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v

Different fields are often fraught with field-specific terminology and concepts that 
are loosely defined but used extensively by those active in that field. This is one of 
the barriers that makes it difficult for someone to learn about a new field of study. 
In the case of biofuels research and the biofuel industry, there are a vast number 
of disparate fields that apply to develop a biofuel process. Thus, for someone with 
interest in biofuels and wishing to become educated on relevant subjects, there 
may be a long initial period of deciphering terminology and linking concepts.

The intention of this Springer Brief is to provide a broad context of topics rele-
vant to the development of biofuel processes. In particular, emphasis will be given 
to the recent fields of systems biology and synthetic biology as they relate to bio-
logical engineering. The content is meant to start by providing general introduc-
tory material into each of these fields and progress with more detail on concepts 
and methods culminating in highlighted research progress in systems biology and 
synthetic biology with relevance to biofuels.

Part of the broader context and content of this Springer Brief are focused on 
the general problem of scientific or technological decision making. While this may 
sound like an obvious and intuitive component that does not merit discussion, there 
remains a problem that biofuels impact so many different aspects that there are 
variety of different decisions to be made ranging from scientific research decisions 
to governmental policy decisions. Through this spectrum, any of the decisions can 
impact the speed and efficacy with which viable biofuel production processes may 
be developed and thus, it seems necessary to discuss explicitly some of the consid-
erations that should be accounted for in developing a biofuel process.

Overall, we hope that this text will be useful to a broad range of readers and 
provide a broad sampling of material to provide a general perspective on the 
changing approaches to biological engineering while also providing sufficient 
examples to show relevance and progress in biofuel research.	

Preface



vii

1	 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                	 1

Part I  Societal Context

2	 Biofuel Context  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             	 7
2.1	 Biofuels in the Energy Landscape. . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 8

2.1.1	 Current Biofuel Situation. . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 8
2.1.2	 Starting Materials: Feedstocks. . . . . . . . . . . . . . . . . . . . . . . .                        	 9
2.1.3	 Target Fuel Compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 10

2.2	 Broader Impacts of Biofuels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	 10
2.2.1	 Effect on Food Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 10
2.2.2	 Environmental Impact: Greenhouse Gas Emissions . . . . . . .       	 12
2.2.3	 Economic Feasibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 12
2.2.4	 Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     	 12

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 12

3	 Life Cycle Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        	 15
3.1	 Life Cycle Assessment of Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . .                          	 17
Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   	 17

Part II  Research Context

4	 Systems Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             	 21
4.1	 Experimental Systems Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 21

4.1.1	 Core Experimental Methods. . . . . . . . . . . . . . . . . . . . . . . . . .                          	 22
4.1.2	 Progress for Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 25

4.2	 Computational Systems Biology. . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 27
4.2.1	 Core Computational Methods . . . . . . . . . . . . . . . . . . . . . . . .                        	 28
4.2.2	 Progress for Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 34

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 35

Contents

http://dx.doi.org/10.1007/978-1-4614-5580-6_1
http://dx.doi.org/10.1007/978-1-4614-5580-6_2
http://dx.doi.org/10.1007/978-1-4614-5580-6_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-5580-6_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-5580-6_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-5580-6_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-5580-6_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-5580-6_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-5580-6_2#Sec7
http://dx.doi.org/10.1007/978-1-4614-5580-6_2#Sec8
http://dx.doi.org/10.1007/978-1-4614-5580-6_2#Sec9
http://dx.doi.org/10.1007/978-1-4614-5580-6_2#Bib1
http://dx.doi.org/10.1007/978-1-4614-5580-6_3
http://dx.doi.org/10.1007/978-1-4614-5580-6_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-5580-6_3#Bib1
http://dx.doi.org/10.1007/978-1-4614-5580-6_4
http://dx.doi.org/10.1007/978-1-4614-5580-6_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-5580-6_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-5580-6_4#Sec9
http://dx.doi.org/10.1007/978-1-4614-5580-6_4#Sec10
http://dx.doi.org/10.1007/978-1-4614-5580-6_4#Sec11
http://dx.doi.org/10.1007/978-1-4614-5580-6_4#Sec14
http://dx.doi.org/10.1007/978-1-4614-5580-6_4#Bib1


Contentsviii

5	 Synthetic Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            	 37
5.1	 Experimental Synthetic Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 38

5.1.1	 Core Experimental Methods. . . . . . . . . . . . . . . . . . . . . . . . . .                          	 39
5.1.2	 Progress for Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 40

5.2	 Computational Synthetic Biology . . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 40
5.2.1	 Core Computational Methods . . . . . . . . . . . . . . . . . . . . . . . .                        	 41
5.2.2	 Progress for Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 43

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 43

Part III  Developing Biofuel Processes by Engineering

6	 Integrating Systems and Synthetic Biology  . . . . . . . . . . . . . . . . . . . . . .                      	 47
6.1	 Combining Biology and Chemistry. . . . . . . . . . . . . . . . . . . . . . . . . .                          	 48
6.2	 Potential Design Starting Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 51

6.2.1	 Organisms with Native Product Formation . . . . . . . . . . . . . .              	 52
6.2.2	 Organisms with Native Substrate Utilization. . . . . . . . . . . . .             	 53

6.3	 The Systems and Synthetic Biology Complement. . . . . . . . . . . . . . .               	 54
6.4	 Expanding the Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 56

6.4.1	 Bioprospecting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 57
6.4.2	 Metagenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 57
6.4.3	 Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 58

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 58

7	 Building Engineered Strains  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  	 61
7.1	 Standardization of DNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   	 63
7.2	 Interoperability of DNA Constructs. . . . . . . . . . . . . . . . . . . . . . . . . .                          	 65
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 66

8	 State of the Field and Future Prospects  . . . . . . . . . . . . . . . . . . . . . . . . .                         	 67

http://dx.doi.org/10.1007/978-1-4614-5580-6_5
http://dx.doi.org/10.1007/978-1-4614-5580-6_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-5580-6_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-5580-6_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-5580-6_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-5580-6_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-5580-6_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-5580-6_5#Bib1
http://dx.doi.org/10.1007/978-1-4614-5580-6_6
http://dx.doi.org/10.1007/978-1-4614-5580-6_6#Sec1
http://dx.doi.org/10.1007/978-1-4614-5580-6_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-5580-6_6#Sec3
http://dx.doi.org/10.1007/978-1-4614-5580-6_6#Sec4
http://dx.doi.org/10.1007/978-1-4614-5580-6_6#Sec5
http://dx.doi.org/10.1007/978-1-4614-5580-6_6#Sec6
http://dx.doi.org/10.1007/978-1-4614-5580-6_6#Sec7
http://dx.doi.org/10.1007/978-1-4614-5580-6_6#Sec8
http://dx.doi.org/10.1007/978-1-4614-5580-6_6#Sec9
http://dx.doi.org/10.1007/978-1-4614-5580-6_6#Bib1
http://dx.doi.org/10.1007/978-1-4614-5580-6_7
http://dx.doi.org/10.1007/978-1-4614-5580-6_7#Sec1
http://dx.doi.org/10.1007/978-1-4614-5580-6_7#Sec2
http://dx.doi.org/10.1007/978-1-4614-5580-6_7#Bib1
http://dx.doi.org/10.1007/978-1-4614-5580-6_8


ix

Abbreviations

DMAPP	 Dimethylallyl pyrophosphate
DXP	 1-Deoxy-d-xylulose 5-phosphate pathway
GHG	 Greenhouse gas
GPR	 Gene-protein-reaction
IMG	 Integrated microbial genomes
IPP	 Isoprenyl pyrophosphate
ISO	 International standards organization
KEGG	 Kyoto encyclopedia of genes and genomes
LCA	 Life cycle assessment
MEV	 Mevalonate pathway
TW	 Terawatt



1

Abstract  This introductory chapter describes the broader historical context and 
perspective relevant to technology, engineering, and specifically application of 
technology and engineering to develop biofuel processes. Emphasis is given to the 
relationships between scientific research and global societal concerns with engi-
neering acting as a bridge discipline between the two. Another point of empha-
sis that is highlighted is the need for thoughtful, integrative decision-making that 
accounts for aspects of research and societal concerns to arrive at processes that 
represent the confluence of the most desirable characteristics to meet society’s 
needs.

Technology and engineering have long been connected to broad societal changes. 
The impact of technology and engineering on society easily goes back to the con-
struction of simple tools in the Stone Age and progresses with metallurgy, the 
industrial revolution, the steam engine, and now advanced electronics, comput-
ers, and distributed information. Technological advances have helped to shape our 
society and have implications on our everyday lives.

Engineering is fundamentally a translational discipline that bridges scientific 
research and societal applications. While the goal is to develop technology that 
helps to address a problem or need in society, engineering progress is made by 
drawing upon advances in scientific research. Thus, in engineering there is a need 
to have a sound understanding of all the technical details of the relevant research 
and to balance that with a broad perspective of potentially competing societal 
interests (Fig 1.1).

As a gross overgeneralization, the majority of people on either end of the spec-
trum (research or society) may not have a great depth of knowledge about the 
other facet (e.g., a typical individual concerned about their energy usage likely is 
not knowledgeable about the depth and breadth of progress in alternative energy 
research). This concern is especially important for scientific researchers whose 
work drives technological innovation.

Individual researchers or research groups can be highly skilled and knowledge-
able about their specific research area. As such, in terms of the research micro-
cosm, research teams are very adept at formulating research plans and experiments 

Introduction
Chapter 1
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2 1  Introduction

to advance knowledge in their area by balancing the state of knowledge in the 
field, techniques and methods available to researchers, and personal synthesis of 
ideas and hypotheses. As an academic pursuit, often the decision-making process 
for advancing research is largely dictated by the immediate environment of the 
research microcosm. Thus, not all research that advances our basic knowledge is 
easily translatable to an application.

One of the hallmarks of engineering and engineering education is being versed 
in problem solving by analysis, making appropriate assumptions, and reformulat-
ing problems (often in simplified forms). This is a decision-making process for 
technical problems. In the broader perspective of translating research to applica-
tion and considering the variety of technical details from the research perspective 
and the global influences of the societal perspective, thoughtful decisions must be 
made, especially in terms of developing processes for biofuel production.

As a subject area, biofuels have a wide diversity of topics and details to con-
sider. These range from social concerns that the general public is very aware of 
(food vs. fuel debate and economics of ethanol production) and technical research 
challenges in targeting the best starting materials, best fuel chemicals, and best 
organisms/processes for production. In addition to discussing these various topics, 
there is a need to consider all of these aspects to make decisions on where best to 
allocate resources and effort to quickly develop biofuel production processes with 
the best combination of beneficial characteristics. One main focus of this text will 
be to highlight some of this decision-making process.

In relation to biofuel production from a research perspective, biotechnology 
has historically utilized organisms for a variety of purposes including the early 
examples of alcohol fermentation and antibiotic production. A major move for-
ward occurred with the identification and characterization of DNA as the funda-
mental building block of life coupled with molecular biology methods to replicate 
DNA in vitro (polymerase chain reaction). This led to directed modifications of 
organisms for various purposes including chemical production. The most recent 
major step forward in biological research is the improved knowledge of cell-wide 
components (genome, transcriptome, proteome, metabolome), their interactions 
(interactome), and methods to measure and manipulate whole cellular systems.  

Scientific
Research

Engineering/
Technology

Societal
Application

Theory

Technique

Experimentation

Environmental

Economic

Political

Fig. 1.1   Graphical depiction of the translational nature of engineering and technology to apply 
scientific research to address societal problems. Ovals depict illustrative examples of detailed 
concerns related to research or application
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These recent knowledge and technology leaps have effectively moved biology to 
being an information-rich field, where early biology was characteristically infor-
mation poor. With changes in available information, it may be appropriate to con-
sider the decision-making process in biological research, especially for biofuels 
research where many competing constraints can be identified.

We believe that there exists sufficient knowledge from both a biological per-
spective and a chemical perspective to take a global view of biofuel research to 
suggest research avenues that would have the highest possibility of addressing 
all of the parameters needed for a successful fuel alternative. From a biological 
perspective, systems biology has helped to develop tools and a knowledge base to 
gain a broad, detailed perspective of cellular function and synthetic biology tools 
are facilitating design and controlled expression of different genes.

In relation to biofuel production from a societal perspective, there are a large 
number of different important and potentially competing interests to consider. 
These various competing interests include economic, environmental, political, and 
ethical considerations. In terms of developing biofuel processes, the various global 
societal considerations must be considered and may play a key role in identify-
ing and developing the most promising biofuels to target and processes to produce 
them.

The remainder of the contents of this text is divided into Parts I, II, and III to 
consider the aspects of research perspectives, societal perspectives, and engineer-
ing to develop biofuel processes. Part I will provide background information on 
biofuels including some of the competing broader considerations for biofuel pro-
duction. Part I also includes discussion of life cycle assessment (LCA) as a deci-
sion-making framework. Part II will provide information on the recent research 
areas of systems biology and synthetic biology that have direct relevance to bio-
processing and biofuel production. Part II will provide overviews of systems 
biology and synthetic biology including both experimental and computational 
techniques and provide example illustrations on how these apply to biofuel-pro-
ducing bioprocesses. Part III will focus on describing the integration of informa-
tion and approaches to engineer a biofuel-producing process and provide some 
perspectives on current and future areas of emphasis.

1  Introduction



Societal Context
Part I
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Abstract  Liquid transportation fuels are used globally on a daily basis at a high 
consumption rate that is projected to rapidly increase over the next several dec-
ades. With dwindling, finite supplies of oil-based transportation fuels, there is 
an urgent need for alternative fuels. However, most proposed alternative fuels 
and fuel production schemes have potential impacts on food supplies, the envi-
ronment, or finances. There are a diversity of potential starting materials for bio-
fuel production, target fuel compounds, and organisms to use for production. 
Determining the best combinations of input, output, and process to satisfy the fuel 
demand while addressing additional societal concerns could lead to a sustainable 
fuel source.

Around the world and particularly in the United States, liquid transportation fuels 
for use in vehicles with internal combustion engines are a dominant, everyday 
convenience or necessity. Rough estimations of gasoline consumption in the US 
give that approximately 388.6 million gallons of gasoline are consumed each day 
(U.S. Energy Information Administration–www.eia.gov) and with a total popula-
tion of about 314 million people (U.S. Census Bureau–http://www.census.gov/
population/www/popclockus.html) which means that on average each person in 
the US uses almost one and a quarter gallons of gasoline each day. This level of 
consumption is a direct reflection of our reliance and the impact of liquid transpor-
tation fuels.

If the liquid transportation fuels that are currently used were plentiful and 
sustainable sources existed, the prominent role of these fuels in everyday life 
would not be a concern. However, since our current oil-derived fuels do not 
have sustainable sources, alternative fuels are desirable and necessary long term. 
A real issue arises when proposed avenues for sourcing alternative fuels have 
tradeoffs in other areas of everyday concern such as food supplies or money. 
Due to these potentially competing interests it is important to evaluate the dif-
ferent facets of potential biofuels and to consider their impact on fuel supply and 
other areas.

