be expressed as follows. For transverse uniaxial tensile

loading along the X2-axis,

Pd ¼ P2 ¼ 1� exp � σ 1ð Þ
22
�σcri
S0

� �M
" #

, σ 1ð Þ
22 � σcri 0, σ 1ð Þ

22 < σcri:

(
(72)

Here σ 1ð Þ
22 is the average internal stress of fibers in the X2-direction. In addition,

the Weibull parameters M and S0 denote the evolution rate of the volume fractions

of cracked fibers and the average fracture strength of fibers, respectively. The

parameter σcri represents the critical local fracture strength of fibers.

The current volume fraction of cracked fibers ϕ(2) at given level of σ 1ð Þ
22 is

given by

ϕ 2ð Þ ¼ ϕ P2 (73)

and the current volume fraction of uncracked fibers can be written as

ϕ 1ð Þ ¼ ϕ� ϕ 2ð Þ (74)

The averaged internal stresses of fibers can be expressed as

σ 1ð Þ ¼ C 0ð Þ • Iþ I� S 1ð Þ
� �

• S 1ð Þ þ C 1ð Þ � C 0ð Þ
� ��1

•C 0ð Þ
	 
�1

( )"

• Ιþ I� S 1ð Þ
� �

•Y
h i�1

•C 0ð Þ�1


: σ (75)

where

Y ¼
X2
β¼1

ϕ
βð Þ

S 1ð Þ þ C βð Þ � C 0ð Þ
� ��1

• C 0ð Þ
	 


�1, β ¼ 1, 2 (76)

Overall Elastoplastic-Damage Stress–Strain Responses

In order to illustrate the proposed micromechanics-based elastoplastic-damage

model for cylindrical fiber-reinforced ductile matrix composites, the examples of

the transverse uniaxial tensile loading under the plane-strain condition are

considered.
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Transverse Uniaxial Loading Along the X2-Axis

The applied macroscopic stress σ can be written as

σ22 > 0, σ33 ¼ η2σ22, all other σij ¼ 0: (77)

With the isotropic hardening law described by Eq. 55, the overall yield function

becomes

F σ22, e
pð Þ ¼ 1� ϕ 1ð Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ : T : σ

p
�

ffiffiffi
2

3

r
σy þ h epð Þq �

(78)

Substituting Eq. 61 into Eq. 62, the effective yield function for the uniaxial

loading reads

F σ22, e
pð Þ ¼ 1� ϕ 1ð Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

1ð Þ
22 þ 2T

2ð Þ
22

� �r
σ22 �

ffiffiffi
2

3

r
σy þ h epð Þq �

(79)

The macroscopic incremental plastic strain rate defined by Eq. 52 then takes the

form

Δ«p ¼ 1� ϕ 1ð Þ
� � Δλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T
1ð Þ
22 þ 2T

2ð Þ
22

� �r T
1ð Þ
12 0

0 T
1ð Þ
22 þ 2T

2ð Þ
22

" #
(80)

for any stress beyond the initial yielding where Δλ is the incremental plastic

consistency parameter. Similarly, the incremental equivalent plastic strain can be

expressed as

Δep ¼
ffiffiffi
2

3

r
1� ϕ 1ð Þ
� �

Δλ (81)

The macroscopic incremental elastic is

Δ«e ¼ D12 þ η2D13 0

0 D22 þ η2D23

	 

Δσ22 (82)

where Dij is the effective elastic compliance of the composites and

η2 ¼ C11C23 � C12C13

C11C22 � C12

2 .

For the monotonic plane-strain uniaxial loading, the overall incremental

macroscopic stress–strain relation can be obtained by summing Eqs. 64 and 66 as

follows:
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Δ« ¼ D12 þ η2D13 0

0 D22 þ η2D23

	 

Δσ22

þ 1� ϕ 1ð Þ
� � Δλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T
1ð Þ
22 þ 2T

2ð Þ
22

� �r T
1ð Þ
12 0

0 T
1ð Þ
22 þ 2T

2ð Þ
22

" #
(83)

where the positive parameter Δλ is solved from the nonlinear equation obtained by

enforcing the plastic consistency condition F ¼ 0:

1� ϕ 1ð Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T
1ð Þ
22 þ 2T

2ð Þ
22

� �r
σ22ð Þnþ1 ¼

ffiffiffi
2

3

r
σy þ h ePn þ ΔePnþ1

� �q �
(84)

Equations 65 and 68 then lead to:

1� ϕ 1ð Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T
1ð Þ
22 þ 2T

2ð Þ
22

� �r
σ22ð Þnþ1 ¼

ffiffiffi
2

3

r
σy þ h ePn þ

ffiffiffi
2

3

r
1� ϕ 1ð Þ
� �

Δλ

" #q( )

(85)

Therefore, the expression for Δλ reads

Δλ ¼ 1ffiffiffi
2

3

r
1� ϕ 1ð Þ� �

1� ϕ 1ð Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

T
1ð Þ
22 þ 2T

2ð Þ
22

� �r
σ22ð Þnþ1 � σy

h

2
664

3
775
1=q

� epn

8>>><
>>>:

9>>>=
>>>;

(86)

Numerical Simulations and Experimental Comparison

To assess the predictive capability of the present framework, a number of numerical

examples are presented in this section. The numerical predictions of CFRMMCs

with fiber cracking are validated by the three sets of General Dynamics experimen-

tal data of filament-cracking in continuous boron fiber-reinforced 2024 aluminum

alloy metal matrix composites under the transverse uniaxial tensile loading (Adams

1970). As reported by Adams (1970), failure of the composites was associated with

failure of the filaments, i.e., the typical fracture surface passed through the filaments

along diametrical planes normal to the direction of applied stress, and not around

each filament (i.e., interfacial debonding). The elastic moduli of the matrix and

fibers are: E0 ¼ 8, 100 ksi, ν0 ¼ 0.32 for the 2024 aluminum alloy metal matrix,

and E1 ¼ 55,000 ksi, ν1 ¼ 0.2 for the boron fiber. Moreover, the least-square

parameter estimation procedure is employed to estimate the following plastic

parameters: σy ¼ 23 ksi, h ¼ 120 ksi, q ¼ 0.60, and the Weibull parameters:

S0 ¼ 50 ksi, M ¼ 5, and σcri ¼ 5 ksi based on the experimental data.
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The composites are subjected to the transverse uniaxial tensile loading along the

X2-axis (cf. Fig. 2). As shown in Fig. 5a, our theoretical prediction of σ22 versus e22
with damage evolution per Eq. 56 matches the three sets of experimental data very

well. The corresponding progressive damage of fibers is shown in Fig. 5b. Two

stages of mechanical behavior of the composites are well characterized by proposed

framework. In the first stage, the minor damage is coupled with elasticity of metal

matrix before the composites yields (around strain ¼ 0.0023). In the second stage,

after the composites yields, the behavior of the sudden stiffness degradation is

Fig. 5 (a) The comparison between the predicted and the measured transverse uniaxial

stress–strain behavior of Boron/2024 aluminum alloy composites with the initial fiber

volume fraction 34 % at room temperature under varying P2; (b) the corresponding progressive

damage of fibers
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mainly controlled by fiber-cracking where the maximum fiber volume fraction of

cracked fibers reaches about 33 % as illustrated in Fig. 5b. Furthermore, the

theoretical predictions with varying P2 are also shown in Fig. 5a. It is observed

that the prediction with P2 ¼ 0.0 demonstrates the highest stiffness in both the

elastic and elastoplastic ranges of the stress–strain curve, as it corresponds to the

stress–strain curve without any cracked fibers. On the other hand, the prediction

with P2 ¼ 1.0 demonstrates the lowest stiffness in both the elastic and elastoplastic

ranges of the stress–strain curve, as it corresponds to the stress–strain curve with

fiber cracking inside all fibers in the composites before any loading is applied.

In Fig. 6, σ22 versus e22 with varying S0 is exhibited (S0 ¼ 5σcri; S0 ¼ 10σcri;
S0 ¼ 15σcri). As displayed in Fig. 6, the effects of average fracture strength of fibers play
an important role in the mechanical behavior of fiber-cracking especially after the

composites yield. The higher S0 value leads to higher post-yield stiffness of the

composites.

Parameters in Equation 38 for Tensor T

T
1ð Þ
11 ¼ aþ Aq1 þ Aq2 � 2T

2ð Þ
11 , T

1ð Þ
22 ¼ bþ Bq1 þ Bq2 � 2T

2ð Þ
22 (87)

T
2ð Þ
11 ¼ 1

8 ν0 � 1ð Þ2 5aþ 5bþ 3cþ 2
� �

ϕB 2ð Þ
11

2 þ B
2ð Þ
2ð Þ11

2ϕ 2ð Þ
� �

μ0
2 þ 4 ν0 � 2ð Þν0 þ 4

h i
(88)

Fig. 6 Theoretical predictions of transverse uniaxial stress–strain behavior of Boron/2024

aluminum alloy composites with the initial fiber volume fraction 34 % at room temperature under

varying S0
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T
2ð Þ
22 ¼ 1

8 ν0 � 1ð Þ2 5aþ 5bþ 3cþ 2
� �

ϕB 2ð Þ
22

2 þ B
2ð Þ
2ð Þ22

2ϕ 2ð Þ
� �

μ0
2 þ 4 ν0 � 2ð Þν0 þ 4

h i
(89)

T
2ð Þ
21 ¼ T

2ð Þ
12 ¼ 1

4
2þ Dq1 þ Dq2

� �
, T

1ð Þ
21 ¼ T

1ð Þ
12 ¼ 1

2
cþ Cq1 þ Cq2

� �
(90)

Aq1 ¼ ϕ
1

32 ν0 � 1ð Þ2 17aþ b� cþ 10
� �

B
1ð Þ
11

2
�h(

� 2
�
B

1ð Þ
21 aþ bþ 7c� 6
� �

� 2B
2ð Þ
11 17aþ b� cþ 10
� ��

B
1ð Þ
11 þ 4B

2ð Þ
11

2
�
17aþ b� cþ 10

�
þB

1ð Þ
21

2 aþ 17b� cþ 10
� �� 4B

1ð Þ
21 B

2ð Þ
11 aþ bþ 7c� 6
� ��

μ0
2
i)

(91)

Aq2 ¼ ϕ 2ð Þ 1

32 ν0 � 1ð Þ2 17aþ b� cþ 10
� �

B
2ð Þ
1ð Þ11

2
�h(

� 2
�
B

2ð Þ
1ð Þ21 aþ bþ 7c� 6
� �

� 2B
2ð Þ
2ð Þ11 17aþ b� cþ 10
� ��

B
2ð Þ
1ð Þ11 þ 4B

2ð Þ
2ð Þ11

2
�
17aþ b� cþ 10

�
þB

2ð Þ
1ð Þ21

2 aþ 17b� cþ 10
� �� 4B

2ð Þ
1ð Þ21B

2ð Þ
2ð Þ11 aþ bþ 7c� 6
� ��

μ0
2
i)

(92)

Bq1 ¼ 1

32 ν0 � 1ð Þ2
n

b� cþ 10
� �

B
1ð Þ
12

2 � 2 B
1ð Þ
22 þ 2

� �
bþ 7c� 6
� �

B
1ð Þ
12 þ

h
a 17B

1ð Þ
12

2 � 2 B
1ð Þ
22 þ 2

� �
B

1ð Þ
12 þ B

1ð Þ
22 þ 2

� �2� �
þ B

1ð Þ
22 þ 2

� �2
17b� cþ 10
� �i

μ0
2ϕ
o

(93)

Bq2 ¼ 1

32 ν0 � 1ð Þ2 17aþ b� cþ 10
� �

B
2ð Þ
1ð Þ12

2 � 2 B
2ð Þ
1ð Þ22 þ 2B

2ð Þ
2ð Þ22

� �
aþ bþ 7c� 6
� �

B
2ð Þ
1ð Þ12

hn
þ B

2ð Þ
1ð Þ22 þ 2B

2ð Þ
2ð Þ22

� �2
aþ 17b� cþ 10
� �i

μ0
2ϕ 2ð Þ

o
(94)

Cq1 ¼ 1

16 ν0 � 1ð Þ2 �B
1ð Þ
12 B

1ð Þ
21 aþ bþ 7c� 6
� �� 2B

2ð Þ
11 17aþ b� cþ 10
� �� �hn

þ B
1ð Þ
22 þ 2B

2ð Þ
22

� �
B

1ð Þ
21 aþ 17b� cþ 10
� �� 2B

2ð Þ
11 aþ bþ 7c� 6
� �� �

þB
1ð Þ
11 B

1ð Þ
12 17aþ b� cþ 10
� �� B

1ð Þ
22 þ 2B

2ð Þ
22

� �
aþ bþ 7c� 6
� �� �i

μ0
2ϕ
o

(95)

Cq2 ¼ 1

16 ν0 � 1ð Þ2 �B
2ð Þ
1ð Þ12 B

2ð Þ
1ð Þ21 aþ bþ 7c� 6
� �� 2B

2ð Þ
2ð Þ11 17aþ b� cþ 10
� �� �hn

þ B
2ð Þ
1ð Þ22 þ 2B

2ð Þ
2ð Þ22

� �
B

2ð Þ
1ð Þ21 aþ 17b� cþ 10
� �� 2B

2ð Þ
2ð Þ11 aþ bþ 7c� 6
� �� �

þB
2ð Þ
1ð Þ11 B

2ð Þ
1ð Þ12 17aþ b� cþ 10
� �� B

2ð Þ
1ð Þ22 þ 2B

2ð Þ
2ð Þ22

� �
aþ bþ 7c� 6
� �� �i

μ0
2ϕ 2ð Þ

o
(96)
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Dq1 ¼ 1

2 ν0 � 1ð Þ2 5aþ 5bþ 3cþ 2
� �

B
2ð Þ
12

2μ0
2ϕ

h i
(97)

Dq2 ¼ 1

2 ν0 � 1ð Þ2 5aþ 5bþ 3cþ 2
� �

B
2ð Þ
2ð Þ12

2μ0
2ϕ 2ð Þ

h i
(98)

B
1ð Þ
MR ¼ �

1

4
m YYY

1ð Þ
M1 þ YYY

1ð Þ
M2

� �
þ 1

2
n YYY

1ð Þ
MR

� �	 


2 μ 1ð Þ0 þ S
2ð Þ
MM

4 1� ν0ð Þ

 ! þ
1

2
m

4 μ 1ð Þ0 þ S
2ð Þ
MM

4 1� ν0ð Þ

 ! ,

M, R ¼ 1, 2

(99)

B
2ð Þ
MN ¼

1

2
n

4 μ 1ð Þ0 þ S
2ð Þ
MN

4 1� ν0ð Þ

 ! , M,N ¼ 1, 2 (100)

YYY
1ð Þ
M1

YYY
1ð Þ
M2

g ¼ λ 1ð Þ0 þ 2μ 1ð Þ0 þ S
1ð Þ
11
þ2S

2ð Þ
11ð Þ

4 1�ν0ð Þ λ 1ð Þ0 þ S
1ð Þ
21

4 1�ν0ð Þ

λ 1ð Þ0 þ S
1ð Þ
12

4 1�ν0ð Þ λ 1ð Þ0 þ 2μ 1ð Þ0 þ S
1ð Þ
22
þ2S

2ð Þ
22ð Þ

4 1�ν0ð Þ

2
64

3
75
�18><

>:

λ 1ð Þ0 þ S
1ð Þ
M1

4 1� ν0ð Þ
λ 1ð Þ0 þ S

1ð Þ
M2

4 1� ν0ð Þ

8>>><
>>>:

9>>>=
>>>;

(101)

m ¼ 1

λ0 þ μ0
� 1

μ0
, n ¼ 1

μ0
, λ 1ð Þ0 ¼ λ0μ1 � λ1μ0

2 μ1 � μ0ð Þ λ1 � λ0 þ μ1 � μ0½ � , μ 1ð Þ0 ¼ μ0
2 μ1 � μ0ð Þ

(102)

B
2ð Þ
1ð ÞMR ¼

X2
i¼1

A
2ð Þ
1ð ÞMi

1

4
mþ A

2ð Þ
2ð ÞMM

1

2
mþ A

2ð Þ
1ð ÞMR

1

2
n

" #
, M, R ¼ 1, 2 (103)

B
2ð Þ
2ð ÞMN

¼ A
2ð Þ
2ð ÞMN

1

2
n, M,N ¼ 1, 2 (104)

A
2ð Þ
1ð ÞIK ¼ � �YJIKð Þ

2J
2ð Þ
II

, A
2ð Þ
2ð ÞIJ ¼

�1

4J
2ð Þ
IJ

, I, J, K ¼ 1, 2 (105)
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YJI1
YJI2

� �
¼ J

1ð Þ
11 þ 2J

2ð Þ
11 J

1ð Þ
21

J
1ð Þ
12 J

1ð Þ
22 þ 2J

2ð Þ
22

" #�1

J
1ð Þ
I1

J
1ð Þ
I2

( )
(106)

a ¼ 2η21
9

� 2η1
9

þ 1

9
2η1 � 1ð Þ2 þ 5

9
, b ¼ 2η22

9
� 2η2

9
þ 1

9
2η2 � 1ð Þ2 þ 5

9
(107)

c ¼ 4η2η1
9

� 2η1
9

� 2η2
9

þ 2

9
2η1 � 1ð Þ 2η2 � 1ð Þ � 8

9
(108)

η1 ¼
C13C22 � C12C23

C11C22 � C12
2

, η2 ¼
C11C23 � C12C13

C11C22 � C12
2

(109)

Conclusions

In this chapter, a multi-level micromechanical elastoplastic-damage framework is

developed to predict the overall elastoplastic behavior and damage evolution of

cylindrical fiber-reinforced ductile matrix composites. Progressively cracked fibers

are modeled by the double-inclusion theory. After the fibers are cracked, the

composites become 3-phase composites with different constituent volume fractions

at different loading time due to progressive damage evolutions. The effective

elastic moduli of 3-phase composites under the plane-strain condition are derived

by using the multi-phase micromechanical framework. In order to estimate the

overall elastoplastic-damage behavior, an effective yield criterion is

micromechanically derived based on the ensemble-area averaging procedure and

the first-order effects of eigenstrains due to cylindrical inclusions. The effects of

random dispersion of elastic inclusions are considered through the ensemble aver-

aging process. The proposed overall yield criterion, in conjunction with the overall

associative plastic flow rule and the hardening law, provides the analytical formu-

lation for the estimation of effective elastoplastic-damage responses of ductile

composites.

An evolutionary fiber cracking model is subsequently employed in accordance

with the Weibull’s probability function to characterize the varying probability of

fiber cracking. The effective elastoplastic-damage behavior is influenced through

the evolutionary volume fraction of uncracked fibers and cracked fibers during the

damage process. The proposed elastoplastic-damage formulation is applied to the

special case of the transverse uniaxial tensile loading under the plane-strain condi-

tion to predict the corresponding stress–strain responses. Efficient incremental

micromechanical computational algorithms are also presented. Finally, the plane-

strain uniaxial numerical simulations are performed. The numerical simulations of

the effective elastoplastic-damage behavior of fiber-reinforced composites are

presented to illustrate the potential of the proposed fiber-cracking damage model

under the transverse uniaxial loading.
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Future research is warranted to extend the present framework to accommodate

the effects of biaxial loading on the overall responses of fiber-reinforced compos-

ites. The biaxial loading can be classified as proportional and non-proportional
loading. Special attention is given to non-proportional loading where the direction

and value of the maximum principal normal tensile stress within the fiber keep

changing as the loading increases. The orientation-averaging technique is required

to account for all possible fiber-cracking directions which are normal to the

maximum principal normal tensile stress directions.
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Abstract

An innovative micromechanical elastoplastic evolutionary damage model is

presented to predict the effective transverse mechanical behavior and interfacial

arc debonding evolution of fiber-reinforced composites. The partial debonding
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process at the fiber/matrix interfaces is represented by the growing debonding

angles of arc microcracks. Three different types of debonded modes, i.e.,

perfectly bonded, partially debonded, and completely debonded modes, are

considered. For debonded fibers, the elastic equivalency is constructed in

terms of the equivalent orthotropic yet perfectly bonded elastic cylindrical

fibers. The equivalent orthotropic elastic moduli are constructed to characterize

the reduction of the load-transfer capacity in the debonded directions. The

damage evolution is represented by the debonding angle that is dependent

on the external loading condition. The effective elastic moduli of four-phase

composites are derived by using a micromechanical formulation. In order to

characterize the overall transverse elastoplastic-damage behavior, an effective

yield criterion is derived on the basis of the ensemble-area averaging

procedure and the first-order effects of eigenstrains upon yielding. Moreover,

the varying probability of the evolutionary volume fractions of debonded fibers

is characterized by Weibull’s probabilistic approach. The proposed effective

yield criterion, coupling with the overall plastic flow rule and the hardening

law, comprises the analytical framework for the prediction of effective

elastoplastic-damage responses of ductile matrix composites containing ran-

domly located yet aligned cylindrical fibers. The proposed micromechanical

elastoplastic-damage model is then applied to the transverse uniaxial and trans-

verse biaxial tensile loading with varied stress ratios. Comparisons between the

present predictions and available experimental data, as well as other numerical

simulations, are performed to elucidate the potential of the proposed

formulation.

Introduction

Man-made metal matrix composites (MMCs), containing reinforcements by con-

tinuous high-strength fibers, possess the highest strength and stiffness in the direc-

tion of the fibers. The overall mechanical behavior of these composites depends on

microstructures including the heterogeneous constituents of reinforcement and

matrix. Their deformation and damage failure mechanisms are generally different

from the monolithic matrix materials. Several possible damage modes exist for fiber

composites, such as the interfacial fiber/matrix debonding (Ju et al. 2006, 2008; Ju

and Ko 2009; Ju and Lee 2000, 2001; Liu et al. 2004, 2006; Marshall et al. 1994;

Nimmer et al. 1991; Pagano and Tandon 1990; Paulino et al. 2006; Sun et al. 2003a;

Yanase and Ju 2012; Zhao and Weng 1997, 2002), Voyiadjis and Allen (1996), the

matrix cracking (Lee and Mal 1998; Yanase and Ju 2013), the fiber cracking

(Ko and Ju 2013a; Sun et al. 2003b), the fiber breakage (Case and Reifsnider

1996; Kim and Nairn 2002; Steif 1984), the fiber pullout (Hsueh 1990; Hutchinson

and Jensen 1990; Li et al. 1990, 1993), the kink band formation of fibers

(Steif 1990), and the shear sliding of fibers (He and Lim 2001; Xia et al. 1994).

Specifically, the dominant damage mechanism in continuous unidirectional

fiber-reinforced ductile composites under transverse loading is the initiation and
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progressive interfacial partial fiber debonding (arc microcracks) followed by plastic

yielding (Gundel and Miracle 1998; Ju 1991a, b, 1996; Ju and Lee 1991; Ju and

Yanase 2009; Lee and Mal 1998; Lee and Ju 1991; Marshall et al. 1994; Nimmer

et al. 1991; Yanase and Ju 2012). For example, the experimental evidence of

separation is visible in the form of a ridge of acetate at the interface between the

inner coating and the fiber. The existence of this acetate ridge is indicative of a gap

between fiber and matrix (Nimmer et al. 1991). For transverse behavior of pseudo-

elastic Kevlar single fibers under compression, we refer to Cheng and Chen (2006),

and for particle volume fraction change (particle crowding) under indentation in

metal matrix composites, we cite Pereyra and Shen (2005).

Moreover, Paulino et al. (2006) presented a micromechanics-based interfacial

debonding model for damage of functionally graded materials with particle interac-

tions based on Ju and Chen (1994a, b). Further, Ju et al. (2006, 2008; Ju andKo 2009)

considered the first-order elastoplastic-damage mechanics for fiber-reinforced com-

posites with evolutionary complete or partial fiber debonding. Ju and Lee (1991), Lee

and Ju (1991), and Ju and Zhang (1998b, c) also proposed micromechanical damage

models for brittle solids under tensile and compressive loading; and Berryman (2006)

proposed estimates and rigorous bounds on pore-fluid enhanced shear modulus in

poroelastic media with hard and soft anisotropy. For dynamic damage wave in

elastic-brittle materials, we refer to Lu et al. (2005); for low-speed impact damage

of heterogeneous two-layer materials, we refer to Xu and Rosakis (2005); for high-

strain-rate failure process of unidirectional SiCf –Al composites, we refer to Zhou

et al. (2005); and for high velocity impact finite strain plastic-damage model, we cite

Abu Al-Rub and Voyiadjis (2006) and Voyiadjis and Abu Al-Rub (2006).

As a result of the interfacial fiber debonding, the strength and strain to failure

become lower under transverse tensile loading. However, the extent of performance

degradation depends on the evolutionary debonding geometry, size, and number

density. To model the interfacial fiber debonding in composites, Jasiuk and Tong

(1989), Pagano and Tandon (1990), Qu (1993), Yang and Mal (1995), and Sangani

and Mo (1997) introduced either a linear spring layer with vanishing thickness or an

interlayer with constant thickness. In their models, a different elastic constant of the

spring layer/interlayer from the matrix and reinforcement is used to simulate the

loss of load-transfer capability through the interface due to local fiber debonding.

Since the spring layer/interlayer elastic properties in their models are not position

dependent, their models are not applicable to partial debonding mechanisms.

Another physically appealing approach to model interfacial debonding is the

“equivalent inclusion method” (cf. Zhao and Weng 1997; Wong and Ait-Kadi

1997; Ju and Sun 1999; Ju and Lee 2000, 2001; Sun et al. 2003a, b; Sun and Ju

2004; Liu et al. 2004; Ju et al. 2006, 2008) in which the isotropic debonded
inclusions (particles or fibers) are replaced by the perfectly bonded inclusions

with prescribed equivalent anisotropic stiffness tensor to characterize the reduction
in load-transfer capacity of the debonded inclusion/matrix interface. Therefore,

the celebrated Eshelby’s inclusion theory and the micromechanics method can

be applied here to deal with multiphase composites with interfacial damage. While

providing simple yet attractive methodology, these analytical micromechanical
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damage models assume that once interfacial debonding occurs in a certain direction,

the capacity of interfacial load transfer is completely lost in that direction without

considering the progressive arc debonding process from one direction to another. In

reality, the interfacial debonding between the matrix and fibers is usually a progres-

sive process in which the debonding arc microcrack (represented by the debonding

angle) evolves with changing applied tensile loads.

In an effort to further improve the above micromechanical damage models by

accounting for the effects of progressive debonding angles upon the overall behav-

ior of partially debonded composites, Zhao and Weng (2002) and Liu et al. (2006)

applied the volume ratio of a debonded particle directly beneath the interfacial

microcrack as a measure for interfacial damage parameter. Their results show that

the progressive partial interfacial debonding process has a significant impact on the

overall elastic-damage moduli and elastoplastic-damage responses of composites.

To capture the progressive process of local interfacial fiber/matrix debonding,

the evolution of interfacial damage, and the micromechanical transition among

various fiber debonding modes, a new micromechanical elastoplastic-damage

framework is developed in this chapter to simulate the interfacial debonding

between the matrix and the fibers in continuous fiber-reinforced ductile matrix

composites under transverse mechanical loading. An analytical solution based on

direct micromechanical approach is presented. No costly Monte Carlo simulations

are needed under the proposed analytical micromechanical framework.

In the present formulation, continuous fiber-reinforced ductile matrix compos-

ites consist of identical unidirectional elastic cylindrical fibers that are randomly
dispersed in the elastoplastic matrix. The unit-cell models are not applicable here

due to the inherent limitation of periodic microstructure. With increasing external

loading, some randomlylocated cylindrical fibers in the composites begin to grad-

ually debond, while the progressive debonding angles (arc microcracks) and the

number of debonded fibers (the volume fraction) will also gradually increase during

the transverse loading process. At the microstructural level, the local interfacial

debonding mechanism is treated as a fracture process in which local stresses play a

key role. For those partially debonded fibers, the anisotropic elastic equivalency is

constructed by means of the equivalent stiffness tensor. Namely, the originally

isotropic but now partially debonded fibers are substituted by the orthotropic yet

perfectly bonded fibers embedded in the elastoplastic matrix. The volume

fraction evolution of partially debonded fibers is characterized by Weibull’s

(1951) probabilistic distribution. Furthermore, the first-order micromechanical

approximation method proposed by Ju and Chen (1994a, b, c) and Ju and Tseng

(1996. 1997) [equivalent to the Mori–Tanaka method (Mori and Tanaka 1973)] is

utilized in this chapter to estimate the effective elastic-damage stiffness tensors of

resultant multiphase composites. For the second-order evolutionary microcrack

interactions and effective elastic moduli, we cite Ju and Tseng (1992, 1995),

Ju and Chen (1994d, e), and Lee and Ju (2007, 2008). The proposed evolutionary

micromechanical elastoplastic-damage framework is developed under the general

two-dimensional loading condition and the probabilistic ensemble-area averaging

homogenization procedure. A computational algorithm is proposed to numerically
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simulate the overall nonlinear stress–strain behaviors of continuous fiber-reinforced

ductile matrix composites (cf. Fig. 1) with progressive probabilistic partial fiber

debonding effects. Finally, we present a number of numerical examples under the

transverse uniaxial and biaxial loading conditions and comparison between the

model predictions and available experimental data to elucidate the potential of

the proposed statistical-micromechanical elastoplastic-damage framework.

Progressive Fiber Debonding Modes

Under the applied external transverse tensile loading, some cylindrical fibers may

initiate partial debonding from the matrix once the local stresses at the interface

reach a certain critical level; see Fig. 2.

By employing the equivalent inclusion method (Zhao and Weng 1997, 2002;

Sun et al. 2003a, b; Liu et al. 2004, 2006), the debonded fibers featuring various

stages of partial debonding modes are treated as a different phase of perfectly

bonded fibers with anisotropic elastic equivalency. Therefore, the micromechanical

composite theories containing various phases of randomly located yet perfectly

bonded inclusions can be employed here. According to Eshelby’s inclusion theory

(Eshelby 1957), without considering the direct strong interactions among fibers, the

stresses inside the perfectly bonded fibers are uniform and are expressed as a

function of the external loads as (Mura 1987)

σ 1ð Þ ¼ C 0ð Þ • Iþ I�Sð Þ • Sþ C βð Þ �C 0ð Þ
� ��1

•C 0ð Þ
� ��1

( )
• Ιþ I�Sð Þ •Y½ ��1

•C 0ð Þ�1

" #
:

σ,β¼ 1,2,3

(1)
with

Y ¼
X3
β¼1

ϕ βð Þ Sþ C βð Þ � C 0ð Þ
� ��1

• C 0ð Þ
� �

�1, β ¼ 1, 2, 3 (2)

where σ is the macroscopic stress, C(0) represents the elastic stiffness tensor of the

matrix, C(β) is the elastic stiffness tensor of the β-phase, Ι represents the fourth-rank

2

1

3

Matrix

Cylinderical
Fiber

0

Fig. 1 A schematic plot of a

composite reinforced by

unidirectionally aligned yet

randomly located cylindrical

fibers
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identity tensor, and S is the interior-point Eshelby’s tensor of a cylindrical

inclusion. When β ¼ 1, it denotes the undamaged cylindrical fibers; when

β ¼ 2, it denotes the partially debonded cylindrical fibers; and when β ¼ 3, it

signifies the completely debonded cylindrical fibers (voids); see Fig. 2. Further,

«*
(β)o is the “first-order” eigenstrain tensor in the β-phase inclusions and is defined as

« βð Þo
� ¼ � Sþ C βð Þ � C 0ð Þ

� ��1

•C 0ð Þ
� ��1

: «o, β ¼ 1, 2, 3 (3)

in which «o is the corresponding strain field due to the far-field stress σo ¼ C(0) :

«o and C(β) is the elastic stiffness tensor of the β-phase. In Eqs. 1, 2 and 3, the

interior-point Eshelby’s tensor Sijkl has the following explicit form for an isotropic

and elastic cylindrical inclusion:

Sijkl ¼ 1

4 1� ν0ð Þ S
1ð Þ
IK δijδkl þ S

2ð Þ
IJ δikδjl þ δilδjk
� �n o

, i, j, k, l ¼ 1, 2, 3 (4)

where v0 denotes Poisson’s ratio of the matrix and δij signifies the Kronecker delta.
All components of the second-rank tensors SIK

(1) and SIJ
(2) are expressed by

S
1ð Þ
11 ¼ S

1ð Þ
22 ¼ S

1ð Þ
12 ¼ S

1ð Þ
21 ¼ 1

2
4ν0 � 1ð Þ, S 1ð Þ

13 ¼ S
1ð Þ
23 ¼ 2ν0 (5)

S
1ð Þ
31 ¼ S

1ð Þ
32 ¼ S

1ð Þ
33 ¼ 0, S

2ð Þ
11 ¼ S

2ð Þ
22 ¼ S

2ð Þ
12 ¼ S

2ð Þ
21 ¼ 1

2
3� 4ν0ð Þ (6)

S
2ð Þ
13 ¼ S

2ð Þ
23 ¼ S

2ð Þ
31 ¼ S

2ð Þ
32 ¼ 1� ν0ð Þ, S 2ð Þ

33 ¼ 0 (7)

Eshelby’s micromechanical formulas given by Eqs. 4, 5, 6, and 7 are valid for

composites in which cylindrical fibers are embedded in and perfectly bonded with

the surrounding matrix. In the present damage model, when partial interfacial fiber

1

2

a b
22

σ 22σ

11σ

Matrix (phase0)

Fiber (phase1) Void (phase3)

11σ

Partially
Debonded

Fiber
(phase2)

Fig. 2 A schematic diagram

of a fiber composite subjected

to biaxial transverse tensile

loading: (a) the initial state

(undamaged), (b) the

damaged state
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debonding occurs, the equivalent inclusion method (Zhao and Weng 1997, 2002;

Sun et al. 2003a, b; Liu et al. 2004, 2006) is introduced; i.e., the partially

debonded isotropic cylindrical fibers are replaced by equivalent orthotropic yet

perfectly bonded cylindrical fibers. Consequently, Eshelby’s theory is still

applicable here.

In what follows, the localCartesian coordinate system is selected to coincide with

the two principal directions of the local stress field σ 1ð Þ inside the perfectly bonded

fiber. The two local principal radial normal stresses (σ 1ð Þ
11 , σ

1ð Þ
22 ) can be computed

accordingly from Eq. 1 and follow the conventional order of σ 1ð Þ
11 � σ 1ð Þ

22 . Tensile

stress is taken as positive. For a certain surface point P on a cylindrical fiber, the unit

normal direction can be expressed as n ¼ {cos θ, sin θ, 0}, where θ is the Eulerian

angle as shown in Fig. 3. Hence, the radial normal stress at a pointP can be derived as

σnormal ¼ σ 1ð Þ
11 cos θð Þ2 þ σ 1ð Þ

22 sin θð Þ2 (8)

Emanating from the assumption that the radial normal stress controls the local

interfacial partial debonding initiation on the interface, as the (tensile) radial normal

stress reaches a critical interfacial debonding strength, i.e., σcri, the partial

debonding process would initiate at the point P. The partial fiber debonding

criterion can be conveniently written as

σ 1ð Þ
11 cos θð Þ2 þ σ 1ð Þ

22 sin θð Þ2 ¼ σcri (9)

Therefore, the relationship between the local principal radial normal stresses and

the critical debonding strength results in the following three different types of

interfacial debonding modes.

Mode 1: σcri � σ 1ð Þ
11 � σ 1ð Þ

22 This is actually the undamaged state; i.e., all cylindrical

fibers are perfectly bonded since none of the local principal stresses reach the

critical debonding strength yet. No partial debonding process is activated.

(1)
2 22,  x σ

θ
(1)

1 11,  σx

P

Fig. 3 The Eulerian angle θ
representing a surface point

P in the local coordinates of a

fiber
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Mode 2: σ 1ð Þ
11 � σcri � σ 1ð Þ

22 Only one local principal stress is greater than the

critical interfacial debonding strength σcri. In this case, the interfacial partial

debonding initiates from the local x1-direction and propagates progressively

toward the second principal direction. Figure 4 illustrates the cylindrical

partial fiber debonding. The debonded arc microcrack length can be

characterized by the debonding angle α12
(2). Accordingly, the debonding angle for

Mode 2 reads

α 2ð Þ
12 ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ 1ð Þ
11 � σcri

σ 1ð Þ
11 � σ 1ð Þ

22

vuut (10)

Mode 3: σ 1ð Þ
11 � σ 1ð Þ

22 � σcri All two local principal stresses exceed the critical

debonding strength, which indicates that the normal stress at any point on a

cylindrical fiber surface is greater than the critical strength. Therefore, the entire

fiber/matrix interface is debonded; and Mode 3 implies the formation of a

cylindrical void.

It is noted that, for all of the above three damage modes, the range of partial

debonding angles is between 0 and π/2. The lower and upper bounds of the

interfacial fiber debonding angles in a certain principal direction correspond to

the perfect bonding and total debonding, respectively, in that direction.

(2)
12α

(1)
1 11,  x σ

(1)
2 22,  x σ A2: shaded area

A1: shaded area
a

b

(1)
2 22,  x σ

(2)
12α

(1)
1 11,  x σ

Fig. 4 The damage

parameters for Mode 2: (a)

projection of the damaged arc

in the x1-direction, (b)
projection of the damaged arc

in the x2-direction
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The Equivalent Inclusion Method

The progressive interfacial fiber debonding process gradually reduces the overall

elastic moduli of composites due to the loss in tensile load-carrying capacity in the

randomly dispersed unidirectional cylindrical fibers. The progressive partial loss of
load-transfer capacity in the debonding directions is adopted in the present frame-

work to simulate the interfacial damage mechanism of fiber-reinforced composites.

Therefore, it is needed to establish the relationship between the progressive inter-

facial debonding angle and the loss of tensile load-transfer capacity, which is

manifested by a reduction in elastic moduli. Furthermore, from the preceding

various debonding modes along the principal coordinates, the debonding profiles

are dependent on the transverse axial directions so that load-transfer capabilities are

different along distinct axes. Hence, the interfacially damaged isotropic cylindrical

fibers behave orthotropically.
Zhao and Weng (2002) employed the volume of inclusion directly beneath the

interfacial microcracks as a measure of the interfacial debonding damage, which

can easily be obtained in 2-D cases. Under general two-dimensional loading

conditions, there exist three distinct interfacial damage parameters Di (i ¼ 1, 2;

D3 ¼ 0) serving as the measures of elastic stiffness reduction in certain directions.

In accordance with the three different interfacial debonding modes presented in the

preceding section, the local interfacial damage parameters can be developed as

follows.

Mode 1 For perfectly bonded cylindrical fibers, all interfacial damage parameters

are equal to 0 (i.e., no interfacial damage development). Accordingly, we have

D
1ð Þ
1 ¼ D

1ð Þ
2 ¼ D

1ð Þ
3 ¼ 0 (11)

Mode 2 Interfacial partial debonding starts normal to the first principal stress axis

(the x1-direction). In terms of the interfacial progressive debonding angle α12
(2), the

projection of the damaged arc microcrack in the x1-direction (A1 in Fig. 4a) is

shown. The local interfacial damage parameter with respect to the x1-direction is

defined as

D
2ð Þ
1 � A1

A
¼ 2

π
α 2ð Þ
12 þ sin α 2ð Þ

12 cos α 2ð Þ
12

� �
(12)

The other damage parameter in the x2-direction (A2 in Fig. 4b) can be derived as

D
2ð Þ
2 � A2

A
¼ 2

π
α 2ð Þ
12 � sin α 2ð Þ

12 cos α 2ð Þ
12

� �
,D

2ð Þ
3 ¼ 0 (13)

where A is the cross-sectional area of the circular fiber.

Mode 3 For the total interfacial fiber debonding mode, the cylindrical fibers cannot

transfer any transverse tensile loads, which can be expressed as
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D
3ð Þ
1 ¼ D

3ð Þ
2 ¼ 1,D

3ð Þ
3 ¼ 0 (14)

The interfacial damage vectors introduced in the above three distinct interfacial

debonding modes reflect the reduction in tensile load-transfer capability in certain

directions. Their numerical values vary from 0 to 1. A higher value of damage

parameter signifies a more significant level of reduction in the local tensile load-

transfer capacity.

As a result, the corresponding fourth-rank equivalent elastic stiffness tensor of

cylindrical fibers follows the form

C
βð Þ
ijkl ¼ λ βð Þ

IK δijδkl þ μ βð Þ
IJ δikδjl þ δilδjk
� �

, i, j, k, l ¼ 1, 2, 3 (15)

where

λ βð Þ
IK ¼ λ 1ð Þ 1� D

βð Þ
I

� �
1� D

βð Þ
K

� �
, β ¼ 1, 2, 3

μ βð Þ
IJ ¼ μ 1ð Þ 1� D

βð Þ
I

� �
1� D

βð Þ
J

� �
, β ¼ 1, 2, 3

(16)

with λ(1), μ(1) denoting the isotropic elastic Lamé constants of the original (perfectly

bonded) fibers. Here, we follow Mura’s (1987) tensorial indicial notation; i.e., the

repeated lowercase indices are summed up from 1 to 3, whereas the uppercase indices

take on the same numbers as the corresponding lowercase ones but are not summed

up. This indicial expression facilitates the subsequent derivations and computations.

By using the elastic-damage equivalent inclusion treatment, all partially debonded

fibers are replaced by perfectly bonded fibers with the aforementioned equivalent

orthotropic elastic stiffness tensors. Therefore, multiphase micromechanical proba-

bilistic approaches can be established to characterize the progressive interfacial

debonding processes of fiber composites.

Evolution of Volume Fractions of Debonded Fibers

The present micromechanical interfacial damage model of fiber-reinforced com-

posites assumes all elastic unidirectional cylindrical fibers to be randomly dispersed

in the matrix, but not to initiate partial interfacial fiber debonding simultaneously.

The evolution process concerning the volume fractions of partially debonded fibers

depends on the external loading history, ranging from zero (no debonded fiber) to

the total volume fraction of fibers ϕTotal (all fibers debonded).

With increasing applied external transverse loads, progressive transverse inter-

facial fiber debonding may develop and transform from one damage mode to

another. For example, under the transverse biaxial loading condition with different

magnitudes of applied loads in the two transverse axes, the damage Mode 2 will

initiate when the first local principal radial normal stress reaches the critical

interfacial debonding strength. Further increasing the applied transverse loads can

activate the damage Mode 3 when the second local principal radial normal stress

also reaches the critical debonding strength. At this stage, there exist three types of
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damage modes simultaneously, including Mode 1 with perfectly bonded fibers and

the other two modes with partially and completely debonded fibers as explained

previously. To quantify the volume fraction evolution of progressively debonded

fibers, we denote ϕ(β) (β ¼ 1, 2, 3) as the volume fraction for a certain interfacial

damage mode of fibers at the current loading stage. The volume fractions of the

three various local interfacial damage modes ϕ(β)(β ¼ 1, 2, 3) are expressed as

follows to characterize the evolution of interfacial partial fiber debonding and the

transition among the three debonding modes:

ϕ 3ð Þ ¼ ϕTotal P2

ϕ 2ð Þ ¼ ϕTotal P1 � P2½ �
ϕ 1ð Þ ¼ ϕTotal 1� P1½ �

(17)

where ϕTotal is the total volume fraction of all fibers in the composites. The

probabilistic function Pi (i ¼ 1, 2) controls the evolution of the volume fraction

of perfectly bonded fibers in the ith principal stress direction and increases as the

local principal stress σ 1ð Þ
ii increases. For simplicity, a two-parameter Weibull’s

probability distribution function is adopted in this work to describe the evolutionary

process (Tohgo and Weng 1994; Sun et al. 2003a; Liu et al. 2004, 2006). We write

Pi ¼
1� exp � σ 1ð Þ

ii
�σcri
S0

	 
M
" #

, σ 1ð Þ
ii � σcri

0 , σ 1ð Þ
ii < σcri

: i ¼ 1, 2ð Þ

8><
>: (18)

Here, Weibull’s parameters M and S0 denote the evolution rate of the volume

fractions of debonded fibers and the average interfacial strength, respectively. The

parameter σcri represents the critical local bonding strength.

Equation 17 is established on the basis of σ 1ð Þ
11 � σ 1ð Þ

22 , indicating that once the

local principal radial normal stress along the second direction (σ 1ð Þ
22 ) reaches the

critical strength, the first local principal radial normal stresses must be greater than

the critical strength. Therefore, the second principal radial normal stress σ 1ð Þ
22

controls the Mode 3 debonding. When the first local principal radial normal stress

σ 1ð Þ
11 in a certain fiber exceeds the critical bonding strength σcri, that fiber could be

either in Mode 2 (σ 1ð Þ
22 < σcri ) or Mode 3 (σ 1ð Þ

22 � σcri ). Therefore, the net Mode

2 evolution rate is expected to be controlled by (P1� P2) while the remaining Mode

1 (undamaged) fibers are decreased by the percentage of �P1.

In the case of transverse tensile loading/unloading condition, no further interfa-

cial fiber debonding would occur during the tensile unloading. On the other hand, in

the case of the fully reversed cyclic loading condition, all interfacial microcracks

would be temporarily closed and deactivated; i.e., ϕ(2)¼ ϕ(3)¼ 0, under the reverse

compressive loading. It is also recognized that local shear stresses acting on the

cylindrical fiber interfaces could play a role in the interfacial debonding process

of composites. However, large local interfacial shear stresses could potentially

change the principal stress directions such that they are sufficiently different from
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the principal axes of a cylindrical fiber, thus making the equivalent orthotropic

inclusion treatment difficult. Future research is desired to accommodate the effects

of combined local radial normal and shear stresses, possibly by introducing an

energy-based mixed-mode interfacial debonding criterion and a new, generalized

treatment of equivalent anisotropic inclusion that could handle arbitrarily changing

principal stress directions.

Effective Elastic Moduli of Debonded Composites

Once the equivalent stiffness tensor in Eq. 15 for partially debonded fibers is

established and the volume fractions associated with different phases of partially

debonded fibers are categorized as proposed above, the effective elastic-damage

moduli of fiber-reinforced composites can be estimated through the micromechanics

approach and homogenization. Here, the first-order micromechanical approximation

of Ju and Chen (1994a, b, c), Ju and Zhang (1998a), and Ko and Ju (2012, 2013b) is

applied to obtain the effective elastic moduli of composites containing randomly

dispersed aligned cylindrical fibers. It is noted that Ju and Chen’s first-order elastic

approximation method is actually equivalent to the Hashin–Shtrikman bounds

(Hashin and Shtrikman 1962) and the Mori–Tanaka method (Mori and Tanaka

1973) for multiphase elastic composites. The explicit expression of the effective

elastic moduli of the composites can be expressed as

Cijkl ¼ C
0ð Þ
ijmn Imnkl þ Y�1

mnkl � Smnkl
� ��1

h i
, i, j, k, l,m, n ¼ 1, 2, 3 (19)

with

Ymnkl ¼
X3
β¼1

ϕ βð Þ Smnkl þ C βð Þ
mnpq � C 0ð Þ

mnpq

� ��1

C
0ð Þ
pqkl

� ��1

, k, l,m, n, p, q ¼ 1, 2, 3

(20)

where Cijkl
(β) is the equivalent stiffness tensor of the β-phase particles given by the

Eq. 15. Moreover, for the overall orthotropic materials,

σif g ¼ Cij

� �
eej
n o

, i, j ¼ 1 to 6 (21)

where

σif g ¼ σ11, σ22, σ33, σ12, σ23, σ31f gT, i ¼ 1 to 6 (22)

eej
n o

¼ ee11, e
e
22, e

e
33, 2e

e
12, 2e

e
23, 2e

e
31

 �T
, j ¼ 1 to 6 (23)

Therefore, there are only 9 independent elastic constants for the overall

orthotropic composite. Since the composite consists of a ductile (elastoplastic)
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matrix and randomly located yet unidirectionally aligned cylindrical fibers, the

plane-strain condition governs here. Furthermore,

Cijkl ¼ C
1ð Þ
IK δijδkl þ C

2ð Þ
IJ δikδjl þ δilδjk
� �

, i, j, k, l ¼ 1, 2, 3 (24)

Moreover, for the overall orthotropic materials,

Cij

� �
6�6

¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666664

3
7777775
6�6

(25)

In other words,

Cij

� �
6�6

¼

C
1ð Þ
11 þ 2C

2ð Þ
11 C

1ð Þ
12 C

1ð Þ
13 0 0 0

C
1ð Þ
21 C

1ð Þ
22 þ 2C

2ð Þ
22 C

1ð Þ
23 0 0 0

C
1ð Þ
31 C

1ð Þ
32 C

1ð Þ
33 þ 2C

2ð Þ
33 0 0 0

0 0 0 C
2ð Þ
12 0 0

0 0 0 0 C
2ð Þ
23 0

0 0 0 0 0 C
2ð Þ
31

2
666666664

3
777777775
6�6

(26)

Overall effective elastic moduli associated with such orthotropic materials take

the form

E11 ¼
C33C

2

12 � 2C13C23C12 þ C
2

13C22 þ C11 C
2

23 � C22C33

� �
C
2

23 � C22C33

(27)

E22 ¼
C33C

2

12 � 2C13C23C12 þ C
2

13C22 þ C11 C
2

23 � C22C33

� �
C
2

13 � C11C33

(28)

E33 ¼ C22C
2

13 � 2C12C23C13 þ C
2

23C11

C
2

12 � C11C22

þ C33 (29)

ν12 ¼ C12C33 � C13C23

C22C33 � C
2

23

, ν21 ¼ C12C33 � C13C23

C11C33 � C
2

13

, ν13 ¼ C13C22 � C12C23

C22C33 � C
2

23

(30)
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ν31 ¼ C13C22 � C12C23

C11C22 � C
2

12

, ν23 ¼ C11C23 � C12C13

C11C33 � C
2

13

, ν32 ¼ C11C23 � C12C13

C11C22 � C
2

12

(31)

μ12 ¼ C44, μ23 ¼ C55, μ31 ¼ C66 (32)

ν12
E11

¼ ν21
E22

,
ν23
E22

¼ ν32
E33

,
ν13
E11

¼ ν31
E33

(33)

Therefore, there are only 9 independent elastic constants for the overall

orthotropic composite materials. Here, effective Poisson’s ratio νij is defined as

the ratio of strain shrinkage in the jth direction over the strain extension in the ith
direction when a tensile stress is applied in the ith direction.

In addition, the effective elastic compliance matrix becomes

Dij

� �
6�6

¼ Cij

� ��1

6�6
¼

1

E11

�ν21
E22

�ν31
E33

0 0 0

�ν12
E11

1

E22

�ν32
E33

0 0 0

�ν13
E11

�ν23
E22

1

E33
0 0 0

0 0 0 1
μ12

0 0

0 0 0 0 1
μ23

0

0 0 0 0 0 1
μ31

2
6666666664

3
7777777775
6�6

(34)

The stress component σ33 along the longitudinal fiber direction thus reads

σ33 ¼ η1 σ11 þ η2 σ22 (35)

where

η1 ¼
C13 C22 � C12 C23

Ξ
, η2 ¼

C11 C23 � C12 C13

Ξ
,Ξ ¼ C11 C22 � C

2

12 (36)

The Ensemble-Averaged Effective Yield Function

The ensemble-area averaging homogenization procedure is applied here to estimate

the effective elastoplastic-damage behavior of composites, accounting for the

effects of initial yielding and plastic hardening of the matrix. The averaging

homogenization procedure is usually performed within a mesoscopic representative

volume/area element; see, e.g., Nemat-Nasser and Hori (1993). At any local

matrix material point x, the microscopic stress σ(x) is assumed to satisfy the von

Mises J2-yield criterion

F σ epm
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ : Id : σ

p
� K epm

� � � 0 (37)
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where epm and K epm
� �

are the equivalent plastic strain and the isotropic hardening of

the matrix-only material, respectively. Moreover, Id � I� 1
3
1	 1 denotes the

deviatoric part of the fourth-rank identity tensor I.

Following Ju and Chen (1994c), Ju and Tseng (1996, 1997), Ju and Sun (2001),

Sun and Ju (2001), and Ju and Zhang (2001), we denote H(x|g)¼ σ(x|g) : Id : σ(x|g)
as the square of the “current stress norm” at a local point x, which contributes to the

initial yield criterion of composite for a given fiber configuration g (assembly).

Further, hHim(x) defines the ensemble average of H(x|g) over all possible realiza-

tion for a matrix point x:

Hh im xð Þ ffi Ho þ
ð
g

H xjgð Þ � Hof g P gð Þ dg (38)

where P(g) is the probability density function for finding a fiber configuration g in

the composite and Ho ¼ σo : Id : σo is the square of the far-field stress norm applied

on the ductile composite.

For the complete second-order formulation, any two-fiber would interact first,

and then the matrix point collects the perturbations based on the results of near-field

fiber interactions. In the absence of exact solution for the near-field fiber interac-

tions problem, the first-order approximation provides a simple way to account for

the perturbations on a matrix point from the fibers. In the first-order approximation

approach, at a matrix point xm, the surrounding fibers are treated as isolated sources

of perturbations. A local matrix material point simply collects the perturbations

from all cylindrical fibers one by one. In the absence of exact solutions for statistical

higher-order near-field fiber interaction problems, the first-order approximation

provides a feasible way to account for the randomly located fiber-induced pertur-

bations upon a local matrix point. Such first-order approximation is valid when the

fiber volume fraction is moderate.

Hence, the expression of hHim(x) for the composites with three phases of fibers

(corresponding to the three interfacial debonding modes) under the (generalized)

plane-strain condition can be approximately obtained as

Hh im xð Þ ffi Ho þ
ð

jx�x 1ð Þj>a

H xjx 1ð Þ
� �

� Ho
n o

P x 1ð Þ
� �

dx 1ð Þ

þ
ð

jx�x 2ð Þj>a

H xjx 2ð Þ� �� Ho
 �

P x 2ð Þ� �
dx 2ð Þ

þ
ð

jx�x 3ð Þj>a

H xjx 3ð Þ
� �

� Ho
n o

P x 3ð Þ
� �

dx 3ð Þ

(39)

where jx � x
(1)j > a, jx � x

(2)j > a, and jx � x
(3)j > a are the “exclusion zone” of

x for the center location x(η) of a fiber in the probability space, which is identical to

the shape and size of a fiber. In addition, x(1) represents a perfectly bonded fiber in
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the probability space. Besides, x(2) and x(3) represent a partially debonded fiber and

a completely debonded fiber in the probability space, respectively. The probabilistic

exclusion zone states that x(η) cannot be located within the exclusion zone domain

because x must be located within the matrix phase. P(x(η)) is assumed to be

statistically homogeneous, isotropic, and uniform. Further, H(x|x(1)), H(x|x(2)),
and H(x|x(3)) are the stress-norm collection of contributions from the undamaged

fibers, the partially debonded fibers, and the completely debonded fibers, respec-

tively. They can be estimated from Eshelby’s micromechanics framework (e.g.,

Mura 1987; Ju and Sun 2001; Sun and Ju 2001) as

H βð Þ ¼ σ βð Þ xð Þ : Id : σ βð Þ xð Þ, β ¼ 1, 2, 3 (40)

where the local stress tensor in the matrix due to the β-phase fiber is

σ βð Þ xð Þ ¼ σo þ C 0ð Þ •G xð Þ : « βð Þ
�

o
, β ¼ 1, 2, 3 (41)

and the “first-order” eigenstrain tensor «*
(β)o in the β-phase fiber is

e βð Þ
�

o
� �

ij
¼ � Sijmn þ C

βð Þ
ijkl � C

0ð Þ
ijkl

� ��1

C
0ð Þ
klmn

� ��1

eoð Þmn, i, j, k, l,m, n ¼ 1, 2,

β ¼ 1, 2, 3

(42)

in which (eo)kl ¼ Cijkl
(0)�1(σo)ij. Therefore, the perturbed stress for any matrix point

x due to a typical isolated β-phase inhomogeneity centered at x(β) takes the form

σ0 xjx βð Þ
� �

¼ C 0ð Þ •G x� x ηð Þ
� �h i

: « βð Þ
�

o
(43)

G x� x βð Þ
� �

�
ð
Ω βð Þ

G x� x0ð Þdx0 (44)

for x =2 Ω(β) in which Ω(β) is the single inhomogeneity domain centered at x(β) in the

β-phase. Alternatively, we can write

G rβ
� � ¼ 1

8 1� ν0ð Þ ρ2β H
1 þ ρ4β

2
H2

 !
(45)

The components of H1 and H2 are given by

H1
ijkl rβ
� � � 2Fijkl �8, 2ν0, 2, 2� 4ν0, � 1þ 2ν0, 1� 2ν0ð Þ (46)

H2
ijkl rβ
� � � 2Fijkl 24, � 4, � 4, � 4, 1, 1ð Þ (47)

where ρβ ¼ a/rβ and a is the radius of a cylindrical fiber or void.
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The components of the fourth-rank tensor F – which depends on six scalar

quantities B1,B2,B3,B4,B5,B6 – are defined by

Fijkl Bmð Þ � B1ninjnknl þ B2

�
δiknjnl þ δilnjnk þ δjkninl þ δjlnink

�
þ B3δijnknl þ B4δklninj þ B5δijδkl þ B6 δikδjl þ δilδjk

� � (48)

with the unit normal vector n � rβ/rβ and index m ¼ 1 to 6.

For simplicity, it is assumed that all fibers are uniformly randomly distributed in

the matrix. Nevertheless, nonuniform probabilistic fiber distributions P(x(η))
within the matrix can be easily accommodated within the proposed framework.

Accordingly, P(x(β)) can be expressed as N(β)/A (β ¼ 1, 2, 3) where N(β) is the total

number of the β-phase fibers uniformly dispersed in a representative area element

A. After a series of lengthy yet straightforward derivations, the ensemble-averaged

hHim can be evaluated as

Hh im ¼ σo : T : σo (49)

where the components of the fourth-rank tensor T take the form

Tijkl ¼ T
1ð Þ
IK δijδkl þ T

2ð Þ
IJ δikδjl þ δilδjk
� �

, i, j, k, l ¼ 1, 2 (50)

with

T
2ð Þ
12 ¼ 1

8
4þ 2þ 5âþ 5b̂þ 3ĉ

� �
ϕ 1ð Þ

β21
þ 2þ 5âþ 5b̂þ 3ĉ
� �

ϕ 3ð Þ

β22

"

þ 2þ 5âþ 5b̂þ 3ĉ
� �

μ0
2B

2

1211dϕ
2ð Þ

�1þ ν0ð Þ2
# (51)

T
1ð Þ
12 ¼ 1

2
ĉþ Cq1 þ Cq2 þ Cq211

� �
(52)

T
2ð Þ
11 ¼ 1

8
4þ 2þ 5âþ 5b̂þ 3ĉ

� �
ϕ 1ð Þ

β21
þ 2þ 5âþ 5b̂þ 3ĉ
� �

ϕ 3ð Þ

β22

"

þ 2þ 5âþ 5b̂þ 3ĉ
� �

μ0
2B

2

1111dϕ
2ð Þ

�1þ ν0ð Þ2
# (53)

T
1ð Þ
11 ¼ âþ Aq1 þ Aq2 þ Aq211 þ 1

4
� 2þ 5âþ 5b̂þ 3ĉ
� �

ϕ 1ð Þ

β21

(

þ 1

β22 �1þ ν0ð Þ2 � 2þ 5âþ 5b̂þ 3ĉ
� ��

�1þ ν0ð Þ2ϕ 3ð Þ þ β22 �4 �1þ νoð Þ2 � 2þ 5âþ 5b̂þ 3ĉ
� �

μ20B
2

1111dϕ
2ð Þ

� �i)

(54)
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T
2ð Þ
22 ¼ 1

8
4þ 2þ 5âþ 5b̂þ 3ĉ

� �
ϕ 1ð Þ

β21
þ 2þ 5âþ 5b̂þ 3ĉ
� �

ϕ 3ð Þ

β22

"

þ 2þ 5âþ 5b̂þ 3ĉ
� �

μ0
2B

2

2211dϕ
2ð Þ

�1þ ν0ð Þ2
# (55)

T
1ð Þ
22 ¼ b̂þ Bq1 þ Bq2 þ Bq211 þ 1

4
� 2þ 5âþ 5b̂þ 3ĉ
� �

ϕ 1ð Þ

β21

(

þ 1

β22 �1þ ν0ð Þ2 � 2þ 5âþ 5b̂þ 3ĉ
� ��

�1þ ν0ð Þ2ϕ 3ð Þ þ β22 �4 �1þ νoð Þ2 � 2þ 5âþ 5b̂þ 3ĉ
� �

μ20B
2

2211dϕ
2ð ÞÞ

� i)

(56)

Here ϕ(1), ϕ(2), and ϕ(3) are the volume fractions of the perfectly bonded, the

partially debonded, and the completely debonded fibers, respectively; see the

section “Detailed Derivation for Tensor T in Eq. 11” for further details.

The general relationship between the applied far-field stress σo and the macro-

scopic (ensemble-area averaged) stress σ is given by (cf. Ju and Chen 1994c)

σo ¼ P : σ (57)

where the fourth-rank tensor P reads

P ¼ C 0ð Þ • Iþ I� Sð Þ •Y½ � •C 0ð Þ�1
n o�1

(58)

with

Y ¼
X3
β¼1

ϕ βð Þ Sþ � C βð Þ� C 0ð Þ��1 •C 0ð Þ
h i�1

(59)

We refer to the section “Detailed Derivation for Tensor P in Eq. 58” for detailed

derivation of the tensor P. Combining Eqs. 49 and 57 leads to an alternative

expression of the ensemble-averaged square of the current stress norm as

Hh im xð Þ ¼ σ : T : σ (60)

where the fourth-rank tensor T � PT : T : P. Furthermore, Eq. 60 will reduce to

the classical J2-invariant if ϕ
(1) ¼ ϕ(2) ¼ ϕ(3) ¼ 0, i.e., the matrix-only material. In

the indicial form, we write

Hh im xð Þ ¼ σij : Tijkl : σkl, i, j, k, l ¼ 1, 2 (61)

where
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Tijkl ¼ PmnijTmnpqPpqkl

¼ T
1ð Þ
IK δijδkl þ T

2ð Þ
IJ δikδjl þ δilδjk
� � (62)

and

T
1ð Þ
IK ¼ P

1ð Þ
Im T

1ð Þ
mnP

1ð Þ
nK þ 2P

2ð Þ
II T

1ð Þ
In P

1ð Þ
nK þ 2P

1ð Þ
In T

2ð Þ
nn P

1ð Þ
nK þ 4P

2ð Þ
II T

2ð Þ
II P

1ð Þ
IK

þ 2
X2
m¼1

P
1ð Þ
Im T

1ð Þ
mKP

2ð Þ
KK þ 4P

2ð Þ
II T

1ð Þ
IK P

2ð Þ
KK þ 4P

1ð Þ
IK T

2ð Þ
KKP

2ð Þ
KK

(63)

T
2ð Þ
IJ ¼ 4P

2ð Þ
IJ T

2ð Þ
IJ P

2ð Þ
IJ (64)

In the above equations, summation convention applies for the lowercase entities.

By contrast, no summation convention applies for the uppercase entities.

The ensemble-averaged “current stress norm” for any point x in four-phase

progressively debonded fiber-reinforced composite can be expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hh i xð Þ

p
¼ 1� ϕ 1ð Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ : T : σ
p

(65)

where ϕ(1) is the current perfectly bonded (undamaged) fiber volume fraction. The

parameter (1 � ϕ(1)) reflects that the matrix is treated as elastoplastic and the fibers

are assumed to be elastic only. It is noted that the debonded fibers partially lose the

constraint to the matrix, and for simplicity, only the undamaged fibers (represented

by ϕ(1)) are counted in Eq. 65. Therefore, the effective yield function for the four-

phase composite can be characterized as

F ¼ 1� ϕ 1ð Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ : T : σ
p

� K epð Þ (66)

with the isotropic hardening function K epð Þ for the four-phase composite materials.

For illustration, we assume that the overall flow rule for the composite is associa-

tive. In general, the overall flow rule of the composite may become nonassociative
when fibers, microcracks, and voids exist according to dislocation dynamics anal-

ysis. Extension to the nonassociative flow rule can be constructed in a similar

fashion but involving both the normal and tangential flow directions. It is also

noted that the effective yield function is pressure dependent and not of the von
Mises type anymore. Therefore, the effective ensemble-averaged plastic strain rate

for the composite can be expressed as

_«
p ¼ _λ

@F

@σ
¼ 1� ϕ 1ð Þ
� �

_λ
T : σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ : T : σ

p (67)

where _λ denotes the plastic consistency parameter.

Inspired by the structure of the micromechanically derived stress norm, the

effective equivalent plastic strain rate for the composites is expressed as
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_e
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_«
p
: T

�1
: _«

p

r
¼

ffiffiffi
2

3

r
1� ϕ 1ð Þ
� �

_λ (68)

The _λ together with the yield function F obeys the Kuhn–Tucker loading/

unloading conditions. The Kuhn–Tucker conditions can be displayed as

_λ � 0, F � 0, _λ F ¼ 0, _λ _F ¼ 0 (69)

The ensemble-averaged yield function in Eq. 66, the averaged plastic flow rule

in Eq. 67, the equivalent plastic strain rate in Eq. 68, and the Kuhn–Tucker
conditions completely characterize the effective plasticity formulation for a com-

posite material with the isotropic hardening function K epð Þ . Extension of the

proposed model to accommodate the kinematic hardening is possible. Here, the

simple power-law isotropic hardening function is employed as an example:

K epð Þ ¼
ffiffiffi
2

3

r
σy þ h epð Þq �

(70)

where σy is the initial yield stress and h and q signify the linear and exponential

isotropic hardening parameters, respectively, for the four-phase composite.

Elastoplastic-Damage Responses for Composites

To elucidate the proposed micromechanical ensemble-area-homogenized trans-

verse elastoplastic progressive damage formulation for composites, we consider

here the transverse uniaxial and biaxial tensile loading under the plane-strain

condition.

Elastoplastic-Damage Behavior under Transverse Uniaxial Tensile
Loading

The applied macroscopic stress σ can be written as

σ11 > 0, σ33 ¼ η1σ11, all other σij ¼ 0 (71)

With the simple isotropic hardening law described by Eq. 70, the overall yield

function reads

F σ11, e
pð Þ ¼ 1� ϕ 1ð Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ : T : σ

p
�

ffiffiffi
2

3

r
σy þ h epð Þq �

(72)

Substituting Eq. 71 into Eq. 72, the effective yield function for the special case

of transverse uniaxial loading becomes
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F σ11, e
pð Þ ¼ 1� ϕ 1ð Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

1ð Þ
11 þ 2T

2ð Þ
11

� �r
σ11 �

ffiffiffi
2

3

r
σy þ h epð Þq �

(73)

The macroscopic incremental plastic strain rate defined by Eq. 67 then takes the

form

Δ«p ¼ 1� ϕ 1ð Þ
� � Δλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T
1ð Þ
11 þ 2T

2ð Þ
11

� �r T
1ð Þ
11 þ 2T

2ð Þ
11 0

0 T
1ð Þ
21

" #
(74)

for any stress beyond the initial yielding. Here, Δλ is the incremental effective

plastic consistency parameter. Similarly, the incremental equivalent plastic strain

becomes

Δep ¼
ffiffiffi
2

3

r
1� ϕ 1ð Þ
� �

Δλ (75)

From the linear elasticity theory, the macroscopic incremental elastic strain

takes the form

Δ«e ¼ D11 þ η1D13 0

0 D21 þ η1D23

� �
Δσ11 (76)

in whichDij is the effective elastic compliance of the composite and η1 is defined in
Eq. 36.

For the monotonic plane-strain uniaxial loading, the overall incremental macro-

scopic stress–strain relation can be obtained by merging Eqs. 74 and 76 as follows:

Δ« ¼ D11 þ η1D13 0

0 D21 þ η1D23

� �
Δσ11

þ 1� ϕ 1ð Þ
� � Δλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T
1ð Þ
11 þ 2T

2ð Þ
11

� �r T
1ð Þ
11 þ 2T

2ð Þ
11 0

0 T
1ð Þ
21

" #
(77)

where the positive parameter Δλ is solved from the nonlinear equation obtained by

enforcing the plastic consistency condition F ¼ 0:

1� ϕ 1ð Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T
1ð Þ
11 þ 2T

2ð Þ
11

� �r
σ11ð Þnþ1 ¼

ffiffiffi
2

3

r
σy þ h ePn þ△ePnþ1

� �q �
(78)

Here, σ11ð Þnþ1 and △ePnþ1 are the prescribed macroscopic stress along the

11-direction and the incremental equivalent plastic strain at the current time step,

respectively. Further, ePn is the equivalent plastic strain at the previous load step.

Equations 75 and 78 then result in
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1� ϕ 1ð Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T
1ð Þ
11 þ 2T

2ð Þ
11

� �r
σ11ð Þnþ1 ¼

ffiffiffi
2

3

r
σy þ h ePn þ

ffiffiffi
2

3

r
1� ϕ 1ð Þ
� �

Δλ

" #q( )

(79)

Therefore, the expression for △λ arrives at

△λ ¼ 1ffiffiffi
2

3

r
1� ϕ 1ð Þ� �

1� ϕ 1ð Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

T
1ð Þ
11 þ 2T

2ð Þ
11

� �r
σ11ð Þnþ1 � σy

h

2
664

3
775
1=q

� epn

8>>><
>>>:

9>>>=
>>>;

(80)

Elastoplastic-Damage Behavior under Transverse Biaxial Tensile
Loading

The applied macroscopic stress σ can be rephrased as

σ11 > 0, σ22 ¼ Rσ11, σ33 ¼ η1 þ Rη2ð Þ σ11, all other σij ¼ 0: (81)

Here, R is a parameter defining the loading stress ratio. Specifically, if R¼ 0, the

transverse biaxial loading will reduce to the transverse uniaxial loading. Substituting

Eq. 81 into Eq. 72, the effective yield function for the case of biaxial loading leads to

F σ11, e
pð Þ ¼ 1� ϕ 1ð Þ

� �
Φ Rð Þ σ11 �

ffiffiffi
2

3

r
σy þ h epð Þq �

(82)

where

Φ Rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

1ð Þ
11 þ 2T

2ð Þ
11

� �
þ R2 T

1ð Þ
22 þ 2T

2ð Þ
22

� �
þ 2RT

1ð Þ
12

r
(83)

The macroscopic incremental plastic strain rate defined by Eq. 67 becomes

Δ«p ¼ 1� ϕ 1ð Þ
� � Δλ

Φ Rð Þ
T

1ð Þ
11 þ 2T

2ð Þ
11 þ RT

1ð Þ
12 0

0 T
1ð Þ
21 þ 2RT

2ð Þ
22 þ RT

1ð Þ
22

" #

(84)

for any stress beyond the initial yielding. Similarly, the incremental equivalent

plastic strain can be rephrased as

Δep ¼
ffiffiffi
2

3

r
1� ϕ 1ð Þ
� �

Δλ (85)

From the linear elasticity theory, the macroscopic incremental elastic strain

takes the form
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Δ«e ¼ D11 þ RD12 þ η1 þ Rη2ð ÞD13 0

0 D21 þ RD22 þ η1 þ Rη2ð ÞD23

� �
Δσ11

(86)

Again, Dij is the effective elastic compliance of the composites, and η1 and η2
have been defined in Eq. 36.

For the monotonic plane-strain biaxial loading, the overall incremental macro-

scopic stress–strain relation can be obtained by summing Eqs. 84 and 86 as follows:

Δ« ¼ D11 þ RD12 þ η1 þ Rη2ð ÞD13 0

0 D21 þ RD22 þ η1 þ Rη2ð ÞD23

" #
Δσ11

þ 1� ϕ 1ð Þ� � Δλ
Φ Rð Þ

T
1ð Þ
11 þ 2T

2ð Þ
11 þ RT

1ð Þ
12 0

0 T
1ð Þ
21 þ 2RT

2ð Þ
22 þ RT

1ð Þ
22

" #

(87)

where the positive parameter Δλ is solved from the nonlinear equation obtained by

enforcing the plastic consistency condition F ¼ 0:

1� ϕ 1ð Þ
� �

Φ Rð Þ σ11ð Þnþ1 ¼
ffiffiffi
2

3

r
σy þ h ePn þ△ePnþ1

� �q �
(88)

Again, σ11ð Þnþ1 and △ePnþ1 are the prescribed macroscopic stress along the

11-direction and the incremental equivalent plastic strain at the current time step,

respectively. Here, ePn is the equivalent plastic strain at the previous load step.

Equations 85 and 88 then render

1� ϕ 1ð Þ
� �

Φ Rð Þ σ11ð Þnþ1 ¼
ffiffiffi
2

3

r
σy þ h ePn þ

ffiffiffi
2

3

r
1� ϕ 1ð Þ
� �

△λ

" #q( )
(89)

Therefore, the expression for △λ reads

△λ ¼ 1ffiffiffi
2

3

r
1� ϕ 1ð Þ� �

1� ϕ 1ð Þ� � ffiffi
3
2

q
Φ Rð Þ σ11ð Þnþ1 � σy

h

2
4

3
5
1=q

� epn

8><
>:

9>=
>; (90)

If there is no interfacial debonding damage, the orthotropic composite would

recover the original transversely isotropic composite.

Numerical Simulations and Experimental Comparison

The experimental studies to characterize the damage evolution mechanisms in the

fiber-reinforced metal matrix composites have been very limited in the literature to

date. To assess the predictive capability of the present framework, comparisons are
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made between the present theoretical predictions and the limited experimental data

as quoted by Nimmer et al. (1991). The experimental data were observed at 23o,

315o, and 427oC for the SiC/Ti–6Al–4Vmetal matrix composites, with unidirec-

tional silicon-carbide fiber (Textron SCS-6, with 32 % in fiber volume fraction) in a

Ti–6Al–4V matrix under uniaxial transverse tensile normal loading. The experi-

mental data recorded at 23 �C is selected for comparison here. Residual stresses

occur by subjecting the composites to cooling from the processing temperature

before application of mechanical loads. For simplicity, the silicon-carbide fibers are

considered to be isotropic and homogeneous elastic properties. The elastic moduli of

the matrix and fibers as reported by Nimmer et al. (1991) are E0¼ 113.7� 103 MPa

and ν0¼ 0.3 for the Ti - 6Al - 4V metal matrix at 21oC and E1¼ 414� 103 MPa and

ν1 ¼ 0.3 for the SiC fiber. Moreover, the least-square parameter estimation proce-

dure is employed to estimate the following plastic parameters based on the exper-

imental data at 23 �C: σy ¼ 500 MPa, h ¼ 700 MPa, and q ¼ 0.1. To

estimate Weibull’s parameters S0 and M, Ju and Lee (2000, 2001) are followed,

and S0¼ 180MPa,M¼ 3, and σcri¼ 170MPa are adopted. The residual stresses due

to cooling process are in part considered in our estimation for S0 and σcri here.
Furthermore, the residual stress in the matrix is considered below the yield strength

in the matrix. If the residual stress in the matrix (under tension) is greater than the

yield strength in the matrix, then the matrix may yield even before the application of

mechanical loading. In that event, it would be necessary to incorporate the pre-

scribed uniform thermal eigenstrain inside the cylindrical fibers. If the temperature

change during processing is sufficiently large, the prescribed thermal eigenstrain

would cause the ductile matrix to yield and produce plastic flow. To account for the

change of matrix properties due to the residual stress-induced plastic flow, the secant

method (cf. Berveiller and Zaoui 1979; Tandon andWeng 1988) can be employed so

that the secant Young’s modulus and Poisson’s ratio of thematrix become dependent

upon the equivalent plastic strain (cf. Liu and Sun 2004, in the absence of damage).

Uniaxial Transverse Tensile Loading

The transverse uniaxial stress–strain responses are often referred to as important

indicators of mechanical behaviors of composite materials. The comparison

between the present predictions and experimental data on the overall uniaxial
elastoplastic with and without damage behavior of fiber-reinforced ductile matrix

composites is shown in Fig. 5a. As expected, the predictions without debonding

models highly overestimate the behavior when compared with the experimental

data. In general, the predictions based on the present model are in good agreement

with experimental data. As depicted in Fig. 5a, the experimental data, at a load

substantially less than the measured yield strength, shows a significant reduction in

transverse modulus taking place. That is, the creation of a characteristic first “knee”

in the transverse tensile stress–strain curve is observed. Physical evidence that the

experimentally observed first “knee” is actually associated with such an interfacial

separation event is provided by the edge replica experiments which identify “gaps”
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between the fibers and matrix above the first “knee” in a transverse test (Nimmer

et al. 1991). In order to separate the interfaces between the cylindrical fibers and the

matrix, thus creating the first “knee,” the compressive residual stresses must be

overcome by the tensile mechanical loading. At still higher stress level, the matrix

plasticity dominates and a maximum stress is reached. Therefore, the second

“knee” is formed. The feature of trilinear-like stress–strain curve is well captured

under the present formulation.

Figure 5b displays the predictions of σ11 versus ev (the volumetric strain) and σ11
versus e22 corresponding to Fig. 5a, respectively. The volumetric strain increases

as the loading increases after the composite yields. Clearly, the effective yield

function in the current framework is pressure dependent and not of the von Mises
type. Due to Poisson’s ratio effect, the e22 strain underσ11 is negative. It is noted that
due to the projection of the interfacial debonding arc onto the x2-direction
(cf. Fig. 4b), minor stiffness degradation along the x2-direction is noted.
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Moreover, Fig. 5c shows that the interfacial debonding damage does not occur

until σ11 ¼ 128 MPa and e11 ¼ 0:000739. The interfacial damage gradually

increases as the strain increases up to e11 ¼ 0:0046697. Following the next few

incremental stress steps, the volume fraction of partially debonded fibers (Mode 2)

reaches almost a constant around 32 %; i.e., nearly all fibers have partially

debonded in the composite. In addition, according to the simulation results, F
σ11, epð Þ ¼ 0 in Eq. 72 occurs at e11 ¼ 0.0034439 and σ11 ¼ 378 MPa. It also

explains why the stress–strain curve associated with present prediction demon-

strates the overall plastic hardening effect after e11¼ 0.0034439 as shown in Fig. 5a.

Under this loading condition, the direction of the first local principal stress coin-

cides with the external uniaxial loading direction. From Eq. 1, the first local

principal stress is tensile, and the second local principal stress is compressive.

Therefore, only one debonding mode (Mode 2) – debonding along the loading

direction – would occur.

In Fig. 5d, the debonding (arc microcrack)-angle progression as a function of the

overall strain history is exhibited. It is observed that the debonding angle increases

rapidly at the beginning stage and then become saturated as the overall deformation

increases.

In addition, the overall effective transverse Young’smodulusE11 versuse11 andE22

versus e11 is shown in Fig. 6a, b, respectively. Due to the nature of the loading along
the x1-direction (cf. Fig. 4), the overall effective transverse Young’s modulus E11

demonstrates larger reduction when compared with the overall effective transverse

Young’s modulus E22 during the loading history.

Biaxial Transverse Tensile Loading

As discussed before, the transverse uniaxial loading causes only one tensile local

principal stress within the fibers. Therefore, only one type of debonding mode
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(Mode 2) would be triggered. Under the transverse biaxial loading condition

featuring different far-field stress components (e.g., σ11 ¼ 2σ22 ), more than one

partial debonding modes can be activated. Figure 7a presents the elastoplastic-

damage responses of σ11 versus e11, σ11 versus e22, and σ11 versus ev (the volumetric

strain). Due to Poisson’s ratio effect, the value of e22 is positive in the initial loading
steps and becomes negative macroscopic strain as loading increases. Figure 7b

exhibits the progressive volume fractions of interfacial damages over the strain

history. With the increasing applied external loads, progressive interfacial

debonding may develop and transform from one mode to another. It is noted that

when α12
(2) reaches π/2, i.e., the second local principal stress also reaches the critical

debonding strength, part of the damage Mode 2 will transform into Mode 3, indi-

cating that the fiber arc between the x1 and x2 axes is totally debonded; and the

projected debonding area will evolve toward the x2 axis from the x1 axis (cf. Fig. 4).
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In Fig. 7c, the debonding-angle progression as a function of the overall strain and

stress history is observed. The debonding angle α12
(2) quickly reaches π/2. Under the

transverse biaxial loading condition, with the increase of the second local principal

stress within the fibers, the partial fiber debonding propagates toward the second

direction easily and quickly reaches its ultimate value.

In addition, in order to investigate the effects of the stress ratio R on the overall

elastoplastic-damage behavior, the composites are subjected to the biaxial tensile

loading with varying stress ratios, R. In Fig. 8a, the overallσ11 versus e11 is rendered.
In general, as R increases from 0 to 0.4, the overall response demonstrates higher

stiffness in the elastic range and higher yielding strength of the composites. On the

other hand, as shown in Fig. 8b, as R increases from 0.5 to 0.9, the overall response

demonstrates higher stiffness in the elastic range yet lower yielding strength of the

composites. This is mainly due to the rapid evolutionary debonding-angle progress

as R increases from 0.5 to 0.9 (cf. Fig. 8c, d).
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Figure 9 displays the σ22 versus e22 with varying stress ratios, R. When R

changes from 0.1 to 0.5, the so-called “bend over” effect becomes more significant

(cf. Fig. 9a). As a result, the values of e22 are negative. However, when R increases

from 0.6 to 0.9, the positive values of e22 and higher σ22 versus e22 responses are

shown in Fig. 9b. This is mainly due to the reason that higher σ22 would overcome

Poisson’s ratio effect under σ11.

Detailed Derivation for Tensor T in Eq. 49
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� �

ν0
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þ17âþ b̂� ĉþ 10
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� �

B̂2111dB1111d þ 4
�
10þ 17âþ b̂� ĉ
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�#
ϕ 1ð Þ

)

(94)

Bq211 ¼ 1

32 �1þ ν0ð Þ2 μ0
2 10þ 17âþ b̂� ĉ
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Detailed Derivation for Tensor P in Eq. 58
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� �h i

: σkl, i, j, k, l ¼ 1, 2 (109)

where

P
1ð Þ
IK ¼ � ΛIK

2Ŵ
2ð Þ
II

, P
2ð Þ
IJ ¼ 1

4Ŵ
2ð Þ
IJ

,

ΛI1

ΛI2

� �
¼ Ŵ

1ð Þ
11 þ 2Ŵ

2ð Þ
11 Ŵ

1ð Þ
21

Ŵ
1ð Þ
12 Ŵ

1ð Þ
22 þ 2Ŵ

2ð Þ
22

2
4

3
5
�1

Ŵ
1ð Þ
I1 Ŵ

1ð Þ
I2 g

n (110)

Ŵ
1ð Þ
IK ¼

X2
m¼1

λ0Γ
1ð Þ
mK þ 2μ0Γ

1ð Þ
IKþ2λ0Γ

2ð Þ
KK, Ŵ

2ð Þ
IJ ¼ 2μ0Γ

2ð Þ
IJ (111)

Γ 1ð Þ
IK ¼

X2
m¼1

Γ̂ 1ð Þ
Im

�λ0
4μ0 λ0 þ μ0ð Þ
	 


þ 2Γ̂ 2ð Þ
II

�λ0
4μ0 λ0 þ μ0ð Þ
	 


þ 2Γ̂ 1ð Þ
IK

4μ0
, Γ 2ð Þ

IJ ¼ 2Γ̂ 2ð Þ
IJ

4μ0

(112)

Γ̂ 1ð Þ
IK ¼

X2
m¼1

eΓ 1ð Þ
IK

� 4ν0 � 1ð Þ
8 1� ν0ð Þ

	 

þ 2eΓ 1ð Þ

IK

1

2
� 3� 4ν0
8 1� ν0ð Þ

	 

þ 2eΓ 2ð Þ

KK � 4ν0 � 1

8 1� ν0ð Þ
	 


(113)

Γ̂ 2ð Þ
IJ ¼ 1

2
þ 2

1

2
� 3� 4ν0
8 1� ν0ð Þ

	 
 eΓ 2ð Þ
IJ

� �
(114)

eΓ 1ð Þ
IK ¼ ϕ 1ð Þeλ 1ð Þ0 þ ϕ 2ð ÞΓ 1ð Þ

IK, 11 þ ϕ 3ð ÞΓ 1ð Þ
IK, 12,

eΓ 2ð Þ
IJ ¼ ϕ 1ð Þeμ 1ð Þ0 þ ϕ 2ð ÞΓ 2ð Þ

IJ, 11 þ ϕ 3ð ÞΓ 2ð Þ
IJ, 12

(115)

Γ 1ð Þ
IK, 12 ¼ �

eΛ 2ð Þ
IK, 12

2
3� 4ν0
8 1� ν0ð Þ þ χ 2ð Þ

II, 12

	 
 , Γ 2ð Þ
IJ, 12 ¼

1

4
3� 4ν0
8 1� ν0ð Þ þ χ 2ð Þ

IJ, 12

	 
 (116)
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eΛ 2ð Þ
I1,12eΛ 2ð Þ
I2,12

8<
:

9=
;¼

4ν0�1
8 1�ν0ð Þþχ 1ð Þ

11,12

þ2 3�4ν0
8 1�ν0ð Þþχ 2ð Þ

11,12

� �
2
4

3
5 4ν0�1

8 1�ν0ð Þþχ 1ð Þ
21,12

4ν0�1
8 1�ν0ð Þþχ 1ð Þ

12,12

4ν0�1
8 1�ν0ð Þþχ 1ð Þ

22,12

þ2 3�4ν0
8 1�ν0ð Þþχ 2ð Þ

22,12

� �
2
4

3
5

2
6666664

3
7777775

�1

4ν0�1

8 1�ν0ð Þþχ 1ð Þ
I1,12

4ν0�1

8 1�ν0ð Þþχ 1ð Þ
I2,12

8>><
>>:

9>>=
>>;

(117)

Γ 1ð Þ
IK, 11 ¼ �

eΛ 2ð Þ
IK, 11

2
3� 4ν0
8 1� ν0ð Þ þ χ 2ð Þ

II, 11

	 
 , Γ 2ð Þ
IJ, 11 ¼

1

4
3� 4ν0
8 1� ν0ð Þ þ χ 2ð Þ

IJ, 11

	 
 (118)

eΛ 2ð Þ
I1,11eΛ 2ð Þ
I2,11

8<
:

9=
;¼

4ν0�1
8 1�ν0ð Þþχ 1ð Þ

11,11

þ2 3�4ν0
8 1�ν0ð Þþχ 2ð Þ

11,11

� �
2
4

3
5 4ν0�1

8 1�ν0ð Þþχ 1ð Þ
21,11

4ν0�1
8 1�ν0ð Þþχ 1ð Þ

12,11

4ν0�1
8 1�ν0ð Þþχ 1ð Þ

22,11

þ2 3�4ν0
8 1�ν0ð Þþχ 2ð Þ

22,11

� �
2
4

3
5

2
6666664

3
7777775

�1

4ν0�1

8 1�ν0ð Þþχ 1ð Þ
I1,11

4ν0�1

8 1�ν0ð Þþχ 1ð Þ
I2,11

8>><
>>:

9>>=
>>;

(119)

eλ 1ð Þ0 ¼ � λ
1ð Þ0

4μ 1ð Þ0 λ
1ð Þ0 þ 2μ 1ð Þ0

� � , eμ 1ð Þ0 ¼ 1

4μ 1ð Þ0 ,

λ
1ð Þ0 ¼ 4ν0 � 1

8 1� ν0ð Þ þ λ 1ð Þ0, μ 1ð Þ0 ¼ 3� 4ν0
8 1� ν0ð Þ þ μ 1ð Þ0

(120)

λ 1ð Þ0 ¼ λ0μ1 � λ1μ0
μ1 � μ0ð Þ 3 λ1 � λ0ð Þ þ 2 μ1 � μ0ð Þ½ � , μ 1ð Þ0 ¼ μ0

2 μ1 � μ0ð Þ (121)

χ 2ð Þ
� �

ijkl
¼ χ 1ð Þ

IK, 11δijδkl þ χ 2ð Þ
IJ, 11 δikδjl þ δilδjk

� �
(122)

χ 1ð Þ
IK, 11 ¼

X2
m¼1

�Λ 2ð Þ
Im, 11λ0

2 μ 2ð Þ
II, 11 � μ0

� �þ 2λ0

4 μ 2ð Þ
II, 11 � μ0

� �þ �2Λ 2ð Þ
IK, 11μ0

2 μ 2ð Þ
II, 11 � μ0

� �
2
66664

3
77775,

χ 2ð Þ
IJ, 11 ¼

2μ0

4 μ 2ð Þ
IJ, 11 � μ0

� �
(123)

χ 3ð Þ
� �

ijkl
¼ χ 1ð Þ

IK, 12δijδkl þ χ 2ð Þ
IJ, 12 δikδjl þ δilδjk

� �
(124)
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χ 1ð Þ
IK, 12 ¼

X2
m¼1

�Λ 2ð Þ
Im, 12λ0

2 μ 2ð Þ
II, 12 � μ0

� �þ 2λ0

4 μ 2ð Þ
II, 12 � μ0

� �þ �2Λ 2ð Þ
IK, 12μ0

2 μ 2ð Þ
II, 12 � μ0

� �
2
66664

3
77775,

χ 2ð Þ
IJ, 12 ¼

2μ0

4 μ 2ð Þ
IJ, 12 � μ0

� �
(125)

Λ 2ð Þ
I1,11

Λ 2ð Þ
I2,11

( )
¼

λ 2ð Þ
11,11� λ0

� �
þ2 μ 2ð Þ

11,11�μ0

� �
λ 2ð Þ
21,11� λ0

� �
λ 2ð Þ
12,11� λ0

� �
λ 2ð Þ
22,11� λ0

� �
þ2 μ 2ð Þ

22,11�μ0

� �
2
4

3
5
�1

λ 2ð Þ
I1,11� λ0

λ 2ð Þ
I2,11� λ0

( )

(126)

Λ 2ð Þ
I1,12

Λ 2ð Þ
I2,12

( )
¼

λ 2ð Þ
11,12� λ0

� �
þ2 μ 2ð Þ

11,12�μ0

� �
λ 2ð Þ
21,12� λ0

� �
λ 2ð Þ
12,12� λ0

� �
λ 2ð Þ
22,12� λ0

� �
þ2 μ 2ð Þ

22,12�μ0

� �
2
4

3
5
�1

λ 2ð Þ
I1,12� λ0

λ 2ð Þ
I2,12� λ0

( )

(127)

Conclusions

In this chapter, a probabilistic micromechanical evolutionary elastoplastic-damage

framework is proposed for fiber-reinforced ductile composites to characterize the

process of interfacial partial debonding between the fibers and the matrix and to

estimate the effects of progressive interfacial debonding on the overall

elastoplastic-damage responses of composites. The damage evolution is

represented by the debonding arc angle that is dependent on the external loading

condition. Three different types of partial debonding modes are considered and

analyzed. For each type of debonded fibers, the elastic equivalency is constructed in

terms of the equivalent orthotropic stiffness tensor. That is, the debonded isotropic

fibers are replaced by the orthotropic, yet perfectly bonded fibers or voids. More-

over, the evolutionary volume fractions of partially debonded fibers are character-

ized by Weibull’s probabilistic approach. The first-order micromechanical

approximation method of Ju and Chen (1994a, b, c), Ju and Zhang (1998a), and

Ko and Ju (2012, 2013b) is utilized to estimate the effective stiffness tensor of the

resultant multiphase composites. The proposed constitutive framework is suitable

for accommodating general 2-D loading conditions. Finally, numerical simulations

of the effective elastoplastic-damage behavior of fiber-reinforced composites are

presented to illustrate the potential of the proposed partial debonding damage

model under the transverse uniaxial and biaxial loading.

Future research is warranted to extend the present framework to accommodate

the effects of fiber coating on the overall responses of composites. For example,

Baker et al. (1999) studied the responses of SiC fibers to vacuum plasma spraying
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(VPS) and vacuum hot pressing (VHP) during fabrication of titanium metal matrix

composites. It is indicated that from the secondary electron SEM (scanning electron

microscope) image, a C-coating layer exists between the Sigma 1140+ SiC fibers

and the Ti–6Al–4V metal matrix, while a thin reaction layer exists between the

C-coating layer and the matrix. In addition, the composites under the normal or

tangential shear loading may fail on the weakest plane within the interfacial region,

e.g., within the coating or the reaction products or at any sub-interfaces (i.e., fiber

coating, coating reaction product, or reaction product matrix; cf. Gundel and

Miracle 1998). In the case of interphase failure within the composites, the effects

of fiber coating and the reaction product (layer) on the overall elastoplastic-damage

responses should be taken into account. The effects of fiber coating and the thin

reaction layer on the overall elastic properties and on local fields in fiber-reinforced

composites have been studied by many researchers (Mikata and Taya 1985;

Benveniste et al. 1989; Yang and Mal 1995; Lee and Mal 1997). However, the

studies on the effects of fiber coating and the thin reaction layer on the overall

elastoplastic-damage responses of composites are still limited. Therefore, based on

present framework, it is desirable to develop a probabilistic micromechanical

damage model to accommodate the effects of fiber coating on the overall responses

of composites by means of functionally graded materials (FGMs).
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Abstract

Innovative energy-based coupled elastoplastic hybrid isotropic damage-healing

models for partially saturated soils have been developed and implemented for

numerical simulation of soil moving processes. A class of elastoplastic consti-

tutive damage-healing models, based on a continuum thermodynamic frame-

work, is proposed within an initial elastic strain energy-based formulation. In

particular, change of effective stress due tomatric suction is considered, and the

governing incremental damage and healing evolutions are coupled and charac-

terized through the effective stress in conjunction with the hypothesis of strain

equivalence. Further, plastic flow is introduced by means of an additive split of

the stress tensor. Two characteristic energy norms of the tensile and compressive
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strain tensors, respectively, are introduced for the corresponding damage and

healing mechanisms.

By incorporating micromechanics-motivated damage and healing character-

izations, the proposed model and computational algorithms have been

implemented to demonstrate the significant flexibility on numerical simulation

of earth-pushing processes. Completely new computational algorithms are sys-

tematically developed based on the two-step operator splitting methodology.

The elastic-damage-healing predictor and the plastic corrector are implemented

within the existing RKPM (Reproducing Kernel Particle Method) meshfree

codes. A numerical example under soil pushing is presented to illustrate the

effect of matric suction for partially saturated soils.

Introduction

In the early 1980s, the development of constitutive equations for saturated soils has

involved three main concepts, including the concept of effective stress from soil

mechanics, the existence of coupled elastoplastic damage models from damage

mechanics, and the theory of two-phase mixtures for a solid skeleton and a fluid.

Some engineering applications and numerical demonstrations by finite element

analysis and meshfree method were reported in the literature; cf. Sanavia

et al. (2006), Wu et al. (2001), and Murakami et al. (2005).

On the other hand, an unsaturated soil is commonly defined as having three

phases: (1) solids, (2) water, and (3) air. However, it may be more correct to

recognize the existence of a fourth phase, namely, the air–water interface or

contractile skin (Fredlund and Morgenstern 1978). From the standpoint of the

volume–mass relations for an unsaturated soil, it is acceptable to consider the soil

as a three-phase system since the volume of the contractile skin is small and its mass

can be considered as part of the mass of water. Some rigorous framework to define

the constitutive behavior of unsaturated soils for three phases has been developed

by Alonso et al. (1990), Wheeler and Sivakumar (1995), Wheeler et al. (2002,

2003), Bolzon et al. (1996), Borja (2004), and Georgiadis et al. (2005). For the

stress analysis of a multiphase continuum, it should be realized that the air–water

interface behaves as an independent phase (Fredlund and Rahardio 1993). A

comprehensive framework to define the constitutive behavior of unsaturated soils

for four phases was proposed by Loret and Khalili (2000).

It is widely accepted that theories for correctly describing the states of stress and

failure in unsaturated soils require two fundamental considerations. Firstly, both the

net stress and matric suction in Bishop’s effective stress need to be considered

independently; cf. Bishop (1959), Bishop et al. (1960), Fredlund et al. (1978),

Fredlund (1979), Gallipoli et al. (2003a, b), Gens and Alonso (1992), and Escario

and Saez (1986). Secondly, plasticity or failure models such as the Mohr–Coulomb

(Fredlund et al. 1978), the Cam-Clay (Alonso et al. 1990), or the Cap models (Simo

et al. 1988; Kohler and Hofstetter 2008) must be modified for unsaturated (partially

1094 K.Y. Yuan and J.-W.W. Ju



saturated) soils due to the matric suction. Further, to tackle different engineering

problems, material variables (e.g., grain size and grain size distribution), state

variables (e.g., degree of saturation), and the consequent interparticle forces

(suction-induced effective stress or suction stress) need to be considered as well

for more comprehensive soil models.

At variance with our previous work by Ju et al. (2012a, b) and Ju and Yuan

(2012), the major contribution of this chapter is to develop the initial elastic strain
energy-based hybrid isotropic elastoplastic damage-healing formulations for par-

tially saturated soils which can account for the effect of matric suction and be

implemented for the 2D earth moving simulation. In particular, since main interests

are focus in simulating rapid earth-pushing activities and the qualitative features of

our approach, the following assumptions are made to simplify both modeling and

computation efforts:

1. The air is assumed to remain at atmospheric pressure during the earth moving

processes.

2. The suction refers here to the matric suction which is the difference between the

air and water pressures induced by the capillary tension. The difference in

pressures induced by osmotic effects, i.e., ionic disequilibrium, is not

considered here.

3. The matric suction and the parameter χ in Bishop’s effective stress are only

functions of saturation which can be obtained by numerical equations (based on

experimental observations) for different types of soils. The effects of grain size

or grain size distribution on the matric suction and the parameter χ are not

considered here.

4. For soils, the wetting (saturation changing from low to high) or drying (satura-

tion changing from high to low) process will induce different soil–water char-

acteristic curve. This soil–water hysteresis is not considered here.

5. During the rapid earth moving processes, the water is assumed undrained.

Therefore, the gravimetric water content can be considered as a constant, but
the degree of saturation varies due to void ratio change when soil particles

undergo complex gliding and rolling motions. Unlike the typical geotechnical

problems such as bearing capacity, seepage and flow net, or slope stability,

Darcy’s law or Navier–Stokes equations are not applicable here for our specific

earth moving processes. Instead, a numerical equation based on experimental

data is used to calculate the degree of saturation at different stages during the

earth moving activities.

6. The mass transfer due to vaporization and condensation is neglected during the

rapid earth moving processes, although vaporization certainly occurs in actual

experiments where water and air are in contact over a long period of time.

The remaining part of this chapter is organized as follows. The change of

effective stress due to the matric suction and the Bishop’s effective stress for

unsaturated soils are introduced. The experimental data and some numerical equa-

tions which are employed to evaluate the parameters of Bishop’s effective stress
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and matric suction from literature are systematically presented. Subsequently, the

coupled elastoplastic hybrid isotropic damage-healing formulations featuring the

effect of matric suction for unsaturated soils are developed. The corresponding

efficient two-step operator splitting methodology is rendered. Finally, numerical

simulation of a 2D earth-pushing process is demonstrated and discussed in detail.

Conclusions and future work are addressed as well.

Strain Energy-Based Coupled Elastoplastic Hybrid Isotropic
Damage-Healing Models with Matric Suction Effect

Change of Effective Stress Due to Matric Suction

The effective stress approach by Bishop (1959) for unsaturated soil expanded

Terzaghi’s classic effective stress equation as follows:

σ0 ¼ σ� uað Þ þ χ ua � uwð Þ (1)

The difference σ � ua is referred to as the net normal stress, the difference

ua � uw is the matric suction, and the effective stress parameter χ is a material

variable that is generally considered to vary between zero and unity. For χ ¼ 0, it

corresponds to completely dry soil; for χ ¼ 1, it corresponds to fully saturated soil,

which leads to Terzaghi’s classic effective stress equation for saturated soil. Notice

that the pore water pressure, uw, in saturated soil is generally compressive and

isotropic. On the other hand, the pore water pressure in unsaturated soil is generally

tensile and matric suction is always positive.

Furthermore, cohesion is the component of shear strength of soil that is inde-

pendent of interparticle friction. For partially saturated soil, in addition to the

electrostatic forces and cementing by minerals (e.g., Fe2O3, CaCO3, NaCl, etc.),

the partial loss or recovery of cohesion between granular soil particles due to water

menisci is given by the change of matric suction. For instance, for loose,

uncemented sand that is either completely dry or completely saturated, the cohesion

in the Mohr–Coulomb failure criterion may be considered essentially equal to zero.

However, if some water is added to the completely dry sand, considerable cohesive

strength may exist due to matric suction. This apparent cohesion unique to unsat-

urated soil arises from negative pore water pressure and surface tension effects

occurring at the interface of the pore water, pore air, and soil solids among the

unsaturated soil grains.

Matric Suction
The soil suction is commonly termed “total suction” which has two components,

namely, the matric suction and the osmotic suction. However, it is primarily the

matric suction component (ua � uw) that governs the engineering behavior of

unsaturated soils in the lower suction range encountered in most field situations

(Vanapalli et al. 1996). Moreover, laboratory data indicate that a change in total
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suction is essentially equivalent to a change in matric suction where the water

contents are less than the residual value (Krahn and Fredlund 1972). Some typical

values of matric suction for different types of soils can be found in the literature;

cf. Fredlund and Rahardio (1993), Lu and Likos (2004), and Mitchell and Soga

(2005). In general, the latter values range from 0 to 1,000 KPa.
Disregarding pore air pressure, the contribution of pore water pressure to total

stress depends on the degree of saturation and pore size distribution. Based on the

studies on granular physics, four states of saturation can be characterized as follows

(Mitarai and Nori 2006):

1. Pendular state: Soil particles are held together by water bridge at their contact

points.

2. Funicular state: Some pores are fully saturated by water, but there still remain

voids filled with air.

3. Capillary state: All voids between soil particles are filled with water, but the

surface water is drawn back into the pore under capillary action.

4. Slurry state: Soil particles are fully immersed in water and the surface of water is

convex, i.e., no capillary action at the surface.

Mitarai and Nori (2006) is referred for the schematic diagram and physical

description of these four regimes. To macroscopically estimate the matric suction

in different saturation states, it is necessary to introduce the soil–water character-

istic curve (SWCC). The SWCC is a fundamental constitutive relationship in

unsaturated soil mechanics, which can be employed to predict unsaturated soil

properties such as the hydraulic conductivity, diffusivity, adsorption, shear

strength, and volume change. In general terms, the SWCC describes the relation-

ship between the matric suction and water content (or degree of saturation).

Numerous mathematical models were proposed for the soil–water characteristic

curve, and various key equations were summarized by Zapata et al. (2000) and

Nishimura et al. (2006). In particular, Fredlund and Xing (1994) proposed the

following relationship between the volumetric water content and the matric suction:

θ ¼ θs
1

ln eþ s=að Þn½ �
� �m

(2)

where θ is the volumetric water content, θs represents the saturated volumetric

water content, s is the matric suction, e is the exponential number (approximately

2.718281828), and (m, n, a) are material parameters. Figures 1, 2, and 3 exhibit the

plots of Eq. 2 with different sets of parameters (m, n, a).

Parameter in Bishop’s Effective Stress
Loret and Khalili (2000) stated that a properly defined effective stress is an efficient

tool in the qualitative and quantitative descriptions of the behavior of unsaturated

soils subject to the following two provisos: (1) that the parameter χ is evaluated

with sufficient accuracy and (2) that the observed stiffening effect due to suction is
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Fig. 1 The sample plots of

Eq. 2 with n ¼ 2 and m ¼
1 (with varying a)

Fig. 2 The sample plots of Eq. 2 with a ¼ 100 and m ¼ 1 (with varying n)

Fig. 3 The sample plots of

Eq. 2 with a ¼ 100 and n ¼
2 (with varying m)
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also accounted for. The material variable χ in Eq. 1 is captured by its strong

dependency on the degree of pore water saturation. Moreover, the nature of χ can

be described systematically from both the microscopic and macroscopic perspec-

tive; cf. Lu and Likos (2004).

The validity of several forms of χ as a function of the degree of saturation

was also examined by Vanapalli and Fredlund (2000) using a series of shear

strength test results for statically compacted mixtures of clay, silt, and sand from

Escario et al. (1989). For the matric suction ranging between 0 and 1,500 KPa, the

following two forms showed good fit to the experimental results. The first form

reads

χ ¼ Sk ¼ θ
θs

� �k

(3)

where S is the degree of saturation and k is a fitting parameter optimized to obtain

the best fit between the measured and predicted values. The second form reads

χ ¼ S� Sr
1� Sr

¼ θ� θr
θs � θr

(4)

where θr is the residual volumetric water content and Sr is the residual degree of

saturation. The nature of Eqs. 3 and 4 is illustrated in Fig. 4 for several values of

k and Sr.

Determination of Saturation
From previous sections, it is shown that the matric suction and Bishop’s effective

stress parameter χ can be represented by the degree of saturation. However, as

mentioned earlier, the continuity equation of pore water with Darcy’s law or

Fig. 4 Various forms for the effective stress parameter χ as functions of the degree of saturation
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Navier–Stokes equations for unsaturated soils are not applicable here due to the

instantaneous and complex rolling and gliding motions of soil particles during

earth-pushing processes. In this section, some physically reasonable assumptions

which are motivated by the literatures are made to calculate the degree of saturation

at different time step for our specific earth-pushing problems.

Gallipoli et al. (2003b) suggested an improved form of expression for the

variation of degree of saturation, accounting for the influence of changes in void

ratio. The experimental data exhibits that for certain matric suction, the degree of

saturation ismonotonically increasingwith the mean net stress. Motivated by these

experimental observations, the following assumptions are proposed to simplify

modeling and computation efforts:

1. The degree of saturation is a function of the mean net stress, gravimetric water

content, and soil types.

2. For a certain gravimetric water content and soil type, the degree of saturation is

monotonically increasing (linearly or nonlinearly depending on the soil types)

with respect to the mean net stress.

For simplicity, it is assumed that the relationship between the mean net stress

and the degree of saturation is linear as exhibited in Fig. 5. Here, in Fig. 5, Sini is the
assumed initial degree of saturation. When the mean net stress (compression) is

increased, the degree of saturation increases linearly. Once the assumed critical

compressive mean net stress σc is reached, it is assumed that the saturation will

reach a maximum value, Smax. On the other hand, if the mean net stress is zero or

tensile, the soil will reach a minimum constant value of saturation, Smin, and the

effect of matric suction will be eliminated once the tensile mean net stress is greater

than the maximum matric suction, σt.

Fig. 5 A schematic plot of

the relationship between the

degree of saturation and the

mean net stress
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A Coupled Hybrid Isotropic Formulation for Partially Saturated Soils

The proposed initial elastic strain energy-based hybrid isotropic damage-healing

model for partially saturated soils is under the hypothesis that incremental damage

and healing in the soils are directly linked to the history of total strains. The notion

of effective stress along with the hypothesis of strain equivalence then follows from

the assumed form of free energy. Attention is focused on the modification of

effective stress due to the matric suction.

The Additive Stress Split
The plastic flow is introduced by means of an additive split of the stress tensor into

the initial and inelastic parts:

σ ¼ @Ψ0 «ð Þ
@«

� σp � ua � χ Sð Þ ua � uwð Þ½ �1
~

(5)

where σ is the effective (undamaged) stress, « is the total strain, Ψ0(«) is the initial
elastic stored energy function of the undamaged soil, σp is the effective

(undamaged) plastic relaxation stress, ua represents the pore air pressure, and uw
is the pore water pressure. Moreover, χ(S) is a function of the degree of saturation

and represents the Bishop’s effective stress parameter, and 1
~
denotes the second-

order identity tensor. For the linear elasticity,

Ψ0 «ð Þ ¼ 1

2
« : C0 : « (6)

where C0 denotes the linear elasticity tensor. Equation 5 then can be written as

σ¼C0 : «� σp � ua � χ Sð Þ ua � uwð Þ½ �1
~

(7)

Thermodynamic Basis
In order to introduce both the net effect of damage-healing and plastic flow

processes, a free energy potential of the following form is proposed:

Ψ «,σp,q, dnetð Þ � 1� dnetð ÞΨ0 «ð Þ � « : σp þ Ξ q, σpð Þ (8)

where « denotes the total strain tensor, σp is the plastic relaxation stress tensor, and
q is a suitable set of internal (plastic) variables. Here, dnet is the isotropic scalar

variable of net (combined) effect of damage-healing which depends on the damage

variable d, the incremental damage variable Δd, and the incremental healing

variable ΔR, all varying between 0 and 1 in numerical values. Ψ0(«) is the initial

elastic stored energy function of the undamaged material and Ξ(q, σp) is the plastic
potential function.

31 New Strain-Energy Based Coupled Elastoplastic Damage-Healing Mechanics. . . 1101



Confining our attention to the purely mechanical theory, the Clausius–Duhem

(reduced dissipation) inequality (Coleman and Gurtin 1967) (for purely mechanical

isothermal theory) takes the form for any admissible process

� _Ψþ σ : _« � 0 (9)

By taking the time derivative of Eq. 8, substituting it into Eq. 9, and making use

of standard arguments (the Gurtin-Coleman argument) along with the additional

assumption that the net effect of damage-healing and plastic unloading are elastic

processes, the stress–strain constitutive law can be obtained by

σ ¼ @Ψ «ð Þ
@«

¼ 1� dnetð Þ @Ψ
0 «ð Þ
@«

� σp

¼ 1� dnetð Þ σþ ua � χ Sð Þ ua � uwð Þ½ �1
~

n o
(10)

and the dissipative inequalities

� @Ξ
@q

• _q� @Ξ
@σp

� «

� �
: _σp � 0 (11)

Ψ0 «ð Þ _d
net � @Ξ

@q
• _q� @Ξ

@σp
� «

� �
: _σp � 0 (12)

It follows from Eq. 10 that within the present strain space formulation, the stress

tensor is split into the elastic-damage-healing with suction effect and the plastic

relaxation parts. From Eqs. 11 and 12, it shows that the dissipative energy by the

plasticity itself is positive, and if damage-healing effect with suction effect is

involved, the sum of them (the damage-healing effect and the plasticity) is also

positive. It is also clear from Eqs. 10 to 12 that the present framework is capable of

accommodating general (nonlinear) elastic response and general plastic response.

The potential Ξ(q, σp) is linked to the plastic dissipation. Its role is such that

inequality Eq. 11 is satisfied for arbitrary processes. Note that it is assumed Ξ(q, σp)
independent of dnet. From Eq. 8, it then follows that

�Y � � @Ψ «,σp,q, dnetð Þ
@dnet

¼ Ψ0 «ð Þ (13)

Hence, the initial (undamaged) elastic strain energy Ψ0(«) is the thermodynamic

force Y conjugate to the net damage-healing variable dnet.

Characterization of Initial Elastic Strain Energy-Based Hybrid Isotropic
Damage Evolution
Firstly, the progressive degradation of mechanical properties of soils due to damage

is characterized by means of a simple isotropic damage mechanism. To this effect,
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the notion of equivalent tensile strain ξ+ is ascribed as the (undamaged) energy

norm of the tensile strain tensor. The isotropic damage mechanism is called hybrid,
since the computation of this equivalent tensile strain involves the principle tensile

direction of total strain. Accordingly, motivated by Eq. 13, it is set that

ξþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ0 «þð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
«þ : C0 : «þ

r
(14)

where «+ � P+ : «. The « denotes the total strain, and the fourth-order tensor P+

denotes the mode I positive (tensile) projection tensor with components

Pþ
ijkl «ð Þ � 1

2
Qþ

ik Qþ
jl þQþ

il Qþ
jk

� �
(15)

where Qþ �
X2
i¼1

Ĥ «ið Þpi � pi ; « ¼
X2
i¼1

«ipi � pi , pik k ¼ 1 (for 2D simulations

in this chapter). Here, «i is the i-th principal strain, pi is the i-th corresponding unit

vector in the principal direction, and Ĥ «ið Þ is the smoothed Heaviside function.