Biofuel Context
Chapter 2

S. M. Clay and S. S. Fong, Developing Biofuel Bioprocesses Using Systems  
and Synthetic Biology, SpringerBriefs in Systems Biology,  
DOI: 10.1007/978-1-4614-5580-6_2, © The Author(s) 2013
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8 2  Biofuel Context

2.1 � Biofuels in the Energy Landscape

Most people readily acknowledge the need to develop additional or alternative 
sources of energy. What is typically not realized is the urgency to develop these 
alternative energies due to the extent of our (US and the world) current and pro-
jected future energy consumption. Above was given an example of the gasoline 
consumption in the US. The current human global energy demand of approxi-
mately 14.9 terawatt (TW) is predicted to rise to 23.4 TW by 2030 (an increase 
of more than 50 % in a just a fifth of a century) (Hambourger et al. 2009). Similar 
consumption projections hold true for liquid transportation fuels. Due to the finite 
amount of oil, there is an immediate need to develop alternative fuel sources 
that will work in our current engines and be easily accessible to the population. 
Biofuels (gasoline alternatives and biodiesel) are growing in popularity but there is 
no clear single fuel substitute for use with our current infrastructure.

2.1.1  Current Biofuel Situation

The term biofuel is a broad umbrella term referring to a fuel that is derived from 
a biological starting material. As a general term, there are a vast number of differ-
ent biofuels that have been proposed that vary in combinations of starting material 
and target fuel. The challenging decision is to determine the best process for effi-
cient production of large quantities of fuel when choosing from different starting 
materials (corn, corn stover, switchgrass, sugar cane/beets, soybeans, vegetable 
oil, etc.) to potentially produce different end products (ethanol, propanol, butanol, 
isoprenes, diesel). Since the goal of developing alterative fuels is to increase the 
availability of fuels, care must be given to how much energy goes into a produc-
tion process to yield more usable energy. The processing, separation, and puri-
fication of biofuels use up energy that has to be accounted for when evaluating 
energy-efficient fuel sources. While ethanol production from corn is one classic 
example of first-generation biofuels, it also does not have a very high net gain of 
energy.

Production of biofuel from algae is one option for using a low amount of 
input energy for producing and processing its biofuel. Growth of algae is rela-
tively simple with minimal growth requirements and sunlight is a primary energy 
input due to photosynthetic capabilities. Furthermore, algae are easily har-
vested and processed since culture takes place in a liquid mixture. Harvesting, 
transportation, and processing of land-based plant material are not as easily 
accomplished.

Processes for production of biofuels that utilize other photosynthetic microor-
ganisms (such as cyanobacteria) will offer the same benefit as algae if the efficiency 
of fuel production with minimal energy usage is comparable. Larger eukary-
otic organisms also have more metabolic processes occurring simultaneously and 
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therefore use more of their energies on undesirable products. Microbial production 
of biofuels can be engineered for a maximum production of the biofuel, which will 
optimize the conversion of the energy supplied to the desired product.

2.1.2  Starting Materials: Feedstocks

Energy is neither created nor destroyed and therefore we need to find the most 
efficient way to take existing energy on our planet and convert it into fuel that we 
can use to power our current and future lifestyle. On the molecular level, break-
ing carbon–carbon bonds are the main source of energy but it takes just as much 
energy to make them as to break them. Currently, we are tapping into a source 
of long-chain carbon bonds in the form of crude oil stored under the surface of 
the earth but the formation and storage of this substance happens very slowly 
over time and we will run out of this source sooner than later. We need to find a 
solution that creates carbon–carbon bonds continuously and does so in a way that 
outputs more fuel than we use to produce the fuel.

Currently, the most commonly considered starting material for a biofuel pro-
duction process is plant biomass (lignocellulosic biomass). Lignocellulosic bio-
mass consists of cellulose, hemicellulose, and lignin that are three types of sugar 
polymers. Cellulose is a chain of glucose, hemicellulose contains xylose, glucose, 
mannose, galactose, and arabinose in varying quantities depending on the organ-
ism, and lignin is a chain of phenylpropanoid units. In order to use the sugars in 
lignocellulosic biomass, these polymers need to be broken down into their mono-
mers, and that can be done enzymatically or chemically. Cellulases are used to 
break down cellulose. The enzymatic process is generally preferred due to its mild 
conditions but the biomass does have to be pretreated by steam or dilute acid to be 
digestible by the cellulases.

A number of organisms natively use feedstocks that are continuously produced 
naturally to grow and form carbon–carbon bonds as a part of their natural functions. 
Different types of organisms use different energy sources. Lignocellulosic biomass 
from trees and other wood sources as well as simple sugars from plants both provide 
carbon–carbon bonds that can be broken down for energy which is a much more sus-
tainable process than using fossil fuels, but it is still a roundabout way of using the 
sun to photosynthesize plant mass and then break down the plant mass to produce fuel. 
This is why using photosynthetic organisms that produce biofuel directly from the 
sun’s energy has gained considerable attention as a more permanent long-term solution.

Different classes of organisms undergo different processes that have the capability 
of producing a wide range of carbon chains. A diversity of metabolic capabilities 
exists in photosynthetic and non-photosynthetic prokaryotes and eukaryotes that can 
result in production of carbon-containing compounds with chain lengths ranging 
from 2 to 24 carbons. Carbon bonds take a relatively high amount of energy to create 
and therefore organisms tend to only make the bonds that benefit their growth and 
survival. Because of this, ethanol, a two-carbon molecule, is one of the easiest targets 
for sustainable fuel production. With each additional carbon added onto the chain 

2.1  Biofuels in the Energy Landscape
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as in propanol or butanol, it gets much harder to produce the molecules in organ-
isms because the organisms will choose thermodynamically easier paths to process 
its metabolites and will not favor the upstream, high energy-requiring reaction.

2.1.3  Target Fuel Compounds

Finally, recent advances in synthetic biology have enabled scientists to use more 
commonly used industrial or laboratory organisms such as Escherichia coli, 
Corynebacterium glutamicum, and Saccharomyces cerevisiae as platforms for 
metabolic engineering, expanding native functionality by both broadening sub-
strate range and extending chemical production capabilities (Jarboe et al. 2010; 
Krivoruchko et al. 2011). What this translates to is that when selecting a desir-
able target chemical for production, we are not limited to only those compounds 
that are natively produced in an organism. If a desirable chemical is identified, it 
is often possible to design a method for biological production of that chemical. 
In representative cases, Liao et al. have engineered butanol production in E. coli 
by introducing genes from Clostridium acetobutylicum (Astumi et al. 2008) and 
using systems approaches to explore ways to improve butanol tolerance in E. coli 
(Senger and Papoutsakis 2008; Lee et al. 2008).

Thus, it is possible to consider a variety of different chemical compounds as 
possible biofuels based solely upon their chemical characteristics without initial 
regard to the feasibility of production. A number of these compounds have been 
identified and targeted as compounds that are either natively produced or can be 
engineered into organisms (Table 2.1).

Due to the diversity of organisms, starting materials, and potential target com-
pounds, biofuel production processes take many different forms. While incre-
mental research progress is being made in a large number of different biofuel 
processes, it is still not clearly defined as to what process combinations will prove 
most fruitful. It is now becoming possible to answer this question from a more 
global, top-down perspective by independently evaluating chemical characteris-
tics, starting material characteristics, and organism traits. By identifying the most 
promising starting materials and target compounds, the most suitable organisms 
can be targeted as host bioprocessing platforms.

2.2 � Broader Impacts of Biofuels

2.2.1  Effect on Food Supply

There is a lot of concern as to how biofuel production will impact the global fuel 
supply since many biofuel sources are grown as crops. Corn, sugar cane, switch 
grass, and soybeans are the main crop-based energy sources and out of all of them, 
corn is by far the largest competitor with possible food production. Because the 
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corn produced for biofuel is engineered to optimize its starch content, it is inedible 
and is taking up farm land that could be used to produce corn for consumption. 
This same argument and concern holds true for almost all land-based plant matter 
that is considered as a starting material for biofuel production. The common argu-
ment is that if arable land is used, it would be better used for food purposes rather 
than fuel purposes.

Potential alternatives to land-based plants are the use of aquatic, photosyn-
thetic organisms such as algae or cyanobacteria. Biofuel production from algae 
will not affect the food industry because it can be grown in diverse water systems 
and only has to have access to sunlight. Most energy options depend ultimately on 
the energy gained from the sun via photosynthesis to some extent. Therefore, in a 
continuous process, photosynthesis is usually the limiting process in energy acqui-
sition. Solar energy, reaching the surface of the earth at a rate of approximately 
120,000 TW, is a sustainable resource exceeding predicted human energy demands 
by  >3 orders of magnitude. If solar energy can be concentrated and stored effi-
ciently then it has the capacity to provide for future human energy needs (Bungay 
2004). There is a large amount of research going into optimizing photosynthesis 
in many different organisms for the advancement in energy production avenues. 
As with many other organisms, the potential yield of algal biofuel is limited by the 
fundamental inefficiencies in the photosynthetic conversion of solar energy to bio-
fuel. As of now our direct use of sunlight through solar panels is far exceeding that 
of indirect use through photosynthesis. Compared with synthetic solar panels with 
reported 30 % efficiencies, photosynthesis has a maximum efficiency of 8–10 % 
(Hambourger et al. 2009).

Table 2.1   Examples of potential target biofuel chemicals and organisms that have been shown 
to produce that chemical

Biofuel Pathway Examples of organisms

Ethanol Native Zymomonas mobilis
Pichia stipitis
Clostridium thermocellum
Clostridium phytofermentans
Saccharomyces cerevisiae 
Escherichia coli

Imported Corynebacterium glutamicum
Biobutanol Native Clostridium acetobutylicum

Imported Escherichia coli
Saccharomyces cerevisiae

Lipid fuels Native Cyanobacteria and algae
Yarrowia lipolytica

Imported Escherichia coli
Hydrogen Native Cyanobacteria and microalgae

Imported Escherichia coli
Higher alcohols and alkanes Native Vibrio furnissii

Imported Escherichia coli

2.2  Broader Impacts of Biofuels
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2.2.2  Environmental Impact: Greenhouse Gas Emissions

Global warming awareness has forced the fuel industry to reduce their carbon 
footprint and there is a heavy focus to minimize the carbon emission levels of per-
spective biofuels. Both the carbon produced for the production of the biofuel and 
the burning of the biofuel are considered in the overall emissions amount. This 
also takes into consideration the carbon that photosynthetic organisms absorb 
which can make their carbon emissions negative. General consensus to date sug-
gests that from a greenhouse gas emissions standpoint, biofuels would be a better 
option than oil-based fuels.

2.2.3  Economic Feasibility

In addition to all the other considerations that can influence the choice of biofuel 
and biofuel production process, economics may be the most influential. Due to 
the size of the automotive and fuel industries, there are considerable investments 
made in infrastructure, production facilities, and even government policy. The 
more practical aspect of the economics is the cost of the final fuel product when 
considering production costs. Blending larger amounts of biofuels with gasoline 
while keeping the price of gas the same will ensure a path to sustainability and 
fuel independence.

2.2.4  Sustainability

All of the different considerations related to biofuels can be restated as an issue of 
sustainability. While there are numerous contexts and definitions for sustainability, 
the consistent general concept involves maintaining and preserving the current 
quality of life for current and future generations of humans within the context of 
our natural environment. The idea of sustainability is not limited to environmental 
impacts alone but is comprehensive in touching upon almost every salient aspect 
and concern that motivates the continued development of biofuels.
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Abstract  Due to the diversity of impacts the fuel industry has on society, it is 
often difficult to comprehensively evaluate the benefits and drawbacks of any 
given fuel or fuel production process. This is especially true when the impacts 
influence disparate fields that have their own considerations and metrics that may 
not be compatible. The analysis framework of a life cycle assessment (LCA) pro-
vides a comprehensive methodology for studying the combined consequences of 
different influences and has been implemented in many industries including biofu-
els. While LCA can be used to retrospectively analyze existing systems, it is also 
possible to use LCA to prospectively analyze a system to evaluate and determine 
the most promising choices to pursue. LCA is a potentially powerful component in 
helping to guide decision making for target biofuel research and development.

The fuel industry has direct impacts on many different aspects of society. This 
is especially true when considering biofuels where there are numerous consid-
erations including economic, environmental, and social considerations. With the 
diversity of considerations affecting fuel production, distribution, and consump-
tion it is often difficult to make decisions on which fuel or production scheme may 
be most suitable to meet certain criteria. One method for assembling and assess-
ing different criteria to arrive at a decision is to conduct an life cycle assessment 
(LCA).

LCA is fundamentally a process for tabulating or collating information to facil-
itate analysis. As a process, there can be many different ways to conduct an LCA, 
but most commonly accepted and standardized method is the series of standards 
set by the International Standards Organization (ISO) (http://www.iso.org/iso/
iso14000). A typical LCA includes the implementation of four major steps:

1.	 Define the system boundaries for assessment.
2.	 Life cycle inventory: create an inventory of inputs and outputs for the defined 

system. This step often includes determining a functional unit as a basis for 
evaluation.

3.	 Life cycle impact assessment. This step often includes normalization/weight-
ing of inventory items.

4.	 Interpretation of results.

Life Cycle Assessment
Chapter 3

S. M. Clay and S. S. Fong, Developing Biofuel Bioprocesses Using Systems  
and Synthetic Biology, SpringerBriefs in Systems Biology,  
DOI: 10.1007/978-1-4614-5580-6_3, © The Author(s) 2013

http://www.iso.org/iso/iso14000
http://www.iso.org/iso/iso14000


16 3  Life Cycle Assessment

The LCA analysis framework provides two main benefits, both of which are 
relevant to biofuel processes. The first benefit is that there is a requirement to con-
sider and explicitly define the system that you will consider for analysis. This may 
seem like an intuitive and obvious step, but it has not always been given proper 
consideration in process development where there is often a technical impediment 
that causes perspectives to become narrowed to the single step in question. By 
considering the system definition, most LCAs ideally try to consider all aspects of 
a process from the raw materials and transportation to manufacture, consumption, 
and disposal. As such, LCAs have often been colloquially referred to as “cradle-
to-grave” analyses.

The comprehensive view provided by a good LCA is meant to help to provide a 
broad, unbiased analysis of a process system that can be used for decision-making 
purposes. From a research perspective, increasing the chemical production yield 
using your favorite organism can be intellectually fruitful, but there is no guar-
antee that such research progress would translate to a process with commercial 
relevance. Engineering a strain of an organism with a 50  % increase in butanol 
production is great; however, if an organism is limited to using carbon sources that 
are expensive or available in limited quantities then it would be difficult to develop 
a commercial-scale bioprocess based on that organism. Another common biofuel-
related example is the body of work focused on pretreatment of lignocellulosic 
biomass to hydrolyze cellulose and hemicellulose to hexoses and pentoses, respec-
tively. In the pretreatment cases, a balance needs to be made between the sever-
ity (chemical and reaction parameters) of the pretreatment process and the output 
stream from the pretreatment process. Relatively harsh conditions can be used to 
hydrolyze the polymeric sugars into monomeric sugars that can be used for con-
version to biofuels, but carryover chemicals or temperatures from the pretreatment 
process can be inhibitory to downstream processes. Thus, sometimes it may be 
necessary to consider a less severe pretreatment process that has lower yields if it 
interfaces with downstream bioprocesses better.