Then, the state of damage in soils by means of a damage criterion ϕd(ξt+, gt)
� 0 is characterized, formulated in the strain space, with the following functional

form:

ϕd ξþt , gt
	 
 � ξþt � gt � 0 t�Rþ (16)

Here, the subscript t refers to a value at the current time t � R+, and gt is the
damage threshold at the current time t. Note that gt will be numerically lowered due

to the potential incremental healing from the previous time step. If g0 denotes the
initial damage threshold before any loading is applied, it must have gt� g0. Here, g0
is considered to be a characteristic material property. Condition (16) then states that

damage in soils is initiated when the energy norm of the tensile strain tensor ξt+

exceeds the initial damage threshold g0. For the isotropic damage case, the evolu-

tions of the damage variable d and the damage threshold gt are defined by the rate

equations

_dt ¼ _μH ξþt , dt
	 


(17)

_g ¼ _μ (18)

where _μ � 0 is a damage consistency parameter that defines damage loading/

unloading conditions according to the Kuhn–Tucker relations:

_μ � 0, ϕd ξþt , gt
	 
 � 0, _μ ϕd ξþt , gt

	 
 ¼ 0 (19)

Moreover, H in Eq. 17 signifies the damage hardening function. The conditions

(19) are standard for problems involving unilateral constraint. If ϕd(ξt+, gt) < 0, the
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damage criterion is not satisfied and by conditions (19), _μ ¼ 0; hence, the damage

rule (19) implies that _d ¼ 0 and no further damage takes place. If, on the other hand,

_μ > 0, that is, further damage (“tensile loading”) is taking place, conditions (19)

implies that ϕd(ξt+, gt)¼ 0. In this event, the value of _μ is determined by the damage

consistency condition, i.e.,

ϕd ξþt , gt
	 
 ¼ _ϕd ξþt , gt

	 
 ¼ 0 ) _μ ¼ _ξþ (20)

so that gt is defined by the expression

gt ¼ max g0, max
s� �1, tð Þ

ξþs

� �
� gh, t�1ð Þ (21)

where gh(t�1) is the reduced value for the current damage threshold due to the

incremental healing (if any) from the previous time step.

If H(ξt+, dt) in condition (17) is independent of _dt, the above formulation may be

rephrased as follows: let G : R ! R+ be such that H(ξt+) � @G(ξt+)/@ξt+. G(•) is
assumed monotonic. A damage criterion entirely equivalent to condition (16) is

given by ϕd ξþt , gt
	 
 � G ξþt

	 
� G gtð Þ � 0. The flow rule and loading/unloading

conditions then become

_dt ¼ _μ
@ϕd ξþt , gt

	 

@ξþt

, gt ¼ _μ (22)

_μ � 0, ϕd ξþt , gt
	 
 � 0, _μϕd ξþt , gt

	 
 ¼ 0 (23)

Conditions (22) and (23) are simply the Kuhn–Tucker optimality conditions of a

principle of maximum damage dissipation.

Characterization of Initial Elastic Strain Energy-Based Hybrid Isotropic
Healing Evolution
Similar to the characterization of damage in previous section, the progressive

recovery of mechanical properties of soils due to healing is characterized by

means of a simple isotropic healing mechanism. The notion of equivalent com-

pressive strain ξ� is used as the energy norm of the compressive strain tensor.

Accordingly, it is set that

ξ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ0 «�ð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
«� : C0 : «�

r
(24)

where «� � P� : «. The fourth-order tensor P� denotes the mode I negative

(compressive) projection tensor with components

P�
ijkl «ð Þ � 1

2
Q�

ik Q�
jl þQ�

il Q�
jk

� �
(25)

where Q� ¼ 1
~
�Qþ.
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The state of healing in soils by using a healing criterion ϕh(ξt�, rt) � 0 is also

characterized, formulated in the strain space, with the following functional form:

ϕh ξ�t , rt
	 
 � ξ�t � rt � 0 t�Rþ (26)

Here, rt is the healing threshold at the current time t. Note that rt will be

numerically lowered due to the incremental damage from the previous time step.

If r0 denotes the initial healing threshold before any loading is applied, it must have

rt � r0. Further, r0 is considered as a material property. Condition (26) then states

that healing in the material is initiated when the energy norm of the compressive

strain tensor ξt� exceeds the initial healing threshold r0. For the isotropic healing

case, it is defined the evolution of the healing variable R and the healing threshold

by the rate equations

_Rt ¼ _ζ Z ξ�t ,Rt

	 

(27)

_r ¼ _ζ (28)

where _ζ � 0 is a healing consistency parameter that defines healing loading/

unloading conditions according to the Kuhn–Tucker relations

_ζ � 0, ϕh ξ�t , rt
	 
 � 0, _ζ ϕh ξ�t , rt

	 
 ¼ 0 (29)

Further, Z in Eq. 27 renders the healing hardening function. Conditions (29) are

standard for problems involving unilateral constraint. If ϕh(ξt�, rt) < 0, the healing

criterion is not satisfied and by conditions (29), _ζ ¼ 0; hence, the healing rule (27)

implies that _R ¼ 0 and no further healing takes place. If, on the other hand, _ζ > 0,

that is, further healing (“compressive loading”) is taking place, conditions (29)

implies that ϕh(ξt�, rt) ¼ 0. In this event, the value of _ζ is determined by the healing

consistency condition, i.e.,

ϕh ξ�t , rt
	 
 ¼ _ϕh ξ�t , rt

	 
 ¼ 0 ) _ζ ¼ _ξ� (30)

so that rt is given by the expression

rt ¼ max r0, max
s� �1, tð Þ

ξ�s

� �
� rd, t�1ð Þ (31)

where rd,(t�1) is the reduced value for the current healing threshold due to the

incremental damage (if any) from the previous time step.

If Z(ξt�, Rt) in condition (27) is independent of _Rt, the above formulation may be

rephrased as follows: let G* : R ! R+ be such that Z(ξt�) � @G*(ξt�)/@ξt�. G*(•) is
assumed monotonic. A healing criterion entirely equivalent to conditions (26) is

given by ϕh ξ�t , rt
	 
 � G� ξ�t

	 
� G� rtð Þ � 0. The flow rule and loading/unloading

conditions then become

31 New Strain-Energy Based Coupled Elastoplastic Damage-Healing Mechanics. . . 1105



_Rt ¼ _ζ
@ϕh ξ�t , rt

	 

@ξ�t

, rt ¼ _ζ (32)

_ζ � 0, ϕh ξ�t , rt
	 
 � 0, _ζϕh ξ�t , rt

	 
 ¼ 0 (33)

Net (Combined) Effect of the Hybrid Isotropic Damage and Healing
In the previous work (Ju et al. 2012a, b; Ju and Yuan 2012), it has been shown that the

following equation for the net effect of damage and healing is physically incorrect:

dnet ¼ d 1� Rð Þ (34)

The net effect of damage and healing mechanism for new energy-based model is

identical to the micromechanics-motivated scalar incremental form as expressed in

Eq. 33 of previous work (Ju et al. 2012a, b).

Modification of the Drucker–Prager Model
For saturated soil, shear strength is commonly described by theMohr–Coulomb failure

criterion, which defines shear strength in terms of the material variables ϕ’ and c’ as

τf ¼ c0 þ σ� uwð Þf tanϕ0 (35)

where τf is the shear stress on the failure plane, c’ is the effective cohesion, (σ� uw)

is the effective normal stress, and ϕ’ is the effective angle of internal friction.
For unsaturated soil, modern experimental studies regarding the shear strength

date back to 1950s and 1960s. Inspection of Blight’s triaxial testing results (Blight

1967) and Escario’s direct shear test results (Escario et al. 1980) demonstrates two

general trends in the shear strength behavior of unsaturated soil. Firstly, the shear

strength of unsaturated soil generally increases as net normal stress increase.

Secondly, emerging from the triaxial and direct shear testing results is that shear

strength increases as applied matric suction increases. Fredlund et al. (1978) for-

mulated an extended Mohr–Coulomb criterion to describe the shear strength

behavior of unsaturated soil. The failure envelope is a planar surface in the stress

space of the stress state variables σ � ua and ua � uw; the shear stress τ may be

written as (Lu and Likos 2004)

τf ¼ c0 þ σ� uað Þf tanϕ0 þ ua � uwð Þ tanϕb (36)

where c’ is the cohesion at zero matric suction and zero net normal stress, ua is the

pore air pressure, uw is the pore water pressure, ϕ ’ is the angle of internal friction

associated with the net normal stress variable, and ϕb is an internal friction angle

associated with the matric suction that describes the rate of increase in shear

strength relative to matric suction. Some experimental data of (c ’, ϕ ’, ϕb) for a

wide variety of soil types can be found in the literature; cf. Fredlund and Rahardio

(1993), and Lu and Likos (2004). Furthermore, the Drucker–Prager criterion can be

written in the form
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f I1, J2ð Þ ¼ ffiffiffiffiffi
J2

p � αI1 � k ¼ 0 (37)

where I1 is the first invariant of the Cauchy stress tensor, J2 is the second invariant of
the deviatoric stress tensor, and the two parameters α and k are (positive) material

constants. Motivated by the discussion of Mohr–Coulomb failure criterion for unsat-

urated soil proposed by Fredlund et al. (1978), Kohler and Hofstetter (2008) proposed

the extension of a cap model to describe the material behavior of partially saturated

soils. Ignoring the effect of the third invariant of the deviatoric stress tensor, the shear

failure surface (Drucker–Prager model) can be described as follows:

f I
0
1, J2

� �
¼ ffiffiffiffiffi

J2
p � α0I

0
1 � k0 � λ ua � uwð Þ ¼ 0 (38)

where I1
0
is the first invariant of the net stress tensor, ua is the pore air pressure, uw is

the pore water pressure, and (α0, k0, λ) are material constants.

Computational Algorithms: Two-Step Operator Splitting

In the previous section, initial elastic strain energy-based hybrid isotropic damage-

healing formulations are developed based on the effective stress concept for partially

saturated soil. In this section, computational aspects are focused in details on the

proposed models within the context of numerical method. More precisely, the

attention is focused on the following local elastoplastic damage-healing rate consti-

tutive equations:

_ε ¼ ∇s _u tð Þ
_dt ¼ _μ H ξþt , dt

	 

_g ¼ _μ

_μ � 0, ϕd ξþt , gt
	 
 � 0, _μ ϕd ξþt , gt

	 
 ¼ 0

8<
:

_Rt ¼ _ζ Z ξ�t ,Rt

	 

_r ¼ _ζ

_ζ � 0, ϕh ξ�t , rt
	 
 � 0, _ζ ϕh ξ�t , rt

	 
 ¼ 0

8<
:
_d
net ¼ _d � _R d̂

_σ ¼ d

dt

@Ψ0 εð Þ
@ε

� �
� _σp � d

dt
ua � χ Sð Þ ua � uwð Þ½ �1

~

_σp ¼ _λ
@f

@ε
@Ψ0 εð Þ
@ε

� σp � ua � χ Sð Þ ua � uwð Þ½ �1
~
,q

� �
associative flow ruleð Þ

_q ¼ _λh
@Ψ0 εð Þ
@ε

� σp � ua � χ Sð Þ ua � uwð Þ½ �1
~
,q

� �
plastic hardening lawð Þ

f
@Ψ0 εð Þ
@ε

� σp � ua � χ Sð Þ ua � uwð Þ½ �1
~
,q

� �
� 0 yield conditionð Þ

8>>>>>>><
>>>>>>>:

(39)
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From an algorithmic standpoint, the problem of integrating the evolution equa-

tions in Eq. 39 reduces to updating the basic variables σ, dnet,σp,q, ua, uw,χ, Sf g in a
manner consistent with the constitutive model. It is essential to realize that in this

computational process, the history of strains t! ε�∇su(t) is assumed to be given.

Equations of evolution are to be solved incrementally over a sequence of given

time steps [tn, tn+1] 	 R+, n ¼ 0, 1, 2 . . . . Thus, the initial conditions for equations
are

σ, dnet,σp,q,ua,uw,χ, Sf gjt¼tn ¼ σn, d
net
n , σp

n ,qn, ua nð Þ,uw nð Þ, χn, Sn
� �

(40)

In accordance with the notion of operator split, the following additive decom-

position of problem of evolution into elastic-damage-healing and plastic parts can

be considered:

1:Elastic�damage�healing part:

_« ¼ ∇s _u tð Þ
_d ¼ H ξþð Þ _ξþ iff ϕd

t ¼ _ϕd

t ¼ 0

0 otherwise



_g ¼ _ξþ iff ϕd
t ¼ _ϕd

t ¼ 0

0 otherwise



_R ¼ Z ξ�ð Þ _ξ� iff ϕh
t ¼ _ϕh

t ¼ 0

0 otherwise



_r ¼ _ξ� iff ϕh
t ¼ _ϕh

t ¼ 0

0 otherwise


_d
net ¼ _d � _Rd̂

_σ ¼ d

dt

@Ψ0 «ð Þ
@«

� ua � χ Sð Þ ua � uwð Þ½ �1
~

� �
_σp ¼ 0

_q ¼ 0

(41)

2:Plastic part:
_« ¼ 0
_d
net ¼ 0

_r ¼ 0
_σ ¼ � _σp

_σp ¼ _λ
@f

@«

@Ψ0 «ð Þ
@«

� σp � d

dt
ua � χ Sð Þ ua � uwð Þ½ �1

~
, q

� �

_q ¼ _λh
@Ψ0 «ð Þ
@«

� σp � d

dt
ua � χ Sð Þ ua � uwð Þ½ �1

~
, q

� �
(42)

It is noted that Eqs. 41 and 42 do indeed add up to Eq. 39 in agreement with the

notion of operator split. The formulation of an algorithm consistent with equations

is based on the following fundamental result concerning operator or split

method. Given the two algorithms, the first one is consistent with problem (41)
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(elastic-damage-healing predictor) and the second one is consistent with problem

(42) (return mapping corrector). In turn, the product algorithm obtained by succes-

sive application of these two algorithms is consistent with the original problem.

The Elastic-Damage-Healing Predictor

An algorithm consistent with problem (39), referred to as the elastic-damage-

healing predictor in the sequel, is given by the following step-by-step procedure:

Step 1: Strain update: Given the incremental displacement field un+1, the strain

tensor is updated as

«nþ1 ¼ «n þ∇s
unþ1 (43)

Step 2: Compute the mode I positive 4th rank projection operator Pn+1
+ based on

the total strain

tensor «n+1

Pþ
ijkl «nþ1ð Þ ¼ 1

2
Qþ

ik Qþ
jl þQþ

il Qþ
jk

� �
(44)

where Qþ
nþ1 ¼

X2
i¼1

Ĥ «ið Þpi � pi; «nþ1 ¼
X2
i¼1

«ipi � pi (for 2D simulations in this

chapter) and Ĥ «ið Þ is the smoothed Heaviside function.

Step 3: Compute the negative 4th rank projection operator Pn+1
� based on the

total strain tensor

«nþ1

P�
ijkl «nþ1ð Þ ¼ 1

2
Q�

ik Q�
jl þQ�

il Q�
jk

� �
(45)

where Q�
nþ1 ¼ 1

~
�Qþ

nþ1

Step 4: Compute the initial (undamaged) elastic tensile and compressive strain

energies, ξ+ and ξ�,

ξþnþ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ0 «þnþ1

	 
q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
«þnþ1 : C

0 : «þnþ1

r
, if linear elastcity (46)

ξ�nþ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ0 «�nþ1

	 
q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
«�nþ1 : C

0 : «�nþ1

r
, if linear elastcity (47)

where «+ ¼ P
+ : « and «� ¼ P

� : «

Step 5: Update the scalar damage parameter threshold ~dnþ1 (a history variable,

initially 0).

31 New Strain-Energy Based Coupled Elastoplastic Damage-Healing Mechanics. . . 1109



~dnþ1 denotes the net amount of scalar damage threshold after an incremental

healing takes place from the previous time step (if any).

If ΔRn > 0 and ~dn > 0 , then update (lower) the scalar damage parameter

threshold

~dnþ1 ¼ ~dn 1:0� ΔRnð Þ: (48)

Otherwise, set

~dnþ1 ¼ ~dn: (49)

Step 6: Compute the scalar damage predictor dn+1 based on ξn+1+ .

If ξn+1+ at current time step is less than the initial damage threshold, no further

damage is generated. Set Δdn+1 ¼ 0. If ξn+1+ is larger than the given initial damage

threshold, compute the scalar damage predictor dn+1 by using one of the following

nonlinear damage functional evaluation:

dnþ1 ξþnþ1

	 
 ¼ kc ξþnþ1 � ki
� �

ξþnþ1 kc � ki½ � (50)

where kc and ki are material constants for damage evolution

or

dnþ1 ξþnþ1

	 
 ¼ 1� A 1� Bð Þ
ξþnþ1

� B exp A� ξþnþ1

� �
(51)

where A and B are material constants for damage evolution.

Step 7: Check the incremental scalar damage criterion Δdn+1.
Compute Δdnþ1 ¼ dnþ1 � ~dnþ1.

If Δdnþ1
� 0, no further damage,Δdnþ1 ¼ 0 ) Go to Step 9

> 0, further damage ) Set ~dnþ1 ¼ dnþ1; continue

 �

Step 8: Compute the incremental hybrid isotropic damage predictor tensor

ΔDn+1 and the updated hybrid isotropic nonsymmetric interim damage tensor D̂nþ1:

ΔDnþ1 ¼ Δdnþ1 I (52)

D̂nþ1 ¼ Dnet
n þ ΔDnþ1 (53)

where I denotes the fourth-order identity tensor.

Step 9: Update the scalar healing parameter threshold ~Rnþ1: (a history variable,

initially 0)
~Rnþ1 denotes the net amount of healing sustained after damage takes place.

If Δdn+1 > 0 and
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~Rn > 0, then update the (lower) healing parameter threshold for the next time

step:

~Rnþ1 ¼ ~Rn 1:0� Δdnþ1ð Þ: (54)

Otherwise, set

~Rnþ1 ¼ ~Rn: (55)

Step 10: Compute the scalar healing predictor Rn+1 based on ξn+1� .

If ξn+1� at current time step is less than the initial healing threshold, no further

healing occurs. Set ΔRn+1 ¼ 0. If ξn+1� is larger than the given initial healing

threshold, compute the scalar healing predictor Rn+1 by using one of the following

nonlinear healing functional evaluation:

Rnþ1 ξ�nþ1

	 
 ¼ hc ξ�nþ1 � hi
� �

ξ�nþ1 hc � hi½ � (56)

where hc and hi are material constants for healing evolution

or

Rnþ1 ξ�nþ1

	 
 ¼ 1� A 1� B
	 


ξ�nþ1 � B exp A� ξ�nþ1

� � (57)

where A and B are material constants for healing evolution.

Step 11: Check the incremental scalar healing criterion ΔRn+1

Compute ΔRnþ1 ¼ Rnþ1 � ~Rnþ1.

If ΔRnþ1
� 0, no further healing,ΔRnþ1 ¼ 0 ) Go to Step 14

> 0, further healing ) Set ~Rnþ1 ¼ R̂nþ1; continue

 �

Step 12: Compute the hybrid isotropic incremental healing tensor ΔRn+1

ΔRnþ1 ¼ ΔRnþ1 I (58)

Step 13: Compute the incremental healing corrector, and update the hybrid

isotropic net (combined) damage-healing tensor (true damage measure, a history

variable):

ΔDH
nþ1 ¼ �D̂nþ1 •ΔRnþ1

Dnet
nþ1 ¼ D̂nþ1 þ ΔDH

nþ1

(59)

Step 14: Calculate the mean net stress and compute the associated degree of

saturation based on the previous discussions. Once the degree of saturation is
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known, the corresponding Bishop’s effective stress parameter χ and matric suction

can be obtained.

Trial (predictor) stress: By mere substitution into the potential for the stress

tensor, the following is obtained:

σ0
nþ1 ¼

@Ψ0 «nþ1ð Þ
@«

� ua � χ Sð Þ ua � uwð Þ½ � 1
~

σtrial
nþ1 ¼ σ0

nþ1 � σp
n qtrialnþ1 ¼ qn

(60)

The Effective Plastic Return Mapping Corrector

To develop an algorithm consistent with the plastic part of the operator split, one

first checks the loading/unloading conditions.

Step 15: Check for yielding: The algorithmic counterpart of the Kuhn–Tucker

conditions is trivially implemented in terms of the elastic-damage trial stress. One

simply checks

f σtrial
nþ1, q

trial
nþ1

	 
 � 0 elastic� damage� healing ) predictor ¼ final state

> 0 plastic ) return mapping


(61)

Multi-surface plasticity: In the case of plastic loading, it is necessary to

determine the active plastic surface for Drucker–Prager criterion.

Step 16: Plastic return mapping corrector: In the case of plastic loading, the

predictor stresses and internal variables are “returned back” to the yield surface

along the algorithmic counterpart of the flow generated by Eq. 42. The algorithmic

construction of this flow follows a proposed procedure which was inspired by a

form of Kelley’s convex cutting plane method for nonlinear optimization, with its

basic structure inherited from Newton’s method. Two fundamental advantages of

this procedure are (a) the quadratic rate of convergence toward the yield surface and

(b) the need for computing the gradient of the flow rule and hardening law that are

entirely bypassed.

Step 17: Update the homogenized (nominal) stress σn + 1:

σnþ1 ¼ I� Dnet
nþ1

� �
: σnþ1 þ ua � χ Sð Þ ua � uwð Þf g 1

~

h i
(62)

Numerical Simulations

To demonstrate the effect of matric suction, a soil pushing process is performed. In

the numerical simulation, the modified Drucker–Prager associative multi-surface

plasticity formulation as expressed in Eq. 38 is employed to model the soil behavior

for the sake of simplicity. The associated soil properties and assumed numerical
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material constants are listed in Tables 1 and 2. The NMAP (Nonlinear Meshfree

Analysis Program) meshfree codes were provided by Prof. J.S. Chen’s group at

UCLA; cf. Chen and Wang (2000), Chen (2001), Chen et al. (2001), Wu

et al. (2001), Chen and Wu (2007), and Chen et al. (2009).

Table 1 The associated soil properties

Soil

properties

Young’s

modulus

Poisson’s

ratio Density Cohesion Lame constants

Values 24.7 (MPa) 0.35 1.88 

103(kg/m3)

0.19

(MPa)
λ ¼ 2:13457
 107 Pað Þ
μ ¼ 9:14815
 107 Pað Þ

Table 2 The assumed numerical material constants

Numerical

material

constants

χ(S)
in

Eq. 1 (m, n, a) in Eq. 2

σc, σt, Sini, Smax,

Smin

λ in
Eq. 38

Values k ¼
1 in

Eq. 3

m¼ 1, n¼ 2, a varies so that the matric

suction ranges from 0 to 440 KPa, 0 to

890 KPa, and 0 to 1,130 KPa

σc ¼ 2, 000 KPað Þ
σt ¼ 500 Pað Þ
Sini ¼ 0:2
Smax ¼ 1:0
Smin ¼ 0:1

0.5

Fig. 6 The initial

configuration and

discretization of the earth-

pushing processes

Fig. 7 Three soil–water

characteristic curves for the

earth-pushing simulations
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The initial configuration and discretization of the earth-pushing process is

rendered in Fig. 6. The blade of the bulldozer is treated as a rigid body and thus

represented by two contact surfaces in black color. To model the contact between

soil particles and blade surfaces, the traditional penalty formulation is employed. A

layer of soil with dimension 5 
 0.5 (meter) is discretized into 101 
 11 ¼ 1111

uniformly distributed particles. The blade as exhibited in Fig. 6 is controlled to

move horizontally from right to left for 5 m.

The initial degree of saturation is assumed 20 % and varies linearly when the

mean net stress of soil particles is changed as discussed. The corresponding matric

suction then follows the soil–water characteristic curves as presented in Fig. 7

which are obtained from Eq. 2. By setting m ¼ 1, n ¼ 2 and allowing varying a,

Fig. 8 The damage contours and soil deformations for earth-pushing simulations
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three curves are generated with the matric suction ranging from 0 � 440 (KPa),

0 � 890 (KPa), to 0 � 1,330 (KPa).

The initial elastic strain energy-based couple elastoplastic hybrid isotropic

damage-healing model with three different ranges of matric suction is then applied

to generate the earth-pushing simulations as demonstrated in Fig. 8. In these figures,

the blue solid circles represent the soil particles with no damage (dnet ¼ 0), the red

solid circles symbolize the soil particles with full damage (dnet ¼ 0.95, the preset

upper bound damage in these simulations), and the solid circles in other colors

(such as green, yellow, and orange) signify partial damage between 0 and 0.95.

The histories of horizontal resultant force on bulldozer blade by considering

three different ranges of matric suction are plotted in Fig. 9, and their corresponding

maximum values are listed in Table 3.

From Fig. 9 and Table 3, the numerical results exhibit the trend of the effect of

matric suction. Namely, for partially saturated soils, matric suction is an important

factor to influence its mechanical behavior. More specifically, the effective stress is

increased and soils become more stiffened when the matric suction increases.

In the absence of associated experimental data, the proposed initial elastic strain

energy-based coupled elastoplastic hybrid isotropic damage-healing formulations

with the consideration of matric suction for partially saturated soil models only

demonstrate the salient feature of the effect of matric suction. Additional future

Fig. 9 The horizontal

resulting forces on the

bulldozer blade for different

ranges of the matric suction

Table 3 The maximum horizontal resulting force on bulldozer blade

Initial elastic energy-

based hybrid isotropic

damage-healing models

No matric

suction

effect

Matric suction

ranges from

0 to 440 (KPa)

Matric suction

ranges from

0 to 890 (KPa)

Matric suction

ranges from

0 to 1,130

(KPa)

Max. horizontal

resulting force on

bulldozer blade (N)

3.5681e

+004

4.7764e+004 5.3514e+004 5.1145e+004

Percentage 100 % 133.86 % 149.98 % 143.34 %
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efforts are required to obtain the validations to the numerical material constants and

parameters in the proposed formulations.

Conclusions

In this study, new initial elastic strain energy-based coupled elastoplastic hybrid

isotropic damage-healing formulations have been presented for partially saturated

soils in the specific simulation of earth-pushing processes. The equivalent strain

based on P+ and P� for the energy criteria of damage and healing is used for the

proposed models. New two-step operator split algorithms (featuring the elastic-

damage-healing predictors and the effective plastic return mapping corrector) are

presented. In addition, the effect of matric suction and the coupling of damage and

healing are proposed in an incremental form by using the predictor formula and

corrector formula as introduced. In the absence of associate experimental data, the

proposed innovative formulations and algorithms for partially saturated soils only

demonstrate the effect of matric suction. Further validations to the material param-

eters in each damage and healing evolutions will be performed once the associated

experiment data become available in the near future. In addition, much gratitude is

expressed to Prof. J.S. Chen and Dr. Pai-Chen Guan for their assistance in

implementing the proposed models into the NMAP (Nonlinear Meshfree Analysis

Program) meshfree code by Chen (2001).
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Abstract

Novel strain-energy-based coupled elastoplastic two-parameter damage and

healing formulations for geomaterials are developed and implemented for a

numerical simulation of 2D earth-moving processes. A new class of elastoplastic

damage-healing models is proposed within an initial-elastic strain-energy-
based framework. The governing incremental damage and healing evolutions

are coupled in volumetric and deviatoric parts and characterized through the

effective stress concept. The plastic flow is established via an additive split of the
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stress tensor. Specifically, four characteristic energy norms of the tensile volu-

metric, tensile deviatoric, compressive volumetric, and compressive deviatoric

strain tensors are introduced, respectively, for the corresponding volumetric and

deviatoric damage and healing mechanisms.

By adopting micromechanics-motivated damage and healing characteriza-

tions in the volumetric and deviatoric parts, the proposed two-parameter dam-

age-healing models are implemented to demonstrate considerable versatility on

numerical simulations of earth-moving processes. New computational algo-

rithms are systematically developed based on the two-step operator splitting

methodology. The volumetric and deviatoric elastic-damage-healing predictor

and the effective plastic corrector are implemented within the RKPM meshfree

codes. Numerical examples under earth excavation, transport, and compaction

are presented to illustrate salient features of soils such as shear band and

partial recovery of soil stiffness due to compaction by the new two-parameter

damage-healing models.

Introduction

Certain soil motions (such as rolling and gliding) can cause considerable amount of

soil spillage during earth-moving processes, which decrease the soil-carrying

capacity of earth-moving equipment and thus increase the costs of earthwork

operations. These rolling and gliding motions also generate higher frictional con-

tacts between the surfaces of soil particles and the equipment blades, leading to

faster blade wear and higher energy consumption by the tractor (Xia 2008). To

enhance the operational efficiency of equipment, extensive laboratory experiments

and field testing of competing designs for earth-moving equipment must be

performed. To enable more economic and powerful design, a versatile computa-

tional framework that can be used to simulate soil motions during earth-moving

activities is highly desired. Further, comprehensive physics-based material models

of soils are needed in order to establish a rigorous computational framework to

accommodate complex and instantaneous motions of cohesive soils.

Since the introduction of the scalar damage concept by Kachanov (1958) and

Rabotnov et al. (1963) for creep of metals, the continuum damage mechanics has

become an emerging field of active research. Extensive phenomenological damage

models were proposed in the literature. In particular, scalar damage variables were

widely employed for isotropic or one-dimensional phenomenological damage

models (Lemaitre 1985), while vectorial, second-order, and fourth-order tensorial

damage variables were often used for anisotropic phenomenological damage

models (Kachanov 1980; Simo and Ju 1987a, b; Simo et al. 1988; Ju 1989a, b,

1990; Simo and Ju 1989; Ju et al. 2011a, b). However, there are few publications in

coupled plasticity and sound damage models for cohesive soils. In particular,

damage models are rarely built on two parts, i.e., the volumetric and deviatoric

parts. As pointed out by Ju (1990), the scalar damage model implies that the

Poisson’s ratio always remains a constant and is therefore only a special case of
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the isotropic damage. Moreover, the general form of the fourth-order isotropic

damage tensor consists of two parts: the volumetric and deviatoric components.

From different fields, some materials experimentally show that they can be

repaired or healed in various manners such as chemical, physical, or biological

phenomena, leading to progressive recovery of internal material defects. Barbero

et al. (2005) are referred for damage and irreversible deformation processes for a

self-healing fiber-reinforced lamina. Further literature review of self-healing mate-

rials can be found in Herbst and Luding (2008). However, there has been no

published literature on rigorous formulations of damage and healing (recovery of

elastic stiffness) models for granular cohesive soils, except the very recent work by

Ju et al. (2011a, b). Nevertheless, the latter did not invoke the decomposition of

damage tensors into the volumetric and deviatoric parts. Therefore, there is a

fundamental need for physical and reliable modeling of the progressive coupled

elastoplastic two-parameter damage and healing in cohesive granular soils under

complex and cyclic loading during earth-moving processes.

The remainder of this chapter is organized as follows. New initial-elastic strain-

energy-based coupled elastoplastic two-parameter damage-healing formulations

are presented in the next section, following by brand new computational algorithms

which are systematically developed based on the two-step operator splitting meth-

odology. Numerical simulations of earth-moving processes are subsequently

presented to illustrate the versatility and salient features of the proposed new

two-parameter soil damage-healing models. The governing volumetric and

deviatoric damage and healing evolutions are coupled in an incremental form and

characterized through the effective stress concept in conjunction with the hypoth-

esis of strain equivalence.

New Initial-Elastic-Strain-Energy-Based Coupled Elastoplastic
Two-Parameter Damage and Healing Models

A Coupled Two-Parameter Formulation

A crucial idea underlining the two-parameter coupled elastoplastic damage-healing

models presented here concerns the criteria to determine when and how the

individual volumetric or deviatoric, damage or healing mechanisms take place. In

order to introduce the net effect of the volumetric and deviatoric damage-healing

and plastic flow processes, a free energy potential of the following form is

proposed:

Ψ «v, e, σp,q, dnetv , dnetd

� � � 1� dnetv

� �
Ψ 0

v «vð Þ þ 1� dnetd

� �
Ψ 0

d eð Þ � « : σp þ Ξ q,σpð Þ
(1)

where «v � 1
3
«kk 1

~
denotes the volumetric strain tensor, e is the deviatoric strain

tensor; σp is the plastic relaxation stress tensor, and q denotes a suitable set of
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internal (plastic) hardening variables. Here, dv
net signifies the scalar variable of net

(combined) effect of volumetric damage and healing, which depends on the volu-

metric damage variable dv, the incremental volumetric damage variable Δdv, and
the incremental volumetric healing variable ΔRv, all between 0 and 1 in numerical

values. Similarly, dd
net is the scalar variable of net (combined) effect of deviatoric

damage and healing, which depends on the deviatoric damage variable dd, the
incremental deviatoric damage variable Δdd, and the incremental deviatoric healing

variable ΔRd, all between 0 and 1 in numerical values. Moreover, Ψ v
0(«v) defines the

initial-elastic volumetric stored energy function of the undamaged material, Ψ d
0 (e)

is the initial-elastic deviatoric stored energy function of the undamaged material,

and Ξ(q, σp) is the plastic potential function. For the linear elasticity case, one has

Ψ 0
v «vð Þ ¼ 1

2
«v : K 1

~
� 1

~

� �
: «v ¼ 1

2
K «kkð Þ2, where K denotes the bulk modulus;

Ψ d
0(e) ¼ Ge : e, where G represents the shear modulus.

Confining our focus to the purely mechanical theory, the Clausius-Duhem

(reduced dissipation) inequality (for purely mechanical isothermal theory) takes

the form for any admissible process:

� _Ψ þ σ : _« � 0 (2)

By taking the time derivative of Eq. 1, substituting it into Eq. 2, and making use

of standard arguments (Coleman and Gurtin 1967) along with the additional

assumption that the net effect of damage-healing and plastic unloading are elastic

processes, the stress-strain constitutive law (Ju 1989a; Ju et al. 2011a) can be

obtained:

σ ¼ 1� dnetv

� � @Ψ 0
v «vð Þ
@«v

þ 1� dnetd

� � @Ψ 0
d eð Þ
@e

� σp (3)

and the dissipative inequalities

� @Ξ q,σpð Þ
@q

· _q� @Ξ q,σpð Þ
@σp

� «

� �
: _σp � 0 (4)

_d
net

v Ψ 0
v «vð Þ þ _d

net

d Ψ 0
d eð Þ � @Ξ q, σpð Þ

@q
· _q� @Ξ q, σpð Þ

@σp
� ε

� �
: _σp � 0 (5)

It follows from Eq. 3 that within the present strain-space formulation, the stress

tensor is split into the volumetric and deviatoric elastic-damage-healing and the

plastic relaxation parts. From Eqs. 4 and 5, it is observed that the dissipative energy

by plasticity itself is positive; if the damage-healing effect is involved, the sum of

dissipative energy by the damage-healing and plasticity effect is also positive. It is

clear from Eqs. 3, 4, and 5 that the present framework is capable of accommodating

general (nonlinear) elastic response and general plastic response.
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The potential Ξ(q, σp) is linked to plastic dissipation. Its role is such that

inequality Eq. 5 is satisfied for arbitrary processes. Note that assumption is made

that Ξ(q, σp) independent of dvnet and dd
net. From Eq. 1, it then follows that

�Yv � � @Ψ «v, e,σp, q, dnetv , dnetd

� �
@dnetv

¼ Ψ 0
v «vð Þ (6)

�Yd � � @Ψ «v, e, σp,q, dnetv , dnetd

� �
@dnetd

¼ Ψ 0
d eð Þ (7)

Hence, the initial (undamaged) volumetric elastic strain energy Ψ v
0(«v) is the

thermodynamic force Yv conjugate to the net volumetric damage-healing variable

dv
net; the initial (undamaged) deviatoric elastic strain energy Ψ d

0(e) is the thermody-

namic force Yd conjugate to the net deviatoric damage-healing variable dd
net.

Attention is then focused on the volumetric and deviatoric damage, the volumetric

and deviatoric healing, and their interactions.

Characterization of Initial-Elastic-Strain-Energy-Based
Two-Parameter Damage Model

The proposed damage mechanism is called two parameter since the damage effects

or evolutions are divided into the volumetric and deviatoric parts. Motivated by

Eq. 6, the notion of equivalent tensile volumetric strain ξv+ is first ascribed as the

(undamaged) energy norm of the tensile volumetric strain tensor:

ξþv �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 0

v «þv
� �q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
K «þkk
� �2r

(8)

where «kk
+ ¼ «11

+ + «22
+ + «33

+ and «+ � P+ : «. The « tensor denotes the total

strain, and the fourth-order tensor P+ denotes the “mode I” positive (tensile)

projection tensor with components

Pþ
ijkl «ð Þ ¼ 1

2
Qþ

ik Qþ
jl þQþ

il Qþ
jk

� �
(9)

where Qþ �
X2
i¼1

Ĥ «ið Þpi � pi; « ¼
X2
i¼1

«i pi � pi , pik k ¼ 1 for the 2D simu-

lations in this chapter. Here, «i is the ith principal strain, pi is the ith corresponding

unit vector in the principal direction, and Ĥ «ið Þ is the smoothed Heaviside function.

Then, the state of volumetric damage in soils is characterized by means of a

volumetric damage criterion ϕv
d(ξv,t+ , gv,t) � 0, formulated in the strain space, with

the following form:
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ϕd
v ξþv,t, gv,t
� �

� ξþv,t � gv,t � 0, t�Rþ (10)

Here, the subscript t refers to a value at current time t � R+, and gv,t is the

volumetric damage threshold at the current time t. The numerical value of gv,t
would be lowered due to the incremental volumetric healing (if any) from the

previous time step. Let gv,0 denote the initial volumetric damage threshold before

any loading is applied; it must have gv,t � gv,0. Here, gv,0 is considered to be a

characteristic material property. Condition Eq. 10 then states that volumetric

damage in soils is initiated when the energy norm of the tensile volumetric strain

ξv,t+ exceeds the initial volumetric damage threshold gv,0. The evolutions of the

volumetric damage variable dv,t and the volumetric damage threshold gv,t are
defined, respectively, by the rate equations

_dv,t ¼ _μvHv ξþv,t, dv,t
� �

(11)

_gv ¼ _μv (12)

where _μv � 0 is the volumetric damage consistency parameter that defines the

volumetric damage loading/unloading conditions according to the Kuhn-Tucker

relations:

_μv � 0, ϕd
v ξþv,t, gv,t
� �

� 0, _μvϕ
d
v ξþv,t, gv,t
� �

¼ 0 (13)

Moreover, Hv in Eq. 11 denotes the volumetric damage hardening function.

Conditions Eq. 13 are standard for problems involving unilateral constraint. If

ϕv
d(ξv,t+ , gv,t) < 0, the volumetric damage criterion is not satisfied and by conditions

Eq. 13, _μv ¼ 0; hence, the volumetric damage rule Eq. 11 implies that _dv ¼ 0 and no

further volumetric damage takes place. If, on the other hand, _μv > 0, that is, further

volumetric damage (“tensile loading”) is taking place, conditions Eq. 13 imply that

ϕv
d(ξv,t+ , gv,t) ¼ 0. In this event, the value of _μv is determined by the volumetric

damage consistency condition; i.e.,

ϕd
v ξþv,t, gv,t
� �

¼ _ϕd

v ξþv,t, gv,t
� �

¼ 0 ) _μv ¼ _ξþv (14)

and gv,t is defined by the expression

gv,t ¼ max gv,0, max
s� �1,tð Þ

ξþv,s

� �
� gvh, t�1ð Þ (15)

where gvh,(t�1) defines the reduced value for the current volumetric damage thresh-

old due to incremental volumetric healing (if any) from the previous time step.
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If Hv(ξv,t+ , dv,t) in Eq. 11 is independent of _dv,t , the above formulation may be

rephrased as follows. Let Gv : R ! R+ be such that Hv(ξv,t+ ) � @Gv(ξv,t+ )/@ξv,t+ . Gv(•)

is assumed monotonic. A volumetric damage criterion entirely equivalent to

condition Eq. 10 is given by ϕd

v ξþv,t, gv,t
� �

� Gv ξþv,t
� �

� Gv gv,t

� �
� 0. The flow

rule and loading/unloading conditions become

_dv,t ¼ _μv
@ϕd

v ξþv,t, gv,t
� �
@ξþv,t

, gv,t ¼ _μv (16)

_μv � 0, ϕd

v ξþv,t, gv,t
� �

� 0, _μvϕ
d

v ξþv,t, gv,t
� �

¼ 0 (17)

Conditions Eqs. 16 and 17 are simply the Kuhn-Tucker optimality conditions of

a principle of maximum damage dissipation.

Likewise, the notion of equivalent tensile deviatoric strain ξd+ is ascribed as the

(undamaged) energy norm of the tensile deviatoric strain tensor. Motivated by

Eq. 7, it can be defined that

ξþd �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 0

d eþð Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
G eþ : eþ

r
(18)

where eþ ¼ «þ � 1
3
«þkk 1

~
and «+ � P+ : «.

Similar to the characterization of volumetric damage, the state of deviatoric damage

can be characterized by means of a deviatoric damage criterion ϕd
d (ξd,t+ , gd,t) � 0,

formulated in the strain space, with the following functional form:

ϕd
d ξþd,t, gd,t
� �

� ξþd,t � gd,t � 0, t�Rþ (19)

Here, the subscript t refers to a value at the current time t � R+, and gd,t is
the deviatoric damage threshold at the current time t. It is noted that gd,t will be
lowered in value due to the incremental deviatoric healing from the previous time

step. If gd,0 denotes the initial deviatoric damage threshold before any loading

is applied, it must have gd,t � gd,0. Note that gd,0 is considered as a characteristic

material property. Condition Eq. 19 states that deviatoric damage in soils is initiated

when the energy norm of the tensile deviatoric strain tensor ξd,t+ exceeds the

initial deviatoric damage threshold gd,0. The evolutions of the deviatoric damage

variable dd,t and the deviatoric damage threshold gd,t are defined by the rate

equations:

_dd,t ¼ _μd Hd ξþd,t, dd,t
� �

(20)

_gd ¼ _μd (21)
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where _μd � 0 is the deviatoric damage consistency parameter that defines deviatoric

damage loading/unloading conditions according to the Kuhn-Tucker relations:

_μd � 0, ϕd
d ξþd,t, gd,t
� �

� 0, _μd ϕd
d ξþd,t, gd,t
� �

¼ 0 (22)

Moreover, Hd in Eq. 20 signifies the deviatoric damage hardening function.

Conditions Eq. 22 are standard for problems involving unilateral constraint. If

ϕd
d(ξd,t+ , gd,t) < 0, the deviatoric damage criterion is not satisfied and by conditions

Eq. 22, _μd ¼ 0; hence, the deviatoric damage rule Eq. 20 implies that _dd ¼ 0 and no

further deviatoric damage takes place. If, on the other hand, _μd > 0; that is, further

deviatoric damage (“tensile loading”) is taking place, conditions Eq. 22 imply that

ϕd
d (ξd,t+ , gd,t) ¼ 0. In this case, the value of _μd is determined by the deviatoric

damage consistency condition; i.e.,

ϕd
d ξþd,t, gd,t
� �

¼ _ϕd

d ξþd,t, gd,t
� �

¼ 0 ) _μd ¼ _ξþd (23)

and gd,t is defined by the expression

gd,t ¼ max gd,0, max
s� �1,tð Þ

ξþd,s

� �
� gdh, t�1ð Þ (24)

where gdh,(t�1) is the value for the current deviatoric damage threshold to be

numerically reduced due to incremental deviatoric healing (if any) from the previ-

ous time step.

If Hd (ξd,t+ , dd,t) in Eq. 20 is independent of _dd,t , the above formulation may be

rephrased as follows. Let Gd : R ! R+ be such that Hd(ξd,t+ ) � @Gd(ξd,t+ )/@ξd,t+ .

Gd(•) is assumed monotonic. A deviatoric damage criterion entirely equivalent

to condition Eq. 19 is given by ϕd

d ξþd,t, gd,t
� �

� Gd ξþd,t
� �

� Gd gd,t

� �
� 0 . The

flow rule and loading/unloading conditions read

_dd,t ¼ _μd
@ϕd

d ξþd,t, gd,t
� �
@ξþd,t

, gd,t ¼ _μd (25)

_μd � 0, ϕd

d ξþd,t, gd,t
� �

� 0, _μd ϕd

d ξþd,t, gd,t
� �

¼ 0: (26)

Characterization of Initial-Elastic-Strain-Energy-Based
Two-Parameter Healing Model

Similar to the characterization of volumetric and deviatoric damage in the previous

section, the progressive recovery of mechanical properties of soils due to healing is
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characterized by means of a two-parameter healing mechanism. Here, the notion of

equivalent compressive volumetric strain ξv� is used as the energy norm of the

compressive volumetric strain tensor. Accordingly, it can be set

ξ�v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 0

v «�v
� �q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
K «�kk
� �2r

(27)

where «kk
� ¼ «11

� + «22
� + «33

� and «� � P� : «. The fourth-order tensor P� denotes

the “mode I” negative (compressive) projection tensor with components

P�
ijkl «ð Þ ¼ 1

2
Q�

ik Q�
jl þQ�

il Q�
jk

� �
(28)

where Q� ¼ 1
~
�Qþ.

A volumetric criterion ϕv
h (ξv,t� , rv,t) � 0 can be defined, formulated in the strain

space, with the following functional form:

ϕh
v ξ�v,t, rv,t
� �

� ξ�v,t � rv,t � 0, t�Rþ (29)

Here, rv,t defines the volumetric healing threshold at the current time t. If rv,0
denotes the initial volumetric healing threshold before any loading is applied, it

must have rv,t � rv,0. Note that rv,0 is considered as a characteristic material

property. Condition Eq. 28 then states that volumetric healing in the material is

initiated when the energy norm of the compressive volumetric strain tensor ξv,t�

exceeds the initial volumetric healing threshold rv,0. The evolutions of the volu-

metric healing variable Rv and the volumetric healing threshold rv,t are defined by

the rate equations

_Rv,t ¼ _ζv Zv ξ�v,t,Rv,t

� �
(30)

_rv ¼ _ζv (31)

where _ζv � 0 is a volumetric healing consistency parameter that defines the

volumetric healing loading/unloading conditions according to the Kuhn-Tucker

relations:

_ζv � 0, ϕh
v ξ�v,t, rv,t
� �

� 0, _ζv ϕ
h
v ξ�v,t, rv,t
� �

¼ 0 (32)

Moreover, Zv in Eq. 29 stands for the volumetric healing hardening function.

Conditions Eq. 31 are standard for problems involving unilateral constraint. If

ϕv
h(ξv,t� , rv,t) < 0, the volumetric healing criterion is not satisfied and conditions

Eq. 31, _ζv ¼ 0; hence, the volumetric healing rule Eq. 29 implies that _Rv ¼ 0 and no

further volumetric healing takes place. If, on the other hand, _ζv > 0; that is, further

32 New Strain-Energy Based Coupled Elastoplastic Two-Parameter Damage and. . . 1127



volumetric healing (“compressive loading”) is taking place, conditions Eq. 31

imply that ϕv
h(ξv,t� , rv,t) ¼ 0. In this event, the value of _ζv is determined by the

volumetric healing consistency condition; i.e.,

ϕh
v ξ�v,t, rv,t
� �

¼ _ϕh

v ξ�v,t, rv,t
� �

¼ 0 ) _ζv ¼ _ξ� (33)

and rv,t is given by the expression

rv,t ¼ max rv,0, max
s� �1,tð Þ

ξ�v,s

� �
� rvd, t�1ð Þ (34)

where rvd,(t�1) is the value for the current volumetric healing threshold to be

reduced due to the incremental volumetric damage (if any) from the previous

time step.

If Zv(ξv,t� , Rv,t) in Eq. 29 is independent of _Rv,t , the above formulation may be

rephrased as follows. Let Gv
� : R ! R+ be such that Zv(ξv,t� ) � @Gv

�(ξv,t� )/@ξv,t� . Gv
�(•)

is assumed monotonic. A volumetric healing criterion entirely equivalent to

conditions Eq. 28 is given by ϕh

v ξ�v,t, rv,t
� �

� G�
v ξ�v,t
� �

� G� rv,t
� � � 0. The flow

rule and loading/unloading conditions become

_Rv,t ¼ _ζv
@ϕh

v ξ�v,t, rv,t
� �
@ξ�v,t

, rv,t ¼ _ζv (35)

_ζv � 0, ϕh

v ξ�tv , rtv
� � � 0, _ζv ϕh

v ξ�tv , rtv
� � ¼ 0 (36)

Next, the notion of equivalent compressive deviatoric strain ξd� is ascribed as the

(undamaged) energy norm of the compressive deviatoric strain tensor. It can be

defined that

ξ�d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 0

d e�ð Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
G e� : e�

r
(37)

where e� ¼ e� � 1
3
e�kk 1

~
and «� � P� : «. Then, the state of deviatoric healing by

using a deviatoric healing criterion ϕd
h (ξd,t� , rd,t) � 0 is characterized, formulated in

the strain space, with the following functional form:

ϕh
d ξ�d,t, rv,t
� �

� ξ�d,t � rd,t � 0, t�Rþ (38)

Here, rd,t is the deviatoric healing threshold at the current time t. If rd,0
denotes the initial deviatoric healing threshold before any loading is applied,
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it must have rd,t � rd,0. Note that rd,0 is also considered as a characteristic material

property. Condition Eq. 37 then states that deviatoric healing in the material is

initiated when the energy norm of the compressive deviatoric strain tensor ξd,t�

exceeds the initial deviatoric healing threshold rd,0. For the case, the evolution of

the deviatoric healing variable Rd and the deviatoric healing threshold rd,t can be

defined by the rate equations

_Rd,t ¼ _ζd Zd ξ�d,t,Rd,t

� �
(39)

_rd ¼ _ζd (40)

where _ζd � 0 is a deviatoric healing consistency parameter that defines deviatoric

healing loading/unloading conditions according to the Kuhn-Tucker relations:

_ζd � 0, ϕh
d ξ�d,t, rd,t
� �

� 0, _ζd ϕ
h
d ξ�d,t, rd,t
� �

¼ 0 (41)

Moreover, Zd in Eq. 38 represents the deviatoric healing hardening function.

Conditions Eq. 40 are standard for problems involving unilateral constraint.

If ϕd
h (ξd,t� , rd,t) < 0, the deviatoric healing criterion is not satisfied and by condi-

tions Eq. 40, _ζd ¼ 0; hence, the deviatoric healing rule Eq. 38 implies that _Rd ¼ 0

and no further deviatoric healing takes place. By contrast, if _ζd > 0 , further

deviatoric healing (“compressive loading”) takes place and conditions Eq. 40

imply that ϕd
h (ξd,t� , rd,t) ¼ 0. In this event, the value of _ζd is determined by the

deviatoric healing consistency condition; i.e.,

ϕh
d ξ�d,t, rd,t
� �

¼ _ϕh

d ξ�d,t, rd,t
� �

¼ 0 ) _ζd ¼ _ξ�d (42)

and rd,t is given by the expression

rd,t ¼ max rd,0, max
s� �1,tð Þ

ξ�d,s

� �
� rdd, t�1ð Þ (43)

where rdd,(t�1) is the numerically reduced value for the current deviatoric healing

threshold due to the incremental deviatoric damage (if any) from the previous

time step.

If Zd(ξd,t� , Rd,t) in Eq. 38 is independent of _Rd,t , the above formulation may be

rephrased as follows. LetGd
� : R ! R+ be such that Zd(ξd,t� ) � @Gd

�(ξd,t� )/@ξd,t� .Gd
�(•)

is assumed monotonic. A deviatoric healing criterion entirely equivalent to condi-

tions Eq. 37 is given by ϕh

d ξ�d,t, rd,t
� �

� G�
d ξ�d,t
� �

� G� rd,t
� � � 0. The flow rule

and loading/unloading conditions become
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_Rd,t ¼ _ζd
@ϕh

d ξ�d,t, rd,t
� �
@ξ�d,t

, rd,t ¼ _ζd (44)

_ζd � 0, ϕh

d ξ�d,t, rd,t
� �

� 0, _ζd ϕh

d ξ�d,t, rd,t
� �

¼ 0: (45)

Net (Combined) Effects of the Two-Parameter Damage and
Healing Models

In the recent work (Ju et al. 2011a, b), the following characterization is clearly

illustrated for the net effects of damage and healing is physically incorrect and

misleading:

dnet ¼ d 1� Rð Þ (46)

Then, a micromechanics-motivated scalar incremental form is proposed to

compute the net effects of isotropic damage healing, dnet, as expressed in Eq. 32

of Ju et al. (2011a).

As for the net effects of two-parameter damage-healing mechanisms, two

independent variables are employed (the volumetric variable dv
net and the deviatoric

variable dd
net). The following interacting mechanisms are proposed:

Interim volumetric and deviatoric damage :

d̂v,nþ1 ¼ dnetv,n þ Δdv,nþ1, d̂d,nþ1 ¼ dnetd,n þ Δdd,nþ1

With volumetric and deviatoric healing :
ΔRv,nþ1 ¼ 0 and ΔRd,nþ1 ¼ 0, if there is no healing
� �

:

Δdhv,nþ1 ¼ �d̂v,nþ1 ΔRv,nþ1, Δdhd,nþ1 ¼ �d̂d,nþ1 ΔRd,nþ1

dnetv,nþ1 ¼ d̂v,nþ1 þ Δdhv,nþ1, dnetd,nþ1 ¼ d̂d,nþ1 þ Δdhd,nþ1

Net incremental volumetric and deviatoric damage :
Δdnetv,nþ1 ¼ Δdv,nþ1 � d̂v,nþ1 ΔRv,nþ1, Δdnetd,nþ1 ¼ Δdd,nþ1 � d̂d,nþ1 ΔRd,nþ1

(47)

where Δdv,nþ1 is the incremental volumetric damage variable, Δdd,nþ1 means the

incremental deviatoric damage variable, d̂v,nþ1 is defined as the interim volumetric

damage variable, d̂d,nþ1 is the interim deviatoric damage variable, Δdv,nþ1
h repre-

sents the incremental volumetric recovery due to the incremental volumetric
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healing, and Δdd,nþ1
h signifies the incremental deviatoric recovery due to the

incremental deviatoric healing. Take the volumetric part, for instance, if there is

no volumetric healing, the interim volumetric damage variable d̂v,nþ1 is equal to dv,
nþ1

net. If the volumetric healing exists, the net (combined) volumetric

damage-healing variable dv,nþ1
net must be modified by Δdv,nþ1

h .

With Δdv
net and Δdd

net known, the incremental fourth-rank damage tensor can be

obtained by the following equation:

ΔD ¼ Δdnetv 1
~
� 1

~
þ Δdnetd Idev: (48)

Computational Algorithms: Two-Step Operator Splitting

In the previous sections, the new initial-elastic strain-energy-based two-parameter

damage-healing models are proposed based on the effective stress concept. In this

section, the focus is placed in detail on the computational aspects of the proposed

new damage-healing models within the context of two-step operator splitting

methodology. More precisely, the attention is placed on the following local

two-parameter elastoplastic-damage-healing rate constitutive equations:

_ε ¼ ∇s _u tð Þ
_dv,t ¼ _μvHv ξþv,t, dv,t

� �
_gv ¼ _μv

_μv � 0, ϕd
v ξþv,t, gv,t
� �

� 0, _μv ϕ
d
v ξþv,t, gv,t
� �

¼ 0

8>><
>>:

_dd,t ¼ _μdHd ξþd,t, dd,t
� �

_gd ¼ _μd
_μd � 0, ϕd

d ξþd,t, gd,t
� �

� 0, _μd ϕ
d
d ξþd,t, gd,t
� �

¼ 0

8>><
>>:

_Rv,t ¼ _ζvZv ξ�v,t,Rv,t

� �
_rv ¼ _ζv

_ζv � 0, ϕh
v ξ�v,t, rv,t
� �

� 0, _ζv ϕ
h
v ξ�v,t, rv,t
� �

¼ 0

8>><
>>:

_Rd,t ¼ _ζdZd ξ�d,t,Rd,t

� �
_rd ¼ _ζd

_ζd � 0, ϕh
d ξ�d,t, rd,t
� �

� 0, _ζd ϕh
d ξ�d,t, rd,t
� �

¼ 0

8>><
>>:
Δdnetv,nþ1 ¼ Δdv,nþ1 � d̂v,nþ1 ΔRv,nþ1; Δdnetd,nþ1 ¼ Δdd,nþ1 � d̂d,nþ1 ΔRd,nþ1

ΔD ¼ Δdnetv 1
~
� 1

~
þ Δdnetd Idev

(49)
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_σ ¼ d

dt

@Ψ 0 «ð Þ
@«

	 

� _σp

_σp ¼ _λ
@f

@«

@Ψ 0 «ð Þ
@«

� σp,q

� �
associative flow ruleð Þ

_q ¼ _λh
@Ψ 0 «ð Þ
@«

� σp,q

� �
plastic hardening lawð Þ

f
@Ψ 0 «ð Þ
@«

� σp,q

� �
� 0 yield conditionð Þ

8>>>>>>><
>>>>>>>:

(50)

From an algorithmic standpoint, the problem of integrating the evolution in

Eqs. 46 and 47 reduces to updating the basic variables σ, dnetv , dnetd ,σp,q
� �

in a

manner consistent with the constitutive models. It is essential to realize that in this

computational process, the history of strains t ! « � ∇su(t) is assumed to be

given.

Equations of evolution are to be solved incrementally over a sequence of given

time steps [tn, tn+1] � R+, n ¼ 0, 1, 2 . . . . Therefore, the initial conditions for

equations are

σ, dnetv , dnetd ,σp,q
� �jt¼tn ¼ σn, d

net
v,n, d

net
d,n,σ

p
n ,qn

n o
In accordance with the notion of operator split, the following additive decom-

position of problem of evolution is considered into the elastic-damage-healing

predictor and the plastic corrector parts.

1:Elastic�damage�healing part:

_« ¼ ∇s _u tð Þ
_dv ¼ Hv ξþv

� �
_ξþv , iff ϕd

v,t ¼ _ϕd

v,t ¼ 0

0 , otherwise

(
; _dd ¼ Hd ξþd

� �
_ξþd , iff ϕd

d,t ¼ _ϕd

d,t ¼ 0

0 , otherwise

(

_gv ¼ ξþv , iff ϕd
v,t ¼ _ϕd

v,t ¼ 0

0 , otherwise

(
; _gd ¼

_ξþd , iff ϕd
d,t ¼ _ϕd

d,t ¼ 0

0 , otherwise

(

_Rv ¼ Zv ξ�v
� �

_ξ�v , iff ϕh
v,t ¼ _ϕh

v,t ¼ 0

0 , otherwise

(
; _Rd ¼ Zd ξ�d

� �
_ξ�d , iff ϕh

d,t ¼ _ϕh

d,t ¼ 0

0 , otherwise

(

_rv ¼
_ξ
�
v , iff ϕh

v,t ¼ _ϕ
h

v,t ¼ 0

0 , otherwise

(
; _rd ¼

_ξ
�
d , iff ϕh

d,t ¼ _ϕ
h

d,t ¼ 0

0 , otherwise

(

Δdnetv,nþ1 ¼ Δdv,nþ1 � d̂v,nþ1ΔRv,nþ1 ; Δdnetd,nþ1 ¼ Δdd,nþ1 � d̂d,nþ1ΔRd,nþ1

ΔD ¼ Δdnetv 1
~
� 1

~
þ Δdnetd Idev

_σ ¼ d

dt

@Ψ 0 «ð Þ
@«

	 

_σp ¼ 0

_q ¼ 0

(51)
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2:Plastic part:
_« ¼ 0
_d
net

v ¼ 0
_d
net

d ¼ 0

_rv ¼ 0

_rd ¼ 0
_σ ¼ � _σp

_σp ¼ _λ
@f

@«

@Ψ 0 «ð Þ
@«

� σp,q

� �

_q ¼ _λh
@Ψ 0 «ð Þ
@«

� σp,q

� �

(52)

It is noted that Eqs. 48 and Eq. 49 do indeed add up to Eqs. 46 and 47, in

agreement with the notion of operator split. The formulation of an algorithm

consistent with equations is based on the following fundamental result concerning

operator split method. Given the two algorithms, the first one is consistent with

problem Eq. 48 (the elastic-damage-healing predictor) and the second one is

consistent with problem Eq. 49 (the plastic return mapping corrector). In turn, the

product algorithm obtained by successive application of these two algorithms is

consistent with the original problem.

The Two-Parameter Elastic-Damage-Healing Predictor

An algorithm consistent with problems Eq. 48 and Eq. 49, referred to as the

two-parameter elastic-damage-healing predictor, is rendered by the following

step-by-step procedure.

Step 1: Strain update: Given the incremental displacement field un+1, the strain

tensor is updated as

«nþ1 ¼ «n þ∇s
unþ1:

Step 2: Compute the “mode I positive 4th rank projection operator” Pn+1
+

(different from Simo and Ju 1987a, b, 1989 and Ju 1989a), based on the total strain

tensor «n+1:

Pþ
ijkl «nþ1ð Þ ¼ 1

2
Qþ

ik Qþ
jl þQþ

il Qþ
jk

� �
(53)

where Qþ
nþ1 ¼

X2
i¼1

Ĥ «ið Þpi � pi; εnþ1 ¼
X2
i¼1

«i pi � pi (for 2D simulations in this

chapter) and Ĥ «ið Þ is the smoothed Heaviside function.

Step 3: Compute the “negative 4th rank projection operator” Pn+1
� based on the

total strain tensor «n+1:
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P�
ijkl «nþ1ð Þ ¼ 1

2
Q�

ik Q�
jl þQ�

il Q�
jk

� �
(54)

where Q�
nþ1 ¼ 1

~
�Qþ

nþ1.

Step 4: Compute the initial (undamaged) elastic tensile and compressive

volumetric and deviatoric strain energies, ξv,n+1+ , ξd,n+1+ , ξv,n+1� and ξd,n+1� .

ξþv,nþ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 0

v «þv,nþ1

� �r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
K «þkk,nþ1

� �2
r

, if linear elasticity (55)

ξþd,nþ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 0

d eþnþ1

� �q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
G eþnþ1 : e

þ
nþ1

r
(56)

ξ�v,nþ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 0

v «�v,nþ1

� �r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
K «�kk,nþ1

� �2
r

, if linear elasticity (57)

ξ�d,nþ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 0

d e�nþ1

� �q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
G e�nþ1 : e

�
nþ1

r
(58)

where «kk
+ ¼ «11

+ + «22
+ + «33

+ , eþ ¼ «þ � 1
3
«þkk 1

~
, «+ ¼ P+ : «, and «� ¼ P� : «.

Step 5: Update the two scalar damage parameter thresholds ~dv

� �
nþ1

and ~dd

� �
nþ1

.

For the volumetric part:

(a) If (ΔRv)n > 0 and ~dv

� �
n
> 0 , update the volumetric damage parameter

threshold:

~dv

� �
nþ1

¼ ~dv

� �
n

1:0� ΔRvð Þn
� �

(59)

(b) Otherwise, set

~dv

� �
nþ1

¼ ~dv

� �
n

(60)

For the deviatoric part:

(a) If (ΔRd)n > 0 and ~dd

� �
n
> 0 , update the deviatoric damage parameter

threshold:

~dd

� �
nþ1

¼ ~dd

� �
n
1:0� ΔRdð Þn
� �

(61)

(b) Otherwise, set

~dd

� �
nþ1

¼ ~dd

� �
n

(62)
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Step 6: Compute the two scalar damage predictors (dv)n+1 and (dd)n+1. Define:
UBVD ¼ the upper bound of the volumetric damage threshold

(0 < UBVD < 1).

ξUBVD+ ¼ the upper bound of tensile volumetric strain energy obtained from the

volumetric damage functional evaluation for specific UBVD.

UBDD ¼ the upper bound of deviatoric damage threshold (0 < UBDD < 1).

ξUBVD+ ¼ the upper bound of tensile deviatoric strain energy.

For the volumetric part:

(a) If ξv,n+1+ � ξvol0 +, no further volumetric damage, set Δ(dv)n+1 ¼ 0, where ξvol0 + is

the initial volumetric damage threshold.

(b) If ξvol0 + < ξv,n+1+ < ξUBVD+ , compute (dv)n+1 using a nonlinear damage functional

evaluation, such as one of the following two functions (Wu et al. 2005):

dvð Þnþ1 ξþv,nþ1

� �
¼ kvð Þc ξþv,nþ1 � kvð Þi

h i
ξþv,nþ1 kvð Þc � kvð Þi

 � (63)

where (kv)c and (kv)i are material constants for the volumetric damage evolution.

dvð Þnþ1 ξþv,nþ1

� �
¼ 1� Av 1 � Bvð Þ

ξþv,nþ1

� Bv exp Av � ξþv,nþ1

h i
(64)

where Av and Bv are material constants for the volumetric damage evolution.

(c) If ξv,n+1+ � ξUBVD+ , set (dv)n+1 ¼ UBVD and a counter Nv. If Nv > 1, no further

volumetric damage,

set Δ(dv)n+1 ¼ 0.

For the deviatoric part:

(a) If ξd,n+1+ � ξdev0 +, no further deviatoric damage, set Δ(dd)n+1 ¼ 0, where ξdev0 + is

the initial deviatoric damage threshold.

(b) ξdev0 + < ξd,n+1+ < ξUBDD+ , compute (dd)n+1 using a nonlinear damage functional

evaluation, such as one of the following two functions (Wu et al. 2005):

ddð Þnþ1 ξþd,nþ1

� �
¼ kdð Þc ξþd,nþ1 � kdð Þi

h i
ξþd,nþ1 kdð Þc � kdð Þi

 � (65)

ddð Þnþ1 ξþd,nþ1

� �
¼ 1� Ad 1 � Bdð Þ

ξþd,nþ1

� Bd exp Ad � ξþd,nþ1

h i
(66)

(a) If ξd,n+1+ � ξUBDD+ , set (dd)n+1 ¼ UBDD and a counter Nd. If Nd > 1, no further

deviatoric damage, set Δ(dd)n+1 ¼ 0.

If both Δ(dv)n+1 ¼ 0 and Δ(dd)n+1 ¼ 0, go to Step 10.
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Step 7: Check the two incremental scalar damage criteria Δ(dv)n+1 and Δ(dd)n+1:

Δ dvð Þnþ1 ¼ dvð Þnþ1 � ~dv

� �
nþ1

(67)

Δ ddð Þnþ1 ¼ ddð Þnþ1 � ~dd

� �
nþ1

(68)

If Δξn+1+ � 0, then set Δ(dv)n+1 ¼ 0 and Δ(dd)n+1 ¼ 0.

Only when both Δ(dv)n+1 � 0 and Δ(dd)n+1 � 0, go to Step 10.

Otherwise, if Δ(dv)n+1 > 0, set ~dv

� �
nþ1

¼ dvð Þnþ1; continue.

If Δ(dd)n+1 > 0, set ~dd

� �
nþ1

¼ ddð Þnþ1; continue

where ~dv

� �
n
and ~dd

� �
n
denote the scalar volumetric and deviatoric damage

parameter thresholds from the previous time step.

Step 8: Compute the incremental two-parameter damage predictor tensor ΔDn+1

and the updated nonsymmetric interim two-parameter damage tensor D̂nþ1:

ΔDnþ1 ¼ Δdvð Þnþ11
~
� 1

~
þ Δddð Þnþ1Idev (69)

D̂nþ1 ¼ Dnet
n þ ΔDnþ1 (70)

Step 9: Update the two scalar healing parameter thresholds ~Rv

� �
nþ1

and ~Rd

� �
nþ1

:

~Rv

� �
nþ1

and ~Rd

� �
nþ1

denote the net amount of volumetric and deviatoric healing

sustained after damage takes place.

For the volumetric part:

(a) If (Δdv)n+1 > 0 and ~Rv

� �
n
> 0, update the volumetric healing threshold for next

step:

~Rv

� �
nþ1

¼ ~Rv

� �
n
1:0� Δdvð Þnþ1

� �
(71)

(b) Otherwise, set:

~Rv

� �
nþ1

¼ ~Rv

� �
n

(72)

For the deviatoric part:

(a) If (Δdd)n+1 > 0 and ~Rd

� �
n
> 0, update the deviatoric healing threshold for next

step:

~Rd

� �
nþ1

¼ ~Rd

� �
n
1:0� Δddð Þnþ1

� �
(73)

(b) Otherwise, set:

~Rd

� �
nþ1

¼ ~Rd

� �
n

(74)
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Step 10: Compute the two scalar healing predictors (Rv)n+1 and (Rd)n+1. Define:

UBVH ¼ the upper bound of the volumetric healing threshold

(0 < UBVH < 1).

ξUBVH� ¼ the upper bound of compressive volumetric strain energy obtained from

the volumetric healing functional evaluation for specific UBVH (set as 0.6 for

example).

UBDH ¼ the upper bound of the deviatoric healing threshold

(0 < UBDH < 1).

ξUBVH� ¼ the upper bound of compressive deviatoric strain energy obtained from

the deviatoric damage functional evaluation for specific UBDH (set as 0.6 for

example).

For the volumetric part:

(a) If ξv,n+1� � ξvol0 �, no further volumetric healing, set Δ(Rv)n+1 ¼ 0

where ξvol0 � is the initial volumetric healing threshold.

(b) If ξvol0 � < ξv,n+1� < ξUBVH� , compute (Rv)n+1 using a nonlinear healing functional

evaluation, such as the following function (Wu et al. 2005):

Rvð Þnþ1 ξ�v,nþ1

� �
¼ hvð Þc ξ�v,nþ1 � hvð Þi

h i
ξ�v,nþ1 hvð Þc � hvð Þi

 � (75)

where (hv)c and (hv)i are material constants for the volumetric healing evolution.

Or, use the following function:

Rvð Þnþ1 ξ�v,nþ1

� �
¼ 1� Av 1 � Bv

� �
ξ�v,nþ1

� Bv exp Av � ξ�v,nþ1

h i
(76)

where Av and Bv are material constants for volumetric healing evolution.

(c) If ξv,n+1� � ξUBVH� , set (Rv)n+1 ¼ UBVH and a counter Mv.

If Mv > 1, no further volumetric healing, set Δ(Rv)n+1 ¼ 0

For the deviatoric part:

(a) If ξd,n+1� � ξdev0 �, no further deviatoric healing, set Δ(Rd)n+1 ¼ 0

where ξdev0 � is the initial deviatoric healing threshold.

(b) If ξdev0 � < ξd,n+1� < ξUBDH� , compute (Rd)n+1 using a nonlinear healing functional

evaluation, such as the following function (Wu et al. 2005):
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Rdð Þnþ1 ξ�d,nþ1

� �
¼ hdð Þc ξ�d,nþ1 � hdð Þi

h i
ξ�d,nþ1 hdð Þc � hdð Þi

 � (77)

where (hd)c and (hd)i are material constants for the deviatoric healing evolution.

Rdð Þnþ1 ξ�d,nþ1

� �
¼ 1� Ad 1 � Bd

� �
ξ�d,nþ1

� Bd exp Ad � ξ�d,nþ1

h i
(78)

(c) where Ad and Bd are material constants for deviatoric healing evolution.

If ξd,n+1� � ξUBDH� , set (Rd)n+1 ¼ UBDH and a counter Md.

If Md > 1, no further deviatoric healing, set Δ(Rd)n+1 ¼ 0.

Only when both Δ(Rv)n+1 ¼ 0 and Δ(Rd)n+1 ¼ 0, go to Step 14.

Otherwise, go to Step 11.

Step 11: Check the two incremental scalar healing criteria Δ(Rv)n+1 and

Δ(Rd)n+1:

Δ Rvð Þnþ1 ¼ Rvð Þnþ1 � ~Rv

� �
nþ1

(79)

Δ Rdð Þnþ1 ¼ Rdð Þnþ1 � ~Rd

� �
nþ1

(80)

If Δξn+1� � 0, then set Δ(Rv)n+1 ¼ 0 and Δ(Rd)n+1 ¼ 0.

Only when both Δ(Rv)n+1 � 0 and Δ(Rd)n+1 � 0, go to Step 14.

Otherwise, if Δ(Rv)n+1 > 0, set ~Rv

� �
nþ1

¼ Rvð Þnþ1.

If Δ(Rd)n+1 > 0, set ~Rd

� �
nþ1

¼ Rdð Þnþ1.

Where ~Rv

� �
n
and ~Rd

� �
n
denote the scalar volumetric and deviatoric healing

parameter thresholds from the previous time step.

Step 12: Compute the two-parameter incremental healing tensor ΔRn+1:

ΔRnþ1 ¼ ΔRvð Þnþ1 1
~
� 1

~
þ ΔRdð Þnþ1 Idev (81)

Step 13: Compute the incremental healing corrector, and update the

two-parameter net (combined) damage-healing tensor:

ΔDH
nþ1 ¼ �D̂nþ1 •ΔRnþ1

Dnet
nþ1 ¼ D̂nþ1 þ ΔDH

nþ1

(82)

Trial (predictor) stress: By substitution into the potential for the stress tensor, it

can be obtained:

σ0
nþ1 ¼

@Ψ 0 «nþ1ð Þ
@«

σtrial
nþ1 ¼ σ0

nþ1 � σp
n

qtrialnþ1 ¼ qn

(83)
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The Effective Plastic Return Mapping Corrector

To develop an algorithm consistent with the plastic part of the operator split, one

first checks the loading/unloading conditions.

Step 14: Check plastic yielding and active mode. The algorithmic counterpart of

the Kuhn-Tucker conditions is trivially implemented in terms of the elastic-damage

trial stress. One simply checks

f σtrial
nþ1,q

trial
nþ1

� � � 0 elastic� damage� healing predictor ¼ final state
> 0 plastic ) return mapping

�
(84)

Multi-surface plasticity: In the case of plastic loading, it is necessary to deter-

mine the active plastic surface, such as the CAP model.

Step 15: Effective plastic return mapping corrector. In the event of plastic

loading, the predictor stresses and internal variables are “returned back” to the

yield surface along the algorithmic counterpart of the flow generated by Eq. 49. The

algorithmic construction of this flow follows a proposed procedure inspired by a

form of Kelley’s convex cutting plane method for nonlinear optimization, with its

basic structure inherited from the Newton’s method. Two fundamental advantages

of this procedure are (a) the quadratic rate of convergence toward the yield surface

and (b) the need for computing the gradient of the flow rule and hardening law are

bypassed.

Step 16: Update the homogenized (nominal) stress σn+1:

σnþ1 ¼ I� Dnet
nþ1

 �
: σnþ1: (85)

Numerical Simulations of Soil Compression, Excavation,
and Compaction Motions

In order to demonstrate that the new two-parameter elastoplastic damage-healing

models can generate more versatile simulations than the hybrid isotropic

elastoplastic damage-healing models proposed in our previous work

(Ju et al. 2011a, b), the same numerical examples of soil compression, excavation,

and compaction are performed to render a fair comparison. The associated soil

properties are listed in Table 1; cf. Wu et al. (2005). The Drucker-Prager associative

multi-surface plasticity formulation is employed to model the soil behavior for

simplicity; cf. Simo et al. (1988), Wu et al. (2001), and Chen et al. (2009).

The initial configuration and discretization of the earth-moving process is

exhibited in Fig. 1. The blade of the bulldozer is treated as a rigid body and

thus represented by two contact surfaces in black color. To model the contact

between soil particles and blade surfaces, the traditional penalty formulation is

adopted. A layer of soil with dimension 4 m 	 2 m is discretized into

41 	 21 ¼ 861 uniformly distributed particles. As an important extension of
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semi-Lagrangian discretization, a new particle-based “partition of unity” contact

algorithm was developed (Wu et al. 2005). The natural contact algorithm

(Wu et al. 2005) is applied to model the contact between soil particles and ground

surfaces, which is found on the right-hand side in Fig. 1. The blade in Fig. 1 is

controlled to move horizontally to the right for 0.3 m, lift the soil vertically for

3 m, move horizontally to the right for 1.8 m, rotate 45
 to dump the soil over the

wall, and then rotate back to move forward and downward to compact the soil in

the ground pit.

For the new two-parameter elastoplastic damage-healing models, in addition to

the material parameters in damage and healing evolutions, there are four more

material parameters to control the soil behavior under complex numerical simula-

tions. These include the initial volumetric damage threshold ξvol0 +, initial deviatoric

damage threshold ξdev0 +, initial volumetric healing threshold ξvol0 �, and initial

deviatoric healing threshold ξdev0 �. In the numerical simulations, the following two

assumptions are made for simplicity. (i) The soil complies with the volumetric and

deviatoric damage-healing evolutions as described in Eqs. 60, 62, 72, and 74.

Table 1 The associated

soil properties
Young’s modulus 24.7 (MPa)

Poisson’s ratio 0.35

Density 1.88 	 103(kg/m3)

Cohesion 0.19 (MPa)

Lame constants λ ¼ 2:13457	 107 Pað Þ
μ ¼ 9:14815	 107 Pað Þ

Yield stress 1.88312 	 105(Pa)

Fig. 1 The initial configuration and discretization of the earth-moving process
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(ii) The volumetric and deviatoric damage-healing evolutions use the

same material parameters, i.e., (kv)c ¼ (kd)c ¼ (hv)c ¼ (hd)c ¼ 0.05 and

(kv)i ¼ (kd)i ¼ (hv)i ¼ (hd)i ¼ 50 for ductile soils.

Subsequently, a parametric study is performed to compare the new

two-parameter damage-healing models with the previous hybrid isotropic

damage-healing model, as rendered in Table 2, on the initial volumetric damage

threshold, the initial deviatoric damage threshold, the initial volumetric healing

threshold, and the initial deviatoric healing threshold.

Table 2 clearly shows that while the hybrid isotropic elastoplastic damage and

healing models can generate only one numerical simulation in our previous work

(Ju et al. 2011a, b), the new two-parameter elastoplastic damage and healing

models can have multiple versatile combinations of numerical simulations by

slightly adjusting ξvol0 +, ξdel0 +, ξvol0 �, and ξdev0 � for the underlying soil compression,

excavation, and compaction operations.

In this section, selected numerical results are presented to illustrate the salient

features and versatile simulation capability of the proposed damage-healing

models. Furthermore, the comparisons of progressive deformations at various

time steps for the effects of initial deviatoric damage threshold are displayed in

Table 2 A parametric study on xvol
0 +, xdev

0 +, xvol
0 �, and xdev

0 �

Initial volumetric

damage

threshold ξvol0 +

Initial deviatoric

damage

threshold ξdev0 +

Initial volumetric

healing

threshold ξvol0 �

Initial deviatoric

healing

threshold ξdev0 �

Hybrid isotropic elastoplastic damage-healing model

0.050 0.050 0.080 0.080

Two-parameter elastoplastic damage-healing models

Effect of

volumetric

damage

0.040 0.050 Infinite Infinite

0.045

0.055

0.060

Effect of

deviatoric

damage

0.050 0.040 Infinite Infinite

0.045

0.055

0.060

Effect of

volumetric

healing

0.050 0.050 0.070 0.080

0.075

0.085

0.090

Effect of

deviatoric

healing

0.050 0.050 0.080 0.070

0.075

0.085

0.090
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Fig. 2 and for the effects of initial volumetric and deviatoric healing thresholds are

rendered in Fig. 3. In these figures, the blue solid circles represent the soil particles

with no volumetric (deviatoric) damage, the red solid circles symbolize the soil

particles with full volumetric (deviatoric) damage (the upper bound damage UBVD

and UBDD in these simulations), and the solid circles in other colors (such as green,

yellow, and orange) signify partial volumetric (deviatoric) damage between 0 and

the upper bound damage.

Fig. 2 (continued)
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Conclusions

In this chapter, new initial-elastic-strain-energy-based coupled elastoplastic two-
parameter damage-healing formulations have been presented for the simulations of

complex earth-moving processes. The equivalent strain based on P+ and P� in

volumetric and deviatoric parts for energy criteria of the volumetric and deviatoric

damage and healing are employed for the proposed new models. Innovative

two-step operator split algorithms are presented, featuring the volumetric and

a b c d

Fig. 2 A parametric study on the initial deviatoric damage threshold ξdev0 + (ξvol0 + ¼ 0.05, ξvol0 � ¼
ξdev0 � ¼ infinite) of deformation of soils for various stages of the earth-moving simulations by the

two-parameter damage-healing models
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deviatoric elastic-damage-healing predictors and the effective plastic return map-

ping corrector. In addition, the coupling of the volumetric and deviatoric damage

and healing mechanisms is characterized in an incremental form by using the

predictor formula and corrector formula. In the absence of associated experimen-

tal data, the proposed two-parameter innovative formulations and algorithms for

soils only illustrate their significant versatility and the salient damage-healing

features. Experimental validations for the key parameters in damage and healing

evolutions will be performed once the associated experiment data becomes avail-

able. Fully saturated soils are considered in this chapter. The effects of moisture and

matric suction for partially saturated soils will be considered in the next chapter.

a b c d

Fig. 3 (continued)
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Further, extension of the current work can be made to accommodate the 4th-rank

anisotropic damage-healing formulations proposed recently by Ju et al. (2011a, b).

In addition, much gratitude is expressed to Prof. J.S. Chen and Dr. Pai-Chen Guan

for their assistance in implementing the proposed models into the NMAP

meshfree code.

References

E.J. Barbero, F. Greco, P. Lonetti, Continuum damage-healing mechanics with application to self-

healing composites. Int. J. Damage Mech. 14(1), 51–81 (2005)

a b c d

Fig. 3 A parametric study on the initial volumetric and deviatoric healing thresholds (ξvol0 �, ξdev0 �)
(ξvol0 + ¼ ξdev0 + ¼ 0.05) of deformation of soils for various stages of the earth-moving simulations by

the two-parameter damage-healing models

32 New Strain-Energy Based Coupled Elastoplastic Two-Parameter Damage and. . . 1145



J.S. Chen, Y. Wu, P. Guan, H. Teng, J. Gaidos, K. Hofstetter, M. Alsaleh, A semi-Lagrangian

reproducing Kernel formulation for modeling earth moving operations. Mech. Mater. 41,

670–683 (2009)

B.D. Coleman, M.E. Gurtin, Thermodynamics with internal state variables. J. Chem. Phys. 47(2),

597–613 (1967)

O. Herbst, S. Luding, Modeling particulate self-healing materials and application to uni-axial

compression. Int. J. Fract. 154(1–2), 87–103 (2008)

J.W. Ju, On energy-based coupled elastoplastic damage theories – constitutive modeling and

computational aspects. Int. J. Solids Struct. 25(7), 803–833 (1989a)

J.W. Ju, On energy-based coupled elastoplastic damage models at finite strains. J. Eng. Mech.

ASCE 115(11), 2507–2525 (1989b)

J.W. Ju, Isotropic and anisotropic damage variables in continuum damage mechanics. J. Eng.

Mech. ASCE 116(12), 2764–2770 (1990)

J.W. Ju, K.Y. Yuan, A.W. Kuo, Novel strain energy based coupled elastoplastic damage and

healing models for geomaterials – part I: formulations. Int. J. Damage Mech. 21(4), 525–549

(2011a)

J.W. Ju, K.Y. Yuan, A.W. Kuo, J.S. Chen, Novel strain energy based coupled elastoplastic damage

and healing models for geomaterials – part II: computational aspects. Int. J. Damage Mech. 21

(4), 551–576 (2011b)

L.M. Kachanov, Rupture time under creep conditions. Izvestia Akademii Nauk SSSR Otdelenie

Tekhnicheskich Nauk 8, 26–31 (1958)

M. Kachanov, Continuum model of medium with cracks. J. Eng. Mech. Div. ASCE 106(5),

1039–1051 (1980)

J. Lemaitre, A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol.

ASME 107(1), 83–89 (1985)

I.N. Rabotnov, On the equations of state for creep, in Progress in Applied Mechanics-the Prager
Anniversary Volume, (MacMillan, New York, 1963), pp. 307–315

J.C. Simo, J.W. Ju, Strain-based and stress-based continuum damage models.1. Formulation. Int.

J. Solids Struct. 23(7), 821–840 (1987a)

J.C. Simo, J.W. Ju, Strain-based and stress-based continuum damage models.2. Computational

aspects. Int. J. Solids Struct. 23(7), 841–869 (1987b)

J.C. Simo, J.W. Ju, On continuum damage-elastoplasticity at finite strains: a computational

framework. Comput. Mech. 5(5), 375–400 (1989)

J.C. Simo, J.W. Ju, K.S. Pister, R.L. Taylor, An assessment of the cap model: consistent return

algorithms and rate-dependent extension. J. Eng. Mech. ASCE 114(2), 191–218 (1988)

Y. Wu, A stabilized semi-Lagrangian Galerkin meshfree formulation for extremely large defor-

mation analysis. PhD Dissertation, University of California, Los Angeles, 2005

C.T. Wu, J.S. Chen, L. Chi, F. Huck, Lagrangian meshfree formulation for analysis of geotech-

nical materials. J. Eng. Mech. 127, 440–449 (2001)

K. Xia, A framework for earthmoving blade/soil model development. J. Terramech. 45(5),

147–165 (2008)

1146 J.-W.W. Ju and K.Y. Yuan



Particle-Cracking Modeling of Metal
Matrix Composites 33
L. Z. Sun, H. T. Liu, and Jiann-Wen Woody Ju

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148

Micromechanics of Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150

Homogenization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151

Damage Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154

Composite Constitutive Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154

Computational Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156

Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161

Abstract

This chapter aims to model the mechanical behavior of particle-reinforced metal

matrix composites with particle cracking. Specifically a micromechanics-based

elastoplastic constitutive model is coupled with damage mechanics due to

particle cracking to predict the overall mechanical behavior of particle-

reinforced metal matrix composites. Unidirectionally aligned spheroidal elastic

particles, some of which contain penny-shaped cracks, are randomly distributed
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in the elastoplastic metal matrix. These imperfect particles, attributed to pro-

gressive particle cracking, are modeled by using the double-inclusion concept.

The ensemble-volume averaged homogenization procedure is employed to esti-

mate the effective yield function of the damaged composites. The elastoplastic

mechanical behavior of particulate composites under uniaxial loading condition

is simulated and compared with available experimental results.

Introduction

Particle-reinforced metal matrix composites (PRMMCs) have received an increas-

ing amount of attention due to their good formability and machinability as well as

highly specific mechanical properties. However, the potential of widespread use of

PRMMCs is somewhat restricted due to their low ductility and fracture toughness

related to microstructural damage evolution. Minimizing these limitations through

microstructural design requires a thorough understanding of the micromechanisms

of PRMMC’s intrinsic damage processes.

Experimental investigations (Clyne and Withers 1993; Suresh et al. 1993) show

that normally there are three prevalent damage micromechanisms in PRMMCs,

including the brittle cracking of reinforcements, the debonding along the interface

between the matrix and reinforcements, and the ductile plastic localization in the

matrix. Accordingly, various models exist to estimate the effects of these micro-

structural damage processes on the overall mechanical behavior of PRMMCs. It

should be noted that the dominant damage mechanism is intimately related to the

strengths of reinforcement, the composite matrix and its interface, the reinforce-

ment shape and concentration, and the loading mode. This chapter is confined to the

reinforcing particle-cracking mechanism. In a companion chapter, Sun

et al. (▶Chap. 34, “Particle-Debonding Modeling of Metal-Matrix Composites”)

propose the modeling of the evolutionary interfacial particle debonding of metal

matrix composites based on the micromechanics concept for effective elastoplastic

behavior of partially debonded composites (Liu et al. 2006).

A topic of practical importance regarding the applications of PRMMCs is the

prediction of their overall elastoplastic responses due to microstructural particle-

cracking damage. For example, a number of finite element micromechanical studies

have been conducted to address the effects of particle cracking on the elastic and

elastoplastic behavior of PRMMCs (Bao 1992; Finot et al. 1994; Brockenbrough

and Zok 1995; Llorca et al. 1997; Wilkinson et al. 1997; Ghosh and Moorthy 1998;

Steglich et al. 1999). Within the unit-cell micromechanical framework of

two-dimensional axisymmetric finite element analyses, Bao (1992) examined the

effect of both intact and cracked reinforcing particles on the flow response of

PRMMCs with an elastic-perfectly plastic matrix, while Finot et al. (1994) and

Brockenbrough and Zok (1995) further considered the matrix as a plastically

hardening solid. Llorca et al. (1997) and Wilkinson et al. (1997) introduced the

Weibull statistics to simulate the damage evolution of particle cracking with their

finite element models. To consider composites with random reinforcement
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distributions, Ghosh and Moorthy (1998) developed a Voronoi cell finite element

approach to analyze the particle-cracking effect. Finally, Steglich et al. (1999)

considered the particle-cracking by means of a cohesive zone model and crack

propagation using the Gurson-Tvergaard-Needleman damage model (Gurson 1977;

Tvergaard and Needleman 1984).

Theoretical investigation of effects of damaged particles on the overall mechan-

ical behavior of PRMMCs appears to originate with Mochida et al. (1991), who

estimated the elastic stiffness of the composites based on a combination of the

Eshelby’s equivalent inclusion method (Eshelby 1957) and the Mori–Tanaka’s

back stress analysis (Mori and Tanaka 1973). Bourgeois (Bourgeois et al. 1994)

and Derrien et al. (2000) further extended Mochida et al.’s approach (Mochida

et al. 1991) to the elastoplastic study using the concept of secant moduli (Berveiller

and Zaoui 1979; Tandon and Weng 1988). More recently, Gonzalez and Llorca

(2000) used the incremental self-consistent scheme (Hill 1965) to compute the

effective elastoplastic responses of PRMMCs and the stress redistribution in parti-

cles induced by reinforcement fracture.

The objective of this chapter is to employ the micromechanics and homogeni-

zation (ensemble-volume average) approach to study the effective elastoplastic and

damage behavior of metal matrix composites containing unidirectionally aligned

particles. Contrary to most unit-cell methods with periodic microstructures, the

present model is based on the random distribution of particles embedded in the

matrix. Furthermore, the model emphasizes the effect of the fractured reinforce-

ment phase during the progressive evolution of the particle-cracking process. The

authors have developed a micromechanical framework to predict the effective

elastoplastic behavior of PRMMCs with random microstructures of spheroidal

particles under three-dimensional loading histories (Ju and Sun 2001; Sun and Ju

2001). A novel formulation has been derived for the local stress distribution in the

matrix with embedded spheroidal particles. The ensemble averaging procedure has

been employed to micromechanically derive the effective plastic yielding behavior

of PRMMCs based on the probabilistic spatial distribution of spheroidal particles

and particle–matrix influences. Extending the foregoing research, a

micromechanics-based elastoplastic constitutive model is proposed in this paper

to characterize the effect of particle cracking on PRMMCs.

The remaining part of this chapter is organized as follows: First of all, a

micromechanics principle is recapitulated to quantify the local stress field in

particles and the matrix in section “Micromechanics of Inclusions.” The double-

inclusion theory (Hori and Nemat-Nasser 1993; Shodja and Sarvestani 2001) is

introduced to simulate the cracking process in particles. In section “Homogeniza-

tion Procedure,” the ensemble-volume average procedure is employed to derive the

overall yield function of PRMMCs. Particle-cracking damage evolution and the

effective elastoplastic constitutive formulation are proposed in sections “Damage

Evolution” and “Composite Constitutive Modeling,” respectively. Finally, efficient

computational algorithms and numerical results are presented in sections “Compu-

tational Algorithm” and “Numerical Simulation” to demonstrate the proposed

method.
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Micromechanics of Inclusions

Consider a composite of an isotropically elastic matrix (phase 0) and unidirection-

ally aligned yet randomly distributed elastic spheroidal particles (phase 1) with

distinct material properties. It is assumed that the two phases are perfectly bonded

at interfaces. The isotropic stiffness of matrix and particles can be written as

C
βð Þ
ijkl ¼ λ βð Þδijδkl þ μ βð Þ δikδjl þ δilδjk

� �
, β ¼ 0, 1 (1)

where (λ(0), μ(0)) and (λ(1), μ(1)) are the Lame constants of the matrix and the

particle, respectively.

Upon loading, the local stress σ(x) at any point x in the matrix is the sum of the

far-field stress σ0 and the perturbed stress σ0(x) due to the presence of the inhomo-

geneous particles. Specifically, the stress perturbation due to one single particle

centered at x0 is derived as (Ju and Sun 2001)

σ0 xjx0ð Þ ¼ C 0ð Þ � G 1ð Þ
x� x0ð Þ

h i
: « 1ð Þ

� (2)

where «*
(1) is the equivalent eigenstrain which reads

« 1ð Þ
� ¼ � S 1ð Þ þ C 1ð Þ � C 0ð Þ

� ��1

� C 0ð Þ
� ��1

: «0 (3)

with «0 ¼ C(0)� 1 : σ0. Furthermore, G
1ð Þ

x� x0ð Þ and S(1) are the fourth-rank

exterior- and interior-point Eshelby’s tensors for spheroidal inclusions, explicit

expressions of which can be found in Ju and Sun (1999). It is also noted that,

throughout the paper, the double-dot symbol “:”” denotes the tensor contraction

between a fourth-rank tensor and a second-rank tensor, while the symbol “·”

represents the tensor multiplication between two fourth-rank tensors.

During the external loading process, particle cracking may take place inside the

phase of reinforcement once the local stress intensity reaches the critical value (Lee

et al. 1999). The micromechanisms for crack initiation, interaction, and growth are

complicated. Since the major objective is to model the overall mechanical proper-

ties of PRMMCs through homogenization procedures rather than the locally accu-

rate stress/strain fields, a penny-shaped crack (phase 2) is embedded in the perfect

particle to simulate the actual particle-cracking damage, as shown in Fig. 1. From

the double-inclusion theory (Hori and Nemat-Nasser 1993; Shodja and Sarvestani

2001), the local perturbed stress σ0(x) due to a damaged particle centered at x0 can
be estimated as

σ0 xjx0ð Þ ¼ C 0ð Þ � G 1ð Þ
x� x0ð Þ

h i
: « 1ð Þ

� þ C 0ð Þ � G 2ð Þ
x� x0ð Þ

h i
: « 2ð Þ

� � « 1ð Þ
�

� �
(4)
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where G
2ð Þ

x� x0ð Þ is the exterior-point Eshelby’s tensor for penny-shaped cracks.

It can be calculated as the special case of G
1ð Þ

x� x0ð Þ by setting the aspect ratio of

spheroidal particles equal to zero. Moreover, it is noted that the equivalent

eigenstrains «*
(1) and «*

(2) of spheroidal inclusions and penny-shaped cracks are

not uniform inside their respective domains (Shodja and Sarvestani 2001). For ease

of calculation, Hori and Nemat-Nasser’s (1993) volume-averaged expressions are

used in this paper:

«
1ð Þ
� ¼� S 1ð Þ þ C 1ð Þ �C 0ð Þ

� ��1

�C 0ð Þ
� �

�1 : «0

«
2ð Þ
� ¼� S 2ð Þ � Iþ S 1ð Þ �S 2ð Þ

� �
� S 2ð Þ þ C 1ð Þ �C 0ð Þ

� ��1

�C 0ð Þ
� ��1

� S 2ð Þ � I
� �( )�1

: «0

þ S 1ð Þ þ C 1ð Þ �C 0ð Þ
� ��1

�C 0ð Þ
� �

�1 : «0

(5)

where S(2) is the interior-point Eshelby’s tensor for penny-shaped cracks and I is the
fourth-rank identity tensor.

Homogenization Procedure

To obtain the effective (overall) constitutive laws of PRMMCs, a homogenization

procedure is usually performed within a mesoscopic representative volume element

(RVE) (Nemat-Nasser and Hori 1999). At any matrix material local point x, the
microscopic stress σ(x) is assumed to satisfy the von Mises J2-yield criterion:

F σ, e p
m

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ : Id : σ

p
� K ep

m

� � � 0 (6)

Fig. 1 Schematic diagram of

particle-cracking

microstructure of PRMMCs
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where e p
m and K ep

m

� �
are the equivalent plastic strain and the isotropic hardening

function of the matrix-only material, respectively. Moreover Id, denotes the

deviatoric part of the fourth-rank identity tensor I.
The square of the “current stress norm,” denoted byH(x|g) ¼ σ(x|g) : Id : σ(x|g),

at a local point x, contributes to the initial yielding criterion of composites for a

given particle configuration g (assembly). Furthermore, Hh im xð Þ is defined as the

ensemble average of H(x|g) over all possible realizations for a matrix point x:

Hh im xð Þ ¼ H0 þ
þ
g

H xjgð Þ � H0
	 


P gð Þdg (7)

Here, P(g) is the probability density function for finding a particle configuration

g in the composite, and H0 ¼ σ0 : Id : σ0 denotes the square of the far-field stress

norm applied to the composite.

The expression of hHim can be approximated by neglecting the interaction
among neighboring particles. That is, a matrix point x simply collects the pertur-

bation from all randomly located, non-interacting particles:

Hh im xð Þ ffi H0 þ
þ

x0=2Ξ xð Þ

H 1ð Þ xjx0ð Þ � H0
h i

P 1ð Þ x0ð Þdx0

þ
þ

x0=2Ξ xð Þ

H 2ð Þ xjx0ð Þ � H0
h i

P 2ð Þ x0ð Þdx0 (8)

where Ξ(x) is the exclusion zone of x for the center location x0 of a particle in the

probability space, which is identical to the shape and size of a spheroidal particle. In

addition, H(1) and H(2) are the stress-norm collection contributions from perfect

particles and cracked particles, respectively. They can be computed from Eqs. 2 and

4 in section “Micromechanics of Inclusions,” respectively.

For simplicity, it is assumed that all particles are uniformly distributed in the

composites. Thus, P(β)(x0) can be assumed to be N(β)/V (β ¼ 1, 2), where N(β) is the

total number of β-phase particles uniformly dispersed in volume V of RVE. After a

series of lengthy but straightforward derivations, the ensemble-averaged hHim can

be evaluated as

Hh im ¼ σ0 : T : σ0 (9)

where the components of the fourth-rank tensor T take the form

Tijkl ¼ T
1ð Þ
IK δijδkl þ T

2ð Þ
IJ δikδjl þ δilδjk
� �

(10)

with
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T
1ð Þ
IK ¼�1

3
þ 2

4725 1�ν0ð Þ2

3 35ν20�70ν0þ36
� �� 4A

2ð Þ
II A

2ð Þ
KKΔ

p
IK

ϕ2

α
þΔIK

ϕ

BIIBKK

� �

þ7 50ν20�59ν0þ8
� �� 4A

2ð Þ
II A

2ð Þ
KK Δp

I þΔp
Kð Þϕ2

α
þ ΔIþΔKð Þ ϕ

BIIBKK

� �

�2 175ν20�343ν0þ103
� �� 4A

2ð Þ
II A

2ð Þ
KKΔ

p
IK

ϕ2

α
þΔIK

ϕ

BIIBKK

� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ2 25ν0�2ð Þ 1�2ν0ð Þ
225 1�ν0ð Þ2 � ϕ ΓIIþΓKKð Þ

BIIBKK
�2

ϕ2

α
A

1ð Þ
II A

2ð Þ
KK þA

2ð Þ
II A

1ð Þ
kk

� � �

þ2 25ν0�23ð Þ 1�2ν0ð Þ
225 1�ν0ð Þ2 � ϕ ΓIIΔK þΓKKΔIð Þ

BIIBKK
�2

ϕ2

α
A

1ð Þ
II A

2ð Þ
KKΔ

p
K þA

2ð Þ
II A

1ð Þ
kk Δ

p
I

� � �

þ2 1�2ν0ð Þ2
3 1�ν0ð Þ2 � A

1ð Þ
II A

1ð Þ
KK

ϕ2

α
þϕΓIIΓKK

BIIBKK

 �

T
2ð Þ
IJ ¼ 1

2
þ 1

1575 1�ν0ð Þ2

70ν20�140ν0þ72
� �� 4A

2ð Þ
IJ A

2ð Þ
IJ Δ

p
IJ

ϕ2

α
þΔIJ

ϕ

BIJBIJ

� �

�7 175ν20�266ν0þ75
� �� 2A

2ð Þ
IJ A

2ð Þ
IJ Δp

I þΔp
J

� �ϕ2

α
þ ΔIþΔJð Þ

2

ϕ

BIJBIJ

� �

þ 350ν20�476ν0þ164
� �� 4A

2ð Þ
IJ A

2ð Þ
IJ

ϕ2

α
þ ϕ

BIJBIJ

� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(11)

Here, ν0 is Poisson’s ratio of the matrix material, α is the aspect ratio of

spheroidal particles, and ϕ, ϕ1, and ϕ2 are the volume fractions of the total particles,

perfect particles, and the cracked particles, respectively. It is noted that Mura’s

(1987) tensorial indicial notation is followed; i.e., repeated lower-case indices are

summed up from 1 to 3, whereas upper-case indices take on the same numbers as

the corresponding lower-case ones but are not summed up. Other parameters in the

above equation are given in (Ju and Tseng 1997).

The general relationship between the applied far-field stress σ0 and macroscopic

(ensemble-volume averaged) stress σ is given by Ju and Sun (2001)

σ0 ¼ P : σ (12)

where the fourth-rank tensor P reads

P ¼ C 0ð Þ � Iþ ϕ I� S 1ð Þ
� �

� S 1ð Þ þ C 1ð Þ � C 0ð Þ
� ��1

� C 0ð Þ
� ��1

" #
� C 0ð Þ�1

( )�1

(13)

The combination of Eqs. 9 and 12 then leads to an alternative expression of the

ensemble-averaged square of the current stress norm as

Hh im ¼ σ : T : σ (14)

where the fourth-rank tensor T ¼ PT·T·P. It is observed in the above equation that

Hh im can be reduced to that in Ju and Sun (2001) if no particle cracking occurs in

the composites. Furthermore, Eq. 14 will reduce to the classical J2-invariant for
ϕ ¼ 0 (matrix material only).
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Damage Evolution

Although the micromechanisms for particle interaction with neighboring materials

are complicated in composites, it is clear that the stress field inside the particle

domain is crucial for particle cracking. During the modeling of the elastoplastic

behavior of PRMMCs, the averaged normal stress on particles is the controlling

factor for particle cracking. This implies that particle cracking will occur in a

certain plane if the particle normal stress perpendicular to that plane reaches a

critical value (Lee et al. 1999). On the other hand, all particles are assumed to be

uniformly dispersed with identical geometry but not to initiate particle cracking

simultaneously. The cracking process is best described by Weibull’s (Sun

et al. 2003) probability approach (Llorca et al. 1997; Derrien et al. 2000; Weibull

1951; Li et al. 1999).

Assuming that Weibull’s statistics governs the initiation of particle cracking in

the symmetric equatorial plane (2–3 plane), the total volume fraction of cracked

particles ϕ2 can be expressed as

ϕ2

ϕ
¼ 1� exp � σ 1ð Þ

11

s

 !" #m
(15)

where the Weibull parameters s and m are related to the critical fracture strength of

particles and cracking evolution rate, respectively. For example, when an interme-

diate rate of m ¼ 5 is selected, s will be determined as 1.09 σcri. In addition, σ 1ð Þ
11 is

the averaged normal stress of particle in the symmetric direction. From the

micromechanics theory of section “Micromechanics of Inclusions,” the following

equation holds:

σ 1ð Þ ¼ C 0ð Þ � Iþ I� S 1ð Þ
� �

� S 1ð Þ þ C 1ð Þ � C 0ð Þ
� ��1

� C 0ð Þ
� ��1

( )
: «0 (16)

Composite Constitutive Modeling

When a small deformation is considered, the total macroscopic strain « consists of

two parts:

« ¼ «e þ «p (17)

where «e denotes the overall elastic strain and«p represents the overall plastic strain
of composites. The relationship between the macroscopic stress σ and macroscopic

elastic strain «e reads

σ ¼ C : «e (18)
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where the effective elastic stiffness of composites can be determined as

(Wilkinson et al. 2001)

C ¼ C 0ð Þ þ ϕ C 0ð Þ � K� ϕ S 1ð Þ þ ϕ2

α S 2ð Þ � J�1 � K
h i�1

þ ϕ2

α
C 0ð Þ � ϕ2

α
S 2ð Þ þ I� ϕ S 1ð Þ � K�1

� �
� J

� ��1 (19)

in which

K ¼ S 1ð Þ þ C 1ð Þ � C 0ð Þ
� ��1

� C 0ð Þ

J5 Iþ S 1ð Þ � S 2ð Þ
� �

� S 2ð Þ þ �C 1ð Þ � C 0ð Þ��1 � C 0ð Þ
h i

�1
n o

� E
(20)

and E ¼ lim
ρ!0

S 2ð Þ�I
ρ with ρ as the limiting aspect ratio of penny-shaped cracks.

The overall plastic flow of composites is postulated to be associative. The
macroscopic plastic strain rate for PRMMCs takes the form

_«
p ¼ _λ

@F

@σ
(21)

where _λ is the plastic consistency parameter. Moreover, F is the overall yield

function of composites which, based on ensemble homogenization derivations in

section “Homogenization Procedure,” can be micromechanically determined as

F ¼ 1� ϕ1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ : T : σ

p
� K epð Þ � 0 (22)

where ep represents the effective equivalent plastic strain, while the simple isotropic

hardening function K epð Þ is proposed as

K epð Þ ¼
ffiffiffi
2

3

r
σy þ h epð Þq	 


(23)

Here, σy denotes the initial yield stress of matrix material, and h and q signify the
linear and exponential isotropic hardening parameters.

Therefore, an effective elastoplastic constitutive model has been developed for

particle reinforced metal matrix composites with a progressive particle-cracking

process. The model is formulated in Eqs. 15, 16, 17, 18, 19, 20, 21, and–22 based on

a micromechanics approach, ensemble homogenization procedures, and the statis-

tical distribution method. The proposed model allows one to estimate the overall

elastoplastic stress–strain responses of the composites.
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Computational Algorithm

Consistent with the computational plasticity algorithms, this chapter employs the

strain-driven algorithm in which the overall stress history is to be uniquely deter-

mined by the given overall strain history. Similar to the previous procedures (Ju and

Chen 1994), the unknown state of a point σnþ1,«
p
nþ1, e

p
nþ1

� �
is to be determined at

the end of the time step t ¼ tn + 1, given the known state from the previous time step

«n, «
p
n, e

p
n

� �
at t ¼ tn. The total stress σn at tn can be evaluated as

σn ¼ C : «n � «pn
� �

(24)

The two-step operator splitting methodology is adopted to split the elastoplastic

loading process into the elastic predictor and plastic corrector. First, a trial elastic

stress can be computed as

σtrnþ1 ¼ σn þ C : Δ«nþ1 (25)

where Δ«nþ1 is the given strain increment at the (n + 1)th time step. The trial σtrnþ1

and the previous epn are then plugged into the yield function as

F
tr
nþ1 ¼ 1� ϕ1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σtrnþ1 : T : σtrnþ1

q
� K epn

� �
(26)

If F
tr
nþ1 � 0, then the incremental response is entirely elastic. It is therefore set

that σnþ1 ¼ σtrnþ1 and e p
nþ1 ¼ e p

n .

In the event of F
tr
nþ1 > 0 , the trial elastic stress is located outside the yield

surface, which is not allowed. The Kuhn–Tucker loading/unloading conditions

must be enforced to bring the elastic predictor back to the yield surface. By

employing the implicit backward Euler method which is unconditionally stable, it

reads

«pnþ1 ¼ «pn þ ξnþ1T : σnþ1e
p
nþ1 ¼ epn þ ξnþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
σnþ1 : T : σnþ1

r
(27)

with the following definition:

ξnþ1 ¼ 2 1� ϕ1ð Þ2 _λΔtnþ1 (28)

Consequently, the overall stress σnþ1 can be updated as

σnþ1 ¼ C : «nþ1 � «pn � ξnþ1T : σnþ1

� �
(29)

It is known that the effective yield function should always be zero during the

plastic loading process. Therefore, the parameter ξn + 1 can be determined by

enforcing the plastic consistency condition at t ¼ tn + 1:
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Fnþ1 ξnþ1ð Þ ¼ 1� ϕ1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σnþ1 : T : σnþ1

q
� K epnþ1

� � ¼ 0 (30)

Substitution of Eqs. 27 and 29 into Eq. 30 renders a nonlinear scalar equation in

terms of ξn+1. Once the parameter ξn+1 is numerically solved from Eq. 30, the total

current stress, the plastic strain, and the hardening parameter can be updated in

terms of Eqs. 27 and 29.

For convenience, Table 1 summarizes the above micromechanical iterative

computational algorithm for the overall elastoplastic responses of PRMMCs with

damage.

Numerical Simulation

Uniaxial stress–strain curves are often referred to as important indicators of the

mechanical behavior of materials. In order to illustrate the proposed

micromechanics-based model, the uniaxial stress tension is considered as an exam-

ple. In this case, the macroscopic stress σ can be expressed as σ11 > 0, and all other

stress components can be expressed as σij ¼ 0. The aligned, axisymmetric axis of

spheroidal particles is denoted as the x1-axis. Furthermore, unless noted otherwise

during subsequent numerical simulations, the matrix material is taken as an alumi-

num alloy with Young’s modulus Em ¼ 70 GPa, Poisson’s ratio νm ¼ 0.3, the

uniaxial yield strength σy ¼ 100 MPa, and the strain-hardening parameters h ¼
500 MPa and q ¼ 0.35. For the elastic reinforcement material, the Young’s mod-

ulus Ep¼ 450 GPa and the Poisson’s ratio νp ¼ 0.2 (similar to the elastic properties

of the SiC particles). The critical strength for particle cracking is σcri ¼ 3σy and the
particle-cracking evolution parameter is m ¼ 5.

Simulation results on uniaxial stress–strain–damage behavior of PRMMCs are

illustrated in Fig. 2. Specifically, Fig. 2a shows the effective stress–strain curves for

a 15 % total volume fraction of prolate spheroidal particles with the aspect ratio

α ¼ 3. It is demonstrated that the overall stress–strain responses with progressive

particle cracking lie between those of the composite with all particles fractured at

the outset (the lower bound) and the composite without particle cracking at all (the

upper bound). Less strain hardening can be observed for composites with the lower

critical fracture strength. Fig. 2b shows the volume fraction evolutions of cracked

particles during the external loading process. The damage parameter indicated by

ϕ2 initiates somewhere before the composite reaches its yield strength. The param-

eter ϕ2 keeps increasing until all particles crack. Weaker particle fracture strength

leads to faster damage evolution process.

The effect of the remaining particle phase (double inclusion), in which penny-

shaped cracks are embedded, is shown in Fig. 3. The model prediction demonstrates a

significant effect when compared with the mechanical response of materials featuring

penny-shaped cracks directly embedded in the matrix, even though the damage evolu-

tions are set the same. Both the elastic and plastic properties will be underestimated if

the remaining particle part is not taken into account in the calculations.
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Furthermore, Fig. 4 shows the comparison between the simulation and the

experimental results of Wilkinson et al. (1997). In their experiment, uniaxial

stress–strain behavior was recorded for SiC particulate-reinforced A356 aluminum

alloy composites. The following material properties are chosen: Em ¼ 70 GPa,

νm ¼ 0.3, σy ¼ 65 MPa, h ¼ 460 MPa, q ¼ 0.36, Ep ¼ 450 GPa, νp ¼ 0.2,

ϕ ¼ 10 % and 20 %, and α ¼ 3. In addition, the particle fracture strength σcri
is intentionally chosen as 4σy, and the damage evolution parameter is taken as 5.