The second benefit of an LCA is that it is a generic analysis framework and 
information from diverse fields can be all considered within the same framework. 
As stated previously, biofuel production involves a number of different facets 
including technological, social, environmental, and economic. Each of these fields 
has its own terminology, considerations, and metrics. If considered individually, 
the exercise of comparing the impacts in each of these different fields would be the 
equivalent of comparing apples to oranges as numbers and values from one field 
do not necessarily translate comparably to a different field. The LCA framework is 
meant to facilitate this by defining a functional unit that can be used as a standard 
in each of the different fields. Thus, information from all relevant fields can be 
tabulated using a base functional unit and analysis can take into account impacts in 
different fields.

For biofuel processes, there are many different functional units that can be con-
sidered to be appropriate. The natural consideration is a gallon of fuel since we are 
all familiar with a gallon of gasoline (and the price of a gallon of gasoline at a gas 
station). The use of the volumetric quantity of a gallon is not necessarily the best 
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to use however as it prohibits the comparison of different types of fuels that would 
have different energy content in a gallon. For fuels, the function that is being con-
sidered is the energy content or for transportation fuel applications the distance 
that can be traveled. If functional unit for an LCA is defined according to energy 
content, then all of the data that are tabulated, from environmental gas emissions 
to pricing, must be considered by the energy content functional unit. Then a com-
prehensive analysis can be accomplished that incorporates information from dif-
ferent fields in a coherent manner.

3.1 � Life Cycle Assessment of Biofuels

Due to the large number of variables that can be involved with biofuel production, 
there exist a vast number (thousands) of different LCA studies. These different 
studies can vary in many aspects including the scope of the system being consid-
ered, and they most frequently differ in terms of starting material, process detail, 
and target fuel produced. Due to these variations, it is often difficult to directly 
compare the results of different LCA studies.

One relatively recent review article attempted to compare different published 
LCA studies to determine if any generalized results could be found (Cherubini and 
Strømman 2011). This study considered 97 different life cycle studies on biofuels. 
These studies included a broad spectrum of variables including the locale of the 
study, the input and outputs considered, processes involved, and scope of analy-
sis. The definition of functional units for analysis also varied (input-related units, 
output-related units, agricultural land units, and year) again making it difficult to 
directly compare results. Despite these challenges in analysis, two general results 
were found. When considering a balance on greenhouse gas (GHG) emissions, 
biofuels resulted in a net reduction in GHG emissions when compared to fossil 
fuel-derived products. In addition, biofuel production schemes required a lower 
amount of fossil fuel input for production of fuels and thus resulted in a reduced 
consumption of fossil fuel.

For additional details on LCA studies of biofuels, there exist a large number 
of individual studies that can be considered and found through literature search 
engines. LCA studies can be conducted for different purposes but generally they 
can be conducted retrospectively on existing processes or prospectively on devel-
oping processes. Prospective use of LCA can be used as a decision-making tool as 
a framework to help guide research and process development efforts to identify the 
most promising avenues to pursue.
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Abstract  Systems biology utilizes experimental and computational tools with 
a goal of understanding the intact, interconnected functionality of biological sys
tems. The ability to comprehensively experimentally measure and computationally 
model all of the individual components in a cell has added new dimensions to our 
understanding of how cellular systems work. This knowledgebase provides the nec
essary foundation for modifying and engineering cellular function. Overviews of 
core experimental and computational systems biology methods are discussed and 
illustrations of application of these methodologies to biofuel research are provided.

At its core, systems biology ascribes to the premise that an important aspect of 
biological systems is the interaction and interconnectedness of the individual com
ponents of the system. Some have rightly contended that this is “just biology” but 
the major distinction for systems biology has occurred recently as both experimen
tal and computational techniques have enabled biological systems to be studied as 
intact, integrated, functional systems. Technological and methodological improve
ments have enabled systems biology research and systems biology as a field has 
provided much of the knowledge base for biological engineering.

4.1 � Experimental Systems Biology

The advent of experimental systems biology started in 1995 with the first com
plete genome sequence for a free-living organism (Haemophilus influenza) and 
gene expression microarrays built for a subset of Arabidopsis thaliana genes. 
Gene expression microarrays were quickly expanded for genome-wide studies 
as demonstrated in 1997 using Saccharomyces cerevisiae. These studies demon
strated the ability to take detailed experimental measurements for a given type of 
cellular component at the scale of an entire cell thus demonstrating the feasibility 
of studying cellular systems as intact entities.

Seeing these systems operate as a whole is the best possible scenario to exam
ine the wild-type genes and any genetically modified states. Determining which 
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genes are being expressed is fundamental in this exploration and provides a basis 
from which further experiments can be formed. Gene expression microarrays mea
sure the mRNA transcripts present in the cell at any given time. To measure the 
mRNA, methods such as quantitative Northern blot, qPCR, qrt-PCR, short or long 
oligonucleotide arrays, cDNA arrays, EST sequencing, SAGE, MPSS, MS, or 
bead arrays may be used. Approaches to measure the proteins include quantitative 
Western blots, ELISA, 2D gels, gas or liquid chromatography, and mass spectrom
etry (MS). In either approach, getting expression data from the systems exposes 
phenotypes directly that may not have been predicted based on genotypic data. 
Also, once a baseline measurement of expression has been obtained, it is easy to 
track the changes in the cells after further perturbations.

Getting a complete picture of the system as it exists naturally helps to inter
rogate parts of the system that are not obviously or intuitively altered when the 
organism is studied in pieces. Seeing the less prominent characteristics gives us a 
more detailed description of the organism that is then used to make a more accu
rate computational model. Systems biology takes a look at larger systems instead 
of the individual processes that occur within a system. Traditional biology uses 
isolated processes to study cellular processes but potentially may miss proper
ties that only arise when all of the other systems were functioning (emergent 
properties). Biological systems are so complex; it is difficult to believe that we 
could study one piece of it at a time and eventually know everything about it. Bil
lions of years of evolution have enabled life to exist in amazingly organized and 
complex systems and we are only beginning to understand its intricacies. Systems 
biology views biological processes as a symphony where each part is important 
but you cannot experience the whole effect without all of the parts at work.

Studying complex systems involves an immense amount of data and there have 
been constant advancements in high-throughput characterization for vast data acqui
sition. High-throughput characterization has enabled biologists to create models of 
organisms and predict different phenotypes and behaviors under different condi
tions. Several other systems biology techniques include in silico modeling, omics 
(genome, transcriptome, proteome, metabolome, and fluxome), metagenomics, gene 
synthesis, and synthetic regulatory circuits, an enzyme and pathway engineering.

4.1.1  Core Experimental Methods

Since the first demonstration of system-wide measurements of DNA and mRNA 
transcripts, there have been an increasing number of technologies and techniques 
that can be considered part of systems biology. With the development of techno
logical advances, the corresponding methodologies have used the suffix “omic” to 
specifically denote a system-wide measurement (see Box 4.1). This has led to the 
general term of “omic” data which would refer to a collection of system-level mea
surements. For our initial discussion, the focus will be on the core systems biology 
technologies as related to the central dogma of molecular biology (Fig. 4.1).
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Box 4.1: Systems Biology Terminology

For the case of genetic content the applicable terms are genomic, genome, 
and genomics.

Adjective: genomic (i.e., genomic data)
Noun: genome (i.e., the genome of an organism)
Field: genomics (i.e., the study of genomes or genomic information)

4.1.1.1  Genomics

Given the centrality of DNA in biological processes, it was natural and essential to 
have systems-level measurements of DNA content for an organism as the founda
tion of systems biology. Fundamentally, this alludes to the grand challenge in biol
ogy of relating genotype to phenotype. If the genotype cannot be defined, then it is 
impossible to make a connection to function.

The standard for gene sequencing was developed in the early 1970s and it is 
referred to as the Sanger method. In this method, four different modified ddNTP’s 
are fluorescently labeled and once attached to the DNA, they do not allow rep
lication to continue and therefore are referred to as chain-terminating nucleo
tides. The lengths of the strands are determined and the ddNTP’s indicate which 
of the four bases is present at each specific location. The main setback of this 
sequencing method is that each different ddNTP has to be run in a separate reac
tion and then the results have to be combined to get the entire sequence. Newer 
methods of sequencing are cutting back on the time required to obtain the sequence 
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Fig. 4.1   Depiction of the central dogma of molecular biology and the relationship of different 
experimental systems biology measurements (shown in ovals) to each component of the central 
dogma

4.1  Experimental Systems Biology
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and the reliability of the results is increasing. Pyrosequencing is a more continu
ous process of sequencing where one base is added, and depending on how many 
bases are added to the sequence, a certain amount of light is emitted. Excess 
base is degraded and then a different base is added to continue the process. Illu
mina sequencing puts all of the bases in with the DNA and as the bases add to 
the strand they emit a color specific to the base and the colors are read in succes
sion to give a read out of the sequence. While this method allows for more con
tinuous sequencing, perhaps the most efficient method is nanopore sequencing. 
Electric current is flowing through the pore and anything that passes through the 
pore interrupts the current in a unique way because of its chemical structure. An 
entire strand of DNA can be passed through the nanopore and each nucleotide will  
disrupt the electric current in a unique way therefore giving a readout of the sequence.

4.1.1.2  Transcriptomics

To determine which genes are being expressed in an organism at any given time, 
a measure of the mRNA transcripts present or the “transcriptome” can be taken 
and it is an indicator of the variety and quantity of genes currently being tran
scribed. This information can be used to incorporate into a computational model 
that could then more accurately predict the behaviors of the organism under differ
ent conditions.

Differential display is a technique in which you compare two sets of mRNA 
from two samples in order to see altered gene expression from experimental vari
ations. In order to compare the two samples they amplify both sets of mRNA 
with short arbitrary primers along with anchored oligo-dT primers (to bind only 
mRNA’s with a poly-A tail) and compare the two results. So how do we obtain 
the transcriptome? RNA sequencing (RNAseq) is usually done by collecting all of 
the coding RNA strands and reverse transcribing them into cDNA and then using 
DNA sequencing as described above. Instead of this, the cDNA can be run on 
microarrays but there are issues with an overabundance of a few genes crowding 
the microarray chip and allowing some mRNA’s to go unnoticed. So far the only 
techniques we have discussed are those that convert mRNA into cDNA, but 
this method has its limitations. This process involves ligating the mRNA which 
introduces biases and artifacts that could be avoided if the mRNA could be read 
directly, so direct RNAseq is now becoming available.

4.1.1.3  Proteomics

While the transcriptome can give you a good idea of what proteins can be present in 
an organism at any given time (presence of an mRNA transcript is a necessary but 
not sufficient condition for a functional protein), the number of mRNA transcripts 
does not directly correlate to the number of proteins. Not all mRNA transcripts are 
translated and transcriptomics does not account for post-translational modifications. 
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So instead of measuring the mRNA to estimate the number of proteins, you can 
actually measure them directly via proteomics. Quantifying the proteins gives con
fidence in knowing which processes are occurring in the organism under the current 
conditions, and how many of each protein are in existence at that time.

4.1.1.4  Metabolomics

While genomics, transcriptomics, and proteomics provide a wide range of infor
mation describing what is occurring inside of an organism, perhaps the most infor
mative study is that of the new field of metabolomics. Metabolomics is the study 
of all of the metabolites within an organism, and metabolites are simply the mole
cules involved in metabolism. Knowing the levels that are present of each metab
olite gives a detailed description of which cellular processes are occurring and 
at what rates. An elevated level of a certain metabolite in humans can indicate a 
certain disease or dysfunction and the same idea can be applied to microbes. To 
determine which metabolites are present and in what quantities, nuclear magnetic 
resonance (NMR) and many types of MS are most commonly used.

4.1.1.5  Fluxomics

Finally, to tie up the gap between metabolomics and proteomics, we have fluxo
mics. All of the reactions that occur in an organism are collected and given an 
input and output of metabolites per unit time. This is perhaps one of the most 
important datasets in terms of phenotypic characterization and it can be utilized in 
many different ways. As the model grows to contain most of the reactions possible 
in the organism, finite quantities can be used to predict a specific outcome. When a 
synthetic biologist is trying to produce a specific molecule such as a biofuel, they 
can engineer around the specific fluxes that lead to that molecule and focus on the 
most efficient pathways. This approach can even be taken to understand the fluxes 
that directly contribute to a cell’s growth rate.

4.1.2  Progress for Biofuels

Experimental systems biology methods have been utilized for a variety of bio
fuel-related studies. The starting point for most systems biology approaches to 
biofuel production begins with genome sequencing. An organism’s genomic con
tent is the starting point for understanding the biochemical functionality of that 
organism. Progress on genome sequencing can be found in a number of different 
online databases including the GOLD database (www.genomesonline.org/). Hav
ing a genome sequence as a starting point is an almost necessary component for 
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use of other systems biology experimental and computational tools. As such, there 
has been a focus on identifying and sequencing organisms of relevance to biofuel 
production. One example of this is the effort to sequence different members of  
Clostridia (Hemme et al. 2010).

After establishing a baseline of organism information by sequencing its 
genome, a number of additional systems biology methods can be implemented. 
With a genome sequence in hand, it is relatively fast to have a gene expression 
microarray constructed (or to conduct RNAseq) to allow for gene expression stud
ies to be conducted. One of the applications of gene expression studies for bio
fuel applications is to study organism tolerance to a produced biofuel. Since most 
biofuels are toxic to cells, biofuel production schemes often have a physiological 
ceiling of biofuel concentration that can be attained before all of the production 
cells die. Use of gene expression arrays can help to identify and study the cellu
lar toxicity of biofuels (Minty et al. 2011; Brynildsen and Liao 2009). Using gene 
expression analysis to study toxicity/tolerance can then be used to increase the sol
vent tolerance of a given strain. Examples of this include increasing the ethanol 
tolerance of Escherichia coli (Gonzalez et al. 2003), isobutanol tolerance in E. coli 
(Atsumi et al. 2010), and increasing the ethanol tolerance of Saccharomyces cere­
visiae (Alper et al. 2006). Once understood, the cellular stress of biofuels can be 
reduced by amplification of tolerance-related proteins or addition of protectant in 
the culture media, which often increases the final titer of the target product.

In addition to genomics and transcriptomics, proteomic studies have often 
been used for biofuel research. One particular area of interest has been the study 
of different cellulase enzymes for the hydrolysis of lignocellulosic biomass into 
fermentable sugars. Cellulolytic organisms typically contain a variety of cellulase 
enzymes that utilize different mechanisms for cleaving polymeric sugars and the 
concentrations and mixtures of different cellulases has been of particular interest 
to study the most efficient methods for hydrolyzing cellulose and hemicellulose. 
Many of these studies have been conducted on specific organisms and aim to iden
tify the cellulolytic proteins that are produced by individual organisms (Phillips et 
al. 2011; Adav et al. 2011). A unique attribute of some biofuel-relevant organisms 
is that cellulases that are produced to degrade lignocellulosic material are com
plexed into membrane-bound structures called cellulosomes. Proteomic analysis 
can help to identify the specific enzymatic composition of a cellulosome, as has 
been demonstrated for the cellulolytic bacterium Clostridium thermocellum (Gold 
and Martin 2007).

Proteomics, metabolomics, and fluxomics were combined in one study to 
gather data on Chlamydomonas reinhardtii to evaluate the growth rate and lipid 
production of these algae to evaluate if it was the best host for algal biodiesel 
production.

The first cyanobacteria was sequenced in 1996 and the strain was Synechocystis 
sp. PCC 6803 and as of 2011, 41 strains of cyanobacteria have been sequenced. 
Since they have such a small genome they are a perfect candidate for sequencing 
(Kaneko et al. 1996). Enough genomic and metabolomics data were gathered on this 
strain to also perform a flux balance analysis (Hong and Lee 2007). Obtaining a full 
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metabolic analysis allows researchers to see where the carbon sources are being con
verted and can therefore direct them toward biofuel production. The transcriptome 
of Cyanothece 51142 was studied with microarrays to see the different functions of 
cyanobacteria in the light and dark cycles so that we can try to take advantage of one 
of the pathways for optimal production of biofuels (Stöckel et al. 2008).

Since algae are only recently being explored as an option for biofuels and other 
molecular-production purposes, it is also new to “omics”. Chlamydomonas rein­
hardtii is one of the most studied strains of algae and its complete genome was 
not published until 2007 (Merchant et al. 2007). A transcriptome of C. reinhardtii 
is being built using a microarray that was developed specifically for that species. 
This microarray is being widely used and has been key to studying C. reinhardtii’s 
light-regulated genes (Im et al. 2006) and its reactions to specific forms of oxida-
tive stress (Ledford et al. 2007).

4.2 � Computational Systems Biology

Biological systems (even the smallest ones) involve a large number of components. 
With the generation of large experimental systems biology datasets become a con
current problem of developing methods to handle, process, compile, and analyze 
biological information. Due to the sheer size of some of the data types, efficient 
algorithmic approaches are necessary to even process raw data. The continuing 
challenges have been to develop standards in data formats that can be analyzed in 
an integrated manner and to develop analytical methods that provide useful insight 
into function.

The role and importance of computational methods to systems biology cannot 
be understated. As the technological capacity to experimentally measure more 
and more cellular components simultaneously has increased so too has the chal
lenge in analyzing and interpreting results. For anyone who has received their 
first results/dataset from a transcriptional profiling experiment or a high-through
put genome re-sequencing study, the initial excitement of receiving the raw 
data quickly leads to a question of what to do with the data to figure out what 
it means. In studies that are conducted on a smaller scale, it is typical to have 
a clear hypothesis to be tested and proper controls implemented to directly test 
the idea in question. For system-level studies, this often is difficult as the con
trol is typically an unperturbed, wild-type strain that can be compared to a strain 
that has been subjected to some perturbation. In these scenarios, many biolog
ical components can change simultaneously and it is challenging to determine 
if variations are due to a response to the perturbation or are a result of noise 
(intrinsic or extrinsic). The continued development of computational systems 
biology methods are meant to facilitate the analysis and interpretation challenge. 
Furthermore, as computational methods have improved, they have transitioned 
to being not only tools for post-processing data, but also tools for prospective 
design and prediction.

4.1  Experimental Systems Biology
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4.2.1  Core Computational Methods

To address the challenges faced with studying and analyzing intact, whole biological 
systems new analysis and interpretation methods have been developed. Two of the 
main areas these efforts have been focused on are: developing data formats and dat
abases to standardize information and computational models to analyze and interpret 
data using simulations. Due to the large size of systems biology datasets, one of the 
main focal points and advantages of computational methods is to facilitate interpre
tation when it is difficult to intuitively understand the relationships between changes 
that can occur in hundreds or thousands of cellular components concurrently.

By establishing a suite of computational systems biology tools, researchers are 
able to approach scientific questions and engineering applications in a comprehen
sive, predictive manner. By standardizing and compiling information and data, it is 
easier to build an integrated, broad understanding of biological function. Coupling 
this with computational modeling allows for metabolic engineering applications 
such as biofuel production to be approached in a rational manner. Computational 
systems biology tools enable a shift from discovery-based science to rational 
design of engineering applications.

4.2.1.1  Data Management

Along with the excitement that occurred when the first systems-level experimental 
measurements were taken, there was a realization that data management and anal
ysis would be a concern. Generally speaking, this was an information management 
issue and it largely gave rise to bioinformatics, but the problem can be stated much 
more simply. When the raw data output from a transcriptional profiling study 
results in relative numeric values for thousands of genes, what do you do with this 
data? For a simple case of studying gene expression changes for Escherichia coli 
between two conditions (run in triplicate), you would have a data output that has 
six columns of numbers and more than 4,400 rows. The challenge is to not only 
analyze and interpret this dataset, but it can be compared with other similar studies 
conducted in E. coli or different organisms.

While aspects of data analysis are unquestionably important to this field, the 
breadth of algorithms and approaches taken is large enough to warrant dedicated 
books/courses on their own. Here, we will highlight some of the logistical aspects 
of data management.

The primary resources for compiled biological information typically reside in 
Web-based databases. Just as the Internet has collectively become the main repos
itory and access point for information in almost all fields, this has held true in 
biological research as well. The most comprehensive repositories of biological 
information now reside on the Internet as databases or data repositories.

There are a number of different databases and while not all of them will be 
listed here, some of the more commonly used databases will be highlighted. 
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One of the most widely accessed databases of biological information is the 
Kyoto Encyclopedia of Genes and Genomes (KEGG). This database is used as 
one of the central resources for gene and biochemical pathway content for spe
cific organisms. Another commonly used resource for gene and pathway informa
tion is BioCYC (and all of its derivative organism-specific pages). These sources 
are centralized databases that provide organism-specific genetic and biochemi
cal information and thus provide an initial link between genetics and metabolism 
(biochemical function).

Other databases specialize in providing more detailed information on different 
biological components (genes, proteins, etc.). For example, the Universal Protein 
Resource, called UniProt (www.uniprot.org), is a centralized database that pro
vides details on proteins including sequence and functional information. Expert 
Protein Analysis System (ExPASy, www.expasy.org) was originally developed 
to as a Web-based tool to help to analyze protein sequences and structures. It has 
since expanded to include broader suites of bioinformatic analyses. Databases 
also exist for other aspects of biological systems such as the BRENDA database 
(www.brenda-enzymes.info) that is a central resource for enzyme information. 
The LIGAND database (www.genome.jp/kegg/ligand.html) contains information 
on chemicals and reactions.

While the previously mentioned databases primarily focus on compila
tion and dissemination of different facets of biological knowledge, other dat
abases serve as central repositories for data. One such database is the GEO 
database that was used as a central repository for gene expression data. The 
National Institutes of Health (NIH) hosts one of the main centralized reposi
tories for DNA sequence information in the National Center for Biotechnol
ogy Information (NCBI, www.ncbi.nlm.nih.gov/guide/). Databases such as the 
BIGG database (http://bigg.ucsd.edu) and ModelSEED (http://blog.theseed.org/
model_seed/) serve as repositories for different biological models that have been 
developed.

Regardless of the information or data that is deposited in a database, one of the 
persistent problems has been establishing standardized formats for disseminating 
information. This requirement is necessary for allowing work to be conducted and 
shared between different researchers. For experimental data, there have been recent 
discussions and proposals for establishing minimum reporting features for all data
sets that include standard data formats for specific data types and provenance infor
mation on the experimental parameters/setup associated with the dataset (Arkin 
2008). The most developed of these data reporting formats is the Minimum Informa
tion About a Microarray Experiment (MIAME) format that was adopted for report
ing gene expression datasets (www.mged.org/Workgroups/MIAME/miame.html).

An additional computational tool that has been useful to researchers is the 
development of visualization tools. Specifically, when considering system-wide 
measurements or analyses, it is often difficult to obtain a broad view changes or 
function within that system (for even small biological systems hundreds to thou-
sands of components are simultaneously involved). When dealing with large data
sets, the typical analysis involves the use of some statistical analysis with some 
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arbitrary threshold/cut-off used to narrow down the number of variables to be 
interpreted. Given this analysis paradigm two problems immediately arise: (1) it 
is still often difficult to understand the collective functional effect of the subset 
of variables on the selected list and (2) the interpretation of what is functionally 
changing can vary greatly depending upon where the threshold/cut-off is set.

It is not possible to eliminate the inherent challenges of interpreting large data
sets, but the practice of visualizing experimental data in an organized fashion often 
helps to provide a broader view of functional changes and often does not rely on 
establishing thresholds/cut-offs. Clustering algorithms have been one of the stan
dard methods for organizing and visualizing data.

An additional useful method of visualizing data has been to integrate exper
imental data with biochemical pathway maps. A variety of tools have been 
developed to facilitate showing data on biochemical maps including: Cytoscape 
(www.cytoscape.org), CellDesigner (www.celldesigner.org), KEGG (using the 
KGML format, www.genome.jp/kegg). A main benefit of this method of visual
izing data is that information is functionally organized by biochemical pathways. 
Thus, it is relatively fast and easy to identify areas of metabolism that are undergo
ing significant coordinated changes.

4.2.1.2  Computational Modeling

System-wide quantitative measurements of cellular components have enabled bio
logical systems to be studied in a comprehensive manner. As mentioned above, 
one of the challenges has been determining methods for handling, disseminat
ing, and interpreting the results of high-throughput “omic” datasets. In the previ
ous section, some of the issues with handling and disseminating information and 
data were briefly discussed. In this section, the focus will be on interpreting results 
from a systems biology perspective.

Computational modeling and mathematical modeling have traditionally been 
associated and implemented for disciplines where quantitative measurements 
can be made for critical parameters of interest. As biological research becomes 
increasingly quantitative the emphasis on computational or mathematical model
ing has increased. This is particularly true in systems biology where large-scale 
quantitative measurements are made.

The concept of modeling in a biological context can be generalized as an 
approach to formulate and test hypotheses. Conceptual models descriptively depict 
a concept or process that is being studied such that predictions on behavior can be 
made and tested to assess the validity of the model (and by association the con
cept/process). Thus, models represent a structured framework for developing and 
testing biological hypotheses. As increasing amounts of detail are known, the com
plexity and detail of biological models has also grown.

One of the general tradeoffs that currently occurs in computational biological 
models is the balance between the scale of the model and the level of detail that 
can be achieved (Fig. 4.2). Some of the broad types of computational models that 
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have been implemented for biological systems include topological models, con
straint-based models, deterministic kinetic models, and stochastic models. When 
comparing these modeling approaches, topological models can be employed for 
any size system but contains the least amount of detailed information. Stochastic 
models would have the most detailed information (potentially accounting for bio
logical noise), but currently cannot be implemented for large systems. When con
sidering modeling approaches it is therefore important to consider the goal of the 
modeling and to choose an approach that best captures the desired attributes of the 
system.

One of the early comprehensive computational modeling projects was the 
E-Cell project that began in 1996 (www.e-cell.org/ecell). The first demonstration 
of this project was the construction of a self-sustaining computational virtual cell 
of Mycoplasma genitalium that included 127 genes. There have been subsequent 
releases of additional virtual cell models and concurrent development of software.

Another large-scale computational metabolic modeling approach, called con
straint-based modeling, has been developed and implemented for a number of 
organisms with sequenced genomes. Biological systems are complex, intercon
nected, and specific functional properties change over time. These attributes of 
biology often make it difficult to develop large-scale computational models of 
biological systems. Constraint-based modeling is an approach that fundamentally 
develops models from a different perspective from deterministic kinetic mod
els. While deterministic models identify, specify, and incorporate each individual 
parameter within the system to ideally run simulations resulting in discrete solu
tions, constraint-based models are flexible and underdetermined.

The fact that constraint-based biological models are flexible and underdeter
mined is a direct consequence of the underlying philosophy of constraint-based 
models. Constraint-based models are built by imposing high-confidence con
straints on a system. The starting point for a constraint-based model is the assump
tion that the biological system being studied can achieve any imaginable function 
(the allowable solution space of function is unconstrained or infinite). Only by 
adding high-confidence constraints is the organism’s function defined. The more 
constraints are added to the system, the more detailed (and hopefully accurate) 
the model becomes. The natural question is “What constitutes a high-confidence 
constraint?”

Modeling approach Necessary Model Input

Topological Network structure

Constraint-based Steady-state

Deterministic kinetic Parameter dependent

Stochastic Parameter dependent

S
ca

le D
etail

Fig. 4.2   Overview of modeling approaches commonly employed for biological systems depict
ing the tradeoff between the scale and detail of models developed by each approach
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In the best scenarios, an initial set of high-confidence constraints can be imple
mented that define a cone (high-dimensional cone) of allowable biological function. 
If additional constraints are added as inputs to the model, then it is possible to obtain 
additional computational predictions on biological function. The most common 
analysis corresponding to this second level of constraints is to visualize the cone of 
allowable biological function in two dimensions. The two-dimensional projection of 
allowable function is called a phenotype phase plane and different regions of the phe
notype phase plane depict different organism functional states. If an additional level 
of detailed constraints is used as input to the constraint-based model (i.e., experimen
tally measured oxygen uptake rates and substrate uptake rates) then it is possible to 
generate specific, numerical predictions of organism function (Fig. 4.3).

As currently implemented, the biological information that is most readily avail
able on a large scale and that we have a high degree of confidence in is genomic 
and biochemical information. Genomic and biochemical information serve as the 
foundation for all of the current constraint-based biological models and are the 
first high-confidence constraints that are used. Typically, the combination of geno
mic and biochemical information for an organism is sufficient to establish the 
high-dimensional cone that defines the allowable, constrained solution space for 
an organism. There exist a number of review and methodology papers written that 
describe the process by which genomic and biochemical information are used to 
formulate a constraint-based model, so only a brief overview will be provided here.

If an organism has had its genome sequenced, the genome is annotated to iden
tify or predict the genes that are present in the organism. The list of predicted, 
annotated genes is then correlated to the function associated with that gene. For 
genes that encode proteins with enzymatic activity, the associated function is the 
biochemical reaction that the protein facilitates. The stoichiometry of the bio
chemical reaction is then preserved and translated to a mathematical form where 
the convention is to have the stoichiometric coefficient of reactants noted with a 
negative sign and stoichiometric coefficients of products are given a positive sign. 
Every gene and every corresponding reaction for an organism is mathematically 
compiled using this convention. This association of gene to its protein product and 
corresponding biochemical reaction is called a gene-protein-reaction association 
(GPR). All biochemical reactions in an organism are represented in a mathemati
cal form and the individual reactions are then compiled into a single mathematical 
matrix where each column of the matrix is an individual biochemical reaction and 
each row of the matrix is an individual metabolite. This tabulated matrix is called a 
stoichiometric matrix (it is compiled accounting of all biochemical stoichiometry) 
and is the core component of a constraint-based biological model. A schematic 
overview of this process is shown in Fig. 4.4.

The benefit of converting all of the biochemical reaction information into a 
mathematical representation in the form of the stoichiometric matrix is that matrix 
algebra and optimization algorithms can then be applied to study metabolic func
tion of the system. The most commonly applied analysis of metabolism using a 
stoichiometric matrix is flux balance analysis (FBA) where a biological function 
(an objective function) is specified and linear optimization is run to predict the 
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maximum (or minimum) value for the specified biological function. An example 
of this would be to run a simulation to study the growth characteristics of an organ
ism. In this case, cellular growth is the objective function and it is computationally 
implemented by formulating a reaction that chemically defines all of the require
ments for cellular growth. Linear optimization is run and the output is a quantitative 
prediction of the expected growth rate of the organism that includes details of the 
specific biochemical reactions that are used to achieve the predicted growth rate.