Fig. 2 Simulations of overall uniaxial stress–strain curves (a) and microstructural damage

evolutions (b) of PRMMCs
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It is shown in Fig. 4 that the present predictions with particle cracking compare

well with the experimental data in the entire range of elastic and plastic stages.

In particular, the particle damage effect is clearly illustrated within the plastic

behavior.

Fig. 3 Effect of the remaining particle phase on overall elastoplastic behavior of PRMMCs

Fig. 4 Comparisons of uniaxial stress–strain responses with experimental data (Wilkinson

et al. 1997) for SiCp/Al composites
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Conclusions

Emanating from the eigenstrain concept of micromechanics and macroscopic

homogenization, ensemble-averaged elastoplastic constitutive equations are devel-

oped for particle-reinforced metal matrix composites with particle-cracking dam-

age evolution. Those cracked particles are modeled using the double-inclusion
concept. The damage evolution of particles is considered in accordance with

Weibull’s statistical function to characterize the varying probability of reinforce-

ment cracking. Numerical simulations are conducted to capture the elastoplastic

mechanical behavior of particulate composites under uniaxial loading conditions.

Comparison with available experimental data shows good agreement and illustrates

the potential applicability of the proposed method for PRMMCs with evolutionary

particle-cracking damage.
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Abstract

This chapter aims to model the mechanical behavior of particle-reinforced

metal-matrix composites with progressive particle–matrix interfacial debonding.

The partial-debonding process is represented by the debonding angles in com-

posites. The equivalent orthotropic elasticity tensor is constructed for the
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debonded yet isotropic particles to characterize the reduction of the load-

transfer ability in the debonded directions. Micromechanical homogenization

procedures are utilized to estimate the effective moduli and the overall yield

function of the resultant multiphase composites. The associative plastic flow

rule and isotropic hardening law are postulated based on the continuum plasticity

theory. The effect of partially interfacial debonding on the overall stress–strain

relations of the composites is investigated and illustrated via numerical examples.

Introduction

In the last few decades, particle-reinforced metal-matrix composites (PRMMCs) have

been rapidly developed to meet the need for better materials and structures. While the

enhanced mechanical properties mostly come from the reinforcing particle phase, the

latter also leads to new damage mechanisms that restrict the potential for widespread

use of composites. Among the three prevalent damage micromechanisms in PRMMCs

(i.e., debonding at the matrix–particle interface, internal particle cracking, and ductile

plastic localization in the matrix (Clyne and Withers 1993; Suresh et al. 1993)),

matrix–particle interfacial debonding is the predominant damage mode when the

interfacial strength is relatively weak and the composite system is under high triaxial

loading. To model the interfacial debonding, Jasiuk and Tong (1989), Pagano and

Tandon (1990), Qu (1993), and Sangani and Mo (1997) introduced either a linear

spring layer with vanishing thickness or an interlayer with constant thickness. In their

models, a different elastic constant of the spring-/interlayer from the matrix and

reinforcements is used to simulate the loss of load-transfer ability through the interface

due to debonding. Since the spring-/interlayer elastic properties in their models are not

position dependent, such models may not be applicable for partial-debonding mech-

anisms. Another simple yet physically meaningful means used to model the interfacial

debonding is the equivalent stiffness method (Zhao and Weng 1997; Wong and

Ait-Kadi 1997; Sun et al. 2003) in which the isotropic debonded particles are replaced

by the perfectly bonded particles with constructed equivalent anisotropic stiffness to

characterize the reduction of the load-transfer ability of the debonded interface. Thus,

the conventional Eshelby’s inclusion theory and the micromechanics method (Eshelby

1957, 1959; Mura 1987) can be applied to deal with the multiphase composites.

To capture the progressive process of the interfacial debonding, the evolution of the

damage, and the transition between various debonding modes, a micromechanical

framework has been developed to simulate the interfacial debonding between the matrix

and reinforcing particles and to estimate its effect on the overall elastic behavior of

particle-reinforced composites (Liu et al. 2004). In this model, the progressive damage

process is represented by the debonding angles that are governed by external loads. To

extend the study, this chapter focuses on the elastoplastic model to investigate the effect

of the progressive partial interfacial debonding on the overall nonlinear response of

ductile composites containing randomly dispersed particles. The effective elastoplastic-

damage constitutive responses of the composites under various loading conditions are

numerically simulated and compared with available experimental results.
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Progressive Debonding Model

In real situations, interfacial debonding between particle and matrix is a progressive

process, in which the debonding area evolves with the change of applied loads. The

damage parameters should be dependent on the magnitude and mode of external

loads. Following this consideration, interfacial progressive debonding model is

developed in this chapter. For the particle-reinforced composites considered, the

reinforcement consists of identical spherical particles, which are randomly

distributed in the matrix. Both particles and matrix are assumed of isotropic

materials. With applied external loading, some of the particles inside the material

begin to debond, while the debonding areas and the number of debonded

particles (volume fraction) will also proportionately change in the whole loading

process. On the microstructural level, the debonding mechanism is treated as a

fracture process, in which the local stresses play a key role. The elastic equivalency

is constructed in terms of stiffness tensor for those debonded particles. Namely, the

isotropic yet debonded particles are replaced by the orthotropic but perfect

particles. The volume fraction evolution of debonded particles is phenomenologi-

cally characterized by the Weibull statistical approach. Incorporating these

considerations into the general micromechanics frame shown in Fig. 1, a damage

model of the PRMMCs with progressive interfacial debonding is established in this

section.

Debonding Modes

In what follows, a local Cartesian coordinate system is selected as the same as the

three principal directions of the local stress field inside a particle. The three local

principal stresses (σ1, σ2, σ3) follow the conventional order of σ1 � σ2 � σ3.
Under this local coordinates, the normal direction at a certain surface point P of

a spherical particle can be expressed as n ¼ {sin ϕ cos θ, sin ϕ sin θ, cos ϕ}
where θ and ϕ are the two Eulerian angles. The normal stress at point P can be

derived as

σnormal ¼ σ1 sinϕcosθð Þ2 þ σ2 sinϕsinθð Þ2 þ σ3 cosϕð Þ2: (1)

Emanating from the assumption that the normal stress controls the debonding

initiation on the interface, as the (tensile) normal stress reaches a critical interfacial

debonding strength σcri, the debonding process would initiate at the point P. The
debonding criterion can be conveniently written as

σ1 sinϕcosθð Þ2 þ σ2 sinϕsinθð Þ2 þ σ3 cosϕð Þ2 � σcri: (2)

Therefore, the relationship between the local principal stresses and the critical

debonding strength results in the following four different types of interfacial

debonding modes:
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Mode 1: σcri � σ1 � σ2 � σ3. This is actually the original case – all the particles are
perfectly bonded since none of the principal stresses exceeds the critical

debonding strength. No debonding process has been activated.

Mode 2: σ1 � σcri � σ2 � σ3. Only one principal stress is greater than the critical

interfacial debonding strength σcri. In this case, the interfacial debonding initi-

ates from the local x1 direction and propagates progressively towards the other

two principal directions. The debonding area can be characterized by two

debonding angles α12
(2) and α13

(2) (Fig. 2), which are determined as

α 2ð Þ
1γ ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1 � σcri
σ1 � σγ

r
, γ ¼ 2, 3: (3)

The incremental form of the debonding angles is consequently given by

dα 2ð Þ
1γ ¼ σcri � σγ

� �
dσ1 þ σ1 � σcrið Þdσγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ1 � σγ
� �4 � σ1 � σγ

� �2
σcri � σ1ð Þ2

q , γ ¼ 2, 3: (4)

Mode 3: σ1 � σ2 � σcri > σ3. In this case, both the principal stresses σ1 and σ2 in the
x1 and x2 directions exceed the critical debonding strength. The normal stress must

be greater than the critical strength, which in turn indicates that the debonding is

complete in the entire x1 � x2 plane. As a result, only two debonding angles α13
(3)

and α23
(3) need to be introduced, representing the debonding processes in the planes

of x1 � x3 and x2 � x3, respectively, as shown in Fig. 3 for the one-eighth part of

the particle-debonding process. Following the same argument as in mode 2, these

mode 3 debonding angles are determined as

Fig. 1 Micromechanics framework of incorporating progressive debonding models into

elastoplastic constitutive relations of PRMMCs
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α 3ð Þ
γ3 ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σγ � σcri
σγ � σ3

r
, γ ¼ 1, 2: (5)

The corresponding incremental form of the debonding angles reads

dα 3ð Þ
γ3

¼ σcri � σ3ð Þdσγ þ σγ � σcri
� �

dσ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σγ � σ3
� �4 � σγ � σ3

� �2
σcri � σγ
� �2q , γ ¼ 1, 2: (6)

Fig. 2 Mode 2 debonding

process initiating from the x1
direction. Two debonding

angles are used to represent

the debonding extents in x2
and x3 directions, respectively

Fig. 3 Mode 3 debonding

process in two directions.

Two debonding angles are

used to represent the

debonding extents in x3
direction from x1 and x2
directions, respectively
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Mode 4: σ1 � σ2 � σ3 � σcri. All three principal stresses exceed the critical

debonding strength, which indicates that the normal stress at any point on a

particle surface is greater than the critical strength. Therefore, the entire inter-

face is debonded.

It is noted that for all of the above four damage modes, the range of debonding

angles is between 0 and π/2. The lower and upper bounds of the debonding

angles in a certain principal direction correspond to the perfect bonding and total

debonding, respectively, in that direction.

Equivalent Inclusion Treatment

The partially interfacial debonding results in the partial loss of load-transfer

capacity in the debonding directions, which is simulated by the reduction of the

corresponding elastic stiffness of the debonded particles in that direction (Liu

et al. 2004; Zhao and Weng 2002). Therefore, the partially debonded isotropic

particles are replaced by perfectly bonded particles with constructed equivalent

orthotropic stiffness tensors. To establish the relationship between the debonding

angles and the loss of tensile load-transfer capacity, which is manifested by a

reduction in elastic stiffness, three distinct interfacial damage parameters Di
(β)

serving as the measures of elastic stiffness reduction in certain directions are

defined using the ratio between the projected damage area in a certain direction

and the original interface area. Here, the superscript β ¼ 1, 2, 3, 4 refers to the four

distinct debonding modes and the subscript i ¼ 1, 2, 3 represents the damage effect

on the three principal directions, respectively. In accordance with the four different

debonding modes, the interfacial damage parameters can be developed as follows

for various debonding modes, respectively:

D
1ð Þ
1 ¼ D

1ð Þ
2 ¼ D

1ð Þ
3 ¼ 0: (7)

D
2ð Þ
1 ¼ sinα 2ð Þ

12 sinα
2ð Þ
13

D
2ð Þ
2 ¼ 2

π
α 2ð Þ
13 �

sinα 2ð Þ
13 cos

2α 2ð Þ
12 sinh

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α 2ð Þ

12 � sin2α 2ð Þ
13

q
=cosα 2ð Þ

12

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α 2ð Þ

12 � sin2α 2ð Þ
13

q
2
664

3
775

D
2ð Þ
3 ¼ 2

π
α 2ð Þ
12 �

sinα 2ð Þ
12 cos

2α 2ð Þ
13 sin

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α 2ð Þ

12 � sin2α 2ð Þ
13

q
=cosα 2ð Þ

13

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α 2ð Þ

12 � sin2α 2ð Þ
13

q
2
664

3
775:

(8)
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D
3ð Þ
1 ¼ 2

π
α 3ð Þ
23 þ

sin2α 3ð Þ
13 cosα

3ð Þ
23 sin

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α 3ð Þ

13 � sin2α 3ð Þ
23

q
=sinα 3ð Þ

13

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α 3ð Þ

13 � sin2α 3ð Þ
23

q
2
664

3
775

D
3ð Þ
2 ¼ 2

π
α 3ð Þ
13 þ

sin2α 3ð Þ
23 cosα

3ð Þ
13 sinh

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α 3ð Þ

13 � sin2α 3ð Þ
23

q
=sinα 3ð Þ

23

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α 3ð Þ

13 � sin2α 3ð Þ
23

q
2
664

3
775

D
3ð Þ
3 ¼ 1� cosα 3ð Þ

13 cosα
3ð Þ
23 :

(9)

D
4ð Þ
1 ¼ D

4ð Þ
2 ¼ D

4ð Þ
3 ¼ 1: (10)

The debonding damage parameters vary from 0 to 1. A greater value of the

damage parameter signifies a more significant level of reduction in tensile load-

transfer capability.

With the help of the damage parameters defined in Eqs. 7, 8, 9, and 10, for the

β-mode (β ¼ 1, 2, 3, 4) particles, the equivalent orthotropic elastic compliance

matrix can be formulated as

M βð Þ ¼

1

E 1ð Þξ βð Þ
11

� ν 1ð Þ

E 1ð Þξ βð Þ
12

� ν 1ð Þ

E 1ð Þξ βð Þ
13

0 0 0

� ν 1ð Þ

E 1ð Þξ βð Þ
12

1

E 1ð Þξ βð Þ
22

� ν 1ð Þ

E 1ð Þξ βð Þ
23

0 0 0

� ν 1ð Þ

E 1ð Þξ βð Þ
13

� ν 1ð Þ

E 1ð Þξ βð Þ
23

1

E 1ð Þξ βð Þ
33

0 0 0

0 0 0
1þ ν 1ð Þ

E 1ð Þξ βð Þ
23

0 0

0 0 0 0
1þ ν 1ð Þ

E 1ð Þξ βð Þ
12

0

0 0 0 0 0
1þ ν 1ð Þ

E 1ð Þξ βð Þ
13

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA
(11)

where E(1) and v(1) are the Young’s modulus and Poisson’s ratio of the original

(perfect) particle (with corresponding elastic stiffness tensor Cijkl
(1) ), respectively,

and the parameters ξij
(β) are defined as

ξ βð Þ
ij ¼ 1� D

βð Þ
i

� �
1� D

βð Þ
j

� �
, i, j ¼ 1, 2, 3: (12)

The equivalent elastic complianceM(β) (β ¼ 1, 2, 3, 4) shows that the equivalent

orthotropic Young’s modulus and shear modulus in a certain direction decrease as
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the corresponding damage parameters increase. When all damage parameters are

equal to 0, the compliance matrix reduces to the original (perfectly bonded) elastic

compliance. By contrast, when a certain damage parameter reaches 1, the load-

transfer capability in that direction becomes totally lost. In general, the compliance

matrix of particles is orthotropic and reflects the reduction in the elastic moduli of

particles as the applied far-field loads increase.

The equivalent stiffness matrix of particles is further obtained through the

inversion procedure of the foregoing compliance matrix. The corresponding

fourth-rank equivalent elastic stiffness tensor of particles follows the form

C
βð Þ
ijkl ¼ λ βð Þ

IK δijδkl þ μ βð Þ
IJ δikδjl þ δilδjk
� �

(13)

where

λ βð Þ
IK ¼ λ 1ð Þ 1� D

βð Þ
I

� �
1� D

βð Þ
K

� �
μ βð Þ
IJ ¼ μ 1ð Þ 1� D

βð Þ
I

� �
1� D

βð Þ
J

� � (14)

with λ(1), μ(1) denoting the isotropic Lame constants of the original particles

(perfectly bonded particles). Here, Mura’s tensorial indicial notation (Mura 1987)

is followed, i.e., the repeated lowercase indices are summed up from 1 to 3, whereas

the uppercase indices take on the same numbers as the corresponding lowercase

ones but are not summed up. This indicial expression facilitates the subsequent

derivations and computations. By using the elastic equivalency treatment, all

partially debonded particles are replaced by perfectly bonded particles with the

aforementioned equivalent orthotropic elastic stiffness. Therefore, multiphase

micromechanical approaches can be established to characterize the progressive

interfacial debonding processes of metal-matrix composites.

Damage Evolution

The evolution of the volume fractions of the damaged particles can be

simulated using a two-parameter Weibull distribution function as (Tohgo and

Weng 1994)

Pi ¼ 1� exp � σi�σcri
S

� �Mh i
, σi � σcri

0, σi < σcri

(
i ¼ 1, 2, 3ð Þ: (15)

Here, the Weibull parameterM signifies the evolution rate of the volume fraction

of debonded particles. The parameter S is not independent when the relationship

between the mean value of the Weibull distribution function and the critical

bonding strength σcri is established. For example, when an intermediate debonding

evolution rateM ¼ 5 is chosen and the mean of the Weibull function is equal to the

critical bonding strength, S can be calculated as S ¼ 1.09σcri.
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The volume fractions of the four various damage modes ϕ(β) (β ¼ 1, 2, 3, 4) are

expressed as follows to characterize the evolution of interfacial partial debonding

and the transition between the four debonding modes:

ϕ 4ð Þ ¼ ϕTotalP3

ϕ 3ð Þ ¼ ϕTotal P2 � P3½ �
ϕ 2ð Þ ¼ ϕTotal P1 � P2½ �
ϕ 1ð Þ ¼ ϕTotal 1� P1½ �

(16)

where ϕTotal is the total volume fraction of all particles in the composite. The

probabilistic function Pi(i ¼ 1, 2, 3) (Eq. 15) represents a normal stress-controlled

debonding process and can be treated as the debonding probability in the ith
principal direction. When the smallest principal stress (the third principal stress)

reaches the critical stress, the other two principal stresses are greater or equal to the

critical stress, and thus the total debonding (the fourth mode) occurs. Therefore, the

evolution of the fourth debonding mode is characterized by P3. Similarly, the third

debonding mode (two-dimensional debonding) and the second debonding

mode (one-dimensional debonding) are controlled by P2 and P1, respectively.

With the increase of external loading, part of the two-dimensional debonding

converts to the total debonding, and part of the one-dimensional debonding evolves

into the two-dimensional debonding. Hence, the volume fractions of the four

debonding modes are constructed as Eq. 16 to reflect the transition of debonding

modes.

Elastoplastic and Damage Modeling

Although the plastic deformation in composites is highly localized, the mean-field

principles (homogenization procedures) can be directly applied to estimate the

effective yield strength of composites since the initial yielding and plastic harden-

ing of composites should be attributed to the collective responses of particle–matrix

interactions (Mura 1987). To obtain the effective yield function of PRMMCs, the

averaging homogenization is generally performed within a mesoscopic representa-

tive volume element (RVE) (Nemat-Nasser and Hori 1999). At any local

matrix material point x, the microscopic stress σ(x) is assumed to satisfy the von

Mises J2-yield criterion and the local matrix yield function takes the form

F σ, epm
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ : Id : σ
p

� K epm
� � � 0 (17)

where epm and K epm
� �

are the equivalent plastic strain and the isotropic hardening

function of the matrix-only material, respectively. Moreover, Id denotes the

deviatoric part of the fourth-rank identity tensor I.

Following the ensemble-volume averaging processes (Ju and Sun 2001), the

overall yield function for the composites can be expressed as
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F ¼ 1� ϕ 1ð Þ
� � ffiffiffiffiffiffiffiffiffiffi

Hh im
q

� K epð Þ � 0 (18)

where ep represents the effective equivalent plastic strain. It should be noted that the
effect of the various debonding modes on the overall yield function is reflected

through the change of stress field. This is shown in the expression of hHim, which is
a function of the volume fraction ϕ(i), (i¼ 1, 2, 3, 4). The expression of hHim for the

composite with four phases of particles (corresponding to the four debonding

modes) can be approximately obtained by neglecting the interaction among neigh-

boring particles as

Hh im xð Þ ffi H0 þ
X4
β¼1

þ
x0=2Ξ xð Þ

H βð Þ xjx0ð Þ � H0
h i

P βð Þ x0ð Þdx0 (19)

where H0 ¼ σ0 : Id : σ0 is the square of the far-field stress norm applied on the

composite and Ξ(x) is the exclusion zone of x for the center location x0 of a particle
in the probability space, which is identical to the shape and size of the particle.

Further, P(β)(x0) is the probability density function for finding a β-phase particle in
the exclusion zone of the particle center located at x0. In addition, H(β) is the stress-

norm collection contribution from the β-phase particles, i.e.,

H βð Þ ¼ σ βð Þ xð Þ : Id : σ βð Þ xð Þ, β ¼ 1, 2, 3, 4 (20)

where the local stress tensor in the matrix due to a β-phase particle centered at x0

can be written as

σ xð Þ ¼ σ0 þ C0 : G x� x0ð Þ : « βð Þ
� (21)

in which «*
(β) is the eigenstrain tensor in the β-phase particles that can be expressed

explicitly for spherical particles (Liu et al. 2004) and G is the exterior-point

Eshelby’s tensor (Ju and Sun 1999) and has the following simple form for spherical

particles:

Gijkl xð Þ ¼ ρ3

30 1� v0ð Þ

�
3ρ2 þ 10v0 � 5ð Þδijδkl þ 15 1� ρ2ð Þδijnknl
þ 3ρ2 � 10v0 þ 5ð Þ δikδjl þ δilδjk

� �
þ15 1� 2v0 � ρ2ð Þδklninj þ 15 7ρ2 � 5ð Þninjnknl
þ15 v0 � ρ2ð Þ δiknjnl þ δilnjnk þ δjkninl þ δjlnink

� �
2
664

3
775 (22)

where v0 is the Poisson’s ratio of the matrix and ρ ¼ a/r, in which a is the radius of
the sphere, r ¼ ffiffiffiffiffiffiffi

xixi
p

, and ni ¼ xi/r.

For simplicity, let us consider that all particles are uniformly randomly

distributed in the composites. Therefore, P(β)(x0) can be assumed to be N(β)/V
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(β ¼ 1, 2, 3, 4), where N(β) is the total number of β-phase particles uniformly

dispersed in volume V of RVE. After a series of lengthy but straightforward

derivations, the following ensemble-averaged Hh im expression is derived:

Hh im ¼ σ0 : T : σ0 (23)

where the components of the fourth-rank tensor T for spherical particles take the

form

Tijkl ¼ T
1ð Þ
IK δijδkl þ T

2ð Þ
IJ δikδjl þ δilδjk
� �

(24)

with

T
1ð Þ
IK ¼ � 1

3
þ 2

675 1� v0ð Þ2 �

65v20 � 50v0 þ 2
� �X4

β¼1

ϕ βð Þ

B
βð Þ
II B

βð Þ
KK

�75 1� 2v0ð Þ2
X4
β¼1

ϕ βð Þ Γ βð Þ
II þ Γ βð Þ

KK

� �
B

βð Þ
II B

βð Þ
KK

þ225 1� 2v0ð Þ2
X4
β¼1

ϕ βð ÞΓ βð Þ
II Γ βð Þ

KK

B
βð Þ
II B

βð Þ
KK

2
66666666664

3
77777777775

T
2ð Þ
IJ ¼ 1

2
þ 35v20 � 50v0 þ 23
� �

225 1� v0ð Þ2
X4
β¼1

ϕ βð Þ

B
βð Þ
IJ B

βð Þ
IJ

:

(25)

Here, ϕ(β) denotes the volume fraction of the β-phase particles. Other parameters

in the above equation can be found in Liu et al. (2006).

The general relationship between the applied far-field stress σ0 and the macro-

scopic (ensemble-volume averaged) stress σ takes the form (Ju and Chen 1994)

σ0 ¼ P : σ (26)

where the fourth-rank tensor P reads

P ¼ C 0ð Þ 	 Iþ I� Sð Þ 	 Y½ � 	 C 0ð Þ�1
n o�1

(27)

withY ¼
X4
β¼1

ϕ βð Þ Sþ C βð Þ � C 0ð Þ
� ��1

	 C 0ð Þ
	 
�1

and S being the Eshelby’s tensor

for spherical particles. The combination of Eqs. 23 and 26 leads to an alternative

expression of the ensemble-averaged square of the current stress norm as

Hh im ¼ σ : T : σ (28)

where the fourth-rank tensor reads T ¼ PT 	 T 	 P. It is observed from the above

equation that Hh im can be reduced to the corresponding equation in Ju and Sun
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(Ju and Sun 2001) if no particle debonding occurs in the composites (i.e.,ϕ(1)> 0 and

ϕ(β) ¼ 0, β ¼ 2, 3, 4). Furthermore, Eq. 28 will recover the classical J2-invariant for
the matrix-only material (i.e., ϕ(β) ¼ 0, β ¼ 1, 2, 3, 4).

The total macroscopic strain « consists of two parts:

« ¼ «e þ «p (29)

where «e denotes the overall elastic strain and«p represents the overall plastic strain
of the composites. The relationship between the macroscopic stress σ and macro-

scopic elastic strain «e reads

σ ¼ C : «e (30)

in which the effective elastic stiffness of composites can be determined as (Ju and

Chen 1994)

C ¼ C 0ð Þ 	 Iþ Y�1 � S
� ��1

h i
: (31)

The plastic flow of composites is postulated to be associative for simplicity. The

macroscopic plastic strain rate for PRMMCs thus takes the form

_«
p ¼ _λ

@F

@σ
(32)

where _λ is the plastic consistency parameter. Moreover, F is the overall

yield function of composites. The simplified isotropic power-law hardening

function K epð Þ is proposed as

K epð Þ ¼
ffiffiffi
2

3

r
σy þ h epð Þq� �

: (33)

Here, σy denotes the initial yield stress of matrix material, and h and q signify the
linear and exponential isotropic hardening parameters.

The foregoing characterization together with the Kuhn–Tucker conditions

_λ � 0, F � 0, _λF ¼ 0, _λ _F ¼ 0 (34)

constitutes an effective elastoplastic-damage constitutive formulation for

particle-reinforced metal-matrix composites with a progressive, partial interfacial

debonding process. The proposed composite framework as formulated in Eqs. 29,

30, 31, 32, 33, and 34 is based on the micromechanics approach, the ensemble-

averaging homogenization procedures, and the statistical distribution method.

The proposed formulation offers a potentially viable framework to estimate the

overall elastoplastic-damage stress–strain responses of the metal-matrix

composites.
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Numerical Examples

Uniaxial Loading

The uniaxial stress–strain curves are often referred to as important indicators of

mechanical responses of composite materials. In order to illustrate the proposed

micromechanics-based model, the uniaxial tension loading is considered. The

components of the macroscopic stress σ can be expressed as σ11 > 0 and σij ¼ 0

for all other stress components. The selected composite system signifies the SiC

particle-reinforced aluminum matrix composite. The Young’s moduli and

Poisson’s ratios of SiC particles and the aluminum matrix are taken as Ep ¼
450 GPa, Em ¼ 70 GPa, vp ¼ 0.2 and vm ¼ 0.3, where the subscripts p and

m represent the particles and the matrix, respectively. The Weibull parameter is

selected as M ¼ 5. The yield strength is taken as σy ¼ 300 MPa and the hardening

parameters are assumed to be h ¼ 1.0 GPa and q ¼ 0.5, respectively. Numerical

results on the uniaxial elastoplastic-damage stress–strain behaviors of PRMMCs

are displayed in Fig. 4. Clearly, the effective stress–strain responses for a 50 %

volume fraction of spherical particles with progressive interfacial debonding lie

between those of the porous material (the lower bound) and the composite material

without debonding (the upper bound). The interfacial bonding strength plays an

important role in the interfacial debonding process and has significant effects on the

overall elastoplastic-damage behaviors of the composites. Specifically, less strain

hardening can be clearly observed for composites with lower interfacial bonding

strengths. For example, with a very low bonding strength (i.e., σcri ¼ 0.4 σy), the
interfacial debonding occurs even before the composite reaches its overall yield

point, and therefore a softening portion can be observed.

Fig. 4 The overall stress–strain curves of PRMMCs with progressive interfacial debonding
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Under the uniaxial loading condition, the first local principal stress is tensile and

the other two local principal stresses are compressive with the same magnitudes.

Therefore, only one debonding mode – debonding along the loading direction – will

occur. Because of the equality of the second and third local principal stresses, the

debonding angles α12
(2) and α13

(2) are equal to each other. It is observed that the

debonding angle increases rapidly at the beginning stage and then becomes satu-

rated as the overall deformation increases, implying that it is increasingly more

difficult to further debond due to the compressive principal stresses in the second

and third principal directions. Furthermore, Fig. 5 exhibits the comparison between

the proposed model predictions and the experimental results of particulate-

reinforced SiC/Al5456 composites reported by Papazian and Adler (Papazian and

Adler 1990). With the introduction of progressive interfacial debonding, the current

model obtains a better prediction than the non-debonding model. The effects of

debonding on the overall initial yield strengths of the composites can be demon-

strated. When the particle volume fraction is zero, there are no reinforcements in the

composite, and therefore it becomes a matrix-only material. The overall yield

strengths of the composites increase with increasing volume fractions of particles

without considering debonding, which reflects the enhancing hardening influence

of the existence of reinforcing particles. By contrast, for porous materials with

voids, a higher volume fraction of voids leads to a decrease of the overall initial

yield strength. With higher particle concentrations in the composites, the interfacial

debonding mechanism creates more pronounced effects on the overall initial yield

strengths of the composites. Moreover, as the bonding strength becomes weaker,

particle debonding occurs in early loading stage; and as the overall initial yield

Fig. 5 The comparison between the prediction of current model and the experimental result

(Papazian and Adler 1990)
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takes place, there are already many void-like particles in the composites. As a

consequence, the overall initial yield strengths of the weak-interface composites go

even lower than the matrix-only material and the voids-prone composites behave

like porous materials.

Triaxial Loading

Under the uniaxial loading condition, only one debonding mode is active since only

the first local principal stress is tensile. To investigate the transformation between

different debonding modes, the composite is subjected to the triaxial loading case,

in which σ11 > 0, σ22 ¼ 0:6σ11 and σ33 ¼ 0:4σ11. Figure 6 shows the evolution and

transformation of the damage volume fractions. With the increase of the overall

external loading, the first local principal stress reaches the critical strength first and

activates the second debonding mode (one-dimensional debonding). Further

increasing the external loading, the third debonding mode (two-dimensional

debonding) becomes active when the second local principal stress reaches the

critical strength. At the beginning stage, the number of newly formed mode

2 particles from the perfectly bonded (mode 1) particles is larger than the amount

of mode 2 particles that evolve into mode 3 and mode 4 ones. Therefore, both ϕ(2)

and ϕ(3) increase with the increasing external loading until a specific point where

more mode 2 particles become mode 3 and mode 4 while ϕ(2) begins to decrease.

Finally, all the local principal stresses go beyond the critical strength, and all four

modes of particles exist in the matrix simultaneously. The progression of debonding

angles is shown in Fig. 7. Comparing with the uniaxial loading case, the debonding

Fig. 6 The evolution of volume fractions with the increased overall strain under triaxial loading

condition
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process develops more rapidly and the debonding angles reach the maximum value

(90
) finally due to the tensile state of the principal stresses in all directions. When

the second principal stress reaches the critical strength, the debonding angle α12
(2)

becomes 90
 indicting a total debonding between the local x1 and x2 directions.

Therefore, the two-dimensional debonding mode is activated (referring to ϕ(3) in

Fig. 6). The debonding angle in x1 � x3 direction (α13
(2)) keeps developing under the

two-dimensional debonding mode (α13
(3)). Once all the debonding angles progress to

90
, the total debonding mode (mode 4) is achieved (referring to ϕ(4) in Fig. 6).

To investigate the effects of interfacial particle debonding on the overall initial

yield surfaces, axisymmetric (biaxial) loading cases are considered here. In this

loading case, σ11 > 0, σ22 ¼ σ33 > 0 and σ12 ¼ σ13 ¼ σ23 ¼ 0. The initial effective

yield surfaces are presented in terms of the normalized volumetric and effective

stresses in Figs. 8 and 9. Specifically, the volumetric and effective stresses can

be easily obtained from their basic definitions under the axisymmetric condition as

σv ¼ σ11 þ 2σ22ð Þ=3 and σe ¼ σ11 � σ22 , respectively. Figure 8 shows that the

overall initial yielding of the composites is not of the von Mises type, even though

the particles are spherical in shape and randomly distributed. The effect of interfa-

cial bonding strength is significant on the normalized volumetric yield stress,

whereas considerably less influence is observed on the normalized effective yield

stress. With decreasing bonding strength, early debonding occurs in the composite

and causes the degradation of the initial plastic yielding point for the volumetric

stress. On the other hand, for a constant (specified) bonding strength, the effects of

particle volume fraction on the overall initial yield surface in the volumetric and

effective stress space are exhibited in Fig. 9. In particular, decreasing particle

volume fraction leads to an increase in the normalized volumetric yield stress yet

Fig. 7 The progress of debonding angles with the increased overall strain under triaxial loading

condition
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a decrease in the normalized effective yield stress. This unique feature clearly

illustrates that the non-von Mises type of composite yielding is mainly caused by

the existence of particles. As the volume fraction of particles reduces to zero, the

matrix-only material recovers the von Mises plastic yielding, as expected.

Fig. 8 Effects of bonding strengths on the overall yield surfaces for PRMMCs

Fig. 9 Effects of volume fractions on the overall yield surfaces for PRMMCs
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Conclusions

Emanating from the eigenstrain concept of micromechanics and homogenization,

the ensemble-averaged elastoplastic-damage constitutive equations are derived for

PRMMCs with progressive partial interfacial debonding evolution. The debonding

areas are represented by the corresponding debonding angles. Four different

debonding modes are considered and the corresponding equivalent orthotropic

stiffness tensors are constructed systematically. The proposed formulation is sub-

sequently applied to the uniaxial loading conditions to illustrate the potential

capabilities of the present framework. Comparisons between the model predictions

and the available experimental data are also conducted. It is noted that the proposed

elastoplastic-damage formulation is amenable to generalization to handle

multiaxial loading conditions. Further research is warranted to extend the current

framework to accommodate the spheroidal and other particle shapes. In addition to

the stress-based particle-debonding criterion, the strain-based, the energy-based, or

the mixed matrix–particle interfacial debonding criteria can be taken into

consideration for different composite materials.
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Abstract

Within this document, recent achievements of the Perzyna-type viscoplasticity

theory for metallic materials subjected to extreme loading are considered. The

complexity of the subject of matter lays in fact that for robust modelling the

number of important phenomena included in the description is high. In conse-

quence, the number of material parameters in the model is considerable. Thus,
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very detailed experimental examination of a particular material, under vast range

of strain rates, temperatures, and scales of observations, is needed for

applications.

The important features of the presented theory, which assure reliability of the

extreme dynamics modelling, in its qualitative and quantitative meaning, can be

summarized as follows: (i) the description is invariant with respect to any

diffeomorphism (covariant material model); (ii) the obtained evolution problem

is well posed; (iii) sensitivity to the rate of deformation; (iv) finite elasto-

viscoplastic deformations; (v) plastic non-normality; (vi) dissipation effects

(anisotropic description of damage); (vii) thermomechanical couplings; and

(viii) length-scale sensitivity are included.

Introduction

Since its invention by Perzyna in 1963 (cf. classical paper (Perzyna 1963)),

viscoplasticity theory has come long way and nowadays is one of the most often

choice when dealing with rate-dependent materials. Although Perzyna model is

commonly associated with famous definition of rate of viscoplastic strains in terms

of overstress function only, its present form belongs to most general and elegant

formulations in mechanics (Perzyna 2005, 2008) and includes (i) invariance with

respect to any diffeomorphism (covariant material model), (ii) well-posedness

of evolution problem, (iii) sensitivity to the rate of deformation, (iv) finite

elasto-viscoplastic deformations, (v) plastic non-normality, (vi) dissipation effects

(anisotropic description of damage), (vii) thermomechanical couplings, and

(viii) length-scale sensitivity. On the other hand, it is important that the

viscoplasticity theory, being a physical one, has a deep physical interpretation

derived from the analysis of a single crystal and a polycrystal behavior.

Recently, the Perzyna theory was extended to include the effects of anisotropy of

microdamage (Perzyna 2008; Glema et al. 2009; Sumelka 2009) as a necessary

condition for proper/robust description of damage. It generalizes previously used

scalar damage parameter (Dornowski 1999; Dornowski and Perzyna 2002a, b, c).

The introduced anisotropy allows to distinguish two levels of damage approxima-

tion: global and local (Sumelka and Łodygowski 2011). Good global damage
approximation (GDA) is obtained if (global) strain-stress curves from experiment

and mathematical model are close to each other. Good local damage approximation
(LDA) is obtained if apart from the global, particularly good coincidence in

macrodamage initiation time, velocity of macrodamage evolution, and the geome-

try of macrodamage pattern is observed. Under continuum damage mechanics, it

can be shown that the first class of problems (GDA) can be covered by scalar

damage models, while for the second class of problems (LDA) one needs higher-

order tensor in the model describing damage (Glema et al. 2010a; Łodygowski

et al. 2012).

It should be emphasized that the problem of modelling extreme dynamic events

for metallic materials including strain rates over 107 s�1 and temperatures reaching
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melting point is still open in theoretical, applied, and computational mechanics. The

embarrassing situation is found that the experiment cannot still give a detailed/

unique answer for extremely fast thermomechanical processes about evolution of

crucial phenomena (e.g., strain or temperature evolution). Hence, a situation is

faced in which the theory must extrapolate/forecast experimental results. The

reason is that the thermomechanical processes are highly influenced by elasto-

viscoplastic wave effects (their propagation and interaction (Glema et al. 2004;

Łodygowski and Sumelka 2012)) and varying initial anisotropy caused by existing

defects in metals structure like microcracks, microvoids, and mobile and immobile

dislocations densities being together a cause of overall induced anisotropy during

deformation.

The discussed material model for metallic materials is now well established in

literature (Perzyna 2008; Glema et al. 2009; Sumelka 2009; Glema et al. 2010a, b;

Sumelka and Łodygowski 2011, 2013; Łodygowski et al. 2012; Sumelka 2013;

Sumelka and Łodygowski 2013). Nevertheless, within this document, apart classi-

cal part needed to understand the overall concept, the attention is focused on the

evolution of fracture porosity (Cochran and Banner 1988; Meyers and Aimone

1983). This parameter controls the level of load carrying capacity by the material in

the model. Such concept was suggested first in the viscoplasticity theory in

(Sumelka 2009) and herein will be exemplified by full spatial modelling of spalling

phenomena. Thus, the model can approximate additional experimental observation

that under certain dynamic conditions, damage in metallic materials changes from

ductile (for lower rates of deformation) to almost brittle (for extreme rates of

deformation).

The remaining part of this chapter is organized as follows.

In section “Experimental Motivation,” the experimental observations

concerning metals anisotropy, evolution of fracture porosity, and their influence

on behavior of metallic materials under dynamic conditions are discussed.

Section “Mathematical Modelling” governs the fundamental results of Perzyna-

type viscoplasticity accounting for anisotropic damage description and identifica-

tion of assumed material functions and parameters (Sumelka 2009).

In section “Material Model Identification Adiabatic Process,” computer imple-

mentation of the model in Abaqus/Explicit program utilizing VUMAT subroutine is

explained.

Finally, in section “Model Validation Numerical Examples,” verification of the

model based on numerical results of spalling phenomena including evolving frac-

ture porosity is presented.

Section “Conclusions” concludes the document.

Experimental Motivation

The attention is focused on experimental observations of metals behaviors

concerning especially microdamages anisotropy in metals being a source of the

overall metal anisotropy. Other sources of anisotropy like different sizes and shapes
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of adjacent grains (Narayanasamy et al. 2009) and presence of different phases like

pearlite or ferrite (Pęcherski et al. 2009) are not discussed (cf. Fig. 1). The discussed

experimental evidence considers also rate dependence of fracture porosity, being

the measure of load carrying capacity by the material in the model.

On purpose the description of well recognized and described in literature

phenomena, like e.g., kinematical hardening, rate sensitivity, length-scale sensitiv-

ity, or plastic non-normality (they are included into the model of course), is omitted.

For detailed information, please see the review reports, e.g., Łodygowski (1996),

Perzyna (1998, 2005), Glema et al. (2004).

So, the always existing defects in metals structure like microcracks, microvoids,

and mobile and immobile dislocations densities (Abu Al-Rub and Voyiadjis 2006;

Voyiadjis and Abu Al-Rub 2006; cf. Fig. 2) cause anisotropy of metals. It is then

clear that for a proper mathematical modelling of metal behavior, one should

include this type of anisotropy into the formal description. The frequently used

isotropic simplification for metals should be thought of as a first approximation

Fig. 1 Anisotropy in thermomechanics of metals

Fig. 2 The anisotropy of the

HSLA-65 steel

microstructure

(Narayanasamy et al. 2009)
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which carries not enough information for modern applications (Glema et al. 2010b)

(though it certainly does not disavow such an approach in many applications

cf. Klepaczko et al. (2007), Rusinek and Klepaczko (2009)).

Coming back to the experimental results for metallic materials, being the crux of

the matter of this section, the following three statements are proposed (Sumelka

2009):

(i) Intrinsic microdefects are anisotropic.

(ii) Evolution of microdamages is directional.

(iii) Damage changes from ductile to almost brittle under dynamic loading.

Statement (i) confirms the experimental results that metal anisotropy, caused by

the intrinsic defects, comes not only from its existence but especially from its

inhomogeneous structure.

As an example, the effects of flat plate impact experiment in 1145 aluminum are

considered (Seaman et al. 1976). The separation observed is preceded by the

evolution of microdamages (microvoids), consisting for undamaged material of

three stages: nucleation, growth, and coalescence. Notice in Fig. 3 that all of the

microdefects are elongated perpendicularly to impact direction, thus to maximal

tensile stresses. In this experiment, they have approximately an ellipsoidal shape.

So, intrinsic defects have directional nature. Their anisotropy influences the whole

deformation process, having a considerable impact on it.

Statement (ii) expresses explicitly experimental fact that the anisotropic prop-

erties of the continuum body evolve directionally during the deformation process

(cf. experimental results presented in Grebe et al. 1985). Notice that it is a

consequence of structure rearrangement itself but especially by directional evolu-

tion of intrinsic defects. As an example in Fig. 4, the evolution of microvoids in the

region of forming shear band is presented. It is clearly seen that the evolution is

Fig. 3 Cracks anisotropy in

1145 aluminum after flat plate

impact experiment (Seaman

et al. 1976)
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directional; microvoids are being elongated through the shear band. So, the existing

or nucleating microdamages growth is directional according to the imposed defor-

mation process, inducing the anisotropic evolution of material properties.

Statement (iii) shows the experimental results that damage in metallic materials

changes from ductile (for lower rates of deformation) to almost brittle (for extreme

rates of deformation). In Fig. 5 the evolution of the ratio of the spall pick to the shock

peak (denoted by R) in uranium versus flayer plate velocity during flat plate impact

experiment (Cochran and Banner 1988) is presented. It is seen that when velocity of

flayer plate increases, the ratio R increases. It confirms that by increasing rate of

deformation, there is no time for microdamage growth. Equivalently, for extreme

loading, once damage nucleates, it causes brittle cracking, while for lowest veloc-

ities after nucleation there is a possibility for damage growth, giving ductile damage.

As a concluding remark of this section, recall that the microdamage evolution

mechanism in metals generally has three stages: defects nucleation, their growth

and coalescence, and the evolution limits of microdamage that depend on rate of

deformation. These observations will be transferred into the model utilizing the

concept of microdamage tensor.

Mathematical Modelling

The Concept of Microdamage Tensor

The microdamage tensor plays an important role in the presented formulation.

Notice that although the prefix “micro” is used, it should not be confused with

microscale observations. Namely, the continuum description is used, so the

Fig. 4 Anisotropic

microcracks in the shear band

region in Ti-6 pct Al-4 pct V

alloy (After Grebe et al. 1985)
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observation scale between macro- and mesoscales (10�4 � 10�3 m) is considered,

but the nomenclature from microscale “transferred” (Longere et al. 2005). An

analogous problem was discussed in Tikhomirov et al. (2001) according to the

notion microcracks (cf. Table 1).
The introduced concept of microdamage tensor has clear physical interpretation

giving a straight answer concerning how to conduct real measurements. To under-

stand the whole concept, one should follow the results discussed in Sumelka (2009)

and Glema et al. (2010a).
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Fig. 5 The evolution of R in

uranium versus flayer plate

velocity during flat plate

impact experiment (After

Cochran and Banner 1988)

Table 1 Representation of materials defects

Type of defects Mathematical description Science

Microcracks,

microvoids

Stochastical distributions, overall variables,

and fractal mechanics

Micromechanics

Microcracks,

microvoids

Damage variables Continuum damage

mechanics

Macrocracks Embedded displacement discontinuities Fracture mechanics
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The Physical Interpretation of Microdamage Tensor
Suppose that for the selected points Pi in the material bodyB, on three perpendicular
planes, the ratio of the damaged area to the assumed characteristic area of the

representative volume element (RVE) can be measured, i.e.,

Ap
i

A
, (1)

where Ai
p is a damaged area and A denotes assumed characteristic area of the

RVE – cf. Fig. 6. Based on the calculated ratios (
Ap
i

A ), three vectors are obtained.

Theirs modules are equal to those ratios and are normal to RVE’s planes (see Fig. 6).

Measurements presented above can be repeated in any different configuration by

rotating these three planes about point O – Fig. 6. So, for every measurement

configuration, from those three vectors, the resultant is composed. Afterward, the

configuration is chosen, in which the resultant module is largest. Such resultant is

called the main microdamage vector and is denoted by ξ̂
mð Þ
, i.e.,

ξ̂ mð Þ ¼ Ap
1

A
ê1 þ Ap

2

A
ê2 þ Ap

3

A
ê3, (2)

where �̂ð Þ denotes the principal directions of microdamage with A1
p � A2

p � A3
p.

In the following step, based on the main microdamage vector, the microdamage

vector is built, denoted by ξ̂
nð Þ
(Sumelka et al. 2007)

ξ̂ nð Þ ¼ 1

ξ̂
nð Þ��� ���

Ap
1

A

� �2

ê1 þ Ap
2

A

� �2

ê2 þ Ap
3

A

� �2

ê3

 !
: (3)

Finally, the existence of microdamage tensorial field ξ is postulated

ξ ¼
ξ11 ξ12 ξ13
ξ21 ξ22 ξ23
ξ31 ξ32 ξ33

2
4

3
5, (4)

which is defined in its principal directions by applying the formula combining the

microdamage vector and microdamage tensor (Sumelka et al. 2007)

ξ̂
nð Þ ¼ ξ̂n, (5)

where

n ¼
ffiffiffi
3

p
ξ̂

mð Þ��� ����1

ξ̂
mð Þ
1 ê1 þ ξ̂

mð Þ
2 ê2 þ ξ̂

mð Þ
3 ê3

� �
, (6)

1192 T. Łodygowski and W. Sumelka



Fig. 6 The concept of microdamage tensor
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leading to the fundamental result

ξ̂ ¼
ffiffiffi
3

p

3

ξ̂
mð Þ
1 0 0

0 ξ̂
mð Þ
2 0

0 0 ξ̂
mð Þ
3

2
664

3
775: (7)

Hence, the following physical interpretation of the microdamage tensor

components is obtained: The diagonal components ξii of the microdamage tensor
ξ, in its principal directions, are proportional to the components of the main
microdamage vector ξi

(m) which defines the ratio of the damaged area to the
assumed characteristic area of the RVE, on the plane perpendicular to the i
direction.

Such interpretation clearly states that the damage plane is the one perpendic-

ular to the maximal principal value of ξ. Simultaneously, it gives a tool for a

graphical presentation of the anisotropy evolution during post processing of the

numerical results. Namely, by tracing the principal directions of ξ, the softening

directions are traced, and macrodamage path(s) can be predicted (Glema

et al. 2010a, b).

Moreover, taking the Euclidean norm from the microdamage field ξ̂ , the

following relation is obtained

ffiffiffiffiffiffiffiffiffi
ξ : ξ

p
¼

ffiffiffi
3

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ap
1

A

� �2

þ Ap
2

A

� �2

þ Ap
3

A

� �2
s

: (8)

Now, assuming that the characteristic length of RVE cube is l, one can rewrite

Eq. 8 as

ffiffiffiffiffiffiffiffiffi
ξ : ξ

p
¼

ffiffiffi
3

p
l

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ap
1

A

� �2

þ Ap
2

A

� �2

þ Ap
3

A

� �2
s

l3
: (9)

Equation 8 results in additional physical interpretation for microdamage

tensor appears, namely, the Euclidean norm of the microdamage field defines

the scalar quantity called the volume fraction porosity or simply porosity
(Perzyna 2008):

ffiffiffiffiffiffiffiffiffi
ξ : ξ

p
¼ V � Vs

V
¼ Vp

V
, (10)
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where ξ denotes porosity (scalar damage parameter), V is the volume of a material

element, Vs is the volume of the solid constituent of that material element, and Vp

denotes void volume:

Vp ¼
ffiffiffiffiffi
3 l

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ap
1

� 	2 þ Ap
2

� 	2 þ Ap
3

� 	2q
: (11)

The Limit Values of Microdamage Evolution
The interpretations of the microdamage tensorial field impose the mathematical

bounds for a microdamage evolution, as

ξ�< 0, 1 > , and ξ̂ii �< 0, 1 >: (12)

However, the physical bounds are different and are rate dependent (Cochran and

Banner 1988; Meyers and Aimone 1983). This fact is crucial for further numerical

analyses.

There is unwavering experimental evidence showing the existence of the initial

porosity in metals (denoted by ξ0) which is of order ξ0 ffi 10�4 � 10�3 (Nemes and

Eftis 1991). That porosity, however, cannot reach the theoretical full saturation, i.e.,

ξ ¼ 1, during the deformation process and more is rate dependent causing that in

limit even its close to zero value can cause fracture (transition from ductile to brittle

fracture mode). Real maximal fracture porosity in metals depends on the tested

material and the process characteristics (strain rates) and under extreme loading is

of the order 0.09 � 0.35 (Dornowski and Perzyna 2002a, 2006).

It should be mentioned that it is common that the only experimental information

regarding the initial microdamage tensorial field is its norm (porosity). Thus, partic-

ular numerical calculations must be preceded by assumption existing microdamage

directions and its spatial distribution (keeping its normof course). Themeaningful role

of such assumption in the deformation process was discussed in Sumelka and

Łodygowski (2011). It was proved that different initial microdamage states (note

that the porosity must increase its initial value by several orders to reach the fracture

porosity) influence, in particular LDA, macrodamage initiation time, the velocity of

macrodamage evolution, and the geometry of macrodamage, but have limited influ-

ence on GDA (it is in agreement with experiment, e.g., for tensile test of a particular

material strain-stress curves are reproducible, but damage patterns differ in details).

Theory of Perzyna-Type Viscoplasticity Accounting for Anisotropic
Damage

The description starts with analysis of the kinematics of the body, then fundamen-

tal constitutive axioms are postulated, and finally by fulfilling standard set of

balance principles, constitutive model is obtained. Notice that more general
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description including anisotropic elastic range and in consequence anisotropic

yield criterion based on the extension of Lord Kelvin’s formulation (Thomson

1856) was discussed in Sumelka (2009).

Kinematics
Two descriptions of the material body motion are considered, namely, Lagrangian

(material, referential) and Eulerian (spatial, current). Those descriptions span two

manifolds denoted by B and S respectively (Marsden and Hughes 1983).

Points inB are denoted by X while in S by x. Coordinate system forB is denoted

by {XA} with base EA and forS by {xa} with base ea. Dual bases in those coordinate
systems are denoted by EA and ea, respectively.

The tangent spaces inBandS arewritten asTXB ¼ {X} � V3 andTxS ¼ {x} � V3.
It is understood as Euclidean vector space V3, regarded as vectors emanating from

points X and x, respectively (Marsden and Hughes 1983).

Taking Riemannian space on manifolds B and S, i.e., {B, G} and {S , g}, the
metric tensors are defined, namely, G : TB ! T� B and g : TB ! T� S, where TB
and TS denotes the tangent bundles of B and S, respectively, while T� B and T� S
denotes their dual tangent bundles. Explicit definitions for metric tensors are then

GAB(X) ¼ (EA, EB)x and gab(x) ¼ (ea, eb)x where (,)X and (,)x denote inner product

in B and S, respectively.
The regular motion of the material body, treated as a series of the immersing

of the abstract body B in the Euclidean point space E3 (Rymarz 1993), can be

written as

x ¼ ϕ X, tð Þ, (13)

thus ϕt: B ! S is a C1 actual configuration of B in S, at time t. The tangent of ϕ
defines the two-point tensor field F, called deformation gradient, which describes

all local deformation properties and is the primary measure of deformation

(Perzyna 1978; Holzapfel 2000). Thus,

F X, tð Þ ¼ Tϕ ¼ @ϕ X, tð Þ
@X

, (14)

and using the notion of tangent space

F X, tð Þ ¼ TXB ! Tx¼ϕ X, tð ÞS, (15)

so F is a linear transformation for each X � B and t � I 	 ℝ1.

The map ϕ is assumed to be uniquely invertible (smooth homeomorphism)

(X ¼ ϕ�1(x, t)); hence, there exists the inverse of deformation gradient

F�1 x, tð Þ ¼ @ϕ�1 x, tð Þ
@x

, (16)

1196 T. Łodygowski and W. Sumelka



and the tensor field F is nonsingular (det(F) 6¼ 0), and because of the impenetra-

bility of matter det(F) > 0. The following important decomposition, called polar

decomposition, holds

F ¼ RU ¼ vR, (17)

where the R is rotation tensor (unique, proper orthogonal) which measures local

orientation and U and v define unique, positive define, symmetric tensors called the

right (or material) stretch tensor and the left (or spatial) stretch tensor, respectively

(stretch tensors measure the local shape). Using the notion of tangent space, the

result is obtained that for each X � B, U(X): TXB ! TXB, and for each x � S, v
(x): TxS ! TxS. Thus, the local motion characterized by F can be decomposed into

pure stretch and pure rotation.

The general class of Lagrangian and Eulerian strain measures can be defined

through one single scale function given by (cf. Hill 1978; Xiao et al. 1998),

E ¼ g Cð Þ ¼
X3
i¼1

g χ
^

ið ÞCi,

and

e ¼ g Bð Þ ¼
X3
i¼1

g χ
^

ið ÞBi,

where the scale function g(·) is a smooth increasing function with the normalized

property g(1) ¼ g0(1) � 1 ¼ 0; χ
^

i are used to denote distinct eigenvalues of the

right and left Cauchy-Green tensors C and B, respectively; and Ci and Bi are the

corresponding subordinate eigenprojections.

TheGreen-Lagrange strain tensor has been chosen (Perzyna 2005) (E:TXB ! TXB):

2E5C� I, (18)

where E stands for the Green-Lagrange strain tensor, I denotes the identity on TXB,
and

C5 FT � F5U2 ¼ B�1: (19)

By analogy for the spatial (Eulerian) strain measure, the Euler-Almansi strain

tensor has been accepted (e: TxS ! TxS):

2e ¼ i� c, (20)
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where e stands for the Euler-Almansi strain tensor and i denotes the identity on TxS.
One has also

c ¼ b�1 and b ¼ F � FT ¼ v2, (21)

where tensor b is sometimes referred to as the Finger deformation tensor.

Using pushforward and pullback operation, the following relations are obtained:

e♭ ¼ ϕ� E♭
� 	 ¼ F�TE♭F�1, (22)

and

E♭ ¼ ϕ� e♭
� 	 ¼ FTe♭F, (23)

where

ϕ� �ð Þ♭
� �

¼ F�T �ð Þ♭F�1 (24)

stands for pushforward and

ϕ� �ð Þ♭
� �

¼ FT �ð Þ♭F (25)

for pullback.

To describe the finite elasto-viscoplastic deformation, the multiplicative decom-

position of the total deformation gradient has been accepted:

F X, tð Þ5 Fe X, tð Þ � Fp X, tð Þ: (26)

This decomposition justified by the micromechanics of single crystal plasticity

(Perzyna 1998) states that the component Fe is a lattice contribution to F, while Fp

describes the deformation solely due to plastic shearing on crystallographic slip

systems.

The inverse of the local elastic deformation Fe�1

releases from the stress state in

every surrounding (N (x) 	 ϕ(B )) in an actual configuration. The configuration

obtained by the linear map Fe�1

from actual configuration S is called unstressed

configuration and is denoted by S0. Thus, one can write (see Fig. 7)

Fe : TyS0 ! TXS, Fp : TX ! TyS0, (27)

where the material point in the configuration S0 is characterized by y.

The introduced decomposition of F enables to define the fundamental strain

tensors in both formulations considered.

The viscoplastic strain tensor Ep : TXB ! TXB can be written as

2Ep ¼ Cp � I, (28)
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where

Cp ¼ FpT � Fp ¼ Up2 ¼ B�1 and Ee ¼ E� Ep, (29)

while the elastic strain tensor ee : TxS ! TxS is

2ee ¼ i� ce, (30)

where

ce ¼ be�1 and be ¼ Fe � FeT ¼ ve2 and ep ¼ e� ee: (31)

At the end of material body kinematic description, it is fundamental for further

discussion of the rate-type constitutive relations to define the rate of fields that

describe the change of shape, position, and orientation of a continuum body.

Using motion defined by Eq. 13, the spatial velocity υ is simply

υ x, tð Þ ¼ _x ¼ @ϕ

@t
: (32)

Taking the gradient of υ, the tensor field (nonsymmetric, second order), called

spatial velocity gradient, is obtained (Holzapfel 2000):

l x, tð Þ ¼ @υ x, tð Þ
@x

, (33)

where l stands for spatial velocity gradient. Using the notion of deformation

gradient and multiplicative decomposition of deformation gradient, the Eq. 33 is

rewritten to the form (Perzyna 2005)

l ¼ _F � F�1 ¼ _F
e � Fe�1 þ Fe � _F

p � Fp�1
� �

� Fe�1 ¼ le þ lp, (34)

which introduces the elastic le and plastic lp parts of spatial velocity gradient. On the

other hand, the additive decomposition of spatial velocity gradient to symmetric

Fig. 7 The interpretation of

the multiplicative

decomposition of F
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and antisymmetric parts generates covariant tensor field d called rate of deforma-

tion tensor and also covariant tensor field w called spin tensor, with the definitions:

l ¼ dþ w ¼ de þ we þ dp þ wp, (35)

d ¼ 1

2
lþ lT
� 	

, (36)

w ¼ 1

2
l� lT
� 	

: (37)

First the notion of objective Lie derivative (assuring diffeomorphisms) is intro-

duced. The Lie derivative of an arbitrary spatial tensor field φ is obtained using the

following concept:

(i) Compute the pullback operation of φ; the material field Φ is obtained.

(ii) Take the material time derivative of Φ.

(iii) Carry out the pushforward operation of the result field from (ii).

(iv) The scheme can be summarized as

Lυ φð Þ ¼ ϕ�
D

Dt ϕ
� φð Þ

� �
, (38)

where Lυ stands for Lie derivative.

So, applying Lie derivative to strain measure, the following fundamental result is

obtained:

d♭ ¼ Lυ e♭
� 	

: (39)

Thus, Lie derivative states a direct relationship between the stretching d, which

is a direct natural measure of the rate of length of any line element and the rate of

change of the angle between any two intersecting line elements in a deforming

body, and the Eulerian strain e which measures a change of the length of any line

element and change of the angle between any two intersecting line elements.

By analogy to Eq. 39, one can write

de
♭ ¼ Lv ee

♭
� �

, dp
♭ ¼ Lv ep

♭
� �

: (40)

Constitutive Postulates
Assuming that the balance principles hold, namely, conservation of mass, balance

of momentum, balance of moment of momentum, and balance of energy and

entropy production, four constitutive postulates are defined (Perzyna 1986b,

2005) (below e depends on formulation of course):

(i) Existence of the free energy function ψ . Thus, formally

ψ ¼ ψ̂ e,F; ϑ; μð Þ, (41)
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where μ denotes a set of internal state variables governing the description of

dissipation effects and ϑ represents temperature. It is important to notice that the

semicolon used to separate the last variable due to its different nature (it introduces a

dissipation to the model), without μ the presented model, describes thermoelasticity.

(ii) Axiom of objectivity. The material model should be invariant with respect to

diffeomorphism (any superposed motion).

(iii) The axiom of the entropy production. For every regular process, the constitu-

tive functions should satisfy the second law of thermodynamics.

(iv) The evolution equation for the internal state variables vector μ should be of the
form

Lυμ ¼ m̂ e,F; ϑ; μð Þ: (42)

where evolution function m̂ has to be determined based on the experimental

observations.

Constitutive Relations: General Form
The reduced dissipation inequality states that (Marsden and Hughes 1983; Sumelka

2009)

1

ρRef
τ : d� η _ϑþ _ψ

� 	� 1

ρϑ
q � gradϑ � 0, (43)

where ρ denotes actual and ρRef reference densities, τ denotes Kirchhoff stress, ψ is

the free energy function, ϑ is absolute temperature, η denotes the specific (per unit
mass) entropy, and q is the heat flux. Using postulate (i), Eq. 43 can be rewritten as

1

ρRef
τ � @ψ̂

@e

� �
: d� ηþ @ψ̂

@ϑ

� �
_ϑ� @ψ̂

@μ
Lυμ� 1

ρϑ
q � gradϑ � 0: (44)

Because of arbitrariness,

τ ¼ ρRef
@ψ̂

@e
, (45)

η ¼ � @ψ̂

@ϑ
: (46)

Hence, Eq. 44 reduces to

� @ψ̂

@μ
Lυμ� 1

ρϑ
q � gradϑ � 0: (47)

Assuming now that internal state vector consists of two variables (discussed in

details in next section), namely (Perzyna 2008; Glema et al. 2009; Sumelka and

Łodygowski 2011),

μ ¼ � p, ξð Þ, (48)
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where � p is the equivalent plastic deformation _� p ¼ 2
3
dp : dp
� 	1

2, which describes

the dissipation effects generated by viscoplastic deformation, and ξ is microdamage

tensor which takes into account the anisotropic microdamage effects one can write

general form of rate-type constitutive equations for thermomechanical process

under consideration.

Applying Lie derivative to formula Eq. 45, with internal state vector constant, or

in other words keeping the history constant (thermoelastic process), the evolution

equation for Kirchhoff stress tensor is obtained in the form (Duszek–Perzyna

et al. 1994)

Lυτð Þe ¼ Le : de � Lth _ϑ, (49)

where

Le ¼ ρRef
@2ψ̂

@e2
, (50)

Lth ¼ �ρRef
@2ψ̂

@e@ϑ
, (51)

in the aboveLe denotes elastic constitutive tensor andLth is thermal operator. Using

the relation

Lυτð Þe ¼ _τ� τ � de � de � τ, (52)

d ¼ de þ dp, (53)

the final form of rate of Kirchhoff stresses is

Lυτ ¼ Le : d� Lth _ϑ� Le þ gτþ τgð Þ : dp: (54)

Using the energy balance in the form (Perzyna 2005; Sumelka 2009)

ρϑ _η ¼ �divq� ρ
@ψ̂

@μ
� Lυμ (55)

and taking the rate of entropy, defined by the Eq. 46, the evolution equation for

temperature is obtained:

ρcp _ϑ ¼ �divqþ ϑ
ρ

ρRef

@τ
@ϑ

: dþ χ�τ : dp þ χ�k : Lυξ, (56)
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where the specific heat

cp ¼ �ϑ
@2ψ̂

@ϑ2
, (57)

and the irreversibility coefficients χ� and χ�� are determined by (p defines

viscoplastic flow direction – discussed in details in next section)

χ� ¼ �ρ
@ψ̂

@ � p
� ϑ

@2ψ̂

@ϑ@ � p

� � ffiffiffi
2

3

r
1

τ : p
,

χ�� ¼ �ρ
@ψ̂

@ξ
� ϑ

@2ψ̂

@ϑ@ξ

� �
:
1

k
:

(58)

Next one needs to specify explicit definitions for assumed internal state variables

(� p, ξ), define materials functions, and finally identify material parameters.

Material Model Identification Adiabatic Process

Evolution Equations for Internal State Variables

The evolution equations for internal state variables are postulated as follows:

dp ¼ Λp, (59)

Lυξ ¼ Λh @h�
@τ

þ Λg @g�
@τ

, (60)

where Λ, Λh, Λg define the intensity of viscoplastic flow, microdamage nucleation,

and microdamage growth, while p, @h�
@τ ,

@g�
@τ , define viscoplastic flow direction,

microdamage nucleation direction, and microdamage growth direction, respec-

tively. It should be emphasized that there exists fracture microdamage state (ξF)
for which catastrophe takes place, namely,

κ ¼ κ̂ � p,ϑ, ξð Þjξ¼ξF ¼ 0: (61)

Having defined evolution of � p and ξ, one can state the initial boundary value

problem (IBVP) as follows.
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Initial Boundary Value Problem

Find ϕ, υ, ρ, τ, ξ, ϑ as functions of t and position x such that the following equations
are satisfied (Perzyna 1994; Łodygowski 1996; Łodygowski and Perzyna 1997a, b):

(i) The field equations

_ϕ ¼ υ,

_υ ¼ 1

ρRef
divτ þ τ

ρ
� gradρ� τ

1� ξ : ξð Þ1
2

grad ξ : ξð Þ1
2

� �
,

_ρ ¼ �ρdivυþ ρ

1� ξ : ξð Þ1
2

Lυξ : Lυξð Þ1
2
,

_τ ¼ Le : dþ 2τ � d� Lth _ϑ� Le þ gτ þ τgð Þ : dp,
_ξ ¼ 2ξ � dþ @g�

@τ
1

Tm
Φg Ig

τeq ξ, ϑ, � pð Þ � 1


 �� 
,

_ϑ ¼ χ�
ρcp

τ : dp þ χ��
ρcp

k : Lυξ:

(62)

(ii) The boundary conditions

(a) Displacement ϕ is prescribed on a part Γϕ of Γ(B), and tractions (τ · n)a are

prescribed on a part Γτ of Γ(B), where Γϕ\Γτ ¼ 0 and Γϕ[Γτ ¼ Γ(B).
(b) Heat flux q · n ¼ 0 is prescribed on Γ(B).

(iii) The initial conditions ϕ, υ, ρ, τ, ξ, ϑ are given for each particle X � B at t ¼ 0

and are satisfied.

In Eq. (62)5 it was assumed that in the evolution of microdamage, nucleation

term is omitted; thus, appropriate initial microdamage state in computations must

be assumed (cf. Sumelka and Łodygowski 2011 to detailed discussion of such

consequences), and because of adiabatic regime assumption, first two terms in

temperature evolution in Eq. 56 are omitted. It should be emphasized that adiabatic

condition assumption weakens the robustness of modelling due to the fact that first

term in Eq. 56 introduces in a natural way non-locality. Nevertheless, recall that in

viscoplasticity non-locality comes implicitly from relaxation time parameter (Tm).

Material Functions

For the evolution problem Eq. 62, the following assumptions are stated.

The elastic range is assumed isotropic and independent from microdamage state;

thus, elastic constitutive tensor Le is (for more general setup cf. Sumelka 2009)

Le ¼ 2μIþλ g
 gð Þ, (63)

where μ, λ are Lamé constants.
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Similarity for thermal expansion effects, its isotropy is postulated; thus, thermal

operator Lth is

Lth ¼ 2μþ 3λð Þθg, (64)

where θ is thermal expansion coefficient.

The rate of viscoplastic strains dp is assumed as common in Perzyna’s theory

(Perzyna 1963, 1966), namely,

dp ¼ Λυpp: (65)

In flow rule Eq. (65) Λυp defines flow intensity, thus

Λυp ¼ 1

Tm
Φυp f

κ
� 1

� �� 
¼ 1

Tm

f

κ
� 1

� �mpl
� 

, (66)

where yield surface f is considered in the form (Shima and Oyane 1976; Perzyna

1986a, b; Glema et al. 2009)

f ¼ J 0
2 þ n1 ϑð Þ þ n2 ϑð Þ ξ : ξð Þ1

2

h i
J21

n o1
2

, (67)

with defining parameters dependent on temperature

n1 ϑð Þ ¼ 0, n2 ϑð Þ ¼ n ¼ const:, (68)

and work hardening-softening function κ is postulated as (Perzyna 1986b; Nemes

and Eftis 1993)

κ ¼ κs ϑð Þ � κs ϑð Þ � κ0 ϑð Þ½ �exp �δ ϑð Þ� p½ �f g 1� ξ : ξð Þ1
2

ξF

 !β ϑð Þ2
4

3
5, (69)

ϑ ¼ ϑ� ϑ0
ϑ0

, κs ϑð Þ ¼ κ�s � κ��s ϑ, κ0 ϑð Þ ¼ κ�0 � κ��0 ϑ,

δ ϑð Þ ¼ δ�� � δ��ϑ, β ϑð Þ ¼ β�� � β��ϑ:
(70)

Rate dependence of fracture porosity ξF is postulated as (Sumelka 2009)

ξF ¼ ξF� � ξF��
Lυξk k � Lυξck k

Lυξck k
� �mF
� 

, (71)

where ξF* can be thought as a quasi-static fracture porosity and ||Lυξc||
denotes equivalent critical velocity of microdamage. Notice that the definition of
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Eq. 71 introduces the analogy to cumulative fracture criterion (Campbell 1953;

Klepaczko 1990a), namely, by writing

tc ¼
Z td

0

Lυξk k
Lυξck k � 1

� 
dt, (72)

one can say that there exists critical time tc (possibly a function of thermodynamic

process) needed to saturate the microdamage process up to its fracture limit td that
stands for damage time.

Finally, the normalized directions of viscoplastic flow are defined as

p5
@f

@τ

����
ξ¼const

@f

@τ

����
����

� ��1

¼ 1

2J 0
2 þ 3A2 trτð Þ2

h i1
2

τ0 þ Atrτδ½ �: (73)

Other denotes: τ0 represents the stress deviator and J1, J2
0 are the first and the

second invariants of Kirchhoff stress tensor and deviatoric part of the Kirchhoff

stress tensor, respectively: A ¼ 2 n1 þ n2 ξ : ξð Þ1
2

� �
.

For microdamage mechanism, it is assumed that growth term is considered only,

while nucleation is replaced by initial microdamage distribution assumption. So,

taking the additional assumptions (Dornowski 1999; Glema et al. 2009):

• Velocity of the microdamage growth is coaxial with the principal directions of

stress state.

• Only positive (tension) principal stresses induce the growth of the microdamage.

One has

@g�

@τ
¼ @ĝ

@τ

� 
@ĝ

@τ

� ����
����
�1

, and ĝ ¼ 1

2
τ : G : τ, (74)

Φg Ig
τeq ξ,ϑ; � pð Þ � 1

� �
¼ Ig

τeq
� 1

� �mg

, (75)

where void growth threshold stress function τeq is in the form

τeq ¼ c ϑð Þ 1� ξ : ξð Þ1
2

� �
ln

1

ξ:ξð Þ1
2

2κs ϑð Þ � κs ϑð Þ � κ0 ϑð Þ½ �F ξ0, ξ,ϑð Þf g,
c ϑð Þ ¼ const:,

(76)

F ¼ ξ0
1� ξ0

1� ξ :ξð Þ1
2

ξ:ξð Þ1
2

 !2
3
δ

þ 1� ξ:ξð Þ1
2

1� ξ0

 !2
3
δ

, (77)
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and

Ig ¼ b1J1 þ b2 J 0
2

� 	1
2 þ b3 J 0

3

� 	1
3, (78)

bi i ¼ 1, 2, 3ð Þ are the material parameters, and J3
0 is the third invariant of

deviatoric part of the Kirchhoff stress tensor.

Now, taking into account the postulates for microdamage evolution and assum-

ing that tensor G can be written as a symmetric part of the fourth-order unity tensor

I (Łodygowski et al. 2008)

G¼ I s Gijkl ¼ 1

2
δikδjl þ δilδjk
� 	

, (79)

one can write the explicit form of the growth function ĝ as

ĝ ¼ 1

2
τ2I þ τ2II þ τ2III
� 	

: (80)

The gradient of ĝ with respect to the stress field gives the following matrix

representation of a tensor describing the anisotropic evolution of microdamage:

@ĝ

@τ
¼

g11τI 0 0

0 g22τII 0

0 0 g33τIII

2
4

3
5: (81)

In Eq. 81τI, τII, τIII are the principal values of Kirchhoff stress tensor.
For temperature evolution, the following relation is considered:

k ¼ τ:

Material Parameters Identification for HSLA-65 Steel

For identification, experimental data for HSLA-65 steel presented in Nemat-Nasser

and Guo (2005) are used. The HSLA-65 steel belongs to the class of HSLA steels

(high strength low alloy) which were developed in 1960s. The high strength of this

steel (flow stresses are in the rage 400 � 1,200 MPa dependently on temperature),

connected with good weldability, formability, toughness, elevated service life, and

less weight to the traditional high-strength steel, causes the broad range of its

nowadays applications, e.g., cars, trucks, cranes, bridges, naval surface vessels,

submarines, and other structures, that are designed to handle large amounts of

material efforts, frequently subjected to wide range of temperatures. The steel has

the characteristics of the bcc structure, hence belongs to so-called ferritic steels. As

a consequence, this metal has high temperature and strain rate sensitivity and

displays good ductility and plasticity (true strain > 60 %). The mechanical prop-

erties of the HSLA-65 steel are strongly affected by impurities in its internal

structure. It is important that the processing (rolling) of the HSLA-65 steel can

induce the anisotropy of its structure.
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The set of material parameters is presented in Table 2.

It should be emphasized however that the identification of such great number of

material parameters is awkward. From one point of view, the results presented in

Nemat-Nasser and Guo (2005) are not enough to calibrate the presented material

model in which all variables (e.g., temperature, viscoplastic strain, microdamage)

are coupled. On the other hand, recall that current experimental techniques cannot

still give a detailed/unique answer for extremely fast thermomechanical processes.

Thus, parameters from Table 2 should be thought as a compromise; hence, small

fluctuations of them are possible (dependently on detailed experimental results

showing competition of fundamental variables, e.g., temperature, viscoplastic

strain, microdamage). For proposition of reduction of the number of material

parameters using soft computing methods, cf. Sumelka and Łodygowski (2013).

In Fig. 8 the comparison of experimental and numerical results is presented.

Notice that the numerical solution is obtained from full 3D thermomechanical

analysis accounting for the previously mentioned anisotropic intrinsic

Table 2 Material parameters for HSLA-65 steel

λ ¼ 121.15 GPa μ ¼ 80.769 GPa Tm ¼ 2.5 μs mpl ¼ 0.14

n1 ¼ 0 n2 ¼ 0.25 χ* ¼ 0.8 χ** ¼ 0.1

κs
* ¼ 570 MPa κs

** ¼ 129 MPa κ0
* ¼ 457 MPa κ0

** ¼ 103 MPa

δ* ¼ 6.0 δ** ¼ 1.4 β* ¼ 11.0 β** ¼ 2.5

c ¼ 0.067 θ ¼ 10�6 K�1 mmd ¼ 1 mF ¼ 0.5

b1 ¼ 0.02 b2 ¼ 0.5 b3 ¼ 0 ||Lυξc|| ¼ 10�5 s�1

ξF* ¼ 0.36 ξF** ¼ 0.03 cp ¼ 470 J
kgK

ρRef ¼ 7800kg
m3

Fig. 8 The comparison of strain-stress curve from experiment and numerical simulation
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microdamage process (microdamage state was initially isotropic during calibration

procedure; however, the obtained parameters are valid for other initial

microdamage states since its influence on GDA scatter is in experimentally accept-

able bounds (Sumelka and Łodygowski 2011)). In other words, the presented

numerical results take into account the whole local processes. The curve fitting

shows that using presented material model, one can obtain the numerical simula-

tions in a very good agreement with the experimental observations.

Model Validation Numerical Examples

Introductory Remarks

Up to this point, a constitutive structure of Perzyna type including anisotropic

description for damage was defined, and all material functions were postulated.

Recall that the important features of this formulation are as follows: (i) the descrip-

tion is invariant with respect to any diffeomorphism (covariant material model);

(ii) the obtained evolution problem is well posed; (iii) sensitivity to the rate of

deformation; (iv) finite elasto-viscoplastic deformations; (v) plastic non-normality;

(vi) dissipation effects; (vii) thermomechanical couplings; and (viii) length-scale

sensitivity.

For the moment let the attention be focused to the feature (i) which is a result of

consequent use of Lie derivative and is connected with objectivity of the descrip-

tion. The importance of the subject of matter lays in fact that it is common to define

spatial tensor rates in terms of Zaremba-Jaumann (1903) or Green-Naghdi (1965)

rates in most of popular constitutive models (and commercial programs like Abaqus

(2012)) although in some situations they can lead to nonphysical solutions (Dienes

1979; Lehmann 1972; Nagtegaal and Jong 1982; Xiao et al. 1997a). The situation

described is most strongly vivid in extreme dynamics. It is then crucial to choose

appropriately the objective rate definition from the set of all objective rates which is

infinite, unfortunately. This problem was discussed in Sumelka (2013) where the

importance of using Lie derivative was pointed out. Summarizing using different

objective rate, one can observe differences in global strain-stress space response,

geometry and intensity of localized deformation zones, and initiation time of

macrodamage its direction and final fracture pattern. One can conclude that covar-

iant material model, being one of the most general in continuum mechanics, pre-

sents most robust and stable solution.

The proposed theory has been tested for many different types of IBVPs to

indicate different aspects of the formulation. So, dynamic tension and twisting

were discussed in Sumelka (2009) and Glema et al. (2010b); dynamic shearing

was shown in Glema et al. (2010a) and Sumelka and Łodygowski (2013), while

machining was a subject of Łodygowski et al. (2012; cf. Fig. 9). In every process

mentioned, different types of combined loading were captured (e.g., different

triaxiality, local temperatures, or strain rates), and robustness of formulation was

proved.
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Fig. 9 The processes solved under Perzyna-type viscoplasticity accounting for anisotropic

damage
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Model Validation

In the reaming part of this section, the modelling of spalling phenomenon with

analysis of the evolution of fracture porosity will be considered. However, first

computer implementation of the theory in Abaqus/Explicit finite element program

utilizing Lie derivative is discussed.

Computer Implementation in Abaqus/Explicit

The solution of the IBVP defined by Eq. 62 has been obtained with the use of finite

element method. The Abaqus/Explicit commercial finite element code has been

adapted as a solver. The Abaqus/Explicit utilizes central-difference time integration

rule along with the diagonal (“lumped”) element mass matrices. To remove dam-

aged elements from the mesh (elements in which for every integration point,

fracture porosity was reached, or equivalently load carrying capacity is zero

Eq. 61), the so-called element deletion method is applied (Song et al. 2008). The

model has been implemented in the software by taking advantage of a user

subroutine VUMAT, which is coupled with Abaqus system (2012).

The stress update in VUMAT user subroutine needs some additional comments.

During computations, the user subroutine VUMAT controls the evolution of

stresses, viscoplastic deformation, temperature, and microdamage fields. Recall

that in the presented material model, derivative has been taken into account for

all rates, including stress rate.

Hence, for the stress rate, the Lie rate is enforced,

Lυτ ¼ _τ� lT � τ� τ � l, (83)

in opposition to the Green-Naghdi rate calculated by default in Abaqus/Explicit

VUMAT user subroutine according to the following formula (Abaqus 2012)

τ G�Nð Þ� ¼ _τþ τ �Ω�Ω � τ, (84)

whereΩ ¼ Ω G�Nð Þ ¼ _R � RT represents the angular velocity of the material (Dienes

1979) (or spin tensor (Xiao et al. 1997b)) and R denotes the rotation tensor. It is also

worth mentioning that the material model in Abaqus/Explicit VUMAT user sub-

routine is defined in corotational coordinate system, being described by the spin

tensor Ω (see Fig. 10).

To keep the VUMAT algorithm objective in Lie sense, the following approach is

applied. In the iterative procedure, the forward difference scheme is taken as the

material derivative of the second-order tensor. Thus, for the material derivative of

the Kirchhoff stress tensor, one has

_τji ¼
τjiþ1 � τji

Δt
: (85)
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Using Eqs. 83 and 84, one can write in the corotational coordinate system,

respectively:

eτ jiþ1 ¼ RT
��
iþ1

τji þ ΔtLvτji þ Δt lT
��
i
� lji þ τji � lji

� �h i
þ Rjiþ1, (86)

and

eτ jiþ1 ¼ RT
��
iþ1

τji þ Δtτ G�Nð Þ� ��
i
þ Δt Ωji � τji � τji �Ωji

� 	h i
Rjiþ1: (87)

Thus, it is clear that the Green-Naghdi rate produces an additional term

Δt Ω i � τj ji � τ i �Ωj ji
� 	

: (88)

That is why one has to subtract this term since different is proposed. Hence, in

the presented formulation for the stress update in VUMAT, the following holds

(Sumelka 2009):

eτ iþ1 ¼ RT
�� ��

iþ1
τ i þ Δt 2τ i � dj ji þ Lυτ ij

� 	þ Υ
�� ��

i

h i
Rjiþ1, (89)

where Υ|i ¼ � Δt(Ω|i � τ|i � τ|i � Ω|i) and τji ¼ RjieτjiRT
��
i
:

Such approach is necessary only for stresses, since other variables are kept as

scalars. The detailed algorithm for the whole process can be found in

Sumelka (2009).

Spall Fracture Phenomenon Modelling

Spall Fracture Phenomenon
Spallation is a particular kind of dynamic fracture (can lead to fragmentation)

(Hanim and Klepaczko 1999). Due to its variety of applications, particularly in

terminal ballistics and detonics, many studies have been reported for spall so far in

literature (Klepaczko 1990b; Curran et al. 1987; Meyers and Aimone 1983).

Fig. 10 Initial (XYZ), current
(xyz), corotational ~x~y~z), and
“damage” (x̂ŷẑ) coordinate
systems
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Experimentally, spall fracture can be analyzed considering flat plate impact test

(Boidin et al. 2006; cf. Fig. 11). In the experiment, two plates with high velocities

impact each other. As result of impact (caused by the flyer plate), a complete or

partial separation of the material can appear in the target plate (Fig. 11). This is due

to tension in the target plate, induced by the interaction of two waves, incident and

reflected. As mentioned, the separation is preceded by the evolution of

microdamage (microvoids), consisting for undamaged material of three stages:

nucleation, growth, and coalescence. It is experimentally observed that the level

of porosity (called fracture porosity in the model) in spall zone changes dependently

on velocity of flayer plate (Cochran and Banner 1988; Curran et al. 1987). For

sufficiently high impact velocities, target plate breaks in brittle mode (porosity is

very limited in spall zone in that case).

In following the numerical analysis of flat plate, impact test is considered.

Computational Model
The geometry for spall modelling is presented in Fig. 12. The dimensions of flayer

plate are diameter ϕfla ¼ 114 mm and thickness tfla ¼ 5 mm, while for target plate

diameter is ϕtar ¼ 114 mm and thickness is ttar ¼ 10 mm

Because of anisotropy, full spatial modelling was enforced for computational

model. Thus, for the spall model, continuum elements were used – the C3D8R finite

elements (8-node linear brick, reduced integration element). Totally 3M of finite

elements were applied.

Six different initial velocities were applied υ0 ¼ 50, 150, 250, 350, 450, and500m
s
,

cf. Fig. 13 and the initial temperature 296 K was assumed. Because of the lack of the

experimental data concerning initial microdamage distribution in the specimen, it

was assumed equal in every material point in the body and isotropic. This simplifi-

cation is crucial concerning the fact that the way of mapping of initial microdamage

Gun barrel

Laser diode

Delrin sabot

Optical fiber
(velocity)

Boidin, Chevrier, Klepaczko, Sabar,
IJSS, 43(2006) 4595-4615

Flyer

Target
Vimpact

Impact
direction

500µm

Seaman, Curran, Shockey, JAP 47(11):4814-4826, 1976.

50µm

Fig. 11 Experimental setup for spall fracture investigation
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state has a strong impact on a final failure mode and the global answer from the

specimen (Sumelka and Łodygowski 2011). The components of microdamage

tensor were chosen in a way to obtain initial porosity equal to 6 · 10�4, namely,

ξ0 ¼
34:64 � 10�5 0 0

0 34:64 � 10�5 0

0 0 34:64 � 10�5

2
4

3
5:

To assure proper contact conditions, the general contact in Abaqus/Explicit

was applied, which includes the self-contact conditions. The properties of a

Fig. 13 The intensity of spalling in target plate versus velocity of flayer plate (the box indicates

the case chosen for further detailed analysis)

Fig. 12 Numerical model for modelling spall phenomenon
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contact were the hard normal contact (without penetration and unlimited contact

stresses) and the tangential contact with Coulomb friction model (friction coeffi-

cient equal 0.05).
Material being tested was HLSA-65 steel.

Results Discussion
In experiment, it is observed that the refection of the compressive incident

wave from the free surface of the target produces a tensile stress wave, and at

distance tfla from the free surface, a high tensile stress occurs before the arrival of

release waves from the edges of the plate. Thus, the central portion of the target is in

a confined state of one-dimensional strain. The compressive wave in the flyer plate

is reflected by the free surface as a tensile wave and returns to the impact surface. If

the magnitude and duration of this tensile stress wave are high enough, spallation

occurs (Hanim and Klepaczko 1999).

In Fig. 13 the numerical results of spalling for six different initial velocities of

flayer plate are presented. It is seen that for the material tested, the critical velocity

for which spall occurs is between 250� 350m
s
. For higher flayer plate velocities

> 350 m, intensive spalling is observed. For further detailed analysis, the case with

initial velocity 550m
s
is chosen.

The evolution of strain rates, microdamage growth velocity, fracture porosity,

and porosity during the process (the analysis of other variables like stresses,

thermal stresses, strains, temperatures, etc., is not included) is presented in

Figs. 14–17.

The local strain rates as high as ca. 7 · 105 s�1 are observed. The

velocity of microdamage growth reaches ca. 4:5 � 106m
s

for begging of spall

Fig. 14 The plot of strain rates, microdamage growth velocity, fracture porosity, and porosity for

time process 1 · 10�6 s (flayer velocity υ0 ¼ 550m
s
)

35 Anisotropic Damage for Extreme Dynamics 1215



(t ¼ 4 · 10�6 s Fig. 15). On the other side, the evolution of fracture porosity, which

is very intensive in spall zone (cf. Figs. 15 and 16), shows its reduction from static

value ξF* ¼ 0.36 to dynamic one which is ca. ξF ¼ 0.27. The accumulation of

porosity is proved to be in spall zone as in real experiment.

Fig. 15 The plot of strain rates, microdamage growth velocity, fracture porosity, and porosity for

time process 4 · 10�6 s (flayer velocity υ0 ¼ 550m
s
)

Fig. 16 The plot of strain rates, microdamage growth velocity, fracture porosity, and porosity for

time process 5 · 10�6 s (flayer velocity υ0 ¼ 550m
s
)
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Conclusions

In this document recent developments of Perzyna-type viscoplasticity for extreme

dynamic processes in metallic materials, including the effects of anisotropic dam-

age, are presented. It is shown that to assure reliability of the extreme dynamics

modelling results, in its qualitative and quantitative meaning, the phenomena

included in the description is high. In consequence, the number of material param-

eters in the model is also considerable.

Within the document, all crucial stages of modelling are revised. The discussion

is started with experimental motivations, and then the fundamental results of

Perzyna-type viscoplasticity accounting for anisotropic damage are described and

also its computer implementation, identification, and validation. The illustrative

example considers numerical analysis of spall phenomenon.

Finally, one can state that utilizing the described model, one is able not only to

trace stresses, strains, and temperatures during particular process but also direc-

tional evolution of microdamage initiation and growth. In other words, one is able

to predict time initiation of damage, its evolution directions (even before material

separation occurs – by tracing microdamage tensor principal directions), and

velocities. On the other hand, seemingly, the drawback is that model identification

needs very detailed and expensive experimental tests, due to the number of material

parameters. However, if one considers extreme dynamics processes, it will be

always the case.

Fig. 17 The plot of strain rates, microdamage growth velocity, fracture porosity, and porosity for

time process 3.7 · 10�5 s (flayer velocity υ0 ¼ 550m
s
)
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In this chapter, selected problems connected with failure of quasi-brittle mate-

rials in static and dynamic conditions are presented. The starting points of the
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discussion are quasi-static and dynamic mechanical properties of concrete-like

strength in uniaxial compression, tension, plane stress conditions, and meridian

plane, which are confronted with dynamic strength in tension and in compres-

sion. There are at least few constitutive relations known from literature which

reflect the slightly different ideas of authors. The important part of this chapter is

the presentation of the selected plasticity conditions and failure criteria due to

von Mises, Drucker-Prager, Bresler-Pister, Mróz, Willam-Warnke, Podgórski,

and Burzyński. The interpretation of the specified criteria that are based on

energy description is introduced to perform easily comparisons between them.

The second important set of problems considers dynamic failure of concrete.

The ideas of multiplicative failure criterion (MFC) and cumulative failure

criterion (CFD) are shown. The CFD describes influence of constitutive param-

eters on the definition of time to failure. The method of generalization of this

criterion to three-dimensional cases is proposed. The verification of the elastic

material model with the strain rate-dependent failure criterion that is based on

spalling test of concrete in the Hopkinson pressure bar is discussed. The last

application describes numerically the dynamic behavior of concrete and

reinforced concrete slab perforated by projectile which hits the obstacle (plate)

with different incidence angles.

Introduction

The damage and failure of quasi-brittle materials appear under both quasi-static and

dynamic conditions. These types of behavior exhibit, for example, concretes,

ceramics, or glasses. This behavior is a consequence of an internal structure, in

which, for example, concrete is composed of aggregate, mortar, and water. In the

case of concrete – after hydration process – the mixture creates the artificial rock in

which behavior is quasi-brittle.

For quasi-static behavior, the most important and useful property of concrete is its

compressive strength particularly when designing the concrete and reinforced concrete

structures (Popovics 1998 and Jankowiak 2011). The other important and measurable

mechanical properties of concrete are tensile and shear strengths. The behavior of this

material under multiaxial loadings should also be described as for plane stress

conditions. Different tests exist to describe the above quantities, and they are repeated

in Neville (2000). The other tests are used to describe the dynamic strength of concrete

and other quasi-brittle materials; some results will be discussed in this chapter. It is

observed that the dynamic strength of concrete significantly increases for higher strain

rates (Abrams 1917) for both tension and compression.

The classical uniaxial static behavior of quasi-brittle material is presented in

Fig. 1. For this material, much smaller strength in tension than in compression is

typical. Damage for concrete is through crushing in compression but cracking in

tension (Chen 1982). The normalized test is performed to describe the compressive

behavior of concrete, using the cube or cylinder specimens (Neville 2000).
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In experimental practice, the description of tensile behavior and strength is com-

plicated and may be performed using different methods (Neville 2000).

The tensile properties of concrete can be evaluated using three-point bending

test, Brazilian test, or direct tension test. In practice, it can be also described by the

compressive strength using the following formula:

f t ¼ k fcð Þn, (1)

where fc and ft are compressive and tensile strength and k and n are the parameters.

The parameters k¼ 0.3 and n¼ 2/3 (Raphael 1984) give the best fitted results with

experiments. The other possible values k¼ 0.3 and n¼ 0.7 (Oluokun 1991) present

smaller tensile strength and give more brittle tensile behavior. Both curves that map

the compressive strength onto tensile strength are presented in Fig. 2.

The important knowledge on the behavior of quasi-brittle materials as concrete

or rocks comes from plane stress or three-directional state of stress tests (Chen

1982; Jankowiak 2011). The results of experiments for plain stress conditions are

presented in Fig. 3 for typical concrete C30. One can notice the dominated zone of

compression for the biaxial case (Kupfer et al. 1969).
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When talking on dynamic loadings, the selected range of strain rates is in mind.

Different strain rates accompany the phenomena indicated in Fig. 4. The blasts,

perforations, rigid hitting, and some earthquakes generate the deformation rates of

order 102 or higher. These deformation rates are the focus of our interests.

There are different tests for tension and for compression (Klepaczko and Brara

2001; Ross et al. 1992 and Bischoff and Perry 1991) when wishing to describe the

dynamic strength of quasi-brittle materials. Mainly the wave theory is adopted to

explain the phenomena which appear when testing the specimen in the Hopkinson

bar (Klepaczko and Brara 2001; Ross et al. 1992 and Bischoff and Perry 1991;

Jankowiak et al. 2011). If the dynamic strength is reached, it may cause the local

damage and as a consequence the failure of the whole structure. The effect can be

often unpredictable.

The detailed analysis of the compression dynamic tests is presented by Bischoff

and Perry (1991). The summary of the experiments is presented in Fig. 5. It shows

how the compressive dynamic strength depends on the strain rates. On the ordinate

axis is CDIF, i.e., compressive dynamic increase factor. It is clearly seen that CDIF

reaches 2.0 for strain rates equal to 100 s�1.
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The experiments which describe the tensile dynamic strength of quasi-brittle

material are more complicated to perform. The number of results is small in

comparison with compression tests. The important tests of Klepaczko cover the

strain rates in tension between 20 s�1 and 120 s�1 (Klepaczko and Brara 2001). The

results from different authors are collected in Fig. 6. It shows the influence of strain

rates on TDIF (tensile dynamic increase factor). The increase of dynamic tensile

strength observed in experiments, which could be estimated, reaches even 10 for

strain rates 120 s�1 (see Fig. 6).

The European Standards as CEB (Comite Euro-International du Beton) suggests

using the dynamic increase factor in both tension and compression (CEB 1987).
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These factors describe how many times the dynamic strength is higher than the

static one. The empirical equations proposed by CEB for CDIF are as follows:

CDIF ¼ f cd
f cs

¼
_ed
_ecs

� �1:026α
if _ed � 30s�1

γ _ed
_ecs

� �1=3
if _ed > 30s�1

8><
>: (2)

where fcd is dynamic compressive strength and fcs compressive quasi-static strength

obtained for strain rate _ecs¼ 0.00003 s�1. Parameters γ, α are defined by CEB as log

γ ¼ 6.156α � 0.49 and α ¼ (5 + 3fcu/4)
�1, where fcu is the tested strength based on

cylindrical specimens. The equation proposed for TDIF is the following:

TDIF ¼ f td
f ts

¼
1:0 if _ed � 10s�4

2:06þ 0:26 log _ed if 10s�4 < _ed � 1s�1

2:06þ 2 log _ed if 1s�1 < _ed

8<
: ,

(3)

where ftd is dynamic tensile strength of concrete for strain rates _ed. The equation can
be extended to strain rates up to 1,000 s�1 (Klepaczko 1990). Over this limit, the

TDIF is assumed to be constant.

Plasticity Conditions and Failure Criteria

The general form of the plasticity/failure criteria expressed in the space of stresses

and strain rates for quasi-brittle materials is the following:

f σij, _eijÞ ¼ 0:
�

(4)

It can be used in both cases as plasticity condition and also as a failure criterion.

In the condition, function f depends on stress tensor σij and strain rate tensor _eij. In
general, the function f σij, _eijÞ ¼ 0

�
can be spread on two parts and used in additive

or multiplicative forms (Litoński 1977; Rusinek 2000). It is valid mainly for ductile

metals and can be written in the following form:

g σij
� � � h _eij

� � ¼ 0: (5)

In the case of function g, it is possible to use any quasi-static criterion, while for
h it is necessary to increase the strength in tension TDIF and in compression CDIF

according to the growing strain rates (Fig. 7).

Next, some criteria which can be used for brittle material in quasi-static loading

are presented. Later, the strain rate sensitivity in the failure criterion or plasticity

condition is discussed.
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Quasi-static Case

The failure criteria for quasi-static loading can be expressed in the following form:

f I1, J2, J3ð Þ ¼ 0, (6)

where I1 is the first invariant of stress tensor σij and J2 and J3 are the second and the
third invariants of stress deviator sij , respectively. The rate of strain tensor _eij in
Eqs. 4 and 5 is assumed to be zero.

The whole elastic energy density over the volume material unitW can be divided

into two parts according to W ¼ W1 þW2 (Gawęcki 1998). The first W1 is

connected with the change of volume (volumetric part), while the second one W2

with the change of a shape (deviatoric part). Both elastic energy densities depend on

stress and stress deviator invariants using the following relations:

W1 ¼ 1� 2v

6E
I21, (7a)

W2 ¼ 1þ v

E
J2: (7b)

E i v are Young’s modulus and Poisson ratio. Invariants I1, J2 are connected with
the strain energy density of volume change W1 and with strain energy density of

distortionW2, respectively.

The Burzyński (B) Energy Failure Criterion

This brilliant hypothesis which is almost a century old assumes that failure is

conducted by the strain energy density of distortion as in the Huber-Mises condition

increased by a part of volume change strain energy density (Burzyński 1928;

Pęcherski 2008). The mathematical form of this assumption is expressed by the

following equation:

ϕf þ ηϕv ¼ K, (8)

8

0.1
logarithm of strain rates
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where

ϕf ¼ W2 ¼ 1þ v

E
J2,

ϕv ¼ W1 ¼ 1� 2v

6E
I21, (9)

are the strain energy densities of distortion and volume change, respectively. The

last element is a function η, which is the matching function of the first invariant of

stress tensor, and according to that proposed by Burzyński, the form is

η ¼ η W1ð Þ ¼ ωþ δ

3p
¼ ωþ δ

I1
¼ ωþ δ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E

1� 2v
W1

r , (10)

where hydrostatic pressure p is

p ¼ I1
3

(11)

Equation 8 after taking into consideration dependences in Eqs. 9, 10, and 11

reaches the form

W2 ¼ K � ωW1 � δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2v

6E
W1

r
, (12)

whereK,ω, δ are constants of the criterion. The sign “+” is applied if I1 � 0 and “–”

if I1 < 0. Three constitutive parameters ω , δ, and K are identified by the three

laboratory tests: uniaxial compression
��fc, 0, 0

�
and tension

�
ft , 0, 0

�
and biaxial

uniform compression
��fbc, �fbc, 0

�
. Table 1 shows all the necessary data required

to create the following system of equations:

1þ v

E

f 2t
3
¼ K � ω

1� 2v

6E
f 2t þ δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2v

6E

� �2

f 2t

s

1þ v

E

f 2c
3
¼ K � ω

1� 2v

6E
f 2c � δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2v

6E

� �2

f 2c

s

1þ v

E

f 2bc
3
¼ K � ω

1� 2v

6E
4f 2bc � δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2v

6E

� �2

4f 2bc

s

8>>>>>>>>>><
>>>>>>>>>>:

: (13)

By solving Eq. 13, the three necessary parameters K, ω, δ of failure surface are
calculated. The last two columns in Table 1 are collected to construct the system of

equation based on Eq. 12.
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The solution of the system, Eq. 13 gives three constitutive parameters in the

following form:

ω ¼ � 1

3

a �f 2bc � 2ft fbc þ ft fc þ 2fc fbc
� �

b �4f 2bc þ 2fc fbc � 2ft fbc þ ft fc
� �

δ ¼ � af 2bc fc � ftð Þ
b �4f 2bc þ 2fc fbc � 2ft fbc þ ft fc
� �

K ¼ afc ft f
2
bc

�4f 2bc þ 2fc fbc � 2ft fbc þ ft fc

8>>>>>>>><
>>>>>>>>:

(14)

where

a ¼ 1þ v

E
, b ¼ 1� 2v

6E
(15)

For example, assuming that fc ¼ 30MPa, ft ¼ 3MPa, and fbc ¼ 33:6MPa, the

three constitutive parameters are obtained as ω ¼ 1:1878 , δ ¼ 140:069 , and K
¼ 0:001556.

The Burzyński energy failure criterion (Pęcherski 2008; Jankowiak and

Łodygowski 2010; Jankowiak 2011) in graphical form is presented in Fig. 8

(black continuous line). There are two visible lines, which consider invariant I1
for opposite signs (in compressive and tensile zones). The curve in the Burzyński

criterion passes through identification points, and the strain energy of distortionW2

from the specifed place (maximum) decreases together with the increase of the

volume change strain energy W1. In addition, in Fig. 9, the shape of the Burzyński

failure surface under plane stress conditions is presented (black continuous line).

Figure 10 shows the shape of the failure surface in meridian plane. The following

function describes the shape in meridian plane:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

a
K � 3bωξ2 �

ffiffiffi
3

p
bδξ

� �r
: (16)

It is important to notice that the Burzyński failure criterion could be reduced to

the other criteria. In fact, it is more general and includes some other criteria. Failure

criteria are the specific limit functions of stresses and strains or the invariants of

stresses and strains. These functions can be used as the plastic potential functions or

Table 1 Data for identification of the Burzyński criterion

Point I1 J2 W1 W2

(σ1, σ2, σ3) ¼ ( ft, 0, 0) ft f 2t
3

1�2v
6E f 2t 1þv

E
f 2t
3

(σ1, σ2, σ3) ¼ (�fc, 0, 0) � fc f 2c
3

1�2v
6E f 2c 1þv

E
f 2c
3

(σ1, σ2, σ3) ¼ (�fbc, � fbc, 0) � 2fbc f 2bc
3

1�2v
6E 4f 2bc 1þv

E

f 2bc
3
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the loading functions to describe the inelastic deformation of material. It is possible

to describe the material effort criterion in energy form (Burzyński 1928). The

collection of some representative criteria that depend on various numbers of

parameters is presented below.

Fig. 8 Comparison of failure curves in space W1–W2

Fig. 9 Different failure

criteria in plane stress

conditions σ1 � σ2
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The Huber-Mises-Hencky (HMH) Failure Criterion

The criterion assumes that the only responsible for failure of material is the strain

energy of distortion (energy of deviatoric state) (Huber 1904; von Mises 1913). It is

expressed in the following form:

f J2ð Þ ¼ J2 � k2 ¼ 0: (17)

It assumes only one constitutive parameter k, which can be computed from the

compressive strength of concrete fc:

k ¼ fcffiffiffi
3

p : (18)

Taking into account Eq. 7, the strain energy of distortion, which decides on the

material failure, is as follows:

W2 ¼ 1þ vð Þ
E

f 2c
3
¼ 0:012MJ=m3: (19)

In the space defined by the strain energy of distortionW2 and the volume change

of strain energyW1, this criterion for the data, compressive strength fc ¼ 30MPa,

Young’s modulusE ¼ 30e3MPa,and Poisson ratio v ¼ 0:2, is presented in Fig. 8 as
red line (parallel toW1 axis). Additionally, the shapes of the curves which represent

this condition in plane stress case and in meridian plane are shown in Figs. 9 and 10

as red lines.

Fig. 10 Different failure

criteria in meridian plane
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The Drucker-Prager (DP) Failure Criterion

The criterion takes into consideration additionally the influence of the first invariant

of stress state I1 and the volume change strain energy density (Drucker 1959; Prager

1952). The criterion is written in the form

f I1, J2ð Þ ¼ mI1 þ
ffiffiffiffiffi
J2

p � k ¼ 0: (20)

To identify the two constitutive parameters m and k, using the two points
�
ft , 0

�
and

�� fc, 0
�
is necessary. It is required that the failure surface passes through both

points. This condition is satisfied for the pair of numbers m, kð Þ in the form

m ¼ fc � ftð Þffiffiffi
3

p
fc þ ftð Þ

k ¼ 2fc f tffiffiffi
3

p
fc þ ftð Þ

8>><
>>: : (21)

Assuming f c ¼ 30MPa and f t ¼ 3MPa, two parameters m ¼ 0:47 and k ¼ 3:15
are obtained. The strain energy of distortion which decides on the failure in DP

criterion is dependent on the volume change strain energy according to the follow-

ing expression:

W2 ¼
1þ v

E
k2 þ 2mk

1þ v

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E

1� 2v
W1

r
þ 6m2 1þ v

1� 2v
W1 I1 < 0

1þ v

E
k2 � 2mk

1þ v

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6E

1� 2v
W1

r
þ 6m2 1þ v

1� 2v
W1 I1 � 0

8>><
>>: : (22)

In Figs. 8, 9, and 10, the failure criterion in space W2 �W1 , in plane stress

conditions, and in meridian plane, for fc ¼ 30MPa, ft ¼ 3MPa, E ¼ 30e3MPa, and

v ¼ 0:2, is shown as orange line.

The Bresler-Pister (BP) Failure Criterion

The BP criterion describes the strength in advanced state of stress and takes into

account both the strain energy of distortion and the volume change strain energy

density (Bresler and Pister 1958). It is presented in the following form:

f I1, J2ð Þ ¼ Aþ BI1 þ C I1ð Þ2 � ffiffiffiffiffi
J2

p ¼ 0: (23)

This criterion depends on three independent parameters. For identification

of these constitutive parameters A,B, and C , it is necessary to use three
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points defined by experimental tests. There are
�
ft , 0

�
,
�� fc, 0

�
, and

�� fbc, � fbc
�
,

where fbc is the strength of concrete for biaxial uniform compression. The criterion

passes through three identification points and defines the three parameters A,B,Cð Þ
in the form

A ¼ fc ft fbcð Þ ft þ 3fc þ 8fbcð Þffiffiffi
3

p
fc þ ftð Þ 2fbc � fcð Þ 2fbc þ ftð Þ

B ¼ fc � ftð Þ fbc fc þ fbc ft � ft fc � 4f 2bc
� �

ffiffiffi
3

p
fc þ ftð Þ 2fbc � fcð Þ 2fbc þ ftð Þ :

C ¼ 3fbc ft � fbc fc � 2ft fcð Þffiffiffi
3

p
fc þ ftð Þ 2fbc � fcð Þ 2fbc þ ftð Þ

8>>>>>>><
>>>>>>>:

(24)

Assuming fc ¼ 30MPa, ft ¼ 3MPa, and fbc ¼ 33:6MPa, the three constitutive

parameters are of values A ¼ 3:6832, B ¼ �0:6326, and C ¼ �0:0059. The strain
energy of distortion as a function of the volume change strain energy is presented by

the equation:

W2 ¼

a
A2 � 2AB

ffiffiffiffiffiffiffiffiffi
bW1

p
� 2ACbW1þ

2BC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bW1ð Þ3

q
þ B2bW1 þ C2 bW1ð Þ2

0
B@

1
CAI1 < 0

a
A2 þ 2AB

ffiffiffiffiffiffiffiffiffi
bW1

p
þ 2ACbW1þ

2BC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bW1ð Þ3

q
þ B2bW1 þ C2 bW1ð Þ2

0
B@

1
CAI1 � 0

8>>>>>>>><
>>>>>>>>:

(25)

where

a ¼ 1þ v

E
, b ¼ 6E

1� 2v
: (26)

In Figs. 8, 9, and 10, the curves of the Bresler-Pister failure criterion are

presented in space W2 �W1, in plane stress conditions, and in meridian plane by

green lines for comparison with the earlier failure criteria.

The Mróz (M) Failure Criterion

The three parameters failure criterion with ellipse shape in meridian plane were

introduced by Mróz (Klisinski and Mróz 1988) in the form

f I1, J2ð Þ ¼ I1 � Að Þ2 þ BJ2 � C ¼ 0: (27)

36 Plasticity Conditions and Failure Criteria for Quasi-brittle Materials 1233



The same identification points like in the cases of the Burzyński and the Bresler-

Pister failure criteria were used to identify three constitutive parametersA,B, andC.
The conditions are satisfied for the following three numbers A,B,Cð Þ:

A ¼ 3

2

f c � f tð Þf 2bc
Ω

B ¼ �3
3f 2bc þΩ

Ω

C ¼ Ω 4Ωf t � 12f t f
2
bc f c � 2f tð Þ � 4Ωf 2t

	 
þ 9 f c � f tð Þ2f 4bc
4Ω2

8>>>>>>><
>>>>>>>:

(28)

where

Ω ¼ f bc � f cð Þ f bc � f tð Þ � f c � f tð Þ f bc: (29)

Assuming as before fc ¼ 30 MPa, ft ¼ 3 MPa, and fbc ¼ 33.6 MPa, the three

constitutive parameters are A ¼ �58.96, B ¼ 10.10, and C ¼ 3863.82. The strain

energy of distortion as a function of the volume change strain energy is presented by

the equation:

W2 ¼

a

B
C�

ffiffiffiffiffiffiffiffiffi
bW1

p
� A

� �2
� �

I1 � 0

a

B
C� �

ffiffiffiffiffiffiffiffiffi
bW1

p
� A

� �2
� �

I1 < 0

8>>><
>>>:

(30)

where a and b are identical as in Eq. 26.

The Mróz failure criterion in spaceW2 �W1 , in plane stress conditions, and in

meridian plane is presented in Figs. 8, 9, and 10 by black continuous lines. TheMróz

criterion is identical with the Burzyński failure criterion for the same identification

points, so in the future it will be called the Burzyński-Mróz failure criterion.

The Willam-Warnke (WW) Failure Criterion

The criterion introduced for concrete by Willam and Warnke (1975) in three-

dimensional stress state is proposed in the form

f I1, J2, J3ð Þ ¼ 1

3z

I1
f c

þ
ffiffiffi
2

5

r
1

r θð Þ
ffiffiffiffiffi
J2

p
f c

� 1, (31)

where

r θð Þ ¼
2rc r2c � r2t

� �
cos θ þ rc 2rt � rcð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 r2c � r2t
� �

cos 2θ þ 5r2t � 4rcrt

q
4 r2c � r2t
� �

cos 2θ þ rc � 2rtð Þ2 , (32)
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for

θ ¼ 1

3
cos �1 3

ffiffiffi
3

p

2

J3ffiffiffiffiffi
J32

2

q
0
B@

1
CA,

cos θ ¼ 2σ1 � σ2 � σ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 σ1 � σ2ð Þ2 þ σ2 � σ3ð Þ2 þ σ1 � σ3ð Þ2
h ir : (33)

The identification of the three parameters rc, rt, and z can be performed based on

the same points as before. The values of invariantsI1, J2, andθ, which correspond to
the three identification points

�
f t, 0, 0

�
,
�� f c, 0, 0

�
, and

�� f bc, � f bc, 0
�
, are

collected in Table 2.

The three parameters are found in the form

rt ¼
ffiffiffi
6

5

r
f bc f t

f c 2f bc þ f tð Þ
� �

rc ¼
ffiffiffi
6

5

r
f bc f t

3f bcf t þ f c f bc � f tð Þ
� �

z ¼ f bc f t
f c f bc � f tð Þ

8>>>>>>>><
>>>>>>>>:

(34)

The failure surface passes through the three identification points. Assuming as

before fc ¼ 30MPa, ft ¼ 3MPa, and fbc ¼ 33:6MPa, the three parameters have the

values rt ¼ 0:0524316 , rc ¼ 0:090479 , and z ¼ 0:1098039 . The strain energy

density of distortion W2 as a function of the volume change strain energy density

W1 for the Willam-Warnke failure criterion is presented by the following equation:

W2 ¼
a

5

2
f 2cr

2 θð Þ � 5

3

f cr
2 θð Þ
z

ffiffiffiffiffiffiffiffiffi
bW1

p
þ 5

18

r2 θð Þ
z2

� �
I1 � 0

a
5

2
f 2cr

2 θð Þ þ 5

3

f cr
2 θð Þ
z

ffiffiffiffiffiffiffiffiffi
bW1

p
þ 5

18

r2 θð Þ
z2

� �
I1 < 0

8>>><
>>>:

, (35)

where a and b are identical as in Eq. 26.

In Figs. 8, 9, and 10, the curves of the Willam-Warnke failure criterion are

presented by black dotted lines (in spaceW2 �W1, in plane stress conditions, and in

Table 2 Data for

identification of the

Willam-Warnke criterion

parameters

Points I1 J2 θ r(θ)

(σ1, σ2, σ3) ¼ ( ft, 0, 0) ft f 2t
3

00 rt

(σ1, σ2, σ3) ¼ (�fc, 0, 0) �fc f 2c
3

600 rc

(σ1, σ2, σ3) ¼ (�fbc, � fbc, 0) �2fbc f 2bc
3

00 rt

36 Plasticity Conditions and Failure Criteria for Quasi-brittle Materials 1235



meridian plane). In this case, in the deviatoric plane, it is a curve that consists of

parts of ellipses. It is necessary to use in Eq. 35 the proper value of r θð Þ , as in

Table 2, according to Eq. 32, r θð Þ changes between rt and rc.

The Podgórski (P) Failure Criterion

There exist many other multiparameter criteria. The final failure criterion which

will be discussed here has five parameters and was proposed for advanced state of

stresses by Podgórski (1984) in the form

f I1, J2, J3ð Þ ¼ 1

3
I1 � Aþ BP Jð Þ

ffiffiffiffiffiffiffiffi
2

3
J2

r
þ 2

3
CJ2 ¼ 0, (36)

for

P Jð Þ ¼ cos
1

3
cos �1DJ � E

� �
,

J ¼ cos 3θð Þ ¼ 3
ffiffiffi
3

p

2

J3

J
3=2
2

: (37)

The identification of five parameters A,B,C,D, andE is performed based on five

identification points
�
f t, 0, 0

�
,
�� f c, 0, 0

�
,
�� f bc, � f bc, 0

�
,
�� f cc,�1=2f cc, 0

�
,

and
�
f tt, f tt, f tt

�
. The values of invariants for those points are collected in Table 3.

The system of equations, which should be solved to compute five material

parameters, is as follows:

1

3
f t � Aþ B cos

1

3
cos �1D� E

� � ffiffiffi
2

p

3
f t þ

2

3
C

f 2t
3
¼ 0

� 1

3
f c � Aþ B cos

1

3
cos �1 � D� E

� � ffiffiffi
2

p

3
f c þ

2

3
C

f 2c
3
¼ 0

� 2

3
f bc � Aþ B cos

1

3
cos �1D� E

� � ffiffiffi
2

p

3
f bc þ

2

3
C

f 2bc
3

¼ 0

� 1

2
f cc � Aþ B cos

1

3
cos �10� E

� �
1ffiffiffi
6

p f cc þ
2

3
C

f 2cc
4

¼ 0

f tt � A ¼ 0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(38)

The above system of equations (38) is solved iteratively by the Newton method.

Assuming data f c ¼ 30MPa, f t ¼ 3MPa, f bc ¼ 33:6MPa, f cc ¼ 36MPa, and f tt
¼ 3MPa, the five constitutive parameters A ¼ 3, B ¼ 1:4276, C ¼ 0:0112, D ¼ 1,

and E ¼ 0:03902 are specified. The criterion has four identification points in plane

stress conditions; that is why the shape in this plane (Fig. 9) fits the experimental

data (Kupfer et al. 1969).
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The strain energy of distortion which decides on the failure criterion is the

following function of the volume change strain energy:

W2 ¼
�BP Jð Þ

ffiffiffiffiffi
2
3
a

q
þ ffiffiffiffi

Δ
p

4
3
Ca

0
@

1
A

2

, (39)

where a and b are identical as in Eq. 26, while Δ is defined in the following way:

Δ ¼

2

3
aB2P2 Jð Þ � 4

2

3
Ca

� �
1

3

ffiffiffiffiffiffiffiffiffi
bW1

p
� A

� �
I1 � 0

2

3
aB2P2 Jð Þ � 4

2

3
Ca

� �
� 1

3

ffiffiffiffiffiffiffiffiffi
bW1

p
� A

� �
I1 < 0

8>>><
>>>:

: (40)

Dynamic Failure Criteria

The fast dynamic loadings lead (blasts, hitting) to damage or failure of a concrete

structure in a very short time. When formulating the limit condition for plasticity,

damage, or failure, it is necessary to consider the dependence on stress state

(volumetric and deviatoric parts) as well as on strain rates according to experiments

(Klepaczko and Brara 2001). It is also possible to use Eq. 5 with one of the quasi-

static conditions (presented in section “Quasi-static Case” and in Figs. 8, 9, and 10)

as a function g σij
� �

and strain rate sensitivity according to the recommendations of

CEB for TDIF and CDIF.

In this chapter, other types of criteria are presented. All of them have cumulative

form and can be successfully used to describe the failure of the material under

extreme loading (Tuler and Butcher 1968; Campbell 1953). Tuler, Butcher, and

Campbell found the good correlation between the strength and the length of the load

impulse. The failure criterion is presented in the following integral form:

ðtc
σeq � σeq0
� �λ

dt ¼ C, (41)

Table 3 Data for identification of the Podgórski failure criterion parameters

Points I1 J2 J P(J )

(σ1, σ2, σ3) ¼ ( ft, 0, 0) ft f 2t
3

1 cos 1
3
cos �1D� E

� �
(σ1, σ2, σ3) ¼ (�fc, 0, 0) �fc f 2c

3
�1 cos 1

3
cos �1 � D� E

� �
(σ1, σ2, σ3) ¼ (�fbc, �fbc, 0) �2fbc f 2bc

3
1 cos 1

3
cos �1D� E

� �
(σ1, σ2, σ3) ¼ (�fcc, �1/2fcc, 0) � 3

2
f cc

1
4
f 2cc 0 cos 1

3
cos �10� E

� �
(σ1, σ2, σ3) ¼ ( ftt, ftt, ftt) 3ftt 0 � �
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where λ, σeq0 andC are the material constants and tc is the time up to failure described

by the criterion. The criterion describes tc only if the intensity of stress σeq is higher
than quasi-static strength σeq0 .

The other criterion but also in cumulative form was presented by Freund (1993)

in the following form:

ðtc
σeq

σeq0
� 1

� �β
dt ¼ D, (42)

where σeq0 , β and D are material parameters.

Here all the mentioned cumulative-type criteria describe the accumulation of

the energy which has to be stored in material to destroy it. These criteria estimate

the time for how long in the fast dynamic case the material can carry the state of

stresses that is higher than its quasi-static strength. The next criterion of the same

type was proposed by Campbell for ductile materials as metals (Campbell 1953).

The cumulative failure criterion was used for brittle materials, for example,

concrete (Stolarski 2004; Jankowiak 2011) and also glass (Jankowiak

et al. 2013). The cumulative failure criterion was generalized to represent the

behavior in three-axial state of stresses (Jankowiak and Łodygowski 2007). The

criterion describes the time to failure for impulsive loadings and has the following

integral form:

tc0 ¼
ðtc
0

σeqF tð Þ
σeqF0

� �α Tð Þ
dt if σeqF tð Þ > σeqF0: (43)

In Eq. 43, tc0 is the critical failure time, α Tð Þ is a parameter (can be a function of

temperature) connected with energy activated during separation process (the

breaking of the cohesion), and σeqF0 is the equivalent strength of material

for quasi-static loading. It is possible to use any function presented for quasi-

static cases. However, the following equivalent measure of stress σeqF is used

(Geers et al. 2000):

σeqF ¼ k � 1

2k 1� 2vð Þ I1 þ
1

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � 1

1� 2v
I1

� �2

þ 6k

1� vð Þ2 J2
s

, (44)

where I1 and J2 are as before the first invariant of stress tensor and the second

invariant of its deviator. The parameter k influences the shape of the function in the
space of principal stresses, and it decides on the shifting of the limit condition in the

space. The influence of the two parametersσeqF0 and k on the shape and the position of
the limit surface in the space of principal stresses is presented in Fig. 11. Now, the

limit surface can be expressed as follows:
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f I1, J2ð Þ ¼ k � 1

2k 1� 2vð Þ I1 þ
1

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � 1

1� 2v
I1

� �2

þ 6k

1� vð Þ2 J2
s

� σeqF : (45)

For example, if the parameter k ¼ 1, the classical Huber-Mises-Hencky condi-

tion is arrived (dotted line), while for parameter k ¼ 4:02, the surface is shifted into
the compression zone (continuous line).

In the meridian plane, the limit condition is presented in Fig. 12. The coordinates

are defined by r ¼ � ffiffiffiffiffiffiffi
2J2

p
and ξ ¼ 1ffiffi

3
p I1. ξ is the distance along the hydrostatic axis,

and r is the distance in the direction perpendicular to hydrostatic axis. Taking into

account these formulae r � J2 and ξ� I1, Eq. 44 can be rewritten in the following

form:

σeqF ¼ k � 1ð Þ ffiffiffi
3

p

2k 1� 2vð Þ ξþ
1

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � 1ð Þ ffiffiffi

3
p

1� 2v
ξ

� �2

þ 6k

1� vð Þ2
r2

2

vuut : (46)

Or it could be transformed to the form

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
kσeqF

2 1� vð Þ2
6k

� 4

3

ffiffiffi
3

p
σeqF

k � 1ð Þ 1� vð Þ2
1� 2vð Þ

s
ξ, (47)

for

ξ � ξmax ¼
kσeqF 1� 2vð Þ
k � 1ð Þ ffiffiffi

3
p : (48)

The right side of the curves, Fig. 12, is limited by ξmax. It is the value for which

r equals 0. If k¼ 1, the limit surface is reduced to HMH condition and could be drawn

as the straight line parallel to the axis ξ. The other limit conditions are acceptable.
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40

-60 -40 -20 0 20 40
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σ 2

σ1

Fig. 11 Limit condition in

plane stress state for different

parameters k and σF0
eq
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In the cumulative failure criterion, the stress level for different loading histories

σF
eq(t) is described. The failure stress level depends on time, and generally for short

impulse, the dynamic strength is higher. In Fig. 13, the influence of the loading

history is presented. Three different shapes of the impulse are considered: heavi-

side, linear, and sinusoidal with different amplitudes (different rates of stress and

strain). The comparison of the results obtained by cumulative failure criterion

for linear strain rates and experimental results – black dots (Brara and Klepaczko

2006) – is presented in Fig. 14 for the strain rates between 20 s�1 and 120 s�1. The

agreement is acceptable for material parameters identified in Table 4.

The last plots present the influence of the material parameters used in the criteria

σF0
eq , α, and tc0 on the estimation of the critical stress and time to failure (the curves

are in the space σF
eq � tc).

The influence of the quasi-static strength σF0
eq is presented in Fig. 15. The

increasing of σF0
eq describes the higher level of the dynamic strength. Next, Fig. 16

shows the influence of α parameter which is connected with energy activated

-80
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-40 -30 -20 -10 0 10

r
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x

Fig. 12 The size of the limit

condition for k ¼ 4.02 in

space r � ξ (meridian plane)
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eq � tc for different loading

history
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in separation process. It must be concluded that increasing of α decreases the

dynamic strength. The influence of the parameter tc0 on the critical curve is

presented in Fig. 17. The increase in critical failure time tc0 leads to the higher

dynamic strength.

Examples

Two examples are presented in this chapter, and both describe the dynamic failure

of concrete structures. The first one presents the verification of the failure criterion

which is used to simulate the experiment performed by the spalling Hopkinson

pressure bar (SHPB) test. The test was proposed by Klepaczko (Klepaczko 1990;

Brara and Klepaczko 2006). The second example shows the perforation analysis of

the pure and reinforced concrete slab.

Testing Concrete Specimen in the Hopkinson Bar

The brittle materials and also concrete show the increase of strength in tension and

in compression for high strain rate loadings. In tension, the increment of the

strength under deformation rates of order 100 (TDIF ¼ 10) is higher than in

compression (CDIF ¼ 2.7). This fact is included into codes (CEB 1987). In

everyday engineering practice, the fact that the concrete is able to carry the tensile

0
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Fig. 14 Comparison of the

strength taken from

experiments and predicted by

cumulative failure criterion

Table 4 Constitutive

parameters of concrete
E 35 109[Pa]

v 0.2

ρ 2,395 [kg/m3]

k 4.03

tc0 0.000049 [s]

α 0.95 [�]

σF0
eq 4.2e6 [Pa]
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load is neglected, and in structures reinforcement is used to replace this gap.

However, during fast impulses (impacts, blasts) in structures, the stress waves

propagate and interact, and the spalling appears in tension zones.

The configuration of the SPHB experiment which is finally under analysis is

shown in Fig. 18. The test predicts the tensile strength of the concrete using the

wave analysis. In the experiment, it is necessary to describe the failure time of the

concrete specimen. A similar test is also used for other brittle materials, for

example, glass. The most important part is the aluminum bar (length 1 m and
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diameter 0.04 m). The bar is impacted by aluminum projectile (length 0.08 m and

diameter 0.04 m). The length of the concrete specimen is 0.12 m, and its diameter is

the same as the bar and projectile. All parts are fitted, and the concrete specimen is

glued to the input bar. The aluminum is used because it has similar impedance to

concrete.

After the impact of the projectile into the input bar, the compressive wave is

transferred. The wave is propagated along the bar. Next, part of the wave is

transmitted to the concrete specimen, and a part is reflected as tensile wave.

Transmitted to the specimen wave is compressive, and it is important that its

intensity must be smaller than the compressive strength of the concrete. After

reflection from the free end, it propagates back as tensile wave throught the

concrete specimen. If the dynamic tensile strength is reached, the spalling appears

in the concrete specimen. In the experiment, the time when the spalling appears and

the pattern of the failure can be measured and defined.

Abaqus/Explicit finite element code is used to simulate the process of failure.

The axisymmetric model was analyzed (CAX4R finite element with characteristic

length of 0.001 m) with contact between all three parts. The aluminum parts have

Young’s modulus of E ¼ 70 � 109 Pa, the Poisson ratio v ¼ 0.28, and density ρ ¼
2850 kg/m3. The material model of aluminum parts is elastic because both parts are

working in this zone. In case of concrete, the elastic behavior was assumed with

rate-dependent brittle failure. The constitutive parameters are the following:

Young’s modulus E ¼ 35 � 109 Pa, the Poisson ratio v ¼ 0.2, density ρ ¼ 2395

kg/m3, asymmetry factor compression-tension k ¼ 4.03, critical time tc0 ¼ 49 μs,
factor of the energy activated during the failure process α ¼ 0.95, and equivalent

quasi-static tensile strength σF0
eq ¼ 4.2 � 106 Pa (see Table 4).

The results obtained in the laboratory experiments are presented in Fig. 19.

There are selected frames from high-speed camera for two velocities of the projec-

tile 7 and 12 m/s. For higher velocity, double cracking appears. The numerical

simulation was performed to obtain the failure pattern. The corresponding numer-

ical results are shown in Fig. 20 together with two frames of the longitudinal stress

component before the failure (above) and after the failure (below) by tension. For

the impact velocity 7 m/s, one crack appears, but for higher impact velocity 12 m/s,

two cracks are predicted similarly as in experiments. In numerical model in the case

of 7 m/s, the crack appears 55 mm from the impacted surface. In experiments, the

projec�leinput barspecimen

120mm 1000mm 80mm

40mm

Zc
sT

u0

sF

s −

s +

Fig. 18 Spalling Hopkinson pressure bar configuration
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cracking was observed in similar distance. For velocity 12 m/s, the position and the

order of the crack appearance in computations are similar to the experiments. The

first crack appears in the distance about 80 mm from the impacted side, and the

second is in the distance of 55 mm from the impacted side. The predicted dynamic

strength in the case of velocity 7 m/s is about 18 MPa but in the case of 12 m/s is

28 MPa. The numerical results fit to the experiments, so the cumulative failure

criterion is confirmed.

Perforation Analysis of the RC Slab

The second numerical example describes the dynamic behavior of a pure concrete

and reinforced concrete slabs subjected to impact, penetration, and perforation by

the rigid projectile which hits them with different angles of incidence. The analyses

are performed for pure concrete structure and reinforced by steel meshes

Fig. 19 The failure patterns

for two impact velocities

7 and 12 m/s
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(see Figs. 21 and 22 ), The slab is square, and the reinforcement mesh is modeled as

T3D2 finite elements (linear approximation of displacement). The concrete is

discretized by solid element C3D8R (8 node bricks with reduced integration and

hourglass control). The problem was modeled and solved using the 336400 elastic

finite elements which are connected by 217635 elastic elements with cumulative

failure criterion. In case of reinforced concrete slab, the reinforcement is glued into

the solid concrete mesh. The projectile is assumed to be rigid with dimensions

presented in Fig. 22.

The square slab has dimension 0.87 m and thickness 0.15 m (see Fig. 22). The

distance between the bars in reinforcement mesh is 0.0434 m, and the cross-

sectional area of a bar is 0.0001 m2. Two layers of the reinforcement mesh are

used in the distance of 0.1 m. The slab is fixed on perimeter. The direction of the

impact is analyzed with angle of incidence (between 0	 and 60	) and is presented in
Fig. 22. The angle 0	 means the perpendicular impact. In all presented numerical

examples, the rigid projectile (mass¼1.88 kg, length¼0.22 m, and diameter¼0.04 m)

Fig. 20 Numerically obtained failure patterns for two impact velocities 7 and 12 m/s (half of

symmetry due to axisymmetry; impact from the top side)
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penetrates both the pure concrete and reinforced concrete slabs with initial velocity of

200 m/s. The modeling of the contact between the projectile, the slab, and the

reinforcement was also important. Also the interior surfaces should be taken into

account – these are created during concrete failure. The friction coefficient assumed in

all analyzed cases equals 0.2.

All the simulations for different angles of incidence 0	, 15	, 30	, 45	, and 60	

and for both types of structures were performed. In Figs. 23 and 24, the distribution

of velocity in two time instances after the impact for 0	 angle is presented. The

Fig. 21 The view of the

reinforced concrete slab and

of the projectile

Fig. 22 Geometry of the slab, reinforcement, and projectile
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reinforcement deformation is also presented. In case of pure concrete slab, the

residual velocity of the projectile is 118 m/s and in reinforced slab is a bit slower

99 m/s.

The next presented results exhibit the influence of projectile in 45	 angle of

incidence (Fig. 25). This angle is measured between the line perpendicular to the

slab and the trajectory of the projectile. The distribution of velocities for both types

of structures is presented. For these two cases, full perforation is predicted, and the

trajectory curvature is observed.

For the largest angle of incidence 60	, the perforation does not appear. The

interaction between the projectile, concrete, and reinforcement induces the high

trajectory curvature. The projectile reflects from the slab. In Fig. 26, the plot of the

velocity time history for both structures is presented. In spite of the residual

velocity, the curves are similar, but the failure of the concrete slab is much higher

than the reinforced slab. However, there appears only penetration – not full

Fig. 23 The distribution of velocity at 0.002 s for 0	 angle of incidence

Fig. 24 The distribution of velocity at 0.004 s for 0	 angle of incidence
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perforation. Figure 27 presents the residual velocity for all angles of incidence and

for both structures. It is observed that the gap between the two curves is almost

constant, and it represents the energy absorbed by the reinforcement.

The last case shows how it is possible to improve the structure strength by

refinement of the reinforcement mesh (double) for 45
	
angle of incidence. The

double reinforcement causes the stopping of the projectile inside the slab.

In Fig. 28, the deformation of the slab together with the velocity time history for

three considered cases is shown. In case C, the projectile is stuck inside the slab.

The other methods as smoothed particle hydrodynamics may be also used for this

kind of application (Jankowiak and Lodygowski 2013).

Fig. 25 The distribution of velocities for 45
	
angle of incidence
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Conclusions

The definition of the plasticity conditions and the failure criteria are important, in

particular for modeling of static and dynamic behaviors of brittle materials and

structures. The important aspect is to describe the strength of the material not only
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in compression but also in tension and further definition of the strain rate sensitivity

if it appears. Any numerical calculations, in particular those that describe fast

dynamic processes, must be verified and confirmed by experiments which can

prove the quality of the numerical models. The problem is very important because

nowadays existing structures and of course future designed structures can be

exposed to unique loading such as blast, impacts, and terrorist attacks.
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Abstract

The present chapter is devoted to the evaluation of damage with digital image

correlation (DIC). This measurement technique provides 2D or 3D displacement

fields that can be used to study damage mechanisms through the correlation

residuals or even tune material parameters of damage models. Different aspects

related to the use of full-field measurements will be illustrated in the context of

damage mechanics. The main issues associated with damage measurements (i.e.,

definition of damage, difficulty of measuring damage, and image correlation) are

introduced. Then, applications related to damage detection via image correlation

are discussed. Two-dimensional surface measurements and even three-

dimensional fields in the bulk of loaded materials are considered.
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Damage Measurements

The reason for measuring damage is threefold. First, as will be illustrated in section

“Detection and Evaluation of Physical Damage,” the knowledge of the damage

mechanisms is a priori information that is very useful when modeling the material

response. Second, there is a need for the identification of parameters associated

with damage laws for prediction purposes (see “▶Chap. 38, Evaluating Damage

with Digital Image Correlation: B. From Physical to Mechanical Damage” and

“▶Chap. 39, Evaluating Damage with Digital Image Correlation: C. Applications

to Composite Materials”). Third, the evaluation of the damage state of a structure in

use and its evolution are more and more frequently required in the field of civil and

mechanical engineering.

The title of the present introduction refers to the seminal paper of Profs.

Lemaitre and Dufailly (1987). Eight different methods were discussed to “measure”

damage:

• “Micrography” or fractography performed in particular by using scanning

electron microscopy (SEM). This technique is still extensively used to determine

damage mechanisms (Mills 1991) but also as a quantitative tool (Chermant

et al. 2001; Coster and Chermant 2001). SEM pictures can also be used to

study damage via digital image correlation (Tasan et al. 2012).

• Density measurements are one of the early techniques to assess the porosity in

damaged materials (Maire 2003). Nowadays, porosity distributions are also

assessed by resorting to X-ray tomography (Baruchel et al. 2000; Babout

et al. 2001). Similarly, SEM observations are utilized to estimate porosity

distributions and/or locations. One key aspect is then to infer the volume of

pores from 2D cuts. In all cases, image processing tools are needed to distinguish

the solid phase(s) from the voids (Coster and Chermant 2001) and stereology to

relate 2D (or 1D) observations to 3D characteristics.

• Young’s modulus variations are one of the most popular damage indicators used

to describe the gradual or sudden degradation in various classes of materials

(Lemaitre and Chaboche 1978; Lemaitre et al. 1979). It is based on the coupling

between elasticity and damage, and as discussed below, it needs very large-scale

observations.

• Ultrasonic waves and acoustic emission are used as nondestructive techniques to

assess the damage state of a material or a structure (Hellier 2001). One of the key

aspects is related to the detection and the type of damage that is observed. It is to

be stressed that depending on the wavelength of ultrasound as compared to the

size of the microscale features responsible for damage, either the individual

micromechanisms or the map of loss of stiffness is accessible.

• Cyclic stress amplitudes are another way of characterizing the onset and devel-

opment of damage in fatigue studies (Lemaitre 1992). In that case, the coupling

between plasticity and damage is considered.

• Tertiary creep, the first mechanism to be described by a damage variable

(Kachanov 1958; Rabotnov 1963), is very frequently modeled within the
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framework of continuum damage mechanics (CDM). With the years, the current

damage models include more and more mechanism-based knowledge and

microscopic features that call for new experimental ways of investigation to

fine-tune material-dependent parameters.

• Microhardness measurements are less popular, even though they have recently

received some renewed interest (Tasan et al. 2010). It was shown that the change

of the hardness can be interpreted in terms of damage (Lemaitre et al. 1987) by

using the coupling between plasticity and damage.

• Electrical resistance and its variation with damage is another way of character-

izing the damage state of materials such as composites (Prabhakaran 1990; Abry

et al. 1999). It is the counterpart of the so-called potential drop technique used to

determine the crack length (Beevers 1982).

Many, if not all, of the previous techniques are still utilized today. However, one

key change (some even talk about a revolution) is related to the fact that, since the

turn of the century, full-field measurements are more and more developed and have

now reached a degree of maturity that allows the users to measure displacement,

temperature, lattice strain, phase, and grain orientation fields on the surface or even
in the volume of samples (Sharpe 2008). The analysis of the measured fields usually

leads to inverse problems in which the relevant properties are determined by

inversion or identification. These procedures need strong coupling between exper-

imental and simulation tools.

Among the various full-field measurement techniques (Rastogi 2000; Rastogi

and Hack 2012), digital image (and volume) correlation (DIC and DVC) will be

considered herein. The interested reader will find additional details and illustrations

in the recent book collectively written by a French group of scientists dealing

with full-field measurements and identification in solid mechanics (Grédiac and

Hild 2012).

In all the introductory remarks, the term “damage” was used in a loose sense. It

actually covers very different meanings and realities depending on the type of

measurement used to assess the degree of degradation of a very small volume

(or surface) element or that of a whole structure. The next section aims at defining

damage as considered herein and in this chapter and in “▶Chap. 38, Evaluating

Damage with Digital Image Correlation: B. From Physical to Mechanical Damage”

and “▶Chap. 39, Evaluating Damage with Digital Image Correlation: C. Applica

tions to Composite Materials.”

Damage

To avoid any ambiguities, it is proposed in this chapter to use consistently a

convention such that “mechanical damage” or in short “damage” often denoted as

D(x) will refer to the macroscopic relative loss of stiffness treated as a continuum

field. It is worth remembering that this is one among many different choices, some

of them listed above. With this meaning, damage can only be characterized through
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the evaluation of local elastic properties. This description is limited to the largest

scales of description and does not inform on the mechanisms by which the tangent

stiffness is reduced, namely, microcracking or/and microvoidage.

Those mechanisms, related to the formation of microcavities or microcracks, are

globally referred to as “physical damage,” since they are distinctive features that

can be detected, observed, and measured. However, their quantitative relationship

with the (macroscopic) mechanical damage is difficult to establish and usually

involves a modeling step.

The connection between physical and mechanical damage relies on a procedure

called homogenization (Bornert et al. 2008). The latter reduces rich and detailed

information (i.e., physical damage) to a single average effect (i.e., mechanical

damage). CDM has shown over the past a remarkable ability to describe trustfully

the behavior of a very broad range of materials, showing that indeed the most

important feature was retained and that finer information (describing, for instance,

the fluctuations of stress or strain within a representative element of volume) was

irrelevant in most cases (Lemaitre and Desmorat 2005). The propensity of local

defects to nucleate, grow, arrest, or coalesce does not preclude the validity of

macroscopic descriptions in general.

However, homogenization rests on the key ingredient, namely, the representa-

tive volume element, and thus, at least implicitly, a length scale, ξ, is attached to the
very definition of damage. Mechanical damage (with the restrictive meaning

proposed above) only exists at scales of the order of and larger than ξ. In contrast,

physical damage occurs at much smaller length scales since it designates the

micromechanisms associated with mechanical damage. However, as no length

scale enters the formulation of a local damage constitutive law, it is generally not

emphasized. As macro-stress or macro-strain gradients become appreciable over

the length scale, ξ, an enriched description may be called for, such as nonlocal

(Pijaudier-Cabot and Bažant 1987) or gradient-based (Peerlings et al. 1996) damage

models.

One difficulty (among others) is that the length scale, ξ, is naturally expected to

grow with the damage magnitude (Hild et al. 1994; Forquin and Hild 2010), a point

seldom considered from a theoretical standpoint. A second difficulty is that very

few studies aim at identifying internal length scales for nonlocal or gradient-based

models with full-field measurements (Geers et al. 1999). The identification of

internal lengths is still in its infancy. Experimentally, it is also difficult to properly

control an experiment under such circumstances. Furthermore, as strain and dam-

age fields localize, “point” measurements become meaningless since an average

value over a given gauge length (of an extensometer or strain gauge) is only a crude

indication of the spatiotemporal features of displacement and strain fields when

localized. The study of localized phenomena does call for spatially and temporally

resolved kinematic fields.

Finally, even within the framework of CDM, i.e., without resorting to a micro-

scopic representation of the origin of damage, the mechanical behavior
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may display an instability, strain or damage localization, such that a spatially

distributed damage over large length scales is no longer the unique solution, and

therefore, small distances have to be accounted for properly. At a given stage, it

is shown that there is a loss of uniqueness associated with the mechanical

problem (Hill 1978), and the possibility of occurrence of localized modes in

ductile (Billardon and Doghri 1989) and quasi-brittle composites (Hild

et al. 1992). In this case, the unavoidable existence of a length scale below

which damage is no longer an appropriate description (it is rather an illegitimate

extrapolation from the large wavelength to the small ones) is recalled

through apparent paradoxes that emerge if such length scales are forgotten. This

issue, where different (and legitimate!) choices such as fracture mechanics

(Kanninen and Popelar 1985) are available, will be discussed in “▶Chap. 39,

Evaluating Damage with Digital Image Correlation: C. Applications to Composite

Materials.”

Challenges for Measuring Damage

In the eight methods listed by Lemaitre and Dufailly (1987) and briefly summarized

above, if postmortem analyses are excluded, two classes can be distinguished,

namely, “physical” or “mechanical” descriptions of damage:

• First, nondestructive techniques such as ultrasonic waves (e.g., measurement

of time of flight or time of flight diffraction) are used to detect cracks

provided their size is larger than the wavelength of the probing ultrasound.

One key aspect is related to the detection itself and in particular, to the

corresponding resolution (Hellier 2001). Computed microtomography (μCT)
also allows for the direct detection of physical damage (i.e., microcracks or

microvoids). For instance, it is possible to monitor damage by resorting to ex

situ or even in situ mechanical tests (Buffière et al. 2010). Further, the number

of microcracks or microvoids, their size distribution and their center-to-center

distance distribution and the crack opening distribution are now accessible in

the bulk of many different materials (Baruchel et al. 2000; Salvo et al. 2003),

allowing for a full statistical characterization. Potentially, quantities such as

the size of the representative element of volume or the direct evaluation of

internal length scales at the onset of localization should be accessible with

such techniques.

• Second, indirect measurements are conducted by evaluating changes associated

with physical and mechanical properties (e.g., Young’s modulus, electrical or

heat conductivity, yield stress, cyclic hardening parameters). The link to damage

is obtained via couplings (e.g., stiffness loss is related to the coupling between

elasticity and damage).
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The first class corresponds to physical characterizations of damage where

the connection to mechanical properties of the volume element formulation

relies on various modeling strategies, for instance, using homogenization

techniques. Conversely, the last class deals directly with the sought material

properties. However, its physical meaning can be remote, and a quantitative

link is often very uncertain. These facts constitute one of the difficulties associated

with damage characterization and measurements. The complete equivalence

between physical and mechanical description of damage still remains a challenge.

By keeping these remarks in mind, it may be concluded that there is no unique

way of characterizing damage. This is true. However, measuring damage is

directly related to modeling damage. Again, there is no unique modeling of

damage (see other chapters in the present book). What should be aimed for is to

have measuring techniques that allow the damage variable and parameters of its

growth law to be identified and possibly validated. This is not always an easy task

since it depends on the scale of modeling, on the type of information that needs to

be extracted from the experiments, and on the robustness of the numerical tools

used in simulations.

Digital Image Correlation

Digital image correlation (DIC) is a photomechanical technique that uses image

registration algorithms (e.g., the correlation product) to measure 2D and 3D dis-

placements in pictures (Sutton et al. 2009; Hild and Roux 2012). The raw outputs of

correlation codes are 2D or 3D displacement fields. For the 3D displacements,

either surface shape and deformations are obtained by resorting to stereocorrelation

or kinematic data in the bulk by using digital volume correlation (DVC) applied to

volumes obtained by computed tomography (e.g., X-ray μCT and optical coherence

tomography) or magnetic resonance imaging. Strain fields are subsequently

obtained by evaluating mean displacement gradients.

Among the different full-field measurement techniques (Rastogi 2000; Rastogi

and Hack 2012), digital image correlation occupies a special place as it deals with

pictures that can be obtained by different imaging devices (e.g., standard cameras,

SEM, transmission electron microscopes (TEM), atomic force microscopes (AFM),

infrared cameras). It makes DIC a tool of choice for multiscale measurements for

which the physical size of one pixel ranges from values of the order of 0.1 nm

(by using an AFM) to more than 10 m (for satellite images).

In the field of DIC, there are two different types of algorithms. First local
approaches consist of maximizing the correlation between two interrogation win-

dows (i.e., a small zone of interest or ZOI) taken one in the picture f of the reference
configuration and another one g of the deformed configuration. The output of the

correlation procedure is the mean displacement of each considered ZOI assigned to

its center and a correlation score to evaluate the level of success associated with the

registration (Sutton et al. 2009). More recently, global approaches were introduced
in which the registration is performed at the level of the region of interest (ROI) by
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minimizing the global correlation residual Φc (e.g., the sum of squared differences

between f and g corrected by the sought displacement u)

Φc uð Þ ¼
ð
ROI

ρ xð Þ2dx with ρ xð Þ ¼ f xð Þ � g xþ u xð Þð Þ (1)

with respect to the set of unknown degrees of freedom ui when the displacement

field is decomposed over a given kinematic basis

u xð Þ ¼
X
i

uiμi xð Þ (2)

where μi are the trial displacement fields that can be defined over the whole ROI

(Rayleigh-Ritz approach) or as in finite element procedures (Galerkin approach).

The quality of the registration is characterized globally by Φc, which is the sum of

squared correlation residuals ρ computed for each pixel belonging to the ROI (Hild

and Roux 2012). The residuals can therefore be used at the pixel level as will be
exemplified hereafter.

Only global approaches to DIC will be used herein. The main reason is that

identification techniques, which will also be discussed, are generally based upon

finite element formulations and simulations. Consequently, the same kinematic

hypotheses are made at the measurement and at the identification levels. No

reprojection (or filtering) will be needed. In the present chapter, different types of

elements are used, namely, 4-noded (Q4) elements with bilinear displacement

interpolations (Besnard et al. 2006), 3-noded (T3) elements with linear displace-

ment interpolations for 2D analyses (Leclerc et al. 2009), and 8-noded

(C8) elements for 3D analyses (Roux et al. 2008). In all these approaches, ‘ will
refer to the size of an edge of the used element.

It is also possible to incorporate a mechanical regularization to the DIC func-

tional so as to measure spatially resolved displacement fields with lower measure-

ment uncertainties (Roux et al. 2012). In this case, the correlation functional Φc is

supplemented by the equilibrium gap functional Φm (Claire et al. 2004) written for

an elastic medium

Φm uð Þ ¼ uf g K½ �t K½ � uf g (3)

where [K] denotes the stiffness matrix associated with inner nodes, which should

have zero nodal forces (i.e., [K]{u} ¼ {0}), and {u} the displacement vector

collecting all nodal displacements. In “▶Chap. 39, Evaluating Damage with

Digital Image Correlation: C. Applications to Composite Materials,” the equilib-

rium gap method will be used to determine a stiffness distribution and parameters of

damage growth laws. This regularization only concerns inner nodes and traction-

free boundaries. For the other boundaries, another functional, Φb, is introduced

(Tomičević et al. 2013).
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The three functionals introduced previously are considered jointly as a weighted

sum. The weights however define length scales. To make them apparent, a plane

wave v of wavelength λ is used to normalize the different functionals, and the total

functional to be minimized is written as

Φt uð Þ ¼ Φc uð Þ
Φc vð Þ þ

‘m
λ

� �4 Φm uð Þ
Φm vð Þ þ

‘b
λ

� �4 Φb uð Þ
Φb vð Þ (4)

where ‘m and ‘b are (resp. bulk and edge) regularization lengths. They act in a way

comparable to the element size ‘ when FE discretization is the only regularization

ingredient.

Detection and Evaluation of Physical Damage

With the above definition of physical damage, measurements of porosity and

microcrack distributions are direct connections to the degradation of materials. In

that case, procedures close to those utilized in nondestructive evaluation or struc-

tural health monitoring are considered. The first question is the detection of a given

defect, and the second is its quantification in terms of size and location.

For microvoids, the easiest way of characterization is to resort to image

processing techniques for diameters exceeding the physical size of one voxel

(or one pixel). The voxel size is therefore a natural cutoff in the evaluation of the

distribution of porosity. For sub-voxel sizes, mechanical-based analyses are the

only hope to tackle this problem. However, measuring displacements in the

sub-voxel range is possible but with element sizes that are at least one order of

magnitude larger than the voxel (Réthoré et al. 2011). Voxel-scale DVC (or pixel-

scale DIC) is possible provided a mechanical regularization is added to the corre-

lation procedure (Leclerc et al. 2011, 2012).

Cracks (and microcracks in particular) are a feature that can be detected and

quantified by DIC or DVC (Roux et al. 2009). This is due to the fact that they induce

displacement jumps across the crack length or surface. For mode I cracks, the

pictures themselves can be used for openings greater than the pixel or voxel size as

they induce a change of gray levels. Conversely, mode II and mode III cracks are

more difficult to detect since they are not necessarily accompanied by gray-level

changes. When using displacement measurements, any mode of cracking can be

analyzed since displacements can be quantified in all three cases. Different aspects

can be addressed for microcracks, namely, their volume density, their size, their

orientation, and their openings. Depending on the type of modeling, either or all of

the above quantities need to be assessed. Another aspect is related to damage

mechanisms associated with the detection of cracks (e.g., matrix-cracking in brittle

matrix composites, aggregate/cement paste debonding in concrete, mesodela-

mination in layered composites).

The following examples shed some light on microstructural features (i.e., phys-

ical damage) responsible for mechanical damage at a macroscopic scale.
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The detection and measurement of microcracks, their location, orientation, exten-

sion, or opening are typical questions to address where the resolution of DIC is

challenged. The next section describes different strategies that can be considered

within DIC to reach this objective.

Strategies

Kinematic Analyses
A microcrack is a crack, and hence in mechanical terms, it is the support of a

localized discontinuity in the displacement field. The most natural way to detect it is

to seek within the measured displacement field for a discontinuity. However, the

measured displacement field is generally discretized, and hence, a discontinuity has

not a clear-cut definition. Such a discontinuity will reveal through a large apparent

strain within the element crossed by the crack. Consequently, the spatial resolution

of the displacement field should be good enough to detect a strain concentration

from its surrounding. Thus the region of interest should be finely meshed, but this

fineness has a cost in terms of displacement (and hence strain) uncertainty. A very

dense distribution of microcracks that cannot be resolved will result in an enhanced

strain for the same level of stress or equivalently, it will appear as a reduction in

local stiffness.

Correlation Residuals
A second strategy consists of the study, not of the displacement field itself, but

rather of the correlation residuals. If the very nature of the displacement field is not

well treated because of a priori assumptions, then the quality of image registration

should reveal it clearly. More precisely, if the displacement field was assumed to be

continuous, then it would not account for the displacement discontinuity occurring

along the crack, and hence in the correlation residuals, a large error should become

visible especially on the crack mouth. This second way of addressing the problem is

quite illuminating for finding the crack position and detailed geometry, as the

residual field can be computed at the pixel level. However, little information is

provided on, say, the crack opening as the correlation residual is evaluated in terms

of gray-level difference and not in terms of displacements. This may constitute the

first step of a more sophisticated algorithm where, once cracks are identified, their

kinematics (i.e., the displacement discontinuity) can be incorporated in the DIC

analysis. In this spirit, an eXtended-DIC scheme, replicating the enrichment tech-

nique of the extended finite element method (XFEM), can be devised (Réthoré

et al. 2008).

Sampling of Local Enrichment
A third strategy goes one step further along this direction. A microcrack has

generally a localized influence as compared to the surrounding medium. Typically,

the displacement perturbation caused by a microcrack of length a will affect a

volume of extension a in all space directions. Generally, an anticipation of this
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localized change in the displacement is available (it may be only schematic). Thus

after a first (coarse) DIC analysis where microcracks are ignored, a possible

enrichment may be considered where such a single microcrack displacement

field would be proposed to a DIC algorithm to check whether or not it would

allow for a better description of the actual kinematics. Thus, it is extremely

appealing to resort to such a prospective enrichment as it would consist of a single

degree of freedom DIC, performed for one single step, and hence involving only a

minute additional computational task. As this degree of freedom would involve a

discontinuity of the displacement across the crack, the estimated amplitude, A, of
this degree of freedom could automatically be converted into a microcrack open-

ing. Moreover, the decrease in residuals, ΔΦc, is also a natural output of this

elementary computation, which is to be repeated for all crack locations and sizes

(Rupil et al. 2011).

The following examples discuss practical implementations of these methodolo-

gies for various materials and scales.

Cracking in a Layered Composite

Composite materials form a wide class of materials where damage is an essential

concept, as these materials are by design susceptible to different forms of

microcracks or debonding, but in such a way that the phase arrangement leads to

crack arrest, and thus at a macroscopic scale a sustainable damage. “▶Chap. 39,

Evaluating Damage with Digital Image Correlation: C. Applications to Composite

Materials” will come back in details to model damage in various types of composite

materials.

To illustrate the present approach of crack detection, 0/90 composites provide a

good example of the wealth of information that can be obtained on the individual

events responsible for damage. The material considered hereafter consists of a

layered composite made of 3 plies of long unidirectional carbon fibers in an

epoxy matrix. The plies are oriented along the (0�, 90�, 0�) direction. A uniaxial

tensile test along the 0 direction is analyzed. Different scales of observation are

chosen, namely, a zoom to capture the details of a single event and a larger field of

view, where the ambition is to resolve and count the microcrack density. The

former set of images will be discussed in section “Types of Damage and Constitu-

tive Laws” of “▶Chap. 39, Evaluating Damage with Digital Image Correlation: C.

Applications to Composite Materials,” while the larger scale is discussed here.

The ability of this composite material to sustain the presence of transverse cracks

in different plies implies that a dense distribution of such cracks will take place as

the material is loaded in tension. Thus at a more macroscopic scale, the material can

be described within damage theory. This requires however to have a good statistical

sampling of the density of microcracks. Capturing this phenomenon with DIC now

requires a large field of view and hence fewer pixels to reveal each of these

microcracks. Moreover, the crack opening is also smaller and hence more difficult

to capture. Figure 1 shows such a large field of view.
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DIC was performed with a very fine T3 mesh (‘ � 5 pixels) and a small

regularization length (‘m ¼ 20 pixels; ‘b ¼ ‘m/2). Figure 2 shows the horizontal

displacement and volumetric strain fields that allow meeting the previous require-

ments. Note that the large displacement is an additional difficulty to achieve a good

convergence of the DIC algorithm.

The crack density (number of transverse cracks per unit length) can thus be

estimated as shown in Fig. 3 as a function of the mean extension of the specimen,

and their spatial separation is observed to be quite regular as could be anticipated

from shear-lag-type models (Curtin 1993).

Fig. 1 Side view of a layered composite under tension (horizontally) considered at a macroscopic

scale. The physical size of the pixel is 15.1 μm. The central ply is only about 500 μm (or 33-pixel)

thick (Courtesy of P. Aimedieu and B. Leboime)

Fig. 2 (top) Horizontal displacement (in pixel) and (bottom) volumetric strain showing a quasi-

periodic cracking pattern. The physical size of the pixel is 15.1 μm. The area of the ROI is

1.5 � 24.2 mm2

Fig. 3 Microcrack density

(per unit length) in the central

ply as a function of the mean

longitudinal strain
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Fatigue Test on Stainless Steel

Fatigue of a 304L stainless steel is studied in this section. A flat gauge zone is

machined and polished, on a cylindrical. The shallow notch creates local stress

heterogeneities on the surface to localize microcrack initiations. The notched area is

mechanically polished. A final electropolishing is performed resulting in a good

quality of the surface finish, revealing the ferritic phase (elongated inclusions) in an

austenitic matrix consisting of grains of an average diameter of 40 μm. No specific

marking is applied onto the surface. Figure 4 shows the raw microstructure, which

is not the best suited for analyzing transverse (i.e., horizontal) cracks. The specimen

is cycled by sine-wave loading (5 Hz frequency) in a servohydraulic fatigue testing

machine. The stress amplitude is controlled with a load ratio R ¼ �1. The total

strain is measured by an extensometer (gauge length: 10 mm). The images are

captured with a digital single-lens reflex camera (Canon EOS 5D) and a macrolens

(Canon MPE65) with a magnification of �5. Two lighting sources were needed to

make the microstructure visible (Fig. 4).

DIC analysis was performed here using a regularized approach with a regular-

ization length of ‘m ¼ 40 pixels (‘b ¼ ‘m/2) and a very fine mesh (T3 elements with

‘ � 4 pixels). The displacement and strain maps shown in Fig. 5 reveal quite clearly

a number of microcracks in spite of their small opening (1 μm or less) and limited

spatial extension (roughly 150 μm). However, the DIC analysis here assumes

continuity of the displacement, and the regularization smears out the displacement

discontinuity.

The second strategy of considering correlation residuals, as shown in Fig. 6,

allows for a finer spatial resolution as these residuals are computed at the pixel

level. Although the above procedure can be considered as satisfactory, it requires a

high-resolution DIC analysis, which is time-consuming. All along the fatigue test,

the number of microcracks that initiated was quite large, and their characteristics

Fig. 4 Image of the microstructure of the 304L stainless steel surface observed during the test

(left). Note that no paint has been used, and the revealed raw microstructure is used for the DIC

analysis. The physical size of one pixel is 3.2 μm, and the area of the picture is 1.4 � 1.6 mm2.

Experimental setup (right) (Courtesy of J. Rupil and L. Vincent)

1266 F. Hild and S. Roux



are to be analyzed in a statistical framework to validate the modeling robustness

with respect to the particular sampling of the observation zone. Thus, the repeated

task of analyzing a large number of large images, with such a small resolution

becomes soon limiting. It is for addressing such a difficulty that the third strategy of

sampling local enrichment of the displacement basis within DIC was designed.

Without discussing the details of the DIC procedure (Rupil et al. 2011), Fig. 7

shows a one-to-one comparison of the displacement field as it can be estimated first

from a classical global DIC procedure with a very small Q4 element size (4 pixels)

and second with the sampling of enrichment technique. The overall agreement is

good (note that the overall range of displacement is only one pixel for a 1,500 pixel

long image). Figure 8 compares the change of the crack density with the number of

cycles with a manual analysis and with the fully automated procedure. A good

agreement is obtained to be within the detection uncertainties.

Fig. 5 (left) Vertical component of the displacement field (note the small overall dynamic range

of 0.5 pixel or about 1.6 μm) and (right) corresponding maximum (apparent) strain map. The

brightest spots correspond to microcracks. Their opening is of the order of 1 μm. The physical size

of the ROI is �1.4 � 1.4 mm2

Fig. 6 Residual map after

image registration (white is
null; black is the largest gray-
level difference). Note that

the zones of highest strains in

the previous figure can be

seen as horizontal marks that

are the traces of the

microcracks here resolved at

the pixel level. The physical

size of one pixel is 3.2 μm
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Whatever the strategyused, the importantmessage is that theDIC toolbox can provide

a very fine information in terms of microcrack density, which in the present case,

has been validated against replica measurements, a very accurate and reliable technique

that is however so work demanding that it limits its use for a statistical analysis.

Fig. 7 Comparison between the classical global DIC analysis of the displacement field (left) with
a very fine regular square mesh of quadrangular elements (4 pixel wide) and (right) the procedure
of individual probing of a microcrack test field. The physical size of one pixel is 3.2 μm, and the

area of the ROI is �4.8 � 3.2 mm2 (Courtesy of J. Rupil)

Fig. 8 Quantitative evaluation of the crack density based on a manual detection based on Q4-DIC

displacement field (♦) or automated enrichment sensitivity (■) (Courtesy of J. Rupil)
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2D Crack Networks

In the previous examples, the type of cracks was expected in terms of orientation

(uniaxial tensile tests) and of size for the first example (constrained by the ply thickness).

However, there are situations where the problem is more difficult. The samematerial as

in the previous example is considered, 304L stainless steel, but subjected to a cyclic

biaxial loading. The specimen is cross-shaped and its central part is thinned so as to

concentrate the stress and control the region in which damage develops.

Again, DIC was performed using a very fine triangular mesh (‘ � 5 pixels)

regularized with a small length of 10 pixels. As can be seen in Figs. 9 and 10,

displacement and strain fields are successfully retrieved. Although the displacement

field reveals a complex pattern of discontinuities, it becomes very difficult to

appreciate cracks whose opening is very small. The same conclusion holds from

the reading of the strain maps, or the residual field. Although resolving the cracks as

individual objects with all their detailed geometrical characteristics (e.g., size,

shape, roughness, branching) is a challenging and interesting question, a large

Fig. 9 Vertical (left) and horizontal (right) displacement fields (in pixels) resolved after 7,000

cycles of a biaxial test. The physical size of one pixel is 6 μm, and the area of the ROI is

�4.8 � 4.8 mm2

Fig. 10 Volumetric strain at

the same stage as in the

previous figure
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part of this information cannot be exploited or plays no role in a coarse-grained

picture. In the example of Fig. 9, when the overall behavior of the sample is

considered, only a mean loss of stiffness in the central region will matter. A

microcrack that does not open to the level of detectability is unlikely to play any

significant part in the present stress/strain response. It may grow and at a later stage

become the initiation site of a macrocrack that will ultimately lead to failure, but

this escapes from the realm of (standard) CDM.

3D Analyses

Up to now, only the pictures acquired by a single camera have been used to assess

cracking under various conditions thanks to 2D-DIC (i.e., 2D displacements of the

monitored surface are measured). With the development of 3rd generation synchro-

trons and even more recently lab tomographs, it is possible to have access to

3D-reconstructed volumes during ex situ or even in situ mechanical tests (Buffière

et al. 2010) by resorting to X-ray tomography. These volumes can subsequently be

correlated through DVC to determine 3D displacements in the bulk of various

materials. The two main damage mechanisms, namely, void nucleation and growth

(Babout et al. 2001; Salvo et al. 2003; Maire et al. 2012), and microcrack initiation

and propagation (Hild et al. 2011) can be quantified. Coalescence can also be

analyzed (Maire et al. 2012), but it will not be discussed herein.

Analysis of Damage in High Strength Steel
Dual phase (DP) steels are commonly used in the automotive industry. Because of the

presence of the (hard) martensitic phase in the ferritic matrix, high strength levels are

observed. However, martensite can also promote damage because of its brittleness.

The understanding and modeling of damage is needed to further improve the perfor-

mance of DP steels. In situ tests are one way of analyzing the three steps of damage

development (Maire et al. 2008). Figure 11 shows the distribution of porosities by

thresholding the reconstructed scan. It is possible to follow the change of the number

of porosities with the mean longitudinal strain in the neck. The latter was determined

by assuming a uniform displacement per cross section and plastic incompressibility,

so that tracking the boundary could provide an approximate strain level.

Analysis of Damage Development in Propellant by Using Digital
Volume Correlation
The formulation of energetic materials (e.g., propellants) represents a challenge for

material scientists mainly because of the difficulty/danger of tests performed with

the real materials. It is thus of uttermost importance to be able to anticipate any

difficulty that may occur at the processing stage using a phantom material. The

present example is based on such a phantom, called PBX. It consists of a brittle

phase forming smooth grains of typical size 500 μm, which are dispersed in a

polymer matrix with a good bonding to the particles (Fig. 12). The mechanical

behavior of this material is also essential to understand its functionality.
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In a uniaxial tensile test, failure occurs through the development of a major

transverse crack, normal to the tensile axis. Tomography and DVC appear as unique

tools to get some insight into the nature of the microcracks and the mechanism for

their coalescence. Inclusion breakage and interface debonding are two possible

mechanisms that can hardly be distinguished from a macroscopic characterization,

and they are affected by the presence of a free edge, so that surface observation

cannot be a priori considered trustworthy. Thus, a series of tomographic images was

acquired during a mechanical test (uniaxial tension) at the European Synchrotron

Radiation Facility (ESRF). Figure 12 shows the reference specimen.

0
103

104

105

106

0.2 0.4

Mean Longitudinal strain

C
av

it
y 

de
ns

it
y 

(1
/m

m
3 )

0.6 0.8 1

Fig. 11 3D rendering of the distribution of porosities within the deformed sample prior to fracture

(left). Density of cavities as a function of the mean longitudinal strain (right). The solid symbols

are experimental data, and the dashed line is an exponential fit (Courtesy of E. Maire)

Fig. 12 Microstructure of

the propellant phantom

material (PBX) as revealed by

tomography. The round

inclusions (shown in light
gray/yellow) are brittle, while
the matrix phase (shown in

dark gray/red) is a polymer

binder. The physical size of a

voxel is 7.4 μm, and that of

the ROI is �2.1 � 2.1 � 2.1

mm3 (Courtesy of J. Adrien,

A. Fanget and E. Maire)
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The displacement field at different stages of loading is determined from global

DVC where the displacement field is decomposed over a finite element regular

mesh consisting of 68-voxel C8 elements. Neither the displacement nor the strain

fields by themselves could indicate the formation of microcracks. This is in part due

to the coarse mesh chosen for this analysis. However, the residual field is very

informative on the violation of the continuity assumption for the displacement field.

Figure 13 displays perspective views of the thresholded residuals at two different

levels of load.

The left residual field does not reveal any crack or defects other than those due to

the way the images are obtained. The residual field presented in Fig. 13 (right)

shows that numerous features appeared as the load increases, in particular smooth

surfaces at the interface between particles and the matrix. Moreover, they tend to be

oriented normal to the tensile axis, as could be anticipated for mode I opening.

Thus, the residual analysis is able to bring this invaluable piece of information

about the origin of the mechanical degradation. Moreover, as exemplified earlier,

these patterns become apparent for a subvoxel crack opening, and hence, they could

not be isolated from single images even with sophisticated image analysis

techniques.

Summary

The present chapter has shown through a variety of examples that, from different

outputs of image or volume correlations, it is possible to detect and quantify

microstructural defects (i.e., physical damage) responsible for the degradation of

the mechanical properties of materials. A particular emphasis has been put on

Fig. 13 Perspective view of the (thresholded) residual field after two different stages of defor-

mation (left: 0.37 %; right 1.75 %). Whereas most of the residuals correspond to reconstruction

artifacts at low strain (left), debonding cracks become active as the strain level increases
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microcracks rather than microvoids as they are typically more challenging in terms

of detectability. DIC is also a very powerful tool for identifying the constitutive

parameters of mechanical damage understood as part of a constitutive law. This

dimension will be explored in the two following chapters (“▶Chap. 38, Evaluating

Damage with Digital Image Correlation: B. From Physical to Mechanical Damage”

and “▶Chap. 39, Evaluating Damage with Digital Image Correlation: C. Applica

tions to Composite Materials”).

Acknowledgments Many results reported herein have been obtained thanks to the help of and

discussions with J. Adrien, P. Aimedieu, A. Fanget, B. Leboime, E. Maire, B. Raka, J. Rupil,

N. Swiergiel, and L. Vincent. Part of the work has been supported by Agence Nationale de la

Recherche (VULCOMP phases 1 and 2), by Ile de France region (SESAME project entitled

“Plate-forme francilienne d’expérimentations mécaniques de 3egénération,” and DICCIT project).
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Abstract

This chapter is devoted to the evaluation of damage with digital image correla-

tion (DIC). This measurement technique provides displacement fields that can be

used to tune material parameters of damage models. The potential of DIC for

identification purposes is illustrated hereafter for simple 1D-type geometries in

the context of quasi-brittle and ductile behaviors. Beams and frames as encoun-

tered in civil engineering application can be described through damage laws.

The localization of damage at single points (lumped damage mechanics) and the
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resulting damage law can be determined very precisely based on dedicated

versions of DIC incorporating the descriptive language of beam theory. At

smaller scale, plasterboards (plaster core lined with paper) constitute another

example of a structure (rather than a material), which can be described as

damageable. Those cases will be analyzed in details.

1D Geometry of Various Materials

The previous chapter (▶Chap. 37, Evaluating Damage with Digital Image Correla

tion A. Introductory Remarks and Detection of Physical Damage) dealt with the

detection of microcracks, as revealed from their mechanical effect. However, as

discussed in the introduction, damage most often refers to a continuum level

description where microcracks are not considered individually but rather through

their effect, say, in stiffness reduction. This can be justified from homogenization,

or simply considered as a phenomenological, though thermodynamically sound and

well founded, description. Such a global and averaged view can also be tackled with

DIC, either by providing the displacement field needed to identify a damage state or

through a more intimate coupling between modeling and image registration.

To discuss this issue with the minimal degree of complexity, this part is based

upon one-dimensional problems amenable to a beam-type description, where dam-

age mechanics is also here (albeit less frequently used) a very appropriate and

efficient formalism to account for the progressive degradation of mechanical

properties. It is worth noting that plates and shells show in a different manner a

tendency to concentrate cusps and ripples (Audoly and Pomeau 2010) leading to a

rich coupling between geometrical and constitutive nonlinearities. This remark

shows that besides the illustrative purpose of this topic, it contains specific ramifi-

cations that would require a research effort per se.

This part allows a number of challenges in the analysis of an experiment to be

revisited. The very first question that will be addressed is the best determination of a

large-scale deformation. Although, it may appear as a trivial question, it will raise

interesting issues in terms of methodology. The exploitation of such large-scale

deformation will open the way to a better knowledge of the actual conditions of a

given test. In fact, there is no need to assume that a test is perfect or sticks to the

ideal picture of what it should be, if full-field measurements can bring the actual

information on the test geometry, on the load distribution, or on the actual location

of an applied force. This better characterization is of help to the analysis, allowing

for less variability, say, in the measurement of elastic stiffnesses. However, in

damage mechanics, chances that an assumed symmetry of the test is maintained all

along the test are dubious at best. Damage has a natural propensity to amplify any

dissymmetry present in the test, and thus it is very important in the analysis to allow

for such an evolution and capture it with the analysis tools (DIC in this chapter) in

order not to bias further exploitation of the results.

Another challenge is to adjust the metrology to the choice for a

particular description level. This is a key issue lying at the very heart of CDM
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(see▶Chap. 37, Evaluating Damagewith Digital Image CorrelationA. Introductory

Remarks and Detection of Physical Damage). Unless the “physical damage” cannot

be resolved, the choice is often open to decide either for a description of say

microcracks distributed within the analyzed domain or for an averaged vision.

(It is recalled that throughout this chapter, the chosen convention for “physical

damage” designates the microscopic mechanisms (microcracking or cavitation)

responsible for the degradation of the mechanical properties, whereas “mechanical

damage” refers to the averaged description of such degradation through a suited

constitutive law.) If the second choice is made, the corresponding displacement field

resulting from the most appropriate damage law will not be the actual displacement

field. The challenge on DIC is thus to capture the long-wavelength component of the

strain field, without being affected by the physical damage features. Finally, for the

particular example of beams, it may be chosen to work in the opposite direction,

namely, rather than spreading damage over a large portion of the beam, it may rather

be localized (or lumped) at a single point, using “lumped damage mechanics,” to

concentrate nonlinearities and preserve the simplicity of the undamaged description

in between these “damaged hinges” (Cipollina et al. 1995). Here again, DIC is a very

convenient tool to identify such features.

Thus, themajor emphasis of this part is to build an identification strategy tomeasure
damage laws. The literature is quite abundant on different methods proposed to

estimate the elastic properties from measured displacement fields (Grédiac and Hild

2012). The method presented hereafter is the most natural updating method. It is the
most appropriate, but it is intrinsically nonlinear (in the generic case of significant

damage). Other methods will be shown in “▶Chap. 39, Evaluating Damage with

Digital Image Correlation: C. Applications to Composite Materials” such as the

“equilibrium gap method.” However, the “reconditioned equilibrium gap method” is

essentially equivalent to the updating method used hereafter. Hence, the terminology

can be somewhat confusing. The “virtual field method” (Pierron and Grédiac 2012)

consists of having a weak formulation of equilibrium and constitutive law, which is

common to all the abovementioned methods, for arbitrary trial displacement fields.

However, there is no specific prescription for the selection of these fields, even if some

are more appropriate than others. An overview of these different methods is provided

byAvril et al. (2008). It is to be emphasized that they are all correct, and theirmerits are

to be evaluated from the more or less detrimental effect of noise on their identification

capacity in particular for nonlinear constitutive laws such as those involving damage.

To illustrate these aspects of the problem, different examples dealing with beam

geometries are commented. The beam problems are ubiquitous and are met at large

scales for civil engineering concrete or steel beams, at centimeter/millimeter scale

for materials such as plasterboard or laminated composite plates, or even at a

microscale for microcantilevers encountered on lab-on-a-chip devices (Amiot

et al. 2007). The case studies chosen to illustrate this part concern:

• A cantilever steel beam where buckling at its foot can be described as a localized

or lumped damage.

• A plasterboard specimen subjected to a simple four-point bend test up to failure.
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The parallel in the procedures to be followed for civil engineering-type struc-

tures and material science lab-scale tests is emphasized to underline the usefulness

of such slender geometries.

Before addressing the identification of damage features, one key aspect is related

to the extraction of the experimental boundary conditions. This question may

appear as secondary, but if the boundary conditions are not properly captured,

they may bias at best or even prevent the evaluation of the sought information,

namely, the damage field and the corresponding growth law. In the first example,

the determination of the boundary conditions (flexural moment, application point of

the transverse force) can be uncoupled from the analysis of the damage field per se

since an elastic part is still accessible. In the second example, boundary conditions

and damage field are identified at the same time.

Case Studies

Steel Beam

A civil engineering setup consisting of a cantilever beam of length 1.50 m and

square hollow cross section of outer (resp. inner) size of 120 mm (resp. 112 mm) is

studied. The beam is made of conventional construction steel (ASTM-A-500). It is

shown in Fig. 1. It is anchored in the massive block at its foot so that it can be

considered as clamped. At the opposite end, a transverse force is applied with a

jack. A series of high-definition (3,888 � 2,592 pixels) camera pictures are shot

during the test, i.e., for a progressive increase of the transverse loading, for each

10 mm increment of the stroke. The physical size of 1 pixel is 0.39 mm. A random

black-and-white painting is deposited onto the surface to allow for a more precise

image registration.

Plasterboard

Plasterboard is extremely common as a building material, with good thermal and

acoustic insulation properties, excellent fire resistance, ease of installation, nice surface

finish suited for decoration, together with very low cost. The mechanical performance

expected from such boards is generally modest, and hence, optimization of insulation

properties is privileged over strength. To withstand the bending due to processing and

handling of these boards, the paper lining of the outer faces of the plaster board plays an

essential role. Even if the plaster core is brittle, paper will allow withstanding a flexural

moment larger than the one needed to initiate the first crack. Even if debonding naturally

occurs at the interface between plaster and paper close to a transverse crack, load

transfer will allow for initiation of other cracks past a characteristic distance. Such

flexural strength is generally qualified from three- or four-point bend tests.

A specimen 160 cm in length, 50 cm in width, and 13 mm in height is subjected

to a four-point bend test. The outer support span is equal to 150 mm and the inner
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yoke span is 40 mm. In order not to damage the specimen, the load-bearing

contacting elements are cylinders 20 mm in diameter. Figure 2 shows a side view

of the central part of the sample; only the central part is shown. Images of the

speckled face are captured with a camera of definition of 3,888 � 2,592 pixels

whose gray levels are stored with 8-bit digitization. The physical size of the pixel is

37 μm.

In the following, the displacement fields are obtained with DIC analyses based

on a regular square mesh composed of 12 pixel wide Q4 elements. A priori

Fig. 1 (a) Reference configuration of a cantilever steel beam clamped at its foot and subjected to a

transverse force. The two regions of interest that will be considered in the following analyses are

depicted as white boxes. (b) Geometry of the beam at the end of the test, a local buckling can be

guessed close to the base (Courtesy of N.J. Guerrero, M.E. Marante and R.A. Picon). (c) Schematic

representation of the mechanical test

Fig. 2 Side view of a four-point bend test on a plasterboard specimen speckled with black paint

over its observation face. The outer fixtures supporting the specimen are located outside the field of

view. The inner load-bearing cylinders can be seen above the specimen (Courtesy of A. Bouterf)
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estimates of the displacement uncertainty are found to be equal to 0.04 pixel or 1.5 μm.

Because of such a large radius of the cylinders and because of the crushing of the paper

facing, the exact equivalent points of load application are imprecisely defined from the

bare experimental setup.

Formalism

Within Euler-Bernoulli theory, in an elastic beam along the x-axis, the curvature,

κ(x), is proportional to the flexural moment, M(x), with a flexural stiffness k0 ¼ EI,
where E is the Young modulus and I the moment of geometric inertia. If v(x)
denotes the deflection of the beam, then κ(x) ¼ d2v(x)/dx2. In the presence of a

degradation mechanism (such as microcrack formation but also buckling or other

phenomena affecting either the elastic properties or the geometric cross section of

the beam), damage, D(x), is introduced to account for a reduction in the flexural

stiffness, so that

k xð Þ ¼ 1� D xð Þð Þk0 (1)

Different presentations (either starting from the expression of the free energy as

discussed in “▶Chap. 39, Evaluating Damage with Digital Image Correlation: C.

Applications to Composite Materials” or the effective stress (here flexural

moment)) can be used. Under a monotonic loading history, damage is thus expected

to be a function of the local curvature only

D xð Þ ¼ Φ k xð Þð Þ (2)

where Φ is a function that completely describes the damage growth law. In a test

where the load is known, the curvature is a solution to the nonlinear problem where

1�Φ k xð Þð Þð Þk0k xð Þ ¼ M xð Þ (3)

Theoretically, DIC gives access to the deflection, v(x), and hence combining this

measurement, and the knowledge of the flexural moment M(x), the function Φ can

be estimated. Moreover, in simple cases such as the four-point bend test, the central

region is studied where M (and thus κ) are uniform, and thus the damage law can

directly be read from the test. This elegant idea has been exploited by Leplay

et al. (2010) to evaluate the damage law of a porous ceramic material.

The practical difficulty of the previous pathway to the measurement of damage is

the fact that the primary measurand of DIC is a displacement, such as the deflection,

and hence the second-order derivative required for the computation of the curvature

acts as a strong amplifier of noise. As a consequence, the proper procedure to

evaluate Φ should be based on the displacement itself. For a uniform and

uncorrelated Gaussian noise, the most secure determination of the displacement is

obtained from a least squares minimization over a basis that contains the

expected form.
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The use of DIC to measure the beam kinematics can be performed with different

strategies. The most obvious one is to use standard (global or local) DIC softwares

and then projecting the two-dimensional displacement field onto the Euler-

Bernoulli description in a least squares sense. It is worth mentioning that it is

possible to incorporate the beam kinematics, already in the basis of function used in

global DIC (Hild et al. 2009). If this is the chosen strategy, then the output of the

DIC analysis is directly the deflection and rotation as a function of the coordinate

along the beam axis, i.e., the most appropriate kinematic description. In the two

discussed examples, a different choice is made for the measurement of the beam

kinematics for reasons to be discussed below.

For both approaches, either the projection or the beam-DIC approach, the

discretization of the deflection v(x) is a key issue. It is natural to make sure that

the deflection and its derivative (the rotation) are continuous. If several beam

elements are considered in a partition of the beam, then it is easy enough to

control the continuity of deflection and rotation, for instance, using Lagrange

multipliers. If no localized torque is applied at the interface, then the flexural

moment should be continuous, and hence if the flexural stiffness is also contin-

uous, this corresponds to a continuity of the curvature field. Similarly, if no

transverse force is applied at the interface, then the shear force should be

continuous, and again, for a continuous flexural stiffness, the third derivative of

the deflection should be continuous. If all continuity conditions are prescribed,

this is equivalent to having a single beam element (with homogeneous elastic

properties and no applied load along its length), over which v(x) is a third-order

polynomial. A further exploitation of the regularity of the deflection will be

discussed below.

DIC Measurement of the Boundary Conditions

The beam is first assumed to be undamaged. The first goal to be aimed at is the

identification of the proper boundary conditions. To take full advantage of DIC, a

large-scale portion of the beam should be exploited. The discussion is first special-

ized to a segment (say 0 < x < L ) where no distributed load is applied. Integration

of the above equations in the absence of damage leads to the deflection, v(x), being a
third-order polynomial of the coordinate x. Since v(x) is assumed to be measured

from DIC (and simultaneously corrupted by a random noise), the most robust way

to determine the flexural moment or the shear force is not from a second- or third-

order derivative of the displacement field. Rather, a much better way is to perform a

least squares fit over a third-order polynomial. In the case where the noise affecting

v(x) is white (uncorrelated) and Gaussian, it can even be shown that this procedure

is the most robust.

Moreover, as the measure is uniform over the interval 0< x< L, it is convenient

to choose as a polynomial basis, the Legendre polynomials, Qn xð Þ ¼ ffiffiffiffiffiffiffiffi
2=L

p� �
Pn

2x=L� 1ð Þ, since they form an orthogonal basis. Here Pn denotes the normalized
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Legendre polynomials defined over the [�1;1] interval. The least squares polyno-

mial regression, v(x) ¼ ∑ anQn(x), simply writes

an ¼
ðL
0

Qn xð Þv xð Þdx (4)

and hence, working out a simple algebra, the least squares estimate for the curvature

is given by

κ xð Þ ¼ 60

L2

ð1
0

6y2 � 6yþ 1
� �

v yLð Þdyþ 7
2x

L
� 1

� �ð1
0

20y3 � 30y2 þ 12y� 1
� �

v yLð Þdy
	 


(5)

and that of the third-order derivative of v(x)

κ0 ¼ 840

L3

ð1
0

20y3 � 30y2 þ 12y� 1
� �

v yLð Þdy
	 


(6)

It is interesting to note the structure of the evaluation of such quantities of

interest, generically denoted as q, is related to the measured displacement through

a linear operator that can be written as a simple scalar product of v(x) with an

“extractor” field Eq(x)

q ¼
ðL
0

Eq xð Þv xð Þdx (7)

It is to be emphasized that the point, x0, where the flexural moment vanishes can

easily be read from the previous expression of κ(x)

x0
L

� �
¼

ð1
0

70y3 � 108y2 þ 45y� 4
� �

v yLð Þdy

7

ð1
0

20y3 � 30y2 þ 12y� 1
� �

v yLð Þdy
(8)

The above procedure is the most appropriate way of dealing with a displacement

field obtained from DIC. In this respect, there is no need to introduce a specific

regularization. When beam-DIC is used, in fact such a procedure is already

implicitly performed in the sense that the deflection is already a third-order poly-

nomial that is adjusted thanks to image registration, which can be shown to be

equivalent to a least squares regression for a parabolic pair correlation function of

the surface texture (Hild and Roux 2012).

As a side remark, it is worth emphasizing that the existence of an “extractor”

field is a very general property for all quantities that are linear in the displacement

field. For instance, such a structure can be encountered for the measurement
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of stress intensity factors, from a DIC measurement of a displacement field

(Réthoré et al. 2011). Similarly, the crack-tip position can be evaluated as the

above x0 from the ratio of two quantities of interest (one primary quantity and its

derivative; see Roux et al. (2009)).

One possible application of the above procedure is the analysis of the loading

state for the steel beam. As mentioned above, the load is applied to the beam end

through a jack. However, in order not to damage the beam at the contact point of

application, a protecting device is introduced. Consequently, it is difficult to have a

very accurate estimate of the position where the load can be considered as an

equivalent point force. Yet, equipped with the above formulas or with a beam-DIC

analysis, if the kinematics over a region of the cantilever beam corresponds to that

given by an elastic medium (i.e., ROI 1 of Fig. 1a), such an estimation is quite

straightforward.

Figure 3 shows the evaluation of the curvature as a function of position at

different stages of loading, based on a portion of the beam where the behavior

can be guaranteed to be elastic. Knowing the flexural stiffness of the beam (in its

undamaged state) allows the transverse load to be evaluated from the measurement

of the curvature F ¼ k0 dκ(x)/dx and the point of application where κ(x) vanishes.
Similarly, the rotation at the foot validates the relevance of the clamping condition

(and thereby determines the most appropriate location of the beam end).

For the four-point bend test on plasterboard, a precise measurement of the

loading (and geometry) of the setup may be addressed using the above methodology

in different portions of the specimen (side or central parts) in between supporting or

loading cylinders. However, such a partition in three independent parts is not

Fig. 3 (a) Load versus stroke of the steel beam at the points (a–j) where images are acquired. (b)

Evaluation of the curvature of the beam versus abscissa along the beam for different stages of

loading labeled with a letter. The region of interest (ROI 1; see Fig. 1a) over which the

measurement is performed is indicated; its length is approximately 800 mm. Outside this region,

the data are extrapolated. This procedure allows for a precise determination of the loading, and it is

noted that the point of application of the transverse load (abscissa where the flexural moment, and

hence curvature, vanishes) slowly drifts along the test (Hild et al. 2011)
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optimal as the continuities across the different parts are not exploited. Rather, a

complete numerical description is an easy way to circumvent this difficulty and has

the flexibility of addressing arbitrary complexity of the setup (and can easily be

extended to frames). The procedure is a straightforward extension of the previous

approach. First, a parametric modeling of the setup is to be chosen. This step is

important since it relies on a good balance of a sufficiently general case to

encompass all practical deviations from what the ideal test should be and

constrained enough to allow for a precise determination of the parameters. The

set of parameters defining the experiment are gathered in a vector, a ¼ {ai}, for i ¼
1, . . . , n, so that the expected deflection vcomp(x;a) can be numerically determined.

The sensitivity fields

wi x;að Þ ¼ @vcomp x;að Þ
@ai

(9)

are introduced and computed either formally, or through finite differences. In the

framework of a linear theory, some of the sensitivity fields are constant (e.g., if the

corresponding parameter is say a load at a particular point, so that the sensitivity is

commonly termed an influence function), but the general case is that these sensi-

tivity fields are not independent of the parameters a. For instance, the position of a

load-bearing point has a nonlinear influence on the deflection, even within linear

elasticity. The ability to deal with nonlinearities (and these ones are gentle!) opens

the way to the identification of more complex constitutive laws. Interestingly, the

sensitivity fields often have a simple mechanical interpretation. When the param-

eter ai is the location x0 of an applied load F, the sensitivity field is the deflection

induced by a load F at x0 + dx0 and � F at x0. This is precisely a local torque F dx0
exerted at x0.

To determine the best set of parameters, a, to account for the measured displace-

ment vDIC(x), it is convenient to minimize the quadratic norm of the differences

T að Þ ¼
ðL
0

�
vcomp x;að Þ � vDIC xð Þ�2 dx (10)

so that a current estimate of the parameters ap at iteration p can be corrected to

a
p+1 ¼ a

p + da, where the argument of the objective function T is Taylor expanded

T að Þ ¼
ðL
0

�
vcomp x;að Þ þ

X
i
wi x;að Þ dai � vDIC xð Þ�2 dx (11)

In other words, the correction da is determined as the least squares regression of

the difference (vDIC � vcomp) over the sensitivity fields. The answer is thus simply

given by the pseudoinverse

da ¼ M�1db (12)
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where

dbi ¼
ðL
0

vDIC xð Þ � vcomp x;að Þ� �
wi x;að Þ dx

Mij ¼
ðL
0

wi x;að Þwj x;að Þ dx

(13)

It is to be noted that the above setting takes again the form of an extractor, or its

natural extension to the nonlinear case, namely, with a tangent extractor and an

additive term as expected from the proposed Newton scheme.

In the particular case of the four-point bend setup, all the above sensitivity fields are

computed analytically so that the complete analysis can be made very efficient.

However, the explicit expression of the different fields is lengthy and presents little

practical interest. It is worth noting the complete analogy that can be drawn with the

simpler case of a single beam element supporting no distributed load that was intro-

duced earlier. A major advantage of the proposed procedure is that it is very tolerant

to experimental imperfections. In particular, as earlier mentioned, the load-bearing

cylinders have a large radius, and the paper siding of the plasterboard is compressed

over a region of a few millimeters. Hence, the precise location of the equivalent point-

like load does not appear to be an easy problem. Similarly, an equal left/right balance of

the load is often expected by symmetry arguments, but it may be violated in practice.

The chosen parameters were the exact position of the contacting elements, the

force distribution between the two loading cylinders (whereas the sum of the two

forces is known from the load cell) and a rigid body motion superimposed on the

solution where the supporting elements are fixed. A first benefit of using this

procedure lies in the measurement of the elastic properties of the beam. For the

measurement of the flexural stiffness (in the linear elastic regime) performed over

10 different samples, the standard deviation of the flexural stiffness is reduced by

almost a factor of 2 (a Young’s modulus of 2.52 � 0.18 GPa was identified to be

compared with 2.40� 0.28 GPa for the classical beam theory based upon symmetry

considerations). Hence, half of the fluctuations originate from test imperfections

and not from intrinsic variability of the material. This issue will be further

commented later on (see results reported in Fig. 9).

Damage Identification

The determination of the damage law is carried out as a post-processing step of the

DIC analysis. In fact, the previous framework rests on two assumptions, namely, the

first one is that the flexural moment is constant, while the second is that under a similar

flexural moment, the local curvature is identical. The latter assumption excludes

regimes past the breakdown of uniqueness occurring at the onset of localization for

a homogeneous constitutive law. However, it is to be stressed that assuming a uniform

constitutive law is a very stringent assumption, especially by the fact that homogeni-

zation lies at the very root of the existence/relevance of the damage law as such.
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Relaxing the previous framework to account for less restrictive assumptions

opens two rather different perspectives:

• The first one consists of allowing for different constitutive laws in different

regions along the beam. It opens a rather wide scope. The number of unknowns

to be determined increases with the domain size as each additional volume

element brings its own unknowns and thus does not help for the determination

of previous ones. This increase of unknowns may still be acceptable in 1D

situations, but in two or three dimensions, this route may soon reveal inadequate,

unless a very coarse description is chosen (see “▶Chap. 39, Evaluating Damage

with Digital Image Correlation: C. Applications to Composite Materials”).

• The second one assumes a homogeneous constitutive law, yet allowing for an

inhomogeneous loading. This second option rests on the hypothesis that damage

will amount to the same level for the samemaximum historical (equivalent) strain.

Thus, the actual unknown is the relationship between damage and maximum

equivalent strain, or essentially a 1D unknown function, whatever the space

dimensionality. If an additional volume element is taken into account, then the

number of unknowns does not increase, and hence, larger volume reduces the

difficulty and possible poor conditioning of the problem at hand. Moreover, even if

the loading is homogeneous, say in the central span of a 4-point bend test, past a

bifurcation point where the solution is not unique, the observed displacement field

is still subjected to very stringent constraints, and hence, rather than being stopped

at a bifurcation point, this strategy is expected to allow for the identification in post-

bifurcation regimes, which can hardly be tackled with traditional means.

The second option is more favorable than the first in terms of accuracy, for

distributed damage, because it involves a smaller number of unknowns for a similar

amount of information. However, it rests on an assumption to be justified. More-

over, the situation is not always as clear cut as for these two pure cases. A partition

of the domain into a few regions may be proposed where each may be regarded as

homogeneous, and the question of an appropriate partitioning is by itself a very

interesting point, which will not be further discussed here. Yet, for beams that are

not subjected to distributed loading, the most severely loaded parts are the ends, and

hence it may occur quite frequently for civil engineering applications that damage

is essentially localized at the foot of a pillar, and hence a simple partition of the

beam in a localized zone concentrating the nonlinear evolutions and the remainder

of the beam being essentially ruled by a linear elastic constitutive law may be an

appropriate way of capturing the degradation of a structure with a fixed level of

complexity. Moreover in that case, the damaged region may possibly be pictured as

reduced to a single point, the so-called “lumped damage” approach, with a minimal

complexity, and hence constituting the basis of a very efficient modeling (Marante

and Flórez-López 2003).

The two examples introduced earlier will be analyzed in this section as they are

representatives of the two above cases, namely, first localized damage and second

distributed damage.
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Localized Damage

The steel cantilever beam (Fig. 1) is considered again. It has been shown previously

how to characterize the loading state based on the analysis of an elastic part of the

structure used as a “load” sensor. Figure 4 shows, for the very same analysis, the

rotation field. It is observed that for the first levels of loading, the clamping

condition at the foot of the beam is appropriate. However, for larger loads, extrap-

olation of the rotation data leads to a significant rotation at the foot. Since the level

of correlation residuals in the region of interest remains very low, there is no reason

to disqualify the assumption of an elastic behavior, at least in the region of interest

itself. The flexural moment has a known evolution similar to the curvature shown in

Fig. 3b, and where the extrapolation outside of ROI 1 (Fig. 1a) is legitimate. Thus,

the only possibility to reach a vanishing rotation at the foot of the beam is to accept

the fact that the curvature is much higher than the extrapolated value in the region

x < 1,000 pixels. This is consistent with the known flexural moment only if the

bending stiffness is reduced.

Note that in reality the phenomenon at play is buckling, taking place at the foot

of the beam. This goes together with a drastic reduction in bending stiffness

(analyzed here as an effective damage) and presumably a plastic hinge leading to

a permanent rotation. The partition into plasticity and damage would require

information about unloading, which is unfortunately unavailable in the present

case. Thus, the analysis is restricted within the framework of damage theory (as if

there were no plasticity). In the event of a more complete set of data, the incorpo-

ration of plasticity together with damage would not represent any particular diffi-

culty, and most of the discussion would continue to hold.

A detailed analysis of the correlation residuals, and sensitivity to the beam

element discretization (not reported herein; see Hild et al. (2011)) yields the

rotation fields measured in ROI 2 (see Fig. 1a) and shown in Fig. 5a. Most of the

nonlinear (damage) behavior is confined within a region Δnl, 0 < x < 500 pixels. A

uniform damage is assumed within such an element and an undamaged behavior

elsewhere. The boundary conditions are the following:

• The beam is clamped at its foot x ¼ 0.

• At the interface between the damaged and undamaged beams, deflection and

rotation fields are both continuous, as well as shear force and bending moment.

• At the free end of the cantilever, a pure shear force is exerted at a point to be

determined.

A discontinuity in the curvature takes place at the interface between damaged and

undamaged elements, x ¼ x1, and hence writing the continuity of moment leads to

1� Dð Þkdam x1ð Þ ¼ kundam x1ð Þ (14)

Thus, the damage state is directly evaluated from the ratio of curvatures in the

undamaged to the damaged region. Rewriting the damage variable as a function of
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curvature D ¼Φ(κ), the analysis of the complete series of images leads to values of

damage (one per image, representative for the entire “damaged area”), which can be

interpolated by the following form

Φ κð Þ ¼ 1� exp � κ � κth
κ0

� �m� �
(15)

where κth is a threshold curvature for the onset of damage (buckling), κ0 a scaling
factor, m an exponent (about 1/3), and h . . . i designates the positive part of its

argument. Figure 5b shows the above expression fitted to the measured data.

Fig. 4 Evaluation of the

rotation field along the beam

based on the same region of

interest as previously

(indicated as ROI 1 in Fig. 1a)
and for different levels of

loading. Outside ROI 1, the

data are extrapolated. The

length of ROI 1 is 800 mm

Fig. 5 (a) Rotation fields over a length of 800 mm for the ten analyzed load levels. (b) Damage as

a function of the mean curvature in the damaged zone. The data points are obtained from the beam-

DIC analysis, and the dotted curve is the fit to the proposed functional form. The physical size of

one pixel is 0.39 mm
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Distributed Damage

When Q4-DIC is applied to the four-point bend test of the plasterboard specimen

(Fig. 2), at the later stages, it is quite clear that the strain field is not homogeneous

anymore. Figure 6 shows the horizontal component of the displacement and of the

strain fields over the same region as shown in Fig. 2.

To quantitatively evaluate the progressive degradation of the board up to failure,

two routes can be followed. The first one consists of characterizing the cracks as

they initiate, propagate, and potentially get arrested. Here the tools shown in Part A

may reveal quite useful. However, the interface between the paper lining and the

plaster core, which will suffer from delamination (i.e., mode II frictional cracks), is

difficult to resolve. Moreover, such a description has to be based on a statistical

description, and thus it requires a (very) large number of parameters to define all

needed quantities. The second route ignores the presence of the cracks and sub-

stitutes to the localized kink due to the cracks a distributed smoothly varying

curvature, through an equivalent damage field. The observation that the separation

between cracks is very regular signals that although crack initiation is random by

nature, the shielding or obscuration mechanism (well described by the shear-lag

model (Kelly and Tyson 1965; Aveston et al. 1971)) is such that the stage captured

in Fig. 6 is a “saturated” regime where the statistics of initiation is essentially

hidden by the load transfer mechanism. Consequently, the behavior can be

described by a deterministic process. A damage model is the minimum ingredient

for a consistent description of the mechanical response of the board.

The observation of the displacement field sheds some light onto the discussion

mentioned at the introduction of this section about the strategy to be used to capture

the displacement field. Two strategies were mentioned. The first one used a

classical DIC methodology, without any prior assumption, and a post-processing

of the two-dimensional displacement field was applied to project the kinematics

onto a basis of beam theory. The second one consisted of searching the kinematics

Fig. 6 (top) Horizontal component of the displacement field; (bottom) apparent strain (in %) field

where cracks in plaster are clearly visible. The physical size of one pixel is 37 μm, and the area of

the ROI is � 9.3 � 51.8 mm2
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directly in the space spanned by beam theory. The second strategy did not involve

any intermediate step, and thus it is consistent from the very beginning of the

analysis and involves the minimum cost in information loss from one basis to

another one. Hence, it may be considered as the strategy to be favored in all

circumstances. Figure 6 however shows the limit of this argument. The actual

displacement field that can be measured by DIC is not that with a homogenized

vision underlying the damage theory. Hence, in such a case, the two objectives

should be distinguished as distinct. On the one hand, the displacement field has to

be captured accurately whatever its nature. On the other hand, the best approxima-

tion of the actual displacement field is sought within a certain framework (Euler-

Bernoulli kinematics and slowly varying damage). Trying to do both at once may

ruin both goals, unless it is expected that the representative element size is very

small at the scale of the resolution of the imaging techniques (this condition is not

met for the plasterboard). In such circumstances, a standard DIC analysis followed

by a projection onto a beam kinematics is a recommended choice.

Identification of Distributed Damage

In the case of distributed damage, one strategy is to seek for the local stiffness

written as a relative reduction of the flexural stiffness k0 by a factor that may be

written for obvious reason as (1�D(x)) although the “damage”D(x) here introduced
does not refer to any specific constitutive law. The proposed strategy is a direct

extension of the previous determination of the geometrical parameters. It is

straightforward to add the local damage variable D(x) as additional parameters in

the vector of parameters to be determined using the minimization of the quadratic

difference of measured and computed deflections T. When referring to a function

D(x), what is really meant is a discretization of this function. In the previous

(cantilever beam) example, only two regions were considered, and actually only

one had a nonzero level D. In a more general framework, D(x) can be considered to
be piecewise constant over a partition of the beam into small size elements, and

hence characterized by a vector of unknowns,D¼ {Di}. To simplify the discussion,

it is assumed that the other geometrical parameters have been determined once for

all in the elastic regime, so that the only unknowns are here gathered in D.
To apply the previously discussed strategy, the associated sensitivity fields wi(x),

which are equal to the displacement field that corresponds to a variation of damage,

i.e., flexural stiffness, over the interval indexed by i, under fixed boundary condi-

tions, need to be evaluated. They can be seen as Green’s functions under a specific

load that is two opposite torques being applied to the two ends of the considered

element. These Green’s functions depend on the entire damage state of the beam,

but their computation is quite straightforward. For the sake of completeness, rigid

body motions are to be added to the library of sought functions wi.

The following procedure does not involve any new specific developments as

compared to the previously discussed resolution. The only point to be noted is that

the number of parameters may be large if the discretization of the damage field D is
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fine. A large number of unknowns have the natural side effect of deteriorating the

conditioning of the system, and high-frequency oscillations inD(x) are to be feared,
which have almost no overall effect and that will be activated by the noise

inevitably present in the measured displacement fields. One common way to limit

this influence is a regularization (Tikhonov and Arsenin 1977) where rapid varia-

tions of D(x) are penalized, but this will artificially forbid the occurrence of

localization, which may be a genuine mechanical instability possibly leading to a

rapid failure. The following discussion indicates another pathway where a kind of

regularization is introduced but with a clear mechanical justification.

Measuring a Damage Law

Considering now the strategy where a unique damage law is considered, the difference

with the above treatment appears as modest in the general formalism. The constraint of

having the samedamage law, and hence the same curvature for a given flexuralmoment,

simply restricts the initial degrees of freedomDi. For instance, in a three-point bend test,

the two parts of the beamwith respect to the central pointwould be assumed to behave in

the same way. Thus, as compared to the above, only half of the above modes would be

considered, but the algebra would remain the same. Of course, the quality of the

result is expected to be better because the number of degrees of freedom is reduced.

Note that this conclusion however does not rest on the crucial question of the satisfaction

of the hypothesized symmetry, as it was seen how taking into account a breakdown of

symmetry (as a nonideality of the test) has a very small additional cost. The additional

information of D being an increasing function of the curvature, which results from

thermodynamic consistency, is much easier to implement.

The specificity of 1D geometries is that the analog of the stress is dictated by the

boundary conditions alone (provided all loading forces or moments are known),

irrespective of the constitutive law. Thus, the flexural moment M(x) can generally

be considered to be known. The problem then reduces to determining the damage

D(κ) as a function of curvature, for a known reduced moment m(x) ¼ M(x)/k0,
which can be read as the curvature of the beam for the same flexural moment and no

damage. Therefore, the problem can be written in the following form�
1� D

�
κ xð Þ��κ�x� ¼ m

�
x
�

κ xð Þ ¼ d2v
�
x
�
=dx2

(16)

where v(x) is measured and D(κ) to be determined, with ψ(κ) ¼ (1 � D(κ))κ. The
previous section dealt with the generic casewhere functionψ could be inverted, where

v xð Þ ¼ aþ bxþ
ðx
0

ðξ
0

ψ�1 m ςð Þð Þ dςdξ (17)

It suffices to decompose ψ(κ) or ψ�1(m) over a basis of functions (typically

with only few parameters) and to apply the previous strategy, through successive
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linearizations. However, there is an obvious limit to the present approach, which is

the issue of localization.

The Issue of Damage Localization

It may be of interest at this stage to address a rather common situation where ψ(κ)
cannot be inverted. In many practical cases, the flexural moment goes past a

maximum and decreases. In such a case, localization sets in when the maximum

is reached. For a three-point bend test, this event corresponds to the situation where

under the central load, the flexural moment equals k0ψmax. Past this point, an

apparent brittle failure may take place. For the four-point bend, the discussion is

less clear cut, as the entire mid-span reaches the maximum flexural moment at the

same instant. Mathematically, a large number of solutions exist, although in

practice, slight imperfections of the test will break the symmetry of the loading,

and often the most “apparently brittle” response will emerge.

In those situations, in spite of the fact that many solutions may exist, only the

ascending branch of ψ can be explored, and hence, ignoring the response past this

point, the strategy mentioned in the previous subsection holds. Other interesting

cases may be encountered, as illustrated in Fig. 7, where an algebraic form of D(κ)
was chosen here for illustration purpose. It can be seen that ψ(κ) presents an

absolute maximum, so that when the curvature exceeds the value for which the

maximum is reached, global failure takes place (irrespective of the way the beam is

loaded). This ultimate state is indicated with a star in Fig. 7. However, prior to this

state, when damage first appears, because of the chosen very sudden rise, the

relative flexural moment drops. The 1D geometry where the stress state is not

controlled by the constitutive law (but dictated by the loading and geometry) makes

the local descending part of the ψ(κ) relationship inaccessible, namely, a disconti-

nuity in the curvature is expected. In turn this leads to a discontinuity in the damage

experienced along the beam. The condition to avoid instabilities is that D(κ) rises
more slowly than 1 � β/κ for any β value.

The occurrence of instabilities at intermediate regimes and final failure coupled

to localization instabilities is a major source of difficulty for this identification, and

thus it is important to test the proposed method with actual data.

Application to Plasterboard

The case of plasterboard is studied. Figure 8 shows two attempts to identify

the damage law. In the first case (a), D(κ) is chosen as h1 � β/κi to avoid any

possible instability, but each level of loading of the four-point loading is treated

independently. Although the data points obtained from one series can be seen quite

clearly on the graph, the quasi-continuity of the data gives some confidence on the

treatment. It is to be noted that the trend is to have a decreasing value of β from one

load level to the next, so that if a unique algebraic form was chosen, then
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instabilities would be expected. Figure 8b corresponds to another attempt,

which is based on a power-law form past a given threshold. Here again, a

very good agreement is obtained, both with the previous attempt (signaling that

plasterboards are not very far away from localization) and with the expected

jumps.

Figure 9a shows that the quality of the deflection adjustment is excellent even if

only a partial field of view is considered (the outer span is not visible). Figure 9b

also shows that it is very important to allow for a breakdown of symmetry.

Although the total force exerted on both inner loading contacts is well controlled,

the distribution of the load among the two supports is a priori unknown. In the

present case, the two forces were identified together with the damage law (as an

additional unknown to vector). It is seen that as soon as the first crack appears,

symmetry appears to be broken. The effect is so pronounced that an identification

assuming the test to have kept the expected symmetry would certainly fail to

Fig. 7 (left) Schematic plot of a damage-curvature relationship (thin black curve). Although this

function is defined for a large range of curvatures, only the bold segments are accessible to the

measurement, and failure takes place at the point indicated by a star. (right) Reduced flexural

moment, ψ(κ), as resulting from the full expression of D (dotted curve) and accessible part of the

curve (bold curve)

Fig. 8 Damage as a function of curvature as obtained from a series of 69 loading steps each

treated independently. (a) The algebraic form D ¼ 1 � β/κ was chosen to limit possible

instabilities. (b) An exponential form is used to identify the damage growth law
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provide a consistent damage law. This test shows that a single test can bring about a

considerable amount of information for the identification of the constitutive law and

this redundant information may be used to validate the entire procedure. It also

emphasizes the importance of staying as close as possible to the experiment. The

breakdown of symmetry is not a flaw of the experiment, but the result of an

instability that cannot be avoided.

The above treatment was considered within the framework of post-processing

the displacement fields obtained from DIC. It is in fact possible to make progress

along this direction, namely, as some limitations are considered in the definition of

relevant degrees of freedom (for instance, discretization of the damage), this sets

severe restrictions on the possible kinematics. Rather than projecting this deflection

onto an appropriate subspace, the problem can be formulated with global DIC in

such a way that the proposed kinematic basis for DIC actually spans the chosen

subspace. This way of interrogating the actual images by a set of precomputed

displacement fields obeying balance equations and some constitutive assumptions

is called “integrated DIC” (Hild and Roux 2006). This procedure saves the inter-

mediate step of choosing an intermediate basis, such as finite element shape

functions, which are modestly suited to the properties assumed for the displacement

field, and hence a net gain in uncertainty is to be expected (Roux and Hild 2006).

The limit of this strategy, as earlier discussed for the beam-DIC approach, is when

the actual displacement field is known to be different from that resulting from the

chosen modeling (e.g., the presence of discrete cracks whereas a continuum damage

model is chosen). In that case, the two displacement fields have to be distinguished,

only the long-wavelength components of both displacements have to be secured,

and a control on the amplitude of the difference between both deflections is to be

introduced, so that the objective functional remains harmonic for all explored

amplitudes.

Fig. 9 (a) Example measured by DIC (black) and computed (red) deflection at a late stage of

loading for the damage law identified in Fig. 8b. (b) Change of the ratio of left to total force as a

function of image number. The departure from 0.5 signals a breakdown of the left-right symmetry

due to damage
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Lumped Damage Mechanics

Slender geometries can be used to study materials (e.g., steel) or products (e.g.,

plasterboard), but the most common usage of such geometries is for building

design, e.g., for the analysis of buildings from a frame and beam description

(Cipollina et al. 1995; Marante and Flórez-López 2003; Guerrero et al. 2007). In

this context, it is noteworthy that damage takes place essentially at those points

where flexural moments are at their maximum value. The steel cantilever beam is a

relevant example. Most of damage is expected to be initiated close to the clamp of

the beam. For a hardening behavior, damage could then be thought as concerning

larger and larger portions of the beam. However, the slender geometry is such that,

in most cases, localization takes place and damage remains concentrated at the

beam ends up to failure. This localization is a 1D simplified view for phenomena

(e.g., cracking, debonding from reinforcements) that occur throughout the entire

section of the beam. Yet, this observation leads to a drastic simplification of the

description, where a frame or skeleton of a building can be described as a collection

of elastic beams, which will remain elastic forever, in addition to nonlinear local

elements located at those few places where flexural moments are the largest. This

elegant simplification is called “lumped damage mechanics” (Marante and Flórez-

López 2003).

When relevant, lumped damage mechanics has natural consequences on the way

the nonlinear (i.e., damageable) point-wise elements should be characterized. From

the previous description, it is now clear that an elastic beam, because of its simple

kinematics (6 degrees of freedom in 2D situations), should be described as such for

“integrated DIC” (Hild et al. 2009). Moreover, in their elastic state, the beams have

generally well-known stiffnesses. Thus, a measurement of their kinematics can

immediately be translated into corresponding static information. Therefore, a direct

estimation of, say, the flexural moment is possible together with the rotation

discontinuity (i.e., the appropriate limit of a concentrated curvature). Henceforth,

the full set of generalized forces and displacements can be obtained from DIC,

whereby the elastic beams actually play the role of force/torque sensors. Moreover,

for a complete hyperstatic frame, kinematic continuity and balance equations can

be exploited as additional constraints, easily implemented in DIC using Lagrange

multipliers (Hild et al. 2011).

This lumped damage mechanics case is illustrative of how a known mechanical

information can be used and exploited to take the best out of the DIC measurement

as the kinematic descriptors can be tailored to fit the mechanical picture. In so

doing, not only is the measurement uncertainty reduced to a minimum, but the

amplitudes of the measured kinematic degrees of freedom have a direct mechanical

interpretation. It also shows that damage has more than one face, and some freedom

can be exerted on the way it is introduced, sometimes as smearing out the effect of

localized cracks and, in other cases, as a way to lump altogether all nonlinearities at

a single point ruled by an effective nonlinear behavior. In spite of those different

faces of damage, DIC can be tuned to bridge the gap between modeling and

experiment.
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One dream in the long-term future is to have automated identifications based on

such an approach to qualify the degradation of simple reinforced concrete structures

after an earthquake to decide on possible rehabilitation, restoration, or destruction

of buildings with a safe judgment.

Summary

Even though the geometry of the studied systems is very simple in the examples

discussed in this part (i.e., beams), different aspects related to damage models have

been illustrated when displacement fields are measured via DIC. Multiple cracking

and local buckling are two mechanisms modeled in the framework of damage

mechanics. In the first case, the damage description is based upon a field, whereas

lumped variables are considered in the second example. In both cases, the use of

displacement fields has allowed the growth law of damage variables to be

constructed. Thus, in this chapter, damage was mostly regarded as mechanical

damage, i.e., through its global manifestation in the mechanical behavior rather

than through the responsible mechanisms that were considered in the previous

chapter. The following chapter (▶Chap. 39, Evaluating Damage with Digital

Image Correlation: C. Applications to Composite Materials) will show that the

same philosophy and formalism developed here for 1D elements can be applied to a

class of materials designed and engineered to sustain damage. The higher dimen-

sionality will simply require adapting the formulation of identification to a finite

element framework.
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J. Réthoré, S. Roux, F. Hild, Optimal and noise-robust extraction of fracture mechanics parameters

from kinematic measurements. Eng. Fract. Mech. 78(9), 1827–1845 (2011)

S. Roux, F. Hild, Stress intensity factor measurements from digital image correlation: post-

processing and integrated approaches. Int. J. Fract. 140(1–4), 141–157 (2006)

S. Roux, J. Réthoré, F. Hild, Digital image correlation and fracture: an advanced technique for

estimating stress intensity factors of 2D and 3D Cracks. J. Phys. D Appl. Phys. 42, 214004

(2009)

A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977)

38 Evaluating Damage with Digital Image Correlation: B. From Physical to. . . 1299



Evaluating Damage with Digital Image
Correlation: C. Applications to Composite
Materials

39
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Abstract

The present chapter is devoted to the evaluation of damage with digital image

correlation (DIC). Applications will focus on composite materials. The latter

ones are designed to accommodate microcracks through suited microstructures.

As such, they constitute a natural class of materials for which damage (or rather

damages) is an essential feature of their mechanical behavior. As discussed in a

previous chapter (addressing detection of physical damage), DIC can reveal the

elementary mechanisms (e.g., dense distribution of microcracks, crack

branching along weak interfaces, progressive debonding of interfaces, and

subsequent pullout or delamination). It will also be shown that damage laws

can be identified with the help of DIC from mechanical tests imaged at different

stages of loading. The followed strategy will be seen as reminiscent of the one

that was used in the previous chapter dedicated to 1D (i.e., beam like) geometries

(from physical to mechanical damage). Here, it will be necessary to couple DIC
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with finite element models. The benefit will be that in addition to the identified

law, a full validation is naturally offered from the highly redundant piece of

information contained in the measured displacement fields.

Identification of Mechanical Damage

This chapter follows the same footsteps as illustrated in the previous chapter based

on beam geometry, but here it is dedicated to two- and three-dimensional systems.

In spite of the fact that the examples concern composite materials, the methods are

not limited to this class of materials.

When trying to identify damage from a mechanical test, the first step deals with

the measurement of displacement fields. One of the measurement techniques is

DIC, even though others can be used (e.g., grid methods, holography, and speckle

interferometry). The outputs are displacement and strain fields that need to be

post-processed. The damage variable(s) is(are) still hidden within these data.

Inversion and identification techniques need to be used to extract mechanical

damage fields. The problem thus consists of the evaluation of the local elastic

properties, expressed as a relative loss of stiffness, D(x) (where D can be a scalar

or a tensor). This is a second step in which different metrics can be used to measure

the distance between experimental measurements and numerical simulations

(Avril et al. 2008; Grédiac and Hild 2012). This is a first route for identifying

damage fields.

It is to be emphasized that the extraction of D(x) from necessarily noisy

kinematic fields is a difficult inverse problem (Tikhonov and Arsenin 1977).

One way to help this determination is to assume that the same damage growth

law applies everywhere within an analyzed material or structure. Thus, the

unknowns are no longer a damage field but the parameters of a growth law.

This represents a very drastic reduction in the number of unknowns, and hence

it opens the way to a large reduction in the uncertainty of local damage. The

assumption of a homogeneous constitutive law can be (or has to be) questioned.

The invaluable advantage of dealing with field measurements, namely, the con-

siderable amount of information, can be exploited to validate all assumptions

proposed along the analysis. The pixel-wise comparison of measured and identi-

fied displacement fields or even images (e.g., computing the residual ρ(x) fields
(see Eq. (A.1)) from these different displacements) brings to light either the

quality of the solution or its deficiencies. From the latter, it is generally clear to

draw directions of progress or sophistication of, say, the constitutive law to reach

a more satisfactory agreement.

A more elaborate strategy consists of coupling the measurement and identifi-

cation steps. The unknowns to be measured associated with the trial displacement

are no longer the standard degrees of freedom (e.g., nodal displacements in a

Galerkin approach to DIC) but the parameters of the damage growth law in

addition to boundary conditions to make the problem well posed. This type of

global approach is referred to as integrated since the measured displacement field

1302 F. Hild et al.



is also mechanically admissible and yields mechanical parameters. An example of

such an approach dedicated to beams was shown in “▶Chap. 38, Evaluating

Damage with Digital Image Correlation: B. From Physical to Mechanical Dam

age” (see also Hild et al. 2011). The chosen displacement basis is either a closed-

form solution (e.g., in a Brazilian test to identify elastic parameters (Hild and Roux

2006) or stress intensity factors in elastic media (Roux and Hild 2006)). The results

of a numerical simulation can also be used to define the kinematic basis (e.g., in

elasticity (Leclerc et al. 2009; Réthoré et al. 2009) or when dealing with damage

(Réthoré 2010)).

Types of Damage and Constitutive Laws

When studying composite materials, one underlying difficulty is that the various

damage mechanisms are strongly related to the material architecture, namely,

particulate composites (Fig. 12 of “▶Chap. 37, Evaluating Damage with Digital

Image Correlation A. Introductory Remarks and Detection of Physical Damage”),

composites with short fibers, and composites with continuous fibers (e.g., layered

(Fig. 1 of “▶Chap. 37, Evaluating Damage with Digital Image Correlation A.

Introductory Remarks and Detection of Physical Damage”), woven, woven +

stitched, interlock configurations) do not experience the same type of degradations.

One of the consequences is that there are numerous models to describe their

behavior (Orifici et al. 2008). Furthermore, there are also different possible choices

for the smallest scale of modeling (i.e., microscopic (Burr et al. 1997), mesoscopic

(Ladevèze 1992), or macroscopic (Périé et al. 2009)) to determine the behavior at

the macroscopic scale, which is usually needed to run numerical simulations.

One modeling issue is to use either a discrete or continuum description of

damage (Hild 2002). This choice will have consequences on the way damage is

modeled and therefore experimentally characterized and identified. For example, in

section “▶Cracking in a Layered Composite” of “▶Chap. 37, Evaluating Damage

with Digital Image Correlation A. Introductory Remarks and Detection of Physical

Damage,” a continuum point of view was used to analyze the DIC results at the

macroscopic scale (Figs. 2 and 3 of that chapter) of a 3-layer carbon-epoxy

composite. However, mesoscopic observations are also possible, in particular to

analyze the damage mechanisms.

Figure 1 shows the longitudinal displacement field where the individual damage

mechanisms can be clearly read. It corresponds to an incremental approach where

the reference configuration is chosen for a stress level of 1,120 MPa and 1,190 MPa

in the deformed configuration. It becomes even clearer when analyzing the longi-

tudinal strain field in which the two transverse cracks are observed. The lower

crack, which initiated between these two stress levels, is more open than the upper

one that initiated at an earlier stage. When analyzing the shear strain field, it is

concluded that transverse cracking is accompanied by mesodelamination along the

0/90� interface for the lower crack. For the upper crack, mesodelamination has not

evolved significantly.
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At this scale, an appropriate mechanical description would imply modeling the

crack pattern in details, in particular, the combined effect of transverse cracking and

mesodelamination, and the fact that the stresses in the vicinity of existing cracks are

partially relaxed so that crack initiations are prevented very close to existing ones

(this is a nonlocal effect). This hypothesis (Curtin 1991) allows the cracking pattern

observed at the mesoscopic scale to be understood. It can be generalized to other

situations dealing with multiple cracking (Hild 2002; Malésys et al. 2009; Forquin

and Hild 2010; Guy et al. 2012).

When modeling the mechanical behavior of composite materials, the framework

of continuum thermodynamics (Germain et al. 1983) turns out to be particularly

powerful when applied to damage models. When cracks are described, it is more

natural to express the state potential in terms of Gibbs’ free enthalpy. However, in

Fig. 1 (Left) Vertical displacement expressed in pixels (1 pixel $ 3.5 μm), longitudinal strain

(center), and in-plane shear strain (right) showing a transverse crack and mesodelamination. Note

that another transverse crack (x � 380 pixels) that was created at a previous stage of loading

is also visible. These results were obtained with regularized T3-DIC (‘ ¼ 5 pixels, ‘m ¼ 20 pixels,

‘b ¼ 10 pixels). The region of interest has an area of � 3 � 2 mm2

Fig. 2 Image of the sample prior to loading (left) and after failure (right). The observed region has
an area of � 68 � 68 mm2
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numerical simulations, most of the formulations are displacement based, and it is

therefore more convenient to consider Helmholtz’ free energy density

Ψ ¼ 1

2
«e : C Dð Þ : «e þ Ψs�r «i, «c,d,D

� �
with « ¼ «e þ «i þ «c (1)

where « is the infinitesimal strain tensor, «e the elastic strain tensor, «c the creep strain
tensor (when needed (Begley et al. 1995; Du et al. 1997; Burr et al. 2001)), «i the
inelastic strain tensor modeling all damage mechanisms leading to frictional sliding

(e.g., fiber/matrix sliding, mesodelamination),C the macroscopic Hooke’s tensor that

contains various damage variablesD, andΨs�r the stored and relaxed energy densities

(Boudon-Cussac et al. 1998). In many models, inelasticity is described by resorting

to isotropic hardening (e.g., Ladevèze and Le Dantec 1992). However, by using

homogenization techniques, it is more natural to choose kinematic hardening

(Andrieux et al. 1986; Hild et al. 1996) because it is associated with frictional sliding.

It can also be noted that when frictional sliding occurs, damage variables d are

involved in the expression of the stored part of the state potential (Andrieux et al. 1986;

Burr et al. 1997). Conversely, the relaxed part is caused by damage variables D that

also lead to a stiffness loss (e.g., matrix-cracking in the presence of an initial residual

stress field induced, say, by coefficient of thermal expansion mismatches (Budiansky

et al. 1986; Boudon-Cussac et al. 1998) that is partially relaxed). Creep also involves a

change in the self-balancing stress field, and therefore Ψs�r varies accordingly.

Interfacial wear is a fatigue mechanism of many composite materials (Rouby and

Reynaud 1993). It leads to a variation of the interfacial properties that influence the

inelastic strain and the stored part of Ψs�r (Burr et al. 1998).

Furthermore, the state potential is generally postulated, and then the growth laws

of the internal variables are written in terms of their associated forces obtained as

partial derivatives of the state potential with respect to the former or combinations

thereof. One critical issue to properly compute the dissipated energy is to evaluate

Fig. 3 Vertical (left) and horizontal (right) component of the displacement field (expressed in

pixels) obtained from Q4-DIC (‘ ¼ 16 pixels). The physical size of one pixel is 68 μm, and the

region of interest has an area of � 68 � 68 mm2
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the part of the state potential Ψs�r that is stored or relaxed. The latter is the elastic

energy density associated with the residual stresses induced by all dissipative

mechanisms (Boudon-Cussac et al. 1998; Vivier et al. 2009, 2011).

Last, crack closure may occur, typically for mode I microcracks. This closure

induces modeling issues that are not easy to tackle (Ladevèze et al. 1983; Chaboche

et al. 1990; Desmorat 2000; Halm et al. 2002). Special care has to be exercised to

avoid numerical and theoretical difficulties. This point will not be addressed herein.

However, it can be noted that DIC (Hamam et al. 2007) and DVC (Limodin

et al. 2009) can be used to analyze this phenomenon at different scales.

Damage in Low-Cost Composite

Two approaches are followed to study a vinylester matrix reinforced by an isotropic

distribution of E-glass fibers. The first one consists of determining the contrast field

of elastic stiffness, which can be interpreted as a signature of damage in a CDM

context thanks to the coupling between elasticity and damage. The second one aims

at identifying the growth law of an isotropic damage variable. Since only one

internal (damage) variable is considered, any nonlinearity is attributed to damage.

Consequently, the identification procedure does not need unloadings.

A thin plate made of this composite is prepared as a cross with wide arms, and

subjected to biaxial loading (Fig. 2). The white surface of the test piece is sprayed

with black paint so as to produce a fine random texture, which is needed for DIC.

Digital images of the surface are shot for every 1-kN load increment in both

directions up to complete failure, which occurred for 11.1 kN. Thus, 11 images

are available for the analysis. The physical size of one pixel is 68 μm. In the sequel,

this experiment is used to illustrate the results that are achieved when first seeking a

stiffness field and second when identifying a damage law.

Inversion: Determination of Stiffness Field

In this first case, a field of elastic properties that account for the measured displace-

ment field is sought. In the present case, Q4-DIC is considered (Fig. 3). The number

of degrees of freedom in the inverse problem is of the same order of magnitude as

the data (here the measured displacement field). The solution consists of the

inversion of the mechanical problem.

It is assumed that the damage mechanism induces a heterogeneous contrast field

such that the local Young’s modulus is reduced to χ(x)E0 from its initial value E0

while the Poisson’s ratio, ν, remains unaltered. The equilibrium gap method (Claire

et al. 2004) consists of exploiting the equilibrium equation

div χ xð ÞC0« u xð Þð Þ½ � ¼ 0 (2)

written here in the absence of body forces. The strain tensor « is computed from the

measured displacement field, and C0 is Hooke’s tensor of the virgin material. Since
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the displacement field is decomposed over a finite element basis (made of Q4

elements), the corresponding discretization of the “equilibrium gap” fi is considered

f i ¼ χmKm
ij uj ¼ 0 (3)

where Kij
m is a component of the elementary rigidity matrix of the undamaged

element m relating the displacement component uj to the nodal force fi
m (whose

sum over all m elements should be equal to 0 for inner nodes). The rigidity matrix is

linearly dependent upon the contrast χ. As can be seen from Eq. (3), since no static

information is used (the right-hand side is vanishing at all inner nodes), the χ-field is
determined up to an arbitrary scale factor. This is the consequence of limiting the

analysis to the knowledge of kinematic data only. Only elastic contrasts can be

determined in the present case. The formulation is complemented by arbitrarily

prescribing that the average χ is equal to a constant. This is achieved by using a

Lagrange multiplier or by eliminating one contrast value.