Constraint-based metabolic models provide a readily scalable method for trans
lating well-known, high-confidence genomic and biochemical data into a compu
tational model that can predict cellular function. Related to the challenges of data 
interpretation and analysis mentioned in the previous section, constraint-based 
models provide a comparison with any available experimental data for a system. 
These attributes of a constraint-based model are generally applicable and bene
ficial for studying biological systems, but there are distinct advantages for using 
constraint-based models for metabolic engineering applications such as biofuel 
production.

The framework and content of a constraint-based model provide a computa
tional method for analyzing and predicting strain designs for metabolic engineer
ing applications. In the development of the stoichiometric matrix, all of the model 
content has specified GPR associations. This allows gene deletion or gene addi
tion studies to be rapidly conducted. The functional effects of a gene deletion can 
be simulated quickly by removing the column in the stoichiometric matrix for the 
biochemical pathway(s) that are associated with the targeted gene. The effects of 
a gene addition can be simulated by adding a new column to the stoichiometric 
matrix to represent the biochemical function of the added gene. Gene deletion or 
addition simulations can be run manually or in an automated batch fashion and 

Fig. 4.3   Graphical illustration of the progressive application of constraints in constraint-based 
modeling to achieve progressively more detailed simulation results
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any combination of deletions/additions can be quickly studied. Furthermore, there 
are a growing number of algorithms that can search through all possible genetic 
combinations to propose the best strain designs for the production of a given 
metabolite (Ranganathan et al. 2010).

4.2.2  Progress for Biofuels

Computational systems biology methods provide foundational tools for knowledge 
and analysis of biological systems. For biofuels research, this is critical to advanc
ing the development of biofuels research as many of the organisms and processes 
associated with biofuel production are relatively novel. Progress in both aspects of 
data management/dissemination and computational modeling have been made as 
related to biofuels.

In addition to the different general biological databases that have been devel
oped for the collection and distribution of data there is a biofuel-centric database 
that is being developed by the U.S. Department of Energy. This database is called 
the Department of Energy Systems Biology Knowledgebase (Kbase, http://geno
micsgtl.energy.gov/compbio/genomicscience.energy.gov/compbio/). The DoE Kbase 
will support the various aspects of computational systems biology discussed here 
including being a central repository for data generated that is related to biofuel pro
duction by bioprocessing. In addition, the DoE Kbase supports the development of 
new computational models and algorithms that will facilitate and support biofuel 

Fig. 4.4   Schematic depiction of the process used to develop a stoichiometric matrix for a con
straint-based metabolic model
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research. The development of the DoE Kbase is an ongoing activity that is fostered 
by specific government funding mechanisms to encourage research progress in this 
area.

In terms of computational modeling, a number of models have been built to 
support biofuels research. In particular, a number of constraint-based metabolic 
models have been constructed and analyzed for organisms with high biofuel pro
duction potential. Some of the best characterized constraint-based models related 
to biofuels are for organisms that have been used for the production of ethanol 
such as the ethanol-fermenting yeast Saccharomyces cerevisiae and high-etha
nol producing bacterium Zymomonas mobilis. A potentially promising organism 
that has been modeled to produce ethanol or hydrogen is the anaerobic bacterium  
Clostridium thermocellum. Clostridium acetobutylicum that natively produces 
butanol during its solventogenic growth phase, the bacterium Clostridium bei­
jerinckii which can utilize gaseous forms of carbon as an input and photosynthetic 
organisms such as cyanobacteria (Synechococcus elongatus and Synechocystis) 
and the microalgae Chlamydomonas reinhardtii have also been modeled. By grow
ing the number of biofuel-related organisms that can be computationally studied, it 
may become increasingly feasible to conduct computational studies to predict the 
best strategies to implement to achieve high yields of organism-produced biofuel.
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Abstract  Synthetic biology started with an emphasis in experimental molecu
lar biology through the demonstration that characterized DNA sequences which 
can be taken out of their native context and re-implemented in novel ways. The 
scope of synthetic biology research has rapidly increased with the improvement 
and development of tools for direct DNA synthesis and assembly of DNA mole
cules. These tools now make it possible to engineer biological systems precisely 
and accurately to reflect specific DNA-level designs. Application of synthetic biol
ogy techniques to biofuels research expands the scope of biological engineering 
that can be achieved where it is now possible to conceive, design, and implement 
large-scale changes to a cellular system.

While systems biology has provided a strong biological knowledge base for infor
mation and analysis, synthetic biology mainly focuses on tools and methods to 
manipulate or modify a biological system. A general goal of synthetic biology, 
which builds on advances in molecular and systems biology, is to expand the uses 
and applications of biology in the same way that chemical synthesis expanded the 
uses and applications of chemistry. Currently, synthetic biology has a main focus 
on nucleic acid methodologies (DNA, RNA) with one aim to provide standardized 
methods for genetic engineering.

Just as systems biology was enabled by technological developments, synthetic 
biology was also enabled by technology advances. Specifically, improved methods 
for DNA synthesis and molecular tools for assembling DNA are foundational to syn
thetic biology. Generally speaking, the improved ability to synthesize and construct 
DNA has led to the ability to more carefully interrogate genotype-phenotype relation
ships and also enabled the generation of novel genetically encoded biological func
tion. Synthetic biology includes the design and construction of new biological entities, 
such as enzyme and even whole cells in order to create novel combinations of pro
cesses. The complexity of biological systems provides multiple types of machinery 
and a variety of options to include in those parts when engineering a system.

In its current form, synthetic biology operates primarily with nucleic acids. 
This means that design and implementation are done at a genetic base-by-base 
level. The most common type of sequence that is used is a gene where an average 
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length is about 1,000 DNA bases. To facilitate communication at this level, syn
thetic biology has adopted several terms to describe different levels of organiza
tion (see Box 5.1). The term DNA “part” is used to refer to a standalone DNA 
sequence that has a discrete function. Parts can vary in length, but are typically of 
the order of tens to thousands of DNA bases in length. Representative parts could 
be a gene, a promoter, or a terminator.

If several parts are used in concert to achieve a more complicated function that 
collection of parts is termed a “device.” The early demonstrations of the genetic 
toggle switch (Gardner et al. 2000) or repressilator (Elowitz and Leibler 2000) can 
be considered devices as well as the bacterial photography device (Levskaya et 
al. 2005). At a similar level of organization, the term genetic circuit is often used. 
Genetic circuits also typically incorporate a collection of DNA parts, but the dif
ference in terminology is born from some of the early parallels to electrical engi
neering concepts that helped to lay the foundation for design. Some of the classic 
genetic circuits that have been constructed to date are biological equivalents to 
logic gates used in electrical circuitry (Wang et al. 2011; Zhan et al. 2010).

The host organism for implementing synthetic biology constructs is termed the 
“chassis.” Currently, the most commonly used chasses in synthetic biology are 
Escherichia coli and Saccharomyces cerevisiae due to the large amount of informa
tion available for these organisms and the relative ease of working and genetically 
manipulating these organisms. In a generic sense, a chassis can be any system that 
contains all of the components necessary to functionally express a genetic construct, 
so it may be possible to engineer a biological chassis that is specialized for a given 
application. In the future, there may be a cellulolytic chassis that can be used as 
the starting point for biofuel applications that is specifically designed to efficiently 
breakdown lignocellulosic biomass and be streamlined for target fuel production.

Box 5.1: Synthetic Biology Terminology

Part: a single, relatively short DNA sequence with discrete, defined function
Device: a collection of multiple DNA sequences that integrates individual 
functions to achieve a novel coordinated function
Genetic circuit: a collection of multiple DNA sequences designed to operate 
as a functional circuit (design parallels to electrical engineering)
Chassis: host organism for implementing genetic constructs

5.1 � Experimental Synthetic Biology

As with systems biology, the field of synthetic biology is not clearly defined (some 
would consider synthetic biology a natural progression of molecular biology), 
but there are some commonalities demonstrated by pioneering synthetic biology 
research. The earliest synthetic biology experiments (repressilator and toggle switch) 
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utilized different genetic components found in various systems to conceptually and 
experimentally implement novel, controlled functions into a biological system. 
These early projects demonstrated some of the hallmarks of synthetic biology: novel 
design and utilization of genetic tools for experimental implementation. In parallel 
to a growing number of developed genetic circuits to demonstrate novel function, 
much of the work in experimental synthetic biology has been focused on developing 
methods for genetic engineering.

5.1.1  Core Experimental Methods

As the methods for DNA synthesis became more standardized, synthetic biologists 
took the opportunity to build a database of parts that could be combined in endless 
variations to build organisms with new functions. These DNA building blocks are 
called BioBrick parts and they are categorized into their different functions. There 
are BioBrick primers, ribosome binding sites, protein domains, protein coding 
sequences, terminators, and plasmid backbones. The database includes other vari
ous parts and combinations of existing parts as well. The ease of use with BioBrick 
parts comes from the systematic use of restriction enzymes specific to BioBrick 
parts, which makes assembling the DNA much like putting a puzzle together.

Different methods have been developed for assembling DNA fragments and 
BioBrick users can choose between 3A, Scarless, and Gibson assemblies. The 
name 3A refers to the three antibiotics used for selection with antibiotic resistance 
and it has the highest success rate with BioBrick parts. While there is no PCR 
or gel purification needed for this assembly, there is a scar left behind from the 
restriction and ligation process.

Additional methodologies have been developed to implement scarless assem
bly of DNA fragments. As implied by the name, these methods do not leave a 
scar from linkers. The absence of scars is very useful in assembling proteins and 
also allows the user to assemble parts that may not be compatible otherwise. 
Polymerase cycling assembly (PCA) runs similar to a PCR and uses oligonucle
otides that all have flanking regions that combine to leave single-stranded gaps 
that a DNA polymerase then fills in. The DNA strands can be up to 50 base pairs 
and should overlap about 20 base pairs. Similar to PCA is another method called 
Isothermal Assembly (Gibson Assembly) where there is an overlap of about 
20–40 base pairs and multiple strands of DNA can be joined in one reaction. 
Unlike PCA, Gibson is an isothermal assembly that occurs at 50 °C and runs for 
up to an hour making it one of the quickest assembly methods. In this method 
however the oligonucleotides contain the complete sequence; therefore, there 
is no need to fill in missing sections of the DNA although DNA polymerase is 
included in the reaction in case there are any gaps. This method becomes specif
ically useful when combining blunt-ended fragments. A T5 exonuclease is used 
to eliminate 20–40 base pairs from each end, leaving a single-stranded sticky end 
for ligation.

5.1  Experimental Synthetic Biology
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In order to make a recombinant gene more efficient it is important to make sure 
that the codons being used are easily used by the host. Codons are the three base 
pair sequences that code for a single amino acid and there are multiple codons 
that code for the same amino acid. Depending on what organism the recombinant 
genes are coming from or going to, the preferred codons will be slightly different. 
Codon optimization is the changing of a base pair in a codon in order to gain opti
mal production of the amino acid in the host organism. Optimizing the codons is 
most important when the recombinant DNA comes from a source that is genetically 
distant from the host organism such as plant DNA into bacteria. When optimized, it 
helps to improve improved translation rates, protein yields, and enzymatic activities.

Metabolic evolution provides a route for optimization and an option when 
determining the strongest strains. Allowing the organisms to compete for a food 
source allows nature to take over and the best strain can thrive and adapt and then 
evolve to be most suited for the given environment. Small mutations in the cell 
may happen naturally over time or they can be influenced by duplicating a gene 
using an enzyme with a high error rate. Allowing the cell to adapt makes the strain 
more stable and long lasting. Once the strain has evolved into a more robust state, 
the new genes can be used for the redesign of other systems.

5.1.2  Progress for Biofuels

While synthetic biology is a relatively young field, the global interest in biofuel 
research has led to the application of synthetic biology to several successful biofuel 
studies. One of the general approaches that are used is to use optimized heterologous 
expression of targeted genes to introduce novel biofuel production capabilities into 
an amenable host strain. Examples of this include the expression of different alcohol 
dehydrogenase genes from Saccharomyces cerevisiae and Lactococcus lactis in Esche­
richia coli to generate a strain of E. coli that produces isobutanol (Atsumi et al. 2010). 
Another demonstration was the engineering of the cyanobacterium Synecoccocus 
elongatus to produce isobutyraldehyde (Atsumi et al. 2009).

These demonstrations exhibit the ability to effectively use synthetic biology 
techniques to identify and express genes to modify specific pathways within an 
organism. This approach largely leaves the majority of an organism’s biochemical 
network unaltered and intact. With the generation of an entire synthetic genome 
(Gibson et al. 2010) it may become possible to change the scale of synthetic biol
ogy engineering to include whole-cell design, not just pathway-specific design.

5.2 � Computational Synthetic Biology

To complement and facilitate experimental synthetic biology research, compu
tational methods are being developed. Due to the difference in system size and 
goals, the methods developed for synthetic biology are different from systems 
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biology computational methods. Generally, the systems that are considered for 
synthetic biology are smaller in scale, but more detailed molecular-level dynamics 
are important.

5.2.1  Core Computational Methods

5.2.1.1  Genomic Information

One of the shifts associated with synthetic biology is the ability to explicitly con
trol the base-by-base sequence of a genetic construct. With this level of control, it 
is possible to directly interrogate the effect of specific genetic changes to function. 
This is at the core of establishing genotype-phenotype relationships.

At one level, there is the need to compile and interpret sequence information. 
At a course-grain level, this is achieved during genome sequencing by genome 
annotation. There are several methods and pipelines that have been used to achieve 
genome annotation using computational means (though some input from experts is 
always beneficial). These include the Integrated Microbial Genomes (IMG) pipe
line (http://img.jgi.doe.gov), the SEED system (www.theseed.org/wiki/Home_of_
the_SEED), and a pipeline that is being developed through the National Institutes 
of Health (www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html).

At a more detailed level, there are also programs such as GenoCAD (Wilson  
et al. 2011) that begins by developing a “grammar” for genetic parts. This 
approach considers genetic sequences as a language with specific rules that dictate 
the structure and function of different genetic parts. This grammar can be applied 
to not only studying DNA sequences for functional sequences, but can also be 
used as a basis for designing constructs to achieve new functional units.

5.2.1.2  Design Tools

A variety of tools are being established to help to design genetic circuits. Given 
the ability to experimentally construct any desired DNA sequence exactly, the 
design process has become truly open-ended. Any gene from any organism can be 
utilized in combination with any other gene. In a broader sense, even novel (previ
ously undocumented) gene function can be proposed and tested.

Some of the design approaches that focus on utilizing existing biological infor
mation attempt to mine database information to propose a collection of genes 
(from any organism) to create a pathway that would achieve the desired goal. The 
“From Metabolite to Metabolite” tool demonstrates one iteration of this approach 
(http://fmm.mbc.nctu.edu.tw/). Using this tool, a user only needs to input a start
ing metabolite and a desired end metabolite. The algorithm then uses information 
from online databases such as KEGG, UniProt, and GeneBank to identify met
abolic, protein, and sequence information, respectively. The output is a list of 
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proposed pathways that could achieve the desired biochemical conversion from 
one metabolite to another.