The inversion problem is ill-posed and some regularization is called for. The

most straightforward approach is to search for the “best” solution for the χ-field in a
subspace of smoothly varying fields in space. Q4 finite elements are used in the

following, with however a mesh that is independent of (and coarser than) the

measurement mesh. Shape functions Ni
m are introduced to provide the weight of

the center of an element m for the i-th basis function

χm ¼ Nm
i bi (4)

where bi are the unknown contrasts collected in a vector {b}. This regularization

limits the number of degrees of freedom {b}, and hence the contrast field is

obtained through the minimization of the global equilibrium gap

W bf gð Þ ¼
X
j

X
i,m

Lmj N
m
i bi

 !2

� λ
X
i,m

Nm
i bi (5)

where Lj
m ¼ Kjk

muk and λ is the Lagrange multiplier of the average contrast constraint.

The minimization of functional W results in a linear problem that provides {b}

amplitudes and, thus from Eq. (4), the contrast value in each element.

The final stage of loading is considered with a coarse mesh (10 � 10 elements)

and a finer one (20 � 20 elements) for the contrast field (Fig. 4), which is to be

compared with a 67� 66 element mesh for the kinematic measurements (Fig. 3). In

both cases, the stiffness reached a negative value at the top left corner (�0.02 and

�0.3, respectively, for the coarse and fine meshes). This value has been artificially

reset to 0.01. A satisfactory agreement between both results is obtained with a clear

detection of crack initiation and propagation.

To evaluate the quality of the obtained contrast map, it is possible to resort to a

standard elastic computation based on the determined stiffness contrast and using
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Dirichlet boundary conditions, i.e., prescribing the displacement field on the boundary

of the considered domain. The computed displacement field is then comparedwith the

measured field in Fig. 5. A good agreement between both fields is observed.

To quantify the agreement, the following dimensionless “residual” ρu is defined: it is
the standard deviation of the difference between identified andmeasured displacement

Fig. 4 Map of log10 χ obtained for a coarse (10 � 10 elements, left) and fine (20 � 20 elements,

right) mesh. The region of interest has an area of � 68 � 68 mm2

Fig. 5 Comparison between measured by Q4-DIC with ‘ ¼ 16 pixels (left) and recomputed

(right) displacements expressed in pixels from the identified contrast field (fine mesh: 20 �
20 elements). The physical size of one pixel is 68 μm, and the region of interest has an area of

� 68 � 68 mm2
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fields, normalized by the standard deviation of the measured displacement field. In the

present case, for a finemesh (i.e., 20� 20 elements), this residual amounts to 14%.The

latter level is fair, and part of the discrepancy is related to the localized nature of

damage, which cannot be fully captured with the chosen discretization.

Identification: Damage Growth Law

When a series of pictures is analyzed, there is no link between the contrast

fields that can be determined by following the previous procedure. In particular,

the choice of the additional condition to make the system invertible should

be adapted to translate the contrast fields into damage fields. A growth law can be

identified, but only by post-processing the previous results (Claire et al. 2007).

In the following, a regularized approach (Roux and Hild 2008) will be developed

to move from an inversion to an identification (of a few material parameters). The

spirit of the method is to require that elements with the same equivalent strain

should also have the same damage level. This is a very strong requirement that

allows the number of unknowns to be drastically reduced.

An isotropic description of damage is assumed to be valid. The behavior will be

modeled by a unique scalar,D(x), such that theYoung’smodulus is reduced to (1�D)
E0, from its initial valueE0, while the Poisson’s ratio, ν, remains unaltered. The growth

law of the damage variableD is described by a function of an equivalent strain eeq to be
defined later on. The fact thatD is related to eeq makes the identification easier since, if

the damage parameter is assumed to be uniform over, say Q4 elements of the

measurement mesh, it suffices to compute the equivalent strain per element before

starting the identification procedure. The equilibrium gap norm is now written as

ℜ ¼
X
j

X
e

Lej 1� Deð Þ
 !2

(6)

and a decomposition of the damage growth law is chosen

D ¼
X
i

ciφi eeeq� �
with eeeq tð Þ ¼ max

0�τ�t
eeq τð Þ (7)

where φi are chosen functions (e.g., based on exponentials (Burr et al. 1997;

Baptiste 2002)) and ci the unknown parameters to identify (their number remains

limited to a few units). The minimization of the equilibrium gap leads to the

following linear system

X
p

X
e, f

X
j

Lej L
f
j

 !
φp eeeq� �

φq eeeq� �
cp ¼

X
e, f

X
j

Lej L
f
j

 !
φq eeeq� �

(8)

The additional requirement prescribed to set the contrast scale can be dropped if

the condition φi(0) ¼ 0 is satisfied. It is worth noting that even though the initial

problem is strongly nonlinear, the final formulation leads to a linear system.
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As introduced above, the operator L is linear in terms of the measured displace-

ments and involves the (uniform) elastic properties of the virgin material. The sum

∑eLj
e ¼ fj can be interpreted as a nodal resultant force. The elastic problem with

prescribed Dirichlet boundary conditions and known body forces is well posed and

can be inverted to evaluate the nodal displacements

ui ¼ Sij f j (9)

with [S] ¼ [K0]
� 1, where [K0] is the stiffness matrix of the virgin material. By

noting that L is a second-order differential operator, the following form

ℜ
^

ckð Þ ¼
X
j

Sij
X
e

Lej 1�
X
k

ckφk

�eeeq�
" #�����

�����
2

(10)

allows the identification problem to be better conditioned when compared to Eq. (6).

By noting that [S][L] ¼ {umeas}, the reconditioned equilibrium gap becomes a

distance written in terms of displacements and not its second-order derivatives

ℜ
^

ckð Þ ¼ umeasi �
X
j

Sij
X
e

Lej
X
k

ckφk

�eeeq�
�����

�����
2

(11)

so that the identification will be less sensitive to measurement uncertainties.

The damage model tuned hereafter uses Helmholtz’ free energy density Ψ when

elasticity is coupled with damage (e ¼ ee and Ψs�r ¼ 0), which is expressed as

(Marigo 1981)

Ψ ¼ 1

2
« : C0 1� Dð Þ : « (12)

so that the thermodynamic force Y associated with the damage variable D reads

Y ¼ � @Ψ
@D

¼ 1

2
« : C0 : « (13)

Consequently, the equivalent strain eeq becomes, under a plane stress hypothesis,

e2eq ¼
Y

E0

¼ e1h i2 þ 2ν e1h i e2h i þ e2h i2
2 1� ν2ð Þ (14)

where e1, e2 are the two in-plane eigen strains and ν Poisson’s ratio of the

undamaged material. The functions φ defining the damage growth law (Eq. (7))

are assumed to be described by exponentials

φi eeeq� � ¼ 1� exp
�eeeq
eci

� �
(15)
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where eci are characteristic strains to be identified. Different characteristic strains in the
damage law test functions were considered eci ¼ 0.0067� (1, 2, 4, 8, 16) consistently

with the range of equivalent strains encountered in the experiment. The five amplitudes

were c ¼ (0.87, 0, 0, 0, 0.13). The quality of the analysis appears to be good, namely,

ρu ¼ 0.03, 0.03, 0.03, and 0.05 for the last four load levels. It is worth noting that it is

significantly lower than what was observed in the analysis of contrast fields.

Figure 6 shows a comparison between the measured and predicted displacement

fields for the last load level. The fact that the quality deteriorates in this last level is

due to a well-developed crack on the top left part of the sample. The crack is both

crudely accounted for by the scalar damage model, but also presumably badly

captured by the image correlation algorithm, which is designed for continuous

displacement fields.

The damage map is very informative (Fig. 7a). Crack initiation on the left hand

and top corner of the specimen is clearly captured, as also observed in the picture of

step 11 (Fig. 2a) when magnified. Damage concentrations at other corners are also

observed and correlate rather well with the final cracking pattern (Fig. 2b). The

damage growth law consists of two regimes (Fig. 7b), possibly one prior to and one

after damage localization. This problem will be addressed in section “Damage

Localization Versus Cracking.”

Anisotropic Damage Description for a Layered Composite

In the present section, the heterogeneity of the strain fields is enforced geometri-

cally to ease the identification of the growth law. Consequently, the classical �45�

tensile test on coupons was modified by adding a lateral notch to the specimen.

Fig. 6 Comparison between measured (left), identified (center) displacement fields at the final

step of loading. The difference between the two displacements is also shown (right). The

displacements are all expressed in pixels. The physical size of one pixel is 68 μm, and the region

of interest has an area of � 68 � 68 mm2
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Each layer of the composite is made of unidirectionally aligned carbon fibers in a

thermoset matrix. Contrary to the previous case, an anisotropic damage description

is considered to describe the damage mechanism relative to shearing of the matrix.

Gibbs’ free enthalpy Φ of the composite then reads

Φ ¼ 1

2

σ211
E1

� ν12
E1

σ11σ22 þ σ222
E2

þ σ212
G12 1� Dð Þ

� �
(16)

where σ11, σ22, σ12 are the in-plane stress components expressed in the material

frame (1, 2). The elastic properties are E1 and E2 (Young’s moduli along the fiber

directions), ν12 (Poisson’s ratio), and G12 (in-plane shear modulus). The in-plane

strain tensor « is expressed as

« ¼ @Φ
@σ

(17)

where σ is Cauchy’s stress tensor and the thermodynamic force Y associated with

the damage variable D becomes

Y ¼ @Φ
@D

¼ σ212
2G12 1� Dð Þ2 ¼ 2G12e212 (18)

Consequently, the equivalent strain becomes

eeeq tð Þ ¼ max
0�τ�t

e12 τð Þj j (19)

The elementary stiffness matrix thus reads

K½ � ¼ K0½ � � D K1½ � (20)

Fig. 7 (a) Maps of D for the last step of loading. One clearly sees in the left-hand top corner the

initiation of a major crack that will lead to failure of the sample. Moreover secondary crack

formations are also distinguished close to the other corners (see Fig. 2b for a detailed comparison

with the final failure pattern). (b) Identified damage law
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where [K1] has only one nonzero (shear) term that is affected by damage. The

reconditioned equilibrium gap becomes (Périé et al. 2009)

ℜ
^

ckð Þ ¼ umeasi �
X
j

Sij
X
e

L
e
j

X
k

ckφk

�eeeq�
�����

�����
2

(21)

with L
e
i ¼ K1e

ij uj.

In the following, 12-pixel Q4 element sizes are considered. The displacement

maps are shown in Fig. 8 for the maximum load level (i.e., the last analyzed cycle).

They are measured when the reference picture is the unloaded step after the

maximum load level, which corresponds to the deformed configuration. The

corresponding equivalent strain field is estimated by computing the average value

in each finite element. The strain localization is clearly observed in the vicinity of

the highly damaged (V-shaped) zones. Only the last of 14 loading/unloading cycles

is shown herein. More results can be found in (Ben Azzouna et al. 2011).

By using the same expression as before for the damage law (15), the identifica-

tion results yield the unknowns ck for chosen characteristic strains eci. The best

solution is obtained when eci¼ 0.016� (1, 2, 4, 8) and c¼ (1.0, 0, 0, 0). The quality

of the identification is first assessed globally by computing ρu. For the last load

level, ρu ¼ 3.7 %. This is a very low value giving confidence in the identification

result. From the measurement of the equivalent strain map and the identified

parameters of the damage law, it is possible to construct the damage maps for

each analyzed cycle (Fig. 9 for the last five cycles).

For the last considered cycle (#14), a localized damage pattern is observed with a

value of D approaching 1. This is in good accordance with the experimental failure

Fig. 8 Displacement maps ux (left) and uy (center) expressed in pixels (1 pixel $ 36 μm) at

maximum load (along the x-direction) of the notched specimen with a 12-pixel discretization. The

rigid body motion was removed. Corresponding equivalent strain map eeq (right). Strain localiza-

tion (along the fiber directions) is clearly visible. The region of interest has an area of � 23.4 �
10 mm2
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pattern (Ben Azzouna et al. 2011). The best solution is obtained with only one

parameter ec1 for which c1 is therefore close to 1.

A first way of validating the identification results is to compare the computed

displacement field using the damage law that was identified with the measured

displacement field and then estimate the displacement residuals. Figure 10 shows

the three maps corresponding to the displacement components for cycle #14. A very

good agreement is observed.

Another way of validation is given by the damage law itself. The latter is

compared with that obtained by following the classical identification procedure

(Ladevèze and Le Dantec 1992). In the latter, only a single longitudinal strain level

is available per unloading/loading cycle; from 10 to 15 points are generally

accessible. For example, Fig. 11 shows the result from the analysis for which

only five points lie above the damage threshold. With the present approach, the

same results are shown in Fig. 11. Numerous identification points are available

thanks to full-field data. It is also to be noted that the present approach allows for the

identification of damage levels greater than 0.4, level at which the global method

stops because of failure that occurs suddenly. In the range over which the two

results can be compared, there is a good agreement, thereby validating the approach

followed herein. It is to be remembered that the damage functions (15) do not

incorporate a threshold parameter. This is the main difference between the two

results. However, it is believed that this value is difficult to capture with fine meshes

for which the measurement uncertainty is not sufficiently small.

Damage Localization Versus Cracking

The example of the cross-shaped composite sample discussed in section “Damage in

Low-Cost Composite” is considered again. On the measurement side, a continuous

displacement field was evaluated even at advanced stages of the experiment (Fig. 3).

By analyzing the correlation residuals, it could have been concluded that the displace-

ment continuity is questionable (Fig. 12), especially at the end of the experiment.

Fig. 9 Identified damage maps for the last five analyzed cycles
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Fig. 10 Comparison of the measured and computed displacement fields for the last cycle (#14)

for a 12-pixel discretization. The physical size of one pixel is 36 μm, and the region of interest has

an area of � 24.3 � 10 mm2

Fig. 11 Damage law

identified by following the

classical approach (few strain

data are available) and by

resorting to full-field

measurements and the

equilibrium gap method. Each

cross corresponds to a

measured strain
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To deal with displacement discontinuities in a global DIC context, two different

routes can be followed. First, extended DIC (Réthoré et al. 2008) can be considered

(e.g., XQ4-DIC). As in extended finite elements (Black and Belytschko 1999; Moës

et al. 1999), it consists of enriching the displacement basis with discontinuous

terms. Second, node splitting is also possible (Roux et al. 2012). Figure 13 shows

the result obtained with XQ4-DIC. In particular, the crack opening displacement

profile can be used to extract the stress intensity factor. In the plot of Fig. 13, the

slope of the linear interpolation is equal to 8K=E0

ffiffiffiffiffi
2π

p
, so that the value of the stress

intensity factor K is 16 MPa
ffiffiffiffi
m

p
.

On the modeling side, two regimes appear in the damage growth law shown in

Fig. 7. The second one corresponds to strain levels that are greater than those

Fig. 12 Correlation residuals expressed in gray levels (the digitization of the analyzed pictures

is 8 bits; see Fig. 2) for the displacement field shown in Fig. 3. The region of interest has an area of

� 68 � 68 mm2. The crack is visible on the top left corner (see detail on the left)

Fig. 13 Vertical (left) component of the displacement field (expressed in pixels) obtained from

XQ4-DIC (‘ ¼ 32 pixels). The region of interest has an area of � 68 � 68 mm2. Norm squared of

displacement jump versus curvilinear abscissa (right). The physical size of one pixel is 68 μm
(Courtesy of J. Réthoré)
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observed in tensile tests on the same material. They are related to the existence of a

macrocrack whose description with CDM concepts may be questioned. To link

linear elastic fracture mechanics and CDM, the dissipated energy (Lemaitre and

Dufailly 1987)Δ is calculated by assuming a constant critical energy release rateGc

Δ ¼ Gcah (22)

where a denotes the crack length and h the sample thickness. For the damage model,

the dissipated energy density is first calculated for any broken element (D ¼ 1)

δ ¼
ð1
0

YdD (23)

With the chosen growth law, the dissipated energy density becomes

δ ¼ 2E0

X
i

cie2ci ¼ 2Yc (24)

so that the dissipated energy of n broken elements reads

Δ ¼ n‘2hδ (25)

where Yc is the characteristic energy release rate density. By noting that a � n‘, it
follows

Gc ¼ 2‘Yc (26)

This result shows that the element size ‘ explicitly appears in the relationship

between the critical energy release rate and the characteristic energy release rate

density.

With the identified parameters of the damage growth law (see

section “Identification: Damage Growth Law”), an estimate of the fracture tough-

ness Kc is obtained

Kc ¼ σc
ffiffiffiffiffi
2‘

p
with ec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

cie2ci
r

and σc ¼ E0ec (27)

where σc denotes the characteristic strength and ec the characteristic strain. The fact
that ec5 	 ec1 leads to the following approximation

Kc � E0ec5
ffiffiffiffiffiffiffiffiffi
2‘c5

p
(28)

This result proves that the second regime (i.e., for strain levels greater than 1 %)

of the damage growth law (Fig. 7b) is associated with a localized mode (i.e., crack

propagation) and not with a diffuse mechanism. The element size plays the role of a
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nonlocal parameter. However, its physical meaning is lost since it was chosen at the

measurement stage and not for any physical reason.

In the present case, it is found that σc� 360 MPa and ec� 0.04, with ‘� 1.1 mm

and E0 ¼ 9.3 GPa. Consequently, the critical energy release rate becomes

Gc ¼ 31 kJ/m2, and the corresponding fracture toughness Kc ¼ 17 MPa√m. These

values are rather high for composites. One of the reasons is due to the fact that a

fiber mat allows cracks to be bridged, and therefore, brittle fracture is prevented

from occurring. It was shown that this type of material is notch insensitive

(Berthaud et al. 2000), which can be understood by the special architecture of the

material. The level of fracture toughness is close to the value of the stress intensity

factor estimated above. This constitutes a validation of the identification procedure.

Yet another way of modeling the presence of a crack and its process zone is to

resort to cohesive zone models (CZMs). They consist of condensing all the non-

linearities along lines (in 2D simulations) and surfaces (in 3D simulations). How-

ever, contrary to standard fracture mechanics that only accounts for crack

propagation (i.e., a crack is initially present in the considered structure), a CZM

may account for initiation, propagation, and even coalescence when needed. One of

the earlier models consists of writing the free energy density ψ of an elementary

surface of the interface (Allix and Corigliano 1996) as

ψ ¼ 1

2
kn 1� dð Þ u½ �2 (29)

where d denotes the interface damage variable, kn the normal stiffness so that the

normal traction t is related to the normal displacement jump [u] by

t ¼ @ψ

@ u½ � ¼ kn 1� dð Þ u½ � (30)

and the thermodynamic force y associated with the damage variable d reads

y ¼ � @ψ

@d
¼ 1

2
kn u½ �2 (31)

In the present case, only mode I is considered for the sake of simplicity. It can be

generalized to account for the three fracture modes (Allix and Corigliano 1996).

When comparing Eqs. (12) and (13) with Eqs. (29), (30), and (31), the only

difference is that the first ones are associated with energies per unit volume and the

second ones by energies per unit surface. Consequently, if the free energies satisfy

ψ ¼Ψ ‘, then the two damage variables are equal d¼D to achieve a total equivalence

in terms of dissipated energy. It follows that the normal stiffness is such that ‘ kn¼ E0,

provided ‘ ε ¼ [u], which is a good approximation in the present case.

Under these hypotheses, the parameters of the CZM are the normal stiffness

kn ¼ 4.3 kN/mm3, the characteristic strength σc � 364 MPa, and the characteristic

crack opening displacement δc ¼ ‘ ec � 43 μm (i.e., of the order of 0.6 pixel). In

evaluating these parameters, the element size ‘ still appears.
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It is of interest to draw an analogy with the lumped damage mechanics case that

was discussed in “▶Chap. 38, Evaluating Damage with Digital Image Correlation:

B. From Physical toMechanical Damage.” The cantilever steel beamwas shown to

lead to a localized damage case. However, because the physical origin of this

damage was a buckling of the beam walls, localization was distributed over a

length scaling in proportion to the section. Yet, there is no obstacle to condense the

nonlinear damage effect into a zone smaller than the actual one, provided the

“damage” law is adjusted to the chosen size. To account for the same rotation, a

curvature will have to scale as the inverse of the damaged zone. In the limit of a

vanishing size, i.e., the “lumped” limit, the curvature diverges, but in such a

way that the rotation undergoes a discontinuity. A quasi-perfect analogy exists

with the crack versus localized damage discussion. Understanding what is a

conventional choice and how physical quantities are to be scaled to comply with

the chosen description shows the power of CDM and the sometimes heated debate

around the notion of internal length scales, which used to be very active a few

years back.

Conclusions and Perspectives

Among the various damage measurement methods discussed in the introduction

(Part A), two of them were used. First, a detection technique was illustrated to

analyze the development of physical microdamage (i.e., microcracks and

microvoids) by resorting to 2D and 3D images, which are subsequently processed.

Second, elasticity coupled with damage was utilized to invert damage fields and

identify the parameters of a damage growth law. The choice of either approach is

dictated by modeling strategies that mostly rely on the scale of observation and the

taste of the scientist.

The identification of the (mechanical) damage law was first illustrated in the

simple case of beam geometries (Part B) and then further applied herein to

composite materials. The formulation of the damage law as one of the ingredients

(together with equilibrium and compatibility) controlling the measured displace-

ment field allows moving progressively to the analysis of a field of stiffness contrast

and to robust determination of the damage growth law. Last, the question of the

proper handling of a localized regime so that the chosen discretization remains

compatible with the energy balance has been discussed both for lumped damage

mechanics (for beams) and mesoscopic cracks (for composites). This very same

path was followed both in the previous and present chapters.

To perform most of the analyses reported in this chapter, only one measurement

technique (i.e., DIC) was used. Further, the identification procedures used the

concept of equilibrium gap. It is worth noting that there are other full-field mea-

surement and identification procedures (Grédiac and Hild 2012). The choice was

made to link as strongly as possible both steps (i.e., measurement and identifica-

tion). Global approaches to DIC are one way to achieve this goal and to seamlessly

bridge the gap between experiments and numerical simulations.
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In terms of damage models, only simple ones were used herein for illustration

purposes and also because complexity has to be dealt with care. Inversion and

identification belong to the class of inverse problems. Consequently, the more

numerous the unknown parameters, the more measured data need to be collected

to make the results trustworthy and robust. Further, only 2D displacement fields

were used in this chapter. However, the identification procedures are generic and

are currently being generalized to 3D surface and volume measurements.

As discussed in the introduction of Part A, various scales of measurement and

modeling are possible when describing damage. For damage detection, different

scales were considered. Smaller and larger ones can also be taken into consider-

ation. For damage models, they were essentially written at the level of the volume

element of continuum mechanics. Other choices could have been made.

All these developments are geared toward the emergence of simulation-based

engineering sciences. Among the various challenges (Blue Ribbon Panel 2006),

there are open problems associated with multiscale and multi-physics modeling.

Continuum damage mechanics is one area of mechanics that needs further devel-

opment to reach a level of confidence sufficiently high for engineers to use its

models to design (damage-tolerant) structures. Real-time integration of simulation

methods with measurement systems is another issue to be addressed. To achieve

this goal, robust model identification and validation procedures need to be

improved and made robust.
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N. Limodin, J. Réthoré, J.-Y. Buffière, A. Gravouil, F. Hild, S. Roux, Crack closure and stress

intensity factor measurements in nodular graphite cast iron using 3D correlation of laboratory

X ray microtomography images. Acta Mat. 57(14), 4090–4101 (2009)

N. Malésys, L. Vincent, F. Hild, A probabilistic model to predict the formation and propagation of

crack networks in thermal fatigue. Int. J. Fat. 31(3), 565–574 (2009)

J.-J. Marigo, Formulation d’une loi d’endommagement d’un matériau élastique. C. R. Acad. Sci.
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Abstract

Composite structures are known to be susceptible to both manufacturing

defects and in-service damage. Defects or damage can result in serviceability

issues or a loss in the structural capability. Detection and characterization of

defect and damage is thus of paramount importance in any successful deploy-

ment of fiber-reinforced polymer composites, particularly as they are used as

primary load-carrying structures. Experimental methods for investigation of
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microdamage or anomalies in composites present the challenge that one single

method is not capable of identifying all damage mechanisms. This chapter

presents a review of selected experimental methods aimed at providing a

quantitative description of selected damage types of microscale dimensions

(e.g., intra-ply cracks) and microstructure anomalies (waviness, porosity) in

fiber-reinforced polymer composites. The chapter discusses in the first part

microscale damage characterization using microscopy, radiography acoustics,

and ultrasonic techniques, while the second part is focused on the characteri-

zation of microstructural anomalies that depend on manufacturing, namely,

waviness and porosity.

Introduction

Fiber-reinforced polymer composites have been introduced since the 1970s for

aerospace applications requiring high stiffness/weight and high strength/weight

ratios. Since then, they have been adopted also for civil, marine, transportation,

and wind energy applications. Examples include the new aircraft Boeing 787,

Airbus A350, and F-35, with approximately 50 % of their structural weight made

of composites; new vehicular and pedestrian bridges (starting with Miyun bridge in

China back in 1982, with the first all-composite deck) and retrofitted bridges

(seismic retrofit of the State Street Bridge on Interstate Highway 80 in Salt

Lake City, UT, completed in 2001); the US M80 Stiletto launched in 2006 and

the Swedish Visby Corvette commissioned in 2002; and the 37 m long composite

blades for General Electric 1.5 MW wind turbines launched in 2004.

However, monolithic and sandwich fiber-reinforced polymer composites are

plagued by complex damage types, such as microscale cracks, fiber/matrix inter-

face debonding, delamination, barely visible impact damage, shear core failure,

and micro-buckling. These damage modes may be triggered by manufacturing

defects, compounded with damage incurred during service. Service damage may

be caused by thermomechanical fatigue, impact, exposure to environmental

factors (moisture, UV), and/or service fluids, overloads, and a nonlinear combi-

nation of all of the above. It has been estimated that the cost of inspection of a

composite structure is approximately 30 % of the cost of its acquisition and

operation (Bar-Cohen 2000). Therefore, structural safety relies on the ability to

assess manufacturing defects and damage onset early enough for repairs while

minimizing downtime for cost reasons.

This chapter presents a review of selected experimental methods aimed at

providing a quantitative description of selected damage types of microscale dimen-

sions (e.g., intra-ply cracks) and microstructure anomalies (waviness, porosity) in

fiber-reinforced polymer composites. Part 1 focuses on microscale damage charac-

terization using microscopy, radiography acoustics, and ultrasonic techniques.

Part 2 addresses the characterization of manufacturing-dependent microstructural

anomalies, waviness, and porosity.
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Part 1: Microscale Damage

Overview

Many authors have investigated how damage evolves in fiber-reinforced polymer

matrix composites and the respective roles of its constituents, matrix, and fibers on

ultimate failure, since the 1970s (e.g., Aveston and Kelly 1973). In cross-ply

composites manufactured with unidirectional 0� and 90� plies, damage caused

by quasi-static and fatigue tensile loading follows a sequence that has been exten-

sively studied in the past 40 years (see recent reviews by Berthelot 2003;

McCartney et al. 2010; Talreja and Singh 2012): first, multiple matrix cracks appear

in 90� plies (transverse plies with respect to the direction of loading), initiating from
local defects (voids, fiber clusters, or resin-rich areas), with spacing that depends on

the layer thickness. Matrix cracking may cause load redistribution in the composite,

moisture ingress, and reduction of the stiffness of the cracked plies and thus loss of

composite stiffness, strength, and toughness. With further load increase, these

transverse cracks begin to interact with each other: the crack spacing decreases

and eventually reaches saturation, a stage named the “characteristic damage state”

(e.g., Highsmith and Reifsnider 1982), which depends on ply properties, ply

thickness, and stacking sequence. A more complex damage progression has been

documented for quasi-isotropic composites (e.g., Tong et al. 1997, Fig. 1;

Adolfsson and Gudmundson 1999, Fig. 2), for example, with cracks at �45�

orientation generally starting from 90� cracks.
The three-stage damage sequence discussed above has also been detected in

cross-ply composites built by woven plies (e.g., Naik 2003). Woven composites are

made of three major components: longitudinal strand (warp ply), transverse strand

(fill or weft ply), and resin-only regions. In these composites, additional damage

features are encountered: (a) the first stage of damage is associated with the

formation of microscale damage and transverse cracks in the fill ply, and (b) in
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Fig. 1 Progressive transverse cracking for quasi-isotropic and cross-ply glass/epoxy laminates:

(left) crack density versus applied strain; (right) stiffness loss versus crack density (Tong

et al. 1997)
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the middle stage of damage, macroscale damage such as shear failure in the warp

plies appears. Cracks in the neat resin regions and delamination between warp and

fill plies may also be found. Figure 3 shows damage in cross-ply glass/epoxy woven

specimens under tensile fatigue, which demonstrates the increased complexity of

failure modes in weaves. An example of fracture saturation may also be found in

heterogeneous structures of much larger scales, such as rocks (Fig. 4; Schöpfer

et al. 2011).

The lasting interest of the scientific community and the coexistence of numerous

theories of damage initiation and progression in advanced composites and hetero-

geneous structures are shown by the very recent publication dates of papers and

books on this topic (to name a few, Anderson et al. 2008; Cid Alfaro et al. 2010;

Böhm and Hufenbach 2010; Schöpfer et al. 2011; Talreja and Singh 2012; Aggelis

et al. 2012; Farge et al. 2012; Barbero et al. 2013).

Experimental validation should require in principle the use of robust tech-

niques that minimize user bias and should also address the inherently stochastic

nature of microscale damage features such as intra-ply cracks. This is particu-

larly evident in woven composite plies, which are compacted differently during

the manufacturing process. Thus, stress varies locally, intra-ply cracks are

triggered at different times, and their spacing varies. These aspects of random-

ness of damage onset and stochastic distribution of damage were recognized

early on by Manders et al. (1983) and are also discussed by Yurgartis

et al. (1992), Bulsara et al. (1999), Wang and Yan (2005), Silberschmidt

(2005), Anderson et al. (2008).

Part I of this chapter focuses on selected experimental methods for laboratory-

scale testing to quantify microscale damage features. The practicality of the

methods for field deployment is not addressed. Part I does not aim at advocating

for one analytical/numerical approach or philosophy over another. The authors of

this chapter have done their best effort to acknowledge the many authors who

worked in this very populated but still exciting field of research.

Fig. 2 Damage in glass/

epoxy laminate with layup

[0/90/�45]s. Ply

thickness �0.125 mm

(Adolfsson and Gudmundson

1999)
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Methods Based on Microscopy

Many researchers who published experimental data appear to have used optical

microscopy and typically transmitted light microscopy applied to loaded and

unloaded specimens, which were sufficiently transparent (e.g., glass/epoxy speci-

mens). Some researchers directly examine samples or cross sections of samples

(e.g., Manders et al. 1983; Yurgartis et al. 1992; Tong et al. 1997; Voyiadjis and

Warp ply

Fill ply

Intra-ply cracks in fill plies

Partially closed intra-ply cracks

Delamination

Intra-ply cracks in fill plies

Coalesced cracks

Intra-ply crack 
in warp ply

Delamination

a b

c d

e

Fig. 3 Pictures of damage at several locations in woven glass/epoxy cross-ply specimen subject to

tensile fatigue with stress ratio ¼ 0.8 and frequency ¼ 10 Hz. (a) pristine; (b) after 1,000 cycles,

at the mean load of 9.12 kN; (c) unloaded, after 1,000 cycles; (d) after 14,000 cycles, at mean load;

and (e) after 16,000 cycles, at mean load. Fill ply thickness �200 μm. The experiments are

described in La Saponara et al. 2011, and the pictures show specimen D, whose fatigue test

were stopped after 18,000 cycles
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Almasri 2007, with scanning electron microscopy; Anderson et al. 2008; Thomas

et al. 2008; Ogi et al. 2010; Parı́s et al. 2010). Other researchers use microscopy to

view edge replications (“replicas”) of the edges of polymer- and ceramic-matrix

composites (e.g., Highsmith and Reifsnider 1982; Stinchcomb 1986; Yurgartis

et al. 1992; Sørensen and Talreja 1993; Adolfsson and Gudmundson 1999, etc.).

This method is used on the exposed specimen edges that have been cleaned

and sanded prior to the test. Typically, the specimen is held in a testing machine.

A strip of cellulose acetate film is softened by acetone just before being applied

onto the specimens’ edges, and it is then held in place by light pressure (e.g., by a

thumb) for a short time interval (a couple of minutes). An impression of the surface

is produced and may be viewed later by an optical microscope. Some challenges

with this technique are reported below that are not explicitly discussed in the

literature:

1. The film acquires curvature upon curing. The light of a microscope will thus

scatter unevenly if the film is not held perfectly flat between microscope slides,

thus complicating the matter of recognizing and possibly counting microscale

damage features (see, e.g., shiny spots in Fig. 3a).

2. There is no access to the interior part of the specimen.

3. It is critical to have a statistically robust representation of the damage process,

which is also not dependent on user bias. This may require tedious crack

counting work, unless image processing software and stereology techniques

are adopted. What is classified as an intra-ply crack should be clear-cut to

different users (e.g., whether the crack needs to cross the entire width of a ply

or not). Item 4 may hold in the case of use of image processing software.

4. There may be artifacts in the replica such as finger prints and drops of acetone

“immortalized” by the replica, or film sections that were not cured by acetone

and appear empty (Fig. 5). Should the image be analyzed by image processing

software not supervised by a knowledgeable user, the software might log such

artifacts as red-flag items related to damage.

5. Cellulose acetate films are viscoelastic materials. One manufacturer (TedPella)

recommended storage at a low and constant temperature to minimize creep.

Crack density measurements may be affected if the films are not stored properly

and the replicas are not processed timely.

Fig. 4 Fracture saturation in rocks, with cracks developed within limestone beds located between

mudrocks. The arrow indicates a 0.29 m long rock hammer, for scale (Schöpfer et al. 2011)
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6. Although this technique is categorized as nondestructive, the systematic use of

acetone on the surface of a polymeric specimen may actually contribute to

damage. Exposure to acetone may also deteriorate the grips of the testing

machine.

Yurgartis et al. (1992) devised an interesting image processing technique to

classify intra-ply cracks (called “transverse bundle cracks”) and delaminations.

They consider ceramic-matrix composites, but the technique may be applied to

other heterogeneous materials as well. The semiautomatic image processing

involves the increase of the resolution of the cracks with respect to the background,

producing a simplified image that can be used for a statistically sound measurement

of damage (Fig. 6).

Wharmby et al. (2003) mention the use of software that was developed in-house,

which processes images from a video camera and a digital frame grabber, but

details of the software and of the decision-making process on what is labeled as a

crack are not readily available (they are reported in a conference proceeding paper).

By comparison, the work by Yurgartis et al. (1992) excels for its clarity and

documentation.

Methods Based on Radiography

X-ray radiography is a technique that allows detection and quantification of micro-

and macroscale damage features that are inside a specimen. It requires the use of a

dye penetrant, for example, a di-iodobutane solution (Crossman et al. 1980), or zinc

iodide in fiber-reinforced epoxy specimens (Stinchcomb 1986; Lafarie-Frenot and

Hénaff-Gardin 1991). Stinchcomb (1986) lists two important conditions for suc-

cessful radiography: (1) the penetrant solution should be able to flow easily inside

the composite and thus should contain an additive to reduce the surface tension. The

Fig. 5 Replica of woven

cross-ply glass/epoxy

specimen. The fill ply is�200

μm thick
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penetrant may also not access some areas of the specimen, if those are not

connected to an external surface where the penetrant is applied; (2) for damage

such as large delaminations, capillary action will drive the penetrant to the delam-

ination boundary, which will then appear in the radiograph, and could be ambigu-

ous and misinterpreted. Moreover, radiography provides two-dimensional images

with no depth information, and it may be necessary to take several radiographs of

the specimen at different orientations with respect to the X-ray source (Talreja and

Singh 2012).

Fig. 6 Processing of microscope image of carbon-carbon specimens (Yurgartis et al. 1992). The

original digital image (box 1) is denoised, smoothed, and subjected to the so-called medial axis

transformation, resulting in a simplified image highlighting the damage features of interest (boxes

2–3). The discrimination of transverse bundle cracks from delamination cracks is carried out by an

operator, who labels the cracks. The crack counting can then be automatic. The data was processed

from 18 to 20 randomly selected and not overlapping images (Figures reproduced with kind

permission from Springer Science+Business Media B.V)
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Three-dimensional views of internal damage may be provided by X-ray com-

puted tomography (CT) (Scott et al. 2011; Zhang et al. 2013; review byWithers and

Preuss 2012) or its variations (laminography, see Moffat et al. 2010; synchrotron

radiation tomography, see Wright et al. 2010). In CT, a series of high-spatial-

resolution digital radiographs (projections) is collected as the sample is rotated by

small increments between each image. A three-dimensional image is built mathe-

matically after filtering/denoising the projections (usually with a Radon transform),

followed by forwarding these filtered projections onto a grid and adding the

contributions of the radiographs. The outcome is a three-dimensional representation

of the object of interest.

Bull et al. (2013) reviewed the performance of micro X-ray CT (μCT), synchro-
tron radiation CT (SRCT), and synchrotron radiation computed laminography

(SRCL) for the case of carbon/epoxy specimens subjected to impact (Fig. 7). The

first technique allows identifying damage at the macro- and mesoscale levels, while

the other two techniques are found to be superior for rapid scanning of three-

dimensional microscale damage. The application of X-ray CT for identification of

porosity in the microstructure will be further discussed in Part 2.

Methods Based on Acoustics/Ultrasonics

The resolution, sensitivity, and thus success of these nondestructive evaluation

techniques depend on the ability to interpret the resulting signal and discriminate

between as-manufactured defects (voids, distributed voids or porosity, inclusions,

resin-rich and resin-poor areas, waviness) and damage caused by thermome-

chanical loading or other factors. Ultrasonic transducers generate wave forms in a

frequency range between 20 kHz and few GHz, whose interaction with damage

depends on several parameters: respective sizes of the wavelength and the defect/

damage size, dispersion properties of the material, anisotropic nature of the mate-

rial, interrogation distance, quality of the coupling between the transducer and the

material, boundary and loading conditions (including those around the transducers,

Fig. 7 Close-up of damaged

regions using μCT, SRCT,
and SRCL (Bull et al. 2013).

(a) and (b) are of the same

specimen at approximately

the same location, while (c) is

representative of similar

damage on a separate

specimen
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especially if they are embedded in the material), and equipment-related nonlinear-

ities deforming the transmitted waveform (e.g., amplifier above a given frequency

range). In order for the composite structure to be “seen” by the transducers as a

homogeneous medium, an appropriate operating frequency for the transducers

needs to be selected: a frequency lower than 1 MHz satisfies the homogeneity

condition for most composite materials (Castaings et al. 2000).

The transducers may transmit concurrent Lamb waves, whose behavior in a

defect-free composite may be predicted by theoretical dispersion curves computed

with the effective properties of a representative volume element of the material.

Hence, theoretical dispersion curves are unable to capture the local variability of the

material or the existence of manufacturing defects. Transducers embedded inside

composite specimens may act as stress raisers and initiate damage, since they are

typically of a size comparable with the ply thickness (Singh and Vizzini 1994;

Schaaf et al. 2007; Tang et al. 2011), although some authors found this not to be

always the case (Mall 2002; Qing et al. 2007).Tang et al. (2011) hypothesized a

correlation between ultrasonic wave forms received by embedded transducers in the

low ultrasonic range, processed with a Gabor wavelet transform, and the accumu-

lation of intra-ply cracks in the host woven glass/epoxy specimens, when the

specimens are subjected to tensile fatigue. This hypothesis is being currently tested

through the very time-consuming and tedious process of analyzing over 100 replica

films from loading/unloading tests (La Saponara et al. 2011; ongoing unpublished

research). The transducers may also be tuned with a wedge or a rotating device to

transmit a selected type of waves (in composites, quasi-longitudinal or fast quasi-

transverse or slow quasi-transverse waves).

Wave propagation in composites and their ability to detect micro- and macro-

scale damage have been studied by numerous authors, this being a very active field

of research. In most cases, the composites are analyzed as elastic materials. Few

authors are cited here, who studied elastic composites and ultrasonics with contact

transducers: Nayfeh (1991), Rose et al. (1993), Kessler et al. (2002), Seale

et al. (1998), review by Su et al. (2006), review by Diamanti and Soutis (2010),

and Aggelis et al. (2012). Few authors study wave propagation of bulk waves or

Lamb waves in viscoelastic composite materials: Castaings et al. (2000) and

Schubert and Herrmann (2011, 2012).

Another ultrasonic method uses C-scans, which may detect internal delamina-

tions that are perpendicular to the transducer or may be used for assessments of

manufacturing quality (e.g., Voyiadjis and Almasri 2007). In this ultrasonic

method, one single transducer is used for the pulse-echo method, whereas two

transducers (pulser and receiver) are needed for through-transmission. Accessibility

issues sometimes require the use of one transducer in the pulse-echo form. Spec-

imen thickness can also affect the wave propagation, which may necessitate the

adoption of lower frequency sensors to investigate the composite. C-scans may not

be able to detect microscale cracks, and their resolution is considered worse than

that of radiography (Stinchcomb 1986). The method is also not capable of resolving

many types of manufacturing anomalies. However, its benefit compared to
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radiography is that it has easier deployment in manufacturing or in-service appli-

cations for detection of delaminations and porosity. More discussion about this

method follows in Part 2.

Another approach based on wave propagation in solids is acoustic emission.

Through acoustic emission, stress waves in the sound frequency range (20 Hz–20

kHz) are detected with passive transducers attached to the specimens, when there is

a rapid redistribution of stress caused by damage such as fiber breaks or

microcracks. Resulting stress wave bursts or acoustic emission (AE) events are

captured by these passive transducers. The reliability of the acoustic emission

method depends on the compatibility of the hardware used, the sensor and the

preamplifier (Jemielniak 2001). The amplifiers typical of acoustic emission setups

can have a high pass, low pass, or a band pass-type filters. They amplify and filter

the acoustic emission signals coming directly from the sensors or from a preampli-

fier before they can be processed. Acoustic emission in composites has been

investigated by Favre and Laizet (1989), Steiner et al. (1995), Tsamtsakis

et al. (1998), and more recently by Böhm and Hufenbach (2010) and Aggelis

et al. (2012). Early studies by Roy and Elghorba (1988) investigated the

interlaminar failure in Mode II and used acoustic emission to investigate damage

development of glass fiber/epoxy composite during monotonic and cyclic Mode II

loadings. As mentioned above, drawbacks of the acoustic emission method include

the difficulty in identifying damage location and the ability to discriminate between

damage types. Qamhia et al. (2013) used acoustic emission to study the detection of

porosity and waviness in carbon/epoxy composites. They manufactured specimens

containing the defects separately and compounded. The porosity defects were found

to produce higher counts and energy releases than the emissions from the waviness

specimens. Frequency domain analysis shows the possibility to understand the

time history of the AE signals and to differentiate the defect type. The coupling

of the two defects under examination (porosity and waviness) was found to increase

the difficulty in differentiating one source from the other. A detailed discussion of

these defects continues in the second part of this chapter on manufacturing anom-

alies. To overcome some of the method limitations, some authors have combined

acoustic emission with other techniques, e.g., Aggelis et al. (2012), who used

ultrasonics in conjunction to acoustic emission to document microscale damage

progression. Böhm and Hufenbach (2010) used a similar testing philosophy, adding

video data and micrographs (Fig. 8). Part 2 of this chapter presents the use of

ultrasonics (in particular, C-scans) for detection and quantification of microstruc-

tural anomalies. Source location of the events attributed to AE wave evolution can

also be performed. The conventional methods rely on the presence of more than one

sensor and are based on measuring the signal arrival time. This measurement of the

arrival time can be accomplished either by the zonal method which uses the first

sensor that detects the signals to specify the primary zone or by the triangulation

method which measures the difference in arrival time of the signal to an array of

sensors (Promboon 2000). Other methods based on waveforms or cross correlation

techniques have also been reported (Ziola and Gorman 1991).
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Part 2: Microstructure Anomalies

Fiber Waviness

The manufacturing of composite structures can inevitably lead to the introduction

of defects or manufacturing anomalies into the product or structure being

manufactured. The effect of the fiber waviness variability on the tension and

compression properties has been previously discussed (Hsiao and Daniel 1996a, b).

Other terms sometimes used to refer to fiber waviness include “tiger stripes,

marcels, wrinkles, and zebra lines.” The fiber waviness can significantly affect the

tensile and compressive properties and nonlinear behavior (Chun et al. 2001; Hsiao

and Daniel 1996c). Elhajjar and Lo Ricco (2012) have investigated the interaction of

fiber waviness with stress concentrations like notches showing even higher reduc-

tions. There is no general consensus as to what level of fiber waviness can be

considered a normal part of the build process. Figure 9 shows the fiber waviness

in a carbon-fiber/epoxy bicycle fork near the head tube region (Sisneros et al. 2012).

Fig. 8 Damage detected through acoustic emission, ultrasonics, video data, and micrographs

(Böhm and Hufenbach 2010)
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In this study, the authors investigated “defective” bicycle forks using acoustic

emission and fatigue loading. The acoustic method was capable of identifying the

onset of failure. Large curvature changes or certain manufacturing methods result in

large waviness zones such as those observed in the carbon-fiber/epoxy bicycle forks.

Sometimes, the process of collating the plies, if not done with care, can cause the

development of waviness. The move toward larger structures and larger scale layups

increases the chances that such defects may occur. According to one article in the

Seattle Times (Lovering 2009), during the ramp-up of production, Boeing (The

Boeing Company; Chicago, Illinois, USA) has discovered unexpected fiber waviness

in several of the one-piece fuselage sections of the 787 Dreamliner. The exact causes

of fiber waviness may not always be evident, but research suggests that some of the

causes include pressure from layers in a laminated structure, foreign objects, ply

terminations, part curvature, co-curing, or residual stresses. One study has found

larger incidence of this defect correlated to larger amounts of material being used

(Lee and Soutis 2007). Several approaches have been proposed for the characteriza-

tion and measurement of fiber waviness. Micrographic assessment methods are

capable of identifying the waviness, but a major drawback is the destructive nature

of this approach. The ability of predicting the location and severity of the waviness

before the composite part is cured is theoretically of great interest, but limited success

Fig. 9 A cross section from a bicycle fork containing fiber waviness and porosity defects

(Sisneros et al. 2012)
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has been achieved to date. Among the studies that showed some positive

results, Wisnom and Atkinson (2000) artificially induced waviness in composite

rings and were able to correlate the post-cure waviness levels using a

displacement-based technique applied during the manufacturing stage. Most of the

detection methodologies are focused on trying to characterize the waviness after the

composite structure has cured. In certain waviness profiles, the presence of a resin

pocket near the free surface can be used to indicate the presence of a more serious

defect below.

Microstructural Analysis
Microstructure characterization methods emphasize the use of destructive cross-

sectional scans extracted from the structure under investigation. In this approach,

specimens are extracted from the structure, polished, and scanned using an optical

microscope. Medium-quality results are also observed from using high-resolution

desktop scanners. The general approach of using destructive examinations is

limited in two ways: the first is the limited confidence that a given cross section

relates to future parts produced; the second is the challenge in properly character-

izing the waviness, this usually requires numerous specimens and cross sections per

test. Despite these limitations, at this time this is the most accurate way to determine

the morphology of fiber waviness defects. Improvements on this method through

image analysis on polished cross section or X-ray scans have also been reported

(Sutcliffe et al. 2012).

In the characterization of the fiber waviness, one can sometimes assume that the

fiber waviness follows a sinusoidal function where the amplitude, angle, or length

of the waviness zone can be related to a degradation of a particular mechanical

property. The aspect ratio of the defect is sometimes used for its ease of measure-

ment. The weakness of the aspect ratio approach is that it does not account for

spatial variation, the thickness of the laminate, and the distribution of the waviness

within the thickness. This results in inhibiting its connection to an analytical

approach for mechanical properties and failure prediction. The challenge of using

one sinusoidal wave or one aspect ratio for characterization of the fiber waviness

can be seen in the fiber waviness morphologies shown in Fig. 10 (Chun et al. 2001).

In the uniform waviness characterization (Fig. 10a), the aspect ratio of every ply is

the same, whereas in the graded waviness (Fig. 10b), a function is used to reduce the

amplitude from one face of the laminate to the other. The localized classification

(Fig. 10c) refers to fiber waviness of uniform amplitude affecting only a limited

number of plies. Whether the waviness follows a uniform, graded, or localized

morphology will have a large impact on the type and degree of mechanical property

degradation that is observed.

A Gaussian function can also be used to capture the bell curve response of the

wavy plies (Elhajjar and Petersen 2011). The approach departs from the method by

Hsiao and Daniel (1996a, c), who used a sinusoidal wave to characterize various

waviness geometries. This approach can be used to analytically determine the

elastic stiffness. The Gaussian function was found to better describe some forms

of waviness geometry with respect to a sinusoidal wave. Since these analytic
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functions are differentiable, they can be used to determine the angle of the waviness

and hence can be used in the transformation of elastic constants. The unit cell

considered can be integrated over a length, L, and the contributions are then added

through the thickness for each ply. In this approach, the waviness of each ply in a

degrading waviness morphology can be expressed using the height, Aw, degraded

from the maximum value at one surface to a diminished value at the other surface.

This is accomplished by reducing the waviness height relative to the location of the

ply within the stacking sequence. Thus, the z-coordinate along the x-axis, v(x), of
each ply can be represented as (Elhajjar and Petersen 2011)

v xð Þ ¼ Aw 1� zk � Aw

h� Aw

� �2
" #

e�
x2

2c2 (1)

where h is the nominal thickness of the laminate and zk is the z-coordinate of the

upper surface of ply k. Note that the more severe the case of waviness, the more of

the gage thickness is affected by the fiber waviness. One feature of this function is

that it is independent of the length of the waviness, which is subjective in its

determination.

Ultrasonic Methods
Active research in ultrasonics as a method to detect fiber waviness is underway,

due to the popularity of this method in the engineering practice, as also presented in

Part 1 of this chapter. Ultrasonic methods can be used to nondestructively provide

Fig. 10 Characterization of fiber waviness as (a) uniform, (b) graded, and (c) localized

(Chun et al. 2001)
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an indication of some aspects of the waviness morphology without destructive

evaluation. However, full resolution of the waviness morphology is more challeng-

ing and is dependent on the material types and thicknesses inspected. For example,

waviness may not always be uniform, as it maybe localized to a few layers of the

laminate, or extend over large areas as described above. It can also be coupled with

porosity, complicating the reflection or transmission characteristics of the ultra-

sonic wave. Dayal (1995) proposed using ultrasound to measure the through-the-

thickness waviness and showed the periodicity of the waviness by correlation to

C-scan measurements. Theoretical analysis was carried out for the longitudinal

wave propagating through the material, with the reflection coefficients calculated at

various locations. Wooh and Daniel (1995) proposed using a discrete ray-tracing

model based on elastodynamic ray theory. The varying anisotropy of the material

causes the ultrasonic waves to travel along curved paths. The theoretical model was

found to match the period of the fiber waviness. Scattering due to the fibers and

porosity in the matrix makes this approach challenging to implement. Chakrapani

et al. (2012) used air-coupled ultrasonic transducers to determine the aspect ratios at

different depths in composite specimens. The Rayleigh waves were generated using

a 200 kHz frequency and were correlated to the aspect ratio of the waviness. The

waviness with lower aspect ratios (producing larger degradation) are more clearly

shown in the C-scans obtained using this approach (Figure 11).

Porosity

Porosity or distributed voids are a common manufacturing defect that can have

detrimental effects on the static and fatigue performance of composites. It also can

allow for moisture ingression and acceleration of environmental deterioration. The

causes of porosity are usually related to entrapment of air or moisture between plies,

unequal consolidation, or uneven cure pressure (Gauvin et al. 1987). Lower quality

processes using low consolidation usually result in a larger porosity content (Liu

et al. 2006). Sometimes the stacking sequence may also influence the porosity

formation. Toscano and Vitiello (2011) showed how porosity levels were found to

be greater when plies are stacked perpendicular to one another, or in a [45/�45]

sequence, and were the lowest when stacked in the unidirectional orientation.

Muller de Almeida and Nogueira Neto (1994) showed the effects of moisture on

the likelihood of porosity. The negative effects of porosity have been investigated

in numerous studies (Judd and Wright 1978; Koller et al. 2007).

The influence of porosity can greatly impact the loading capability of compos-

ites. In terms of axial loading, the literature seems to indicate more influence on

compression strength compared to the tension response, thus pointing toward the

matrix-dominated properties (Oliver et al. 1995). During tension, the fiber bears the

majority of the load, whereas in compression the resin plays a far more dominant

role. Other properties such as the interlaminar shear strength (ILSS) showed

significant decrease in performance. Liu et al. (2006) concluded that the decrease

in the ILSS is due to the reduction in interface contact between plies due to the
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voids. It is important to note that not all properties are impacted. For example, one

study has shown that the flexural modulus is generally enhanced due to increases in

thickness when porosity occurs (Yang and Elhajjar 2012).

Indirect Measurement Method
The void content in composites can be measured destructively using the indirect

measurement method. The method does not give a spatial description of the

porosity or voids, but can be helpful in determining the void content. If the density

of the composite, fiber, resin and the weight of the fibers and resin are known, it is

possible to estimate the void content. The void content in percent can be calculated

from the following (ASTM D2734 – 09 2009):

Wave H AR:20 Wave I AR:4 

Wave K AR:14 Wave L AR:20 

Wave I AR:4 Wave J AR:10 

Wave M AR:4 Wave N AR:10

Fig. 11 C-scan correlation to waviness aspect ratio (Chakrapani et al. 2012)
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V ¼ 100�Md
r

dr
þ f

df

� �

whereMd is the measured density, r and f are the resin and fiber weight percentage,
and dr and df are the density of the resin and fibers, respectively.

Image Analysis Methods
The image analysis method uses the grayscale histogram approach (Daniel

et al. 1992). The technique consists of taking the cross-sectional microscopic

image and producing its grayscale histogram graph (Mathworks Matlab 2011).

This graph is then plotted with intensity of pixels (ranging from 1 to 256) against

the frequency that the pixel occurs as shown in Fig. 12. From the examination of the

frequency distribution, it is possible to determine the matrix, fiber, and porosity

constituents. The fiber/matrix regions are a lighter gray, whereas the porosity

regions are dark. The percentage of porosity can be estimated by the ratio of the

threshold pixels to the total number of pixels in the image. The volume of voids Vv

is estimated from Daniel et al. (1992), where Pt are the number of thresholded

pixels and N is the total number of pixels:

Vv ¼ Pt

N

Ultrasonic and Tomography Methods
Ultrasonic measurements can provide an estimate of the porosity content in a

composite laminate and are one of the most commonly used approaches in industry.

The method can detect delaminations, matrix cracking, and also voids. The atten-

uation of the signal and wave speed can also be used to quantify the void fraction.

The voids create a change in the acoustic impedance that is directly related to the

density allowing the differentiation of the two zones. As mentioned in Part 1, the

application of ultrasonic methods in composites is complicated due to the scattering

induced by the anisotropic nature of the composite. Ultrasonic methods can be

applied in either pulse-echo or through-transmission methods. The attenuation drop

in regions of porosity can be correlated to calibration standards obtained from cross-

sectional scans. One disadvantage of these methods is that they offer either an overall

estimate or a sectional response and provide little information about the overall

morphology of the porosity defects. There is little information on whether the

porosity manifests itself in a homogenous fashion or in some directional pattern.

Some differentiation of stratified or distributed porosity can be made with the

methods discussed. This has significant importance when considering the current

reliance on 2D cross-sectional methods for analysis of porosity. Other techniques

have also been proposed for measurement of porosity in composites, including

infrared thermography, spectroscopy, laser ultrasonics, eddy currents, radiography,

acoustic emission, and acousto-ultrasonics. In any of these methods, cross-sectional

analysis or constituent level methods are used to develop calibration standards.
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Fig. 12 Grayscale image histogram for estimation of porosity levels (Yang and Elhajjar 2012)
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High-resolution X-ray computed tomography (CT) offers one approach for char-

acterizing porosity in composites. In this method, highly charged X-ray particles

penetrate from different angles to produce 3D microstructure reconstructions. X-ray

CT has been used in studying the microstructure of porous silica–calcium phosphate

nanocomposite in load bearing biomedical applications (Gupta et al. 2005). X-ray

synchrotron tomography, which uses radiation within the electromagnetic spectrum,

has shown promising results in identifying iron-rich areas of metal matrix composites

and the detection of porosity as well as damage growth (de Andrade Silva et al. 2010;

Williams et al. 2010), and also in self-healing composites (Ghezzo et al. 2010).

Comparison of X-ray computed tomography with several conventional methods for

void content analysis for fiber-reinforced polymer composites (FRP) shows that

X-ray CT can yield more accurate results in determining void content, when com-

pared to ultrasonic testing and acid digestion (Kastner et al. 2010). CT is able to

detect void and porosity within 0.5 %, whereas ultrasonic and acid digestion as

accurate to within �1 %. Damage in FRP such as microcracks, delamination, and

fiber breakage can also be observed three-dimensionally and in high resolution

(Schilling et al. 2005; Write et al. 2008). At this point, the X-ray CT methods are

not portable and only small specimens can be assessed.

Conclusions

The susceptibility of composite structures to both manufacturing defects and

in-service damage requires the use of advanced methodologies to characterize the

type, location, and extent of these defects. Undetected or ignored, these defects or

damage types can result in serviceability issues or a loss in the structural capability.

As discussed in this chapter, although ultrasonic methods such as pulse-echo or

through-transmission are common in industrial practice, they are not capable of

fully quantifying and assessing these important types of damage. The identification

of the complex fiber waviness profiles and their link to the structural performance is

likely to be a continuing area of research for nondestructive methods. Among the

experimental methods for investigation of microscale anomalies or manufacturing

anomalies in composites, there is unfortunately not a single one capable of identi-

fying all damage mechanisms. The fact that defects are sometimes coupled together

creates further complexity in identifying them.With this chapter, the authors sought

to offer an overview of experimental methods able to detect microscale damage and

manufacturing anomalies, highlighting challenges and benefits of each method.
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paper, textiles, or nonwoven felts. An RFN represents a random structure on the

microscale, which governs a complex deformation and fracture behavior. This is

due to a size effect in the mechanical behavior of the network because of its

heterogeneous nature: the fibers introduce long-range microstructural effects in

the material that distribute forces and deformation in a complex manner that is

very different compared to more continuous materials. A fiber network material

used in a product must meet performance requirements through the entire use

cycle including manufacturing and end-use situations. This chapter presents a

framework for analyzing deformation, damage, and fracture in network mate-

rials using continuum damage mechanics. Material degradation, or damage, is

described in a diffuse sense and the influence of damage on the mechanical

properties is governed by an internal length variable. To correctly describe

gradients in strain and damage, a nonlocal field theory (gradient theory) must

be added to the framework. A mathematical framework for such theory is

presented.

Introduction

A fiber is an elongated object that can be used to form different materials. There are

many uses for fibers in society today. They can be spun into ropes and wires or used

as a component of composite materials. Fibers can be directly bonded to each other

to form 2D and 3D network materials, referred to as random fiber network (RFN)

materials. 2D network materials, i.e., materials where the fibers are essentially

organized in one plane, are seen in a large range of applications. Conventional

paper is an important network material and is used on a daily basis for a variety of

industry and household needs. Paper consists of an essentially planar network of

cellulose fibers and is manufactured by dewatering a fiber suspension (Fig. 1).

Bonds are created between the fibers when a fiber suspension is dried. The bonds

can be tailored to have different properties using chemical additives depending on

the requirements.

Nonwoven felt is a planar network material used across a wide range of applica-

tions and products. These fabrics are manufactured from a set of polymer fibers

consolidated by bonds of different nature, such as entanglement, local thermal fusion,

or chemical binders. These materials are found in products such as baby diapers,

filters, and packaging. An emerging group of network materials are materials formed

by fibers having cross-sectional dimensions on the nanometer scale. An example of

that is nanocellulose (Henriksson et al. 2008; Eichhorn et al. 2010). By extracting

cellulose at the nanometer scale, the majority of the defects associated with the

hierarchical structure of wood fibers can be removed, and new small cellulose

building blocks are formed that are very stiff and slender. 3D networks are found

in various contexts such as living tissues like bones, muscles, and plant stems, all

being examples of natural fiber networks. Manufactured fiber network materials are

frequently used in the automotive and aerospace industry. Novel biomedical implants

are being developed to mimic the network structure of human tissue.
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An RFN represents a random structure on the microscale, which governs its

complex deformation and fracture behavior. Figure 2 shows images from typical

fracture tests on tissue paper containing central prefabricated straight cracks of

10 and 70 mm. A relatively large defect size is required to localize macroscopic

fracture to the crack, i.e., that material is relatively insensitive to defects.

Fig. 1 (a) Open network

(tissue paper). (b) Dense

network (packaging paper)

Fig. 2 Fracture testing of tissue paper. Short (10 mm) and long (70 mm) initial cracks
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In a homogenous material, such as metals, glass, or polymers, the fracture

process would localize to the initial crack tips and the crack would grow essentially

along the original crack plane. In the open fiber network, the local stress intensity at

a tip is reduced because of deformation process taking place on the microscale

(Isaksson and Hägglund 2009). In present chapter the nature of deformation and

damage in RFN materials is presented along with modeling concepts. During the

last decades the fracture process in randomly distributed fiber networks has been

extensively studied (cf. Delaplace et al. 1996; Herrmann and Roux 1990; Heyden

and Gustafsson 1998; Niskanen 1993; Ramasubramanian and Perkins 1987 or

Åström and Niskanen 1991, 1993). A fiber network material used in a product

must meet performance requirements through the entire use cycle including

manufacturing and end-use situations. To be able to design products in a cost-

effective manner, it is necessary to know the coupling between the properties of the

fibers and the mechanical response of a product. This coupling can be accomplished

with network models where each fiber is described with coupled structural members

that can be stretched and bent. Besides elastic properties, strength and damage can

be analyzed with such an approach. However, for large structures such an approach

becomes difficult to realize in common computer environments due to the high

computational cost involved. In addition, during the manufacturing of network

materials, the fibers sometimes change dimensions and mechanical properties and

internal stresses are introduced, which complicates the coupling between structural

levels. In contrast to network models, theories of continuum damage mechanics

(CDM) offer a framework for describing material degradation at macroscopic

continuum level. Special attention is given to planar network materials where the

fibers extend predominantly in one plane. For such sheet materials assumptions of

plane stress conditions can be made.

Deformations and Damage Mechanisms in Network Materials

Fibers form a material only if the fibers are bonded to each other in a coherent

structure. Forces are transferred from fiber to fiber through the bonds upon loading.

The mechanical properties of network materials are governed by three principal

parameters: (i) fiber properties, (ii) properties of bonds and (iii) number of

load-carrying bonds along the fibers.

Elasticity

The effective elastic modulus of network materials is less than the elastic modulus

of the constituent fibers, which is partly explained by the presence of voids. The

length distribution of free fiber segments is exponential in an RFN structure

(Kallmes and Corte 1960). Cox (1952) developed a model that relates elastic

constants of the sheet (Young’s modulus E and Poisson’s ratio υ) to fiber stiffness

based on sheet and fiber densities and elastic modulus of the fibers (ρs, ρf, Ef)
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according to E ¼ 1
3
ρf Ef =ρs and ν ¼ 1

3
. The model assumes that the sheet is in-plane

isotropic and that the fibers are infinitely long and not allowed to bend or interact

with other fibers. The theory overpredicts the sheet modulus. In true network

materials, loads are transferred from fiber to fiber and the axial load on a fiber is

zero at its ends, which creates a gradient in stress along the fiber. The effect of fiber

length and network density must be included in order to properly analyze coupling

between sheet modulus and fiber modulus. In a model developed by Van den Akker

(1962), it was assumed that apart from axial strain the unbonded parts of the fibers

could also sustain bending and shear. Network models have been used to establish

detailed relations between fiber stiffness and network stiffness (Jangmalm and
€Ostlund 1995; Heyden 2000; Åslund and Isaksson 2011). Figure 3 shows estimates

of sheet elastic modulus obtained using a network model (Bronkhorst 2003). The

graph shows the relation for networks relevant for paper materials for different fiber

lengths and sheet densities. For very low densities the fibers are unable to form a

coherent network, which makes the structure unable to carry and results in a

stiffness of zero. In open fiber structures, the free fiber segments are in average

long and therefore allowed to bend, which makes the material relatively compliant.

As the number of bonds per fiber increases, the fiber segments become shorter and

the network becomes stiffer.

The upper broken line in Fig. 3 shows the model suggested by Cox (1952).

Bronkhorst’s model is qualitatively in agreement with experiments on paper mate-

rials reported in literature (Luner et al. 1961).

Typically Poisson’s ratio is close to 0.3 for in-plane isotropic planar networks

(Heyden 2000). According to network models the in-plane Poisson’s ratio is only

marginally influenced by network density.

Cox (1952)
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Damage

When a network material, such as paper or nonwoven felts, is strained into the

nonlinear regime, the elastic modulus is reduced (Fig. 4) (Isaksson et al. 2004;

Allaoui et al. 2008; Ridruejo et al. 2010; Coffin 2012). This is a macroscopic

manifestation of the damage process taking place at microscale.

In the initial linear part of the load–displacement curve, the material deforms

elastically. At continued loading the damage evolution in paper materials is initially

random over the loaded volume of the material and exhibits stiffness reduction.

Typically the dominating damage processes are combinations of bond failure or

fiber breakage. For paper materials there is a loop in the load–displacement curve

when the material is subjected to loading/unloading cycles, which is due to defor-

mation mechanisms in the cellulose fiber (Jentzen 1964). As damage evolution

progress, micro damage localizes to a narrow band. From that point the material

undergoes a softening behavior. Finally formation and growth of a macroscopic

crack occur.

Figure 5 shows typical damage behavior of paper materials in tension. In open

networks of low degree of bonding, the failure process is dominated by debonding.

In dense paper structures, discrete microcracks are formed during loading, oriented

perpendicular to the loading direction (Allaoui et al. 2008). The microcracks appear

to be a combination of debonding and fiber breakage. At final failure, microcracks

coalesce to generate a macrocrack.

Fig. 4 Cyclic loading in tension of a slender specimen made of packaging paper (dense network).

Here, the gauge length is 100 mm and the width is 15 mm
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For paper materials, the damage caused by breaking of bonds can be monitored,

e.g., using silicon-impregnated paper samples. When breakings of bonds occur, the

light scattering coefficient of the materials is altered and the damage zone appears

(Korteoja et al. 1996). For relatively dense paper materials, the stiffness of the silicone

is low compared to that of the fiber. Niskanen et al. (2001) showed in an experimental

investigation that the width of the damage band is governed by the fiber length.

On a macroscopic level, fiber networks often have different stress–strain

response in tension and compression (Fig. 3). Typically, networks are more resis-

tant in tension than in compression. There are practical difficulties in measuring the

Fig. 5 Damage in paper under tensile loading. (a) Open network (tissue paper). (b) Dense

network (packaging paper)
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45: 2697–2703, with permission from SAGE)

41 Modeling Deformation and Damage of Random Fiber Network (RFN) Materials 1355



edgewise compressive properties of thin sheets of network materials. The

stress–strain response is dictated by the network structure, fiber, and bond proper-

ties. Sachs and Kuster (1980) suggest that dense paper fails in compression by a

combination of enlargement of voids, tearing of fiber walls, and separation between

the fiber layers. Fellers et al. (1980) suggest that compressive strength in dense

paper is governed by the compressive strength of the fibers. For open network

structures failure in compression is governed by buckling of fiber segments. Åslund

and Isaksson (2011) showed in a numerical model that even though a linear elastic

material model is used for the individual fibers, the network gives a nonlinear

response in compression because individual fibers buckle and bend (Fig. 6).

Structural Effects

In materials where inherent heterogeneities such as pores, grains, or fibers are

relatively large compared to the size of other relevant dimensions, such as the

size of the body or defects, global-scale deformations given by classical elasticity

theory are distorted due to deformation processes taking place at a smaller scale in

the material. This dependence on the size of the microstructure is often referred to

as material length scales or length effects. This behavior is seen for RFN materials

and especially when the network density is low. The fibers introduce long-range

microstructural effects in the material that distribute macroscopic stresses and

strains in a complex manner. This structural phenomenon resembles what happens

in a game of pick-up sticks (Mikado) when a player is trying to remove a stick

without disturbing the remaining ones (Fig. 7).

If a macroscopic crack is present, the fibers distribute stresses near the crack tip

and thus reduce the probability of failure immediately ahead of the macroscopic

crack since forces are transferred to remote regions from the tip. For open fiber

network materials, such as tissue paper and nonwoven materials, it is favorable to

include length scale formulations to account for structural effects (cf. Coffin and

Fig. 7 A game of pick-up

sticks
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Li 2011; Isaksson et al. 2004; Ridruejo et al. 2010). Nonlocal or gradient theories

provide a framework that enables length parameters to be included in a continuum

framework by introducing an internal length scale in the governing equations. The

difference between a local and nonlocal model is illustrated in Fig. 8. The nonlocal

model produces a finite strain field that is similar to the measured, while the local

model tends to infinity at the crack tip.

Continuum Damage Model

The model discussed here is very much influenced by the work of, e.g., Peerlings

et al. (1996) or Pijaudier-Cabot and Bazant (1987). A planar fiber material is here

described by a two-dimensional continuum. The fundamental idea is that material

degradation, or damage, can be described in a diffuse sense and the influence of

damage on the mechanical properties is represented by an internal variable. His-

torically this idea dates back to a paper by Kachanov from (1958) where creep

rupture in terms of a continuously growing damage parameter was discussed. In the

simplest form of CDM, an isotropic scalar damage parameter D is introduced

characterizing the degradation in a point of the material. A virgin undamaged

material is characterized byD ¼ 0 whileD ¼ 1 corresponds to a fully disintegrated

material. Isotropic damage is referred to the situation where the degradation of the

elastic stiffness tensor depends on a single parameter and the damage growth rate

also depends on a single parameter.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

x/c

ε y
y
[√ c

E
/K

I]

local sol. (LEFM)
Experiment
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Fig. 8 Experimentally estimated strain field in front of a mode I crack in an open network (tissue

paper). Also plotted are a corresponding nonlocal strain field and a classical singular LEFM strain

field. For illustrative purposes, the fields are slightly differently normalized. KI is the mode I stress

intensity factor acting far away from the tip (Reprinted from Engineering Fracture Mechanics,

Isaksson P, Hägglund R (2013). Crack-tip fields in gradient-enhanced elasticity. Engng Frac.

Mech. 97:186–192, and from International Journal of Solids and Structures, Isaksson P,

Hägglund R (2009) Structural effects on deformation and fracture of random fiber networks and

consequences on continuum models. Int. J. Solids Struct. 46: 2320–2329, with permission from

Elsevier)
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General Equations for Continuum Damage Mechanics

The physical stress tensor σij is replaced by an effective stress tensor σ̂ ij , and the

stresses are related by the scalar damage parameter according to

σij ¼ 1� Dð Þσ̂ ij: (1)

Apparently the physical stressσij ¼ σ̂ ij for an undamaged material and σij ! 0 at

the moment of rupture. There exist different theories regarding the effect of D on

the constitutive parameters. According to the elastic strain equivalence postulate

(cf. Lemaitre and Chaboche 1990), the relation between the present elastic stiffness

tensor Cijkl and the virgin stiffness tensor Cijkl
0 is given by

Cijkl ¼ 1� Dð ÞC0
ijkl: (2)

The stress–strain relation can consequently be written as

σij ¼ 1� Dð ÞC0
ijklekl: (3)

where eij is the elastic macroscopic strain tensor. On incremental form, Eq. 3 results

in dσij 1� Dð Þdσ̂ ij � dDσ̂ ij or, the equivalent, dσij ¼ (1 � D)Cijkl
0 dekl � dDCijkl

0 ekl.
The driving force for damage evolution in a point is referred to as the damage

energy release rate ψ and is the thermodynamic force conjugate to D. According to
Clausius–Duhem inequality, ψ ¼ � @W/@D where W is the elastic strain energy

density. Assuming that the material in its virgin state is linear elastic and that the

damage is isotropic, the driving force for damage reads

ψ ¼ 1

2
eijC0

ijklekl: (4)

To study progress of damage, it is necessary to define a damage criterion and

evolution law. According to some performed network simulation models, the

development of macroscopic material degradation follows an exponential

two-parameter law, consisting of an onset parameter and a fracture rate parameter

(Hägglund and Isaksson 2007). Thus, for RFN it is physically motivated to use a

damage evolution law that on incremental form reads

dD ¼ k 1� Dð Þdψ for ψ � ψ0, and on integrated form (5)

D ¼ 1� e�β ψ=ψ0�1ð Þ for ψ � ψ0, (6)

where the dimensionless parameter β ¼ kψ0 is introduced. The parameter ψ0 is the

damage threshold, equal to the strain energy density at damage nucleation, and

k governs the rate of damage evolution. In the context of damage in paper materials,

it has been shown that the two damage parameters can be calibrated using data from

acoustic emission monitored tensile tests. The theory can be extended to anisotropic

network material where a damage parameter in each material direction is considered.
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Gradient Formulation

Standard local continuum damage models as described by Eqs. 1, 2, 3, 4, 5, and 6

break down when the macroscopic strains become inhomogeneous as discussed in

section “Structural Effects.” Such theory does not take into account structural

effects in the material. In network materials where damage develops in a diffuse

manner upon localization and develops over a region governed by network and

fiber dimensions, such as fiber length lf and free fiber segment length ls. Stresses
depend on the strains not only at an individual point under consideration, but in all

points in a specified volume surrounding the point (Fig. 9) (see section “Structural

Effects”).

There exist several techniques for incorporating structural effects into the

governing equations. These methods control the scaling of damage localization

and provide means for regularizing the governing equations. Physically it can be

interpreted as taking long-range interaction at microscale into account. Examples of

such theories include nonlocal integral formulations (cf. Kröner 1967; Eringen and

Edelen 1972; Eringen 2002; Silling 2000) and gradient theories (cf. Peerlings

et al. 2001; Aifantis 2011). Herein, a gradient formulation is considered. The theory

is based on the assumption that a nonlocal counterpart ξ in a point (x1, x2) of a local
state variable ξ over a surrounding two-dimensional infinite domain Ω is given by

spatial averaging in a vicinity of the point according to

ξ x1, x2ð Þ ¼ χ�1

ð
Ω

ϕ x0
1, x

0
2; x1, x2

� �
ξ x0

1, x
0
2

� �
dΩ, (7)

where (x1
0 , x20 ) is the position of the infinitesimal area dΩ,χ ¼

ð
Ω

ϕ
�
x0
1, x

0
2; x1, x2

�
dΩa

normalizing factor, and ϕ a symmetric weight function. The formulation (7) can for

sufficiently smooth fields of ξ be rewritten into a gradient formulation around

(x1, x2) according to the Taylor expansion:

fl2

p

ls

x1

x2

Fig. 9 Interaction between fibers around a point p
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ξ x0
1, x

0
2

� � ¼ Xj

n¼0

1

n!
r∇ð Þnξ x1, x23ð Þ, (8)

where j denote the order of the series expansion,∇ denote the differential operator,

and r is the distance between (x1, x2) and (x1
0 , x20 ). Assuming a Gaussian distribution

of the weight function ϕ and dropping unsymmetric terms in Eq. 8 yields after

substitution of Eqs. 8 into 7

ξ x1, x2ð Þ ¼ ξ x1, x23ð Þ þ 1

m!
c2m

@2ξ x1, x2ð Þ
@x2i

þ . . . , (9)

where m ¼ 1, 2, . . . and the range of nonlocal actions is controlled by a character-

istic length c. Differentiating (9) twice and substituting back into Eq. 9 and

truncating the series for derivatives of order four and higher, an implicit formula-

tion is obtained in the form of a modified inhomogeneous Helmholtz equation:

ξ x1, x2ð Þ � c2∇2ξ x1, x2ð Þ ¼ ξ x1, x2ð Þ in Ω, (10)

where ∇2 is the Laplacian operator. In Eq. 10, derivatives of the forth order and

higher have been neglected. One observes that an advantage of the implicit Eq. 10,

compared to the explicit Eq. 9, is that Eq. 10 limits singularities in the local field,

while Eq. 9 amplifies them, hence behaving like the experimental result in Fig. 2.

It has been argued that in the context of damage models, a natural boundary

condition to Eq. 10 according to vanishing normal derivatives on the boundaries,

i.e., n∇ξ ¼ 0 (n is the normal to the boundary), is the only physically acceptable

one. Moreover, in the context of continuum damage, there exist several variables

that can be spatially averaged to obtain continuous development of damage. The

model originally proposed by Pijaudier-Cabot and Bazant (1987) averages the

damage energy release rate ψ according to

1� c2∇2
� � ¼ ψ=ψ and the natural boundary condition n∇ψ ¼ 0: (11)

The implicit formulation (11) can fairly easily be implemented in a conventional

finite element code. The theory provides good computational economy and can be

used to study failure of complex macroscopic structures, given an accurate gradient

length c is used.

Example A: Uniaxial Tension of a Rod

The fundamental properties of continuum damage mechanics combined with gra-

dient enhancement are demonstrated in a uniaxial setting. The governing equations

are solved numerically, e.g., Isaksson et al. (2004). To initiate failure, an imper-

fection in stiffness of 1 % is assigned the center point. The model has one elastic

parameter (E), two parameters characterizing onset and evolution of damage
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(ψ0, β), and one gradient parameter (c) controlling the range of nonlocal actions.

Figure 10 shows the computed stress–strain response and damage profile

corresponding to six load levels during monotonic loading. The load cycle can be

divided into three stages. Below load level 0, the body exhibits a purely linear

elastic behavior. At a load level 0, the stress is given by σ ¼ [ψ0E]
1/2 and there is

onset of damage growth. Between load level 0 and load level 2, the damage in the

body develops in an approximately homogenous manner and the damage growth is

controlled by the parameter β. At load level 2, the maximum load is reached and the

damage localizes to the center of the bar as softening begins, and the characteristic

length c controls the width of the localized zone.

Example B: Analyzing Uniaxial Tension of Paper

A tissue-type paper with an open network structure is considered. The material is

analyzed in the cross-machine direction, i.e., slender samples are cut perpendicular
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Fig. 10 Uniaxial example of nonlocal continuum damage (σ ¼ F/A and e ¼ u/L ). Here,
E/ψ0 ¼ 5 � 106, β ¼ 0.1, and c/L ¼ 1/28
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to the manufacturing direction. The isotropic elastic modulus E of the material is

determined from the initial slope of the force–displacement curves and was esti-

mated to E ¼ 6.3 kN/m. The damage evolution parameter β and the damage

threshold ψ0 were determined by fitting the constitutive model to the post-elastic

regime of the load–displacement curve in Fig. 11. The calibration procedure gives

ψ0/E ¼ 3.2 � 10�5 and β ¼ 4 � 10�3.

Sample Applications: Mode I Fracture Paper Using CDM

In this section, the continuum damage model described in section “Continuum

Damage Model” is used for fracture analysis of paper material. A tensile-loaded

rectangular specimen consisting of low-basis-weight paper containing a

prefabricated slit is examined (Fig. 12). The dimension of the specimen is given

by the size of the crack (2a), length (2h), and width of the specimen (2w). A state of

plane stress is assumed.

The principal directions of material symmetry of paper are defined as the

machine direction (MD), which is the direction of manufacture; cross direction

(CD), which is the transverse web direction; and thickness direction (Z). Spec-

imens loaded in CD are considered. The material is assumed to be relatively

brittle so that plastic strains are neglected. The effect of a notch size on

fracture load is investigated. Because use is made of an orthotropic material

description to describe the elastic response of the considered material, the

model parameters are estimated from tensile tests in both CD and MD. Here

index 1 refers to CD and index 2 to MD. The model requires five elastic

parameters (E1, E2, G12, ν12, ν21) that describe the elastic behavior, two param-

eters (ψ0, β) that characterize the (isotropic) damage evolution, and a gradient

parameter (c) that controls the range of nonlocal mechanisms. Macroscopic

crack growth is assumed to occur when the damage variable D of a material

point approaches one.
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0 1 2 3 4 5
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Experiments
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Fig. 11 Numerical model

(FEM) fitted to uniaxial

load–displacement curves for

tissue paper. The width of the

specimens is 30 mm and the

gauge length 100 mm

(Reprinted from Hägglund

and Isaksson (2006), with

permission from Elsevier)
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Calibration of the Constitutive Model

The constitutive model is calibrated using data from acoustic emission

(AE) monitored uniaxial tensile tests (Fig. 13). Work carried out (among others,

Salminen et al. 2003; Yamauchi 2004) has shown that the way paper fractures in

tensile experiments can be followed by acoustic sensors. The basic principle in AE

is that during the fracturing of a fiber-to-fiber bond (which will occur in the order of

microseconds), stresses in the neighborhood of the fracture site will be redistributed

and cause a rapid release of elastic energy, which can be recorded on the surface of

the material using an appropriate acoustic emission sensor. In this way each

microfracture is the source of one acoustic emission event. Eventually, the

microfracture density becomes so severe as the material collapse is measurable in

tensile tests as a reduction of the stiffness. The AE sensor was positioned in the

2w

2h

2a

F

FFig. 12 Geometry of

fracture specimen

0

0.2

0.4

0.6

0 1 2 3 4

Displacement [mm]

damage D

acoustic events
(cumulative, normalized)

Fig. 13 Fitting of damage-

related constitutive

parameters. The size of the

specimen was 100 � 30 mm

(Fig. 11) (Reprinted from

Hägglund and Isaksson

(2006), with permission from

Elsevier)
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center point of each specimen and attached to the samples with a magnetic holder

placed on the alternate side of the paper specimen.

The elastic modulus in the principal material directions of the material was

determined from the initial slope of the load–displacement curves, where E1 ¼ 6.3

kN/m andE2 ¼ 1
2
E1. The damage hardening parameter β is determined by fitting the

constitutive model to the post-elastic regime of the load–displacement curve when

loaded in CD. Displayed in Fig. 11 are four experimentally obtained

load–displacement curves. The damage threshold ψ0 was obtained from onset of

acoustic emission (AE). The calibration procedure gives ψ0/E ¼ 3.2 � 10�5 and

β ¼ 4 � 10�3 (section “Example B: Analyzing Uniaxial Tension of Paper”). The

in-plane Poisson’s ratios were set to ν12 ¼ 0.45 and ν21 ¼ 0.22, while the in-plane

shear modulus was assigned the value G12 ¼ 0:4
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
following Baum

et al. (1981). Notably is that the acoustic emission results support the use of an

exponential damage evolution law for low-basis weight paper (Eqs. 5 and 6).

Results

The model is solved numerically in a nonlinear finite element procedure and is

compared with data from fracture test (Hägglund and Isaksson 2006). In the fracture

testing load–displacement is measured using specimens having a width and gauge

length of 150 mm (2w) and 230 mm (2h), respectively, at a deformation rate of

1.6 mm/min. The specimens are tested in CD only. The prefabricated crack is

manually cut in the center of the specimen oriented in MD to a length (2a) ranging
from 5 to 70 mm.

Figure 14 shows a comparison between the model and experiments for notched

specimens. The 95 % confidence limit is presented along with the average value of

eight specimens for each notch length. The computed results of fracture load (i.e.,

maximum load) are presented for three different values of c, i.e., the characteristic
length parameter. In Fig. 14, the length of the slit (a) has been normalized with

respect to the width of the specimen and fracture load against the tensile strength of

the material (i.e., the peak load of an unnotched specimen). Obviously, as the stress

field is approximately homogenous for an unnotched specimen, the influence of
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c vanishes. According to the results, slits smaller than 10–15 mm has marginal

influence on the fracture load. Thus, for the case of small defects, failure may

localize to other inherent weak spots in the sheet. In dense paper networks, a

relatively small initial crack may localize fracture while an open network structure

reduces the strain gradients ahead of the defect, and a large crack is required to

localize fracture (Isaksson and Hägglund 2009; Coffin and Li 2011). Hence, the

model is able to capture the phenomenon shown in Fig. 2.

Crack-Tip Fields

It may be of interest to analyze the strains and stresses close to a crack tip in an RFN

material. In Isaksson and Hägglund (2013), crack-tip stress and strain fields in

gradient-enhanced elastic materials are derived on closed form. The special case of

an opening mode I crack is analyzed. Physical requirements of finite stresses and

strains at infinity and at the tip are applied to remove singularities, following Altan

and Aifantis (1997) and Aifantis (2011). A Cartesian (x1, x2) and a polar coordinate
system (r ¼ [x1

2 + x2
2]1/2, θ ¼ tan�1[x2/x1]) are introduced with their origins coin-

ciding with the crack tip. The crack occupies the negative part of the x1-axis, i.e.,
x1 < 0 and x2 ¼ 0, and Ω is the infinite domain containing the crack. Distant from

the crack tip, a pure mode I opening field acts and the macroscopic stress tensor σij
is given by

σij ¼ KIffiffiffiffiffiffiffi
2πr

p f ij θð Þ as r ! 1, (12)

where KI is the LEFM mode I stress intensity factor and fij(θ) are angular functions.
The gradient-enhanced stress tensor σij is calculated using the LEFM stress tensors

as source terms in the inhomogeneous Helmholtz Eq. 10, i.e.,

σij � c2∇2σij ¼ KIffiffiffiffiffiffiffi
2πr

p f ij θð Þ, (13)

which has the solutions

σ11 ¼ KIffiffiffiffiffiffiffi
2πr

p 3

4
cos

θ

2
1� e�r=c
h i

þ 1

4
cos

5θ

2
1� 6c2=r2 þ 2e�r=c 3c2=r2 þ 3c=r þ 1

� �h ih i
σ22 ¼ KIffiffiffiffiffiffiffi

2πr
p 5

4
cos

θ

2
1� e�r=c
h i

� 1

4
cos

5θ

2
1� 6c2=r2 þ 2e�r=c 3c2=r2 þ 3c=r þ 1

� �h ih i
σ12 ¼ KIffiffiffiffiffiffiffi

2πr
p �1

4
sin

θ

2
1� e�r=c
h i

þ 1

4
sin

5θ

2
1� 6c2=r2 þ 2e�r=c 3c2=r2 þ 3c=r þ 1

� �h ih i
(14)

It is seen in Eq. 14 that the normal stresses are vanishing on the crack surfaces

while the shear stress is nonzero in a small region behind the tip. Consequently, the
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condition of vanishing surface shear stress is fulfilled only in a strong approximate

sense. The gradient-enhanced elastic strain tensor eij is readily given by Hooke’s

generalized law eij ¼ σij � σkkδijν= 1þ νð Þ� �
=E, where E is Young’s modulus, ν is

Poisson’s ratio, and δij is Kronecker’s delta. For the sake of completeness, they are

written here:

e11 ¼ KI

E
ffiffiffiffiffiffiffi
2πr

p 3� 5ν

4
cos

θ

2
1� e�r=c
h i

þ 1þ ν

4
cos

5θ

2
1� 6c2=r2 þ 2e�r=c 3c2=r2 þ 3c=r þ 1

� �h ih i
e22 ¼ KI

E
ffiffiffiffiffiffiffi
2πr

p 5� 3ν

4
cos

θ

2
1� e�r=c
h i

� 1þ ν

4
cos

5θ

2
1� 6c2=r2 þ 2e�r=c 3c2=r2 þ 3c=r þ 1

� �h ih i
e12 ¼ KI

E
ffiffiffiffiffiffiffi
2πr

p �1þ ν

4
sin

θ

2
1� e�r=c
h i

þ 1þ ν

4
sin

5θ

2
1� 6c2=r2 þ 2e�r=c 3c2=r2 þ 3c=r þ 1

� �h ih i
(15)

Expressions for stresses and strains in polar coordinates are obtained using

conventional transformation rules. Interestingly, the solutions deviate slightly

from Eringen’s original nonlocal theory. The two normal stresses on the crack

surfaces are vanishing in Eq. 14, while Eringen’s approximation gives nonvanish-

ing normal stress on the crack surfaces close behind the tip. Further, at distances

r/c > 2 the gradient-enhanced stress is approximately equal to the classical LEFM

stress in the whole body, a behavior that is the same for all stress components. The

stresses (and strains) are finite and the position of maximum hoop stress is located

close to the tip. Moreover, a numerical analysis reveals that the maximum hoop

stress σθθ is equal to KI 5=2� 19e�1=4½ �= ffiffiffiffiffiffiffiffi
2πc

p � 0:30KI=
ffiffiffi
c

p
and is situated on the

crack plane at the distance r/c � 1.1. Notably is that the maximum hoop stress in

the near-tip region is substantially lower than in Eringen’s theory. Most impor-

tantly, the obtained strain field (Eq. 14) resembles experimental results obtained in

fracture experiments on fiber materials (Fig. 8).

Concluding Remarks

The mechanical behavior of fiber networks is governed by complex multiple

mechanisms. This chapter presents a framework for analyzing deformation, dam-

age, and fracture in network materials using continuum damage mechanics. The

fundamental idea is that material degradation, or damage, is described in a diffuse

sense (continuum assumption) and the influence of damage on the mechanical

properties is governed by an internal variable. A classical continuum description

of this class of material is too simple to capture the essential mechanical behavior.

To correctly describe gradients in strain and damage, a nonlocal field theory

(gradient theory) must be added to the framework. The reason for this is the

microstructure in the material. Firstly, there is defect-size dependence in the

heterogeneous fiber network that is not captured by classical methods. Secondly,

since the network consists of relatively stiff fibers connected to other fibers located

at remote distances, the fibers introduce long-range microstructural effects in the
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material. Thus, at any point in the network, mechanical nonlocal actions are

experienced that have to be captured. A nonlocal field theory substantially improves

estimates of deformation fields and fracture loads in fiber-based network materials

as compared to classical mechanical theories. For ductile fiber networks (i.e., where

fibers exhibit significant plastic straining upon loading), the theory may be extended

by appropriate theories of plasticity.
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P. Isaksson, R. Hägglund, Structural effects on deformation and fracture of random fiber networks

and consequences on continuum models. Int. J. Solids Struct. 46, 2320–2329 (2009)
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P. Isaksson, R. Hägglund, P. Gradin, Continuum damage mechanics applied to paper. Int. J. Solids

Struct. 41, 4731–4755 (2004)

A. Jangmalm, S. €Ostlund, Modelling of curled fibres in two-dimensional networks. Nord. Pulp

Pap. Res. J. 10, 156–161 (1995)

C.A. Jentzen, The effect of stress applied during drying on some of the properties of individual

pulp fibers. Tappi 47(7), 412–418 (1964)

L.M. Kachanov, Time of the rupture process under creep condition. Izv. Akad. Nauk SSSR, Otd.

Tekhn. Nauk, 26–31, 1958 (in Russian)

O. Kallmes, H. Corte, The structure of paper. I. The statistical geometry of an ideal

two-dimensional fibre network. Tappi 43(9), 737–752 (1960)

M.J. Korteoja, A. Lukkarinen, K. Kaski, D.J. Gunderson, J.L. Dahlke, K.J. Niskanen, Local strain

fields in paper. Tappi J. 79(4), 217–223 (1996)
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Abstract

Polymer matrix composites (PMCs) are playing rapidly increasing roles in future

military and civilian industries. Damage tolerance analysis is an integral part of

PMC structural design. Considerable research efforts have been invested to

establish predictive capabilities, but thus far high-fidelity strength and durability

prediction capabilities are yet to be established. Advanced numerical methods

that can explicitly resolve the multiple-damage processes and their nonlinear

coupling at various scales are highly desired. This paper first reviews the recent

development of advanced numerical methods, including eXtended Finite

Q.D. Yang (*) • B.C. Do

Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables,

FL, USA

e-mail: qdyang@miami.edu; b.do1@umiami.edu

# Springer Science+Business Media New York 2015

G. Z. Voyiadjis (ed.), Handbook of Damage Mechanics,
DOI 10.1007/978-1-4614-5589-9_16

1369

mailto:qdyang@miami.edu
mailto:b.do1@umiami.edu


Element Method (X-FEM), phantom node methods (PNM), and the Augmented

Finite Element Method (A-FEM), in handling the multiple-damage coupling in

composites. The capability of these methods in representing various composite

damage modes explicitly with embedded nonlinear fracture models (such as

cohesive zone models) makes them excellent candidates for high-fidelity failure

analyses of composites. The detailed formulation of A-FEM and its implemen-

tation to a popular commercial software package (ABAQUS) as a user-defined

element has been given. Successful simulations of composites at various scales

using the framework of A-FEM are presented and the numerical and material

issues associated with these high-fidelity analyses are discussed. Through the

numerical predictions and the direct comparisons to experimental results, it has

been demonstrated that high-fidelity failure analyses can be achieved with the

A-FEM through careful calibration of nonlinear material properties and cohesive

fracture parameters and with proper considerations of the different length scales

within which these damage processes operate.

Introduction

The past decades have witnessed an exponential increase in composite usage and

the trend is still continuing. Composite materials have been successfully inserted

into new commercial and military airplanes (e.g., Boeing 787 Dreamliners, Airbus

A380, and Joint Strike Fighters of US Air Force) and to the rapidly expanding

renewable energy industries (e.g., wind turbine blades). Compared to structural

metals, composites offer several key advantages such as significant weight savings,

better reliability and durability, and lower manufacturing and maintenance costs. In

particular, composites offer the exciting advantage of designing hierarchical fea-

tures at micro- or mesoscale to achieve the desired structural performance through

the optimization process (Cox and Yang 2006; LLorca and González 2011; Yang

et al. 2011).

Unlike structural metals which are homogeneous and isotropic, composites are

inherently inhomogeneous and anisotropic. Microscopic flaws and imperfections

are inevitably present in such structures due to manufacturing processes. Therefore,

damage tolerance design has to be an integral part of composite structural design.

Currently such design relies heavily on large experimental test programs that are

extremely costly and time consuming. The analytical capability for composite

design currently consists of empirical fits to large experimental databases from

which “knockdown” factors for static design and stress–life curves or similar aids

for “lifing” are determined. The burden of testing to establish design allowables is

immense: a typical large airframe, for example, currently requires �104 tests of

material specimens, along with tests of components and structures up to the entire

tails, wing boxes, and fuselages, to achieve safety certification (Fawcett et al. 1997),

and a single bearing fatigue test can cost up to $50,000. Such lengthy and costly

procedures have been increasingly cited as the bottleneck to fast insertion of new

composites in engineering applications.
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There is a high demand in developing high-fidelity simulation capabilities that

can offer quick and accurate strength and durability predictions based on constit-

uent materials properties, so that many (but not all) of the composite tests can be

partially replaced with high-fidelity simulations, as has been the case in automotive

industry. There have been several calls for simulation-based engineering science

(SBES) from various government agencies recently (Oden et al. 2006; Dowlbow

et al. 2004). However, although computational stress analyses have been routine

exercises in composite structural design, predicting the progressive damage process

prior to final failure remains a very difficult task, owing to the highly heterogeneous

nature of composites. Many of the challenging issues are related to the difficulty of

developing practicable formulations for dealing with materials containing complex

material heterogeneity at various scales. Heterogeneity in composites poses special

problems for accurate prediction of local stress and strain fields, which can vary

strongly with local material features, and with predicting cracks and localized

damage bands, which can appear during damage evolution not only on the material

boundaries but also on other surfaces that cannot be specified a priori.

Such highly heterogeneous materials present unique challenges that cannot be

resolved by mainstream formulations of conventional material/structural modeling

which are based on hierarchical homogenization through representative material

volumes (Oskay and Fish 2007; Ramanathan et al. 1997). One challenge is that the

scale of material heterogeneity is on the same scale as that of the features of the

structures, which negates the common strategy of homogenizing the material

properties in simulations. In the past, many strength criteria based on various

homogenization theories have been proposed, including Hashin’s mechanism-

based criterion and the widely used Tsai–Wu criterion. The success of these

phenomenological criteria in assessing composite strength has been limited. A

recent report on blind failure prediction of unidirectional polymer matrix compos-

ites (PMCs) revealed rather disturbing predictive capabilities of such strength

criteria: virtually none of these homogenized composite theories can predict lam-

inate strength satisfactorily under general loading conditions. Discrepancies among

different theoretical predictions are more than 100 % and up to 1,500 % in extreme

cases (Kaddorur et al. 2004).

Continuum damage mechanics (CDM) has also been used to account for the

progressive damage in composites (McCartney 2003; Chang et al. 1991; Shokrieh

and Lessard 2000; Chaboche et al. 1995). This approach considers the gradual

reduction of load-bearing capability due to damage by introducing a damage

parameter (or a tensor) into the material constitutive relation, which leads to

irreversible damage evolution (Chang et al. 1991; Shokrieh and Lessard 2000;

Chaboche et al. 1995, 1997; de Borst et al. 1995). The CDM-based theories can

be conveniently formulated into traditional finite element programs. But there are

two inherent difficulties associated with this approach: (1) it cannot deal with highly

concentrated crack-like damage, which is universal in composites, and (2) damage

parameters calibrated from individual modes do not account for multiple-damage

mode coupling (Talreja 2006; Van de Meer and Sluys 2009a). Linear elastic

fracture mechanics (LEFM) and its computational form virtual crack closure
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technique (VCCT) have been used to study delamination cracks in laminated

composites. But this method requires preexisting cracks of finite size and therefore

cannot deal with damage initiation from pristine materials or from traction-free

composite edges (Tay 2003).

Multiscale hierarchical modeling approach based on unit cell (UC) or represen-

tative volume element (RVE) analyses and followed by homogenization from one

scale to next higher level scale (hierarchical model) has also been pursued to

account for the progressive damage evolution on macroscopic composite properties

(Oden et al. 1999; Tang et al. 2006; Inglis et al. 2007; Fish and Ghouali 2001;

Reddy 2005; Gonzalez and LLorca 2006; Ladeveze 2004). But without explicit

inclusion of the multiple-damage coupling, the homogenization process will have

to rely on either theoretical hypothesis or costly experimental programs to calibrate

key parameters (and in composites there are many of them). This point is illustrated

through the progressive damage evolution recorded for two composites shown in

Fig. 1.

Figure 1a shows multiple-damage modes in a double-notched tension specimen

with symmetric [0/90]s ply stack. Dominant splitting cracks in the 0� ply appear as

sharply defined horizontal lines (in an H configuration) and eventually span the

specimen. Many transverse cracks in the 90� ply occur during the load increase. In

addition, the major splitting cracks are accompanied by wedge-shaped delamina-

tions between the plies (areas of shadow around the splitting cracks). Figure 1b

shows the multiple-cracking features in a quasi-isotropic laminate [�45/+45/90/0]s
with a central open hole (Case and Reifsnider, 1999). The splitting cracks are

shorter and the delaminations are lobe shaped. Transverse cracking occurs predom-

inantly in the�45� plies. The intraply cracks, i.e., the splitting cracks in 90� ply and
off-axial cracks in +/�45� plies, are located in different plies and are coupled

Splitting cracks
in 00-ply

Front of delaminationa b

Multiple
transverse
cracking load axis

major splitting cracks
(H-cracks) in 0°-ply

splitting cracks
In ±45° plies

delamination
cracks

load axis

Fig. 1 X-ray radiography reveals damage mechanisms viewed through the ply stack in (a) a

double-notch tension specimen with symmetric orthogonal ply stack [0/90]s and (b) a quasi-

isotropic laminate [�45/+45/90/0]s with a circular open hole under tensile loading (Reprinted

from Journal of the Mechanics and Physics of Solids, vol 59, X.J. Fang, Z.Q. Zhou, B.N. Cox,

Q.D. Yang, High-fidelity simulations of multiple fracture processes in a laminated composite in
tension, Pages No. 1355–1373, Copyright 2011, with permission from Elsevier)
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through local inter-ply delamination (dark lobed regions) at inter-ply interfaces.

How to account for these multiple-damage mechanisms with strong interactions in

an accurate and computationally efficient scheme remains a difficult task.

Traditionally, the intraply and inter-ply damage processes were treated sepa-

rately with different theories: the delamination problems were extensively analyzed

using either LEFM (Tay 2003; Shahwan and Waas 1997) or cohesive zone models

(CZMs) (Yang and Cox 2005; Turon et al. 2006; Hallett and Wisnom 2006a;

Wisnom and Chang 2000), while strength-based criteria coupled with CDM for

strength degradation have been used for the intraply damage modes (Lapczyk and

Hurtado 2007; Laurin et al. 2007; Maimi et al. 2007; Matzenmiller et al. 1995;

Pinho et al. 2006). Direct coupling of CDM-based in-plane damage modes with

various fracture mechanics models for delamination has also been attempted by

several research groups but with only limited success (Cox and Yang 2006; Choi

and Chang 1992; Yang and Cox 2005; Van de Meer and Sluys 2009a; Carpinteri

and Ferro 2003). Several recent studies have shown that the homogenization process

at the mesoscale in CDMs leads to loss of key information concerning multiple-

damage coupling at the macroscopic scale and may result in inaccurate predictions of

the crack path (Talreja 2006; Van de Meer and Sluys 2009a). Unexpected severe

stress locking in numerical simulations may also occur (Iarve et al. 2005).

The inadequacy of traditional CDMs has led to a recent trend to integrate explicit

representations of all major cracking events into global composite structure models

to achieve direct coupling (Gonzalez and LLorca 2006; Van de Meer and Sluys

2009a, b; Iarve et al. 2005; Hallett and Wisnom 2006a; Rudraraju et al. 2010, 2011;

Van de Meer et al. 2010; Fang et al. 2010, 2011a; Ling et al. 2009, 2011). The

explicit consideration of multiple-damage modes and their nonlinear coupling

during their evolution processes are enabled by two critical elements: (1) improved

nonlinear fracture models such as the CZMs for bulk and interface crack problems

to achieve unification of crack initiation and propagation and (2) improved numer-

ical methods that allow for arbitrary locations of crack initiation and propagation in

heterogeneous media.

The nonlinear fracture model of CZMs pioneered by Dugdale and Barenblatt

(Barenblatt 1959, 1962; Dugdale 1960) and extended by Hillerborg et al (1976) for

numerical applications has been widely used in the damage and fracture analyses of

composites (Cox and Yang 2006; Turon et al. 2006; Wisnom and Chang 2000;

Yang and Cox 2005; Hallett and Wisnom 2006a; Xie et al. 2006; Yang

et al. 2006a, b; Song and Waas 1995; Thouless and Yang 2008; Yang and Thouless

2001a; Yang et al. 1999, 2001). In its original formulation, however, a CZM

requires the potential crack path to be known a priori, so that CZM elements can

be directly implanted along the path. This greatly limits the application of CZM for

problems with evolving arbitrary discontinuities.

Recently several novel numerical methods have been developed to allow for

arbitrary cohesive crack initiation and propagation without the need to specify

crack paths a priori. The nonlinear cohesive laws are typically embedded in the

numerical formulation in such a way that if under a given initiation criterion an
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element is deemed to initiate a cohesive crack, the gradual separation of the severed

subdomains is coupled by the cohesive stresses acting on the cracked surfaces. For

example, cohesive models have been integrated into the extended finite element

(X-FEM) framework and used successfully to model fracture in homogeneous

quasi-brittle materials (Moës and Belytschko 2002; de Borst et al. 2006). However,

when this method is applied to composites, it remains unclear how the nonlinear

crack-tip stress field, which is necessary for nodal enrichment in the ply elements, is

transferred to the interlaminar cohesive elements in a physically consistent way.

Another promising numerical method for handling arbitrary cracking problems

is the augmented finite element method (A-FEM). This line of development follows

the original work of Hansbo and Hansbo (Hansbo and Hansbo 2004), who first

established that an arbitrary discontinuity can be introduced within an element by

adding an extra element on top of the existing element, with each element account-

ing for the stiffness and force contribution from one part of the bisected physical

domain. The two discontinuous domains are connected by linear or nonlinear

springs (Hansbo and Hansbo 2004) or cohesive failure descriptions (Mergheim

et al. 2005). The addition of elements is typically realized by introducing additional

nodes that are geometrically identical to the original corner nodes (hence this

method is also named the phantom node method; see Van de Meer and Sluys

2009b; Song et al. 2006). One major advantage of this method is that it uses only

standard FE shape functions and thus avoids the use of the partition-of-unity

method, as in X-FEM, which results in loss of elemental locality in the element

that hosts a singular crack tip (Moes et al. 1999). It has been shown (Song

et al. 2006) that this method is equivalent to the extended finite element method

(XFEM) in which a discontinuity in the displacement field is introduced by

enrichment of the shape functions with the Heaviside step function. This advantage

renders the A-FEM completely compatible with standard FE programs. More

recently, this method has been extended to account for the inevitable and important

issue of material heterogeneity in composite materials (Ling et al. 2009).

This paper will review and discuss the recent development of advanced

numerical methods that can potentially meet the challenge of faithfully simulating

the coupled multiple damages at various scales in composite materials. The detailed

formulation of the A-FEM and its implementation to commercial software

packages such as ABAQUS as a user-defined element will be given. The enabling

capabilities of the A-FEM in faithfully predicting the progressive damage evolution

involving many damage modes will be demonstrated through numerical examples.

Nonlinear Fracture Models for Composite Materials

Most damage modes in composites are in the form of crack-like entities, and they

interact with each other at various scales as evidenced in Fig. 1. When dealing with

multiple-crack interactions, the nonlinear CZMs are essential because they unify
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the processes of crack initiation and growth within a single physically consistent

model (Barenblatt 1962; Dugdale 1960). A cohesive model is usually a phenom-

enological description of the mechanical behavior between the surface traction

and separation (or displacement jump) across the crack surfaces. The key

feature of such relation is that as a pair of cohesive surfaces separate due to

the local stress environment, the cohesive stress increases initially, reaches a

maximum (cohesive strength), and then drops gradually to zero at a critical

separation displacement. This description captures the essence of the progres-

sive failure in many engineering materials including PMCs. Furthermore, when

such a CZM is embedded in a structural model, a fracture process zone

(or cohesive zone) of finite size will develop which relates directly the

microscopic material failure process to the macroscopic structural behaviors

(Yang and Cox 2005; Camanho et al. 2003; Turon et al. 2007) (e.g., most

fracture process zones in PMCs are of size 0.1–1.0 mm). This multiscale

feature is the key to many successful applications of CZMs in composite

analyses because it offers a clear guideline for many numerical issues such

as mesh resolution.

This study will focus on the mode-independent cohesive law developed

initially by Yang and Thouless (2001a) and later extended to 3D problems by

Yang and Cox (2005). This cohesive law utilizes independent traction separations

for opening (mode I) and shear (mode II and mode III) cracking, which are

illustrated in Fig. 2.
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Fig. 2 A cohesive model with piece-wise linear cohesive laws for individual fracture modes
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The traction–separation law for each fracture mode can be written as

σn ¼ fn δnð Þ ¼
σ̂n � δn=δn1ð Þ if δn � δn1ð Þ
σ̂n � σ̂n � σ̂2ð Þ δn2 � δnð Þ= δn2 � δn1ð Þ if δn1 < δn � δn2ð Þ
σ̂2 � δnc � δnð Þ= δnc � δn2ð Þ if δn2 < δn � δncð Þ
0 if δn > δncð Þ

8>><
>>:

τs ¼ fs δsð Þ ¼
τ̂s � δs=δs1ð Þ if δsj j � δs1ð Þ
sgn δsð Þ � τ̂s � τ̂s � τ̂s2ð Þ δs2 � δsj jð Þ= δs2 � δs1ð Þ½ � if δs1 < δsj j � δs2ð Þ
sgn δsð Þ � τ̂s2 � δsc � δsj jð Þ= δsc � δs2ð Þ if δs2 < δsj j � δscð Þ
0 if δsj j > δscð Þ

8>><
>>:

τt ¼ ft δtð Þ ¼
τ̂t � δt=δt1ð Þ if δtj j � δt1ð Þ
sgn δtð Þ � τ̂t � τ̂t � τ̂t2ð Þ δt2 � δtj jð Þ= δt2 � δt1ð Þ½ � if δt1 < δtj j � δt2ð Þ
sgn δtð Þ � τ̂t2 � δtc � δtj jð Þ= δtc � δt2ð Þ if δt2 < δtj j � δtcð Þ
0 if δtj j > δtcð Þ

8>><
>>:

(1)

where sgn(�) is a sign function and |�| denotes absolute value; σn, τs, and τt are
normal and tangential tractions along the cohesive crack; δn, δs, and δt are normal

and tangential displacement jumps across the crack line measured in the local

coordinates as shown in Fig. 2; δnc, δsc, and δtc are critical normal and tangential

displacements under pure modes beyond which the cohesive stresses become zero,

indicating complete fracture; and σ̂n , τ̂s, and τ̂t are cohesive strengths for mode-I,

mode-II, and mode-III fracture, respectively. σ̂n2, τ̂s2, and τ̂t2 are secondary strengths
for mode-I, mode-II, and mode-III fracture, respectively, which, together with the

two intermedium displacements of each mode (δn1 and δn2 for mode I, δs1 and δs2
for mode II, and δt1 and δt2 for mode III), can be accommodated to achieve different

shapes of the cohesive laws (e.g., with softening, hardening, or the trapezoidal

shapes). But they are in general of secondary importance (Yang and Thouless

2001a; Yang et al. 1999; Yang et al. 2001; Kafkalidis et al. 2000) as compared to

the cohesive strengths and toughnesses.

A mixed-mode cohesive model can be constructed by recognizing that the total

traction–separation work absorbed during fracture,G, can be separated into the opening
(mode I) and shear (mode II and mode III) components, GI, GII, and GIII, so that,

G ¼ GI þ GII þ GIII (2)

The three separate components can be calculated by integration of the mode-I,

mode-II, and mode-III traction–separation curves (Fig. 2):

GI ¼
ðδn
0

σn
�
δ
�
dδ

GII ¼
ðδs
0

τs
�
δ
�
dδ

GIII ¼
ðδt
0

τt
�
δ
�
dδ

(3)

1376 Q.D. Yang and B.C. Do



Note that δn, δs, and δτ are not independent parameters; they evolve together as a

natural result of the interplay between the deformation of two joined domains and

the details of the three traction-separation laws. A failure criterion is required to

determine the critical values of the three components of G, G	
I , G	

II, and G	
III (shaded

areas in Fig. A. 2), at which complete fracture of the cohesive zone occurs. The

criterion used in this study is a simple one (Wang and Suo 1990):

G	
I =ΓIc þ G	

II=ΓIIc þ G	
III=ΓIIIc ¼ 1 (4)

where ΓIc, ΓIIc, and ΓIIIc are the total areas under the pure opening and pure shear

traction–separation laws, which equal to the mode-I, mode-II, and mode-III fracture

toughness in linear elastic fracture mechanics. A more detailed account of this

mixed-mode cohesive zone model can be found in Yang and Thouless (2001a). The

major advantage of this cohesive law is that there is no need to specify mode

mixedness a priori. The mode mixedness and the mixed-mode toughness evolve as

a numerical outcome of the local equilibrium of stresses. More importantly, this law

guarantees correct mode mixedness when LEFM conditions are satisfied (Yang

et al. 2010; Parmigiani and Thouless 2007; Goutianos and Sorensen 2012).