Other tools have been developed to approach the design problem from a more 
generic approach. In these approaches, different methods represent chemicals/
metabolites in a standardized form so that individual biochemical transformations 
can be considered in a stepwise fashion. Each proposed biochemical transforma
tion can then be correlated to enzymes that would have the closest reaction mecha
nism (often as dictated by the enzyme commission number—EC#). This approach 
is conceptually similar to the old word game of changing one word to another by 
changing only one letter at a time while maintaining a valid word at each interme
diate step (see Box 5.2). The different methods that have been implemented for 
this type of approach largely different on the method by which chemicals are rep
resented (atomic mapping onto graph coordinates or linearized representation of 
atoms).

Box 5.2: Illustration of Stepwise Transformation

C A T
		  Step 1: Conversion of “A” to “O”

C O T
		  Step 2: Conversion of “C” to “D”

D O T
		  Step 3: Conversion of “T” to “G”

D O G

5.2.1.3  Dynamic Simulation

With tools to study the basic information content of different DNA sequences and 
to propose different collections of genes to achieve a desired outcome, the final 
step that computational methods have addressed is the ability to simulate the func
tion of the designed genetic circuit dynamically. A variety of different methods 
can be implemented to dynamically simulate small gene circuits including differ
ential equation modeling, stochastic simulations, and agent-based modeling.

Differential equation models are the staple of dynamic simulations and can be 
implemented for small systems. Tools such as TinkerCell and SynBioSS can be 
used to develop computational models for small synthetic systems.

Stochastic simulations provide a simulation method that is different from dif
ferential equation models in which they are not deterministic and therefore 
account for some of the variability and noise that are inherent in biological sys
tems. While this has the advantage of being a better representation of biological 
processes, there is often a tradeoff in terms of the size of the system that can be 
simulated and the computational time required to run simulations.
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Agent-based models can be considered a subset of stochastic simulations, but 
with one major distinction. Agent-based models are formulated with discrete 
agents representing the physical entities within the system and thus it is possible to 
account for density and spatial effects. As with other stochastic simulations, there 
are limitations to the size of the system that can be studied largely due to computa
tional resource limitations.

5.2.2  Progress for Biofuels

Currently, the number of studies linking computational modeling, synthetic biol
ogy, and biofuels is relatively limited. The majority of the work in this area has 
thus far focused on computational tools that can help with the design process, spe
cifically in terms of helping identify non-native pathways and chemical targets that 
can be implemented using controlled heterologous gene expression.

As mentioned previously, one Web-based tool that can be used to help with 
pathway design independent of organism is the “From Metabolite to Metabolite” 
algorithm. Another recently developed algorithm used Escherichia coli, Saccha­
romyces cerevisiae, and Cornyebacterium glutamicum as host organisms and 
searched for non-native metabolites that could potentially be produced by heter
ologous expression (Chatsurachai et al. 2012). This algorithmic search was then 
coupled with flux balance analysis to determine feasibility.

Another common approach for studying the diversity of metabolites that can 
be produced by an organism via biochemical means is the use of graph theory or 
graph-based algorithms (Brunk et al. 2012). There exist different implementa
tions of this approach to studying biochemical conversions. A recent implementa
tion was used to specifically study the potential of different organisms to produce 
1-butanol as a biofuel target (Ranganathan and Maranas 2010).
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Abstract  Research approaches to developing biofuel processes involve the 
integration of different aspects of biology, chemistry, and engineering. Recent 
developments in knowledge and technology have enabled a shift away from 
discovery-based, trial-and-error design to a more directed prospective design 
process. Systems biology and synthetic biology have contributed to this shift in 
methodologies in complementary ways. Systems biology provides much of the 
knowledge background and whole-cell modeling methods to enable cellular-level 
design. Synthetic biology provides DNA-level detail to design strategies and the 
experimental methods to directly implement proposed designs. Application of 
methodologies from these two fields provides a strong framework for cellular and 
molecular biological engineering.

Given recent research advances in systems biology and synthetic biology, new 
approaches to engineering biology can be taken (Fig. 6.1). Traditional approaches 
to metabolic engineering have largely been iterative discovery-based approaches. 
This approach starts with the discovery or characterization of an uncharacterized 
organism. The basic physiological and biochemical functions of the organisms 
are characterized and the naturally secreted metabolic end products are measured. 
From that point, a perturbation (environmental or genetic) is proposed and imple
mented. The effect of the proposed perturbation is then evaluated and iterative 
cycles of proposed perturbations and characterization occur to incrementally 
improve the desired function of the organism.

The discovery-based, iterative approach to biological engineering was 
necessary in part due to lack of knowledge and tools. It may now be possible to 
change the paradigm for biological engineering to a design-based strategy, where 
chemistry and biology knowledge inform a proposed design scheme. After imple
mentation, the metabolic end products can be characterized and if successful, 
should closely match the predicted desired function.

The ability to achieve a design-based approach to biological engineering is ena-
bled in large part by the developments in systems biology and synthetic biology. 
Research in systems biology has provided much of the necessary biological knowl
edge that is needed to understand a cellular system enough to attempt whole-cell 
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design. In addition, computational biological models are being used to prospec
tively evaluate the effects of perturbations on cellular function. Synthetic biology 
progress has produced genetic engineering methodologies that enable almost any 
proposed genetic design to be directly implemented.

The ideal scenario for a metabolic engineering application such as production 
of biofuel is to be able to completely design all aspects of a biological system for 
optimal production in a similar fashion that blueprints or designs are made for 
other engineering disciplines. Starting from a blank slate and a given goal (biofuel 
production), a biological engineer would utilize any of the available tools (DNA 
in the form of genes and genetic parts) to design an optimal production system de 
novo. This approach would be accompanied by theoretical calculations on produc
tion yields and give a numerical basis for evaluating the success of the design.

6.1 � Combining Biology and Chemistry

At the highest level of design considerations for developing a biofuel process is 
the need to make decisions that identify and select the best attributes of a chemical 
target and biological organism for production of that chemical. Thus, criteria must 
be established to evaluate the suitability of different chemicals as fuels. It is also 
necessary to establish a separate set of criteria to evaluate the suitability of differ
ent organisms as biofuel production hosts. The overlap between the chemical cri
teria and the biological criteria should provide an unbiased perspective to indicate 
promising possible design avenues.

From a biological perspective, a broad starting point of organisms and genetic 
information should be considered. From a chemical standpoint, a broad spectrum 
of high energy-content chemicals can be considered by employing Table 6.1. After 
the chemical selection is narrowed, each one should be evaluated for the best pos
sible host organism (Table 6.2). By progressively applying filters/selection criteria 
to the biological starting point and the chemical starting point, the most promising 

Discovery-based
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Design-based
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implement perturbation
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metabolic endproducts

Characterize physiological/ 
biochemical properties

Compiled
chemistry
knowledge

Compiled
biology
knowledge

Propose and 
implement perturbation

Characterize 
metabolic endproducts

Fig. 6.1   Schematic of discovery-based and design-based approaches to biological engineering
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bioprocesses can be postulated as a combination of biological organism and 
chemical product.

Determining the best combination of chemical target and biological organism 
likely will not result in a single, unique solution. As with all other aspects of bio
fuels research, it is inevitable that there will be some benefits and shortcomings for 

Table 6.1   Choose a list of possible biofuels and rate each one on a scale of 1–10 as to its suit
ability to each category

Chemicals Toxicity
Enzymes available 

for synthesis
Sustainable Fuel 

Replacement
Score

Ethanol

Propanol

Butanol

Isoprenoids

polyketides

Lactic acid

Succinic acid

Table 6.2   Once the target chemical has been chosen, choose a list of organisms to evaluate and 
rate each organism on a scale of 1–10 as to its suitability in each category

Organism Existing 
Pathways

Existing 
Model

Genetically 
Tractable

Distance from 
metabolism

Score

Z. mobilis

P. stipitis

C. phytofermentans

C. glutamicum

C. acetobutylicum

E. coli

S. cerevisiae

Cyanobacteria and algae

Y. lipolytica

V. furnissii

6.1  Combining Biology and Chemistry
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any given combination. Fortunately (or unfortunately), the scale of energy and fuel 
consumption that needs to be addressed means that it is also almost certain that 
multiple means of alternative fuel production are required.

Individual perspectives will ultimately determine the research path chosen, but 
there are likely to be some common considerations for anyone entering biofuel 
research. Some of these considerations from a biological side include an organism’s 
ability to: utilize a sustainable input, be easily genetically modified, metabolically 
sustain diverse biochemical transformations, and be computationally modeled. From 
the chemical perspective, there are fuel attributes that need to be considered as well 
as toxic effects to cells, distance of the target chemical to existing biological path
ways, and the availability of characterized enzymes to produce the target compound.

It is important to consider how far away possible target compounds are from 
native biological processes. One technique used to induce organisms to produce 
the desired compounds is to link the pathway to produce the target compound to 
the primary (or secondary) metabolism of the organism. In doing this, the organ
ism will produce more of the target compound when it grows faster. By limiting 
the pathways used to only producing the desired compounds for growth and target 
compound production, the organism is able to use its resources more efficiently 
and more of the target compound is produced.

Choosing an organism that already performs as many processes as possi
ble is ideal and then having enzymes from similar species available increases the 
chances of the recombination being successful. Enzymes have evolved to thrive in 
specific environments including temperature and pH and the specificity of these 
enzymes plays a role in recombination. More promiscuous enzymes can be cho
sen for recombination, but the recombination is less likely to be successful and the 
reaction is less likely to be efficient at the intended reaction mechanism. Enzymes 
that come from similar organisms as the host organism are more likely to thrive in 
similar environments and perform the desired reactions efficiently because years 
of evolution have optimized its performance.

How close the molecule is to metabolism is a factor that will determine pro
duction rate. The steps beyond known metabolite structure should be more basic 
chemical reactions with lower activation energies. Each additional reaction needed 
takes more time and energy that is why minimizing the additional reactions branch
ing off a primary function of the cell is beneficial. Having pathways adjacent to the 
desired pathway that can be deleted will increase optimization opportunities. The 
metabolites that would have been used in the competing pathways are then used as 
inputs to the preferred pathway which leads to a greater flux of the reaction.

Both aspects of chemical toxicity and the ability to natively use sustainable 
inputs are important considerations as these attributes are often difficult to engi
neer into a cell if the cell does not natively have that capability. Chemical toxicity 
often triggers a systemic response involving a wide range of genes and physio
logical responses. For an organism that does not have native tolerance to a target 
chemical, redesigning the cell to have tolerance is a non-trivial endeavor. The same 
holds true for organisms that have limited abilities to utilize sustainable substrates. 
The two most sustainable source materials for organisms are either sunlight or 
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lignocellulosic biomass. For organisms that do not natively have the ability to use 
these sources, it would be difficult to engineer photosynthetic or cellulolytic sys
tems as both systems involve the interaction of a large number of genes.

The ability to model an organism or have a detailed knowledge of existing bio
chemical pathways is important for the overall design process. As a baseline for 
whole-cell design, a reasonable understanding of basal metabolism is necessary. 
If an organism is not well characterized in terms of its basic metabolic function, 
it is difficult to design novel functions because there is no way of predicting the 
interactions that would occur. Even if two organisms contain roughly the same 
genes and biochemical capabilities, there is no guarantee that they utilize these 
components in the same manner. This has been observed between closely related 
Clostridia species that are of interest for biofuel production. The ability to develop 
computational models for an organism may not be necessary, but is a step that 
greatly facilitates design by allowing fast and thorough evaluation of different 
design combinations.

Finally, the ability of an organism to be genetically modified and the availabil
ity of enzymes to perform desired biochemical transformations are necessary for 
successful implementation of proposed designs. Different organisms (and strains 
of an organism) have different inherent competencies for genetic transforma
tion. This can range from some strains that are naturally transformable (they will 
readily take up free extracellular DNA) to strains that have no known method for 
genetic modification. In addition to having characterized enzymes that can per
form the desired biochemical reaction, these two aspects are critical to tangibly 
implementing a desired biological design.

Interestingly, many of these same considerations have been discussed in the 
synthetic biology arena in considering the ideal attributes of a metabolic engineer-
ing host chassis (Jarboe et al. 2010). Some of the idea attributes for a metabolic 
engineering chassis were listed as:

1.	 Growth in mineral salts medium with inexpensive carbon sources
2.	 Utilization of hexose and pentose sugars
3.	 High metabolic rate
4.	 Simple fermentation process
5.	 Robust organism
6.	 Ease of genetic manipulation and genetic stability
7.	 Resistance to inhibitors
8.	 Tolerance to high substrate and product concentrations

6.2 � Potential Design Starting Points

There are many different types of bacteria and each has evolved to thrive in a spe
cific environment. This vast array of options is beneficial in choosing a host organ
ism for producing biofuel because native properties can be seen as a head-start 

6.1  Combining Biology and Chemistry



52 6  Integrating Systems and Synthetic Biology

or work that does not have to be done. There are two main advantages that a host 
organism can provide. Either an organism can be chosen that already uses the 
feedstock efficiently or already produced the desired product. When testing the 
recombinant pathway to biofuel production it is beneficial to start with an organ
ism such as E. coli that has a high growth rate, is genetically tractable, has a rela
tively well-defined system, and there are accurate computational models to predict 
production of metabolites. Producing biofuels from bacteria that have a sugar 
feedstock does not end up being very efficient in the overall life cycle analysis 
so the paths to produce the biofuel should be implemented into a bacteria with 
a lignocellulosic feedstock or a photosynthetic organism since it is more likely 
to be cost-efficient and sustainable. Terpenes can be produced using a secondary 
metabolic pathway that leads to isoprenoid production and can be modified to fur
ther produce long chain terpenes that are used for jet fuel or isopropanol which 
can be used similar to ethanol. When choosing which genes to integrate into the 
host organism it is beneficial to choose enzymes native to similar growing environ
ments as the host cell.

Optimization techniques include plasmid copy number, codon optimization, 
promoter variation and overexpression, and reduction of competing pathways.

6.2.1  Organisms with Native Product Formation

One common and very effective strategy for microbial fuel production has been 
the employment of organisms which naturally produce the chemical of interest. As 
one prominent example, Clostridium acetobutylicum and Clostridium beijerinckii 
were both used significantly in the earlier part of the twentieth century in the ace
tone–butanol–ethanol (ABE) process.

Because these organisms already have the capability to produce and secrete 
ethanol and butanol, research efforts could focus on optimizing these species for 
biofuel production by removing alternative carbon by-products such as butyrate or 
acetone. Since the introduction of this process, engineering efforts have focused 
on improving product yield and specificity, broadening substrate range, and 
improving product tolerances. Very recently, significant advances in these areas 
have been achieved through the application of systems biology techniques. Both 
of these organisms exhibit a concerted metabolic shift from acidogenesis to sol-
ventogenesis during mid-late fermentation. Transcriptomic analysis of C. beijer­
inckii during that shift recently revealed the transcriptional regulatory changes 
that underpin this shift, as well as the physiological responses of sporulation and 
chemotaxis (Shi and Blaschek 2008). Another study used bioinformatic analysis 
of several clostridial genomes to predict potential small RNAs (sRNA) in these 
organisms (Chen et al. 2011). Future research could use these discoveries to con-
trol the regulatory shift to solventogenesis or to direct all solventogenesis to a 
desirable product, such as ethanol or butanol, thereby improving overall produc-
tivity and yield and reducing downstream separation costs. As another example, 
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the ethanologen Zymomonas mobilis is naturally highly optimized for ethanol 
production, reaching near theoretical yields. Recent genomic, transcriptomic, and 
metabolomic experiments by the BioEnergy Science Center (BESC) at Oak Ridge 
National Labs have resulted in a flood of information about this organism and 
mutant strains which have already been used as a discovery tool to uncover the 
genetic mechanism for acetate tolerance (Yang et al. 2009a, b, 2010). This dis-
covery will allow better productivity by Z. mobilis on hydrolysate from dilute acid 
pretreatment methods that use acetic acid, and, more generally, this demonstrates 
the utility of systems biology techniques for elucidating complex or emergent 
behaviors.