Finally, due to the strong nonlinearity in the cohesive laws, the cohesive fracture

problems are often solved with incremental schemes, in which the tangential

stiffness matrix of the cohesive law is needed. In this mixed-mode cohesive

model, the normal and tangential tractions are not coupled, and the tangential

stiffness matrix can be obtained as

Dcoh ¼
ks δsð Þ 0 0

0 kt δtð Þ 0

0 0 kn δnð Þ

2
4

3
5 ¼

dfs=dδs 0 0

0 dft=dδt 0

0 0 dfn=dδn

2
4

3
5 (5)

where

kn δnð Þ ¼
σ̂=δn1 if δn � δn1ð Þ
σ̂2 � σ̂ð Þ=�δnc � δn2

�
if δn1 < δn � δn2ð Þ

�σ̂2= δnc � δn2ð Þ if δn2 < δn � δncð Þ
0 if δn > δncð Þ

8>><
>>:

ks δsð Þ ¼
τ̂s=δs1 if δsj j � δs1ð Þ
τ̂s2 � τ̂sð Þ=�δsc � δs2

�
if δs1 < δsj j � δs2ð Þ

�τ̂s2= δsc � δs2ð Þ if δs2 < δsj j � δscð Þ
0 if δtj j > δtcð Þ

8>><
>>:

kt δtð Þ ¼
τ̂t=δt1 if δtj j � δt1ð Þ
τ̂t2 � τ̂tð Þ=�δtc � δt2

�
if δt1 < δtj j � δt2ð Þ

�τ̂t2= δtc � δt2ð Þ if δt2 < δtj j � δtcð Þ
0 if δsj j > δscð Þ

8>><
>>:

(6)

As emphasized earlier, the cohesive zone models allow for correct accounting of

the nonlinear interaction of different fracture processes, while the linear elastic
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fracture mechanics (LEFM), due to its nonphysical nature at the limit of small crack

length, cannot guarantee such correct coupling (Cox and Yang 2006; Yang and Cox

2005; Wisnom and Chang 2000; Xie et al. 2006; Song and Waas 1995; Yang

et al. 1999, 2001; Moës and Belytschko 2002; Corigliano 1993; de Borst 2003;

Elices et al. 2002; Needleman 1990; Remmers et al. 2003; Parmigiani and Thouless

2006; Yang and Thouless 2001b). Here an example that supports this view point is

given. In Fig. 3a the load–displacement of a bonded polycarbonate (PC) specimen

with a preexisting notch with root angle 120� under three-point bending test is

shown. The bond line is at an angle of 30�to the specimen longitudinal direction and

the fracture toughness along the bond line is at least three times smaller than that of

the PC. The LEFM, which simply compares the ratio of the interface crack energy

release rate (ERR) to its toughness (Gi=Γic) against the ERR ratio of a local mode-I

kink crack (Gk=Γkc) (He and Hutchinson 1989), predicts a complete interfacial crack

propagation. However, repeated tests showed that kinking crack would form as

shown in Fig. 3b. Only with cohesive zone modeling and with proper consideration

of crack branching (Fang et al. 2011b; Yang et al. 2013) were the fracture behavior

and load–displacement curves correctly predicted (Fig. 3a, c).

This example on bonded bulk PC specimens has a significant implication on

composite fracture analyses because such crack kinking and coalescence processes

are quite universal in laminated or textile composites. For example, crack jumping

from one interface to another (Ling et al. 2011) involves both transverse crack

kinking (from one interface into a transply) and crack merging (from transply into

another interface). One of the important messages from this study is that crack

branching is a competition between two fracture process zones and careful numer-

ical treatment is needed to ensure proper stress and deformation coupling between

the two fracture process zones. The LEFM view that a kinking process is purely

determined by the two competing ERR-toughness ratios is nonphysical. Both the

ERRs and cohesive strengths play an important role in determining whether an
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A-CZM simulated (Yang and Fang 2011)
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Fig. 3 (a) Comparison of experimentally measured, CZM simulated, and LEFM predicted

load–displacement curve of an adhesively bonded, pre-notched PC specimen under three-point

bending. (b) Experimental observation of kinked crack and (c) simulated kinking using nonlinear

cohesive zone model
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interface crack should kink into the neighboring ply (a similar observation has also

been made by Thouless and colleagues in Parmigiani and Thouless 2007;

Parmigiani and Thouless 2006). The above successful simulation was done using

the augmented cohesive zone (A-CZ) element recently developed by Fang

et al. (2011b), which will be introduced in more detail shortly. The common

practice of coupling X-FEs or A-FEs with standard CZ elements, as done in

many previous analyses, cannot yield correct response in this case.

While the cohesive zonemodels are excellent in describing the fracture processes in

composites, they need to be incorporated into numerical platforms such as FE pro-

grams as special elements. This implementation has a major shortcoming because it

needs a crack path to be known a priori so that the CZ elements can be properly defined

in a numerical model. However, in composites such information is not available. For

example, the location and spacing of the transverse cracks in Fig. 1 cannot be known

before analysis. Recent developments in advanced numerical methods for introducing

arbitrary discontinuity in a continuum have made it possible to include most cohesive

descriptions of major crack systems in structural models to account for the progressive

damage. This will be reviewed in more detail in the next section.

Augmented Finite Element Method (A-FEM)

Basic Formulation of the A-FEM

In the classical finite element method (FEM), the displacement field in an element is

approximated as

u xð Þ ¼
X
i

Ni xð Þdi (7a)

or in matrix form

u xð Þ ¼ N xð Þd (7b)

where Ni(x) is the standard FE shape function and di is the nodal displacement

vector at node i. Since Ni(x) is a continuous function within an element, Eq. 7a can

only describe a continuous displacement field within the element. Therefore, the

standard FE formulation cannot treat an intra-element discontinuity such as a

cohesive crack or a material boundary.

In theA-FEMmethodwith double nodes (one set of physical nodes 1–4 and another

set of ghost nodes 10–40) developed by Ling et al. (Ling et al. 2009) and shown in

Fig. 4(a), the two severed physical domains can be separately approximated by two

mathematic elements (MEs) as shown in Fig. 4b, c. The active material domain in each

ME is indicated by the shaded area. Stiffness and force integrations are performed only

over the respective active domain in each mathematical element. The two mathemat-

ical elements are then connected by a cohesive failure description along the crack line.
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The discontinuous displacement field can be adequately described as

u xð Þ ¼
X

i¼1, 2, 30, 40
Ni xð Þd1i

0
@

1
Aϕ1 xð Þ þ

X
i¼10, 20, 3, 4

Ni xð Þd2i
0
@

1
Aϕ2 xð Þ (8a)

where ϕ1(x) and ϕ2(x) are two functions defined below to ensure only the physical

domains in the two mathematical elements are used in stiffness and force integration.

ϕ1 xð Þ ¼ 1þ H xð Þ
2

; ϕ2 xð Þ ¼ 1� H xð Þ
2

; H xð Þ ¼ 1 x � Ω1
e

�1 x � Ω2
e

�

Here H(x) is generalized Heaviside function. In matrix form, Eq. 8a can be

written as

u xð Þ ¼ N xð Þ d1 ϕ1 xð Þ þ N xð Þ d2 ϕ2 xð Þ ¼ N xð Þϕ1

�
x
�

N xð Þϕ2

�
x
�� �

d1 d2f gT
(8b)

where the superscript “T” denotes matrix transposition. Equation 8 allows for

different displacement fields in physical domains Ω1
e and Ω2

e, making it possible

to account for discontinuous displacements (or displacement jumps) across the

cohesive crack Γc. The displacement jumps can be conveniently computed as

w xð Þ ¼ u1 xð Þ � u2 xð Þ ¼ N �Nf g d1 d2f gT x � Γcð Þ (9)

If an element does not host a cohesive crack and is not influenced by a crack,

either ϕ1(x) or ϕ2(x) is zero in the respective mathematical element. Then, Eq. 8

degenerates to the standard FE shape function interpolation of Eq. 7. Numerically,

this can be simply reinforced by tagging all the DoFs of the ghost nodes with the

associated physical nodes.

1(1’)

4(4’)
a b c d

3(3’)

2(2’)

Discontinuity

1’ 2’

Γc2
e

- t1

ME 2

Ω1
e

Ω2
e

4 3

(8)

(7)

(5)
(6)

Γc1
e

Ω2
e

1

4’ 3’

2

t1

ME 1

Ω1
e

Γ1
e

Γ2
e

Fig. 4 (a) An A-FEM with double nodes traversed by an intra-element cohesive crack. This

element can be treated by defining two mathematical elements (b and c), each with the same

geometrical dimension as the A-FEM but with different physical material domains for stiffness

integration (Ling et al. 2009). The mathematic elements are then packed into one A-FE with

8 nodes (d)
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Since the cohesive tractions are typically nonlinear functions of cohesive open-

ing displacements measured in local coordinates defined by the local crack direc-

tion and its perpendicular direction, it is advantageous to express the displacement

jump in the local coordinates as shown in Fig. 5. The normal (along the n-direction)
and shear (along the s-direction) displacement components can be obtained using a

rotational matrix R, i.e.,

δ ¼ δs, δnf gT ¼ Rw (10)

where R is the rotational matrix between the global and local coordinates, i.e.,

R ¼ cos θ sin θ
� sin θ cos θ

� �
(11)

Similarly, the cohesive traction along the discontinuity can be expressed in local

coordinates as

t0 ¼ τs δsð Þ, σn δnð Þf gT ¼ t0 δð Þ (12)

The weak form of the momentum equation for static analysis without body force

can be derived from the virtual work principle (Ling et al. 2009)

ð
Ω
Lδuð ÞTσ dΩþ

ð
Γc

δwð ÞTt dΓ ¼
ð
ΓF

δuð ÞTFdΓ (13)

where L is the differentiation operator as below

L ¼
@=@x 0

0 @=@y
@=@y @=@x

2
4

3
5, (14)

and ΓF is the boundary upon which an externally applied traction acts (or Neumann

boundary); t ¼ t(w) is the cohesive traction measured in the global coordinate

system. In global coordinates, t can be obtained by

n

x

y

o

s

t

1c

2c
-t

'
sw

'
nw

Γ

Γ

q

Fig. 5 Local coordinates

(n-o-s) defined by the

cohesive crack with n and s
being normal and tangential

directions with respect to the

cohesive crack, θ is the angle

of rotation between the global

and local cohesive plane

coordinate system
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t wð Þ ¼ RTt0 δð Þ (15)

Substituting the displacement field of Eqs. 8, 10, and 15 into Eq. 13,

δdT1 δdT2
� � ð

Ω

BTσϕ1 xð Þ
BTσϕ2 xð Þ

� 	
dΩþ

ð
Γc

NTt

�NTt

� 	
dΓ�

ð
ΓF

NTFϕ1 xð Þ
NTFϕ2 xð Þ

� 	
dΓ


 �
¼ 0

(16)

Since the virtual displacement array δdT1 δdT2
� �

is arbitrary, it follows that

ð
Ωe

BTσϕ1 xð Þ
BTσϕ2 xð Þ

� 	
dΩþ

ð
Γc

NTt

�NTt

� 	
dΓ ¼

ð
ΓF

NTFϕ1 xð Þ
NTFϕ2 xð Þ

� 	
dΓ (17)

which is the equilibrium equation. The discretized form of Eq. 17 remains nonlinear

in general because the cohesive traction, t(w) in the second integral is typically a

nonlinear function of the crack opening w. But it is straightforward to linearize the

equation using an incremental scheme. The linearized equation can be written as

K11 K12

K21 K22

� �
Δd1
Δd2

� 	
¼

ð
ΓF

NTΔFϕ1 xð ÞdΓð
ΓF

NTΔFϕ2 xð ÞdΓ

8>><
>>:

9>>=
>>; (18)

where Δdα are incremental nodal displacements and ΔF is the external load

increment. The matrices Kij are

K11 ¼
ð
Ωe
BTRTD xð ÞRBϕ1

2 xð ÞdΩþ
ð
Γc

NTRTDcohRN dΓ;

K22 ¼
ð
Ωe
BTRTD xð ÞRBϕ2

2 xð ÞdΩþ
ð
Γc

NTRTDcohRN dΓ;

K12 ¼ K21 ¼ �
ð
Γc

NTRTDcohRN dΓ

(19)

and D(x) is the ply stiffness matrix in material coordinates, i.e.,

D xð Þ ¼
1=E1 �ν12=E1 0

�ν12=E1 1=E2 0

0 0 1=G12

2
4

3
5 (20)

Dcoh is the instantaneous tangential stiffness matrix of the cohesive law, which is

given in Eq. 5. In obtaining the last equation of Eq. 19, the condition ϕ1(x) ¼ ϕ2(x)

¼ 0 has been used. Also note that D(x) can be different in Ω1
e and Ω2

e.

Once a cohesive crack is inserted or a preexisting discontinuity is detected in an

element, subdomain integration (SDI) over the active material domains is necessary

to obtain the stiffness matrix and force array (Eq. 18). The SDI is carried out in the
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isoparametric space of a physical material domain, as illustrated in Fig. 6. In this

way, the stiffness matrix for an augmented element can be concisely written as

Ke ¼
X2
α¼1

ð1
�1

ð1
�1

BDαBJaJα
0dξα

0dηα
0 (21)

where Jα is the Jacobian that relates the entire domain of a mathematical element

and its mapped domain in isoparametric space and Jα’ is the Jacobian that relates

the physical domain (shaded area) in a mathematical element to its mapped domain

in isoparametric space.

Implementation of the A-FEM into ABAQUS as a User-Defined
Element

The A-FEM element described above has been integrated as a user-defined plane

element in the general purposed commercial finite element package, ABAQUS

(v6.8). The A-FEM element is defined by 8 corner nodes as shown in the example of

Fig. 7, of which the first four are real nodes (1–4). The second four nodes (5–8) are

ghost nodes that will be used only when an element is traversed by a cohesive crack.

The ghost nodes share the same geometric location with their corresponding real

nodes. Two archetypical augmentation cases are shown in Fig. 7a, b.

The element flow chart is given in Fig. 8.

x

y

η2

ξ2

η1

ξ1

η2 ’

ξ2’

η1 ’

ξ1’

e
2Ω

e
1Ω

ME1

ME2

Fig. 6 The subdomain integration scheme: isoparametric interpolation of displacement within

each mathematical element (ME); the corresponding physical domain in an ME is then mapped to

another isoparametric domain for stiffness and cohesive force integration
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Augmented Cohesive Zone (A-CZ) Element for Crack Coupling

The 2D A-FEM element described in section “Augmented Finite Element Method

(A-FEM)” can effectively handle the arbitrary cracking in each individual plies

(or intraply cracks) as will be shown in the demonstration cases later. However, in

typical composite laminates, the intraply cracks are often coupled with interlaminar

delamination cracks. Various CZM-based interface elements have been developed

for modeling the delamination cracks, and they are in general very effective when

only delamination cracks are considered (Turon et al. 2006; Hallett and Wisnom

2006a; Yang and Cox 2005; Xie et al. 2006). However, a recent study by the authors

has pointed out that when advanced elements such as A-FEM or X-FEM are used

together with such traditional cohesive elements, significant numerical error can

occur (Fang et al. 2010). This is due to the fact that although a traditional cohesive

element can effectively account for the displacement discontinuity across the

interface, it cannot resolve the displacement discontinuity within the element

along the interface introduced by cracking of its abutting solid elements, as

shown in Fig. 9.

The numerical error source and numerical treatment for 2D problems have

been addressed by developing a 2D augmented cohesive zone (A-CZ) element in

Fang et al. (2010). The detailed formulation for 2D and 3D A-CZ element is given

below.

2

1(5) 2(6)

3(7)4(8)

5 2

7
8

1
6

34a b

1
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3

7
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5

8

Fig. 7 Element connectivity of an A-FEM element and two possible cracking configurations: (a)

the mathematic element definitions when the A-FEM element is cut into one pentagon and one

triangle and (b) the mathematic element definitions when the crack cuts the A-FEM into two

quadrilaterals
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Y

Fig. 8 The flow chart of the UEL subroutine for the 2D A-FEMwhen implemented into ABAQUS
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2D A-CZ Formulation

The 2D A-CZ element is defined with two sets of corner nodes shared with the

abutting solid A-FEs (e.g., 1-2-3-4-10-20-30-40 as shown in Fig. 10a). If neither of the
solid A-FEs is cracked, all the ghost nodes are tied with the corresponding real

nodes, and both the solid A-FEs and A-CZ element behave like standard FE and

traditional CZ element. However, if either or both of the abutting solid elements are

cracked and the crack tip(s) reaches the interface, the cohesive element will be

augmented accordingly. Figure 10b shows the augmented configuration when both

solid A-FEs have cracked. In this case, the two MEs associated with top solid A-FE

are 4-30-80-7 and 40-3-8-70; and the two MEs for the bottom solid A-FE are 5-60-20-1
and 50-6-2-10. Accordingly, the A-CZ can then be augmented into two MEs for

cohesive stress integration with 1-20-30-4 for ME-1 and 10-2-3-40 for ME-2 as shown

in Fig. 10b, c. The respective cohesive stress integration domains for the MEs are

shown in the figure by shaded areas.

For each ME-α(α ¼ 1 or 2), a local coordinate system can be established by

defining the tangential direction (sα) along the line that connects the midpoints of

edge 14 and 2030 for ME-1 or that connects the midpoints of 1040 and 23 for ME-2, as

1 2

34

1 2

34

1 2

34

1 2

34

a

b

c Δu

u4-u1

u3-u2

(b)

(b)

(a)

(a)

Fig. 9 (a) Physical interface shear stress distribution due to cracking of a bonded solid element;

(b) inaccurate shear stress distribution by the traditional CZ element; (c) physically consistent

shear displacement jump along the interface element (solid segments) as compared to the linearly

interpolated shear displacement jump from the traditional CZ (dashed line)
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shown in Fig. 10c. The respective normal directions (nα) are perpendicular to sα.

Thus the rotational matrix for each ME can be obtained asQiα¼Diag{Riα,Riα,Riα,

Riα}. Here Riα is computed from Eq. 11 using the rotation angle θα of cohesive

ME-α as shown in Fig. 10c. Note that from here on, all quantities associated with

the A-CZ interface element are denoted with subscript “i”.
The nodal displacements of ME-α in local coordinates can be obtained as

diα
0 ¼ Qiαdiα (22)

where diα and diα
0 are nodal displacement arrays in global and local coordinates,

respectively. The local displacement jumps (crack displacements) across the ME-α
can be obtained as

δiα ¼ δsi, δnif gαT ¼ Ndiα
0 ¼ NQiαdiα (23)

where

N ¼ �N1 0

0 �N1

�N2 0

0 �N2

N1 0

0 N1

N2 0

0 N2

� �
α

3
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1 22´
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Fig. 10 (a) Two A-FEs bonded by an A-CZ element before deformation, all with doubly assigned

nodes for possible intra-element cracking. (b) After deformation (assuming both solid A-FEs are

cracked), the A-CZ will be augmented into two mathematical elements with their own local

coordinates as shown in (c). For each ME, the two Gaussian points are indicated by the two

symbols “
,” which are located in the ME’s active cohesive integration domain (shaded area).
The interface is exaggerated for illustration purposes (Reprinted from International Journal for

Numerical Methods in Engineering, X. J. Fang, Q. D. Yang, B. N. Cox, Z. Q. Zhou, An augmented
cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials,
Pages No. 841–861, Copyright 2011, with permission from John Wiley and Sons)
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is the interpolation matrix consisting of standard nodal shape functions

Ni (i ¼ 1 � 2). Note that the δiα is now the interface separation displacement

(i.e., the differences in displacement between the upper and lower interfaces).

The interface cohesive stresses in the MEs can be obtained from the

traction–separation relations of the interfacial cohesive law

ti
0 ¼ τi σif gT ¼ gsi δsið Þ gni δnið Þf gT (24)

where τi and σi are shear and normal cohesive stresses in local coordinates,

respectively, and gti(δti) and gni(δni) are traction–separation relations that govern

the cohesive interface, respectively.

From the principle of virtual work, the equilibrium equation of the ME-α can be

derived straightforwardly:

Fiα ¼
ð
lα

Qiα
TNTt0dl, (25)

where lα is the active cohesive integration segment in ME-α as shown in Fig. 10c.

The incremental form of Eq. 25 isð
lα

Qiα
TNTDi cohN Qiαdl


 �
Δdiα ¼ ΔFiα (26)

The integral in “()” is the tangential stiffness of the ME-α. In this study, Gaussian
integration is used. For each ME-α, the two Gaussian points are located in the active
cohesive integration segment only and they are indicated in Fig. 10c by the symbol

“
”. Assembly of the two MEs into one A-CZ element is straightforward. The

equivalence of the A-CZ element to the traditional treatment with two standard

cohesive elements (if the crack path is known a priori) can be proven following a

procedure similar to that given in Ling et al. (2009).

The proposed A-CZ element has been implemented into a general purpose

commercial FE code ABAQUS (V6.9, SIMULIA. Providence, RI, USA) as a

user-defined element, and it works jointly with the A-FE described in section

“Augmented Finite Element Method (A-FEM).”

3D Augmented Cohesive Zone Element formulation

The above formulation for 2D A-CZ element can be extended to 3D straightfor-

wardly. In the following, the formulation of a 16-node 3D A-CZ element as shown

in Fig. 11a is given.

In 3D configuration, a crack can cut an interface from either top or bottom

surface. There are three possible cut configurations in this case: (1) if the crack cut

the interface cohesive element into two brick-like domains, the assignment of real

and virtual nodes is shown in Fig. 11b, c; (2) if the crack cut the interface element
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into one triangular and one pentagonal shape, the assignment of real and virtual

nodes is shown in Fig. 12; and (3) if the interface element is cut simultaneously

from both top and bottom surfaces, the element is considered as completely failed,

i.e., both stiffness matrix and right-hand side are given zero values. (This is a simple

numerical treatment. It can be done following A-FEM procedure but another copy

of virtual nodes is needed.)

If there is no crack cutting the element, it behaves like a regular cohesive

element and the crack displacements can be expressed as

w xð Þ ¼ N xð Þ �N xð Þ½ � dt

db

� 	
(27)

where w(x) is the relative displacement vector at position x measured in global

coordinates, dt and db denote the nodal displacement vectors of top and bottom

surface, respectively. N xð Þ ¼ N1 xð Þ N2 xð Þ N3 xð Þ N4 xð Þ½ � is the shape func-

tion matrix and each sub-matrix associated node i takes the form as

1(1’) 2(2’)

4(4’) 3(3’)

5(5’)

a b c

6(6’)

8(8’)

mid-plane

1 2

4 3

1 2

4 3

5 6’

8 7’

5’ 6

8’ 7crack crack

Fig. 11 (a) Definition of the 3D augmented cohesive zone element with 16 nodes (eight real

nodes and eight virtual nodes denoted with superscript ‘”). If the element is cut into two due to

cracking of the top abutting solid element, two mathematic elements with properly assigned real

and virtual nodes as shown in (b) with element connectivity 1-2-3-4-5-60-70-8 and in (c) with

connectivity 1-2-3-4-50-6-7-80 can be defined

1 2

4 3

1 2

4 3

5’ 6’

8 7’

5 6

8’ 7crack

crack

Fig. 12 Assignment of real and virtual nodes when the 3D interface element is cut into a

triangular subdomain and a pentagon subdomain from one surface (left: 1-2-3-4-50-60-70-8; right:
1-2-3-4-5-6-7-80)
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Ni xð Þ ¼
Ni 0 0

0 Ni 0

0 0 Ni

2
4

3
5 (28)

where Ni are standard bilinear shape functions.

When the element is cut by a crack from either the top or the bottom surface, the

respective surface, which has four corners, needs to be augmented. The relative

displacements of the A-CZ can be written as

w xð Þ ¼ N xð Þd xð Þ ¼ Nt1 xð Þ Nt2 xð Þ �Nb1 xð Þ �Nb2 xð Þ
�  dt1

dt2

db1

db2

8>><
>>:

9>>=
>>; (29)

The index α ¼ 1 and 2 denote the real and virtual node displacements, respec-

tively. The detailed expressions of the shape function matrix do not have the same

general form but differ from nodes to nodes:

Nt1
i xð Þ ¼

NiH
t
i 0 0

0 NiH
t
i 0

0 0 NiH
t
i

2
4

3
5 (30a)

Nt2
i xð Þ ¼

Ni 1� Ht
i

� �
0 0

0 Ni 1� Ht
i

� �
0

0 0 Ni 1� Ht
i

� �
2
4

3
5 (30b)

In the above expressions, Hi
t(x) are the step functions associated with the

position of node i as

Ht
i ¼

1þ Ht xið ÞHt xð Þ
2

(31a)

where Ht(x) is the generalized Heaviside function that takes different values in the

two sides divided by crack across the domain, i.e.,

Ht xð Þ ¼ þ1 x � Ωtþ

�1 x � Ωt�

�
(31b)

Similarly, the shape function matrix corresponding to the degree of freedoms

(DoFs) of the bottom surface can be written as

Nb1
i xð Þ ¼

NiH
b
i 0 0

0 NiH
b
i 0

0 0 NiH
b
i

2
4

3
5 (32a)
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Nb2
i xð Þ ¼

Ni 1� Hb
i

� �
0 0

0 Ni 1� Hb
i

� �
0

0 0 Ni 1� Hb
i

� �
2
4

3
5 (32b)

The displacement and cohesive stress are to be expressed in local coordinates.

Denoting Q as the rotation matrix between global and local coordinates, the local

crack displacements can be expressed as

δ xð Þ ¼ Qw xð Þ (33)

The cohesive stresses in local coordinates are

t0 ¼ τs, τt, σnf gT ¼ gs δsð Þ, gt δtð Þ, gn δnð Þf gT (34)

Finally, based on the principle of virtual work, the incremental form of the

equilibrium equation can be written as

ΔF ¼
ðð

Ω
QTNTΔt0 δð ÞdΩ ¼

ðð
Ω
QTNTDcohNQdΩ


 �
Δd (35)

where the tangential stiffness matrix of cohesive laws, Dcoh, can be derived from

Eq. 5 by replacing fs(δs), ft(δt), and fn(δn) with gs(δs), gt(δt), and gn(δn), respectively.
The above formulation has been implemented in ABAQUS (v.6.9) as a user

subroutine and works together with A-FEM in section “Augmented Finite Element

Method (A-FEM).”

Numerical Examples

In this part, several numerical examples to demonstrate the predictive capability of

the A-FE and the A-CZ in analyzing the progressive failure phenomena in lami-

nated composites are presented.

Cracking in Composite Beams Under Three-Point Bending

The three-point bending test illustrated in Fig. 13 is widely used in the engineering

materials community to measure the transverse strength of unidirectional compos-

ites because of its simplicity. However, owing to the lower values of transverse

modulus (E2) for typical PMCs, beams with relatively small aspect ratio (L/h) are
preferred to avoid large deflection before failure. Experimental observations show

that for this type of test, the composites usually fail by the initiation of a transverse

crack (mode I) from the maximum stress location (mid-bottom point in Fig. 13),
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which then propagates along a straight line towards the central loading point on the

top surface (O’Brien et al. 2003). The propagation process can be stable or unstable,

depending upon the mode-I toughness and beam strength as well as the beam

dimensions.

Since the deformation and loading are all within the isotropic plane of the

transversely isotropic unidirectional composite, the problem can be treated as a

plane stress problem with transverse modulus, E2, and Poisson’s ratio, v23. A simple

dimensional analysis shows that the normalized load (F=σ̂h ) versus normalized

displacement (Δ/h) should have the following functional form:

F

σ̂h
¼ f

ΓIc

σ̂h
,
σ̂

E2

, ν23,
L

h


 �
Δ
h

(36)

where f (•) is a dimensionless function that relates the normalized load and

displacement. It is a function of the normalized mode-I toughness (ΓIc=σ̂h), the
normalized cohesive strength (σ̂=E2), the normalized beam length or span (L/h), and
Poisson’s ratio (v23).

In the A-FEM model, there is no need to prescribe the crack path. But a crack

initiation criterion is needed. In this numerical example, since the crack is initiated

along the symmetric midsection of the specimen, the initiation criterion is simply

set to be

σ22=σ̂ ¼ 1 (37)

where σ22 is the opening stress averaged in an element (before it is augmented). The

crack growth direction is perpendicular to σ22, i.e., vertically upwards in Fig. 13.

The mode-I cohesive law used is of triangular type with a very large initial stiffness.

The A-FEM predicted normalized load versus displacement curves for typical

fiber reinforced composites with σ̂=E2 ¼ 0:0044 and v23¼ 0.3 is plotted in Fig. 14a.

Normalized beam lengths, L/h ¼ 5, and five normalized mode-I toughnesses, ΓIc=
σ̂h ¼ 0.0004, 0.004, 0.01, 0.02, and 0.04, were investigated. A wide range of

normalized toughness values were used to investigate the possible brittle-to-ductile

transition of a composite material.

h

L

F, D

E2, n232

3

1

Fig. 13 Three-point bending test configuration of the composite beam
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For comparison purposes, analytical results using simple beam theory with shear

correction are superimposed in the figure. The analytical beam theory result for

normalized load versus normalized deflection with shear correction is

F

σ̂h
¼ 1

4

L

h


 �3

þ 1þ ν23
2

L

h


 �" #�1
σ̂

E2


 ��1 Δ
h

(38)

According to this simple beam theory, the specimen should fail once the

maximum bending stress reaches the cohesive strength, i.e., σ22=σ̂ ¼ 1. Thus the

peak value for the normalized load can be obtained as

Fmax

σ̂h


 �
¼ 2

3

L

h


 ��1

(39)

The normalized analytical peak load depends only on the normalized beam span

(L/h) and is not a function of toughness. In Fig. 14a, Eq. 38 is shown by the straight
line for beam span L/h ¼ 5. The corresponding peak load is marked by the arrow.

The A-FEM simulation, however, predicts a strong dependence of the peak

normalized load (Fmax=σ̂h) on the normalized toughness (ΓIc=σ̂h);Fmax=σ̂h increases
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Fig. 14 (a) A-FEM

predicted normalized load

versus normalized load-point

displacement in a three-point

bending test for normalized

beam span of L/h ¼ 5. (b)

Dependence of normalized

apparent strength on

normalized thickness for

three-point bending test
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asΓIc=σ̂h increases, and the difference between analytical and numerical peak loads

increases withΓIc=σ̂h. This is the well-known size effect phenomenon that has been

appreciated in concrete materials research (Carpinteri and Colombo 1989; Bazant

and Planas 1998). Since Fmax=σ̂h increases with ΓIc=σ̂h , the apparent strength

evaluated using beam theory and the peak load, i.e., σmax ¼ 3FmaxL/2h
2, which in

normalized form is σmax

σ̂ ¼ 3
2
Fmax

σ̂h
L
h, depends on specimen thickness. That is, if one

keeps L/h fixed while varying h, the apparent strength increases with decreasing

specimen thickness, h, as shown in Fig. 14b.

The root cause of the dependence of apparent strength on toughness is the

development of the fracture process zone (or cohesive zone) before complete

fracture of the specimen. More precisely, the load increase associated with the

R-curve effect for a developing cohesive zone (Yang et al. 2006a) is the direct cause

of the increase of apparent strength. To better elucidate the point, four snapshots of

the numerically predicted bending strain (ε22) for the case of L/h ¼ 5 and ΓIc/(E2h)
¼ 0.004 are shown in Fig. 15.

Figure 15(i) shows the elastic bending strain just before cohesive damage initia-

tion. The symmetric strain distribution with respect to the midplane (neutral plane) is

obvious and is in good agreement with beam theory prediction, which demonstrates

the effectiveness of the A-FEM in handling a damage-free elastic continuum.

Figure 15(ii) corresponds to a point where the bending stress at the mid-bottom has

just reached the cohesive strength and a cohesive crack is just initiated. From this point

on, the bending strain starts to localize. However, the cohesive crack remains bridged

(i.e., cohesive stress has not fallen to zero) and can still transfer bending stress. Further

increase of the external load is needed to open the cohesive crack continuously. The

peak load is reached only when the cohesive crack opening at the mid-bottom surface

reaches the critical displacement in the cohesive law. The cohesive opening within

the cracking element induces large strain localization in the element. However, as the

cohesive stress becomes zero, the bending strain in those elements adjacent to the

cracking element starts to release, which is evident in Fig. 15(iii). Beyond this point,

the fully developed cohesive zone starts to move towards the loading point on the

opposite surface and the load starts to drop (Fig. 15(iv)).

Fig. 15 A-FEM predicted mode-I fracture of a beam under three-point bending. Images from

(i–iv) show sequentially progressive damage initiation from (i) damage-free pure elastic strain

field, to (ii) damage initiation when the cohesive strength is reached at mid-bottom surface, to (iii)

fully developed cohesive zone before it starts to travel towards the loading surface, and to (iv) final

crack opening just before complete fracture
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The increase of the apparent strength over the cohesive strength is directly

associated with the ratio of beam thickness to the cohesive zone length. For a

mode-I crack in an infinite domain, the cohesive zone length can be estimated as

l I
coh ¼ E2ΓIc=σ̂

2 (40)

For typical unidirectional composites in the transverse direction with σ̂ ranging

from 50 to 100 MPa, E2 from 10 to 15 GPa, and ΓIc from 100 to 500 J/m2, the

cohesive zone length is 0.1 to 3 mm. For typical laminar composites, the thickness

is also on the order of mm, and therefore size effects may be non-negligible,

especially for composites with toughened matrices.

The A-FEM predicted normalized apparent strength (σmax=σ̂) as a function of

thickness normalized by the cohesive zone length (h/lcoh
I ) is plotted in Fig. 14b. The

deviation of σmax=σ̂ from unity increases rapidly with decreasing h/lcoh
I . Even with

h/lcoh
I as large as 10, σmax=σ̂ is still about 15 % larger than unity. This helps explain

the experimental observation that the transverse strength values measured from

three-point bending tests are usually systematically higher than those measured

from simple tension tests (O’Brien et al. 2003; O’Brien and Salpekar 1993; Adams

et al. 1990). This is usually explained by Weibull’s theory, but recent test data of

O’Brien et al. (2003) and O’Brien and Salpekar (1993) showed that this theory did

poorly in explaining the thickness dependence of apparent transverse strength.

The A-FEM predicted curves for fixed L/h in Fig. 14a also show the transition

from brittle-to-ductile fracture with continuously increasing normalized toughness (

ΓIc=σ̂h). Again, this is a well-documented behavior in the concrete fracture research

community, but less appreciated in the composite materials research literature.

Following the terminology used in concrete research, the normalized toughness, ΓIc

=σ̂h, can be renamed as the “ductility number,” which characterizes the ductility of a

specimen: the larger the ΓIc=σ̂h, the more ductile the specimen appears. Note that, in

addition to the fracture parameters (ΓIc and σ̂), the ductility number depends strongly

on the structural dimension h (specimen thickness). That is, a specimen with smaller

thickness will appear more ductile than a specimen with a larger thickness.

The numerical results in Fig. 14a suggest that the brittle-to-ductile transition

occurs at ΓIc=σ̂h � 0:0004. For a typical fiber reinforced composite with ΓIc ¼
200 J/m2 and cohesive strength of σ̂ ¼ 60 MPa, the critical thickness corresponding

to this transition is h � 8 mm. This is potentially significant in three-point bending

tests of laminated composite specimens, especially those with relatively small

thickness. If the specimen thickness is small enough that the ductility number

exceeds the transition value of 0.0004, the apparent strength could be significantly

larger than the cohesive strength, as shown in Fig. 14b.

Single-Cantilever Beam Bending Test

This example is a demonstration of the combined use of 2D A-FEM and 2D A-CZ

elements for a coupled interface delamination and crack jump (kinking) from one
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interface to another interface, which is a common damage pattern in laminated

composites. Crack jumping is one of the key mechanisms that govern the through-

the-thickness damage propagation of composite panels under transverse impact

loading (Choi and Chang 1992; Wang and Crossman 1980; Finn et al. 1993).

However, direct analyses of the problem are few in the composite research litera-

ture, largely due to lack of effective analytical tools that can adequately consider the

direct coupling of all possible damage events. In particular, the transply cracking

has been almost completely ignored in the majority of the previous studies and only

delamination has been addressed. Analytically, the critical technical barrier in

considering the delamination jump is that the initiation sites of transply cracks

cannot be determined a priori.
Here a single-cantilever beam test used by NASA is modeled to reveal the

detailed crack jumping process. The single-cantilever beam geometry chosen for

analysis is shown in Fig. 16. The beam chosen as a study case is composed of

60 unidirectional plies with ply thickness of 0.127 mm (0.005 in.), with stacking

sequence, geometry, boundary conditions, and loading shown in Fig. 16. Material

properties are chosen to be typical of an aerospace grade carbon/epoxy composite,

e.g., IM7/8552. An initial delamination crack is introduced between the interface of

30th (0� ply) and 31st (90� ply) plies, which is immediately above a group of four

transverse (90�) plies. The entire layup of 60 plies was carefully designed so that

(1) the flexure properties (orthotropic elasticity) of the sub-beams above and below

the initial delamination crack are as symmetric as possible; (2) upon loading, the

interface delamination crack will tend to propagate along the interface for a certain

distance before possibly deflecting into the four 90� plies (31st to 34th ply); and

(3) the kinking crack would eventually impinge on the interface between 34th ply

(90�) and 35th ply (0�) and possibly initiate a new interface crack.

Fig. 16 (a) sketch of the single cantilever beam (SCB) for possible experimental investigation of

delamination crack jump and (b) stacking sequence (from top to bottom) of the composite beam

analyzed in this study (Ling et al. 2011) (With permission from ASCE)
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The dimensions of the SCB are h1¼ h2¼ 3.8 mm, l1¼ 28.0 mm, a0 (¼l2)¼ 12.7

mm, and l0 ¼ 35.6 mm. These particular dimensions and boundary conditions

mimic those proposed by the specimen’s developers. However, the conclusions to

be reached in this study will be pertinent to cases with rescaled dimensions; the

important physical length parameters are the thickness of the laminae and the length

of the pre-crack relative to the length scales of the nonlinear fracture process zones.

The latter, for both the delamination and transverse ply cracks, are of the same order

of magnitude as the ply thickness for typical polymer composites and for the case

studied (see below).

The upper sub-beam of the SCB is roller supported at the left end so that it can

move only in the horizontal direction, and the entire beam is rigidly supported at the

right end (built-in end condition). A transverse load is applied on the lower

sub-beam at a fixed distance from the initial crack tip, as shown in Fig. 16a. The

laminar properties assumed for each unidirectional ply are given in Ling

et al. (2011).

The detailed mesh and magnified views of important regions are shown in

Fig. 17. The mesh is sufficiently fine to resolve individual plies (thickness 0.127

mm). In particular, the four 90� plies directly below the interface of the initial

delamination were modeled by eight layers of A-FEM elements, allowing resolu-

tion of stress variations pertinent to a propagating transverse ply crack. The A-FEM

elements accommodate transverse ply crack initiation at any location and orienta-

tion where the local stress meets the initiation criterion discussed below.

Individual ply properties were assigned to each ply with the proper orientation.

The plies were assumed rigidly bonded except at the two interfaces joining the

central (/90/4) layer to the immediately neighboring 0� plies. These interfaces were

Loading point

Initial crack

Each ply is represented by one layer of orthotropic elements of proper orientation

26 plies

30 plies

4 plies
(/90/4)

Cohesive
interfaces

8 layers of our A-FEM for the
(/90/4). The other 56 layers are
standard 2D orthotropic elements
of ABAQUS

Foxed B.C. for bolted end

Fig. 17 Numerical mesh and modeling details for the single cantilever beam (Ling et al. 2011).

(With permission from ASCE)
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modeled using the 2D A-CZ elements with the following cohesive parameters. The

mode-I and mode-II toughnesses, i.e., the entire areas under the mode-I and mode-II

traction–separation curves, are assigned the values ΓIc ¼ 200 J/m2 and ΓIIc ¼ 1300

J/m2, respectively, and the tensile and shear cohesive strengths the values σ̂ ¼ 80

MPa and τ̂ ¼ 90MPa. These values have been determined empirically (by matching

theory to data) and are representative of typical aerospace composites such as

IM7/8552 (Hallett and Wisnom 2006a).

For the SCB studied here, a local mode-I criterion (or equivalently, the maxi-

mum hoop stress criterion) was used for determining the triggering of transply

cracks in the 90� plies. This criterion is appropriate because the kinking crack

occurs in the isotropic plane of the (/90/4) layer. For other crack orientations, the

criterion would depend on the angle between the crack plane and the fiber direction.

The failure criterion is implemented in the A-FEM by testing for the condition

σp1=T2 ¼ 1 (41)

whereσp1 is the maximum principal stress derived from the spatially averaged stress

state of an element and T2 is the transverse ply strength, which in this study is

assumed to be identical to the tensile cohesive strength (i.e., T2 ¼ σ̂ ). Using a

gauge-averaged criterion with averaging performed over an element is justified

when the nonlinear fracture process zone is larger than the element size, which is

the case in this work. The initiation criterion implies that the material strength is

bounded by the maximum traction that can be supported by a fracture process zone

(Bao et al. 1992). Once this initiation condition is satisfied, a cohesive zone is

inserted in the element with its direction perpendicular to the principal direction of

σp1 . This is consistent with experimental observations that if the ply thickness is

relatively small, then the kinking crack is in near mode-I condition (Choi and

Chang 1992; Clark 1989).

In the A-FEM formulation, a kinking crack is allowed to initiate and propagate

automatically according to the initiation criterion of Eq. 41 and the propagation

rule. There is no need to prescribe the kinking crack location or orientation in

advance.

The predicted load versus load-point displacement curves for the SCB with an

initial crack length of a0 ¼ 12.7 mm (0.5 in.) and a transverse ply strength T2 ¼
80 MPa is plotted in Fig. 18. In this figure, the dashed curves are the load versus

load-point displacement curves with interface cracking confined to the upper or

lower interface only (i.e., no transverse ply kinking cracks allowed). This was done

by switching off the crack nucleation capability in the A-FEM model. These curves

are in good agreement with the analytical results derived using beam theory with

crack-tip rotations, validating the fidelity of the A-FEM in dealing with delamina-

tion cracks. They provide approximate bounds to the load if delamination jumping

is allowed: the load should follow the upper interface-delamination-only curve

before the development of the kinking process and the lower interface-

delamination-only curve after the kinking process is completed and the crack is

propagating along the lower interface.
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The solid line with filled dots is the curve predicted by the A-FEM with ply

jumping permitted. In this particular geometry, the initial crack propagated only

a very short distance along the upper interface before the kinking process started

(Δa ¼ 0.3 mm). The kinking point is indicated in Fig. 18 by an arrow. In another

simulation using initial crack length of a0 ¼ 7.6 mm, the delamination crack

propagated much further along the upper interface (Δa ¼ 2.7 mm) before kinking

into the (/90/4) layer.

The predicted curve including the jump process agrees well with the interface-

delamination-only curves prior to and shortly after the points where transverse ply

cracks initiate. Immediately after the transverse ply crack initiation, however, the

curve shows a distinct load-increasing phase before abruptly dropping and

conforming to the lower interface-delamination-only curve. Moreover, the peak

load value immediately after the kinking point exceeds the upper interface-

delamination-only curve quite significantly. A close examination of the transverse

ply crack initiation and propagation process shows that the sharp load increase

is associated with slowing of the transverse ply crack as it approaches the lower

interface. Because the transverse ply crack arrests before reaching the lower

interface in the SCB, initiating damage in the cohesive elements of the

lower interface crack requires a higher load than it would in the presence of an

impinging crack.

The predicted arrest of a transverse crack approaching an interface has

been validated by the NASA test and it has also been reported in other

material systems. For example, a crack in a flexible film rigidly bonded to a hard

substrate experiences decreasing energy release rate as it approaches the interface

Fig. 18 The load–deflection curve predicted by A-FEM (solid line with dots) is almost always

bounded by the interface-delamination-only curves for delaminations on the upper and lower
interfaces. Immediately after the transverse ply crack initiation, however, the curve shows a

distinct load-increasing phase with significant overload due to the arrest of the kinking crack

before it reaches the lower interface (Ling et al. 2011) (With permission from ASCE)
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(see, e.g., Ye et al. (1992) for an account of this phenomenon within linear elastic

fracture mechanics). That a higher load is then required for delamination initiation

has also been reported in the analysis of a center cracked bi-material beam under

four-point bending (Zhang and Suo 2007).

The coupled evolution of delamination and transverse ply cracks shows

global–local coupling. The simulations predict that before one transverse ply

crack initiates and fully traverses the transverse ply, a sequence of trial transverse

ply cracks can develop as the upper interface delamination crack propagates. But

these kinks are unable to propagate beyond one or two elements before the

delamination crack resumes propagation along the upper interface, so that the

trial transverse ply cracks become unloaded and arrest.

The initiation of the trial transverse ply cracks is due to the local stress (or strain)

concentration that accompanies the moving delamination fracture zone. Within this

stress concentration zone, the cohesive crack initiation criterion (Eq. 41) is locally

satisfied and hence a cohesive zone is created by the A-FEM code as a possible

transverse ply crack. However, the global driving force (energy release rate) is not

sufficient to propagate the transverse ply crack all the way across the transverse

plies. A transverse ply crack is fully developed only when the global energy release

rate equals ΓIc. The implication of this global–local interaction is that the kinking

process is relatively insensitive to local small flaws, i.e., the kinking process is more

likely to be deterministic, because it is driven to completion by global conditions

rather than local (and statistically fluctuating) conditions.

The global–local coupling is further illustrated in Fig. 19, which gives four

snapshots of the local opening strains (ε22) at the delamination crack tip as it

propagates and eventually deviates into the (/90/4) layer. The four snapshots

correspond to delamination crack initiation, the onset of the transverse ply crack,

the arrest of the transverse ply crack before reaching the lower interface, and

delamination along lower interface after the completion of the kinking process.

The instants corresponding to these snapshots are marked by arrows on the load

versus load-point displacement curve in Fig. 18.

Figure 19 shows that the delamination crack has a nonlinear fracture process

zone of 1.2 mm. For the kinking crack, the nonlinear fracture process zone is larger

than 0.5 mm (but bounded by the two interfaces with the neighboring 0� plies),

which is about four times the single ply thickness (0.127 mm) and therefore

comparable to the total thickness of the (/90/4) layer (Fig. 16). At the delamination

initiation point (Fig. 19a), the opening strain across the interface is continuous and

locally concentrated around the delamination crack tip. As the delamination prop-

agates, a transverse ply crack is generated within the stress concentration zone of

the delamination crack tip (Fig. 19b). However, this crack does not propagate

downwards, and it becomes unloaded as the delamination crack moves away.

When the delamination crack has propagated for approximately another 0.3 mm,

a new transverse ply crack is generated and succeeds in propagating to the lower

interface (Fig. 19c). Even at this point, the transverse ply crack is not completely

traction-free and still transfers stress across the cohesive crack plane. But the

opening strain at the delamination crack tip starts to release from this point
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on. As a result, the delamination crack stops propagating and further load increase

drives only the transverse ply crack. The transverse ply crack, once initiated with

sufficient global driving force, quickly propagates towards the lower interface but is

again arrested before reaching the lower interface (Fig. 19c). A significant load

spike is needed to complete its union with a new delamination crack on the lower

interface. During the load spike, the opening strain at the lower interface builds up

quickly. Finally, at peak load, the remaining uncracked ligament (1� 2 elements in

the (/90/4) layer) and a certain length of lower interface fail together in a single

increment, indicating unstable damage propagation (Fig. 19d). This process is

reflected in the load–deflection curve by the sudden drop of the load. Thereafter,

the crack propagates along the lower interface in a stable fashion.

Multiple-Crack Evolution in a [0/90]s Double-Notched Tension
Specimen

In this section, the 2D A-FEM and 3D A-CZ elements are applied to model the

coupled multiple-cracking systems in a double-notched orthogonal composites

under tension reported by Hallett and Wisnom (2006a). The experimentally

observed damage evolution in these specimens has been shown in Fig. 1a. It will

be demonstrated that, through a careful material properties calibration process

mostly using literature data, successful predictions to the entire damage evolution

process, including coupled delamination and intraply cracking (longitudinal splits

and transverse ply cracking), can be achieved with unprecedented high fidelity. On

the other hand, it will also be shown through a parametric study that if the fracture

parameters are not well calibrated, only a subset of the macroscopic composite

behavior may be predicted due to their insensitivity to the material properties, but

others may be completely missed out. This demonstrates the necessity for high-

fidelity material characterization for microscopic damage processes.

The specimen geometry and notch configuration are reproduced in Fig. 20a

(Fang et al. 2011a). The two dots on the specimen surface are used as reference

points for measuring displacements through non-contact optical means, so that

experimental load–displacement data are not influenced by test machine compli-

ance. Displacement-controlled in-plane tension is applied to the specimen.

Due to symmetry in specimen geometry, ply stacking and loading, only a quarter

of the specimen is modeled with symmetric boundary conditions applied at the left

and bottom edges, as shown in Fig. 20b. The possibility that damage might develop

asymmetrically is therefore not considered; damage in the tests being simulated did

remain close to symmetric. Further, in this study since the deformation in the planar

DNT specimen under simple tension is mostly within the x-y plane, each ply is then

modeled by plane stress elements with ply thickness properly assigned. The out-of-

plane stresses are therefore neglected. The ply thickness is 0.127 mm (0.005 in.).

Transverse ply cracks and splitting cracks were modeled using 2D augmented

elements within the plies: the flexibility of A-FEM therefore allows these two crack

systems to arise at any location the initiation criterion is satisfied during
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simulations. Since the potential fracture plane of the delaminations is known, they

were treated differently by pre-locating 3D A-CZ elements along all ply interfaces.

This mixed meshing strategy allows the complex interaction between intraply

cracks and inter-ply delamination cracks to be represented with appropriate realism.

Because the modeling strategy uses plane stress elements for plies, it implicitly

depicts any intraply cracks (transverse or splitting crack) as immediately penetrat-

ing the entire ply thickness, once initiated. It therefore starts to interact immediately

with interface cohesive elements. This treatment is valid as long as the mode-I

toughness (which controls transverse cracking in 90� plies) is smaller than the

mode-II toughness (which controls delamination), which is the case in most poly-

mer composites (including the subject composite). A detailed study of a single

transverse ply crack and associated delaminations shows that given this ordering of

the toughness values, the intraply cracks do span the ply before delamination is

triggered (Zhou et al. 2010).

Mesh Sensitivity
Before proceeding to presenting the prediction results, a mesh sensitivity study is

carried out. Note that with cohesive modeling, mesh-independent results can only

be expected in a nonlinear fracture analysis if the mesh is sufficiently fine to depict

the cohesive damage process zone adequately. An adequate mesh refinement can be

estimated using the analytical approximations for the cohesive zone size that are

summarized in Yang and Cox (2005). For the calibrated cohesive parameters in

Table 1 below, the estimated cohesive zone length for mode-I fracture (transverse

w
 =

 2
0m

m

L = 100mm

a

b

a

q = 600

End tabs

2a/w = 0.5

20.8 mm

Specimen dimension

Quarter geometry numerical model considering symmetry

Fig. 20 (a) Geometry of the double-notched tension specimen tested by Hallett and Wisnom

(2006a). The two filled dots in the specimen were used as markers for direct optical measurement

of the displacement (so that the machine compliance could be eliminated from experimental data).

(b) The quarter geometry numerical modeled used in our A-FEM simulation (Reprinted from

Journal of the Mechanics and Physics of Solids, vol 59, X.J. Fang, Z.Q. Zhou, B.N. Cox,

Q.D. Yang, High-fidelity simulations of multiple fracture processes in a laminated composite in
tension, Pages No. 1355–1373, Copyright 2011, with permission from Elsevier)
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intraply cracks) is �lcoh
I ¼ 0.16 mm and that for mode-II fracture (e.g., splitting

cracks) is lcoh
II ¼ 0.53 mm. Accordingly, mesh dependence was studied using the

three mesh resolutions of le ¼ 0.1, 0.2, and 0.4 mm to represent the numerical

domain in Fig. 20b. Comparisons were made for the predicted stress–extension

curve (Fig. 21a), the splitting crack growth versus applied nominal stress curve

(Fig. 21b), and the transverse crack density (Fig. 21c–e).

Specimen Compliance and Splitting Crack Growth
From Fig. 21a, b, the stress–displacement curves and splitting crack length versus

applied stress curves obtained for all three meshes are very consistent. This is

consistent with the previous conclusion that A-FEM results are mesh independent

provided that the mesh size is smaller than the cohesive zone size (Ling et al. 2009).

Transverse Crack Spacing
In the present theory, the locations and spacing of transverse intraply cracks are

determined automatically according to the computed stress state at any time in a

simulation; unlike other recent works (Van de Meer et al. 2010; Van de Meer and

Sluys 2009b), no constraint is imposed on crack spacing other than the fact that one

element and its nodes can support only one crack. Therefore, another crack cannot

propagate into any of the (neighboring) elements that share the nodes of the already

cracked element, and the limit crack spacing in the mesh of Fig. 21 is that any two

transverse cracks must be separated by at least one element. That is, the minimum

possible transverse crack spacing is 0.2, 0.4, and 0.8 mm for meshes le ¼ 0.1, 0.2,

and 0.4 mm, respectively.

The predicted cracking systems for the three meshes are shown in Fig. 21c–e.

The predicted transverse crack spacings for meshes with le ¼ 0.1, 0.2, and 0.4 mm

are, respectively, 0.9 mm (9le), 1.0 mm (5le), and 1.2 mm (3le). The changes in

crack spacing are small given the large variation in mesh resolution and acceptably

small in that they are less than variations that might be expected from other factors,

such as stochastic local material strength.

In addition, the predicted delaminations (dark regions in Fig. 21c–e) are also all

very consistent. The demonstrated mesh independence also implies that the numer-

ical formulation presented in sections “Nonlinear Fracture Models for Composite

Table 1 Transversely isotropic laminar elasticity and baseline cohesive parameters (Reprinted

from Journal of the Mechanics and Physics of Solids, vol 59, X.J. Fang, Z.Q. Zhou, B.N. Cox,

Q.D. Yang, High-fidelity simulations of multiple fracture processes in a laminated composite in
tension, Pages No. 1355–1373, Copyright 2011, with permission from Elsevier)

Laminar elastic

properties

E1

(GPa)

E2 (¼E3)

(GPa)

ν12(¼ν13) ν23 G12(¼G13)

(GPa)

43.9 15.4 0.3 0.3 4.34

Baseline CZM

parameters

Mode I Mode II Mode III

ΓIc
(J/m2)

σ̂n (MPa) ΓIIc
(J/m2)

τ̂s
(MPa)

ΓIIIc (J/m2) τ̂ t
(MPa)

250 120 900 80 900 80
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Materials,” “Augmented Finite Element Method (A-FEM),” and “Augmented

Cohesive Zone (A-CZ) Element for Crack Coupling” is able to capture correctly

the nonlinear damage coupling among the splitting, transverse, and delamination

cracks.

Nonlinear Damage Models and Their Calibration
The progressive damage in the DNT specimen was reported in detail by Hallett and

Wisnom (2006a). There were five main types of damage processes evolving in a

coupled manner before final failure occurred (Fig. 1a): (1) splitting cracks in the

0� ply emanating from the notch tip and propagating along the loading direction,

which started when the applied nominal stress level reached about 25 % of the final

strength (�260–290 MPa); (2) multiple transverse cracking in the 90� ply with a

saturation cracking density of about 2 cracks/mm; (3) triangular delaminations

propagating between the 0� and 90� plies in a self-similar fashion with wedge
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Fig. 21 Comparison of predicted numerical results with three different mesh resolutions. (a)

Stress–displacement curves; (b) splitting crack length versus applied nominal stress curves; and

(c–e) coupled multiple cracks include transverse cracks (vertical lines), splitting cracks (horizontal
lines), and interlaminar delamination (dark triangular zones) at a stress level of 238 MPa
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B.N. Cox, Q.D. Yang, High-fidelity simulations of multiple fracture processes in a laminated
composite in tension, Pages No. 1355–1373, Copyright 2011, with permission from Elsevier)
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angle of �7–10�; (4) shear nonlinearity; and (5) fiber rupture responsible for

ultimate failure of the specimen. In addition, data for the load versus the displace-

ment between the two reference points indicated in Fig. 21a (filled dots), and the

load versus the splitting crack length as a function of applied nominal stress, were

available for comparison. All these observations and data will be used to test

predictions. Each observed mechanism is capable of arising in the simulations,

but its presence is not prescribed in advance.

This section details the constitutive models that were used to represent elasticity

and the various damage modes. All parameters in each constitutive model were

calibrated using data that were independent of the simulated tests.

Elasticity
Each ply is assumed to be homogeneous and transversely isotropic.

Calibration: The transversely isotropic ply properties are determined by com-

paring simulations to experimental measurements of composite stiffness. For the

subject materials (E-Glass/913), this calibration was carried out in Cui et al. (1992),

whose results are summarized in Table 1.

Fiber Rupture
Fiber rupture in 0� plies is introduced by a material degradation model that modifies

the affected computational element

E ¼ E1 e1 � ef
� �

�0 e1 > ef
� ��

(42)

where E1 is the Young’s modulus along the fiber direction and εf is a threshold

strain value along the fiber direction at which fiber rupture occurs.

Calibration: The critical strain, εf, is chosen to be 3.5 %, a value determined

empirically for an E-Glass/913 composite by Hallett and Wisnom (2006a). It is

typical of glass fibers.

Fine-Scale Shear Deformation
A tension test of a �45� laminate generates shear stress, τ12, aligned with the fibers
within individual plies (Jelf and Fleck 1994). The simple relation τ12 ¼ σa/2 where

σa is the applied stress allows a constitutive law for the ply material in shear to be

deduced from the global stress–strain data of the test (see also the comparison with

Iosipescu shear tests in Kumosa and Odegard (2002)). Prior research on kink band

formation encourages the use of this calibration: the critical shear stress level

deduced from �45� tension data can be used to predict the onset of kink bands in

composites in compression.

The constitutive law calibrated by a �45� test for the subject material is shown

in Fig. 22 (Wisnom 1994). The observed softening sums the combined effect of

fine-scale plasticity of the type as well as discrete delaminations and intraply

cracks, whose size and spacing are associated with larger spatial scales. However,

the delaminations and intraply cracks contribute to nonlinearity mainly at the higher
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strain levels in Fig. 22, whereas the simulations presented below (e.g., Fig. 25)

predict that plastic strains are small (<0.02) over most of the material. Furthermore,

the domain in Fig. 25 that contains larger plastic strains (but still <0.04) is small in

spatial extent compared to the predicted spacing of transverse intraply cracks.

Therefore, the mechanism of continuously distributed plasticity represents phe-

nomena that are either occurring at strains beneath those at which large-scale cracks

act in the calibration test or are too spatially confined to be included in the effects of

transverse cracks. Therefore, including shear plasticity and transverse cracks sep-

arately in the simulations does not lead to double counting of a single phenomenon.

Consistently, the characteristic of the data of Fig. 22 that dominates the fitting

procedure of the calibration is the strain at which the knee occurs (�0.02).

The data of Fig. 22 are well approximated by the Ramberg–Osgood law

γ12 ¼ sgn τ12½ � τ12j j
G0

12

þ α
τ012
G0

12

τ12j j
τ012


 �n
 �
(43)

where G12
0 is the undamaged in-plane shear modulus and τ12

0 is the limiting elastic

shear stress.

Calibration: Calibration of a constitutive law for distributed nonlinear shear

deformation was achieved by fitting Eq. 43 to the data from Wisnom (1994). In the

fitting function, the undamaged in-plane shear modulus G12
0 was assigned the value

4.34 GPa and the limiting elastic shear stress τ12
0 (which is related to the yield or

flow stress) was assigned the value 30 MPa, using data from Wisnom (1994). With

G12
0 and τ12

0 chosen thus, fitting Eq. 43 to the data of Fig. 22 yielded α ¼ 0.01 and

n ¼ 6.8. The stress–strain data are fitted within 2 % over the entire test range.

Cohesive Model for Delamination, Splitting, and Transverse Intraply Cracks
The mixed-mode cohesive model detailed in section “Nonlinear Fracture Models

for Composite Materials” was employed to represent the nonlinear process zone in

all types of cracks. A triangular traction–separation relation is assumed for each

mode. Thus, for each mode, two key parameters, the cohesive strength and the

fracture toughness, are needed to be calibrated.

Experimental data
(Wisnom 1994)
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Fig. 22 Shear stress–strain

data from Wisnom (1994)

fitted by a Ramberg–Osgood

law. The shear stress plotted
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one-half the applied tensile
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engineering shear strain
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In applying the cohesive law to splitting cracks and transverse ply cracks, which

may arise at any location, an initiation criterion must also be stated. The initiation

criterion is specified using parameters of the cohesive law, because it refers to the

same material physics. Once any crack is initiated, its propagation is governed by

the cohesive law.

In applying the cohesive law to delamination cracks, no initiation criterion need

be specified, because the cohesive elements used to model delamination are already

present on the known potential fracture plane.

The initiation criterion used for splitting and transverse cracks accounts for the

effects of tension normal to the fracture plane and in-plane shear, viz.,

σnh i=σ̂nð Þ2 þ τs=τ̂sð Þ2 ¼ 1 (44)

where σn and τs are the normal tensile stress and the in-plane shear stress, averaged

over an element, with the coordinates (x1, x2) aligned with the local fiber direction

and lying in the plane of the laminate. The Macaulay bracket h • i ¼ max[•, 0]

appears so that normal compression (σn < 0) cannot induce crack initiation. The

form of Eq. 44 reflects the fact that, in laminated polymer composites, splitting and

transverse cracks tend to follow the local fiber direction (Fig. 1a) and propagate

under constrained, mixed-mode conditions. The material parameters, σ̂n and τ̂s ,
are the mode-I and mode-II cohesive strength, respectively, in the calibrated

cohesive law.
Calibration: Cohesive laws and thus the parameters appearing in the initiation

criterion were calibrated by using published data to specify the material toughness

(the area under the cohesive law) for each of mode I and mode II and the material

strengths σ̂n and τ̂s (Eq. 44 and Fig. 2). The mode-III law was set to be identical to

the mode-II law. Given the area under the curve and the maximum traction σ̂n or τ̂s,
the maximum displacement for nonzero tractions is also determined.

Identical calibration parameters were assumed for all three crack types, delam-

ination cracks, splitting cracks, and transverse ply cracks.

The mode-I toughness of the ply material (E-Glass/913) was determined empir-

ically using tensile fracture tests on single plies with the load axis perpendicular to

the fiber direction, yielding ΓIC ¼ 250 J/m2 (Hallett and Wisnom 2006a). The

mode-II toughness for a laminate made from the same materials was determined by

analyzing end-notch flexure delamination tests, yielding two reported values ΓIIC ¼
900 and 1,040 J/m2 (Hallett and Wisnom 2006b, c). The baseline calibration values

were taken to be ΓIC ¼ 250 and ΓIIC ¼ 900 J/m2, with expected variance of 10 %.

In the subject problem, the mode-I strength, σ̂n, primarily influences transverse

ply cracks, since both splitting and delamination cracks are shear dominated. In the

layup studied, the transverse 90� plies are surface plies constrained only on the side
that is bonded to the interior 0� plies. Therefore, transverse ply cracks appear as

surface channeling cracks, whose behavior has been studied by both the composites

and thin film communities (Dvorak and Laws 1987; Thouless 1990; Camanho

et al. 2006; Davila et al. 2005). According to Camanho et al. (2006), the local
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stress in the transverse ply required to initiate a surface channeling crack is

approximately

σ̂n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ΓIc

πh 1=E2 � ν212=E1ð Þ

s
(45)

where h is the ply thickness (0.127 mm). Since the elastic constants are known,

Eq. 45 predicts σ̂n from the calibrated value of the mode-I toughness, yielding σ̂n ¼
141 MPa. However, this value should be regarded as an upper-bound estimate,

because Eq. 45 assumes a perfectly bonded interface between neighboring plies.

Furthermore, the transverse strength of unidirectional plies of E-Glass/913 exhibits

specimen-to-specimen discrepancy of �15 % (Wisnom and Jones 1996). Summing

these considerations, the value 120 MPa was used as a baseline value in the

initiation criterion, Eq. 44, and in the mode-I cohesive law, with expected variance

of 15 %.

This same calibration was also used for the mode-I component of the cohesive

zone in splitting cracks. Since the splitting crack is an embedded crack (in the

central 0� plies), its configuration is a tunneling crack, rather than the channeling

crack to which Eq. 45 refers. However, in the particular layup studied here, the

0� plies are exactly twice the thickness of the 90� plies; and the effect of the

different thickness on the expected critical stress exactly cancels the difference

expected due to the fact that the splitting crack tunnels rather than channels

(Camanho et al. 2006). Therefore, use of the same mode-I calibration is consistent.

Prior estimates of the shear cohesive strength, τ̂s , for the subject E-Glass/913

material have been based on the shear deformation data of Fig. 22, with the value

75 MPa picked out from Hallett and Wisnom (2006a) and 70 MPa from Wisnom

and Chang (2000). The uncertainty in the appropriate value reflects the range of the

shear stress beyond the value at the knee of the data (Fig. 22). In this work, τ̂s was
assigned the baseline calibration value of 80 MPa, with expected uncertainty of

10 %. The same value was used for all crack types.

The set of baseline calibration values for cohesive law parameters is summarized

in Table 1. Variation of the parameters from these values will be made to assess

sensitivities.

Numerical Prediction and Validation

Crack Pattern, Spacing, and Delamination Shape
The experimental images taken at three different load levels show the evolution of

three major cracking systems (Fig. 23a). The damage evolution predicted at the

same load levels using the baseline calibration values of Table 1 for the cohesive

parameters is shown in Fig. 23b. In this figure, the splitting crack is shown as a solid

white line, the transverse cracks as fine white or red lines, and the delamination by

the black zone attached to the splitting crack. The A-FEM simulation successfully

reproduces all the important features of the three cracking systems. The self-similar
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delamination zone angle is predicted to be 8�, in agreement with the experimental

value of 7–10�. The splitting and multiple transverse cracks are also well captured.

The predicted transverse crack density is �1 crack/mm, which is about half of

the measured density. This can be explained as a consequence of assuming sym-

metry in the damage in simulations. In experiments, transverse cracks are spawned

from each of the two splitting cracks, so that the final crack density in the region

between the two splitting cracks can be up to twice the initiation density along

either crack. This possible doubling effect is absent from the simulations, because

only a quarter of the specimen, containing one splitting crack, was modeled.

Load and Splitting Crack Length Versus Applied Displacement
The simulations predict the entire stress–displacement curve up to final failure, and

the splitting crack length as a function of applied nominal stress, to within antic-

ipated material variance.

The predicted stress as a function of the displacement is compared directly with

experimental data in Fig. 24a. The simulation with arbitrary cracking reproduces

the experimental curve very well: it follows the entire experimental curve, includ-

ing the mild nonlinearity beyond the initial elastic regime, and, for this particular

specimen, predicts the ultimate strength quite accurately.

The splitting crack growth as a function of applied stress is shown in Fig. 24b. In

this figure, each of the experimental data points is an average of five tests reported

in Hallett and Wisnom (2006b). The predicted splitting crack growth curve with all

mechanisms enabled in the simulations again follows closely the experimental data

during the entire loading stage.

25%
a

b

100%65%

Fig. 23 (a) Three snapshots of the DNT specimen under different load levels (25 %, 65 %, and

100 %), showing the evolution of the coupled transverse cracks (vertical lines), splitting cracks

(horizontal line), and delamination zones (triangular dark zones). (b) The A-FEM predicted crack

evolution at approximately the same load levels (Reprinted from Journal of the Mechanics and

Physics of Solids, vol 59, X.J. Fang, Z.Q. Zhou, B.N. Cox, Q.D. Yang, High-fidelity simulations of
multiple fracture processes in a laminated composite in tension, Pages No. 1355–1373, Copyright
2011, with permission from Elsevier)
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Finally, based on the above-demonstrated high-fidelity simulation, investigation

of damage coupling and sensitivity to cohesive failure parameters can be conducted

in detail, and such a detailed parametric study can be found in Fang et al. (2011a).

Damage Coupling and Sensitivity to Cohesive Parameters

Influence of Transverse Ply Cracks
To show the necessity of including transverse cracks in strength analyses, pre-

dictions of stress versus strain are also shown in Fig. 24a for two modified cases,

viz., (1) without considering transverse cracking and (2) with only one transverse

crack permitted (a simplification considered in Wisnom and Chang 2000; Hallett

and Wisnom 2006a). Whereas the prediction with arbitrary transverse cracking is

accurate, if no or only one transverse crack is allowed, the global stiffness reduction

beyond the proportional limit cannot be adequately captured.
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Fig. 24 Comparison of experimental results reported in Hallett and Wisnom (2006b) with pre-

dictions. (a) Nominal stress versus displacement curves for three cases: (1) with arbitrary trans-

verse cracks, (2) with single transverse cracks at notch tip, and (3) no transverse crack. (b) Splitting

crack length as functions of nominal stress for the same three cases. The numerical results obtained

in Hallett and Wisnom (2006a) using preplanted CZM elements at the notch tip are also shown

(Reprinted from Journal of the Mechanics and Physics of Solids, vol 59, X.J. Fang, Z.Q. Zhou,

B.N. Cox, Q.D. Yang, High-fidelity simulations of multiple fracture processes in a laminated
composite in tension, Pages No. 1355–1373, Copyright 2011, with permission from Elsevier)
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In contrast, the propagation of the splitting crack is not very sensitive to the

transverse crack details, with similar predictions for arbitrary transverse cracking, a

single transverse crack, or no transverse cracks (Fig. 24b). This perhaps explains

why the simulation in Hallett and Wisnom (2006b), in which a single cohesive

crack was preplanted at the notch tip, also did a reasonable job of capturing the

overall splitting crack growth. However, if cohesive elements are not placed

accurately at the location of maximum stress, splitting crack initiation can be

significantly delayed (Fig. 24b). Further simulations in the present study confirmed

the sensitivity of splitting crack initiation to assumed location.

Influence of Shear Nonlinearity
Fine-scale distributed shear deformation influences all fracture modes. The shear

strain distributions in the surface 90� ply are shown in Fig. 25, with splitting and

transverse cracks superimposed. The largest shear strains are concentrated in a

narrow region that extends ahead of the splitting crack tip. As demonstrated by the

single transverse crack seen in Fig. 25, which has just initiated and is incompletely

propagated, any transverse crack is initiated in material that is already damaged by

distributed shear deformation. Therefore, the transverse cracks are initiated under

mixed-mode conditions, rather than the approximately mode-I conditions that

would exist if they initiated in undamaged material far from the splitting crack.

When distributed shear deformation is omitted from simulations, the predicted

damage pattern is qualitatively wrong. Figure 26c shows the coupled damage

evolution for three load levels similar to those in Fig. 23b without shear

nonlinearity. The delamination zone is much larger, fewer transverse cracks have

developed, and they lag significantly behind the splitting crack tip. Without shear

nonlinearity, energy release is directed more towards delamination, rather than to

the initiation of transverse cracks. The extensive delamination results in less energy
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Fig. 25 Snapshot of distributed fine-scale shear deformation in the 90� ply. The strains are

meaningful ahead of the tip of the splitting crack (horizontal white line). Two transverse cracks

(vertical white lines – the one at notch tip is not visible) are present at this load level. Similar

distributions are also predicted in the 0� ply. The large apparent shear strains (grey zones)
immediately adjacent to the splitting crack are an artifact of a plotting deficiency of ABAQUS

and should be ignored (Reprinted from Journal of the Mechanics and Physics of Solids, vol

59, X.J. Fang, Z.Q. Zhou, B.N. Cox, Q.D. Yang, High-fidelity simulations of multiple fracture
processes in a laminated composite in tension, Pages No. 1355–1373, Copyright 2011, with

permission from Elsevier)
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being available for driving splitting crack growth, and thus slower splitting crack

growth at large stress levels. Similar numerical observations were reported in

Wisnom and Chang (2000) for another material system (T300/914), although in

that study transverse cracking was not considered.

Shear nonlinearity has a correspondingly strong influence on the stress–dis-

placement curve (Fig. 26). Comparing the experimental data with the stress–dis-

placement curves obtained with the calibrated shear nonlinearity included or

excluded, one may conclude that the initial specimen stiffness is not very sensitive

to shear nonlinearity (Fig. 26a). This is plausible because localized shear around the

splitting crack is not expected to contribute significantly to the global stiffness of

the specimen. However, the decrease in specimen stiffness beyond the proportional

limit is poorly replicated if shear nonlinearity is not modeled. This may be due to

transverse cracks not being reproduced faithfully, because it has been established

previously that the gradual decrease of specimen stiffness is due largely to trans-

verse cracking.

The splitting crack growth curve obtained without shear nonlinearity is com-

pared in Fig. 26b with the curve obtained from the calibrated shear nonlinearity and

the experimental curve. With shear nonlinearity, the splitting crack grows even

faster at relatively large applied stress, which may be surprising because shear

nonlinearity should relieve strain energy and lower the crack driving force for the

splitting crack. However, the greater effect is the reduction of delamination when
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Fig. 26 Influence of shear nonlinearity on (a) the stress versus displacement relation and (b)

splitting crack growth. (c) the A-FEM predicted crack evolution without shear nonlinearity at three

load levels. The splitting crack is shown as the white solid line. The transverse cracks are indicated
by the white or red colored lines, while the delamination is shown by the black zone attached to the
splitting crack (Reprinted from Journal of the Mechanics and Physics of Solids, vol 59, X.J. Fang,

Z.Q. Zhou, B.N. Cox, Q.D. Yang, High-fidelity simulations of multiple fracture processes in a
laminated composite in tension, Pages No. 1355–1373, Copyright 2011, with permission from

Elsevier.)
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shear nonlinearity is included, which keeps more energy available for splitting

crack growth. This has also been noted recently in Van de Meer et al. (2010).

Influence of Cohesive Strengths
The influences of tensile and shear cohesive strength on the specimen stiffness and

splitting crack growth are shown in Fig. 27. Figure 27a shows the stress–dis-

placement curves obtained with tensile strength varying from σ̂n ¼ 50 to

150 MPa and shear strength from τ̂s ¼ 75 to 100 MPa.

The ultimate strength increases with σ̂n . For example, when σ̂n ¼ 50 MPa, the

predicted strength is 235 MPa. As σ̂n increases to 150 MPa, the strength is increased

to 306 MPa. A smaller tensile cohesive strength results in a larger transverse crack

density and earlier development of transverse cracking near the notch tip (Fig. 27b),

which shifts more load from 90� plies to the 0� plies. A larger stress concentration

in the 0� plies leads to earlier fiber rupture. From the discussion presented above on

calibration procedures, a reasonable estimate of the uncertainty in σ̂n is � 20 MPa.

The shear cohesive strength does not affect the stress–displacement relation

significantly although a slight increase of stiffness is associated with shear strength

increase from 75 to 85 MPa. However, the splitting crack growth rate is very

sensitive to the shear strength. This is shown in Fig. 27b: the larger the shear

cohesive strength, the slower the splitting crack growth. This is attributed to the

relatively small hardening modulus in the shear stress–strain relation (Fig. 22): a

small increase of shear strength requires a fairly large increase in the shear strain

required for criticality in the elements that are to generate the splitting crack. This in

turn requires a larger applied stress to propagate the splitting crack.

Influence of Mode-I and Mode-II Fracture Toughness Values
The mode-I and mode-II toughness values were varied by 50 % from the baseline

calibration values, with the constraint that the toughness values in modes II and III

remained equal. Changing mode-I toughness (ΓIC) around the calibration value by

�50 % does not significantly change the stress–strain relation or the splitting crack
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Fig. 27 Influence of cohesive strength on (a) nominal stress–displacement relation and (b) on

splitting crack growth (Reprinted from Journal of the Mechanics and Physics of Solids, vol

59, X.J. Fang, Z.Q. Zhou, B.N. Cox, Q.D. Yang, High-fidelity simulations of multiple fracture
processes in a laminated composite in tension, Pages No. 1355–1373, Copyright 2011, with

permission from Elsevier)
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growth rate and has a mild influence on ultimate strength (Fig. 28). In regard to

transverse ply cracking, changing ΓIC alone is equivalent, for the subject layup, to

changing the specimen thickness while keeping other material parameters fixed

(Eq. 45); the effect is similar to changing the cohesive strength. However, the

influence on ultimate strength of changing ΓIC by �50 % is much smaller than

changing the normal cohesive strength by the same proportion (Eq. 45).

The mode-II fracture toughness affects both the splitting crack, which is approx-

imately a shear (mode-II) crack, and delamination. The splitting crack propagates at

a rate that is negatively correlated with the value of ΓIIc (Fig. 28b), as also noted by
Wisnom and colleagues in their study that employed preplanted cohesive zone

elements for the splitting crack and a single transverse crack (Wisnom and Chang

2000; Hallett and Wisnom 2006a).

In the present study, lowering ΓIIc by 50 % not only caused more rapid splitting

crack growth (Fig. 28b) but also led to a transition in the failure sequence because of

its effect on delamination. Early splitting crack growth was accompanied by rapid

spreading of a delamination towards the center of the specimen (bottom edge in

Fig. 23b) as well as along the split. The rapid delamination deters the development

of transverse cracking, which remain few and concentrated near the notch tip with a

density of �0.8 mm�1 (slightly smaller than �1.0 mm�1 for the baseline case).

Shortly after the delamination spreads across the specimen, a steady-state delam-

ination front is formed, which propagates towards the loading edge in a numerically

unstable fashion. The above process is illustrated by the four snapshots in Fig. 29. In

these figures, the fiber-direction strains (e11) in the 0� ply at four different stress

levels are shown as contour plots. The delamination fronts and splitting crack tips

are indicated. Throughout this coupled splitting and delamination process, the

maximum fiber-direction strain within the delamination zones is �2.2 %, well

below the fiber-failure strain of 3.5 % (Table 1).

This coupled damage evolution is different from all other cases and results in a

feature-rich, non-monotonic load–displacement curve (Fig. 28a). The initial
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Fig. 28 Influence of fracture toughnesses, varied around baseline values (inset), on (a) nominal

stress–displacement relation and (b) on splitting crack growth (Reprinted from Journal of the

Mechanics and Physics of Solids, vol 59, X.J. Fang, Z.Q. Zhou, B.N. Cox, Q.D. Yang, High-
fidelity simulations of multiple fracture processes in a laminated composite in tension, Pages
No. 1355–1373, Copyright 2011, with permission from Elsevier)
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softening of the curve is similar to other cases. However, at a stress level of about

230 MPa, the load decreases as the delamination front is established. The snapback

in the load–displacement curve corresponds to the delamination front passing the

displacement recording points (dots in Fig. 23). As the delamination front and

splitting crack propagate further away from the notch tip (with the splitting always

well ahead of the delamination front; see Fig. 29), the section of the 0� ply that

passes between the notches is increasingly decoupled from the rest of the composite

and carries an increasingly complete share of the load. The stress concentration

from the notch tips disappears. While the simulation fails due to numerical insta-

bility, the anticipated specimen response and ultimate failure can be estimated as

that of a single 0� ply with a width of 0.5 W (10 mm), which is indicated

by the dashed line in Fig. 28a, terminating at the fiber-failure strain εf ¼ 3.5 %

(σf ¼ 385 MPa).

Further Discussions

Mesh Requirements
Mesh independence is achieved provided the element size is less than the

length of the nonlinear fracture process zones of the different crack systems.

Delamination front

Split tip

a b

c d

σ = 80 MPa σ = 200 MPa

σ = 230 MPa σ = 220 MPa

Split tip

Delamination front

Delamination front

Split tip

Delamination front

Split tip

Fig. 29 Coupled evolution of splitting delamination in a specimen with ΓIIc being reduced by

50 % (0.5 ΓIIc). Compared to the baseline results in Fig. 26, both the splitting crack growth rate and

delamination rate are much higher at similar stress levels. The delamination zone is no longer a

sharp triangular wedge (a, b). Rather, it propagates quickly across the specimen width bounded by

the splitting crack (b, c) and quickly establishes a steady-state delamination front that propagates

towards the loading edge (d). The final stage is numerically unstable under displacement-

controlled loading (Reprinted from Journal of the Mechanics and Physics of Solids, vol

59, X.J. Fang, Z.Q. Zhou, B.N. Cox, Q.D. Yang, High-fidelity simulations of multiple fracture
processes in a laminated composite in tension, Pages No. 1355–1373, Copyright 2011, with

permission from Elsevier)
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When cohesive parameters are varied so that the process zone length

becomes smaller, mesh refinement may be necessary to maintain accuracy. One

example of this requirement was observed in the study case where ΓIIC was

reduced by 50 % from the best-calibration value: the mesh size also had to be

reduced to capture the transition in failure mode and expected reduction of

ultimate strength correctly.

Calibration: The calibration procedures used in this paper are not ideal, but are a
pragmatic use of available data for the subject E-glass/913 composite materials,

supplemented, in the absence of experiments for calibrating the mode-I parameter,

σ̂n , by the micromechanical model of Eq. 45. The search for tests for calibrating

cohesive laws, with at least the peak traction determined as well as the fracture

toughness values, remains an active research topic. In some applications, it may

also be useful to determine characteristics of the shape of the cohesive law; what

details of the shape influence engineering fracture behavior is not yet known, but

can be addressed in due course by high-fidelity simulations such as those

presented here.

Statistical Variance in Model Parameters and Covariance with Engineering
Properties
By considering either the experiments that yielded calibration data or the assump-

tions that underlie Eq. 45, estimates have been made of the uncertainty in the

calibration values of the parameters in the cohesive laws for mode-I and mode-II

fracture. These are listed in Table 2. Since they arise from deviations in the data

from tests on typical specimens, the variances are likely to be material variations,

rather than errors in analysis that could be reduced by more accurate procedures. If

so, they imply unavoidable variance in predicted engineering properties, which will

be manifested as deviance in the test data used to qualify materials. Such deviance

is essential information for design.

Table 2 Estimates of uncertainty in cohesive law parameters and the covariance matrix between

the set of parameters and three key metrics of composite failure (Reprinted from Journal of the

Mechanics and Physics of Solids, vol 59, X.J. Fang, Z.Q. Zhou, B.N. Cox, Q.D. Yang, High-
fidelity simulations of multiple fracture processes in a laminated composite in tension, Pages
No. 1355–1373, Copyright 2011, with permission from Elsevier)

Cohesive

parameter

Estimated uncertainty in

cohesive parameter (%)

Sensitivity matrix, θ0
ϕ0

@ϕ
@θ

ϕ ¼ engineering property; θ ¼ cohesive parameter

Ultimate

strength

Global stiffness in

nonlinear regime

Splitting

crack growth

rate

ΓIC 10 0.1 Small 0

ΓIIC 10 0.25a Small �1a

σ̂n 15 0.3 0.1 0

τ̂ s ¼ τ̂ tÞð 10 0.3 0.2 �1

avery nonlinear dependence
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The expected variance in predicted properties can be estimated by varying the

cohesive parameters used in simulations and recomputing predictions, thus evalu-

ating the partial derivatives

θ0
ϕ0

@ϕ

@θ
(46)

where θ denotes a cohesive law parameter (ΓIC, ΓIIC etc.), θ0 its best-choice

calibration value, ϕ a property (ultimate strength, strain etc.), and ϕ0 its value

when all cohesive law parameters take their best-choice calibration values. The

partial derivatives of Eq. 46 are measures of the sensitivity of engineering proper-

ties to the material properties of fracture mechanisms. Normalization with respect

to θ0 and ϕ0 allows the sensitivity measures to be independent of units. A matrix of

their estimated values appears in Table 2 for the following engineering properties:

the composite ultimate strength, the global stiffness averaged over the nonlinear

regime, and the growth rate of the splitting cracks averaged as the crack length

grows from zero to its maximum. Other engineering properties might be chosen, but

these three cover the main features of the global performance of this material in the

notched tension test. The sensitivity matrix is only qualitatively indicative of trends

in performance and does not substitute for complete analysis of different cases. For

variations in ΓIIC, in particular, the transition in failure sequence described above

leads to highly nonlinear dependence in the selected engineering properties; for

example, the ultimate strength is almost independent of ΓIIC for increasing ΓIIC
above the best-calibration value, but drops significantly for decreasing ΓIIC, when it
is measured by the peak load prior to unstable behavior (Fig. 28a).

The predicted variance of any quantity in experimental tests should be predicted

by the product of the estimated variance in a cohesive parameter and the pertinent

element of the sensitivity matrix. Combining the effects of variance in all four

cohesive parameters, Table 2 predicts, for example, that the variance in composite

ultimate strength should be approximately 10 %. The actual variance reported for

double-notched tension tests of the subject composites is close to this: the strengths

reported by Hallett and Wisnom (2006b) range from 243 to 291 MPa.

Transverse and Delamination Crack Interactions
In the present simulations, it is implicitly assumed that once a transverse crack is

initiated, it immediately propagates as a steady-state crack, because the in situ

strength is derived from steady-state crack analysis. For polymer matrix compos-

ites, which typically have mode-II toughness several times larger than mode-I

toughness, this is justified. A recent 3D analysis of an individual transverse crack,

which includes the influence of possible accompanying delamination cracks, has

shown that if ΓIIC/ΓIC > 1, the initiation stress is only 5 % less than the steady-state

propagation stress (c.f. Zhou et al. 2010 and works cited therein). In the same

analysis of Zhou et al. (2010), it has also been shown that if ΓIIC/ΓIC > 1, the

in-plane stress required for any delamination initiated by a transverse crack to

propagate away from the transverse crack is significantly higher than the transverse
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crack propagation stress. Consistently, for the best-calibration cohesive parameters,

the present simulations show that no delaminations were triggered by transverse

cracks. However, when a ΓIIC was reduced by 50 % in the present simulations,

large-scale delamination occurred with minimal transverse ply cracking.

Concluding Remarks

In this paper, the urgent need of advanced numerical methods that can explicitly

resolve the multiple-damage processes and their nonlinear coupling at various

scales is highlighted. The recent development of advanced numerical methods

that can represent various composite damage modes explicitly with embedded

nonlinear fracture models such as cohesive zone models has been reviewed.

These methods include the eXtended Finite Element Method (X-FEM), the phan-

tom node methods (PNM), and the Augmented Finite Element Method (A-FEM).

The elemental formulation of the A-FEM has been presented as a standard

element that is fully compatible with any FE programs including commercial

codes without access to source code. The capability of the A-FEM to account for

arbitrary, nonlinearly coupled, multiple-cracking systems typical in laminated

composites with stress concentrators has been demonstrated by replicating the

damage systems observed in several composite tests including (1) the three-point

bending of PMCs, (2) the crack jumping in a single-cantilever composite beam, and

(3) the in-plane tension tests of an orthogonal double-notched specimens. Mesh

independence is achieved provided the element size is less than the length of the

nonlinear fracture process zones of the different crack systems. The required mesh

size can be estimated in advance using analytical results for the process zone

lengths.

A combination of independent data and a micromechanical model was used to

calibrate parameters in cohesive models that are used to represent nonlinear fracture

processes and the distributed nonlinear shear deformation. With this calibration,

quantitative agreement is obtained to within experimental variance between mea-

sured and predicted fracture test behavior, including the entire nonlinear

stress–strain curve, the ultimate strength, the growth rates of delamination and

splitting cracks, and the density of transverse ply cracks.

Analyses show that the variance in fracture properties expected for the estimated

variance in material parameters matches the variance in the measured ultimate

strength. Thus, future elaboration of the simulations developed here can be the basis

for statistical predictions of material performance.

Comparative simulations show unequivocally the necessity of including all the

major damage processes explicitly to reproduce all observed damage characteris-

tics. If incomplete nonlinear processes were included, a simulation may still be able

to reproduce some aspects of the experiments, but not all in a consistent way. For

example, if the shear nonlinearity is not considered, one may still obtain the

stress–displacement curve and splitting crack growth curve more or less right, but

the delamination is predicted incorrectly. If multiple transverse ply cracking is not
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included, the predicted delamination and splitting crack growth may still be close to

experimental measurements, but the gradual stiffness reduction in the stress–dis-

placement curve would be missed.
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Abstract

The chapter gives an introduction into the main processes occurring in metals

and alloys under neutron irradiation. Displacement damage, phase reactions,

swelling, irradiation creep, and transmutation are the main physical effects

changing mechanical properties and microstructure of materials used in

nuclear power plants. As results radiation hardening/embrittlement, enhanced

stress corrosion cracking, changes in geometry, degradation of creep proper-

ties, and other damage can occur. Consequences of such material degradation

are discussed for current nuclear plants where a 50-year operation experience

exists. Advanced, future nuclear plants are expected to consist also almost

exclusively of metals and alloys, and they are expected to undergo in principle

the same types of damage. However, changes in other operational parameters

(higher temperatures, fast neutrons, other coolants) might change also the

degree of radiation damage (e.g., thermal creep in addition to radiation

creep). Advanced modeling and testing techniques can be considered as a

tool to balance the missing long-term experience with next-generation nuclear

plants.

Introductory Remarks

Central components of nuclear plants are usually exposed to the coolant, radiation,

and elevated temperatures. These conditions lead to degradation of components

during service and limit therefore the lifetime of plants. In current light water

reactors (LWRs), embrittlement of the reactor pressure vessel, irradiation-assisted

stress corrosion cracking of reactor internals, and irradiation creep of claddings are

typical degradation mechanisms caused by neutrons. Advanced reactors, like Gen-

eration IV plants, are expected to be exposed to more damaging fast neutrons

(higher energy), higher temperatures, and coolants different from water. Although

the physics behind radiation damage is expected to remain the same, some differ-

ences in damage development between LWRs and advanced reactors can be

expected.

In the first part of this chapter, the basic phenomena of irradiation damage of

reactor materials will be discussed. The focus will be on metals and alloys which

are not only the key materials in current reactors but which will stay also key

materials for future reactors. Considerations for ceramics will remain limited to

graphite (as moderator for British advanced gas reactors and future high-

temperature gas-cooled reactors) and to SiC/SiC composites which are considered

for control rod parts or claddings in advanced plants.

In the second part of this chapter, radiation damage occurring in current nuclear

plants will be highlighted with examples from reactor pressure vessels, reactor

internals, and fuel claddings. Expectations for future plants will be briefly touched

upon. Advanced methods of materials science will be introduced as a tool for better

understanding of irradiation-related risks in future reactors.
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Phenomenology of Radiation Damage

Introduction

Radiation damage is basically the result of the interaction of energetic particles with

matter. The consequences of these interactions which depend primarily on energy

can be manifold. The considerations of this chapter will be limited mainly to

neutrons and ions on the particle side and to metals and alloys and selected ceramics

on the matter side. Only the most important effects will be discussed; for more

details, I would like to refer the reader to the numerous very good textbooks in this

field, e.g., Schilling and Ullmaier (1994), Ullmaier and Schilling (1980), and Was

(2007). The types of damage are (Schilling and Ullmaier 1994):

• Elastic collisions where bombarding particles (neutrons, ions, electrons) transfer

recoil energy T to the lattice atoms. If T exceeds the threshold energy Tth for

displacement, a vacancy-interstitial pair (Frenkel defect) is created.

• Nuclear reactions where fast particles produce considerable concentrations of

foreign elements within the material. In particular, the inert gas helium which is

produced by (n,α) reactions plays an important role for the behavior of metals

and alloys under fast-neutron irradiation.

• Electronic excitations are of only very limited importance for metals and the

irradiation damage process considered here.

The results of these damage events have an impact on radiation-exposed com-

ponents like reactor pressure vessels (RPVs) or reactor internals (including fuel

claddings). A summary of the damage events in the material and its consequences

for components is given in Table 1. The different effects and its influence on the

materials will be discussed more in detail in the following.

Types of Radiation Damage

Displacement Damage
Displacement damage starts usually with a bombarding particle that transfers a

recoil energy T by elastic collision to a lattice atom. If the recoil energy exceeds a

material-dependent threshold energy for displacement, Eth, the atom jumps from its

original site to an interstitial position creating a vacancy-interstitial pair which is

called “Frenkel pair.” If the recoil energy is significantly higher than Eth (e.g., in the

case of fast neutrons), the atom firstly hit by the neutron, the “primary knock-on

atom” (PKA) or “primary recoil atom” (PRA) is able to transfer energy by moving

further into the crystal creating further Frenkel pairs and a so-called displacement

cascade (see Fig. 1). When the energetic particle is heavy and energetic enough, and

the material is dense, the collisions between the atoms may occur so near to each

other that they cannot be considered independent of each other. In this case the
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process becomes a very complicated many-body interaction between very many

atoms which can only be treated with molecular dynamics modeling. A heat spike is

created which is characterized by the formation of a transient diluted region in the

center of the cascade and densified region around it. After the cascade, the densified

Table 1 Different types of radiation damage and resulting technical consequences (replotted

from Hoffelner (2012))

Effect Consequence in material

Kind of degradation in

component

Displacement

damage

Formation of point defect clusters and

dislocation loops

Hardening, embrittlement

Irradiation-

induced

segregation

Diffusion of detrimental elements to

grain boundaries

Embrittlement, grain

boundary cracking

Irradiation-

induced phase

transitions

Formation of phases not expected

according to phase diagram, phase

dissolution

Embrittlement, softening

Swelling Volume increase due to defect clusters

and voids

Local deformation, eventually

residual stresses

Irradiation creep Irreversible deformation Deformation, reduction of

creep life

Helium formation

and diffusion

Void formation (inter- and

intracrystalline)

Embrittlement, loss of stress

rupture life, and creep

ductility

Fig. 1 Development of a collision cascade. The primary knock-on atom starts to move as a result

of the energy transfer from the neutron. It creates Frenkel pairs, and it finally ends in a damaged

zone with a diluted part where many vacancies exist and a dense part where many interstitials exist

(Replotted from Hoffelner (2012), source Seeger (1962))
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region becomes a region of interstitial defects, and the diluted region typically

becomes a region of vacancy defects.

Elastic collisions produce radiation damage in three different process regimes at

different timescales :

• The initial stage of the radiation damage process (t < 10�8 s)

• Physical effects of radiation damage (t > 10�8)

• Mechanical response of the material to radiation-induced effects

The initial stage of the radiation damage process has just been discussed. The

phase of development of physical effects is mainly determined by diffusion and

reactions of the created point defects. They can recombine, form agglomerations, or

diffuse to sinks. The development of the concentrations of vacancies Cv and of

interstitials Ci can be described by rate equations as shown schematically in Fig. 2.

These rate equations can be solved for different boundary condition which allows a

prediction of the development of the radiation-induced microstructure (Wiedersich

1991a, b). The supersaturation of point defects in irradiated matter leads to high

diffusion coefficients already at lower temperatures. With increasing temperature

the influence of irradiation on diffusion diminishes, and for temperatures higher

than about 600 �C, thermal diffusion becomes the relevant diffusion process in

steels. This can be seen from Fig. 3 (Zinkle et al. 1993) where the development of

displacement-induced defects is shown as a function of temperature taking an

austenitic steel as an example. Although there are some differences for different

classes of metals and steels, the main message that point defects can agglomerate to

different defects being obstacles for dislocation movement and that displacement

damage vanishes with increasing temperature remains valid for several metals and

alloys.

Units for Irradiation Damage
Before discussing further radiation-induced defects, a few aspects about the mea-

sure for damage relevant doses shall be mentioned. Very often particle flux which

refers to the number of particles passing through an area in a certain interval of time

(commonly measured in neutrons/cm2·s) or particle fluence (neutron flux integrated

over a certain time period, measured in neutrons/cm2) are used. However,

Fig. 2 Point defect rate

equations
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investigations of radiation hardening of annealed 316 stainless steel showed that

even for the same type of material, different results were found when correlating

radiation hardening (change in yield stress) with neutron fluence (Greenwood

1994). Therefore, another measure for radiation exposure or dose is frequently

used which is based on the total number of displacements that the PKA will create

in the solid. An important quantity is the number of displacements per unit time and

per unit volume produced by a flux, Φ(Ei), of incoming particles of energy Ei. The

displacement rate or number of displacements per atom (dpa) per unit time (dpa/s)

describes in good approximation the energy-dependent response of an irradiated

material. Typical displacement rates in reactors are 10�9–10�7 dpa/s. Using this

unit hardening for 316 stainless steel, mentioned before, could be very well

correlated (Greenwood 1994).

Point Defect-Related Irradiation Damage Other Than Displacement
Damage
In the previous section damage due to production, diffusion, and agglomeration of

different point defects was considered. The high point defect supersaturation can

also lead to other phenomena known from thermal diffusion processes like:

• Radiation-induced segregation

• Radiation-induced precipitation

– Incoherent precipitate nucleation

– Coherent precipitate nucleation

• Radiation-induced dissolution

• Radiation-induced phase reactions

– Radiation disordering

– Metastable phases

– Amorphization

Fig. 3 Influence of

irradiation temperature on the

formation of different

obstacles taking an austenitic

steel as an example (Source

Zinkle et al. (1993))
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Radiation-Induced Segregation (RIS)
Thermal-induced segregation is a temperature-dependent redistribution of alloy

constituents at point defect sinks such as grain boundaries. Temper embrittlement

of steels is a very well-known example for segregation-related deterioration of

toughness. Elements like phosphorus, sulfur, or manganese diffuse to grain bound-

aries. The cohesion along the grain boundaries is weakened leading to a reduction

of toughness (reduction of fracture toughness or increase of ductile-to-brittle

fracture appearance transition temperature). Such grain boundaries can also act as

preferential corrosion sites leading to stress corrosion cracking as discussed later.

Radiation-induced segregation describes a similar effect, however, driven by

radiation-induced point defects. A flow of vacancies into one direction is equivalent

to material flow into the opposite direction. It can be understood in terms of the

so-called inverse Kirkendall effect (Marwick 1978). This inverse Kirkendall effect

refers to cases where an existing flux of point defects affects the interdiffusion of

atoms of type A and atoms of type B. Irradiation segregation in a homogeneous AB

alloy occurs because the irradiation has produced excess point defects which lead to

a point defect flux. Figure 4 explains the mechanism for a binary alloy more in

detail. The ordinates represent the concentrations of vacancies and interstitials,

respectively, in arbitrary units. The x-axis gives the distance from the grain

boundary. Movement of a vacancy into one direction is equivalent with the move-

ment of an atom into the other direction. Therefore, the arrow of the vacancy flow Jv
points in another direction than the arrows of the material flows JA and JB. In case of

the movement of interstitial atoms, the directions of Ji and JA and JB are the same.

The differences in the diffusion coefficients of A and B lead to a dilution of the

Fig. 4 Principle of radiation-

induced segregation for a

binary alloy (After Was

(2007))
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concentration of atoms A and to an increase of the concentration of atoms of type B

towards the grain boundaries. As an example a diminishing chromium concentra-

tion combined with an increasing nickel concentration at the grain boundaries was

found for proton-irradiated austenitic steel (304 SS) (Bruemmer et al. 1999a).

Radiation-induced segregation depends on the temperature as well as on dose rate

as a diffusion-driven effect. Once the temperature is too low, vacancies can move

only slowly, and recombination will become the predominant mechanism. At

temperatures where thermal effects become important, radiation effects become

negligible. Radiation-induced segregation can therefore only happen in a temper-

ature window between these two conditions (Was et al. 2006). Radiation-induced

segregation plays an important role for irradiation-assisted stress corrosion cracking

in light water reactors as will be discussed later.

Radiation-Induced Phase Transformations
Other diffusion-controlled irradiation phenomena are radiation-induced phase

transformations or phase reactions which can result in precipitation of phases not

expected at operation temperatures, dissolution of phases, and amorphization of

phases. The driving force behind these microstructural changes is – like for RIS –

the presence of large supersaturation of point defects, especially at temperatures

between 250 and 550 �C or the inverse Kirkendall effect. Irradiation-induced point

defect sinks like interstitial loops, helium bubbles, and voids can also give raise to

precipitation.

Radiation-induced precipitation is one phenomenon belonging to this class of

radiation damage. Coherent and incoherent precipitates can be formed. Coherent

particles fully or partially match the lattice structure of the matrix, and incoherent

particles don’t. Coherent particles act as sinks for solute atoms, whereas incoherent

particles allow solute atoms to be trapped and also to be released (Was 2007).

Figure 5a shows an example of radiation-induced precipitates. In this figure also

radiation-induced voids are visible. This phenomenon will be discussed in the

next section under “void swelling.” Radiation-induced nanosized precipitates

Fig. 5 (a) Concurrent void formation and M23C6 precipitation after irradiation at a PWR-relevant

dpa rate of 1.8 � 10�7 dpa/s in the experimental breeder reactor II EBR-II in Argonne at 379 �C,
after Isobe et al. (2008). (b): Zr(Cr, Fe)2 precipitate neutron irradiated at a temperature of 510 K to

a fluence of 8 dpa, showing formation of amorphous layer Motta et al. (1991)
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(e.g., nanoclusters) are responsible for an increase in strength acting as obstacles for

dislocation movement. This increase in strength reduces in turn ductility and

toughness of the material which can be considered as life-limiting materials deg-

radation as shown later for reactor pressure vessels.

Radiation-induced dissolutionmeans that due to the presence of a high density of

point defects, particles start to dissolve. This is rather similar to processes happening

without irradiation during a solution treatment of alloys at high temperatures.

Amorphization: Amorphous metals do not have an ordered atomic-scale structure.

They can be produced by very rapid cooling, and they are often referred to as metallic

glasses. Amorphization can also occur during mechanical alloying or physical vapor

deposition. Radiation-induced amorphization is a result of the radiation-induced high

point defect density. Amorphization under irradiation not only happens for metals

and alloys, it can also be found in intermetallics and ceramics like graphite or silicon

carbide. Figure 5b (Motta et al. 1991) shows a partially amorphized second phase

particle in a zirconium-based LWR cladding material (Zircaloy). Amorphization

occurs often together with decomposition or dissolution of second phase particles

in Zircaloys. The related change in matrix composition can improve the oxidation

behavior of these materials in reactor environments.

Radiation-induced disordering can happen in an ordered lattice like an interme-

tallic phase or alloy when radiation-induced diffusion processes support lattice

disordering already below temperatures where it would occur due to thermal

reasons.

Metastable phases can form when thermal and radiation-induced phase forma-

tions are in competition and that phases appear at conditions where they should be

thermally not stable or they disappear when they should remain thermally stable.

The Production of Foreign Atoms
Radiation-induced microstructural changes discussed until now happen at lower

temperatures, and they disappear once the temperature exceeds about 600 �C.
Radiation-induced production of foreign atoms (see, e.g., Schilling and Ullmaier

(1994)) is another important type of radiation damage. Particularly interesting are

reactions where gases are generated (e.g., alpha particles or protons) which can

further react with the material. This is very important because gaseous atoms,

especially helium (i.e., α), can seriously degrade the long-term mechanical integrity

of some reactor components. This has already been recognized in the mid-1960s of

the last century during the development of alloys for core components of fast

breeder reactors (Barnes 1965; Harries 1966). Nuclear reactions where helium

can be produced in metals (M) by fast neutrons (nf) can be the following:

A
ZM þ 1

0n
f ! A�3

Z�2M
0 þ 4

2He some MeVð Þ
A
ZM þ 1

0n
f ! A�4

Z�2M
00 þ 1

0n
f þ 4

2He some MeVð Þ
Nickel has the highest cross sections for such reactions, and the problems for fast

reactors even increase for fusion reactors which will be exposed to 14 MeV neutrons.
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Also thermal neutrons nth can lead to helium formation although to a lesser

extent (lower cross sections). A typical reaction (2 steps) for thermal neutrons is the

following:

58
28Niþ 1

0n
th ! 59

28Niþ γ

59
28Niþ 1

0n
th ! 56

26Feþ 4
2He 4:67 MeVð Þ

The problem with helium gas in the metal is that it can form intragranular

bubbles as well as intergranular bubbles. Intergranular bubbles lead to strong

reduction of creep ductility and sometimes also of creep rupture time. This is the

reason why nickel-base superalloys, which are basically the high temperature

materials of choice, cannot (or only limited) be used for in-core applications at

high temperatures in fast reactors.

Influence of Radiation on Mechanical Properties

In the previous sections the basic principles of radiation damage were discussed.

The microstructural changes have an effect on the macroscopic behavior of mate-

rials and consequently also on the performance of components.

Strength and Toughness

The presence of radiation-induced obstacles for dislocation movement (point defect

clusters, dislocation loops, stacking fault tetrahedra, helium-filled pores) has an

influence on the mechanical properties. Radiation hardening is generally accompa-

nied by a reduction in uniform elongation under tensile test conditions due to highly

localized plastic flow. A second consequence of radiation hardening that is partic-

ularly important for body-centered cubic (BCC) alloys is reduction in fracture

toughness and a potential shift in the ductile–brittle transition temperature to values

that are above the operating temperature. Figures 6, 7, and 8 show examples for

irradiation hardening and embrittlement. Stress–strain curves after irradiation at

different temperatures are shown in Fig. 6. The curves were shifted along the strain

axis to make the results better visible. In comparison with the yield stress of the

un-irradiated material, a significant increase (up to more than a factor of 2) was

found. Impact tests (shown in Fig. 7) reveal a very pronounced shift in the brittle-to-

ductile transition temperature, and also the upper shelf energy is significantly

reduced. At temperatures above 400 �C hardening starts to disappear as a result

of annealing. Operation of structural materials in the “lower shelf” fracture tough-

ness regime is usually not feasible based on safety considerations, because this

could lead to premature shutdown of the reactor before the design operating

lifetime is achieved as discussed later. Embrittlement can also be seen from the

temperature dependence of the fracture toughness as shown in Fig. 8.
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Radiation effects in ferritic–martensitic steels for temperatures where irradiation

hardening/embrittlement occurs (T <¼ 450 �C) are well investigated. Analyses of
embrittlement of steels which can be attributed to irradiation-enhanced precipita-

tion are only scarcely available. An extended analysis of embrittlement in the
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Fig. 6 Irradiation hardening

in a ferritic–martensitic steel.

At temperatures above

400 �C, hardening starts to

disappear as a result of

annealing (Replotted from

Hoffelner (2012), source

Robertson et al. (1997)

Fig. 7 Shift in the fracture

appearance transition

temperature as a result of

irradiation embrittlement.

FFTF: Fast Flux Test Facility,

Hanford (Replotted from

Hoffelner (2012), source

Klueh and Alexander 1992)

Fig. 8 Influence of neutron

irradiation on the fracture

toughness (Replotted from

Hoffelner (2012). Source

(Havel et al. 1993))
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absence of radiation hardening for different steels was reported in Klueh

et al. (2008). In this investigation nine different irradiated steels (ferritic–mar-

tensitic, ferritic, low activation) were analyzed that were embrittled in the absence

of irradiation hardening at temperatures exceeding 450 �C. The embrittlement was

attributed to irradiation-enhanced precipitation. Precipitates that were concluded to

cause the observed behavior varied for the different steels and included M23C6, α0,
χ, and Laves phase. The observed effects were explained by postulating irradiation-
enhanced or irradiation-induced precipitation and/or irradiation-enhanced precipi-

tate coarsening that produced large precipitates acting as crack nuclei for fracture

initiation.

Influence of Irradiation on Fatigue and Fatigue Crack Growth

Irradiation increases the yield strength, and it decreases the ductility of metallic

materials. This leads to an increase of the fatigue limit (as a result of higher

strength) at high number of cycles. However, under low cycle fatigue conditions,

the number of cycles to failure decreases as a result of radiation-induced loss of

ductility as shown in Fig. 9 and as discussed, e.g., in Hoffelner (2012) in more

detail.

Fatigue crack growth rates as a function of the cyclic stress intensity range ΔK
remain usually up to temperatures where the environment has only a negligible

effect more or less independent from the temperature. Also microstructure has no

very pronounced effect, and therefore, no significant effect of irradiation on fatigue

crack growth rates is expected. This could be confirmed for an austenitic steel as

shown in Fig. 10 (Lloyd et al. 1982). Similar insignificant influence of irradiation on

fatigue crack growth rates also reported low-alloy reactor pressure vessel steels

(James and Williams 1973).

Fig. 9 The influence of

irradiation on the fatigue

curve (schematically). See

also Hoffelner (2012)
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Influence of Irradiation on Thermal Creep

Application of load at elevated temperatures under radiation can lead to two types

of creep: thermal creep and radiation-induced creep which will be discussed later.

Degradation of stress rupture life as a result of pre-irradiation has been reported,

e.g., in Bloom and Stiegler (1972). The technical relevance of such data is – as far

as only displacement damage is concerned – questionable because usually in a

nuclear plant irradiation and thermal creep happen synchronously. Specific atten-

tion must be paid to helium at high temperatures. The presence of helium bubbles at

grain boundaries is expected to contribute synergistically to creep damage forming

also voids along the same sites. Helium bubbles at grain boundaries can therefore

deteriorate stress rupture ductility as well as creep rupture strength. Some in-pile

creep data for an austenitic steel are shown in Fig. 11 from which the influence of

irradiation creep becomes clearly visible (Puigh and Hamilton 1987). An exhaus-

tive treatment of creep-irradiation interactions for an austenitic steel can be found in

the literature (Wassiliew et al. 1986). This temperature-dependent damage pattern

is also reflected in creep–fatigue interactions.

Fig. 10 Fatigue crack

growth rates for different

qualities of type

316 austenitic steel in

un-irradiated and irradiated

conditions (Replotted from

Lloyd et al. (1982))
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Radiation-Induced Dimensional Changes

Void Swelling

Voids or bubbles containing either vacuum (vacancy clusters) or gas (helium) can

develop under irradiation in a crystal (see Fig. 5a as an example). According to

Garner (2010a) one defining feature for discrimination between void or bubble is

that bubbles tend to grow slowly by gas accumulation, while voids are either totally

or partially vacuum filled, but which are free to grow rapidly via vacancy accumu-

lation without further gas addition. Without going further into detail concerning the

growth mechanisms, it is obvious that holes in a body usually increase its volume.

Void swelling is the effect which leads to a three-dimensional change of the

material during irradiation in a temperature interval of 0.3 Tm <¼ T <¼ 0.5 Tm.

Two phases must be considered for void formation: void nucleation and void

growth (Russel 1971; Katz andWiedersich 1971). The fact that voids form although

its formation is energetically not very favorable is attributed to the fact that

additional heterogeneities like very small helium gas bubbles are present during

irradiation which promote clustering of vacancies. Void growth is quantitatively

better understood than nucleation. In contrast to interstitials which tend to migrate

to dislocations, the vacancies are rather attracted by voids. This net flux of vacan-

cies to voids causes them to grow which leads macroscopically to swelling. Three

stages can be discriminated: transient period, steady state swelling, and saturation.

During the first period nucleated voids start to grow until a steady state is reached

during which an almost linear relation between dose and volume swelling exists.

With further increasing void size, the relative contribution of radiation-induced

defects to macroscopic swelling decreases leading to saturation. The duration of the

transient regime of swelling in austenitic and high-nickel steels is exceptionally

sensitive to irradiation parameters, composition, heat treatment, and mechanical

processing (Garner 2010a).

Fig. 11 Influence of

irradiation on stress rupture

performance of an austenitic

steel. The influence of

irradiation has been attributed

to helium effects (Replotted

from Hoffelner (2012), source

Puigh and Hamilton (1987)
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Irradiation Creep

Void swelling is a three-dimensional change of the volume which occurs without

mechanical load. Superposition of radiation and mechanical load leads to deforma-

tion of the material at stresses far below the yield stress and at temperatures where

thermal creep cannot be observed. An extensive review on irradiation creep phe-

nomena is given in Garner (1994). For cold-worked and recrystallized austenitic

steel, in-beam fatigue tests with hold times at 300 and 400 �Cwere performed, and a

clear influence of the radiation was found which was attributed to irradiation

creep–fatigue interaction (Scholz and Mueller 1996).

Figure 12 shows irradiation creep during helium implantation of the ferritic

oxide dispersion strengthened (ODS) steel PM 2000 at 500 �C as an example. The

response to thermal creep is also shown for comparison, and no indications for

thermal creep can be seen.