6.2.2  Organisms with Native Substrate Utilization

An alternative strategy for selecting a suitable platform organism for biofuel pro
duction is to choose species that can naturally utilize a broad range of abundant 
substrates such as lignocellulose or syngas. These organisms can then be manip
ulated to manufacture a desired product. Many of these organisms are opportunis
tic or highly specialized to specific environments, so the challenge for metabolic 
engineers is to improve process tolerance and product yields. This is best accom
plished by studying molecular and cellular functions as a basis for subsequent 
design/engineering efforts.

An example of building knowledge and extrapolating it to design is the 
anaerobic, cellulolytic microorganism, Clostridium thermocellum. Microarray 
experiments on C. thermocellum have revealed substrate- and product-depen
dent transcriptional responses that will be valuable for improving ethanol yield.  
Quantitative proteomic (Raman et al. 2009) and lipidomic (Herrero et al. 1982) 
studies have examined its physiological responses to pretreatment inhibitors and 
high ethanol concentrations. Building upon these data, a constraint-based meta
bolic model of C. thermocellum has also been constructed and used as a platform 
for the integration and interpretation of global gene expression data (Roberts  
et al. 2010; Gowen and Fong 2010) This data-integrated computational model 
can then be used to predict genetic modifications that would increase the prod
uct yield and productivity of C. thermocellum for the production of either ethanol 
or hydrogen. These efforts are likely to rapidly expand to other cellulolytic and 
hemicelluloytic organisms, as well as to organisms that grow on syngas, as more 
genomic information becomes available.

The strategy of starting with a cellulolytic organism has the benefit of utiliz
ing the diverse and effective cellulose systems native to these organisms, because 
these complex and coordinated enzyme systems would be difficult and costly to 
reproduce in laboratory model strains such as Escherichia coli and Saccharomy­
ces cerevisiae. The challenge then is to overcome poor productivity and yield and 
to optimize process tolerance and, as described above, systems biology techniques 
will continue to direct and enable these efforts.

6.2  Potential Design Starting Points
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Every additional function a cell has consumes more energy and therefore leaves 
less energy for the process that is making the product. With this is mind it would be 
logical to look for a minimalistic cell that only carries the functions necessary to sur
vive and to produce a desired product. Some research groups are already on the 
quest for a “minimal cell” or “generic host”. This bare-bones cell only contains the 
essential genetic information required to maintain viability under certain conditions.  
A minimalist cell can be generic and open for inclusion of specific functions or it can 
be designed from scratch to perform a specific function. With the current knowledge of 
biological systems it is very possible that this theory of a minimalist cell would result 
in limited efficiency because the complexity of the cell is not completely understood.

6.3 � The Systems and Synthetic Biology Complement

In other engineering disciplines (mechanical, electrical, civil, chemical, etc.) de 
novo design based upon theory/knowledge and desired function is common. The 
ability to successfully implement de novo design generally relies on two critical 
components, good characterization of available materials/building blocks/compo-
nents and the ability to accurately physically implement the design from a blue-
print or design specifications. In biological systems, both of these aspects have 
historically been hurdles that are now being overcome. The ability to effectively 
implement de novo biological designs enables a more straightforward approach to 
biological engineering.

The knowledge base and comprehensive characterization of fundamental bio
logical components is born from the centuries of careful biological and biochem
ical experiments that have been conducted. Recent systems biology research has 
expedited the characterization of biological components and added additional 
information on coordinated activity and interactions.

Synthetic biology research has developed a variety of parallel approaches to 
the synthesis and assembly of DNA constructs of various lengths (up to a small 
genome). With the ability to directly synthesize or assemble genetic constructs to 
exactly correspond to a design, biological engineering may no longer have a sig
nificant hurdle at the construction step. Thus, if the knowledge base is comprehen
sive and well-curated and methods of implementation exist, biological engineering 
can focus on design.

As described, the recent contributions of systems biology and synthetic biology 
to biological engineering are highly complementary. The systems-wide analy
ses and modeling of systems biology help to provide the basis for cellular-level 
design. Details of this design can be translated to base-by-base specification for 
synthesis and implementation. Synthetic and molecular biology tools can be used 
to fine tune cellular-level designs and implement them into engineered strains. 
Engineered strains can then be evaluated and characterized for function by exper
imental systems biology techniques. If necessary, this process can be iterated for 
continuous improvement of function (Fig. 6.2).
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The collective biological knowledge for many organisms is now sufficient to 
attempt whole-cell manipulations/design. Currently, one of the most successful 
tools for conducting whole-cell designs is to use computational models, such as a 
constraint-based model (Chap. 4.2.1). After developing a constraint-based model 
for an organism of interest, there exist a number of different design algorithms that 
can be used to help to guide a whole-cell design. The most common of these algo
rithms are variants of optimization-based algorithms such as OptKnock (Burgard 
et al. 2003) that uses a bi-level optimization where the two objectives that are con
sidered are typically your chemical of interest and cellular growth. More recent 
algorithms include OptForce (Ranganathan et al. 2010) and EMILiO (Yang et al. 
2011) and evolution-based algorithms such as simulated annealing (Gonçalves et 
al. 2012). Algorithmic design using a computational model can help to generate 
whole-cell designs that suggest genetic modifications (gene additions, gene dele
tions, or changes in gene expression) and/or environmental conditions that would 
improve the desired cellular function.

The cellular-level design accomplished by constraint-based models and associ
ated algorithms are broad and comprehensive at a cellular level, but do not necessar
ily contain all details necessary for direct experimental implementation. Especially, 
for cases where new genes are to be added to a system for heterologous expression, 
additional design specifications need to be made at the molecular/genetic level. In 
this case where heterologous expression of a gene is desired, there are numerous 
considerations to account for. Is the GC content and codon usage between the organ
isms (host chassis organism and the organism natively possessing the desired gene) 
sufficiently different that the gene should be codon optimized for the new chassis? 
What level of expression is desired for the target gene? Will the expression be con
trolled by designing promoters, ribosome binding sites, RNA secondary structure, or 
by plasmid copy number? Finally, if the desired gene and ancillary DNA sequences 
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Fig.  6.2   Graphical representation of complementary aspects of systems biology and synthetic 
biology as applied to biological design and engineering

6.3  The Systems and Synthetic Biology Complement
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are to be synthesized, how are the DNA sequences going to be assembled and ampli
fied? All of these questions can directly affect the function of the gene and can 
change the base-by-base detail of what will be experimentally implemented.

If all of the cellular-level and genetic-level designs are specified, then the 
designed strains can be experimentally constructed. Details of some of the syn
thetic biology methods used to assemble and integrated DNA sequences are 
described in Sect. 5.1.1. Often, the method by which the DNA sequences will be 
assembled is considered concurrent with the initial genetic-level design as the dif
ferent methods of DNA assembly often require the addition of DNA sequences 
that are used as overhangs or recognition sequences for the assembly method. 
While DNA synthesis costs continue to decrease, there is often also decision 
about which assembly method to use based upon the length of the desired DNA 
sequence to by synthesized and the cost of synthesis (i.e., a single continuous 
DNA sequence of 2,000 bases can be directly synthesized reducing the need for 
DNA assembly, but it may be much more cost-effective to synthesize 20, 100-base 
long DNA fragments and assemble them).

Once the strains have been designed and experimentally constructed, all that 
remains is to evaluate the degree of functional success achieved. For chemical pro
duction applications, this typically involves two primary areas of analysis. The first 
is the use of some analytical chemistry analysis to quantitatively assess the amount 
of production of the desired chemical. A wide range of analytical chemistry tech
niques can be employed including HPLC (high performance liquid chromatogra
phy), mass spectrometry, NMR, or even assays. The second area of analysis that is 
typically conducted is some type of characterization of cellular function. In an ideal 
case, this would include some of the systems biology experimental techniques such 
as transcriptomics, proteomics, fluxomics, or metabolomics. System-wide evalua
tion of cellular function can provide insight into how effectively a proposed cellu
lar design is being implemented in the in vivo setting. Furthermore, system-level 
measurements can be used as information and input to improve the function of an 
organism if it is not behaving as was predicted or desired (Gowen and Fong 2010).

6.4 � Expanding the Options

With the above outlined biological engineering process, it is possible to specify 
a target chemical and organism and engineer the organism to produce the desired 
chemical. In this process, there are decisions that need to be made regarding what 
is the target chemical and most appropriate organism to use as the host organism. 
These decisions are most intelligently decided by understanding the chemical in 
question, the biological characteristics of different organisms, and the availability 
of different enzymes to implement the desired function. By necessity, these deci
sions are made based upon what information is available in each of these areas. 
Ongoing discoveries and research are continually adding to our chemical and bio
logical knowledge to expand the possibilities of what can be attempted.

http://dx.doi.org/10.1007/978-1-4614-5580-6_5
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6.4.1  Bioprospecting

One of the biggest advantages of using biological processes is the immense 
diversity of biological function available. Bioprospecting is expanding the col
lective library of biological information in the scientific community by search
ing for and identifying novel organisms and functionalities. Systems biology 
provides tools for high throughput genetic and phenotypic characteriza
tion, thereby reducing the time and effort spent in the wet lab. As an example, 
bioprospecting for improved utilization of lignocellulose has turned up inter
esting and novel cellulolytic species from a variety of environments includ
ing terrestrial (Kim et al. 2009; Semêdo et al. 2004), aquatic (Distel et al. 2002; 
Podosokorskaya et al. 2011; Miroshnichenko et al. 2008) and ruminal settings 
(Chassard et al. 2012; Chang et al. 2011). In addition to testing for cellulolytic 
capabilities, some of the novel species possess additional interesting metabolic 
capabilities such as the ability to use carbon monoxide as a substrate (Bruant  
et al. 2010) or the ability to produce and accumulate high levels of oil (Araujo  
et al. 2011). With the development of lower cost, higher throughput DNA sequenc
ing technologies, the field of metagenomics has made it possible to explore  
biological diversity at the genetic level, without the need to isolate or identify 
the originating host organism. For example, metagenomics can be used to search 
for novel cellulases (Li et al. 2009; Sommer et al. 2010) or as a means of study
ing chemical production capabilities, such as alkane production in cyanobacteria 
(Schirmer et al. 2010).

6.4.2  Metagenomics

While bioprospecting typically results in the isolation of intact novel organ
isms, it is possible to search and identify new biological information based upon 
genetic content alone. In this case, high throughput DNA sequencing is used to 
generate DNA sequence data for any genetic material (e.g., soil sample, air sam
ple, etc.). Metagenomics is a type of high-throughput characterization that is 
rising in popularity because it tests a small ecosystem of organisms that grow 
and thrive together. Most current characterization techniques involve isolating a 
specific organism and allowing it to propagate for testing, but many species go 
unidentified in this manner. Metagenomics catches all of the organisms in the 
sample being tested. In this manner, it is possible to generate genetic informa
tion without the intact context of the host organism. Thus, it is possible to expand 
the range of possible enzyme functions without the requirement of knowing all 
of the details of the original host organism. Previously, this type of biological 
information may have been of limited use for applications, but growth of syn
thetic biology and DNA synthesis provides a natural avenue for implementing 
DNA information.

6.4  Expanding the Options
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6.4.3  Bioinformatics

Research in systems biology has been underway for many years and until recently 
it has been a slow accumulation of knowledge obtained through numerous time-
consuming laboratory experiments. While science will always need the creativity 
and innovation of its researchers, computers have proven to be very useful in a 
wide range of biological applications. The growth and compilation of biological 
knowledge has led to an analysis problem where often there is more information 
that can be intelligently deciphered. Bioinformatics has developed as a field to 
help address the analysis challenges that face biology.

One of the central components of bioinformatics is the use of computers in 
biology. A core component of bioinformatics is data mining where computational 
algorithms are used to study and analyze biological information. Most often these 
algorithms are reflections of hypotheses or current beliefs in biology and help to 
search through large data sets to not only test hypotheses, but also expand our 
knowledge by identifying novel attributes. In this manner, bioinformatics can help 
add to the biological knowledge further expanding possible design options.

Bioinformatic analyses cover a broad spectrum of biological research. This 
ranges from DNA sequence analyses to ecosystems or organism systems. For the 
purposes of biofuel applications, many of the most useful applications are function 
based such as analyses that link biochemistry and enzyme activity.

Chemical Enzyme databases have been developed to suggest enzyme pathways 
for chemical production and predict chemical compounds once exposed to certain 
enzymes. One database (BNICE) uses the thermodynamic data available for exist
ing reactions to predict the most favorable pathway. By using the energies known 
for chemical bond formation, and the extent to which enzymes can reduce the 
energy needed, a change in Gibb’s free energy (ΔG) is determined for each reac
tion and it is known that having a negative ΔG means that the reaction will happen 
spontaneously. The model will provide different pathway options using different 
enzymes and provide the ΔG for each proposed reaction pathway.
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Abstract  A critical step in engineering design is the ability to accurately con-
struct something to directly translate a conceptual design to practice. Due to the 
relatively short history of molecular biology and the limitations in knowledge and 
technology, biological engineering has been hindered by a lack of ability to easily 
implement conceptual designs. Recent developments have attempted to standard-
ize different aspects of biology to facilitate and expedite biological engineering. 
Standardization of genetic parts will not only ease the methodological hurdles 
for biological engineering, but it will also enable biological engineering to focus 
more exclusively on conceptual design of function rather than being constrained 
by practical limitations.

A classic hallmark of humans is the ability to conceive, build, and use tools to 
achieve desired goals. Advances in construction methods relevant for most disci-
plines allow building or construction to occur quickly and with minimal thought. 
For example, humans have been working with iron for more than 3000 years and 
mass-produced steel for more than 160 years. This established history of metal-
lurgy allows for devices to be constructed out of metal quickly and efficiently. In 
terms of the overall process of biological process development, this chapter will 
focus on the specific aspect of building/construction as it is one of the major hur-
dles for biological engineering.

The ability to quickly and efficiently construct desired devices has not been 
possible for biological systems, especially if considering a functional cell to be 
the device to be constructed. Contrary to the long history and established meth-
odologies in other disciplines, scientists have only been working in detail with the 
fundamental material of biological systems (DNA) for a little over 50 years. While 
great advances have been made in a short period of time, there are still fundamen-
tal pieces of information that are still being discovered, such as the debated pos-
sibility of growing and incorporating arsenic instead of phosphorus into biological 
building blocks [including DNA (Wolfe-Simon et al. 2011)].