Swelling and irradiation creep are not really separate processes. Both phenom-

ena are caused by the presence of point defects as a result of radiation. While

swelling attempts to be isotropic, irradiation creep redirects mass flow anisotropi-

cally. Irradiation creep can operate before the onset of swelling but is accelerated

when swelling begins. Radiation creep is traditionally described in terms of tran-

sient contributions saturating at 1 dpa, stress-enhanced creep (proportional to void

swelling), and the creep compliance B0 in the absence of swelling. For many high

exposure applications, the transient can be ignored (Garner 1994). Neglecting also

possible effects related to the void swelling rate, the irradiation creep compliance

B0 remains the most important contribution. It can be written as:

_e ¼ B0σK

which says that the irradiation creep rate _e is proportional to irradiation displace-

ment damage rate K and to stress σ (at least for moderate stresses). It is interesting

Fig. 12 Irradiation creep

under helium implantation of

a commercial ODS alloy

Chen et al. (2008)
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to notice that in this creep law, the stress exponent is 1 which is also the case for

diffusion-controlled thermal creep. This is compatible with the fact that radiation

creep is also a diffusion-controlled process. Irradiation creep is important for

temperatures below which thermal point defects become predominant. This has

been shown for austenitic and ferritic steels, and it was also found for advanced

nuclear materials like ODS alloys or titanium aluminides. Some discussion is

ongoing concerning the influence of type of the energetic particle on irradiation

creep. Figure 13 compares irradiation creep compliances of several types of alloys.

A typical value for the irradiation creep compliance of alloys under neutron

irradiation is about 7.10�7 MPa�1. dpa�1. For light ions qualitatively a similar

behavior was found; however, the average value was about five times higher.

Possible reasons for this difference could be:

• Real influence of the type of radiation

• Radiation rate effect (because light ion irradiation is usually performed typically

with 0.1 dpa/h compared with 0.003–0.004 dpa/h in a fast reactor)

• Dependence on total dose (ion irradiation tests go usually up to 1–2 dpa only)

• Influence of state of stress (multiaxiality)

Even if a quantitative explanation is still missing, it should be pointed out

that the qualitative results are the same. This means that creep tests under ion

irradiation allows a relative comparison between different materials which is

very important for material development. Although the phenomenology of

irradiation creep is quite consistent, a thorough physical understanding is

still missing.

Fig. 13 Comparison of irradiation creep compliances B0 as a function of irradiation temperature

T. Ions refer to light ion irradiations (protons/helium) and represent the materials: ODS PM2000,

19Cr-ODS, ODS Ni-20Cr-1ThO2, and martensitic steel. Neutrons refer to neutron irradiations to

doses below 25 dpa and above 25 dpa and represent the materials: ODS MA957, HT9, F82H, and

Fe-16Cr (Sources Hoffelner (2012), Chen et al. 2010))

1442 W. Hoffelner



Radiation Damage in Nonmetallic Structural Materials

Graphite

Graphite is of concern for some reactor types like the British AGR or the high-

temperature gas reactor. Therefore, graphite has been frequently investigated, and

the mechanisms of the damage which graphite undergoes on neutron irradiation are

quite well understood (IAEA 2000). However, many processes have not been

correlated with the properties of the pristine graphites. In other words, the behavior

of a new graphite cannot be quantitatively predicted. Certain behaviors may be

anticipated, but this is an insufficient basis for a designer. This is the reason why

worldwide projects on irradiation damage of graphite are underway. The basic

radiation damage mechanisms for graphite are comparable with metals. A displace-

ment cascade creates vacancies and interstitials which rearrange in the graphite

lattice forming interstitial loops and vacancy loops (Ball 2008; Burchell 1999). The

essential processes which happen in graphite under irradiation are the following

(Fig. 14). As a result of vacancy creation and formation of vacancy clusters, the

crystal undergoes an a-axis shrinkage. In contrast to this shrinkage, agglomeration

of interstitials leads to an expansion along the c-axis. At irradiation temperatures

Tirr < 400 �C, damage accumulates rapidly (lack of vacancy mobility), and the

crystal changes start to interact with the porosity. At high temperatures (Tirr> 300 �C)
shrinkage with turnaround to swelling at higher doses is observed. This

turnaround into volume swelling due to incompatibility of crystal strains causes

new pore generation. The radiation-induced microstructural changes lead not only

to swelling and shrinking, but they also affect the physical properties of graphite.

Thermal creep in graphites is negligible at temperatures up to �2,000 �C. Irradia-
tion creep is significant at all temperatures. Application of external load leads to

irradiation creep of graphite similar to metals Fig. 15. Without external stress the

graphite follows the “unstressed” line which shows shrinkage converting to

COLLAPSING
VACANCY
LINE

CONTRACTION

NEW PLANE

EXPANSION

VACANCY
INTERSTITIAL

(c)

(a)

Fig. 14 Dimensional changes of graphite as a result of point defect reactions (Courtesy Burchell

TD ORNL, Ball (2008), Burchell (1999))
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swelling with increasing radiation. Addition of a tensile load enhances swelling,

whereas addition of a compressive load diminishes swelling.

Silicon Carbide

Fiber-reinforced materials like SiC/C or SiC/SiC are candidates for structural

applications in fusion as well as advanced fission plants. They were mainly inves-

tigated with respect to fusion (Ozawa et al. 2010). Silicon carbide shows different

types of radiation damage depending on temperature:

• Amorphization (up to about 200 �C)
• Point defect swelling (between 200 and 1,000 �C)
• Void swelling (above 1,000 �C)

Significant improvements with respect to resistance against irradiation could be

made for SiC fibers. Also strong improvements of the matrix could be achieved

with advanced compaction techniques. Indications exist that the strength of irradi-

ated advanced fiber material could remain unchanged up to at least 10 dpa and

perhaps higher. Further advances will likely require tailoring the interface swelling

characteristics to compensate for differential swelling between the fiber and matrix.

An exhaustive review of state of the art in ceramics for nuclear applications can be

found in Katoh et al. (2007). Although this report is entitled as “Assessment of

Silicon Carbide Composites for Advanced Salt-Cooled Reactors,” it is a broad

review of literature and results on radiation damage of SiC/SiC covering particu-

larly fusion developments. For some advanced reactor applications like control rod

or structural parts of a VHTR, the radiation damage of commercially available

(German MAN today MT Aerospace AG, German DLR) ceramic composites

(SiC/SiC, SiC/C) was investigated. Irradiation was performed in the SINQ neutron

spallation source of PSI (2013) (up to 27 dpa, 2,300 appm He, up to 550 �C)
(Pouchon et al. 2011). Under these conditions the chemical vapor-infiltrated (CVI)

SiC with amorphous carbon fibers showed the best radiation resistance (almost no

loss of strength). The surprisingly inferior behavior of SiC/SiC might be attributed

to the fact that in the material investigated no radiation optimized SiC fibers were

used (Pouchon et al. 2011).

Fig. 15 Irradiation-induced

dimensional change in

stresses and in unstressed

graphite (Courtesy Burchell

TD ORNL, Ball (2008),

Burchell (1999))
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Irradiation Damage of Components

Light Water Reactors

Pressure Vessels
Light water reactor pressure vessels are made of low-alloy steel with the inside

covered with austenitic steel cladding (against corrosion) and weldments of flanges

and penetrations. The aging behavior of the RPV is particularly important because

of its enormous safety relevance. Low-alloy steels exhibit a brittle–ductile temper-

ature transition. Above a characteristic temperature RPV steels are tough which

means that they have a relatively high fracture toughness. Below this characteristic

temperature the fracture toughness is low and fracture is dominated by cleavage.

Embrittlement is characterized by an increase in the ductile-to-brittle transition

temperature as well as a reduction in the fracture toughness in the ductile fracture

regime. The lower fracture toughness for the embrittled material reduces the

allowable (critical) crack length and therefore reduces the safety margin as shown

in Fig. 16. The lower line refers to the real crack length and how it develops with

time. The upper line refers to the critical crack length at which the component fails.

The critical crack length is not a constant because effects like thermal embrittle-

ment or thermal aging can reduce the fracture toughness and therefore also reduce

the critical crack length. Nondestructive evaluation performed in intervals deter-

mined by the expected subcritical crack growth rates (ISI) and condition-based

monitoring are therefore extremely important safety measures. Main parameters for

irradiation damage of RPVs are material and its chemical composition, tempera-

ture, neutron flux, energy spectrum of neutrons, irradiation time, and neutron

fluence.

Radiation damage of light water reactor pressure vessels has been summarized

and thoroughly reviewed in Odette and Lucas (2001), Hashmi et al. (2005), and

Fig. 16 Schematic of damage development in nuclear plants; ISI means “in-service inspection”

(Source Bakirov (2010))
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Steele (1993). It is typically caused by displacement damage and irradiation-

induced nano-precipitates:

• Displacement damage: Point defect clusters and loops acting as pinning points

for dislocations increasing the strength and decreasing ductility

• Radiation-induced phase transformations: Precipitation of Cu nanoclusters (see

Fig. 17) or “manganese–nickel-rich precipitates” (MNPs) or “late blooming

phases” (LBPs) which additionally contribute to hardening and embrittlement

Copper impurity has long been recognized as the dominant detrimental element in

reactor pressure vessel (RPV) steels at copper levels in excess of about 0.1 wt%. The

formation of copper-rich precipitates gives rise to considerable hardening and embrit-

tlement at levels of neutron fluencewell below the design end-of-life (EoL) of RPVs of

operating nuclear powerplants. The role of copper content on the embrittlement ofRPV

steels was thoroughly investigated with small angle neutron scattering (SANS) and

tensile tests (Bergner et al. 2009). From the 1990s there has been increasing evidence of

clusters enriched with manganese and nickel appearing in low-Cu steels (Cu 0.1 wt%).

The terms “manganese–nickel-rich precipitate” (MNP) or “late blooming phase”

(LBP) (Odette and Wirth 1997) emphasize different aspects of this phenomenon.

MNPs were first predicted by thermodynamic arguments (see, e.g., Odette and

Fig. 17 Atom probe

tomography (APT) image of

Cu–Ni nanocluster in

irradiated RPV-steel (Source

(Miller and Russel 2007))
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Wirth (1997, Odette and Lucas (1998)) and then confirmed by means of several

experimental techniques including atom probe tomography (APT) and positron

annihilation spectroscopy. The vessel walls in the reactor beltline regions are

subjected to the highest fluences and degradation due to irradiation embrittlement.

Therefore, the welds within that region become possibly the weakest link since the

welds are likely to contain defects that can become cracks. Additionally, the higher

copper (and nickel) content in many of the older vessel welds has led to much

higher radiation damage sensitivity. The base metals should not be ignored, since

the copper content in older plates and forgings was not controlled to a minimum

level; however, there appears to be less irradiation embrittlement in base materials

as compared to welds with the same copper/nickel concentrations. A quantitative

understanding of irradiation embrittlement of the reactor pressure vessels is

extremely important for assessments of residual safe life of a nuclear plant.

Condition-based monitoring of degree of damage belongs therefore to key tasks

in several plant life extension concepts.

Surveillance specimen can help to assess the degree of radiation damage of an

RPV. Those samples were built into the vessel at locations where they were

exposed to neutron damage. After removal the samples could be further analyzed

(Charpy tests, metallographic studies, etc.) for an assessment of the condition of the

RPV. Fracture toughness can be assessed from shifts of the ductile-to-brittle

transition temperature using the “master-curve”“approach.” It is based on the

observation that at least for low-alloy steels, a good relationship between a “refer-

ence temperature” and the fracture toughness, KJC, exists:

KJC ¼ 30þ 70:exp 0:019 T � T0

�� �
MN m�3=2

h
where T is the temperature of interest and T0 is the ductile-to-brittle transition

temperature (Wallin 1991; IAEA 2009). To improve the accuracy of residual life

assessments, also more detailed analyses with a combination of mechanical testing

of miniaturized samples, extended microstructural analyses, and advanced material

modeling tools are considered (see, e.g., Hoffelner (2012)).

Reactor Internals
Radiation-induced material changes and susceptibility to intergranular failure of

light water reactor core internals were summarized in Bruemmer et al. (1999b).

Such failures have occurred after many years of service in boiling water reactor

(BWR) core components and, to a lesser extent, in pressurized water reactor (PWR)

core components. These failures occur in stainless iron- and nickel-base alloys

exposed to a significant flux of neutron radiation in the reactor coolant environment.

Stress corrosion cracking (SCC) without radiation is an unexpected sudden

failure of ductile metals subjected to a tensile stress in a corrosive environment.

The stresses can be the result of the crevice loads due to stress concentration, or they

can be caused by the type of assembly or residual stresses from fabrication (e.g.,

cold working). SCC cracks are predominantly intergranular in nature. Reactor
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internals do not belong to the group of pressure boundaries, and therefore, the

mechanical loads are lower than in RPV and pressure piping. Internals are mainly

exposed to the coolant, and therefore, corrosion resistance is more important than

strength. Under these conditions austenitic steels are much better suited than the

low-alloyed ferritic/bainitic steels used for RPVs. During service cracking suscep-

tibility often results as a combination of radiation, stress, and a corrosive environ-

ment. The resulting failure mechanism has therefore been termed irradiation-

assisted stress corrosion cracking (IASCC). Intergranular(IG) SCC is promoted in

austenitic stainless steels when a critical threshold fluence is reached (see, e.g., Was

(2007), Hoffelner (2012)). This time dependence leads to occurrence of cracking

after some time of operation as shown in Fig. 18 (Bruemmer et al. 1999b). There-

fore, it took quite a while until this type of damage became obvious in nuclear

plants. As in classical stress corrosion cracking (SCC), the aqueous environment

chemistry and component stress/strain conditions also strongly influence observed

cracking.

Several important metallurgical, mechanical, and environmental aspects that are

believed to play a role in the cracking process (Bruemmer et al. 1999b; Andresen

et al. 1990; Was and Andresen 1992; Scott 1994; Ford and Andresen 1994) are

shown schematically in Fig. 19.

The damage happens most probably in the following form:

• Irradiation damage leads to hardening of the matrix making basically the grain

boundaries more attractive as path for growing cracks. This is what often

happens as a result of hardening also without irradiation.

• Irradiation is also responsible for changes in grain boundary compositions by

radiation-induced segregation (primarily chromium depletion) which can further

weaken the cohesion between them.

• The surface of the cracks (particularly at the crack tip) is exposed to the

radiolysis products which lead to chemical corrosion attack.

• Additionally, the crack can act as crevice supporting crevice corrosion.

Fig. 18 Possible damage of

LWR components due to

irradiation-assisted stress

corrosion cracking dependent

on time of exposure, given as

irradiation dose (Source

Bruemmer et al. (1999b))
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All these facts together contribute to enhanced crack growth along the grain

boundaries. As cracks in the reactor internals do not have the same damage

potential as cracking of primary boundary components, measures were developed

to stop or to slow down crack growth by chemistry (MacDonald et al. 1995;

Hettiarachchi et al. 1995). A successful concept is the technique of noble metal

chemical addition (NMCA) which has been commercially applied since 1996

(Hettiarachchi et al. 1997).

With respect to life extension and residual life assessments of reactors, discus-

sions are ongoing if void swelling and eventually even helium effects might become

relevant for very long times of operations (see Fig. 18). Void swelling was of

concerns and even application limiting for earlier fast reactors. But void swelling

has not yet been of real concern for LWR internals. Due to the very low dose (2–3

dpa maximum) expected in the shrouds of BWRs, void swelling per se is not

considered to be a license extension issue for BWRs. However, as recently

discussed (Garner et al. 2005; Garner 2010b), there is a growing body of evidence

that swelling and irradiation creep might become important for life extensions of

LWRs to 60 years and beyond. The most swelling-vulnerable locations (>5 %) are

expected to be concentrated in small volumes of the reentrant corners of PWR
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Fig. 19 Main mechanisms of irradiation-assisted stress corrosion cracking; reprinted with per-

mission of ASM International. All rights reserved. www.asminternational.org (Source see also

Was (2007))
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baffle-former assemblies constructed from AISI 304 stainless steel. Even at lower

swelling levels, however, differential swelling of annealed 304 baffle-former plates

and cold-worked 316 baffle bolts is being considered as a possible contributor to

corrosion and cracking of bolts.

Zircaloy Claddings
Claddings are the structural parts which are mostly exposed to irradiation and

therefore to irradiation damage. The effects of neutron irradiation on microstructure

and properties of Zircaloy were summarized by Adamson (Adamson 2000). For

Zircaloy with a hexagonal crystal structure black dots, dislocation loops (often

related to the basal c-plane) and microstructural changes leading to swelling and

irradiation creep are the most significant types of damage. After service exposure in

LWRs, a high density of black spots is present (see Fig. 20). The spots are very

small, and a further analysis of its nature is not easily possible.

Irradiated Zircaloy undergoes also swelling and irradiation creep both being

important for design because they are responsible for structural changes during

service which always bears some risk for failure. Swelling of Zircaloy is of high

importance for CANDU reactors where also the pressure pipes are made of

Zircaloy. Swelling phenomena of Zircaloy are today reasonably well understood

which is a result of the long experience with light and heavy water reactors.

However, increasing burnup and possible effects of service exposure on fuel rods

after its active life during transport or at final storage trigger active research in this

field still today. Swelling is a function of fluence, microstructure, and temperature

but also on hydrogen content and other parameters.

Fig. 20 Irradiation damage

in service-exposed Zircaloy

cladding. Black dots are

clearly visible (TEM bright

field micrograph replotted

from Hoffelner (2012))
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Swelling and creep of samples from several sections of pre-exposed,

recrystallized Zircaloy-4 guide tubes from 2 commercial PWRs were studied in

the Halden test reactor (McGrath et al. 2010). The load for the creep test was

applied by the loop pressure squeezing a sealed bellow which applied a compres-

sive axial force on guide tubes. The results are shown in Fig. 21. The radiation creep

effect due to compressive load is clearly visible. It also looks like increasing

hydrogen content would increase swelling and radiation creep. According to the

authors of this study, a quantitative explanation needs to consider several factors

including the prehistory of the claddings.

Phase changes are another effects encountered in Zircaloy under irradiation as

previously mentioned already. Zircaloy contains (mainly intermetallic) precipi-

tates, so-called second phase particles which play an important role for oxidation.

Common precipitates are Zr(Fe,Cr)2 and Zr2(Fe,Ni) which can amorphize and

decompose during service (Valizadeh et al. 2010; Herring and Northwood 1988).

Simultaneously, iron (and at a much slower rate, chromium) can be lost to the

matrix. Decomposition of second phase particles changes the local chemical com-

position of the matrix and plays therefore an important role for the oxidation of

Zircaloys.

Advanced Nuclear Plants

Basic Considerations
Although current LWRs undergo permanent improvements, also other reactor types

are considered for the future. Six reactor concepts shown in Table 2 were chosen for

further consideration within the International Generation IV initiative (Roadmap

2002). Cooling media different from water (except for the supercritical water

reactor) as well as the use of a fast-neutron spectrum (in contrast to the thermal

spectrum of current light water reactors) are characteristics of these systems.

Thermal neutrons have typically energies ranging from about 1 eV to 0.1 MeV.

Fast neutrons have energies higher than 0.1 MeV. The coolants allow higher

operation temperatures and provide therefore also options for combined cycle

plants generating electricity and process steam or heat. The fast spectrum allows

Fig. 21 Irradiation creep of

Zircaloy guide tubes tested in

the Halden test reactor

(Source McGrath

et al. (2010))
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closed fuel cycles which would be a real step towards waste minimization and

resource saving. A fast spectrum is obtained when the reactor operates without

moderators like water or graphite. Together with advanced recycling techniques,

fast reactors could use spent fuel currently considered as long-life high-level

radioactive waste as mixed fuel. The residuals for final storage would be only

fission products with much shorter half-life than plutonium and minor actinides

which are currently of concern for final repositories. Also uranium could be used far

more efficiently as fuel.

Except the SCWR and GFR, several reactor concepts have been already studied

earlier (Hoffelner et al. 2011). The German HTR was a high-temperature reactor

with direct cycle helium turbine, and the French “Phenix” and “Superphenix” were

sodium fast reactors. Experience with lead-cooled reactors exists from Russian

submarines. MSR considerations were reported already in the 1960s of the last

century by Oak Ridge National Laboratory (ORNL).

Besides the six GenIV concepts, also other advanced nuclear power options are

under consideration: Quite some interest found the sodium-cooled traveling wave

reactor of Intellectual Ventures (US) in which the active part penetrates slowly

(several years) through pipes (similar to a burning cigarette) (Wald 2013) and

Accelerator-Driven Systems (ADS) where the neutrons are created by directing

protons from an accelerator towards a target, creating neutrons this way (Rubbia

et al. 1995). These neutrons are coupled preferentially to a lead-cooled fast reactor.

Finally nuclear fusion should be mentioned as advanced nuclear system (2013),

however, without further description.

Fast neutrons are (according to higher energy) more damaging to radiation-

exposed materials than the predominantly thermal neutrons in current LWRs. In

contrast to LWRs only scarce information concerning in-service radiation damage

Table 2 Generation IV types of reactors and nuclear plants. Nuclear fusion is often referred to as

Generation V

System

Neutron

spectrum Coolant

Outlet

temperature �C
Fuel

cycle

Typical size

(MWe)

VHTR (very-high-

temperature reactor)

Thermal Helium 900–1,000 Open 250–300

SFR (sodium-cooled fast

reactor)

Fast Sodium 500–550 Closed 50–150

300–1,500

600–1,500

SCWR (supercritical-

water-cooled reactor)

Thermal/

fast

Water 510–625 Open/

closed

300–700

1,000–1,500

GFR (gas-cooled fast

reactor)

Fast Helium 850 Closed 1,200

LFR (lead-cooled fast

reactor)

Fast Lead 480–570 Closed 20–180

300–1,200

600–1,000

MSR (molten salt

reactor)

Thermal/

fast

Salts

fluoride

700–800 Closed 1,000

1452 W. Hoffelner



of components is available. Environments other than water and higher operation

temperatures are additional challenges for materials and components.

Vessel embrittlement is expected to stay as an important issue also for advanced

reactors. The advantage for SFR, LFR, and MSR types is that they don’t need a

pressure vessel, only a vessel which is preferentially made of austenitic steel or a

nickel-base alloy. Vessel embrittlement is not expected to have the same impact on

safety like in case of LWRs. SCWR, GFR, and VHTR vessels are pressurized

vessels necessitating ferritic–martensitic steels (low-alloy steels, martensitic 9 % Cr

steels) which are expected to show comparable displacement damage like current

RPVs. Eventually other long-term degradation mechanisms need to be investigated.

Swelling and irradiation creep could become life-limiting factors for claddings

and internals of fast reactors. Ferritic–martensitic steels show a better swelling

behavior than austenitic steels (see Fig. 22). Austenitic steels based on 316 with

distinct Ti additions (15/15 Ti) show acceptable swelling behavior and are therefore

considered as claddings for SFRs at least for moderate burnup.

Development of helium voids and bubbles is considered as a major damage

cause particularly with the high temperatures causing additionally thermal creep.

Helium produced during service can move to grain boundaries forming bubbles and

reducing creep ductility and creep rupture strength (see Fig. 11). Oxide dispersion

strengthened (ODS) steels contain nanosized oxide dispersoids which can trap the

helium and therefore prevent it from moving to the grain boundaries. Unfortunately

the production of ODS materials is rather difficult, and additionally they are

extremely expensive which limits its potential for future applications. Interestingly,

ODS steels do not show significant improvements in irradiation creep although they

show much better thermal creep resistance compared with non-ODS grades as

shown in (Toloczko et al. 2004; Chen and Hoffelner 2009).

Advanced Material Characterization Tools
To gain more confidence on possible material degradation in service besides testing

and evaluation of traditional samples as methods of advanced material research

(materials modeling and model validation) could make an important contribution to

safe operation of advanced nuclear plants. Figure 23 summarizes current testing,

Fig. 22 Swelling of different

cladding materials in French

fast reactors.

Ferritic–martensitic steels

show the best behavior, but

the titanium-modified

austenitic steels could provide

an alternative (Source Yvon

and Carré (2009))
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analysis, and modeling methods which are used for materials and damage charac-

terization. A detailed description of the different techniques with respect to assess-

ment of irradiation damage in advanced plants goes far beyond the scope of this

chapter, and only a few important aspects shall be highlighted. The most important

modeling methods are shown in Fig. 24.

Modelling

ab initio /  MD

Analysis

(X-ray, n)-
small angle, scattering, absorb

HR TEM

AFM TEM

SEM, EPMA, SIMS

ICPMS optical methods

Neutron
Radiography

component testingFIB

Hardnessnano indentation

micro indentation

scratch tets

mini- & full-size samples
creep, tensile, bending, ..

Testing

KMC

rate theory DD FEM

Fig. 23 Testing and analysis techniques used to characterize material behavior on different scales

(MD molecular dynamics, DD dislocation dynamics, KMC kinetic Monte Carlo, n neutrons, HR

high resolution, TEM transmission electron microscope, SEM scanning electron microscope,

AFM atomic force microscope, ICPMS inductively coupled mass spectroscopy, SIMS secondary

ion mass spectroscopy, EPMA electron probe micro analysis, FIB focused ion beam, FEM finite

element analysis) (Source Hoffelner (2012))

Fig. 24 Scale dependence of

different modeling techniques

(Source Hoffelner (2012))
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Ab initio calculations investigate the physics of matter. They are mainly based

on the application of density functional theory (DFT). This allows (with a number

of approximations) the determination of the energy of the ground state of a system

of interacting particles. Basically this would need a many-body solution of the

quantum mechanics Schrödinger equation. DFT provides a reformulation of this

problem to a single-body problem. Due to computational restrictions, such calcu-

lations are currently limited to a small number of (up to 1,000) atoms. Most

calculations are static, thereby neglecting dynamic effects. Methods for dynamic

calculations basically exist, but they are extremely computing time-consuming and

expensive. Despite these limitations which do not allow the investigations of

temperature effects or the behavior of larger systems, the method allows to gain

insight into the basic atomistic behavior of a solid.

Details about the arrangement of atoms and similar microstructural issues can be

studied with molecular dynamics (MD) simulations. Molecular dynamics imple-

ments the potentials to describe the movement of atoms in space and time as results

of interatomic and external forces. The equations of motion of classical mechanics

in combination with the potentials determined with quantum mechanics are solved

for a set on N interacting atoms starting from assigned initial conditions. Control-

ling variables like temperature or pressure can be conveniently introduced as

constraints.

MD simulation can accurately describe the atomistic behavior, but the total

simulation time is typically limited to less than 1 ms. On the other hand, the

important damage processes in structural materials usually occur on much longer

timescales. These processes include reactions between atoms, adsorption-

desorption on the surface, occasional transitions from one state to another, and

especially diffusion and annihilation of defects after a cascade event in an irradi-

ation experiment. Such effects can be studied using a combination of MD and

Kinetic Monte Carlo (KMC). The KMC method is a probabilistic approach that

enables the prediction of longer-term damage evolution. The output data of MD is

used in KMC in order to determine the probabilistic motion and reaction between

defects and atoms (Dalla Torre et al. 2005; Barbu et al. 2005; Domain et al. 2004)

where motion and clustering of point defects are the dominant mechanism.

Models based on reaction rate theory have been broadly and successfully

applied to simulate radiation-induced microstructural evolution radiation damage

(Stoller and Greenwood 1999; Stoller et al. 2008). The use of these models involves

the simultaneous solution of a modest number of differential equations to predict

phenomena such as void swelling, irradiation creep, or embrittlement. The time-

scale of interest for these processes is determined by atomic diffusion rates and the

desired in-service lifetime of irradiated components. Rate theory is well suited to

span this time range from seconds to years and a size scale from micrometers to

macroscopic dimensions. However, the source term in the rate equations is dictated

by atomic displacement cascades, events that occur on a timescale of a few tens of

picoseconds and a few tens of nanometers in space.

Discrete dislocation dynamics (DDD) simulation is a mesoscopic tool to study

plastic deformation and the interaction between dislocations as well as between
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dislocations and obstacles. It directly simulates the dynamic, collective behavior of

individual dislocations and their interactions. In a numerical implementation,

dislocation lines are represented by connected discrete line segments that move

according to driving forces including dislocation line tension, dislocation interac-

tion forces, and external loading. Discrete dislocation dynamics operates in single

crystals. There are also developments of dislocation field dynamics modeling where

dislocations are characterized by stress fields rather than discrete dislocation line

elements (Ghoniem et al. 2000; Ortiz 1999; Koslowskia et al. 2002). Such models

operating on larger scale than discrete dislocation dynamics are able to go beyond

the limitation of single crystals.

Constitutive equations and finite element calculations describe the macroscopic

behavior of a material. Figure 25 (Stoller and Mansur 2005) shows schematically

how the different modeling techniques can contribute to the understanding of

radiation damage.

Model validations can be done with advanced analytical techniques like high-

resolution TEM or beamline techniques (X-rays, neutrons) and with advanced

mechanical testing. In contrast to testing of large laboratory samples, advanced

mechanical testing uses micro- or nanosize testing equipment. This allows the

Ab Initio Calculations
Interatomic Potentials

Thermo-physical properties
Alloy design

Microstructure and
precipate evolution

Plastic properties and
Fracture

Primary defect production
Diffusion of defects and their reactions
Dislocation motion (glide/climb)

Fundamental properties of defects
defect clusters and interactions between
defect clusters

MD Simulations

Kinetic MC and Rate
Theory

DD and continuum
methods

Correlation of radiation effects data from neutron, electron, and ion irradation
Extrapolation to higher doses and lower dose rates

Fig. 25 Elements of a full-scale model description of radiation damage in metals (Source Stoller

and Mansur (2005))
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determination of mechanical properties of small volumes which is necessary for a

good correlation between microstructure and strength. Experimental investigation

of the early stage of radiation damage needs tools with extremely high time

resolution and extremely short detection ranges. It can be expected that the new

generation of beamline techniques (free electron lasers (Swissfel 2011; Jefferson

Lab 2013)) can bring significant contributions to experimental studies of early

irradiation damage.

Determination of material response under neutron irradiation requires very time-

consuming, difficult, and expensive tests under neutron irradiation. Tests with

other energetic particles (ions, electrons) are therefore an important tool to study

radiation damage (though quantitative differences to neutrons might punctually

exist).

Although all these advanced methods are remarkable improvements for the basic

understanding of materials, they can currently not deliver real design data. For those

data still testing of large samples and service experience in test beds and demon-

strators are necessary. However, it can be expected that traditional design methods

together with advanced materials science and service experience can strongly

enhance damage and lifetime assessments in future nuclear plants as schematically

shown in Fig. 26.

Materials Data,
Constitutive
Equations

FE-calculation

FE-analysis

T, N, stress,
strain. strain-rate

Service
Performance

End of Design
Life

Code Cases and
Design Rules

Modeling
Toolbox

Advanced
Condition
Monitoring

Fig. 26 Possible interaction of advanced modeling methods and advanced condition monitoring

techniques with traditional design (Source Hoffelner (2012))
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Conclusions

Irradiation damage of structural materials is a complex particle–matter interaction

which shows a wide range of effects at different timescales:

• Scattering effects leading to point defect supersaturation

• Point defect reactions leading to obstacles for dislocation movement

• Nuclear reactions leading to phase transitions and phase changes

• Nuclear reactions leading to transmutation of elements

On component level these effects lead to changes in geometry (swelling),

changes of mechanical properties (hardening/embrittlement), and changes of chem-

ical behavior (irradiation-assisted stress corrosion cracking, oxidation resistance).

Irradiation together with mechanical loads can lead to irradiation creep at temper-

atures far below which thermal creep occurs. Particularly important are transmuta-

tion reactions which can lead to alpha-radiating isotopes which are sources for gas

development in the material which can severely degrade mechanical properties.

Irradiation effects and its consequence on material properties and safety are

quite well understood for current light water reactors with service experience of

about 50 years. New future nuclear plants will in principle undergo the same types

of damage. However, the fast-neutron spectrum together with higher temperatures

and new working environments need a careful assessment of damage and safety in

such plants. Advanced tools and methods of materials science are expected to bring

significant contributions there.
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Abstract

In this chapter, after a quick introduction on the literature of healing and super

healing concept, the damage/healing mechanics principles are investigated. The

concept of super healing of materials is then introduced into the framework of

continuum damage mechanics (CDM). Super-healed material can be seen as a

strengthened material by further healing when the whole damage is recovered by

healing of a damaged material. Therefore, in this chapter the process of healing

beyond what is necessary for damage recovery is called super healing. Super

material is the final objective of the super healing process when the material
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achieves more stiffness at the end of super healing process. Then, by introducing

the anisotropic super healing concept, these concepts are generalized in tensorial

form to be used in anisotropic damage and healing of materials. Consequently,

three fundamental issues in CDM are discussed. Nature of the damage process is

investigated by dissecting the expression of the effective stress into an infinite

geometric series. Several stages of damage are introduced which are termed

primary, secondary, tertiary, etc., using this expression. New definition of the

damage variable is then introduced for small damage cases. The new concept of

undamageable materials that maintain a zero value of the damage variable

throughout the deformation process is introduced. Finally and in the last section

of the chapter, the forming of a singularity which leads to initiation of the

process of fracture is shown in a continuous region within the framework of

CDM. The internal damage processes leading to a singularity are illustrated

mathematically. This section potentially provides a crucial link between the

damage and fracture mechanics.

Introduction

Self-healing process in the material from damaged state has paid attention increas-

ingly in the damage mechanics literature. Undergoing research shows two different

self-healing mechanisms: one is an active or autonomous system as a coupled

system in which damaging triggers self-healing (Pang and Bond 2005; Toohey

et al. 2007; White et al. 2001); another is passive system as a decoupled system in

which healing occurs after damage identification using external detection (John and

Li 2010; Li and John 2008; Li and Muthyala 2008; Li and Nettles 2010; Li and

Uppu 2010; Liu and Chen 2007; Nji and Li 2010a, b; Varley and van der Zwaag

2008; Zako and Takano 1999). Some significant new results on damage and healing

of materials are presented by Pavan et al. (2010), Yuan and Ju (2012), and Zaı̈ri

et al. (2011). This process is observed experimentally even in nanoscale in wide

range of materials (George and Warren 2002; Nemat-Nasser 1979, 1983; Voyiadjis

and Park 1996; Wang and Sekerka 1996). Healing in constitutive models is used in

two different approaches: one is used to characterize the healing process usually by

a phenomenological approach (Miao et al. 1995), and the other is simple model

(Adam 1999; Simpson et al. 2000). Thermodynamic-based damage and healing

models are also introduced recently and are available in the literature (Barbero

et al. 2005; Miao et al. 1995). However, constitutive modeling of self-healing

material is still in progress since experimental aspect of healing has significant

difficulties. During the past decades, progress has been made in the damage

mechanics of various materials including elastoplastic models (Chaboche 1991;

Ginzburg 1955; Kattan and Voyiadjis 1993; Lee et al. 1985; Naderi et al. 2012;

Voyiadjis 1988; Voyiadjis and Kattan 1990, 1992; Voyiadjis et al. 2012); elasto-

viscoplastic models (Chaboche 1997; Lemaitre and Chaboche 1990); continuum

damage models (Kachanov 1958; Voyiadjis and Kattan 2009); materials surface

degradation models including rolling, sliding contact fatigue, fretting fatigue, and
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adhesive wear (Loginova et al. 2001; Singer-Loginova and Singer 2008; Wheeler

et al. 1993); and coupled elastoplastic damage models (Chow and Jie 2009;

Lemaitre 1985; Voyiadjis et al. 2009). The damage variable in scalar or second-

order tensor forms shows the average material degradation (loss of stiffness). This

variable lumps all kinds of defects such as micro-cracks, voids, and micro-cavities

at the microscale level (Lubarda and Krajcinovic 1993; Voyiadjis and Kattan 2009).

It is shown that in the case of isotropic damage, two independent damage variables

are necessary to predict damage level (Cauvin and Testa 1999; van der Waals

1979). It has been argued that sufficient accuracy can be obtained to find certain

parameters of damaged materials under the assumption of isotropic damage

(Lemaitre 1984).

The representative volume element (RVE) is widely used in continuum damage

mechanics in which the discontinuities (micro-voids, micro-cracks, etc.) are not

considered explicitly in the RVE. The discontinuous and discrete elements of

damage effects are lumped together through the use of a macroscopic internal

variable. Phenomenological approach is adopted usually, and the consistent for-

mulation is derived using sound mechanical and thermodynamic principles. Ther-

modynamically consistent framework is achieved using the concept of

macroscopic internal variables which is used to lump the effect of all defects

(Ginzburg and Landau 1965; Hansen and Schreyer 1994; Landau and Ter Haar

1965; Miao et al. 1995; Murakami 1983; Voyiadjis and Park 1997; Voyiadjis and

Kattan 2006, 2012b; Voyiadjis and Park 1995; Voyiadjis et al. 2009). The concept

of effective stress for uniaxial tension was first introduced by Kachanov (1958) and

Rabotnov (1968). It has been shown that the isotropic damage assumption is

sufficiently enough to predict the load carrying capacity and the number of cycles

or the time to local failure in structural components (Kattan and Voyiadjis 2001;

Voyiadjis and Kattan 2005, 2006). However, anisotropic damage propagation has

been observed experimentally (Lee et al. 1985; Sidoroff 1981) even in an initially

isotropic solid. The damage variable is considered in scalar form in the case

of isotropic damage mechanics, and the evolution equations can be handled easily

(Voyiadjis and Kattan 2009). The concept of an undamageable material

was proposed recently by Voyiadjis and Kattan (2012b, 2013c, d). This kind of

material is considered as a hypothetical material that cannot be damaged during the

loading process. Furthermore, decomposition of the damage tensor into two

damage components, one due to cracks and one due to voids, is developed by

Kattan and Voyiadjis (2001). Finally, a conceptual framework for general damage

processes operating in series and in parallel is introduced by Voyiadjis and Kattan

(2012a).

In this chapter, after a quick introduction on the literature of healing and

super healing concept, the damage/healing mechanics principles are investigated.

The concept of super healing of materials is then introduced into the framework of

continuum damage mechanics. Super-healed material can be seen as a strength-

ened material by further healing when the whole damage is recovered by healing of

a damaged material. Therefore, in this chapter the process of healing beyond what

is necessary for damage recovery is called super healing. Super material is the final
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objective of the super healing process when the material achieves more stiffness

at the end of super healing process. Consequently, by introducing the anisotropic

super healing concept, these concepts are generalized in tensorial form to be

used in anisotropic damage and healing of materials. Mechanics of damage/

healing and super healing are illustrated using an example for the case of plane

stress. Consequently, the characteristics of the super material are outlined in the

following section. Furthermore, three fundamental issues in continuum damage

mechanics are discussed, and fracture mechanics and damage mechanics are

linked through the internal damage process leading to singularity in continuous

regions.

Review of Damage/Healing Mechanics

In this section, the damage/healing mechanics principles are reviewed considering a

fictitious undamaged material configuration as shown in Fig. 1. Any nonzero

component of the effective Cauchy stress tensor σij such as the tension component

σ can be obtained by the following relation (Kachanov 1958; Rabotnov 1963;

Sidoroff 1981; Voyiadjis and Kattan 2006, 2009):

σ ¼ σ

1� φ
(1)

σ is the corresponding component of the Cauchy stress tensor and φ is the isotropic

damage variable. The damage variable φ changes between 0 and 1. It is worth to

mention that the value φ ¼ 0 shows the undamaged state while complete failure

(fracture) happens when the value of φ tends to 1.

Defining an intermediate configuration as partially healed material which is

indicated in Fig. 2 and considering this configuration as a combination of damage

and healing between undamaged and damaged state as shown in Fig. 3, the effective

stress σ is written as (Chow and Wang 1987; Park and Voyiadjis 1998; Voyiadjis

and Park 1997; Voyiadjis et al. 2012)

σ ¼ σ

1� φ 1� hð Þ (2)

where h is the healing variable. The healing variable h is also changes 0 and 1. It is
worth to mention that the value h ¼ 0 shows the absence of healing; therefore,

Eq. 1 can be obtained from Eq. 2 by substituting h ¼ 0 in this case. On the other

hand, the value h ¼ 1 describes complete healing, i.e., recovery of all the damage.

In this case, material goes back to the beginning of the loading (undamaged state),

and the actual stress and the effective stress are equal in Eq. 2. Comparison

between Eqs. 1 and 2 confirms the replacement of the damage variable φ in

Eq. 1 by the variable φ (1 � h) in Eq. 2 in self-healing materials. Both damage

and healing effects are combined through this new variable in one single parameter
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which is called here the combined damage/healing variable (Chow and Wang

1987) termed this variable as the effective damage variable. However, Eq. 2 is

not written explicitly by Park and Voyiadjis (1998) and Voyiadjis and Park (1997),

and it is not recognized as the combined damage/healing variable as a single

parameter.

Fig. 2 Healing configurations in terms of cross-sectional area reduction (After Voyiadjis and

Kattan 2013a)

Fig. 3 Damage and healing configurations in terms of cross-sectional area reduction (After

Voyiadjis and Kattan 2013a)

Fig. 1 Damage configurations in terms of cross-sectional area reduction (After Voyiadjis and

Kattan 2013a)
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Based on Eq. 2, the complete failure occurs when the value of the new variable

(combined damage/healing parameter φ (1 � h)) tends to 1. Two different situa-

tions can occur in the absence of damage when the new variable is zero: first one is

when φ ¼ 0 (undamaged virgin material), and the other one is when h ¼ 1

(completely healed material). Schematic stress–strain curves are shown in Figs. 4

and 5 for damaged and damaged/healed materials in elastic region, respectively. It

is worth to mention that reformulation of the damage and healing principles (Eqs. 1

and 2) in terms of the elastic stiffness as shown in Figs. 4 and 5 is possible, but this

is beyond the scope of this chapter.

Experimental test results on bituminous materials are shown in Figs. 6 and 7.

These experiments show the capabilities of self-healing materials and the relation-

ship between the healing time and the healing percentage which were conducted by

Murray et al. (1995). In their work, Qiu et al. elucidated several characteristics of

bituminous materials as related to healing and damage.

It should be noted that the healing parameter h corresponds exactly to the healing
percentage which are shown in Figs. 6 and 7. The experimental results fully

conform to the theoretical damage/healing mechanics framework which is summa-

rized in this section. Upon further examination of Fig. 7, it is finally clear that the

healing effect is limited in the first 10 h, but healing improves significantly during

the 100th and 1,000th hours. Certain biological materials like bones can be con-

sidered as other applications on healing of materials.

Fig. 4 Damage states in

terms of elastic stiffness

degradation (After Voyiadjis

and Kattan 2013a)

Fig. 5 Damage and healing

states in terms of elastic

stiffness degradation (After

Voyiadjis and Kattan 2013a)
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Introduction to Super Healing

In classical damage/healing mechanics, the healing parameter h changes between

0 and 1 in which h ¼ 0 implies zero healing and h ¼ 1 implies complete healing.

Assume that after complete damage recovery, i.e., when h ¼ 1, the healing process

continues beyond h ¼ 1. This will enable us to use large values for h, i.e., h is

allowed to take values like 2, 3, 4, . . ... n + 1. This special case is called super

Fig. 7 The relation of healing time to healing percentage in a practical example (After Voyiadjis

and Kattan 2013a)

Fig. 6 A practical example of healing time versus healing percentage (After Voyiadjis and Kattan

2013a)
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healing in which some form of strengthening or enhancing the properties of the

material occurs instead of further healing since the material is now undamaged (was

completely healed when healing variable reaches to 1 h ¼ 1). The values of n are

limited to integer values only in the following derivation, and it is not allowed to

take real values at this stage. The details for this issue are outlined in

section “Characteristics of the Super Material.” Therefore, in the super healing

phase, the values of the healing parameter h start at 1 and increase to take the values
2, 3, 4, . . . . . n + 1. It is obvious that by high increasing of the value of the healing

parameter h, a strengthened material will be obtained. Hypothetical material which

is called here the super material is postulated as the value of h approaches infinity.

Full characterization of the super material is not the intention of this chapter, but

only the way to its realization is pointed out. Some of the characteristics of the super

material are postulated in section “Characteristics of the Super Material.” It is

hoped that future technology will be able to manufacture strong and self-healing

materials that come as close as possible to the proposed theoretical super material.

Establishing governing equations for the proposed super healing materials is the

main aim of this chapter. In this work, what interests us is the mechanics of the

process of super healing and not the final super material which remains theoretical

and hypothetical at this time.

Equation 2 changes to the following form by assuming the value of the healing

parameter h is increased through super healing to n + 1.

σ ¼ σ

1þ nφ
(3)

Equation 3 can be considered as the main expression of the process of

super healing. Based on Eq. 3, it can be seen that as the value n tends to infinity,

the value of the effective stress tends to zero. Thus, the first characteristic of the

super material is concluded as its effective stress is zero, and it does not depend on

the value of either the damage parameter φ or the healing parameter h. This process
is called super healing of order n based on Eq. 3. Super-healed material can

be obtained by continuing super healing at different stages as the value of

h increases from 1 to 2 to 3 and so on. The super-healed material of order

n will be finally obtained when the process of super healing of order n takes its

due course.

In damage mechanics, the effective stress becomes infinity which indicates

complete rupture of the material when φ ¼ 1 (see Eq. 1). However, the effective

stress does not explode but takes a finite value in super-healed materials when

φ ¼ 1 (see Eq. 3). This means that rupture does not occur in super-healed

materials even when the value of the damage parameter approaches to infinity.

This can be seen as the significance of the super healing process. Based on Eq. 2, it

can be seen clearly that the effective stress explodes when the value of the

combined damage/healing parameter φ (1 � h) tends to one. This critical case

cannot occur in super-healed materials since by setting φ (1 � h) ¼ 1 the relation
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for h ¼ φ�1
φ is obtained and based on this relation by assuming the value of the

damage parameter φ ¼ 1, then the obtained value for h is h ¼ 0 which is not

possible. The value of the healing parameter will be negative if the value of the

damage parameter is less than 1 which is not possible again. Another possibility is

when both the damage and healing parameters take values larger than 1; this case

cannot occur since the damage parameter is bounded to be less or equal to 1. From

the beginning of this chapter up to this section, a certain mechanism for the super

healing process is proposed. By admitting higher values for h larger than 1 up to

n + 1, the process of super healing is achieved. One single healing mechanism is

employed in the first approach and another approach which employs multiple

healing mechanisms operating in parallel (i.e., at the same time) for the process of

super healing to occur. The equivalency of the two approaches is shown in the

following part. Multiple healing parameters h1, h2, h3, ......., hn characterizing

multiple healing mechanisms that are operating at the same time are utilized

instead of one single healing parameter h. In this case, the value of each

healing parameter is limited to 1 only since there is no need to go beyond 1

in this approach for super healing. Therefore, Eq. 2 can be rewritten in the

following form:

σ ¼ σ

1� φ 1� h1 � h2 � :::::� hnð Þ (4)

In order to derive Eq. 4, one follows the same procedure used in deriving Eq. 2.

For more details, check the references by Chow and Wang (1987), Park and

Voyiadjis (1998), and Voyiadjis and Park (1997).

The proposed process of super healing can be achieved by utilizing Eq. 4

characterizing multiple healing parameters (n parameters) operating at the same

time and by using the value 1 for each separate healing parameter. Furthermore, the

elusive super material is considered again if the number of healing parameters

approaches infinity (with each one limited to 1). Equivalency of the two approaches

to super healing of Eqs. 2 and 4 is shown in as follows. Resultant healing parameter

h is defined as the sum of the multiple healing parameters h1, h2, h3,......., hn as

follows:

h ¼ h1 þ h2 þ h3 þ :::::::::þ hn (5)

Therefore, the process of super healing can be obtained in two different ways:

first by using one single large healing parameter h with values 1, 2, 3, . . . . n and

second by using multiple small healing parameters h1, h2, h3, ......., hn operating

together but with limit value of one for each parameter. It can be seen that by

substituting the value of 1 for each single parameter in Eq. 4, governing equation of

super healing (Eq. 3) can be obtained, and thus both approaches are the same.

Finally, the following question needs to be asked: What happens by allowing each

multiple healing parameter h1, h2, h3, ......., hn to have a value larger than 1? This
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will open the way for more healing and super healing. For instance, allowing each

healing parameter to take the value of 2, then Eq. 3 reads

σ ¼ σ

1þ 2nφ
(6)

This is called Level 2 Super Healing characterized by Eq. 6. In general, the

following expression can be obtained which characterizes the process of super

healing in the case where each healing parameter is allowed to take the value of n

σ ¼ σ

1þ n2φ
(7)

This is called Level n Super Healing characterized by Eq. 7.

Anisotropic Damage/Healing Mechanics

The theory of damage/healing mechanics of section “Review of Damage/Healing

Mechanics” is generalized to anisotropic damage/healing in this section (Chow and

Wang 1987; Park and Voyiadjis 1998; Voyiadjis and Park 1997). For this purpose,

tensors are used instead of scalars. In the following, capital letters are used to denote

fourth-rank tensors, and it is assumed that tensors are represented by matrices. Let

M denote the fourth-rank damage effect tensor of continuum damage mechanics.

The exact relationship between the fourth-rank damage effect tensor M and the

scalar damage variable φ is extensively investigated in the literature (Sidoroff 1981;

Voyiadjis and Kattan 2006, 2009).

Let H denote a fourth-rank healing tensor corresponding to the healing param-

eter h. For the exact relationship between H and h, see Park and Voyiadjis (1998)

and Voyiadjis and Park (1997). In the case of anisotropic healing and damage, Eq. 2

can be generalized as follows (Park and Voyiadjis 1998; Voyiadjis and Park 1997):

σij ¼ M�1
ijkl þ Iijmn �M�1

ijmn

� �
: H�1

mnkl

h i�1

σkl (8)

where Iijmn is the fourth-rank identity tensor. In Eq. 8, σkl and σij are second-rank

stress tensors and are represented by vectors in section “Damage/Healing and Super

Healing in Plane Stress.” Based on Eq. 8, it is shown that the combined damage/

healing parameter φ (1 � h) is generalized to (Iijmn � Mijmn
�1) (Imnkl � Hmnkl

�1).

The latter expression for combined damage and healing can be derived directly

from Eq. 8 considering the facts that the main component of M corresponds to 1
1�φ

and the main component of H corresponds to 1
h . The fourth-rank healing tensor

H clearly satisfies some mathematical properties such as the components of this

tensor are either positive or zero, and both the trace and norm of the tensor are

positive. However, the tensor H may not necessarily be positive definite. These

properties are illustrated with the example of plane stress which is given in

section “Damage/Healing and Super Healing in Plane Stress.”
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Anisotropic Super Healing

The process of super healing for anisotropic damage and healing mechanism is

shown in this section. Following the outlined reasoning in section “Introduction to

Super Healing” for the proposed mechanism of super healing, the components of

the fourth-rank healing tensor H is allowed to increase gradually beyond the values

of the components of the fourth-rank identity tensor I, i.e., set Hijkl ¼ (n + 1) Iijkl.
In another way, previous relation can be written between the norms of the two

fourth-rank tensors. The following expression can be obtained by substituting

previous relation in Eq. 8 and simplifying

σij ¼ n Iijkl �M�1
ijkl

� �
þ Iijkl

h i�1

σkl (9)

The process of anisotropic super healing is characterized by the expression

obtained in Eq. 9. Based on Eq. 9, when the value of n tends to infinity, the value

of the effective stress goes to zero. The same conclusion was obtained for super

healing in the case of scalar damage and healing in previous sections. It should be

noted that by implementing the appropriate constraints, the anisotropic super

healing in Eq. 9 reduces to the scalar super healing in Eq. 3.

Damage/Healing and Super Healing in Plane Stress

Plane stress is solved to illustrate the processes of damage, healing, and super

healing in this section. For this special case, the tensors of Eq. 8 are represented by

vectors and matrices (Voyiadjis and Kattan 2006):

σf g ¼
σ11
σ22
σ12

8<
:

9=
; (10a)

σf g ¼
σ11
σ22
σ12

8<
:

9=
; (10b)

I ¼
1 0 0

0 1 0

0 0 1

2
4

3
5 (10c)

M ¼ 1

Δ

ψ22 0 φ12

0 ψ11 φ12
φ12

2

φ12

2

ψ11 þ ψ22

2

2
64

3
75 (10d)
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where ψ11 ¼ 1 � φ11 and ψ22 ¼ 1 � φ22. The denominator Δ in Eq. 10d is given

by Voyiadjis and Kattan (2006):

Δ ¼ ψ11ψ22 � φ2
12 (10e)

It should be noted that Eq. 10d is obtained based on the symmetrization

procedure given by the following expression (Voyiadjis and Kattan 2006):

σij ¼ 1

2
σip δpj � φpj

� ��1 þ δip � φip

� ��1
σpj

h i
(10f)

The following 3�3 matrix representation can be written for the healing tensor of

Eq. 8 for the case of plane stress:

H�1 ¼
h11 0 h12
0 h22 h12

h12 h12
h11 þ h22

2

2
64

3
75 (11)

Based on Eq. 11, the inverse healing tensor satisfies certain mathematical

properties such that the components of this tensor are either positive or zero and

the trace of this tensor h11 þ h22 þ h11þh22
2

� �
is positive. Also, the norm of this tensorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h211 þ h222 þ h212

q� �
is positive. Since the expression h11

2 + h22
2 � h12

2 is not

necessarily positive, this tensor is not necessarily positive definite.

It can be seen that the form of the inverse healing matrix which is postulated in

Eq. 11 is similar to the form of the damage effect matrix in Eq. 10d. Substituting

Eqs. 10f and 11 into Eq. 8 results in

σf g ¼ X½ � σf g (12)

where the components of the fourth-rank tensor [X] are given by (the MATLAB

Symbolic Math Toolbox is used to carry out the algebraic manipulations)

X11 ¼
�� 2þ 3φ11 þ φ22 � φ11φ22 � φ2

11 þ φ2
12 � 2h11φ11 þ h11φ11φ22 þ h11φ2

11

� h11φ2
12 � 2h12φ12 þ 2h12φ11φ12

�
= φ11 þ φ22 � 2ð Þ

(13a)

X12 ¼ φ12 �φ12 þ h22φ12 � 2h12 þ 2h12φ11ð Þ= φ11 þ φ22 � 2ð Þ (13b)

X13 ¼
�
2φ12 � 2φ11φ12 � 2h12φ11 þ h12φ2

11 þ h12φ11φ22 � h11φ12 � h22φ12

þ h11φ11φ12 þ h22φ11φ12

�
= φ11 þ φ22 � 2ð Þ

(13c)

X21 ¼ φ12 �φ12 þ h11φ12 � 2h12 þ 2h12φ22ð Þ= φ11 þ φ22 � 2ð Þ (13d)
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X22 ¼
�� 2þ φ11 þ 3φ22 � φ11φ22 � φ2

22 þ φ2
12 � 2h22φ22 þ h22φ11φ22 þ h22φ2

22

� h22φ2
12 � 2h12φ12 þ 2h12φ22φ12

�
= φ11 þ φ22 � 2ð Þ

(13e)

X23 ¼
�
2φ12 � 2φ22φ12 � 2h12φ22 þ h12φ2

22 þ h12φ11φ22 � h11φ12 � h22φ12

þ h11φ22φ12 þ h22φ22φ12

�
= φ11 þ φ22 � 2ð Þ

(13f)

X31 ¼
�
φ12 � φ11φ12 � h12φ11 � h12φ22 � h11φ12 þ h11φ11φ12

þ 2h12φ11φ22

�
= φ11 þ φ22 � 2ð Þ (13g)

X32 ¼
�
φ12 � φ22φ12 � h12φ11 � h12φ22 � h22φ12 þ h22φ22φ12

þ 2h12φ11φ22

�
= φ11 þ φ22 � 2ð Þ (13h)

X33 ¼ 1

2

�� 4þ 4φ11 þ 4φ22 � 4φ11φ22 � h11φ11 � h11φ22 � h22φ11 � h22φ22

� 4h12φ12 þ 2h12φ11φ12 þ 2h12φ22φ12 þ 2h11φ11φ22 þ 2h22φ11φ22

�
=

φ11 þ φ22 � 2ð Þ
(13i)

Special case, i.e., the case of principal components, is considered here for the

sake of simplicity. For this case, by setting φ12 ¼ φ21 ¼ 0 and h12 ¼ h21 ¼ 0 in

Eq. 13, the following expressions can be obtained:

X11 ¼ �2þ3φ11þφ22�φ11φ22�φ2
11�2h11φ11þh11φ

2
11þh11φ11φ22

� �
= φ11þφ22�2ð Þ

(14a)

X22 ¼ �2þφ11þ3φ22�φ11φ22�φ2
22�2h22φ22þh22φ

2
22þh22φ11φ22

� �
= φ11þφ22�2ð Þ

(14b)

X33 ¼ 1

2

�� 4þ 4φ11 þ 4φ22 � 4φ11φ22 � h11φ11 � h11φ22 � h22φ11 � h22φ22

þ 2h11φ11φ22 þ 2h22φ11φ22

�
= φ11 þ φ22 � 2ð Þ

(14c)

It can be seen that based on Eq. 13 for this special case, all the other components

of the fourth-rank tensor [X] vanish. Simplifying Eq. 14 and substituting into Eq. 12

lead to obtain the following simple expressions (after some tedious algebraic

manipulations):

σ11 ¼ σ11
1� φ11 1� h11ð Þ (15a)
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σ22 ¼ σ22
1� φ22 1� h22ð Þ (15b)

σ12 ¼ σ12

1� 1� h11 þ h22
2

� �
φ11 þ φ22 � 2φ11φ22

φ11 þ φ22 � 2

� � (15c)

It can be seen from Eq. 15 that the principal equations of damage and healing

(Eqs. 15a and 15b) reduce to the expression of the scalar case of Eq. 2 for the case of

plane stress and the proposed super healing process is valid in the case of plane

stress. This can be achieved by substituting values for the healing parameters h11
and h22 exceeding 1 and approaching a large number, and then the effective stress

tends to zero. In addition, when these values tend to infinity, the elusive super

material is obtained.

Characteristics of the Super Material

The use is made of the theories of super healing and undamageable materials to

elucidate some of the characteristics of the sought super material within the

continuum damage mechanics framework in this section. The concept of an

undamageable material is proposed by Kobayashi (1992), Voyiadjis and Kattan

(2012b), and Warren and Boettinger (1995). The value of the damage variable

remains zero in this hypothetical type of material throughout the deformation

process. Theoretically, such materials cannot be damaged. Constitutive equations

of undamageable materials are derived through introducing a new type of material

called the Voyiadjis–Kattan material of order n (Kobayashi 1992). This material

type is a nonlinear elastic material which has a nonlinear strain energy form.

Voyiadjis–Kattan materials of order n are based on higher-order strain energy

forms that assume the general form

U ¼ 1

2
σ en (16)

Nonlinear stress–strain relation for the given form of higher-order strain energy

in Eq. 16 reads

σ ¼ E
1

en
e�2= n�1ð Þe n�1ð Þ½ � (17)

The reader is referred to Kobayashi (1992), Voyiadjis and Kattan (2012b), and

Warren and Boettinger (1995) for full derivation and more details. This general

form (Eq. 17) satisfies the initial conditions σ ¼ 0 when e ¼ 0 since the limit of the

expression for the stress tends to zero as the strain tends to zero. Equations 16 and

17 are valid for one-dimensional cases only. It can be concluded reasonably that
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Voyiadjis–Kattan materials (and ultimately the undamageable material) can be

manufactured in the future using a process based on the super healing model as

outlined here. It can be seen that the Voyiadjis–Kattan material of order n is the

same as a super-healed material of order n. Since the proposed higher-order strain

energy forms (Eq. 16) admits integer values of the exponent n, it can be concluded

that the super healing process also admits such integer values for n.
The following characteristics of the super material are outlined here based on the

theory developed in sections “Introduction to Super Healing” and “Anisotropic

Super Healing” in this chapter and the theory of undamageable materials as

formulated by Gránásy et al. (2002), Kobayashi (1992), and Warren and

Boettinger (1995).

The super material must be undamageable. Therefore, the properties of

undamageable materials apply also to the super material. These properties are as

outlined below. The value of the stress will remain equal to zero throughout the

deformation process. The value of the damage variable will be equal to zero also

throughout the deformation process. The super material has zero strain energy. This

property is directly derived from above. The super material has nonzero strain

values. Thus, the super material is a type of deformable material, not a rigid body.

The super material is based on the proposed higher-order strain energy form of

Eq. 16 taken in the limit when n ! 1. The stress–strain relationship for the super

material may be obtained from the elastic relation in Eq. 17 taken in the limit as

n ! 1. Some of the above items may be clearly deduced from the limit of Eq. 17.

These characteristics are also clearly evident in Fig. 8 which was plotted based on

Eq. 17.

Fig. 8 Stress–strain curves based on Eq. 17 (After Voyiadjis and Kattan 2013a)
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Three Fundamental Issues in Continuum Damage Mechanics

In this section, the nature of the damage process within the framework of CDM is

investigated by dissecting the expression of the effective stress into an infinite

geometric series as follows:

ar þ ar2 þ ar3 þ :::::::::: ¼ a

1� r
(18)

The above geometric series is valid for |r| < 1. The effective stress given by

σ ¼ σ

1� φ
(19)

The effective stress given in Eq. 19 is the classical expression which is taken

from the theory of CDM. In Eq. 19, φ is the damage variable (its value lies between

zero and one), σ is the Cauchy stress, while σ is the corresponding effective stress.

Comparing the right-hand side of the geometric series in Eq. 18 and the effective

stress expression in Eq. 19 leads to the conclusion that the effective stress is equal to

the sum of the infinite geometric series. It satisfies the condition since 0 < φ < 1.

Thus, by making analogy with the infinite geometric series in Eq. 18, the effective

stress (Eq. 19) can be written as follows:

σ ¼ σ 1þ φþ φ2 þ φ3 þ ::::::::::
� �

(20)

Equation 20 is an infinite series exact relationship. It can be interpreted physi-

cally by considering the damage process as an infinite number of smaller damage

processes or stages. Equation 20 can be rewritten in the following form since σA
¼ σA, where A is the cross-sectional area and A is the effective cross-sectional area

(the cross-sectional area in the fictitious effective configuration):

A

A
¼ 1þ φþ φ2 þ φ3 þ :::::::::: (21)

Equation 21 shows that the damage process can be considered as the summation

of several smaller damage processes or stages: the primary damage stage by taking

the first two terms of the series, the secondary damage stage by taking the first three

terms of the series, and the tertiary damage stage by taking the first four terms of the

series. Although this process can be continued in an infinite number of smaller and

smaller damage stages mathematically, but considering the first four terms of the

infinite geometric series is sufficient for practical purposes.
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Primary Damage Variable The first two terms of the series in Eq. 21 is considered

to define the primary damage variable as follows:

A

A
¼ 1þ φp (22)

Equation 22 can be solved explicitly to obtain the following expression of the

primary damage variable:

φp ¼
A

A
� 1 (23)

Secondary Damage Variable The first three terms of the series in Eq. 21 are

considered for defining the secondary damage variable as follows:

A

A
¼ 1þ φS þ φ2

S (24)

The quadratic equation (Eq. 24) can be solved explicitly to obtain the following

expression of the secondary damage variable:

φS ¼ � 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3þ 4

A

A

r
(25)

Tertiary Damage Variable The first four terms of the series in Eq. 21 are consid-

ered to define the tertiary damage variable as follows:

A

A
¼ 1þ φt þ φ2

t þ φ3
t (26)

The cubic equation (Eq. 26) can be solved explicitly to obtain the following

expression of the tertiary damage variable:

φt ¼ � 1

3
þ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�80þ 108

A

A
þ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48� 120

A

A
þ 81

A

A

� �2
s

3

vuut
� 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�80þ 108

A

A

3

r
þ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48� 120

A

A
þ 81 A

A

� �2
r (27)

Thus, the explicit expressions for the damage variables at the primary, second-

ary, and tertiary damage stages have been established. In the next subsection,

dissection of the damage process into the aforementioned three stages is presented

mathematically.
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Small Damage Processes

In this section, the problem of small damage processes is observed in details. In

Voyiadjis and Mozaffari (2013), the following generalized relationship between the

Cauchy stress and the effective stress is derived using the phase field method:

σ ¼ σ

1� φð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2φþ 1

p (28)

It is worth to mention that the effective stress expression given in Eq. 28 results

in to a cubic formula for φ in terms of areas. The reader is referred to the work by

authors for more details (Voyiadjis and Mozaffari 2013).

Equation 28 is compared with the classical expression given in Eq. 19. Consid-

ering the square root term that appears in the denominator of Eq. 28, the Taylor

series expansion of the square root function is used to obtain the following approx-

imation by taking the first two terms of the expansion:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2φþ 1

p
� 1þ φ (29)

Equation 29 is valid for small values of φ, i.e., for small damage. The following

expression for the effective stress of Eq. 28 can be written in the case of small

damage:

σ ¼ σ

1� φð Þ 1þ φð Þ ¼
σ

1� φ2
(30)

The above formula (Eq. 30) corresponds to the damage variable φ ¼
ffiffiffiffiffiffiffi
A�A
A

q
compared with φ ¼ A�A

A for the classical case. Alternatively, the following expres-

sion for the effective stress is postulated in the case of large damage:

σ ¼ σ

1� ffiffiffi
φ

p (31)

which corresponds to the damage variable φ ¼ A�A
A

� �2

One can now generalize the two expressions for the effective stress (Eqs. 30 and

31) with an exponent n for the two different cases (small and large damage) when

the increasing exponent goes from 2 to 3, 4, . . . . and ultimately to n where n tends

to infinity. Therefore, the two following generalized definitions are proposed:

σ ¼ σ

1� φn
for small damage (32)

σ ¼ σ

1� φ1=n
for large damage (33)

It can be seen that for normal (intermediate) damage then n ¼ 1 in both cases.
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The Concept of Undamageable Materials

In this section, previous issues are used to elaborate on the new undamageable

material concept. These hypothetical materials were proposed recently by

Voyiadjis and Kattan (2012b, 2013c, d) which can be compared with rubber

materials (Arruda and Boyce 1993). Undamageable materials are compared with

various nonlinear elastic materials taken from the book of Bower (2011) by

Voyiadjis and Kattan (2012b, 2013c, d). Undamageable materials are assumed

hypothetically to maintain a zero value for the damage variable through the loading

process. Details of this formulation were presented by Voyiadjis and Kattan (2012b,

2013c, d) within the framework of CDM. Thus, it can be seen that undamageable

materials are desirable since they cannot be damaged at all. It is hoped that the

manufacturing technology will reach a stage in the future where the realization of

this type of material can be achieved. The classical definition of the effective stress

(Eq. 19) is modified to show that such materials maintain a zero value of the

damage variable throughout the loading process as follows:

σ ¼ σffiffiffiffiffiffiffiffiffiffiffiffi
1� φn

p (34)

Performing the following derivation when n tends to infinity shows that the

stress and the effective stress are equal in undamageable materials:

σ ¼ σffiffiffiffiffiffiffiffiffiffiffiffi
1� φn

p ¼ σ

1� φð Þ1=n
¼ σ

1� φð Þ1=1
¼ σ

1� φð Þ0 ¼
σ

1
¼ σ (35)

Thus, one obtains the undamageable material in this case. In their previous

publications (Voyiadjis and Kattan 2012b, 2013c, d), they presented the concept

of undamageable materials using the definition of the damage variable in terms of

elastic stiffness degradation. The formulation is now supported further by

presenting the concept of undamageable materials using a slightly modified form

of the effective stress based on the cross-sectional area reduction as shown in

Eqs. 17 and 18.

Internal Damage Processes Leading to a Singularity
in a Continuous Region

Providing a possible link between the subjects of damage mechanics and fracture

mechanics is the aim of this section. Phenomenological study of the various internal

damage mechanisms without emphasis on the actual geometry of micro-cracks,

micro-voids, or other micro-defects is the main subject in continuum damage

mechanics. The study of the various forms of crack propagation and coalescence

in great details but without much discussion on initiation of these defects is the

main subject in fracture mechanics. Usually some form of energy threshold is used

to indicate these defects initiation but without showing precisely the way that they
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form. Recently, numerical simulations like the finite element method are used by

some researchers to show how cracks initiate in solids (Yu et al. 2012). Currently

there is no analytical closed-form solution for the precise method in which a

singularity arises in a continuous region.

In this section and within the framework of continuum damage mechanics, a

proposed sequence of internal damage processes within a continuous region is

postulated and described mathematically. It is shown that this sequence of internal

damage processes lead to a singularity in the continuous region. The resulting

singularity could be interpreted in several ways. It could represent the crack tip of

a forming micro-crack, the tip of a forming micro-void, or the tip of any other

forming micro-defect. This emerging singularity could also provide a crucial link

between the subjects of damage mechanics and fracture mechanics (see Fig. 9).

Mathematical Formulation

In this section, the principles of continuum damage mechanics are used to show how

a singularity arises in a continuous region. The cross-sectional area of the damaged

material is shown by A, while the corresponding damaged area is shown by Ao.

Based on continuum damage mechanics, the following classic equation is common:

ϕo ¼
Ao

A
(36)

The force on the cross-sectional area A is equal to σ A, while the force on the

undamaged area A � A0 is equal toσ0 A� A0ð Þ. Thus, the following equation shows
the equality of the forces on both damaged material (real configuration) and

undamaged material (fictitious configuration):

σA ¼ σ0 A� A0ð Þ (37a)

Equating Eqs. 36 and 37a and simplifying lead to

σ ¼ σo 1� ϕoð Þ (37b)

where ϕo is the damage variable, σ is the stress in the damaged configuration, and

σo is the effective stress that is associated with ϕo in the fictitious effective

(undamaged) configuration (see Fig. 10).

Fig. 9 The singularity could provide a crucial link between damage mechanics and fracture

mechanics (After Voyiadjis and Kattan 2013b)
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A subarea A1 of the damaged area Ao where A1 < Ao (see Fig. 11) is considered

and a new damage variable ϕ1 acting on this subarea A1 with further damage is

defined as follows (in this way, A1 is subjected to ϕo then followed by ϕ1):

ϕ1 ¼
A1

A
(38)

The force on the cross-sectional area A is given by σ A, and the forces on the

undamaged areas A � A0 and A � A1 are given by σ0 A� A0ð Þ and σ1 A� A1ð Þ,
respectively. Therefore, the following equation can be written based on the force

equality on both damaged and undamaged configurations:

σA ¼ σ0 A� A0ð Þ þ σ1 A� A1ð Þ (39a)

Substituting Eqs. 36 and 38 into Eq. 39a and simplifying result in

σ ¼ σ0 1� ϕoð Þ þ σ1 1� ϕ1ð Þ (39b)

Clearly ϕo > ϕ1 where ϕ1 is a new damage variable defined on the subarea A1

and σ1 is the effective stress associated with ϕ1.

Consequently, a subarea A2 of the damaged area A1 where A2 < A1 (see Fig. 11)

is considered and a new damage variable ϕ2 acting on this subarea A2 with further

Fig. 10 The damaged state and fictitious undamaged state (After Voyiadjis and Kattan 2013b)

Fig. 11 The sequence of

decreasing subareas leading

to the singularity (After

Voyiadjis and Kattan 2013b)
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damage is defined (in this way, A2 is subjected to ϕo then followed by ϕ1, then

finally followed by ϕ2). Therefore, new damage variable reads

ϕ2 ¼
A2

A
(40)

The force on the cross-sectional area A is obtained as σ A, and the forces on the

undamaged areas A � A0, A � A1, and A � A2 are obtained by σ0 A� A0ð Þ , σ1
A� A1ð Þ, and σ2 A� A2ð Þ, respectively. Therefore, the following equation can be

written based on the force equality on both damaged and undamaged

configurations:

σA ¼ σ0 A� A0ð Þ þ σ1 A� A1ð Þ þ σ2 A� A2ð Þ (41a)

Substituting Eqs. 36, 38, and 40 into Eq. 41a and simplifying lead to

σ ¼ σ0 1� ϕoð Þ þ σ1 1� ϕ1ð Þ þ σ2 1� ϕ2ð Þ (41b)

Clearly ϕ1 > ϕ2 where ϕ2 is a new damage variable defined on the subarea A2

and σ2 is the effective stress associated with ϕ2.

This process can be continued by defining n subareas A1 > A2 > ..... > An along

with n damage variables ϕ1 > ϕ2 > ..... > ϕn.

Thus, a strictly decreasing monotonic sequence of damage variables is obtained

as follows: ϕo, ϕ1, ϕ2,....., ϕn.

The above sequence converges to a limit based on the mathematics of sequences

and series since the value of each single damage variable is less than 1. Thus, the

following convergent series can be written as

ϕo þ ϕ1 þ ϕ2 þ ϕ3 þ ::::::þ ϕn þ ::::::::: ¼ ϕ (42)

where ϕ is the limit of the sequence and sum of the series.

Based on a direct extension of Eqs. 37b, 39b, and 41b, the following equation for

the stress can be written as

σ ¼ σ0 1� ϕoð Þ þ σ1 1� ϕ1ð Þ þ ::::::: þ σn 1� ϕnð Þ þ :::::::::: (43)

The question that arises is what happens when the above sequence tend to

infinity. Based on Eq. 48, at infinity the stress becomes infinite, while the damage

variable ϕn becomes zero as n ! 1 and the subarea An collapses to a point, i.e., the

sought after singularity.

Example: Special Case A special case is discussed to illustrate the above concept.

The following equations are valid assuming that the successive damage variables in

Eq. 42 are related by a constant ratio α:

ϕ1 ¼ αϕo (44)

ϕ2 ¼ αϕ1 (45)
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where 0 < α < 1. Thus, Eq. 42 becomes

ϕo 1þ αþ α2 þ α3 þ ::::::þ αn�1
� � ¼ ϕ (46)

The expression inside the parenthesis in Eq. 46 is a geometric series that sums to

the value 1�αn

1�α . Thus, Eq. 46 can be written as

ϕo

1� αn

1� α
¼ ϕ (47)

Considering an infinite geometric series, i.e., when n ! 1, then αn ! 0, since

0 < α < 1. Thus, Eq. 47 simplifies to the following form:

ϕo

1� α
¼ ϕ (48)

And since the value ofϕ is less than 1, then one obtains the constraint α < 1 � ϕo

on the value of the constant parameter α from Eq. 48. Therefore, the value of the

damage variable ϕ at the singularity in terms of the initial value of the damage

variable ϕo can be obtained from Eq. 48.

Conclusion

In this chapter, a new type of healing/strengthening process in materials called

super healing is proposed along with a new hypothetical type of material that is

called the super material. The mechanics of the super healing process has been

outlined using both scalar variables and anisotropic tensors. In addition, the

mechanics of scalar damage/healing is reviewed and elaborated on the mechanics

of anisotropic damage/healing. For further clarification and illustration of these new

concepts, the special case of plane stress was solved. Finally and in order to

elucidate the characteristics of the sought super material, it is concluded that the

super material has to be undamageable within the theory of elastic undamageable

elastic materials framework.

The authors did not present the physical and metallurgical aspects of this theory

in this work but only the theoretical mathematical formulation. This is because it is

not clear yet to the authors how these types of advanced materials could be

manufactured. It is hoped that the authors would be able to address the physical

and metallurgical aspects in forthcoming work. The authors reiterate their view-

point that this mathematical formulation lays a possible groundwork for any future

development in this regard. The authors are still hopeful that some form of

strengthened material may be realized in the near future. The various figures and

equations presented here should form the basis of the future technology of

undamageable materials that will be effectively indestructible.

The final question is what could be the interest (or practical use) of a material

that, even if undamageable, would deliver an extremely high valued strain under a
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totally negligible stress (as demonstrated on Fig. 8). The answer is that as the

exponent n approaches infinity, the material becomes very soft and is not ideal for

structural behavior related to practical applications. The issue is that at some value,

this exponent will be presenting a reasonable stiffness for structural applications

while maintaining a high fidelity for an undamaged material response. This is

termed a super material in structural applications. It is also noted that in reality,

the exponent n can never reach infinity in real applications. For practical applica-

tions, a finite value of n can be used although it may be very high.

It is shown that by considering a sequence of internal damage processes such that

the value of the damage variable in each process is less than that in the preceding

process leads to the sequence convergence to a finite value of damage along with

the fact that the sequence is a strictly decreasing monotonic sequence. It is also

shown considering such an infinite sequence leads to the infinite sequence of

subareas which converges to a point at infinity. This emerging point can be

considered as the sought singularity. This singularity may be visualized as the

crack tip of an emerging micro-crack, the tip of an emerging micro-void, or the

tip of any other emerging micro-defect. It is postulated that a singularity-like point

will be reached at a finite but large enough value of the parameter n since the point

at infinity may never be reached in practical problems. Consequently, micro-cracks,

micro-voids, and other micro-defects initiate in continuous regions out of nowhere.

A possible sequence of internal damage mechanisms that could produce a singu-

larity is illustrated in the last section of this chapter which may be considered as a

crucial link between the subjects of damage mechanics and fracture mechanics.
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N.R. Hansen, H.L. Schreyer, A thermodynamically consistent framework for

theories of elastoplasticity coupled with damage. Int. J. Solids Struct. 31(3),

359–389 (1994); G. Voyiadjis, I. Basuroychowdhury, A plasticity model for

multiaxial cyclic loading and ratchetting. Acta Mech. 126(1), 19–35 (1998);

J.L. Chaboche, A review of some plasticity and viscoplasticity constitutive

theories. Int. J. Plast. 24(10), 1642–1693 (2008)). Introduction of the healing

process into the thermodynamic framework was formerly proposed by Voyiadjis

et al. (A thermodynamic consistent damage and healing model for self healing

materials. Int. J. Plast. 27(7), 1025–1044 (2011)) where a physically consistent

description for the healing process is provided.

Basically, the mathematical foundation of the thermodynamic-based solid

mechanics modeling was developed formerly for capturing plasticity and dam-

age in metallic structures and it is not directly applicable to polymeric materials.

Polymers usually show strain softening after their initial yield and they show

strain hardening at higher strain levels. To overcome the mathematical defi-

ciency associated with the classical thermodynamic framework, Voyiadjis,

Shojaei, and Li (A generalized coupled viscoplastic- viscodamage- viscohealing

theory for glassy polymers. Int. J. Plast. 28(1), 21–45 (2012a)) established a

generalized formulation within the thermodynamic framework in which the

mathematical competency for simulating the most nonlinear viscoplastic,

viscodamage, and viscohealing effects in polymers was enhanced. They have

successfully shown that the proposed framework is able to accurately capture the

viscoplastic and viscodamage responses of polymers and the model has enough

flexibility to capture the healing response in polymeric-based self-healing

materials.

Introduction

Continuum damage mechanics (CDM) provides a general approach to incorporate

different types of microscale damages including microcracks, micro-cavities,

debonding between fiber and matrix, and breakage of bonds in polymeric materials,

corresponding to the respective loading conditions and the inherent material

defects. While the classical fracture mechanics provides a practical approach for

dealing with macroscale cracks and voids (Ashby et al. 1979; Rice et al. 1980;

Tvergaard and Hutchinson 1992), it still suffers from its limited applicability and

computational difficulties for complex problems. By empowering the computa-

tional facilities in the past decade, the application of CDM-based failure studies has

been increased significantly and the developed CDM models are now built into the

finite element analysis (FEA) through user-defined coding. This coupling between

CDM and mesh removal techniques provides a very efficient way for analyzing

complex structures under complex loading. Basically, the continuum damage in

materials is represented by a continuous degradation of the strength of material

systems until the failure point, and this task is accomplished by developing the

damage variables within the CDM framework. This concept of healing is then
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introduced where the microscale damages can be removed in the self-healing

systems. This task is accomplished by introducing new healing variable by

Voyiadjis et al. (2011, 2012a, b, c).

The formulation for the coupled continuum damage and plasticity processes

have been extensively investigated in the literature (Yazdani and Schreyer 1990;

Hansen and Schreyer 1994; Chaboche 1997, 2008), although quite a few works up

to present have addressed the continuum damage–healing process, and the contin-

uum damage–healing mechanics (CDHM) is almost a newly developed topic (Miao

et al. 1995; Barbero et al. 2005; Voyiadjis et al. 2011, 2012a, b, c). The CDHM

framework is formulated in ▶Chap. 46, “Continuum Damage-Healing Mechanics,”

and the present chapter concerns the thermodynamic consistent formulation of such a

CDHM process.

This chapter is designed as follows. In section “Scalar Damage and Healing

Process,” the thermodynamics of the damage and healing is studied and the

thermodynamic consistent constitutive relations are developed in the case of scalar

damage and healing variables. In section “Anisotropic Damage and Healing

Mechanics Constitutive Relations,” the anisotropic damage–healing process is

investigated where the tensorial form of the governing equations are formulated.

This book chapter aims the material designers to describe the damage–healing

process in self-healing materials within a continuum mechanics framework. The

healing and the damage processes can be concurrently or individually active. In the

first case, in which the damage and healing are active simultaneously, the healing

system is referred to coupled and the other case is termed decoupled
damage–healing system hereinafter.

Thermodynamic Consistent Damage and Healing
Evolution Equations

In this section, the thermodynamic framework for the CDHM concept is reviewed.

The kinematic and isotropic hardening effects are incorporated for all the three

processes, i.e., plasticity, damage, and healing. The physical description for the

kinematic and isotopic hardening effects for the damage and the healing is taken

into account and the small strain assumption is incorporated. The damage and

healing yield surfaces are then presented, and finally, the constitutive equations

for a coupled elastoplastic–damage–healing process are derived.

Scalar Damage and Healing Process

The energy considerations concept is adopted by Voyiadjis et al. (2012b) to derive

the evolution equations for the damage and healing variables for an uncoupled
damage–healing process, where damage and healing processes are independent

from each other. It is assumed that the material obeys the damage criterion

proposed by Lee et al. (1985), which is a scalar function, i.e., gd, and a generalized
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thermodynamic force, yd, is assumed to be the driving force for the damaging

process. The healing criterion is constituted based on the same terminology in

which a scalar function, i.e., gh, is defined based on the healing thermodynamic

conjugate force, i.e., yh. These two criteria are defined as follows (Voyiadjis

et al. 2012b):

gd yd, sd
� � � 1

2
yd

2 � Ld sd
� � ¼ 0 (1)

gh yh, sh
� � � 1

2
yh

2 � Lh sh
� � ¼ 0 (2)

where Ld is a damage strengthening parameter which is a function of the “overall”

damage, i.e., sd, and Lh represent the strengthening effects for the healing and sh is
the “overall” healing. Voyiadjis and co-workers introduced two sets of scalar

damage–healing variables (Voyiadjis et al. 2012a, b, c) that are mentioned in

section “Computational Aspect and Simulation Results” of ▶Chap. 44, “Healing,

Super Healing, and Other Issues in Continuum Damage Mechanics.” The first set is

a scalar damage variable, i.e., ϕ, with the corresponding scalar healing variable, i.e.,
h, which respectively take into account the removal and recovery of the damaged

microsurfaces. The second set of the scalar damage variable, i.e., l, and the healing

variable, i.e., h0, is proposed to facilitate the calibration process based on the

changes of the elastic moduli instead of measurement of the damaged

microsurfaces which is impractical in some cases. Based on these two sets of scalar

damage–healing variables, two sets of evolution equations are derived herein as

follows.

Evolution Laws Based on the Damage Variable f and the Healing
Variable h
The elastic stiffness results in the following expression for the elastic strain energy

in the damaged–healed configuration (Voyiadjis et al. 2012b):

U ¼ 1

2
σϵ ¼ 1

2
Eϵ2 ¼ 1

2
E 1� ϕð Þ þ ϕ 1� hð Þð Þ2ϵ2 (3)

Differentiating Eq. 3 results in (Voyiadjis et al. 2012b)

dU ¼ E 1� ϕð Þ þ ϕ 1� hð Þð Þ2ϵdϵ � hE 1� ϕð Þ þ ϕ 1� hð Þð Þϵ2dϕ
� ϕE 1� ϕð Þ þ ϕ 1� hð Þð Þϵ2dh (4)

The generalized conjugated thermodynamic forces corresponding to the damage

and healing processes are then defined as follows (Voyiadjis et al. 2012b):

yd ¼ @U

@ϕ
¼ �hE 1� ϕð Þ þ ϕ 1� hð Þð Þϵ2 (5)
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yh ¼ @U

@h
¼ �ϕE 1� ϕð Þ þ ϕ 1� hð Þð Þϵ2 (6)

In order to derive the normality rule regarding the damage and healing

processes, one may introduce the power of dissipation as follows (Voyiadjis

et al. 2012b):

Π ¼ �yddϕþ yhdh� Lddsd þ Lhdsh > 0 (7)

The energy dissipation is also subjected to the constraints from the damage and

healing criteria (Eqs. 1 and 2). Then function Π is modified by incorporating the

Lagrange multipliers which results in the following functional, to be minimized

(Voyiadjis et al. 2012b):

Ψ ¼ Π � dλd: gd � dλh: gh (8)

Substituting Eqs. 1 and 2 and Eq. 7 into Eq. 8 yields (Voyiadjis et al. 2012b)

Ψ ¼ �yddϕþ yhdh� Lddsd � Lhdsh � dλd:
1

2
yd

2 � Ld sd
� �� �

þ dλh:
1

2
yh

2 � Lh sh
� �� � (9)

Applying the stationary conditions of @Ψ /@yd ¼ 0 and @Ψ /@yh ¼ 0 and

@Ψ /@Ld ¼ 0 and @Ψ /@Lh ¼ 0, Eq. 9 results in the following relations (Voyiadjis

et al. 2012b):

dϕ ¼ �dλd: yd (10)

dh ¼ dλh: yh (11)

dsd ¼ dλd (12)

dsh ¼ �dλh (13)

Equations 10 and 11 are evolution equations for damage and healing variables

and Eqs. 12 and 13 are showing the relation between the damage and healing

variables and their corresponding multipliers. To obtain damage and healing vari-

ables, the consistency conditions, i.e., dgd ¼ 0 and dgh ¼ 0, are applied as follows

(Voyiadjis et al. 2012b):

@gd

@yd
dyd þ @gd

@Ld
dLd ¼ 0 (14)
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@gh

@yh
dyh þ @gh

@Lh
dLh ¼ 0 (15)

Making use of Eqs. 1, 2, 12, and 13 and using dLd ¼ dsd(@Ld/@sd) and

dLh ¼ dsh(@Lh/@sh) into Eqs. 14 and 15 result in (Voyiadjis et al. 2012b)

dsd ¼ dλd ¼ yddyd

@Ld=@sd
(16)

dsh ¼ �dλh ¼ yhdyh

@Lh=@sh
(17)

To investigate the strain-damage and strain-healing relations, one may differen-

tiate Eqs. 5 and 6 as follows (Voyiadjis et al. 2012b):

dyd ¼ E 2hϕ� 1ð Þϵ2dh� 2hE 1� ϕhð Þϵdϵ þ Eh2ϵ2dϕ (18)

dyh ¼ E 2hϕ� 1ð Þϵ2dϕ� 2ϕE 1� ϕhð Þϵdϵ þ Eϕ2ϵ2dh (19)

Substituting Eqs. 16 and 17 into Eqs. 10 and 11 yields the evolution equations in

terms of conjugate forces and strengthening functions as follows (Voyiadjis

et al. 2012b):

dϕ ¼ � yd
� �2

dyd

@Ld=@sd
(20)

dh ¼ � yh
� �2

dyh

@Lh=@sh
(21)

Making use of Eqs. 5, 6, 18, and 19 into Eqs. 20 and 21 results in the strain-

damage and strain-healing relations as follows (Voyiadjis et al. 2012b):

@Ld=@sd
� �

dϕ ¼ h2E
3
ϵ5 1� hϕð Þ2 � 2hϕ� 1ð Þϵdhþ 2h 1� ϕhð Þdϵð �h2ϵdϕ

�
(22)

@Lh=@sh
� �

dh ¼ ϕ2E
3
ϵ5 1� hϕð Þ2 � 2hϕ� 1ð Þϵdϕþ 2ϕ 1� ϕhð Þdϵð �ϕ2ϵdh

�
(23)

In the case of damage without healing, by substituting h ¼ 1 and dh ¼ 0 into

Eq. 22, it is reduced to (Voyiadjis et al. 2012b)

@Ld=@sd
� �

dϕ ¼ E
3
ϵ5 1� ϕð Þ2 2 1� ϕð Þdϵ � ϵdϕð Þ (24)

Equation 24 is one of the CDM fundamental relationships which links the level

of the damage and the strain (Voyiadjis and Kattan 2006, 2009). By simple change

of variables x ¼ h(1 � hϕ)ϵ2, Eq. 22 reduces to (Voyiadjis et al. 2012b)
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@Ld=@sd
� �

dϕ ¼ E
3
x2dx (25)

One may consider a linear function with the form Ld ¼ csd þ d, where c and d
are constant, and then Eq. 25 can be solved as follows (Voyiadjis et al. 2012b):

ϕ� ϕ0

h3 1� hϕð Þ3 ¼ E
3 ϵ6

3c
(26)

where ϕ0 is the initial damage value. In a similar way, one may solve Eq. 23 by the

change of variables y¼ ϕ(1� hϕ)ϵ2 and the linear function assumption of the form

Lh ¼ c0 sh + d0, where c0 and d0 are constants. The resulting relation is as follows

(Voyiadjis et al. 2012b):

h� h0

ϕ3 1� hϕð Þ3 ¼
E
3
ϵ6

3c0
(27)

where h0 is the initial value of healing variable. Equations 26 and 27 are strain-

damage and strain-healing relations for the damage variable ϕ and the healing

variable h, respectively (Voyiadjis et al. 2012b).

Evolution Laws Based on the Damage Variable l and the Healing
Variable h0
Substituting the elastic stiffness from Eq. 3.10 into Eq. 3.7 results in the following

expression for the elastic strain energy in the damaged–healed configuration

(Voyiadjis et al. 2012b):

U ¼ 1

2

1þ h0ð ÞE
1þ lð Þ ϵ2 (28)

Differentiating Eq. 23 results in (Voyiadjis et al. 2012b)

dU ¼ Eϵ2

2 1þ lð Þ dh
0 � Eϵ2 1þ h0ð Þ

2 1þ lð Þ2 dlþ 1þ h0ð Þ
1þ lð Þ Eϵdϵ (29)

The generalized conjugated thermodynamic forces corresponding to damage

yd ¼ @U/@l and healing yh ¼ @U/@h0 processes are then defined as follows

(Voyiadjis et al. 2012b):

yd ¼ �Eϵ2 1þ h0ð Þ
2 1þ lð Þ2 (30)

yh ¼ Eϵ2

2 1þ lð Þ (31)

To investigate the strain-damage and strain-healing relations, one may differen-

tiate from Eqs. 30 and 31 as follows (Voyiadjis et al. 2012b):
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dyd ¼ �Eϵ 1þ h0ð Þ
1þ lð Þ2 dϵ � Eϵ2

2 1þ lð Þ2 dh
0 þ Eϵ2 1þ h0ð Þ

1þ lð Þ3 dl (32)

dyh ¼ Eϵ
1þ lð Þ dϵ �

Eϵ2

2 1þ lð Þ2 dl (33)

Equations 20 and 21 are modified for the damage variable l and healing variable
h0 as follows (Voyiadjis et al. 2012b):

dl ¼ � yd
� �2

dyd

@Ld=@sd
(34)

dh0 ¼ � yh
� �2

dyh

@Lh=@sh
(35)

Substituting Eqs. 30, 31, 32, and 33 into Eqs. 34 and 35 results in (Voyiadjis

et al. 2012b)

@Ld=@sd
� �

dl ¼ E
3
ϵ5 1þ h0ð Þ2
4 1þ lð Þ6

 !
1þ h0ð Þ dϵ þ ϵ dh0 � 1þ h0ð Þ

1þ lð Þ ϵdl

� �
(36)

@Lh=@sh
� �

dh0 ¼ E
3
ϵ5

4 1þ lð Þ3
 !

ϵ
2 1þ lð Þ dl� dϵ

� �
(37)

Equations 36 and 37 represent the strain-damage and healing–damage relation-

ships for the damage variable l and the healing variable h0.

Anisotropic Damage and Healing Mechanics Constitutive Relations

Thermodynamic restrictions including energy consideration are used to derive the

material behavior and the evolution equations for irreversible processes (such as

damage, plasticity, and healing). In the following notation, all tensorial parameters

are printed in bold. Let u denote the specific internal energy, which is a function of

entropy, s; elastic strain, ϵij
e ; damage variable tensor, ζij

d: plastic deformation

variable tensor, ζij
p; and healing variable tensor, ζij

h, which might be observable or

internal variables. The specific internal energy u is defined as follows (Voyiadjis

et al. 2011, 2012a, c):

u ¼ u s, ϵeij, ζ
d
ij, ζ

p
ij, ζ

h
ij

� �
(38)

where the dimension of second-order tensors ζij
d, ζij

p and ζij
h is the number of internal

variables which is used to describe each phenomenon, i.e., damage, plasticity, and
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healing processes, respectively. The superscript “e” in the strain variable, ϵij
e , simply

denotes that the strain is elastic. Time derivative of Eq. 38 yields

_u ¼ @u

@s
_sþ @u

@ϵeij
_ϵeij þ

@u

@ζdij
_ζ
d

ij þ
@u

@ζpij
_ζ
p

ij þ
@u

@ζhij
_ζ
h

ij (39)

The second law of thermodynamics states that the change in entropy is always

positive and it can be expressed in the Clausius–Duhem inequality as follows

(Voyiadjis et al. 2011, 2012a, c):

σij _ϵ
e
ij � ρ _uþ s _T

� �� qi
T
∇iT � 0 (40)

where ρ is the density which is assumed to be constant, σij is the Cauchy stress, T is

the absolute temperature, and qi and ∇iT are, respectively, heat flux and tempera-

ture gradient. The following restrictions are used in this formulation (Lubliner

1972): (1) purely mechanical theory is used (no heat source and no heat flux in

the body) and (2) the infinitesimal deformation state is considered. An additive

elastic and plastic state is the result of the second statement. Substituting Eq. 39 into

Eq. 40 and eliminating the heat flux term gives the following expression (Voyiadjis

et al. 2011, 2012a, c):

σij _ϵ
e
ij � ρ

@u

@s
_sþ @u

@ϵeij
_ϵeij þ

@u

@ζdij
_ζ
d

ij þ
@u

@ζpij
_ζ
p

ij þ
@u

@ζhij
_ζ
h

ij

 !
þ T_s

 !
� 0 (41)

Rearranging Eq. 41 yields (Voyiadjis et al. 2011, 2012a)

σij � ρ
@u

@ϵeij

 !
_ϵeij þ ρ T � @u

@s

� �
_s� ρ

@u

@ζdij
_ζ
d

ij þ
@u

@ζpij
_ζ
p

ij þ
@u

@ζhij
_ζ
h

ij

 !
� 0 (42)

The conjugate thermodynamic forces related to the flux of the entropy s and the

elastic strain, ϵij
e, are obtained respectively as follows (Voyiadjis et al. 2011, 2012a):

T ¼ @u

@s
; σij ¼ ρ

@u

@ϵeij
; (43)

The power of dissipation, Γ, is expressed as follows (Voyiadjis et al. 2011,

2012a):

Γ ¼ �ρ
@u

@ζdij
_ζ
d

ij þ
@u

@ζpij
_ζ
p

ij þ
@u

@ζhij
_ζ
h

ij

 !
(44)

The dissipative power Γ is used to define the following conjugate thermody-

namic forces (Voyiadjis et al. 2011, 2012a):
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ydij ¼
@u

@ζdij
; ypij ¼

@u

@ζpij
; yhij ¼

@u

@ζhij
(45)

where yij
d, yij

p and yij
h are damage, plasticity, and healing conjugate forces, respec-

tively. Finally, the second law of thermodynamics reduces to (Voyiadjis et al. 2011,

2012a)

Γ � 0 (46)

Helmholtz free energy function Ψ is obtained through Legendre transformation
of the internal energy as follows:

Ψ ¼ u� Ts (47)

Using the Helmholtz free energy yields the same result for the dissipative power

Γ as shown in Eq. 46. The only difference between the internal energy and the

Helmholtz free energy definitions is that the internal energy is a function of entropy

and mechanical variables but the Helmholtz free energy is a function of temperature

and mechanical variables. For the case of isentropic processes, internal energy

formulation is used, and for the case of isothermal processes, the Helmholtz

potential is used.

The first law of thermodynamics of an infinitesimal quasi-static process states

that the change of energy for a system is equal to the sum of mechanical and heat

input or output. The first law based on the internal variable formulation reduces to

the following expression (Voyiadjis et al. 2011, 2012a, c):

_u ¼ 1

ρ
σij _ϵ

e
ij (48)

Substituting Eq. 48 into Eq. 39 while incorporating Eq. 43 results in the

following expression for entropy generation due to the damage, plasticity, and

healing processes (Voyiadjis et al. 2011, 2012a, c):

T _s ¼ � @u

@ζdij
_ζ
d

ij þ
@u

@ζpij
_ζ
p

ij þ
@u

@ζhij
_ζ
h

ij

 !
(49)

The coupled elastoplastic–damage–healing is formulated by assuming an iso-

thermal process and the internal variable tensors ζij,
d ζij

p and ζij
h are introduced to the

system in the most generalized form. Plasticity related internal variable tensors, ζij
p,

correspond to three internal variables as follows: (a) second-order plastic strain

tensor ϵij
p, (b) second-order kinematic hardening tensor αij which accounts for the

flow of residual stresses during inelastic deformation and represents the shift in

the center of the yield surface f p in the stress space, and (c) tensor pij to express the
isotropic hardening, which shows change in the size of the yield surface f p in
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different directions during a plastic deformation (distortion in plasticity yield

surface) (Voyiadjis et al. 2011, 2012a). In the case of the damage variable tensor,

ζij
d, in the most general form, the corresponding internal variables can be

represented in three main classes (Voyiadjis et al. 2011, 2012a, c):

(a) generalized damage tensor dij which measures overall degradation of materials,

(b) damage tensor dij
K which describes the kinematic hardening due to the damage

process and indicates the shift in the center of the damage surface fd, and (c) damage

tensor dij
I to represent isotropic hardening which shows the change in the size of

the damage surface fd (Hansen and Schreyer 1994; Voyiadjis et al. 2011, 2012a, c).
The healing variable tensor, ζij

h, is proposed in the most generalized form as follows:

(a) generalized healing tensor hij which accounts for the overall healing in the

material, (b) healing variable tensor hij
K which describes the kinematic hardening

during the healing process (it is the change in the center of the healing surface fh),
and (c) healing tensor hij

I to describe the isotropic hardening/softening during a

healing process, which is the change in the size of the healing surface fh in different
directions.

In the case of polycrystalline metallic materials, the physical description of the

kinematic and isotropic hardening is correlated to the formation of the dislocation

and dislocation dynamics (Asaro and Lubarda 2006; Voyiadjis et al. 2010).

Changes in entropy of the molecular chains in the polymer materials can describe

the hardening effects (Beloshenko et al. 2005; Voyiadjis et al. 2011, 2012a, c). Tip

crack plasticity and crack arresting effect induce the hardening effect in the damage

processes (Voyiadjis and Kattan 2006; Voyiadjis et al. 2011). In the case of the

healing process, the hardening/softening may be induced to the system from

different sources such as chemical decomposition changes after the healing, or

inelastic strains during the healing process, or even diffusion of the healing agent

into the microcracks. The chemical reaction of the healing microencapsulated agent

may result in the higher mechanical properties after curing, or inelastic strains

during programming of a shape memory-based self-healing system may result in

hardening effects (Voyiadjis et al. 2011). The hardening due to plasticity, damage,

and healing can be represented by hardening evolution laws based on the experi-

mental evidences. The kinematic and isotropic concept provides the tool to model

these phenomena.

Substituting the introduced internal variables into the Helmholtz free energy,

one obtains the following relation (Voyiadjis et al. 2011):

Ψ ¼ Ψ ϵij, ϵ
p
ij, αij, pij, dij, d

K
ij , d

I
ij, hij, h

K
ij , h

I
ij

� �
(50)

Using Eq. 45, the thermodynamic conjugate forces associated with the discussed

flux variables are obtained as follows (Voyiadjis et al. 2011):

σpij ¼ �ρ
@Ψ

@ϵpij
; ydij ¼ �ρ

@Ψ

@dij
; yhij ¼ �ρ

@Ψ

@hij
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ypKij ¼ �ρ
@Ψ

@αij
; ydKij ¼ �ρ

@Ψ

@dKij
; yhKij ¼ �ρ

@Ψ

@hKij
(51)

ypIij ¼ �ρ
@Ψ

@pij
; ydIij ¼ �ρ

@Ψ

@dIij
; yhIij ¼ �ρ

@Ψ

@hIij

where σij
p is the conjugate force for the plastic strain, and yij

d and yij
h are the conjugate

forces associated with the damage and healing variables, respectively. The vari-

ables yij
pK, yij

dK, and yij
hK represent the conjugate forces associated with the kinematic

hardening effect of plasticity, damage, and healing processes, respectively. The

variables yij
pI and yij

dI indicate the conjugate forces associated with the isotropic

hardening effect of the plasticity and damage processes, respectively, and yij
hI

represents the isotropic hardening/softening conjugated force of the healing pro-

cess. The Helmholtz free energy is decomposed as follows (Hansen and Schreyer

1994; Voyiadjis et al. 2011):

Ψ ¼ W ϵij, ϵ
p
ij, dij, hij

� �
þ H αij, pij, d

K
ij , d

I
ij, h

K
ij , h

I
ij

� �
þ Gdh dij, hij

� �
(52)

where the elastic part of the Helmholtz free energy W is defined as follows

(Voyiadjis et al. 2011):

W ϵij, ϵ
p
ij, dij, hij

� �
¼ 1

2
ϵij � ϵpij

� �
Eijkl ϵkl � ϵpkl

� �
(53)

where the fourth-order elastic stiffness tensorEijkl is a function of the damage variable dij
and the healing variable hij. These parameters are defined based on their corresponding

theories herein. The unknown hardening function H(αij, pij, dij
K, dij

I , hij
K, hij

I ) shows the

effect of different hardening/softening processes. The final termGdh(dij, hij) is related to
surface energy which takes into account the microcrack and microsurfaces propagation

and recovery (Voyiadjis et al. 2011). This term implies that some part of energy in a

damaged material is converted to increase the surface energy and the remaining part

converts to heat (Hansen and Schreyer 1994; Barbero et al. 2005; Voyiadjis et al. 2011).

In the case of healing process, Gdh(dij, hij) may represent the surface energy reduction

due to the diffusion process of the healing agent (Voyiadjis et al. 2011; Li and Shojaei

2012). This concept can be utilized for both the uncoupled (Li and Nettles 2010;

Voyiadjis et al. 2011; Li and Shojaei 2012) and coupled self-healing systems (White

et al. 2001; Kirkby et al. 2009). In other words, in a healing process, the surface energy

reduction due to the diffusion of the healing agent besides considering external loading

for crack closures can be shown using this function.

Using Eqs. 43, 51, and 52, the Cauchy stress σij yields to its classical form and

the conjugate force σij
p is obtained as follows (Voyiadjis et al. 2011, 2012a):

σij ¼ Eijkl ϵij � ϵpij

� �
; σij ¼ σpij (54)

In order to derive the evolution equations for the internal variables associated

with plasticity, damage, and healing, the power of dissipation, Eq. 44, along with
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the Helmholtz free energy definition, i.e., Ψ , is used to obtain the following relation

(Voyiadjis et al. 2011, 2012a):

Γ ¼� ρ
@Ψ

@ϵpij
: _ϵpij þ

@Ψ

@αij
: _αij þ @Ψ

@pij
: _pij þ

@Ψ

@dij
: _dij þ @Ψ

@dKij
: _d

K

ij

 

þ @Ψ

@dIij
: _d

I

ij þ
@Ψ

@hij
: _hij þ @Ψ

@hKij
: _h

K

ij þ
@Ψ

@hIij
: _h

I

ij

! (55)

Substituting the thermodynamic conjugate forces from Eq. 51 into Eq. 55

results in the following relation for the dissipative power (Voyiadjis et al. 2011,

2012a):

Γ ¼ σij _ϵ
p
ij þ ypKij _αij þ ypIij _pij þ ydij

_dij þ ydKij
_d
K

ij þ ydIij
_d
I

ij þ yhij
_hij þ yhKij

_h
K

ij þ yhIij
_h
I

ij

(56)

Equation 56 is the most general form for the dissipative power function includ-

ing the associated kinematic and isotropic hardening terms for each process. The

generalized form of the yield, damage, and healing thresholds is introduced within

the classical plasticity formulation framework, where the kinematic and isotropic

hardening terms are represented by two separate functions (Voyiadjis and

Foroozesh 1990; Chaboche 1997; Voyiadjis et al. 2011, 2012a). The coupling

between all processes is captured by incorporating an additional term into all

criteria which captures the generalized coupling between the different processes.

The generalized form of the yield surface is introduced in the following expression

(Voyiadjis et al. 2011, 2012a):

f pij � f p1 σij � ypKij

� �
� f p2 ypIij

� �
� f p3 ydij, y

dK
ij , y

dI
ij

� �
� f p4 yhij, y

hK
ij , y

hI
ij

� �
� σyij � 0

(57)

where σij
y is the initial yield stress for a heterogeneous material, f p1 represents the

plastic kinematic hardening effect, f p2 captures the plastic isotropic hardening

effect, and f p3 and f p4 represent the effect of damage and healing processes on

the plastic yield criterion, respectively. In a similar manner, the generalized damage

surface is defined as follows (Voyiadjis et al. 2011, 2012a):

f dij ¼ f d1 ydij � ydKij

� �
� f d2 ydIij

� �
� f d3 σij, y

pK
ij , y

pI
ij

� �
� f d4 yhij, y

hK
ij , y

hI
ij

� �
� ωd0

ij � 0

(58)

where ωij
d0 represents the initial size of the damage surface in different directions

and the first two terms f d1 and f d2 represent the kinematic and isotropic hardening

due to the damage process, respectively, and the last two terms f d3 and f d4 capture
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the effect of the plastic deformation and the healing process on the damage

criterion, respectively. The generalized healing surface is defined as follows: the

first two terms f h1 and f h2 show the respective kinematic and isotropic hardening/

softening due to the healing process and the last two terms f h3 and f h4 are capturing
the effects of the plastic deformation and the damage on the healing criterion as

follows (Voyiadjis et al. 2011, 2012a):

f hij � f h1 ydij � ydKij

� �
� f h2 ydIij

� �
� f h3 σij, y

pK
ij , y

pI
ij

� �
� f h4 yhij, y

hK
ij , y

hI
ij

� �
� ωh0

ij � 0

(59)

where ωij
h0 is the initial size of the healing surfaces. All of these functions are

required to be homogenous of order one.

Plasticity and damage yield criteria have been investigated extensively in the

literature (Chaboche 1993; Voyiadjis and Abu Al-Rub 2003; Voyiadjis and Kattan

2006; Khan et al. 2010a, b) and only the healing surface concept may require more

elaboration here. The healing process is activated when the consistency conditions

are satisfied, that is, f h ¼ 0 and _f
h ¼ 0. The healing criterion is a function of the

relevant healing mechanism. For example, in the case of microencapsulated healing

agent, as soon as the wall of the microcapsules is broken, the healing process is

activated and the healing criterion can be formulated with respect to the required

stress to fracture the wall of the microcapsules.

The principal of extremized entropy production during a thermodynamic process

is applied to the power dissipation function Eq. 56 along with the constraints of

Eqs. 57, 58, and 59. Assuming isotropic yield surfaces for the plasticity, damage,

and healing phenomena, the resulting Lagrangian functional which should be

extremized is as follows (Voyiadjis et al. 2011, 2012a):

γ� ¼ Γ � _λ
p
f p � _λ

d
f d � _λ

h
f h (60)

where _λ
p
, _λ

d
, and _λ

h
are plasticity, damage, and healing Lagrangian multipliers,

respectively, to enforce the yielding constrains for each of the processes. Applying

the three stationary conditions @γ�/@σij ¼ 0, @γ�/@σij
pK ¼ 0, and @γ�/@σij

pI ¼ 0 on the

resulting functional yields the following coupled evolution equations for the set of

internal variables associated with the plastic deformation (Voyiadjis et al. 2011):

_ϵpij ¼ _λ
p
@f p1 σij � ypKij

� �
@σij

þ _λ
d
@f d3 σij, y

pK
ij , y

pI
ij

� �
@σij

þ _λ
h
@f h3 σij, y

pK
ij , y

pI
ij

� �
@σij

(61)

_αij ¼ _λ
p
@f p1 σij � ypKij

� �
@ypKij

þ _λ
d
@f d3 σij, y

pK
ij , y

pI
ij

� �
@ypKij

þ _λ
h
@f h3 σij, y

pK
ij , y

pI
ij

� �
@ypKij

(62)
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_pij ¼ _λ
p
@f p2 ypIij

� �
@ypIij

þ _λ
d
@f d3 σij, y

pK
ij , y

pI
ij

� �
@ypIij

þ _λ
h
@f h3 σij, y

pK
ij , y

pI
ij

� �
@ypIij

(63)

Using the three conditions @γ*/@yij
d ¼ 0, @γ*/@yij

dK ¼ 0, and @γ*/@yij
dI ¼ 0 yields

the following evolution equations for the set of the internal variables associated

with the damage process (Voyiadjis et al. 2011):

_dij ¼ _λ
d
@f d1 ydij � ydKij

� �
@ydij

þ _λ
p
@f p3 ydij, y

dK
ij , y

dI
ij

� �
@ydij

þ _λ
h
@f h4 ydij, y

dK
ij , y

dI
ij

� �
@ydij

(64)

_d
K

ij ¼ _λ
d
@f d1 ydij � ydKij

� �
@ydKij

þ _λ
p
@f p3 ydij, y

dK
ij , y

dI
ij

� �
@ydKij

þ _λ
h
@f h4 ydij, y

dK
ij , y

dI
ij

� �
@ydKij

(65)

_d
I ¼ _λ

d
@f d2 ydIij

� �
@ydIij

þ _λ
p
@f p3 ydij, y

dK
ij , y

dI
ij

� �
@ydIij

þ _λ
h
@f h4 ydij, y

dK
ij , y

dI
ij

� �
@ydIij

(66)

Finally, applying the three conditions @γ*/@yij
h ¼ 0, @γ*/@yij

hK ¼ 0, and @γ*/@yij
hI

¼ 0 results in the following evolution equations for the set of internal variables

associated with the healing process (Voyiadjis et al. 2011):

_hij ¼ _λ
h
@f h1 yhij � yhKij

� �
@yhij

þ _λ
p
@f p4 ydij, y

dK
ij , y

dI
ij

� �
@yhij

þ _λ
d
@f d4 ydij, y

dK
ij , y

dI
ij

� �
@yhij

(67)

_h
K

ij ¼ _λ
h
@f h1 yhij � yhKij

� �
@yhKij

þ _λ
p
@f p4 ydij, y

dK
ij , y

dI
ij

� �
@yhKij

þ _λ
d
@f d4 ydij, y

dK
ij , y

dI
ij

� �
@yhKij

(68)

_h
I

ij ¼ _λ
h
@f h2 yhIij

� �
@yhIij

þ _λ
p
@f p4 ydij, y

dK
ij , y

dI
ij

� �
@yhIij

þ _λ
d
@f d4 ydij, y

dK
ij , y

dI
ij

� �
@yhIij

(69)

Coupling in the evolution laws between the different processes is obvious in

Eqs. 61–69. The unknown Lagrangian multipliers could be obtained through the

consistency conditions _f
p ¼ 0, _f

d ¼ 0, and _f
h ¼ 0 (Voyiadjis et al. 2011, 2012a).

Computational Aspect and Simulation Results

Generally speaking, the computational aspects of the coupled problem can be

divided into two distinctive modules. One of them ensures the basic solid mechan-

ics governing equations are satisfied while boundary conditions and geometry of
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structure are enforced. Basically, these relations are equilibrium, strain–stress, and

compatibility relations which result in an initial boundary value problem (IBVP).

The computed state of inelastic strain, damage, and healing variables is iteratively

corrected (Newton–Raphson technique) to satisfy this IBVP along with the initial

and boundary conditions (Voyiadjis et al. 2012a). The second computational

module deals with the flow rules and nonlinear governing equations of inelastic

strain, damage, and healing variables. An incremental solution, which provides

history dependency in a coupled inelastic–damage–healing problem, updates the

internal variables. These updated values are utilized during the iteration process of

the IBVP solution and this task continues until IBVP solution is converged.

Different solution algorithms may be incorporated to solve the nonlinear governing

equations of inelasticity, damage, and healing, including iterative return mapping

(Simo and Hughes 1997) or non-iterative methods (Sivakumar and Voyiadjis

1997). A comprehensive description of solution algorithms for coupled as well

as uncoupled inelastic–damage–healing problems can be found in Voyiadjis

et al. (2011). The return mapping technique proposed by Mendelson (Mendelson

and Manson 1957) is generalized here for all the three processes.

To compute the damage inside the materials, the proposed viscoplasticity theory

is used to simulate the half-cycle strain-controlled compression test of the SMP

where damage and plastic deformations are coupled. Consequently, the Cauchy

stress σij and stress rate _σij in the real damaged state can be introduced into the

damage computational module from the viscoplasticity solution. Once the damage

criterion is satisfied, following each inelastic strain increment, a damage increment

is computed while the updated values of stress and stress rate are incorporated. The

computed damage values are then used to update the elastic modulus for the next

load increment. This computational procedure allows fully coupling between

inelastic and damage computation (Voyiadjis et al. 2012a).

In a coupled self-healing system, the healing computational module receives the

updated inelastic deformation and damages from the inelastic and damage compu-

tational modules. In the case of a coupled healing system, after each increment of

the inelastic deformation and damage, the healing computation module computes

the amount of the healing. While in an uncoupled self-healing system, after a

certain amount of damage, all final inelastic deformations and damage variables

are introduced into the healing computational module and the healing is computed

based on these values. Finally, the updated elastic modulus is introduced to the

viscoplasticity module for the next load step of computations. This computational

procedure allows each mechanism to follow its respective governing equations

while full coupling is considered (Voyiadjis et al. 2012a).

Figure 1a represents changes in the elastic modulus of the SMP sample under

compression tests with a strain rate of 0.002 (s�1) in which the proposed damage

theory is used to capture this behavior. Figure 1b shows the compression test results of

SMP at room temperature with a strain rate of 0.002 (s�1) and the simulation is

obtained using the proposed plasticity theory. Table 1 gives the required material

constants for SMP compression. In order to show the capability of the proposed theory

1508 G.Z. Voyiadjis and A. Shojaei



to simulate a vast range of irregular inelastic deformations of glassy polymers,

additional experimental data, regarding the inelastic mechanical response of polyeth-

ylene terephthalate (PET), is presented here. It is worthwhile to indicate that precise

inelastic simulations of material systems are crucial in the damage and healing

computations where the stress state in the real damaged and/or healed configurations

is utilized to compute the state of the damage and/or healing. Table 2 shows the

material constants to simulate PET tension at room temperature, and the simulation

results are shown in Fig. 2 and experiments are reported by G’Sell et al. (2002). The

inflection in the experimental data points shows the respective softening and subse-

quent strain hardening region for PET which is captured by the proposed model. In

these tables, ϵf
I indicates the yield strain and X0

II and X0
III are, respectively, the final

values of Xs at the previous strain spectrum (Voyiadjis et al. 2012a, c) (Table 3).

900a b 140
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Compression test at strain rate: 2x10−2 sec−1
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Fig. 1 Experimental and simulation results for SMP sample under compression at 0.002 (s�1)

loading rate: (a) elastic modulus changes; (b) inelastic response (Voyiadjis et al. 2012a, c)

Table 1 Material constant for SMP (Ē ¼ 642 (MPa) and sy ffi 38 (MPa)) compression at 25 �C,
with substituting b¼L(2)¼ 0 and k1¼ b(1)¼ c(2)¼ b(2)¼ 1 into the inelastic kinematic hardening

evolution law (Voyiadjis et al. 2012a, c)

_Xx ¼ _ϵpx
�� �� 2

3
þ Xx � Xsð Þ a 1ð Þ ϵpx

�� ��c 1ð Þ�1
z 1ð Þ þ ϵpx

�� ��c 1ð Þ� �Λ 1ð Þ þ a 2ð Þ z 2ð Þ þ ϵpx
�� ��� ��1

� �� �
Strain spectrum Xs a(1) z(1) c(1) Λ(1) a(2) z(2)
ϵf
I � ϵx < 6.3 300 0.5 0 1 1 0 –

6.3 � ϵx < 10 110X0
II �15 0.5 0.5 5 �25 1.5

10 � ϵx � 60 1.1X0
III �5 1 0.5 �1 8 0.5

Table 2 Material constants for SMP damage simulation at 25 �C with substituting b0 ¼ L0
(2) ¼

a(2) ¼ 0 and k01 ¼ b0(1) ¼ c0(2) ¼ b0(2) ¼ 1 into the damage kinematic hardening evolution law

(Voyiadjis et al. 2012a, c)

_ydKx ¼ _dx
�� �� 2

3
þ ydKx � ydK, sx

� �
a0 1ð Þ dxj jc01ð Þ�1

z0
1ð Þ þ dxj jc01ð Þ

� �Λ0
1ð Þ

� �� �
Damage initiation check yx

dK,s a0(1) z0(1) c0(1) Λ0
(1)

ϵf
I � ϵx and _σx > 0 0.3 20 1 1 �1
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Conclusion

The mechanics of damage and healing processes is investigated for self-healing

systems, and the bases of a physically based modeling of these phenomena are

constituted. Thermodynamics of the plasticity, damage, and healing is investigated

and coupled constitutive equations are developed in the most generalized forms.

Kinematic and isotropic hardening effects for all processes are incorporated into the

formulation together with a new set of potential functions in order to achieve

mathematical competency in precisely simulating each phenomenon. The irregular

inelastic deformation of SMP and PET is captured using the proposed

viscoplasticity theory. The developed viscoplasticity theory is based on a strain

spectrum strategy where each strain spectrum is captured using a set of material

constants. These strain spectrums are functions of strain rate and temperature and

they should be evaluated experimentally. The performance of the proposed

Fig. 2 Experimental and simulation results for PET at 23 �C (Voyiadjis et al. 2012b)

(Experiments are after G’Sell et al. (2002))

Table 3 Material constant for PET (Ē ¼ 1240 (MPa) and sy ffi 62 (MPa)) at 23 �C, with
substituting b ¼ L(2) ¼ 0 and k1 ¼ b(1) ¼ c(2) ¼ b(2) ¼ 1 and into the inelastic kinematic hardening

law (Voyiadjis et al. 2012a, c)

_Xx ¼ _ϵpx
�� �� 2

3
þ Xx � Xsð Þ a 1ð Þ ϵpx

�� ��c 1ð Þ�1
z 1ð Þ þ ϵpx

�� ��c 1ð Þ� �Λ 1ð Þ þ a 2ð Þ z 2ð Þ þ ϵpx
�� ��� ��1

� �� �
Strain spectrum Xs a(1) z(1) c(1) Λ(1) a(2) z(2)
ϵf
I � ϵx < 5.2 300 0.5 0 1 1 0 –

5.2 � ϵx < 15 110X0
II �8 0.5 0.5 5 �25 1.5

15 � ϵx � 40 1.04X0
III �12 1 0.5 �1 4 1
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damage–healing variables and coupled constitutive equations is examined for an

SMP-based self-healing system. The proposed anisotropic damage–healing vari-

ables provide the designers with the ability to measure the state of the damage and

healing in a highly anisotropic self-healing system, and the constitutive equations

perform quite well in simulating the plastic and damage responses of glassy poly-

mers. As shown in this work, the proposed potential functions are capable of

capturing the most nonlinear inelastic deformation and the damage responses of

the polymeric-based material systems. However availability of experiments for

self-healing systems is limited in the literature, it is expected that the healing

process shows a similar trend but inverse to that of the damaging process in

which the proposed theory provides mathematical competency to capture it. The

healing test setup is under preparation and will be presented in the near future

together with the corresponding healing experiments. This will be reported together

with the corresponding simulations, utilizing the proposed theory. It is worth noting

that the proposed theory considers a continuum scale without incorporating the

microstructural changes during each process. It is well known that such a macro-

scopic model, although may provide good correlation with a specific loading

condition, may not be capable of capturing a general case of loading in which

loading histories deviate from the experiments used to fit the material parameters.

This opens a new field to incorporate such microstructural changes into the

governing equations of these coupled processes. The microstructural physics of

the problem can be incorporated in CDM framework by introducing fabric tensors.
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Abstract

Microscale damage mechanisms, such as microcracks or microvoids, are well-

known damage process zones for the formation of the macroscale cracks. The

microscale defects, which are in the order of submicrons, will coalesce and

branch within the course of the deformation and gradually form the macroscale

damages. Healing of the microscale damages prohibits the formation of the

macroscale defect zones and increases the life of the structures. Developing

new healing strategies have become a hot research topic in the field of self-

healing materials during recent years and many healing strategies have been

proposed. In this chapter, the mathematics of healing is investigated within the
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continuum damage-healing mechanics (CDHM) framework. This aids smart

material designers for the characterization of the coupled damage-healing pro-

cess. Special emphasis is given on definition of new healing variables within the

framework of CDHM. These novel damage-healing variables were formerly

proposed by the authors and their performances have been examined in coupled

damage-healing simulations (Voyiadjis et al., Int J Plast 27:1025–1044, 2011;

Voyiadjis et al., Proc Roy Soc A Math Phys Eng Sci 468:163–183, 2012a;

Voyiadjis et al., Int J Plast 28:21–45, 2012c). The proposed CDHM framework

together with the developed thermodynamic consistent description of the micro-

scale healing and damaging processes provide a well-structured method for

accurately predicting the degradation and healing mechanisms in smart self-

healing material systems.

Introduction

The healing of the damages inside the material systems and its application in smart

structures have been topics of intensive research in the last decade and many of the

developed healing strategies have been deployed in real applications, e.g., biomed-

ical applications (Adam 1999; Simpson et al. 2000) or load-carrying self-healing

structures (Shojaei et al. 2013; Brown et al. 2002; Plaisted and Nemat-Nasser 2007;

Kirkby et al. 2008; Li and John 2008; Kirkby et al. 2009; John and Li 2010; Li and

Uppu 2010; Nji and Li 2010b; Li and Shojaei 2012). In general, each one of these

newly developed healing schemes has been designed to cure specific type of

damage category inside a specific material system. The damages categories may

be classified based on their characteristic lengths into two classes: (i) structural

length scale – the length scale is in order of the structural length scales, e.g., a few

(cm), and (ii) microscale – the characteristic length is in order of the microstructural

length scale, e.g., a few (μm). Most of the self-healing systems are designed on the

premises that healing the microscale damages will seize the damages zone to

propagate and produce a structural scale damage.

In order to commercialize the self-healing schemes, the development of rigorous

modeling techniques is crucial for predicting their responses to the complex

thermomechanical loading conditions and also for evaluating their healing effi-

ciency. The theoretical developments for the healing schemes aid the material

designers not only to design a complex smart structure but also to optimize their

designed material systems. While material plasticity and damage have been inves-

tigated in the literature over the past century, the healing concept is a new topic in

solid mechanics and quite a few works have addressed this challenging topic. In the

case of the damage mechanics theoretical developments, one may mention the

pioneering works by Lemaitre, Murakami, Chaboche, and Voyiadjis (Murakami

1988; Lemaitre and Chaboche 1990; Voyiadjis and Kattan 2006b). While these

researchers had implicitly discussed the possibility of the damage removal, how-

ever, the theoretical development for the healing process has not been accom-

plished until most recently. Voyiadjis, Shojaei, Li, and Kattan published papers in
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Int. J. Damage Mechanics and J. of Proceeding of the Royal Society A on the

coupled damage-healing process (Voyiadjis et al. 2012a, c). The proposed formu-

lation in these two works together with another publication by these authors on the

thermodynamics-based modeling of the damage-healing process (Voyiadjis

et al. 2011) closes the gap between the continuum damage mechanics (CDM) and

the healing process in which the continuum damage-healing mechanics (CDHM)

framework is thoroughly formulated and introduced.

In the newly developed CDHM, the healing process is controlled through scalar

or tensorial healing parameters, and it is well suited for the finite element analysis

(FEA) implementations where user-defined coding can be utilized to introduce the

CDHM formulation. The thermodynamic framework provides a physically consis-

tent approach to formulate the constitutive behavior of the material systems

(Chaboche 1989, 1991, 1993, 1997, 2008; Lemaitre and Chaboche 1990; Hansen

and Schreyer 1994; Shojaei et al. 2010; Voyiadjis et al. 2011; Voyiadjis

et al. 2012c). In the case of self-healing materials, the governing deformation

mechanisms for the damage and healing processes are formulated within the

thermodynamic consistent coupled elasto-plastic-damage-healing framework by

Voyiadjis et al. (2011, 2012a). It is worth noting that FEA implementation of the

developed models aims to numerically investigate the complex damage and healing

processes in self-healing materials and will reduce the burden of experimental

investigations.

In this chapter, first, a brief overview on existing self-healing schemes is

presented in section “A Brief Overview on Existing Self-Healing Schemes.” In

section “Continuum-Damage-Healing Mechanics,” the CDHM is elaborated, and in

section “Results and Discussion,” the experimental and simulation results are

shown.

A Brief Overview on Existing Self-Healing Schemes

The self-healing smart materials have been introduced into the research arena a few

years ago and they have been already deployed into many practical applications.

These materials are designed to heal micro- and macroscale damages (Miao

et al. 1995; Adam 1999; Simpson et al. 2000; White et al. 2001; Pang and Bond

2005; Trask and Bond 2006; Plaisted and Nemat-Nasser 2007; Toohey et al. 2007;

Williams et al. 2007; Kirkby et al. 2008; Varley and van der Zwaag 2008;

Beiermann et al. 2009; Kirkby et al. 2009; Li and Uppu 2010; Li and Shojaei

2012). The currently developed healing schemes can be in general categorized in

three classes. The first class is known as embedded liquid healing agent which was

introduced by White’s pioneering work. In this class of healing scheme, the healing

agent is stored in microcapsules (White et al. 2001) or it is delivered to the damaged

sites through microvascular network system (Toohey et al. 2007). In this system,

the healing is initiated once the wall of the microcapsule or microvascular system is

cracked due to the damage mechanism. Usually, these systems are designed in such

a way that the released healing agent contacts with the embedded catalyst inside the
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matrix material where the solidification of the healing agent in the cracked area

closes the damage. The applicability of these self-healing systems is limited due to

two main drawbacks: (a) clogging of the vascular network, or shortage of

microencapsulated healing agent, after the first round of healing limits the repeat-

ability of the healing process and (b) the existence of an uncured resin inside a

composite material will undermine the final product material properties. Particu-

larly, the performance of these systems in healing macroscale damages is still an

obstacle that must be overcome. This kind of healing methodology is referred to as

a coupled damage-healing system which indicates that both of the damage and

healing processes are active concurrently in the system (Shojaei et al. 2013;

Voyiadjis et al. 2012a). The second type of healing scheme utilizes the so-called

solid healing agent. These systems utilize some dispersed solid phase, e.g., ther-

moplastic particles (TPs), as the healing agent in which external triggering, e.g.,

heating, is required to activate the solid healing agent, e.g., melting in the case of

TPs, and diffuse to the crack surfaces (Zako and Takano 1999; Li and Uppu 2010;

Nji and Li 2010b; Li and Shojaei 2012). The third class is called thermally

reversible covalent bonds where the broken chemical bonds are rejoinable

(Liu and Chen 2007; Plaisted and Nemat-Nasser 2007; Varley and van der Zwaag

2008). In the last two methods, external triggering is utilized to activate the healing

mechanism. These systems are referred to as decoupled damage-healing systems

where the damage and healing processes are active separately as discussed by

Voyiadjis et al. (2011).

There are many research groups currently working on theoretical and experi-

mental developments of self-healing materials. Among the newly developed

healing schemes, one may mention the recently established bio-inspired two-step

close-then-heal (CTH) mechanism which has been developed by Li and coworkers

at Louisiana State University, USA. This novel scheme provides molecular level

healing for structural- and micro-length scale damages in polymeric composite

materials and shows repeatability and efficiency properties for the healing process

in which the healing can be implemented in a timely manner (Shojaei et al. 2013;

Li and John 2008; Li and Nettles 2010; Li and Uppu 2010; Nji and Li 2010a, b;

Voyiadjis et al. 2011; Li and Shojaei 2012). In these systems, the confined shape

recovery of shape memory polymer (SMP) provides the essential force for crack

closure and the embedded TPs are molten to heal the cracks. Molecular healing

level is obtained through diffusion of TPs into the crack surfaces. The SMP sample

is programmed under specific programming steps before the structural level dam-

age is induced into the sample. These three-step thermomechanical programming

for the SMP are as follows: (i) compression at a temperature above the glass

transition temperature, (ii) cooling while maintaining the compressive strain con-

stant, and (iii) removal of the applied stress at a temperature well below the glass

transition temperature. This process is shown in Fig. 1 (Voyiadjis et al. 2012b).

While the bulk SMP, as the matrix in self-healing systems, requires the mentioned

specific programming steps, the SMP fibers are programmed with simple room

temperature tension. Most recently, Li and Shojaei proposed the use of SMP fibers

instead of making the whole matrix from SMP. It is shown by them that the cold-
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drawn SMP fibers are work-hardened and they show excellent strength and shape

recovery property when they are embedded inside thermosetting polymeric matrix

(Li and Shojaei 2012; Shojaei et al. 2013). One may also mention works by Hayes

and coworkers at the University of Sheffield for developing self-healing fiber-

reinforced composite materials (Hayes et al. 2007a, b) and works by Bond and

Trask in University of Bristol on bio-inspired healing schemes (Bond et al. 2008).

Due to the high-performance nature of the CTH healing scheme, its concept is

more elaborated in detail here. Figure 2 represents an overview on the CTH

mechanism using SMP matrix as the closing agent (Voyiadjis et al. 2012a).

Figure 2a shows the schematic of a damaged structure at room temperature in

which a three-point single-edge notch bend test might be utilized to introduce a

structural level damage into the system. The green spheres are schematics of the

dispersed thermoplastic particles (TPs) in the SMP matrix. Figure 2b shows the

heated damaged configuration from room temperature to an elevated temperature

above the SMP glass transition temperature Tg, where the Shape Memory property

of the SMP is activated. The confined boundary conditions cause the crack to be

sealed. Figure 2c illustrates the state of the sample when the temperature reaches

above the melting point of TPs in which the molten TP molecules diffuse into the

crack surfaces and fills the microscale gap between closed crack surfaces. Figure 2d

shows the state of the SMP after the cooling down process where the crack is fully

healed in this configuration (Voyiadjis et al. 2012a). A schematic representation of

the confined shape recovery of SMP is depicted in Fig. 2e where the configuration of

rigid rod and sample is shown inside the rigid cylindrical fixture (Voyiadjis

et al. 2012a). The confined recovery starts by heating the setup to a temperature

above Tg while the rigid fixture and rod retain the overall shape of the sample.

Consequently, the activated SM property will cause the sample to expand, and the

external confinement fills the open internal cracked spaces and the cracks within the

sample are closed. As shown in Fig. 3, it is experimentally confirmed that the TP in this

step diffuses into the SMP matrix and provides the desired molecular level healing

(Nji and Li 2010b; Li et al. 2012). Experimental observations confirm the efficiency of

Fig. 1 Thermomechanical

cycle for an SMP-based self-

healing system (Picture

courtesy of Voyiadjis

et al. (2012a))
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this healing mechanism in which molecular entanglements are gained after healing

and the mechanical properties of the self-healing system are fully recovered (Nji and

Li 2010b; Voyiadjis et al. 2011). Figure 3 shows scanning electron microscopy and

transmission electron microscopy results for a macroscale crack (Voyiadjis

et al. 2012a), produced by a three-point bending test (ASTM-D5045 2007).

Figure 3a shows SEM image of a macroscale crack in the self-healing system,

where the openings of the crack, crack path, and crack tip are highlighted on the

SEM image (Voyiadjis et al. 2012a). Figure 3b shows the healed configuration where

the crack path is almost disappeared and the TEM image shows the interface between

the TP and the SMP matrix after diffusion (Voyiadjis et al. 2012a).

Recently, Li and Shojaei proposed a new healing scheme for the polymeric

material systems in which the programmed SMP fibers are utilized to close the

cracks, while the same healing strategy, i.e., diffusion of the molten TPs, provides

the molecular level of healing (Shojaei et al. 2013; Li and Shojaei 2012). This new

healing scheme compensates for the high cost associated with the required high

volume of SMP as matrix, and also the external confinement restriction is removed

(Shojaei et al. 2013). The schematic of this healing strategy is depicted in Fig. 4

(Li and Shojaei 2012).

Fig. 2 Schematic representation of the healing process in an SMP-based self-healing system with

embedded TPs, (a) Damaged state at room temperature. (b) Partially heated sample above Tg,

where SMP remembers its original shape, and under confined boundary condition, the macroscale

crack is sealed. (c) Upon further heating to a temperature above the melting temperature of the

thermoplastic particles (Tm), the crack is filled in by the molten TP and the TP molecules diffuse

into the SMP matrix. (d) The final healed configuration at room temperature, where the molecular

level of healing is reached through physical entanglement. (e) A schematic representation of

confined shape recovery setup (the cylinder is sliced here to show the inside configuration) (Picture

is after Voyiadjis et al. (2012a))
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Fig. 3 (a) Structural-level damage. (b) Healed configuration (Picture courtesy of Voyiadjis

et al. (2012a))

Fig. 4 Schematic of the bio-inspired healing process of the proposed composite (3-D view) (a) a

unit cell (bay) of SMP grid (ribs and z-pins) stiffened conventional thermoset polymer dispersed

with thermoplastic particles. A macroscopic crack is introduced in the unit cell, which can be

identified by visual or nondestructive inspections (T < Tg); (b) crack closure process through

recovery of the SMP fiber ribs and z-pins, when local heating is applied (T > Tg); (c) further

temperature rising melts the thermoplastic particles which flow into the crack by capillary force

and diffuse into the fractured surface by concentration gradient (T > Tm); (d) cooling down to

below the glass transition temperature, solid wedge can be formed and molecular entanglement

can be established (T < Tg). Magnified view shows the molecule entanglement at the crack

interface (Picture courtesy of Li and Shojaei (2012))
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Continuum Damage-Healing Mechanics

In this section, the concept of effective and real configurations in the case

of damage-healing is elaborated and new scalar and tensorial healing variables

are formulated within the CDM framework. In section “Scalar Damage-Healing

Variables,” the scalar damage variables are introduced, and in section “Generalized

Damage-Healing Variables,” the anisotropic damage-healing problem is evaluated

in which tensorial representation of the healing variables is proposed.

Scalar Damage-Healing Variables

The major advantage of continuum damage mechanics is that it utilizes a contin-

uous damage description in the damage process zone. Kachanov (1958)

and Rabotnov (1963) were the first ones to introduce a damage variable to relate

the density of defects to the overall material degradation (Voyiadjis

et al. 2011, 2012a, b; Shojaei et al. 2013; Voyiadjis and Kattan 2006b, 2009,

2010). Many damage variables have been introduced later in the literature to

overcome measurement difficulty of the damage densities, such as calibrating the

elastic constant changes due to the damage mechanism (Kachanov 1958;

Voyiadjis and Kattan 2009, 2010) or using the surface energy descriptions for

generating new microsurfaces during the damaging process and correlating it to

the material deterioration (Hansen and Schreyer 1994). Also, many direct and

indirect damage measurement processes are introduced in the literature (Lemaitre

and Dufailly 1987).

Making use of the well-developed damage formulation in the literature, the lack

of the theoretical background for the healing process is addressed by Voyiadjis,

Shojaei, Li, and Kattan in Voyiadjis et al. (2011, 2012a, c). In their work, a scalar

healing variable for the case of isotropic healing process is proposed and a direct

method to capture the healing effect is established (Voyiadjis et al. 2012c). The

developed scalar healing variable measures the changes in the density of defects

during the healing process and then they proposed a scalar healing variable based

on the changes of the elastic moduli (Voyiadjis et al. 2012c). For this purpose, the

concept of the effective configuration, in the framework of CDM, is modified to

capture the effect of healing. The proposed framework provides a consistent

approach for FEA implementation of self-healing and it has been adopted by

many other researchers in the field of solid mechanics to investigate the healing

effect.

As discussed by Voyiadjis et al. (2012c), one may consider the CDM framework

to show the initial undeformed and undamaged configuration of the body by C0 and

the damaged and deformed configuration by C. The effective configuration is a

fictitious state where all damages including microcracks and voids have been

removed from the deformed body and it is shown by C. In Fig. 5, these configu-

rations are depicted schematically. For the case of isotropic damage and using the
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basic concept of the effective state, the damage variable is defined as a scalar in the

following manner (Kachanov 1958; Voyiadjis et al. 2012c):

ϕ ¼ A� A

A
(1)

To define the scalar healing variable, three new configurations are defined

subsequently. The fictitious state of fully damaged and deformed configuration

Cd, which is obtained by subtracting the fictitious undamaged and deformed

cross section A in the configuration C from the total cross section A in the

configuration C, is as follows (Voyiadjis et al. 2012c):

Ad ¼ A� A ¼ A� A 1� ϕð Þ ¼ Aϕ (2)

where Ad is the total damaged cross section (removed area due to damage).

The healing process is considered to be active only on the pure damaged

configuration, i.e., Ad, and then the fictitious healed and deformed configuration

Ch is defined by removing some portion of damages from Ad as shown in Fig. 6. The

scalar healing variable is then defined as follows (Voyiadjis et al. 2012c):

h ¼ Ad � Ah

Ad
, 0 < h < 1 (3)

where Ah is the healed portion of the cross section Ad (Voyiadjis et al. 2012c). The

case of h¼ 1 corresponds to zero percent healing of the damaged area (Ah¼ 0), and

h ¼ 0 relates to 100 % healing of the damaged area (Ah ¼ Ad).

Finally, the effective fictitious fully healed and deformed configuration C
h
is

obtained by removing all the remaining damages from Ch, as shown in Fig. 7.

Based on the CDHM approach, the damaged area does not sustain any further

loading. However, after healing, the healed cross section Ah can carry load T00 as

Fig. 5 (a) Initial undeformed and undamaged configuration C0. (b) Damaged and deformed

configuration, C. (c) Effective fictitious undamaged and deformed configuration, C (Picture

courtesy of Voyiadjis et al. (2012c))
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shown in Figs. 6 and 7. The cross section of the hypothetical healed configuration

C
healed

is assumed to be the summation of the cross section of the effective fictitious

healed and deformed configuration C
h

and the cross section of the effective

fictitious undamaged and deformed configuration C as shown if Fig. 8.

Fig. 7 (a) Fictitious healed

and deformed configuration,

Ch. (b) Effective fictitious

fully healed and deformed

configuration, C
h
(Picture

courtesy of Voyiadjis

et al. (2012c))

Fig. 8 (a) Virgin material. (b) Damaged and deformed configuration, C. (c) Hypothetical healed

configuration, C
healed

(Picture courtesy of Voyiadjis et al. (2012c))

Fig. 6 (a) Fictitious total

removed area due to damage,

Cd. (b) Fictitious healed and

damaged configuration, Ch

(Picture courtesy of Voyiadjis

et al. (2012c))
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The necessary transformation equation for stresses between C
healed

and C is

derived by applying the equilibrium on the healed and damaged states as follows

(Voyiadjis et al. 2012c):

σ ¼ σ
1� ϕð Þ þ ϕ 1� hð Þð Þ (4)

In order to compute the transformation relations between the damaged-healed

elastic modulus, E(ϕ, h), and the effective undamaged elastic modulus, E, certain

assumptions regarding the strains in the two configurations are required (Voyiadjis

et al. 2012c). Accordingly, one of the following two hypotheses is followed within

CDHM (Voyiadjis et al. 2012a, c):

1. Hypothesis of elastic strain equivalence: in this case, the strains in damaged and

fictitious configurations are assumed to be the same, i.e., ϵ ¼ ϵ.
2. Hypothesis of elastic strain energy equivalence: in this case, the elastic strain

energy in both configurations is assumed to be equivalent, i.e., U ¼ U.

While both of these hypotheses have been used by researchers in the field of

CDM, it is believed that the hypothesis of elastic energy equivalence is more

general since it evaluates the response of the system based on the energy balance.

In the following, for completeness, both hypotheses are used to derive the trans-

formation relations.

Hypothesis of Elastic Strain Equivalence for Damage Variable f
and Healing Variable h
The transformation laws between the effective and the damaged-healed configura-

tions based on the hypothesis of elastic strain equivalence are established through

ϵ ¼ ϵ (5)

Using the elastic constitutive equation for both the effective configuration,C
healed

,

and the damaged-healed configuration, C, along with Eq. 4, the transformation

equation for elasticity modulus between these configurations is computed as

follows:

Eh ϕ,hð Þ ¼ E 1� ϕð Þ þ ϕ 1� hð Þð Þ (6)

where Eh(ϕ, h) indicates the damaged and healed elastic modulus and E is the

modulus of elasticity for the virgin material. When there is no healing process h¼ 1,

Eq. 6 results in the classical relation: Eh ϕ, h ¼ 1ð Þ ¼ E 1� ϕð Þ (Kachanov 1958;

Lemaitre and Chaboche 1990; Voyiadjis and Kattan 2006b).
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Hypothesis of Elastic Energy Equivalence for Damage Variable f
and Healing Variable h
As an alternative approach to deriving the transformation rule of Eq. 6, one may use

the hypothesis of elastic strain energy equivalence between the effective configu-

ration, C
healed

, and the real damaged-healed configuration, C, in order to derive the

elastic modulus relation between these two states as follows:

U ¼ 1

2Eh ϕ,hð Þ σ
2 ¼ 1

2E
σ2 (7)

Substituting σ from Eq. 4 into Eq. 7 results in the relation between the

transformation relation for the elastic modulus between the two configurations:

Eh ϕ,hð Þ ¼ E 1� ϕð Þ þ ϕ 1� hð Þð Þ2 (8)

The state of 100% healing yieldsEh ϕ, h ¼ 0ð Þ ¼ E, and the corresponding elastic

modulus is fully recovered after the healing process. In the case when there is no

healing process, Eq. 8 results inEh ϕ, h ¼ 1ð Þ ¼ E 1� ϕð Þ2 which shows consistency
with the classical result obtained from the continuum damage mechanics (Kachanov

1958; Lemaitre and Chaboche 1990; Voyiadjis and Kattan 2006b, 2009). Finally,

there are two options to choose from for the transformation laws: those are Eq. 6

resulting from the hypothesis of elastic strain equivalence and Eq. 8 which is a direct

result from utilizing the hypothesis of elastic energy equivalence.

Elastic Modulus Based Scalar Damage-Healing Variable
The damage measurement based on the area reduction is hard to obtain and it is not

practical in many real applications. The measurement of the cross section area

reduction due to damage or cross section area increase due to healing involves

precise measurement of microcracks and microvoids which is hard to implement

and requires advanced mathematical and mapping techniques. In order to facilitate

the damage and healing measurement, an indirect measurement method for the

damage and healing is adopted in this work (Voyiadjis et al. 2012c; Lemaitre and

Dufailly 1987). This new healing variable for the uniaxial case of healing is

introduced based on the elastic modulus changes. The scalar damage measure is

introduced as (Voyiadjis et al. 2012c)

l ¼ E� Ed lð Þ
Ed lð Þ (9)

The scalar healing variable h0 is defined to measure the change in the elastic

modulus during the healing process, as follows (Voyiadjis et al. 2012c):

h0 ¼ Eh l, h0ð Þ � Ed lð Þ
Ed lð Þ (10)
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where E is the elastic modulus for a virgin material, Ed(l) is the damaged elastic

modulus in the damaged and deformed configuration, C, and Eh(l, h0) is the elastic
modulus in the healed and deformed configuration, Ch. The relation between the

three moduli is as follows (Voyiadjis et al. 2012c):

Ed lð Þ � Eh l, h0ð Þ � E (11)

To obtain the transformation equation between the effective and healed elastic

modulus, one may substitute Ed(l) from Eq. 9 into Eq. 10 as follows (Voyiadjis

et al. 2012c):

Eh l, h0ð Þ ¼ 1þ h0ð ÞE
1þ lð Þ (12)

Equation 12 indicates h0 ¼ 0 corresponds to zero percent healing and results in

Eh l, h0 ¼ 0ð Þ ¼ Ed lð Þ ¼ E= 1þ lð Þ which is consistent with the result of pure dam-

age without healing (Voyiadjis et al. 2012c). By setting Eh l, h0 ¼ lð Þ ¼ E, the upper

bound for h0 is obtained as h0 ¼ l. In the following, the transformation laws based on

this new healing variable are derived for both cases of elastic strain equivalence and

elastic energy equivalence.

Hypothesis of Elastic Strain Equivalence for Damage Variable l and Healing
Variable h0

The transformation laws based on the hypothesis of elastic strain equivalence are

utilized to obtain the correlation between the two configurations of C
healed

and

C. Using Eq. 5 results in the following transformation law (Voyiadjis et al. 2012c):

σ ¼ σ
1þ lð Þ
1þ h0ð Þ (13)

The correlation between damage variables l and ϕ and the healing variables h

and h0 is given by (Voyiadjis et al. 2012c)

ϕ ¼ 1

h
1� 1þ h0

1þ l

� �
(14)

Hypothesis of Elastic Energy Equivalence
The stress transformation between the damaged state, C, and the hypothetical

healed states, C
healed

, is obtained based on Eq. 7 as follows (Voyiadjis et al. 2012c):

σ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1

h0 þ 1

r
(15)

where σ is the healed stress in the healed configuration and stress σ is in the

damaged configuration.
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The relation between the damage variables l and ϕ and the healing variables h

and h0 in the case of elastic energy equivalence is obtained through substituting E

from Eq. 12 into Eq. 8 (Voyiadjis et al. 2012c):

ϕ ¼ 1

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0ð Þ
1þ lð Þ

s !
(16)

The relationship between the classical damage variables ϕ and l is shown in

Eq. 16 with new healing variables h and h0, when the hypothesis of elastic strain

energy is utilized.

If the healing is eliminated from the system, it means that h0 ¼ 0 and h ¼ 1 and

Eq. 16 reduces to

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lð Þp � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lð Þp (17)

which is consistent with the result published before on this topic (Voyiadjis and

Kattan 2009). Substituting Eq. 17 into Eq. 16 results in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lð Þ

p
� 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0

p
� 1

1� h
(18)

If one uses ϕ instead of l, then the above relation becomes

ϕ
1� ϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0

p
� 1

1� h
(19)

Note that Eqs. 18 and 19 are special cases of Eq. 16.

Generalized Damage-Healing Variables

The material degradation based on the damage density and calibrating the area

reduction due to the microscale damages formation was formerly formulated by

Kachanov (1958). This concept was later generalized to a multiaxial anisotropic

case by Murakami (1988). Figure 9 represents the CDM approach in removing

damaged material from the real configuration (Voyiadjis et al. 2012b, c). Figure 5a

depicts the real state of the damaged material which is assumed to be decomposed

into a fictitious effective configuration in Fig. 9b, which carries the load, and

a fictitious fully damaged configuration, Fig. 9c, which cannot sustain load.

The damage variable tensor ϕij represents the transformation between the real
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damaged area vector dAni (Fig. 9a) and effective fictitious area vector dAni
(Fig. 9b) as proposed by Murakami (1988):

ϕijni ¼
dAnj � dAnj
� �

dA
; 0 � ϕijϕij

� �1=2
� 1 (20)

The pure damaged area vector dAdni
d (Fig. 9c) is then obtained as a function of

the damage variable tensor, ϕij, and the area vector, dAnj, in the real damaged

configuration. Equation 20 is rearranged to obtain

dAdndi ¼ dAni � dAni ¼ ϕijnjdA (21)

Voyiadjis, Shojaei, Li, and Kattan utilized the underlying mechanism of the

healing process to find physically consistent healing variables to calibrate

the healing mechanism (Voyiadjis et al. 2012b, c). During the healing process,

some of the microscale damages are healed and then the effective area, which

carries the load, is increased. To represent this phenomenon, it is assumed that the

fictitious fully damaged configuration (Fig. 9c) undergoes the healing process

(Voyiadjis et al. 2012b). This anisotropic healing problem is shown in Fig. 10,

where Fig. 10a shows the pure damaged sate without load-carrying capacity.

Figure 10b shows the healed configuration and Fig. 10c shows the fictitious

effective healed configuration. In Fig. 10d, the remaining damages after

accomplishing the healing process are shown which indicates that the healing

process can be partially effective in removing the damages.

Fig. 9 Schematic representation of (a) real damaged configuration, (b) fictitious effective con-

figuration, (c) fictitious damaged state (Voyiadjis et al. 2012b)

46 Continuum Damage-Healing Mechanics 1529



According to the presented physical description of the healing process,

Voyiadjis, Shojaei, and Li (Shojaei et al. 2013; Voyiadjis et al. 2012b) proposed

a second-rank anisotropic healing variable tensor hij as follows:

hijn
d
i ¼

ϕjkdAnk � dAhnhj

dAd
; 0 � hijhij

� �1=2 � 1 (22)

where healing variable hij captures the transformation between the real damaged

area vector dAni (Fig. 11a) and the fictitious healed area vector dA
00
nhi (Fig. 11b;

Voyiadjis et al. 2012b). Figure 11 shows the overall mapping procedure between

the real damaged and fictitious healed effective configurations (Voyiadjis

et al. 2012b).

Fig. 10 (a) Fictitious damaged state, (b) fictitious healed state, (c) fictitious effective healed

configuration, and (d) fictitious remained damaged state (Voyiadjis et al. 2012b)

Fig. 11 (a) Damaged configuration, (b) fictitious effective configuration after healing process

(Voyiadjis et al. 2012b)
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As indicated in the case of scalar damage-healing measurement techniques, the

idea of area reduction due to the damage and area increasing due to the healing

process is referred to as direct measurement and it can be accomplished by

advanced measurement techniques (Voyiadjis et al. 2012b, c). Due to the complex

mapping techniques required in measuring the damage and healing based on this

defect density approach, indirect measurement methods are preferable (Voyiadjis

et al. 2012b, c). In these methods, the damage and healing processes are calibrated

based on elastic modulus changes (Lemaitre and Dufailly 1987). The fourth-order

anisotropic damage variable tensor κijkl based on the elastic modulus change is

given as follows (Voyiadjis et al. 2012b; Lemaitre and Dufailly 1987):

κ 1ð Þ
ijkl ¼ Eijmn � Ed

ijmn

� �
E
�1

mnkl

κ 2ð Þ
ijkl ¼ E

�1

ijmn Emnkl � Ed
mnkl

� � (23)

where the superscripts “(1)” and “(2)” indicate the two different mathematical

tensorial expressions for the damage tensor. These expressions normalize the

damage tensor with respect to the inverse of the undamaged elasticity tensor, Eijkl ,

and Eijkl
d is the damaged elastic modulus (Voyiadjis et al. 2012b).

In order to measure the healing indirectly, a fourth-rank healing variable tensor

hijkl
0 is introduced by Voyiadjis, Shojaei, and Li to measure the elastic modulus

changes after accomplishing the healing process as follows (Voyiadjis et al. 2012b):

h0 1ð Þ
ijkl ¼ Eh

ijmn � Ed
ijmn

� �
Ed�1

mnkl

h0 2ð Þ
ijkl ¼ Ed�1

ijmn Eh
mnkl � Ed

mnkl

� � (24)

where Eijkl
h is the elastic modulus of the healed material in which hijkl

0 ¼ 0ijkl
represents no healing case and 0ijkl is a fourth-order tensor with zero components.

Substituting Eijkl
d from Eq. 24 into Eq. 23 results in the following expression for the

healed elastic modulus Eijkl
h (Voyiadjis et al. 2012b):

Eh
ijmn ¼ Eijmn þ Eklmn h0 1ð Þ

ijkl � κ 1ð Þ
ijkl � κ 1ð Þ

pqklh
0 1ð Þ
ijpq

� �
Eh
ijmn ¼ Eijmn þ Eijpq h0 2ð Þ

pqmn � κ 2ð Þ
pqmn � κ 2ð Þ

pqklh
0 2ð Þ
klmn

� � (25)

As shown in Fig. 11, the Cauchy stress tensor, σij, represents the stress state in
the real damaged configuration (Fig. 11a), and the effective stress tensor σij shows
the state of stress in the effective healed configuration (Fig. 11b). In general, two

approaches are available to derive the relation between these two stress tensors.

One may equate the strains in both configurations: ϵij ¼ ϵij, and the second method

is the so-called equivalent elastic energy (EEE) method which is more reliable as it

is energy based. In general, the EEE method relies on energy equivalence between

the real and effective configurations which incorporates more physical phenomena

in comparison to a simple equivalence of strains. The EEE approach has been

extensively utilized in the literature to derive the relations between effective and
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real configurations (Lemaitre 1985; Yazdani and Schreyer 1990; Hansen and

Schreyer 1994; Voyiadjis et al. 2012b, c; Shojaei et al. 2013). Making use of the

second approach, which is stated between real damaged and fictitious healed

configurations, results in

U ¼ 1

2
Eh�1

ijklσijσkl ¼
1

2
E
�1

ijklσijσkl (26)

A fourth-rank damage-healing transformation tensor, Qijkl, is defined to repre-

sent the transformation between the Cauchy stress tensors, σij, in the real state

and Cauchy stress tensor, σij, in the effective configuration. It is expressed by the

following relationship (Voyiadjis et al. 2012b):

σij ¼ Qijklσkl (27)

Substituting σij from Eq. 27 and Eijkl
h from Eq. 25 into Eq. 26 provides the

relationships between hijkl
0 , Eijkl

d , and Qijkl as follows (Voyiadjis et al. 2012b):

QijuwQklpq ¼ h0 1ð Þ
mnijE

d
klmn þ Ed

klij

� �
E
�1

uwpq

QijuwQklpq ¼ Ed
mnijh

0 2ð Þ
klmn þ Ed

klij

� �
E
�1

uwpq

(28)

Applying the equilibrium between the real and effective configurations results in

the relation between stresses in these two states as shown below (Voyiadjis

et al. 2012b):

σij ¼ M�1
ijkl þ Iijmn �M�1

ijmn

� �
H�1

mnkl

� �
σkl (29)

where Iijkl is the fourth-order identity tensor. The fourth-rank damage effect tensor,

Mijkl, and healing effect tensor, Hijkl, are defined in the following. One may find

Hijkl ¼ 0ijkl (where 0ijkl is the fourth-rank zero tensor) that indicates the unhealed

configuration in which σij ¼ Mijklσkl . The case of Hijkl ¼ Iijkl represents the fully

healed state where σij ¼ σij (Voyiadjis et al. 2012b). Consequently, the following

tensorial representations for Mijkl and Hijkl are proposed (Voyiadjis et al. 2012b):

Mijkl ¼ Iij � ϕij

� �
Ikl � ϕklð Þ

h i�1=2

Hijkl ¼ hijhkl
	 
�1=2

(30)

Comparing Eqs. 29 and 27, one may find (Voyiadjis et al. 2012b)

Qijkl ¼ M�1
ijkl þ Iijmn �M�1

ijmn

� �
H�1

mnkl

� ��1

(31)

The relationships between the second-rank damage variable tensor, ϕij, and the

healing variable tensor, hij, with the fourth-rank damage tensor, κijkl, and the
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healing variable tensor, hijkl
0 , are obtained by substituting Qijkl from Eq. 31 into

Eq. 28 (Voyiadjis et al. 2012b):

M�1
ijuw þ Iijmn �M�1

ijmn

� �
H�1

mnuw

� ��1

M�1
klpq þ Iklmn �M�1

klmn

� �
H�1

mnpq

� ��1

¼ h0 1ð Þ
mnijE

d
klmn þ Ed

klij

� �
E
�1

uwpq

M�1
ijuw þ Iijmn �M�1

ijmn

� �
H�1

mnuw

� ��1

M�1
klpq þ Iklmn �M�1

klmn

� �
H�1

mnpq

� ��1

¼ Ed
mnijh

0 2ð Þ
klmn þ Ed

klij

� �
E
�1

uwpq

(32)

Upon substituting Mijkl and Hijkl from Eq. 30 into Eq. 32, the relationships

between all introduced damage-healing variables are established (Voyiadjis

et al. 2012b). Consequently, knowing one set of these damage-healing variables,

i.e., (ϕij, hij) or (κij, hij0 ), the other set can be obtained using Eq. 32 (Voyiadjis

et al. 2012b).

Results and Discussion

The performance of the new introduced scalar healing variables is evaluated for

both the coupled and the uncoupled damage-healing processes in (Voyiadjis

et al. 2012c). In the case of elastic strain energy equivalence, the relation

between the damage variables and the healing variables is introduced in Eq. 16.

The effect of healing is studied in Fig. 12. The state of fully damaged configuration

is obtained by setting the healing variables h ¼ 1 and h0 ¼ 0 in such a way that the

healing effect is omitted. The effect of healing parameter h is then evaluated for

three different healing values including h ¼ 0.8, 0.5 and 0.3, and the healing

variable h0 is kept zero. It is seen that the valid ranges for the damage variable ϕ
when the damage variable l varies in the range 0 < l < 1 is 0 � ϕ � 0.293.

Consequently, the limiting maximum value for ϕ based on the definition of the

stiffness reduction of l is 0.293 (Voyiadjis and Kattan 2009; Voyiadjis et al. 2012c).

However, in the case of the healed configuration, this limiting value is increased

and the material can sustain more damage based on the definition of ϕ with respect

to the unhealed material.

In the case of the coupled damage-healing process, the physical relation between

the damage and healing processes are utilized to introduce an empirical relation

between the healing and damage variables (Voyiadjis et al. 2012a, c). For instance,

in the case of self-healing materials containing microencapsulated healing agent,

one may find a relation between the introduced damage into the system and the

diffused healing agent into the microcracks (Kirkby et al. 2008, 2009). Here, an

empirical function is introduced which relates the damage variable l to the healing

variable h0 as follows (Voyiadjis et al. 2012c):
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Ζ lð Þ ¼ αe�βl, and h0 ¼ l if Ζ lð Þ > l

Ζ lð Þ if Ζ lð Þ � l

�
(33)

where α and β are two material-dependent constants which may represent the

physical characterization and dispersion of microcapsules and diffusion and effec-

tiveness of the healing agent (Voyiadjis et al. 2012c). Equation 33 performance is

depicted in Fig. 13. The healing is assumed to recover all damages at the initial

stages of the damage process, and with increasing the amount of the introduced

damage into the system, the effectiveness of the healing process is reduced

(Voyiadjis et al. 2012c).

This empirical relation is now introduced into the system and the coupled damage-

healing process is evaluated. In the case of elastic strain energy equivalence and

making use of Eq. 16, the effect of the healing process h0 on the damage variable ϕ is

depicted in Fig. 14, while the healing variable h is set to be 1whichmeans this healing

variable is deactivated (Voyiadjis et al. 2012c). The damaged configuration and the

two coupled damage-healing configurations are shown in Fig 14. Both healing

processes show full recovery of the damage variable ϕ at the initial damage process

and both of these healing processes show less damage value for ϕ at the point l ¼ 1.

The effect of the healing variable h0 in the case of elastic strain energy equiv-

alence in a coupled damage-healing process on the stress ratio σ=σ (stress ratio

between damaged and effective configuration) is depicted in Fig. 15. Equation 15 is

used and both healed configurations show an initial non-damaged response. After a

certain limit of damage, they show higher stress ratios, which is an indication of a

strengthened material where damaged stress is closer to the effective non-damaged

configuration (Voyiadjis et al. 2012c).

One may introduce the governing Eq. 33 into an uncoupled damage-healing

process such as self-healing materials which undergo two-step CTH (Li and Uppu

Fig. 12 Effect of healing variable h on damage parameters ϕ and l (After Voyiadjis et al. 2012c)
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2010). In Fig. 16, this situation is investigated where the material is unloaded

and healed at a certain level of damage (l ¼ 0.5). Healing parameters are chosen

as α¼ 0.9 and β¼ 2, and the material is loaded after healing. In Fig. 16, the damage

variable l following the healing process is reduced and the material shows higher

resistance to the damage after healing.

Fig. 13 Empirical relation between damage variable l and healing variable h0 in a coupled

damage-healing process (After Voyiadjis et al. 2012c)

Fig. 14 Effect of healing variable h0 in a coupled damage-healing process on damage variable ϕ
(After Voyiadjis et al. 2012c)
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Conclusion

The mechanics of damage and healing processes is studied in this chapter, and the

bases of a physically based modeling of self-healing are presented (Voyiadjis

et al. 2012a, 2012c). The healing variables for calibrating the healing process are

introduced in which two new anisotropic damage-healing variables which are

Fig. 15 Effect of healing variable h0 in a coupled damage-healing process on stress ratio between

damaged and effective configurations (After Voyiadjis et al. 2012c)

Fig. 16 Effect of healing variable h0 in an uncoupled damage-healing process on stress ratio

between damaged and effective configurations (After Voyiadjis et al. 2012c)
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defined based on the physics of the damage and healing processes are reviewed.

The performances of the newly developed damage-healing variables are examined

and they have been performing quite well in capturing SMP-based self-healing

system responses (Voyiadjis et al. 2011, 2012b). The proposed anisotropic

damage-healing variables provide the designers with the ability to measure the

state of the damage and healing in a highly anisotropic self-healing system. As

shown by the authors, the proposed potential functions are capable of capturing

the irregular coupled and/or uncoupled damage-healing responses of the polymeric-

based material systems. However availability of experiments for self-healing

systems is limited in the literature, the proposed theory provides mathematical

competency to capture the most complex responses. The healing test setup at

Louisiana State University (USA, Baton Rouge) is utilized to investigate the

performance of the developed framework and it correlates well with the observed

results (Voyiadjis et al. 2011). The microstructural physics of the healing can

be incorporated in CDHM framework by introducing fabric tensors. Fabric

tensors capture the crack and void distributions in the damaged material and they

have been linked to the CDM concept (Voyiadjis and Kattan 2006a, 2007;

Voyiadjis et al. 2007). This will open a new field for the material researchers in

associating fabric tensors and micromechanics to the concept of the healing

mechanics.

The healing variables should be prescribed constitutively based upon the mate-

rial system characteristics and the healing cycle. This task is accomplished by

taking into account several deformation mechanisms, involved in healing process,

including diffusion of healing particles into matrix and wetting of the fracture

surfaces by the healing agents.
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Abstract

In this chapter, the application of the phase field method (PFM) into continuum

damage mechanics is discussed. It is shown that the effect of the damage

gradient can be deduced using the PFM which yields a nonlocal damage

model. This is derived for isotropic damage using a scalar variable. The deriva-

tion is in the elastic region and the damage rate equation shows the evolution of

damage for brittle materials. However, this theory may be coupled with a

plasticity model. The framework of the phase field method is discussed in a

simple scalar form. After a brief review of isotropic damage, the order parameter

is related to the damage variable and a free energy functional in damaged

materials is derived which is capable in capturing the evolution of nonlocal

damage through the Allen–Cahn equation. It is shown that there is no need to

follow the conventional normality rule – which is common in previously pro-

posed models – using this variational approach. Specific length scale due to

damage is proposed and the general state of stress with scalar damage variable is

discussed. Details of three different finite difference schemes are discussed and

the application and regularization capabilities of the model are demonstrated by

a 1D numerical example.

Introduction

The phase field method (PFM) as a powerful theoretical and computational tool is

applied in many research areas. Transformation that consists of two or more

different phases and the continuous change between the different phases can be

represented by this method. It has been used to simulate temporal evolution

specifically for important phase transformation problems like microstructure evo-

lution, diffusion, and solidification in solid materials. This method has several

applications in various research areas including microstructural evolution (Guo

et al. 2005; Hu et al. 2007), solidification (Boettinger et al. 2002; Cha et al. 2001;

Gránásy et al. 2004; Karma 2001; Ohno and Matsuura 2010), inhomogeneous

elasticity (Boussinot et al. 2010; Hu and Chen 2001; Sankarasubramanian 2011;

Wang et al. 2002; Zhu et al. 2001), stress-induced phase transformation (Levitas

and Ozsoy 2009a, b; Levitas and Preston 2002), crack propagation and fracture

models (Aranson et al. 2000; Karma et al. 2001; Miehe et al. 2010a, b; Spatschek

et al. 2006, 2007), theory of dislocations and dislocation dynamics (Koslowski

et al. 2002; Rodney et al. 2003; Wang et al. 2001), and grain growth simulation (Fan

and Chen 1997; Uehara et al. 2007). It can also be used in conjunction with

elasticity or a combination of elasticity and diffusion (Onuki 1989), and enhance-

ment of this method with nonlinear mechanical behavior is discussed in a number of

references (Gaubert et al. 2010; Guo et al. 2008; Yamanaka et al. 2008; Zhou

et al. 2008). Multiphase phenomena can also be simulated with this approach

(Moelans 2011; Ofori-Opoku and Provatas 2010; Steinbach and Apel 2006;

Steinbach et al. 1996). On the other hand, damage mechanics is introduced to

develop constitutive and computational models in order to predict the material
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behavior which is based on the evolution of microcracks and microvoids. As it is

common in solid mechanics to use finite element method, several attempts have been

made to develop computational models to predict damage evolution by using the finite

element method (Abu Al-Rub and Voyiadjis 2003; Dorgan and Voyiadjis 2007;

Voyiadjis 1988; Voyiadjis and Deliktas 2000; Voyiadjis et al. 2009; Voyiadjis and

Dorgan 2007; Voyiadjis and Kattan 1990, 2006). In parallel, it is shown that the phase

field method as a powerful technique can be used in tracking the microstructure and

morphological evolution in phase transformations with diffuse interfaces. Setting a

general thermodynamic consistent framework that combines standard phase field

approach with conventional damage mechanics theory is the motivation of this

chapter. The advantages of using this theory are the relative simplicity of implemen-

tation on computer programs using the finite differencemethod, governing an estimate

of the damaged part through the nonlocal term and also predicting temporal evolution

of damage. The local behavior of each phase inside the RVE (representative volume

element) is obtained by the classical damage theories as an assumption in the

following sections. The RVE is large enough to consider both phases as well as

averaging them in the RVE. Therefore, averaging of the microcrack areas is set and

specific arrangement of phases is not assumed inside the RVE. The formulation is

based on the general type of damage variablewhich is related to order parameter based

on the physics of the problem to simulate damage growth.

The outline of this chapter is as follows: First, a quick introduction of the PFM

application history in material science is given. Then, the phase field theory in a

simple scalar form is discussed based on the work of Boettinger et al. (2002).

Aforementioned framework provides a succinct and sound physical base of the

phase field theory. The concept of isotropic damage is then reviewed in order to link

the order parameter to the damage variable in continuum damage mechanics

(CDM). Following that, free energy functional of one scalar order parameter is

considered for two different phases in the damaged material. This functional

enables one to capture the evolution of nonlocal damage through the phase field

theory. Next, the time-dependent Ginzburg–Landau equation (TDGL) which is also

known as the Allen–Cahn equation is used to describe the damage evolution

process. It is shown that by using the Allen–Cahn equation, there is no reason to

use conventional normality rule to obtain the damage evolution law which is

common in previously proposed damage models. It can be seen that using free

energy functional without using Allen–Cahn equation will alleviate the use of the

phase field theory for damage and reduce the formulation to regular models.

Specific length scales due to transformation (damage in this case) exist which

show the difference between sharp interface models and diffuse interface models.

These length scales capture the effect of the damaged localization zone and address

the interface region in which the process of changing undamaged solid to fully

damaged material (microcracks) occurs. Subsequently, the terms free energy in the

phase field formulation are compared with the corresponding terms in the varia-

tional formulation, and the properties of gradient damage models through the

variational formulation are demonstrated. Next, generalized state of stress in elastic

behavior is considered assuming isotropic damage and the effect of the scalar phase
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field-based damage variable are shown on components of stress and strain tensors.

When the damage is isotropic in behavior, it evolves simultaneously at the same

rate in all the three mutually orthogonal directions and it is represented by a scalar

variable, but it can affect any component of the stress or strain tensors. Finally,

application of the new phase field-based damage model to a one-dimensional

problem is demonstrated and its numerical implementation is discussed. Three

different finite difference schemes are used, and a mathematical procedure is

derived to show regularization capabilities of the proposed model by means of

numerical examples and the validity and usefulness of the phase field modeling

approach. For the sake of simplicity, small deformation theory is assumed. There-

fore, higher-order terms in the displacement field are neglected. In this chapter, any

variable with an overbar indicates the effective state (undamaged material) and

without the bar indicates the real damaged state. For more details of this work,

readers are referred to the work by the authors (Voyiadjis and Mozaffari 2013).

General Framework of Phase Field Models

Order Parameter

Phase transition (transformation) is known as physical change in materials from one

state to another state. For instance, the internal temperature rise of water by heating

causes a change from solid state (ice) to liquid state. In a standard phase field model,

present phases in the system can be defined using order parameter or “phase field.”

There is no obligation to find a macroscopic physical interpretation for order

parameters. In a two-phase system, order parameter is set to zero in one phase and

it is set to one in the other phase and variation of the order parameter in different

phases is shown using a smooth function. Like other thermodynamic consistent

methods, free energy can be defined as a function of the order parameter and other

thermodynamic variables such as temperature and concentration. The system con-

tains two separate phases, one phase is classified as ordered phase and the other is

disordered phase (Elder and Provatas 2010). Ordered phase is the phase with lower

number of geometric symmetries and is specified by an order parameter equal to any

arbitrary value except zero. Disordered phase is a phase with higher number of

geometric symmetries. Therefore, in solid–liquid transformation, solid phase is an

ordered phase and liquid phase can be defined as a disordered phase. Two types of

commonly used order parameters, “field variables,” include conserved and

nonconserved order parameters (Chen 2002; Moelans et al. 2008). The type of a

function which is used to show the transition from one phase to another phase shows

the type of transition. If the order parameter vanishes continuously from ordered to

disordered phases at the boundary, the transition is called second-order transition,

and if there is a discontinuous change in order parameter between phases, the

transition is called first-order transition (Elder and Provatas 2010).
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Framework of Phase Field Method

The phase field modeling approach which is based on the superconductivity

theory of Ginzburg–Landau (Cahn and Hilliard 1958; Ginzburg and Landau

1965) is used to model various types of microstructure evolution as a powerful

tool during the last two decades. Generally, two types of the phase field models

are used (Chen 2002). The first type is introduced to avoid tracking of the

interfaces during microstructural evolution, and the thermodynamic and kinetic

coefficients in this type of model are selected to correspond to parameters of the

model to the conventional sharp interface model. In the second type, order

parameters are defined physically to incorporate field variables for transforma-

tion. The latter type of modeling has been used widely for many solid-state

transformations. As a general assumption in the second type, temporal micro-

structure evolution during the process can be achieved by the phase field equa-

tions including Allen–Cahn (Allen and Cahn 1979; Cahn and Allen 1977; Cahn

and Hilliard 1958) and Cahn–Hilliard (Cahn and Hilliard 1958; Gurtin 1996)

equations. In addition, all thermodynamic and kinetic coefficients can be related

to the microstructure parameters. The conventional Landau type of expansion

which is given later is used to define the free energy function as a polynomial of

order parameters (Elder and Provatas 2010). The first approach is used in this

chapter. Evolution equations of the phase field variables are derived using the

general thermodynamic and kinetic principles based on the Ginzburg–Landau

theory (Ginzburg and Landau 1965; Nauman and Balsara 1989; Sethna 2006).

These equations along with the free energy form the basis of the phase field

method. The free energy functional F for an isothermal process can be defined as

functional of phase field variables and their gradients as follows (Boettinger

et al. 2002):

F ¼
ð
V

ψ c, η,Tð Þ þ ϵ2c
2

∇cj j2 þ ϵ2η
2

∇ηj j2
" #

dV (1)

where ψ(c, η, T ) is the free energy density, c is the concentration, T is the

temperature, η is the order parameter, and ϵc and ϵη are gradient coefficients. The

free energy functional which is given by Eq. 1 must decrease during the micro-

structure evolution. Determination of gradient coefficients in Eq. 1 can give an

accurate description of interface properties such as the interface energy and anisot-

ropy of interface energy. The variational derivatives of the free energy functional

F (Eq. 1) with concentration c as conservative field and nonconservative field η
must satisfy the following equations in equilibrium conditions assuming the gradi-

ent energy coefficients are constant:

δF

δη
¼ @ψ

@η
� ϵ2η ∇2η

� � ¼ 0 (2)
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δF

δc
¼ @ψ

@c
� ϵ2c ∇2c

� � ¼ constant (3)

Constant concentration during the process (in damage process this is not the

case) can ensure the last equation to be a constant. Decrease in total free energy and

increase in entropy versus time are guaranteed by the Ginzburg–Landau equations

during the process which are given by

@η

@t
¼ �Mη

@ψ

@η
� ϵ2η ∇2η

� �� �
(4)

@c

@t
¼ ∇: Mcc 1� cð Þ∇ @ψ

@c
� ϵ2c ∇2c

� �� �� �
(5)

Mη and Mc are positive mobility constants which are related to the kinetic

coefficients. These coefficients can be obtained through experiments and charac-

terized based on the mechanism of transformation. Comparing results of the new

model to the previous proposed models is another way to find these specific

coefficients. Equation 4 is the time-dependent form of Ginzburg–Landau equation

and is termed the Allen–Cahn equation . Equation 5 is called the Cahn–Hilliard

equation. Evolution of order parameter with respect to time is proportional to the

change of the free energy functional with respect to the order parameter through

the Allen–Cahn equation. Since the concentration is not conserved during the

damage growth, Cahn–Hilliard equation cannot be used in the following derivation.

If the phase field evolution remains in equilibrium condition for static or quasi-

static loading (Hunter and Koslowski 2008), then Eq. 4 can be expressed as follows:

@ψ

@η
¼ 0 (6)

The original form of the theory will be followed for phase field evolution in the

case of dynamic impact loading, by neglecting the gradient coefficient as follows:

@η

@t
¼ �Mη

@ψ

@η
(7)

The term ψ shows the free energy function as a function of the order parameter.

Definition of the problem shows the type of thermodynamic function which can be

used in the general equation. In a more general case, when there are n different

kinds of phases in a system, an order parameter is introduced in each phase under

the following constraint condition:

Xn

i¼1
ηi ¼ 1 with ηi � 0, 8i (8)

Landau type of free energy is preferred in such a system because all the terms are

a function of the order parameter. Description of the phenomena restricts the
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number of terms in Taylor expansion of order parameter to define this free energy.

In a simple case with one order parameter, Landau free energy can be given by the

following form and each coefficient can be a function of temperature:

L ¼ L0 þ aηþ bη2 þ cη3 þ dη4 þ eη5 þ f η6 þ . . . (9)

Landau-type free energy formulation can be used in any other applicable forms

if each term consists of the order parameter. The nature of the problem defines the

type of description of free energy which can be used to describe the phenomenon.

For instance, entropy can be used in isolated systems with variation of temperature.

Gibbs free energy may be used in the systems with constant pressure and temper-

ature, while for the systems with constant temperature and volume like most of the

solid mechanics problems, the Helmholtz free energy may be used. In the definition

of the free energy functional (Eq. 1), it can be seen that except the first term, other

terms depend only on the gradient of the order parameter and concentration. These

terms are equal to zero except in the interface region where 0 < η < 1 and ϵc and ϵη
are the gradient energy coefficients with the following definition (Cahn and Hilliard

1958):

ϵ2η ¼
@2ψ

@ ∇ηj jð Þ2 � 2
@

@η

@ψ

@ ∇2η
� �

 !
(10)

ϵ2c ¼
@2ψ

@ ∇cj jð Þ2 � 2
@

@c

@ψ

@ ∇2c
� �

 !
(11)

As a general rule in phase field modeling, free energy ψ which covers the whole

domain of the order parameter 0 � η � 1 should lead to the appropriate term when

only one phase exists. Another way of constructing the free energy function is to use

a double well potential function with the minima in the two different phase

configurations and use another interpolating function. Assume that ψ1 and ψ2

show the energy of each phase as a function of temperature and its concentration.

Therefore, the free energy ψ can be described as

ψ c, η, Tð Þ ¼ h ηð Þψ1 c1,Tð Þ þ 1� h ηð Þð Þψ2 c2,Tð Þ þWg ηð Þ (12)

with the following constraint:

c1 þ c2 ¼ 1 (13)

In Eq. 12, g(η) is a well double function and h(η) is the interpolating

monotonic function between two phases. Various choices are possible for

functions g(η) and h(η). Some expressions for these functions are given in the

work by (Chen 2002)
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g ηð Þ ¼ η2 1� ηð Þ2 (14)

h ηð Þ ¼ η3 6η2 � 15ηþ 10
� �

(15)

h ηð Þ ¼ η2 3� 2ηð Þ (16)

The effect of dissipation is shown by function g(η); therefore, it should be a

monotonically increasing function of the phase energy when 0 < η < 1 and should

satisfy (0) ¼ 0, g(1) ¼ 0, @g@η

���
η¼0

¼ @g
@η

���
η¼1

¼ 0:Mathematical restrictions of function

h(η) are h(0) ¼ 0, h(1) ¼ 1, @h
@η

���
η¼0

¼ @h
@η

���
η¼1

¼ 0, @2h
@η2

���
η¼0

¼ @2h
@η2

���
η¼1

¼ 0 . The

proposed relation h ηð Þ ¼

ðη
0

g yð Þdyð1
0

g yð Þdy
(Furukawa and Nakajima 2001) can be used to

derive an appropriate function h(η) from function g(η). For other possibilities of

functions g(η) and h(η), the readers are referred to the work by Wang et al. (1993).

In the previous formulation (12), the functions ψ1(c1, T ) and ψ2(c2, T ) are the

Helmholtz free energy densities of the two different phases. The coefficient

W should be positive to be consistent with the thermodynamic laws and is used to

describe the interfacial energy. Also, concentration within the interface (CI) will

vary between each phase concentration and can be obtained using the interpolation

function h(η):

cI ¼ h ηð Þc1 ηð Þ þ 1� h ηð Þð Þc2 ηð Þ (17)

Phase Field Method (PFM) Versus Continuum Damage
Mechanics (CDM)

Order Parameter

For incorporating PFM to CDM, special transition in a representative volume element

(RVE) is considered in which microvoids or microcracks exist in a pure solid

(undamaged configuration). The evolution of cracks and voids and chemical reaction

does not affect this process. Reduction of area which is continuous during the loading

is considered as a nonconserved order parameter. Damage growth leads to the order

parameter change during the damage process. It will be represented by η in the

following formulation. Based on previous definitions, microcracks and microvoids

(fully damaged material) are shown as a disordered phase with η¼ 0 and undamaged

material (pure solid) can be considered as an ordered phase with η ¼ 1.
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Therefore, combination of both phases can be seen in the damaged configuration in the

conventional continuum damage mechanics. Through CDM, obviously ϕ ¼ 0 repre-

sents undamaged configuration and ϕ ¼ 1 represents fully damaged material. In

addition 0 < ϕ < 1 shows interface region between fully damaged and undamaged

configurations. Therefore, common continuum damage variable and the order param-

eter can be related as follows:

η ¼ 0, ϕ ¼ 1 ! cracks, voids, fully damaged

0 < η < 1, 0 < ϕ < 1 ! damaged configuration

η ¼ 1, ϕ ¼ 0 ! undamaged configuration

Fundamental definitions which are given in the previous sections are illustrated

in Fig. 1. Undamaged material is represented by phase (1) and fully damaged

material (integration of all cracks and voids) is represented by phase (2).

Therefore, the relation between the order parameter and the continuum damage

variable is as follows:

η ¼ 1� ϕ (18)

Definitions which have been used in previous works to simulate crack propaga-

tion and simulation of fracture agree with the given relation (Abu Al-Rub and

Voyiadjis 2003; Amor et al. 2009; Aranson et al. 2000; Borden et al. 2012; Kuhn

and M€uller 2010; Miehe et al. 2010b; Salac and Lu 2006; Spatschek et al. 2006;

Voyiadjis et al. 2004). It is worth to mention here that in all previous models (Miehe

et al. 2010b; Amor et al. 2009; Borden et al. 2012) fracture mechanics is considered

and not damage mechanics. Tracking single macrocrack (fracture) in the material is

the main goal of these models and they do not focus to address damage which is the

integration of microcrack/microvoid area (damage quantification) in the material.

The significance of the present derivation is formulating the continuous change

between the phases such as the damage growth. In conventional PFM, order

parameter should be a function of time and it is related to the damage variable

using Eq. 18. In general, both the nonconserved order parameter and the damage

variable are functions of position to track different damage levels in the material.

Therefore, both variables, the phenomenological nonconserved phase field and

damage variable, can be used to show which phase (undamaged or microcracked)

is present at the specific material position.

Remove both Cracks and Voids

̅

Effective Undamaged Configuration 
Phase (1)  

̅

 

Damaged Configuration   
Combination of Phase (1) and Phase (2) 

Fig. 1 Damage

characterization (After

Voyiadjis and Mozaffari

2013)
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Thermodynamic Formulation of DamageMechanics Using the Phase
Field Method

Nonlocal damage in a material can be described through the use of the damage

gradient in the thermodynamic formulation. Helmholtz free energy is used into the

phase field formalism to obtain evolution of nonlocal damage in an elastic material.

Following the method which is discussed in the previous sections (Boettinger

et al. 2002), the free energy function can be constructed in two steps as follows:

1. Each phase free energy is defined as follows:

ψud e, ηð Þ ¼ 1

2
E e2 (19)

ψ fd e, ηð Þ ¼ 0 (20)

where ψud and ψ fd are the free energies of the undamaged and fully damaged

configurations, respectively. Modulus of elasticity and the corresponding strain

in the undamaged configuration are shown by E and e, respectively.
2. Double well function g(η) and the interpolation function h(η) along with the free

energies of fully damaged ψ fd eηð Þ and undamaged configurations ψud eηð Þ are

used in Eq. 12 to construct the free energy of the damaged configuration

including both phases:

ψ e, ηð Þ ¼ h ηð Þψud e, ηð Þ þ 1� h ηð Þð Þψ fd e, ηð Þ þWg ηð Þ (21)

Substituting Eqs. 19 and 20 into Eq. 21 results in

ψ e, ηð Þ ¼ h ηð Þ 1
2
E e2 þWg ηð Þ (22)

Neglecting the effect of damage gradient, the free energy of the damaged

configuration can be obtained by using Eqs. 14 and 16 in Eq. 22 in which both

phases are present:

ψ e, ηð Þ ¼ η2 3� 2ηð Þ 1
2
E e2 þWη2 1� ηð Þ2 (23)

Accordingly, the functional of the free energy containing its gradient is given

as follows:

F ¼
ð
V

η2 3� 2ηð Þ 1
2
E e2 þWη2 1� ηð Þ2 þ ϵ2η

2
∇ηj j2

" #
dV (24)
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Using Eq. 23 into Eq. 4 leads to the order parameter evolution equation. Order

parameter is related to the damage variable in Eq. 18. Therefore, the damage

evolution equation is obtained as follows:

@ϕ

@t
¼ Mϕ 3E e2 ϕð Þ 1� ϕð Þ þ 2Wϕ 2ϕ� 1ð Þ 1� ϕð Þ � ϵ2ϕ ∇2ϕ

� �h i
(25)

where W is a positive dissipation constant and ϵϕ
2 is a positive damage gradient

constant as a length scale to bring appropriate physical meaning to Eq. 25. These

coefficients are written in the following form:

W ¼ Ew (26)

ϵ2ϕ ¼ El2 (27)

Substituting Eqs. 26 and 27 into Eq. 25 leads to the appropriate form for the

evolution of damage:

@ϕ

@t
¼ MϕE 3e2 ϕð Þ 1� ϕð Þ þ 2wϕ 2ϕ� 1ð Þ 1� ϕð Þ � l2 ∇2ϕ

� �	 

(28)

Equation 28 introduces a new nonlocal, gradient-based damage model for

scalar damage in elastic materials using PFM. Damage evolution can be

obtained using this unique equation. In Eq. 28 l represents a length scale due

to damage and depends on the microstructure of the material such as the grain

size. Substituting Eqs. 18, 26, and 27 in Eq. 24 results in the definition of the free

energy function of the damaged material with the effect of damage gradient:

ψ e,ϕ,∇ϕð Þ ¼ 1

2
E e2 1� ϕð Þ2 2ϕþ 1ð Þ þ Ewϕ2 1� ϕð Þ2 þ 1

2
El2 ∇ϕj j2 (29)

Equations 28 and 29 are the governing equations of the damage evolution

through the PFM.

Comparison Between Proposed Model and the Variational
Formulation

In order to validate the formulation and obtain the mathematical restrictions on the

coefficient calculations or measurements in the previous equations, the central

equations (28 and 29) of the phase field modeling of damage are compared with

the assumptions of the variational formulation (Pham et al. 2011). Based on their

work, the following properties are mentioned as the general restrictions of any

gradient-type damage model.
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Positive Elasticity

Stiffness function E(ϕ) which indicates the reduction of the stiffness should be

positive with E(ϕ ¼ 1) ¼ 0. Based on Eq. 29 the stiffness function is defined as

follows:

E ϕð Þ ¼ E 1� ϕð Þ2 2ϕþ 1ð Þ (30)

Equation 30 satisfies E(ϕ ¼ 1) ¼ 0 and E(ϕ) > 0 for 0 � ϕ � 1. This new

stiffness function is compared with the conventional stiffness function in Fig. 2.

In Fig. 2, the region between the two curves shows the incorporation of the

gradient term. The excessive term in the stiffness function, namely, (2ϕ + 1), acts

as an internal hardening variable which reflects the mechanism of microcrack

interaction and arresting inside the material. An inflection point occurs in the

curvature of the stiffness function. This inflection point is at ϕ ¼ 1
2
(i.e., @2E

@ϕ2 ¼ 0)

which shows the practical limit of the damage variable (Voyiadjis and Kattan

2012). The damage variable may not have a practical meaning above 0.5. Lemaitre

and others pointed out that this is in the neighborhood of 0.3 (Lemaitre and

Desmorat 2005). This is obtained without a mathematical justification, except

that the continuum is not valid beyond that value. Degradation of the material

has a much faster trend after that point. In addition microcracks arrest each other at

the beginning of the loading. This introduces hardening; however, after consider-

able loss of the starting value of stiffness, the material undergoes fast reduction in

its elastic stiffness.

Damage Variable (φ)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
/ 
E

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Stiffness Function

(1-φ)2

(1-φ)2(2φ+1)

Fig. 2 Variation of the elastic stiffness with damage (After Voyiadjis and Mozaffari 2013)
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Decreasing Stiffness

Stiffness function needs to be a monotonically decreasing function with respect to

damage parameter. Therefore we have

@E ϕð Þ
@ϕ

< 0 (31)

Derivative of Eq. 30 with respect to damage parameter (ϕ) satisfies the afore-

mentioned property:

6Eϕ ϕ� 1ð Þ < 0 (32)

Dissipation

Positivity of dissipation function w(ϕ) with w(ϕ ¼ 0) ¼ 0 is necessary for gradient

damage models. Based on Eq. 29, dissipation function can be obtained as follows:

w ϕð Þ ¼ Ewϕ2 1� ϕð Þ2 (33)

This satisfies w(ϕ ¼ 0) ¼ 0 and w(ϕ) > 0 for 0 � ϕ < 1. Also, dissipation

function (33) should be a monotonically increasing function with respect to the

damage variable:

@w ϕð Þ
@ϕ

> 0 (34)

This leads in the following criterion:

2Ewϕ 2ϕ2 � 3ϕþ 1
� �

> 0

This criterion is held unconditionally if 0 < ϕ < 1=2.

Irreversibility

Damage evolution should be positive since it is an irreversible process. Based on

the derived equations, all constants in Eq. 28 such as M, w, and l are positive. The
nonlocal term containing the length scale parameter, in Eq. 28, is relatively smaller

than the other two terms. The summation of the other terms is always positive for
1
2
< ϕ < 1: They remain positive based on the specific choice of the dissipation

constant (w) under the condition w < 3
2
e2: These conditions for the coefficients are

followed in the numerical example that follow these conditions.
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New Implicit Damage Variable

Equation 29 can be used to define a new damage variable. In general, the fictitious

undamaged configuration and real damaged configuration are used to obtain the

damage level in a simple way. Mapping the stage of damage from one configuration

to the other at each step is possible through the use of specific functions. The stress,

strain, and elasticity tensors are used to relate the different damage levels from one

configuration to another which is depicted in Fig. 3 as follows:

σij ¼ M ϕð Þσij (36)

eij ¼ eij q ϕð Þð Þ�1
(37)

Eijkl ¼ Eijkl p ϕð Þð Þ�1
(38)

Effective stress coefficient M(ϕ) is the function that may take the form of a

second- or higher-order tensor for the anisotropic damage case (even order tensor).

All functions (M(ϕ), q(ϕ), and p(ϕ)) are scalar functions and nonzero over 0<ϕ< 1.

Strain Energy Equivalence

A more general type of the hypothesis of strain energy equivalence (Sidoroff 1981)

is used instead of the hypothesis of strain equivalence. This hypothesis is used to

find general mapping functions M(ϕ), q(ϕ), and p(ϕ) as summarized below:

1

2
Eijkleijekl ¼ 1

2
Eijkleijekl (39)

These scalar functions are capable to be used for mapping of isotropic damage in

the general material. Using Eqs. 37 and 38 into Eq. 39 leads to

1

2
p ϕð Þð ÞEijkl eijq ϕð Þ� �

eklq ϕð Þð Þ ¼ 1

2
Eijkleijekl (40)

From Eq. 40, the first specification of the mapping functions is derived as

follows:

p ϕð Þ q ϕð Þð Þ2 ¼ 1 (41)

The state of stress in the undamaged configuration is expressed as follows:

σij ¼ Eijklekl (42)

Accordingly, the stress in the damaged configuration may be written as follows:

σij ¼ Eijklekl (43)
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Substitution of Eqs. 42 and 43 into Eq. 39 results in another form of the strain

energy equivalence hypothesis:

1

2
E�1
ijklσijσkl ¼

1

2
E
�1

ijklσijσkl (44)

Substituting Eqs. 36 and 38 into Eq. 44 leads to

1

2
E�1
ijklσijσkl ¼

1

2
p ϕð ÞE�1

ijkl

� �
M ϕð Þσij
� �

M ϕð Þσklð Þ (45)

Thus, another mapping function specification is derived as follows:

p ϕð Þ M ϕð Þð Þ2 ¼ 1 (46)

Equations 41 and 46 prove the equality of functions q(ϕ) andM(ϕ) (q(ϕ)¼M(ϕ)).
Therefore, based on the strain energy equivalence hypothesis, the general mapping

between the two configurations can be summarized as depicted in Fig. 4.

Function p(ϕ) is obtained using Eq. 30 as follows:

p ϕð Þ ¼ 1� ϕð Þ2 2ϕþ 1ð Þ (47)

 Remove both Cracks and Voids 

̅

Effective Undamaged Configuration  

̅

 

Damaged Configuration   

̅

Fig. 3 Tensors for different

configurations of isotropic

damage (After Voyiadjis and

Mozaffari 2013)

 Remove both Cracks and Voids 

̅

Effective Undamaged Configuration  

̅

 

Damaged Configuration   

̅

Fig. 4 Mapping functions

for isotropic damage (After

Voyiadjis and Mozaffari

2013)
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Using Eq. 47 into Eq. 46 leads to the definition of the effective stress function

M(ϕ) through PFM as follows:

M ϕð Þ ¼ 1

1� ϕð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϕþ 1ð Þp (48)

The additional term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϕþ 1ð Þp� �

shows the effect of the damage gradient in the

new definition of the effective stress coefficient. Equating the forces in two differ-

ent configurations (Fig. 4) by using Eq. 48 results in a new implicit definition of the

damage variable:

T

A
¼ 1

1� ϕð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϕþ 1ð Þp T

A
(49)

Therefore, the implicitly defined damage variable can be deduced as follows:

A

A

� �2

¼ 2ϕ3 � 3ϕ2 þ 1 (50)

The undamaged area can be computed using Eq. 50 as follows:

A ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϕ3 � 3ϕ2 þ 1

q
(51)

The conventional damage variable, A
A ¼ 1� ϕ (Kachanov 1958), and the pro-

posed definition are compared in Fig. 5. Equation 50 is a cubic function in damage

Damage Variable (φ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
/A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Conventional Damage Variable

New Damage Variable

Fig. 5 Change in the cross section due to the damage variable (After Voyiadjis and Mozaffari

2013)
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which can be solved explicitly in terms of A
A:The solution procedure and the explicit

solution are given in the work by the authors Voyiadjis and Mozaffari (2013). This

definition of the damage indicates the initial slow propagation of damage due to the

interaction of cracks. These cracks initially assist in arresting and slowing down the

damage evolution. Beyond the value of ϕ ¼ 0.5, there are many cracks and the

arresting mechanism does not stop the damage propagation. The proposed stiffness

function enables one to obtain mapping functions for strain and stress between the

two configurations as follows:

σij ¼ 1

1� ϕð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϕþ 1ð Þp σij (52)

eij ¼ eij 1� ϕð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϕþ 1ð Þ

p
(53)

Strain Decomposition

From the work of Nemat-Nasser (1979, 1983), one may use the strain additive

decomposition for small deformation theory of damage mechanics.

Following the work of Voyiadjis and Kattan (1990, 1992) and Abu Al-Rub

and Voyiadjis (2003), the total reversible elastic strain eij
E can be decomposed as

follows:

eEij ¼ eeij þ eedij (54)

In Eq. 54 eij
e is the conventional elastic strain and eij

ed is the elastic damage strain.

The physical interpretation of this decomposition is given in Abu Al-Rub and

Voyiadjis (2003) and the same approach is used in the work of Sadowski

et al. (2005) and Samborski and Sadowski (2005). Also, additive decomposition

of strain into two components is used widely in phase field models. Interested

readers are referred to the works by Levitas and Ozsoy (2009a, b) and Uehara

et al. (2007). Decomposition due to various types of order parameter (nonconserved

or conserved) is reported in Chen (2002) and Moelans et al. (2008). Strains due to

the transformation are termed eigenstrains which can be found in Yamanaka

et al. (2008). For instance, the strains are divided to homogeneous and

nonhomogeneous parts in the inhomogeneous elasticity models (Salac and Lu

2006; Wang et al. 2002; Yu et al. 2005), and it has been widely used in numerous

textbooks (Khachaturyan 1983). This approach in phase field modeling

confirms the additive decomposition which is given in Eq. 54. Following the

additive strain decomposition, Eq. 54, and using Hooke’s law, one can obtain the

elastic damage strain and the total elastic strain for isotropic damage in

the damaged configuration. Therefore, the total elastic strain in the damaged
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configuration (eij) is equal to the total elastic strain in the aforementioned decom-

position (eij
E). Hooke’s law is written in the following form:

σij ¼ EijkleEkl (55)

Substituting Eq. 54 into Eq. 55 results in

σij ¼ Eijkl eekl þ eedkl
� �

(56)

Using the hypothesis of strain energy equivalence leads to

1

2
σijeEij ¼

1

2
σijeeij (57)

One can obtain the relation between the undamaged elastic strain and the total

elastic strain using Eq. 36 into Eq. 56 as follows:

eeij ¼
1

M ϕð Þ e
E
ij (58)

Stress–strain relations in the damaged and undamaged states are given by the

following relations:

σij ¼ Eijkleekl (59)

σij ¼ Eijkleekl (60)

Performing few manipulations using Eqs. 36, 54, 58, 59, and 60 results in

obtaining the pure elastic strain and the elastic damage strain as follows:

eeij ¼ M ϕð Þeeij (61)

eeij ¼
1

M ϕð Þð Þ2 e
E
ij (62)

eedij ¼ 1� M ϕð Þð Þ2
M ϕð Þð Þ2 eEij (63)

Equations 62 and 63 are valid regardless of the definition of the effective stress

function (M(ϕ)) for any scalar damage model under the strain additive decompo-

sition assumption and by using the strain energy hypothesis. The portion of the

elastic strain and elastic damage strain for the proposed model can be obtained

using Eq. 48 as follows:
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eeij ¼ 1� ϕð Þ2 2ϕþ 1ð ÞeEij (64)

eedij ¼ 1� 1� ϕð Þ2 2ϕþ 1ð Þ
� �

eEij (65)

The increase of the elastic damage strain, eij
ed, and elastic strain, eij

e , is confirmed

by Eqs. 64 and 65. These increments are depicted in Figs. 6 and 7.
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Fig. 6 Variation of the different types of elastic strains with respect to the damage variable (After

Voyiadjis and Mozaffari 2013)
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(After Voyiadjis and Mozaffari 2013)
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It is worth mentioning here that in the undamaged configuration, the elastic

damage strain is removed; therefore, eedij ¼ 0 and eij ¼ eeij.

Thermodynamic Conjugate Force Due to Damage

Consistent thermodynamic framework to describe a phenomenon consists of the

internal state variables and the laws of thermodynamics. Each internal state in the

thermodynamic consistent framework has its own conjugate forces. Conjugate

force due to damage needs to be defined since the damage variable is considered

as an internal state variable. This definition can be used to define the damage

criterion which is conventionally used in damage models. Several ways

have been proposed to define the conjugate damage force which describes the

internal effect of the microcracks and microvoids. In this chapter, the effective

stress coefficient (48) is used to obtain the damage conjugate force through the

hypothesis of strain energy equivalence (Voyiadjis and Kattan 1999). The details

of this formulation are given in the work by the authors Voyiadjis and Mozaffari

(2013):

Y ϕð Þ ¼ � Mσ2

E

� �
@M

@ϕ
(66)

Using Eq. 48 in Eq. 66 leads to

Y ϕð Þ ¼ �Ee2
3ϕ

1� ϕð Þ 2ϕþ 1ð Þ (67)

Damage Criterion

Damage initiation for uniaxial scalar damage models without the effect of kine-

matic hardening is checked by the proposed damage criterion which is given as

follows:

Fd Y,ϕð Þ ¼ 1

2
Y2 � ld þ qϕeq

� �
(68)

where ϕeq is the accumulated damage and in the case of scalar damage is as follows:

ϕeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt
0

ϕ2dt

s
(69)

In Eq. 68, Y is the thermodynamic conjugate force due to damage, q is the

damage hardening modulus, and ld is the initial damage threshold. Damage
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evolution is possible if both of the following conditions hold simultaneously based

on the Kuhn–Tucker conditions:

Fd ¼ 0 and
@Fd

@Y
_Y > 0 (70)

Boundary Conditions

In phase field modeling, directional derivative of order parameter is assumed to be

equal to zero as the boundary condition. Since the order parameter is related to the

damage parameter by Eq. 18, this boundary condition can be written as follows:

@ϕ

@n
¼ 0 (71)

in which n indicates the normal vector to the boundary.

Numerical Aspects, Algorithm, and 1D Implementation

In this section, numerical aspects of the proposed damage evolution law are

considered and given examples show the validity of the model. The proposed

nonlocal damage evolution law (Eq. 28) is able to attribute both elastic and inelastic

damages using appropriate constants for each loading region. Both rate-dependent

and rate-independent materials can be modeled through this formulation. The

model used here incorporates the solution of the Allen–Cahn-type equation

(Bates et al. 2009; Choi et al. 2009; Del Pino et al. 2010; Feng and Prohl 2003;

Kassam and Trefethen 2005; Shen and Yang 2010). For some problems, the semi-

implicit Fourier spectral method is used (Chen and Shen 1998; Feng et al. 2006). In

the following sections, numerical details are derived using the finite difference

method in order to solve Eq. 28. The numerical algorithm is constructed and used to

solve some simple uniaxial examples.

Numerical Aspects

Various types of finite difference schemes are detailed here to solve the numerical

examples. Damage criterion is checked through the algorithm in order to show the

damage evolution. The proposed model is presented as a special case of the well-

known equation (Allen–Cahn equation) with the reaction (nonlinear) term. In the

following expressions superscripts show the time step and subscripts show

the position in the domain. Superscript n shows the previous step and superscript

n + 1 shows the current step. Discretization over time should be explicit, but spatial

discretization can be implicit or explicit. Readers are referred to the work by the

authors Voyiadjis and Mozaffari (2013) for more details.
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Explicit in Space, Explicit in Time
Numerical solution of Eq. 28 can be obtained using the finite difference method.

Time step Δt is restricted by the CFL (Courant et al. 1928) condition (convergence

of any explicit method is guaranteed by this condition) in order to solve the

equation with an explicit scheme since the equation has a nonlinear term. This

condition for the stable convergence in the 1D case reads as

MϕEl
2 Δt

Δxð Þ2
 !

� 1

2
(72)

where Δt > 0 is the time step and Δx is the space step in the x direction. The

nonlinear term coefficient in general phase field models (MEl2 in present formula-

tion) is set to a very small value over the domain. Once an explicit scheme is used,

then a relatively large value for the time step (i.e., Δt) can be used. If the CFL

condition (72) is held, then the nonlinear term (reaction term) restricts the time step

to set it to a small value. Divergence of the solution for variable ϕ occurs because of

the nonlinear term especially when its value is outside the interval 0 � ϕ � 1. To

resolve this issue, the forward time terms are introduced through the semi-implicit

scheme (Warren et al. 2003). The discretization for the 1D case is obtained as

follows:

ϕnþ1
i � ϕn

i

Δt
¼ �MϕEl

2 ϕn
iþ1 � 2ϕn

i þ ϕn
i�1

Δxð Þ2
 !

þ ϕnþ1
i 1� ϕn

i

� �
r
�
ϕn
i

�
for r

�
ϕn
i

� � 0

ϕn
i 1� ϕnþ1

i

� �
r
�
ϕn
i

�
for r

�
ϕn
i

�
> 0

�

(73)

where

r ϕn
i

� � ¼ MϕE 3 eni
� �2 þ 2w 2ϕn

i � 1
� �h i

: (74)

Equation 73 along with the definition of function r(ϕi
n) (Eq. 74) guarantees that ϕ

remains in the desired interval 0 � ϕ � 1 even if the large time step is used.

Equation 73 can be computed directly over individual nodes without solving the set

of linear equations as follows:

1� Δt 1� ϕn
i

� �
r ϕn

i

� �	 

ϕnþ1
i ¼ ϕn

i �MϕEl
2Δt

ϕn
iþ1 � 2ϕn

i þ ϕn
i�1

Δxð Þ2
 !

for r ϕn
i

� � � 0

1þ Δtϕn
i r ϕn

i

� �	 

ϕnþ1
i ¼ ϕn

i þ Δtϕn
i r ϕn

i

� ��MϕEl
2Δt

ϕn
iþ1 � 2ϕn

i þ ϕn
i�1

Δxð Þ2
 !

for r ϕn
i

� �
> 0

8>>>><
>>>>:

(75)
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Implicit in Space, Explicit in Time

Fully implicit method in space discretization is governed by the same treatment on

the reaction term in the Allen–Cahn equation (28) as follows:

ϕnþ1
i � ϕn

i

Δt
¼ �MϕEl

2 ϕnþ1
iþ1 � 2ϕnþ1

i þ ϕnþ1
i�1

Δxð Þ2
 !

þ ϕnþ1
i 1� ϕn

i

� �
r
�
ϕn
i

�
for r ϕn

i

� � � 0

ϕn
i 1� ϕnþ1

i

� �
r
�
ϕn
i

�
for r ϕn

i

� �
> 0

�

(76)

Defining A ¼ �MϕEl
2Δt

Δxð Þ2 and substituting in Eq. 76 lead to

ϕnþ1
i � ϕn

i ¼ A ϕnþ1
iþ1 � 2ϕnþ1

i þ ϕnþ1
i�1

� �þ Δtϕnþ1
i 1� ϕn

i

� �
r
�
ϕn
i

�
for r ϕn

i

� � � 0

Δtϕn
i 1� ϕnþ1

i

� �
r
�
ϕn
i

�
for r ϕn

i

� �
> 0

�
(77)

The two coefficients Bi ¼ Δt(1 � ϕi
n)r(ϕi

n) and Ci ¼ Δtϕi
nr(ϕi

n) are defined to

simplify Eq. 77:

ϕnþ1
i � A ϕnþ1

iþ1 � 2ϕnþ1
i þ ϕnþ1

i�1

� �� Biϕ
nþ1
i ¼ ϕn

i for r ϕn
i

� � � 0

ϕnþ1
i � A ϕnþ1

iþ1 � 2ϕnþ1
i þ ϕnþ1

i�1

� �þ Ciϕ
nþ1
i ¼ ϕn

i þ Ci for r ϕn
i

� �
> 0

�
(78)

Equation 78 is rewritten in the following form by separating known terms from

the previous step:

�Aϕnþ1
iþ1 þ 1þ 2A� Bið Þϕnþ1

i � Aϕnþ1
i�1 ¼ ϕn

i for r ϕn
i

� � � 0

�Aϕnþ1
iþ1 þ 1þ 2Aþ Cið Þϕnþ1

i � Aϕnþ1
i�1 ¼ ϕn

i þ Ci for r ϕn
i

� �
> 0

�
(79)

Equation 79 can be written as follows in order to find the constant finite

difference coefficients. Additional term can be added to the specific row of the

FD matrix which is related to the node based on the sign of the function r(ϕ) at the
desired node:

�Aϕnþ1
iþ1 þ 1þ 2Að Þϕnþ1

i � Aϕnþ1
i�1 � Biϕ

nþ1
i ¼ ϕn

i for r ϕn
i

� � � 0

�Aϕnþ1
iþ1 þ 1þ 2Að Þϕnþ1

i � Aϕnþ1
i�1 þ Ciϕ

nþ1
i ¼ ϕn

i þ Ci for r ϕn
i

� �
> 0

�
(80)

Applying the boundary conditions (ϕ0
n + 1¼ ϕ1

n + 1 and ϕn � 1
n + 1 ¼ ϕn

n + 1) results in

the given matrix representation which is derived for Eq. 80 over all the nodes:
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1 �1

�A 1þ 2A
� � � 0

⋮ ⋱ ⋮
0 � � � 1þ 2A �A

�1 1

2
6664

3
7775

ϕnþ1
0

⋮
ϕnþ1
n

2
4

3
5þ Matrix B or Matrix C½ �

ϕnþ1
0

⋮
ϕnþ1
n

2
4

3
5

¼
ϕnþ1
0

⋮
ϕnþ1
n

2
4

3
5þ Vector C½ �

(81)

where the diagonal matrices B and C are defined as

B½ � ¼

1 �1

0 B1
� � � :

⋮ ⋱ ⋮
: � � � Bn�1 0

�1 1

2
6664

3
7775 (82)

C½ � ¼

1 �1

0 C1
� � � :

⋮ ⋱ ⋮
: � � � Cn�1 0

�1 1

2
6664

3
7775 (83)

and vector C is written as

C½ � ¼

0

C1

:
Cn�1

0

2
66664

3
77775 (84)

Implicit in Space, Explicit in Time (with Crank–Nicolson Scheme
in Space)
The Crank–Nicolson scheme is a well-known unconditionally stable method and is

adopted just on the terms related to the derivatives in space. Reaction term is treated

in the same way as the semi-implicit scheme. Crank–Nicolson discretization of the

governing equation over the space results in

ϕnþ1
i � ϕn

i

Δt
¼ �MϕEl

2 1

2

ϕnþ1
iþ1 � 2ϕnþ1

i þ ϕnþ1
i�1

Δxð Þ2
 !

þ 1

2

ϕn
iþ1 � 2ϕn

i þ ϕn
i�1

Δxð Þ2
 ! !

þ ϕnþ1
i 1� ϕn

i

� �
r
�
ϕn
i

�
for r ϕn

i

� � � 0

ϕn
i 1� ϕnþ1

i

� �
r
�
ϕn
i

�
for r ϕn

i

� �
> 0

�
(85)
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Defining a coefficientE ¼ �Mϕ El2 Δt
2 Δxð Þ2 and using it into Eq. 85 lead to the following

equation:

ϕnþ1
i � ϕn

i ¼ E ϕnþ1
iþ1 � 2ϕnþ1

i þ ϕnþ1
i�1

� �þ E ϕn
iþ1 � 2ϕn

i þ ϕn
i�1

� �
þ Δtϕnþ1

i 1� ϕn
i

� �
r
�
ϕn
i

�
for r ϕn

i

� � � 0

Δtϕn
i 1� ϕnþ1

i

� �
r
�
ϕn
i

�
for r ϕn

i

� �
> 0

�
(86)

Using the previously defined two coefficients Bi ¼ Δt(1 � ϕi
n)r(ϕi

n) and

Ci ¼ Δtϕi
nr(ϕi

n), Eq. 86 can be written as

ϕnþ1
i � E ϕnþ1

iþ1 � 2ϕnþ1
i þ ϕnþ1

i�1

� �� Biϕ
nþ1
i ¼ E

�
ϕn
iþ1 � 2ϕn

i þ ϕn
i�1

�þ ϕn
i for r ϕn

i

� � � 0

ϕnþ1
i � E ϕnþ1

iþ1 � 2ϕnþ1
i þ ϕnþ1

i�1

� �þ Ciϕ
nþ1
i ¼ E

�
ϕn
iþ1 � 2ϕn

i þ ϕn
i�1

�þ ϕn
i þ Ci for r ϕn

i

� �
> 0

�

(87)

Equation 87 can be rearranged easily as follows:

�Eϕnþ1
iþ1 þ 1þ 2E� Bið Þϕnþ1

i � Eϕnþ1
i�1 ¼ Eϕn

iþ1 þ
�
1� 2E

�
ϕn
i þ Eϕn

i�1 for r ϕn
i

� � � 0

�Eϕnþ1
iþ1 þ 1þ 2Eþ Cið Þϕnþ1

i � Eϕnþ1
i�1 ¼ Eϕn

iþ1 þ
�
1� 2E

�
ϕn
i þ Eϕn

i�1 þ Ci for r ϕn
i

� �
> 0

�

(88)

Equation 88 can be written as follows in order to find the constant finite

difference coefficients. Additional term can be added to the specific row of the

FD matrix which is related to the node based on the sign of the function r(ϕ) at the
desired node like the implicit scheme:

�Eϕnþ1
iþ1 þ 1þ 2Eð Þϕnþ1

i � Eϕnþ1
i�1 � Biϕ

nþ1
i ¼ Eϕn

iþ1 þ
�
1� 2E

�
ϕn
i þ Eϕn

i�1 for r ϕn
i

� � � 0

�Eϕnþ1
iþ1 þ 1þ 2Eð Þϕnþ1

i � Eϕnþ1
i�1 þ Ciϕ

nþ1
i ¼ Eϕn

iþ1 þ
�
1� 2E

�
ϕn
i þ Eϕn

i�1 þ Ci for r ϕn
i

� �
> 0

�

(89)

Applying the boundary conditions (ϕ0
n + 1¼ ϕ1

n + 1 and ϕn � 1
n + 1 ¼ ϕn

n + 1) results in

the given matrix representation which is derived for Eq. 89 over all the nodes:

1 �1

�E 1þ 2E
� � � 0

⋮ ⋱ ⋮
0 � � � 1þ 2E �E

�1 1

2
6664

3
7775

ϕnþ1
0

⋮
ϕnþ1
n

2
4

3
5þ Matrix B or Matrix C½ �

ϕnþ1
0

⋮
ϕnþ1
n

2
4

3
5

¼

1 �1

�E 1þ 2E
� � � 0

⋮ ⋱ ⋮
0 � � � 1þ 2E �E

�1 1

2
6664

3
7775

ϕn
0

⋮
ϕn
n

2
4

3
5þ Vector C½ �

(90)

The diagonal matrices B and C and vector C are given in Eqs. 82, 83, and 84,

respectively.
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Rate-Independent Material
For this case, the time increment is set equal to one (Δt ¼ 1). Equation 73 can then

be considered as a damage increment for a specific node:

Δϕn
i ¼ �MϕEl

2 ϕn
iþ1 � 2ϕn

i þ ϕn
i�1

Δxð Þ2
 !

þ ϕnþ1
i 1� ϕn

i

� �
r
�
ϕn
i

�
for r ϕn

i

� � � 0

ϕn
i 1� ϕnþ1

i

� �
r
�
ϕn
i

�
for r ϕn

i

� �
> 0

�

(91)

Therefore, the updated damage level reads

ϕnþ1
i ¼ ϕn

i þ Δϕn
i : (92)

Rate-Dependent Material
The time increment is not equal to unity in this case. Furthermore, Eq. 73 can be

used to obtain the damage level at the current step using Eq. 75. Damage level will

be updated simultaneously if the implicit method or Crank–Nicolson method is

used at each increment over all nodes and it will be updated separately if the explicit

method is used. Therefore, the implicit method or Crank–Nicolson schemes can

give better results since they update the damage level over all nodes of the domain

at the same time. This is important in specific problems when there is a great change

in the stiffness. In this case, Eqs. 81 and 90 can be used to update the damage level

over all nodes.

Numerical Algorithm

In order to solve Eq. 28 in 1D domain along with satisfying the boundary condi-

tions, the following algorithm is constructed. This algorithm is used to solve a

stress-driven problem using the finite difference schemes which are detailed in the

previous sections. In the following algorithm, superscript n + 1 indicates the current

load step and superscript n indicates the previous load step. Therefore, for time-

dependent problem the stress at the current step reads as

σnþ1 ¼ σn þ Δt _σ

and for the case of time-independent problem, it can be written as follows:

σnþ1 ¼ σn þ Δσ

where _σ is the stress loading rate and Δσ is the stress increment. This algorithm is

given exactly the same here as in the work by the authors Voyiadjis and Mozaffari

(2013):

1. Initialize values of M, l, w, E, σ0, Δσ, ϕcr, and ϕ0 ¼ 0.001 for all nodes.

2. Set En ¼ E
n ¼ E, σn ¼ σn + 1 ¼ σ0, σn ¼ σnþ1 ¼ σ0, and ϕn ¼ ϕ0 at all nodes.
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3. Compute en ¼ σn

En , enþ1 ¼ σnþ1

Enþ1 , en ¼ σn

E
n , and enþ1 ¼ σnþ1

E
nþ1 :

4. Iterate the following steps until ϕmax < ϕcr.

5. Update the load level σn+1 ¼ σn + Δσ.
6. Compute Yn and Fd

n using Eqs. 67 and 68.

7. Check the damage criterion (Eq. 70) at each node.

If Fd < 0, then damage does not evolve and ϕn+1 ¼ ϕn.

If Fd> 0, compute damage level ϕn+1 with the desired scheme (Eqs. 75 and 81

or Eq. 90).

8. Compute en+1, En+1, and enþ1.

Numerical Examples

The dimension of each coefficientM, w, and l needs to be defined to make each term

in Eq. 28 dimensionless, since the damage variable is a dimensionless parameter.

For the (SI) unified system, the coefficient for mobility of microcracks M has the

inverse dimension of the modulus of elasticity (m
2

N ), the dissipation coefficient w is a

dimensionless coefficient, and the specific length scale due to damage (capable in

capturing the effects of nonlocal damage) has the length dimension (m). Various
values for these coefficients are examined by means of numerical experiments.

These are described later and detailed in the examples. Two sets of experiments are

designed for a specific material in order to determine the appropriate coefficients.

The first set is the usual experiments to evaluate the damage value at a center of a

bar. This is in order to obtain the coefficient w that cancels the second-order

gradient term in Eq. 28 and its corresponding coefficient (l ). Another set of

nonlocal experiments is designed to evaluate the damage value at several points

along the length of the bar in each increment of loading for the same time. Utilizing

this set of data with the determined coefficient (w) from the previous experiments

provides the evaluation of the coefficient (l ). The M (mobility of microcracks) can

be determined by using all these two sets of data. However, it can also be

considered exactly equal to the inverse of the value of the modulus of elasticity at

the beginning (undamaged material) of the test in order to simplify this procedure.

In order to show the regularization capabilities of the proposed model, a uniaxial

bar under tension is considered in this work. Reduction in stiffness is considered in

the middle of the bar (L ) based on the number of nodes which are used in this

specific length (LD). This is in order to show the nonlocal distribution of damage.

The geometry of the bar is shown in Fig. 8. The material properties with the

hardening parameters are given by Abu Al-Rub and Voyiadjis (2003) for

30CrNiMo8 high-strength steel: E ¼ 199 Gpa, v ¼ 0.3, σyp ¼ 870 Mpa, q ¼ 8.2

MPa, and ld ¼ 3.8 MPa. Other specific parameters are L ¼ 1 m, LD ¼ 0.1 L,

σ0 ¼ 10 MPa (initial value of stress), and _σ ¼ 10 MPa
s : A small value of damage

ϕ0 ¼ 0.001 is used aver all nodes to initiate the numerical procedure. The critical

value of damage to end the numerical procedure is assumed as ϕcr ¼ 0.35 unless it

is different for a specific case. The loading is continued up to the yield point.
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The total time of loading is 86 s, and in order to hold the CFL condition and also to

keep the points over the damage surface, it is assumed that Δt ¼ 0.001 s.

Example 1: Comparison of Different Schemes Three different schemes along

with various numbers of nodes on the length of the sample are examined in this

example. The modulus of elasticity on the specific central length (LD) has 10 %

reduction comparing with the modulus of elasticity of the bar, and other coefficients

are assumed as M ¼ 1 (MPa)�1 ¼ 10�6 m2/N, w ¼ 10�5, and l ¼ 1 μm ¼ 10�6 m.

Case 1: 21 nodes over L, 3 nodes over LD The numerical results are depicted in

Fig. 9 for three different computational schemes. It can be seen that there is

complete coincidence in the solution using the three different schemes.

Case 2: 41 nodes over L, 5 nodes over LD The results are depicted in Fig. 10 for

three different FD schemes. It can be seen that there is complete coincidence in the

solution using the three different schemes.

Case 3: 81 nodes over L, 9 nodes over LD The results are shown in Fig. 11 for three

different FD schemes. It can be seen that there is complete coincidence in the

solution using the three different schemes.

Fig. 8 Geometry of the

specimen for the numerical

examples (After Voyiadjis

and Mozaffari 2013)
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Fig. 9 Damage distribution over the bar with 21 nodes. Using three schemes: explicit, implicit,

and Crank–Nicolson (After Voyiadjis and Mozaffari 2013)
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Stress change trend versus damage value is shown by performing a simulation

using the explicit method, but the final damage value is set to one (theoretical limit

value of damage variable). Numerical results are depicted in Figs. 12 and 13.

This example shows that all three FD schemes give the same result regardless of

the number of nodes. In the last case, a slight difference between the

Crank–Nicolson scheme and the other two schemes can be seen. It is possible to

use large time steps for both implicit and Crank–Nicolson schemes as there is no
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Fig. 10 Damage distribution over the bar with 41 nodes. Using three schemes: explicit, implicit,

and Crank–Nicolson (After Voyiadjis and Mozaffari 2013)
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Fig. 11 Damage distribution over the bar with 81 nodes. Using three schemes: explicit, implicit,

and Crank–Nicolson (After Voyiadjis and Mozaffari 2013)
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need to check the CFL condition, since they are unconditionally stable schemes.

Also, these two schemes as it is mentioned before in section “Numerical Aspects”

of this chapter update the damage level over all nodes simultaneously. This can be

considered in specific problems in which there is a great change in the stiffness of

the domain. Stress variation with respect to damage follows the trend like other

types of damage models.
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Fig. 12 Variation of stress at the central point with respect to damage (After Voyiadjis and

Mozaffari 2013)
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Fig. 13 Variation of damage at the central point with respect to stress (After Voyiadjis and

Mozaffari 2013)
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Example 2: Influence of Microcrack Mobility Constant (M ) The dissipation

coefficient and length scale are assumed constant and equal to w ¼ 10�5, l ¼ 1 μm
¼ 10�6 m in this example. Different values are examined for the coefficient M and

superimposed results are shown in Fig. 14 using the explicit scheme with 41 nodes

along the bar.
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Fig. 14 Influence of various values for mobility of microcrack coefficientM on damage level for

all nodes (After Voyiadjis and Mozaffari 2013)
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Fig. 15 Influence of various values for dissipation coefficient w on damage level for all nodes

(After Voyiadjis and Mozaffari 2013)
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Example 3: Influence of Dissipation Coefficient Constant (w) The mobility

of microcrack coefficient and length scale are assumed constant and equal to

M ¼ 10�6, l ¼ 1 μm ¼ 10�6 m in this example. Different values are examined

for the coefficient w and superimposed results are shown in Fig. 15 using the

explicit scheme with 41 nodes along the bar. It can be seen that increasing the

coefficient M results in decreasing the damage level on neighbor nodes.

Example 4: Influence of Characteristic Length Coefficient (Length Scale)

Constant (l ) The mobility of microcrack coefficient and dissipation coefficient

are assumed constant and equal to M ¼ 10�6, w ¼ 10�5 in this example. Different

values are examined for the coefficient l and superimposed results are shown in

Fig. 16 using explicit scheme with 41 nodes along the bar.

It was observed that the greater value for l affects the damage value at the points

with great change in stiffness (see the drop in Fig. 16 at length ¼ 0.55) which is

obvious based on the nature of length scale due to damage. Localization effects can

be obtained using this parameter gradient-type models.

Conclusions

In this chapter, the application of the PFM into damage mechanics is shown.

Considering damage as phase transformation leads to developing a nonlocal

gradient-type damage model for ductile materials using energy minimization pro-

cedure of the PFM approach. A unique Allen–Cahn-type partial differential equa-

tion (28) as a damage evolution law is proposed. Numerical examples are used to

show regularization capabilities of the proposed model. Although only elastic case
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Fig. 16 Influence of various values for length scale l on damage level for all nodes (After

Voyiadjis and Mozaffari 2013)
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is considered here, a specific set of constantsM, w, and l can be used to extend this

model to the inelastic region by adding a continuum plasticity model. The effects of

the material constants M (mobility of microcracks), w (dissipation constant), and

l (length scale due to damage) are demonstrated in this work. Damage in both rate-

dependent and rate-independent materials can be simulated using this model. It is

capable of modeling viscodamage by incorporating viscoelastic or viscoplastic

behavior in materials. It is shown that unconditionally stable methods like

Crank–Nicholson and implicit schemes are more powerful to solve Eq. 28 as they

can update the damage level over all nodes simultaneously. They are capable in

involving other node damage levels in order to show the effects of gradient of

damage as it is detailed here.

The effectiveness and uniqueness of this approach in damage mechanics are

summarized below.

A new physically based damage evolution law is proposed through the phase

field method. This is accomplished through the incorporation of the damage

variable and order parameter which is general and can be used for the simulation

of isotropic damage in any kind of material including rate dependent or rate

independent without using regular normality rule (Eq. 28). A new implicit defini-

tion of damage variable (Eq. 51) is presented which is compared to the conventional

definition (Fig. 5). The new damage effect coefficient (Eq. 48) is capable through

the mathematical restrictions of the phase field theory to transform stresses and

strains into the fictitious undamaged configuration. Various FD schemes are used to

show the capability of the model in various coupled damage plasticity models for

materials regardless of rate dependency.
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