The shorter history of working with DNA in biological systems leads to 
very practical limitations in terms of what can be achieved in building biologi-
cal systems. In most engineering disciplines other than biological engineering 
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(mechanical, electrical, chemical, computer, civil), the historical foundations of 
those fields have provided sufficient depth of knowledge and tools to prospectively 
design and physically implement a product (Table  7.1). In the more established 
engineering disciplines, the different aspects of knowledge, design, and construc-
tion are typically segregated and discrete steps. The implication of this is that each 
of the steps can be addressed independently without major concerns for the other 
downstream steps. For example, an internal combustion engine can be designed 
based upon principles of combustion and mechanics. Design efforts produce a 
blueprint/schematic of the proposed engine based upon theory and desired func-
tionality. The design step can be considered almost exclusively based upon the fun-
damental design principles and desired function without much regard to the actual 
construction of the engine. The techniques and capability to construct the engine 
are assumed as methodologies for metal working and machining are available.

The ability to segregate knowledge, design, and construction into discrete, inde-
pendent steps has not always been possible for biological systems and biological 
engineering. Often all three of these components are interwoven due to different 
limitations. The design process often is limited by the amount of information/
knowledge available and sometimes, biological design cannot occur due to a lack 
of information. For example, an organism can be engineered to produce specific 
polyketides through genetic engineering, but this ability is contingent upon having 
an understanding of polyketide synthases. In other areas such as terpenoid produc-
tion, the design process is not as straightforward as the level of knowledge for ter-
pene synthases is not as well established as for polyketide synthases. One current 
example of this is the desire to heterologously express and produce the terpenoid 
paclitaxel (Taxol) for cancer treatment, but the complete biosynthetic pathway has 
not yet been elucidated. Thus, an engineered strain for bioproduction of paclitaxel 
is not yet possible.

Of specific concern for this section, there have also been limitations in con-
struction that influence the design step. Currently, the single most commonly 
used approach for implementing biological designs is the use of genetic engi-
neering methodologies. Thus, there is really no consideration on what the materi-
als of construction will be (DNA), but the ability to exactly build something to 
match a de novo design specification and to have it compatible with other com-
ponents by a set of standards has been problematic. Practically speaking what 
this has led to in biological engineering is a design process where designs are 
constrained by what information is known and also how possible it is implement 
a proposed design. Until recently, this has caused the engineering process for bio-
logical systems to be a process of continual feedback and iteration rather than a 
linear building/construction process.

In terms of building engineered strains, recent developments (mainly associ-
ated with technology and methodology improvements) have sought to address the 
constraints and limitations associated with the implementation or construction of 
genetic constructs. The developments have taken different approaches to address 
the two main problems: (1) the ability to construct something that exactly matches 
the blueprint/design and (2) standardization to facilitate compatibility.
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7.1 � Standardization of DNA

Standardization has many different facets but the two that we will focus on here 
are the standardization of requirements and the standardization of part interoper-
ability. When mentioning the standardization of requirements, what is meant is a 
set of guidelines or rules that are accepted in the field and must be abided by. For 
standardization of part interoperability, the intention is to facilitate the actual con-
struction and implementation during the actual building process.

Standardization of requirements occurs in all engineering disciplines and 
impacts various facets of that field. Every field has some form of standards that 
related to safety and ethics. In addition, there are also technical specifications/
standards that are established. For biological systems, these standards in the areas 
of ethics and technical specifications are often unspoken and can vary from lab to 
lab.

In the area of safety and ethics, some of the guidelines are well established 
whereas others are almost left to the individual to decide. Safety standards are 
relatively uniform, especially for work that is conducted in an academic setting 
or sponsored by federal funding. For example, the National Institutes of Health 
have established, published guidelines regarding research using recombinant DNA 
(http://oba.od.nih.gov/rdna/nih_guidelines_oba.html). One of the challenges is that 
methodologies and capabilities are continually changing and thus, policy guide-
lines must also evolve. This is demonstrated by the discussion on amending the 
recombinant DNA guidelines to account for synthetic nucleic acids (http://oba.
od.nih.gov/rdna_rac/rac_pub_con.html).

Ethical considerations are less well-defined than safety in terms of policies and 
guidelines. The ethical implications of genetic engineering and designed organ-
isms are more grounded in personal world views rather than technical detail. 
Some of the more widely debated related subject areas are genetically modified 
foods and whole organism cloning. Specific to the topic of biofuel production 

Table 7.1   Examples of aspects of design in various engineering disciplines

Engineering  
Discipline

Goal Theory Parts Product

Electrical Electronic device Kirchoff’s law
Ohm’s law

Transistors, resis-
tors, capaci-
tors, inductors, 
diodes

Circuit board

Chemical Chemical process Conservation 
of mass and 
energy, reaction 
kinetics

Catalysts, chemi-
cals

Chemical reactor

Biological Biological process Central dogma 
of molecular 
biology

DNA Cell
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http://oba.od.nih.gov/rdna/nih_guidelines_oba.html
http://oba.od.nih.gov/rdna_rac/rac_pub_con.html
http://oba.od.nih.gov/rdna_rac/rac_pub_con.html
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and synthetic or recombinant DNA are questions regarding the scope of genetic 
interventions. Are we ethically comfortable with modifying a single gene in an 
organism? An entire pathway? The entire organism? As mentioned previously, 
the technical capability exists to synthetically create the DNA for an organism’s 
entire genome. If an entire genome is synthetically created and no known organ-
ism’s genome is used as template, would the new genome and related organism 
be a synthetically created new life form? How much modification to an existing 
organism would need to be made to designate a new species? The answers to these 
questions and how the scientific community should proceed are pressing issues 
that need to be addressed.

The other major area of standardization that is being addressed is the standardi-
zation of technical specifications. This is largely a practical consideration and fol-
lows from the concept of interchangeable parts. A nut and bolt combination works 
well when there are standardized threads (depth and pitch) that match between the 
nut and bolt. Furthermore, if depth and pitch of the thread is standardized, replace-
ment nuts can be easily found for a given bolt if a nut should be lost. This type 
of technical standardization is common in most fields where something is built or 
constructed.

Biological research has long been one where standardization is not common. 
Polymerase chain reaction (PCR) is one of the most useful and prevalent meth-
ods used to amplify DNA, but every individual DNA sequence to be amplified 
requires the design and construction of unique DNA primer sequences to be used 
in the PCR reaction. Furthermore, depending upon the characteristics of the DNA 
sequence to be amplified, changes may need to be made to the actual experimental 
protocol of the method. The challenges associated with the uniqueness of biology 
are pervasive and can be seen from designing individual probes for gene expres-
sion microarrays to having mass and fragmentation patterns for mass spectrometry 
applications.

In terms of genetic engineering, one of the most comprehensive attempts to 
establish standardized technical specifications for DNA is the BioBrick formalism 
(Shetty et al. 2008). The BioBrick concept establishes a standard format for all 
DNA sequences where a sequence of interest is flanked upstream and downstream 
by standard DNA sequences. The added DNA sequences are cut sites that are rec-
ognized by specific restriction enzymes. In this format, the desired DNA sequence 
is flanked upstream by the restriction enzyme recognition cut sites for EcoRI and 
XbaI and downstream by the restriction enzyme recognition cut sites for SpeI 
and PstI (Fig. 7.1). Using this formalism, the desired DNA sequence (DNA part) 
can be of any length with any sequence (as long as the sequence does not con-
tain cut sites for EcoRI, XbaI, SpeI, or PstI). Different DNA sequences that have 
this format can be manipulated by the same protocol by using the four restriction 
enzymes EcoRI, XbaI, SpeI, and PstI. Currently, thousands of DNA sequences of 
varying length and function exist in a centralized DNA repository (www.partsreg-
istry.org) and all of these parts can be worked with using standardized protocols 
(contrast this with having to design and synthesize primers for each sequence 
individually).

http://www.partsregistry.org
http://www.partsregistry.org
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When using the BioBrick format, DNA sequences can be isolated and assem-
bled with other DNA sequences quickly by cutting the sequence using restriction 
enzymes and ligating the desired sequences together using DNA ligase. This can 
be done for as many DNA sequences as desired and in any order that is desired. 
Furthermore, there exist a number of DNA plasmids that have been constructed 
with replication origins and different antibiotic resistance genes as markers. Thus, 
the same methodologies used to assemble DNA sequences together can be used to 
generate a self-replicating plasmid housing DNA sequences of interest.

7.2 � Interoperability of DNA Constructs

The challenges associated with building or constructing biological systems con-
tinues beyond developing methods to standardize genetic parts. One of the charac-
teristics of biological systems is that the components in an organism are all highly 
connected (metabolic network, regulatory network, protein interaction network). 
Thus, even after being able to construct a desired DNA sequence properly, there is 
a challenge in having the DNA sequence expressed and functional within the net-
work context of existing components. This can be viewed as a challenge of inter-
operability or compatibility.

In terms of controlling expression of the designed DNA sequence, vari-
ous tools are available to help to control or to dictate the expression level of an 
introduced or modified DNA sequence. Fundamentally, expression is controlled 
at the transcription and translation steps by the pairings of promoter and DNA 
polymerase for transcription and ribosome binding site (RBS) and ribosome 
for translation. The level of transcription can be altered by modifying the bind-
ing strength between a promoter and DNA polymerase. To date, the most effec-
tive means of achieving this has been accomplished empirically by developing and 

P -PstI

CTGCAG

GACGTC

E –EcoRI

GAATTC

CTTAAG

X -XbaI

TCTAGA

AGATCT

S -SpeI

ACTAGT

TGATCA

DNA PartE X S P

Fig.  7.1   Graphical depiction of the BioBrick format for standardizing DNA parts. A target 
sequence (DNA part) is flanked upstream by restriction enzyme cut sites EcoRI (E) and XbaI (X) 
and downstream by SpeI (S) and PstI (P)
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characterizing promoter libraries that contain promoters with small variations in 
sequence. The level of translation can be similarly altered by modifying the inter-
action between the RBS and the ribosome. In this case, the interaction between the 
RBS and ribosome follows nucleic acid pairing, so predictions on the strength of 
this interaction can be made to help to guide design of this interaction (an exam-
ple of this is the ribosome binding site calculator (Salis et al. 2009)). In addi-
tion to these primary methods, other methodologies such as codon optimization 
and designing RNA hairpins can influence the expression levels of a target DNA 
sequence.

Even when a DNA sequence is designed, constructed, and care is taken to try 
to control its expression, the DNA sequence may not function as desired within 
the context of a living organism. In these instances, the ability to efficiently build 
and modify a biological system is severely limited by the state of our knowledge. 
It is often difficult to predict all of the downstream consequences of a genetic 
modification and in some instances there may be no means of predicting how an 
introduced gene/protein (for example) will interact with other existing genes/pro-
teins. In these instances, the most common approach to address interoperability 
issues is an empirical approach where molecular evolution is used. Variants of the 
desired gene/protein are generated and screened in context for the desired func-
tion. Currently, the use of molecular evolution is often necessary for implementa-
tion of even small genetic constructs that contain only a couple genes.
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Abstract  Biofuel production has the potential to have a great and lasting impact 
on the society and is a focal point of biological and metabolic engineering 
research. There have been great advances in the ability to engineer biological sys-
tems, and it can be seen that there lies many possibilities to expand the use of biol-
ogy in producing a variety of chemicals, not just biofuels.

The chemical field has started taking advantage of biological systems to make 
commodity chemicals as well as fine chemicals due to their much lower process-
ing costs. So far the number of chemicals made by biological means is limited 
mostly to existing metabolites that are more easily purified and to a few fine chem-
icals that have been the subject of extensive research.

We are really just seeing the beginning of chemistry and synthetic biology 
coming together in a mutually beneficial way that will provide a sustainable 
future for many different industries. Chemists are realizing that using organ-
isms as factories that require few inputs such as sugars or sunlight provides a 
much more cost-effective process that reduces the hazards involved with dis-
posing of mass quantities of chemical waste and leaving a much larger carbon 
footprint.

Chemists are starting to see that the way in which organisms have evolved has 
great significance and generally exposes the most energy-efficient route to produc-
ing chemicals.

Elucidating the pathways to producing an unlimited variety of chemicals using 
organisms lies in the computational framework being established. Once there is a 
complete database of enzymes and how they affect any different chemical, it will 
be possible to use any combination of enzymes to produce an endless number of 
chemicals. While these enzymes could work outside of the organism, it may prove 
to be more beneficial to incorporate the process in the organism. To choose which 
organism would be most suited for the process, data as to which enzymes are in 
each organism, and at what efficiency recombinant enzymes work would need to 
be included in the database. The alternative to this method would be the success of 
a “minimal cell” that could accept all of the genetic information needed to carry 
out the production of a desired chemical.

State of the Field and Future Prospects
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In order for biofuels to be integrated into our current infrastructure and life-
style, there will need to be a transition period where different combinations of 
biofuels fulfill the supply. A biofuel that can be blended into gasoline or easily 
implemented at existing gas stations that can work in our current engines would be 
the easiest transition but blending anything other than ethanol at this point is not 
cost-effective.

Algal biodiesel seems to be a solution that would work well in terms of produc-
tion, greenhouse gas emissions, and sustainability, but this would require people to 
have diesel engines and they are not currently popular in personal vehicles. Once 
the price of algal biodiesel is low enough to compete with gasoline, the benefits 
of it should outweigh gasoline enough to where people start transitioning to die-
sel engines to accommodate this and other biofuels which work better in diesel 
engines.

Ethanol as a main biofuel has already been implemented in Brazil where they 
use almost a quarter of the world’s ethanol fuel supply. Ethanol is already being 
blended into gasoline here in the US by up to 10 % ethanol, but there is still some 
debate as to whether or not ethanol is harming our current gasoline engines. 
Modifications can be made to existing engines that would allow for pure ethanol 
usage in personal automobile engines or they are already manufacturing flex-fuel 
vehicles that are already designed to run with high levels of ethanol. As of now 
most ethanol in the US is being produced from corn, but it will only succeed as a 
major contributor to our future in biofuels if we can produce ethanol in cost-effi-
cient ways that do not take up arable land and which reduce greenhouse gas emis-
sions. Producing ethanol from cellulosic feedstock or cyanobacteria would be the 
best routes if ethanol is to become a mainstay in biofuels in the US, but producing 
propanol or butanol may prove to be a better option.

Propanol or butanol production from cellulosic feedstock or a photosynthetic 
organism would be a much better option in terms of fuel efficiency but there is 
much research to be done to develop a process that is efficient enough to become 
cost-effective when run on a large scale. Most likely these types of fuels will 
not be able to stand on their own and will be blended with ethanol, gasoline, or 
another type of fuel to provide energy efficiency and water resistance without rais-
ing the cost of the fuel too much.The future of sustainable biofuels will be a blend 
of many techniques initially and may never be reduced to one single biofuel that 
shines above the rest in terms of cost, efficiency, sustainability, and availability.

The application of new knowledge and techniques derived from systems biol-
ogy and synthetic biology is leading to new approaches to biological engineering. 
The advances make it possible for engineering design approaches to be taken in 
a biological setting where the individual steps of the design-build-test paradigm 
can be treated somewhat independently. This allows for a new degree of intel-
lectual freedom where design is constrained by creative limitations, not logistical 
construction limitations. Moving forward, as the possibilities for biological engi-
neering broaden, more prospective thought must be given to macroscopic decision 
making to help to identify promising avenues of research priority.
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